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Abstract

This document describes the real-time Radio Frequency Interference detection sys-
tem for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). CHIME
is a transit radio telescope located at Dominion Radio Astrophysical Observatory
(DRAO) in Penticton, BC, and it is originally designed to map the large-scale
structures in the redshift range 0.8 < I < 2.5 by observing the 21-cm emission
line of the neutral hydrogen atom. One of the common problems for astrophysical
radio observations is Radio Frequency interference (RFI) from terrestrial sources
such as TV stations, airplanes, cellphones, etc. RFI detection and mitigation is an
essential part of any research in radio astronomy, because RFI contaminates the
astrophysical data and reduces the sensitivity of the telescope to the faint sources.
Since most of the RFI is non-Gaussian and lasts less than one second, we developed
a real-time high cadence RFI excision system for CHIME which uses the fourth
statistical moment (kurtosis) to detect non-gaussianity in the signal.

In this thesis, I introduce the algorithms for kurtosis based RFI excision that we
have used in CHIME. The algorithms were tested and the results were compared
with each other. I also discuss the effect of truncation of the samples in CHIME
correlator on the spectral kurtosis estimates. I show that truncation bias causes the
RFI system to flag bright celestial sources. I derive a correction for the truncation
bias with a polynomial fitting and a cubic spline interpolation. Moreover, I evaluate
the quality of the CHIME data taken between May 2019 and September 2020. I
find that the RFI excision system can mitigate many types of RFI by excising less
than 20% of the data (on average), from intermittent RFI caused by satellites or
airplanes to static RFI, especially between 400 MHz and 500 MHz.
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Lay Summary

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a radio tele-
scope in Penticton, BC, that is originally designed to probe the dark energy and
make the largest 3D map of the large-scale structures in the observable universe.
One of the common problems in radio astronomy research is the Radio Frequency
Interference (RFI). RFI is a human made signal that interferes with the cosmic sig-
nal and degrades the quality of astronomical data. Since CHIME aims to measure
very weak signals coming from deep space, we need to detect and mitigate RFI to
increase the sensitivity of the telescope. In this thesis, I introduce the RFI excision
system for CHIME and I evaluate its performance from May 2019 to September
2020. I find that the system is able to detect and mitigate different types of RFI and
increase the sensitivity of the system.
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Preface

This thesis is original, unpublished work by the author, Arash Mirhosseini, con-
ducted as part of the CHIME collaboration, under supervision of Mark Halpern
with input and ideas from Richard Shaw, as well as other members of the CHIME
team. The RFI excision system for CHIME was previously designed and explained
in Taylor et al. (2019) [1]. The contribution I made was to evaluate the performance
of different excision algorithms with different thresholds, find and correct the bugs
in the spectral kurtosis estimator (for example 4+4-bits truncation bias) and assess
the data quality after RFI excision.
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Chapter 1

Introduction

Twenty years ago, measurements of the distance to the Type Ia supernovae by
two independent teams confirmed the discovery of accelerating expansion of the
universe [2, 3]. The nature of this acceleration is still unknown and it is usually
attributed to an enigmatic component of the universe: dark energy. Dark energy
can be considered as a fluid with an equation of state % = Fd, where P and d
are the pressure and density of the fluid, respectively, and F is the equation of
state parameter. The current observations are compatible with F = −1 which
corresponds to a static density. More accurate observations are needed to impose
tighter constraints on F as well as other cosmological parameters. Putting tighter
constraints on the parameter F is an essential step towards understanding the nature
of dark energy.

In this chapter, I review somebasic concepts that are necessary for understanding
the scientific goal of CHIME; a project whose primary goal is to characterize the
dark energy bymapping the large scale structures between the redshift 0.8 ≤ I ≤ 2.5
using the 21-cm intensity mapping technique.

1.1 Theoretical background

According to the cosmological principle, theUniverse is homogeneous and isotropic
at large scales. This principle is observationally supported by the quasi isotropy of
the cosmic microwave background (CMB) and the homogeneity of the distribution
of the galaxies at large scales. In the framework of General Relativity, symmetries
of the cosmological principle can be used to define the metric for a homogeneous
and isotropic universe, the Friedman-Lemaitre-Robertson-Walker (FLRW) metric:

3B2 = 3C2 − 02(C)
( 3A2

1 −  A2
+ A2(3\2 + B8=2\3q2)

)
, (1.1)

where 0(C) is the dimensionless scale factor, and  = −1, 0 or +1 is the spatial
curvature parameter corresponding to an open, flat or closed universe, respectively.
Then, the evolution of such a homogeneous and isotropic universe is described by
the Friedman equations. They are derived from Einstein equations by substituting

1



1.1. Theoretical background

the Ricci tensor (computed from FLRW metric) together with the stress-energy
tensor for a perfect fluid into Einstein field equations:

�2(I) ≡ ( ¤0(C)

0(C)
)2 = −  

02(C)
+

8c�

3

∑
d (1.2)

¥0(C)

0(C)
= −4c�

3

∑
(d + 3?), (1.3)

where �(I) is the Hubble constant at redshift I, and d and ? are the density and
pressure of different components of the Universe, respectively. The sum is taken
over all components of the Universe, namely, matter, radiation and dark energy.
The equation of state for the component G of the Universe is ?G = FdG . The
critical density is defined as the total density of a flat universe d2 = 3�2(I)/8c�
(current critical density). The density parameter of the component G of the Universe
is ΩG = dG/d2 . The first Friedman equation (Eq. 1.2) for a flat universe can be
written in terms of density parameters of different components of the Universe:

�2(I) = �2
0

(
Ω<(1 + I)3 + ΩA (1 + I)4 + Ω��

d��(I)

d��(I = 0)

)
, (1.4)

where indices <, A, �� correspond to the matter, radiation and a generic form of
dark energy.

The simplest form of dark energy is a cosmological constant. It turns out that
a cosmological constant behaves like a fluid with static density ( ¤d = 0). In this
case, from continuity equation ? = −d and so equation of state parameter for
the cosmological constant would be F = −1. Although current observations are
compatible with F = −1, dark energy in the form of a cosmological constant is not
the unique possibility.

1.1.1 Cosmological models

The simplest model which provides a good fit to a wide range of observational
data is the standard ΛCDM model. It assumes a flat universe with the simplest
possible form of dark energy, i.e. a cosmological constant (Λ), and Cold Dark
Matter (CDM). A true cosmological constant has an equation of state parameter
F = −1 which does not change in time. Standard ΛCDM model comprises 6 free
parameters, including density parameters of baryons Ω1 and dark matter Ω�" ,
optical depth at the time of reionization g , current value of Hubble constant �0,
and primordial amplitude of scalar fluctuations �B, and spectral index of scalar
fluctuations =B related to the inflationary epoch of the Universe.

Although this model can be well fitted to the data to find the parameters, it is not
unique and extensions to the standard ΛCDMmodel are possible. Some extensions

2



1.2. Dark Energy probes

to standard Λ CDM are models with dynamical dark energy (time-varying F),
neutrino masses and additional relativistic particles. For example, if the dark
energy is not a cosmological constant, then it is possible that the F parameter
changes with time. In this case, a time-varying F parameter can be considered as
a Taylor expansion of F at the first order in the scale factor:

F(C) = F0 + [1 − 0(C)]F0 . (1.5)

Note that at low redshifts (i.e. 0(C) ≈ 1) we have F(C) ≈ F0 and only high redshift
measurements are sensitive to F0 parameters.

A detailed list of extensions to the standard ΛCDM model is given in [4].
Because there ismore than onemodelwhich can befitted to the current observational
data, one needs to combine different cosmological probes (CMB, BAOs, SNe Ia,
weak lensing, etc.) to constrain cosmological parameters and invalidate some of
these models.

1.2 Dark Energy probes

1.2.1 Supernovae Type Ia

Objects with known luminosity can be used as distance estimators. Luminosity
distance is defined by 32

!
= !/4c 5 , where ! is the luminosity and 5 is the

observed flux of the source. Hence, for an object with known luminosity, the
problem of finding the distance is reduced to flux measurement. Such an object
with a known luminosity is called a standard candle. Type Ia supernova (SN Ia) is
an example of standard candles. Although SNe Ia show a dispersion of about 40%
at their peak luminosity (which makes them not good distance estimator), it turns
out that the dispersion is reduced if one considers the so called brighter-bluer and
brighter-slower correlations. Brighter-bluer relation is the correlation between the
rest frame color of the supernova and its maximum luminosity: bluer supernovae
are brighter than redder ones. Brighter-slower relation, known as Phillips relation
[5], is the correlation between the maximum luminosity of SNe Ia, and the decay
rate of their light curve after reaching the peak luminosity: The light curve of a
bright supernova decays slower than fainter ones. An empirical correction of the
light curve using these two correlations reduces the peak luminosity dispersion of
SNe Ia [6] and makes type Ia SNe a good distance estimator.

In a flat universe, the luminosity distance of a source observed at a redshift I is
related to the other cosmological parameters \8 , through:

3!(I) = (1 + I) ×
∫ I

0

3I′

�(I′, \)
. (1.6)
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1.2. Dark Energy probes

Hence, measurement of luminosity distance 3! will constrain the Hubble param-
eter at redshift I, and consequently, the density parameters through equation 1.4.
Therefore, type Ia SNe are powerful probes of the cosmic expansion history and
they are very sensitive to the F parameter in the equation of state of dark energy.
After the discovery of the dark energy in the late 1990s, several second generation
surveys have collected samples of a few hundred well-measured SNe Ia up to I ∼ 1.
The Supernova Legacy Survey (SNLS) used data taken as part of deep component
of the five-year Canada-France-Hawaii survey (CFHT-LS). Using a rolling-search
approach (i.e., repeatedly imaging the same sky patch), it targeted four one square
degree fields during 5 to 7 consecutive lunations per year using four different broad-
band filters g" ,r" ,i" ,z" . During its 5 years of operation (mid-2003 to mid-2008)
it delivered about 500 SNe Ia [7].

SDSS-II supernova survey used SDSS camera on SDSS 2.5 m telescope at
the Apache Point Observatory (APO) and it searched for supernovae during the
northern fall season of 2005 to 2007. Images were taken in ugriz SDSS passbands
[8] with a typical cadence of once every four nights. The supernovae candidates
were identified by a computing cluster at APO within 24 hours of data collection.
Then, the spectroscopic follow up was performed using a dozen of telescopes.
Details of the SDSS-II supernova survey are given in [9] and [10]. Out of 4607
candidates, 500 SN Ia were confirmed by spectroscopic follow up at a redshift
I < 0.5. However, only 413 of them were used to constrain the cosmological
parameters. Assuming a ΛCDM model, acceleration (Ω" < 2Λ) was detected at
a confidence of 3.1f. Moreover, with a flat geometry ΩΛ > 0 at a confidence of
5.7f is required and Ω" = 0.315 ± 0.093. The details of the analysis is given in
[11].

Joint Light Curve Analysis (hereafter JLA) was part of SNLS-SDSS collabora-
tive effort that was initiated in 2010 to improve the previous analysis of SNLS and
SDSS teams. The main goals of this collaborative effort were to improve the accu-
racy of photometric calibration of both surveys [12], to determine more rigorously
the uncertainties in SNe Ia light curve models [13], and to include the full SDSS-II
SNe Ia spectroscopic sample in cosmology analysis. JLA sample of SNe Ia which
is used to improve the cosmological constraints includes 740 supernovae selected
from the data of SDSS-II, SNLS, HST and several nearby experiments.

