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Abstract

Single Cell RNA sequencing (SCRNA-SEQ) enables researchers to gain insights

into complex biological systems not possible with previous technologies. Unsu-

pervised machine learning, and in particular clustering algorithms, are critical to

the analysis of scRNA-seq datasets, enabling investigators to systematically define

cell types based on similarities in global gene expression profiles. However, in ro-

bustly applying a clustering algorithm to identify and define cell types, two critical

open questions remain: i) to what extent do natural clusters exist in a given dataset?

ii) what is the number of clusters best supported by the data? More specifically,

most clustering algorithms will attempt to identify a fixed number of clusters with-

out considering whether a given dataset is clusterable (e.g., natural clusters exist).

However, understanding when the application of clustering algorithms is appropri-

ate is crucial in making inferences from scRNA-seq datasets. Further, all clustering

algorithms require the user to explicitly or implicitly specify the number of clus-

ters to search for. In this thesis, we first assess the robustness of multimodality

testing methods for determining whether a given set of points (or a dataset) is clus-

terable. Next, we utilize this framework to develop an algorithm, which we refer to

as CCMT, for inferring the number of robust clusters in a given dataset. Results on

simulation studies show that multimodality testing as a means for inferring cluster

structure is robust and scales favorably for large datasets. This method can detect

cluster structure with high statistical power in situations where there is high over-

lap between the clusters. We also apply our approach to real scRNA-seq datasets

and show that it can accurately determine the cluster structure in both positive and

negative control experiments. In the second part of this work, we apply CCMT in

simulation studies and show that coupling multimodality testing with the nested
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structure of hierarchical clustering and discriminant analysis provides a robust ap-

proach for determining the number of clusters in a given dataset. Results on real

data also show that CCMT can recover ground truth partitions with reasonable accu-

racy, and it is much faster than the competing methods that have a similar accuracy

range.
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Lay Summary

The human body contains millions of cells, each able to perform a wide variety of

tasks. It is now possible to view each of these cells individually at the molecular

level. Doing so has enabled scientists to systematically define cell types based

on their molecular (gene expression) properties. To identify existing cell types and

potentially define new ones, scientists often use clustering algorithms. Clustering is

a technique used to group similar objects based on their properties – in this context,

our objects are cells, and their properties are the expression levels of genes. In

this thesis, we address two questions that are critical to the success of clustering

algorithms: i) to what extend “natural” clusters exist in a given dataset, ii) how

many clusters can be found in a given dataset.
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Chapter 1

Introduction

The advent of single-cell RNA sequencing (SCRNA-SEQ) has enabled the inves-

tigation of complex tissues cellular composition with unprecedented resolution.

Deciphering cell type composition is one of the primary applications of scRNA-

seq, typically done using unsupervised clustering, a technique borrowed from the

machine learning literature. The nature of scRNA-seq datasets has provided new

challenges for unsupervised clustering methods. These challenges include high

variability and noise levels do technical limitations and biological factors [5, 7, 36,

45, 110].

A fundamental challenge when clustering scRNA-seq datasets is whether the

data contains inherent clusters to warrant clustering in the first place [2]. This issue

is essential because a dataset should be clustered only when there exists an inher-

ent cluster structure. The idea of clusterability, which seeks evidence for structure

inherent to a dataset, should be a pivotal step in helping the user decide if cluster-

ing is appropriate for their dataset. Clustering should only be applied if a dataset

contains inherent structure; else, the results would be misleading. As an example,

consider a set of n = 1000 points generated from a unimodal distribution. There is

no inherent cluster structure, and thus all clustering algorithms should return a sin-

gle cluster. Any number (k > 1) of clusters returned would be purely nonsensical.

See Figure 1.1.

Determining a suitable number of clusters is another concern when clustering

scRNA-seq datasets. For most clustering algorithms, the number of clusters needs
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to be known apriori and is often unknown. Domain knowledge is often used in the

biological setting to determine a suitable number of clusters. For example, when

dealing with scRNA-seq gene expression data, the data is clustered with multiple

cluster numbers. The user then uses domain knowledge, such as the expression of

known marker genes from the literature, to determine a suitable number of clusters

[60].

In this thesis, we first assess the robustness of multimodality testing as a proxy

for assessing clusterability in scRNA-seq datasets. Next, we utilize the multi-

modality framework to design an algorithm for computing the number of clusters in

scRNA-seq datasets. We show that this approach is robust to challenges inherent to

scRNA-seq datasets through an extensive simulation study. Finally, extensive com-

parisons using benchmarking datasets show that this approach compares favorably

to methods currently used for analyzing scRNA-seq datasets.

1.1 Single cell RNA sequencing
In the late mid-2000s, RNA-sequencing (RNA-Seq) emerged as a novel approach

that would eventually supersede the already successful gene expression microar-

rays. New protocols developed for this technology typically required bulk sam-

pling to profile thousands to millions of cells. In 2009, [104] provided a novel

protocol referred to as single-cell RNA-seq (scRNA-seq), which profiles individ-

ual cells. ScRNA-seq treats a cell as an individual entity and allows for comparing

cells within a specific population. For a general review, refer to [40, 56]. A suf-

ficient amount of research is currently devoted to developing novel protocols and

technologies to increase profiling accuracy. It is now possible to profile thousands

of cells in a single experiment [103]. This increase in the number of cells profiled

is partially due to reduced sequencing costs, improved cell dissociation protocols,

and library preparation.

1.1.1 Analysis methods

Most scRNA-seq methods are designed for unsupervised clustering, pseudo-time

ordering, and network inference to gain biological insights. After preprocessing

[84, 101] and quality control [51, 76] of the output from a sequencing machine,
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typical analysis steps include:

1. Data normalisation.
Data normalization techniques have become vital in dealing with fluctuations

in reads obtained per cell for sequencing technologies with high throughput.

Methods developed for bulk RNA-seq can be used on scRNA-seq data as

well. These methods include counts per million (CPM) normalization [82],

where each value in the count matrix is divided by the total count in cell and

multiplied by a million. When applied to scRNA-seq data, this is referred

to as transcripts per million (TPM). Other methods include the use of size

factors [4, 7] and quantile normalization [71, 76].

2. Unsupervised clustering of cells.
Finding clusters of similar cells, or characterization of cell-type composition

is one of the essential applications of scRNA-seq. Characterization of cell-

type composition is done using unsupervised clustering. Below are some of

the most prominent clustering paradigms currently used in the scRNA-seq

literature

(a) Partitioning models
Partitioning based clustering algorithms are some of the most widely

used clustering methodologies. These methods try to partition a given

dataset into K partitions such that objects in the same partition are more

similar to each other than objects across other partitions. These meth-

ods include k-means, and k-medoids, which many scRNA-Seq cluster-

ing algorithms are based on. These methods include SC3 [59] SCUBA

[74], SAIC [121], pcaReduce [128] and RaceID2 [37].

(b) Mixture models
If there exists significant prior knowledge about the data generation

process, specifically the distributions generating the data, then mixture

models provide an intuitive way to compute clusters where each dis-

tribution represents a cluster. Clustering involves assigning objects to

the most likely distribution that generated the data using expectation

maximization. ScRNA-Seq methods based on this paradigm include

3



BISCUIT [87], Seurat [17] and TSCAN [53].

(c) Graph models
Graph-based models rely on building a graph representing objects as

nodes and then finding densely connected regions as clusters. Gen-

erating these graphs typically involves computing a similarity score

between the objects and using these scores as edge weights between

objects. Finding densely connected regions is then reduced to finding

regions of high similarity in the graph. Both spectral and clique detec-

tion methods are used for finding these dense regions. These models

are attractive because they make no distributional assumptions about

the data. ScRNA-Seq methods based on this paradigm include Seurat

[17], SIMLR [113], SNN-Cliq [127] and SCANPY [116].

(d) Density models
Like the intuition from graph-based clustering, density-based algorithms

seek to find highly dense regions of objects without representing the

objects in a graph. Most notable algorithms using this paradigm in-

cludes DBSCAN [27] and Density peak [99] clustering. These models

are attractive in the scRNA-Seq domain due to their potential for find-

ing rare cell populations. Methods include Monocle [108], GiniClust

[54] and sscClust [88].

(e) Ensemble models
Borrowing from the machine learning literature where weaker classi-

fiers are combined to form a more robust classifier, ensembles mod-

els have become particularly useful for clustering. The idea here is to

cluster the set of objects using different methods, including features,

similarity metrics, and clustering algorithms, and then combine them

to form an ensemble. Ensemble models can help to combine diversity

obtained from different clustering solutions. Ensembles have also been

shown to outperform single models in terms of accuracy and robustness

[34, 50].

(f) Hierarchical models
Over the years, hierarchical clustering has become one of the most
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widely used clustering methods in the scRNA-Seq domain [117]. Their

increased use is due to the lack of distributional assumptions about the

data generating mechanism [90]. Hierarchical clustering algorithms

can uncover possible hierarchies amongst cell types and represent them

using a tree structure, which is appealing since cell types can exist in

hierarchies. Hierarchical representation also makes interpreting clus-

ters easier. ScRNA-Seq methods that employs this algorithms include

SC3 [59], cellTree [25], CIDR [68] and DendroSplit [125].

(g) Multiview models
Advances in data curation and clustering techniques have enabled re-

searchers to gather information on an experiment from multiple views

to increase the resolution about the phenomena under examination.

Multiview clustering [13, 20, 122] provides a methodology for com-

bining the information contained in these views into a common repre-

sentation. There are a few advantages of multiview, including gener-

ating a complete knowledge of the data, reducing noise content, and

generating a more robust clustering of the data. Multiview methods

differ from ensemble methods in that they combine information across

multiple views before clustering is done. Whereas in ensemble mod-

els, clustering is done for each view, and the results are then combined.

There have not been many adaptations of these methods to the scRNA-

seq domain. For example, [16] combines gene expression data and

paired epigenetic data to infer cell types and gene regulatory networks.

Also, in [98], a similar idea based on pattern fusion analysis is used to

integrate multiple heterogeneous omics data. Even with these methods,

the multiview clustering literature for the scRNA-seq domain remains

sparse and provides a possible avenue for further research.

This is by no means an exhaustive list of all the clustering paradigms and

methods available to the scRNA-seq domain. However, most methods de-

veloped fall somewhere within these paradigms. Other methods combine

aspects of multiple paradigms. Most methods under these paradigms require

that the number of clusters K is known apriori. This value is typically un-
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known, and there exists some heuristics to compute it prospectively or retro-

spectively. For a more thorough review of these paradigms, their advantages,

and disadvantages, refer to [85].

3. Ordering of cells.
An alternate but equally significant aspect of the scRNA-seq analysis is

pseudo-time analysis. Pseudo-time methods are used for the analysis of gene

expression levels over a continuous axis. Since scRNA-seq datasets only

provide a snapshot of cells at a point in time, pseudo-time analysis requires

setting up a continuous axis and observing gene expression of cells. The task

then becomes ordering these cells using this continuous axis. Pseudo-time

analysis could lead to understanding differentiation trajectories for different

cell types and understanding how different cell states vary. A few methods

have been developed for this including Monocle [108], TSCAN [53], SCUBA

[74] and scVelo [11]. This area remains an active area of research, and new

methods are released routinely, see [19] for a review.

4. Differential expression analysis.
After clustering the cells, the next step is the interpretation of clusters. In-

terpreting clusters is typically done by finding genes that are differentially

expressed between clusters or marker genes that are expressed in specific

clusters. There have been many methods developed to do this including D3E

[22], DEsingle [79], MAST [30], and SCDE [57]. Some of these methods

have been designed specifically for scRNA-seq data and do not have limi-

tations faced by bulk RNA-seq methods. Other methods developed for bulk

RNA-seq have been applied to scRNA-seq data. However, they may not be

appropriate due to assumptions made, see [111]. Due to large numbers of

cells obtained from scRNA-seq experiments, simple statistical methods such

as the Mann-Whitney U test, Student’s t-test, or logistic regression may not

be limited by their statistical assumptions. These simple tests are being im-

plemented in many scRNA-seq data analysis pipelines including Seurat [17]

and scater [76]. For cells ordered using pseudo-time analysis, differential

expression analysis is done by finding genes with significant relationships

between expression and the continuous axis. Typically splines are fit, and co-
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efficients are tested for significance. Most pseudo-time analysis methods de-

scribed previously include methods for finding differentially expressed genes

along a trajectory.

Figure 1.1: Plots of uniformly distributed points clustered by K-means with
k = 2 and k = 3. A) K-means with k = 2. B) K-means with k = 3.
Note that the cluster borders returned by K-means appears to be arbi-
trary since there is no inherent cluster structure.

