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Abstract 

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-

secreting beta-cells. Genetic variations upstream at the insulin (INS) locus contribute to ~10% of 

T1D heritable risk. Multiple studies showed an association between rs3842753 C/C genotype 

and T1D susceptibility. Three small studies reported an association between rs3842753 C allele 

and increased whole pancreas INS expression. To date, no large-scale studies have looked at the 

effect of those genetic variations on insulin expression at the single cell level. We aligned all 

available human pancreatic single cell RNA sequencing datasets using STAR and used Samtools 

mpileup to genotype rs3842753. Using Seurat, we integrated 2315 beta-cells from 13 A/A 

donors, 23 A/C heterozygous donors, and 35 C/C at-risk donors. The donors included persons 

with and without type 2 diabetes, but not T1D. We compared variance using Bartlett’s test or 

Fligner-Killeen test and means using Wilcox Rank Sum, Student-t, ANOVA, or Kruskal-Wallis 

tests. Per β-cell INS expression mean and variance were significantly higher in females compared 

with males. In male cells, INS expression appeared to be significantly lower in T2D compared to 

non-diabetic cells. Comparing across all cells, we found that rs3842753 A/C genotype had the 

highest INS expression followed by C/C genotype, lastly by A/A genotype. Donor level 

comparisons between genotypes were not statistically significant. Conversely, within A/C 

heterozygous -cells, A allele specific INS expression was higher. This association was 

consistent at the donor level. Lastly, we examined whole pancreatic islets from a small subset of 

donors and found no relationship between insulin protein abundance and rs3842753 genotype. 

Our analysis suggests that in single β-cells, rs3842753 may affect INS variance and expression. 

The contribution of these differences to T1D risk remains unclear. 
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Lay Summary 

Type 1 diabetes (T1D) is caused by the body’s own immune attack of pancreatic β-cells 

which produce insulin, a hormone that regulates blood sugar. The rs3842753 variant in the 

insulin gene changes the DNA sequence from A to C. Individuals with the C allele are more 

likely to develop T1D and have more pancreatic insulin expression. However, those studies 

included a small number of people and used whole pancreas tissue instead of pancreatic β-cells. 

In this study, we used gene expression data for pancreatic cells from 71 people. When comparing 

across all of the single cells in our data set, there was a relationship between rs3842753 genotype 

and pancreatic insulin expression. However, when looking within the individual cells that had 

one copy of each genotype, we found the opposing result. More research is therefore required to 

determine the molecular mechanisms of T1D disease development. 
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Chapter 1: Introduction 

1.1: Global Burden of Diabetes 

Diabetes mellitus is a disease characterized by the body’s chronic inability to regulate 

blood glucose levels resulting in hyperglycemia (1; 2). This could be due to inadequate insulin 

synthesis, inadequate insulin secretion, and/or inadequate insulin action (insulin resistance) (1; 

2). Chronic hyperglycemia, clinically defined by a fasting glucose of over 7.0mM or random 

glucose levels over 11.1mM, is the hallmark of all diabetes (1; 2). Insulin is a hormone primarily 

produced by pancreatic β-cells to promote the uptake of glucose from blood into skeletal muscle, 

adipose, and liver cells (1). The two main types of diabetes are type 1 diabetes (T1D) and type 2 

diabetes (T2D), accounting for approximately 5 to 10% and 90 to 95% of total diabetes cases 

respectively (1). Other types of diabetes including monogenic diabetes and gestational diabetes 

account for 1 to 5% of total diabetes cases (1).  

In 2014, diabetes affected 422 million people worldwide and directly caused 1.5 million 

deaths in 2012 (3). As well, complications due to diabetes involve cardiovascular diseases, 

chronic kidney disease, and neuropathy (3). This has led to an estimated global financial burden 

of US$1.3 trillion related to diabetes in 2015 with a projected increase to US$2.5 trillion based 

on past trends by 2020 (4; 5). The global estimate for the prevalence of diabetes mellitus is 

projected to increase to 642 million people by 2040 (6). 

 

1.2: Type 1 Diabetes  

T1D is an autoimmune disease characterized by the autoimmune destruction of 

pancreatic β-cells (1). A small percentage of T1D cases is caused by idiopathic destruction of 

pancreatic β-cells or β-cell failure (1). This loss of pancreatic β-cells results in the depletion of 

the body’s main source of insulin leading to inadequate insulin production (1; 7). The lack of 

insulin results in the body’s inability to regulate blood glucose levels which results in the rapid 

onset of diabetes (1; 7). T1D is the main type of diabetes that occurs in children accounting for 

more than 85% of all diabetes cases in youth under 20 years old (8-11). Most cases onset 

between 10 to 14 years old during puberty (12). The main risk factors for T1D are genetic though 

environmental components are also involved (13-15). Genetic components are evident by the 

concordance of the disease in monozygotic twins, which ranges from 30 to 70% over time (16). 
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Genome-wide association studies (GWAS), together with previous gene mapping efforts, have 

identified nearly 60 susceptibility loci for T1D (17; 18). The strongest genetic association for 

T1D are genes located in the human leukocyte antigen (HLA) loci (odds ratio [OR] = 0.02 to 11). 

The second strongest association is at the insulin (INS) loci (OR = 2.38) (19-21). Odds ratio 

indicates the likelihood of an individual developing T1D given mutations at those loci. Some 

environmental factors include early childhood virus infections, vitamin D deficiency, and 

decreased gut-microbiome diversity (14; 22-24). Since insulin producing pancreatic β-cells are 

destroyed in T1D, treatments commonly include lifelong insulin replacement therapy and/or 

pancreatic islet transplantations though research is emerging in stem cell and immune therapies 

(25). To date, there are no therapies that can cure T1D in humans. 

 

1.3: Type 2 Diabetes  

T2D is a metabolic disease caused by insufficient compensatory insulin secretion 

response in the context of insulin resistance (1; 26; 27). One of the early hallmarks of T2D, and 

its main risk factor obesity, is hyperinsulinemia (28; 29). Hyperinsulinemia itself can contribute 

to insulin resistance and manipulations that reduce insulin production have been shown to 

prevent adiposity and age-dependent insulin resistance in mouse models (30-32). Insulin 

resistance affects the muscle and adipose cells’ ability to absorb glucose from the bloodstream. 

The resulting chronic hyperglycemia leads to further pancreatic β-cell stress, failure, and death 

(1; 26; 27).  

T2D mainly occurs in older adults with the majority of patients between 45 to 64 years 

old (27; 33). However, there has been an increasing trend of children, adolescents, and younger 

adults developing T2D (34). This is especially concerning as these younger onset T2D patients 

have higher rates of microvascular and macrovascular complications, increased need for insulin 

treatment and increased mortality (8; 27; 35-37). Environmental and genetic factors are both 

important for understanding T2D development. Obesity is the most important risk for developing 

T2D though other environmental factors are also involved as such: sedentary lifestyle, physical 

inactivity and smoking (38-41). Through GWAS, more than 400 alleles that associate with 

increased risk for developing T2D have been observed (42). Life style changes to control blood 

glucose concentrations and lower body mass index (BMI) through diet and physical activity 
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continue to be the primary treatments for T2D. In the DiRECT study focused on dietary 

restriction and weight loss as a treatment for T2D, sustained diabetes remission was linked to 

sustained weight loss(43). Pharmacological agents, such as metformin, are also employed to 

inhibit gluconeogenesis in the liver (44). For advanced T2D stages, insulin replacement therapy 

can be used to maintain glucose homeostasis(44).  

 

1.4: Monogenic Diabetes  

Two main types of monogenic diabetes are neonatal diabetes mellitus (NDM) and 

maturity onset diabetes of the young (MODY). NDM is a rare form of diabetes that occurs in 

around 1 in 90,000-400,000 live births (45-47). It is often characterized by insulin dependent 

hyperglycemia in infants 6 less than months old, though some cases can present up to 1 year old 

(1; 45; 47). There are over 20 genetic mutations that cause NDM with mutations in the potassium 

inwardly rectifying channel subfamily J member 11 (KCNJ11) gene and ATP-binding cassette 

transporter sub-family C member 8 (ABCC8) genes accounting for nearly 50% of all NDM cases 

(48). Both KCNJ11 and ABCC8 encode proteins that make up the sub-units of the pancreatic β-

cell adenosine triphosphate sensitive potassium (K-ATP) channels (49). These channels regulate 

the amount of insulin that is released into the bloodstream in response to glucose stimulation (50; 

51). The mutations in KCNJ11 and ABCC8 directly prevent the closing of K-ATP channels, 

increasing the concentration of blood glucose needed to stimulate insulin release resulting in 

permanent NDM (49; 52).  

MODY is also a form of monogenic diabetes characterized by early onset (before 25 

years old), autosomal mode of inheritance, absence of pancreatic β-cell autoimmunity, sustained 

pancreatic β-cell function and few defects in insulin action (1). There are mutations in 14 genes 

associated with MODY which accounts for around 1 to 2% of total diabetes cases (53-58). The 

majority of MODY cases (45-70%) involve mutations in genes encoding pancreatic β-cell 

transcription factors that are essential for the development of pancreatic cells (five genes) and 

glucokinase which is the first rate-limiting step in glycolysis (58; 59). MODY10 is caused by 

heterozygous mutations on INS and affects less than 1% of all MODY cases. Edghill et al. (2008) 

and Molven et al. (2008) found the individuals that had MODY10 were mostly diagnosed with 

diabetes in their late teens and treatments were mostly non-insulin dependent (60; 61). Since 
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monogenic diabetes is inherited, genetic testing is encouraged for early detection and 

intervention to decrease hyperglycemia related complications. Sulfonylureas are often used to 

increase the release of insulin by pancreatic β-cells (47). Insulin replacement therapy is also used 

in cases where sulfonylureas use is insufficient to control hyperglycemia (47).  

 

1.5: Gestational Diabetes Mellitus 

Gestational diabetes mellitus (GDM) is classified as hyperglycemia that is first diagnosed 

during pregnancy with glucose levels below diabetes diagnosis outside of pregnancy (62). This is 

a sex specific form of diabetes that only affects women. The World Health Organization has 

estimated the prevalence of GDM to be highest in the Middle East and some North African 

countries (15.2% of pregnancies), followed by South-East Asia (15% of pregnancies), with the 

lowest in Europe (6.1% of pregnancies). However, even thought it affects with 6.1% of 

pregnancies, it still represents a sizable population and a significant burden especially as the 

complications associated with GDM include pre-eclampsia, preterm delivery, and increased risk 

of metabolic and cardiovascular disease in mothers (63).  

Some of the main risk factors for developing GDM are obesity, advanced age, and 

ethnicity (63). Obesity (BMI > 25 kg m2) prior to pregnancy carries the most significant risk for 

developing GDM (63). A meta-study using over 20 studies found that the OR for developing 

GDM was 2.14 in overweight, 3.56 in obese, and 8.56 in severely obese pregnant women 

compared to normal weight women (64). Age is also a major risk factor with women over 40 

having a two-fold increase in risk for developing GDM compared to women between 25 to 29 

years old (65). Another major risk factor is ethnicity. From world-wide estimations of GDM 

prevalence, it is clear that geography, and perhaps ethnicity, plays a major role in developing 

GDM. Other studies that examined GDM prevalence between ethnicities in the same 

geographical location also found and increase in Asian women compared to Caucasian women 

(66; 67). It is especially interesting that in Asian, there is an increased risk for developing GDM 

even at BMI < 25 kg m2 compared to Caucasian women (66). This difference in GDM 

prevalence is likely due to a combination of genetic susceptibility and lifestyle.  

Pregnancy induces a large amount of stress on the pancreatic β-cells. Mechanistically, the 

combined increase in insulin synthesis demand and increased insulin resistance lead to the 
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development of GDM. Insulin sensitivity decreases by around 50% during late gestation, which 

is associated with a 65% increased in faster insulin levels (68). This is associated with defects in 

the insulin signalling pathway in skeletal muscle cells. In GDM, there is less 

autophosphorylation of tyrosine in the insulin receptor β subunit and the amount of insulin 

receptor substrate 1 (IRS1) in the skeletal muscle cell membranes is reduced. These changes 

lower the amount of glucose uptake from the blood into the skeletal muscle cells. During 

pregnancy, there is also a large and rapid increase (30%) in basal endogenous glucose production 

(69). Whether sex specific differences in insulin target tissues or  cells contribute to the 

pathogenesis of GDM remains unclear. 