JLA sample is currently state-of-the-art collection of SNe Ia in the redshift
range 0.01 < I < 1.2 [14]. However, distances to supernovae with a redshift above
0.8 are not well measured due to photometric uncertainties. The next generation
of surveys, including the Large Synoptic Survey Telescope (LSST) aim to increase
the sample size of SNe Ia at higher redshifts.
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1.2. Dark Energy probes

Figure 1.1: Left: Hubble diagram from the JLA sample (top) and Residuals from
the best ΛCDM fit (bottom). Right: 68% and 95% confidence contours of F and
F0 parameters for the flat F − ΛCDM model (figures taken from [14]).

1.2.2 Baryon Acoustic Oscillations

An alternative to the standard candles to constrain the cosmological parameters is
the standard rulers. A standard ruler is an object or statistical featurewhose intrinsic
size is known and do not change with time. One example of standard rulers is the
Baryon Acoustic Oscillations (BAOs). In the following, I briefly discuss the origin
of BAOs.

The primordial universe was a hot and dense plasma of photons, baryons
and dark matter, where baryons and photons were coupled together via Compton
scattering. The initial overdensities of matter attract the surrounding baryons and
dark matter. Because dark matter has no electromagnetic interaction, it only feels
the gravitational pull from the overdensity. The baryons feel two competing forces:
An inward gravitational force from the overdensity and a photon pressure outward.
Baryon-photon fluid is compressed, the temperature increases, and the outward
photon pressure increases. At some point, the outward force from photon pressure
will be stronger than the compressing force of gravity, and thus the region will start
to expand in the form of a sound wave. The speed of the sound wave in the plasma
in the unit of the speed of light is:

�B(I) =
2√

3(1 + '(I))
(1.7)

where '(I) is the baryon to photon density ratio '(I) = d1(I)/dA (I). At a redshift
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1.2. Dark Energy probes

of IA42 ∼ 1100 the plasma is cool enough so that the electrons combine with protons
and form neutral hydrogen. At this time photons decouple from baryon. The photon
pressure is removed, leaving a spherical shell of baryons at a fixed radius from the
initial overdensity. The characteristic comoving radius of the baryonic shell at the
time of recombination is:

AB =

∫∞
IA42

�((I)3I

�(I)
=

∫∞
IA42

�((I)3I√
�0(Ω<(1 + I)3 + ΩA (1 + I)4

, (1.8)

which is the comoving distance the baryonic shell has travelled until the time of
recombination. Redshift at recombination IA42 is precisely determined by atomic
physics, and the cosmological parameters in the above integral are measured by
the CMB observations. These two fix the comoving radius of the baryonic shell at
recombination. Planck has measured the acoustic scale at the time of recombination
AB ≈ 145 Mpc [15]. Figure 1.2 shows the evolution of acoustic scale as a function
of redshift.

Now that the characteristic scale of the BAO is known, it can be used as
a standard ruler to estimate the distances and constrain the F parameter in the
equation of state of dark energy. To use the BAO scale for distance measurements,
we need to measure its observational scale. The angular diameter distance for a flat
universe is:

3�(I) =
1

1 + I
j(I) =

1

1 + I

∫ I
0

23I′

�(I′)
, (1.9)

where j(I) is the comoving distance. Since the comoving size of acoustic scale AB
is constant after recombination, the observed angular scale of BAO \ is related to
the angular diameter distance via:

\ =
AB

�"
=

AB⊥
3�(1 + I)

, (1.10)

where �" is the comoving angular diameter distance, and AB⊥ is the perpendicular
component of AB to the line of sight. Note that while perpendicular component of
AB in a redshift slice gives the angular diameter distance , the radial component AB ‖
along the line of sight corresponds to different redshifts and constrain the Hubble
parameter through the Hubble’s law:

AB ‖ =
∆I

�(I)
(1.11)

The signature of BAOs is imprinted in the two point correlation function of
matter distribution. Two point correlation function (hereafter, 2PCF) quantifies the
excess probability of finding a pair of galaxies at some redshift I that are separated
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1.2. Dark Energy probes

Figure 1.2: Figure shows the generation of BAO peak from initial overdensity. Dark
matter overdensity sits where it is initially, as it has no electromagnetic interaction.
Photons (red) and baryons (blue) move together until recombination (IA42 ∼ 1100).
After recombination photons free-stream and baryons attract surrounding dark mat-
ter gravitationally. In the end, there will be a mass concentration at a characteristic
scale of AB ≈ 148 Mpc (figure from [16])
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1.2. Dark Energy probes

by a distance B compared to the case if they are uniformly random distributed. To
do this, a random catalog (that is a random sample of galaxies) is constructed and
the distribution of galaxies is compared with the data. A commonly used estimator
for 2PCF Z(B) is given by [17]:

ˆZ(B) =
��(B) − 2�'(B) + ''(B)

''(B)
, (1.12)

where B is the comoving separation between two galaxies, ��(B) and ''(B) are
the number of galaxy pairs with separation B in the real-real catalog (data) and
random-random catalog, respectively, and �'(B) is the number of galaxy pairs
with a separation B between a galaxy in the real data and a galaxy in the random
catalog. The BAO signal appears as a bump in the 2PCF.

The first detection of the BAO signal in large scale was made in 2005 by
measuring the large-scale correlation function from a spectroscopic sample of
luminous red galaxies from SDSS data release 3 in the redshift range of 0.16 to
0.47 by Eisenstein et al. [18]. More recent measurements of the BAO scale have
been made by different surveys includingWiggleZ Dark Energy Survey which used
∼ 130000 galaxies at redshift I = 0.6 [19], and SDSS-III BOSS survey of ∼ one
million galaxies out to a redshift of 0.7 [20]. Moreover, BOSS detected the BAO
signal using the Lyman U forest spectra of ∼ 48000 high redshift quasars across the
redshift range 2.1 ≤ I ≥ 3.5 [21].

Since the BAO scale is very large, a large volume of the universe must be probed
to decrease the sample variance. Therefore, we need a large sample of galaxies
to detect the BAO signal. For example, an order of 108 galaxies is required to
approach the cosmic variance limit at redshift I > 1 [16]. Galaxy-redshift surveys
are very expensive for this purpose: First, obtaining the redshift of each galaxy
through high resolution spectroscopy for a large sample of galaxies is very time
consuming. Moreover, high redshift objects are fainter and harder to detect and
the measurements are dominated by shot noise. There is an alternative for the
galaxy-redshift surveys which is discussed in the section 1.3.1.

1.2.3 Weak Gravitational lensing

Weak gravitational lensing is a powerful probe of total matter density in the Uni-
verse, without distinguishing between dark matter and baryonic matter. The inter-
vening mass distribution between the galaxy and the observer distorts the image
of the galaxy. Such small distortions contain rich information about the matter
distribution on small and large scales and their evolution over time. Particularly,
the dependence of the weak lensing signal on the angular diameter distance, and on
the matter power spectrum makes it a great tool to probe the dark energy [23]. A

8



1.2. Dark Energy probes

detailed overview of the basics of of weak gravitational lensing and its applications
in cosmology is given in [24].

Two particularly powerful aspects of the method are that it is based on a geomet-
rical observable, i.e. the distorted shapes of galaxy images, and that it is sensitive
to the gravitational potential of structures, without distinguishing between baryonic
and dark matter. Particularly, weak lensing signal is sensitive to the matter power
spectrum over a redshift range and so it provides a measure of the growth rate of
large scale structures. Because the growth rate depends strongly on the F param-
eter in the equation of state of the dark energy, cosmic shear can be used to study
different dark energy models. It is also sensitive to the angular diameter distance
(through l factor in equation 9) and so it can also be used to determine angular
diameter distances as a function of redshift and constrain F parameter with the
distance-redshift relation. These two aspects make the cosmic shear measurements
a great tool to probe the dark energy.

In the following, I quickly overview some of the ongoing weak lensing surveys
and their results:

• Kilo Degree Survey: Kilo Degree Survey (KiDS) [25] is a wide-field optical
imaging survey which covers 1500 square degree of the southern hemisphere
sky started on October 2011. KiDS uses OmegaCam wide-field camera on
2.6-m VLT Survey Telescope (VST) of Paranal observatory in Chile. This
survey was designed to measure the galaxy population out to redshift ∼ 1
and to measure the effect of weak lensing by structures along the line of sight
on galaxy shapes. Full cosmological analysis of 450 square degree of KiDS
data (KiDS-450) including constraints on various cosmological parameters
and extensions to the standard ΛCDM model are given in [26], [27] and
[28]. Particularly, they found F < −0.24 With the KiDS data alone, but the
constraint from the combined probe is F < −0.73 (all at %95 CL).

• DarkEnergy Survey: Dark Energy Survey (DES) is an optical galaxy survey
conducted using the 570 Megapixel DECam instrument mounted on 4-m
Blanco Telescope in Chile. DES is planned to map 5000 square degree of the
sky and the main goal of this survey is to study the dark energy using several
techniques, including weak lensing. DES collaboration have used year-one
shape catalogs to study the shape of 26 million galaxies within the redshift
range 0.2 to 1.3 over 1321 square degree of the sky and they constrained
various cosmological parameters in ΛCDM model [29], particularly, the
dark energy equation of state parameter F = −0.950.33

−0.39. They concluded
that there is no disagreement between DES results and CMB data, and there
is no evidence for a FCDM model with F deviating from −1.
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1.3. CHIME

• HSC-SSP Survey: Hyper Suprime-Cam Subaru Strategic program (HSC-
SSP) is an imaging survey on the 8.2-m Subaru telescope at Mauna Kea
Observatory in Hawaii. The goal of this survey is to probe the nature of
dark energy and dark matter by various techniques, including weak lensing
[30]. HSC-SSP is the deepest ongoing weak lensing survey. So although it’s
narrower than DES, but its S/N ratio is higher at high redshift, enabling a
better measurement of the equation-of-state of dark energy at higher redshift.
The cosmological constraints from cosmic shear power spectra with the first
year data of HSC is recently published in [31]. Data Release 1 (DR1) of
HSC survey was publicly released in February 2017 and it is based on data
taken using 61.5 nights between March 2014 and November 2015 [32]. The
F parameter in the equation of state of dark energy is not well constrained
from shear analysis alone, F = −1.37+0.43

−0.36 . However, this constraint is still
consistent with other observations and particularly it is compatible with F =
−1 which corresponds to the simplest form of dark energy, a cosmological
constant.

1.3 CHIME

1.3.1 21-cm intensity mapping

This section is based on Pritchard & Loeb (2012) [33].
An alternative to the galaxy-redshift surveys for the measurements of BAO scale

is the 21-cm intensity mapping. The basic idea of 21-cm intensity mapping is
to use 21-cm emission line to map the hydrogen contents of the universe across
some redshift range. 21-cm line arises from the hyperfine transition between the
triplet and singlet levels in the ground state of neutral hydrogen atom. When
such a transition occurs, a photon will be emitted (or absorbed) with a frequency
a = 1420 MHz which corresponds to a wavelength of _ ∼ 21-cm. The probability
of a spontaneous transition from triplet to singlet state in neutral hydrogen is very
small and such transition can never be seen in the labs. However, the total number
of neutral hydrogen atoms in the intergalactic medium is so large that the emission
(or absorption) line can be observed by radio telescopes. Expansion of the universe
changes the the observed frequency a of 21-cm line. So the 21-cm emission or
absorption from an object at redshift I will be observed at:

a =
1420

1 + I
MHz. (1.13)

Therefore, there is no need for spectroscopy to obtain the redshift in this method.
Instead, the frequency bin at which the sky is mapped in 21-cm directly gives the

10



1.3. CHIME

redshift.
The intensity of photons emitted through the hyperfine transition of neutral

Hydrogen atom is determined by the spin temperature )B which is defined by the
equation:

=1

=2
= 3 exp

(
− )∗
)B

)
, (1.14)

where =1 and =2 are the number densities of electrons in the triplet and singlet
states respectively, 3 is the degeneracy ratio between the triplet and singlet levels,
)∗ ≈ 0.068 K is the temperature corresponding to the energy difference between the
triplet and singlet states, and the spin temperature )B is the excitation temperature
of 21-cm line.