1.1.2 Thesis motivation and contribution

Since clustering is a crucial aspect of most scRNA-seq analysis pipelines, great

care must be taken when applying clustering algorithms. Most clustering algo-

rithms will find clusters in a dataset, even if none exists [2]. See Figure 1.1. This is

because clustering algorithms are designed to optimize an objective function that

seeks to partition the dataset optimally [73]. These algorithms do not consider the

possibility that there may not exist inherent clusters in the dataset. Thus, there

is a risk associated with blindly applying them without proper prior analysis. In

this thesis, we focused our efforts on developing a methodology to systematically
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assess the level of clustering or cluster structure (Clusterability) in scRNA-seq

datasets, while also estimating the possible number of clusters. To our knowl-

edge,this question has not been addressed specifically for scRNA-Seq datasets and

thus this work provides an initial framework for addressing this problem.

We perform extensive simulation studies in order to understand which prob-

lems affect clusterability analysis in scRNA-seq datasets. We consider problems

such as increasing data size, complexity, sparsity, cluster size, and cluster sepa-

rability. Exploring these issues in a controlled manner will illuminate the factors

limiting the effectiveness of scRNA-seq clustering methods. Clusterability analy-

sis is also done for a range of real datasets. We found that the methods developed

in this thesis are robust to data sparsity, cluster size, cluster separability, and scales

well with increasing data size.

We also compared methods developed in this work to other methods most often

used to cluster scRNA-seq data. We used benchmarking data to evaluate these

methods’ running time and accuracy concretely and compared them to methods

developed in this work. Our method provides a competitive running time while, on

average, having a higher accuracy when clustering.

1.1.3 Detailed outline of thesis

The rest of this thesis is outlined as follows:

• Chapter 2 is dedicated to surveying the current literature on clusterability

analysis and estimating the number of clusters. We discuss some of the

methods most often used to assess cluster structure in a dataset. We also

discuss a few ways currently used to estimate the number of clusters. These

discussions are done in a broader scope without reference to the scRNA-

seq domain. Finally, we provide a short discussion on how some of these

methods are used for scRNA-seq analysis.

• In Chapter 3, we outline the methods developed to assess clusterability and

estimate the number of clusters. First, we provide a detailed outline of the

multimodality testing method for assessing clusterablity. Next, we present

the CCMT procedure for estimating the number of clusters. Thirdly we out-

line both the simulation studies and real datasets used to evaluate both meth-
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ods. Lastly, we provide details about the methods used for benchmarking

and the evaluation metrics.

• In Chapter 4, we discuss the results of our methods based on simulation stud-

ies and real data. First, we provide simulation studies and real data results

for assessing clusterability. Next, we provide the results on simulation stud-

ies and real data for the CCMT procedure. Finally, we provide the results for

the comparative analysis for the CCMT procedure against other methods.

• In Chapter 5, general conclusions are provided about the finding of this work.

Also discussed are the possible shortcomings of the proposed methods and

the provision of future directions that may improve these methods.
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Chapter 2

Related Works

The clustering task consists of partitioning a set of objects into k groups (possibly

overlapping groups) such that members of the same groups are sufficiently simi-

lar to each other and sufficiently dissimilar to non-members. Defining similarity

between members is highly dependent on the question asked, the phenomena stud-

ied, and the clustering algorithm used. This creates an inherent level of subjectivity

when clustering. In any clustering task, the user needs to make some assumptions

about the data being clustered, with the most implicit and necessary assumption

that the data indeed contains meaningful clusters. Based on the clustering algo-

rithm chosen, further assumptions need to be made about the data, and the efficacy

of the results depends on how strongly these assumptions hold. The user also needs

to decide how many clusters to compute. This is a problem because the user rarely

knows beforehand how many clusters to expect, and clustering results may heavily

depend on the number of clusters chosen.

In this chapter, we survey the current literature on clusterability and determin-

ing a suitable number of clusters. First, we discuss the clusterability problem and

the various methods for addressing it. Second, we discuss the problem of estimat-

ing the number of clusters and the current methods for addressing it.
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2.1 The clusterability problem
”Clusterability” seeks to provide a measure of the level of cluster structure in a

dataset. Clusterability methods assess the potential for a dataset to form clusters

without making any assumptions about the data’s nature. If clustering seeks to

find meaningful partitions in a dataset, then clusterability seeks to find the extent

to which these partitions exist. Ideally, a clustering solution is meaningful if it

captures the natural cluster structure in the data.

2.1.1 Visual assessment of clusterability

The first and most intuitive way of assessing clusterability is by visual inspection

[70]. Cluster structure is assessed visually by projecting the points in a dataset to

a lower dimension space (typically 2 or 3 dimensions) using linear or non-linear

dimensionality reduction methods. The projected points are then visualized using

a 2D or 3D plot, and the cluster structure is assessed by identifying the grouping

structure in the plot. Linear dimensionality reduction methods such as Principal

Component Analysis (PCA) [55] assumes that the data lies on a linear plane. Non-

linear dimensionality reduction methods such as t-distributed stochastic neighbor

embedding (T-SNE) [112] and Uniform Manifold Approximation and Projection

for Dimension Reduction (UMAP) [77] do not make this assumption about the data

and uses heuristics for projecting the points on to a non-linear plane. After pro-

jection, grouping structure is identified by human eyes by seeking regions of high

density separated by regions of low density. This creates a level of subjectivity that

may differ between users.

There are more standard methods of assessing cluster structure visually [12, 49,

115]. These methods first compute pairwise euclidean distances between points

and orders them such that any potential cluster structure in the data becomes ob-

vious. A heat-map of the ordered dissimilarities is plotted, and a diagonal block

structure provides evidence for the existence of clusters. There is another method

[115] similar in flavor that uses image processing techniques to automatically count

the number of diagonal blocks. However, this method has high computational com-

plexity and becomes impractical for datasets containing many points common to

scRNA-seq. Most, if not all, scRNA-seq analysis pipelines contain methods to vi-
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sualize data by reducing the data on to a linear or non-linear subspace. Some estab-

lished pipelines use already developed methods such as PCA [55], T-SNE [112] and

UMAP [77]. Other pipelines have developed visualization methods specific to the

analysis of scRNA-seq. These include methods such as ZIFA [86], ZINB-WaVE

[89], scvis [24], and many more. Methods such as T-SNE and UMAP are stochastic

and typically require parameter tuning by the user. Depending on the parameteri-

zation of these methods, it is possible to obtain completely different results for the

same dataset, which can become problematic when determining cluster structure.

This signifies the need for new methods that are deterministic and are not highly

impacted by parameters.

2.1.2 Spatial randomness

Another method for assessing clusterability is through testing for complete spatial

randomness (CSR). This method is one of the first and maybe the oldest methods

for testing clusterability in a dataset [23, 65]. First, define a point process as a set of

mathematically defined points located in an underlying space, such as the real line

or the Cartesian plane. If we consider a data matrix D of n points in p dimensions

as a point process, the notion of CSR can be applied. More formally, CSR methods

perform a statistical test on the matrix D and draw one of three conclusions [52]:

1. The points in D are arranged randomly, meaning there is no evidence of

cluster structure.

2. The points are aggregated or clustered, meaning that there is evidence for

cluster structure.

3. The points are regularly spaced.

If applied to scRNA-seq, we can let D be the gene expression counts matrix, and

then we can apply these types of tests and make conclusions based on the results.

One of the most prominent tests for spatial randomness is the Hopkins test [47, 64].

This method tests spatial randomness by comparing a set of sampled points from D

and their nearest neighbors to distances of points sampled from a null model. If D

exhibits complete spatial randomness, these distances should be similar on average.
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Simulation studies using this test have shown low power when the putative clusters

are not well-separated [2].

Other tests for CSR includes:

1. Scan tests which are based on the number of points in the densest sub-region

of a predefined sampling window. A large count provides evidence for the

presence of cluster structure.

2. Quadrat analysis partitions a predefined sampling window into equally sized

rectangles, and the number of points in each quadrat is counted. These

counts follow a Poisson model under the assumption of CSR. A chi-square

test is used for hypothesis testing.

3. Inter-point distances which reflect structural relationships among points. A

test for randomness compares these distances with that computed from a null

model.

4. Structural graphs methods, which defines a graph over the pairwise dis-

tances between points. A test for spatial randomness compares the distribu-

tion of this graph’s edge lengths with that of a null model.

The listed methods above are described in [52]. Most of these methods suffer from

expensive computations, impracticality in high dimensions, and a lack of suitable

null models to be used extensively. To our knowledge, there are currently no tests

of spatial randomness applied to scRNA-seq datasets.

2.1.3 Multimodality testing

Multimodality testing is another way to assess clusterability [31]. Multimodality

testing tests the existence of multiple modes for a probability distribution over a

set of points. Some of the well-known methods in this field are described below.

However, before explaining further, a few definitions are provided.

Definition A probability density function (PDF) f is unimodal if for some value

k, f is monotonically increasing for x≤ k monotonically decreasing for x≥ k. f is

multimodal if no such k exists.
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Definition A cumulative distribution function (CDF) F is unimodal if a k exists

such that F is convex on the interval (−∞,k] and concave on the interval [k,∞). F

is multimodal if no such k exists.

Definition The modes of a multimodal probability density function are the

values of x where f(x) it’s local maximum. This maximum may be located at a

single point signifying a mode or a closed interval signifying a modal interval.

See Figure 2.1 for an example of a unimodal PDF and CDF.

Figure 2.1: Plots of a unimodal PDF and CDF. Note that for both the PDF
and CDF, the mode is located a. Figure adopted from [29].

Modality tests formally test a distribution generated from a set of points for

multiple modes or multimodality. The relation can be stated as follows:

1. If a dataset D contains multiple clusters, then points in the same cluster will

be closer to each other than in other clusters.

2. The distribution function of (dis)similarity between the points can be statis-

tically tested for multimodality.

3. A significant test provides evidence for multimodality, meaning clusters are

present, hence evidence for clusterability.
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Below we state two of the most frequently used multimodality testing methods,

namely the Dip test [42], and the Silverman test [100]. There are other tests [3, 43,

93] not described here due to their low statistical power, computational inefficiency,

and lack of suitable implementations.

The Dip test

Consider a dataset X = (x1, ....,xn), where for simplicity we assume all xi are in-

dependent and identically distributed(i.i.d). Let f be a distribution function of

(dis)similarities between a set of points, the Dip test compares these two hypothe-

sis:

H0: f has 1 mode vs. H1: f has > 1 mode(s).

Now, define the Dip statistic D of a cumulative distribution function (CDF) to

be:

D(F) = min
G∈U

sup
x
|F(x)−G(x)| (2.1)

Where U is the class of all unimodal distributions. This value is computed

using the empirical cumulative distribution (ECDF) [42]. Put another way, the Dip

statistic is the maximum difference between the empirical distribution function

and the unimodal distribution function that minimizes this difference. The Dip

essentially measures a function’s departure from unimodality. To obtain a p-value,

the Dip statistic is computed for the ECDF, and this value is compared with Dip

values for b samples from a uniform null distribution. Formally,

p− value =
∑

B
b=1{Dipb > DipX}

B
(2.2)

where Dipb is the Dip statistic for the bth sample from U(0,1), and DipX is

the Dip statistic for the data. This p-value can also be computed by interpolation

from a table containing empirical percentage points of the Dip statistic based on

N = 1000001 samples of size n from U [0,1].

The Silverman test

Again Consider a dataset X = (x1, ....,xn), where for simplicity we assume all xi are

independent and identically distributed(i.i.d). The Silverman test [100] compares
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these two hypothesis: H0: f has 1 mode vs. H1: f has > 1 mode(s).

This test employs a kernel density estimation of the form:

fX(h) =
1

nh

n

∑
i=1

K

(
x− xi

h

)
(2.3)

where K(·) is the Gaussian kernel and h is the bandwidth. The Gaussian kernel

is used because the number of modes k of fX(h) is a non-increasing function of

h. First Let fX(h) be the kernel density estimate for X as a function of h. Next,

Let hcrit be the maximum value of h such that fX(h) has at most k modes. The

value of hcrit is used as a test statistic with large values indicating evidence against

unimodality and small values indicating evidence for unimodality.