 

1.6: Role of Insulin in Glucose Homeostasis 

1.6.1: Insulin Biosynthesis 

Insulin plays a crucial role in glucose homeostasis and is intrinsically linked to the 

development and progression of diabetes. Thus, it is essential to understand the mechanisms and 

factors that affect insulin biosynthesis, secretion, and signalling. 

The human insulin protein (INS) is encoded by INS located on the reverse strand on 

chromosome 11p15.5 (70). It is 1431bp long with three exons and two introns (Figure 1) (70). In 

pancreatic β-cells, around 50% of total gene expression is due to INS expression. Humans have a 

single copy of the INS gene whereas in both mice and rats, there are two insulin genes (Ins1 and 

Ins2) (71; 72). The proximal promoter region of human INS has been extensively studied and 

located in the 400bp region flanking the transcription start site (Figure 2) (73). Both ubiquitous 

and pancreatic β-cell specific transcription factors bind to this promotor region (74). Some key 

transcription factors include pancreatic and duodenal homeobox factor-1 (PDX1), V-maf 

musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA), and neurogenic differentiation 

1 (NEUROD1) (74-76). All three genes play an important role in pancreas development and 

glucose stimulated insulin secretion. Under high glucose conditions, PDX1 increasingly binds to 

the A3 binding site, MAFA binds to the C1 binding site and NEUROD1 binds to the E1 binding 

site (77-79). Under high glucose conditions, PDX1 is phosphorylated, NEUROD1 is 

glycosylated, and MAFA expression is increased. The three transcription factors are translocated 

to the nucleus where they aid in recruiting p300, a histone acetyltransferase, to the insulin 
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promoter (77-83). This opens the chromatin structure and allows for increased INS transcription. 

PDX1 and MAFA expression levels in T2D islets were also selectively decreased (84). 

Mutations in INS, PDX1, and NEUROD1 directly correspond to MODY10, MODY4, and 

MODY6 respectively (58). As well, the INS promotor region has been implicated in T1D via 

GWAS (85). Increased DNA methylation has also been shown to decrease INS transcription, 

including in the context of T2D (86; 87). The genetic regulation of INS expression is therefore 

important in the context of diabetes and will be discussed further below.   

Steady state insulin mRNA levels are a product of balance between mRNA transcription, 

mRNA stability, and mRNA degradation. Increased transcription and mRNA stability lead to 

increased levels of mRNA. Whereas, increased degradation and decreased mRNA stability lead 

to decreased levels of mRNA. Insulin transcription can be altered by transcription factors, 

chromatin remodeling and DNA methylation in response to changes in glucose concentration as 

previously discussed. Insulin mRNA has a long half-life in pancreatic β-cells (29 to 77 hours 

depending on glucose concentration) (88). Several proteins have been found to bind to insulin 

mRNA to either promote stability or degradation. In rat pancreatic islets, poly-pyrminidine-tract 

binding protein have been shown to bind to the 3’ untranslated region (UTR) of insulin and 

increase insulin mRNA stability(89). Another protein, T-cell restricted intracellular antigen 1-

related protein (TIAR) also compete for the same binding site (90). In an experiment using rat 

and human pancreatic β-cell line (INS-1 and EndoC-βH1 cells), inhibition of TIAR resulted in 

increased insulin mRNA levels. There was also an association between stress granule formation 

and the relocalization of TIAR from the cytosol to the stress granules (90). Stress granules 

contain mRNA and proteins during times when the cell is under stress. Translation cannot occur 

off the mRNA inside the granules leading to decreased protein amount. Together, there is 

evidence pointing to the role of TIAR in decreasing insulin mRNA stability. 

INS is primarily produced by the pancreatic β-cells which comprise around 60% of the 

2000 cells in a typical human pancreatic islet (91). After transcription from DNA to messenger 

RNA (mRNA), the INS mRNA is translated into the preproinsulin protein which is 110 amino 

acids long. Preproinsulin is composed of a hydrophobic N-terminal signal peptide, the B-chain, 

the connecting (C) peptide, and the A-chain (92). The signal peptide interacts with 

ribonucleoprotein signal recognition particles to translocate preproinsulin through the peptide-
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conducting channel into the rough endoplasmic reticulum (ER) lumen where post-translational 

modifications occur (93). The signal peptide is cleaved after lumen translocation, becoming 

proinsulin (93; 94). In the ER, folding and three disulfide bonds are added to proinsulin (95). 

Two disulfide bonds are located in between the B-chain and A-chain (A7-B7, A20-B19) and one 

disulfide bond within the A-chain (A7-A11) (96). Proinsulin is finally translocated into the Golgi 

apparatus where it is engulfed by secretory vesicles and cleaved by prohormone convertases and 

carboxypeptidase E, resulting in the bioactive insulin (51 amino acids) and C-peptide (97). 

Insulin is stored in these insulin secretory granules prior to secretion, with a sub-set of granules 

that are primed to fuse with the cell membrane upon glucose stimulation (98).  
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Figure 1: Human Insulin Gene and Surrounding Structure. Aligned to Homo sapiens genome assembly GRCh38.p13 from 

Genome Reference Consortium. Region shown is located on chromosome 11 from position 2,159,600 to 2,162,000. The light green 

boxes indicate untranslated exons, green lines indicate introns, dark green boxes indicate translated exons, purple box indicates 

variable number tandem repeat (VNTR) region, and arrows indicate transcription direction. From top to bottom, the four insulin 

mRNA variants are shown (variants 1, 2, 4, 3). Figure was obtained from NCBI https://www.ncbi.nlm.nih.gov/gene/3630 (70). 

 

 

 

 

Figure 2: Detailed Human Insulin Gene Structure. Region shown located on chromosome 11p15.5 reverse strand. Arrow indicates 

transcription direction. Grey box represents the variable number of tandem repeat region. Orange boxes represent key transcription 

factor binding sites. Green ovals represent key transcription factors. Shaded blue boxes represent the untranslated exons. The peptides 

are represented as boxes inside the exons. The peptides depicted are the signal peptide (P), B-chain (B), C-peptide (C), and A-chain 

(A). Image not drawn to scale and adapted from German et al., 1995 and Hay and Docherty, 2006 (73; 99).

https://www.ncbi.nlm.nih.gov/gene/3630
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1.6.2: Mechanisms of Glucose Stimulated Insulin Secretion 

After a meal, increased glucose concentration in the bloodstream stimulate pancreatic β-

cells. In humans, glucose predominantly enters the pancreatic β-cell through glucose transporter 

1 and is phosphorylated by glucokinase, generating pyruvate. Pyruvate is oxidized by pyruvate 

dehydrogenase into acetyl coenzyme A which enters the citric acid cycle (100-102). In the 

matrix of the mitochondria, acetyl coenzyme A in metabolized in the citric acid cycle leading to 

the production of the reduced form of nicotinamide adenine dinucleotide (NADH) from NAD, 

the reduced form of flavin adenine dinucleotide (FADH2) from FAD, and guanosine-5'-

triphosphate (GTP) from guanosine diphosphate (GDP) (102). NADH and FADH2 are used in 

the electron transport chain to produce ATP thorough the transportation of protons by four inner 

mitochondria membrane bound complexes (I, II, III, IV) from the mitochondria matrix into the 

inter membrane space (102). As more protons are transported into the inter membrane space, an 

electro-chemical gradient is established, and the protons cannot move freely across the inner 

mitochondrial membrane. Instead, the protons move through ATP synthase into the 

mitochondrial matrix which catalyzes the formation of ATP from ADP and inorganic phosphate 

(102). Through this process, one molecule of glucose produces 32 molecules of ATP. As the 

ratio of ATP/ADP (Adenosine diphosphate) rises in the pancreatic β-cell, the K-ATP channels at 

the cell membrane are inhibited from opening, thus depolarizing the cell membrane (51; 101; 

103). When the membrane potential depolarized to approximately -50 mV, the voltage gated L-

type calcium channels open and Ca2+ rapidly enters the cell (101; 104). This influx of Ca2+ 

triggers the fusion of insulin granules bilayer with the cell membrane, via a process known as 

exocytosis, releasing insulin into the bloodstream (101; 105). 

 

1.6.3: Molecular Mechanisms of Insulin Action 

Insulin flows via the bloodstream to act on fat and muscle cells to promote the uptake of 

glucose and liver cells to synthesize glycogen to store glucose and suppress gluconeogenesis 

(101). In muscle and fat cells, insulin binds to and activates insulin receptors located on the 

surface of the cell membrane through autophosphorylation of the β subunit to initiate insulin 

signalling (106). The activated insulin receptor β subunit phosphorylates the insulin receptor 

substrate proteins especially the IRS1 isoform through Serine/Tyrosine kinases (107; 108). 
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Phosphoinositide 3-kinases (PI3K) bind to insulin receptor substrate proteins to recruit 

phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphorylate to phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) (109). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) 

is a key inhibitor of IRS1 and PIP3 by dephosphorylation (110; 111). As PIP3 concentrations 

increase, pyruvate dehydrogenase kinase 1 (PDK1) is recruited towards the plasma membrane 

and phosphorylated triggering PDK1 activation (112). The phosphorylated PDK1 along with the 

mammalian target of rapamycin complex 2 phosphorylates and activates protein kinase B (PKB). 

The activation of PKB initiates a cascade of downstream phosphorylation events resulting in the 

phosphorylation and inhibition of Akt substrate of 160 kDa (AS160) (113). AS160 normally 

inhibits the translocation of glucose transporter type 4 to the cell membrane (114). Thus, the 

inhibition of AS160 allows glucose transporter type 4 to embed into the lipid bilayer allowing for 

the intake of glucose into the muscle or adipose cells.  

Defects in the insulin signalling pathway in muscle and adipose cells result in insulin 

resistance and are especially important in T2D. Obesity is the cornerstone factor for developing 

insulin resistance through a combination of chronic inflammation and lipotoxicity (115). Chronic 

inflammation has been associated with obesity, insulin resistance and T2D (116; 117). The 

increase in cytokine secretion has been shown to contribute to insulin resistance through the 

activation of Serine/Tyrosine kinases thus inhibiting the phosphorylation of IRS1, PKB and 

downstream proteins (118; 119). This results in the lack of glucose uptake into muscle and 

adipose cells resulting in insulin resistance. Lipotoxicity results from the overflow of FFAs from 

adipose tissues into muscle, liver and pancreatic β-cells (120). The increase of circulating FFAs 

can induce cytokine production, thus insulin resistance, as mentioned above. As well, toxic lipid 

metabolites, especially ceramide, inhibit the activation of PBK through the phosphorylation of 

PBK at tyrosine-34 thus leading to insulin resistance (121).  

 

1.6.4: Defects in the Insulin Production and Diabetes 

 Since pancreatic β-cells are the main producers of insulin in the body, it is important to 

consider ER homeostasis, which is the balance between the physiological demand for protein 

production and the ER folding capacity to produce mature proteins (122). It has been proposed 

that conditions of increased insulin demand (hyperglycemia, decreased pancreatic β-cells, and/or 
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insulin resistance) could generate large proportions of misfolded/unfolded proinsulin compared 

to properly folded proinsulin, leading to ER stress (123; 124). Additionally, a recent study has 

shown that insulin production even under basal conditions in mice is a significant source of ER 

stress (125). Upon ER stress, the unfolded protein response is activated to increase the 

production of proteins related to ER-associated protein degradation, autophagy, and apoptosis. 

This promotes the degradation and clearance of misfolded proteins or during prolonged stress, 

programmed cell death (122; 126).  