We want to use the 21-cm line as a probe of a hydrogen gas cloud with optical
depth g along the line of sight. The radiative transfer equation in the Rayleigh-Jeans
limit for the gas along the line of sight is:

)1 = )�"�4
−g + )B(1 − 4−g), (1.15)

where )1 is the observed brightness temperature. I have assumed that in the
background there are only CMB photons. The interpretation of this equation is
easy: The CMB photons are exponentially attenuated by the gas cloud (hence we
multiply )�"� by 4−g) and the excitation temperature )B releases 21-cm photons.
Then, part of the 21-cm emission is absorbed by the gas.

The observed differential brightness temperature is:

X)1 =
)1 − )�"�

1 + I
=

()B − )�"�)(1 − 4−g)
1 + I

≈ ()B − )�"�)g

1 + I
. (1.16)

Therefore, 21-cm signal is observable only if the the spin temperature deviates from
the background temperature (otherwise X)1 = 0). We can see the 21-cm signal
as emission against CMB if )B > )�"� (X)1 > 0) or absorption if )B < )�"�
(X)1 < 0). In this case the 21-cm feature is seen as a spectral distortion to the
background CMB and the diffuse distortion of the background can be studied in a
similar way as the CMB anisotropies. Then, observations at different frequencies
probe different redshift slices of the observable universe.

1.3.2 Radio Frequency Interference

A phenomenon which is problematic not only for 21-cm intensity mapping experi-
ments, but for any research in radio astronomy is the Radio Frequency Interference
(RFI) which is the subject of this thesis. RFI is an unwanted human made signal
that interferes with the astronomical signal, degrades the quality of astronomical
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data and leads to data loss. RFI is usually non-Gaussian and come from TV sta-
tions, cell phones, airplanes, satellites or any other activity which produces a radio
signal in a frequency that the radio telescope is working. RFI can be considered
as radio pollution in radio astronomy, similar to the light pollution for the optical
observations.

Some radio frequencies that are very important for astronomical research are
protected by regulations. For example, 1420 MHz (21-cm HI line). However, a
radio telescope like CHIME covers a very broad bandwidth and such bandwidth
cannot be fully protected. Therefore, radio astronomers have to deal with the
RFI. There is no universal method for RFI mitigation. In the case of CHIME, we
use fourth statistical moment (kurtosis) to detect non-gaussianity in a signal. The
theoretical foundation of the kurtosis based RFI mitigation is given in the chapter 2.

1.3.3 CHIME instrument

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit radio
telescope which scans the northern sky across 400-800 MHz band. The telescope
has no moving part and the sky is scanned over a sidereal day as it is drifting
east to west. CHIME is located at Dominion Radio Astrophysical Observatory
(DRAO) near Penticton, BC, Canada. It is originally designed to constrain the
dark energy equation of state by measuring the BAO scale across the redshift range
0.8 ≤ I ≤ 2.5. This is the redshift range where the dark energy began to dominate
the total energy density of the Universe. We use the 21-cm emission line to map
the hydrogen contents of the Universe over the required redshift range.

CHIME consists of 4 cylinders with axes oriented along the north-south di-
rection, each with a length of 100 meters and a diameter of 20 meters. There are
256 dual polarization feeds along the focal line on each cylinder, i.e. 2048 inputs
can receive the signal at the same time. The signal from the sky is focused by the
cylinders onto the feeds and it is amplified by the low noise amplifier (LNA) which
is connected to the output of the feed. The analog signal then is transmitted by a
50 m coaxial cable to a receiver hut, where it is further amplified by another set
of amplifiers, filtered by a 400 − 800 MHz bandpass filter and sampled every 1.25
ns and quantized to 8 bits. CHIME correlator has an FX design, i.e. the Fourier
transform is done before spatial cross multiplication. The F-Engine is responsible
for sampling the analog signal with 8 bits, Fourier transforming every 2048 time
samples, and channelizing them by dividing the 400 MHz bandwidth into 1024 fre-
quency channels. This process is done for all 2048 inputs. The real and imaginary
parts of the complex-valued data from each frequency channel are then separately
quantized to 4 bits (4-bits real and 4-bits imaginary). The resulting 2.56 µs samples
from 2048 inputs fed into the X-Engine. There are 256 GPU nodes on X-Engine
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Figure 1.3: CHIME telescope. It is an array of 4 cylinders in the east-west direction,
with axes oriented in the north-south direction.

where each node processes the data 4 frequency bins. In other words, a GPU node
does the cross multiplication of 2048 inputs for 4 frequency channels. Before the
correlation operations, the real-time RFI excision system mask the RFI contami-
nated samples by generating the spectral kurtosis estimates every 0.65 ms for each
frequency bin . Note that every 0.65 ms one kurtosis estimate per frequency bin
is generated for the whole array (not for the individual inputs). Then the samples
are integrated to 30 ms and the signal of each input is correlated with the signals
of all other inputs to make #2 correlation matrix. Correlation is the process of
cross multiplication of each input with the complex conjugate of all other inputs.
Then a second stage RFI excision is applied on 30ms frames to excise lower power,
but longer duration RFI events. The theory of kurtosis based RFI excision and the
details of the detection algorithms are described in chapters 2 and 3. After second
stage of RFI excision, samples are integrated for ∼10 seconds. The correlation
product is called visibility, +8 9 :

+8 9(C, a) = 〈�8�∗9〉, (1.17)
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where+8 9(C, a) is the cross correlation of input 8 with input 9 at time C and frequency
a, �8 and � 9 are the signals received by feeds 8 and 9 , respectively, and 〈.〉 stands
for the average over 10 second. The correlation products together with some
other information are written to various HDF5 files. In this thesis I evaluate
the performance of the real time RFI excision system using the files containing
autocorrelations (the correlation of one input with itself). The autocorrelation files
include the autocorrelations of all inputs over 10 s, excision rate for 10 s samples.
These files are written to an HDF5 file every ∼ 43 minutes.

1.3.4 RFI environment at DRAO

The mountains around the observatory at DRAO shield the site from RFI from
nearby cities. But a significant portion of the CHIME frequency band is still
contaminated by satellites, airplanes, wireless communication and TV broadcasting
bands. This includes LTE band between 730 MHz and 755 MHz range, a few TV
station bands between 500 MHz to 580 MHz, and a lot of RFI lines between 400
MHz to 500 MHz, including UHF repeaters around 450 MHz. These features are
visible in the CHIME data (figure 1.4). Besides cell phone and TV station bands
that are static in nature, there are many sources of intermittent RFI events such as
satellites and airplane. Moreover, the atmosphere can be ionized by the meteors
entering to it. The ionized region of the atmosphere acts as a reflector for the
distant ground based RFI sources, such as distant TV stations. These scattering
events typically appear as ∼6 MHz wide bursts and last for a few seconds. One can
see this type of RFI in the figure 1.4 between 480 MHz and 520 MHz around 00:15
PT.
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Figure 1.4: The autocorrelations of 30 ms samples for one feed. We can see
various RFI features in this plot, namely LTE band from ∼ 730 MHz to 755 MHz,
TV station bands around 500-600 MHz, and repeating RFI spots between 400 MHz
and 500 MHz. 6 MHz wide bursts from distant broadcast TV bands appear as blob
around 00:15 PT in 480 MHz or 520 MHz. White lines correspond to the missing
frequencies due to the malfunctioning of some of the GPU nodes.
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Chapter 2

Kurtosis-based RFI excision

In this chapter I review some definitions from statistics. Then the spectral kurtosis
concept is introduced and spectral kurtosis estimator is derived. I will show that the
statistical properties of the estimator can be used to detect non-Gaussian features
of a signal in a Gaussian background. Most of this chapter is based on [34], [35],
[36] and [1]. Note that in this chapter, I will use the words antennas, receivers and
inputs interchangeably.

2.1 Statistics

2.1.1 Moments of a probability distribution

Moments of a probability distribution are the expectation values of a random
variable to integer powers and they often give valuable information about the
distribution of the random variable. The A Cℎ moment of a probability distribution
%(G) of a random variable - is defined as:

�(GA ) =

∫∞
−∞
GA%(G)3G, (2.1)

where G is the value of the random variable - . The first moment of a probability
distribution is called the mean `. The moments can also be derived from the
so called moment generating function. Moment generating function of a random
variable - is defined as:

"��- (C) = �(4C G), (2.2)

where C is a real-valued number. By expanding the exponential function and taking
the expectation value, it can easily be shown that the moments of %(G) are related
to the derivatives of moment generating function at t=0:

�(GA ) =
3A

3CA
"��- (C)|C=0 (2.3)

The central moment is the moment around the mean:

� [(G − `)A ] =

∫∞
−∞

(G − `)A%(G)3G. (2.4)
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Clearly, the second central moment is the variance f2 of %(G). Lastly, one can
define the normalized moment (commonly known as standardized moment) in the
following way:

˜̀A =
� [(G − `)A ]

fA
, (2.5)

where fA =
(√
� [(G − `)2]

)A
is the A Cℎ power of the standard deviation of %(G).

The standardized moment facilitates the comparison of the shape of probability
distributions. For example, third standardized moment (skewness) is a measure
of asymmetry of a distribution about its mean. The quantity of interest for this
work is the fourth standardized moment, known as kurtosis. Kurtosis measures
the heaviness of the tails of a distribution. From equation 2.5 the moment-based
kurtosis is:

˜̀4 =
� [(G − `)4]

f4

=
� [(G − `)4]

(�(G2) − `2)2
.

(2.6)

One can evaluate the moment-based kurtosis for a Gaussian signal with mean zero,
using the following Gaussian integrals:

�(G4) =
1

√
2cf2

∫∞
−∞
G44

−G2
2f2 = 3f4, (2.7)

�(G2) =
1

√
2cf2

∫∞
−∞
G24

−G2
2f2 = f2. (2.8)

Therefore, the moment based kurtosis of a Gaussian signal with mean zero is 3.

2.1.2 Cumulant

An alternative to the moments of a probability distribution is the cumulant. Similar
to the moments, cumulants can be used to characterize the statistical properties of a
probability distribution. It is defined by the cumulant generating function ���(C)
which is the natural logarithm of the moment generating function:

���(C) = ln �(4C G). (2.9)

The power series of this function is:

���(C) =
∞∑
A=1

:A
CA

A!
, (2.10)
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where the coefficients :A are called cumulants. Using equation 2.10 it can be
shown that cumulant of A Cℎ order can be derived by taking the A Cℎ order derivative
of ���(C) and evaluating it at C = 0:

:A =
3A

3CA
���(C)|C=0. (2.11)

The first three cumulants are same as the first three moments. However, one
can show that the cumulant-based kurtosis for a real random variable G with mean
zero is:

:4 = �(G4) − 3�2(G2), (2.12)

which is different fromequation 2.6. Using theGaussian integrals given in equations
2.7 and 2.8 it can simply be shown that the cumulant-based kurtosis for a Gaussian
signal with mean zero is zero.

2.2 Spectral kurtosis

Spectral kurtosis (SK) is a statistical tool which can be used to identify the non-
Gaussian behaviour of a signal in frequency domain. A recent cumulant-based
definition of the spectral kurtosis for a circularly symmetric random variable in the
frequency bin : whose real and imaginary parts of the DFT have zero mean is given
by [34]:

( [-: ] =
:4(G: , G

∗
:
)

(:2(G: , G
∗
:
))2

=
�(|G: |4) − 2�(|G: |2)2

�(|G2
:
|2)

. (2.13)

Note that the expression for :4 for a complex random variable is different from a
real random variable (equation 2.12). Also, the spectral kurtosis is normalized by
the second order cumulant :2, which is same as the second order moment.