The test works as below:

1. Generate B samples Zb = {Zb
1 , · · ·,Zb

n} with b = 1, · · ·,B, where Zb
i = (1+

h2
k

σ2 )
−1
2 Xb

i ), where σ2 is the sample variance and Xb
i is generated from f (hcrit)

2. For each sample Zb, compute hb
crit

3. Finally, to get a p-value, we compute:

p− value =
∑

B
b=1 1(hb

crit ≤ hcrit)

B
(2.4)

See [3, 100] for a careful treatment of the methodology and algorithm.

2.2 Estimating the number of clusters C
There are several clustering algorithms available for use [119]. However, most

of these algorithms require that the number of clusters c is specified. While it is

relatively easy to point out the cluster grouping structure using 2D or 3D plots, it

is more challenging to determine exactly how many groups are present. Therefore

it is necessary to have robust ways of estimating the number of clusters to obtain

good results. Below we discuss a few ways typically used to estimate the number

of clusters when clustering is applied.

16



2.2.1 Conventional methods

The conventional approach to determining the number of clusters is to run a cluster-

ing algorithm with multiple values for c and use cluster validity indices or stability

indices to select an optimal c [120]. Validity indices are classified into two groups;

external and internal. External indices validate a clustering solution by comparing

it to an external source such as known cluster labels. Internal indices, in contrast,

do not rely on any such external information. Their validation is based purely on

the clustering solution. Since users typically do not have prior information, such as

original labels, we focus our attention on internal validation and stability indices.

Many internal indices have been proposed to estimate the number of clusters.

These methods include the CH Index [18], Silhouette index [92] and the Gap index

[106]. Most of these indices are distance-based and measure cluster compactness

using pairwise distances. These measures also compute cluster separation by com-

puting the distances between cluster centers. A value for c is chosen, such that

cluster compactness or cluster separation is maximized. Distance-based internal

indices are sensitive to noise, outliers, and the scaling of the variables of interest.

This sensitivity is often circumvented when the data is processed to remove outliers

and scaled to zero mean and unit variance before clustering is done. This method

of estimating c can be computationally expensive. This is because a clustering al-

gorithm is run many times, and the validation index is computed, which can be

costly for large datasets.

Cluster stability methods seek to find a clustering that is robust to data pertur-

bation and noise. The basic idea is to find a clustering of a dataset that is robust to

random perturbation. According to [10], if the data is over-clustered, the clustering

algorithm will need to randomly split true clusters leading to a lack of stability in

the resulting clusters. Similarly, if the data is under-clustered, the clustering algo-

rithm will need randomly merge true clusters, again leading to the lack of stability

in the resulting clusters. One method which assesses cluster stability is based on

resampling. This approach clusters overlapping subsets of the data and then com-

putes a similarity score between the clustering of the subsets. A similarity score

is computed as the pairwise distances between these clustering, and the stability

score is the average of these pairwise distances. A value for c is chosen, such that
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it maximizes the stability value over a range of different values for c. See [72] for

a detailed treatment of the resampling based method for cluster stability. Another

method not discussed here is based on building an ensemble. This method com-

bines many clustering of the dataset over a range of c values. See [102] for the

treatment of this approach.

2.2.2 Statistical significance methods

Another way for estimating the number of clusters is by using more formal sta-

tistical tests. This is done by finding a value of c such that it provides the most

significant evidence against a null hypothesis of a single cluster. The hypothesis

includes the uniformity hypothesis [95] and the unimodal hypothesis [14, 41, 52].

Under the unimodality hypothesis, the data is viewed as a random sample gener-

ated from a multivariate Gaussian distribution. The data is viewed as a random

sample generated from an d-dimensional uniform distribution under the unifor-

mity hypothesis. For both these hypotheses, evidence for or against the null can be

computed using internal validation indices discussed in section 2.2.1. Since inter-

nal indices are used, multiple clustering of the dataset for different values of c is

again required. See [52] for a comprehensive treatment of these methods.

Another method for estimating the number of clusters makes use of the nested

nature of hierarchical clustering. The results of hierarchical clustering methods are

presented using a binary tree or a dendrogram, which provides an intuitive way of

viewing the hierarchical structure in the data. The number of clusters is estimated

using a statistical test in a top-down manner at each node in the resulting dendro-

gram. These tests are designed such that the null hypothesis tests data homogeneity

by computing a test statistic on the data and comparing it to a suitable null distri-

bution. The null distribution is computed by making specific assumptions about

the data. These assumptions can be both parametric and non-parametric. Methods

that have implemented this approach include [44, 58]. These methods either use a

Gaussian null model [58] or a Unimodal null model [44] described below.
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2.2.3 The Gaussian model for statistical significance

This model assumes clusters are derived from a single Gaussian distribution param-

eterized by a mean vector µ and a covariance matrix Σ. One of the most notable

methods implementing this model is [69]. The hypothesis tested is formally stated

as

H0 : A pair of clusters follow a single Gaussian dist.

Ha : A pair of clusters do not follow a single Gaussian dist.

Where a p-value obtained would provide evidence for or against the null.

The test statistic is the 2-means cluster index which is a tightness or compact-

ness measure for clusters is defined as follows:

CI =
∑

2
k=1 ∑ j∈Ck

‖ x j− x̄k ‖
∑

n
j=1 ‖ x j− x̄ ‖

(2.5)

Where x̄k is the mean for each cluster k ∈ {1,2}, Ck is the sample index for the

cluster k and x̄ is the overall mean. We note that a smaller value of this function is

associated with larger variation explained by a given clustering, implying a better

clustering.

Lastly, significance for a pair of clusters is obtained by comparing the test

statistics computed from the data with the same statistic computed from the null

distribution. The null distribution is empirically estimated by computing the test

statistic for many datasets generated from a single Gaussian distribution. The

Gaussian distribution is estimated from the original dataset using methods de-

scribed in [48, 69]. A p-value is then obtained by computing:

p− value =
∑

B
b=1{CIb >CIdata}

B
(2.6)

B is the number of datasets generated, and CIb is the cluster index for the null

dataset generated during iteration b.

In [58], this method is extended to a hierarchical setting by a Monte-Carlo

based sequential hypothesis testing framework. First, a hierarchical tree is gener-

ated using agglomerative clustering. Next, at select nodes, starting from the root,
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a test for significance of clustering is done between the two clusters below the cur-

rent node. To control the Family Wise Error Rate (FWER) due to multiple testing,

methods described in [78] is used. This method returns the k nodes that are signif-

icant which implies k+1 clusters.

2.2.4 The Unimodal model for statistical significance

The unimodal model is non-parametric and assumes that clusters follow a unimodal

distribution. The Gaussian model makes specific assumptions about the distribu-

tion of clusters. This assumption may decrease statistical power if clusters are

non-Gaussian. The method implemented in [44] assumes a unimodal distribution

for clusters.

H0 : A pair of clusters follow a single unimodal distribution.

Ha : A pair of clusters do not follow a single unimodal distribution.

Where a p-value obtained would provide evidence for or against the null. To

perform the test, a null dataset X0 needs to be computed with the requirements

that it is as close as possible to X under unimodality conditions. This is achieved

by using a Gaussian kernel density estimator (KDE) to model each feature in the

dataset. This can be expressed as:

ˆf (t;h j) = (nh j)
−1

n

∑
i=1

K(h−1
j (t−Xi j)) (2.7)

Where h j is the bandwidth; K(·) is the Gaussian kernel function; and X1 j, ...,Xn j

are the entries for feature j. According to [100], there exists a critical bandwidth

hk j such that:

hk j = in f
{

h j : f̂ j(·;h j)
}

(2.8)

has at most k modes.

h1 j is then computed and ˆf (t;h1 j) is re-scaled to have variance equal to that

of the sample variance S. Finally, using the re-scaled KDE, bootstrap samples are
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generated by:

X0
i j = (1+

h2
1 j

σ2
j
)

1
2 (XIi j +h1 jεi) (2.9)

where ε ∼N(0,1), σ2 is the sample variance for feature j, and XIi j are sampled

uniformly with replacement from the observed data for feature j [44]. Finally, to

ensure the covariance structure is maintained, the data is scaled to have mean 0 and

variance 1 before computing X0. X0 is then be multiplied by the Cholesky root of

the sample covariance matrix of X .

The 2-means cluster index defined in Section 2.2.3 for the Gaussian model is

used to measure the strength of the clustering obtained from both X and X0. Again,

significance for a pair of clusters is obtained by comparing the test statistics com-

puted from the data with the same statistic computed from the null distribution.

The null distribution is empirically estimated by computing the test statistic for

many datasets generated using the null unimodal distribution. The unimodal dis-

tribution is estimated from the original dataset using the methods described above

and formally in [44]. A p-value is then obtained by computing:

∑
B
b=1{CIb >CIdata}

B
(2.10)

Where B is the number of datasets generated, and CIb is the cluster index for

the null dataset generated during iteration b.

It is worth noting that the authors mention the applicability of this method to a

nested setting, as seen in [58]. However, no methods for controlling the FWER due

to multiple testing are presented. This is a potential drawback that can be addressed

by adopting the FWER control method used in [58] to this model. Both methods

require bootstrapping to generate a suitable null model, which can be very time

consuming and impractical for large datasets.

2.2.5 ScRNA-seq specific methods for estimating C

A few clustering algorithms developed for scRNA-seq datasets estimate the num-

ber of clusters directly or indirectly [38, 59, 113, 127]. For example, the consensus

clustering method SC3 [59] uses random matrix theory to compare the eigenval-

21



ues of a transformed gene expression matrix to estimate the number of clusters.

However, this is highly susceptible to overfitting when the data sparsity is high.

Overfitting due to data sparsity is particularly worrisome since scRNA-seq datasets

have an abundance of zero entries. Another method that attempts this is SIMLR

[113]. SIMLR estimates the number of clusters by optimizing heuristic functions

based on network diffusion. SIMLR’s optimization algorithm requires a range of

the possible number of clusters, which, in turn, requires prior knowledge about the

possible number of clusters. Imposing prior knowledge on the possible number of

clusters renders clusterability analysis useless since there is an implicit assumption

that the dataset contains clusters. However, this may not be the case.
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Chapter 3

Methods

This chapter details our approach for testing for clusterability and computing the

number of clusters. In Section 3.1, we describe how multimodality testing using

the Dip test can be used as a measure of clusterability. Section 3.6 describes the

Computing Clusters Through Multimodality Testing (CCMT) procedure for com-

puting the number of clusters. In Section 3.7, we formally describe the simulation

setup used for methods evaluation. In Section 3.8, we discuss the real datasets

used for benchmarking and comparisons with other methods. In Section 3.10, we

detail the metric used for evaluation on both simulated data and real benchmarking

data. In Section 3.11, we provide details about the clustering methods used for

comparison against the CCMT procedure. In Section 3.12, we discuss how both the

multimodality testing and the CCMT procedure performance are assessed the sim-

ulation studies and real data. Finally, in Section 3.13, details of how computational

running times are computed are presented.

3.1 Testing expression patterns for multimodality
To assess the cluster structure inherent to a scRNA-seq dataset, we look for mul-

timodality in the gene expression patterns for cells. We use multimodality testing

as a proxy for clusterability. Formally, this method takes as input a scRNA-seq

gene expression matrix M with n rows and p columns. We denote yi j as the raw

expression count for gene j in cell i. We assume that the count values are integer-
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valued and have not been normalized. Before any analysis is done, we filter genes

by selecting genes expressed in at least 5 cells. We also select cells with a mini-

mum of 200 genes expressed and a maximum of 2500 genes. We cap the number

of genes expressed in a cell because cells with extremely high gene counts tend to

be multiplets, and cells with very low gene counts tend to be the results of empty

droplets. Cells with more than 5% mitochondrial content are also filtered out. This

is the possible result of cells that were broken in a droplet during sequencing.

Following steps formally described below, the matrix M of counts is normal-

ized, highly informative genes are selected, and dimensionality reduction using

PCA is performed. Finally, multimodality is tested using the Dip test [42] on the

cosine distances between the cells in PCA space. See Figure 3.1 for a visualization

of the pipeline.

Figure 3.1: An overview of the pipeline for multimodality testing integrated.
Starting with a molecular counts matrix, Cell Normalisation is done
using three methods. Next, feature Selection and PCA is done for each
normalisation method followed by computing cell to cell Cosine dis-
tances for each normalisation method. Finally multimodality testing
is done using Dip test on the distribution of these cell to cell distances.
The output is a table containing three p-values. One for each normali-
sation method.

3.2 Counts modelling and normalization
Normalization of the counts matrix is a pivotal step in analyzing scRNA-seq data.

Counts normalization is typically done to address differences in sequencing depth
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from cell to cell. Normalization of counts also helps to adjust for various forms

of noise or noise bias in the sequencing process, so it does not heavily confound

real biological differences present. To combat this, we use three different meth-

ods(described below) for normalizing the counts matrix.