In T1D patients, ER stress can trigger increased production of cytokines during apoptosis, 

alternative splicing, and the presentation of unknown (neo)autoantigens to immune cells which 

further exacerbates the ER stress response (127-129). Neoautoantigens are unique antigen 

expression that may present exclusively under specific conditions, such as ER stress, rather than 

ubiquitously. These neoautoantigens could be the result of errors in transcription, translation, 

post-translational processing, and disposal due to ER stress (130-132). Multiple neoautoantigens 

have already been identified including an alternative reading frame INS mRNA translated 

product named INS-DRiP (131; 133; 134). This experiment was conducted in transfected 293T 

cells treated with the ER stressor, thapsigargin, and showed INS-DRiP could stimulate T-cell 

proliferation and cytokine production (131). The importance of INS-DRiP in T1D autoimmunity 

is unclear.  

In T2D patients and rodents, environmental factors include hyperglycemia, free fatty 

acids (FFAs), and inflammatory cytokines have been shown to triggers for ER stress in 

pancreatic β-cells (135-139). In rodents, this has been shown to be especially detrimental during 

chronic hyperglycemia since chronic ER stress triggers the apoptotic response leading to the 

destruction of pancreatic β-cells (135). In obese T2D patients, hyperglycemia and excess FFAs 

interact to induce chronic ER stress leading to decreased β-cell dysfunction and apoptosis (140). 

Since insulin overproduction induced ER stress plays a role in both T1D and T2D, it is important 

to study the genetic variations in INS that can result in increased insulin expression. 
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1.7: The Genetics of Insulin and Insulin Expression Regulation 

1.7.1: Insulin Genetic Landscape 

The INS gene is located on chromosome 11p15.5 (70). There are four variants of the INS 

mRNA with all variants encoding the same INS protein with only variance in the 5’UTR (Figure 

1) (70). Exon 1 is untranslated, exon 2 encodes the signal peptide, B-chain, and part of the C 

peptide, and exon 3 encodes part of the C peptide and A-chain (Figure 2) (73). The proximal 

promotor region 0 to 300 bp upstream of INS contains three key transcription factors binding 

sites A3, C1, and E1 which bind to key transcription factors: PDX1, MAFA, and NEUROD1, 

respectively (73). These transcription factors have been shown to play a key role in pancreatic β-

cell development and INS expression (73-77). Around 400bp upstream of INS is a region of 

variable number of tandem repeats (VNTR) that has been the main region implicated in 

increased T1D susceptibility (141). The two genes flanking INS are tyrosine hydroxylase and 

paternally imprinted insulin like growth factor 2 (IGF2) on the forward strand. There is a 

readthrough transcript starting from the INS start codon going into and through IGF2 (INS-

IGF2). Since the 4.1kb region surrounding the insulin gene is the second most associated genetic 

region with increased T1D susceptibility, the specific genetic variations warrant further 

investigation. 

 

1.7.2: Clinical Phenotypes Associated With INS-VNTR Variants 

 The INS gene accounts for around 10% of T1D disease genetic risk (19-21). This 

association with increased T1D susceptibility has been found across numerous GWAS studies 

and population groups (142-146). The specific genetic variant associated with T1D susceptibility 

at the INS loci is the INS-VNTR region which is around 400bp upstream of the INS gene (15; 

141-143; 146; 147). This genetic variant is in the human genome and not mice. The INS-VNTR 

are 14bp to 15bp long  groups of tandem repeat sequences that are classified into the shorter 

Class I (26 to 63 repeats) and longer Class III (141 to 209 repeats) (141). Class II is rarely found 

in Caucasian populations which is the main demographic studied in previous literature. There are 

two single nucleotide polymorphisms (SNPs), rs689 and rs3842753, that are in strong linkage 

disequilibrium with the INS-VNTR thus also implicated in increased T1D susceptibility (142).  

This linkage disequilibrium is almost 100% in the Caucasian population (147). The global rs689 
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reference allele (A) frequency is around 0.28 with variance from 0.04 (East Asian population) to 

0.49 (African populations) (148-152). The rs689 reference allele (T) is in linkage disequilibrium 

with the rs3842753 reference allele (A) and class III INS-VNTR (147). These are often referred 

to as the protective allele. By extension, the rs689 alternate allele (A) is in linkage disequilibrium 

with the rs3842753 alternate allele (C) and class I INS-VNTR (142). These are often referred to 

as the at-risk allele due to its association with increased T1D susceptibility. 

INS-VNTR has also been linked to other conditions outside of T1D. Earlier studies have 

found an association between these genetic variations (Class I/I INS-VNTR, rs689 A/A 

genotype, and rs3842753 C/C genotype) and an increase in childhood obesity, but recent studies 

have not been able to replicate this finding (153-160). Another study found an association 

between paternally inherited Class III INS-VNTR (and by extension: rs689 T allele, and 

rs3842753 A allele) with an increase in T2D susceptibility (161). However, later studies have not 

been able find any associations between Class III/III INS-VNTR genotype and T2D in larger 

cohorts (162; 163). Currently, the most consistent genotype/phenotype association at the INS-

VNTR locus is with T1D susceptibility.  

 

1.7.3: INS-VNTR and INS Secretion  

Numerous studies have investigated the relationship between INS-VNTR genotype and 

insulin secretion both under basal and glucose stimulations, and insulin sensitivity. The majority 

of studies have found no association between INS-VNTR genotype and basal insulin in children 

and adults (156; 157; 160; 163; 164). However, upon glucose stimulation, the associations 

between INS-VNTR genotype and insulin secretion become unclear depending on stimulation 

method, age of individuals, and diabetes status (156-158; 160; 163-165). One large study in non-

diabetic Danish young adults (n = 358) found decreased acute serum insulin concentrations after 

intravenous glucose tolerance test in young adults with Class III/III INS-VNTR genotype 

compared to individuals with Class I INS-VNTR allele (heterozygous or homozygous) (163) . 

However, this association was no longer found in middle-aged adults (n = 4444) (163). Of note, 

studies using cohorts from United Kingdom, France, and Germany have failed to find an 

association between INS-VNTR genotype and insulin sensitivity (156; 157; 164). Thus, the role 
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of the INS-VNTR genotype on glucose stimulated insulin secretion and insulin resistance is 

unclear. 

 

1.7.4: INS-VNTR and INS Expression 

Despite multiple studies that have focused on the relationship between INS-VNTR 

genotype and T1D susceptibility, only a few studies have reported on the relationship between 

INS-VNTR genotype and gene expression. Twenty-five years ago, a key study examined the 

insulin expression from three adult heterozygous Class I/III INS-VNTR whole pancreases and 

found an association between the at-risk allele, Class I INS-VNTR allele, and increased 

pancreatic insulin expression (143). This association have been re-confirmed two additional 

small studies, both using fetal heterozygous Class I/III INS-VNTR pancreas tissues (n = 1 and n 

= 10) (166; 167). These three studies all used heterozygous donors to account for donor specific 

differences and found a Class I INS-VNTR allele specific increase in pancreatic INS expression. 

Class I/I INS-VNTR correlated increase in pancreatic insulin expression could indicate 

increased pancreatic insulin production. If there were a reproducible link between increased T1D 

susceptibility and increased pancreatic INS expression due to the Class I INS-VNTR allele, it 

would support a possible increase in -cell ER stress in at-risk individual. This may in turn lead 

to increased generation of neoautoantigens, a provoked autoimmune response, and ultimately in 

increased susceptibility to T1D. 

Another working model posits that INS-VNTR affects central tolerance. Vafiadis et al. 

(1997) also found an association between Class I/I INS-VNTR and decreased thymus INS 

expression using human fetal thymus tissue (166). That study measured the insulin expression in 

twelve human fetal thymus tissues that are heterozygous for the INS-VNTR allele and found 

within the same fetus, Class I INS-VNTR correlates with lower cis thymic INS expression and 

Class III INS-VNTR correlates with higher cis thymic INS expression. The findings have been 

reconfirmed in another study using eight Class I INS-VNTR/Class III INS-VNTR heterozygous 

fetal thymuses (168). These studies again used heterozygous donors to account for donor specific 

differences. The researchers proposed that increased INS expression in the thymus (correlated 

with Class III INS-VNTR) leads to increased immune tolerance and therefore less immune 

activation targeting the pancreatic β-cells. Additional evidence for this hypothesis comes from 
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the significant decrease in proinsulin reactive T cells in either non-diabetic or T1D individuals 

with the Class III INS-VNTR allele (homozygous or heterozygous) compared to individuals with 

the Class I/I INS-VNTR genotype (169). The decrease in immune activation targeting the 

pancreatic β-cells is hypothesized to protect the pancreatic β-cells from autoimmune attacks 

which is the key characteristic of T1D. 

All previous studies examining the effect of INS-VNTR genotype and tissue expression 

used whole organ tissue (whole pancreas or whole thymus). This presents a problem as recent 

discoveries have highlighted the heterogeneity of pancreatic β-cell gene expression using single 

cell RNA sequencing (scRNAseq) (170-181). Thus, previous studies could have not been able to 

detect the variance in insulin expression within a donor. As well, they would not have detected 

pancreatic β-cell specific insulin expression. 

 

1.8: Single Cell RNA sequencing and Pancreatic β-cell Physiology 

1.8.1: RNA sequencing 

 RNA sequencing measures transcriptome expression and consists of two main types: bulk 

sequencing and single cell sequencing. Bulk RNAseq is widely used and produces the average 

transcriptome information of all the cells provided (182). Thus, it is commonly used to identify 

differences in gene expression between different conditions at the tissue level. ScRNAseq has 

gained popularity recently due to its ability to extract gene expression information for each cell 

sequenced (182; 183). Therefore, it is able to identify differences in gene expression between 

cells, cell types, and conditions. As well, it is commonly used to identify novel cell types/sub-

populations. However, due to the small amount of RNA material provided, scRNAseq produces 

data with more technical noise and less read depth, and is thus inadequate for very lowly 

expressed transcripts (183). Some technical noise can be eliminated through the use of unique 

molecular identifiers (UMIs) which are attached to unique transcripts. This reduces technical 

noise due to polymerase chain reaction (PCR) amplification through removing duplicate reads 

due to PCR while maintaining biological duplicates due to increased expression (184). This is 

very important in experiments with low input (single cell) projects as more PCR cycles are 

needed to achieve sufficient material for sequencing.  Not all scRNAseq protocol includes this 

process (183). 
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1.8.2: scRNAseq and β-cell Heterogeneity 

In recent years, there has been an explosion in the number of studies using scRNAseq in 

human pancreatic islet cells. Through the lowered cost and wider commercial availability, 

researchers have been able to sequence more cells to greater sequencing depths aiding in the 

discovery of rare cell types/subtypes and differential gene expression between disease conditions 

and cell subpopulations. Multiple studies using scRNAseq on human pancreatic β-cells have 

found the presence of distinct subpopulations of β-cells (171; 172; 177; 180; 181). Interestingly, 

the genes markers for the β-cells subpopulations have concentrated in genes in the ER stress and 

unfolded protein response pathways in non-diabetic donor cells (171; 172; 180). As well, Xin et 

al. (2018) found that different subpopulations of pancreatic β-cells have different INS expression 

(171). Though Segerstolpe et al. (2016) have not found a difference in INS expression in their 

pancreatic β-cell subpopulations (177). These results clearly indicate the presence of 

heterogeneity among pancreatic β-cells though the specific characteristics of these 

subpopulations are not clearly identified.  

Several studies have examined whether there are transcriptomic changes between 

pancreatic β-cells from non-diabetic versus diabetic donors (170; 174; 177-179). In the review by 

Wang and Kaestner (2019), the differential expression of genes between T2D and non-diabetic 

pancreatic β-cells was largely non-overlapping (185). This could be due to a combination of the 

complexity of T2D etiology and limited number of donors. Often, there are few donors for either 

disease status with a wide range in age and BMI. This could be overcome by expanding the 

number of donors in future studies or integrating several studies to increase donor number. 

