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Abstract
Protein computational design uses current knowledge in structural biology and statistical tools to predict amino acid

sequences that exhibit targeted properties. In this study, two protein designs and one statistical tool are developed.

The first designed protein family in this thesis is chimeric antibodies for Covid-19 and future coronavirus variants. The

chimeric antibodies are composed of an IgG1 framework with "ACE2 units" grafted on complementarity-determining

regions. ACE2 units were small protein fragments built around the spike-interacting regions of ACE2. Such a chimeric

construct is designed to neutralize SARS-COV-2 by binding spike receptor binding domain and is expected to be tolerant

to receptor binding domain (RBD) mutations, as long as ACE2 recognition is required for infection. The binding free

energy of ACE2 units to the spike RBD was assessed by molecular dynamics simulation. Surprisingly, the computation

result showed that some ACE2 units had similar or even stronger RBD binding than full length ACE2. Moreover, it

adds validity to the simulations that the calculated binding free energy between the ACE2 and SARS-COV-2 RBD,

-52.9 +- 5.0 kJ/mol, is within the range of the experimental results.

The second designed protein in this thesis is an immunogen scaffold design for neurodegenerative disease using cyclic

peptides. Effectively scaffolding epitopes on immunogens, in order to raise conformationally selective antibodies

through active immunization, is a central problem in treating protein misfolding diseases. We seek to selectively target

conformations enriched in toxic, oligomeric propagating species while sparing healthy forms of the protein which are

often more abundant. To this end, we scaffolded cyclic peptides by varying the number of flanking glycines, to best

mimic a misfolding-specific conformation of an epitope of alpha-synuclein enriched in the oligomer ensemble. The

cyclic peptide scaffolds of alpha-synuclein are screened in silico based on their ensemble overlap properties with the

fibril, oligomer-model, and isolated monomer ensembles.

Lastly, a simulation tool, reservoir replica exchange molecular dynamics simulation (R-REMD), was implemented in

GROMACS software. The enhanced sampling of the R-REMD was tested on several systems including a cyclic peptide

scaffold whose structural ensemble can predict the selectivity of the raised antibody.
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Lay Summary
Protein computational design uses current knowledge in structural biology and statistical tools to predict amino acid

sequences that exhibit targeted properties. In this study, two protein designs and one statistical tool are developed. The

first protein design in this thesis is antibodies for treating COVID-19 and its future coronavirus variants. The antibodies

treatment could be prepared for the potential next wave of coronavirus outbreak. The second protein design is cyclic

peptide immunogen, a ring-like molecule, for Parkinson’s disease. The designed immunogen will inject into mice where

useful antibodies could be raised. Until now, no effective drug for Parkinson’s disease is developed. This immunogen

design could save time and resources for finding an effective antibody. Lastly, a simulation tool, reservoir replica

exchange molecular dynamics simulation, is developed in GROMACS software. This simulation tool can generate

reliable cyclic peptide structural ensembles which are important in immunogen virtual screening.
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1 Introduction

1.1 Rationally designed chimeric antibodies for Covid-19 and future coronavirus variants

Coronaviruses are a group of enveloped single-stranded RNA viruses. They are often found in birds and mammals

and occasionally spread to humans [3]. Before 2002, four human coronaviruses NL63, HKU1, 229E, and OC43 were

known and have occasionally caused minor respiratory illnesses [4]. Since then, we have seen three new coronaviruses,

which frequently cause severe illness and have high fatality rates. While viruses responsible for both Severe Acute

Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), which emerged in 2002 and 2012

respectively, were relatively limited in the spread, SARS-CoV-2, which was recently discovered towards the end of

2019, continues to spread around the world causing the 2019 Coronavirus disease (COVID-19).

We are likely to continue to see the occasional emergence of coronavirus illnesses because of the large animal reservoirs

and frequent opportunities for transmission events between animals and humans. While the pressing need of the hour is

to stop COVID-19, we must also try to develop more broadly applicable methods for treating these illnesses.

The first step in the viral entry for SARS-CoV-2 is its attachment of trimeric Spike glycoprotein through the receptor-

binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2), a membrane-bound protein. This

interaction between the spike protein and ACE2 is an indispensable step in viral infection, and therefore an attractive

target for therapeutic intervention. ACE2 plays an essential role in the signaling pathway of cardiovascular homeostasis,

so it is preferable to target the spike protein instead.

Some antibodies targeting the spike protein were developed or discovered during the SARS-CoV epidemic. The RBD of

spike protein is one of the most immunogenic regions on the protein; however, it is also the least conserved, especially

the binding motif. In fact, sequence alignments between 5 beta-coronavirus variants (HKU1, OC43, SARS-CoV,

SARS-CoV-2, and MERS) shows that the binding motif of the RBD is among the most mutable areas of the spike

protein (Red boxed regions of Fig. 3). Thus, antibodies that target binding motif regions, such as m396, S230, CR3014,

and 80R, are specific to SARS-CoV [5] [6]. The high mutability of the ACE2-interacting regions on the RBD renders

existing conventional blocking antibodies likely to be ineffective in the next pandemic wave of coronavirus.

There are still some antibodies that show reactivity across multiple strains of coronavirus. For example, 47D11 [7]

and CR3022 [8], whose epitopes do not overlap with the binding motif, can bind both SARS-CoV and SARS-CoV-2

RBD. Their inability to compromise spike–receptor interaction potentially limits their use as a neutralizing antibody [9].

However, these antibodies may still neutralize through indirect means, perhaps through inducing conformation changes.

Parallel to antibody therapy, administering recombinant human soluble ACE2 is gaining attention for its potential to

block any virus that uses ACE2 as the host cell receptor. Soluble and catalytically inactive ACE2 has been previously

observed to block infection by spike-pseudotyped retroviruses and SARS-CoV into HEK293T cells stably expressing

ACE2 [10]. Recently, Monteil et al. showed that ACE2 could also reduce SARS-CoV-2 infection in both in vitro

and organoid models [11]. Another study also shows that soluble, catalytically inactive ACE2 can block infection of

HEK293T cells by SARS-CoV [10]. In addition to blocking interactions between SARS-CoV/SARS-CoV-2 spike

protein and human cells, exogenous ACE2 introduction is also thought to help maintain host cells’ viability, since

binding of the virus and subsequent fusion and endocytosis can cause reduction of functional ACE2 in infected cells [10].
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One potential ACE2-derived therapeutic construct that has been examined is Fc-fusion proteins, which combined

the extracellular domain of ACE2 with the Fc region of an IgG1 (ACE2-Fc). The benefit of the fusion construct is

an extended half-life of the protein and the ability to recruit cytotoxic T-cells. An ACE2-Fc construct [12] shows a

neutralizing effect (IC50 ∼ 0.8 and 0.1 µ g/ml respectively) for viruses pseudotyped with the Spike of SARS-CoV and

SARS-CoV-2. A safety concern for such constructs is that they may have systemic cardiovascular side effects. This

side effect has been addressed by constructing an enzymatically inactive variant (H374N/H378N mutant ACE2-Fc

fusion), which has similar viral neutralizing capability as wild-type ACE2-Fc constructs (IC50 ∼ 0.9 and 0.08 µg/ml

respectively) .

Another solution to the above safety concerns is introducing a part of ACE2 involved in S-protein binding into a fusion

construct. One of the goal of this paper is to design a chimeric antibody by grafting a segment of ACE2 on the CDRs of

the IgG1 template. In this context, several studies have shown that grafting proteins on IgG1 CDRs can significantly

increase their half-life [13, 14]. A comparison of half-lives of several in-clinical or FDA approved drugs shows that

IgG1-based drugs have a longer half-life than Fc-fusion based drugs (∼2 weeks vs. ∼1 week) [15]. Additionally,

because there are 6 CDR regions per arm of an IgG antibody — 3 on both light and heavy chains — this allows for

multiple chains of protein or peptide to be grafted to each CDR in the chimeric antibody, exploiting the advantages of

avidity in increasing binding affinity. Moreover, ACE2 segments can potentially bind down-state spike because their

small size enables them to penetrate deeper into the spike protein without significant steric hindrance.

Therefore, for reasons of evolutionary robustness to viral mutation, pharmacokinetic lifetime, enhanced target affinity

due to avidity of interactions, safety concerns due to reduced exogenous enzyme activity, the above observations

support the development of a chimeric antibody construct involving one or more CDR-grafted ACE2 portions that are

specifically involved in the binding to SARS-COV-2 RBD.

The construction of the chimeric antibody in this study was on three independent regions, the ACE2 unit region, the

Ig region, and the stalk region between the above two regions. The ACE2 unit region being the determinant part of

the antibody binding, was addressed first and the most thoroughly. The ACE2 unit region design process includes the

ACE2 fragment selection, the assembly of fragments, and the free energy calculation. For the Ig region and stalk region,

some existing designs in the literature were suggested and briefly discussed.

1.2 Epitope scaffolding using alpha-synuclein cyclic peptides to generate oligomer-selectiveantibodies for

Parkinson’s disease

A key step in the development of a therapeutic antibody or active vaccine is the immunization strategy [16], namely, the

choice of protein epitope and how it will be presented to an animal or human immune system. Both primary sequence

and conformation of the epitope determine the particular protein morphologies to which the resulting antibodies will be

selective.

Nowhere has conformational-selectivity been more important to immunotherapies than in protein-misfolding dis-

eases [16]. For this class of diseases, an effective antibody must be able to spare healthy protein and discriminate

misfolded protein species that lead to molecular and cellular pathology [17]. Since the primary sequences of healthy

and aberrant protein are generally the same, barring splice variants and perhaps post-translational modifications, the
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efficacy of an antibody is then due to its selective preference for binding to a misfolded conformation over healthy

in-vivo "native" conformations.

For many proteins involved in misfolding disease however, the native conformational ensemble is intrinsically disor-

dered [18]. Examples include amyloid-β (Aβ), tau protein, α-synuclein, and the low-complexity domains in FUS and

TDP43. Raising an antibody that avoids the majority of diverse conformations of an intrinsically-disordered protein’s

ensemble is a challenge. For example, a peptide consisting of a contiguous fragment of native primary sequence tethered

to an immunogen such as keyhole limpet hemocyanin (KLH) will likely exhibit overlap in its presented ensemble with

the ensemble of isolated native monomer.

Many neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), chronic traumatic

encephalopathy (CTE) and amyotropic lateral sclerosis (ALS), spread throughout the brain via a prion-like mechanism

involving soluble oligomers [19, 20, 21, 22, 23, 16, 24, 25] Soluble oligomers contain roughly 4-40 chains of protein,

which exist in a misfolded conformational ensemble that is conformationally labile and very difficult to experimentally

characterize. We computationally model some key aspects of the oligomer ensemble using molecular dynamics, in

order to predict disease-specific epitopes.

Cyclic peptides or macrocycles are polymers that have been conjugated to form a ring-like topology (Fig. 1). They have

been increasingly used as therapeutics, often as small molecule drugs to bind targets [26, 27]. They have also been

used as immunogens to raise oligomer-selective antibodies in Alzheimer’s disease using the method that we describe

here [28, 29].

In this paper, we do not address the non-trivial problem of misfolding-specific epitope prediction, which we have treated

elsewhere [30] (see Methods Section 3.2.1 : α-synuclein epitope prediction). We focus instead on the problem of how to

properly present a predicted epitope to the immune system of an animal (or human, in the case of active immunization),

so that the resulting antibodies generated by the animal are selective to disease-specific forms of the protein.

We start from computationally generated ensembles of the α-synuclein fibril, isolated monomer, and stressed, partially

disrupted proto-fibril as defined below, which is used as a model for the toxic oligomer − a species we wish to target

with conformationally selective antibodies. We briefly review the epitope prediction method described in [30], and

which is applied here to α-synuclein. Given an epitope and an oligomer model, we then construct various cyclic peptide

immunogen scaffolds of that epitope by varying the number of glycines flanking the epitope on the N- and C- termini.

We determine the optimal scaffolding of the cyclic peptide construct by maximizing the overlap with the stressed

fibril ensemble and minimizing the ensemble overlap with either the monomer or the unstressed "native" fibril. We

also minimize the tendency of antibodies to a scaffolded epitope to elicit off-pathway targeting, by minimizing the

conformational similarity to unrelated structured proteins in the human proteome. Using the above features as screening

criteria, we used a ranking method we have developed previously [31] involving multi-criteria decision making analysis

to systematically ranking the scaffolds from best to worst. Such a ranking allows for the experimentalist to construct a

reduced number of cyclilc peptide scaffolds that are most likely to have the desired features of eliciting antibodies with

conformationally selective binding to toxic oligomer species.

The pipeline of in silico screening method is given in Fig. 13. Each step is described in the Methods. In the Results,

we visually depict the projection of simulated ensembles in reduced conformational space, and we formalize the
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ensemble overlap. We then develop the above-described method to find off-pathway targets for a given scaffold, and

rank 48 candidate cyclic peptide scaffolds. We finally discuss the non-trivial question of weight assignments for

ranking candidates, alternate scaffolding methods, the benefits of in silico screening to facilitate more efficient in vivo

screening, and sensitivity or robustness of epitope prediction depending on the structural model of the fibril used in the

epitope prediction algorithm.

Figure 1: Cyclic peptide renderings for cyclo(CGTKEQGGGG), a scaffold of TKEQ. (a) 2D representation of the
cyclic peptide. (b) 3-dimensional rendering of the cyclic peptide in licorice, also showing the surface of the TKEQ
epitope (c) Ball and Stick (CPK) rendering with color assigned by the atom identity.

1.3 Accelerated ensemble generation for cyclic peptide using Reservoir-REMD

Cyclic peptides have gained more and more popularity as a template of drug design [27, 26]. The structure prediction

method of the cyclic peptide was gaining attention [32, 33, 34, 35, 36] because the structure enables various analyses

such as docking, binding affinity, solubility, and toxicity prediction. Some cyclic peptides possess various stable

states, separated by energy barriers due to the cyclization constraint. For these multi-state cyclic peptides, the structure

prediction method cannot give the relative population between each state, since those methods seldom address the

entropic contribution to the cyclic peptide ensemble distribution. As a result, an accurate and efficient method to sample

the structural ensemble of the cyclic peptide is desirable.

Replica exchange molecular dynamic (REMD) [37, 38] is an option for the ensemble generation. REMD benefit

from normal MD simulations in that proteins in high-temperature replicas can overcome energy barriers easier, and

diverse structures sampled from high-temperature replicas could traverse to lower temperature replicas to accelerate

the ensemble generation. However, the waste of the computation resources for REMD is also significant. Before the

high-temperature replica sampled all the representative stable states, the ensemble generated by low-temperature replica

could not converge and thus wasted. This burn-in process could have been avoided by separating the generation of

stable representative structures at the high temperature and the ensemble generation at low temperatures. A modified

REMD method, reservoir replica exchange molecular dynamic (R-REMD), used a pre-generated high-temperature

reservoir to seed the REMD simulation, where the reservoir coupled to the REMD through exchange attempts between

a randomly drawn state from the reservoir and the highest temperature replica. R-REMD has successfully yielded
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reliable conformational ensemble of various model systems such as the Trpzip2 in implicit solvent [39, 40] and short

oligonucleotide in explicit solvent [41]. Previous R-REMD simulations could only be performed by AMBER software.

In this study, the R-REMD simulations were implemented in GROMACS for the first time by self-written patches. The

ensemble generation using R-REMD and normal REMD of two test systems, alanine dipeptide and Trpzip2 in explicit

solvent, were performed to confirm the validity of the R-REMD code. The ensemble generation of cyclo-(CGKVTSG)

was tested. Cyclo-(CGKVTSG) is a scaffolded Tau protein epitope, and can raise conformational selective antibody

through active immunization [42].
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2 Rationally designed chimeric antibodies for Covid-19 and future coronavirus variants

2.1 Summary

Most of the antibody treatments targeting the ACE2 receptor binding motif (RBM) on SARS-COV-2 spike glycoprotein

are vulnerable to virus evasion through the occurrence of mutations in RBM. To circumvent this issue, a chimeric anti-

body composed of an IgG1 framework with ACE2 scaffolds or "ACE2 units" grafted on complementarity-determining

regions (CDRs), which are developed to act as a decoy with immunomodulatory potential for virus binding and

neutralization. ACE2 units were small protein fragments built around the spike-interacting regions of ACE2. Such a

chimeric construct is designed to neutralize SARS-COV-2 by binding spike receptor binding domain and is expected

to be tolerant to receptor binding domain (RBD) mutations, as long as ACE2 recognition is required for infection.

The binding free energy of ACE2 units to the spike RBD was assessed by molecular dynamics simulation. In total,

the free energy of 8 ACE2 units, with their size ranging from 69 to 259 amino acids, and the full length ACE2 were

assessed. Surprisingly, the computation result showed that some ACE2 units had similar or even stronger RBD binding

than full length ACE2. For example, two ACE2 units consisting of 17% and 43% the size of ACE2 maintained 78%

and 123% binding free energy, respectively. Moreover, it adds validity to the simulations that the calculated binding

free energy between the ACE2 and SARS-COV-2 RBD, −52.9± 5.0kJ/mol, is within the range of the experimental

results. A similar strategy using ACE2 fused with the Fc region of IgG1 was proposed recently that claimed mutation

resistance [12]. Our chimeric antibody offers the additional benefit of ACE2 units that not only have similar or even

higher binding affinity, but can also be grafted on multiple CDRs due to their small size to increase the avidity.

2.2 Methods

2.2.1 Determine strength of residue interactions

The extent of direct contact approximates the strength of the interaction. The solvent-accessible surface area (SASA)

of ACE2 was computed with the presence and absence of the RBD. The SASA difference of the two stands for the

interaction strength of the ACE2 residues. Likewise, the interaction strength of the RBD residues were determined in the

same way. Since all glycans are far from the binding interface, they do not contribute to the interaction. The RBD-ACE2

complex for SARS-COV-1, SARS-COV-2, and NL63 are of PDB code 2AJF, 6M0J, and 3KBH, respectively. The

SASA calculation is performed by GROMACS software.

2.2.2 Rosetta

2.2.2.1 Patch ACE2 modules with designed linkers

The amino acid linkers that patch ACE2 modules (as defined in section 2.3.2 : Determine modules on ACE2 that

preserve the interaction with spike) into ACE2 units (as defined in section 2.3.3 : Construction of ACE2 unit) were

designed by remodel mover in Rosetta [43]. The backbone secondary structure and preferred amino acid identity for

each residue were defined using a blueprint file in the remodeling process. The design setting for linkers allowed

random secondary structure for backbone design and allowed all amino acid except Cysteine for sequence design. In

the remodeling process, structures of ACE2 modules were not altered except the residues right next to the designed
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linkers. All the ACE2 units except design3, design6, and design7 only considered ACE2 modules in the remodeling

process. For the three exceptions, SARS-COV-2 RBD was also included in Rosetta energy assessment. Each linker

design task ran on 144 CPU cores for 3 hours. The lowest total Rosetta energy design was selected among the outputs

and proceeded to binding free energy calculation. The exceptions were design3 and design6 whose selection criterion

was the highest interaction energy Eint (see Methods: 2.2.2.2 : Estimate interaction energy).

2.2.2.2 Estimate interaction energy

Interaction energy was calculated by the formula, Eint = Ear −Ea −Er, where Ear is Rosetta energy with the ACE2

unit and the RBD both present, Ea is Rosetta energy with ACE2 unit itself and Er is Rosetta energy with the RBD

itself. Although the RBD was not included in the remodel process of design5, Eint can still be calculated after design5

structure was aligned back to the RBD-ACE2 complex crystal structure (PDB code 6M0J) [44].