3.2.1 Log transformation of normalized counts

Log-transformed molecular counts have become widely used in the analysis of

scRNA-seq data. This is because of their statistical simplicity and interpretation.

These transformed values can represent log-fold changes in gene expression be-

tween cells, which is sometimes used for informative genes selection and differ-

ential expression analysis. Log-transformation also helps to reduce the severity of

stochasticity in the counts for genes that are highly expressed. Formally, the log-

transformed model is defined as follows: let yi j be the observed molecular count

for celli and gene j. Let ni = ∑ j yi j be the total molecular counts in celli. Now let

π̂i j =
yi j
ni

be the true observed proportion of genei in celli. We can define the log

transformed values as as zi j = log2(c+ π̂i j ∗m) where c = 1 is a pseudo-count to

deal with situations where π̂i j = 0, and m is a scaling factor(typically set to 106).

The resulting zi j values are used as normalised expression counts for downstream

analyses. The Seurat package [17] was used to compute the log-transformed val-

ues.

3.2.2 Multinomial normalization

Recent studies have shown that log-transformation of molecular counts causes sta-

tistical biases, which leads to loss of power during downstream inferences [39, 46,

71, 107]. These biases include inadequate variance stabilization caused by artifi-

cial variance inflation. The second normalization method assumes the counts are

derived from a multinomial model and thus models the molecular counts directly.

Formally, the multinomial model is defined as follows: let yi j be the observed

molecular count for celli and gene j and let ni = ∑ j yi j. Now let πi j be the true

unknown relative abundance for gene j in celli. We can say that the vector yi =

(yi1, ....,yi,J)
T with constraint ni = ∑ j yi j follows a multinomial distribution with a

density function
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f (yi) =

(
ni

yi1, ....,yi,J

)
∏

j
π

yi j
i j (3.1)

This model is computed using Maximum Likelihood Estimation on the raw

molecular counts using a Binomial or Poisson approximation. The Pearson resid-

uals or Deviance residuals values are used as normalized expression counts for

downstream analyses. For a more thorough treatment of the multinomial model for

molecular counts, see [107]. The scry package [107] was used for fitting the model

and computing the normalised values.

3.2.3 Regularized negative binomial normalization

The third and final model used to normalize the counts is a regularized negative

binomial model. This model is similar to the multinomial model in that they both

models the counts directly. However, this model assumes the counts follow a nega-

tive binomial model. This is very similar to existing normalization models, such as

ZIFA [86]. However, [39] showed that these models are prone to overfitting, which

negatively affects downstream analyses such as clustering and differential expres-

sion analysis. To combat this, [39] proposes a regularized version of the negative

binomial model. Here a generalized linear model is fitted with molecular counts for

a gene j or yi j as the response and sequencing depth as a covariate. Regularization

is done by using kernel regression on parameters estimated from this model.

Formally, the regularized negative binomial model is defined as follows:

log(E(xi)) = β0 +β1log10m (3.2)

Where xi is a vector of molecular counts for genei, and m is a vector of count

values assigned to the cells, i.e m j = ∑i xi j. Here β0 and β1 are regularised across

genes using kernel regression. For a thorough treatment of the regularized negative

binomial model, see [39]. Normalised counts are computed using Pearson residuals

defined using the regularized regression parameters. The normalised counts are

defined as follows: zi j =
xi j−µi j

σi j
, where µi j = exp(β0i + β1i log10 m j) and σi j =√

µi j +
µ2

i j
θi

[39]. Here zi j is the Pearson residual of genei in cell j, µi j is the expected
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molecular count for genei in cell j, xi j is the observed molecular count for genei in

cell j in the regression model defined earlier. Finally, β0, β1, and θi are parameters

obtained from the model. The sctransfrom package [39] was used for fitting the

model and obtaining the normalised scores.

3.3 Feature selection
A typical scRNA-seq dataset can contain expression values for thousands of genes,

creating potential problems for downstream analyses. Firstly, with increasing di-

mensionality, most analysis methods do not scale well and dramatically increase

computational costs. Secondly, the existence of a large proportion of non-informative

genes will significantly increase the amount of noise in the data, which will reduce

the true biological signal, thus reducing the power of statistical methods. This

problem is circumvented by selecting a subset of 500− 1500 informative genes,

and there are a few existing methods that can compute how informative genes are.

For methods based on gene variability, genes are ranked based on their variability

across cells, and only highly variable genes are retained [15]. For methods based on

gene expression, genes are then ranked based on averaged expression across cells,

and only highly expressed genes are retained [26]. Depending on the normalization

method used, we select the top 500 most informative genes. The selection methods

are described below.

3.3.1 Feature selection log transformation of normalized counts

To select highly informative genes for log-transformed normalized counts, first, a

variance stabilizing transformation as described in [75] is performed. This is done

to account for the mean-variance relationship inherent to scRNA-seq data that is

not accounted for by the log transformation. Next, a line is fitted to the relationship

between log(variance) and log(mean) of genes using local polynomial regression

(loess). Highly informative genes are then selected by ranking the genes using the

standardized residuals from the fitted line. The Seurat package [17] was used to

compute these genes.
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Feature selection for multinomalial normalization

For the multinomial model, the gene deviance residuals based on a binomial ap-

proximation to the multinomial model are defined as:

D j = 2∑
i

[
yi j log

yi j

niπ̂ j
+(ni− yi j) log

ni− yi j

ni(1− π̂ j)

]
(3.3)

where Di is the deviance for gene j and other parameters are defined as before

in Section 3.2.2 [107]. This model assumes constant gene expression across cells,

so genes that deviate significantly from this model are genes that are the most

informative. Gene deviance values are sorted, and the most deviant genes are used

for clusterability analyses. The scry package [107] was used for computing the

gene deviance.

3.3.2 Feature selection for Regularized Negative Binomial
Normalisation

For the negative binomial normalization, the gene residuals zi j defined in Section

3.2.3 are sorted. The top genes with the highest residuals are selected and used for

downstream analyses. The sctranform package [39] is used to compute the gene

Pearson residuals.

3.4 Dimensionality reduction
Dimension reduction methods have become an integral part of most scRNA-seq

analysis pipelines since scRNA-seq datasets often have high dimensionality. Di-

mensionality reduction helps make analysis methods faster and scalable by pro-

ducing lower dimensional embedding of high dimensional datasets. The lower di-

mension projections are computed such that they preserve the majority of relevant

signals in the dataset. These methods can also be used for denoising, visualizing,

and data compression. Most dimension reduction methods come in two flavors,

linear and non-linear. Linear methods assume that the data lies on a linear man-

ifold and uses a linear function to project it onto a lower dimension. However,

if this manifold is non-linear, a linear method will result in an insufficient lower
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dimension embedding. Non-linear methods do not make this assumption and thus

better able to better project non-linear data onto a lower dimension. Throughout

this thesis, PCA is used for dimensionality reduction.

3.5 Multimodality testing
Testing for multimodality in gene expression patterns is an integral part of this

work. As an example, consider a scRNA-seq dataset containing four distinct cell

types. Cells of the same type will typically have similar gene expression patterns.

Whereas, cells of different cell types will have different gene expression patterns.

We can compute and plot the cosine values of gene expressions between cells.

The distribution of cosine values will contain two modes. One mode centered

around a large cosine value indicating cells in the same partition with similar gene

expression patterns. The second mode will be centered around a small cosine value

indicating cells in different partitions with different gene expression patterns. In

contrast, a dataset containing a single cell type or homogeneous cell types should

show roughly the same cosine values between cells indicating a single partition,

see Figure 3.2.

Multimodality tests [3, 42, 100] discussed earlier in Section 2.1.3 can be used

to assess this idea more formally. We use the Dip test to test the distribution of the

cosine distances between the cells for multimodality. The idea of using modality

tests on pairwise distances was proposed initially by [1, 2]. However, we have mod-

ified this approach in few ways for a more effective use on scRNA-seq data. Firstly,

we have made the number of PCS used for computing distances to be dependent on

the characteristics of the data. This is done by selecting the top most significant

PCS. This helps to limit the influence of noise by selecting PCS that contribute a

significant amount of signal. Secondly, we are computing distances between cells

using the cosine distance defined in 3.4 instead of the Euclidean distance between

the cells. The Dip test is used because of its scalability and statistical power.

D(X,Y) = 1− x ·y
‖x‖‖y‖

= 1−

n
∑

i=1
xiyi√

n
∑

i=1
x2

i

√
n
∑

i=1
y2

i

(3.4)
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where x and y are both vectors of gene expression values.

For each normalization method, we perform this test as follows:

1. Compute the cosine distances between the top K PCS.

2. Run the Dip test on these pairwise distances with significant threshold α

3. If the p-value is < α , the dataset shows significant evidence for clustering

structure or clusterability.

4. If the p-value is > α , the dataset does not show significant evidence for

clustering structure or clusterability.

The Dip test provides a p-value representing the probability of seeing this dis-

tribution or a more extreme multimodal distribution if the data is unimodal. This

p-value should be large for unimodal distributions and small for multimodal distri-

butions. As is common practice, the significant threshold α is set to be 0.05. See

Figure 3.1 for an illustration of this pipeline.

3.6 Computing clusters through multimodality testing
Below we describe the Computing Clusters Through Multimodality Testing (CCMT)

procedure developed for estimating the number clusters. This method is similar to

the statistical significance methods discussed in Section 2.2.2. We couple hierar-

chical clustering with discriminant analysis and multimodality testing to estimate

the number of clusters. Below we discuss generating the hierarchical partition and

discriminant coordinates. Next, the CCMT procedure is discussed in detail. Finally,

we discuss how the results of the CCMT procedure are combined across normaliza-

tion methods.

3.6.1 Generating a hierarchical partition

A hierarchical tree is generated by first transforming the normalized datasets by

first computing the top k PCS of the cosine distances between the cells defined in

equation 3.4. Next, hierarchical clustering is performed with the top k PCS using

squared Euclidean distances coupled with Ward’s minimum variance criterion.
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Figure 3.2: A) PCA plot of four simulated heterogeneous cell types. B) Den-
sity plot of the correlation distances between the cells in A. C) PCA plot
of four simulated homogeneous cell types. D) Density plot of the co-
sine distances between the cells in B. Note that high values in B and D
indicates low correlation and low values indicate high correlation.

3.6.2 Discriminant coordinates

Discriminant coordinates are often used to study clustering effects in a dataset in-

cluding face recognition [28], action recognition [81] and gesture recognition [94].

One example of methods used is Fisher discriminant coordinates [32], which com-

putes the direction that best separates two classes. Discriminant coordinates aim to

find a projection of two classes on to a line that best separates both classes. See Fig-

ure 3.3. By projecting the classes on to this discriminant line, the overlap between

both classes decreases, which will enable the testing of clustering strength through

multimodality testing. The method of discriminant coordinates is described below.

Consider a set of n observations (in this case, normalised expression values

for genes) with each ni belonging to {i = 0,1} with ∑ni = n. Let xi j be the jth

observation in group i and denote
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x̄i =
1
ni

ni

∑
j=1

xi j and x̄ =
1
ni

2

∑
i=1

ni

∑
j=1

xi j (3.5)

We can then define two matrices, the within group covariance W :

W =
1
ni

2

∑
i=1

ni

∑
j=1

(x̄i− x̄)(x̄i− x̄)′ =
2

∑
i=1

(ni−1)Si (3.6)

and the between group covariance matrix B:

B =
1
ni

2

∑
i=1

ni

∑
j=1

(xi j− x̄i)(xi j− x̄i)
′ =

2

∑
i=1

ni(xi j− x̄i)(xi j− x̄i)
′ = (n−g)S (3.7)

Here Si is the sample covariance matrix for group i, and S is the sample covari-

ance matrix for the combined groups. A discriminant coordinate vector is defined

as as the vector c that maximizes the function:

J(c) =
c′Bc
c′Wc

(3.8)

J(c) can be maximized computing the eigenvector associated with the largest

eigenvalue of W−1B. This eigenvector provides the direction that maximizes the

between-class variance of B while minimizing the within-class variance of W . By

projecting the classes on to the vector c, we decrease the overlap between both

classes, which will enable us to test for separability between the classes.

3.6.3 The CCMT procedure

The CCMT procedure is based on testing for multimodality sequentially using the

Dip test coupled with discriminant coordinates. Contrary to established cluster

significance testing methods, this method requires no formal hypothesis testing

except for the one performed by the Dip test. The details of the test are formally

described below.