Functional heterogeneity was observed in human pancreatic β-cells long before 

scRNAseq was available. The main areas were insulin secretory response to glucose stimulation 

and calcium oscillations. Sensitivity to glucose-stimulated insulin secretion was not uniform 

across all pancreatic β-cells and a small group of cells account for the majority of insulin 

secreted (186). This difference in glucose stimulated insulin secretion in the same individuals 

could indicate the presence of different subpopulations of pancreatic β-cells within one 

individual. As well, Ca2+ responses varied between β-cells in the pancreas though signal was 

synchronized in small cluster regions of pancreatic islets (187; 188). This type of 
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synchronization could indicate the communication between pancreatic β-cells as well as 

separation of different β-cells groups. 

 

1.9: Thesis Investigation  

The relationship between INS-VNTR genotype (and by extension SNPs rs689 and 

rs3842753) and pancreatic INS expression and protein abundance is currently unclear. The 

studies conducted previously had small sample sizes and were not pancreatic β-cell specific. 

However, they used heterozygous donors to account for donor specific differences. To address 

the shortfalls, we conducted a correlational study using all available pancreatic scRNAseq data to 

find the association between INS-VNTR genotype and pancreatic β-cell INS expression. We also 

examined allele specific INS expression in single cells of heterozygous donors to account for 

donor specific differences. We integrated the data from different studies to increase the donor 

number. As well, we conducted a pilot correlational study between INS-VNTR (and SNPs rs689 

and rs3842753) genotype and insulin protein abundance to determine if the changes in INS 

expression translated to changes in protein abundance. Filling this knowledge gap is critical for 

testing multiple theories on the pathogenesis of T1D. 
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Chapter 2: Materials and Methods 

All scRNAseq alignments and initial dataset integration analysis where conducted using 

the Cedar Compute Canada cloud compute resource (www.computecanada.ca). All subsequent 

analysis using Seurat was done in R version 3.6.0 (189). 

 

2.1: Gene Expression Datasets 

The majority of datasets containing scRNAseq data were found through searching in 

PubMed for keywords including: “single cell”, “scRNAseq”, “human”, and/or “pancreas”. 

PubMed searches resulted in nine datasets (170-174; 177-180). Xin et al. (2018) was excluded as 

the raw files did not contain sufficient information for genotype analysis (171). Datasets in 

Baron et al. (2016) and Muraro et al. (2016) were excluded from the final analysis because the 

scRNA sequencing reads were UMI counts as opposed to read counts (172; 180). There were 

more datasets with read counts than UMI counts. The five datasets found from PubMed searches 

were obtained through the Gene Expression Omnibus (GEO) or the European Bioinformatics 

Institute (EMBL-EBI). Both the raw sequencing files and metadata information were 

downloaded, except for the metadata from Camunas-Soler et al. (2020) which were obtained 

through the GitHub link https://github.com/jcamunas/patchseq/tree/master/data (179). The 

Human Pancreas Analysis Program (HPAP) datasets were found online (190). The datasets from 

HPAP were obtained directly from investigators (190). The datasets were split by donor as each 

donor was sequenced at separate times and on separate runs. All datasets metadata contains 

donors’ age, sex, and diabetes status. Some datasets metadata contain donors’ BMI, ethnicity, 

and cell type (as analysed by publication). The Wang et al. (2016) and HPAP datasets metadata 

do not include cell type classifications. 

In total, we used data from 71 donors (22452 raw files [cells]), split into 48 non-diabetic 

donors (13433 raw files [cells]) and 23 T2D donors (9019 raw files [cells]). There were 27 male 

non-diabetic donors and 21 female non-diabetic donors. There were 10 male T2D donors and 13 

females T2D donors (Table 1). As of this writing, we believe it is the largest compiled set of 

human islet cell scRNAseq data. 

  

http://www.computecanada.ca/
https://github.com/jcamunas/patchseq/tree/master/data
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Table 1: Dataset Summary Statistics 

Study Date 

Non-Diabetic 

Donor # Non-Diabetic 

Cell # 

T2D Donor # T2D 

Cell # Male Female Male Female 

Xin 2016 7 5 651 3 3 949 

Wang 2016 1 1 686 1 1 412 

Segerstolpe 2016 5 1 1980 2 2 1534 

Camunas-Soler 2020 9 9 4346 3 4 3048 

Enge 2017 3 2 1814 NA  NA 

HPAP Data 

HPAP-1 2016 NA NA NA 1 NA 798 

HPAP-3 2017 1 NA 799 NA NA NA 

HPAP-4 2017 NA 1 760 NA NA NA 

HPAP-6 2017 1 NA 799 NA NA NA 

HPAP-7 2017 NA NA NA NA 1 799 

HPAP-8 2017 NA 1 799 NA NA NA 

HPAP-10 2017 NA NA NA NA 1 680 

HPAP-12 2017 NA 1 799 NA NA NA 

HPAP-13 2017 NA NA NA NA 1 799 

TOTAL 27 21 13433 10 13 9019 



 

20 

 

2.2: Insulin Protein Abundance 

 Only the Camunas-Solar et al. (2020) and HPAP datasets contain insulin protein 

abundance measurements (179). The insulin abundance data for the Camunas-Solar et al (2020) 

dataset was obtained from the Alberta Diabetes Institute IsletCore database. The insulin 

abundance data for the HPAP datasets were obtained from the HPAP consortium. Both datasets 

report insulin content per islet equivalent. Specific protocols for insulin abundance determination 

for the Camunas-Solar et al. (2020) and HPAP datasets can be found on the respective database 

(https://www.protocols.io/view/static-glucose-stimulated-insulin-secretion-gsis-p-wy4ffyw, 

https://hpap.pmacs.upenn.edu/explore/workflow/islet-physiology-studies?protocol=5).  

 

2.3: Data Accession and Single Cell RNA Sequencing 

For datasets that were stored in GEO, sra-tookit version 2.9.6 (http://ncbi.github.io/sra-

tools/) was used to convert SRA files to fastq files using the fasterq-dump option, adjusting for 

single or paired end reads as appropriate. The raw sequencing files for Segerstolpe et al., (2016) 

and HPAP datasets were uploaded to EMBL-EBI and HPAP databases as fastq files thus no 

conversion was necessary (177; 190).  

For all six datasets used in this study, the Smart-seq or Smart-seq2 methods were used for 

cDNA synthesis and PCR amplification (191; 192). The read length ranges from 43bp to 100bp 

and median read depth per cell ranges from 0.75 million reads per cell to 4.4 million. Specific 

sequencing protocols for individual datasets can be found in Table 2. 

https://www.protocols.io/view/static-glucose-stimulated-insulin-secretion-gsis-p-wy4ffyw
https://hpap.pmacs.upenn.edu/explore/workflow/islet-physiology-studies?protocol=5
http://ncbi.github.io/sra-tools/
http://ncbi.github.io/sra-tools/
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Table 2: Dataset Sequencing and Accession Number. 

Study Date Protocol 

Sequencing 

System Read Type 

Read 

Length 

Read Depth 

per Cell 

Data Accession 

Location 

Accession 

Method 

Xin 2016 SmartSeq 

Illumina 

HiSeq2500 Single end 75bp 0.95 million GSE81608 GEO 

Wang 2016 SmartSeq 

Illumina 

HiSeq2500 Single end 100bp 2.2 million GSE83139 GEO 

Segerstolpe 2016 SmartSeq2 

Illumina 

HiSeq2000 Single end 43bp 0.75 million E-MTAB-5061 EMBL-EBI 

Camunas 2020 SmartSeq2 

NextSeq 500 or 

NovaSeq platform Paired end 75bp 1 million GSE124742 GEO 

Enge 2017 SmartSeq2 Illumina NextSeq Paired end 75bp 1 million GSE81547 GEO 

HPAP 

HPAP-1 2016 

SmartSeq 
Illumina 

HiSeq2500 
Single end 100bp 4.4 million 

https://hpap.pma

cs.upenn.edu 

provided by 

investigator 

HPAP-3 2017 

HPAP-4 2017 

HPAP-6 2017 

HPAP-7 2017 

HPAP-8 2017 

HPAP-10 2017 

HPAP-12 2017 

HPAP-13 2017 

All HPAP datasets protocol, read type, accession location, and accession methods are indicated by HPAP Data row. Specific HPAP 

dataset creation date indicated in each respective HPAP dataset row.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81547
https://hpap.pmacs.upenn.edu/
https://hpap.pmacs.upenn.edu/
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2.4: Read Alignment and Genotyping rs689 and rs3842753 

Reads were aligned to the GRCh38.98 human reference genome using STAR version 

2.7.1a (193). Both bam files and gene read counts were obtained using –outSAMtype BAM 

SortedByCoordinate and --quantMode GeneCounts, respectively. The read count files were 

aggregated into study specific read count matrixes using custom code. 

Each cell was genotyped at SNPs rs689 and rs3842753 which are in tight linkage 

disequilibrium with the INS-VNTR (142). Since it is not possible to accurately align RNA 

sequencing reads to VNTRs longer than the length of the individual reads (43bp to 100bp) using 

PCR based sequencing, the read alignment at the SNPs are used as surrogate for INS-VNTR 

class determination. Samtools version 1.9 and Bcftools version 1.9 were used to genotype the 

SNPs(194; 195). Samtools index was used to index the sorted BAM files obtained from STAR. 

Samtools mpileup was used to obtain read counts for rs689 (chr 11: 2160994 - 2160994) and 

rs3842753 (chr 11:2159830-2159830), saved as binary variant call format (BCF) files. Bcftools 

call was used to convert BCF files to the variant call format (VCF) files for rs689 and rs3842753. 

The VCF files were aggregated into study specific genotype matrix using custom code.  

For each cell, if the DP4 total (sum of read alignments to the reference and alternate 

allele, forward and reverse) was larger than 100 then the reference allele percent, alternate allele 

percent, and genotype were calculated. The cut off is set to eliminate the cells that are not β-cells 

thus do not express sufficient INS for reads to align to the SNP location. Reference allele percent 

was calculated by 
(𝐷𝑃4𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐹𝑜𝑟𝑤𝑎𝑟𝑑+𝐷𝑃4𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑅𝑒𝑣𝑒𝑟𝑠𝑒)

𝐷𝑃4 𝑡𝑜𝑡𝑎𝑙
. The alternate allele percent was 

calculated by 
(𝐷𝑃4𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐹𝑜𝑟𝑤𝑎𝑟𝑑+𝐷𝑃4𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝑅𝑒𝑣𝑒𝑟𝑠𝑒)

𝐷𝑃4 𝑡𝑜𝑡𝑎𝑙
. The genotype was determined as 

reference (rs689 T allele or rs3842753 A allele) if the reference allele percent was over 80, 

alternate (rs689 A allele or rs3842753 C allele) if the alternate allele percent was over 80, or 

heterozygous otherwise. The genotype for an individual is determined as the vast majority of the 

individual’s cells’ genotype.  

 

2.5: Dataset Filtering and Cell Type Analysis  

 The main analysis tool used for was Seurat version 3.0(196). Dataset integration was 

conducted in Cedar Compute Canada. The 5 published datasets and 9 HPAP datasets were made 
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into Seurat objects. For filtering and subsequent analysis, all datasets are split into non-diabetic 

donors and T2D donors, except HPAP datasets which were split into individual donors. Dataset 

from Camunas-Soler et al. (2020) was split into patch-clamp data and fluorescence-activated cell 

sorting (FACS) data since different sequencing protocols were used(179). Initial filtering was 

conducted to remove doublets and low viability cells. Doublets were removed by subsetting out 

cells with high number of total RNA counts, and genes. Low viability cells were removed by 

subsetting out cells with low number of genes and high mitochondrial gene percent. The upper 

and lower limits for total number of RNA read counts (nCount_RNA) and genes 

(nFeature_RNA) are determined specific to each dataset to account for library preparation and 

sequencing protocol differences. This was done upon visual inspection of the distribution graphs 

for each dataset. The highest mitochondrial gene percent is set to 25%.  

 All fourteen datasets were integrated into a single Seurat object using SCTransform 

following the default settings. UMAP clusters were determined using default Seurat settings. Top 

ten differentially expressed genes in each cluster (compared to all other cells) was used to 

determine cluster cell type identify. As well, the location of pancreatic hormone genes (GCG, 

INS, PPY and SST) expression was used to determine Alpha (α), β, PP, and delta cell clusters 

respectively. Enrichr (gene enrichment analysis) was also used when cluster identity was more 

difficult to determine (197).  