To evaluate the spectral kurtosis for a circularly symmetric Gaussian signal with
mean zero, note that G:=-:+8.: . So, we will have:

�(|G: |2) = �(-2
: ) + �(.2

: ) = 2f2, (2.14)
�(|G: |4) = �(-4

: ) + �(.4
: ) + 2�(-2

:.
2
: ) = 8f4, (2.15)

where I have used the Gaussian integrals (equations 2.7 and 2.8) and the fact that the
real and imaginary parts of the G: are independent, i.e. �(-2

:
.2
:
) = �(-2

:
)�(.2

:
).

Therefore, the spectral kurtosis for a circularly symmetric Gaussian signal with
mean zero is zero.

Although equation 2.13 gives the general definition for the spectral kurtosis of a
circularly symmetric complex random variable with zero mean, it is much better to
rewrite it in terms of total power %: . This is because %: is an observable quantity.
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The total power %: in a spectral frequency bin 5: is proportional to the absolute
square of the frequency domain signal |G: |2. So, equation 2.13 in terms of power
spectral density %: is:

( [-: ] =
�(%2

:
) − 2�(%:)

2

�(%:)2
. (2.16)

Moreover, the variance f2
:
and mean `: of power spectral densities are:

f2
: = �(%2

:) − �(%:)
2, (2.17)

`: = �(%:). (2.18)
So, equation 2.16 can be rewritten in terms of f2

:
and `: parameters:

( [-: ] = +2
: − 1, (2.19)

where +2
:

=
f2
:

`2
:

is the normalized uncertainty or the spectral variability of the
signal. Equation 2.19 shows that the spectral kurtosis is equivalent to the spectral
variability up to a constant. So, we can use the two terms interchangeably. The
only difference between ( [-: ] and +2

:
for a Gaussian signal is that the spectral

kurtosis of such a signal is zero from equation 2.13, but its spectral variability is
one (equation 2.19). Since measuring the spectral variability is easier than spectral
kurtosis and they are equivalent to each other, I use the term "spectral kurtosis" as
a synonym for spectral variability in the rest of the thesis.

2.3 Spectral kurtosis estimator

Suppose that we have a set of = complex values G: which represent the post Fourier-
transform time-stream for a single frequency channel. The power spectral density
estimator (%̂:) is proportional to |G: |2. Based on the discussion in the previous
section, the unbiased spectral kurtosis estimator is defined as:

(̂ ≡ +̂2
: =

f̂2
:̂̀2
:

, (2.20)

where f̂2
:
and ̂̀: are the unbiased variance and mean estimators of the %̂: for the

frequency bin : , respectively:

̂̀: =
1

=

=∑
8=1

%̂:,8 (2.21)

f̂2
: =

1

= − 1

=∑
8=1

(%̂:,8 − ̂̀:)2. (2.22)
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2.3. Spectral kurtosis estimator

In order to simplify the final expression for the spectral kurtosis estimator, the
following parameters are defined:

(1 =
=∑
8=1

%̂: , (2 =
=∑
8=1

%̂2
: . (2.23)

Therefore, mean and variance estimators in terms of (1 and (2 are:

̂̀: =
(1

=
, f̂2

: =
1

=(= − 1)
(=(2 − (2

1). (2.24)

And the spectral kurtosis estimator (̂ would be:

(̂ =
( =

= − 1

) (
=
(2

(2
1

− 1
)

(2.25)

The expected value of the SK estimator for a circularly symmetric Gaussian random
variable must be one. But as it is shown by [36] this is not the case for the estimator
defined by equation 2.25:

�((̂ ) =
=

= + 1
. (2.26)

Therefore equation 2.25 is a biased estimator. To get the unbiased estimator whose
expectation value is one, one can rescale the estimator by multiplying it by =+ 1/=:

(̂ =
(= + 1

= − 1

) (
=
(2

(2
1

− 1
)

(2.27)

Nita & Gary (2010) [36] have shown that for G8 being drawn from a circularly-
symmetric complexGaussian distribution, ( estimator has the following statistical
properties to the first order in =:

�((̂ ) = 1 (2.28)

Variance((̂ ) =
4

=
+ O(

1

=2
). (2.29)

Since the RFI events are mostly non-Gaussian [37], one can use the above
properties to detect andmitigate the RFI. Themean of the spectral kurtosis estimator
is invariant. So the sensitivity of the estimator to the RFI events is determined
by its variance. To see the statistical properties visually, I generated 30000 SK
estimates, each from 20000 complex random samples drawn from a circularly
symmetric Gaussian distribution. Figure 2.1 shows the result of the simulation.
The cumulative plot shows that half of the SK estimates are below 1 and the other
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2.4. Spectral kurtosis for a compact array

Figure 2.1: Left: Histogram of 30000 realizations of SK estimator. Each SK
value is generated from 20000 complex random variables drawn from a Gaussian
distribution. Red region indicates 1f interval where f is the theoretical standard
deviation. Right: Cumulative histogram of the SK values. Yellow region corre-
sponds to 1f interval. The SK distribution is symmetric around 1, and %68 of the
estimates lie within one standard deviation. These two confirm the derived mean
and variance of the SK estimator.

half are above 1. This confirms that the mean value of the SK estimator is unity.
Moreover, 68% of the SK estimates lie within 1f (yellow region), where f is the
theoretical variance given by the equation 2.29. A non-Gaussian RFI changes the
shape of the histogram, for example the tails of the histogram will be longer. So
one can simply detect non-Gaussian part of the signal by setting a threshold, e.g.
at 5f, and mask all the samples whose spectral kurtosis go beyond the threshold.

2.4 Spectral kurtosis for a compact array

Equation 2.29 shows that the discrimination potential of the kurtosis estimator
depend on the number of samples that are being used to generate the kurtosis
estimates. To decrease the variance of the estimator one needs to integrate more
samples in a frequency bin, which in turns decrease the cadence at which the
kurtosis estimates are being produced. The output of CHIME data are 10-second
samples. Our aim is to flag RFI at a very short timescale (i.e. high cadence), so
that 10-second samples become RFI free. To increase the size of the input dataset
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2.4. Spectral kurtosis for a compact array

without increasing the timescale at which the kurtosis estimates are generated,
one can combine the simultaneous measurements from multiple antennas in an
interferometer. Combining measurements from different antennas requires the
following two conditions: First, the array must be compact; i.e. the time it takes
for a signal to go across the array must be smaller than the timescale at which
the kurtosis estimates are generated. Second, receivers must provide independent
samples. Correlated samples reduce the effective integration length and increase
the variance of the estimator. I discuss these two conditions for CHIME in section
2.5.

One way to combine the measurements from different antennas is to take the
average spectral kurtosis of all antennas. For a compact array with # independent
antennas in which spectral kurtosis estimates are produced every = time-samples
for each antenna, the average spectral kurtosis can be found in the following way:
Using equation 2.27, the spectral kurtosis for the iCℎ antenna is:

(̂ 8 =
(= + 1

= − 1

) (
=
(2,8

(2
1,8

− 1
)

(2.30)

where ((1)8 and ((2)8 are defined by the equation 2.23 for the iCℎ antenna. Then,
spectral kurtosis estimator averaged over all antennas would be:

(̂ 0AA0H =
1

#

#∑
8

(̂ 8 (2.31)

Using the fact that the mean of the constituent ( 8 is unity, the average spectral
kurtosis estimator for the whole array (̂ 0AA0H is:〈

(̂ 0AA0H

〉
=

1

#

#∑
8

〈
(̂ 8

〉
=
#

#
= 1, (2.32)

And since the total integration length is =# , the variance of the estimator is:

Variance((̂ 0AA0H) =
4

=#
+ O(

1

=2#
) (2.33)

where I used the the statistical properties of constituents ( 8 from equations 2.28
and 2.29. Comparing equations 2.29 and 2.33, it is obvious that by combining the
estimates from all antennas, the variance of the estimator is reduced by a factor of
1/# .

There is an alternative formulation for the estimator to reduce the total number
of operations. The idea is to redefine (1,8 and (2,8 parameters by normalizing them
by the mean power of the iCℎ receiver `8:

`8 =

∑=
9=1 %:, 9

=
=
(1,8

=
(2.34)

22



2.5. Implementation for CHIME

Then, the new parameters (′1 and (′2 are defined by summing the normalized (1,8

and (2,8 over all the receivers:

(′1 =
#∑
8=1

(1,8

`8
=

#∑
8=1

(1,8
=

(1,8
= =#, (2.35)

(′2 =
#∑
8=1

(2,8

`2
8

=
#∑
8=1

(2,8

(2
1,8

=2 (2.36)

Using equation 2.30 one can rewrite (′2 in terms of individual (̂ 8:

(′2 = =
#∑
8=1

(
= − 1

= + 1
( 8 + 1)

=
=(= − 1)

= + 1

#∑
8=1

( 8 + =#. (2.37)

Then the spectral kurtosis estimator will be:

(̂ =
=# + 1

=# − 1

(
=#

(′2
(′1

2
− 1

)
(2.38)

=
=# + 1

=# − 1

(
=#

(′2
(=#)2

− 1
)

(2.39)

This is obviously a biased estimator, because its expectation value is not unity. The
unbiased estimator can be found by a simple re-scaling:

(̂ =
= + 1

= − 1

( (′2
=#
− 1

)
(2.40)

One can check that the expectation value of this estimator is one and its variance is
same as the one in equation 2.33. The advantage of this alternative formulation is
that it requires slightly fewer number of operations to estimate the SK value [1].

2.5 Implementation for CHIME

As mentioned in the section 1.3.3, each of 256 X-Engine GPU nodes process four
frequencies. The spectral kurtosis is estimated on each GPU node by accumulation
of 256 time-samples from all inputs # ∼ 2048 separately for each of the four
frequencies . So, we would have one kurtosis estimate for each frequency channel
every 256 × 2.56`s= 0.65 ms for the whole array. Since the expectation value and
the variance of the SK estimator for a Gaussian population are known, one can
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2.5. Implementation for CHIME

set a detection threshold to identify the samples that are contaminated by the RFI.
Then signals from every feed for all 256 samples are removed when the SK value
lies out of bounds. Different RFI detection algorithms are discussed in detail in
the chapter 3. Note that the nominal variance in the case of CHIME (= = 256 and
# ∼ 2048) is:

f2 ≈ 4

#=
≈ 7.63 × 10−3. (2.41)

As already mentioned, two conditions are needed for combining the samples
from various antennas to increase the integration length: First, the cadence at
which ( estimates are generated must be shorter than the time the signal needs
to travel across the array. This condition is satisfied for CHIME: The maximum
distance between the antennas is≈ 100m, so any signal arrives at all antennas within
≈ 0.3`B. This is much smaller than the cadence at which the kurtosis estimates
are generated (0.65 ms). So the RFI appears simultaneous at all the antennas. The
second condition is that the samples from different inputs (that are combined to
increase the integration length) must be independent. This is normally the case
unless there is a bright astrophysical radio source in the CHIME beam or an RFI.
This issue is discussed in detail in the section 4.2.
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Chapter 3

High Cadence Excision
Algorithms

In this chapter, different excision algorithms that are used in CHIME pipeline are
introduced, and the performance of the algorithms is evaluated by applying them
to an offline dataset.

The idea for the high cadence excision is the following: The mean value of
CHIME visibilities are archived with 10 s cadence. But transient RFI events are
much shorter than 10 seconds. They usually last from a few milliseconds to 1-2
seconds. This means that a tiny fraction of a 10 second sample is contaminated
by the RFI, but they are so bright that they saturate the whole sample. Therefore,
performing the excision at a high cadence can detect and remove those short events.
So instead of removing the whole 10-second sample which is saturated by the RFI,
we remove only the part which is being contaminated. Then the output of 10 second
sample which is free from RFI will be written on the disk.

