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Abstract

Cyclic liquefaction of granular soils during earthquakes often results in catastrophic damages to

civil infrastructure. Understanding and modeling of this complex phenomenon are of crucial

importance in geotechnical engineering. Motivated by its practical importance, this study focuses

on modeling the granular materials response under constant volume cyclic shearing from both

micromechanics and continuum mechanics.

At the micromechanical level, discrete element method was used to carry out an extensive set

of uni- and multidirectional cyclic shear simulations on idealized granular assemblies.

Unidirectional simulations were analyzed to explore the microstructural evolution concerning

particle connectivity, force transmission, and anisotropies. Liquefaction state was marked by a

significant drop in coordination number, where the granular system became fluid-like, and

deformed significantly to rebuild the contact network. Stress-force-fabric relationship was

verified, revealing increasing and decreasing patterns, respectively, for the proportions of fabric

and force anisotropies. The multidirectional analysis explored the effects of shear paths on the

cyclic response of granular assembly. Multidirectional simulations presented lower cyclic

liquefaction resistance than unidirectional ones. Microscopically, particle connectivity,

particle-void fabric, and anisotropies were investigated to shed light on the stability, deformation,

and load-bearing network of the granular assembly, respectively.

At the continuum level, the study focused on constitutive modeling of sand response in both

pre- and post-liquefaction stages. A new constitutive model is formulated by incorporating two

new constitutive ingredients into the platform of a reference critical state compatible bounding

surface plasticity model with kinematic hardening. The first ingredient is a memory surface for

more precisely controlling stiffness affecting the plastic deviatoric and volumetric strains and

ensuing pore pressure development in the pre-liquefaction stage. The second ingredient is the

concept of semifluidized state and the related formulation of stiffness and dilatancy degradation,

aiming at modeling large shear strain development in the post-liquefaction stage. The new model

successfully simulates undrained cyclic torsional and triaxial tests with different CSRs, separately

for the pre- and post-liquefaction stages, as well as liquefaction strength curves. The new model

was also assessed in the simulation of several multidirectional cyclic shear tests. The development

of this constitutive model contributes to future applications in seismic site response analysis.
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Lay Summary

Saturated granular deposits under dynamic shaking such as earthquakes, wave or wind forces, can

develop large deformation, which may cause serious damage to people and infrastructure in the

vicinity of such deposits. To avoid such damage, it is necessary to explore the nature of sand

response when subjected to cyclic shearing as well as develop numerical tools that can adequately

reproduce the observed response. The first half of the dissertation resorts to micromechanical

modeling approach to characterize micro- and macroscopic response of the granular system under

cyclic shearing, broadening the knowledge of microstructural evolutions. The second half of the

dissertation adopts continuum modeling approach to develop an advanced constitutive model that

can reproduce undrained cyclic response of sand, enhancing the predictability and reliability of

future applications in geotechnical earthquake engineering.
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This study was initialized by my research supervisor Prof. Mahdi Taiebat in terms of a research
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sand constitutive model with the latest one developed in Chapter 5, along with updating the

corresponding simulation results. In this paper I was responsible for collection of
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Prof. Taiebat, Dr. Mutabaruka and Prof. Radjaı̈ provided technical assistance in revising the
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granular system. I and Prof. Taiebat planned the paper together. Under the guidance of

Prof. Taiebat, I conducted the simulations and data analysis, and prepared the first draft.
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Chapter 1: Introduction

1.1 Motivation of research

In geotechnical engineering, dynamic properties of soils are always of great interest and

significance because they are closely applicable to the analyses related to engineering

requirements including operation of heavy machinery, blasts, or natural hazards such as

earthquakes, wave or wind forces. Among them, earthquakes have caused catastrophic damage on

people and constructed facilities, which accelerated advancement of soil dynamics. Figure 1.1

(a) (b)

(c) (d)

Figure 1.1: Illustration of seismic hazards caused by (a) 1964 Niigata Earthquake M7.5, (b) 1976

Tangshan Earthquake M7.6, (c) 1995 Kobe Earthquake M7.2 and (d) 2011 Christchurch Earthquake

M6.2.

presents four well-known earthquakes to illustrate the destructive nature and the consequences,

including load-bearing capacity failure, structure collapsing, lateral spreading, which all are
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related to soil response under dynamic loading. Specifically, most of these earthquake damaging

is encompassed by soil liquefaction.

Soil liquefaction refers to soil deposits losing strength and appearing to flow as fluids, and the

strength of the soil is reduced, often drastically, to the point where it is unable to support

structures or remain stable (Kramer, 1996). While the phenomenon of liquefaction has been long

recognized, its devastating effects started to draw substantial attention of engineers after the 1964

Alaska earthquake and 1964 Niigata earthquake (shown in Figure 1.1(a)). Since then, liquefaction

has been studied extensively by researchers around the world, such as Seed and Idriss (1967),

Castro (1975), Ishihara et al. (1975), Vaid and Chern (1983), Been and Jefferies (1985), Ishihara

(1993), Idriss and Boulanger (2008), Jefferies and Been (2015), to name a few. Despite

liquefaction being used for description of many different but related phenomena, this thesis will

specially focus on cyclic liquefaction of granular materials such as sand, indicating liquefaction is

caused by dynamic or cyclic loading. It occurs with accumulation of large shear strains in the soil.

Under unidirectional cyclic shearing, it may come along with zero effective stress where large

shear strain develops, as observed in conventional undrained cyclic triaxial or simple shear tests.

This type of liquefaction is also rephrased as semifluidized state following Barrero et al. (2018)

and Barrero et al. (2020). However, pore pressure may not need to fully develop to induce large

deformation and exceptional scenarios have been revealed in multidirectional cyclic shear test by,

for example, Ishihara and Yamazaki (1980) and Boulanger and Seed (1995). Hence, generally

cyclic liquefaction is an extreme manifestation of progressive accumulation of noticeable shear

strains due to breaking or collapsing of internal structure.

In consideration of the discrete nature of granular material, discrete element method

(DEM) (Cundall and Strack, 1979) has been widely used for simulation of cyclic liquefaction in

recent decades, which allows easy extraction of microscopic information such as fabric, force

distributions, thereby providing another view of investigating cyclic liquefaction. DEM study of

cyclic liquefaction due to unidirectional cyclic shearing dates back to Ng and Dobry (1994) and is

quickly expanded by Sitharam (2003), Soroush and Ferdowsi (2011), Wang and Wei (2016),

Wang et al. (2016), Huang et al. (2018), Huang et al. (2019b), Evans and Zhang (2019),

Martin et al. (2020) to different aspects such as contact network in semifluidized state,

microstructures governing macroscopic deformation, mechanisms for effects of initial and

loading conditions on liquefaction resistance.

Continuum-based numerical modeling of the cyclic liquefaction of granular materials is

achievable using cyclic nonlinear models to describe the stress-strain behaviors properly. This

type of material model is also called constitutive model usually built on plasticity theory, meant

for capturing the actual stress-strain path of laboratory experiments, which also serves as the core

for the numerical platforms such as finite element, finite difference or material point method.
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Developing such constitutive models is quite challenging as one needs to consider small strain

behaviors, loading-unloading-reloading, stiffness degradation, coupling between volumetric and

deviatoric response, and others. Even so, a number of constitutive models presenting quite

promising simulation results for certain aspects related to cyclic liquefaction of unidirectional

cyclic shear tests, have been proposed in recent decades, including but not limited

to Papadimitriou and Bouckovalas (2002), Elgamal et al. (2003), Dafalias and Manzari (2004),

Zhang and Wang (2012), Iai et al. (2011), Boulanger and Ziotopoulou (2013), Poblete et al.

(2016).

In dynamic analysis of geo-structures, like the simple site response analysis all the way to

more complex soil-structure interactions, the analysis is usually performed using only one

horizontal component of ground motion. However, in real earthquakes, soil layers are subjected

to multidirectional cyclic shearing, with different amplitudes and frequencies. Even if the vertical

component of seismic loading is neglected, there still exist two horizontal shear components as

depicted in Figure 1.2, where the acceleration history and acceleration orbit based on the records

of the 1995 Kobe Earthquake are presented. Apparently, one can expect that the shaking history at
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Figure 1.2: Two horizontal shaking components at of Kobe Earthquake in 1995: (a) acceleration

histories and (b) acceleration orbit.

the site condition of horizontal ground during Kobe Earthquake cyclic shearing only in one

horizontal direction is not enough to simulate the real stress-strain response of soil in such

conditions. Meanwhile, in view of soil’s nonlinear mechanical properties, the principle of

superposition does not apply. Even with the assumption that soil is transversely isotropic, it is not

accurate to obtain the realistic stress state under multidirectional cyclic shearing only based on the

results of unidirectional shear tests. Another interesting case is accounting for the initial offset

shear stress exerted on soil elements beneath the slope and then evaluating the response when soil

is sheared in a different direction. In the corresponding laboratory element test, the specimen

should be consolidated with a static shear stress applied to account for the slope. Then another
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shear stress not in line with the first one is to be applied. This is something that conventional

unidirectional simple shear devices cannot handle. Overall, it is necessary to simultaneously

account for both horizontal components of the motion into the analysis, which can be seen as a

closer approximation to the seismic loading case.

Numerically, to achieve that, an advanced constitutive model should be developed and

evaluated to properly reproduce the stress-strain response. Before that, it is also necessary to

understand and explore cyclic response of granular material at element level. According to its

discrete and continuum nature, this dissertation focuses on numerical modeling of the response of

granular material when subjected to constant volume uni- and multidirectional cyclic shearing,

with the aim to explore the physics of the granular system and develop a constitutive model used

for liquefaction-related problems.

1.2 Objective and methodology

Figure 1.3 illustrates connections between laboratory element testing, discrete element modeling

and constitutive modeling. As physical experiments were obtained from literature other than

carried out here, the objective of this dissertation is two fold: (1) exploring the physics of granular

system mainly when approaching liquefaction under constant volume uni- and multidirectional

cyclic shearing from both micro and macro views; (2) developing an advanced plasticity model to

adequately capture undrained cyclic response of sands under unidirectional cyclic shearing,

especially in terms of pre-liquefaction pore pressure generation and post-liquefaction shear strain

development, and then evaluating the model in simulation of multidirectional cyclic shear tests.

These two sub-objectives are further expanded into two parts, respectively, as follows:

(1) The first part of the first sub-objective was achieved by adopting discrete element method

(DEM) to conduct “virtual experiments” of constant volume cyclic simple shear test, which

provided the access to exploiting particle-level information. Here a bi-periodic system was

built to constrain lateral normal strains and also minimize the boundary effects that posted

limitation to the use of the physical test results. The granular assembly was comprised of

spherical particles interacting based on soft-particle laws. During the simulation, evolution of

microstructure of the granular system approaching and exiting liquefaction(or semifluidized

state) was recorded, allowing one to investigate micromechanics.

(2) Different shear paths of multidirectional cyclic shear tests were applied to the same granular

assembly for investigation of their effects on the response of granular system, which

accomplished the second part of the first sub-objective. Here a stress-controlled scheme was

configured to guarantee the applied stress path was what the granular assembly experienced.
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Figure 1.3: Triangle for illustration of connections between laboratory element testing, discrete element

modeling and constitutive modeling: the photo of laboratory element testing is from Kammerer et al.

(2002) and the highlighted red parts are related to the research objective.

Using the exact same sample under different types of shear paths also ensured accuracy of the

simulation results. Over fifty simulations were carried out to macroscopically reveal the

volumetric and deviatoric response due to difference in the shear path. Several microscopic

indicators were also presented to shed light on the stability, deformation and fabric anisotropy

of the granular system.

(3) The first part of the second sub-objective was realized by developing a sand constitutive

model used for undrained unidirectional cyclic shearing. This model was built on a notable

Simple Anisotropic SANID (SANISAND) plasticity model. The flow rule of the reference

model was modified for better description of non-proportional monotonic and cyclic shearing.

A novel ingredient of memory surface (MS) was formulated and incorporated into the

reference model to better balance the coupling of volumetric and deviatoric response in

pre-liquefaction period, which lead to adequate simulation of pore pressure generation. The

existence of MS also allowed simplification of an existing constitutive ingredient of

semifluidized state, used for capturing post-liquefaction shear strain development. This new
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model, denoted as SANISAND-MSf, was well suited for simulating the whole process of

sands under undrained unidirectional cyclic shearing.

(4) Applying the developed constitutive model SANISAND-MSf to simulate a series of

multidirectional cyclic shear tests concluded the second part of the second sub-objective. This

evaluation was conducted on the established laboratory experimental database of Monterey

No. 0/30 sand, where simulations of different shear paths were performed. Discussion of the

performance of this new model in the so called neutral loading paths was also carried out.

One can build the link between discrete element modeling and constitutive modeling, and

capability of DEM in easy generation of versatile virtual experiments does provide guidance for

revising certain formulations of the constitutive model, as shown in Figure 1.3. Modification of

the flow rule of the reference model was an example. However, given the very distinct

frameworks of these two numerical approaches, this dissertation deals with the sub-objectives

(1)(2) and (3)(4) independently, i.e., the link between them was not deeply pursued here.

1.3 Outline

This dissertation consists of seven chapters. These chapters are organized in the sequential order

starting from description of numerical platforms supporting the subsequent explorations, followed

by adoption of DEM to investigate the response of granular system subjected to uni- and

multidirectional cyclic shearing, respectively, and then moving to development of an advanced

constitutive model of sand for undrained unidirectional cyclic shearing, and finally evaluation of

this new model in simulating multidirectional cyclic shear tests from the laboratory experiments.

Chapter 2 starts with the brief state of knowledge summarizing the previous research from the

view of laboratory element testing and numerical modeling, given a more detailed literature

review to be conducted at the beginning of each subsequent chapter. The laboratory element tests

covered the available undrained uni- and multidirectional cyclic shear tests, with more focus on

the knowledge gained from them. By reviewing the previous studies of numerical modeling on

granular materials, research gaps were revealed, some of which would be filled by this

dissertation. Then it comes to introduction and description of two numerical platforms, namely a

DEM program GRFlow3D (Mutabaruka, 2013) and a standalone constitutive driver ConModel.

The general frameworks of GRFlow3D and ConModel were expounded and more attention was

put on modifications and explorations of the two platforms, which provided the basis for

expansion of the research in the subsequent main chapters.

In Chapter 3 GRFlow3D was applied to study the microstructural evolution of granular

assembly under isochoric cyclic simple shearing. Following a proper sample preparation
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procedure, the cyclically sheared assemblies presented a promising macro-mechanical response,

much like the physical experiments. At the grain scale, the evolution of the particle connectivity,

force transmission, and anisotropies of contact and force networks was analyzed. It was observed

that entering the liquefaction state is characterized by a variety of microscopic indicators. After a

considerable shear deformation in liquefaction state, contact network was first reconstructed,

providing the geometrical basis for rebuilding the force network, thereby exiting liquefaction

state. The relationship between deviatoric stress ratio and anisotropies, known to hold in the

triaxial setting, was also valid with reasonable accuracy in the cyclic simple test. Interestingly,

fabric and force anisotropies at the peak shear stress appeared to level off after several cycles in

the post-liquefaction period. Their respective contributions to the shear stress were not affected

by changing initial and loading conditions.

Chapter 4 expanded the DEM study to multidirectional cyclic shear tests. A comprehensive

series of simulations covering 1-D linear, 2-D linear, circular/oval and figure-8 shear paths were

generated. The macroscopic stress path and stress-strain response agreed well with laboratory

experiments. At system level, effects of shear paths on pore pressure generation and shear strain

development were explored, revealing a lower liquefaction resistance for the sample under

multidirectional loading although the sample did not go through transient zero mean effective

stress under certain shear paths. At the grain scale, evolution of particle connectivity indicated the

system became unstable instantaneously for the selected 1-D and figure-8 paths, and stayed stable

for 2-D and circular paths. A paricle-void descriptor named centroid distance was monitored to

shed light on the shear strain development, from which a general decreasing trend with shear

strain accumulation was evidenced. Finally, evolution of fabric and force anisotropies at specified

states of each loading cycle revealed that the former needed more time to follow the external

shearing compared with the latter. All these anisotropies tended to level off in post-liquefaction

period and their proportions contributing to the deviatoric stress ratio were not affected by shear

paths.

Chapter 5 formulated a new sand constitutive model by incorporating two constitutive

ingredients into the platform of a reference critical state compatible bounding surface plasticity

model with kinematic hardening, in order to address primarily the undrained cyclic response. The

first ingredient was a memory surface for more precisely controlling stiffness affecting the plastic

volumetric strain and ensuing excess pore pressure development in pre-liquefaction stage. The

second ingredient was the concept of semifluidized state and the related formulation of stiffness

and dilatancy degradation, aiming at modeling large shear strain development in post-liquefaction

stage. In parallel, a modified flow rule aiming at better description of non-proportional monotonic

and cyclic loading was introduced. With a single set of constants, for which a detailed calibration

procedure was provided, this new model successfully simulated undrained cyclic torsional and
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triaxial tests with different CSRs, separately for the pre- and post-liquefaction stages, as well as

liquefaction strength curves based on pore pressure ratio and shear strain criteria for initial

liquefaction. The successful reproduction of sand element response under undrained cyclic

shearing contributed to future applications in realistic and thorough seismic site response analysis.

Chapter 6 focused on evaluation of the constitutive model developed in Chapter 5 for

simulating the response of sand under multidirectional cyclic shearing. First an overall

experimental database of multidirectional cyclic shear tests available in the literature was

summarized, followed by details of the selected experiments to be simulated in this chapter. The

new model was calibrated against laboratory experiments of undrained monotonic triaxial and

cyclic simple shear tests and then was applied to simulate multidirectional cyclic shear tests with

respect to 1-D linear, 2-D linear, circular/oval and figure-8 paths. Comparisons between

experiments and simulations revealed the model performed well in simulating the pore pressure

generation and needed further improvement to develop large shear strain oscillations. Proximity

of the model to neutral loading when simulating these tests was also evaluated.

Chapter 7 concluded this dissertation with summary, conclusions and recommendations for

future work.

1.4 Notations

Within this dissertation, scalar variables are denoted by characters with normal letters (e.g., p for

mean effective stress), vectors and second-order tensors are formatted by bold face characters (e.g.

fff for contact force, σσσ for stress tensor). The dyadic product between two tensors is denoted by

aaa⊗ bbb, i.e., ai jbkl in the index notation. The symbol : between two tensors denotes summations

over the adjacent pairs of indices in reverse order of the tensors, which in the case of second-order

tensors implies the trace, namely tr(AB) = A : B = Ai jB ji. The norm of a tensor aaa is defined by

‖aaa‖ =
√

aaa : aaa. In multiaxial space, the stress tensor σσσ is usually decomposed into its volumetric

part p = tr(σσσ)/3 and deviatoric part s = σσσ − pI where I is the identity tensor; the strain tensor

εεε follows the similar way, where the volumetric strain εv = tr(εεε) and the deviatoric strain tensor

e = εεε −(εv/3)I. In triaxial test, the deviatoric stress q =
√

(3/2)s : s can be simplified as σ33−σ11

where 1 and 3 refers to the radial and axial direction, and the axial strain εa is equivalent to ε33. In

simple shear test, shear stress τ refers to σ13 and shear strain γ is equal to 2ε13.
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Chapter 2: Literature Review and Numerical Platforms

2.1 Introduction

This chapter consists of three main sections: literature review, DEM program and Constitutive

driver. Literature review is focused on summarizing the existing knowledge on the response of

granular materials under constant volume or undrained cyclic shearing according to laboratory

element testing and numerical modeling. Research gaps of numerical modeling are pointed out

and some of them will be resolved in the next chapters. Two numerical platforms are adopted in

this study, including a DEM program GRFlow3D for discrete element modeling and a standalone

constitutive driver ConModel developed by the author for incremental integration of a constitutive

model under various loading conditions. Introduction of GRFlow3D starts with illustration of the

general framework, expands with the modifications conducted by the author and ends with

exploring two basic questions related to sample preparation and representative volume element

(RVE), respectively. In the section of Constitutive driver, the numerical approach and

configurations for some complex element tests are explained, providing the basis for the

simulations carried out in later chapters.

2.2 Literature review

This section summarizes previous research work on granular material at element level subjected

to constant volume cyclic shearing from two main aspects: laboratory testing and numerical

modeling. In laboratory element tests, irregular seismic loading with random manners in

magnitude and frequency is simplified as regular harmonic loading. Representative volume

element (RVE) is prepared and placed on the laboratory apparatus which provides the physical

way to study the mechanical response of granular material under the modes of uni- and

multidirectional cyclic shearing. Equivalently, in numerical modeling, given the particulate nature

of granular materials, discrete element method (DEM), by computing the motion and effect of a

number of particles, can be used to approximate the preparation and shearing of RVE as carried

out in the laboratory, allowing extraction of microscopic information as well. By treating RVE as
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a continuum medium, one can also develop a constitutive model for adequately capturing its

stress and strain response, serving as the core for successful continuum modeling with great

potential of applications in boundary value problem simulations.

2.2.1 Laboratory experiments of undrained cyclic shear test

To generate the ideal unidirectional cyclic shear mode, i.e., regular harmonic loading, two types of

laboratory devices are usually adopted: direct simple shear apparatus (Bjerrum and Landva, 1966)

and hollow cylinder torsional device (Tatsuoka et al., 1982). The corresponding tests are named

as simple shear test and torsional test. Hereafter simple shear test will be used to refer to both

types of experiments as they share the same deformation mode, as depicted in Figure 2.1(a). The

representative cubic sample is deformed in plane strain condition so that ε̇yy = 0. In the xz plane,

its shape changes from a rectangle to a parallelogram. There is no normal strain along x direction,

and because of the constant volume setting, there is no vertical strain either. The only non-zero

component of strain is the shear strain γxz:

ε̇xx = ε̇yy = ε̇zz = γ̇xy = γ̇yz = 0; γ̇xz 6= 0 (2.1)

x
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Figure 2.1: Schematic illustration of one soil element in: (a) simple shear test (modified from Wood

(1990)); (b) multidirectional cyclic shear test.

The deformation mode described by Equation (2.1) can be achieved in the laboratory test on

saturated soil samples with pore water present in the system and the drainage valve turned off

while shearing; this is called truly undrained simple shear test. As the bulk modulus of water is

much larger than that of the soil skeleton, it may be considered incompressible; hence, constant

volume and truly undrained simple shear tests are expected to show almost the same response as
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shown experimentally in Dyvik et al. (1987). In the current study, the numerical simulations in

both discrete and continuum levels have been carried out in constant volume, and the results are

considered comparable to the experiments carried out either constant volume or truly undrained.

One of the typical constant volume cyclic simple shear tests is conducted in the way that the

shear direction will be reversed if the monitored shear stress τxz reaches the shear stress amplitude

τamp, and it is denoted as stress-limit cyclic shear simple test. This type of test has been adopted

by the laboratory researchers to investigate the response of soil under cyclic

shearing (Towhata and Ishihara, 1985; Kiyota et al., 2008; Chiaro et al., 2013) and effects of

different factors on the liquefaction resistance, including but not limited to cyclic stress ratio

(CSR) (Tatsuoka et al., 1982; Wijewickreme et al., 2005), relative density Dr (Tatsuoka et al.,

1982; Georgiannou and Konstadinou, 2014), initial confinement p0 (Vaid and Chern, 1985;

Vaid and Sivathayalan, 1996; Wijewickreme et al., 2005; Koseki et al., 2005), anisotropic

consolidation (Tatsuoka et al., 1982; Ishihara et al., 1985; Konstadinou and Georgiannou, 2013;

Georgiannou and Konstadinou, 2014), static shear stress (Vaid and Liam Finn, 1979;

Tatsuoka et al., 1982; Sivathayalan and Ha, 2011; Chiaro et al., 2012), sample preparation

method (Tatsuoka et al., 1982). Here CSR refers to the ratio of cyclic shear stress amplitude τamp

and the initial mean stress p0. Static stress ratio (SSR) is used to quantify the ratio of static shear

stress τc and the initial mean stress p0. Liquefaction resistance refers to the number of loading

cycles required to reach zero mean effective stress or certain levels of shear strain. As the

laboratory results indicate, increasing CSR decreases the number of cycles for liquefaction,

increasing initial confinement decreases the liquefaction resistance (this decreasing is more

pronounced in dense sample than loose sample), increasing relative density increases the

liquefaction resistance, and the effect of SSR on liquefaction resistance depends on the sample

state such as relative density (Boulanger and Seed, 1995).