2.2.2.3 Design buried residues to stabilize the structure for design2

Rosetta can perform mutations on buried residues to stabilize the structure. Among all the ACE2 unit, only design2

designed its buried residues. A residue was classified as buried if its SASA was lower than 0.4nm2. By such definition,

the buried residues in the helix-turn-helix region (module 1) of ACE2 were 25A 28F 29L 32F 36A 43S 44S 46A 47S

48W 51N 52T 58N 65A 66G 69W 72F 76Q 77S 80A. Disulfidize mover and FastDesign mover were employed to

perform stabilization mutations [45]. Disulfidize mover could scan through each residue to build appropriate disulfide

bonds. FastDesign could perform sequence design to stabilize the structure through a series of mutations and the energy

minimization process. The two movers were implemented in serial and repeated for two cycles. In the FastDesign

mover, the action imposed on each residue was defined through a resfile, where the buried residues were set with a flag,

ALLAA, allowing sequence identity design and repacking. The residues in contact with the RBD (Table 2) were also

set with a flag, NATRO, which fixed the rotamer state to reduce the impact of the design on the RBD interaction. The

rest of the protein was set with a flag, NATAA, allowing repacking but not sequence identity design. The script ran

on 48 CPU cores for 12hrs and generated 1187 designs. Among the designs, 43 formed a single disulfide bond, and

design2 is chosen to be the lowest Rosetta energy design out of the 43.

2.2.3 Theory background of modeling

2.2.3.1 Umbrella sampling

Umbrella sampling (US) is a computational technique to efficiently sample a system where the energy barrier hinders

the ergodicity [46]. The umbrella sampling imposes a biased potential on the original Hamiltonian so the new artificial

Hamiltonian can enhance the sampling of the reaction coordinate of interest (ex. RMSD, separation distance). The

ideal biased potential for sampling a system along a reaction coordinate is the invert of the free energy surface along

the chosen reaction coordinate, so the sampling will not be hindered by the energy barrier. However, the underlying

free energy surface is unknown beforehand, so a solution to this is to force the sampling to cover the range of reaction

coordinate of interest by performing a series of harmonic biased potential (or windows). Series of US simulations can
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be analyzed using the weighted histogram analysis method (WHAM) [47] or its generalization, such as the multistate

Bennett acceptance ratio method (MBAR) [48].

In this study, umbrella sampling was performed serially. The initial coordinate of each US window was the final

coordinate of the previous window; therefore, each successive window benefits from a longer equilibration time [49].

Since the collective variables in each window should have a normal distribution centered around the bias center, there

should not be any increasing or decreasing trend. To check the trend of the collected trajectory of collective variables,

the Mann-Kendall trend test was performed on the last 50% of the US trajectories [50]. The simulations with trends in

collective variables were extended to ensure correct sampling.

2.2.3.2 Multistate Bennett acceptance ratio method

The potential of mean force (PMF), or free energy surface, along reaction coordinates, such as the separation distance

or RMSD, was estimated by MBAR method in this study. MBAR estimator was applied on measurements collected

from umbrella sampling method. Using the definition by Shirts and Chodera [48], the dimensionless free energy of

state i (ex. state under particular biasing potential) is defined by

fi = −ln(ci) (1)

where ci is the partition function of state i, and is defined by

ci =

∫
Γ

qi(x)dx (2)

where qi is non-negative and represents an unnormalized density function, and Γ is the phase space the integral span. In

samples obtained from Monte Carlo simulation, molecular dynamics simulation or from experiment, this unnormalized

density is simply the Boltzmann weight

qi(x) = e−ui(x) (3)

The partition function of state i and state j are linked by the relation

ci < cjαij >i=

∫
cicjαijdx = cj < ciαij >j (4)

which holds for arbitrary choice of functions αij , provided all ci are nonzero. It is possible to construct the αij which

leads to minimum variance in the free energies, and obtain a self-consistent nonlinear equation for the ci that has a

unique solution, up to a multiplicative constant [51]

ci =

K∑
j=1

Nj∑
n=1

qi (xjn)∑K
k=1Nk ĉ

−1
k qk (xjn)

(5)

where K is the total number of states (ex. number of umbrellas), and Nj is the number of configurations in the state j

(ex. uncorrelated number of configurations in each umbrella). Note that in equation 5, we don’t have to know which
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state configuration xjn came from. This means that the double summation in equation 5 can be reduced to

ci =

N∑
n=1

qi (xn)∑K
k=1Nk ĉ

−1
k qk (xn)

(6)

where N is the summation of all configurations,
∑K
k=1Nk. Assuming qi are Boltzmann weighted, equation 5 can be

expressed in terms of free energy as

fi = − ln

N∑
n=1

exp [−ui (xn)]∑K
k=1Nk exp

[
f̂k − uk (xn)

] (7)

Note that fi in equation 7 is the free energy of the system when different bias are applied, which is not yet the PMF.

The PMF Aξi along a reaction coordinate ξ can be computed by

Aξi = −ln< χξi >

wξi
(8)

where < χξi > is an observable representing the probability the system being positioned at ith bin of the reaction

coordinate ξ, and wξi is the relative bin width of ξi. < χξi > can be calculated just as any other observable. The

observed value of a particular state, χξi(xn), can be weighted by the right hand side of equation 6 and normalized by ci
when state i is an equilibrium state (ex. without any biasing potential). χξi(xn) is simply one if the configuration xn is

positioned in bin ξi, otherwise zero. < χξi > can be calculated as follows

< χξi >=
1

cequil

N∑
n=1

exp [−u (xn)]∑K
k=1Nk exp

[
f̂k − uk (xn)

]χξi(xn) (9)

where cequil is

cequil =

N∑
n=1

exp [−u (xn)]∑K
k=1Nk exp

[
f̂k − uk (xn)

] (10)

The computation of solving fi and PMF were handled by the pymbar python module that is public on github

(https://github.com/choderalab/pymbar). Note that Souaille and Roux derived the equation for PMF itself in 2001 [52]

as the limit of weighted histogram analysis method (WHAM) [53] as bins go to zero width.

2.2.3.3 Binding free energy

Determination of the binding free energy between the RBD (receptor) and the ACE2 unit (ligand) was carried out using

a method from Woo and Roux [54]. The absolute binding free energy can be defined in terms of equilibrium binding

constant (Keq) as Gbind ≡ −kBT ln [KeqC
◦] by assuming a standard state concentration C◦ of 1 mol/liter ( 1/1661Å3).

The equilibrium binding constant for a reaction, L+ P 
 LP , is defined as Keq = [LP ]
[L][P ] , or alternatively

Keq =
1

[L]
× p1

p0
(11)

9



where p1 and p0 stand for the probability of two distinct configurational space, the "bound" state and the "free" state,

respectively. Assuming that the receptor concentration, [P ], is sufficiently low, it is possible to consider a single one

with its center of mass held fixed at the origin surrounded by a solution of ligands without loss of generality. The

probability ratio, p1p0 , in Eq. 11 can be substituted by the fraction of the partition function as following

Keq =
1

[L]
×
N
∫
bound

d1
∫
free

d2 · · ·
∫
free

dN
∫
dXe−βU∫

free
d1
∫
free

d2 · · ·
∫
free

dN
∫
dXe−βU

(12)

where U is the potential energy of the system, and {1,2, . . .N,X} are the degrees of freedom of the N ligand molecules

and the remaining environment atoms (solvent or protein), respectively. The subscripts bound and free in the integrals

indicate the relevant spatial regions of the configurational space to be included in each integration. In Eq. 12, the ligand

molecule 1 has been chosen arbitrarily to occupy the binding site, and the factor N accounts for the fact that any ligand

could have been chosen. Because the free region is isotropic and homogeneous, we have

Keq =
1

[L]
×

N
∫

bound
d1
∫
dXe−βU

Vfree

∫
free

d1δ (r1 − r∗1)
∫
dXe−βU

(13)

=

∫
bound

d1
∫
dXe−βU∫

free
d1δ (r1 − r∗1)

∫
dXe−βU

(14)

where r1 is the position of the center of mass of ligand 1 and r∗1 is some arbitrary fixed location in the free region, far

away from the receptor. The integrals over the (N - 1) remaining ligands have been omitted for the sake of simplicity.

Because [L] = N/Vfree, Eq. 13 can further reduce to Eq. 14. Although Eq. 14 is exact, to achieve convergence of Keq

by MD simulation would need significant sampling. To illustrate the convergence problem, one can further reduce

Eq. 14 by introducing ρ (r′1) ≡
∫
d1δ (r1 − r′1)

∫
dXe−βU .∫

bound
d1
∫
dXe−βU∫

free
d1δ (r1 − r∗1)

∫
dXe−βU

=

∫
bound

dr1ρ (r1)

ρ (r∗1)
(15)

=

∫
bound

dr1ρ (r1)

ρ (r∗1)×
∫
dr1δ(r1−r∗1)∫
dr1δ(r1−r∗1)

(16)

= 4πr∗1
2

∫
bound

dr1ρ (r1)

ρ (r∗1)×
∫
dr1δ (r1 − r∗1)

(17)

= 4πr∗1
2

∫
bound

dr1ρ (r1)∫
dr1δ (r1 − r∗1) ρ (r1)

(18)

= 4πr∗1
2
∫
bound

dr′1

∫
dr1δ (r1 − r′1) ρ (r1)∫
dr1δ (r1 − r∗1) ρ (r1)

(19)

= 4πr∗1
2
∫
bound

dr′1e
−β[W(r′1)−W(r∗1 )] (20)
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whereW(r) is a PMF defined as a function of the radial distance r1 between the receptor and the ligand. It’s hard

to sample a convergedW(r), since the orientation and conformation of both receptor and ligand can change, which

significantly increases the configurational entropy of W(r). To improve the convergence of W(r), one can apply

additional restraints to ensure that the dissociation is along a chosen vector. The pre-defined vector approach reduces

the configurational space needed to be sampled and therefore leads to faster convergence.

In this study, the additional restraints includes angle restraint, orientational restraint, and conformational restraint.

The angle restraint, ua was imposed on θ and φ (as defined in Fig. 2a). These two angles defined the dissociation

vector. The orientational restraint, uo, was imposed on angles (Θ1,Φ1,Ψ1) (as defined in Fig. 2a). The orientational

restraint ensured that the same "face" of the ACE2 unit pointed to the RBD during the separation, and vise versa. The

conformational restraint can be imposed on the RMSD of the ACE2 unit (uACE2,c) or the RBD (uRBD,c), which

allowed the sampling to only have to be around the target structures. These restraints can be implemented into Eq. 14

by inserting intermediate states. Thus, Keq can become the product of the following terms.

eβG
bound
RBD,c =

∫
bound

d1
∫
dXe−βU∫

bound
d1
∫
dXe−β(U+uRBD,c)

(21)

eβG
bound
ACE2,c =

∫
bound

d1
∫
dXe−β(U+uRBD,c)∫

bound
d1
∫
dXe−β(U+uRBD,c+uACE2,c)

(22)

eβG
bound
o =

∫
bound

d1
∫
dXe−β(U+uRBD,c+uACE2,c)∫

bound
d1
∫
dXe−β(U+uRBD,c+uACE2,c+uo)

(23)

eβG
bound
a =

∫
bound

d1
∫
dXe−β(U+uRBD,c+uACE2,c+uo)∫

bound
d1
∫
dXe−β(U+uRBD,c+uACE2,c+uo+ua)

(24)

S∗I∗ =

∫
bound

d1
∫
dXe−β(U+uRBD,c+uACE2,c+uo+ua)∫

free
d1 δ(r− r∗)

∫
dXe−β(U+uRBD,c+uACE2,c+uo)

(25)

e−βG
free
o =

∫
free

d1 δ(r− r∗)
∫
dXe−β(U+uRBD,c+uACE2,c+uo)∫

free
d1 δ(r− r∗)

∫
dXe−β(U+uRBD,c+uACE2,c)

(26)

e−βG
free
ACE2,c =

∫
free

d1 δ(r− r∗)
∫
dXe−β(U+uRBD,c+uACE2,c)∫

free
d1 δ(r− r∗)

∫
dXe−β(U+uRBD,c)

(27)

e−βG
free
RBD,c =

∫
free

d1 δ(r− r∗)
∫
dXe−β(U+uRBD,c)∫

free
d1 δ(r− r∗)

∫
dXe−βU

(28)

Using the same substitution as in Eq. 15 and follow similar derivation of Eq. 16, 17, 18, and 20, the S∗ and I∗ in Eq. 25

can be determined as

S∗ = r∗2
∫
d1 e−βua = r∗2

∫ π

0

dθ sin(θ)

∫ 2π

0

dφ e−βua (29)
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I∗ =

∫
dr e−β(W(r)−W(r∗)) (30)

The term S∗ addresses the removal of the positional restraints on ACE2 unit, which was extracted from the binding site

along a unidirectional axis, rather than being permitted to move freely on the sphere surrounding RBD. The term I∗

was calculated from the separation PMF,W(r) in the presence of all restraints.

In equation 21, 22, 23, 24, the denominator is the partition function after the restraint was applied, and the nominator

is the partition function before the restraint was applied. The ratio gives the free energy cost to impose the restraint

by the relation, ∆G = −1
β ln(Q1

Q2
). The restraints was imposed serially in the order uRBD,c, uACE2,c, uo, ua, and the

marginal free energy contribution from imposing each constraint were calculated. Similarly, in equation 26, 27, 28,

the ratio of the partition functions is the free energy cost to release the restraint. The restraints were released serially

in the order uo, uACE2,c, uRBD,c, and the marginal free energy contribution from releasing each constraint were also

calculated. The binding free energy is represented by the following:

Gbind = − 1

β
ln(C0I

∗S∗)−Gbounda + (Gfreeo −Gboundo ) + (GfreeACE2,c −G
bound
ACE2,c) + (GfreeRBD,c −G

bound
RBD,c) (31)

In this paper, a simplified version of binding free energy calculation was performed. Since the free energy gain to

impose restraints in bound state (GboundRBD,c, G
bound
ACE2,c, G

bound
a , Gboundo in equation 31) are typically very small, these

terms were omitted to reduce the complexity and increase the speed of the calculation

2.2.3.4 Error analysis for binding free energy

The error of the binding free energy Gbind came from the error propagation of each component term in Eq. 31. Since S∗

and Gfreeo were calculated analytically, there were no error associate with them. The error of other terms are described

as follows.

For first, the integral of the PMF in Eq. 30 is dominated by the immediate vicinity of the distance at bound state. Since

the PMF error at r∗ is typically much larger than the PMF error at the bound state (Fig. 6), the error of I∗ could be

safely approximated by the error propagation ofW(r∗) alone

σ2
I∗ =

(
∂I∗

∂W(r∗)

)2 (
σW(r∗)

)2
=
(
βI∗σW(r∗)

)2
(32)

where the error σW(r∗) was taken from the larger value of σW(r∗) using 50% US trajectories, and the difference of

W(r∗) using the last 75% and 50% US trajectories. The former error was estimated by MBAR estimator, and the later

error came from the insufficient convergence. The error of the first term in Eq. 31, GIS = − 1
β ln(C0I

∗S∗), is in a clean

expression

σ2
GIS

=

(
∂ − 1

β ln(C0I
∗S∗)

∂I∗

)2

σ2
I∗ =

σ2
I∗

β2I∗2
= σ2

W(r∗) (33)
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Figure 2: (a) Schematic representation of the local reference frame used to define ACE2 unit’s position and orientation
relative to RBD. The spherical coordinate system establishing the position of ACE2 unit relative to RBD is by the
P1–L1 distance r1, the P1-L1-L2 angle θ1, and the P1-L1-L2-L3 dihedral angle φ1. The Euler angles needed to define
the orientation of ACE2 unit relative to RBD are the L1–P1–P2 angle Θ1, the L1–P1–P2–P3 dihedral angle Φ1, and
the L2-L1–P1–P2 dihedral angle Ψ1. (b) The visualization of each group for ACE2 unit (design4). L1 was defined as
the whole ACE2 unit, and other groups were defined by the same color: L2 (blue), L3 (red), P1 (blue), P2 (red), P3
(orange).

Secondly, the error of GfreeACE2,c was approximated by the bigger value of the following two methods: 1) The standard

deviation of 10000 bootstrapped GfreeACE2,c. A bootstrapped GfreeACE2,c was evaluated by Eq. 37 using the resampled PMF

whose value at ξi was sampled from a Gaussian probability function

Pξi(F ) = exp

− (F − wfreeACE2,c(ξi))

2σ2
wfree

ACE2,c(ξi)

 (34)

where σ2
wfree

ACE2,c(ξi)
is the error of the PMF at ξi.

2) The difference of GfreeACE2,c using PMF determined by the last 50% and 75% US trajectories.

Thirdly, the error of GfreeRBD,c can be calculated by error propagation from Eq. 39. Using the same symbol as sec-

tion 2.3.4.4 : Release RBD conformational restraint, the error can be expressed as

σ2
Gfree

RBD,c

=
∑
i

(
∂GfreeRBD,c

∂ρi
σρi

)2

=
∑
i

(ρiσρik∆λi)
2 (35)

where subscript i represents a value at certain confining strength (λi × k), σρi is the standard deviation of ρi, and ∆λi

is λi+1 − λi.
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2.2.4 Simulation detail for binding free energy assessment

The bound structure between the ACE2 units and the RBD was determined by the structural alignment of the native part

of the ACE2 units to the same sequence in the crystal structure of the ACE2-RBD complex (PDB code: 6M0J) [44].

The terminals of the ACE2 units were kept neutral (NH2 and COOH) since they won’t be exposed to the solvent when

grafted on the antibody CDRs. Each complex was solvated, ionized, and equilibrated for 5 ns. The centroid structure

during the 5 ns equilibration was used for the initial structure for the umbrella sampling and as the reference ACE2 unit

structure for the RMSD restraint. All MD simulations were generated using GROMACS program [55] patched with

a community-developed PLUMED library [56]. The CHARMM36m force field [57] was used with the TIP3P water

potential [58]. The trajectories were generated with periodic boundary conditions in the isobaric-isothermal ensemble

at constant pressure of 1atm and temperature of 300K. Potassium and chloride ions were added to neutralize the overall

systems and simulate an aqueous salt solution at 150 mM.

The coordinate system for specifying the overall relative position and orientation of the ACE2 units with respect to

the RBD was constructed by choosing three groups of atoms within the ACE2 units and the RBD (Fig. 2a). The three

centers, P1, P2, and P3, for the RBD were given by the center of mass of residue 710-770, 670-688, and 598-625,

respectively. The three centers, L1, L2, and L3, for each ACE2 unit, are listed in Table 1. The visualization of each

group for design1 is shown in Fig. 2b.

The biasing potentials were used to reduce the phase space needed to be sampled in the construction of the separation

PMF,W . The biasing potentials are listed as follows:

1) The ACE2 units were restrained to lie along the 1D axis r1 by using the harmonic potential ua (θ1, φ1) = 1/2×

ka

[(
θ1 − θref1

)2

+
(
φ1 − φref1

)2
]

, where (θref1 , φref1 ) correspond to the center of Gaussian fit of each variable in

the bound state 5 ns equilibration. The force constant was ka = 100kJ/mol/rad2.