1. Let M denote the normalized counts matrix generated using one of the de-

scribed methods and Mc be a matrix of cosine distances between points in

M.
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2. Let D denote the top k PCS for Mc.

3. Generate a tree T from D using the ward’s minimum variance method on

squared Euclidean distances.

4. For each node in T , let C1 and C2 be two clusters containing the children

nodes in the two respective sub-trees.

(a) Let Dc12 be D subsetted to contain only the points in the two subtrees

at the current node being considered.

(b) Compute a discriminant coordinates vector w that best separates C1 and

C2.

(c) Generate a one dimensional projection of Dc12 on to w and denote this

as x.

(d) Finally, test x for multimodality using the Dip test and return the p-

value. If the classes are well separated, their projection onto the dis-

criminant vector will be multimodal, and a significant p-value will be

obtained.

5. Starting with the root node steps, 4a− 4d are performed on all nodes that

parents were themselves significant or had a number of points in each subtree

to be greater than n. For this implementation, the significance level α = 0.05

and the minimum number of points n = 10.

6. Finally, a dendrogram is returned where each node’s significance is labeled.

See Figure 3.5. The points below the significant nodes are the significant

partitions. The number of significant partitions is an estimate of the num-

ber of clusters. These significant partitions are also extracted and used as a

clustering of the data.

See Figure 3.4 for an example of this method applied to a simulated dataset.

Both multimodality testing and the CCMT procedure can be integrated into a

pipeline. The user would first apply multimodality testing and then proceed to run

the CCMT procedure if there is significant evidence for cluster structure. See figure

3.6 for an illustration of the pipeline
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Figure 3.3: An illustration of discriminant coordinates. Fisher discriminant
coordinates is the line that best separates both classes. In both pan-
els, the red and green represents two different classes. A) Shows two
classes that are not well separated by the discriminant line. B) Shows
two classes that well separated by the discriminant line.

3.6.4 Combining significant partitions

For a given dataset, the CCMT is performed on each of the three normalized ver-

sions. We provide two methods to combine the results across normalized datasets.

The first uses an ensemble method which combines the clustering solutions across

the three normalized datasets. See Figure 3.7. The second uses a multiview ap-

proach [13, 20, 122], which combines all three normalized versions of the dataset

before the CCMT procedure is performed. This approach computes a set of PCS

common to all three normalized datasets [109]. The CCMT procedure is then ap-

plied to the common PCS. See figure 3.8.

3.7 Simulation studies
To test the robustness and scalability of the methods developed in this thesis, a set

of synthetic datasets was generated using the splatter package [123]. This pack-

age was designed for simulating scRNA-seq count data and allows one to vary the

number of cells, genes, and clusters, with varying levels of separability and varying

degree of sparsity. The Splatter tool enables the possibility of generating synthetic

datasets that capture different properties that the typical scRNA-seq dataset may

have. This tool also enables the ability to simulate problems typically associated

with the analysis of scRNA-seq datasets. These problems include sparsity due to
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Figure 3.4: An example of discriminant coordinates significance clustering
test. A) and C) Shows two classes that are separated by a discriminant
line in black. B) and D) Shows the Dip test applied to the projection of
the two classes onto this discriminant line. Note that for B, a significant
p-value is obtained reflecting the separation between the classes. For D,
the opposite is observed. P-values < 2e−16 were rounded to 0.

dropout events, low separability between cell types, and an increasing number of

cells. We adopted a similar simulation paradigm used in [62] to generate three

simulation setups. We, however, changed some of the parameters used in the sim-

ulation setup for more rigorous testing. The simulation setups are described below.

3.7.1 Simulating data scalability, differing cluster number and sizes

The first simulation setup assessed scalability and differing cluster sizes. Scala-

bility here is defined as the capacity for methods developed to adequately handle

an increasing number of cells. We also require it to be able to handle an increas-

ing number of clusters with different relative sizes. For this purpose, counts are

simulated for a range of cells in {5000,10000,15000}, each with 1000 genes. For

each possible number of cells, clusters in the set {4,8,16} are generated. For
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Figure 3.5: An illustration of the CCMT procedure A) Shows a PCA plot of
four simulated heterogeneous population. B) Shows the significance
tree after applying the CCMT procedure. Note that the tree is colored by
significance and if a test was performed at a node or not.

Figure 3.6: Overview of how multimodality testing and the CCMT procedure
can be integrated into a pipeline. If the test for clusterability returns
evidence for a cluster structure, the CCMT procedure is applied and the
clusters are returned. Otherwise there is a possibility of a single cell
population or the cells are on a continuum.
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Figure 3.7: An illustration of the ensemble method for combining significant
partitions across normalisation methods. An ensemble is generated us-
ing the soft least squares consensus partition method (DWH) implement
in the Clue package.

Figure 3.8: An illustration of the multiview method for combining significant
partitions. A set of common principal components (CPCS) is first com-
puted for all three normalisation methods. These CPCS are then used
for significant clustering.

each number of clusters, datasets were generated containing equal proportions

of cells in each cluster and a dataset containing an uneven proportion of cells in

each cluster. To generate uneven cluster proportions, p1, p2, ..., pk numbers were

simulated from a uniform distribution such that ∑
k
i=1 pi = 1. Here, k is the num-

ber of clusters for the current simulation. For example, a set of proportions of

cells for a dataset containing four clusters generated that are unbalanced would be

{0.20,0.10,0.40,0.30}. In contrast, the proportions of cells for a dataset generated

containing four balanced clusters would be {0.25,0.25,0.25,0.25}. This setup

generated a total of 18 datasets. See Figure 3.9 for an illustration of this setup.

3.7.2 Simulating cluster separability

The second simulation setup assessed the ability to detect varying degrees of sepa-

ration between clusters. Here, the number of cells and genes was fixed at 1000 and
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Figure 3.9: An illustration of simulation setup 1. A total of 18 simulated
datasets were generated.

5000, respectively. The number of clusters was fixed to be 8 with relatively bal-

anced sizes. The separability between clusters was then varied from no separation

at all to well separated. To control cluster separability, the probability for a gene to

be deferentially expressed between clusters was varied by generating 50 values in

a range of {0,0.5}. Figure 3.11 shows illustrations of both extremes. Separability

values close to 0 produces clusters with low separability and values closer to 1 pro-

duces clusters with higher separability. This setup generated a total of 50 datasets.

See Figures 3.10 and 3.11 for an illustration of this simulation setup.

3.7.3 Simulating data sparsity

In the third simulation setup, we assessed our method’s ability to handle data spar-

sity or increasing proportions of missing information. Again the number of cells

and genes is held constant at 5000 and 1000, respectively. The number of clusters

remained the same again at 8, with the sizes balanced. To control the proportion

sparsity in the generated datasets, the parameter(dropout.mid) controlling rate of

zero counts in the logistic function that generates the counts in the Splatter package

was varied. This parameter was varied in the range of {0,1,2,3,4,5} to generate

datasets ranging in 20% to 90% sparsity. This setup generated a total of 6 datasets.
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Figure 3.10: An illustration of simulation setup 2. A total of 50 simulated
datasets were generated

Figure 3.11: An illustration of the possible ranges cluster separability in 4
simulated clusters. A) A simulated dataset with no cluster separability.
B) A simulated dataset with low cluster separability. C) A simulated
dataset with intermediate cluster separability. D) A simulated dataset
with high cluster separability.
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See Figure 3.12 for an illustration. Figure 3.13 shows the possible ranges of data

sparsity being considered and how it affects the datasets. Notice that as sparsity

increases, the separability between the clusters decreases.

Figure 3.12: An illustration of simulation setup 3. A total of 6 simulated
datasets were generated.

3.8 Benchmarking data
A set of published scRNA-seq datasets frequently used for analyzing scRNA-seq

pipelines was used for evaluation as well. A majority of these datasets were ob-

tained from the Hemberg lab Github repository. The Peripheral Blood Mononu-

clear Cells (PBMCS) datasets were obtained from the 10X genomics website. These

datasets ranged in the number of cells, number clusters, cluster separability, spar-

sity, and overall complexity. These datasets are also derived from multiple organ-

isms, including humans and mice, as well as multiple tissues, including blood,

pancreas, brain, spleen, and retina.

The datasets used are formally described below. They contain two groups, the

small scale, and the medium to large scale datasets. The small scale datasets are

datasets that have less than 2500 cells. These datasets were used to benchmark

CCMT against other scRNA-seq methods that do not scale very well for larger

datasets. The medium to large datasets group are datasets that have greater than

2500 cells. These datasets were used to benchmark CCMT against other scRNA-
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Figure 3.13: An illustration of the possible ranges of data sparsity in 4 sim-
ulated clusters. Sparsity is defined as the fraction of genes with 0 ex-
pression values in each cell. A) A simulated dataset with 20− 30%
sparsity. B) A simulated dataset with 25− 35% sparsity. C) A sim-
ulated dataset with 50− 70% sparsity. D) A simulated dataset with
80−90% sparsity.

seq methods that are well equipped to handle reasonably large datasets.

3.8.1 Small scale datasets

Seven small scale datasets described in Table 3.1 were used for benchmarking.

For the CCMT procedure, these datasets were processed, as described in Chapter

3.1. For the other methods, preprocessing was done using the default settings pro-

vided by the methods. We note that with improvements in sequencing technology

and reduced sequencing costs, it is now possible to profile hundreds of thousands

more cells than considered in the small scale datasets. We decided to include these

datasets for completeness and to provide a means for testing against other methods

with computational bottlenecks such as an increasing number of cells.
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Dataset NumGenes NumCells NumPopulation Sparsity
Gold [33] 58,302 925 3 0.85
Baron Mouse [8] 14,878 1886 13 0.89
Tasic [105] 24,150 1,679 18 0.69
Muraro [83] 19,127 2,126 10 0.73
Wang [114] 19,950 635 8 0.70
Xin [118] 39,851 1,600 8 0.88
Li [66] 55,186 561 9 0.79

Table 3.1: Small scale datasets used.

3.8.2 Medium to large scale datasets

Ten medium to large scale datasets described in Table 3.2 were used for bench-

marking. For the CCMT procedure, these datasets were processed, as described

in Chapter 3.1. For the other methods, preprocessing was done using the default

settings.

Dataset NumGenes NumCells NumPopulation Sparsity
Silver5 [33] 17,043 8,352 11 0.96
Segerstolpe [96] 25,525 3,514 15 0.82
Klein [61] 24,175 2,717 4 0.66
Zheng [126] 15,568 3,994 4 0.97
Chen [21] 23,284 14,437 47 0.93
HMS [63] 28,962 11,127 9 0.97
Zeisel [124] 19,972 3,005 9 0.81
Romanov [91] 24,341 2,881 7 0.88
BaronHuman [8] 20,125 8,569 14 0.91
Shekar [97] 13,166 27,499 19 0.93

Table 3.2: Medium to large scale datasets

3.9 Obtaining ground truth clusters
For both the small and medium to large scale datasets used in this work, the cell

labels provided by their respective authors are used as ground truth. We are aware

that intrinsic difficulties exist when defining ground truth cell labels when evalu-
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ating clustering or classification methods. This is due to the existence of multiple

biologically plausible and interpretable way of clustering a scRNA-seq dataset,

each representing relevant signals. The datasets used in this work were clustered

with existing algorithms, and cell type labels were assigned using domain exper-

tise. Therefore, we acknowledge that there is a risk of inherent bias in favor of the

clustering method used to compute these cell type labels when making compar-

isons.

3.10 Evaluation metrics
To benchmark clustering solutions across methods, we use the Adjusted Rand In-

dex (ARI). This metric has been routinely used in the clustering domain to evaluate

how similar two clustering solutions are. It can also be used to compare how simi-

lar a clustering solution is to some know ground truth. The ARI score takes values

between 0 and 1, with 0 being no similarity between two clustering solutions and

1 being perfect similarity between two clustering solutions.

Let D be a set containing n points. Denote a clustering of D as C, a set of non

overlapping and non empty subsets C1, ....,Ck. Now denote another clustering of D

to be the set C’ of non overlapping and non empty subsets C
′
1, ....,C

′
m. Using C and

C′, we can create a k by m contingency table T such that the Ti j is the intersection

of Ci and C
′
j.