Considering the multidirectional nature of earthquakes, the unidirectional shear mode has been

extended to multidirectional cyclic shearing where two horizontal shear components are exerted

simultaneously on the top of the specimen (Ishihara and Yamazaki, 1980; Boulanger and Seed,

1995; Kammerer et al., 2002; Matsuda et al., 2011). This type of test is illustrated in Figure 2.1(b)

where the blue arrows indicate the sample stress state at the end of sample preparation and the red

ones are the two cyclic shear components applied during the shear stage. The two cyclic shear

components can have different magnitudes, frequencies, and phase angles, which constitutes a list

of shearing paths. Generally in constant volume multidirectional cyclic shear test, plane strain does

not apply any more and the deformation mode is indicated by the following constraints:

ε̇xx = ε̇xy = ε̇zz = γ̇xy = 0; γ̇yz 6= 0, γ̇xz 6= 0 (2.2)
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State of knowledge with respect to multidirectional cyclic shear test on soil element has been

conducted and summarized in Yang et al. (2016) and Yang et al. (2019), including its history,

laboratory test procedures, adopted shear paths and available experimental database. Chapter 6

will summarize the experimental database available from the previous laboratory research.

Basically, research interest on multidirectional cyclic shear test lies in: (a) mechanical response of

sand under this shearing mode (Boulanger and Seed, 1995; Kammerer et al., 2005) such as

deformation type, excess pore pressure generation pattern; (b) comparisons in liquefaction

resistance between uni- and multidirectional cyclic shear tests (Ishihara and Yamazaki, 1980;

Boulanger and Seed, 1995; Kammerer et al., 2005); (c) effects of SSR, CSR and shearing

direction on the dynamic properties of granular materials such as excess pore pressure generation,

post-shake settlement (Kammerer et al., 2005; Matsuda et al., 2011).

2.2.2 Micro and macro-mechanical modeling

Numerical modeling of uni- and multidirectional cyclic shear tests on granular material can be

carried out via discrete and continuum approaches. One of the most widely used numerical

methods in discrete modeling is discrete element method (DEM) where the motion and effect of

particles in the granular system are simulated, and it consists of molecular dynamics (MD),

contact dynamics (CD), event driven (ED) to name a few. Finite element (FE), finite difference

(FD), and material point method (MPM) are some examples of continuum modeling where the

stress and strain response at material level plays the key role, also known as constitutive model.

As this dissertation focuses on modeling of granular material at element level, the following

literature review only covers related previous numerical research, excluding modeling of large

scale boundary value problems.

DEM simulations of unidirectional cyclic shear test have been conducted by a few researchers

in recent three decades. The research topics that they were trying to tackle include: (a) qualitative

and quantitative validation of DEM simulation results against laboratory

experiments (Ng and Dobry, 1994; Dabeet, 2014; Kuhn et al., 2014); (b) exploration of

disadvantages of simple shear device like the stress or strain non-uniformity (Dabeet, 2014;

Asadzadeh and Soroush, 2017); (c) investigating boundary effects on the model

response (Asadzadeh and Soroush, 2018; Zhang and Evans, 2018); (d) revealing evolution of

microstructure along the cyclic shearing (Wang and Wei, 2016; Sufian et al., 2017). With

expanding the unidirectional cyclic simple shear mode to consider other loading types such as

triaxial tests, many other DEM studies can provide instruction and guidance to the work of

modeling unidirectional cyclic simple shear test. These extra works include Guo and Zhao

(2013), Bernhardt et al. (2016), Wang et al. (2016), Huang et al. (2018), Huang et al.
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(2019a), Huang et al. (2019b), Sufian et al. (2019), Evans and Zhang (2019), Martin et al. (2020).

There are few DEM studies on the multidirectional cyclic shear test except Wei (2017) and

Wei et al. (2020) where circular/oval and figure-8 shearing paths are applied on isotropically

consolidated samples and evolutions of some microstructures are presented.

Constitutive modeling of sands under undrained cyclic simple shearing has been attracting

extensive attention from numerical modelers, considering its widespread applications in seismic

site response analysis. Over the decades, a number of constitutive models have been developed

with the aim for capturing different aspects of the response of sands under undrained cyclic

shearing. These aspects include: (a) pre-liquefaction pore pressure generation (Wang et al., 1990;

Papadimitriou and Bouckovalas, 2002; Dafalias and Manzari, 2004; Poblete et al., 2016;

Fuentes et al., 2019); (b) post-liquefaction shear strain development (Elgamal et al., 2003;

Zhang and Wang, 2012; Wang et al., 2014; Barrero et al., 2020); (c) effect of CSR on stress and

strain response (Khosravifar et al., 2018); (d) effect of initial conditions such as Dr, p0 and SSR

on stress and strain response (Khosravifar et al., 2018; Wang and Ma, 2019). Given the difficulty

of developing a constitutive model to properly simulate the aforementioned aspects under

unidirectional cyclic shear mode, there is little research on proposing a constitutive model meant

for multidirectional cyclic shear test, which is more demanding. Despite the great potential of

applications, the loading type complexity and limited experimental database hold numerical

modelers back. Still, one can evaluate the performance of the existing good constitutive models in

simulating this type of test and seek for possible improvement. This gap was filled by the author

using one of the constitutive models developed by Dafalias and Manzari (2004).

2.2.3 Summary

The literature review of laboratory research on unidirectional cyclic shear tests suggests a large

number of laboratory element tests of sands, which is very helpful for understanding the response

of sand under undrained cyclic shearing and validating the results of numerical modeling.

However, a comprehensive laboratory experimental database of analyzing effects of different

factors on the stress and strain response of the same sand is still missing (or maybe not public),

which to some extent, holds back development of a versatile constitutive model. When it comes

to multidirectional cyclic shear tests, only the work of Kammerer et al. (2002) allows a rather

complete evaluation of numerical simulation results. But the limited laboratory experiments for

each loading path still constrains establishment of basic knowledge of the response of sands under

multidirectional cyclic shearing. More laboratory study on multidirectional cyclic shear test is

needed.

There are a few publications that used DEM to explore the response of granular material
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under constant volume simple shear test but few DEM studies related to multidirectional cyclic

shear test. Some of them adopted certain microscopic indicators to reveal the evolution of

microstructure along the shearing process. But the adopted indicators were pretty narrow and

only reflected limited information, not enough for providing the panorama. Thus, it is necessary

to generalize the choices of microscopic descriptors to achieve an overall understanding of what

happens inside the granular assembly, which may help explore the link between the

microstructure and macro response. In addition, given the capability and versatility of DEM in

simulating “virtual experiments”, it is worth applying DEM to conduct a series of multidirectional

cyclic shear tests, revisiting and extending the gained knowledge of the material response from

laboratory test results, such as effects of loading types on the stress and strain response.

Meanwhile, exploring the underlying microstructure linked to macro behaviors is also rewardable.

Most of the advanced constitutive models are focused on simulation of post-liquefaction shear

strain development and do not pay much attention to pore pressure generation in pre-liquefaction

period which leads to initial liquefaction (i.e., zero mean effective stress). Usually they are able to

present satisfying simulation results for the tests with high CSRs but can not properly predict the

number of loading cycles to initial liquefaction for the tests with low CSRs. According to the

author’s knowledge, modeling the behaviors of sands in pre-liquefaction period can be carried out

independently from the post-liquefaction shear strain development, which implies other

constitutive ingredients should be pursed to improve simulation of the pre-liquefaction response.

With this target being achieved, one can explore the capabilities of the constitutive model in

capturing effects of relative density Dr, initial confinement p0 and static shear ratio SSR on the

stress and strain response, evaluate the model performance in simulating multidirectional cyclic

shear tests, or apply the model to simulate boundary value problems.

2.3 DEM program - GRFlow3D

There are a number of DEM programs that can be used for simulation of cyclic shearing. These

include the commercial ones, including Particle Flow Code (PFC) (Itasca, 2018) and

EDEM (EDEM, 2016), and open-source ones including LIGGGHTS (Kloss et al., 2012) and

YADE (Šmilauer et al., 2010), to name a few. In this study, a three-dimensional particle dynamic

DEM numerical platform GRFlow3D developed by Mutabaruka (2013) is adopted. Some reasons

behind the choice of this program are advantages in the aspects of the programming language

(C++), installation (no library dependence), platform (macOS and Linux), and, most importantly,

the ease of use and further developments because of an ongoing collaboration with the main

developers of the program. GRFlow3D has a simple and clean structure with a limited number of

header and source files, making it relatively straightforward for the user/developer to get familiar
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with the whole architecture and modify it for the desired research purposes.

Here GRFlow3D is used to study the mechanics of response of granular materials under

isochoric cyclic shearing according to their discrete nature. The samples are simulated using

poly-disperse spheres interacting based on soft-particle laws. The contact laws of the spheres

based on the linear spring dashpot, are well explained in Luding (2008) and Mutabaruka (2013),

and will be covered in Chapter 3. This section is focused on introducing the general framework of

GRFlow3D, modifications and improvements conducted by the author, and some preparatory

work for expanding the explorations as conducted in Chapters 3 and 4.

2.3.1 Framework

The overall framework of GRFlow3D is described by the flowchart of Figure 2.2, revealing

adoption of stationary scheme (Tu and Andrade, 2008). This stationary scheme is suitable for

running purely strain-controlled tests such as undrained simple shear test but needs to be updated

with the iterative scheme for stress-controlled ones such as multidirectional cyclic shear test,

where the iteration process can guarantee the system deforms by following the applied shear

stress paths. While one can refer to Wei (2017) and Wei et al. (2020) for details of the

implementation, Chapter 4 dealing with DEM simulation of multidirectional cyclic shear test will

elaborate a bit more on that. Here the focus is on the core of the DEM program, as presented in

Figure 2.2.

To conduct a DEM simulation using GRFlow3D, an input file needs to be prepared, including

settings of running time, contact model constants, simulated test, parameters for Verlet’s method,

along with four state files consisting of sample file, boundary file, contact file and force file.

During the routine Initialization, all the information is read by the corresponding object created

by GRFlow3D, thus setting up the initial condition and loading configuration. While the current

step number n is smaller than the total number of steps nf, GRFlow3D first checks whether the

neighbor list needs to be updated or not according to the frequency number freq, which is an input

parameter. In the routine Build neightbor list, two lists are updated, namely SupVerlet and Verlet.

The former one looks for all pairs of particles within a large cutoff for potential contacts in the

next hundred of steps, which requires two loops over all particles. Verlet list is built by looping

over SupVerlet for the pairs of particles within a smaller cutoff, used for the routine Detect

contacts executed at every time step. Apparently, Verlet list is updated at a higher frequency than

SupVerlet. The routine Predict states solves the kinematic equations over all particles and

boundaries by updating their positions and velocities. GRFlow3D combines the routines Detect

contacts and Calculate forces in one function, where by conducting one loop over all particles

and one loop over the Verlet list, the interparticle force and moment are calculated, along with
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Start

Initialization

Main loop

While n < nf

If n%freq=0?

Build neighbor listPredict states

Detect contacts Calculate forces

n++; advance particle

acceleration and velocity

If n%nhis = 0?

Save history

End

Yes

No

YesNo

No

Yes

Figure 2.2: Flowchart of GRFlow3D. Yellow operations can’t be parallelized and blue operations can be

parallelized using OpenMP. Green operation is the function that may consume most time and can be

improved by Verlet’s method or further parallelizing (modified from Martins and Atman (2017) and

Gopalakrishnan and Tafti (2013)). n is the current step number, nf is the total number of steps, freq is the

frequency number quantifying how often neighbor list is updated, and nhis refers to the frequency

number quantifying how often history files are saved. The symbol % is modulo operator and n++ refers

to n = n+ 1.
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other types of forces such as gravity if needed. Thus the total force and moment of each particle

can be determined, followed by updating the acceleration and velocity in the routine advance

particle acceleration and velocity. Then the frequency number nhis is used to judge whether the

current state should be saved as history files or not. These saved history files can be used for extra

post-processing or relaunching simulations without starting from the very beginning.

2.3.2 Modifications

Several modifications have been made to GRFlow3D, including adoption of iterative scheme,

update of stress tensor calculation, optimization of the code, introduction of servo-controlled

algorithm, to name a few. While one can refer to these publications (Wei et al., 2020; O’Sullivan,

2011; Martins and Atman, 2017; Thornton, 2000) for the ideas, it is necessary to expand two of

them here, namely stress tensor calculation and optimizing the code.

The widely used formula to determine the stress tensor of the granular system is proposed

by Christoffersen et al. (1981)

σσσ =
1

V
∑

c∈Nc

lllc ⊗ fff c (2.3)

which is linked to the interparticle interactions over a selected computing domain V . Here lllc is the

branch vector connecting the centers of two particles for interior contact or connecting the particle

center and the contact point for exterior contacts, fff c is the contact force, ⊗ denotes the tensor

dyadic product and the summation runs over all the contacts Nc in the selected volume V . One can

go to O’Sullivan (2011) and Kuhn (2017) for the derivation. Calculating system-level stress tensor

using Equation (2.3) is appropriate if the selected volume is carefully designed to fully encompass

the particles (Kuhn, 2017). But it may lose certain accuracy when the volume is crafted to pass

through some peripheral particles. For example, the selected volume in this study shares the same

center and horizontal cross-section but cuts 80% height of the whole sample, where there must be

some particles located on the top and bottom boundaries. The key lies in how to deal with the

peripheral particles. The alternative approach modified from Equation (2.3) is

σσσ =
1

V
∑
p∈V

Vp,V

Vp
∑

c∈Cp

rrrc,p ⊗ fff c,p (2.4)

where p ∈ V is defined by particle p having intersection with the selected volume V ; the particle

volume and the intersection volume are denoted as Vp and Vp,V , respectively; Cp represents the set

of contacts belonging to particle p, rrrc,p = rrrc − rrrp connecting the contact point and the center of

particle p and fff c,p is the contact force applied on particle p at the contact point c. One can see
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that (1/Vp)∑c∈Cp rrrc,p ⊗ fff c,p is the stress tensor for particle p, thus Equation (2.4) implies the

average stress tensor weighted by the volumes of particles within the selected volume

V (Potyondy and Cundall, 2004; Li et al., 2009; O’Sullivan, 2011).

To verify the effectiveness of Equation (2.4) compared with Equation (2.3), a chain of Np

particles comprises a column with a vertical stress of 100 kPa being applied on the top.

Figure 2.3(a) displays a column of 10 spheres for an example and Figure 2.3(b) compares

calculated vertical stresses using Equations (2.3) and (2.4) with the target of 100 kPa. Apparently,

while the accuracy of Equation (2.3) is increased with increasing Np, Equation (2.4) matches the

target precisely, irrespective of the number of layers, which is required by the current study.
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Figure 2.3: Internal stress determined from compressing a column of spheres: (a) a chain of 10 spheres

and (b) calculated vertical stresses using Equations (2.3) and (2.4).

Another modification is to optimize the DEM program GRFlow3D with the aim of speeding up

the simulations. Generally there are two directions, the first being optimization of the serial code

by rewriting certain functions and the second being parallelization of the serial code. No matter

which one is adopted, the very first step is to analyze the time profiler of running a GRFlow3D

simulation, which points out which functions needs to be optimized. Instruments belonging to

the software Xcode of mac OS allows calculation of running time for each function based on

clang compiled executable file. Figure 2.4(a) presents the percentage of total time spent by each

GRFlow3D routine on a single core according to running a constant volume cyclic simple shear test

on the sample of 4096 spheres within 50000 steps. The total running time is around 20.95 min.

One can notice that the most time consuming routine is linterRetrieve, mapping the old contact

list to new established one, which is necessary for retrieving history dependent quantities related

to the contact such as the tangential overlap. It belongs to Build neighbor list in Figure 2.2 and

can be parallelized. The next two routines exist and getParameter are executed at every time

step to check whether the contact laws exist or not and get the contact model constants if they
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Figure 2.4: Percentage of total time spent by GRFlow3D routines on a single core based on simulation of

constant volume cyclic simple shearing of 4096 spheres in 50000 steps: (a) prior to optimizing the serial

code and (b) after optimizing the serial code.

exist, respectively, which are searched from the dictionary container, slowing down the simulation.

The routine exit can be improved by using bool type and the routine getParameter is replaced

by getParameterQuickly adopting the sequential container. While the following routines can be

parallelized later, Figure 2.4(b) updates the percentage of total time spent by optimizing exist and

getParameter of GRFlow3D and the total running time drops to 12.91 min.

To parallelize the serial code, an implicit parallelism model called OpenMP is adopted given

its simplicity and good comparability with GRFlow3D. One can go to the online course

Introduction to OpenMP by Mattson (2013) or Chapman et al. (2008) for details of OpenMP.

Guided by Figure 2.2, the four routines listed in Figure 2.4(b) are parallelized by incorporating

compiler directives into the for loops, meanwhile being careful of avoiding race condition and

false sharing (Chapman et al., 2008). Figure 2.5 shows the comparisons of simulation results of

constant volume cyclic simple shear tests using serial and parallel GRFlow3D in terms of stress
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path and stress-strain response. Their complete overlap verifies the correctness of this parallelized
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Figure 2.5: Comparisons of simulation results of constant volume cyclic simple shear test using serial

and parallel GRFlow3D with respect to (a) stress path and (b) stress-strain response.

GRFlow3D. Figure 2.6 presents the performance of the updated system using two metrics. The

speedup is the ratio between the execution clock time in serial and the execution time in parallel

of the same example. Figure 2.6(a) indicates a speedup of three times when running the program

with at least 6 threads. The speedup trend getting far away from the ideal case with further
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Figure 2.6: Scalability of the parallelized GRFlow3D simulation of constant volume cyclic shear test on

the granular assembly of 4096 spheres within 50000 steps: (a) speedup and (b) efficiency.

increase of the thread number may be attributed to the inherent Verlet method, which compared

with domain decomposition method (Amritkar et al., 2014), can’t be fully parallelized. Or it may

be attributed to combination of GRFlow3D and OpenMP following the fork/join model, where

certain routines cost more time in the join process. Figure 2.6(b) shows that the efficiency defined

by the ratio of speedup and the number of threads which gives the average utilization of each

thread in the running, decreases with increasing the number of threads. It reveals that each thread

20



is not fully used. While one can explore other ways to improve the program such as replacing

OpenMP with MPI, given the problem size in this study, it is better to stop here. At least

compared with the initial version of GRFlow3D, this optimization process brings about a total

speedup of around five times (20.95/12.91×3.07 ≈ 4.97).

2.3.3 Some concerns of DEM simulations

Given the well established tool GRFlow3D, this subsection focuses on exploring two basic

questions related to the subsequent constant volume cyclic shearing of the granular assembly, i.e.,

how to prepare a sample and how to guarantee the sample is Representative Volume Element

(RVE).

In this study the sample is prepared by isotropically compressing the particle assembly inside

a cube. The particles are generated by following certain particle size distribution and then are

placed randomly on a three-dimensional lattice. This lattice is contained in a box whose top and

bottom sides are rigid walls and the four lateral sides are periodic boundaries. During the

compression stage by moving six sides of the box, tangential friction coefficient µt is tuned to

achieve a sample with certain packing density. Totally there are four steps in the compression

process to approximate what happen in the laboratory experiments, which is elucidated by taking

an example of constructing a medium dense sample with the target mean stress p0 = 100 kPa:

(1) with µt = 0.20, densifying the sparse sample by moving the six sides at a constant velocity

until void ratio e reaches 1.0;

(2) setting velocities of particles and the six sides as zero, and using servo-control algorithm to

compress the sample isotropically with the target p = 10 kPa where µt remains 0.2;

(3) increasing the target p to half of p0, i.e., 50 kPa, and continuing compression of the sample

with µt = 0.20;

(4) modifying µt to 0.5 used for further compressing the sample with the target p = p0 = 100 kPa

and subsequent cyclic shearing.

Readers can refer to Thornton (2000) and O’Sullivan (2011) for the detail of servo-control

algorithm.

Tuning tangential friction coefficient µt to prepare certain sample packing states is one of the

common methods, which can be analogous to lubricating the contacts (Agnolin and Roux, 2007).

Nevertheless, one may expect to flush the lubricant before the quasi-static shearing stage so that

the sample state at the end of sample preparation is physically more reasonable, which motivates

the step (4) in the assembling stage of putting µt as 0.5 used for cyclic shearing and increasing
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confinement to the target one. Figure 2.7 shows the distributions of the normal force fn, the

tangential force fff t and the ratio of tangential to normal force for two isotropically compressed

systems with the difference of putting µt as 0.2 or 0.5 in step (4). Figure 2.7(a) indicates these

0 1 2 3 4 5 6

f/〈fn〉 (−)

10−4

10−3

10−2

10−1

100

101

P
(f
/〈

f n
〉)

(−
)

µt = 0.2 : fn

µt = 0.2 : |ft |

µt = 0.5 : fn

µt = 0.5 : |ft |

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

Im (−)

0.0

0.2

0.4

0.6

0.8

1.0

P
(I

m
)/

P
m

a
x
(I

m
)

(−
)

µt = 0.2

µt = 0.5

(c)

Figure 2.7: Probability distributions of (a) normal ( fn) and tangential (| fff t |) forces normalized by the

mean normal force 〈 fn〉, (b) | fff t |/ fn, (c) the mobilized friction Im = | fff t |/(µt fn) for two isotropically

compressed systems.

two systems have very similar normal force distributions but the tangential force distributions are

a bit different: the one with µt = 0.5 has a lower proportion of small tangential forces and a

higher proportion of large tangential forces due to increased µt . To investigate the role of friction

in the system, the distributions of two similar variables | fff t |/ fn and Im = | fff t |/(µt fn) are presented

in Figures 2.7(b) and (c), respectively. The former one varies in the range of 0 and µt , and the

latter one Im, with the former one being normalized by µt , varies between 0 and 1, also named as

mobilized friction index. Both can be used to describe how far a contact is from the sliding. In

Figure 2.7(b), as µt is put as 0.5 in step (4), one can see a smooth distribution when | fff t |/ fn ranges

between 0.2 and 0.5, compared with the vanishing one in the case of µt = 0.2. This initial

difference in terms of force distributions may significantly influence the corresponding cyclic

response as shown in Figure 2.8 where a constant shear stress with the same CSR = 0.25 is

applied to both samples where µt is set as the same 0.5. One can see that the system with µt = 0.2
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Figure 2.8: Comparisons of macroscopic response in constant volume cyclic shear tests of two samples:

(a) stress path; (b) stress-strain response.

needs more loading cycles to degrade the mean effective stress, which can be attributed to the

contacts at the end of sample preparation in Figure 2.7(b) taking more time to develop into the

sliding regime. In addition, this influence mainly happens in the early loading stage as

subsequently the stress path and stress-strain response are quite similar for both systems.

Figure 2.7(c) shows the distributions of Im for both systems and both present that most of the

contacts are below the Coulomb failure condition. The latter one indicates a higher proportion of

low Im values, more similar to the one reported by Majmudar and Behringer (2005), which

confirms the sample preparation procedures adopted in this study.

The concept of Representative volume element (RVE) is introduced to represent a scale that

is significantly larger than the particles themselves and statistically representative of the material

under consideration. To explore the proper number of particles in RVE, five types of samples with

the same particle size distribution but different number of particles were prepared and cyclically

sheared following the same sample preparation protocol as described above. Each type of samples

consists of three packings and the results are summarized in Figure 2.9. Figure 2.9(a) indicates that

larger samples tend to have a lower void ratio and higher geometrical coordination number. When

these samples were cyclically sheared in the constant volume condition, the liquefaction resistance,

defined by the number of loading cycles to initial liquefaction (zero mean effective stress), is

not that different, as illustrated in Figure 2.9(b). One may expect to see a narrower error bar of

liquefaction resistance with increasing the number of particles but Figure 2.9(b) does not present

that. This is because of the obvious influence of inherent fabric on the pre-liquefaction response

induced by the random placement of spheres on the lattice and the subsequent compression. Again

given the fact that Nini is discrete unlike e0 and zg, the fairly wide error bar of Nini does not imply

big oscillations. In addition to the overall quantities, Figure 2.10 compares the cyclic response

of two types of samples with different number of spheres but very similar number of cycles to
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Figure 2.9: Variation in measured parameters with sample size: (a) void ratio e0 and geometrical

coordination number zg at the end of sample preparation; (b) number of cycles Nini to initial liquefaction

and the corresponding geometrical coordination number zg.

initial liquefaction. Clearly, the cyclic response is reasonably similar and at least it is difficult to
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Figure 2.10: Comparisons of macroscopic response in constant volume cyclic shear tests of two samples:

(a) stress path; (b) stress-strain response.

distinguish the small sample from the large one. In view of this exploration, this study focuses on

the sample with 8000 particles, as shown in Chapters 3 and 4.