2) The orientation of the ACE2 units were restrained by the harmonic potential uo (Θ1,Φ1,Ψ1) = 1/2 ×

ko

[(
Θ1 −Θref

1

)2

+
(

Φ1 − Φref1

)2

+
(

Ψ1 −Ψref
1

)2
]

, where (Θref
1 ,Φref1 ,Ψref

1 ) correspond to the center of Gaus-

sian fit of each variable in the bound state 5 ns equilibration. The force constant was ko = 100kJ/mol/rad2.

3) The conformation of the RBD was constrained by biasing potential uRBD,c = 1/2 ×
kRBD,c

[
(rP1 − rrefP1 )2 + (rP2 − rrefP2 )2 + (rP2 − rrefP2 )2

]
where (rrefP1 , r

ref
P2 , r

ref
P3 ) correspond to the value of

the crystal structure and kRBD,c = 300kJ/mol/nm2. The three-point fixation can prevent translational or rotational

freedom of the RBD relative the the simulation box during the separation.

4) The conformation of some ACE2 units were restrained using uACE2,c = 1/2× kACE2,c(RMSD −RMSDref )2

where RMSDref is the center of Gaussian fit of backbone RMSD in the bound state 5 ns equilibration, and the force

constant kACE2,c = 2000kJ/mol/nm2.
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Table 1: The reference value of each restraint of each ACE2 unit design
Design
Index L1* L2* L3* (θref1 , φref1 ) (Θref

1 ,Φref1 ,Ψref
1 ) RMSDref (nm) [rrefP1 , r

ref
P2 , r

ref
P3 ]**

1 1-69 36-69 30-45 (2.36, -1.87) (1.80, -2.30, 3.14) -

2 1-69 36-69 30-45 (2.46, -2.22) (1.75, -2.26, -2.71) -

3 1-73 1-33 30-45 (2.26, 1.33) (1.67, -2.38, 2.93) - [(2.91, 4.24, 4.56),

4 1-103 73-83 41-60 (1.99, -2.15) (1.62, -1.97, 2.38) - (2.91, 4.24, 4.56),

5 1-139 109-119 56-95 (1.68, -2.14) (1.57, -1.97, 2.67) - (3.08, 3.48, 6.47)]

6 1-139 109-119 56-95 (1.70, -2.22) (1.62, -1.88, 2.80) -

7 1-139 109-119 56-95 (1.68, -2.19) (1.59, -1.87, 2.87) -

8 1-259 226-259 90-128 (0.62, -1.27) (1.39, -1.85, -2.63) 0.13

ACE2 1-597 1-69 272-411 (0.49, -0.87) (1.35, 2.32, 3.09) 0.15
[(13.48, 16.13, 9.40),
(14.60, 15.41, 9.63),

(13.50, 15.40, 11.34)]

L1*, L2*, L3*: the residue composition of each group. Residue ID starts from 1 at N terminal of each design.
[(rrefP1 , r

ref
P2 , r

ref
P3 )]**: The simulation box from design1 to design8 are the same, and thus the reference coordinate of

P1, P2, and P3 are the same.
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2.3 Result

2.3.1 Sequence mutability on spike protein

Spike sequence entropy between 5 beta-coronavirus variants, Human coronavirus HKU1 (HCoV-HKU1, Acc No.:

YP_173238), Human coronavirus OC43 (HCoV-OC43, Acc No.: YP_009555241), Severe acute respiratory syndrome

coronavirus (SARS-CoV, Acc No.: NP_828851), SARS-CoV-2 (Acc No.: YP_009724390), and Middle East respiratory

syndrome–related coronavirus (MERS-CoV, Acc No.: YP_009047204) showed that the binding region of the RBD is

among the most mutable areas of the spike protein (boxed regions of Fig. 3 between amino acid index 400 and 525).

The sequence entropy was calculated by

Si = −
20∑
a=1

pa ln(pa) (36)

where the sum was over all amino acid types, and pa is the probability each amino acid type occurs at sequence position

i. This probability was determined from the set of aligned sequences. Conserved residues located at the position i have

Si = 0, while mutable locations have large Si.

Figure 3: Sequence entropy of SARS-CoV-2 spike protein. The RBM is the boxed region and shows highest entropy
(mutability). (Figure courtesy from Pranav Garg)

2.3.2 Determine modules on ACE2 that preserve the interaction with spike

The ACE2 residues that strongly interact with the Spike RBD should be included in the chimeric antibody to gain high

affinity, especially for those residues that preserved a strong interaction across coronavirus strains. To this end, the

interaction strength of each residue on ACE2 for three coronaviruses, SARS-COV-1, SARS-COV-2, and NL63 were

calculated (see Methods: 2.2.1 : Determine strength of residue interactions). The results are visualized in Fig. 4a-c and

listed in Table 2. Even though the Genus of NL63 is different from SARS-COV-1 and SARS-COV-2 (Alphacoronavirus

vs. Betacoronavirus), the RBD of the three strains bind common regions on ACE2, which is at the proximity of

its N-terminal peptidase domain. It has been proposed that there are at least two hotspots on ACE2 that provide

hydrophobic environments to stabilize salt bridges with the RBD [59] [60]. In our contact analysis, a hotspot is located

at K353, and the other is around K31-H34. These hotspots allow coronaviruses with divergent evolutionary pathways

to converge on common receptor-binding motifs on ACE2, and also benefit our strategy using partial ACE2 as drug

design.

By grouping continuous secondary structures, 6 ACE2 structural modules (1N, 1C, 2, 3, 4N, 4C) are determined

(Fig. 4d). Module 1N (19-53) and module 1C (54-87) compose a helix-turn-helix region that encompasses the K31-H34

hotspot. Module 2 (343-362) includes the K353 hotspot at the tip of a beta-strand. A native disulfide bond is included in

module 2, stabilizing the secondary structure. Module 3 (323-342) is an alpha-helix that preserves moderate interactions

across three coronaviruses. Module 4N (290-322) and 4C (363-429) are composed of several alpha-helix surrounding

modules 1, 2, and 3. Note that Module 4C contains the catalytic site (H374, H378) and a Zn ion.
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Table 2: ACE2 residues in contact with the RBD. The value in parenthesis is the difference in SASA(nm2).

Strain interacting ACE2 residues

NL63
30D(0.18) 33N(0.26) 34H(0.55) 37E(0.38) 41Y(0.33) 321P(0.1) 322N(0.09) 323M(0.06)

324T(0.41) 325Q(0.22) 326G(0.17) 330N(0.12) 353K(0.61) 354G(0.48) 355D(0.2) 356F(0.13) 357R(0.02)
383M(0.2) 386A(0.19) 387A(0.32) 393R(0.15) 555F(0.03)

SARS-Cov-1
19S(0.14) 24Q(0.27) 27T(0.49) 28F(0.19) 30D(0.12) 31K(0.56) 34H(0.47)

37E(0.14) 38D(0.31) 41Y(0.51) 42Q(0.3) 45L(0.23) 79L(0.23) 82M(0.28) 83Y(0.31) 325Q(0.23)
329E(0.21) 330N(0.28) 353K(0.96) 354G(0.19) 355D(0.17) 357R(0.1) 393R(0.05)

SARS-Cov-2
19S(0.05) 24Q(0.49) 27T(0.58) 28F(0.13) 30D(0.32) 31K(0.79) 34H(0.63)

35E(0.16) 37E(0.14) 38D(0.36) 41Y(0.46) 42Q(0.38) 45L(0.13) 79L(0.17) 82M(0.29) 83Y(0.4)
330N(0.23) 353K(0.91) 354G(0.19) 355D(0.15) 357R(0.1) 393R(0.05)

Table 3: RBD residues in contact with ACE2. The value in parenthesis is the difference in SASA(nm2).

Strain interacting RBD residues

NL63
494G(0.13) 495G(0.3) 496S(0.68) 497C(0.24) 498Y(0.67) 499V(0.26) 500C(0.14)
503H(0.07) 534G(0.16) 535S(0.38) 536P(0.8) 537G(0.2) 539S(0.21) 540S(0.15)

585W(0.43) 586H(0.58) 588T(0.03)

SARS-Cov-1
426R(0.27) 432S(0.02) 436Y(0.27) 440Y(0.14) 442Y(0.41) 443L(0.16) 460F(0.03) 462P(0.27)

463D(0.03) 472L(0.53) 473N(0.36) 475Y(0.81) 479N(0.15) 481Y(0.09) 482G(0.13)
484Y(0.66) 486T(0.56) 487T(0.4) 488G(0.24) 489I(0.23) 491Y(0.7)

SARS-Cov-2
417K(0.15) 445V(0.03) 446G(0.08) 449Y(0.25) 453Y(0.2) 455L(0.33) 456F(0.4) 473Y(0.1)

475A(0.27) 476G(0.07) 484E(0.07) 486F(0.79) 487N(0.33) 489Y(0.72) 493Q(0.54)
496G(0.16) 498Q(0.51) 500T(0.72) 501N(0.35) 502G(0.24) 505Y(0.8)

2.3.3 Construction of ACE2 unit

The ACE2 modules were assembled into a continuous strand of amino acids, called ACE2 unit. The N-terminal of

each ACE2 unit is close to the C-terminal, which allows the ACE2 unit to be grafted on the CDRs of antibodies.

Discontinuous ACE2 modules were patched by Rosetta designed linker sequences (see Methods: 2.2.2.1 : Patch ACE2

modules with designed linkers). In total, there are 8 ACE2 unit designs whose construct components are listed in

Table 4, and the structures are shown in Fig. 5.

There are some notable comparisons from the designs. Design1 and design2 both contain ACE2 module 1, but the

buried residues of design2 were designed by Rosetta to strengthen the structure (see Methods: 2.2.2.3 : Design buried

residues to stabilize the structure for design2). The N-terminal and C-terminal of design3 were cyclic permutated from

design1, and the original terminals were connected with a short 4-amino-acid linker. This design is inspired by the

observation that residues around N-terminal of design1 are interacting with SARS-COV-2 RBD so that the antibody

may increase its searching radius with those core interacting residue positioned at the tip of the antibody. Design4

contains modules 1 and 2. Design5-7 contain modules 1-3, and only differ in the linker sequences (see Methods: 2.2.2.1

: Patch ACE2 modules with designed linkers). Design8 contains modules 1-4, and includes a Zn ion. ACE2 is a

reference construct that allows comparison to experimentally determined binding free energy.
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(a) NL63 (b) SARS-Cov-1 (c) SARS-Cov-2 (d) ACE2-modules

Figure 4: (a)-(c) The residue color from red to green indicates stronger to weaker extent of interaction between the
RBD and the ACE2. (d) Four ACE2 modules are colored differently. Module 1N & 1C are in blue, module 2 is in red,
module 3 is in black, and module 4N & 4C are in yellow

Table 4: The construct of ACE2 units.
Index Construct

1 module 1N - module 1C

2 module 1N* - module 1C*

3 module 1C** - 4aa(DSGD) - module 1N**

4 module 1N - 5aa(GRSSE) - module 2 - 10aa(SGKDLNYNHN) - module 1C

5 module 1N - 20aa(GGSKSEETEERGRKAPKGLG) - module 2 - module 3
- 10aa(KGSTTDFESG) - module 1C

6 module 1N - 20aa(GGTDSSQIIIASSNSKLPAG) - module 2 - module 3
- 10aa(SPQHNSGESG) - module 1C

7 module 1N - 20aa(GGGPTRSDDTDAKKAWANAG) - module 2 - module 3
- 10aa(SKQAKDENGG) - module 1C

8 module 1N - 20aa(GGKGSEDGTEDGKSQARSDE) - module 4N - module 2 - module 3
- module 4C - 30aa(KYDELMKKMKEERKKKEKELETFLRHMEPG) - module 1C

ACE2 full length ACE2***

module 1N* and 1C* have buried residues designed (see Methods: 2.2.2.3 : Design buried residues to stabilize the
structure for design2)

module 1N**and 1C** have ACE2 19-54 and ACE2 55-87 respectively
full length ACE2*** has range ACE2 19-615 (PDB code 6M0J)

2.3.4 Binding free energy

The binding free energy was calculated by Eq. 31, where each term was evaluated separately. In this paper, a simplified

version of binding free energy calculation was performed. Since the free energy gain to impose restraints in bound

state (GboundRBD,c, G
bound
ACE2,c, G

bound
a , Gboundo ) are typically very small, these terms were omitted to reduce the complexity

and increase the speed of the calculation. The simulation setups, including the strength and center of the bias, were

described in the Methods (see Methods: 2.2.4 : Simulation detail for binding free energy assessment).

18



Figure 5: The structure in each column is respectively (a) design1 (b) design2 (c) design3 (d) design4 (e) design5 (f)
design6 (g) design7 (h) design8 (i) ACE2. The RBD is rendered in surface representation, and the ACE2 units are
rendered in ribbon representation. The native portion of ACE2 units are in blue, and the designed linker regions are in
yellow.

2.3.4.1 Separation PMF

The separation PMF,W(r), was constructed using MBAR (see Methods: 2.2.3.2 : Multistate Bennett acceptance ratio

method) estimator on umbrella sampling (see Methods: 2.2.3.1 : Umbrella sampling) result. In total, 11 PMFs were

constructed, and their settings are listed in Table 5. Run indexes in Table 5 from a to i correspond to the PMFs from

design1-8 and ACE2. The two extra run, j and k, correspond to the PMFs for design8 without ACE2 unit conformational

restraint and design4 with NACL salt.

All separation PMFs are shown in Fig. 6, where each sub-figure matches each run index (ex. Run index a in Table 5

corresponds to Fig. 6a). All the PMFs rise steeply near the minimum of the stable bound state, and becomes nearly

flat. The choice of r∗, the distance that defines a free state, for run i is determined to be 6.35 nm. The slight decrease

of the free energy from 6.35 nm on may indicate that ACE2 starts interacting with the image of the RBD due to the

periodic boundary condition. The choice of r∗ for other runs are their largest separation distance sampled in the PMFs.

The depth of the separation PMFs are high, because the imposed restraints reduced the entropy of the unbound state.

A direct effect on separation PMF due to the restraint is the larger PMF depth of run h than run j. Both runs are the

separation PMF of design8, but additional restraint in run h (ACE2 unit conformational restraint) increased the free

energy difference between the bound state and the unbound state. The PMF convergence was addressed by comparing

the PMFs constructed by different portions of the US trajectories. Most of the PMFs in Fig. 6 are converged, suggested

by similar PMFs constructed by the last 50% and the last 75% US trajectory. If the two PMFs do not match, the error

for I∗ will account for the insufficient convergence (see Methods: 2.2.3.4 : Error analysis for binding free energy). The

value of I∗ from different runs are calculated and listed in Table 6.

2.3.4.2 Release angular and orientational restraint

The S∗ term and Gfreeo term were calculated analytically using Eq. 29 and Eq. 26, respectively. The values from

different runs were calculated and listed in Table 6. The value of S∗ depends on the choice of r∗, and the value of

Gfreeo are similar for all the ACE2 units.
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Table 5: The setting for different separation PMF
Run Index Design Index ua, uo, uRBD,c uACE2,c Salt Simulation box* (x× y × z) (nm)

a 1 Yes No KCL 6.9× 7.55× 14.23

b 2 Yes No KCL 6.9× 7.55× 14.23

c 3 Yes No KCL 6.9× 7.55× 14.23

d 4 Yes No KCL 6.9× 7.55× 14.23

e 5 Yes No KCL 6.9× 7.55× 14.23

f 6 Yes No KCL 6.9× 7.55× 14.23

g 7 Yes No KCL 6.9× 7.55× 14.23

h 8 Yes Yes KCL 6.9× 7.55× 14.23

i* ACE2 Yes Yes KCL
x = (19.69, 0, 0)
y = (0, 19.69, 0)

z = (9.84, 9.84, 13.92)

j 8 Yes No KCL 6.9× 7.55× 14.23

k 4 Yes No NACL 6.9× 7.55× 14.23

Simulation box*: simulation box for run i is dodecahedron, and the others are simple cubic. The unit cell vector for run
i is noted here.

2.3.4.3 Release ACE2 conformational restraint

The free energy cost of the restriction on the conformation of the ACE2 unit free in solution, GfreeACE2,c, was obtained by

free energy perturbation potential of mean force techniques [54, 61] by using appropriate order parameters. The Eq. 27

can be simplified into a direct integration of the Boltzmann factor after calculating the PMF wfreeACE2,c as a function of

the RMSD relative to the reference conformation, ξ.

e−βG
free
ACE2,c =

∫
dξe−β[wfree

ACE2,c(ξ)+uACE2,c(ξ)]∫
dξe−βw

free
ACE2,c(ξ)

(37)

The ACE2 unit conformational restraint was only applied to two larger designs, design8 in run h and ACE2 in run i.

The PMF wfreeACE2,c using the last 50% of US trajectory for design8 and ACE2 are shown in Fig. 7. After imposing the

conformational constraint, the PMFs rise steeply in high RMSD regime, which prevent the vast conformational space

needed to sample. The free energy GfreeACE2,c for design8 and ACE2 are 12.29± 0.77kJ/mol and 5.77± 0.25kJ/mol,

respectively.

2.3.4.4 Release RBD conformational restraint

The RBD conformational restraint, uRBD,c, constrained three groups of the RBD residues to three spatially fixed points.

The 3-point-fixing restraint of the RBD disabled translational and rotational freedom, which enabled the dissociation

pathway to be unidirectional relative to the simulation box. Thus, the simulation box only had to be extended in one

direction (z-axis in this study), which reduced the computational resources needed. Free energy perturbation method

was not used, since finding a collective coordinate that represent such 3-point restraint (ex. RMSD in Eq. 37) is hard.

As an alternative of free energy perturbation potential of mean force techniques, thermodynamics integration [62] was
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Figure 6: Separation PMFs of (a) design1 (b) design2 (c) design3 (d) design4 (e) design5 (f) design6 (g) design7 (h)
design8 with uACE2,c restraint (i) ACE2 with uACE2,c restraint (j) design8 (k) design4 with NACL salt. To assess the
convergence of the PMF, the PMFs constructed by all, the last 75%, and the last 50% US trajectories are shown.

used. The Hamiltonian of the confined system can be expressed as

H(X,P, λ, {x}, {x0}) = H0(X,P) + λ(Σ3
i=1

1

2
k‖xi − xi

0‖2) (38)

where λ ranges from 0 to 1, which represents the strength of the confinements. xi and xi
0 are the instantaneous

coordinates and the reference coordinates of the center of mass of each of the three group of residues, respectively. The
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Figure 7: The PMF wfreeACE2,c for (a) design8 and (b) ACE2 are shown in red. The PMF after imposing the harmonic
biasing constraint are shown in blue

free energy to confine the three groups of residues can be evaluated by

GfreeRBD,c =

∫ 1

0

〈dH
dλ

〉
H(λ)

dλ =
1

2
k

∫ 1

0

〈
Σ3
i=1‖xi − xi

0‖2
〉
H(λ)

dλ =
1

2
k

∫ 1

0

ρ2(λ)dλ (39)

where xi was structurally aligned to xi
0 which is the same as the method in the literature [63], and ρ(λ) is the averaged

RMSD between x and x0,

√〈
Σ3
i=1‖xi − xi

0‖2
〉
H(λ)

. The reaction coordinate along λ was stratified into 21 windows

evenly-spaced in the logarithmic scale, consistently with the thermodynamics integration protocol [64]. That is

λi × k = 0.5 × 1.377i kJ/mol/nm2, i = 0, 1, 2, ... , 20. The ρ(λ)2 in each stratified window are shown in Fig. 8.