3.1 Excision algorithms

As mentioned in the section 2.5, one SK estimate per frequency bin is generated
every 0.65 ms by combining the measurements from different antennas. In chapter
2 I showed that the expectation value and the variance of the SK estimator are
known for a Gaussian signal: the mean value of the estimator is invariant 〈( 〉 = 1
and the variance is f2 ∼ (0.0027)2 for CHIME. In general, a non-Gaussian signal
causes the SK estimator to deviate largely from the expected value with respect to
its variance. So a non-Gaussian RFI can be detected by setting a threshold. If the
SK estimate of the signal exceed that threshold, it will be flagged as RFI. In the
following I will describe different excision algorithms.

3.1.1 Single Stage

In the single stage algorithm, we mask all 0.65 ms samples whose SK value exceed
1 ± =f, where = is the detection threshold. We set = = 5, because according to
[36], if the SK estimates are generated from Gaussian signals the distribution of
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3.1. Excision algorithms

SK estimates is also Gaussian. This means that the probability of the SK estimate
of a Gaussian signal being beyond 5f limit is less than 10−6. So a sample whose
SK value is beyond 5f is most probably RFI.

3.1.2 Excision on 30 ms frames (EOF)

Suppose that we have∼500000 SK values that are estimated from aGaussian signal.
Now I add a few values (representing RFI) that change the shape of the Gaussian.
The situation is shown in the figure 3.1. Single stage algorithm is only sensitive to
the powerful RFI events whose SK values exceed 5f limit. But it is insensitive to
the lower power RFI events. Lower power RFI appears as non-Gaussian features
that are closer to the mean value; for example the bumps around 2f in the figure
3.1. Obviously, if we lower the threshold of the single stage algorithm to detect
lower power RFI, the Gaussian part of the signal will be lost as well. So, how can
we make an algorithm which is sensitive to those features without losing too much
of data?

Figure 3.1: Histogram of ∼ 500000 random numbers drawn from a Gaussian
distribution with mean 1 and some variance f2. These values represent the RFI-
free SK values. RFI events change the shape of the RFI-free SK distribution. So,
a few non-Gaussian features are added to the the distribution to represent the RFI.
The single stage algorithm is sensitive to the features beyond 5f, while EOF is
sensitive to lower power, but longer duration RFI.
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3.1. Excision algorithms

One way is to make a frame by accumulating " individual 0.65 ms SK esti-
mates, and if more than a few percent of the samples in the frame exceed some
threshold, mask the whole frame. In the CHIME pipeline, M=48 individual sam-
ples are collected to make a 30 ms frame (48×0.65ms. ∼ 30ms). Now, if more than
a few percent of the samples in the 30 ms frame exceed some threshold 1± =f, the
whole frame is masked. So, in this algorithm a set of 2 parameters (=, 5 ) defines
the RFI detection threshold, where 5 is the fraction of the samples in a 30 ms frame
whose SK values exceed 1 ± =f.

To choose appropriate values for = and 5 parameters, I generated random
numbers from a Gaussian distribution whose statistical properties are similar to
the free-RFI SK estimator for CHIME (i.e. a normal distribution with mean 1 and
variance (0.0027)2). Then, 48 of the samples are integrated to form a 30ms frame.
A set of thresholds with different (=, 5 ) parameters are applied to the Gaussian 30
ms frames, and the probability for the frames to pass the EOF algorithm without
being masked is computed. For example, for (= = 2, 5 = 0.3), I compute the
probability that 30 ms frames are not flagged by the EOF algorithm, that is, less
than 30% of the samples in a frame (whose size is 48) exceed 1 ± 2f. We try to
keep this probability high enough, for example around 99.9999%. In this case, only
1 in a million of Gaussian frames will be masked. This probability is equivalent to
the probability for a Gaussian random variable to fall inside 5f interval. The result
is shown in the figure 3.2 in terms of the probability in the unit of f interval. We
choose the parameters so that they are equivalent to 7f threshold.

3.1.3 Two stage

The two stage algorithm, is nothing but the combination of the single stage and
EOF algorithms. In this algorithm, all the individual 0.65 ms samples whose SK
value exceed 1 ± 5f are removed. So the first stage of excision is similar to the
single stage algorithm. Then, 48 samples are integrated to form a 30 ms frame and
a second stage excision with the EOF algorithm is performed on these frames.

In comparison to the EOF, two stage algorithm is more sensitive to the very
short RFI. Suppose that there are less than 13% samples in a 30 ms exceeding 3f,
in this case EOF does not remove any of those samples, but the first stage excision
of the two stage algorithm does remove those samples. It is also more sensitive
to RFI whose SK values are closer to the mean value. In other words, two stage
algorithm is both sensitive to the powerful, short time-scale RFI and to the lower
power, but longer lasting RFI.
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3.2. Evaluation of excision algorithms

Figure 3.2: The probability for a Gaussian 30 ms frame to pass the EOF algorithm
without being removed for different values of (=, 5 ) parameters. For example it
is very probable for a 30 ms frame to not to be masked by EOF algorithm with
(=, 5 ) = (3, 0.4). In this case the probability for the frame to pass the algorithm is
more than 8f. The two red lines show two thresholds that we have used used for
RFI detection between December 2019 and February 2020 using EOF algorithm.

3.2 Evaluation of excision algorithms

3.2.1 Gaussianity test

Gaussianity test is our main tool to assess the quality of the data and to see how close
are data are to being Gaussian distributed. It can be used to compare the gaussianity
of the data before and after the RFI excision. Note that the signal received by an
antenna is mainly composed of three components: astrophysical sky signal, thermal
noise and possible RFI. By thermal noise I mean the noise generated by the receiver
itself, CMB radiation, galactic background radiation, atmospheric emission, and
the receiver noise. Thermal noise and the sky signal are both Gaussian with mean
zero, however, the thermal noise varies in a much shorter time scale. The RFI
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3.2. Evaluation of excision algorithms

is usually non-Gaussian. Since sky is slowly varying in time, one can take the
difference between the neighboring time samples in autocorrelation products to
remove the astrophysical sky contribution:

∆+88(C=, a) = +88(C=+1, a) −+88(C=, a), (3.1)

where +88 is the autocorrelation of input 8, and = is an integer representing the
time sample. Suppose that there is no RFI. Then what remains in ∆+88 is the
thermal noise component. As already mentioned, thermal noise is Gaussian and
the fluctuation in thermal noise can be reduced by accumulating more samples,
i.e. increasing the integration time ∆C in a bandwidth �. Then, variance of ∆+88
normalized by average autocorrelation is:

1

2
+0A(

∆+88

+ 88
) =

1

#
, (3.2)

where + 88 denotes the average autocorrelation of neighboring samples and # =
∆C × � is the total number of samples in bandwidth � accumulated over time ∆C.
The 1/2 factor in front of the variance is because we are taking the difference of
two random variables that are drawn from the same Gaussian distribution. A large
deviation from this relation is a signature of non-Gaussian RFI. Gaussianity test is
the process of checking our data to see if the equation 3.2 is satisfied. I define the
Gaussianity test value �) in the following way

�) =

√
+0A(

∆+88

+ 88
)
∆C�

2
. (3.3)

Note that for �) = 1 we get the equation 3.2 which is for a Gaussian noise. A
large deviation from �) = 1 shows that the data is non-Gaussian.

The Gaussianity test is our tool to evaluate the RFI excision system performance
and to compare different excision algorithms. For each excision algorithm, I run
the gaussianity test on all all the frequencies (and a single input) and by definition,
the frequency channels whose �) value is smaller than 2 are considered to be
good frequency channels, i.e. nearly free from RFI. Therefore, we can compare
the number of good frequency channels for different algorithms and see which
algorithm can detect and mitigate the RFI more effectively.

3.2.2 Offline test

To evaluate the performance of excision algorithm, the variance and SK values of
0.65ms samples for a single input were recorded on August 29, 2019, from 17:00
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3.2. Evaluation of excision algorithms

to 18:00 PT, and on October 10, 2019, from 00:00 to 10:00 PT. Different excision
algorithms were applied to the data. Since the mean value of the voltage is zero
(〈E〉=0)), variance of the voltage gives the autocorrelation of the input:

+0A(G) = 〈G2〉 − 〈G〉2 = 〈G2〉, (3.4)

where G is the measured voltage. The average of SK values for samples drawn from
a circularly-symmetric complex Gaussian distribution is 1. The standard deviation
of the SK values are estimated by

f ≈
√

4

#=
≈ 0.0027, (3.5)

where = = 256 is the number of time samples (2.56 µs cadence) that are collected
to generate spectral kurtosis every 0.65 ms, and # ∼ 2048 is the number of inputs
that are used to estimate the SK values. Note that SK values are generated by
combining the signals from all the healthy inputs, and the variance files contain the
rms of the voltage for a single input. The files are processed in the following way:

1. The excision algorithm is applied to the SK files. For example in the single
stage scenario, an upper and lower limit at 1±5f( is used to mask the SK
outliers.

2. This mask is applied to the variance values to remove the samples exceeding
the upper and lower limits.

3. The resulting variances are averaged over ∼ 8 seconds.

4. Fraction of the excised data (those that exceed the upper and lower limits) are
computed for every 8 seconds samples. I call this quantity the excision rate.

5. Those samples that are affected by malfunctioning of the GPU nodes are
detected and removed.

6. Variances and excised rate of 8 s time samples are reported.

Unflagged-variances (i.e. no excision) are reported in the same way by doing
steps 3 to 6. To see the effect of excision algorithm I run the Gaussianity test on
flagged and unflagged data (∼1 hour, 8 second samples) and compare the results.
Figure 3.3 show the results of Gaussianity test on the data with the single stage
algorithm with a threshold at 5f (left) and with EOF algorithm with (=, 5 ) =
(1.5, 0.4), and compare both with the case with no RFI excision. Each data point
corresponds to one frequency channel and the color shows the fraction of excised
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3.2. Evaluation of excision algorithms

Figure 3.3: Left: Result of gaussianity test without any RFI excision (horizontal
axis) and with the single stage algorithm (vertical axis). Right: Gaussianity test
with EOF algorithm using (=, 5 ) = (1.5, 0.4). Each data point corresponds to one
frequency bin and the color shows the average excised rate at that frequency. In
other words, the figure shows three things for each frequency bin: GT value before
RFI excision, GT value after applying the excision algorithm, and the average
excised rate over ∼ 1 hour. The color bar is the same for both figures. Most of the
data points are below the diagonal line. This means that Excision algorithm has
improved the Gaussianity of those frequencies.

data in an 8 s sample. In figure 3.3, anything below the diagonal line has become
more Gaussian after the excision. Note that there is no data point above the diagonal
line, except a few that correspond to LTE and TV station bands (mostly blue and
cyan points, see figure 3.4)). Before excision, ∼ 15% of the data points had a GT
value less than 2. After excision, this increases to ∼ 34% of frequency channels
(those that are below the horizontal gray line). In other words, we have recovered
∼ 19% of frequency channels that were initially contaminated by RFI. In most of
the frequency channels we can increase the quality of the data by excising less than
0.5% of time samples (red points).