2.4 Constitutive driver - ConModel

This section describes the platform used for incremental integration of a constitutive model,

ConModel, representing Constitutive Model. It adopts the explicit Euler scheme for solving the

corresponding ordinary differential equations, simplifying the implementation of advanced
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constitutive models and incorporation of new loading types. ConModel is realized by C++

Object-Oriented Programming, allowing for fast simulation of laboratory element tests. For

example, it usually takes less than one minute to complete simulation of an element test. One can

refer to Bardet and Choucair (1991) for details of the theory and implementation procedures on

some simple constitutive models and Taiebat (2008) for the architecture of programming using

MATLAB.

2.4.1 Linearized constraints

The goal of constitutive driver is to determine the unknown components of strain εεε and stress σσσ

from the well-established relationship between εεε and σσσ . Generally, this relationship is expressed

by a combination of strain and stress components, referred to as mixed control (Alawaji et al.,

1992), such as drained triaxial test, undrained simple shear test. Purely stress or strain controlled

tests are only special cases of the general mixed control. To acquire the relationship between εεε

and σσσ of a laboratory element test, one can come up with five equations for the constraints and

the sixth one is expressed with respect to the loading variable denoted by dX . For example, in a

triaxial test, dX can be referred to the axial strain increment dεa or the axial stress increment dσa.

However, it should be noted that these constraints are usually nonlinear equations. Linearizing

these constraints is necessary to obtain the constitutive model response according to the prescribed

dX . Before that, such second-order symmetric tensors as stress and strain are represented by a

vector of six components, for example, σσσ = [σ11,σ22,σ33,σ23,σ13,σ12]
⊺
, where the subscripts 1,

2 and 3 refer to x, y and z, respectively. Mathematically speaking, given the loading variable dX ,

one needs to determine twelve quantities of strain increment dεεε and stress increment dσσσ .

By linearizing the first five constraints from the laboratory element test, one can derive the

following five relations (Bardet and Choucair, 1991):

6

∑
j=1

(

Si j dσ j +Ei j dε j

)

= 0, i = 1, ...,5 (2.5)

The sixty coefficients Si j and Ei j are assumed to be constant during a loading increment, although

they may keep being updated from one loading increment to the next one due to describing the

nonlinear constraints (Bardet and Choucair, 1991). The sixth relationship, related to the loading

variable dX that controls the loading process, can be determined in a similar way to Equation (2.5)

as follows:

6

∑
j=1

(

S6 j dσ j +E6 j dε j

)

= dX (2.6)
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Again, the twelve coefficients S6 j and E6 j are constant during a loading increment. Equations (2.5)

and (2.6) can be combined in the abbreviated notation:

SSSdσσσ +EEE dεεε = dYYY (2.7)

where dYYY = [0,0,0,0,0,dX ]⊺. Apparently, each laboratory element test is characterized by the

choice of SSS, EEE and dYYY .

While six linear constraints can be derived from a laboratory element test in Equation (2.7),

the other six equations are necessary to determine the updated stress and strain, which can resort

to the constitutive relationship between dσσσ and dεεε , i.e.,

dσσσ =CCC∗ : dεεε (2.8)

Here the fourth-order tensor CCC∗ is replaced by the six-by-six matrix; for elastic loading, CCC∗ =

CCCe, i.e., the elastic tangent stiffness tensor, while for elastoplastic loading, CCC∗ = CCCep, i.e., the

elastoplastic tangent stiffness tensor.

By combining Equations (2.7) and (2.8), a strain-based solution technique is devised, which

consists of solving dεεε first and updating dσσσ subsequently, according to

(

SSS ·CCC∗+EEE
)

dεεε = dYYY (2.9)

dσσσ =CCC∗dεεε (2.10)

Clearly, to guarantee the solution uniqueness, the matrix SSS ·CCC∗+EEE is required to be non-singular

which is generally true for proper choices of SSS and EEE, despite the fact that CCC∗ may be singular

occasionally happening for strain softening materials.

Details of how to implement Equations (2.9) and (2.10) compatible with a constitutive model

are referred to Bardet and Choucair (1991). One can also refer to Janda and Mašı́n (2017) for

generalization to an arbitrary number of controlling and controlled variables.

2.4.2 Application to element tests

Bardet and Choucair (1991), Taiebat (2008), Janda and Mašı́n (2017) and Seidalinov (2018)

provide configurations of a number of laboratory element tests via determination of SSS, EEE and dYYY ,

including drained and undrained triaxial tests, drained and undrained simple shear tests, isotropic

compression test, constant mean stress test, to name a few. It is still necessary to list some other

configurations related to this thesis or other challenging tests, including torsion test with rotation

of principal stress direction, circular loading in principal stress space and multidirectional cyclic
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shear tests.

Torsion test with rotation of principal stress direction is widely used to investigate effects of

principal stress axes rotation on the model response. Bardet and Choucair (1991) described the first

two phases of this test, namely, isotropic compression and drained triaxial test but the configuration

for phase three, i.e., rotating principal stress axes, may induce singularity of SSS ·CCC∗+EEE, where the

loading variable dX is chosen as dσ33 (axial stress increment). A better approach is to introduce

ασ to describe the angle between the rotated σ33 and the vertical direction, initialized by zero.

Basically, the five constraints of principal stress rotation test are listed as follows:

σ22 = σ 0
22, σ12 = 0, σ23 = 0 (2.11a)

1

4
(σ33 −σ11)

2 +σ 2
13 = R2 (2.11b)

σ11 +σ33 = σ 0
11 +σ 0

33 (2.11c)

where the superscript 0 refers to the sample state prior to phase three and R is the radius of shear

stress orbit, quantified by (σ 0
33 −σ 0

11)/2. Equation (2.11b) can be reformulated with respect to ασ

σ33 −σ11 = 2Rcos(2ασ ) (2.12a)

σ13 = Rsin(2ασ) (2.12b)

Through linearization, combination and simplification, one can come up with

−cos(2ασ )

4R
dσ11 +

cos(2ασ )

4R
dσ33 +

sin(2ασ )

2R
dσ13 = 0 (2.13a)

sin(2ασ )

4R
dσ11 −

sin(2ασ )

4R
dσ33 +

cos(2ασ )

2R
dσ13 = dασ (2.13b)

In conjunction with linearized Equations (2.11a) and (2.11c), SSS and EEE can be finalized as follows:

SSS =

























0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

−1 0 1 0 0 0

−cos(2ασ )
4R

0
cos(2ασ )

4R
0

sin(2ασ )
2R

0
sin(2ασ )

4R
0 − sin(2ασ )

4R
0

cos(2ασ )
2R

0

























, EEE = 000, dYYY =























0

0

0

0

0

dασ























(2.14)

Circular loading in principal stress space is conducted using the true triaxial device to induce

a circular stress orbit in the space of principal stresses. It consists of three loading phases: phase
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one is isotropic compression to increase the confinement to a certain value σc, phase two is drained

triaxial test where σ33 is increased to σ 0
33 while keeping σ11 and σ22 equal to σc and phase three

is to vary the three principal stresses to follow a circular path. As phase one and phase two are

straightforward to realize, phase three needs extra attention about choosing the loading variable

dX as the improper choice can induce singularity of SSS ·CCC∗+EEE , appearing in Bardet and Choucair

(1991). First the five constraints of drained circular loading are listed as follows:

(σ11 −σ22)
2 +(σ22 −σ33)

2 +(σ11 −σ33)
2 = 2(σ 0

33 −σc)
2 (2.15a)

σ11 +σ22 +σ33 = 2σc +σ 0
33 (2.15b)

σ23 = 0, σ13 = 0, σ12 = 0 (2.15c)

Linearizing them is pretty trivial and the key part lies in the sixth constraint, requiring the

introduction of Lode angle θ given by the following equation:

tan(θ) =

√
3(σ11 −σ22)

2σ33 −σ11 −σ22
(2.16)

Here θ = 0 refers to triaxial compression test and increasing θ implies a counterclockwise rotation.

Recall that (σ 0
33 −σc) =

√
3(σ11 −σ22)/[2sin(θ)] = (2σ33 −σ11 −σ22)/[2cos(θ)], then one can

manage to derive the standard equation related to the loading variable dθ from differentiating

Equation (2.16):

dθ =
sin(θ +π/3)

σ 0
33 −σc

dσ11 +
sin(θ −π/3)

σ 0
33 −σc

dσ22 −
sin(θ)

σ 0
33 −σc

dσ33 (2.17)

By linearizing Equations (2.15a), (2.15b) and (2.15c), this type of circular loading can be

configured as

SSS =

























2σ11 −σ22 −σ33 2σ22 −σ33 −σ11 2σ33 −σ11 −σ22 0 0 0

1 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
sin(θ+π/3)

σ0
33−σc

sin(θ−π/3)

σ0
33−σc

− sin(θ )

σ0
33−σc

0 0 0

























, EEE = 000, dYYY =























0

0

0

0

0

dθ























(2.18)

In undrained condition, Equation (2.15b) is replaced by ε11 + ε22 + ε22 = ε0
v where ε0

v is the

volumetric strain prior to phase three.
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Multidirectional cyclic shear test consists of several types depending on the applied shear stress

path including 1-D linear, 2-D linear, circular/oval and figure-8. It is pretty trivial to configure 1-D

linear and 2-D linear paths and needs extra attention for circular/oval and figure-8 ones. One can

refer to Seidalinov (2018) for one way of configuration. Here the explicit framework is still obeyed

to maintain the simplicity without introducing iterations. Basically the applied shear stress path of

multidirectional cyclic shear test can be expressed by

σ23 = τoff,y + τamp,y sin(2π fyt +φ) (2.19a)

σ13 = τoff,x + τamp,x sin(2π fxt) (2.19b)

Circular/oval path is obtained by setting fx = fy and φ = π/2 and one can linearize the

corresponding Equation (2.19) to derive the following equations:

cos(2π fyt)

τamp,y
dσ23 −

sin(2π fxt)

τamp,x
dσ13 = 0 (2.20a)

sin(2π fyt)

τamp,y
dσ23 +

cos(2π fxt)

τamp,x
dσ13 = 2π fx dt (2.20b)

For figure-8 path referring to the case of φ = 0 with either fx = 2 fy or fy = 2 fx, for the scenario of

fx = 2 fy (the other is similar), Equation (2.19) can be reformulated as

−4sin(2π fyt)cos(2π fxt)

τamp,y
dσ23 +

sin(2π fxt)

τamp,x
dσ13 = 0 (2.21a)

4sin(2π fyt)sin(2π fxt)

τamp,y
dσ23 +

cos(2π fxt)

τamp,x
dσ13 = 2π fx dt (2.21b)

Along with the other constraints listed as the following:

ε11 = ε0
11, ε22 = ε0

22, ε33 = ε0
33 (2.22a)

σ12 = 0 (2.22b)
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the configuration for circular/oval path of multidirectional cyclic shear test is

SSS =

























0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0
cos(2π fyt)

τamp,y
− sin(2π fxt)

τamp,x
0

0 0 0
sin(2π fyt)

τamp,y

cos(2π fxt)
τamp,x

0

























, EEE =























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0























dYYY =























0

0

0

0

0

2π fx dt























(2.23)

while for figure-8 path of fx = 2 fy, SSS needs to be changed as

SSS =

























0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 −4sin(2π fyt)cos(2π fxt)
τamp,y

sin(2π fxt)
τamp,x

0

0 0 0
4sin(2π fyt)sin(2π fxt)

τamp,y

cos(2π fxt)
τamp,x

0

























(2.24)

It should be noted that SSS ·CCC∗+EEE of figure-8 becomes singular when sin(2π fyt) = 0. A numerical

trick to bypass it is replace t appearing in SSS with t +0.1dt, avoiding vanishing of sin(2π fyt).

2.5 Summary

The brief literature review presented in the chapter reveals that the existing laboratory

experimental work is pretty rich for understanding the macroscopic response of sands under

unidirectional cyclic shearing but more research should be carried out in terms of multidirectional

cyclic shear tests. There is some DEM work trying to reveal the microscopic behaviors related to

sand liquefaction, but most of them were focused on cyclic triaxial tests. Extra study should be

conducted with respect to cyclic simple shearing and even multidirectional cyclic shearing from

both macro- and microscopic levels, which will probably shed some light on the distinct

macro-mechanical response. Some existing constitutive models present promising results for

sands under undrained cyclic simple shearing, but a constitutive model that can give precise

predictions in both pre- and post-liquefaction periods for a series of tests with different CSRs is

still rare. The author once evaluated the performance of an advanced constitutive

model (Dafalias and Manzari, 2004) in simulating multidirectional cyclic shear tests while this

model needs extra improvement in simulating unidirectional cyclic shear test. Applying a
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constitutive model that attains noticeable success in modeling unidirectional cyclic shear test to

multidirectional ones may help gain more insight into the development orientation of constitutive

models.

A flowchart of the DEM program GRFlow3D is provided for illustrating its general framework,

from which one can extract routines that need to be improved or optimized. The stress calculation

routine was improved by properly dealing with peripheral particles. To speed up the program in

running simulations, two troublesome routines including exit and getParameter were improved

in the serial code and OpenMP directives were incorporated into GRFlow3D with the goal of

modifying the program minimally, enabling the feature of parallel computing. The two types of

optimization advanced GRFlow3D by a total speedup of five times. Then the sample preparation

protocol and the required number of particles for a RVE sample were investigated, which support

the final determination of 8000 spheres used for preparing a sample.

A standalone constitutive driver called ConModel was established according to the theoretical

basis of Bardet and Choucair (1991), which allows fast simulation of element tests. By linearizing

the six constraints extracted from the laboratory element test, plus the incremental stress-strain

relationship, one can adopt explicit Euler scheme to solve these ordinary differential equations.

Execution of an element test requires non-singularity of the matrix SSS ·CCC∗+EEE, which needs careful

configurations of SSS and EEE. While configurations of conventional element tests can be found in

Bardet and Choucair (1991), Taiebat (2008), Janda and Mašı́n (2017) and Seidalinov (2018), the

challenging ones including torsion test with rotation of principal stress direction, circular loading

in principal stress space and multidirectional cyclic shear test with respect to circular/oval and

figure-8 paths, were clarified in detail.

31



Chapter 3: Evolution of Granular Materials under Isochoric Cyclic Simple

Shearing

In this chapter, discrete element method (DEM) is used to carry out a list of isochoric cyclic simple

shear tests, revealing signatures of the granular system approaching liquefaction state. This chapter

is reproduced from the paper co-authored with Mahdi Taiebat, Patrick Mutabaruka and Farhang

Radjaı̈, which is submitted to a journal for publication.

3.1 Introduction

The macroscopic behavior of fluid-saturated cohesionless granular materials under dynamic

loading has been explored and modeled for a long time in the realm of soil mechanics in recent

decades (Seed and Idriss, 1967; Castro, 1975; Been and Jefferies, 1985; Ishihara, 1993;

Elgamal et al., 2003; Zhang and Wang, 2012; Radjai et al., 2017; Barrero et al., 2020; Yang et al.,

2020a). For a compact assembly confined under a given pressure, the stable solid skeleton can be

gradually disturbed by external excitations. In particular, at constant volume, the initial solid-like

assembly may instantaneously tend towards a fluid-like state under cyclic shearing, characterized

by the vanishing of mean stress, denoted as cyclic liquefaction in the community of soil

mechanics. Motivated by macroscopic observations from laboratory experiments,

continuum-based elastoplasticity models have been developed and applied to liquefaction-related

applications (Taiebat et al., 2010; Wang et al., 2014; Fuentes et al., 2019; Reyes et al., 2020). In

addition, investigating the mechanics of granular material deep into its microscopic structural and

rheological features helps develop physics-based constitutive models (He et al., 2019;

Zhang et al., 2020).

Discrete element method (DEM) has been adopted widely to explore the micro-mechanics of

granular material under isochoric (at constant volume) cyclic shearing numerically. Applying

DEM to carry out isochoric tests leading to liquefaction phenomenon dates back to Ng and Dobry

(1994), where the capability of modeling cyclic liquefaction was verified from cyclic simple shear

simulations. Later, Sitharam (2003) conducted two-dimensional (2D) DEM simulations of cyclic

biaxial tests and observed the drop of coordination number when a loose sample reached
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liquefaction. In a subsequent series of three-dimensional (3D) DEM simulations of cyclic triaxial

tests, Soroush and Ferdowsi (2011) found the degree of structural or contact network anisotropy

increased dramatically in liquefaction state, which was confirmed by Huang et al. (2018) who

also observed that near liquefaction the granular system became unstable. They characterized the

destabilization by means of Hill’s condition of instability (Hill, 1958). Later, the study was

extended to explore the evolution of mechanical stability and reversibility of the force

transmission network (Huang et al., 2019b). In addition to investigating the mechanical

stability, Martin et al. (2020) pointed out that the onset of liquefaction occurred with a significant

increase of particle clusters. Some research work has also been devoted to the microscopic

mechanisms governing shear strain development after initial liquefaction (Wang and Wei, 2016;

Wang et al., 2016), and the effects of initial and loading conditions on the number of loading

cycles approaching initial liquefaction (Evans and Zhang, 2019), known as liquefaction

resistance (Kramer, 1996).

Most of the aforementioned fruitful studies focus on isochoric cyclic triaxial tests where the

principal stress directions are imposed. The shear mode of a cyclic simple shear test is, however,

closer to what sand experiences in the field (Zhang and Evans, 2018). For studies related to cyclic

simple shearing, the exploration of microscopic features has been limited to the coordination

number, and there is presently no panorama of the evolution of microstructures during the

liquefaction process. It is well known that the load-bearing network disappears at the onset of

liquefaction, but the details of how the initially stable system gradually disintegrates under cyclic

shearing and how the fragile system reconstructs the contact network, are still worth exploring. In

addition, given the partition of shear strength into fabric and force anisotropies in monotonic

tests (Rothenburg and Bathurst, 1989; Radjai et al., 1998; Radjai and Roux, 2004;

Radjai and Richefeu, 2009; Radjai et al., 2017; Cantor et al., 2018), it is essential to understand

how these anisotropies evolve and how they correlate with other microstructural descriptors in

cyclic loading leading to liquefaction.

This paper analyzes the contact and force network evolution of 3D packings composed of

spherical particles when subjected to isochoric cyclic simple shearing. A number of 3D simulations

with different initial and loading conditions were carried out, with a large number of time steps

for adequately covering the whole process before and after the initial liquefaction. We focus on

both the temporal behavior in terms of various microstructural descriptors of the packing and

their statistical distributions at characteristic states during the transition to the liquefaction state. In

Section 3.2, the DEM contact model, sample preparation, and simulation procedures are described.

In Section 3.3, the macroscopic response is presented in terms of stress path and stress-strain loop

from a representative simulation. The evolution of granular microstructure in this simulation is

explored in terms of particle connectivity, force transmission, and fabric and force anisotropies

33



in Section 3.4. In Section 3.5, effects of the initial and loading conditions on the evolution of

particle connectivity and anisotropies are investigated. Finally, we summarize the findings and

sketch potential perspectives for this work.

3.2 Numerical procedure

3.2.1 Contact model

A 3D particle dynamics DEM numerical platform, named GRFlow3D (Mutabaruka, 2013), was

used in this work. The granular assembly was simulated using spheres interacting via soft-particle

laws. The contact interactions between spheres consist of normal collision, tangential sliding,

rolling and torsion, and the key quantity is the elastic deflection between particles, δ[ ], from which

the corresponding force f̂[ ] can be calculated using a linear spring-dashpot model:

f̂[ ] =−k[ ]δ[ ]− c[ ]δ̇[ ] (3.1)

where k[ ] is the spring stiffness, and c[ ] is the viscous dashpot coefficient. The subscript

placeholders can be for n (normal contact), t (tangential sliding), r (rolling), or o (torsion). Given

the radii of two particles, ai, a j and their positions, rrri, rrr j, the normal contact deflection δn along

the normal direction is the overlap between the two particles, given by

δn =
∥

∥rrri − rrr j

∥

∥−ai −a j (3.2)

The inter-particle forces and torques exist only when δn < 0. To exclude the non-realistic

attractive force due to viscous damping at incipient separation between two particles, the normal

force fn is represented by a ramp function R( f̂n) where R(x) = x if x > 0 and R(x) = 0 if x ≤ 0.

The tangential force ft is equal to f̂t if | f̂t | < µt fn and as sgn( f̂t)µt fn if | f̂t | > µt fn. Calculating

the rolling and torsional forces (torques) is analogous to the tangential force. Unlike the normal

deflection δn, the other three elastic deflections cannot be directly calculated, but should be

cumulated by integration over time from the moment two particles come to contact, as explained

in detail in Luding (2008) and Radjaı̈ and Dubois (2011).

Once all the forces and torques on a particle are obtained, the translational and rotational

accelerations can be calculated using Newton’s second law of motion. These accelerations,

together with the particle velocities at the beginning of each time step are then used to update the

velocities and positions of all particles. We used a velocity-Verlet time-stepping scheme in our

simulations.
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3.2.2 Sample preparation and shearing protocols

The simulations of isochoric simple shearing involve two steps: preparing particle assemblies via

isotropic compression condition, and applying cyclic simple shear mode to these assemblies under

isochoric condition.

The constructed samples consist of spheres with low polydispersity, i.e. dmax/dmin = 2 where

dmin = 1.0 mm and dmax refer to the minimum and maximum particle diameters, respectively.

Between dmin and dmax, the particle size follows a uniform distribution of particle volumes, so

that the number of particles belonging to a class of diameter d is proportional to d−3. One can

refer to Voivret et al. (2007) and Mutabaruka et al. (2019) for details of generating the particle size

distribution. Once the particles are generated, they are placed randomly on a 3D sparse lattice to

avoid the overlap. This 3D lattice is contained in a rectangular cell whose top and bottom sides

are rigid walls, and the four lateral sides are periodic boundaries. This setting is denoted as a

bi-periodic simulation cell.

The samples are compressed isotropically by moving the six sides of the cell. During the

compression process, the gravity is set to zero. The six sides of the cell follow a translational

move. The tangential friction coefficient µt is tuned to achieve a given value of void ratio e,

defined as the ratio of the total pore volume to the solid volume. One has e = 1/Φ+ 1, where

Φ is the packing fraction. Many of the laboratory procedures for sample preparation at different

densities can not be precisely simulated; therefore, we adopted a simple computational procedure,

modified from Kuhn et al. (2014) and Thornton (2015), to prepare samples comparable with the

laboratory ones. The procedure consists of four substeps, which we describe here by taking the

case of constructing a medium dense sample with the target mean stress p0 = 100 kPa: (1) with

µt = 0.20, densifying the sparse sample by moving the six sides at a constant velocity until the void

ratio e reaches 1.0; (2) setting velocities of particles and the six sides to zero, and using a servo-

control algorithm to compress the sample isotropically with the target p = 10 kPa where µt remains

0.2; (3) increasing the target p to half of p0, i.e. 50 kPa, and continuing compression of the sample

with µt = 0.20; (4) modifying µt to 0.5 used for further compressing the sample with the target p =

p0 = 100 kPa and subsequent cyclic shearing. Readers can refer to Thornton (2000) and O’Sullivan

(2011) for the detail of servo-control algorithm. The first three substeps generate an initially dense

packing via controlling the tangential friction coefficient and increasing the confinement. The last

step is necessary to obtain a smooth distribution of ft/(µt fn) between 0 and 1, as usually a different

value of µt is used in the step of cyclic shearing. We conducted other simulations on samples with

different numbers of spheres ranging between 2197 and 10648. We did not see much difference

in the macroscopic response under isochoric cyclic shearing. Hence, samples with 8000 spheres

were used in this study, falling into a similar range presented in Kuhn et al. (2014) and Martin et al.

(2020). Figure 3.1(a) displays one of the samples prepared by the above procedure.
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(a) (b)

Figure 3.1: Illustration of particle arrangements and boundary conditions for a sample composed of

8000 particles: (a) at the end of sample preparation; (b) during constant height cyclic shearing. The gray

particles are glued to the top and bottom walls of the simulation cell.