 

2.6: Insulin Expression Analysis 

 Due to the overwhelming amount of INS expression in pancreatic β-cells (50% of all gene 

expression) and to prevent ‘self-normalization’, INS gene expression was normalized against 

select housekeeping genes rather than against all expressed genes in a cell which is the standard 

Seurat protocol. The inter-dataset variance and relative expression (to all genes in cell) of 

established human housekeeping genes are examined. Housekeeping genes are selected for INS 

normalization based on small inter-dataset expression variance and sufficient expression to 

accurately determine presence of gene expression. INS expression was normalized using custom 

code we wrote. β-cells INS read counts are normalized against the sum of select housekeeping 

genes read counts, scaled by factor of 10000, and natural log transformed. All cells with zero 

values for INS read counts or select house keeping genes read counts were not included.  
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2.7: Allele Specific Insulin Expression Analysis 

 To account for differences between donors, allele specific INS expression analysis was 

done on donors that were heterozygous for rs3842753. The reference allele read counts and 

alternate allele read counts were obtained for each cell. Then, the reference allele (A) percent 

was calculated for each cell and compared against a theoretical normal distribution with a mean 

of 50 and standard deviation of 10. The number of samples in the theoretical distribution was the 

same as in the heterozygous group (782 for cell level analysis and 23 for donor level analysis). 

Non-allele biased gene expression should have 50% of each allele expressed. The expression 

distribution was assumed to be normally distributed. 

 

2.8: Statistical Analyses 

 All statistical analyses were done in R 3.6.0 (189). Shapiro-Wilk test was used to test for 

normality (198). Fligner-Killeen or Bartlett’s test were used as a non-parametric or parametric 

test for difference in variance, respectively (199; 200). Wilcox Rank Sum or Student-t test was 

used as a non-parametric or parametric tests, for differences in normalized INS expression and 

insulin protein abundance between sexes and between disease statuses (201). Normalized INS 

expression within sex and between disease statuses was also examined using Wilcox Rank Sum 

test. Wilcox Rank Sum or Student-t test was also used to test for differences in allele expression 

percent between genotype, either sex, either disease status and theoretical normal distribution 

with a mean of 50 and standard deviation of 10. Between sex and between disease status allele 

expression percent differences were not tested. Pairwise Kruskal-Wallis tests were used as a non-

parametric test for differences in cell specific normalized INS expression between genotypes, 

adjusting for multiple comparisons with Bonferroni correction (202; 203). One-way ANOVA 

test was used as a parametric test for differences in donor specific mean and median normalized 

INS expression between genotypes (204; 205). 
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Chapter 3: Results 

3.1: Genotyping and Dataset Genotype Summary 

 Upon genotyping for rs689 and rs384275, reads could only be aligned to SNP rs3842753 

(Figure 3). The genotype at this location is used in all subsequent analysis. Reads for rs689 were 

not included since it is in the 5’ intronic region thus excised from the mature mRNA (Figure 1). 

Out of 71 total donors, there were 48 non-diabetic donors and 23 T2D donors. Within non-

diabetic donors, there were 9 donors with the homozygous A allele, 12 with heterozygous (A/C 

allele), and 27 with the homozygous C allele. Within T2D donors, there were 4 donors with the 

homozygous A allele, 11 with heterozygous (A/C allele), and 8 with the homozygous C allele. 

There were no T2D male donors with the homozygous A allele. None of the donors from the 

HPAP database had the homozygous A allele (Table 3).   

 

3.2: Dataset Quality Control 

An important first step in the analysis was quality control of the data. Figure 4 to 6 shows 

the unfiltered and filtered distribution graphs for the nCount_RNA, nFeature_RNA, and 

mitochondrial gene percent (compared to total gene) for all datasets analysed. In the majority of 

datasets, clear upper and lower cutoffs for nCount_RNA and nFeature_RNA could be visually 

determined. There were very few cells from the Camunas-Soler et al. (2020) patch-clamp dataset 

as each cell was individually patch-clamped (Figure 5C, D)(179). As well, in the FACS dataset, 

many cells had higher than 25% of mitochondrial genes, indicating large numbers of cells 

undergoing apoptosis or necrosis (Figure 5E, G). As well, many cells in the HPAP-003 dataset 

had low number of aligned genes (less than 1000) (Figure 6A, B). This could indicate a problem 

with sequencing; thus, results from theses samples should be interpreted conservatively. 
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Figure 3: Representative reads aligned to the INS gene locus for non-diabetic donor cell. The reference gene INS is at the bottom 

with small blue boxes representing UTRs, large blue boxes representing exons, blue lines representing introns, and arrows 

representing transcription direction. The grey arrows represent read fragments with arrow direction representing alignment direction. 

The thin coloured vertical bars represent SNPs, the thicker purple coloured vertical bars represent insertions. Large red arrows 

represent locations of the SNPs rs689 and rs3842753. 
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Table 3: Donor number by sex and genotype for each dataset.  

  Non-Diabetic T2D 

Study 

 

A/A A/C C/C Total A/A A/C C/C Total 

Xin et al., 2016  Total Donor # 3 4 5 12 1 3 2 6 

Male 3 1 3 7 0 2 1 3 

Female 0 3 2 5 1 1 1 3 

Wang et al., 2016 Total Donor # 0 0 2 2 1 0 1 2 

Male 0 0 1 1 0 0 1 1 

Female 0 0 1 1 1 0 0 1 

Segerstolpe et al., 

2016 

Total Donor # 3 0 3 6 1 2 1 4 

Male 3 0 2 5 0 1 1 2 

Female 0 0 1 1 1 1 0 2 

Camunas-Soler et 

al., 2020 

Total Donor # 1 4 13 18 1 4 2 7 

Male 1 2 6 9 0 2 1 3 

Female 0 2 7 9 1 2 1 4 

Enge et al., 2017 Total Donor # 2 1 2 5 

NA Male 0 1 2 3 

Female 2 0 0 2 

HPAP Total Donor # 0 3 2 5 0 2 2 4 

Male 0 1 1 2 0 0 1 1 

Female 0 2 1 3 0 2 1 3 

Total Donor # 9 12 27 48 4 11 8 23 

Male 7 5 15 27 0 5 5 10 

Female 2 7 12 21 4 6 3 13 

Genotype is at SNP rs384275.
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I          J     K          L 

Figure 4: Quality control statistics for Xin (X16), Wang (W16), and Segerstolpe (S16) datasets. Unfiltered (A, C, E, G, I, and K) 

and filtered plots (B, D, F, H, J, and L) are shown. nCount_RNA represents number of RNA reads, nFeature_RNA represents number 

of genes, and percent.MT represents mitochondrial gene percent relative to total genes. Each point represents one cell. ND = non-

diabetic, D = T2D. 
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Figure 5: Quality control statistics for Camunas-Solar patch clamp (C20p) and FACS (C20F), Enge (E17), and HPAP-001 

datasets. Unfiltered (A, C, E, G, I, and K) and filtered plots (B, D, F, H, J, and L) are shown. nCount_RNA represents number of 

RNA reads, nFeature_RNA represents number of genes, and percent.MT represents mitochondrial gene percent relative to total genes. 

Each point represents one cell. ND = non-diabetic, D = T2D. 
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 Figure 6: Quality control statistics for HPAP 003 to 013 datasets. Unfiltered (A, C, E, G, I, and K) and filtered plots (B, D, F, H, J, and L) are 

shown. nCount_RNA represents number of RNA reads, nFeature_RNA represents number of genes, and percent.MT represents mitochondrial 

gene percent relative to total genes. Each point represents one cell. ND = non-diabetic, D = T2D. 
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3.3: Cell Type Clustering and Identification 

The scRNAseq data used included all the cells in pancreatic islets. Clustering was used to 

separate the different cell types/subtypes. Clusters were labeled based on default Seurat settings 

(Figure 7A). Clusters were formed based on cell type rather than datasets, disease status, or sex 

(Figure 7B to 7D). Based on pancreatic hormonal gene expression (GCG, INS, PPY, and SST) 

localization, clusters 0, 2, 4, and 12 were classified as α-cells (5519 cells), clusters 1, and 8 were 

classified as β-cells (2315 cells), cluster 7 was classified as PP cells (586 cells), and cluster 10 

was classified as delta cells (451 cells) (Figure 8A, C, E). Based on the gene expression 

localization of PECAM1, SPP1, and PRSS1, cluster 11 was classified as endothelial cells (226 

cells), cluster 3 was classified as duct cells (1502 cells), and cluster 6 was classified as acinar 

cells (1188 cells) (Figure 8B, C, E). Clusters 9 and 13 were classified as mesenchyme (531 

cells), and CD 14+ monocytes (81 cells), respectively with Enrichr using the top ten conserved 

genes (specific cluster cells compared to all other cells) for each cluster (Figure 8C, E; Table 4 

and 5). Cluster 5 was not clearly defined in UMAP space. We classified this cluster as Beta-like 

(1223 cells) because the seventh most conserved gene (specific cluster cells compared to all 

other cells) is INS (Figure 8C, E; Table 4). This cluster could indicate INS expression 

contamination during library preparation and/or sequencing. The identified clusters generally 

aligned with the clusters identified in the original publications. There were no clusters for epsilon 

cells. Similarly, Segerstolpe et al. (2016) labeled the epsilon cells based on the expression of 

GHRL rather than based on a distinct cluster. There is a discrepancy in the distribution in cell 

number for different cell types between in vivo pancreatic islets and our clustered cells. 

Specifically, we had more than 2 times more α-cells than β-cells compared to an in vivo human 

islet which comprises of around 30% α-cells, and 60% β-cells with the remaining 10% 

comprising of PP cells, delta cells, and epsilon cells (206). This could be because α-cells are 

more likely to survive high stress conditions (eg. islet isolation, islet dispersion, cell culture, and 

sample preparation) than β-cells. The β-cells were labelled with the genotype at rs384275. 

Across all datasets, there were 341 β-cells with the A/A homozygous allele, 819 with the A/C 

heterozygous, and 1015 with the homozygous C/C allele (Table 6).  
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A 

B         C             D  

Figure 7: Clustering of integrated dataset in UMAP space. (A) UMAP projection of 

integrated dataset with clusters. UMAP projection of integrated dataset grouped by dataset (B), 

disease status (C), and sex (D). Each point represents one cell. ND = non-diabetic and D = 

diabetic.  
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Figure 8: Cell type identification. (A and B) UMAP projection of integrated dataset with gene 

expression localization for pancreatic hormonal genes and other cell type markers. Cells 

coloured by amount of gene expression. UMAP projection of integrated dataset with clusters 

labeled and coloured by cell type identity (C) and cell type identification from original 

publications (D). Each point represents one cell. (E) Table with each identified cluster cell 

number. 
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Table 4: Top ten genes differentially expressed in cluster 5. 

Gene P value Average  

Log(fold change) 

Pct.1  Pct.2 Adjusted  

P value 

Cluster 

UBB 1.44E-68 -0.32015 0.718 0.907 8.84E-64 5 

PRRG3 4.93E-56 0.827248 0.551 0.358 3.02E-51 5 

FTH1 1.74E-52 -0.2891 0.623 0.843 1.07E-47 5 

HMGN2 5.72E-52 -0.39412 0.601 0.81 3.50E-47 5 

TECR 2.57E-46 -0.25566 0.447 0.663 1.57E-41 5 

INS 8.20E-43 0.387695 0.902 0.863 5.02E-38 5 

MT-ND4L 2.16E-39 -0.28884 0.947 0.98 1.32E-34 5 

PDIA6 7.31E-39 -0.27726 0.497 0.671 4.48E-34 5 

GREM1 1.05E-35 0.637366 0.516 0.365 6.43E-31 5 

PDIA3 2.75E-35 -0.32448 0.806 0.913 1.68E-30 5 

Average Log(fold change) is the log fold-change of the average expression between the specified 

cluster and all other cells. Pct.1 is the percentage of cells where the gene is detected in the 

specified cluster. Pct.2 is the percentage of cells where the gene is detected all other cells. P 

values are adjusted using the Bonferroni correction using all genes in dataset. 
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Table 5: Top ten genes differentially expressed in cluster 13. 