We can then formally define the ARI score as:

ARI(C,C′) =
∑

k
i=1 ∑

m
j=1
(Ti j

2

)
−u3

1
2(u1 +u2)−u3

(3.9)

where u1 = ∑
k
i=1
(|Ci|

2

)
, u2 = ∑

m
i=1
(|C′j|

2

)
, and u3 =

2u1u2
n(n−1)

3.11 Clustering methods
There are many algorithms available to cluster scRNA-seq datasets. We selected

three to benchmark on the small scale datasets and one to benchmark on the medium

to large scale datasets. For the small scale datasets, we evaluated Seurat [17], SC3
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[59] and SIMLR [113]. For the medium to large scale datasets, only Seurat was

used. This provides a comparison to the CCMT procedure against methods that are

currently used. Both SC3 and SIMLR were used only on the small scale datasets

because they do not scale well with larger datasets. Seurat was chosen because it is

currently one of the most widely used methods for clustering scRNA-data. It also

scales quite well with larger datasets. For benchmarking, we evaluated clustering

accuracy and consistency using the Adjusted Rand Index described in section 3.10.

We also compared the running time for all of the clustering algorithms. The de-

fault parameters provided in their respective software packages were used for all

clustering methods, including how data preprocessing is done. We note that more

careful consideration of these parameters may provide different results.

3.12 Performance assessment

3.12.1 Simulation Studies

To assess the performance of multimodality testing under various simulated con-

ditions. We look at the p-values returned from the Dip test on each of the simula-

tion studies. For the first simulation setup, all the datasets show cluster structure.

Therefore multimodality testing should return a significant p-value for all simu-

lations. For the second setup, which simulates cluster separability, we expect the

Dip test to be very sensitive to very low cluster separability. For the third setup,

which simulates data sparsity, all the datasets have a cluster structure. Therefore,

multimodality testing should return a significant p-value for all levels of sparsity.

For the CCMT procedure, these simulation studies provided a way to measure

how well CCMT can recover the simulated partitions in each setup. The ARI score

is used to measure how well the simulated partitions are recovered.

3.12.2 Positive control

The small scale and the medium to large scale datasets discussed earlier are used

as positive controls datasets. These datasets have been used routinely to evaluate

new clustering algorithms for scRNA-seq datasets. Therefore, there is an implicit

assumption that these datasets exhibit significant cluster structure. These datasets
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also provide a more realistic example of the type of datasets often encountered. It

is expected that multimodality testing will return a significant p-value for all these

datasets.

3.12.3 Negative control

To test how multimodality testing behaves when there is a single cluster, we se-

lected the Gold Standard dataset used in [33]. This dataset is composed of three

different cell lines cultured separately from human lung adenocarcinoma. To gen-

erate a set of three negative control datasets, we isolated each of the cell lines

separately. See Figure 3.14 for an example of the isolated HCC827 cell line.

The same three isolated cell lines from the gold standard dataset was used as

negative controls for the clustering methods, including the CCMT procedure. The

ARI score was again used to evaluate how well the clustering methods recovered

the single cluster present.

3.13 Run time assessment
All clustering methods, including the CCMT procedure, were run in R programming

language. To compare running times, the Microbenchmark R package was used.

All methods were run with 12 threads with 32GB of ram on an Intel R© CoreTM

i7-8750H CPU with 2.20GHz. All timing measurements include preprocessing

steps.

3.14 Summary
In summary, we proposed a method for assessing the cluster structure level by

testing the gene expression patterns between cells for multimodality. We also cou-

pled multimodality testing with hierarchical clustering and discriminant analysis

to estimate the number of clusters. We also developed various simulation stud-

ies to assess the reliability of the methods developed. Real datasets and methods

used for benchmarking were presented as well as the metrics used for performance

evaluation.
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Figure 3.14: PCA plots of the dataset used for negative controls. This exam-
ple shows the HCC287 cells that were isolated and used as a one of
the negative controls for both mulitmodality testing and benchmarking
the CCMT procedure. A) shows a PCA plot of the three cell lines. B)
shows a PCA plot of the isolated HCC287 cell line.
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Chapter 4

Results

In this chapter, we summarize the results of multimodality testing and the CCMT

procedure. In section 4.1, results for multimodality testing are presented. First we

show results of multimodality testing on the simulation studies discussed in sec-

tion 3.7 and the positive control datasets (Section 3.12.2) as well as the negative

control dataset (Section 3.12.3). Next, we show the results of the CCMT procedure

applied to the simulation studies. For the CCMT procedure, we also show the re-

sults based on the positive (Section 3.12.2) control dataset as well as the negative

control dataset (Section 3.12.3). Next, we present comparative results of the CCMT

produce against clustering methods discussed in Section 3.11. Comparative results

include the ARI score and running time assessment for both the small scale datasets

(Section 3.8.1) and the medium to large scale data (Section 3.8.2).

To test the robustness and scalability of inferring clusterability through modal-

ity testing and using the CCMT procedure estimate the number of robust clusters,

we generated a set of synthetic datasets discussed in 3.7. Each simulation setup

was designed to simulate problems inherent to scRNA-seq data. This includes in-

creasing data and cluster sizes, cluster separability, and data sparsity. We expect

the Dip test to capture the simulated datasets cluster structure with high accuracy

for multimodality testing. This implies that an insignificant p-value should be re-

turned for datasets with no significant cluster structure. In contrast, a significant

p-value should be returned for datasets with significant cluster structure. For the

CCMT procedure, we expect a high ARI score for all the simulation setups implying
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that this procedure can recover the simulated partition with high accuracy.

4.1 Evaluation of multimodality testing

4.1.1 Simulation studies

Tables 4.1, 4.2, 4.3 and Figure 4.1, shows the results of the clusterability analysis

on all three simulation setups presented as heatmaps. Values in the tables and the

heatmaps are p-values obtained after running the modality testing pipeline.

The first simulation setup results, which assesses data scalability, shows per-

fect performance across cluster sizes and the number of cells. This implies that

clusterability testing using the Dip test scales well. This also implies that multi-

modality testing is not affected adversely by the relative sizes of clusters present

in the dataset. This is an essential feature since it is rarely the case that clusters

are perfectly balanced in scRNA-seq datasets. For the second simulation, which

assesses cluster separability, all normalization methods perform reasonably well.

This also implies that the Dip test is quite sensitive to cluster separability since it

can find significant cluster structure even when clusters show low separability. Re-

sults for the third simulation setup, which assesses the effect data sparsity, are quite

good as well. Multimodality testing can detect cluster structure in the presence of

high data sparsity.

Dataset Log NegBinom Multinom
5K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

5K Cells, 8 Clusters p < 2e−16 p < 2e−16 p < 2e−16

5K Cells, 16 Clusters p < 2e−16 p < 2e−16 p < 2e−16

10K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

10K Cells, 8 Clusters p < 2e−16 p < 2e−16 p < 2e−16

10K Cells, 16 Clusters p < 2e−16 p < 2e−16 p < 2e−16

15K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

15K Cells, 8 Clusters p < 2e−16 p < 2e−16 p < 2e−16

15K Cells, 16 Clusters p < 2e−16 p < 2e−16 p < 2e−16

Table 4.1: Table of p-values (p) obtained for multimodality testing done for
simulating data scalability on balanced datasets.
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Dataset Log NegBinom Multinom
5K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

5K Cells, 8 Clusters p < 2e−16 p < 2e−16 p < 2e−16

5K Cells, 16 Clusters p < 2e−16 p < 2e−16 p < 2e−16

10K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

10K Cells, 8 Clusters p < 2e−16 p < 2e−16 p < 2e−16

10K Cells, 16 Clusters p < 2e−16 p < 2e−16 p < 2e−16

15K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

15K Cells, 8 Clusters p < 2e−16 p < 2e−16 p < 2e−16

15K Cells, 16 Clusters p < 2e−16 p < 2e−16 p < 2e−16

Table 4.2: Table of p-values (p) obtained for multimodality testing done for
simulating data scalability on unbalanced datasets.

Figure 4.1: Heatmap of p-values obtained for multimodality testing done for
simulating cluster separability. The x-axis is the cluster separability
(higher values indicated higher separability between clusters) generated
and the y-axis the normalisation method used. Note that p-values <
2e−16 were rounded to 0 for visualization purposes.
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Dropout Rate Log NegBinom Multinom
0 p < 2e−16 p < 2e−16 p < 2e−16

1 p < 2e−16 p < 2e−16 p < 2e−16

2 p < 2e−16 p < 2e−16 p < 2e−16

3 p < 2e−16 p < 2e−16 p < 2e−16

4 p < 2e−16 p < 2e−16 p < 2e−16

5 1 p < 2e−16 p < 2e−16

Table 4.3: Table of p-values (p) obtained for multimodality testing done when
simulating data sparsity. Higher dropout rate values indicates higher
sparsity

4.1.2 Positive control

Table 4.4 shows the results of multimodality testing applied to the benchmarking

datasets used as positive controls. Multimodality testing finds significant evidence

of cluster structure in all datasets.

4.1.3 Negative control

Figure 4.2 shows the result of multimodality applied to the isolated HCC287 cell

line from the negative control dataset. There is no evidence of cluster structure

(Dip p-value > 0.05) returned by multimodality testing across all the normaliza-

tion methods. This shows that multimodality testing can correctly identify when

there is no apparent cluster structure present. Similar results were obtained for the

remaining two cell lines.

4.2 Factors affecting multimodality testing

4.2.1 The effect of data normalisation

Overall, multimodality testing performed well across all the simulation setups, pos-

itive control datasets, and the negative control dataset. However, taking a more

in-depth look at the simulation studies results, we can make a few observations.

Consider the second simulation setup that addresses cluster separability; com-

pared to the other two normalization methods; the log normalization method is not
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Dataset Log NegBinom Multinom
BaronHuman p < 2e−16 p < 2e−16 p < 2e−16

BaronMouse p < 2e−16 p < 2e−16 p < 2e−16

Chen p < 2e−16 p < 2e−16 p < 2e−16

Gold p < 2e−16 p < 2e−16 p < 2e−16

HMS p < 2e−16 p < 2e−16 p < 2e−16

Klein p < 2e−16 p < 2e−16 p < 2e−16

Li p < 2e−16 p < 2e−16 p < 2e−16

Maccosko p < 2e−16 p < 2e−16 p < 2e−16

Muraro p < 2e−16 p < 2e−16 p < 2e−16

Romanov p < 2e−16 p < 2e−16 p < 2e−16

Segerstolpe p < 2e−16 p < 2e−16 p < 2e−16

Shekar p < 2e−16 p < 2e−16 p < 2e−16

Silver5 p < 2e−16 p < 2e−16 p < 2e−16

Tasic p < 2e−16 p < 2e−16 p < 2e−16

Wang p < 2e−16 p < 2e−16 p < 2e−16

Xin p < 2e−16 p < 2e−16 p < 2e−16

Zeisel p < 2e−16 p < 2e−16 p < 2e−16

Zheng p < 2e−16 p < 2e−16 p < 2e−16

Table 4.4: Table of p-values (p) obtained for multimodality testing done for
the benchmarking data. The table contains both the small and medium to
large scale datasets.

as sensitive to cluster separability. This can be seen in Figure 4.1, where a sig-

nificant p-value is returned after separability value of 0.05. For reference, Figure

3.11C is an example of how a dataset looks for separability value 0.03. In Figure

3.11B, the clustering structure is quite obvious. As such, both the multinomial and

negative binomial normalization methods are able provide enough evidence for the

Dip test to find significant cluster structure evidence. However, the Dip test applied

to the log normalized data fails to find evidence for cluster structure. This implies

that the log normalization typically done may not always be the best way of data

normalization. It may obscure possible cluster structure by failing to find highly

overlapping clusters.

Next, consider the third simulation setup, which assesses the effect data spar-

sity; all normalization methods show good performance for low to moderate spar-
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Figure 4.2: A) shows a PCA plot of the isolated HCC287 cells. B) shows the
density of the of the cosine distances between the top k PCS for the log
normalisation method. C) shows the density of the of the cosine dis-
tances between the top k PCS for the Negative Binomial (NegBinom)
normalisation method. D) shows the density of the cosine distances be-
tween the top k PCS for the Multinomial normalisation method. Similar
results not shown here were obtained for the remaining two cell lines.

sity levels. See Table 4.3. However, for sparsity, > 90%, the Dip test applied to

the log normalized data fails to find evidence for cluster structure. The multinomial

normalized and negative binomial normalized data have no trouble dealing with in-

creasing sparsity levels. As noted in Figure 3.13, as sparsity increases, the separa-

bility between the clusters decreases. Since the log normalization method showed

poor performance for low separability cases in the second simulation setup, it is

not surprising to observe similar performances for higher data sparsity. Again, this

is a cause for concern since log normalization is most often used for its statisti-

cal simplicity. Other normalization methods such as the negative binomial or the

multinomial may be more appropriate.
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4.2.2 The limitations of multimodality testing

The multimodality testing framework has performed well across simulation studies

and real benchmarking data, including the negative controls datasets. However, to

understand the situations where multimodality testing does not perform well, we

constructed a fourth simulation setup, which combines the first two simulation

setups from Section 3.7. To do this, the cluster separability was set to be 0.3 (see

Figure 3.11B), while we varied the size and proportions of cells in each cluster

as done in simulation setup 2 (see Figure 3.9). See Figures 4.3 and 4.4 for an

illustration of and an example of this simulation setup.