Figure 3.4 shows the average excised rate as a function of frequency, and color
shows the difference in GT value between unflagged and flagged data . Large
positive difference shows an improvement on gaussianity of the data. Cyan and
green points are UHF repeaters around 450 MHz. These frequencies are cleaned
by excising < 25% of the samples and their GT values are decreased by a factor
of 100 or more. These two figures together show the potential of high cadence
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3.2. Evaluation of excision algorithms

Figure 3.4: Average excision rate for 8 s samples over 1 hour as a function of
frequency. 600-700 MHz band is the cleanest part of the spectrum. There are
many RFI features in 400-500 MHz band that. The kurtosis based RFI excision
system detected those RFI and some frequency channels are cleaned by excising
only ∼ 20% of the samples in the integrated 8 second sample.

kurtosis based RFI excision.
To further evaluate the excision algorithms, the parameters of the excision

algorithm are changed and the results are compared. The results for three algorithms
are shown in the tables 3.1, 3.2 and 3.3. It is clear that two-stage scenario can
recover more frequency channels without excising too much data. The results are
summarized in figure 3.5. For comparison, note that 288 frequency channels passed
the gaussianity test before excision and 387 passed the test using the single stage
scenario (at 5f) while 0.15% of the data are excised. Using two-stage algorithm
with ? = 0.4, = = 1.4, 22 more frequency channels pass the gaussianity test with
excision of another 0.25%
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3.2. Evaluation of excision algorithms

n # of frequencies Excised fraction (%), Excised fraction (%),
with �) < 2 �) < 2 all frequencies

5 387 0.15 11.63
4 394 0.19 12.35
3.5 398 0.31 12.83
3 400 0.81 13.69
2.5 408 2.58 15.65
2 408 7.38 20.27

Table 3.1: the results of single stage excision for different values of parameter =
on August 29 between 5:00 and 6:00 PM. Second column shows the number of
frequency channels having �) < 2 after excision. Third and fourth columns show
the average fraction of excised data for the frequency channels that passed the test
and for all the frequency channels, respectively. As expected, we recover more
frequency channels by decreasing the threshold value at the expense of loosing
more data. Note that without any RFI excision 288 frequency channels have passed
the Gaussianity test.

= 5 # of frequencies Excised fraction (%), Excised fraction (%),
with �) < 2 �) < 2 all frequencies

3 0.13 348 0.35 15.37
2 0.25 341 0.19 15.75
1.5 0.4 327 0.14 15.83

Table 3.2: Results of excisionwith EOF algorithm. Third column shows the number
of frequency channels having�) < 2 after excision. The number of good frequency
channels (�) < 2) is smaller than the single stage algorithm. This is because the
single stage algorithm is more sensitive to the very short RFI events where only
a few samples exceed the detection threshold. EOF algorithm is sensitive to the
longer RFI, when more than a few percent of the samples in 30 ms exceed the
threshold, but it is insensitive to the very short RFI. The meaning of the third and
fourth columns is similar to the ones in the table 3.1.
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3.2. Evaluation of excision algorithms

5 = # of frequencies, Excised fraction(%), Excised fraction(%),
�) < 2 �) < 2 all frequencies

0.4

1.5 406 0.23 15.69
1.4 409 0.39 16.24
1.3 414 1.18 17.41
1.2 417 4.16 20.54
1.1 419 12.75 28.59

0.5

1.5 401 0.17 14.85
1.4 403 0.18 15.05
1.3 405 0.20 15.33
1.2 410 0.29 15.77
1.1 413 0.85 16.72

Table 3.3: The results of gaussianity test for the two stage algorithm. I used 5f
threshold for the first stage, and different values of (=, 5 ) for the second stage. The
meaning of the third and fourth columns is similar to the ones in the table 3.1.

Figure 3.5: A comparison between two excision algorithms with different 5 param-
eters. The number above data points shows the average percentage of excised data
in good frequency channels.
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3.2.3 Comparison of different excision algorithms

In this section, single-stage, two-stage and EOM algorithms are applied to the 10
hour dataset recorded between 12:00 and 10:00 AM on October 11. Note that in
the single stage scenario = = 5 is used, and in the two-stage case I used the fixed
values =2 = 1.4 and 5 = 0.4 as the excision parameters. Then, the gaussianity
test is performed on 8-s samples every ∼ 1.5 hour and those frequencies whose �)
value is less than 2 are labeled as good frequencies. The fraction of excised data
averaged over all frequency channels for the single-stage and two-stage excision
algorithms are ∼ 12% and 17%, respectively. The average excised fraction for good
frequencies is ∼ 0.2% for the single-stage and ∼ 0.5% for the two-stage algorithm.
Average excised fraction in all frequencies for EOM algorithm is ∼ 17% and ∼
0.5% for good frequency channels (similar to two-stage).

Figure 3.6: The performance of single stage (black), EOF (green) and two stage
(red) algorithms over ∼ 8 hours. In general, two stage and EOF outperform the
single stage. The difference between two stage and EOF is not significant because
this test was performed at night, when there are no strong source of transient RFI.
If there are powerful, short time scale RFI, the first stage of two stage algorithm
can remove it, while EOF is not able to do so.
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Chapter 4

SK estimator biases

The SK estimator and its statistical properties discussed in chapter 2 are derived
from floating point Gaussian samples. Moreover, the value of the variance of
the estimator for the CHIME array (equation 2.41) is based on the assumption
that all the samples from different inputs are independent. These are all idealistic
assumptions. The samples from which the SK value is estimated are not in the form
of floating point values, because they are truncated to 4 bits before transferring
to the GPUs. Furthermore, we might have a very bright celestial signal, e.g. the
Sun, that is measured by all of the antennas. In this case the signals measured at
different inputs are not totally independent. In this chapter I discuss the effect of
4+4-bits truncation and the presence of a common mode signal on SK estimates
and on the variance of the estimator, respectively. I also introduce a correction for
the truncation bias through a python simulation.

4.1 4+4 bits truncation

Spectral kurtosis estimator is sensitive to the shape of the random variable dis-
tribution. In our case, the random variable is the voltage and if there is no RFI
contamination, it follows a Gaussian distribution with mean zero. So according
to the spectral kurtosis estimator properties discussed in the previous section, its
expected value must be unity with a known variance. However, if for some reason
the shape of the distribution changes, it could change the spectral kurtosis estimates.

As I mentioned in the section 1.3.3, the real and imaginary parts of the voltage
are separately truncated to 4-bits. Suppose that we have a Gaussian background
noise with no RFI contamination. If the signal is truncated, then the shape of the
signal could change. This is because our samples are not floating point values
anymore after the 4+4-bits truncation (4 bits real and 4 bits imaginary), but they are
integers in the interval [-7,7] (see figure 4.1). In this case, our SK estimates will
deviate from the expectation value and the RFI detection algorithm will mask the
signal. This is obviously not desired, as we don’t want to mask the celestial signal.
I made a simulation in python to see the effect of 4+4-bits truncation on spectral
kurtosis estimates:
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4.1. 4+4 bits truncation

• A set of =# = 256 × 2048 complex random variable are drawn from a
circularly symmetric Gaussian distribution with a known rms.

• Real and imaginary parts of the random variable are separately truncated to
4-bits. This means that they are rounded to their nearest integer and bounded
between [-7,7]. All the values greater than 7 or smaller than -7 are replaced
by 7 or -7, respectively. This is shown in the figure 4.1.

• The spectral kurtosis with and without truncation are estimated.

• This process is repeated 6000 times. To see the effect of truncation, the
mean and the variance of 6000 spectral kurtosis estimates with and without
truncation are compared.

Figure 4.1: Effect of 4-bits truncation on the shape of a Gaussian signal with an
rms of ∼ 5.5.

Looking at the figure 4.1, one can see that 4+4-bits truncation changes the shape
of the distribution significantly if the rms is high. Since kurtosis is a measure of the
shape of the distribution, truncation introduces a bias in the estimator, because the
spectral kurtosis estimates from truncated samples deviates from the expectation
value. This is shown in the figure 4.2. The SK estimates generated from digitized
samples tends to be smaller than those generated from non-digitized samples. So
truncation introduces a negative bias in the SK estimates. This is expected, because
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4.1. 4+4 bits truncation

at high rms, voltage samples beyond [-7,7] are replaced by -7, 7 which reduces the
(1 and (2 estimates, and (2/(

2
1 in the equation 2.27. For high rms values, the

effect of bounding of the samples to [-7,7] interval on (2/(
2
1 estimate is more than

rounding them to the nearest integer. For lower rms values (rms<2.2), there are
not many samples beyond [-7,7], but rounding of the samples to the nearest integer
slightly reduces the (2/(

2
1 estimates. So truncation always leads to a negative bias

in the SK estimates.

Figure 4.2: Effect of 4+4-bits truncation on SK estimates. The SK estimates are
generated from 6000 Gaussian dataset with rms ∼ 2.9. The SK estimates tend to
be smaller after truncation.

Since the effect of truncation on the shape of a distribution is more significant
for high rms values (as there will be more sample with a value exceeding the
interval [-7,7]), we should expect a correlation between the rms and the bias in the
SK estimate. Figure 4.3 shows the relationship between the truncation bias and the
rms of truncated samples in terms of nominal f for CHIME. Note that the average
rms of the samples in the absence of bright sources in the sky is around 2.2. So the
SK estimator is always biased, although the bias is less than 0.5f when there is no
bright source in the sky.
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4.1. 4+4 bits truncation

Figure 4.3: Bias of the SK estimator as a function of the rms of truncated samples.
Each data point shows the deviation of the average SK value (over 6000 Gaussian
dataset) from unity for a given rms.

4.1.1 Effect of truncation bias on CHIME data

On January 2020, we noticed an increase in the excision rate during the transit of
Cygnus-A (hereafter Cyg-A) and Cassiopeia-A. This was obviously not desirable,
as the RFI system should never excise the astrophysical signals. To understand this
feature, spectral kurtosis values were dumped during Cyg-A transit on February
2020. The goal was to study the spectral behaviour of the SK values during the
transit of bright sources, and to see how much the SK values deviates from the
expectations. Figure 4.4 shows the deviation of SK the values from unity during
the Cyg-A transit. In the ideal case, we shouldn’t see the celestial sources in such
a plot, as they are Gaussian and SK estimator is not sensitive to them. However,
we can see the trace of Cyg-A as a column which is darker than its neighbourhood
around 9:29 AM. The lower part of the plot is darker during the transit, which
means that the negative SK fluctuations occur more at lower frequencies. In order
to see how much data are being flagged by the RFI system at lower frequencies,
the average excised rate between 400MHz and 500 MHz is estimated. To find the
average excised rate, an extreme threshold (=, 5 ) = (1.5, 0.4) was applied on 30ms
frames (see section 3.1.2). Then the number of samples exceeding our threshold is
averaged between 400 MHz and 500 MHz, and it is normalized by the total number
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4.1. 4+4 bits truncation

Figure 4.4: Bias of SK values in terms of the nominal f for CHIME. The SK values
are more negatively biased during the transit of Cyg-a which is around ∼ 9:29 AM.
Note that lower frequencies are more negatively biased than the higher frequencies.

of samples in a 2-seconds frame. We can see this effect in the figure 4.5. The
increases in the excision rate at the transit time of the Cyg-A is about %4. In other
words, our kurtosis based RFI detection system mitigate %4 of useful data at lower
frequencies during the transit of Cyg_A.

On the other hand, we know that Cyg-A is brighter at lower frequencies and I
also showed that 4+4-bits truncation introduces a negative bias in the SK estimator.
This negative bias increases as the rms of the data increases. So, the observed
correlation between the transit of Cyg-A and SK deviation from the expected value
(which is higher at lower frequencies) is a hint that the increased excision rate
during the transit of bright celestial sources can be explained by the truncation bias.
So correcting the estimator for the truncation bias should solve this issue.
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4.1. 4+4 bits truncation

4.1.2 Correction for truncation bias

The truncation bias is defined as the deviation of the SK value from unity. As
discussed in section 4.1, the truncation bias depends on the rms of the samples
from which the SK value is estimated. Our goal in this section is to derive the
truncation bias as a function of rms. Suppose that we have a set of Gaussian data
with mean zero and known rms. If there is a table to relate the truncation bias with
the rms, the SK estimator can be corrected for the truncation bias for a given rms.
To do so, I simulated 1000 SK estimates, where each estimate is generated from
#= = 2048 × 256 complex samples drawn from a circularly symmetric Gaussian
distribution with some rms. Then, I take the average of 1000 SK realizations,
the rms of the truncated distribution is changed and the average SK value is re-
estimated. The simulation steps are similar to what described in the section 4.1.
The result is shown in the figure 4.6 (right).