Gene P value Average  

Log(fold change) 

Pct.1  Pct.2 Adjusted  

P value 

Cluster 

LAPTM5 0 2.440237 0.815 0.016 0 13 

C1QA 0 2.240455 0.395 0.002 0 13 

TYROBP 0 2.140109 0.58 0.006 0 13 

C1QB 0 2.020045 0.395 0.003 0 13 

C1QC 0 1.617708 0.358 0.003 0 13 

CD53 0 1.141412 0.333 0.004 0 13 

PIK3R5 0 1.036569 0.333 0.004 0 13 

RUNX3 0 0.888774 0.457 0.007 0 13 

LST1 0 0.527813 0.321 0.002 0 13 

LILRB2 3.34E-307 0.571122 0.259 0.002 2.05E-302 13 

Average Log(fold change) is the log fold-change of the average expression between the specified 

cluster and all other cells. Pct.1 is the percentage of cells where the gene is detected in the 

specified cluster. Pct.2 is the percentage of cells where the gene is detected all other cells. P 

values are adjusted using the Bonferroni correction using all genes in dataset. 
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Table 6: Total and beta cell specific number by sex and genotype for each dataset. 

    Non-Diabetic T2D 

Study   A/A A/C C/C Total A/A A/C C/C Total 

Xin et al., 2016  

Total Cell # NA 625 NA 905 

Total Beta Cell # 68 41 45 154 11 97 112 220 

Male 68 16 32 116 0 79 9 88 

Female 0 25 13 38 11 18 103 132 

Wang et al., 

2016 

Total Cell # NA 378 NA 297 

Total Beta Cell # 0 0 106 106 47 0 16 63 

Male 0 0 31 31 0 0 16 16 

Female 0 0 75 75 47 0 0 47 

Segerstolpe et 

al., 2016 

Total Cell # NA 1225 NA 868 

Total Beta Cell # 48 0 101 149 17 4 17 38 

Male 48 0 69 117 0 3 17 20 

Female 0 0 32 32 17 1 0 18 

Camunas-Soler 

et al., 2020 

(patch clamp) 

Total Cell # NA 862 NA 233 

Total Beta Cell # 4 63 125 192 2 31 37 70 

Male 4 8 43 55 0 12 1 13 

Female 0 55 82 137 2 19 36 57 

Camunas-Soler 

et al., 2020 

(FACS) 

Total Cell # NA 1648 NA 1188 

Total Beta Cell # 60 36 274 370 45 86 4 135 

Male 60 23 231 314 0 53 4 57 

Female 0 13 43 56 45 33 0 78 
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Enge et al., 

2017 

Total Cell # NA 1451 

NA Total Beta Cell # 56 51 39 146 

Male 0 51 39 90 

Female 56 0 0 56 

HPAP 

Total Cell # NA 1865 NA 2080 

Total Beta Cell # 0 209 96 305 0 202 75 277 

Male 0 51 6 57 0 0 31 31 

Female 0 158 90 248 0 202 44 246 

Total Beta Cell # 236 400 754 1390 105 419 261 785 

Male 180 149 451 780 0 147 78 225 

Female 56 251 335 642 122 273 183 578 

Genotype is at SNP rs384275.  
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3.4: Insulin Expression 

3.4.1: Insulin Normalization 

Gene expression normalization is extremely important in RNAseq analysis as it corrects 

for differences between different sequencing coverage while preserving biological variance. 

Using the default Seurat normalization, whereby INS expression was normalized against all 

genes in the cells, we found large inter-dataset and intra-dataset variance (Figure 9A). This could 

be due to the overwhelming amount of INS mRNA in β-cells. Therefore, we proceeded to 

internally normalize the INS expression to housekeeping genes. First, we had to determine 

empirically which housekeeping genes would provide the optimal normalization. The two 

housekeeping genes with the lowest inter-dataset variability are B2M and RPLP0 (Figure 9G, H). 

These two housekeeping genes were therefore used for subsequent INS normalization. After 

normalization with housekeeping genes, there is visibly less inter-dataset variability in INS 

expression (Figure 10). We adopted this approach going forward. 

 

3.4.2: Insulin Variance and Mean Expression by Sex and Disease Status 

Sex and diabetes status have been repeatedly shown to affect gene expression profiles in 

many tissues, including pancreatic islets. It is important to test whether sex and/or diabetes status 

were affecting INS expression in order to study the effect of rs3842753 genotype on pancreatic 

INS expression. The variance and mean of normalized INS expression in β-cells were both 

significantly lower in males compared to females (male: var = 2.41, mean = 11.25, SD = 1.55; 

females: var = 2.95, mean = 11.56, SD = 1.72; variance p value = 1.938e-10, mean p value = 

1.00e-05) (Figure 11A, B). The variance of normalized INS expression in β-cells was lower in 

non-diabetic donors compared to T2D donors with no significant different in mean (non-diabetic: 

var = 2.52; T2D: var = 3.11; variance p = 0.008) (Figure 11C, D). The variance within either sex 

across diabetes status was not significantly different. Interestingly in males, there was a decrease 

in mean of normalized INS expression in T2D compared to non-diabetic cells (male non-

diabetic: mean = 11.27, SD = 1.57; male T2D: mean = 11.14, SD = 1.50; p value = 0.036) 

(Figure 11E, F). The difference in INS expression between males and females indicates that sex 

plays a role in insulin expression. The male specific lowering of INS expression in T2D 

compared to non-diabetic indicates diabetes status play a role in insulin expression. The 
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difference in variance of INS expression supports the heterogeneous β-cell population paradigm 

in a sex and diabetes status dependent manner.  
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A           B 

C           D 
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Figure 9: Default normalized INS and housekeeping genes expression by dataset. (A) INS 

expression normalized to all genes. (B) Housekeeping genes expression normalized to all genes. 

Gene expression is separated and coloured by datasets. Each point represents one cell. ND = 

non-diabetic, D = T2D. 
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Figure 10: Normalized INS expression in beta cells by dataset. Normalized INS expression 

separated and coloured by dataset. Each point represents one cell.  
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Figure 11: Normalized INS expression in beta cells by sex and disease status. Distribution 

and box plot of normalized INS expression separated by sex (A, B), disease status (C, D), and 

combined sex and disease status (E, F). Red lines represent median, blue lines represent 1st and 

3rd quartiles. Each point represents one cell. P < 0.05 = *, P < 0.001 = ***. Graphs are coloured 

by disease status (E, F). Fligner-Killeen and Wilcox Rank Sum tests were used as non-parametric 

test for differences in variance and mean respectively.  
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3.4.3: Insulin Expression by Genotype 

Previous studies have shown a correlation between the ‘C’ T1D at-risk rs3842753 allele 

and increased pancreatic INS expression in 10 heterozygous whole pancreas tissues, using allele 

specific expression. The sample size in these previous studies was small and INS expression was 

studied in whole islets, rather than single pancreatic β-cells. Here, we focused on the effects of 

rs3842753 genotype on pancreatic INS expression in single pancreatic β-cells. The variance of 

normalized INS expression in β-cells was significantly different between the three genotypes 

(A/A: var = 2.71; A/C: var = 3.03; C/C: var = 2.37; p value = 3.38e-11) (Figure 12A). Donors 

with the protective A/A homozygous genotype had the lowest normalized INS expression, 

followed by the at-risk C/C homozygous donors, with A/C heterozygous donors having the 

highest normalized INS expression (A/A: mean = 10.92, SD = 1.65; A/C: mean = 12.00, SD = 

1.74; C/C mean = 11.36, SD = 1.54, adjusted p value < 3.27e-06) (Figure 12B). In addition to 

cell-level comparisons, we also tested whether the mean and median of normalized INS 

expression were different between donors (donor level comparisons). In this analysis, although 

some of the same tendencies were observed, we found that there was no significant difference in 

variance or mean between genotypes, perhaps because it was statistically underpowered (Figure 

12C, D). 

When examining the effect of rs3842753 genotype within sex, there was significant 

difference in both the variance and mean of normalized INS expression between genotypes. 

Males had significantly different variance between all three genotypes (A/A: var = 2.71; A/C: 

var = 3.44; C/C var = 1.82; p value = 7.51e-16) (Figure 13A). Male A/C heterozygous donors 

had the lowest normalized INS expression, followed by the protective A/A homozygous donors, 

with at-risk C/C homozygous donors having the highest normalized INS expression (A/A: mean 

= 11.31, SD = 1.65; A/C: mean = 11.03, SD = 1.86; mean = 11.33, SD = 1.35, adjusted p value < 

1.19e-06) (Figure 13B). For females, there was only significant difference in variance between 

the A/C heterozygous donors and C/C homozygous donors (A/C: var = 2.4; C/C var = 3.02; p 

value = 0.03) (Figure 13A). Female A/A homozygous donors had the lowest normalized INS 

expression, followed by C/C homozygous donors, with A/C heterozygous donors having the 

highest normalized INS expression (A/A: mean = 10.51, SD = 1.55; A/C: mean = 12.08, SD = 

1.55; mean = 11.39, SD = 1.74, adjusted p value < 0.01) (Figure 13B). When the donor specific 

mean and median of normalized INS expression were examined, there was no significant 
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difference in variance or mean between genotypes for either sex, although the same tendencies 

remained (Figure 13C, D). 

Next, we examined the effect of genotype on β-cell INS expression in the context of 

disease status. Non-diabetic donors had significantly different variance between the three 

genotypes (A/A: var = 2.3; A/C: var = 3.65; C/C var = 2.07; p value < 2.2e-16) (Figure 14A). 

Non-diabetic donors with the protective A/A homozygous genotype had the lowest normalized 

INS expression, followed by at-risk C/C homozygous donors, with A/C heterozygous donors 

having the highest normalized INS expression (A/A: mean = 11.37, SD = 1.52; A/C: mean = 

11.47, SD = 1.91; mean = 11.42, SD = 1.44, adjusted p value < 1.65e-05) (Figure 14B). For T2D 

donors, there was no significant difference in variance between the genotypes (Figure 14A). 

However, there was a significant difference in mean normalized INS expression with A/A 

homozygous donors have the lowest normalized INS expression, followed by C/C homozygous 

donors, with A/C heterozygous donors having the highest normalized INS expression (A/A: 

mean = 10.00, SD = 1.52; A/C: mean = 11.93, SD = 1.53; mean = 11.16, SD = 1.83, adjusted p 

value < 9.83e-09) (Figure 14B). Donor level comparisons showed no significant differences in 

either variance or mean for donor specific mean and median of normalized INS expression 

(Figure 14C, D). Together, these analyses show the rs3842753 C allele affects INS expression, 

with the A/C genotype associated with both increased pancreatic INS expression variance and 

level at the cell level.  
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Figure 12: Raw, mean and median normalized INS expression in β-cells by genotype. 

A         B 

C         D 

*** 

*** 
*** 

Cell specific distribution and box plot of normalized INS expression separated by genotype (A, 

B). Donor specific mean and median normalized INS expression box plot separated by genotype 

(C, D). Red lines represent median, blue lines represent 1st and 3rd quartiles. In A and B, each 

point represents one cell. In C and D, each point represents one donor. P < 0.001 = ***. Graphs 

are coloured by genotype. A represent A/A genotype, HET represent A/C genotype, C represent 

A/C genotype at rs384275. For cell specific analyses, Fligner-Killeen and pairwise Kruskal-

Wallis tests were used as non-parametric test for differences in variance and mean respectively. 

For donor specific analyses, Bartlett and ANOVA tests were used as parametric test for 

differences in variance and mean respectively. 