In the step of isochoric cyclic simple shearing, the sample volume is maintained by fixing four

lateral sides and the bottom wall and keeping the sample height constant. Cyclic simple shearing

is undertaken by moving the top wall horizontally at a constant velocity vx. To reduce possible

slippage between the walls and the sample, one layer of particles is glued to the top and bottom

walls, respectively, as indicated by gray spheres in Figure 3.1(b). The shear direction is reversed

each time the shear stress τ extracted from the calculated stress tensor, as explained below, reaches

a target amplitude τamp. This corresponds to the so called “uniform amplitude cyclic simple shear

test” (Kuhn et al., 2014). In soil mechanics, a dimensionless quantity named cyclic stress ratio

(CSR) is used to quantify the cyclic shearing intensity, defined by the ratio

CSR =
τamp

p0
, (3.3)

where p0 is the initial mean stress. Table 3.1 summarizes the simulated isochoric cyclic simple

shear tests. T1, T2, and T3 are configured by varying the initial void ratio e of samples, T2, T4,

and T5 are different in the initial mean stress p0, while T2, T6, and T7 are conducted for different

values of CSR. In this study, we did not consider simulations of samples with a void ratio below

0.629 or above 0.670 because very dense systems get jammed under shearing at constant volume,

and very loose samples can easily become fluid-like even without the shear stress reaching the

targeted value of CSR.

To maintain a quasistatic shear regime, we consider the inertial number I = γ̇d
√

ρ/p, where

γ̇ = |vx|/h is the shear strain rate with h the sample height, ρ the density of particles, and d the

mean particle diameter. The shear is nearly quasistatic if I ≪ 1 (MiDi, 2004), and typically the
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Table 3.1: Simulated cyclic simple shear tests

ID e(−) p0 (kPa) CSR (−)

T1 0.629 100 0.25

T2 0.647 100 0.25

T3 0.670 100 0.25

T4 0.647 200 0.25

T5 0.647 600 0.25

T6 0.647 100 0.20

T7 0.647 100 0.30

threshold is chosen as 1×10−3, which can be strictly obeyed before p drops to almost zero. The

deformation process can not be quasistatic in this limit of vanishing p even by decreasing vx since

the granular material undergoes a phase transition from a solid-like to a liquid-like state. The

sensitivity analysis on the moving rate of top wall indicates that vx = 0.01 m/s or shear strain rate

γ̇ ≈ 0.38 s−1 is a good option, consistent with Martin et al. (2020), which guarantees I < 0.001

before p gets too small.

The simulation parameters are given in Table 4.1. One can introduce the stiffness number κ

such that the average normal deflection δn satisfies δn/d ∝ κ−1 (Radjaı̈ and Dubois, 2011). For

the linear contact law in the normal direction, κ = kn/(pd). In this study kn is chosen as 106 N/m

to guarantee δn ∼ 10−3d in each contact, i.e., the particles can be considered as nearly

undeformable (Mutabaruka et al., 2019). Then, cn is determined to attain a value of 0.15 for the

normal coefficient of restitution based on Schwager and Pöschel (2007). µt = 0.5 is a common

value of the friction coefficient (Guo and Zhao, 2013; Huang et al., 2018; Jiang et al., 2019). The

values for other microscopic material parameters can be obtained from their relations to kn, cn or

µt suggested by Luding (2008) and listed in Table 4.1. The rolling and torsion stiffnesses and

friction coefficients were set to a small nonzero value in order to make rotations slightly

dissipative as a simple way to account for the effects due to aspherical particle

shape (Radjaı̈ and Dubois, 2011).

3.3 Macroscopic response

At the sample scale, stresses and strains in the cyclic shearing phase are analyzed to monitor pore

pressure generation and shear strain development. The stress tensor σσσ of the granular assembly

can be expressed as a function of the microscopic interactions between particles over a selected
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Table 3.2: DEM parameters

Description Value

Density, ρ 2650 kg/m3

Normal stiffness, kn 106 N/m

Normal viscosity, cn 1.15 kg/s

Tangential stiffness, kt 0.8kn

Tangential viscosity, ct 0.2cn

Tangential friction coefficient, µt 0.51

Rolling stiffness, kr 0.1kn

Rolling viscosity, cr 0.05cn

Rolling friction coefficient, µr 0.1
Torsion stiffness, ko 0.1kn

Torsion viscosity, co 0.05cn

Torsion friction coefficient, µo 0.1

volume V :

σσσ =
1

V
∑

c∈Nc

lllc ⊗ fff c (3.4)

where lllc is the branch vector connecting the centers of two particles for interior contact or

connecting the particle center and the contact point for exterior contacts, fff c is the contact force, ⊗
denotes the dyadic tensor product, and the summation runs over all the contacts Nc in the selected

volume V . The superscript c in lllc and fff c will be dropped in the sequel for simplicity. In simple

shear test, the shear stress τ and mean stress p can be obtained from stress tensor, i.e. τ = τzx and

p = (σxx + σyy + σzz)/3. The constant volume condition in cyclic shearing mimics the

deformation of a porous solid matrix filled with an incompressible pore fluid without the drainage

of the latter, i.e. a “truly undrained test”. Both laboratory experiments and DEM studies have

confirmed similarity in the results of these two systems (Dyvik et al., 1987; Bonilla, 2004). In

constant volume shearing, the variation of the average pressure in the the solid skeleton pores is

compensated by the excess pore pressure deduced as

∆u = p0 − p. (3.5)

It is common to use the dimensionless pore pressure ratio defined by

ru =
∆u

p0
= 1− p

p0
. (3.6)
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Vanishing pressure p corresponds to ru = 1, where the whole mean stress is supported by the

suspending fluid. The cumulative shear strain γ is defined by

γ =
xw

h
, (3.7)

where xw is the cumulative horizontal displacement of the top wall:

xw(t) =

∫ t

0
vx dt (3.8)

Note that the shear rate γ̇ is constant and changes its sign only when the shear stress τ reaches

the target amplitude τamp. For this reason, the time interval T/2 between two successive shear

reversals varies in different cycles of shearing. Let T (N) be the period of cycle N and tN its initial

time. Since the shear rate is constant, we define a “fractional cycle number” by interpolation

between two successive cycles:

N′ = N +
t − tN

T (N)
, (3.9)

where t is the current time. The value of N′ coincides with N at t = tN , and increases by one unit

at t = tN +T . To avoid confusion, we continue below to use N but in the sense of fractional cycles

as defined by N′.

Figure 3.2 presents the typical macroscopic behavior for simulation T2 in Table 3.1, described

in terms of stress path and stress-strain curve, as well as the pore pressure ratio evolution and

shear strain development as functions of the number of cycles. The simulation starts from τ = 0,

p = 100 kPa and γ = 0, corresponding to point A0 of Figure 3.2(a) and the origin of the coordinate

system in Figure 3.2(b). As cyclic shearing continues, the stress path of (p,τ) oscillates up and

down and moves leftwards as shown in Figure 3.2(a), indicating a decreasing p (increasing ru) that

is result of the contraction tendency of the system. The first time ru in Figure 3.2(c) reaches 0.99

is termed initial liquefaction, and its corresponding number of cycles is denoted as NIL shown in

Figure 3.2. Thus, the cyclic shearing process is divided into two periods, before and after initial

liquefaction, namely pre- and post-liquefaction periods, as colored in gray and red in Figure 3.2,

respectively. In the pre-liquefaction period, the development of shear strain is negligibly small, as

shown in Figure 3.2(b) and (d). In the post-liquefaction period, the stress path gets trapped and

oscillates along with a butterfly shape and a transient vanishing of the mean stress. Shear strain

develops significantly, especially when shear stress approaches zero and ru gets very close to 1,

and its amplitude increases cycle by cycle as shown in Figure 3.2(d). The deduced pore pressures

throughout each loading cycle show a repetition of the behavior. Hereafter, we assume that the

system gets into liquefaction state when ru exceeds 0.99 and it exits liquefaction state when ru

drops below 0.99.
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Three loading cycles, including cycle A and cycle B in the pre-liquefaction period, and cycle

C in the post-liquefaction period, are also highlighted in Figure 3.2. These cycles are selected to

zoom into the detailed evolution of microstructures that will be explored below. In each cycle,

at least four characteristic states are pointed out, where subscript 0 refers to the first time τ ≥ 0

distinguishing loading from unloading, 1 refers to τ reaching τamp, 2 refers to the first time τ < 0

when sample is sheared reversely, and 3 refers to τ reaching −τamp. In cycle C, two more states are

selected, i.e., C0′ and C2′ , referring to the exit from the liquefaction state. In the post-liquefaction

cycle, indistinctive oscillations of τ around 0 may confuse loading and unloading. Near C0 or C2,

one can search for the state with the highest number of particles without contacts (i.e. floaters),

which can be used to further distinguish C0 or C2.

Figure 3.3 presents several snapshots of normal contact force chains at different states of

simulation T2 given in Figure 3.2. The forces are represented by bars along the branch vectors

joining particle centers, and their thickness is proportional to the intensity of the normal contact
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Figure 3.2: Macroscopic response of isochoric cyclic simple shear test T2 in Table 3.1: (a) stress path; (b)

stress-strain curve; (c) pore pressure evolution; (d) shear strain development.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Snapshot of normal forces in the sheared sample for characteristic state: (a) A0; (b) A1; (c)

B1; (d) C1; (e) C2; (f) C2′ . Line thickness is proportional to the normal force at each contact. Color code

represents the mobilized friction index Im (see text) in the range between 0 and 1. The same camera view

as Figure 3.1 is used here.

force. The same figure also shows the friction mobilization index Im at each contact defined by

Im =
| ft |
µt fn

. (3.10)

It varies between 0 and 1 and is displayed in color code. The value Im = 1 implies sliding or

fully mobilized friction. Visual inspection reveals several features. First, the initially isotropic

force network (A0) becomes slightly anisotropic at shear stress reaching its maximum amplitude

(A1) and even more anisotropic along loading cycles (B1 and C1). Well-connected strong force

chains tend to span the system along the direction of the first principal stress (i.e., compressive

direction). Then, upon unloading to liquefaction state (C2), large force transmission networks are

replaced by fragile scattered small force chains (Huang et al., 2019a; Martin et al., 2020), where

normal contact forces drop to much smaller values, and the friction is prone to be mobilized at

a large number of contacts, corresponding to an unjammed state (Bi et al., 2011; Huang et al.,

2019a). Whether the current system is isotropic cannot be inferred from Figure 4.13(e). While

the sample evolves in liquefaction state until the exit (C2′), large deformation accumulates and

the collapsed force transmission network is rebuilt. In Figure 4.13(f), one can notice the network
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nearly percolates along the diagonal from bottom left corner to top right corner (contrary to C1) in

the xz shear plane (see Figure 3.1(b)) although the intensity of normal forces is still small.

3.4 Granular microstructure

In this section, we investigate the evolution of the granular microstructure for the simulation T2 in

Table 3.1 in terms of particle connectivity, force transmission, and fabric and force anisotropies.

3.4.1 Particle connectivity

The lowest-order scalar quantity describing the contact network is the coordination number zg,

defined the average number of contacts per particle (Radjai et al., 2004). The coordination number

can also approximate the level of static redundancy in the system, i.e., the difference between the

total number of constraints and the total number of degrees of freedom. Each contact provides

six constraints in an ideal system with infinite tangential, rolling, and torsion friction coefficients.

Given six degrees of freedom (dynamic variables) per particle, the critical coordination number,

defining the isostatic state with equal numbers of degrees of freedom and constraints, is ziso = 2.

This is an extreme value for our system. It will increase if the rolling and twisting interactions

are removed. In general, positive and large values of static redundancy zg − ziso reflect a stable

quasistatic behavior, whereas negative values mean unstable and dynamic states. In all cases, there

is always a subset of particles with no contacts (floaters) and a subset of contacts bearing no force.

Hence, for the definition of the coordination number we consider only the non-floaters and force-

bearing contacts:

zg =
2Nc

Np −N0
p

, (3.11)

where Np is the total number of particles, N0
p is the number of floaters, and Nc is the number of

force-bearing contacts.

Figure 3.4(a) displays the evolution of zg with the number of cycles N, where the time histories

are colored according to the value of ru. The initial liquefaction (IL) corresponding to ru = 0.99

is marked by a black circle. We see that zg decreases from its initial value zg ≃ 4.76 with small

oscillations in pre-liquefaction period and drops below 4.0 while the system tends to its initial

liquefaction state. In the post-liquefaction period, zg stays below 4.0 and fluctuates significantly

down to values as low as 1.5 with a negative static redundancy, implying there are not enough

constraints to hold the system stable. The observed oscillations suggest that zg can be used to

approximately distinguish the pre- from post-liquefaction periods. One can also notice that zg
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Figure 3.4: Evolution of (a) coordination number zg and (b) non-rattler fraction fNR for simulation T2.

increases with a decreased ru (or an increased p), implying a monotonic relationship between

zg and p (Shundyak et al., 2007; Huang et al., 2019b). The horizontal dashed line for zg = 3.6

corresponds to the inflection point of zg as a function of N, above which zg and p increase rapidly.

This value of zg may be considered as the percolation threshold of the particles allowing for force

transmission across the system through the contact network.

Another statistical descriptor complementing the coordination number is non-rattler fraction

defined by Bi et al. (2011)

fNR =
Np −N0

p −N1
p

Np

, (3.12)

which represents the proportion of particles with at least two contacts, i.e., excluding particles

with zero contact (N0
p) or one contact (N1

p). Figure 3.4(b) shows the evolution of fNR. According

to this figure, around 15% of these particles at the initial state do not contribute to the sample’s

contact network; this should be because of the granular assembly’s polydispersity. During the pre-

liquefaction period, fNR declines and drops to 70% at initial liquefaction. In the post-liquefaction

period, fNR oscillates significantly and drops below 40% transiently when ru approaches 1.0. It

should be noted that the local maxima of fNR are not attained when ru drops to the local minima,

implying that fNR and p do not follow a monotonic relationship.

Figure 3.5 displays detailed evolution of zg and fNR in cycles A, B and C as previously shown

in Figure 3.2. It is remarkable that in cycle A zg and fNR do not follow the trend of ru whereas

in cycle B they follow the variations of ru. Then in cycle C of the post-liquefaction period, the

variations of zg and fNR are inversely related to ru except in the liquefaction state (ru ≥ 0.99); zg

achieves its local maximum when τ =±τamp while the peak of fNR occurs in the liquefaction state.

The horizontal dashed line in the subplot of zg and N shows that the value zg = 3.6 prompts the

packing to exit from the liquefaction state.
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Figure 3.5: Detailed evolutions of zg and fNR for simulation T2 during three selected cycles:(a) cycle A;

(b) cycle B; (c) cycle C.

To understand the relationship between p and zg, let us consider the following relation derived

from Eq. (3.4):

p ∝ zg

Np −N0
p

Np
〈lll · fff 〉= zg

Np −N0
p

Np
〈l fn〉 (3.13)

where 〈lll · fff 〉 refers to the average over all contacts. For the spherical particles used in this study,

lll = lnnn with l being branch vector length, and thus lll · fff = l fn with fn being the contact normal force.

In the pre-liquefaction cycle, the non-floater fraction (Np −N0
p)/Np can be regarded as constant

given Figure 3.6(a) and (b) such that the variation of ru (or p) is controlled by zg and 〈l fn〉. Hence,

the initial out-sync between ru and zg is compensated by 〈l fn〉, which can be easily affected by

cyclic shearing. This compensation becomes less and less significant as the system approaches the

initial liquefaction. In post-liquefaction period, fn becomes negligible when the system falls into

a liquefaction state, which explains why the significant changes of zg do not affect p noticeably.

Outside the liquefaction state, zg increases mildly, and the increase of p should be mainly attributed

to the evolution of 〈l fn〉.
The connectivity of particles Pc is defined as the proportion of particles with exactly c contacts.

Its distribution at the characteristic states of the three selected cycles shown in Figure 3.6 provides

more detailed information about the microscopic state of the granular material than zg and fNR.
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Figure 3.6: Connectivity diagram expressing the fractions Pc of particles with exactly c contacts for

simulation T2 at the characteristic states of: (a) cycle A; (b) cycle B; (c) cycle C.

P0 represents the proportion of floating particles. In the pre-liquefaction cycles, the distribution

{Pc} is nearly unchanged during shear cycle with very small values of P1 and P2, a peak at c = 4,

and long tail for c > 4. In cycle C of post-liquefaction period, the states C0 and C2 exhibit a

high proportion of particles with c < 4, implying a fragile contact network. This fragile network

disappears only when the system exits the liquefaction state as shown by {Pc} at C0′ and C2′ .

Given large shear strain development between C0 and C0′ or C2 and C2′ , one can infer that sample

deformation rebuilds the fragile network resulting from unloading (compare C1 and C2) although

p does not increase markedly. The system stays stable at C1 or C3 while C0 or C2 represents the

state with the weakest contact network in the post-liquefaction cycle.

To get insight into the temporal evolution of Pc, we plot in Figure 3.7 Pc for c = 0,1 . . .9 at

τ = τamp and τ ≃ 0 (transitioning from unloading to loading) as a function of the number of cycles

N. τ ≃ 0 refers to C2 in post-liquefaction period. At τ = τamp, we observe that the proportion of

floaters (P0) takes the place of P5 to become the second most dominant after a few cycles while P4

does not change noticeably. At τ ≃ 0, near initial liquefaction (N ≃ 14), a significant change occurs

in the connectivity diagram: the system tends to have more proportions of particles with contacts

fewer than 3. In the post-liquefaction period, the values of P0, P1 and P2 increase first, implying

that the system gets weaker and explaining the increasing shear strain amplitude, and then tends

to a steady state. Furthermore, in the post-liquefaction period, the distribution {Pc} is continuous

between floaters (P0) and the non-floaters, and the peak at c = 4 has disappeared. This means that

{Pc} does not anymore reflect a balanced contact network but a dynamic one in which dynamic

events such as binary collisions (P1) and unstable chains (P2) of particles occur frequently.

3.4.2 Force transmission and friction mobilization

The force network of a granular system is defined by the spatial distribution of contact forces fff .

A local coordinate system (nnn, ttt) is attached to each contact point, where nnn is the unit vector
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Figure 3.7: Evolution of proportion Pc of particles with c contacts at characteristic states of (a) τ = τamp

and (b) τ ≃ 0 transitioning from unloading to loading (or C2 in post-liquefaction period) for simulation

T2.

perpendicular to the contact plane and ttt is an orthonormal unit vector in the contact plane oriented

along the tangential contact force. Thus, we have fff = fnnnn+ ftttt, with fn and ft representing the

magnitudes of normal and tangental contact forces, respectively. The inhomogeneity of contact

forces in granular media can be characterized by the probability density function (PDF) of normal

contact forces Pn (Radjaı̈ et al., 1996; Majmudar and Behringer, 2005) presenting two major

features: (1) the PDF is roughly a decreasing exponential function for forces above the mean, and

(2) in the range of weak forces below the mean the PDF does not decline to zero with force.

These two features have been observed in confined packings (Radjaı̈ et al., 1996; Radjai, 2015) or

sheared granular media reaching steady flow regime (Azéma et al., 2007; Richefeu et al., 2009;

Cantor et al., 2018) where the system preserves a statistically stable force distribution. For the

granular assembly under isochoric cyclic shearing, the network goes through collapsing and

rebuilding stages, and variations of Pn are expected.

Figure 3.8 displays the PDF of normal contact forces in log-linear and log-log scales at the

characteristic states depicted in Figure 3.2. In the pre-liquefaction cycles, the forces are normalized

by the mean normal contact force 〈 fn〉 at each state given the tiny variations of 〈 fn〉 in a cycle. In

the post-liquefaction cycles, 〈 fn〉 changes significantly. For example, 〈 fn〉 ≃ 0.16 N at C1 and

0.03 N at C2′ , as shown by the vertical dashed lines in Figures 3.8(c) and (f). Thus, to see the

variations of force PDF, it is more suitable not to normalize fn any more. We see that Pn is well

fitted by a decreasing exponential function keβ (1− fn/〈 fn〉) for fn ≥ 〈 fn〉 where k and β are two

parameters (Radjaı̈ et al., 1999) representing the value of Pn at fn = 〈 fn〉 and the slope of the log-

linear plots in Figure 3.8, respectively. We find β ≃ 1.55 in cycle A, 1.25 in cycle B, and 1.00 in

cycle C at C1 and C3. This means that the force network is increasingly more inhomogeneous as it

evolves from cycle A to B and then C. Upon entering the liquefaction state (C0 or C2), the system

has a slightly larger proportion of large forces than C1 or C3 as shown in Figures 3.8(c) and (f).
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Figure 3.8: Probability density functions Pn of normal forces fn normalized by the mean normal force in

log-linear (a)(b)(c) and log-log scales (d)(e)(f) for simulation T2 at characteristic states of: (a)(d) cycle A;

(b)(e) cycle B; (c)(f) cycle C (the vertical dashed lines refer to 〈 fn〉 at each state).

However, the proportion of large forces becomes smaller than C1 or C3 when the system leaves the

liquefaction state (C0′ and C2′).

The distribution of tangential contact forces in the system can be analyzed in a similar

way (Radjaı̈ et al., 1996; Majmudar and Behringer, 2005). In addition, one can also link each

tangential contact force to the friction mobilization, as given by the friction mobilization index

Im = | ft |/(µt fn) (Azéma and Radjaı̈, 2012; Majmudar and Behringer, 2005; Cantor et al., 2018).

This index ranges between 0 and 1, the latter indicating sliding or mobilized contact. Generally,

the proportion of mobilized contacts is expected to increase with shear stress (Guo and Zhao,

2013). This is confirmed in Figure 3.9 by comparing states of subscript 0 or 2 with those with

subscripts 1 or 3 in pre-liquefaction cycles.

We also observe the Im distribution’s right shift, indicating a larger proportion of contacts

getting close to sliding. In the post-liquefaction period, a large proportion of mobilized contacts is

generated at C0 and C2: the probability density near Im = 1.0 increases from 0.6 to 14.7. With

shear strain developing in the liquefaction state from C0 to C0′ or C2 to C2′ , the proportion of

mobilized contacts drops to around 0.3, and the system regains larger number of contacts far from

sliding. It should be noted that the distribution of Im at τ =±τamp is nearly the same for the cycles

A, B, and C, implying a close relation between friction mobilization and the stress state τamp.
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Figure 3.9: Probability density functions of friction mobilization index for simulation T2 at

characteristic states of (a) cycle A; (b) cycle B; (c) cycle C.

3.4.3 Fabric and force anisotropies

By analyzing the distribution of directional data in the system, a list of higher-order quantities

such as fabric and force tensors can be introduced (Kanatani, 1984). These directional data include

contact normals nnn, mean branch vectors 〈l〉(nnn), mean normal and tangential forces denoted by

〈 fn〉(nnn) and 〈 fff t〉(nnn), to name a few. Given the low polydispersity of samples in this study, fabric

anisotropy due to 〈l〉(nnn) is nearly negligible and will not be presented here. Let us consider S(nnn),

the set of contact normal vectors pointing in the direction nnn=(θ ,ϕ) as shown in Figure 3.10, where

θ is the angle of contact normal vector projected on the shear plane, i.e. xz plane in Figure 3.10,

and ϕ the azimuthal angle.

The PDF of contact normals, and the average normal and tangential forces are expressed as

x

y

z

nnn
′

nnn

θ

ϕ

Figure 3.10: Normal contact orientation given the azimuthal angle ϕ and the angle θ defined by the

projection of the contact direction on the shear plane of xz. The blue arrow represents the shear direction.
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functions of the orientation nnn (Azéma et al., 2013; Cantor et al., 2018):

P(nnn) =
Nc(nnn)

Nc

, (3.14)

〈 fn〉(nnn) =
1

Nc(nnn)
∑

c∈S (nnn)

fn, (3.15)

〈 fff t〉(nnn) =
1

Nc(nnn)
∑

c∈S (nnn)

fff t , (3.16)

where Nc(nnn) is the number of contacts pointing in the direction nnn within a small solid angle δΩ

around nnn.

Given the invariance of simple shear loading along the y axis, we expect that the distributions

do not depend on the azimuthal angle, and hence we consider only the projections of contact

orientations on the shear plane. Thus, contact normal nnn is replaced by the vector nnn′ on the shear

plane with orientation angle θ as shown in Figure 3.10 and the unit vector ttt representing the

direction of corresponding tangential force is replaced by the vector ttt ′ on the shear plane with

orientation angle θ +90◦, perpendicular to nnn′.