Once we have SK estimates as a function of rms, we can fit a polynomial to it
to find the bias for a given rms. The bias for a given rms is:

bias = SKfitted − 1 (4.1)

and the SK estimate corrected for the truncation bias is:

SKcorr = bias + SK, (4.2)

Figure 4.5: The excised rate during Cyg-A transit . Each data point represents the
fraction of excised samples in a 2 seconds frame averaged between 400 MHz and
500 MHz.
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4.1. 4+4 bits truncation

Figure 4.6: Left: Fitting residuals in terms of nominal f as a function of rms for
different polynomials. Right: Spectral kurtosis estimated from truncated samples
as function of the rms of the truncated samples.

where SK is the spectral kurtosis measured by the estimator given in the equation
2.40. In other words, we continue to use equation 2.40 to estimate the SK value.
This is a biased estimate. So we add one more step to correct the truncation bias:
Having the instantaneous rms of the samples, we evaluate the bias for that rms using
a polynomial, and then it is added to the measured SK value. The result is the SK
estimate corrected for the truncation bias.

The major source of error in this process is the polynomial fit. Figure 4.6 (left)
shows the residuals of the fitting in terms of the nominal sigma for 4 different
polynomials. The residuals are the difference between the fitted SK value (using
polynomial) and the simulated SK estimates. The lowest order polynomial which
gives a good fit within the range of ±0.5f is of degree 5. Polynomials of degree 8
and more gives a much better fit with a lower residual, but fitting with a polynomial
of degree 5 is just enough to test the system and to seewhether our idea for correcting
the truncation bias works as expected.

4.1.3 Results of truncation bias correction on CHIME data

We recorded the SK values together with the variances of 0.65 ms samples simul-
taneously to correct the SK estimates for the truncation bias. Because the mean of
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4.1. 4+4 bits truncation

the random variable G is zero, variance directly gives the rms:

+0A(G) =
〈
G2

〉
= rms(G). (4.3)

Using instantaneous rms values and the polynomial function I derived for the
fitting (of degree 5), one can estimate the instantaneous truncation bias every 0.665
ms. Adding the truncation bias to the measured SK value gives the unbiased SK
estimate. The bias of the SK estimator before and after the correction for truncation
bias is shown in the figure 4.7. Cyg-A transit is around 4:45 AM in these figures.
I applied the threshold (=, 5 ) = (1.5, 0.4) to 30 ms frames. White spots are the
30 ms frames exceeding the threshold. We can still see the trace of the Cyg-A on
the SK estimates after the correction, however, the bias is getting smaller and most
of the samples do not exceed the threshold after the correction. Moreover, the SK
estimator is still sensitive to the other RFI events including LTE band, TV station
bands, repeating RFI around 470 MHz, and transient RFI.

The effect of truncation is expected to be more clear at lower frequencies
because the sky is getting brighter at those frequencies during the transit of the
galactic plane. So, zooming into the lower frequencies can give us a better sense of
the performance of the SK estimator with andwithout the truncation bias correction.
The average excision rate for 2-sec frames between 400 MHz and 500 MHz before
and after correction are shown in the figure 4.8. The bump around 4:45 in the
figure 4.8 (left figure) corresponds to the Cyg-A transit, showing that the excised
rate increases at lower frequencies without bias correction. The bump disappears
after correction with a polynomial of degree 5. We can still see a %2 increase in
the excised rate at the transit time, however, this is a much better than %10 increase
before correction.

Although the correction with a polynomial of degree 5 improves the SK estima-
tor, for better results we need higher order polynomials or a different fitting method.
An alternative to the polynomial fitting is the cubic spline interpolation. It turns
out that this method gives a much better result. Figure 4.9 shows the SK deviation
from the expected value in terms of nominal f after correcting the SK values with a
cubic spline function during the transit of Cyg-A. The SK values are much closer to
unity in this case, and the signature of Cyg-A in the plot is disappeared. Moreover,
the SK values are much more uniform across the spectrum. The excision rate does
not change with the cubic spline function, but in general it gives a much better fit to
the SK v.s rms plot. Currently, we are using the polynomial fitting in the pipeline.
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Figure 4.7: The bias of SK estimates in terms of nominal f for CHIME without
(Left) and with (Right) the correction for truncation bias.Cyg-A transit is around
4:45 PT in this plot. Each data point is the average SKvalue over 30ms and thewhite
spots are 30 ms frames that are masked by EOF algorithm with (=, 5 ) = (1.5, 0.4).
The color scale is the same in both plots.

Figure 4.8: Left: The excised fraction of the samples in an 2 second frame, averaged
between 400 MHz and 500 MHz during Cyg-A transit (∼ 4:45 PT) without trunca-
tion bias correction. Right: The same quantity as in the left figure, but corrected for
truncation bias with a polynomial of degree 5. The bump corresponding to Cyg-A
disappeared, i.e. the RFI system no longer excise the Cyg-A.
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Figure 4.9: Deviation of SKvalues fromunity after correcting the kurtosis values for
truncation biaswith a cubic spline function duringCyg-A transit around∼ 4 : 45%) .
The bias is closer to zero for all frequencies compared to the figure 4.7.
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4.2. Common mode signal

4.2 Common mode signal

We derived the variance of the SK estimator for a compact array in the section 2.4
assuming that the signals received by different receivers are independent. In general
this is not the case, as the sky signal contributes to all the receivers. So there will
be common mode signal and this reduces the total number of independent samples,
and increases the variance of the estimator. In other words, the sensitivity of the
kurtosis-based RFI mitigation system which depends on the variance of the SK
estimator is decreased in presence of a common mode signal.

A simulation can reveal the effect of common mode signal on the variance of
SK estimator. Suppose that the receiver noise is described by the matrix N. A set
of 256 × 2048 complex samples is selected randomly from a Gaussian distribution
with mean zero and variance 1. I put these samples in a 2 dimensional matrix
N. This matrix has two axes: time axis which is represented by 256 samples; and
receiver axis representing 2048 inputs. Each row is independent from the other
one. This matrix represents the receiver noise of each input for 256 time samples.
The component #8 9 represents the signal received by the 8Cℎ receiver at time 9 . So
each row is the time-stream for a single receiver (with a length of 256). Note that
the noise of different receivers are independent from each other, and each of them
follows a circularly symmetric Gaussian distribution.

# =


#1,1 #1,2 ... #1,256

#2,1 #2,2 ... #2,256

... ... ... ...

#2048,1 #2048,2 ... #2048,256

 (4.4)

Then, a common mode signal is added to the noise. It is described by the
matrix C whose shape is same as matrix N. The only difference is that C follows a
circularly symmetric Gaussian distribution along the time axis, but it is the same
over all of the receivers:

� =


�1,1 �1,2 ... �1,256

�2,1 �2,2 ... �2,256

... ... ... ...

�2048,1 �2048,2 ... �2048,256

 =


�1 �2 ... �256

�1 �2 ... �256

... ... ... ...

�1 �2 ... �256


Then the signal is:

( = f## + f�� (4.5)
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4.2. Common mode signal

where f# is the noise amplitude and f� is the common mode amplitude. Then,
the SK value of the signal is estimated, and the variance of the estimator for a set
of 1000 dataset is calculated. This process is repeated for different values of f� .
The fractional common mode amplitude shows how much of the amplitude of the
signal is dominated by the common mode:

ffrac =
f�

fC>C0;
=

f�√
f2
#

+ f2
�

. (4.6)

Figure 4.10 shows that the effect of the common mode signal on the variance of
the SK estimator is negligible if the fractional common mode amplitude is less
than 0.3. The signal is dominated by the common mode when ffrac ≈ 1. In this
case there are only = = 256 independent time samples and the variance converges
to 4/= ≈ 0.015. Since the increase in the common mode amplitude reduces the
number of independent samples, one can define the effective number of receivers
using the fact that for a compact array # ≈ 4

=×+ 0A( ¯( )
. When the fractional

common mode amplitude is unity the effective number of antennas becomes 1, as
expected. This is shown in the figure 4.11. Red horizontal line in both figures
corresponds to a signal that is totally dominated by a common mode.

Note that the common mode signal does not alter the mean of the estimator,
because mean of the SK estimator is an invariant quantity and does not depend on
the integration length. Therefore common mode is not counted as a bias. But it
reduces the sensitivity of the SK estimator to the RFI as it reduces the number of
independent samples.
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Figure 4.10: Variance of the SK estimator in presence of a common mode signal.
The variance reaches to 10−2 if the signal is totally dominated by the commonmode
signal, as there are only = = 256 independent time samples.

Figure 4.11: Number of effective antenna as a function of fractional common mode
amplitude.
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Chapter 5

Results

In this chapter, I summarize the results of the real-time RFI excision from May
2019 to September 2020. In this period we have used all three excision algorithms
described in the chapter 3. The final part of this chapter is a discussion about
the reliability of the Gaussianity test for the evaluation of the RFI system, the
performance of the system during the solar transit, and a brief discussion about the
effect of polarized RFI on the sensitivity of the RFI system.

5.1 May to November 2019: Single stage algorithm

We started to use the kurtosis-based RFI detection system in May 2019. FromMay
to November 2019, single stage algorithm with a detection threshold of 5f was
used. The estimator was not corrected for the truncation bias in this period.

To compare the quality of the data before and after the RFI excision visually,
I plotted the stacked autocorrelations normalized by the median across time for
each frequency. Stacked autocorrelations are the autocorrelations averaged over all
inputs. Figure 5.1 shows the waterfall plot of autocorrelations before and after we
start to use the kurtosis based RFI excision system. I zoomed in the range 400 MHz
and 500 MHz, because this is the range that we see many repeating RFI lines. One
can see that there are a few RFI lines in April 2019 (without RFI excision) that are
absent in May 2019 (after RFI excision). Most of these lines are not transient, for
example the repeating line around 468 MHz.

To be more quantitative, I plotted the average excision rate as a function of
frequency. Figure 5.2 shows the excision rate in each frequency bin averaged over
1.5 hours. The shape of this plot is very similar to the figure 3.4. This shows that
the excision algorithm is working as expected. Most of the RFI lines appearing
between 400 and 500 MHz, can be recovered by removing less than 20% of the
data. On a 10-second cadence, this repeating line appears every 20 seconds. But
the high cadence RFI excision system can clean the frequency without excising too
much of the data. Figure 5.2 shows that this frequency can be recovered by excising
only 8% of the data in a 10 second sample at this frequency.
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5.1. May to November 2019: Single stage algorithm

Figure 5.1: Left: Normalized autocorrelations in April 10, 2019 without any RFI
excision. Right: Normalized autocorrelations in June 7, 2019 after deploying high
cadence RFI excision system with single stage algorithm. Most of the repeating
RFI features disappeared.

Figure 5.2: Excised fraction of 10 s samples averaged over 1.5 hours as a function
of frequency.
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5.1.1 Moving blob

In July 2019, we detected a mysterious signal that was being removed by the RFI
system. The signal was repeating every day with a regular pattern . Preliminary
evaluations showed that the signal appears around 480 to 490 MHz and it is locked
in sidereal time, i.e. it appears at the same time in each sidereal day, just like stars.
Being locked in sidereal time was a hint that the signal source is not ground based.
However, tracking the signal over a month showed that the blob is slowly drifting
in sidereal time. Figure 5.3 shows how the blob moves back in time. Each diagonal
line corresponds to the excised rate at 483.98 MHz for 24 hours. We can see the
increase in the excised rate, two times per day, at specific right ascensions. Note
that CHIME is a transit radio telescope. So the right ascension of an object is equal
to the local sidereal time when the object is in the CHIME beam. The question
was whether this is a true RFI or the RFI system is removing a celestial source by
mistake. There was no bright radio source at those right ascensions. Finally, with
the help from Scott Tilley, an amateur satellite observer, it turned out that the signal
is coming from a Russian Meridian satellite and the RFI system did a good job in
detecting the RFI.