The simulation result showed that the value of ρ(λ) remains the same throughout all extent of confinement λk from

0 to 300, which indicates that the biasing potential uRBD,c is too weak to bias the RBD conformation to the crystal

structure. The free energy GfreeRBD,c is 11.6± 1.6kJ/mol. This free energy term is the same for all the ACE2 units, and

only have to be evaluated once.

2.3.4.5 Comparison of Gbind between ACE2 units

The computation results from section 2.3.4.1 : Separation PMF, 2.3.4.2 : Release angular and orientational

restraint, 2.3.4.3 : Release ACE2 conformational restraint,and 2.3.4.4 : Release RBD conformational restraint are

summarized and listed in Table 6, where the system setup of each run index is described in Table 5. The binding free

energy Gbind were extracted from the table and plotted in Fig 9. Surprisingly, the largest ACE2 unit (design8) has a

larger binding affinity than ACE2, although design8 only has 43% of amino acids of ACE2. The binding free energy of

design8 was assessed twice by two different sets of restraints, with and without ACE2 unit conformational restraint, and

both runs gave higher binding affinity than native ACE2 (Fig. 9). Moreover, the two Gbind of design8 are mutually
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Figure 8: The mean squared deviation between the center of three groups of residues of the RBD (P1, P2, P3) and their
reference coordinates in different strength of confinement.

within the error bars of each other. The two repeated runs give more confidence for the higher binding affinity of

design8 than the ACE2.

The binding affinity of ACE2 module 1 with designed buried residues (design2) is much smaller than the native

module 1 (design1), suggesting that the native buried residues still contribute to the binding affinity through non-contact

interaction with RBD. Those non-contact interactions may be electrostatic force or indirect interaction with RBD

through interaction with the exposed residues.

Design3, a circularly permutated design1, has much lower binding affinity than design1, suggesting that the broken

peptide bond at 54I-55T significantly destabilized the unbound state. The increased entropy in unbound state results in

decreased binding affinity.

Although design4-6 have more direct RBD-interacting residues than design1, they have smaller binding affinity than

design1, especially design5 and 6. The reason is similar to the lower binding affinity of design3 than design1. The

patched linkers cannot stabilize the designed structure in the unbound state, so the increase of entropy in the unbound

state decrease the binding affinity. However, the patched sequences do not always have a destabilizing effect. Although

Design7 only differ from design5 and 6 in the linker amino acid sequences, properly designed linker enables design7 to

have a larger binding free energy than design1.

The salt effect on binding affinity was also studied. The evaluation of binding affinity for design4 was assessed twice

using NACL and KCL salt, and generated similar binding affinity value. The binding affinity of NACL salt is shown as

a yellow point in Fig. 9, and its error bar encompasses the binding affinity of KCL salt.

2.3.5 Choice of Antibody Template

The antibody template, or the Ig domain, for ACE2 unit grafting should meet a few criteria. For first, the antibody

should have a safe record of clinical use. Secondly, the target of the antibody is preferably an exogenous antigen.

Thirdly, a longer half-life is preferable. An example of the Ig domain that meets all three criteria is Palivizumab.

Palivizumab is a humanized monoclonal antibody for respiratory syncytial virus (RSV) infections, and it has been
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Table 6: The binding free energy of each run. Energy unit is kJ/mol
Run

Index I∗(nm2) S∗(nm) − 1
β ln(C0I

∗S∗) Gfreeo GfreeACE2,c GfreeRBD,c Gbind Kd(M)

a 4.48× 1012 2.84 −74.0± 5.1 17.93 0.0± 0.0 11.6± 1.6 −44.5± 5.4 1.80× 10−8

b 6.08× 106 1.93 −39.3± 4.8 17.91 0.0± 0.0 11.6± 1.6 −9.8± 5.0 1.93× 10−2

c 6.54× 107 3.51 −46.8± 7.4 17.88 0.0± 0.0 11.6± 1.6 −17.3± 7.5 9.77× 10−4

d 4.50× 1011 5.42 −69.9± 2.8 17.87 0.0± 0.0 11.6± 1.6 −40.4± 3.2 9.14× 10−8

e 5.24× 107 5.41 −47.3± 5.2 17.87 0.0± 0.0 11.6± 1.6 −17.8± 5.4 7.87× 10−4

f 1.51× 1010 5.82 −61.6± 6.3 17.87 0.0± 0.0 11.6± 1.6 −32.1± 6.5 2.55× 10−6

g 1.09× 1013 6.04 −78.1± 6.6 17.87 0.0± 0.0 11.6± 1.6 −48.6± 6.8 3.39× 10−9

h 9.56× 1018 3.61 −111.0± 6.5 17.91 17.3± 0.8 11.6± 1.6 −64.2± 6.7 6.69× 10−12

i 1.27× 1015 2.90 −88.2± 4.7 17.93 5.8± 0.3 11.6± 1.6 −52.9± 5.0 6.22× 10−10

j 8.36× 1016 4.44 −99.7± 7.8 17.91 0.0± 0.0 11.6± 1.6 −70.2± 8.0 6.09× 10−13

k 1.26× 1013 5.35 −78.2± 9.6 17.87 0.0± 0.0 11.6± 1.6 −48.7± 9.8 3.30× 10−9

approved for medical use since 1998, sold under the brand name Synagis [65]. Palivizumab has an exceptionally long

half-life of about three weeks [15]. It is also recommended in the literature that protein drugs can be grafted on CDRs of

Palivizumab to extend the half-life [14]. The crystal structure and the sequence of Palivizumab can be found at the end

of the patent [66], which can be processed with modeling. Some variants of Palivizumab that have increased binding

affinity to RSV or further humanization are proposed [67]. For example, 493L1FR [67] is similar to Palivizumab but

with 3 changes which were introduced to reduce immunogenicity or problems arising from aberrant disulfide bonding:

KCQL->SASS at positions 24 through 27 on light chain CDR1 is to remove an unpaired Cysteine, KCQL are residues

that were introduced during the previous humanization process [65]; A105Q on the heavy chain and L104V on the light

chain to reduce immunogenicity.

2.3.6 Stalk region design

The stalk region is the intermediate region between the Ig domain and the ACE2 unit. It is composed of an ascending

strand and an descending strand, which connect to the N-terminal and C-terminal of the ACE2 unit respectively.

Common designs for patching domains are flexible peptides such as (GGGGS)n peptide [68, 69], but flexible stalk

does not suit the application here. A flexible stalk may incur unwanted self-interaction between ACE2 unit and Ig

domain, and the separation between ACE2 unit and the Ig domain can be compromised by the constraint that the

terminal of both ascending and descending strand should match. An exceptionally long anti-parallel beta-strand is

observed in the bovine antibody CDRH3 that connects the Ig domain and the knob domain, and such a long beta-strand

is conserved during VDJ rearrangement and B-cell maturation [70]. The above observation suggests that a rigid-stalk is

required to fold the Ig domain and the associated knob domain correctly. Borrowing from the experience of nature, a

rigid stalk design is pursued here, and several rigid-stalk strategies are described as follows.

For first, the anti-parallel beta-strand on bovine antibody CDRH3 may be extracted to graft on the selected Ig domain.

Studies have shown that substituting the knob domain of bovine antibody to other desired protein is a viable strategy to

increase the protein half-life while preserving its function [14].

Secondly, the anti-parallel coiled-coil is a possible rigid stalk design. Studies have shown that the beta-strand stalk

of the bovine antibody can be replaced with an anti-parallel coiled-coil in a CDR3H fusion to the four-helix-bundle

cytokine GCSF. The resulting fusion protein expressed well in mammalian cells and had similar activity to the
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Figure 9: The absolute binding free energy Gbind of each design. The black points are free energy evaluated without
ACE2 unit conformational restraint. The blue points differ from black points in that the binding free energies are
evaluated with finite ACE2 unit conformational restraint (run h and i). The yellow point differs from black points in that
the simulation system was ionized with NACL salt (run k).

corresponding CDR3H fusion using a beta-strand stalk [71, 14]. The advantage of the anti-parallel coiled-coil stalk

is the easy customization of the chemical property or the length of the design. If the hydrophobic poly-Alanine

surface of the coiled-coil in Liu et al.’s design [14] is undesired, one can engineer a coiled-coil that has a hydrophilic

surface as long as the heptad repeat remains [72]. For example, a similar coiled-coil design of Karyn et al. [73] is

composed of the ascending strand: Nter-GGSGKKLEALEKKLEALEGGGGS-Cter, and descending strand: Nter-

GGGGSELAELKKELAELKKGGSG-Cter (Fig. 10). To reduce the aggregation tendency, the first lysine in the

ascending strand can be mutated to the neutral glutamine, so that the negatively charged coiled-coils can repeal each

other.

Thirdly, a chaperone protein, Calnexin (Fig. 10), is found to have an exceptionally long beta-strand in the P domain [1],

which can be utilized as the rigid stalk. The P domain is a Proline-rich domain composed of 4 repeated motifs[1], and

one or more motif repeats can be extracted as stalk design. Calnexin P domain is a human endogenous protein, so it

won’t be targeted by the immune system. Additionally, the exceptionally long length gives the possibility that two Fab

regions of the antibody bind RBDs on two different Spikes.
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Figure 10: (a) Helical wheel representation of the anti-parallel hetero-dimeric coiled-coil. The ascending strand is Nter-
GGSGKKLEALEKKLEALEGGGGS-Cter, and the descending strand is Nter-GGGGSELAELKKELAELKKGGSG-
Cter. (b) The structure of Calnexin (PDB code: 1JHN) [1] in the ribbon rendering with color assigned by the B-factor.

2.3.7 Immunogenicity check for the non-native region

The Rosetta-designed linkers and the stalk region of chimeric antibody are non-native sequences, which may trigger

unwanted immune responses. To computationally check if the chimeric antibodies is immunogenic or not, the non-native

regions were blasted to the Swissprot database [74] using NCBI blasting [75] with the search limited to extracellular

human protein. Since the immune system does not target endogenous extracellular protein, a particular sequence

with significant shared homology to the extracellular human protein will not be immunogenic. After the blasting, the

multiplication product between the query cover, the percentage of the query sequence covered by the target sequence,

and the percent identity, the percentage of the identical characters in the blasted strand, was extracted to represent the

shared exact amino acid percentage. The database entries that have their Query Cover×Percent Identity larger than 60%

are listed in Table 7, 8, 9, 10, 11, and 12 for linkers of design4 and design8 as well as a particular stalk design. The

blasting shows that all non-native sequences analyzed have a few blast hits with Query Cover×Percent Identity larger

than 60%. Also, collagen alpha proteins, an abundant extracellular protein, frequently rank at the top of the blast hits

table, suggesting that collagen alpha proteins share lots of sequence with the non-native sequences. As a result, the

immunogenicity of those non-native sequence may be mild.

2.4 Discussion

2.4.1 Validity of the Free Energy Calculation

The computed binding free energy between native ACE2 and SARS-COV-2 RBD,−52.9±5.0 kJ/mol, can be converted

to dissociation constant Kd = 0.622nM . Recent works that reported experimentally determined dissociation constant

between native ACE2 and SARS-COV-2 RBD include Kd = 0.039nM [76], 1.2nM [77], 4.7nM [44], 15.2nM [8]. The
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Table 7: The blast hits for the first design4 linker, GRSSE.

Protein name Query Cover×
Percent Identity

Collagen alpha-3(VI) chain 80.0

Nyctalopin 80.0

A disintegrin and metalloproteinase with thrombospondin motifs 1 80.0

SPARC-related modular calcium-binding protein 1 80.0

SPARC-related modular calcium-binding protein 2 80.0

A disintegrin and metalloproteinase with thrombospondin motifs 20 80.0

Latent-transforming growth factor beta-binding protein 2 80.0

Mucin-16 80.0

von Willebrand factor 80.0

Sulfhydryl oxidase 1 80.0

Ubiquitin-like protein ISG15 80.0

Table 8: The blast hits for the second design4 linker, SGKDLNYNHN.

Protein name Query Cover×
Percent Identity

FRAS1-related extracellular matrix protein 1 70.0

Basement membrane-specific heparan sulfate proteoglycan core protein 66.67

Extracellular matrix protein 2 64.0

A disintegrin and metalloproteinase with thrombospondin motifs 12 60.003

Prolargin 60.0

Collagen alpha-5(VI) chain 60.0

Table 9: The blast hits for the first design8 linker, GGKGSEDGTEDGKSQARSDE.

Protein name Query Cover×
Percent Identity

Collagen alpha-1(VII) chain 95.0

Collagen alpha-3(IX) chain 90.0

Basement membrane-specific heparan sulfate proteoglycan core protein 80.0

Fibrillin-2 80.0

Coiled-coil domain-containing protein 80 75.0

Collagen alpha-5(VI) chain 72.0

Collagen alpha-1(XVII) chain 70.0

SCO-spondin 66.113

A disintegrin and metalloproteinase with thrombospondin motifs 9 64.2825

Mucin-16 64.0

Reelin 60.0

Collagen alpha-1(XXII) chain 60.0

SPARC-related modular calcium-binding protein 2 60.0

Laminin subunit alpha-5 60.0
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Table 10: The blast hits for the second design8 linker, KYDELMKKMKEERKKKEKELETFLRHMEPG.

Protein name Query Cover×
Percent Identity

Laminin subunit alpha-2 86.0

Mucin-16 73.0

Prolyl 3-hydroxylase 1 66.0

Secreted frizzled-related protein 1 63.0

Adhesion G protein-coupled receptor E5 63.0

Collagen alpha-6(VI) chain 60.0

Table 11: The blast hits for the ascending stalk Nter-GGSGQKLEALEKKLEALEGGGGS-Cter,.

Protein name Query Cover×
Percent Identity

Collagen alpha-1(XVII) chain 100.0

Laminin subunit gamma-2 95.0

Interphotoreceptor matrix proteoglycan 2 82.0

Collagen alpha-1(XXVIII) chain 73.0

Aggrecan core protein 65.0

A disintegrin and metalloproteinase with thrombospondin motifs 19 60.0

fact that computed binding free energy is within the experimentally determined value validates the computation method

as well as the binding free energy calculation for other designs.

The omitted terms in the binding free energy are the free energy gain in restraining the RBD and ACE2 unit in the

bound state. The validity to omit these terms can be seen from the fact that in the literature, the free energy gain due

to imposing constraints in bound state is much smaller than the free energy cost due to releasing constraints in free

state [54, 61]. These omitted terms could have increased the binding affinity, but the contribution is small due to the

fact that imposing restraint on an already stable bound state cannot further gain much stability.

However, the computed binding affinity could be overestimated if the most stable structure of the unbound state is not

close to the designed structure in bound state. Although the RMSD PMF of unbound design8 (and ACE2) suggests that

a stable state exists around the designed bound state structure i.e. PMF minimum is close to the origin (Fig. 7), the

Table 12: The blast hits for the descending stalk Nter-GGGGSELAELKKELAELKKGGSG-Cter.

Protein name Query Cover×
Percent Identity

Laminin subunit beta-1 73.0

Collagen alpha-1(XVII) chain 73.0

A disintegrin and metalloproteinase with thrombospondin motifs 19 69.0

Coiled-coil domain-containing protein 80 68.8

Tenascin-X 68.8

Collagen alpha-1(XVIII) chain 65.0
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stable state cannot be guaranteed to be the globally stable state. To test whether the designed structure for ACE2 units

are at global minimum energy, the Rosetta energy landscape could be performed [78], which could be included in the

future study.

2.4.2 Lower binding affinity of ACE2 than design8

One of the most interesting results from the free energy study of the ACE2 units is that design8, a portion of ACE2, has

stronger binding to the RBD than the full ACE2. Some causes that may affect free energy are discussed here.

For first, the net charge of the RBD, design8, and ACE2 are respectively +2e, -14e, and -27e. The RBD and the ACE2

can spontaneously attract each other due to the opposite charge. ACE2 should own larger attraction to the RBD than

the design8, because the ACE2 is more negatively charged than the design8. As a result, the electrostatic force is not

responsible for the lower binding affinity of ACE2 than design8.

Secondly, the hinge-like bending motion of unbound ACE2 may be responsible for decreasing the binding free energy.

ACE2 spontaneously undergoes a hinge-like bending motion that can facilitate its catalytic function [79], and also, free

ACE2 shows spontaneous bending motion in the 10us simulation by DE Shaw’s Anton [80]. This degree of freedom

can decrease the binding affinity, since the bending motion increases the entropy of the unbound state. However, the

SARS-COV-2 RBD bound ACE2 also shows similar hinge-like bending motion in DE Shaw’s trajectory, increasing

entropy at bound state. The free energy gain of imposing ACE2 conformational restraint at bound state GboundACE2,c might

increase the binding affinity to some extent.

2.4.3 Property of the antibody not addressed by the binding free energy

The larger construct of ACE2 units is more tolerant to the RBD mutation, since the binding interface spreads over a

larger area. Design8, which has all four ACE2 modules, is most tolerant of the RBD mutation among the designed ACE2

units. Since design4 contains both of the two hotspots on ACE2 that provide hydrophobic environments to stabilize salt

bridges with the RBD [59, 60], design4 is more preferred than design1 due to its RBD mutational resistance.

Another benefit for design1-4 not addressed by binding free energy is that they may have the ability to bind the down-

state SARS-COV-2 spike protein due to their small size. After aligning the RBD-design4 complex to an arbitrary chain

of down-state spike (PDB code: 6VXX) [77] through minimizing RMSD between two RBDs, there is no significant

backbone clashing (Fig. 11). With the ability to bind the down-state spike, the clearance of the SARS-COV-2 by the

Fc-mediated antibody effector function would be faster. Although the antibody-dependent disease enhancement may be

a concern [81, 82, 83], there is no evidence that this enhancement appeared in any antibody treatment for COVID-19

yet.

There have been successes in significantly increasing binding affinity by increasing the avidity [5, 69]. For example,

antibody CR3022 has a significantly larger binding affinity to SARS-COV-2 RBD than only its Fab region, drawn

from the decrease of Kd by more than 1000-folds [5]. The smaller size of the ACE2 units allows them to be multiply

grafted on the antibody CDRs, and the multi-grafting construct can increase the binding affinity through avidity. A

structure of triply grafted design4 per arm on Palivizumab (Fig. 12) have no significant crowding, so multiple grafting

is a promising approach to increase the binding affinity.
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Figure 11: A ribbon rendering of design4 in its binding pocket on SARS-COV-2 down-state spike protein (PDB code:
6VXX). No clashing in the aligned structure indicates that design4 may bind closed-state spike. Design4 is in yellow,
and the rest 3 colors represent each chain (red, blue, grey). Design4 is in the binding pocket of the blue chain.

2.4.4 Different computational method to acquire the binding affinity

The ab initio binding free energy evaluation method [54] employed in this paper is computationally intensive, so an

easier method that acquires a similar result would be desirable. A crude method using Rosetta to estimate the binding

energy using Eint (see Methods: 2.2.2.2 : Estimate interaction energy) was tested for design5-7, but yielded inconsistent

results. Design5-7 only differ in the linker design so that any binding free energy changes were purely from the designed

linker sequence. The order of the binding affinity approximated by absolute Eint is design6>design5>design7 (data

not shown), which is different from the order of the binding affinity calculated by the ab initio method. Instead, the

lowest Ea ACE2 unit (i.e. most stable), design7, has the highest binding affinity among design5-7. As a result, the

crude estimate using Eint calculated by Rosetta as a proxy of binding free energy is not valid.