Figure 3.11 displays a polar representation of the functions P(nnn), 〈 fn〉(nnn) and 〈 fff t〉(nnn) in shear

plane as a function of θ at the characteristic states. We observe an obviously anisotropic behavior

when the shear stress reaches the peak: for Pn(θ) and 〈 fn〉(θ), the major principal components

occur in the direction θ ≃ 135◦; for 〈 ft〉(θ) it occurs at θ ≃ 90◦, and the other peak at θ ≃ 45◦

corresponds to the minor principal component where 〈 ft〉(θ) < 0. The directions for the peaks of

〈 fn〉(θ) and 〈 ft〉(θ) can be approximated by the directions of planes with major principal stress and

maximum shear stress, respectively. By drawing a Mohr circle, one can see that the angle between

these two directions is 45◦, which verifies Figures 3.11(b) and (c). Comparing the anisotropies of

A1, B1, and C1, one can notice an increasing trend for Pn(θ), a shrinking trend for 〈 fn〉(θ) due to

the decrease of p, and a decreasing trend for 〈 ft〉(θ), which will be elucidated quantitatively below.

When the shear stress vanishes (A0, C2 and C2′) in the pre-liquefaction period, the system tends

to be isotropic, but it becomes anisotropic in the post-liquefaction period except for 〈 ft〉(θ). From

C2 to C2′ , one observes that the fabric anisotropy is first regained prior to the force anisotropies, as

generally observed during shear reversal (Radjai and Richefeu, 2009).

To account for the lowest-order anisotropy of P(nnn) a second-order fabric tensor can be defined

as (Oda, 1982; Satake, 1982):

φφφ c =
1

Nc
∑

c∈Nc

nnnc ⊗nnnc, (3.17)
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Figure 3.11: Polar representation of the functions (a) Pn(θ ), (b) 〈 fn〉(θ ) and (c) 〈 ft 〉(θ ) at selected

characteristic states for simulation T2.

from which the fabric anisotropy tensor aaac can be defined by

aaac =
15

2

(

φφφ c −
1

3
III

)

, (3.18)

where III is the second-order identity tensor. In the same way, force tensors characterizing the

second-order anisotropy of 〈 fn〉(nnn) and 〈 fff t〉(nnn) are defined by the following weighted fabric

tensors:

φφφ n =
1

Nc
∑

k∈Nc

f k
n nnnk ⊗nnnk

1+aaac : (nnnk ⊗nnnk)
, (3.19)

φφφ t =
1

Nc
∑

k∈Nc

fff k
t ⊗nnnk

1+aaac : (nnnk ⊗nnnk)
. (3.20)

Hence, the force anisotropy tensors are given by (Ouadfel and Rothenburg, 2001; Sitharam et al.,

2009)

aaan =
15

2

[

φφφ n

tr(φφφ n)
− 1

3
III

]

, (3.21)

aaat =
15

3

φφφ t

tr(φφφ n)
, (3.22)

where tr(·) is the trace operator. Eq. (4.12) implies that tr(φφφ t) = 0 given the normality of nnn and ttt.

We use the deviatoric invariants of the anisotropy tensors to quantify the anisotropies of the
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contact network, normal forces and tangential forces (Guo and Zhao, 2013):

a[ ] = sign(S[ ])

√

3

2
aaa[ ] : aaa[ ] (3.23)

where the subscript [ ] stands from c, n or t, corresponding to the three aforementioned anisotropies,

respectively.S[ ] is the normalized first joint invariant between two tensors defined by:

S[ ] =
aaa[ ] : s

√
aaa[ ] : aaa[ ]

√
s : s

(3.24)

where s = σσσ − pIII and the deviatoric stress q =
√

(3/2)s : s. Generally S[ ] quantifies the level

of proportionality between two tensors, with S[ ] = 1.0 corresponding to the proportionality of

two tensors. As these anisotropy tensors are affected by s, S[ ] can be approximately regarded as

characterizing the relative orientation of the principal axes (PA) of aaa[ ] with respect to that of s, i.e.

the level of coaxiality.

The fabric and force anisotropies are the origins of shear strength in granular

materials (Rothenburg and Bathurst, 1989; Ouadfel and Rothenburg, 2001) as s/p can be well

approximated as a linear combination of the anisotropy tensors:

σσσ ′

p
≃ 2

5

(

aaac +aaan +
3

2
aaat

)

(3.25)

At τ = ±τamp, these anisotropy tensors become nearly proportional to s. Thus Eq. (3.25) can be

further simplified to

q

p
≃ 2

5

(

ac +an +
3

2
at

)

(3.26)

This Eq. (3.26) holds quite well for our data in Figure 3.12 in which the evolutions of fabric and

force anisotropies at τ = ±τamp are shown along with the contributing weight of each anisotropy

to q/p. It should be noted that these anisotropies are normalized by (2/5)ac+(2/5)an +(3/5)at .

We see that ac and an present an increasing trend while at decreases slowly in the pre-liquefaction

period, and all of them tend to level off after several cycles in the post-liquefaction period. The

contribution of ac to q/p increases, compensating the decreasing contribution of at , and the

contribution of an does not change markedly.

The contact network anisotropy ac provides the geometrical support of the stress anisotropy.

Its contribution reflects the larger number of contacts oriented along the compression direction

(principal direction of the strain-rate tensor) compared with that along the extension direction.

This means that there are more contacts to support the forces along the major principal stress
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Figure 3.12: (a) Evolutions of the contact and force anisotropies at τ =±τamp for simulation T2 and

deviatoric stress ratio q/p both measured from the simulation data and expressed as a function of the

anisotropies as in Eq. (3.26). (b) Contributing weights of fabric and force anisotropies to the deviatoric

stress ratio q/p: all normalized by (2/5)ac +(2/5)an+(3/5)at.

direction than the minor principal stress direction. In a dense system, the contact anisotropy’s

buildup implies the loss of contacts along the extension direction. This is consistent with the

increase in the number of particles with fewer than 4 contacts, as observed in Figure 3.6. The

normal force anisotropy an means that stronger force chains are formed along the major principal

stress direction as compared to the minor principal direction. This, in turn, implies an increase in

the number of weak forces, as observed in the PDF of normal forces in Figure 3.8. The tangential

force anisotropy at represents the largest friction mobilization occurring in the shear plane.

Indeed, the polar diagram of the average tangential force in Figure 3.11(c) can be approximated

by a truncated Fourier expansion 〈 ft〉(θ) = at〈 fn〉sin2(θ − π/4). Hence, the friction

mobilization index Im = 〈 ft〉/(µt〈 fn〉) = at/µt is proportional to the tangential force anisotropy

θ = 0 or π/2. In the post-liquefaction period, not only the anisotropies but also the force

distributions, friction mobilization distribution, and connectivity function are nearly stable, as

shown in Figure 3.13 at τ =±τamp in the last few cycles of the simulation.

Figure 3.14 presents the evolutions of S[ ] and anisotropies in the selected three cycles, along

with comparisons between the measured values of q/p and τ/p according to Eq. (3.4) and

predicted values suggested by Eqs. (3.26) and (3.25), respectively. From the quick adjustment of

Sn and St , one can realize that the force anisotropies are easily affected by cyclic shearing, while

the fabric anisotropy needs more time for the gain of new contacts along a new direction when the

shear direction is revered. In the liquefaction state of Figure 3.14(c) (C0 to C0′ or C2 to C2′), all

the anisotropies present noisy oscillations, implying a chaotic state with local instabilities. Then,

ac starts to build up and grows into a force-bearing network. In the pre-liquefaction period, the

predicted quantities from Eqs. (3.26) and (3.25) agree well with the measured ones, despite a
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Figure 3.13: Snapshots of (a) particle connectivity diagram, probability density functions of (b) normal

forces and (c) mobilized friction index when shear stress reaches its maximum amplitude in the last three

cycles of simulation T2.
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Figure 3.14: Evolutions of S[ ] and anisotropies, along with comparisons between calculated q/p and τ/p

and their predicted values by Eqs. (3.26) and (3.25) for simulation T2: (a) cycle A; (b) cycle B; (c) cycle C.

slight loss of accuracy upon unloading for the predicted q/p due to noncoaxiality between the

stress tensor and anisotropy tensors during transient reversal. This inaccuracy spreads into

liquefaction state in the post-liquefaction period where q, p and τ have quite small values

(Radjai and Richefeu, 2009).

Figure 3.15 presents the fabric anisotropy ac versus the coordination number zg during the

cyclic shearing process. The evolution of the system in the fabric diagram (zg,ac) provides a

picture of the reorganizations of the contact network in response to external loading (Radjai et al.,

2012). The negative values of ac correspond to the states where Sc is negative, i.e., the principal
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Figure 3.15: Fabric anisotropy ac versus coordination number zg during the cyclic shearing for

simulation T2.

directions of the stress tensor and fabric anisotropy tensor make an angle larger than π/2. The

instances of shear stress sign change, i.e., the states with subscripts 0 and 2 in each cycle, are

marked by the diamond symbols. The instances of peak shear stress, i.e., the states with

subscripts 1 and 3 in each cycle, are marked by the triangle. The states from C0 to C2 of cycle C

are connected to reveal the fabric evolution path in the post-liquefaction period, with

characteristic states highlighted.

On the right side of the fabric diagram above zg > 3.6 in the pre-liquefaction period, the

evolution of the system starts from ac ≃ 0 and high value of zg (where τ ≃ 0), and follows a path

towards the left (lower values of zg) via oscillations between ac = 0 and a maximum value of ac

that increases gradually with the number of cycles. The upper limit of ac defines a decreasing

function of zg, which was termed “gain saturation line” in Radjai et al. (2012) since for large

values of zg no more contacts can be gained along the direction of contraction. The steric

exclusions restrict the number of contacts that can be gained and, thus, the fabric anisotropy’s

value. A simple model predicts that the maximum value of fabric anisotropy varies as 1/zg in

agreement with our data points in Figure 3.15. Interestingly, the largest value of fabric anisotropy

occurs at zg ≃ 4 with ac ≃ 0.9, where the initial liquefaction occurs.

In the post-liquefaction period, both zg and ac vary significantly and follow long paths

exemplified by that from C0 to C0′ . In particular, we observe a plateau along which ac is nearly

constant while zg either increases or declines. This means that along this plateau, the contacts are

lost or gained isotropically. We see that after the system gets out of liquefaction state, ac does not

change noticeably from C0′ to C1 despite the increase of the applied shear stress τ . zg increases

consistently with p. Upon unloading from C1 to C2, zg drops significantly while ac does not

change noticeably. At low values of zg, a larger anisotropy is reached by loss of contacts along the

direction of extension. But the anisotropy is limited by “loss saturation”. Indeed, the particles’

relative stability impedes the loss of all contacts along the direction of extension. However, due to
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the shear deformation of the sample, the contact network is rebuilt by first isotropic and then

anisotropic gain of contacts with steady increase of both zg and ac.

3.5 Effects of initial and loading conditions

This section extends our study to the other simulations listed in Table 3.1 to explore the effects

of initial and loading conditions on the evolution of microstructure. Simulations T1, T2, and T3

are used to analyze the effect of the initial void ratio e0. Simulations T2, T4, and T5 are used to

analyze the effect of the initial mean stress p0. Simulations T6, T2 and T7 are used to analyze the

effect of CSR defined by Eq. (3.3). Figure 3.16 displays the evolution of zg for all the simulations

listed in Table 3.1. We normalize the number of cycles N by NIL, thus the vertical line N/NIL = 1

distinguishes the pre-liquefaction period from the post-liquefaction period. In the inset window of

each figure, the x-axis is replaced by (N−NIL) to zoom into the details near the initial liquefaction.

We see that the evolution of the coordination number in all simulations is quite similar to that

of T2. Recall that, as observed in Figure 3.4(a), zg stays below 4.0 in the post-liquefaction period,

but this is not the case for simulation T5 in Figure 3.16(b) where the mean stress corresponding

to τ =±τamp in the post-liquefaction period is expected to be around six times that of simulation

T2. Given the monotonic relationship between zg and p (Agnolin and Roux, 2007; Huang et al.,

2019b) indicated by Eq. (3.13), it is reasonable that zg evolves beyond 4.0 in the post-liquefaction

period for a simulation inducing a high post-liquefaction mean stress. Given the sudden drop of

zg upon unloading in each post-liquefaction cycle, it is difficult to find the value corresponding

to transition to the liquefaction state. As indicated by Figure 3.16, zg stays above 3.6 in the pre-

liquefaction period. Hence, the value zg = 3.6 seems to control transition to the liquefaction state

independently of e0, p0, and CSR.

Figure 3.17 shows the evolution of the respective contributions of the fabric and force

anisotropies to the deviatoric stress ratio q/p at τ =±τamp for the simulations of Table 3.1 except
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Figure 3.16: Effects of (a) initial void ratio e, (b) initial mean stress p0 and (c) cyclic stress ratio (CSR) on

the evolution of coordination number zg.
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Figure 3.17: Evolution of the respective contributions of anisotropies to the stress ratio q/p at τ =±τamp

and the theoretical value of q/p according to Eq. (3.26) for (a) T1, (b) T3, (c) T4, (d) T5, (e) T6 and (f) T7.

T2. The theoretical value of q/p calculated from the anisotropies by Eq. (3.26) is shown, too. We

see that effect of the initial and loading conditions on the evolution patterns is negligible. In all

cases, the contribution of at is larger than that of ac in the pre-liquefaction period, but their roles

interchange slightly before and during the post-liquefaction period. The larger contribution of ac

in the post-liquefaction period reflects the higher mobility and lower coordination number of the

particles allowing larger fabric anisotropy. The higher mobility also involves a lower degree of

frustration of particle rotations and thus lower friction mobilization, which is at the origin of

tangential anisotropy.
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Despite their similarity, one can observe some differences in the first few loading cycles, but

cyclic shearing reduces these initial differences in the subsequent cycles. After a sufficient

number of cycles in the post-liquefaction period, the contribution of (2/5)ac statures at around

0.4, that of (2/5)an saturates at around 0.5, and the rest is attributed to (3/5)at . In the

post-liquefaction period, the stress path falls into the butterfly shape, implying a constant

deviatoric stress ratio q/p during loading outside the liquefaction state (refer to the period

between C0′ and C1 in Figure 3.14(c)). The system can quickly adjust itself to support the shear

stress amplitude by properly allocating each anisotropy weight. Figure 3.18 displays the particle

connectivity diagram, probability density functions of normal forces and mobilized friction index

at the last time when the shear stress reaches the maximum amplitude in each simulation. The

effects of the initial and loading conditions on these distributions are not significant.
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Figure 3.18: (a) Particle connectivity diagram, probability density functions of (b) normal forces and (c)

mobilized friction index when the shear stress reaches its maximum amplitude in the last simulated cycle.

3.6 Summary and perspectives

In this paper, we investigated the highly nonlinear evolution of granular microstructure during

isochoric cyclic simple shearing using discrete-element numerical simulations and for different

values of the initial mean stress, initial void ratio, and cyclic stress ratio. The macroscopic

behavior is characterized by typical oscillations of shear stress and gradual buildup of excess pore

pressure until the system enters a liquefaction state. In the transition to the liquefaction state,

where the mean stress approaches zero, the coordination number and the non-rattler fraction drop

significantly, and the force-bearing network collapses. Unconventional distributions of normal

contact forces occur in this state as compared to a stable packing, and a considerable number of

mobilized contacts are generated.

In the liquefied state, large shear deformation is required to rebuild the contact network and

exit the liquefaction state, as characterized by the particle connectivity diagram and polar

representation of contact normals, providing the geometrical support for the subsequent shear.
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The relationship between deviatoric stress ratio and the force and fabric anisotropies was also

verified, revealing a nearly constant contribution of the normal force anisotropy, an increasing

contribution of the fabric anisotropy, and a decreasing contribution of the tangential force

anisotropy or friction mobilization to the deviatoric stress ratio as cyclic shearing proceeds. We

also explored the effects of the initial and loading conditions on the microstructural evolutions. It

was found that in all cases, the transition to the liquefaction state is characterized by a specific

value of the coordination number (≃ 3.6). We also observed a similar evolution of the fabric and

force anisotropies and their saturation values in simulations with different initial and loading

conditions.

This work can be expanded and completed in several directions. Since the liquefaction

transition value of the coordination number is quite robust with respect to the initial and loading

conditions, an issue is how it depends on the sample’s inherent properties, such as particle size

distribution, particle shape (Nguyen et al., 2015), or inter-particle interaction parameters. The

contributions of each anisotropy to the stress ratio may also vary due to the change in these

inherent properties, for example, the contribution from branch vector anisotropy will become

pronounced when a large band of particle size distribution or particle shape is introduced. The

microstructural analysis can also be enriched by a more detailed analysis of the evolution of force

correlations and force fluctuations at the transition to the liquefaction state (Peters et al., 2005;

Amirrahmat et al., 2020). The evolution of the pore space (Wang and Wei, 2016; Sufian et al.,

2015, 2019) may also be analyzed in this regard. Finally, more detailed analysis is underway to

characterize the evolution of anisotropy from particle scale processes during cyclic shearing.
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Chapter 4: Macro Response and Microstructure of 3D Granular Media

Subjected to Multidirectional Cyclic Shearing

In this chapter, discrete element method (DEM) is adopted to simulate a comprehensive series

of multidirectional cyclic shear tests under constant volume condition, with the goal of exploring

effects of shear paths on the macro and micro response of the granular system. This chapter

is reproduced from the paper co-authored with Mahdi Taiebat, Patrick Mutabaruka and Farhang

Radjaı̈, which is planned for submission to a journal for publication.

4.1 Introduction

In dynamic analysis of geo-structures, like simple site response analysis all the way to more

complex soil-structure interaction, we usually perform the analysis using only one horizontal

component of the ground motion. In real earthquakes, however, soil layers are subjected to

multidirectional cyclic shearing, and each component has varied amplitudes and a plethora of

frequencies. Even if the vertical component of the seismic loading is neglected, there exist two

horizontal shear components, and neglecting one of them can potentially lead to underestimation

of seismic risk.

Pyke et al. (1975) was the first to study sand response under multidirectional shaking where

through shaking table tests on dry Monterey No. 0 sand, they found that the settlement caused by

shaking in two horizontal directions was about the sum of the settlements caused by each

individual component alone. Su and Li (2008) conducted a pair of centrifuge tests on loose

Toyoura sand under uni- and biaxial shaking, and comparison of the results indicated that the

latter could develop 20% greater peak pore pressure near the sample bottom and 12% more

permanent settlement. Recently, El Shafee et al. (2017) presented a series of centrifuge tests on a

level site consisting of loose saturated Nevada 120 sand subjected to uni- and multidirectional

base excitations, and they concluded that the common practice method of increasing the

unidirectional shaking component by 10% underestimated the soil response under

multidirectional shaking. In the same way, Cerna-Diaz et al. (2017) performed dynamic

centrifuge tests on saturated dense Ottawa sand under uni- and multidirectional shaking and they
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found that multidirectional shaking caused increases in pore pressure and volumetric strain of

approximately 200% compared to unidirectional shaking, considerably larger than other

experimental findings on loose sands.

To mimic the response of soil element under level or sloping grounds when subjected to

multidirectional cyclic shearing under undrained conditions, extensive laboratory experimental

work has been conducted over the decades (Ishihara and Yamazaki, 1980; Boulanger and Seed,

1995; Kammerer et al., 2002; Matsuda et al., 2011; Sun, 2019), generating a comprehensive

experimental database for understanding the physics of the sheared system. Generally, it was

found that multidirectional cyclic shearing induced more significant reduction in the liquefaction

resistance than unidirectional shearing. Kammerer et al. (2005) proposed two conflicting effects

of the applied shear stress to understand the reason for development of large deformation, the first

being zero mean effective stress occurring with shear stress release and the second the existence

of large driving shear stress. However, these laboratory findings are still restricted to overall

macroscopic behaviors given the very limited applications of special experimental techniques in

cyclic shearing, such as X-ray computed tomography (Hall et al., 2010) and photoelasticity

technique (Majmudar and Behringer, 2005). In addition to experiments, continuum modeling of

soil deposits under multidirectional shaking has been developed by Ghaboussi and Dikmen

(1981), Su and Li (2008), Carlton and Kaynia (2016), Zeghal et al. (2018), Yang et al. (2019)

and Reyes et al. (2019), to name a few. However, all these continuum models are not based on the

grain-scale evolution of the granular microstructure under complex multi-directional loading,

which, to our best knowledge, remains essentially unexplored.

Discrete element method (DEM) (Cundall and Strack, 1979) provides a suitable framework to

study the mechanical response of the granular assembly from both macro- and microlevel

perspectives when subjected to multidirectional cyclic shearing. It also guarantees perfect

reproducibility of each “numerical experiment” as the same sample can be reused, thereby getting

rid of random noise and natural uncertainty due to variability usually occurring in laboratory tests.

Applying DEM to reproduce liquefaction phenomenon induced by conventional unidirectional

cyclic shearing such as triaxial or simple shear tests dates back to Ng and Dobry (1994).

Later Sitharam (2003) explored the micromechanics to a certain level such as the drop of

coordination number for loose sample approaching liquefaction. Other topics with respect to

undrained cyclic shearing include but are not limited to stability analysis (Huang et al., 2018,

2019b), fabric anisotropy (Soroush and Ferdowsi, 2011; Wei et al., 2018), post-liquefaction

deformation mechanism (Wang and Wei, 2016; Wang et al., 2016), effects of initial and loading

conditions on liquefaction resistance (Evans and Zhang, 2019; Wei and Wang, 2017;

Zhang and Evans, 2020). Recently Wei (2017) and Wei et al. (2020) conducted DEM simulations

of granular packing subjected to uni- and multidirectional cyclic shearing, and they found that the
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same “stable fabric” was reached after sufficient number of loading cycles regardless of

multidirectional loading paths.

This study extends the previous work from two aspects. First, a series of multidirectional

cyclic shear tests on a medium dense sample are carried out to explore the effect of shear paths

on the macroscopic response, including pore pressure generation and shear strain development.

Then, four representative simulations are selected for micromechanical investigation from three

directions: (1) adopting contact-based indicators to reveal the stability of the system along with

cyclic shearing; (2) using void-based fabric to shed light on the post-liquefaction deformation;

(3) applying stress-force-fabric relationship to illustrate how contact and force anisotropies are

contributing to the load-bearing network.

4.2 DEM simulation set up

4.2.1 Multidirectional cyclic shear test

Cyclic simple shear or torsional tests are usually carried out in the laboratory using harmonic

shearing, which is also followed by multidirectional cyclic shear test. Multidirectional cyclic shear

test is quite similar to simple shear test with the difference that two horizontal shear components

can be applied simultaneously on the soil specimen. The resultant shear stresses can change in both

magnitude and orientation. Generally, there are two stages in this test: a consolidation stage by

applying confinement with or without static shear stress to bring the sample to the initial state, and

an undrained cyclic shear stage by applying the cyclic shear stresses. Thus the two components of

shear stress, τx and τy, can be decomposed as follows:

τx

p0
= SSRx +CSRx sin(2π fxt) (4.1)

τy

p0
= SSRy +CSRy sin(2π fyt +φ) (4.2)

Here p0 is the initial mean stress used for normalizing the shear stress, usually adopted for

isotropically consolidated samples. For K0 consolidated samples (samples are prepared by

unidirectional compression with lateral normal strains being constrained), the initial vertical stress

substitutes. The same terminology as in simple shear test is adopted here for multidirectional

cyclic shear test, i.e., static stress ratio (SSR) representing the ratio of static shear stress and initial

confinement stress, and cyclic stress ratio (CSR) corresponding to the ratio of cyclic shear stress

amplitude and initial confinement stress. Non-zero SSR mimics the initial stress state of soil

element under sloping ground. One may expect two SSRs for two static shear stresses and two
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CSRs for two cyclic shear stresses in multidirectional cyclic shear test, but by properly

establishing the coordinate system, the number of SSRs can degrade to one, either SSRx or SSRy.

fx and fy are frequencies of the two harmonic cyclic shear stresses along the x and y directions,

respectively, and φ is the initial phase difference between them.

Given the fact that the two cyclic stresses can have different amplitudes, frequencies and phase

angles, these will generate a wide range of shear paths. In this chapter, we consider four types of

shear paths including 1-D linear, 2-D linear, circular/oval, and figure-8, as depicted in Figure 4.1

where applied shear stress in consolidation stage and undrained cyclic shear stage are colored in

blue and red, respectively.