Tables 4.5 and 4.6 show the results of multimodality testing applied to this sim-

ulation setup. Multimodality testing cannot capture the presence of cluster struc-

ture in all of the simulation datasets for both the balanced and unbalanced datasets.

With high cluster overlap and an increasing number of clusters, multimodality test-

ing struggles to find evidence for cluster structure. This pattern is evident for both

the balanced and unbalanced datasets. For the balanced datasets (Table 4.5), the log

normalization performs the worst while the multinomial normalization performs

the best. For the unbalanced datasets (Table 4.6), all three normalization meth-

ods performs equally well. These results show that multimodality testing is limited

when the cluster sizes are relatively balanced and highly overlapping. However, for

the unbalanced datasets, multimodality testing is not as limited since it can capture

the presence of cluster structure in over half of the datasets.

Dataset Log Multinom NegBinom
5K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

5K Cells, 8 Clusters 0.10 p < 2e−16 0.06
5K Cells, 16 Clusters 0.10 p < 2e−16 0.99
10K Cells, 4 Clusters p < 2e−16 0.10 p < 2e−16

10K Cells, 8 Clusters 0.10 0.10 p < 2e−16

10K Cells, 16 Clusters 0.10 0.10 1
15K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

15K Cells, 8 Clusters 0.10 0.10 1
15K Cells, 16 Clusters 0.10 0.10 1

Table 4.5: Table of p-values (p) obtained for multimodality testing done for
simulating data scalability with high overlap on balanced datasets.
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Figure 4.3: An illustration of simulation setup 4. A total of 18 simulated
datasets were generated.

Figure 4.4: An illustration of the balanced and unbalanced datasets simu-
lated.A) A simulated balanced dataset with 4 clusters. B) A simulated
unbalanced dataset with 4 clusters. Each dataset was generated to have
overlapping clusters.
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Dataset Log Multinom NegBinom
5K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

5K Cells, 8 Clusters p < 2e−16 p < 2e−16 p < 2e−16

5K Cells, 16 Clusters 0.10 p < 2e−16 1
10K Cells, 4 Clusters p < 2e−16 0.10 p < 2e−16

10K Cells, 8 Clusters p < 2e−16 p < 2e−16 p < 2e−16

10K Cells, 16 Clusters 0.10 0.10 1
15K Cells, 4 Clusters p < 2e−16 p < 2e−16 p < 2e−16

15K Cells, 8 Clusters 0.10 0.10 p < 2e−16

15K Cells, 16 Clusters 0.10 0.10 1

Table 4.6: Table of p-values (p) obtained for multimodality testing done for
simulating data scalability with high overlap on unbalanced datasets.

4.3 Evaluation of the CCMT procedure

4.3.1 Simulation studies

Tables 4.7, 4.8, 4.9, and Figure 4.5 shows the results of the CCMT procedure applied

to the three simulation setups. For the first simulation setup, the CCMT procedure

does a good job of recovering the ground truth partitions simulated. Both the en-

semble (Figure 3.7) and multiview (Figure 3.8) models do a good job of recovering

the simulated partitions. The CCMT procedure is robust to the relative proportions

of cluster sizes and different numbers of clusters. Results on the second simula-

tion setup show that the CCMT procedure is generally sensitive to cluster overlap.

However, the ensemble method appears to be more sensitive and stable compared

to the multiview model. The multiview model is not always able to fully recapture

the simulated partitions for clusters having very high overlaps. For example, in

Figure 4.5, the clusters are relatively well separated for a separability value of 0.1.

See Figure 3.11C. However, for this value, the multiview model fails to perfectly

recover the simulated partition (ARI score = 0.5). See Section 3.10 for a discussion

of the ARI score. Results on the final simulation setup (Table 4.9) shows that the

CCMT procedure is also robust to increasing data sparsity. Both the multiview and

the ensemble models are fully able to recapture the simulated clusters for increas-

ing levels of data sparsity. Overall the CCMT procedure performs well across all
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simulation studies.

4.3.2 Positive control

The CCMT procedure applied to the positive control benchmarking datasets shows

good accuracy for most datasets. Table 4.10 and Figure 4.6, shows a table and a

boxplot of the ARI score for all the benchmarking datasets. Figure 4.6 shows an

average ARI score of 0.70, which implies that the CCMT procedure recovers the

correct partitions approximately 70% of the time across all datasets. The CCMT

procedure also obtains a maximum ARI score of 0.99 and a minimum of 0.19.

Both the ensemble and the multiview models show similar performance across all

datasets. However, the ensemble model has more variability, as seen by the long

tail in Figure 4.6. Figure 4.7 shows scatter plots of the ARI score as a function

of the predicted number of clusters by the CCMT procedure for the benchmarking

datasets. In both plots, the red values indicate the correct number of clusters. In

these plots, we judge performance by both the ARI scores and the predicted number

of clusters. For a high ARI score, we would expect to see a closer agreement

between the true number of clusters (x-axis) and the predicted number of clusters

(red values). Both the ensemble and the multiview models tend to underestimate

the number of clusters. Compared to the ensemble model, the multiview model

generally returns a smaller number of clusters. However, both models, on average,

return partitions with high overlap with the ground truth partitions, as seen by the

high average ARI scores in Figures 4.7A and 4.7B.

4.3.3 Negative control

On the negative control datasets, the CCMT procedure fails to return a single cluster

for the ensemble mode across all of the isolated cell lines (Table 4.11). The multi-

view model, in contrast, returns only a single cluster for two (HCC827 and H2228)

of the isolated cell lines. This implies that the ensemble model is more sensitive

to the over-partitioning of the data compared to the multiview model. The multi-

view model is conservative when partitioning a dataset. This is similar to what is

observed for the predicted number of clusters for the positive control datasets.
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Dataset Multiview ARI Score Ensemble ARI Score
5K Cells, 4 Clusters 1 1
5K Cells, 8 Clusters 1 1
5K Cells, 16 Clusters 0.83 1
10K Cells, 4 Clusters 1 1
10K Cells, 8 Clusters 1 1
10K Cells, 16 Clusters 0.8 1
15K Cells, 4 Clusters 1 1
15K Cells, 8 Clusters 0.81 1
15K Cells, 16 Clusters 0.83 1

Table 4.7: Table of the ARI scores obtained from the CCMT procedure applied
when simulating data scalability on balanced datasets.

Dataset Multiview ARI Score Ensemble ARI Score
5K Cells, 4 Clusters 1 1
5K Cells, 8 Clusters 0.97 1
5K Cells, 16 Clusters 0.87 1
10K Cells, 4 Clusters 1 0.98
10K Cells, 8 Clusters 0.99 1
10K Cells, 16 Clusters 0.91 1
15K Cells, 4 Clusters 1 1
15K Cells, 8 Clusters 0.97 1
15K Cells, 16 Clusters 0.9 1

Table 4.8: Table of the ARI scores obtained from the CCMT procedure applied
when simulating data scalability on unbalanced datasets.

4.4 Factors affecting the CCMT procedure
Overall, the CCMT procedure provides a robust and accurate way of finding signifi-

cant partitions in a dataset. However, there are a few parameters that may affect the

performance of the CCMT procedure. These parameters include selecting highly in-

formative genes and the number of principal components to use when running the

CCMT procedure.
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Figure 4.5: Heatmap of the ARI scores obtained from the CCMT procedure
applied to simulating cluster separability. The x-axis is the cluster sep-
arability (higher values indicated higher separability between clusters)
generated and the y-axis is the model used to combine the partitions
across the three normalisation methods.

Dropout Rate Multiview ARI Score Ensemble ARI Score
0 1 1
1 1 1
2 1 1
3 1 1
4 1 1
5 0.98 0.99

Table 4.9: Table of ARI scores obtained for the CCMT procedure applied when
simulating data sparsity. Higher dropout rate values indicates higher
sparsity

4.4.1 The effect of the number of informative genes

In this thesis, we set the number of highly informative genes to 500. To test how

the selection of highly informative genes affects the performance of the CCMT pro-
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Dataset Multiview ARI Score Ensemble ARI Score
BaronHuman 0.89 0.9
BaronMouse 0.92 0.92
Chen 0.65 0.64
Gold 0.99 0.85
HMS 0.83 0.84
Klein 0.83 0.80
Li 0.59 0.74
Maccosko 0.87 0.9
Muraro 0.93 0.92
Romanov 0.67 0.19
Segerstolpe 0.58 0.53
Shekar 0.51 0.89
Silver5 0.55 0.50
Tasic 0.29 0.30
Wang 0.41 0.49
Xin 0.89 0.61
Zeisel 0.54 0.75
Zheng 0.97 0.7

Table 4.10: Table of ARI scores obtained for the CCMT procedure applied to
the benchmarking data. The table contains both the small and medium
to large scale datasets.

Ensemble Multiview Cell Line
Number of clusters 4 1 HCC827
Number of clusters 7 1 H2228
Number of clusters 5 3 H1975

Table 4.11: CCMT applied to the negative control datasets.

cedure, for all the benchmarking datasets, we varied the number of highly infor-

mative genes from 500 to 2000 in increments of 500. Figure 4.8 shows the results

of applying the CCMT procedure to a varying number of genes. There appears to

be no significant increase in performance for the multiview model when increasing

the number of genes. However, for the ensemble model, increasing the number of

informative genes does increase the overall performance. From Figure 4.8, we see

that setting the number of informative genes to 500 achieves the highest average
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Figure 4.6: Boxplots of the average ARI score across all benchmarking
datasets (n = 18) for both the ensemble and multiview model.

ARI score for the multiview model. The opposite is observed for the ensemble

model. In contrast, using 2000 informative genes results in the lowest overall ARI

score for the multiview model. Again, the opposite is observed for the ensemble

model.

4.4.2 The effect of the number of PCS

In this thesis, we set the number of PCS by automatically finding the knee point of

the PCA scree plot. To test the effect of the number of PCS selected for clustering,

we varied the number of PCS from 5 to 25 in increments of 5. Figure 4.9 shows the

results of applying the CCMT procedure to a varying number of PCS. For both the

ensemble and multiview models, increasing the number of PCS negatively impacts

the performance. The ensemble model is more affected by an increasing amount

of PCS compared to the multiview model. The performance of the CCMT proce-

dure when using a heuristic to select the number of PCS (Figure 4.6) is much better

compared to when the number of PCS is fixed. This is most likely because increas-

60



Figure 4.7: A) Scatter plot of the predicted number of clusters vs ARI score
for the ensemble model. The x-axis is the predicted number of clusters
and the y-axis ARI score. B)Scatter plot of the predicted number of clus-
ters vs ARI score for the multiview model. The x-axis is the predicted
number of clusters and the y-axis ARI score. For both scatter plots, the
red values are the true number of clusters.

ing the number of PCS does not necessarily increase the data’s signal. It’s possible

that the extra PCS included introduces significantly more noise content, which ad-

versely affects the model’s performance. This is most likely the reason the heuristic

method works much better than fixing the number of PCS. The heuristic method

can better identify the number of PCS to use based on the dataset’s properties.

4.4.3 The limitations of the CCMT procedure

To assess the cases where the CCMT procedure significantly fails to recover ground

truth partitions, we used the fourth simulation setup outlined in Section 4.2.2. Both

the balanced and unbalanced datasets were passed to the CCMT procedure, and

performance was assessed using the ARI score (Section 3.10) as before.

Tables 4.12 and 4.13 shows the ARI scores of the CCMT procedure applied to
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Figure 4.8: Box plot of ARI scores for varying number of genes for the both
the Multiview and the Ensemble model. The x-axis is the number of
genes and the y-axis is the ARI score.

the balanced and unbalanced datasets. The results show that the CCMT procedure

is limited at recovering the ground truth clusters when there is high cluster over-

lap and an increasing number of clusters. This trend is more pronounced in the

balanced dataset compared to the unbalanced datasets. For both the balanced and

unbalanced datasets, the ensemble (Section 3.6.4) model, on average, does a better

job at recovering the ground truth partitions compared to the multiview (Section

3.6.4) model.