Computational work by Torre et al. [84] yielded the binding free energy between SARS-COV-2 Spike and ACE2 to be

12.6± 1.3 kcal/mol (or 52.7± 5.4 kJ/mol). The binding free energy is in good agreement with this paper (52.9± 5.0

kJ/mol). As a result, the RBD contributes most of the binding free energy, since using whole spike protein and only

the RBD yielded a similar result. However, in their separation PMF construction, conformational and orientational
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Figure 12: The ribbon rendering of the chimeric antibody with design4 triply grafted on each Fab CDRH3, CDRH2,
CDRL1. Design4 are shown in yellow, the coiled-coil stalks are shown in red, and the Fab and Fc region are shown in
blue.

freedom were not restrained, which has yielded overestimated binding affinity in other studies [85]. The free energy

contribution by long-range electrostatic is not included in their result, which could underestimate the binding affinity.

Other computational work using the bioinformatics method to calculate the binding free energy between ACE2 and

SARS-COV-2 RBD to be Gbind = −64.7 kJ/mol and Kd = 5pM [86]. Although their work overestimated the binding

affinity, they successfully predicted the larger binding affinity of SARS-COV-2 RBD than SARS-COV-1 RBD. A recent

work by Longxing et al. [87] designed miniproteins built around an alpha-helix of ACE2. The dissociation constant of

these miniproteins ranged from 0.1nM to 10nM, suggesting that binder design built on top of a portion of ACE2 is a

promising approach.
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3 Epitope scaffolding using alpha-synuclein cyclic peptides to generate oligomer-selective

antibodies for Parkinson’s disease

3.1 Summary

Effectively scaffolding epitopes on immunogens, in order to raise conformationally selective antibodies through active

immunization, is a central problem in treating protein misfolding diseases, particularly neurodegenerative diseases

such as Alzheimer’s disease or Parkinson’s disease. We seek to selectively target conformations enriched in toxic,

oligomeric propagating species while sparing healthy forms of the protein which are often more abundant. To this

end, we scaffolded cyclic peptides by varying the number of flanking glycines, to best mimic a misfolding-specific

conformation of an epitope of α-synuclein enriched in the oligomer ensemble, as characterized by a region most

readily disordered and solvent-exposed in a stressed, partially denatured protofibril. We screen and rank the cyclic

peptide scaffolds of α-synuclein in silico based on their ensemble overlap properties with the fibril, oligomer-model,

and isolated monomer ensembles. We introduce a method for screening against structured off-pathway targets in the

human proteome, by selecting scaffolds with minimal conformational similarity between their epitope and the same

primary sequence in structured human proteins. Different cyclic peptide scaffolds having the same epitope and the

same primary sequence length (epitope+number of flanking glycines) can have markedly different conformational

ensembles. Ensemble comparison and overlap was quantified by the Jensen-Shannon Divergence, and a new measure

introduced here—the embedding depth, which determines the extent to which a given ensemble is subsumed by another

ensemble, and which may be a more useful measure in sculpting the conformational-selectivity of an antibody.

3.2 Methods

Figure 13: The workflow of in silico screening.
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3.2.1 α-synuclein epitope prediction

In our approach, we operate from the hypothesis that a partially disordered fibril ensemble is enriched in oligomer-

selective conformational epitopes. That is, similar regions are exposed in both toxic oligomers and stressed fibrils. If so,

the stressed fibril may be used to predict oligomer-selective epitopes.

The EKTKEQ epitope in α-synuclein was predicted by the Collective Coordinate (CC) algorithm, which has been used

previously to predict misfolding-specific epitopes in superoxide dismutase 1 (SOD1) [30]. The CC algorithm predicts

epitopes by identifying local unfolding events when a global denaturing stress is applied, where regions of a protein

or multi-protein aggregate deviate structurally from their native structural conformation. Three metrics are used to

measure local disorder: increased solvent accessible surface area (∆SASA), loss of native contacts (∆Q), and increased

root mean squared fluctuations (∆RMSF).

The procedure for predicting epitope involves implementing a global unfolding potential biasing the system to have 0.65

of its total native contacts. Ten independent biased ensembles of an α-synuclein fibril structure (PDB ID: 2N0A) using

the CC algorithm as well as a single equilibrium ensemble of the fibril using molecular dynamics (MD) simulation [30]

are generated to calculate ∆SASA, ∆Q and ∆RMSF. The equilibrium ensemble serves as a reference for calculating

the three difference values. Multiple independent biasing simulations were performed in order to ensure consistency

in the regions of the fibril structure that are observed to have relatively higher values of ∆SASA, ∆Q and ∆RMSF

thereby avoiding predictions based on rare fluctuations that might be present in a single biased simulation.

Fig. 14 bottom panel shows the sequence motifs larger than 3 amino acids that are predicted as epitopes by each of the

three metrics, for each of the 5 chains. Several epitopes were predicted by each metric; however, the consesus epitope,

EKTKEQ, predicted by all the three metrics was taken as the final predicted epitope for α-synuclein (Fig. 14 top panel).

3.2.2 Scaffolding of epitopes

We scaffold epitopes by constructing cyclic peptides of the epitopes. First, the predicted, or a sequence subsumed by

the epitope such as EKTK, is flanked on both sides with consecutive glycines in pactice by mutating the native flanking

residues to glycine using SCWRL4 [88]. In addition, one more residue is mutated to cysteine on the N-terminal side of

the sequence. Although in principle, other amino acids or a combination thereof can be utilized, our choice of using

glycines helps to focus immunogenic effects to just the epitope since glycine is relatively chemically inert compared to

other amino acids [89]. The cysteine conjugates the peptides to immunogens such as Bovine serum albumin (BSA)

or Keyhole limpet hemocyanin (KLH) via a disulfide bond, increasing the likelihood of generating antibodies to the

scaffolded epitope. The topology of the linear peptide sequence (i.e cyclo(C −Gn − (Epitope)−Gm)) obtained is

cyclized by head-to-tail linkage of the termini using a locally written Python script. The cyclized peptide is then energy

minimized in GROMACS using steepest descent algorithm, before running equilibrium MD simulations.

3.2.3 Generation of ensembles

Generally, we collect four different equilibrium molecular dynamics (MD) ensembles for each epitope. These correspond

to the epitope in the context of an isolated monomer, the fibril, the stressed fibril oligomer model, and the cyclic

peptide scaffold. We perform MD simulations with the open-source GROMACS [55] package and the community

developed PLUMED library [56]. The force field used here for all ensemble sampling is CHARMM36m [57], which
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Figure 14: Collective coordinate epitope prediction for α-synuclein, using three criteria of increased SASA, loss of
native contacts, and increased fluctuations (RMSF). Several epitopes were predicted by each criterion; however, only a
single consensus epitope EKTKEQ was predicted. Chain E is not shown for ∆SASA because no epitope is predicted.

is a modified version of CHARMM36 with improved modeling for disordered proteins. Each epitope ensemble is

obtained specifically as follows.

3.2.3.1 Fibril ensemble

The conformational sampling starts from an existing experimentally resolved α-synuclein structure determined by

solid-state NMR [90] (PDB ID: 2N0A). A sub-fibril composed of 5 chains (chains A-E of 2N0A) is solvated in 150mM

Na and Cl aqueous solution, such that the system is neutral. After 50ps constant volume (NVT) and 150ps constant

pressure (NPT) equilibrium simulations under positional restraints on heavy atoms, we perform an equilibration MD

simulation up to 100ns until the convergence is seen from RMSD during the simulation. A 20ns equilibration MD

continued from the previous 100ns simulation is performed for collecting the equilibrium ensemble of the fibril, from

which we sample at 20ps intervals. Only configurations of the middle chains (chain B-D) are collected in the ensemble,

in order to reduce edge effects in the simulation. In total, there were 3003 configurations in the fibril ensemble obtained
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by this procedure. The procedures of solvation and NVT-equilibration and NPT-equilibration are also implemented for

the other ensembles described below, before the MD production runs.

3.2.3.2 Stressed fibril ensemble

The stressed fibril ensemble is a partially disordered fibril ensemble used to predict conformational epitopes similar to

what might be presented by the oligomer. To generate this ensemble, a time-dependent global bias potential V (Q, t) is

implemented to partially unfold the α-synuclein fibril, where

V (Q, t) =
1

2
k(Q−Qc(t))2 (40)

Q in equation (40) is a collective coordinate defined as the normalized count of the native contacts [30]. Native contacts

are pairs of heavy (non-hydrogen) atoms within 4.8Å of each other that are in different amino acids labeled by primary

sequence residue index α, β, that satisfy |α − β| ≥ 3 and persists over 5 percent of the time in the first 100ns of

equilibrium fibril simulation. To be more precise, the collective coordinate Q for any structure characterized by the set

of native contacts, rij is defined as follows:

Q =

∑N
ij Qij(rij)∑N

ij 〈Qij(rij)〉native
(41)

with

Qij(rij) =
1− (

rij
r0

)n

1− (
rij
r0

)m
(42)

where we take r0 = 4.8Å, n = 6 and m = 12. A contact function Qij(rij) is defined for each heavy-atom pair i, j in

the list of native contacts, which rapidly goes to one when rij is slightly lower than r0 and rapidly goes to zero when rij
is slightly larger than r0. The quantity in the numerator of Q in equation (42) is the sum of Qij in an arbitrary structure

where
∑N
ij is summation over the native contact list, and the quantity in the denominator is the Boltzmann average of

the Qij in the fibril equilibrium ensemble. Thus, Q is typically a number between zero and unity.

Qc(t) in equation (40) stands for the target value of the collective coordinate, Q. It is a time-dependent quantity that

starts from the counts of all native contacts corresponding to folded equilibrium ensemble (Qc = 1), and then linearly

decreases with time from 1 to 0.65 over 50 ns. Afterward, the bias is held fixed at Qc = 0.65 for 150ns. During the last

50ns of the second period when Qc is held fixed at 0.65, the stressed fibril ensemble is collected with snapshots at an

interval of 15ps. We repeat the biased simulation 10 times including the ramp down and subsequent equilibrium and

sampling, to average the stochastic unfolding process of fibrils. The capping chains at the top and bottom of the fibril are

discarded to avoid edge effects, yielding a total ensemble consisting of 50ns/15ps ∗ 3chains ∗ 10repeats = 100000

structures. A subset with 3500 configurations is randomly sampled from the total structural ensemble. In order to obtain

an ensemble of the epitope that is partially disordered and exposed to solvent, we add on additional constraint on SASA

of the epitope in the ensemble, as follows. Among the 3500 configurations, we further discard those structures that have

a lower epitope SASA than the equilibrium epitope SASA, generating a stressed fibril ensemble with exposed epitope

consisting of 3407 configurations. We note that at this point the epitope has already been predicted. This stressed and

exposed ensemble is used for comparison with cyclic peptide scaffold motifs.
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3.2.3.3 Monomer ensemble

Since α-synuclein is an intrinsically disordered protein (IDP) [91], its equilibrium ensemble is relatively difficult to

sample by normal MD simulation. We have previously developed a method for generating equilibrium ensembles for

IDPs [92], and hence applied this method to generate equilibrium ensembles for several IDPs such as α-synuclein,

Aβ peptide, and prothymosin α. We have also used the method to model the unfolded ensembles of natively folded

proteins, including disulfide bonded unfolded ensembles such as that for SOD1. This method was used here to generate

the equilibrium monomer ensemble for α-synuclein. The details of the method are described in reference [92]. Here,

we briefly describe the steps involved, which include: 1.) Generation of a diverse coarse-grained (CG) ensemble, 2.)

"Foliating" each CG conformation by the addition of backbone/side-chain degrees of freedom, and 3.) Equilibration of

each foliated structure for a short simulation time. The descriptions for these three steps are as follows.

The initial α-synuclein monomer configuration, which is obtained by extracting a single chain from the fibril structure

(PDB ID: 2N0A), is coarse-grained by retaining only the Cα coordinates. This CG structure is then altered by employing

a generalization of the pivot algorithm [93, 94], which is an efficient algorithm for generating ensembles for a self-

avoiding random walk. A pivot move in the method [92] randomly selects a particular bond angle and its corresponding

torsional angle, and resamples them from a native-centric Boltzmann distribution. Pivot moves are appropriate if there

are no disulfide bonds in the ensembles. Pivot moves are repeatedly attempted until, on average, there is one move per

residue.

After pivoting to obtain a distinct CG conformation, side-chains and backbone atoms are added. The whole all-atom

structure is energy minimized to eliminate steric clashes. Viable all-atom structures are then thermally equilibrated by

short 3ns MD simulation in explicit water at 150mM salt. This process generates 1587 different structures as initial

configurations. Then we perform a 3ns equilibration simulations starting from each of the above initial configurations,

collect the configuration every 1ns and put it into the monomer ensemble. In the end, we get a monomer ensemble with

4607 configurations, where 16 simulations did not reach 2ns and 93 simulations did not reach 3ns in a fix simulation

wall-time. IDP ensemble generation is an active area of research and several other methods of computational ensemble

generation have been developed [95].

3.2.3.4 Scaffolded epitope ensemble

The construction of the initial structure used for scaffold simulation as described in Methods section 3.2.2 : Scaffolding

of epitopes. After minimization, solvation, NVT-equilibrium and NPT-equilibrium simulation, a 300ns MD simulation is

carried out, from which an initial ensemble is collected with constant sampling interval of 40ps. Since the cysteine side

chain has to be soluent-accessible to form a disulfide bond with the carrier protein (KLH or BSA), some configurations

were discarded if the SG atom in the cysteine was buried or if the sidechain of the cysteine pointed inside the cyclic

peptide. The SG atom is defined as buried if its SASA is lower than 70% of that in the isolated cysteine (80Å2). The

cysteine side chain is defined as inward pointing if its dihedral angle ψ (angle between CB atom and the backbone

plane) is within [-90, 90] degrees. In practice, the scaffolded cyclic peptide ensembles thus processed have different

number of configurations for each cyclic construct ranging from 2352 to 5468 configurations.
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3.2.4 Projecting ensemble distributions to lower dimension

In a pairwise RMSD matrix that consists of RMSD between any two epitope structures in any of the four ensembles

(monomer, fibril, stressed fibril, cyclic peptide scaffold), each row of the matrix represent the coordinate of a particular

structure in N-dimensional space where N is the sum of the number of structures in all four ensembles. The structural

distribution in N-dimensional space for a certain ensemble is the underlying distribution of rows that represents structures

that make up the ensemble. The underlying distribution is then fitted by kernel density estimation (KDE). Since KDE

performance worsens exponentially with higher dimensional data sets as a result of "curse of dimensionality" [96, 97],

Multidimensional Scaling (MDS) [2] or Stochastic Proximity Embedding (SPE) [98] was performed on the RMSD

matrix to reduced the dimension from N ×N to N ×D where D is the desired lower dimension.

3.2.5 Calculating ensemble overlap in 1D

The overlap is the percentage of a KDE distribution that overlaps with another KDE distribution. The formula is the

following:

Overlap = 1− 1

2

∫ ∞
−∞
|P −Q| dx (43)

where P and Q are two KDE distribution in 1D, and x is the first MDS coordinate. Note that, overlap is only used here

for representing and visualizing the similarity for ensembles in 1D intuitively. It is not used as a ranking criteria.

3.2.6 Ensemble similarity measures

We compare conformational ensembles of the epitope in the four different contexts, including monomer, fibril, stressed

fibril and cyclic scaffold, using two measures: Embedding Depth and Jensen Shannon Divergence. These are defined as

follows.

3.2.6.1 Embedding depth

Embedding depth can be a measure between a given structure and an ensemble, which quantifies how deeply that

structure is embedded within the ensemble. The structure-to-ensemble embedding depth is defined as the fraction of the

ensemble that has a lower KDE probability than the particular structure. For example, the mode of a distribution has an

embedding depth of one; on the other hand, outliers of a distribution have embedding depth close to zero.

Embedding depth can also be a measure between two ensembles, which represents the extent to which a given ensemble

is subsumed by another. This measure is non-reciprocal. This ensemble-to-ensemble is measure is obtained by averaging

all of one ensemble structures’ embedding depth in the other ensemble. A similar concept in measuring the embedding

of one ensemble in the other has been introduced before [99], but we are not aware that such measure was applied to

comparing protein ensembles before.

The embedding depth measures used for ranking (Depthcyclic−in−stress and Depthcyclic−in−monomer) are calculated

in MDS-reduced 3D conformational space where 95% of the matrix information can be preserved (Fig. 20b).
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3.2.6.2 Jensen Shannon Divergence (JSD)

The similarity between two different ensemble distributions is measured using the Jensen Shannon Divergence

(JSD) [100], which is implemented here using the ENCORE software [98]. JSD is a symmetrized and smoothed version

of the Kullback–Leibler divergence, DKL, which is a difference measure between two distributions. JSD is defined by

JSD(P,Q) =
1

2
DKL(P,M) +

1

2
DKL(Q,M) (44)

with

DKL(P,Q) =

∫ ∞
−∞

P (x) log (P (x)Q (x)) dx (45)

where M is defined by the average of the two distributions, P and Q: (M(x) = (P (x) +Q(x))/2). P(x) and Q(x) in

these definitions stand for two conformational ensembles in the SPE-reduced dimensional space.

The JSD measures used for ranking (JSDcyclic−fibril, JSDcyclic−monomer, and JSDcyclic−stressed) are produced by

weight averaging JSD from 3D to 11D by the inverse of the reduction residual in each dimension. By this measure,

the higher dimensions contribute larger to the averaged JSD. The convergence test shows that the information loss is

about 3% in 3D and the information loss is less than 1% in 11D for e.g. (1,4)TKEQ (Fig. 20). JSD as calculated in

equation (44) ranges from 0 to log(2), but in this paper, we normalize JSD to lie between 0 to 1.

3.2.7 Evaluating off-pathway target criteria

We scrape through the RCSB database of resolved protein structures, to find potential off-pathway targets of antibodies

that could be generated by each cyclic peptide scaffold. A severe off-pathway target meets three conditions: 1.) same

primary sequence as the epitope in the PDB structure, 2.) structural similarity to scaffolded epitope, and 3.) high solvent

exposure so that it is antibody-accessible.

The first criterion is assessed by finding "hits" when scraping through RCSB database (e.g. any protein that contains

one or more TKEQ motifs). The second criterion is assessed by the PDB entry’s structural embedding depth in the

scaffolded cyclic peptide ensemble. The embedding depth is calculated in the MDS-reduced 5D space of the RMSD

matrix. The third criterion is assessed by the percentage of solvent-accessible surface area (SASA) of the scaffolded

epitope ensemble that a PDB entry can exceed. Since SASA is a scalar, the percentage of the ensemble exceeded by the

entry can be directly calculated, by counting the number of structures in the ensemble that have lower SASA than the

entry and converting to a percentage.

The severeness of the potential off-pathway target effect for a scaffold is given in the equation below as the sum over

PDB structures of the product of structural embedding depth (Depthoff−target−in−cyclic) and the faction of cyclic

peptide ensemble SASA exceeded (f(SASAoff−target−exceed−cyclic)). The criteria used for ranking is negative of

the severeness, which is represented by the following formula:

Criteria = −
∑

allentries

Depthoff−target−in−cyclic × f(SASAoff−target−exceed−cyclic) (46)
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By this transformation, a higher criteria results to a more favorable scaffold. Since Depthoff−target−in−cyclic and

f(SASAoff−target−exceed−cyclic) are very small for most RCSB entries. We employ a cut-off criterion wherein they

have to exceed 5% to let the entry be included in criteria calculation.