The 1-D linear path in Figure 4.1(a), is the traditional cyclic simple shear test, which may also

include a static shear stress in the same direction as the subsequent undrained cyclic shearing. It can

be attained by setting SSRx = 0, CSRx = 0 in Equation (4.1) and φ = 0 in Equation (4.2). 1-D linear

path indicates plane strain condition, mimicking unidirectional shaking of level (SSRx = 0) or

τx/p0

τy/p0

O

C

SSRy

CSRy

(a)

τx/p0

τy/p0

O
C

SSRx

CSRy

(b)

τx/p0

τy/p0

O

C

SSRy

CSRy

CSRx

(c)

τx/p0

τy/p0

O
C

SSRx

CSRy

CSRx

(d)

Figure 4.1: Shear paths simulated in this study (modified from Yang et al. (2016)): (a) 1-D linear shear

path; (b) 2-D linear shear path; (c) circular/oval shear path; (d) figure-8 shear path.
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sloping ground (SSRx 6= 0) where shaking is parallel to the slope direction. When the unidirectional

cyclic shearing is applied perpendicular to the direction of static shear stress, the shear path is

denoted by 2-D linear path, as shown in Figure 4.1(b). It can be achieved by setting CSRx = 0

in Equation (4.1) and SSRy = 0, φ = 0 in Equation (4.2). Clearly 2-D linear shear path breaks

the symmetry of the system due to the presence of SSRx. Circular/oval path in Figure 4.1(c) is

obtained by setting SSRx = 0, fx = fy and φ = π/2. When CSRx = CSRy, it refers to a circular

path. Otherwise, it is an oval path. Figure-8 path in Figure 4.1(d) is configured by setting SSRy = 0,

φ = 0, and fx = 2 fy.

4.2.2 Simulation procedure

A three-dimensional (3D) particle dynamic DEM numerical platform, named

GRFlow3D (Mutabaruka, 2013), was used in this study. The granular assembly was simulated

using polydisperse spheres interacting based on soft-particle laws. The contact interactions of

spheres consist of normal collision, tangential sliding, rolling and torsion, and the key quantity is

the overlap between particles, from which the corresponding force can be calculated using linear

spring and dashpots. Details are explained in Luding (2008) and Mutabaruka (2013), not repeated

here for brevity.

The simulations involve two steps: preparing a particle assembly via isotropic compression,

and applying specified shear path to the assembly under constant volume condition. The

constructed sample consists of spheres with low plolydispersity, i.e., dmax/dmin = 2 where dmax

and dmin refer to the maximum and minimum particle diameters, respectively. Between dmin and

dmax, the particles follow a uniform distribution of particle volumes. One can refer

to Voivret et al. (2007) and Mutabaruka et al. (2019) for details of generating the particle size

distribution. Once the particles with their sizes were generated, they were placed randomly on a

3D sparse lattice to avoid the overlap. This 3D lattice was contained in a rectangular cell whose

top and bottom sides are rigid walls and four lateral sides are periodic boundaries, denoted as

bi-periodic cell.

The sample was compressed isotropically by moving the six sides of the cell. During the

compression process, the gravity was set to zero. The six sides followed a translational move and

the contact tangential friction coefficient µt was tuned to achieve a certain void ratio e, defined as

the ratio of the total pore volume to the solid volume. As many of laboratory procedures for

sample preparation can not be simulated, a simpler computational procedure was adopted,

modified from Kuhn et al. (2014) and Thornton (2015), in order to prepare samples comparable

with the laboratory ones. The procedure consists of four substeps, which is explained by

constructing a medium dense sample with the target mean stress p0 = 100 kPa: (1) with
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µt = 0.20, densifying the sparse sample by moving the six sides at a constant speed until void

ratio e reaches 1.0; (2) setting velocities of particles and the six sides as zero, and using

servo-control algorithm to compress the sample isotropically with the target p = 10 kPa where µt

remains 0.2; (3) increasing the target p to half of p0, i.e., 50 kPa, and continuing compression of

the sample with µt = 0.20; (4) modifying µt to 0.5 used for further compressing the sample with

the target p = p0 = 100 kPa and subsequent cyclic shearing. One can refer to Thornton (2000)

and O’Sullivan (2011) for the detail of servo-control algorithm. The first three substeps are used

to generate an initially dense packing via controlling the tangential friction coefficient and

increasing the confinement. The last step is necessary to obtain a smooth distribution of ft/(µt fn)

between 0 and 1 as usually a different µt is used in the step of cyclic shearing. Other simulations

on samples with different number of spheres ranging between 2197 and 10648 were conducted

and the macroscopic response was not very different. So the sample with 8000 spheres was used

in this study, falling into the similar range of Martin et al. (2020) and Kuhn et al. (2014).

Figure 4.2(a) displays the prepared sample.

In the step of cyclic shearing, the sample volume was kept constant to mimic undrained

condition. It was attained by fixing four lateral sides and the bottom wall as well as moving the

top wall horizontally, i.e., keeping the sample height h constant as in Figure 4.2(b). The specified

stress paths were exerted on the top wall via a servo-controlled approach proposed by Wei et al.

(2020). To reduce possible slippage between the walls and the sample, one layer of particles was

glued to the top and bottom walls, respectively, as indicated by dark spheres in Figure 4.2(b).

The inertial number I = γ̇d
√

ρ/p was adopted to maintain a quasistatic shear regime, where

(a) (b)

Figure 4.2: Illustration of particle arrangements and boundary conditions for a sample composed of

8000 particles: (a) at the end of sample preparation; (b) during constant height cyclic shearing.
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γ̇ = v/h is the shear strain rate with v the moving rate of top wall, ρ the density of particle,

d the mean diameter of particles, and p the mean stress. The shear is considered quasistatic if

I ≪ 1 (MiDi, 2004) and typically the threshold is chosen as 0.001. This condition can be strictly

obeyed before p drops to almost zero. The deformation process can not be quasistatic in this limit

of p approaching zero even by decreasing v since the granular material undergoes a phase transition

from solid-like to liquid-like state. The sensitivity analysis on the moving rate of top wall indicates

that v = 0.01 m/s or shear strain rate γ̇ ≃ 0.38 s−1 is a good option, consistent with Martin et al.

(2020), which guarantees I < 0.001 before p gets very tiny.

We checked the velocity profile of the sample during the cyclic shearing step. Outside the

region of p getting very small, the velocity profile is almost linear along the height of the sample,

i.e., the whole sample is sheared by the motion of the top wall. When p becomes very tiny, the

linear velocity profile vanishes and the whole system gets into the collisional regime.

The simulation parameters are given in Table 4.1. According to Radjaı̈ and Dubois (2011), the

stiffness number κ is introduced such as the average normal deflection δn satisfies δn/d ∝ κ−1. For

the linear contact law in the normal direction, κ = kn/(pd) with kn being the normal stiffness. In

this study kn is chosen as 106 N/m to guarantee δn ∼ 10−3d in each contact, i.e., the particles can

be considered as nearly undeformable (Mutabaruka et al., 2019). Then cn is determined to attain

a value of 0.15 for the normal coefficient of restitution based on Schwager and Pöschel (2007).

µt = 0.5 is a common choice for shearing the sample (Guo and Zhao, 2013; Huang et al., 2018;

Jiang et al., 2019). The values for other microscopic material parameters can be obtained from

their relations to kn, cn or µt suggested by Luding (2008) and listed in Table 4.1. The rolling and

Table 4.1: DEM parameters

Description Value

Density, ρ 2650 kg/m3

Normal stiffness, kn 106 N/m

Normal viscosity, cn 1.15 kg/s

Tangential stiffness, kt 0.8kn

Tangential viscosity, ct 0.2cn

Tangential friction coefficient, µt 0.2+ & 0.5∗

Rolling stiffness, kr 0.1kn

Rolling viscosity, cr 0.05cn

Rolling friction coefficient, µr 0.1
Torsion stiffness, ko 0.1kn

Torsion viscosity, co 0.05cn

Torsion friction coefficient, µo 0.1
+Isotropic compression step ∗cyclic shearing step
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torsion laws adopted in this study provide some resistance to the particle rotation, a simple way to

model certain effects due to the particle shape (Radjaı̈ and Dubois, 2011).

It should be noted that for simulations of SSR[ ] 6= 0 with the subscript [ ] being x or y, the

static shear stress was applied in the constant volume cyclic shearing phase prior to adding the

cyclic shear stress other than in the isotropic compression stage. As the current study focuses on

investigating the effect of shear paths on the cyclic response of the granular assembly, it becomes

natural to use the same sample. One may wonder a noticeable difference between these two

scenarios. However, given that the sample prepared in this study is medium dense, the initial

condition is not expected to change significantly if SSR[ ] is applied in the isotropic compression

stage. The obvious impact of SSR[ ] on the sample response lies in its presence in the cyclic

shearing stage, which shifts the cyclic shear paths along a certain direction.

Table 4.2 lists 57 multidirectional cyclic shear tests simulated in this study, including the

conditions implied by the second, third, fourth, fifth and sixth columns. The last three columns of

Table 4.2 refer to the outcomes, which will be explained in the sequel.

Table 4.2: Conditions and outcomes of multidirectional cyclic shear tests on a medium dense sample†

Test Shear path SSRx SSRy CSRx CSRy NIL ru,lim τu,lim/p0

1 1-D linear 0.20 65.3 1.00 0.00

2 0.05 0.20 53.3 1.00 0.00

3 0.10 0.20 35.2 1.00 0.00

4 0.15 0.20 24.2 1.00 0.00

5 0.20 0.20 37.2 1.00 0.00

6 0.25 0.20 70.2 0.64 0.05

7 0.30 0.20 117.2 0.42 0.11

8 0.25 17.3 1.00 0.00

9 0.05 0.25 15.8 1.00 0.00

10 0.10 0.25 12.2 1.00 0.00

11 0.20 0.25 11.2 1.00 0.00

12 0.30 0.25 39.2 0.61 0.05

13 0.30 8.7 1.00 0.00

14 0.10 0.30 7.2 1.00 0.00

15 0.20 0.30 7.2 1.00 0.00

16 0.30 0.30 18.2 1.00 0.00

17 0.30 0.35 6.2 1.00 0.00

continued on next page
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Table 4.2 – continued from previous page

Test Shear path SSRx SSRy CSRx CSRy NIL ru,lim τu,lim/p0

18 2-D linear 0.05 0.20 60.6 0.91 0.05

19 0.10 0.20 42.0 0.80 0.10

20 0.15 0.20 26.6 0.69 0.15

21 0.20 0.20 21.7 0.56 0.20

22 0.30 0.20 54.7 0.22 0.30

23 0.05 0.25 15.1 0.91 0.05

24 0.10 0.25 12.1 0.80 0.10

25 0.20 0.25 9.2 0.55 0.20

26 0.30 0.25 15.1 0.26 0.31

27 0.05 0.30 6.5 0.91 0.05

28 0.10 0.30 6.0 0.79 0.10

29 0.20 0.30 5.5 0.57 0.20

30 0.30 0.30 7.1 0.27 0.31

31 Circular/oval 0.15 0.15 48.9 0.71 0.15

32 0.10 0.15 0.15 29.6 0.91 0.05

33 0.20 0.15 0.15 23.6 0.89 0.05

34 0.05 0.20 56.8 0.91 0.05

35 0.10 0.20 34.3 0.80 0.10

36 0.15 0.20 16.9 0.70 0.15

37 0.20 0.20 9.2 0.61 0.20

38 0.05 0.20 0.20 8.5 0.70 0.15

39 0.10 0.20 0.20 6.7 0.80 0.10

40 0.15 0.20 0.20 5.6 0.91 0.05

41 0.20 0.20 0.20 5.9 1.00 0.00

42 0.25 0.20 0.20 8.7 0.90 0.05

43 0.30 0.20 0.20 17.8 0.65 0.12

44 0.25 0.25 3.7 0.50 0.25

45 0.30 0.25 0.25 4.8 0.90 0.05

46 Figure-8 0.15 0.15 21.1 1.00 0.00

47 0.10 0.15 0.15 12.0 0.92 0.04

48 0.20 0.15 0.15 16.0 0.76 0.11

49 0.05 0.20 44.5 1.00 0.00

continued on next page
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Table 4.2 – continued from previous page

Test Shear path SSRx SSRy CSRx CSRy NIL ru,lim τu,lim/p0

50 0.10 0.20 20.1 1.00 0.00

51 0.15 0.20 9.8 1.00 0.00

52 0.20 0.20 5.5 1.00 0.00

53 0.10 0.20 0.20 4.0 0.92 0.04

54 0.20 0.20 0.20 4.8 0.81 0.09

55 0.30 0.20 0.20 12.6 0.62 0.17

56 0.25 0.25 2.3 1.00 0.00

57 0.30 0.25 0.25 4.5 0.67 0.15

†Void ratio e = 0.647 and p0 = 100 kPa measured at the end of isotropic compression

Empty space in the third, fourth and fifth columns implies zero value

4.3 Macroscopic response

At the system level, stresses and strains in the cyclic shear phase were analyzed to reveal

degradation of mean effective stress and shear strain development. The stress tensor σσσ is linked to

inter-particle interactions over a selected volume V by

σσσ =
1

V
∑

c∈Nc

lllc ⊗ fff c (4.3)

where lllc is the branch vector connecting the centers of two particles for interior contact or

connecting the particle center and the contact point for exterior contacts, fff c is the contact force, ⊗
denotes the tensor dyadic product and the summation runs over all the contacts Nc in the selected

volume V . The superscript c in lllc and fff c will be dropped in the sequel for simplicity. The two

shear stresses τx and τy in Equations (4.1) and (4.2) refer to the components σzx and σzy,

respectively. The mean effective stress p is calculated by (σxx+σyy +σzz)/3. Although water was

not simulated explicitly in this study, one can still extract a notional pore pressure according to

the reduction of mean effective stress, i.e., ∆u = p0 − p, and the pore pressure ratio ru = ∆u/p0.

The cumulative shear strain pair (γx,γy) are measured as (xw/h,yw/h), where xw and yw refer to

the cumulative horizontal displacements of the top wall along x and y directions, respectively,

calculated by the difference of the new and original (x,y) coordinates of the top wall.
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4.3.1 4-way plot

The typical macroscopic behaviors of granular material under the shear paths of 1-D linear, 2-D

linear, circular and figure-8 are presented in Figures 4.3, 4.4, 4.5 and 4.6, respectively, in the form

of 4-way plot (Kammerer et al., 2002). These figures refer to the tests 1, 19, 37 and 52, respectively,

where the same CSR of 0.20 was applied. The 4-way plot for 1-D linear path consists of stress

path, stress-strain loop, pore pressure ratio evolution and shear strain development. The 4-way

plots for the other three paths consist of the applied shear stress path, obtained shear strain path,

pore pressure ratio evolution and development of the resultant shear strain γ ≡
√

γ2
x + γ2

y . In the

four selected DEM simulations, a static shear bias of 0.10 was applied for the 2-D linear path and

there was no static shear stress for the other three paths. For each simulation, “initial liquefaction”

is defined as when the resultant shear strain reaches 3.0% for the first time (Kammerer et al., 2002),

i.e., γIL = 3.0%, and the corresponding number of cycles is denoted as NIL, as shown in Figures 4.3,

4.4, 4.5 and 4.6. This state divides the cyclic shear phase into two parts, pre-liquefaction and post-

liquefaction for the period prior to and after initial liquefaction, colored in grey and dark red in

these figures, respectively. Besides, the limiting pore pressure ratio ru,lim is defined by the achieved

maximum pore pressure ratio, and the corresponding resultant shear stress and number of cycles

are denoted as τu,lim and Nu,lim, respectively.

In the four simulations, one can see the notional pore pressure develops along with the
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Figure 4.3: Macroscopic response of constant-volume simple shear test with CSR = 0.20.
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2-D linear shear path.
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Figure 4.6: Macroscopic response of constant-volume multidirectional cyclic shear test with

CSRx = CSRy = 0.20: figure-8 shear path.

constant volume cyclic shearing, where ru,lim of 1-D linear and figure-8 paths attains 1.0

transiently, indicating vanishing of p while ru,lim of 2-D linear and circular paths is far from 1.0.

All the simulations generate large shear strains, and these suggest that zero mean effective stress

is not a requirement for large shear strain development, although it is valid for cyclic simple shear

test in Figure 4.3. Given SSR indicating the slope dip direction, Figure 4.4 suggests that large

shear strain develops mainly along the slope direction although the cyclic loading is perpendicular

to that direction. In addition, the four simulations imply that NIL and Nu,lim are pretty close,

suggesting that initial liquefaction occurs almost simultaneously with p dropping to its minimum.

All these observations are consistent with the laboratory findings (Ishihara and Yamazaki, 1980;

Boulanger and Seed, 1995; Kammerer et al., 2002, 2005).

One loading cycle in the post-liquefaction period of each simulation was selected to zoom into

details of the evolution of microscopic descriptors to be revealed later, as highlighted in cyan in

Figures 4.3, 4.4, 4.5 and 4.6. In the loading cycle of 1-D linear and figure-8 paths, six characteristic

states were adopted where C0 refers to the instance with the largest number of floaters (particles

without any contact) when τ transitions from negative to positive (1-D linear) or from quadrant III

to quadrant I in the space of applied shear stresses (figure-8), C0′ refers to when ru < 0.99 for the

first time after C0, the subsequent C1 refers to τy reaching the amplitude and C2, C2′ and C3 are

similar to C0, C0′ and C3, respectively, but in the remaining loading cycle. C0′ and C2′ are missing
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in the shear paths of 2-D linear and circular but the others apply to 2-D linear and one can infer the

meanings of these instances for circular path in Figure 4.5.

4.3.2 Post-liquefaction pore pressure behavior

Evolution of pore pressure ratio in Figures 4.3, 4.4, 4.5 and 4.6 indicates that once the limiting

pore pressure ratio is achieved, the measured pore pressures throughout each loading cycle show

repetition of behavior (Kammerer et al., 2005). Thus one can extract the limiting pore pressure

ratio ru,lim for each simulated test in Table 4.2 and the corresponding shear stress τu,lim. One type

of “shear stress ratio” is defined as the ratio of τu,lim and the initial mean stress p0, as shown in the

last column of Table 4.2. Figure 4.7 shows ru,lim against τu,lim/p0 for each simulation. One can

observe a roughly inverse relationship between ru,lim and τu,lim/p0. Most of the data points can be

fitted by a linear function of y = −2.08x+ 1.00, and the slope is very close to −1/M f = −2.04,

with M f being the slope of stress path at butterfly shape as shown in Figure 4.3, indicating that

these data points fall on the failure surface of cyclic simple shear test.

It should be noted that τu,lim is very similar to the minimum shear stress, i.e., min
√

τ2
x + τ2

y ,

thereby allowing for good prediction of ru,lim only based on the shear stress path. The fit function

gives a y-intercept of 1.0 suggesting that ru,lim = 1.00 occurs simultaneously with τu,lim = 0. They

are necessary and sufficient for each other.

The few outliers noticeably below the fit function consist of three from 1-D linear path, three

from 2-D linear path and one from circular path. The cases of 1-D linear path occur where SSRx

exceeds CSRy, thus there is no shear stress reversal, i.e., the minimum value of τy stays positive.

For these tests, when ru,lim is attained, the corresponding stress state (τy, p) is still a bit far from
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Figure 4.7: Relationship between limiting pore pressure ratio ru,lim and the corresponding shear stress

ratio τu,lim/p0.
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the failure surface of Figure 4.3, which is consistent with the laboratory

experiments (Boulanger et al., 1991; Hyodo et al., 1991; Vaid et al., 2001; Chiaro et al., 2012;

Wichtmann and Triantafyllidis, 2016). The three outliers of 2-D linear path are attributed to cases

with a large SSRy. For the outlier of circular path, its stress path does not contain the origin of the

applied shear stress space (τx,τy) representing zero shear stress state. Kammerer et al. (2005) also

pointed out certain similar cases where the imposed shear stress remained so large that the soil

could not soften. Hence, contraction due to decreasing of the applied shear stress is not large

enough to bring the granular system close to the failure surface.

4.3.3 Cyclic liquefaction resistance

As shown in Figure 4.1, to configure the 1-D linear and 2-D linear shear paths, CSRy needs to

be specified while one has to specify both CSRx and CSRy for the circular/oval and figure-8 shear

paths. To facilitate the subsequent analysis, CSRy is selected as the control variable and meanwhile

only simulations with CSRx = CSRy, i.e., aspect ratio (AR) of 1, for circular and figure-8 shear

paths, are adopted. Recall that Figures 4.3, 4.4, 4.5 and 4.6 are simulations with CSRy = 0.20, thus

one needs other simulations with a list of CSRy to make the cyclic liquefaction strength curve. It

should be noted that static stress stress is not considered for the 1-D linear, circular and figure-8

shear paths except the 2-D linear case where SSRx = 0.10.

Figure 4.8 displays the liquefaction strength curves for the four types of shear paths where

initial liquefaction is defined as the first time of the total shear strain γ =
√

γ2
x + γ2

y reaching 3%.

For each shear path, three simulations are adopted and these data points can be fitted by the dashed

line representing the power-law function (Idriss and Boulanger, 2006; Huang et al., 2018)

CSRy = aN−b
IL (4.4)

where a and b are fitting parameters. These dashed lines indicate a general decrease in liquefaction

resistance with increasing CSRy, as expected. Furthermore, we observe a decrease of liquefaction

resistance following the order of 1-D linear, 2-D linear, circular and figure-8 shear paths, in good

agreement with laboratory findings (Kammerer et al., 2002).

A series of another four simulations of different CSRx and fixed CSRy = 0.20 for circular/oval

and figure-8 shear paths are also added to Figure 4.8, symbolized by the thinner ellipse and figure-

8, to explore the effect of AR(= CSRx/CSRy) on the cyclic liquefaction resistance. The data

points from both paths indicate an increase in liquefaction resistance with a decreasing AR as

they approach the 1-D linear case, in agreement with the experiments (Ishihara and Yamazaki,

1980; Kammerer et al., 2002), and one can expect they coincide with the 1-D linear case when AR
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Figure 4.8: Cyclic liquefaction strength curve for different shear stress paths.

reaches zero.

To explore the effect of static shear stress on cyclic liquefaction resistance, Figure 4.8 can be

extended by incorporating liquefaction strength curves with various values of SSR[ ]’s. Here the

bracket subscript [ ] represents y for 1-D linear and circular shear paths or x for 2-D linear and

figure-8 shear paths, as illustrated in Figure 4.1. In doing so, one would see lots of curves with

different shear paths and different SSR[ ]’s, from which the CSRy required to cause initial

liquefaction at 10 loading cycles (denoted hereafter as CRRy) can be extracted to characterize the

cyclic liquefaction resistance of the sample (Vaid and Chern, 1983; Hyodo et al., 1991;

Boulanger and Seed, 1995; Yang and Sze, 2011). It should be noted that for circular and figure-8

paths only simulations with AR = 1 are adopted, excluding the effect of AR.

Figure 4.9 presents the values of CRRy against SSR[ ] for the four shear paths. The diagonal

black dashed line refers to CRRy = SSR[ ], which divides the parameter space into two regions.

For 1-D linear shear path, they represent regions of shear stress experiencing reversal or not; for

circular shear path, they refer to regions of applied shear stress path containing the origin or not; for

figure-8 shear path, they describe regions of τx staying positive or not; but they are not indicative

for 2-D linear shear path.

A marked feature in Figure 4.9 is that SSR[ ] affects the cyclic resistance differently for these

shear paths. For 1-D linear shear path, CRRy presents an increasing trend with increasing SSRy

and the curve stays in the reversal region with shear stress reversal, matching the laboratory

experiments (Hyodo et al., 1991; Yang and Sze, 2011). The curve of 2-D linear shear path stays

below the 1-D linear one and it does not change significantly, consistent with the laboratory

results on medium dense sample (Boulanger and Seed, 1995). The curves of circular and figure-8

shear paths are located even below the 2-D linear one and both cross the dashed line of

CRRy = SSR[ ]. We can not find any corresponding laboratory study revealing the effect of static
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Figure 4.9: Cyclic liquefaction resistance as a function of the level of static stress ratio.

shear stress on cyclic liquefaction resistance in terms of circular and figure-8 shear paths in such a

systematic way. Interestingly, near SSRx = 0.20, the CRRy values of 2-D linear and circular shear

paths get close, and near SSRx = 0.30, the difference between circular and figure-8 shear paths

becomes negligible, both indicating the significant impact of static shear stress.