***
 

***
 

***
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Figure 13: Raw, mean and median normalized INS expression in β-cells by genotype and 

sex. Distribution and box plot of normalized INS expression separated by genotype and sex (A, 

B). Donor specific mean and median normalized INS expression box plot separated by genotype 

and sex (C, D). Red lines represent median, blue lines represent 1st and 3rd quartiles. In A and B, 

each point represents one cell. In C and D, each point represents one donor. P < 0.05 = *, P < 

0.001 = ***. Graphs are coloured by genotype. A represent A/A genotype, HET represent A/C 

genotype, C represent A/C genotype at rs384275. For cell specific analyses, Fligner-Killeen and 

pairwise Kruskal-Wallis tests within sex were used as non-parametric test for differences in 

variance and mean respectively. For donor specific analyses, Bartlett and ANOVA tests within 

sex were used as parametric test for differences in variance and mean respectively. 
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Figure 14: Raw, mean and median normalized INS expression in beta cells by genotype and 

disease status. Distribution and box plot of normalized INS expression separated by genotype 

and disease status (A, B). Donor specific mean and median normalized INS expression box plot 

separated by genotype and sex (C, D). Red lines represent median, blue lines represent 1st and 3rd 

quartiles. In A and B, each point represents one cell. In C and D, each point represents one 

donor. P < 0.001 = ***. Graphs are coloured by genotype. ND = non-diabetic. A represent A/A 

genotype, HET represent A/C genotype, C represent A/C genotype at rs384275. For cell specific 

analyses, Fligner-Killeen and pairwise Kruskal-Wallis tests within disease status were used as 

non-parametric test for differences in variance and mean respectively. For donor specific 

analyses, Bartlett and ANOVA tests within disease status were used as parametric test for 

differences in variance and mean respectively. 
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3.5: rs3842753 Allele Specific Expression for Heterozygous Donors 

Another approach to test the hypothesis that the rs3842753 genotype might affect INS 

mRNA expression is to examine the allele specific transcript levels within cells from 

heterozygous donors. This approach potentially eliminates some technical sources of error 

between donors while preserving genotype specific effects on INS expression. There was no 

difference in the variance between heterozygous protective reference A allele percent and 

theoretical normal distribution at either the cell level or donor level (Figure 15A, C). When 

examining the mean reference allele (A) percent, the A allele specific expression in heterozygous 

was significantly higher than the theoretical 50% both at the cell level and donor level (HET: cell 

level mean = 61.39%, SD = 9.10; donor level mean = 59.06%, SD = 7.25; Theory: cell level 

mean = 49.70%, SD = 10.1; donor level mean = 48.03%, SD = 10.6; p value < 0.0002) (Figure 

15B, D). This suggests that the protective reference A allele is preferentially transcribed 

compared to the at-risk C allele in one cell/donor. This surprising result is inconsistent with 

established literature which found the C allele to be overexpressed in heterozygous donors.  

 There was a difference in both the variance and mean protective reference A allele 

percent between either sex and the theoretical distribution. At the cell level, both sexes had 

significantly different variance for reference A allele percent expression from the normal 

distribution (theory var = 102.0; male: var = 52.8; female: var = 76.6; p value < 3.501e-05) 

(Figure 16A). As well, both sexes had significantly different mean reference A allele percent 

expression from the normal distribution (Theory: mean = 49.70%, SD = 10.1; male mean 

56.32%, SD = 7.26; female: mean = 64.32%, SD = 8.75; p value < 2.2e-16) (Figure 16B). This 

difference in mean A allele percent remained when examining at the donor level with females 

consistently expressing higher A allele than 50% (female mean = 60.10%, SD = 6.83; median = 

60.33%, SD = 7.13; Theory: mean = 48.03%, SD = 10.59; median = 52.27%, SD = 10.12; p 

value < 0.009) (Figure 16C, D). For males at the donor level, only the mean A allele expression 

percent was significantly higher than theoretical (male mean = 57.69%, SD = 7.91; Theory: 

mean = 48.03%, SD = 10.59; p value < 0.008) (Figure 16C, D). 

 Next, we examined the difference in the protective reference A allele percent variance 

and mean between either non-diabetic donors or T2D donors and the theoretical distribution. 

There was no difference in variance of reference A allele percent between either disease status 
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and the theoretical normal distribution (Figure 17A). Both disease statuses had significantly 

different mean reference A allele percent expression from the normal distribution (Theory: mean 

= 49.70%, SD = 10.1; non-diabetic mean 61.22%%, SD = 9.46; T2D: mean = 61.54%, SD = 

8.72; p value < 2.2e-16) (Figure 17B). This difference in mean A allele percent remained when 

examining at the donor level with non-diabetic donors consistently expressing higher A allele 

than 50% (non-diabetic mean = 59.42%, SD = 7.23; median = 59.28%, SD = 7.13; Theory: mean 

= 48.03%, SD = 10.59; median = 52.27%, SD = 10.12; p value < 0.02) (Figure 17C, D). For T2D 

at the donor level, only the mean A allele expression percent was significantly higher than 

theoretical (T2D mean = 58.66%, SD = 7.60; Theory: mean = 48.03%, SD = 10.59; p value < 

0.002) (Figure 17C, D). Taken together, these results indicate an apparently robust increase in 

transcription from the protective rs3842753 A allele within heterozygous A/C genotype 

pancreatic β-cells, in contrast to our comparisons between donor cells and in opposition with the 

previous literature that showed the rs3842753 C allele was preferentially expressed in 

heterozygous whole pancreas tissue. Some sequencing technical challenges are present given the 

high GC content in the region surrounding rs3842753 which could preferentially increase the 

sequencing efficiency of the reference A allele compared to the alternate C allele. This could 

contribute to the increase in A allele read counts compared to the C allele. Further studies will be 

required to resolve this issue. 

 

3.6: Insulin Protein Abundance by Genotype 

 Due to the inconsistent data from INS expression and allele specific expression, we were 

interested in whether there was relationship between rs3842753 genotype and insulin protein 

abundance. We had the opportunity to conduct a small exploratory pilot study. We had access to 

whole islet insulin protein abundance for donors in Camunas et al. (2020) and the HPAP dataset. 

Only donors in Camunas et al. (2020) were used as there were no donors in the HPAP dataset 

with rs3842753 A/A homozygous allele (Table 3). Insulin protein abundance was not different 

between sexes, disease statuses or genotype (Figure 18A, B). As well, there was no difference in 

insulin protein abundance between genotypes after taking sex and disease status into account 

(Figure 18C to D). This is a pilot study using whole pancreatic islets, rather than pure or single 

β-cells, with a very sample size (n = 23 total, but with n = 2 A/A donors). Taken together, the 
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results point to a lack of evidence supporting the association between rs3842753 C allele and 

increased insulin protein production. 
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Figure 15: rs3842753 reference allele percent for heterozygous donors. Cell specific (A, B), 

and donor specific mean (C, D) of rs3842753 reference allele percent distribution and box plot 

separated by genotype against theoretical normal distribution with mean at 50. Red lines 

represent median, blue lines represent 1st and 3rd quartiles. In A and B, each point represents one 

cell. In C and D, each point represents one donor. P < 0.001 = ***. HET = heterozygous, theory 

= theoretical distribution. For cell specific analyses, Fligner-Killeen and Wilcox Rank Sum tests 

were used as non-parametric test for differences in variance and mean respectively. For donor 

specific analyses, Bartlett and student T tests were used as parametric test for differences in 

variance and mean respectively. 
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Figure 16: rs3842753 reference allele percent separated by sex for heterozygous donors. 

 Cell specific (A, B), donor specific mean and median (C, D), of rs3842753 reference allele 

percent distribution and box plot separated by sex against theoretical normal distribution with 

mean at 50. Red lines represent median, blue lines represent 1st and 3rd quartiles. In A and B, 

each point represents one cell. In C and D, each point represents one donor. P < 0.01 = **. P < 

0.001 = ***. Graphs are coloured by sex. Theory = theoretical distribution. For cell specific 

analyses, Fligner-Killeen and Wilcox Rank Sum tests between either sex and theoretical were 

used as non-parametric test for differences in variance and mean respectively. For donor specific 

analyses, Bartlett and Student T tests between either sex and theoretical were used as parametric 

test for differences in variance and mean respectively. 
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Figure 17: rs3842753 reference allele percent separated by donor and disease status for 

heterozygous donors. Cell specific (A, B) and donor specific mean and median (C, D) of 

rs3842753 reference allele percent distribution and box plot separated by disease status against 

theoretical normal distribution with mean at 50. Red lines represent median, blue lines represent 

1st and 3rd quartiles. In A and B, each point represents one cell. In C and D, each point represents 

one donor. P < 0.05 = *. P < 0.01 = **. P < 0.001 = ***. Graphs are coloured by disease status. 

ND = non-diabetic. Theory = theoretical distribution. For cell specific analyses, Fligner-Killeen 

and Wilcox Rank Sum tests between either disease status and theoretical were used as non-

parametric test for differences in variance and mean respectively. For donor specific analyses, 

Bartlett and Student T tests between either disease status and theoretical were used as parametric 

test for differences in variance and mean respectively. 
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Figure 18: Insulin protein abundance of donors in Camunas et al. (2020) dataset. Insulin 

protein abundance for each donor separated by sex (A) and disease status (B) and genotype (C). 

Insulin protein abundance for each genotype separated by sex (D) and disease status (E). Each dot 

represents one donor.  Graphs coloured by genotype. ND = non-diabetic. A represent A/A 

genotype, HET represent A/C genotype, C represent A/C genotype at rs384275. 
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Chapter 4: Discussion 

4.1: rs3842753 Genotype and Pancreatic INS Expression 

 Several genetic variants surrounding INS have been implicated in T1D development (142; 

143). Among those, the linked genetic variants: Class I INS-VNTR, rs689 A allele and 

rs3842753 C allele are the main variations associated with increased T1D susceptibility. 

Previously, there were only three studies examining the effect of genotype at the INS loci and 

pancreatic INS expression despite the numerous studies finding an association between genotype 

at the INS loci and T1D susceptibility (143; 166; 167). These studies included very few numbers 

of donors (n = 1, 3, and 10) and used whole pancreas tissues. Thus, the recent expansion of 

published pancreatic scRNAseq data has allowed previous questions to be re-examined with 

greater number of donors and with greater cell type specificity (185).  

 This thesis focused on the association between the genotype at SNP rs3842753 and 

pancreatic INS expression using published scRNAseq datasets. When examining normalized INS 

expression per pancreatic β-cell, we found an association between C allele and increased INS 

expression. Our study found that the heterozygous rs3842753 A/C genotype was associated with 

the highest INS expression followed by C/C genotype, then by the A/A genotype in total cells, 

female specific cell, and either diabetes status. In male cells, C/C genotype had the highest INS 

expression followed by A/A genotype, lastly by the A/C genotype. This somewhat consistent 

with previous literature which found the C allele to be associated with increased INS expression 

in heterozygous donors using whole pancreas tissues(143; 166; 167). Sex of the donors for 

previous studies were not reported. Thus, we could not be certain that our results’ concordance to 

previous literature are not due to differences in distribution between sex. 

 However, the associations found in our study did not maintain statistical significance 

when assessed at the donor level, rather than cell level. Our finding of no association between 

rs3842753 genotype and pancreatic INS expression at the donor level is not consistent with 

previous smaller studies in adult and fetal whole pancreas tissues. Our study included 71 unique 

adult donors (48 non-diabetic and 23 T2D) cumulating in 2175 pancreatic β-cells. This is a 

substantial improvement from previous studies with a maximum of ten fetal pancreas tissues 

(167). With small sample numbers, variation between individuals could play a greater role than 



 

56 

 

genotypic effects. Perhaps at the donor level, our current study is likely to be still underpowered 

compared to the cell level INS expression analysis.  

 Also, we found an association between rs3842753 genotype and increased variance of 

INS expression. We found the heterozygous rs3842753 A/C genotype was associated with the 

highest variance in INS expression followed by A/A genotype, then by the C/C genotype in total 

cells, male specific cell, and either diabetes status. In female specific cells, the C/C genotype had 

the highest variance in INS expression followed by the A/C genotype. It is interesting that the 

A/C genotype mainly had the highest variance. This could be explained due to the cells’ 

expression profile being influenced by both the rs3842753 A allele and C allele leading to 

increased variance. This difference in variance supports the established model that pancreatic β-

cells are heterogeneous and perhaps the rs3842753 genotype could play a role in heterogeneity of 

INS expression.  