Sometimes, the epitope appears multiple times in a single RCSB PDB entry because of multiple deposited mod-

els, multiple chains or repetitive epitope occurrence on a single chain. If such multiple occurrence happens, the

Depthoff−target−in−cyclic and f(SASAoff−target−exceed−cyclic) in equation (46) is the average of all epitope oc-

currence in the corresponding PDB entry.

The search result in the RCSB database will also contain the fibrillar and structured monomer α-synuclein entries. The

fibril entries are excluded from the off-pathway target calculation, because JSDcyclic−fibril has already accounted for

the severeness of fibril mis-targeting effect for a candidate antibody.

3.2.8 SMAA-TOPSIS ranking algorithm

Scaffolds are ranked using the SMAA-TOPSIS algorithm, which stands for the combination of Stochastic Multi-criteria

Acceptability Analysis and Technique for Order Performance by Similarity to Ideal Solution [31]. The algorithm is

designed to generate a ranking of candidates when multiple criteria are used for screening the candidates, and those

screening criteria have a priori: unknown predictive importance. An exact weight assignment for the importance of

the screening criteria is not needed in the SMAA-TOPSIS method. Instead, weight distributions are assigned, where

the mean weight W represents the relative importance of each criterion and the standard deviation of the weight

distribution represents the uncertainty in the importance for that criterion. The weight distribution is defined as a

uniform distribution:

f(x) =

{
1

2∆ (if W̄ −∆ < x < W̄ + ∆)

0 (elsewhere)
(47)

where W stands for the mean (or center) and ∆ stands for the distribution width. All the criteria have ∆ = 0.5 in this

paper (or equivalently standard deviation σ of 0.288). The mean weight for each criterion are as shown in Table 13:

Table 13: Mean weights of ranking criteria.
Criterion Mean weight

JSDcf 2
JSDcm 1

1 - JSDcs 0.5
1- Depthcm 1

Depthcs 0.5
Off-target 1.5

The ranking algorithm rescales all screening criterion to unity so weights can be properly applied. The Ideal Best and

Ideal Worst entries which have similarity screening criteria of either all 1 or all 0 respectively, are appended to the

scaffold list in Table 14. All 48 scaffolds show strong dissimilarity to fibril whereas other screening criteria show more

variance (Table 14). By adding Ideal Best and Ideal Worst entries, even in the rescaled criteria, the property of strong

dissimilarity to fibril can still preserve. A server where the SMAA-TOPSIS algorithm may be run on the users’ own

data can be found at http://bjork.phas.ubc.ca. The server can generally apply on the selection of candidate leads
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in drug development which often have multiple different screening tests that sometimes making the selection of leads a

nontrivial maximum-likelihood ranking problem.

3.3 Results

Using our previously developed epitope prediction algorithm [30], amino acid sequence EKTKEQ (residues 57-62

in α-synuclein) was predicted as a misfolding specific epitope [101] (Fig. 14). To dissect the key amino acids in this

epitope, we have analyzed three separate contiguous sequences subsumed by the epitope, namely EKTK, KTKE and

TKEQ. The results obtained are presented as follows.

3.3.1 Comparing ensembles in reduced conformational space

In order to design epitope scaffolds that are capable of eliciting antibodies that are conformationally selective to

toxic oligomers, the conformational ensemble of an epitope in a scaffold is compared with three other ensembles of

the epitope, namely, the monomer, fibril, and the stressed fibril, which is taken as a proxy for the conformational

ensemble of the epitope in the toxic oligomer [28, 29]. A desired cyclic peptide scaffolded epitope construct that is

oligomer-selective would have high ensemble similarity to the stressed fibril, and as well, low ensemble similarity to

the equilibrium fibril and isolated monomer.

To determine the similarity between the four epitope ensembles (e.g. scaffold, stressed fibril, fibril and monomer), we

first generated these ensembles by performing molecular dynamics (MD) simulations (see Methods Section 3.2.3 :

Generation of ensembles). The conformational similarity of the epitope between ensembles is quantified in a reduced

conformational space of the epitopes (see Methods Section 3.2.4 : Projecting ensemble distributions to lower dimension).

For example, Fig. 15 shows the structural distributions in 1D for four ensembles of epitope TKEQ. The two scaffolds

chosen for this illustration are cyclo(CGTKEQGGGG) [or (1,4)TKEQ, which stands for 1 glycine on the left and 4

glycines on the right of TKEQ epitope] and cyclo(CGGTKEQGGG) [or (2,3)TKEQ].

Although some information may be lost when projecting high dimensional ensembles to lower dimension, the distribu-

tions in Fig. 15 do illustrate how the ensembles overlap. The fibril ensemble consists of a predominant sharp spike

because of its rigid structure. On the other hand, the monomer ensemble is broadly distributed because it is natively

unstructured and conformationally diverse. The stressed fibril ensemble distributes around the fibril ensemble because

it is generated by forcing the unfolding of fibril by biased MD. Each cyclic peptide scaffold possesses a different

distribution. From the degree of overlap or similarity between a scaffolded cyclic peptide ensemble and the other

ensembles, we can assess whether the scaffold has the potential to raise oligomer-selective antibodies while sparing

fibril and monomer.

For example, both (2,3)TKEQ and (1,4)TKEQ scaffold ensemble have very low overlap with the fibril ensemble (8%

and 3%) (see Methods Section 3.2.5 : Calculating ensemble overlap in 1D). Also, they both have high overlap with the

stressed fibril, where (2,3)TKEQ is somewhat higher than (1,4)TKEQ (68% and 47%). The above are desired properties

of a conformationally selective immunogen. On the other hand, they also have high overlap with isolated monomer

ensemble, with (2,3)TKEQ having much higher overlap than that in (1,4)TKEQ (74% and 47%). High overlap with the

monomer ensemble is not a favorable property because of the possibility of targeting healthy protein. Naively from the

1D overlap measure, (1,4)TKEQ may be better than (2,3)TKEQ, since it has higher stressed fibril ensemble overlap
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than monomer ensemble overlap. However, with a more rigorous similarity measure analysis and the ranking algorithm

we introduced below, (2,3)TKEQ actually ranks better than (1,4)TKEQ.

The similarity or overlap between ensembles is rigorously quantified by two measures, Jensen Shannon Divergence (JSD)

and embedding depth (see Methods Section 3.2.6 : Ensemble similarity measures). JSD is a measure that represents

the dissimilarity between two ensembles, which has been used previously to compare protein ensembles [100, 98].

Embedding depth represents the extent to which a given ensemble is subsumed by another [99], e.g. to what extent

conformations in one ensemble are contained within another ensemble. It is a non-reciprocal measure that is introduced

in this paper to compare protein conformational ensembles. For example, the embedding depth of the fibril ensemble

within the stressed fibril ensemble in Fig. 15a is 0.338, because fibril conformations are contained within the stressed

fibril ensemble. Note that embedding depth between two identical ensembles is 0.5, so 0.338 has represented a large

degree of subsumption. On the other hand, the JSD between the two ensembles is 0.984, which represents two almost

completely dissimilar ensemble.

(a) (1,4)TKEQ scaffold (b) (2,3)TKEQ scaffold

Figure 15: The equilibrium ensemble distributions for the TKEQ epitope projected by the multidimensional scaling
(MDS) method [2] onto the first MDS dimension. For a given epitope, different cyclic peptide scaffolds possess
different distributions, which will result in different overlap with the other three ensembles. By comparing the degree of
ensemble overlap, the conformational selectivity of a scaffold can be assessed. The scaffolds shown are (1,4)TKEQ in
panel (a), and (2,3)TKEQ in panel (b). Note that only the scaffold distribution is different in the two panels.

3.3.2 Cyclic peptide scaffold ensembles have a non-linear dependence on the pattern of flanking residues

The ensemble overlap of a given epitope with other ensembles can be tuned by changing the scaffolding residues.

Fig. 16 shows the results for three α-synuclein epitopes; EKTK, KTKE and TKEQ, illustrating changes that can occur in

ensemble similarity, as measured by Jensen Shannon Divergence (JSD) (see Methods Section 3.2.6.2 : Jensen Shannon

Divergence (JSD)), embedding depth (see Methods Section 3.2.6.1 : Embedding depth) and off-pathway target criteria

(see Methods Section 3.2.7 : Evaluating off-pathway target criteria), by varying the number of flanking N-terminal

and C-terminal glycines. Interestingly, scaffolds having the same radial size (i.e. same primary sequence length, such

that if there are n N-terminal glycines and m C-terminal glycines, n+m is constant) and the same epitope can give very

different similarity comparisons with other ensembles. The changes observed in ensemble similarities as we change the
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pattern of flanking residues led us to apply a systematic ranking method (see Methods Section 3.2.8 : SMAA-TOPSIS

ranking algorithm) for the selection of the best performing scaffolds according to the in silico screeing criteria.

Figure 16: Measures for the rankings of all 16 epitope scaffolds, for three overlapping 4 residue sub-epitopes of
EKTKEQ in α-synuclein. (a) scaffolded cyclic peptide ensemble dissimilarity to monomer (triangle), stressed fibril
(circle), and fibril (star) ensembles as measured by Jensen Shannon Divergence (JSD) showing the changes in ensemble
overlap with varying number of flanking glycine. Changes in the values for the fibril are all very small on this scale so
they appear to remain unchanged across all scaffolds. (b) Scaffolded cyclic peptide ensemble embedding within the
monomer (triangle) and stressed fibril (circle) ensembles, as measured by embedding depth showing the changes in
ensemble overlap with varying number of flanking glycine. (c) Degree of off-pathway target values of scaffolds with
varying number of flanking glycines.

3.3.3 Finding potential off-pathway target

It is desirable to avoid off-pathway targets to minimize unwanted side-effects. We scrape through the RCSB database

of resolved protein structures, to find potential off-pathway targets of antibodies that could be generated by each

cyclic peptide scaffold (see Methods Section 3.2.7 : Evaluating off-pathway target criteria). Here, we demonstrate the

off-pathway target analysis of (1,4)TKEQ scaffold.

Fig. 17a shows the scaffold ensemble for (1,4)TKEQ, projected on the first MDS coordinate, along with all entries

in the human proteome with TKEQ motifs deposited in the PDB. The degree a PDB entry is embedded in the cyclic

peptide ensemble is recorded as a percentage. Note that Fig. 17a is only for visualization, and the formal calculation of
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embedding depth, Depthoff−target−in−cyclic, is performed in 5D. Nevertheless, we can see from this figure that the

epitope in the context of the PDB structure is conformationally distinct from that in the cyclic peptide.

Fig. 17b indicates the distribution of the SASA for the (1,4)TKEQ ensemble, along with all entries in the human

proteome with TKEQ motifs deposited in the PDB. The SASA of the scaffolded cyclic peptide ensemble ranges from

400 to 600 Å2, and serves as a good reference to compare to. The fraction of the cyclic peptide ensemble that has lower

SASA than a PDB entry is f(SASAoff−target−exceed−cyclic) correspond to the PDB entry.

Two entries (PDB ID: 1XQ8 and 2KKW) show both noticeable structural similarity (Depthoff−target−in−cyclic > 5%)

and SASA exposure (f(SASAoff−target−exceed−cyclic) > 5%) relative to the (1,4)TKEQ ensemble (Fig. 17c). Other

off-pathway targets identified for all scaffolds can be found in figure 21. Many off-pathway targets, including 1XQ8

and 2KKW above, are themselves deposited structures of monomeric α-synuclein. Fibril PDB entries of α-synuclein

are excluded from the off-pathway target criterion calculation to avoid double counting the contribution of fibril to the

ranking. Of the many α-synuclein fibril structures in the PDB, the only one identified as an off-pathway target by the

above cutoff criteria was 2N0A, which happens to be the PDB entry we used to generate the fibril ensemble and perform

epitope prediction. On the other hand, the structured monomer entries still contribute to the off-pathway target criterion

because they are distinct from the simulated monomer ensemble. These monomer PDB entries are partly structured by

binding to micelles (e.g. PDB 2KKW and 1XQ8), and are thought to be involved in various aspects of α-synuclein

physiology [102, 103, 104, 105, 106]. Thus, PDB monomer structures are treated separately from the un-structured

isolated monomer ensemble.

Figure 17: Off-pathway target analysis for (1,4)TKEQ. (a)Structural ensemble distribution of (1,4)TKEQ along
with off-pathway target embeddings. Most of the off-pathway targets are located at the periphery of the scaffold
distribution. Structures of 2KKW and 1XQ8 are rendered in ribbon schematics, and the epitope is rendered in red Van
der Waals surface. (b) The SASA distribution of (1,4)TKEQ along with SASA for the off-pathway target structures. (c)
1XQ8 and 2KKW show both noticeable structural similarity (Depthoff−target−in−cyclic > 5%) and SASA exposure
(f(SASAoff−target−exceed−cyclic) > 5%)

3.3.4 Scaffold ranking

The performance of each scaffold is assessed by six ranking criteria, including JSDcyclic−monomer, JSDcyclic−fibril,

1-JSDcyclic−stress, Depthcyclic−in−stress, 1-Depthcyclic−in−monomer and a scalar parameter measuring the above-

described off-pathway target criteria (see Methods Section 3.2.7 : Evaluating off-pathway target criteria). Large values

in all criteria are desired. We thus subtract some JSD values from 1 is to convert dissimilarity to similarity, and likewise,

we subtract some embedding depths from 1 is to convert similarity to dissimilarity. Scaffolds are ranked using the

SMAA-TOPSIS algorithm [31] using these 6 criteria (see Methods Section 3.2.8 : SMAA-TOPSIS ranking algorithm).
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In the ranking algothithm, each criterion is assigned a weight for its relative importance; The weights used here are

given in Table 13. Since JSDcyclic−monomer and 1-Depthcyclic−in−monomer both represent the effect of monomer

dissimilarity, the importance of monomer in the ranking amounts effectively to the sum of the two weights. The same

applies to 1-JSDcyclic−stressed and Depthcyclic−in−stressed. Thus, the importance respectively for fibril, monomer,

stressed fibril, and off-pathway target criteria are 2, 2, 1, 1.5. The ranking and the ranking criteria for all 48 scaffolds are

shown in table 14. Such ranking guides which cyclic peptide scaffolds are most promising for passive immunization.

3.3.5 Embedding depth as a similarity measure compared with JSD

The various JSDs (JSDcyclic−stress, JSDcyclic−fibril, JSDcyclic−monomer) have mutually positive correlations, as

shown in the top-left 3 × 3 matrices in Fig. 18a, b and c . This indicates that these variables may have implicit

dependencies on one another and may contain some degree of redundant information. The JSD correlations, particularly

for TKEQ scaffolds, may result from their rigidity. Their JSDs have strong negative correlation to the Root Mean

Squared Fluctuation (RMSF) (last column in Fig. 18). For example, since a rigid scaffold would have a narrow structural

distribution, it would have minimal overlap with other ensembles, and thus all similarity measures would be lower. The

anti-correlation with RMSF is less significant for EKTK and KTKE, so the correlations between the JSDs likely arises

from more subtle effects.

Embedding depth was thus developed in order to elucidate the implicit effects of scaffold rigidity. By this measure,

a rigid scaffold can still have high overlap with a subset of another ensemble as long as the rigid scaffold is within a

densely populated region of another ensemble. For TKEQ, the correlation coefficient between Depthcyclic−in−monomer
and Depthcyclic−in−stress is reduced to 0.15 from JSD’s 0.83, and the embedding depths’ correlations with RMSF are

decreased. In many circumstances, the embedding depth carries more independent information than JSD, which could

be used in future ensemble comparison analysis.

Figure 18: The correlation matrices of the ranking criteria for α-synuclein epitope (a) EKTK, (b) KTKE, and (c) TKEQ
scaffolds.
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3.3.6 Scaffold property that affects its performance

The scaffold rankings (Table 14) reflect the designed ranking criteria. For the top 4 scaffolds, (1,3)EKTK, (2,3)EKTK,

(2,4)EKTK, and (2,3)TKEQ, they all have significantly lower JSDcyclic−stress than JSDcyclic−monomer, higher

Depthcyclic−in−stress than Depthcyclic−in−monomer, and low off-pathway target values (Fig. 16 and Table 14). We

note that the cyclic peptide scaffold dissimilarity from the fibril represented by JSDcyclic−fibril cannot serve as a

discriminative criterion, because it is almost a constant of one (Table 14).

While each screening criterion can directly affect the performance of scaffolds, we have noticed some scaffold properties

that can affect a scaffold’s performance in an indirect way. For example, we found that scaffolds with more residues

tend to have smaller JSDs, and larger embedding depths (Fig. 19a-d). This effect can also be observed from the zigzag

pattern of JSD and embedding depth in Fig. 16. The pattern is particularly apparent for EKTK scaffolds. It is likely

that this trend is due to scaffold rigidity, since larger cyclic peptides have less structural constraint and more flexibility,

allowing them to have higher overlap with the other disordered ensembles. On the other hand, only the TKEQ scaffold

size has a significant trend with RMSF as scaffold size is increased (Fig. 19e),suggesting that the primary sequence of

the epitope is as significant as scaffold size in determining its dynamics and flexibility, and thus its potential similarity

to other ensembles. Consistent with this notion, scaffold size itself does not correlate with a scaffold’s performance for

TKEQ and EKTK (Fig. 19f). This is also consistent with the observation in Results. 3.3.2 in which scaffolds having the

same number of flanking residues can have very different similarity measures. For KTKE, smaller scaffolds tend to

perform better (Fig. 19f), but the rankings themselves are generally lower than those for the other two epitopes.

Some epitopes tend to have better performance then others. EKTK and TKEQ scaffolds are generally ranked higher than

KTKE scaffolds. For the top 20 scaffolds, there are 13 EKTK scaffolds, 6 TKEQ scaffolds, and only 1 KTKE scaffold.

The poor performance of KTKE scaffolds appears to be due to their systematically lower structural similarity to the

stressed fibril than to the unstructured monomer ensemble (Fig. 16). The systematic higher monomer similarity may be

due to the higher RMSF of KTKE scaffolds, which is almost 2 times as high as an average epitope of either EKTK or

TKEQ (Fig. 19e). I.e. flexibility in the scaffold construction could favor greater similarity to the monomer ensemble,

because the monomer ensemble is inherently more conformationally diverse than that of the stressed fibril. Since a

cyclic peptide has an inherent curvature which can better conformationally capture a bent epitope, averaged virtual

bond angles representing the local curvatures of epitopes in the stressed fibril ensemble are calculated and compared.

The virtual bond angle is defined as π − ∠CAi−1CAiCAi+1 in the kink model [107, 108, 109], which is shown to

represent curvature in the continuum limit [110]. However, the curvature of KTKE (1.13± 0.14) is not particularly

lower than EKTK (1.18 ± 0.18) or TKEQ (1.10 ± 0.16), and the value are mutually within the error regimes. As a

result, the curvature cannot explain the particular lower performance of KTKE.