4.5 Comparing CCMT to other clustering methods
The small scale and the medium to large scale datasets was used to compare

the CCMT procedure against other clustering methods often used when analysing

scRNA-seq data. We compared the ARI score and the running time across all meth-

ods.
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Figure 4.9: Box plot of ARI scores for varying number of PCS for the both the
Multiview and the Ensemble model. The x-axis is the number of PCs
and the y-axis is the ARI score.

Dataset Ensemble ARI Score Multiview ARI Score
5K Cells, 4 Clusters 0.97 0.60
5K Cells, 8 Clusters 0.29 0.17
5K Cells, 16 Clusters 0 0
10K Cells, 4 Clusters 0 0.55
10K Cells, 8 Clusters 0.08 0.17
10K Cells, 16 Clusters 0 0
15K Cells, 4 Clusters 0.98 0.71
15K Cells, 8 Clusters 0.46 0.18
15K Cells, 16 Clusters 0 0

Table 4.12: Table of the ARI scores obtained from the CCMT procedure ap-
plied when simulating data scalability with high overlap on balanced
datasets.
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Dataset Ensemble ARI Score Multiview ARI Score
5K Cells, 4 Clusters 0.94 0.94
5K Cells, 8 Clusters 0.88 0.40
5K Cells, 16 Clusters 0 0.09
10K Cells, 4 Clusters 0.86 0.82
10K Cells, 8 Clusters 0.12 0.23
10K Cells, 16 Clusters 0.03 0.08
15K Cells, 4 Clusters 0.76 0.75
15K Cells, 8 Clusters 0.29 0.29
15K Cells, 16 Clusters 0.02 0.07

Table 4.13: Table of the ARI scores obtained from the CCMT procedure ap-
plied when simulating data scalability with high overlap on unbalanced
datasets.

4.5.1 Small scale datasets

For the small scale datasets, we compared the CCMT procedure against Seurat,

SIMLR and SC3. SIMLR and SC3 were specifically used for the small scale datasets

because these methods have high computational complexity and thus do not scale

well with larger datasets. Figure 4.10 shows boxplots of the ARI score and the

running time of the methods applied to the small scale datasets. The running time

(Figure 4.10A) was computed in nanoseconds, and values are presented on a log

scale. Running time varied substantially between all the methods. Seurat was the

fastest and SIMLR was the slowest. The CCMT models (ensemble and multiview)

were the second and third fastest, respectively, and SC3 was the fourth fastest. For

the ARI score versus running time (Figure 4.10B), both the CCMT models have the

highest average overall ARI score. Seurat has the second-highest overall average,

with SC3 coming third and SIMLR coming last. Even though Seurat has the fastest

running time, it is not as accurate as the CCMT procedures. The CCMT methods may

be slower compared to Seurat but are better able to recover ground truth partitions.

4.5.2 Medium to large scale datasets

For the medium to large scale datasets, we compared the CCMT models against

Seurat. Seurat was explicitly used for these datasets because of its speed and ac-
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curacy. Seurat scales quite well for larger datasets, which made comparisons to

CCMT easier and efficient. Figure 4.11 shows boxplots of the ARI score and the

running time of the methods applied to the medium to large scale datasets. On the

medium to large scale datasets, Seurat is again the fastest method. Again, both

the CCMT models have a similar running time. For the ARI score (Figure 4.11B),

the CCMT models again have the highest overall average ARI score. Again, we see

that the CCMT models do a better job of recovering the ground truth partitions than

currently used methods.

Figure 4.10: A) Box plot of running times of methods on the small scale
datasets (n = 7). The x-axis is the method used and the y-axis natural
log of the computational time in nano seconds. B)Box plot of running
times of methods vs ARI score on the small scale datasets (n = 7). The
x-axis is the method used and the y-axis ARI score.

4.6 Summary
To summarize, through simulation studies and real data, we showed that the mul-

timodality testing is able to infer cluster structure accurately. This method also is
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Figure 4.11: A) Box plot of running times of methods on the medium to large
scale datasets (n = 11). The x-axis is the method used and the y-axis
natural log of the computational time in nanoseconds. B)Box plot of
running times of methods vs ARI score on the medium to large scale
datasets (n = 11). The x-axis is the method used and the y-axis ARI

score.

fast and sensitive to cluster size, separability, and data sparsity. We also showed

that multimodality testing performs well on both the negative and positive control

datasets. Further, we showed that for the CCMT procedure, both the multiview and

the ensemble models works well for all the simulation studies, as measured by the

ARI score. On real datasets, we compared both the computational time and ARI

score of the CCMT procedure to well well known and often used methods. We

showed that it is faster than some of the current methods and, on average, more

accurate. Finally, to see the effects of the number of genes and PCS on the CCMT

procedure, we performed an experiment where the number of genes and PCS were

varied. The results showed that increasing the number of genes generally increased

the overall performance of the CCMT procedure. However, the opposite is observed

when increasing the number of PCS.
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Chapter 5

Conclusions

5.1 Summary
In this thesis, we developed a method that assesses the cluster structure inherent to

a dataset. We used multimodality testing coupled with three different data normal-

ization and gene selection methods. The cosine distance was used to calculate the

distribution of gene expression patterns between cells, and the Dip test was used

to test this distribution for multimodality. The cosine distance was used because it

is computationally efficient to compute. This distance metric also showed higher

average accuracy and sensitivity than other distance metrics such as Euclidean and

Manhattan on simulation studies and real data. Next, we used extensive simulation

studies to show that this method is robust to the challenges inherent to scRNA-seq

datasets. These challenges include high cluster overlap, high sparsity, an increas-

ing number of clusters, and increasing data size. Using real datasets as positive and

negative controls, we showed that this method performs as expected in the presence

of clusters and the absence of cluster structure.

The second method developed in this thesis addressed finding the number of

clusters and returning the clusters. To do this, we developed the CCMT procedure.

The CCMT procedure couples multimodality testing with hierarchical clustering

and discriminant analysis. The CCMT procedure assumes that clusters are derived

from unimodal distribution. This assumption makes the CCMT procedure flexible

enough to accommodate datasets with different distributions since many known
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distributions have a unimodal variant. Using extensive simulations, we showed

that the CCMT procedure is able to recover simulated clusters accurately. It is also

sensitive to cluster overlap, meaning that it can detect clusters even when they

are highly overlapping. Using real datasets as positive and negative controls, we

demonstrated the CCMT procedure ability to accurately recover ground truth parti-

tions. We separated the real datasets into two groups and used them to benchmark

the CCMT procedure against other methods currently used to cluster scRNA-seq

datasets. We showed that for both the small and medium to large scale datasets,

the CCMT procedure is more accurate than other methods. The CCMT procedure is,

however, slower than Seurat.

In the last part of the thesis, we attempted to understand the factors affecting

multimodality testing and the CCMT procedure. We showed that the log normal-

ization method is less sensitive than the other two when assessing cluster structure.

For the CCMT procedure, we showed that increasing the number of highly infor-

mative genes used increases the ensemble model’s overall performance. However,

for the multiview model, the performance remains relatively constant. We also

showed that for the CCMT procedure setting, the number of PCS constant for all

datasets negatively affects both the ensemble and multiview models’ performance.

Lastly, we showed that modality testing and the CCMT procedure are limited in

situations with increasing number of clusters and high cluster overlaps. However,

these effect is more pronounced in situations where the clusters sizes are relatively

balanced compared to the cases where sizes are unbalanced.

5.2 Discussion
Notably, for multimodality testing, the log normalization method proved to be less

sensitive for the simulation studies. There could be a few reasons for this. Firstly,

the other two normalization methods may be more similar to the simulation mech-

anism used in the Splatter package. The Splatter package uses a gamma-Poisson

model to simulate molecular counts. Since both the negative binomial and the

multinomial distributions can be estimated using a Poisson distribution, both of

these normalization methods would perform better overall on simulation studies.

However, this is not seen on real data both for the positive and negative control.
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The data generating mechanism for the benchmarking datasets may not be com-

pletely Poisson. There may also be enough differences in gene expression patterns

between cells in each of the benchmarking datasets that all the normalization meth-

ods can pick up, resulting in significant cluster structure evidence.

Multimodality testing is no stranger to the scRNA-seq domain. It has been used

multiple times when analyzing scRNA-seq datasets. In [6], the authors used the

Dip test to show the continuous nature of the distribution of T-cells activation states.

The Dip test was also used in [35] to show that separation between cells could

consistently be found when the cells are represented as a time series. However, to

the best of our knowledge, this is the first time that multimodality testing has been

used to the extent shown in this work.

We investigated the effect of an increased number of genes on the performance

of the CCMT procedure. The results showed that increasing the number of genes

positively impacted the ensemble model and had no significant impact on the mul-

tiview model. See Figure 4.8. This difference is partly due to how the clustering

results are combined between the ensemble and the multiview model. For the en-

semble model, a clustering solution is generated independently for each normaliza-

tion method. Next, these clustering results are combined to form an ensemble. The

multiview model combines the result from all three normalization methods before

generating a clustering solution. By default, we select the top 500 most informa-

tive genes. The multiview model has an upper bound of 1500 on the total number

of genes when clustering, which happens when there are no overlaps between the

most informative genes across the normalization methods. The multiview model

has a higher gene pool before clustering, so we see no significant performance in-

crease. In contrast, the ensemble is limited to 500 genes in each normalization

method. Thus increasing the number of genes improves each of the independent

clustering solutions before the ensemble generation, which improves the ensemble

clusters.

We also investigated the effect of an increased number of PCS used for cluster-

ing on the CCMT procedure performance. The results showed that increasing the

number of PCS had a negative impact on both the ensemble and multiview models.

See Figure 4.9. This decrease in performance is largely due to more PCS decreas-

ing the signal to noise ratio in the dataset, which negatively impacts clustering. We
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currently select the number of PCS for each dataset based on automatically finding

the knee point on a PCA scree plot. This knee point is found by first sorting the PCS

in decreasing order. Next, we find the point with the largest distance to the first

and last scree plot points. Since each dataset has different characteristics and thus

behaves differently, the knee point method is better able to take this in to account.

The CCMT procedure results when using the knee point method are better when

compared to holding PCS constant for every dataset.

The CCMT procedure heavily relies on the projection of two classes on a line

that best separates their centers. The Fisher discriminant function that is used to

compute the projections assumes that the classes are linearly separable. This means

that a single straight line can separate both classes. A straight line may not always

be the case capable of separating the classes. If the classes are not linearly separa-

ble, the projection may fail, causing the CCMT procedure to fail subsequently. We

did not explore this topic in this work because there is currently no way to simulate

scRNA-seq datasets with linearly not separable classes fully. The results for the

CCMT procedure on benchmarking data justify our assumption that the clusters or

cell types present can be separated using the Fisher linear discriminant function.

A critical decision when clustering scRNA-seq data is how many cell types

to identify. There is generally no accepted way of choosing an adequate number

of clusters or cell types when clustering scRNA-seq datasets. It depends on the

resolution at which the user wants to view the dataset. If the user decides on a

smaller number, this will result in identifying more distinct cell types. However,

if the user decides on a larger number, this results in less distinct cell types. This

work has served to provide some automated guidance on this issue. We hope this

work will help relieve some of the headaches associated with deciding how many

possible cell types are present in a dataset. The CCMT procedure developed in this

work tends to underestimate the correct number of clusters. However, based on

the ARI scores, it seems that even though the CCMT procedure underestimates the

correct number of clusters, the clusters have a higher agreement with the ground

truth.
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5.3 Future Work
Much of this work depends on computing distances between cells. However, for

relatively large datasets, this can become computationally expensive. A possible

future direction for handling quite large datasets would be to use machine learn-

ing methods to reduce computational costs. For the CCMT procedure, it would be

possible to use a subset of the dataset to train a model and then use it to predict

the other cells. One approach would be to randomly sample the dataset and then

run the multimodality testing algorithm on the random sample for assessing clus-

terability. If a large enough sample size is chosen, it should capture the general

cluster structure present in the dataset.

Another avenue for future work is integrating a non-linear projection method.

Currently, the Fisher discriminant coordinates projection method is used for pro-

jecting the classes. However, this is a linear projection method and may fail when

the classes are not linearly separable. A kernelized version of the Fisher projec-

tion method can handle cases where there is no clear linear separation between the

classes. A kernelized version of Fisher discriminant coordinates is discussed in

[9, 67, 80]. Combining both the linear and the kernel versions of this projection

method will make the CCMT procedure well rounded and more flexible in handling

different datasets.
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