We can introduce the two conflicting effects of imposed shear stress (Kammerer et al., 2005) to

better understand Figures 4.8 and 4.9. As previously shown, for min
√

τ2
x + τ2

y /p0 approaching 0

transiently, the expected value of ru,lim = 1 provides the state where large shear strain can develop

due to negligible resistance of the granular system, also known as cyclic mobility for the 1-D linear

test with shear stress reversal. For tests with min
√

τ2
x + τ2

y /p0 clearly larger than 0, ru,lim will stay

away from 1.0 but the imposed shear stress can still drive the system to deform progressively, also

named as the mode of development of residual deformation for 1-D linear test without shear stress

reversal (Hyodo et al., 1991; Chiaro et al., 2012). Apparently, the initial liquefaction in 1-D linear

cases of Figure 4.8 is caused by the first effect, the second effect induces large deformation for 2-D

linear and circular cases, and these two effects are combined in figure-8 cases (one can compare

the strain path from C0 to C0′ with the one from C0′ to C1 in Figure 4.6). It should be noted

that noticeable stress rotation also occurs in circular and figure-8 cases of Figure 4.8, which may

cause extra degradation of the granular system load-bearing structure. Figure 4.9 indicates that

the lowest value of CRRy is attained along with a certain amount of static shear stress, consistent

with the claim that the balance between these two competing aspects results in high shear strain

potential (Kammerer et al., 2005).
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4.4 Granular microstructure

In this section, first we analyze the particle connectivity and friction mobilization, which are

linked to the system stability. Then, a particle-void fabric is adopted to shed some light on the

macro deformation. In the end, fabric and force anisotropies are used to partition the load-bearing

network, which reveals the micro origins of shear resistance.

4.4.1 Particle connectivity and friction mobilization

The coordination number zg, namely the average number of contacts per particle excluding floaters

(particles without contacts), is adopted to characterize the overall stability of the granular system.

It is defined as

zg =
2Nc

Np −N0
p

(4.5)

Here, Np is the total number of particles and N0
p is the number of floaters. Figure 4.10 shows

evolution of zg along with the cyclic shearing process for the four simulations in Figures 4.3,

4.4, 4.5 and 4.6, respectively. The time histories are colored by ru ranging between 0 and 1. A

zoomed-up window for each test is added to reveal how zg varies in several loading cycles of post-

liquefaction period and the highlighted dots represents selected characteristic states. Generally,

one can notice a decreasing trend of zg along the cyclic shearing for all the four shear paths.

After the state of min(Nu,lim,NIL), for 1-D linear and figure-8 shear paths, zg tends to oscillate

significantly and drops below 3.6 when ru is bigger than 0.99; for 2-D linear and circular shear

paths, zg oscillates mildly and stays above 3.6.

One can also view zg as an approximate measurement of the level of redundancy in the

system, i.e., the total number of constraints compared to the total number of degrees of freedom.

For the 3D-DEM with contact laws consisting of normal collision, tangential sliding, rolling and

torsion, each contact involves three forces and three torques (constraints) to be determined

whereas the number of equations equals six force/torque balance equations (degrees of freedom)

for each particle. Hence, removing the floating particles and equaling the number of degrees of

freedom with the number of forces/torques. we come up with 6Nc = 6(Np −N0
p) for the isostatic

system. Thus, the critical value of zg for isostaticity is ziso = 2 (Martin et al., 2020).

For the granular system in this study, theoretically we can determine ziso ≥ 2. According

to Martin et al. (2020), it is rational to assume that ziso ≤ 3. According to Figure 4.10(a), one

can assert that the system of 1-D linear shear path becomes transiently under-constrained. For

the 2-D linear and circular shear paths, the system stays over-constrained as zg is bigger than 3
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Figure 4.10: Evolution of coordination number zg under shear path of: (a) 1-D linear; (b) 2-D linear; (c)

circular; (d) figure-8.

noticeably. The system of the figure-8 shear path may become under-constrained temporally given

the recorded minimum value of zg being so close to 2. One can refer to Kruyt (2010), Gong et al.

(2012), Pouragha and Wan (2016), Zhou et al. (2017), Huang et al. (2018) and Martin et al. (2020)

for the direct measurement of redundancy index.

Let us go back to the characteristic states given in Figures 4.3, 4.4, 4.5 and 4.6. Figure 4.11

presents the corresponding connectivity P(c) of the particles, defined as the proportion of particles

with exactly c contacts. In 1-D linear and figure-8 shear paths, an irregular distribution with a

higher proportion of floaters at C0 and C2 is observed. These are the states corresponding to

the lowest zg, revealing the collapse of contact network. For the other selected states, the contact

network is well formed. One should notice the surprising difference of P(c) between C0 and C0′ , or

C2 and C2′ , given the proximity of their mean stresses. In fact, during that period of ru ≥ 0.99, the

sample deforms significantly, helping rebuild the disappearing contact network without changing

p obviously. For 2-D linear and circular paths, the distribution does not vary noticeably, consistent

with the over-constrained state of the system.

To each contact a local coordinate system (nnn, ttt) can be attached, with nnn being the unit vector
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Figure 4.11: Connectivity diagram expressing the fraction P(c) of particles with exactly c contacts at

characteristic states in shear path of: (a) 1-D linear; (b) 2-D linear; (c) circular; (d) figure-8.

perpendicular to the contact plane and ttt an orthonormal unit vector in the contact plane oriented

along the tangential contact force. Thus, the contact force fff = fnnnn+ ftttt, with fn and ft representing

the magnitudes of normal and tangential contact forces, respectively. To quantify the proximity of

a contact to sliding which is associated with soil plasticity (Alonso-Marroquin et al., 2005), one

can introduce the friction mobilization index (Majmudar and Behringer, 2005; Azéma and Radjaı̈,

2012) defined by

Im =
| ft |
µt fn

(4.6)

where µt refers to the tangential friction coefficient. This index varies between 0 and 1, with 1

indicating sliding or fully mobilized contact. Figure 4.12 presents the snapshots of the probability

density function of Im at selected states for the four shear paths. At C0 and C2 where shear stress

vanishes for 1-D and figure-8 shear paths, one can expect a large proportion of mobilized contacts

as shown in the inset window. The proportion of mobilized contacts decreases with increasing

shear stress (Guo and Zhao, 2013), verified by C1 and C3. By Comparing C0 with C0′ or C2 with

C2′ , one can conclude that the force network is still not fully established despite the resilience of
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geometrical contact network in Figures 4.10(a) and (d). Given the stability of the system for 2-D

linear and circular shear paths, it is expected that P(Im) does not vary significantly, as shown in

Figure 4.12(b) and (c) although Figure 4.12(b) exhibits a slight increase in the number of mobilized

contacts at τ reaching its minimum (C0 or C2).
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Figure 4.12: Probability density function of friction mobilization index at characteristic states in the

shear path of: (a) 1-D linear; (b) 2-D linear; (c) circular; (d) figure-8.

Figure 4.13 shows snapshots of normal forces in sheared sample at C2 for each shear path, i.e.,

the weakest state of the system in a post-liquefaction loading cycle. Forces are represented with

bars joining particle centers with bar thickness proportional to the intensity of the normal force.

The bar is colored according to the value of Im at the contact. One can observe a scattering of weak

and short force chains with a large proportion of mobilized contacts for 1-D linear and figure-8

shear paths, known as unjammed state (Bi et al., 2011; Huang et al., 2019a), and a span of strong

and long force chains connecting top and bottom walls for 2-D linear and circular shear paths,

confirming the static equilibrium.
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(a) (b)

(c) (d)

Figure 4.13: Snapshot of normal forces in the sheared sample at C2 in the shear path of (a) 1-D linear;

(b) 2-D linear; (c) circular; (d) figure-8. Line thickness is proportional to the normal force intensity.

Color code represents the mobilized friction index Im in the range between 0 and 1.

4.4.2 Particle-void fabric

The previous analysis concludes that the system falls into under-constrained state occasionally

for 1-D linear and figure-8 shear paths and remains over-constrained for 2-D linear and circular

paths. A subsequent natural question is why large shear strain still develops in the 2-D linear and

circular tests as shown in Figures 4.4 and 4.5. The analysis of stress fluctuations during monotonic

loading (Kuhn and Daouadji, 2019) may shed light on this question as local failure probably due to

a multi-slip mechanism occurs very frequently despite the overall stability of the system. This local

failure decreases the shear resistance gradually, inducing a mild increase of shear strain. For cyclic

loading, an abrupt reduction in the number of sliding contacts is observed at the transition from

loading to unloading (Alonso-Marroquin and Herrmann, 2004), producing a higher resistance. The

distinct resistance between loading and unloading causes the accumulation of shear strain along

one direction, i.e., the mode of development of residual deformation. In addition to these, one can

resort to void-related fabrics in the particle system to search for some hints, given the consensus
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that voids have been seen more directly related to the strain (Kuhn, 2017).

A particle-void indicator called centroid distance Dc is borrowed from Wang and Wei (2016)

and Wei et al. (2020) to explain the shear strain development. For each particle i, one can obtain

its circumscribed Voronoi cell, and thus the vector connecting the cell center OOOi and particle center

PPPi, also normalized by the mean radii of particles R50, expressed as

DDDi
c =

PPPi −OOOi

R50

(4.7)

As a particle i surrounded by a large Voronoi cell tends to give a large value of

∥

∥

∥
DDDi

c

∥

∥

∥
,

∥

∥

∥
DDDi

c

∥

∥

∥
can be

used to reflect the distribution of voids surrounding the particles (Wei et al., 2020). Thus a centroid

distance Dc averaging

∥

∥

∥
DDDi

c

∥

∥

∥
over all the particles in the system is defined by

Dc =
1

Np
∑

i∈Np

∥

∥

∥
DDDi

c

∥

∥

∥
(4.8)

indicating the adjustment of the packing structure and redistribution of relatively large

voids (Wang and Wei, 2016; Wei et al., 2020).

Figure 4.14 presents the evolutions of Dc for the four shear paths, along with the inset window

for zooming up the selected loading cycle. The time history in each subplot is colored by the

developed shear strain, as shown in the colorbar. Generally, for the four shear paths, at the

beginning of cyclic loading prior to initial liquefaction, Dc does not change noticeably, then drops

significantly near initial liquefaction, and follows a decreasing trend in post-liquefaction period.

The values of Dc at initial liquefaction are very close (around 0.0704) for 1-D linear, circular and

figure-8 paths, smaller than that of 2-D linear (around 0.0720), which may indicate that there still

exists large voids in the test of 2-D linear compared with the others. This may be because in the

2-D linear test, the packing network is not fully destroyed according to Figure 4.10(b),

constraining redistribution of voids due to cyclic shearing. One may notice the coincidence of

Dc’s significant drop and large shear strain accumulation, confirming the direct link between void

redistribution and large shear strain development. From that view, the pre-liquefaction period can

be seen as a duration of gradually propagating disturbance of cyclic loading (such as generating

more connected but smaller voids) to the whole sample. The 2-D linear and circular tests imply

the trend of Dc’s saturation in the last few loading cycles, however, it is not reflected by 1-D linear

and figure-8 paths (maybe more loading cycles are needed). In the zoomed-up windows of 1-D

linear and figure-8 tests, the significant change mainly occurs between C0 and C0′ , or C2 and C2′ ,

corresponding to the deformation mode of cyclic mobility. In the zoomed-up windows of 2-D

linear and circular tests, the change tends to happen randomly in the loading cycle, which may be
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Figure 4.14: Evolution of centroid distance Dc for shear path of (a) 1-D linear; (b) 2-D linear; (c)

circular; (d) figure-8.

linked to the mode of residual deformation development. Interestingly, in the zoomed-up window

of 1-D linear test, Dc attains the local minima at nearly zero shear strain as indicated by the

colorbar.

4.4.3 Fabric and force anisotropies

To quantify the anisotropies in the granular system statistically, the fabric tensor φφφ c describing the

distribution of contact normals nnn (Oda, 1982; Satake, 1982) is adopted. It is defined as

φφφ c =
1

Nc
∑

c∈Nc

nnn⊗nnn (4.9)

from which the fabric anisotropy tensor is computed as

aaac =
15

2

(

φφφ c −
1

3
III

)

(4.10)
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Here III is the second-order identity tensor.

In the same way, the force tensors describing the distribution of normal and tangential contact

forces (Kanatani, 1984; Ouadfel and Rothenburg, 2001; Sitharam et al., 2009) are given by

φφφ n =
1

Nc
∑

c∈Nc

fnnnn⊗nnn

1+aaac : (nnn⊗nnn)
(4.11)

φφφ t =
1

Nc
∑

c∈Nc

fff t ⊗nnn

1+aaac : (nnn⊗nnn)
(4.12)

and thus the force anisotropy tensors can be obtained as

aaan =
15

2

(

φφφ n

tr(φφφ n)
− 1

3
III

)

(4.13)

aaat =
15

3

φφφ t

tr(φφφ n)
(4.14)

with tr(·) being the trace operator. Equation (4.12) implies tr(φφφ t) = 0 given the normality of ttt and

nnn.

The tensor’s deviatoric invariant is used to quantify the degree of anisotropy:

a[ ] = sign(S[ ])

√

3

2
aaa[ ] : aaa[ ] (4.15)

where the subscript [ ] stands for c, n, or t, corresponding to the three aforementioned anisotropy

tensors, respectively. S[ ] is a normalized first joint invariant between two tensors (Li and Dafalias,

2012; Guo and Zhao, 2013) defined by

S[ ] =
aaa[ ] : s

√
aaa[ ] : aaa[ ]

√
s : s

(4.16)

where s = σσσ − pIII and the well-known deviatoric stress q =
√

(3/2)s : s. Generally S[ ] quantifies

the level of proportionality between two tensors, with S[ ] = 1.0 corresponding to the case where

two tensors are proportional. Given these anisotropy tensors affected by s, S[ ] can be

approximately regarded as defining the relative orientation of the principal axes (PA) of aaa[ ] with

respect to PA of s, i.e., level of coaxiality.

Figure 4.15 displays evolutions of S[ ] at the states of τy/p0 reaching ±CSRy in each loading

cycle for the four shear paths, i.e., C1 and C3 of each loading cycle, where the system forms stable

load-bearing network according to the previous analysis of particle connectivity. In each loading

cycle, one may expect the marked oscillations of S[ ], which is true for the 1-D linear, 2-D linear

and figure-8 tests as presented in the zoomed-up window of each subplot but not for the circular
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test. The difficulty dealing with cyclic loading is the absence of an ultimately converged state,

like critical state (CS) for monotonic loading. For conventional cyclic simple shear test, the states

closest to CS are C1 and C3, thus being extended to the other three shear paths. It is believed that

q/p has its critical state values at these states after sufficient number of loading cycles.

Figure 4.15 indicates that force anisotropy tensors aaan and aaat have been almost proportional to

s since the beginning of cyclic loading at C1 and C3 while it takes majority of the pre-liquefaction

period to change the geometrical structure of the system so that aaac gets close to be proportional to

the s at the selected states. In post-liquefaction period, all the anisotropy tensors become nearly

proportional to s at selected states. During the selected loading cycle in each inset window,

significant change in S[ ] is observed at the instance of unloading, where St oscillates most. In the

subsequent loading, aaat and aaan adjust themselves to follow s more quickly than aaac. It should be

noted that the three anisotropy tensors from the circular shear path almost changes at the same

pace to s.

According to Rothenburg and Bathurst (1989) and Ouadfel and Rothenburg (2001), one can

(a) (b)

(c) (d)

Figure 4.15: Evolution of normalized first joint invariant between fabric tensors and deviatoric stress

tensor at C1 and C3 of each loading cycle for shear path of (a) 1-D linear; (b) 2-D linear; (c) circular; (d)

figure-8.

84



approximate the shear strength via the aforementioned three anisotropy tensors as given below:

s

p
≃ 2

5

(

aaac +aaan +
3

2
aaat

)

(4.17)

Recall Figure 4.15 tells that these anisotropy tensors are nearly proportional at selected states after

sufficient number of loading cycles, thus Equation (4.17) can be further simplified as

q

p
≃ 2

5

(

ac +an +
3

2
at

)

(4.18)

Verification of Equation (4.18) for the four shear paths can be checked in Figures 4.16(a), (c),

(e) and (g), where evolutions of fabric and force anisotropies at C1 and C3 of each loading cycle

are presented, along with a zoomed-up window revealing the detailed change of anisotropies

during the selected post-liquefaction loading cycle. In post-liquefaction period, saturation of the

three anisotropies is finally achieved, with values increasing in the order of at , ac and an. The

oscillation of anisotropies is very similar to S[ ]. Figures 4.16(b), (d), (f) and (h) normalized

anisotropies and deviatoric stress ratio q/p by (2/5)ac + (2/5)an + (3/5)at , i.e., the right hand

side of Equation (4.18). Thus one can observe how each anisotropy contributes to q/p given the

ratio between q/p and (2/5)ac +(2/5)an + (3/5)at being close to 1. It shows that after initial

liquefaction, the weight of each anisotropy to q/p almost reaches a plateau, where the value for ac

is around 0.4, the value for an is around 0.5 and the value for at is around 0.1, irrespective of

shear path type. One may attribute this universal partition to the intrinsic feature of the material

and its state, which, for example, can be changed by particle shape and size polydispersity based

on studies of monotonic loading (Nguyen et al., 2015; Cantor et al., 2018).

4.5 Conclusion

In this chapter, we used a 3D DEM to conduct a comprehensive series of multidirectional cyclic

shear tests covering 1-D linear, 2-D linear, circular/oval, and figure-8 paths. At system level,

accumulation of large shear strain is observed for all the simulated tests although mean stress does

not vanish for some of them. A well-defined relationship between the limiting pore pressure ratio

and the corresponding shear stress ratio was evidenced. With initial liquefaction defined by total

shear strain reaching 3.0% for the first time, cyclic liquefaction resistance decreases in the order

of 1-D linear, 2-D linear, circular and figure-8, for AR = CSRx/CSRy = 1 in the two latter cases.

As AR decreases with fixed value of CSRy, both circular/oval and figure-8 paths present enhanced

cyclic resistance, which is expected to approach the value of 1-D linear path as AR = 0. As for

effect of SSR[ ], for all the shear paths, cyclic liquefaction resistance decreases first with increasing
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Figure 4.16: Evolution of anisotropies at C1 and C3 of each loading cycle and their weights contributing

to deviatoric stress ratio q/p according to Equation (4.18) for shear path of (a)(b) 1-D linear; (c)(d) 2-D

linear; (e)(f) circular; (g)(h) figure-8.
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SSR[ ] and then increases later for the larger SSR[ ]. However, a subsequent decrease in cyclic

resistance is observed only for circular paths.

Micromechanical analysis was carried out on three aspects. From the view of system stability,

the coordination number along with particle connectivity diagram indicates that the system

becomes transiently under-constrained for 1-D linear and figure-8 shear paths, occurring at the

instance of zero mean stress while the system stays over-constrained for 2-D linear and circular

shear paths. The under-constrained state of the system is also characterized with a large

proportion of mobilized contacts and a scattering of short and weak force chains. To understand

the macro deformation mode, a particle-void fabric indicator called centroid distance Dc was

adopted. A significant drop of Dc occurs near initial liquefaction, indicating noticeable

redistribution of voids by destroying large voids into small ones. Dc presents a general decreasing

trend in post-liquefaction period, related to accumulation of the shear strain. In 1-D linear and

figure-8 tests, the change of Dc mainly happens when ru ≥ 0.99, corresponding to the

deformation mode of cyclic mobility. In 2-D linear and circular tests, the change of Dc occurs

randomly in the whole loading cycle, related to the deformation mode of residual deformation.

Finally, fabric and force anisotropies were calculated to explain the source of the load-bearing

network where force anisotropy tensors quickly become almost proportional to the deviatoric

stress tensor while fabric anisotropy tensor needs most of pre-liquefaction period to follow the

loading. The deviatoric stress ratio at the peak of applied shear stress can be well approximated

by the sum of these anisotropies, and their weights in post-liquefaction period saturate, with the

same values irrespective of shear path type.

The current study can be extended by incorporating aspherical particles or assemblies with

different particle size distributions (PSD). It is expected that the observed mechanisms in this

study in terms of macro response and microstructure of the granular system are expected to hold

qualitatively even for other choices of particle shape and PSD affects, not most likely will be

different quantitatively. For example, macroscopically, the values for quantifying the cyclic

liquefaction resistance of samples under different shear paths may change but it is expected the

decreasing order in terms of 1-D linear, 2-D linear, circular, and figure-8 remains valid.

Microscopically, as the threshold for judging whether the system is under-constrained or

over-constrained, i.e., the value of zg = 3.6 may change; however, the presence of such a

threshold is still expected. Similarly, the contribution from each anisotropy to the deviatoric stress

ratio may vary but one still the stress-force-fabric relationship is still expected to remain valid by

considering a contribution from the branch vector fabric. These extensions remain to be further

explored further in future studies.
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Chapter 5: SANISAND-MSf: a Memory Surface with Semifluidized State

Enhanced Sand Plasticity Model for Undrained Cyclic Shearing

In this chapter, an advanced constitutive model is developed by incorporating a novel feature of

memory surface and a simplified ingredient of semifluidized state into the reference DM04 model

for more precise simulation of undrained unidirectional cyclic shear tests. This chapter is

reproduced from the paper co-authored with Mahdi Taiebat and Yannis F. Dafalias, which was

accepted subject to minor revisions for publication in Géotechnique (Yang et al., 2020a).

5.1 Introduction

During the dynamic analysis of geostructures, the phenomenon of sand liquefaction is a

predominant event that must be accounted for. Hence, the underlying mechanism and patterns of

liquefaction have been explored by laboratory experimentalists where regular harmonic loading is

usually exerted on the soil specimen. An undrained cyclic torsional test on Ottawa-F65 sand with

the relative density Dr = 60% is presented in Figure 5.1 to illustrate the response when the sample

is sheared with cyclic stress ratio (CSR) 0.20, where CSR is the ratio of the cyclic shear stress

amplitude τamp and the initial mean effective stress p0. The stress path of shear stress τ and mean

effective stress p in Figure 5.1(a) and the shear stress-strain curves in Figure 5.1(b) can be

decomposed into two stages based on whether the mean effective stress p reaches zero or not,

named pre- and post-liquefaction stages, respectively, with the following response characteristics:

(a) intense plastic volumetric contraction tendencies along with small shear strain in

pre-liquefaction stage; (b) large but limited shear deformation with increasing amplitude in

post-liquefaction stage where the mean effective stress almost vanishes instantaneously and

repeatedly, also called cyclic mobility (Castro, 1975).

The effort to simulate numerically the foregoing two response characteristics has led to

extensive exploration in developing different constitutive models in recent decades. Within the

framework of bounding surface (BS) plasticity and hypoplasticity (Dafalias, 1986), Wang et al.

(1990) formulated a plastic shear modulus dependence on the accumulated deviatoric plastic

strain, which can effectively represent the response shown in Figure 5.1. Papadimitriou et al.
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Figure 5.1: Experimental data of undrained cyclic torsional test for Ottawa-F65 sand at Dr = 60% after

Ueda (2018): (a) stress path; (b) stress-strain response.

(2001), Papadimitriou and Bouckovalas (2002) and Dafalias and Manzari (2004), used a

macroscopic fabric-dilatancy tensor to influence plastic modulus and dilatancy coefficient such

that large contraction occurs upon loading reversal after a dilative phase that brings the mean

effective stress p close to zero and enables the simulation of the typical butterfly shape as shown

in Figure 5.1(a). To address bounded strain cyclic mobility, Elgamal et al. (2003) activated a

constant-volume perfectly plastic phase with the stress state frozen when the loading stress path

intersects the phase transformation line at low confinement, until a user-defined octahedral shear

strain increment is accumulated. Khosravifar et al. (2018) updated the flow rule to address

dependence on number of loading cycles, effective overburden stress and static shear stress.

Boulanger and Ziotopoulou (2013) have addressed observed cyclic stiffness degradation as a

function of quantities related to cumulative plastic shear strains and proposed accordingly the

PM4Sand model that is based on the Dafalias and Manzari (2004) platform. Zhang and Wang

(2012) and Wang et al. (2014) decomposed the dilatancy and volumetric strain rate into reversible

and irreversible components, introduced the concept of volumetric strain threshold below which

the soil is considered liquefied, and used cumulative irreversible volumetric strain as a model

parameter. In addition, these authors were able to address the phenomenon of large but limited

shear strain accumulation in the post-liquefaction stage.