3.4 Discussion

Assigning appropriate weights for each criterion is a non-trivial task, which depends on biological intuition, and

analyzing the consequences arising from screening criteria and weights. For this specific ranking, we put twice the

weight on fibril and monomer than stressed fibril, because the stressed fibril ensemble generation process contains more

prior assumptions, in which we hypothesize that a partially disordered fibril ensemble is enriched in oligomer-selective

conformational epitopes. The fibril ensemble is obtained by generating the equilibrium ensemble of the solid-state
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Figure 19: Epitope dependent correlation between (a) JSDcyclic−stress, (b) JSDcyclic−monomer, (c)
Depthcyclic−in−stress, (d) Depthcyclic−in−monomer, (e) RMSF, (f) rankings of α-synuclein epitope scaffolds and
the number of residues in the scaffolds. The pearson correlation coefficient, r and the p-values are shown for EKTK
(green triangles), KTKE (purple circles) and TKEQ (blue stars) scaffolds. The shaded areas around the fitted lines are
the 68% confidence intervals corresponding to the standard errors.

NMR resolved structure 2N0A. The monomer ensemble is obtained by generating a natively-disordered monomer of

α-synuclein. The confidence in the accuracy of the fibril ensemble and monomer ensemble are greater than that of

the stressed fibril oligomer model ensemble. The off-pathway target criteria have a slightly higher weight than the

similarity of stressed fibril, because minimal off-pathway target effects are desired and are key feature of monoclonal

antibody therapy.

The in silico screening method introduced in this paper can generally be applied to various different scaffolding

methods. There are many other scaffolding methods that have been previously developed, besides cyclizing the epitope

with a variable number of glycine residues [45, 111, 112, 113]. Apart from these methods, several possible extensions

of our cyclic peptide scaffolding method may be directly implemented. For example, proline can be used for scaffolding

instead of glycine, since it is relatively inert chemically compared to other amino acids, and it is also able to constrain the

cyclic peptide ensemble by adding conformational rigidity, which may be exploited to bias the scaffold ensemble more

towards the stressed fibril ensemble [114]. As another extension of the method developed here, multiple cyclic peptides

can be laterally stacked and stabilized either by non-covalent sidechain interactions, or by cysteine disulfide bonds to

make multi-ring designs. The assembled structure has the potential to better mimic a stressed fibril ensemble of the
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epitope via these lateral interactions. Similar designs have previously been proposed for the functional reconstruction

of structurally complex epitopes [115]. Different carrier proteins that conjugate to the scaffolded epitope such as

nanoparticles or lipid micelles have also been successfully implemented previously [116, 117, 118, 119]. Similarly,

a linear peptide epitope of CGTKEQGGGG conjugated to a much larger carrier can be simulated as a peptide with

cysteine SG atom spatially fixed at x = 0, and a boundary constraint such that it is forbidden to access the half-space

region x < 0. Such a peptide in fact exhibits desirable ensemble overlap properties (Depthensemble−in−monomer=0.177,

Depthensemble−in−stressed=0.232), so that conjugating on a non-interacting surface might be sufficient to scaffold

the epitope to mimic the model oligomer. The above possible extension strategies are interesting future tests for

computational and experimental studies.

The in silico immunogen screening method developed here provides an additional route to optimize a peptide

immunogen that can be faster and cheaper than experiments. Experimental screening methods can then be performed

on a subset of top-ranked scaffolds to save available resources. Some examples of screening experiments are surface

plasmon resonance (SPR) assays to measure binding affinity to antibodies and conformational selectivity [120],

Thioflavin T (ThT) assays [121, 122, 123], and Förster resonance energy transfer (FRET) assays [124] to measure

aggregation tendency, since scaffolds that can trigger aggregation of normal α-synuclein may have more contribution to

the pathology because of greater seeding propensity.

3.4.1 Alternative α-synuclein fibril structures and consequence for predicted epitope

The aggregation of α-synuclein is critical to the pathogenesis of Parkinson’s disease and other synucleinopathies [125,

126, 90, 127, 128, 129, 130, 131, 132]. The SNCA gene encodes four isoforms of α-synuclein: SNCA140, SNCA126,

SNCA112 and SNCA98 [133]. The four isoforms have been shown to have varying degrees of aggregation, with the

SNCA140 isoform being dominant and having a significantly higher levels of fibril formation [133].The fibril structure

(PDB ID: 2N0A) used in this paper is of the SNCA140 isoform with 140 amino acid residues [90]. Subsequent cryo-

electron microscopy (cryo-EM) structures of the SNCA140 α-synuclein isoform shows that it exhibits two predominant

fibril polymorphs; one rod and the other twister with a common protofilament structural kernel [134, 16]. Thus, the two

polymorphs differ not in the protofilament unit but in the location of the protofilament packing interface. The different

polymorphic structures formed by α-synuclein due to different packing of similar kernel has also been observed in

other aggregation prone proteins like Aβ [135] and tau [136].

There are several alternative α-synuclein fibril structures with different polymorphs deposited in RCSB protein data bank

(PDB) (www.rcsb.org) that we could have used for this study (e.g PDB entries 6CU7, 6CU8, 6H6B and 6FLT), which

raises the question of whether the same epitopes would have been predicted with these alternative structures. There

is some precedent for epitope commonality among polymorphic Aβ fibril structures [137]. The single protofilament

solid-state NMR structure of the α-synuclein fibril (PDB ID: 2N0A) used here for epitope prediction is similar to

both the dominant rod (PDB ID: 6CU7) and twister (PDB ID: 6CU8) polymorphs for 38 matched residues of the

α-synuclein fibril structures with the RMSD of 3.5Å and 3.8Å, respectively [134]. Another cryo-EM structure of a

truncated α-synuclein fibril, which includes the first 121 residues, has also been shown to have structural similarity to

the rod polymorph with an RMSD of 2.1Å [135, 134]. These similarities between the aggregating units of different

polymorphs of α-synuclein suggests that there may be some commonalities in collective coordinate-predicted epitopes,
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however systematic analysis explicitly analyzing the predictions for these structures would have to be done to validate

this hypothesis, and is a topic for future work.
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3.5 Supplementary Material

3.5.1 The ranking criteria and rankings for α-synuclein epitope scaffolds

See Table 14.

3.5.2 The convergence of JSD and embedding depth

Here, we show the convergence of the dimension reduction performing on pairwise RMSD matrix that encompass

fibril, stressed fibril, monomer and (1,4)TKEQ ensemble. Stochastic Proximity Embedding (SPE) [98] is performed

to calculate JSD in reduced dimension. The different level of convergence in 3-11D (Fig. 20a) inspired us to use a

weighted average JSD across several dimensions, by weighting the JSD in each dimension by the inverse of the residual

in that dimension.

Multidimensional scaling (MDS) is performed to calculate embedding depth in reduced dimension. Since the stress

quickly converged in 3D (Fig. 20b), we simply perform the embedding depth measure in 3D.

Figure 20: Convergence of dimensional reduction for (a) stochastic proximity embedding (SPE) for JSDs and (b)
multidimensional scaling (MDS) for embedding depth. Both quantities are plotted vs. the dimension of the reduction.
The scaffold used here for illustration is (1,4)TKEQ.

3.5.3 The off-pathway target for each epitope

See Fig. 21.
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Table 14: Ranking criteria and rankings for α-synuclein epitope scaffolds. The abbreviations JSDcf , JSDcm, JSDcs,
Depthcm, and Depthcs correspond to JSDcyclic−fibril, JSDcyclic−monomer, JSDcyclic−stress, Depthcyclic−in−monomer,
and Depthcyclic−in−stress, respectively.

Rank scaffold JSDcf JSDcm JSDcs Depthcm Depthcs off-target
1 Ideal Best 1.00000 1.000 0.000 0.000 1.000 0.000
2 CGEKTKGGG 0.99979 0.897 0.751 0.052 0.107 0.000
3 CGGEKTKGGG 0.99978 0.849 0.765 0.093 0.147 -0.017
4 CGGEKTKGGGG 0.99978 0.822 0.700 0.094 0.160 -0.085
5 CGGTKEQGGG 0.99833 0.869 0.740 0.128 0.177 -0.084
6 CGGGEKTKGG 0.99979 0.850 0.768 0.104 0.124 -0.032
7 CGEKTKGG 0.99979 0.980 0.916 0.009 0.058 -0.011
8 CGGGEKTKGGGG 0.99955 0.686 0.675 0.235 0.225 -0.023
9 CGGGGEKTKGG 0.99977 0.804 0.786 0.140 0.135 -0.037
10 CGEKTKG 0.99979 0.961 0.951 0.011 0.019 0.000
11 CGGEKTKGG 0.99967 0.886 0.875 0.082 0.061 0.000
12 CGGTKEQGGGG 0.99974 0.905 0.871 0.144 0.084 0.000
13 CGEKTKGGGG 0.99974 0.889 0.917 0.070 0.061 0.000
14 CGGGEKTKGGG 0.99979 0.737 0.742 0.170 0.142 -0.033
15 CGGTKEQGG 0.99979 0.975 0.976 0.058 0.038 0.000
16 CGGGTKEQGGG 0.99974 0.911 0.877 0.193 0.076 -0.007
17 CGGGTKEQGG 0.99951 0.904 0.903 0.122 0.049 -0.004
18 CGGEKTKG 0.99979 0.948 0.962 0.058 0.022 -0.010
19 CGGKTKEG 0.99979 0.996 0.999 0.010 0.000 0.000
20 CGGGGEKTKGGG 0.99973 0.723 0.661 0.187 0.200 -0.149
21 CGTKEQGGGG 0.99979 0.972 0.943 0.037 0.044 -0.065
22 CGKTKEGG 0.99979 0.976 0.998 0.018 0.001 0.000
23 CGGTKEQG 0.99979 0.995 1.000 0.015 0.001 -0.007
24 CGKTKEG 0.99978 0.966 0.999 0.030 0.000 0.000
25 CGTKEQG 0.99979 0.967 0.995 0.084 0.011 0.000
26 CGGGKTKEGG 0.99979 0.954 0.995 0.034 0.002 -0.013
27 CGTKEQGG 0.99979 0.951 0.971 0.150 0.019 0.000
28 CGGGGTKEQGGG 0.99925 0.902 0.834 0.099 0.084 -0.156
29 CGGGGEKTKGGGG 0.99931 0.509 0.649 0.452 0.331 0.000
30 CGGGEKTKG 0.99979 0.964 0.991 0.043 0.004 -0.070
31 CGGGGTKEQG 0.99979 0.934 0.994 0.184 0.005 -0.022
32 CGKTKEGGG 0.99956 0.917 0.997 0.142 0.000 -0.044
33 CGGGTKEQG 0.99979 0.925 0.991 0.100 0.007 -0.082
34 CGGGGKTKEG 0.99969 0.816 0.962 0.196 0.013 -0.011
35 CGGGGEKTKG 0.99979 0.879 0.919 0.091 0.035 -0.131
36 CGGGKTKEGGG 0.99922 0.809 0.953 0.197 0.012 -0.047
37 CGGGGKTKEGGG 0.99599 0.725 0.881 0.257 0.047 -0.053
38 CGGKTKEGG 0.99873 0.859 0.942 0.349 0.056 -0.053
39 CGTKEQGGG 0.99978 0.922 0.936 0.070 0.054 -0.210
40 CGGGKTKEG 0.99974 0.991 0.999 0.097 0.000 -0.232
41 CGGKTKEGGGG 0.99791 0.708 0.947 0.312 0.017 -0.091
42 CGKTKEGGGG 0.99929 0.757 0.969 0.239 0.004 -0.176
43 CGGGKTKEGGGG 0.99958 0.706 0.901 0.548 0.089 -0.029
44 CGGGGTKEQGGGG 0.99861 0.840 0.726 0.142 0.144 -0.378
45 CGGKTKEGGG 0.99966 0.822 0.976 0.091 0.004 -0.321
46 CGGGGKTKEGG 0.99420 0.567 0.788 0.448 0.142 -0.356
47 CGGGGTKEQGG 0.99979 0.958 0.940 0.084 0.032 -0.565
48 CGGGGKTKEGGGG 0.99445 0.586 0.829 0.267 0.045 -0.460
49 CGGGTKEQGGGG 0.99979 0.903 0.972 0.221 0.009 -0.786
50 Ideal Worst 0.00000 0.000 1.000 1.000 0.000 0.000

50



Figure 21: Off-pathway targets found in the RCSB, for each 4 amino acid epitope sequence and corresponding scaf-
fold. An off-pathway target is identified if both its Depthoff−target−in−cyclic and f(SASAoff−target−exceed−cyclic)
are greater than 5%, see e.g. Fig. 17c. The value of each point is the product of Depthoff−target−in−cyclic and
f(SASAoff−target−exceed−cyclic) for specific off-pathway target. The summation of values for points on the vertical
column for each scaffold is estimated here to be the severeness of corresponding scaffold, and is used in the rankings
for each scaffold. Results are presented for (a)EKTK (b)KTKE and (c)TKEQ epitopes. Entries colored green stand for
fibrillar α-synuclein (PDB 2N0A) which is not included in the criteria and severeness calculation, and red entries are
α-synuclein monomers in the PDB.
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4 Accelerated ensemble generation for cyclic peptide using Reservoir-REMD

4.1 Summary

Scaffolding epitope using cyclic peptide can bias the structure of the epitope, which is an useful scaffolding method to

raise conformational selective antibodies. The structural ensemble of the cyclic peptides enables the virtual screening of

the candidates, and thus speeds up the drug development process. However, the ensemble generation of cyclic peptides

is hard because its rugged energy landscape hindered effective conformational sampling. To address this, the reservoir

replica exchange molecular dynamics simulation (R-REMD) of three systems, alanine dipeptide, Tryptophan zipper,

and a simple 7-residue cyclic peptide, were performed by modified GROMACS codes. The validity and the efficiency

of the R-REMD on the explicitly solvated systems were demonstrated on the former two model proteins. The short

cyclic peptide shows consistent diversity of the R-REMD generated ensemble using different replica temperature ranges,

which cannot be achieved by normal REMD. R-REMD has gained more and more attraction in the recent publications,

and we expect our implementation of R-REMD in GROMACS can make R-REMD more attractive for future research

that requires generation of ensembles.

4.2 Methods

4.2.1 Model system

Three proteins were considered in this study: (1) Alanine dipeptide, an ACE-ALA-NME construct (downloaded from

PLUMED [56] tutorial) (2) Tryptophan zipper 2, or Trpzip2 (model 1 of PDB code 1LE1 [138]) (3) cyclo-(CGKVTSG)

(Fig. 22). Alanine dipeptide is a simple molecule, readily for testing simulation techniques and free energy methods.

Trpzip2 is an artificially designed 12-amino-acid protein with a high propensity to form a beta-hairpin in solution

at room temperature [138]. The temperature-dependent folding stability of Trpzip2 provides an excellent model for

testing sampling algorithms and comparing the simulation to experimental data. Cyclo-(CGKVTSG) is a scaffolded Tau

protein epitope using cyclic peptide. The Tau protein epitope, KVTS, was predicted to be a misfolding-prone epitope

by a previously developed algorithm [30]. Antibodies selective to the misfolded Tau are desired Alzheimer’s disease

therapy, which could be raised from the cyclo-(CGKVTSG)-immunized mice. Ensemble generation of the scaffolded

epitope can enable the virtual screening as described in the last chapter, but the rugged energy landscape impedes

ensemble sampling of the disordered cyclic peptide. As a result, the ensemble generation of a simple scaffolded epitope,

cyclo-(CGKVTSG), is tested here to prove the applicability of R-REMD.

4.2.2 General simulation setup

The terminals of the Trpzip2 were charged (NH3+ and COO-), and the terminals of the Alanine dipeptide and cyclo-

(CGKVTSG) were not capped. Each model protein was solvated, ionized, and equilibrated with 50ns NVT-thermostat

and 150ns NPT-thermostat before MD production. All MD simulations were generated using GROMACS program

(version 4.6.7) [55] with custom implementation of R-REMD algorithm. The CHARMM36m force field [57] was used

with the explicit TIP3P water potential [58]. The trajectories were generated with dodecahedron periodic boundary

conditions in the isobaric-isothermal thermostat (NPT) at constant pressure of 1atm and temperature of 300K. Na+ and
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Figure 22: (a) Alanine dipeptide in the licorice rendering. (b) Trpzip2 in the ribbon rendering. The tryptophan residues
are rendered in licorice to show their close interaction. (c) Cyclo-(CGKVTSG) in licorice rendering.

CL- ions were added to neutralize the overall systems and simulate an aqueous salt solution at 100 mM. The simulation

box boundaries are created 1.2nm distance away from the closest protein atom.

4.2.3 Reservoir-REMD implementation in GROMACS

The source codes of GROMACS 4.6.7 were modified to implement R-REMD. The source codes are composed of more

than a hundred scripts written in the C program. Many technical modifications were made, and some core modifications

are described conceptually here. The reservoir states were represented by checkpoint files, which could be extracted

from the trajectory files (trr file). A new mdrun flag, -reservoir, can read the checkpoint files in the format of -reservoir

<*cpt files>. If the -reservoir flag is supplied, the highest temperature replica of REMD becomes the reservoir replica.

Before each replica exchange attempt, the reservoir replica read a random checkpoint file, processed single MD iteration,

and halted its state by trapping the replica in a small for-loop until the exchange attempt was made. Within the single

MD iteration, the potential energy was calculated as the exchange criteria. Within the trapping for loop, the message

passing interface (MPI) communication with other replica was kept to synchronize the checkpoint saving. Since

reservoir replica only handled simple tasks, the message passing interface (MPI) architecture was modified to assign

only one CPU core to the reservoir replica.

4.2.4 Convergence

The convergence of the simulations were assessed by different metrics for different model proteins. These metrics were

extracted from R-REMD simulation and REMD simulation to check the speed of convergence. These metrics were also

extracted from reservoir generation simulations to check if the reservoirs were properly sampled. The definition of

these metrics are described below.
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4.2.4.1 Alanine dipeptide: binning of Ramachandran space

Using the same definition as Niel et al [41], the Ramachandran space was binned into 6 categories (Fig. 23a). The

vertical lines that partition the Ramachandran space are at φ = 0, 120 degrees, and the horizontal partition lines are

at ψ = 90, −100 degrees. The convergence could be observed from the flattening of the frequency of each category

verses simulation time.

Figure 23: (a) 6 coarse-grained states A-F were defined using the binning on Ramachandran space. (b) The free energy
profile of Alanine dipeptide using REMD. (c) The free energy profile of Alanine dipeptide using R-REMD.

4.2.4.2 Trpzip2: folded fraction

Simulation generated structures were compared to the experimentally determined native structure (model 1 of PDB

code 1LE1), where backbone RMSD were calculated. The RMSD cutoff used to determine native structures was 0.29

nm, the local minimum of the frequency profile along RMSD (Fig. 24). Fig. 24b represents the RMSD frequency profile

of a 1500 ns normal MD simulation at reservoir temperature, 416.07K, where Trpzip2 can spontaneously transitioned

between folded state and unfolded state (Fig. 24a). The folded fraction of a trajectory can be calculated versus time,

where convergence can be assessed. The RMSD cutoff of 0.29 nm is also the PMF local maxima that separates the

folded state and unfolded state (Fig. 26b).