Figure 5.3: The signature of the Meridian satellite is visible in the plot of excision
rate of 10 s samples (in percent) as a function of time around frequency ∼484 MHz.
Each diagonal line corresponds to 24 hours. The blob appears every day, but it
slowly drifts in right ascension.
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5.2 December 2019 to February 2020: Excision on 30 ms
frames with multiple thresholds

This section summarizes the overall performance of the RFI excision system from
December 2019 to February 2020. During this period the EOM algorithm with two
thresholds (=, 5 ) = {(1.5, 0.4), (3, 0.13)} was used. This algorithm was initially
tested on SK/variance dataset in October 2019 (see section 3.2.2) .

Figure 5.4 shows the excised fraction of 10 s samples (averaged over all fre-
quencies) for 3 consecutive days. One can see that the excision rate averaged over
all frequencies is around 16%, as expected from the analysis in chapter 3 for the
EOF algorithm. We can also see 3 bumps which appear every day. Two of these
bumps are already identified as the meridian satellite (see section 5.1.1). These
bumps are moving back in time every day. These three bumps have some similar
characteristics: They are almost locked in sidereal day, and if one plots the excised
fraction as a function of frequency and time, they are all appearing as blobs between
480 and 490 MHz (figure 5.8). However, unlike the previous blobs that are drifting
slowly in RA, the new blob seems to be tightly fixed in RA, and it also seems to be
more broadband. Figure 5.8 shows that the new blob appears in 480-490 MHz and
400-440 MHz at the time of Cyg-A transit. Therefore, it is obvious that the new
blob has a different origin than the other two. In fact, the RFI system is excising
the Cyg-A. This is not desirable and as already mentioned in chapter 4, it is due to
the 4+4-bits truncation. The effect of 4+4-bits truncation was not very clear with
the single stage algorithm because the detection threshold was at 5f.

To see how the excision work in different frequencies, I plot the average excised
fraction of 10 s samples at different frequencies over 1.5 hours. Figure 5.5 shows
that the LTE and TV station bands are completely masked by the EOF algorithm.
However, the RFI lines around 450MHz are more excised than what the single stage
algorithm does. Note that removing more samples around 450 MHz by the EOF
algorithm does not necessarily mean that more RFI is removed. Higher excision
rate in those frequencies is mainly due to the fact that the EOF algorithm performs
the excision on 30 ms frames, while single stage algorithm masks the individual
outliers (0.65 ms).

Another quantity of interest is the number of good frequency channels through-
out the day. This is shown in the figure 5.6. Remember that good frequency
channels are those channels that pass the Gaussianity test (i.e. those with �) <2).
The maximum number of good frequency channels (∼ 700) occurs every night
between 2:00 and 4:00 AM. The minimum number occurs in the morning between
8:00 AM and 12 PM. These numbers are consistent with the results of our test on
sk/variance dataset.

52



5.2. December 2019 to February 2020: Excision on 30 ms frames with multiple thresholds

Figure 5.4: Excised rate of 10 s samples averaged over all frequencies for 3 consec-
utive days. The red box is the Cyg-A transit time and two green boxes correspond to
the meridian satellite. The excision rate increases every day during Cyg-A transit.
This is due to 4+4-bit truncation.

Figure 5.5: Average excised rate over 1.5 hours as a function of frequency for a
typical day in February 2020. The excision algorithm completely masks the LTE
and TV station bands.
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Figure 5.6: Number of good frequency channels reported every 1.5 hours for 12
consecutive days. We can see a repeatable pattern every day. Note that there are
zero good frequency channels during solar transit, as the RFI system flags the Sun.
This issue is discussed in section 5.4.2

Figure 5.7: Change of the number of good frequency channels in 24 hours. The
number of good frequency channels is more at night and it goes down in the
morning, when there are more RFI at site.

54
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Figure 5.8: Excised fraction as a function of time and frequency. The green circles
and rectangle show the blob which is fixed in RA (which turned out to be Cyg-A).

5.3 March to September 2020: Two stage algorithm

As of March 2020, we are using two stage excision algorithm: In the first stage, all
individual 0.65ms sampleswhose kurtosis exceed 5f limit aremasked. The second
stage excision is performed on 30 ms frames whose more than 13% of their samples
exceed 3f. In June 2020, we corrected the SK estimator for truncation bias with a
fifth degree polynomial as described in chapter 4. The number of good frequency
channels as a function of time for 6 consecutive days in July 2020 is shown in the
figure 5.11. The maximum number of good frequencies is a little lower than the
winter run . This could possibly be due to the new RFI bands appearing around
700 MHz and the change of excision algorithm and the threshold values. Figures
5.9 and 5.10 show the effect of truncation bias correction on excision rate during
the transit of Cyg-A. Since the truncation bias is more severe in lower frequencies
during the Cyg-A transit, I averaged the excision rate over 400 and 430 MHz. The
bump in the figure 5.9 corresponds to the time of Cyg-A transit. This bump is
disappeared in June when the SK estimator was corrected for the truncation bias.
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Figure 5.9: Excised rate of 10 second samples averaged between 400 and 430 MHz
on May 19, 2020; without truncation bias correction. Red arrow shows the Cyg-A
transit time.

Figure 5.10: Excised rate of 10 s samples averaged between 400 and 430 MHz on
June 16, 2020. The SK estimator is corrected for the truncation bias. The The
bump corresponding to the Cyg-A transit disappeared.
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Figure 5.11: Number of good frequencies from July 9, 2020 to July 14,2020. Two
stage algorithm was used in this period with 5f threshold on individual 0.65 ms
samples and (3f, 0.13) on 30 ms frames. Zeros correspond to the solar transit,
when the RFI excision system is off.

5.4 Discussion

5.4.1 Reliability of Gaussianity test

In this analysis, the aim of gaussianity test was to compare the quality of the data
before and after the excision by identifying those frequency channels which are
less contaminated by RFI. To see whether the gaussianity test selects only such
channels, the standard deviation of the data over an hour or so can be used. The RFI
should appear as a spike in the standard deviation plot. So, if any RFI-contaminated
channel pass the gaussianity test, we must see it as a spike in the plot of standard
deviation versus frequency.

Figure 5.12 is the standard deviation of the frequency channels that have passed
the gaussianity test. Clearly, there are a few outliers: These frequencies have passed
the gaussianity test, but they have a large standard deviation and indeed they are
RFI.

Why the outliers pass the gaussianity test? Are they gaussian-like RFI? Not
necessarily. In the gaussianity test, we subtract the sky contribution by taking the
difference between neighbouring samples. But if the RFI is stable in time (over∼ 10
seconds), the subtraction removes the RFI and the frequency channel might pass
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the test. For example, figure 5.13 shows the histogram of one of the outliers before
and after subtraction of neighbouring samples. After subtraction, the distribution
looks more Gaussian. This behaviour is not so much common, but it should be
taken into account.

Figure 5.12: Standard deviation of the data between 3:00 and 4:00 AM for those
channels which pass the gaussianity test. Two of the outliers are shown with black
circles.

Figure 5.13: Left: Histogram of the autocorrelations one of the outliers at frequency
419.14 MHz. Right: Histogram after subtracting the neighbouring samples.
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5.4.2 Solar transit issue

The RFI excision rate is extremely high during the solar transit. Ideally this should
not happen, because the Solar data are Gaussian and the RFI system should not
remove the Gaussian signal. However, the two effects mentioned in the chapter 4
affect the SK estimates and its variance. The truncation bias is very significant for
the sun, as it is the brightest object in the sky. The average rms of the solar data is
greater than 4. According to the simulations explained in the chapter 4, the bias of
the SK estimates due to the truncation effects at rms∼ 4 is more than −40f . This
means that all the excision algorithms (single stage, EOM or two stage) will excise
almost all of the solar data. However, this issue persists even after the correction of
SK estimates for truncation bias. This is most probably due to the common mode
signal: the common mode amplitude approaches to the unity in the case of solar
transit. This reduces the number of independent samples from which the kurtosis
estimates are generated. So the variance of the estimates will increase and the SK
values exceed the detection thresholds. To avoid loosing solar data, the RFI system
must be turned off during the solar transit.

Figure 5.14: Deviation of SK values from unity in terms of nominal f for CHIME
during solar transit (around 13:00). Left: Without truncation bias correction SK
values have a very high negative bias. Right: Since SK values sill highly deviate
from expected value after truncation bias correction with a fifth degree polynomial,
the Sun is still being flagged by the RFI system. This might be explained by the
fact that the variance of the estimator is increased when the common mode signal
dominates.
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5.4.3 RFI polarization

Running theGaussianity test on all of the inputs reveals that in a few frequencies, one
polarization is more Gaussian than the other. This is possibly due to the polarized
RFI events. Since kurtosis is estimated by combining the time samples from all of
the inputs, it can lead to a false estimate of RFI at some frequencies . The following
figures show the result of gaussianity test over different inputs. It is clear that one
polarization is more non-Gaussian than the other one. One way to deal with the
polarized RFI is to estimate the kurtosis for different polarizations separately. This
means that instead of 2048 inputs, we will have 1024 inputs to combine. However,
reducing number of inputs increases the variance of the estimator, and decreases
the sensitivity of the excision algorithms to the RFI. Since it is important to have
the highest possible number of samples to keep the variance of the SK estimator as
low as possible, we ignore this effect for now.

Figure 5.15: Result of the Gaussianity test for all feeds at a single frequency. The
NS and EW corresponds to two different polarizations. Note that the first 256 inputs
on each cylinder have a different polarization than the next 256.
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Chapter 6

Summary and future work

In this thesis I evaluated the performance of the high cadence kurtosis based RFI
excision system for CHIME. In general, RFI excision system is able to detect and
flag many types of RFI, from repeating RFI lines between 400 MHz and 500 MHz
to intermittent RFI from satellites and airplanes. A good example for this is the
excision of the Meridian satellite signal. Moreover, the RFI system detects and
masks the static RFI bands such as LTE and TV station bands. It is also possible
to recover a few frequency channels that were totally non-Gaussian by excising
less than %20 of millisecond samples in a 10 second sample. Before excision,
these frequency channels were totally contaminated by the RFI. I also discussed the
effect of quantization on SK estimates and I corrected the SK estimator for 4+4 bits
truncation bias using polynomial fitting and cubic spline interpolation.

Although the RFI detection system detects powerful non-Gaussian RFI events,
it must be improved in many ways. First of all, we have to find new detection
thresholds and design new algorithms to increase the sensitivity of the RFI system;
for example to excise 6 MHz TV channels more effectively. Moreover, truncation
bias correction with a polynomial fitting must be replaced by the cubic spline
interpolation or by a polynomial of higher degree, as I showed that the cubic
spline function gives a much better correction for the truncation bias, and fitting
residuals for a polynomial of degree 8 are much smaller than those for 5Cℎ degree
polynomial. Another issue with the RFI algorithms that must be fixed is the solar
transit issue. The number of independent samples from different inputs is reduced
during the solar transit. Therefore, the variance of the SK estimator increases and
our detection algorithms flag the Sun. To avoid loosing the solar data, we turn off
the RFI system during the solar transit. Currently, there is no resolution for this
problem, but another potential improvement of the system includes designing an
algorithm which does not flag the Sun.
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