 

4.2: rs3842753 Genotype and Allele Specific Expression 

 Previous studies that investigated the effect of rs3842753 on INS mRNA levels in whole 

pancreas tissue did so using heterozygous donors. Here we adopted the same approach in single 

cells. Allele specific expression for heterozygous rs3842753 alleles (A or C) can be quantified to 

remove inter-donor variance. Our finding of rs3842753 A allele (linked with Class III INS-

VNTR) biased expression in rs3842753 A/C heterozygous pancreatic β-cells is not consistent 

with previous literature. In the three key studies examining INS-VNTR genotype and pancreatic 

INS expression, all individuals were heterozygous with one study involving three adults donors 

and two studies involving one and ten fetal donors (143; 166; 167). All studies found a 

significant increase in pancreatic INS expression from the Class I INS-VNTR haplotype 

compared with the Class III INS-VNTR haplotype, the opposite association as found in our 

study. The reasons for this are unclear, but deserve further investigation. For example, our study 

used data that had UMI counts rather than read counts which could be a source of error in allele 

specific expression quantification. Also, the region surrounding rs3842753 has a high GC 

content which could contribute to sequencing difficulty. 
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4.3: rs3842753 Genotype and Pancreatic INS Protein Abundance 

 We were also interested in whether changes in pancreatic INS expression could be 

translated into changes in INS protein abundance in whole islets. In our pilot study, we found no 

significant association between rs3842753 genotype and insulin protein abundance in whole 

pancreatic islets. Our in vitro finding of no association between rs3842753 genotype and insulin 

protein abundance is consistent with previous literature examining basal insulin secretion in vivo 

(156; 157; 160; 163; 164). This lack of association between rs3842753 genotype and insulin 

protein abundance is consistent with our finding that there is also no association with pancreatic 

INS expression level at the donor level. Limitation with our protein abundance study include the 

severe lack of power and type of INS protein quantification. We could only obtain INS protein 

abundance for a subset of donors (n = 23) with only 2 donors for the A/A genotype split across 

sex and diabetes status (1 male non-diabetic donor with rs3842753 A/A genotype, and 1 female 

T2D donor with rs3842753 A/A genotype). As well, we could only obtain the INS protein 

abundance for whole pancreatic islets as opposed to single pancreatic β-cells thus losing cell type 

specificity. This pilot study lacks statistical power and further investigation should be conducted 

possibly with single cell protein abundance.  

 

4.4: An Alternative Model for Role of rs3842753 in T1D Susceptibility 

 We were unable to conclusively demonstrate a consistent relationship between rs3842753 

genotype and pancreatic INS expression, allele specific expression and whole islet insulin protein 

abundance in our study of adult non-diabetic and T2D donors. Therefore, we are unable to lend 

strong support for the hypothesis that the Class III INS-VNTR allele is associated with sustained 

overproduction of insulin leading to ER stress thus increased T1D susceptibly. An alternative 

hypothesis for the mechanism of Class III INS-VNTR associated T1D susceptibly could be 

alternative protein products leading to autoimmune attack on pancreatic β-cells thus inducing 

T1D. Kracht et al. (2017) reported that neoautoantigen products due to alternative open reading 

frame (INS-DRiP - 2+ open reading frame shift at start codon AUG341) could induce T-cell 

proliferation and targeted killing of pancreatic β-cell upon ER stress in vitro (131). Due to this 

frame shift, SNP rs3842753 becomes protein coding instead of being in the INS 3’UTR. In this 

situation, SNP rs3842753 would encode a missense mutation of histidine to proline (A allele to C 
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allele) thus creating a genotype specific neoautoantigen. However, Kracht et al. (2017) showed T 

cell proliferative response against both the histidine and proline INS-DRiP SNP variants 

individuals with T1D suggesting the SNP might not play a large role in immunogenicity (131). 

The specific role of rs384275, rs689, and INS-VNTR genotype in T1D development remains 

unclear.  

 

4.5: Sex and Diabetes Status Affect Pancreatic INS Expression Variation But Not INS 

Expression Level  

 Sex and diabetes status play an important role in insulin resistance and secretion. 

Repeated studies have shown males to be more insulin resistant and secrete less insulin after 

glucose stimulation than females though basal insulin levels have been less extensively studied 

(207; 208). As well, during pregnancy, females undergo a sudden increase in inflammation, 

insulin resistance, and insulin demand which can result in developing GDM (209). We found that 

females had more pancreatic INS expression than males. Interestingly, we also found an increase 

in INS expression variance in females and T2D compared to males and non-diabetic donors, 

respectively. This is consistent with the hypothesis that female pancreatic β-cells need have more 

plasticity in gene expression to accommodate the various physiological demands and T2D β-cells 

could have more variance due to the range in disease state and its effects on cell health and 

function. 

As for diabetes and insulin demand, the hallmark of T2D is increased insulin resistance 

and decreased insulin secretion (210). Some previous studies have suggested that INS mRNA 

levels are lower in whole islets and single cells from donors with T2D compared to non-diabetic 

(87; 174; 177). We found a male specific lowering of INS expression in T2D (Figure 10). This 

result indicates that insulin expression is different between diabetes status perhaps in a sex 

dependent manner. 

 

4.6: Limitations 

 Our study has multiple limitations which mean that the results should be extrapolated 

with caution. One of the major limitations was that our study was not conducted in β- cells from 
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islets of children who either had or were at risk for T1D. Most cases of T1D onset between 10 to 

14 years old during puberty; since all donors included this study are adults, this study could be 

studying the wrong age demographic for genotype associated pancreatic INS expression(12). 

Perhaps, the changes in pancreatic INS expression (and associations with the rs3842753 

genotype) occurs in children when the genetics risk factors for developing T1D play a more 

prominent role. Over time, environmental risk factors could become more prominent and 

overshadow the genetics risk factors. Some evidence for this is comes from the Hansen et al. 

(2004) study focusing on glucose stimulated insulin release(163). They found an association 

between decreased insulin concentrations after glucose stimulation in young adults with Class 

III/III INS-VNTR genotype. However, this association could not be found in middle aged adults. 

As well, two of the early studies that found an association between Class I INS-VNTR allele and 

increased pancreatic INS expression studied fetal pancreas tissues. Our study could be focusing 

on the wrong age demographic thus unable to find an association between rs3842753 genotype 

and pancreatic INS expression. This limitation could only be solved through increased sample 

size in younger age groups. As well, there are many factors that affect insulin expression which 

were not accounted for in this study including by not limited to: age, BMI, dietary differences, 

and ethnicity. Although our study used all available datasets and is a major improvement in 

sample size compared to previous studies, many of the metadata mentioned above were not 

available and could not be accounted for. For this study, our datasets were all from human 

cadaver donors which has the benefit compared to mice samples as mice do not have the INS-

VNTR variant.  

 Another limitation to our study, and the genetics of T1D in general, is the excessive focus 

on the Caucasian population. The linkage disequilibrium for the three genetic variants INS-

VNTR, rs689, and rs3842753 has only been extensively studied in Caucasian populations with 

the r2 unknown for other ethnicities(142). Our dataset only included ethnicity metadata for 31 out 

of 71 donors (29 were of Caucasian descent). Since we are unable to determine the ethnicity of 

38 donors, our assumption that genotyping for SNP rs3842753 as a proxy for INS-VNTR could 

be incorrect. This limitation could be overcome through only examining donors of Caucasian 

descent though this would greatly decrease sample size thus lose statistical power. 
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 There are also many technical limitations to our study and its underlying data, especially 

in the allele-specific INS expression analysis. For example, previous literature found in 

heterozygous whole pancreas tissues, the Class I INS-VNTR (linked to rs3842753 C allele) is 

associated with higher mRNA expression compared to the Class III INS-VNTR allele (linked to 

rs3842753 A allele). Our study found the opposite result in heterozygous single pancreatic β-

cells. The difference between previous literature and our findings for the allele specific 

expression could be due to the technical limitations of the datasets used in this study. None of 

our datasets are UMI tagged. This means that PCR amplification plays a major role in final 

transcript counts. By studying the allele specific expression from single cell datasets, there is 

great reliance on accurate read counts from the two alleles. However, since each cDNA fragment 

is not tagged with UMI, there is an assumption that PCR amplification efficiency from both 

alleles is the same. This assumption is untested with no UMI tagging and could cause an inflated 

proportion of rs3842753 A allele read counts in individuals with heterozygous rs3842753 

genotype. Some sequencing technical challenges are present given the high GC content (65%) in 

the 3’UTR containing rs3842753. The 20bp region immediately upstream and downstream of 

rs3842753 only contains 3 A nucleotides. Thus, a A>C mutation for rs3842753 would increase 

the difficulty of sequencing in that region. This could result in the preferential sequencing of the 

reference A allele compared to the alternate C allele. Further investigation is required to rule out 

artifacts due to sequencing and to identify a biological mechanism for these results.   

 

4.7: Future Directions 

 This integrated dataset includes the most recent pancreatic islet scRNAseq data and will 

be available to the public. This tool will aid in any transcriptome investigations particularly 

between adult non-diabetic donors versus T2D. As well, sex and age are included in the metadata 

allowing for investigations focusing on sex specific transcriptome differences and age mediated 

transcriptome change. To date, no studies have specifically focused on sex specific differences in 

pancreatic islet single cells. Though Enge et al. (2017) have examined the transcriptional 

signatures of aging in human pancreas data with eight non-diabetic donors, it would be 

interesting to study the transcriptional signatures of aging between non-diabetic versus T2D 

pancreatic islet cells (173). 
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  For the INS protein abundance analysis, more donors would need to be included to 

increase statistical power. Recently, studies have combined single-cell protein and RNA 

profiling to obtain mRNA expression and protein abundance on a per cell basis(211). This will 

allow for cell specific INS expression and protein abundance measurement. As well, direct 

correlation could be made between mRNA expression level and protein abundance within one 

cell. This will verify if any genotype associated changes in INS expression is translated into 

changes in protein production. 

 It would be useful to verify increased genetic variant associated thymic INS expression in 

single cell datasets using the same protocol as in this study as previous studies have also been 

small using whole thymic tissue (166; 167). Class III INS-VNTR is associated with increased 

thymic INS expression which has been proposed to increase immune tolerance and reduce 

immune activation targeting the pancreatic β-cells(166). Durinovic-Belló et al. (2005) have 

found a significant decrease in proinsulin reactive T cells in individuals with the Class III INS-

VNTR allele (homozygous or heterozygous) compared to individuals with the Class I/I INS-

VNTR genotype (169). This finding is consistent with the stated hypothesis. However, the Class 

III INS-VNTR associated increase in thymic INS expression should be verified with increased 

sample size and lower age range. 

 Taken together, our study has found that some, but not all, of the available evidence 

supports the association between Class I INS-VNTR, A allele rs689, and C allele rs3842753 and 

increased pancreatic INS expression and/or protein production in pancreatic β-cells. We found 

evidence for the association between the rs3842753 C allele and increased INS expression at the 

pancreatic β-cell level using 2315 cells from 71 donors. This increase in INS expression was 

highest in heterozygous rs3842753 A/C donors followed by rs3842753 C/C donors pointing to 

an overdominance of expression as opposed to simply an additive model. This association was 

not significant at the donor level though the same trends were observed. We also found 

significant increase in the variation of INS expression in rs3842753 A/C donors, followed by C/C 

donors, then A/A donors, meaning that some cells within the C allele containing population 

would have unusually high INS mRNA levels. This association was not significant at the donor 

level though similar trends persisted. This is somewhat consistent with previous literature which 

found a C allele associated increase in INS expression in heterozygous whole pancreas donors. 
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However, in our allele specific expression in 23 heterozygous rs3842753 A/C donors, we found 

preferential rs3842753 A allele expression compared to the C allele which is the opposite 

association direction compared to our INS expression findings and to previous literature. This 

deserves further study to rule out technical sequencing artifacts and to identify a biological 

mechanism. Taken together, our findings suggest that in single β-cells, rs3842753 may affect INS 

variance and expression, although the mechanisms by which this could dictate T1D risk remain 

unclear.  
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