4.2.4.3 Cyclo-(CGKVTSG): torsional entropy

Similar to Ramachandran space binning for alanine dipeptide, the torsional angle of each amino acid in the epitope,

KVTS, was assigned a state from A, B, X or Y (as defined in Fig. 25). The definition of ABXY torsion bins provides

a convenient way to classify the backbone geometry of the epitope residues based on the Ramachandran plot region,

which was first proposed by Hosseinzadeh et al. [139, 140]. A and B represent the alpha-helix and beta-sheet regions,

respectively. X and Y are the mirror of A and B, respectively. An torsional state of cyclo-(CGKVTSG) could be

represented by a 4-letter string, representing the torsional bin for KVTS respectively (ex. AAAA, ABBX, ...). The

total number of states defined by ABXY is 256 (=4 amino acids 4 torsional bin). The torsional entropy was calculated

by S =
∑256
i=1 pi ln(pi), where i sum from every possible epitope torsional state. The torsional entropy was used to
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Figure 24: (a) The RMSD profile of Trpzip2 simulated at the reservoir temperature, 416.07K. (b) The RMSD frequency
profile calculated from (a). The local minimum that separate folded state and unfolded state is 0.195 nm.

determine the convergence of cyclo-(CGKVTSG) simulation. A stable entropy suggests that the probability of each

epitope torsional state (pi) is not changed over time. The set of torsional state probability ({pi}) for each epitope can be

compared between ensembles to acquire ensemble similarity. The entropy measure here is also called Shannon diversity

in other studies [141], for measuring the diversity of the component states.

Figure 25: The definition of A, B, X, and Y bin on the Ramachandran space. The two horizontal lines that sandwiched
the state A are at ψ =-90 and 70 degrees, and the two horizontal lines that sandwiched the state X are at ψ = -70 and
90 degrees.

4.2.5 Reservoir construction using potential of mean force (PMF) for Trpzip2

There is no restriction on the reservoir ensemble generation method as long as the ensemble generated is Boltzmann

distributed (i.e. the frequency of a certain state with free energy F is proportional to the Boltzmann factor e−βF ). Since
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normal MD cannot sample a converged ensemble within 1500 ns (Fig. 24a), an ensemble reconstruction method using

PMF was employed.

For first, the PMF along RMSD calculated against the backbone of the native Trpzip2 structure (model 1 in PDB

code 1EL1) was constructed using the MBAR [48] estimator on the umbrella sampling (US) [46] result. Umbrella

sampling was performed serially. The initial coordinate of each US window was the final coordinate of the previous

window; therefore, each successive window benefits from a longer equilibration time [49]. The simulation time in the

construction of serial windows process was 5 ns, and then each window was extented for another 35 ns. In total, 55

windows were created with 40ns simulation in each of the windows (Fig. 26a). The PMF shows two local minima with

an energy barrier of about 2kcal/mol (Fig. 26b). The folded state is populated at the left PMF local minima, and the

unfolded state is populated at the right PMF local minima with high RMSD degeneracy.

Secondly, after the PMF was constructed, all states generated by the last 50% of US trajectories were classified into

RMSD bins. The reservoir was constructed from randomly sampled states at each RMSD bin. The number of structures

at each RMSD bin was the Boltzmann factor of the corresponding PMF value. The RMSD distribution of the reservoir

structures was confirmed to be the same as the Boltzmann distribution of the PMF (Fig. 26c).

Figure 26: (a) The RMSD histograms for all US windows. (b) The PMF of Trpzip2 along RMSD at reservoir
temperature, 416.07K. The convergence is adressed by the similar PMFs using the last 75% US trajectories and the last
50% US trajectories. (c) The reservoir RMSD distribution matched with the Boltzmann distribution of PMF using the
last 50% US trajectories.
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Table 15: Simulations performed in this study
Simulation ID Simulation

details* Reservoir generation Starting
structure Temp** (K) Replicas Length

(ns)

ALA-REMD REMD - - 288-420 20 42
ALA-RREMD R-REMD 4227 states from 42 ns normal MD at 420K - 288-420 20 42

Trpzip2-REMD-1 REMD - folded 290.70-416.07 36 1500

Trpzip2-REMD-2 REMD - folded for replica 1-18
unfolded for replica 19-36 290.70-416.07 36 2600

Trpzip2-RREMD-1 R-REMD 5000 states from 100ns normal MD at 416.07K unfolded 290.70-416.07 36 200
Trpzip2-RREMD-2 R-REMD 10000 states from 200ns normal MD at 416.07K unfolded 290.70-416.07 36 200
Trpzip2-RREMD-3 R-REMD 10000 states from 200ns normal MD at 416.07K folded 290.70-416.07 36 200
Trpzip2-RREMD-4 R-REMD 10000 states reconstructed from PMF folded 290.70-416.07 36 200

CGKVTSG-REMD-1 REMD - - 300-425.12 24 300
CGKVTSG-REMD-2 REMD - - 300-467.30 32 200

CGKVTSG-RREMD-1 R-REMD 10000 states from 200ns normal MD at 425.12K - 300-425.12 24 300
CGKVTSG-RREMD-2 R-REMD 10000 states from 200ns normal MD at 467.30K - 300-467.30 32 200
CGKVTSG-RREMD-3 R-REMD 10000 states from 200ns normal MD at 425.12K - 281.67-425.12 28 200

Simulation details*: the exchange attempt interval was 1ps.
Temp**: the temperature intervals was generated using online server at http://folding.bmc.uu.se/remd/ [142]. The exchange rate were 0.2 for all simulations.

4.3 Result

Three model proteins were tested using R-REMD and other algorithms. The first model protein is alanine dipeptide

which is convenient for quick testing and demonstrating proof of principle. The second model system is Tryptophan

zipper 2, which has high propensity of folding at room temperature. The folding and unfolding transition were studied

using R-REMD. The third model system is a cyclic peptide scaffold of Tau protein epitope, cyclo-(CGKVTSG), which

is an application of R-REMD. Knowing the structural ensemble of such cyclic peptide scaffolded epitope can enable

drug screening. All the RREMD or R-REMD simulations performed in this study are listed in Table 15.

4.3.1 Alanine dipeptide

The free energy profile of the 300K replica were extracted from the ALA-REMD and ALA-RREMD simulations by

histogram method, where the histogram of torsional angles (φ, ψ) were fitted by kernel density estimation, and then

converted to free energy by the relation Fi = −kBT ln(Ni/Nmax) (Fig. 23bc). The free energy landscape are similar,

and gives the same local minima in state B (see Methods: 4.2.4.1 : Alanine dipeptide: binning of Ramachandran space).

Also, the frequency of state A-F for 300K replica for both ALA-REMD and ALA-RREMD converged to the same value

(Fig. 27a). The convergence of the reservoir generation process was also confirmed by the flattened frequency of each

each state (A-F) (Fig. 27b).

4.3.2 Trpzip2

Two methods were used to generate reservoirs, normal MD, and PMF-weighted method (see Methods: 4.2.5 : Reservoir

construction using potential of mean force (PMF) for Trpzip2). The 1500 ns normal MD at 416.07K (reservoir

temperature) showed only 5 transitions between folded and unfolded states, which was too few to generate a converged

ensemble (Fig. 24). Although normal MD generated a non-converged trajectory, two reservoirs were still sampled. One

was composed of 5000 states from the first 100 ns, which consisted of only unfolded states, and the other was composed

of 10000 states from the first 2000 ns where the folded states took over 20% of the reservoir. To acquire a correct

reservoir ensemble, a PMF-weighted method was used where a reservoir consisting of 10000 states was generated. In

total, 2 REMD simulations with different starting structures were performed, and 4 R-REMD simulations with different
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Figure 27: The frequencies of six coarse-grained states (A-F) for (a) 300K replica of both ALA-REMD and ALA-
RREMD. (b) The reservoir of ALA-RREMD which is at 420K.

settings were performed (settings were described in Table 15). The folded fraction (see Methods: 4.2.4.2 : Trpzip2:

folded fraction) of the 4th, 18th, 30th and 35th replicas of all six simulation run were shown in Fig. 28.

The R-REMD simulation on Trpzip2 yielded much faster convergence than REMD. The fraction folded for the Trpzip2-

RREMD-2 and Trpzip2-RREMD-3 simulations can converge to the same value within 200 ns (blue and black line in

Fig. 28), though they started from different structures. On the other hand, the Trpzip2-REMD-1 and Trpzip2-REMD-2

simulations, have not yet converged to the same fraction folded value within 1500 ns (red and green line in Fig. 28),

where the two runs only differ from the starting structures. Even Trpzip2-REMD-2, where both folded and unfolded

states were used to seed the simulation, did not achieve significant faster convergence than Trpzip2-REMD-1.

The folded fractions of RREMD simulation with a PMF-weighted reservoir (Trpzip2-RREMD-4 as shown in magenta

line in Fig. 28) were between the value of the two REMD runs. Trpzip2-REMD-1, which started the simulation from

folded structures, approached Trpzip2-RREMD-4 from the top, and Trpzip2-REMD-2, which started the simulation

partially from unfolded structures, approached Trpzip2-RREMD-4 from the bottom. This sandwiched scheme suggests

that the Trpzip2-RREMD-4 simulation may agree with the folded fraction of the long enough REMD simulations.

Another interesting result was that R-REMD simulation could generate states not presented in the reservoir. The

Trpzip2-RREMD-1 simulation reservoir only consisted of unfolded structures, but the low-temperature replicas showed

finite folded fraction (yellow line in Fig. 28a). It suggests that MD iteration also plays an important role in R-REMD,

not just the seeding of states from the reservoir.

The experimental result showed that Trpzip2 melting temperature is 345K [138], but this study acquires the melting

temperature to be larger than 416.07K. The reasons might be two-fold. For first, the terminal capping was charged

(+NH3-SWTWENGKWTWK-COO-) in this study, but the experimental condition of terminals was C-terminal amidated

(NH2). The charged capping in this study led to the increase of melting temperature. Secondly, the force field also

affects the folding stability of Trpzip2. Although simulations have successfully recaptured 345K melting temperature of
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Trpzip2 [39] using Amber ff99 force field with modified backbone parameters [143] and generalized Born implicit

solvent [144], there was no prior art of simulation using CHARMM36m force field with TIP3P water.

Figure 28: The fraction folded of all the Trpzip2 runs (Trpzip2-REMD-1, Trpzip2-REMD-2, Trpzip2-RREMD-1,
Trpzip2-RREMD-2, Trpzip2-RREMD-3 and Trpzip2-RREMD-4) for the (a) 4th replica (300K) (b) 18th replica
(346.71K) (c) 30th replica (391.70K) (d) 35th replica (411.91K)

4.3.3 Cyclo-(CGKVTSG)

Although cyclo-(CGKVTSG) has only 7 residues, to generate a converged ensemble at room temperature was unex-

pectedly hard to achieve. Normal MD simulation at 300K cannot efficiently sample the epitope torsional states (see

Methods: 4.2.4.3 : Cyclo-(CGKVTSG): torsional entropy) as shown in Fig. 29a, but at higher temperature, normal

MD can easily generate a converged ensemble indicated by plateaued torsional entropy (Fig. 29bc). This temperature-

dependent convergence property makes R-REMD a good solution to generate a converged ensemble at low temperature.

From the two converged normal MD at temperature of 425.12K and 467.30K (Fig. 29bc), two reservoirs were generated.

Figure 29: The torsional entropy of cyclo-(CGKVTSG) normal MD simulation trajectory with temperature at (a) 300K
(b) 425.12K (c) 467.30K.

The entropy of 300K replica ensemble collected over time ( Fig. 30) indicates that the CGKVTSG-RREMD-1 and

CGKVTSG-RREMD-2 simulations, though differed in different upper-bound temperature, can acquire the same

torsional entropy. On the other hand, the REMD simulation of the same temperature range (CGKVTSG-REMD-1

and CGKVTSG-REMD-2), though both converged, cannot acquire the same entropy. The CGKVTSG-RREMD-3

simulation, which used the same reservoir as CGKVTSG-RREMD-1 and differed from CGKVTSG-RREMD-1 in

lower bound temperature, also acquired the same entropy of the other two R-REMD runs. Since torsional entropy is an
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indicator of the diversity, the simulation result suggested that all R-REMD simulations agree on the same diversity of

cyclo-(CGKVTSG) states, but not REMD runs cannot.

The probabilities of 256 torsional states of each simulation were compared in Fig. 31 for deeper analysis. Fig. 31a

compared two REMD simulations of different temperature span. The probabilities agreed well in less populated

states, but did not agreed well on the most populated state, BABX. The decrease of entropy of the CGKVTS-REMD-2

simulation were caused by the decrease of the BABX state probability. The lower entropy of CGKVTSG-REMD-2

might be caused by that the lowered energy barrier for those trapped states enable them to go to globally stable state.

On the other hand, the comparison of the CGKVTSG-RREMD-1 and CGKVTSG-RREMD-2 simulations gave similar

probability for the most populated state, but not the less populated states (Fig. 31b). The comparison between REMD

and R-REMD of the same temperature range were in Fig. 31cd. The comparison of REMD and R-REMD with larger

upper-bound temperature (Fig. 31d) gave more consistent result than lower upper-bound temperatures (Fig. 31c). The

comparison of R-REMD simulations using the same reservoir but different lower-bound temperatures gave similar

probabilities (Fig. 31e), where the same reservoir can generate the similar ensemble was also confirmed in the Trpzip2

result. The component states of the two reservoirs at 425.12K and 467.30K are different, and especially different in

highly populated states (Fig. 31f). The robustness of the R-REMD is again shown in that reservoirs having different

composition at different temperatures can yield similar ensemble at 300K.

Figure 30: The torsional entropy of 5 replica exchange runs of cyclo-(CGKVTSG) (CGKVTSG-REMD-1, CGKVTSG-
REMD-2, CGKVTSG-RREMD-1, CGKVTSG-RREMD-2, CGKVTSG-RREMD-3)
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Figure 31: Comparison of torsional state probabilities at 300K between different of replica exchange runs of cyclo-
(CGKVTSG). (a) CGKVTSG-REMD-1 v.s. CGKVTSG-REMD-2 (b) CGKVTSG-RREMD-1 v.s. CGKVTSG-
RREMD-2 (c) CGKVTSG-REMD-1 v.s. CGKVTSG-RREMD-1 (d) CGKVTSG-REMD-2 v.s. CGKVTSG-RREMD-2
(e) CGKVTSG-RREMD-1 v.s. CGKVTSG-RREMD-3. (f) Torsional state probabilities comparison between 476.12K
reservoir and 425.30K reservoir. The inner product of the component probabilities, a measure of ensemble similarity, is
shown on the top left corner of each plot.
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4.4 Discussion

4.4.1 Validity of the self-written R-REMD code

Although the theory of R-REMD has been established, the validity of the self-written R-REMD patch in GROMACS

still has to be tested to make sure no systematic error or simulation bias was made. The strong evidence of the validity

of our R-REMD code is the alanine dipeptide simulation results where both REMD and R-REMD simulations agreed

well on the frequency of the torsional angle states (state A-F in Fig 23a).

Another evidence is the Trpzip2 result. Since the REMD simulation of Trpzip cannot converge within 2600 ns, two

REMD simulations starting from different starting initial structures were employed (Trpzip2-REMD-1 and Trpzip2-

REMD-2). The result showed that the folded fraction of the two REMD simulations sandwiched the R-REMD

simulation (Trpzip2-RREMD-4). To strictly test the validity using Trpzip2 simulation, one could extend the two REMD

simulations, and confirm if the three simulations converge to the same folded fraction or not. However, combining the

Trpzip2 result with the alanine dipeptide result, the validity of the R-REMD code is strong.

4.4.2 R-REMD is highly dependent on the reservoir

When performing R-REMD simulations, in which a predefined reservoir quickly drives the convergence of the REMD

ensemble, the conformational diversity of the reservoir is an important concern. To understand how the composition

of the reservoir affects the results, three reservoir compositions for Trpzip2 were discussed here. The first reservoir

has zero folded fraction (for the Trpzip2-RREMD-1 simulation), the second reservoir has a folded fraction of 0.2

(for the Trpzip2-RREMD-2 and Trpzip2-RREMD-3 simulations), and the last reservoir has a folded fraction of 0.6

(for the Trpzip2-RREMD-4 simulation). The R-REMD simulations using different reservoir converged to different

folded fractions. The R-REMD is not robust to the change of the reservoir composition. As a result, a converged and

Boltzmann weighted reservoir, if at finite temperature, is essential for a correct R-REMD simulation.

4.4.3 Cyclic peptide ensemble generation

The application of R-REMD in this study is on cyclo-(CGKVTSG), a scaffolded Tau protein epitope using cyclic

peptide. Tau protein is known to aggregate in Alzheimer’s disease patient’s brain, and the clearance of Tau using

antibody therapy is desired. Unlike conventional immunization methods where linear epitope conjugated to the carrier

proteins, the cyclic peptide scaffolding method biased the epitope to a distribution of structure, rather than entirely

disordered. After being endorsed an unique structural distribution, the scaffolded cyclic peptide epitope can raise

conformational selective antibodies through active immunization. The conformational selective antibody is a desired

therapy for Alzheimer’s disease, since the toxic oligomer Tau and healthy monomer Tau has the same primary sequence,

and only differ in the conformations. Knowing the epitope structural ensemble beforehand can predict the selectivity of

the raised antibodies.

The REMD and R-REMD simulation result showed that R-REMD could generate ensembles with a more consistent

torsional state diversity than REMD, as long as the R-REMD reservoir ensemble is converged. A more in-depth look

into the probability distribution suggests that R-REMD is more capable of sampling the frequency of highly populated

states, and the REMD is more capable of sampling lower populated states.
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5 Conclusion

A chimeric antibody construct involving a fusion of ACE2 unit, miniprotein that built around ACE2 fragments, as the

antigen recognition site is proposed. Such a construct can address affinity to the viral RBD antigen, activation of the

immune response by the Fc effector function, robustness to evolutionary mutation of the RBD, and an extended lifetime

before degradation. Computation work done in this paper has shown that some ACE2 units have similar binding free

energy as the full length ACE2, and one of the ACE2 units even increased the binding affinity by 24%. The binding

affinity could possibly further be increased by multiple grafting of the ACE2 units on the antibody CDRs. Moreover,

that the calculated binding free energy between the ACE2 and SARS-COV-2 RBD, −52.9 ± 5.0kJ/mol, is within

the range of the experimental results gives the validity to the simulation. The designed therapy not only treats the

COVID-19 outbreak, but can also be prepared for the future outbreak of the coronavirus mutants. The efficacy of the

designed therapy to coronavirus mutants remains as long as ACE2 is the indispensable infection pathway.

A reliable patch to GROMACS 4.6.7 that enables R-REMD simulation was developed in this study and tested on three

systems, alanine dipeptide, Tryptophan zipper 2, and cyclo-(CGKVTSG), along with the conventional REMD. The

validity of the code was proved by that both REMD and R-REMD yielded the same distribution of the coarse-grained

torsional states of the alanine dipeptide and that the R-REMD simulation of Trpzip2 had its folded fraction sandwiched

by two normal REMD runs started with different structures. The efficiency of the R-REMD was shown both in Trpzip2

and cyclo-(CGKVTSG) simulations. R-REMD on Trpzip2 showed a much shorter convergence time than REMD result

(about 100ns v.s. larger than 2.6µs). Implementation of multiple R-REMD simulations, which has different replica

temperature range, on cyclo-(CGKVTSG) showed consistent diversity of the torsional states of the epitope, which could

not be achieved by REMD simulations of different replica temperature range.

Before this study, R-REMD was only available on AMBER software, which reduced the popularity of R-REMD to

some extent due to the troubles transferring files between softwares. The R-REMD developed here is easy to implement.

The reservoir is composed of GROMACS checkpoint files, and the addition of new states to the reservoir could be just

easy copy and paste of the checkpoint files. We hope that the R-REMD technique can be more attractive to researchers

that perform generation of ensembles.
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