These and several other similar approaches have contributed significantly to the modeling of

cyclic mobility, however, they share a general shortcoming and a lack of calibration flexibility on

separate pre- and post-liquefaction response simulations. The shortcoming is the use of a quantity

related to cumulative plastic volumetric or shear strain in their formulation for dilatancy

determination or stiffness degradation, that stays in the model after the completion of a cyclic

loading process, based on the non-decreasing nature of a cumulative quantity. Yet, there is no

constitutive mechanism to eliminate such influence in a subsequent drained monotonic or
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undrained cyclic loading, which are thus affected unduly and irrationally by a past cyclic loading

event. The lack of calibration flexibility is that while these models can fit by purpose the

practically important liquefaction strength curve, i.e., CSR versus the total number of cycles Nini

for reaching the so-called initial liquefaction, such overall fitting does not correspond necessarily

to correct fitting of the general stress-strain and undrained stress path response in the pre- and

post-liquefaction stages separately. This is because there are no constitutive mechanisms for

addressing the cyclic response separately for pre- and post-liquefaction stages.

The objective of this work is to present a new constitutive model for sands, by remedying two

simulative inadequacies of a reference two-surface constitutive model by Dafalias and Manzari

(2004), abbreviated as DM04 model, which is an extension of its precursor by

Manzari and Dafalias (1997). The DM04 model is critical state compatible and is built within the

framework of Bounding Surface (BS) plasticity, thus, by the very nature of BS it can address

qualitatively the response under cyclic loading. However, the first simulative inadequacy is that

with stiffness determined by fitting monotonic undrained loading, it overpredicts the pore water

pressure and shear strain accumulation under cyclic loading in the pre-liquefaction stage.

Increasing the stiffness by means of increasing the value of the plastic modulus Kp, will address

successfully both pore water pressure and shear strain accumulation simultaneously, since both

depend on plastic modulus, but at the same time it will disqualify the simulation under monotonic

loading. It is therefore necessary to invent a constitutive scheme that can increase the stiffness

under cyclic loading without altering the stiffness under monotonic.

This scheme introduces a new constitutive ingredient described by the concept and role of

“memory surface” (MS) in stress space that stores the previously experienced maximum stress

ratio while increasing the stiffness for stress states within MS without altering the stiffness for

stress states on the MS during monotonic loading. Memory surfaces of various types go quite

back in time as in Wang et al. (1990), Stallebrass and Taylor (1997), Maleki et al. (2009) and

di Benedetto et al. (2014). The MS adopted in this study is a multifaceted modification of the

original proposition by Corti et al. (2016) that was later adjusted by Liu et al. (2019) to be

compatible with the DM04 model platform. The use of MS was shown to be successful in

simulating plastic volumetric and deviatoric strain variations in drained cyclic shear tests but has

not yet been tested extensively for simulations of multiple data under undrained conditions. It

must be mentioned that the MS introduced by Corti et al. (2016), fades away during extensive

dilation, usually obtained by extensive monotonic loading of dense samples, thus, returning to its

original size before the cyclic loading and is ready to play again its role upon a new such loading.

The second simulative inadequacy of the reference DM04 model is that after reaching the

post-liquefaction stage under undrained cyclic loading, the undrained stress path stabilizes

acquiring the usual butterfly shape, and similarly the cyclic stress-strain loops stabilize at a fixed
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shear strain amplitude. And while the butterfly stabilized shape is desirable for the undrained

stress path because it is exactly what experimental data show, the stress-strain stabilization is

against the experimental observation of increasing shear amplitude with number of

post-liquefaction cycles, with an eventual saturation level. Contrary to what was done with the

MS for pre-liquefaction stage, namely to increase the stiffness via the plastic modulus Kp for both

deviatoric and volumetric plastic strain rates, now one must progressively decrease the stiffness

only for deviatoric plastic strain rate in order to achieve the increasing shear strain amplitude,

while maintaining the same stiffness for plastic volumetric strain rate in order to maintain the

stabilized butterfly shaped undrained stress path. This new combination of stiffness modification

protocol can be achieved by decreasing simultaneously by the same factor the plastic modulus Kp

and the dilatancy D. This is because the decrease of Kp will achieve the shear strain amplitude

increase while the same decrease of D will maintain fixed the value of the ratio D/Kp on which

the plastic volumetric strain rate and consequently the undrained stress path depend, thus

maintaining the same butterfly shape of the latter. Notice that the foregoing conclusions are valid

for any plasticity model because they address the basic constitutive relations irrespective of the

specific format they acquire.

The above required constitutive modification to the DM04 model was in fact addressed in

Barrero et al. (2020) by a new constitutive ingredient reflecting the physical existence of a

“semifluidized (Sf) state” for very low effective mean stress reached in post-liquefaction stage. It

introduced a new internal degradation variable for plastic modulus and dilatancy, named Strain

Liquefaction Factor (SLF), that increases towards a saturation value of unity during undrained

cyclic loading, while it demises in a continuous way upon subsequent drainage. Notice that both

the evolution of, and analytical effect on Kp and D by the SLF are active only for states within the

semifluidized state while leaving almost intact the response outside that state. More details can be

found in the foregoing reference and in a subsequent section of this work.

It is worth mentioning at the outset, that the introduction of the two new constitutive

ingredients of MS and SLF, besides remedying the two simulative inadequacies of the DM04

model under undrained cyclic loading, they also address the aforementioned shortcoming and

lack of calibration flexibiblity encountered in various other constitutive models. First, the fact that

MS fades away upon dilation and SLF demise upon drainage, allows a new cyclic loading to start

anew without unjustified effect from a previously performed cyclic loading that resulted in

accumulated and permanently stored quantities such a cumulative shear strain. Second, the MS

and SLF aim at improving the cyclic stress-strain response for pre- and post-liquefaction stages,

respectively, without affecting each other, thus, they contain the seed for a separate rather than

overall successful simulation of the CSR versus total number of cycles for reaching initial

liquefaction. This does not necessarily mean that other models cannot achieve the same goal, but
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here at least it is achieved by separate constitutive design for each stage.

The new model maintains of course all innate capabilities of the DM04 model to be Critical

State compatible and effective in simulating the response under various pressures and densities

using a unique set of model constants for monotonic loading. In fact, its simulating capability of

monotonic non-proportional loading is and control of strain accumulation under cyclic triaxial

loading in compression and extension, is improved by two small modifications that will be

described in the next section. Its effectiveness for cyclic loading will be shown by successful

simulation of two extensive experimental databases on undrained cyclic torsional and triaxial tests

with different CSRs. In the process, the detailed calibration procedures for the model constants

related to the new constitutive ingredients, the semifluidized state and the memory surface, will be

fully explained. These two new constitutive ingredients suggest the name SANISAND-MSf for

the model, because it is a member of the SANISAND family of models (Taiebat and Dafalias,

2008), with M standing for Memory surface and Sf for Semifluidized state.

In terms of basic notation, tensor-value quantities will be shown by bold face characters and

the symbol : between two tensors denotes summations over the adjacent pairs of indices in reverse

order of the tensors, which in the case of second-order tensors implies the trace, namely tr(AB) =

A : B = Ai jB ji.

5.2 Reference DM04 model

The DM04 has four conical surfaces as illustrated in Figure 5.2 in the deviatoric stress space,

shown for convenience only as the π-plane for the stress ratio. These surfaces are a small yield
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Figure 5.2: Schematic illustration of model surfaces and mapping rules on the deviatoric stress ratio π
plane.
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surface (YS) centred at the back-stress ratio ααα that obeys kinematic hardening (KH), and three

other origin-concentric surfaces: bounding surface (BS), critical state surface (CS), and dilatancy

surface (DS). A mapping rule from the origin along the unit-norm deviatoric tensor n, normal to

the YS at the stress ratio r, specify image points on BS and DS whose distances from the current

back-stress ratio ααα control the plastic modulus and dilatancy, respectively.

The constitutive equations of the DM04 model are presented collectively in Table 5.1,

together with some modifications to be discussed in the sequel. With more details provided in

Dafalias and Manzari (2004), it is only expedient to briefly outline here the symbols and basic

definitions. The elastic and plastic strains are denoted by the superscripts e and p, respectively,

while a superposed dot implies the rate. The p = tr(σσσ)/3 is the mean effective stress, with σσσ

being the effective stress tensor and tr(·) the trace operator; s = σσσ − pI is the deviatoric stress

tensor, with I being the second-order identity tensor, and r = s/p is the stress ratio in Figure 5.2;

εv = tr(εεε) is the volumetric strain, with εεε being the strain tensor; e = εεε −
(

εv/3
)

I is the deviatoric

strain tensor; L is the plastic multiplier that includes the plastic modulus Kp in its denominator

and is enclosed into the Macaulay brackets such that 〈L〉 = L if L ≥ 0 and 〈L〉 = 0 if L < 0; D is

the dilatancy ratio; R′ represents the deviatoric flow rule direction normal to the CS surface at the

image point αααc
θ , also shown transferred at the stress ratio point r, Figure 5.2. The A0 and h are

directly related to dilatancy and plastic modulus, respectively, and their definitions are of cardinal

importance for the performance of the model. The z is an evolving dilatancy fabric tensor whose

role is to induce large contraction upon unloading after a dilative phase. The ααα in is the initial

value of ααα at initialization of a new loading process and is updated when the denominator of h

becomes negative as per the rules discussed by Dafalias (1986). The g(θ ,c) is the interpolation

function for the DS, BS and CS, with θ the Lode angle and c the ratio between triaxial extension

and compression critical stress ratio values; ψ = e− ec is the state parameter (Been and Jefferies,

1985) defined as the difference between the current void ratio e and the critical void ratio ec at

same p on the Critical State Line (CSL) in the e− p space (Li and Wang, 1998).

Two modifications are introduced to the DM04 model. The first defines a modified flow rule

along R∗ obtained by interpolation between n and the unit norm R′/||R′||, with ||.|| being the norm

operator, as:

R∗ = I(xα)n+[1− I(xα)]
R′

||R′|| (5.1)

with the interpolation factor xα = 〈αb
θα

−||ααα ||〉/αb
θα

measuring the relative distance of ααα from its

BS projection αααb
θα

along the radius from the origin (see Figure 5.2 and Table 5.1 for the definition

of the unbold αb
θα

); the I(xα) is an interpolation function varying together with xα from 1 to 0, as

ααα moves from the origin onto or outside the BS, and accordingly the R∗ varies from n to
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Table 5.1: Changes from basic to modified DM04 model equations related to flow rule and dilatancy updates.

Description DM04 equations Modified equations Constants

Elastic relations ε̇e
v = ṗ/K; ėe = ṡ/(2G)

Plastic relations ε̇
p
v = 〈L〉D; ėp = 〈L〉R′ ėp = 〈L〉R∗

Hypoelastic moduli G = G0 pat(2.97− e)2/(1+ e)(p/pat)
1/2 G0

K = 2(1+ν)/[3(1−2ν)G] ν

Yield surface f =
√

(s− pααα) : (s− pααα)−
√

2/3pm = 0 m

Dilatancy D = A0(1+ 〈z : n〉)(αααd
θ −ααα) : n D = A0g(θ ,c)−ng(1+ 〈z : n〉)(αααd

θ −ααα) : n A0, ng

Deviatoric flow rule R′ = Bn−C[n2 − (1/3)I] R∗ = x2
αn+(1− x2

α)R
′/||R′||

n = (r−ααα)/||r−ααα|| xα = 〈αb
θα

−||ααα||〉/αb
θα

B = 1+3(1− c)/(2c)g(θ ,c)cos3θ αb
θα

=
√

2/3[g(θα ,c)M exp(−nbψ)−m] c

C = 3
√

3/2(1− c)g(θ ,c)/c cos3θα =
√

6tr(n3
α); nα = ααα/||ααα||

g(θ ,c) = 2c/[(1+ c)− (1− c)cos3θ ]
Kinematic hardening α̇αα = 〈L〉(2/3)h(αααb

θ −ααα)
Fabric-dilatancy rate ż =−cz〈−ε̇

p
v 〉(zmaxn+ z) cz, zmax

Hardening coefficient h = b0/[(ααα −ααα in) : n]

b0 = G0h0(1− che)(p/pat)
−1/2 b0 = G0h0g(θ ,c)−ng(1− che)(p/pat)

−1/2 h0, ch

Image point on DS αααd
θ =

√

2/3[g(θ ,c)M exp(ndψ)−m]n nd, M

Image point on BS αααb
θ =

√

2/3[g(θ ,c)M exp(−nbψ)−m]n nb

Critical state line ec = eref
c −λc(p/pat)

ξ eref
c , λc, ξ

9
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R′/||R′||. The choice I(xα) = x2
α is made for simplicity here, as shown in the third column of

Table 5.1, without adding a new constant (the exponent 2 is a default value). Alternative choices

are possible as for example one variant of the sigmoidal function widely used in machine learning

σ(xα) = I(xα) = 1/{1+ exp[−k(xα −Rc)]} that approaches 1 and 0 as close as desired by the

specification of its two constants k and Rc. Figure 5.3 shows the simulation versus data for

undrained simple shear test of Toyoura sand (data from Yoshimine et al. (1998), also appeared in

Figure 12 of Dafalias and Manzari (2004)) using four different flow rules associated with n, R′

and two R∗ according to Equation (5.1) with the aforementioned two interpolation functions. The
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Figure 5.3: Simulation of undrained simple shear test data of Toyoura sand (Yoshimine et al., 1998) using

flow rules associated with n, R′ and from Equation (5.1) R∗
1 for I(xα) = x2

α and R∗
2 for I(xα) = σ(xα)

where k = 15 and Rc = 0.6.

plots in Figure 5.3(a) and (b) do not differ significantly, but the one in Figure 5.3(c) shows the

advantages of using the modified flow rule for non-proportional loading.

The second modification consists of dividing dilatancy D and plastic modulus Kp, by g(θ ,c)ng

with ng a model constant, as shown in the third column of Table 5.1; the foregoing division of Kp

is achieved by dividing the b0 term of its coefficient h. Dividing both D and Kp by the same factor,

maintains the same plastic volumetric strain rate and correspondingly pore water pressure rate, and
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undrained stress paths, while controlling the relative magnitude of shear strain amplitude in triaxial

compression and extension, thus, allowing to control by a proper choice of ng the shifting of the

stress-strain loops during cyclic triaxial loading. The use of g(θ ,c)ng has a minimal effect on the

stress-strain curve in extension, while compression is unaltered because g(θ ,c)ng = 1.

5.3 Memory surface

The memory surface (MS) by Corti et al. (2016) and its extension by Liu et al. (2019) is equipped

with both isotropic and kinematic hardening (KH) in the deviatoric stress ratio space, and its role

is that of an auxiliary bounding surface aimed at adding extra stiffness to the deviatoric and

volumetric plastic strain rates for stress points within the MS prompted by comparison of

simulations with data. It is thought that the role of the MS as a stiffening constitutive ingredient is

related to micromechanical fabric characteristics adjustments due to experienced past loading

range in stress space.

The formulation of memory surface developed in this study is different from that of Corti et al.

(2016) and Liu et al. (2019) in regard to the following aspects:

• It is a MS for the back-stress ratio rather than stress ratio, compatible with the formulation

of DM04 model, that allows the minimum of its size to be zero.

• It derives the evolution of MS in general, using BS techniques, as opposed to the assumption

that the virgin loading formulation is extended to cases under general loading (Liu et al.,

2019).

• It tackles the singular case where a denominator can go to zero under certain loading

conditions, existing in Liu et al. (2019).

• It does not make use of MS for the determination of dilatancy D that is evaluated with the

equation listed in Table 5.1 using the dilatancy fabric tensor z, according to DM04 model.

If an improvement of dilatancy is found necessary, one could make use of the dilatancy-

triggering surface proposed by Woo et al. (2019) in a role similar to that of the MS while

being compatible with the DM04 model platform.

The memory surface is defined analytically by:

f M =
√

(αααM
θ −αααM) : (αααM

θ −αααM)−
√

2/3mM = 0 (5.2)

where αααM is its center and mM its size. As illustrated in Figure 5.4, αααM
θ is the image point of ααα on

the MS obtained by projection from αααM along n on it, expressed analytically by:
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Figure 5.4: Illustration of the conceptual framework of bounding-memory surface models.

αααM
θ = αααM +

√

2

3
mMn (5.3)

where the use of the subscript θ in all the above is indicative of the corresponding Lode angle

θ . The distance of ααα from αM
θ projected on n, will be the key new quantity for increasing the

stiffness. During the loading process one must make sure that the ααα does not move outside the MS

so that the aforementioned quantity remains positive. To this extent, one can write:

α̇αα = α̇ααM
θ + 〈L〉2

3
h∗(αααM

θ −ααα)

= α̇ααM +

√

2

3
ṁMn+

√

2

3
mMṅ+ 〈L〉2

3
h∗(αααM

θ −ααα) (5.4)

where the rate of Equation (5.3) was used in deriving Equation (5.4) which is valid for ααα inside or

on the MS. Equation (5.4) simply states that ααα will move as much as its image point αααM
θ plus an

additional motion along αααM
θ −ααα controlled by a free to choose modulus h∗, hence, guaranteeing

that ααα will never cross and move outside the MS because the additional motion will stop when

αααM
θ −ααα = 0 no matter what the value of h∗ is. By multiplying Equation (5.4) with n and taking

the trace of each term one obtains:

α̇αα : n = α̇ααM : n+

√

2

3
ṁM + 〈L〉2

3
h∗(αααM

θ −ααα) : n (5.5)

noticing that ṅ : n = 0 implied by n : n = 1. Equation (5.5) becomes the consistency condition

for the MS when ααα is on it, i.e., when αααM
θ −ααα = 0 as can be seen by taking the rate of f M in

Equation (5.2) and observing from Figure 5.4 that the normal n to the YS at r, is same with the
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normal n to the MS at αααM
θ .

5.3.1 Rate of αααM

Referring to Figure 5.4 one can observe that eventually ααα will reach the BS at its image point αααb
θ

and the MS at its image point αααM
θ , thus, αααM

θ will reach the BS at the same point αααb
θ . Consequently

the αααM will reach a point αααbM
θ , which is inwards from αααb

θ along n and defined by:

αααbM
θ = αααb

θ −
√

2

3
mMn (5.6)

Based on Equations (5.3) and (5.6) one has αααbM
θ −αααM = αααb

θ −
√

2/3mMn−αααM = αααb
θ −αααM

θ ,

thus, the following rate equation of evolution can be written for αααM:

α̇ααM = 〈L〉2

3
hM(αααbM

θ −αααM) = 〈L〉2

3
hM(αααb

θ −αααM
θ ) (5.7)

with hM an appropriate modulus to be defined in the following.

5.3.2 Rate of mM

The isotropic hardening/softening (IH) of the MS is given by the rate of its size mM. A modification

of the proposition by Liu et al. (2019) can be expressed by:

ṁM =

√

3

2
α̇ααM : n− mM

ς
〈−ε̇

p
v 〉 (5.8)

Observe the deletion of the complicated term fshr used in the proposition by Liu et al. (2019) in

the second term of Equation (5.8), necessary to keep the MS from becoming smaller that the YS;

this is because in our case the MS refers to the back-stress ratio ααα and not to the stress ratio r, hence,

it is allowed to shrink down to zero size, i.e., mM = 0, due to dilation. The MS shrinking was an

original suggestion by Corti et al. (2016) that is very important because it provides the mechanism

to eliminate a previous MS upon dilation and start anew in a subsequent loading process.

The next step would be to substitute the expression of α̇αα as listed in Table 5.1, and Equations

(5.7) and (5.8) into the consistency Equation (5.5) and solve for the parameter hM necessary for the

operation of Equation (5.7). In doing so two traps may arise. First, during dilation and softening,

common to dense sands, the second term of the right hand side (RHS) of Equation (5.8) may

render the size mM of the MS zero, and if the first term is negative, then Equation (5.8) will yield

an unacceptable negative value of mM. This eventuality is possible because one may have ααα = αααM
θ
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during monotonic loading from the origin for which all tensors are along n, and because during

softening the ααα is outside the BS, a standard feature of the DM04 model, so will be the αααM
θ ;

consequently, it follows from Equation (5.7) that the α̇ααM which is along αααb
θ −αααM

θ will be along

−n (recall the αααM
θ is further out than αααb

θ along n), hence, the first term of the RHS of Equation

(5.8) will be negative, establishing the first trap. The second trap is more serious. In solving

Equation (5.5) for hM, after the aforementioned substitutions, the term (αααb
θ −αααM

θ ) : n will appear

in the denominator and it is possible for cases where some part of the MS has moved outside the

BS, to have (αααb
θ −αααM

θ ) : n = 0 even if αααb
θ 6= αααM

θ . This will cause singularity and an infinite value

for hM that may create serious numerical problems upon implementation. Such zeroing of the

corresponding quantity (rb
θ −rM) : n may occur in the denominator of the second term of the RHS

of Equation (18) in Liu et al. (2019).

In order to avoid the foregoing two traps, the following equation is proposed in lieu of

Equation (5.8), using the plastic volumetric strain rate as given in Table 5.1 and Equation (5.7):

ṁM =〈L〉
[

√

2

3
cchM〈(αααb

θ −αααM
θ ) : n〉− mM

ς
|(αααb

θ −αααM
θ ) : n|〈−D〉

]

(5.9)

One can identify the following changes in regard to Equation (5.8). First the Macaulay brackets

appear in the first term of the RHS of Equation (5.9) by applying them to α̇ααM : n and using Equation

(5.7), while treating hM as positive, a hypothesis that must be confirmed at the end. Therefore, the

first term will not contribute to the shrinkage of the memory surface when (αααb
θ −αααM

θ ) : n < 0

so that it excludes the aforementioned first trap of mM becoming negative. Second, the quantity

|(αααb
θ −αααM

θ ) : n| is introduced in the second term of the RHS in order to address the eventuality

of (αααb
θ −αααM

θ ) : n = 0 in the denominator of the solution of Equation (5.5) for hM, with which

it will be cancelled. Use of absolute value | · | is necessary in case of a MS larger than the BS

where the negative value of (αααb
θ −αααM

θ ) : n would induce increase rather than decrease of the MS

size during dilation. The factor cc is added to simply provide a greater flexibility in the relative

contributioFiguren of IH and KH to the evolution of mM. Its default value cc = 1, proposed in

Corti et al. (2016), implies that the rate of IH is exactly equal to the rate of KH when ααα is on the

MS; in practical terms it means that as the ααα moves away from the origin during virgin loading,

the centre αααM of the MS is half the value of ααα and equals mM. So, the MS develops with one end

on ααα and the other fixed at the origin, as presented in Figure 5.5. If cc > 1 the KH will contribute

more to IH and the stress origin will be inside the MS while if cc < 1 the KH will have a lesser

contribution to IH and the origin will be left outside the MS, during virgin loading. Irrespective

of the value of cc, the structure of Equations (5.7) and (5.9) implies that for monotonic radial

virgin loading from the origin, the current back-stress point will be simultaneously on the yield

and memory surfaces; thus the value of cc will affect the response only upon reverse loading after
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Figure 5.5: Memory surface expansion and translation during virgin loading.

monotonic, as per the foregoing description of the stress origin position relatively to the MS. The

constant ς , appearing in Equation (5.9), controls the pace of MS shrinking during dilation, hence,

it affects the post-liquefaction stress path. Default value of ς = 0.00001 is found effective. Finally,

the assumption h∗ = h in Equation (5.5) is necessary, without any significant loss of generality,

for the elimination of the effect of zero denominator when (αααb
θ −αααM

θ ) : n = 0 because the choice

h∗ = h makes the foregoing zero term appearing also in the numerator, hence, it will be cancelled.

Based on the foregoing, substitution of α̇αα from Table 1 and Equations (5.7) and (5.9) in

Equation (5.5), yields for hM the solution:

hM =
1

1+ ccH [(αααb
θ −αααM

θ ) : n]

{

h+

√

3

2

mM

ς
sgn[(αααb

θ −αααM
θ ) : n]〈−D〉

}

(5.10)

where the Heaviside function H [x] = 1 if x ≥ 0 and H [x] = 0 if x < 0; the sign function sgn[x] = 1

if x > 0, sgn[x] = 0 if x = 0 and sgn[x] = −1 if x < 0. Recall that in writing Equation (5.9) it

is hypothesized that hM > 0 so that it is taken outside the 〈·〉 and this hypothesis must now be

confirmed. Indeed when (αααb
θ −αααM

θ ) : n > 0 Equation (5.10) yields hM > 0, but when (αααb
θ −αααM

θ ) :

n < 0 it is possible to have hM < 0 depending on the relative values of the first and second terms

of the RHS of Equation (5.10). But in this case the first term of the RHS of Equation (5.9) goes

to zero anyway irrespective of the sign of hM, and any negative value of the latter has no adverse

effect on the formulation for the rate of mM.

The Heaviside and sign functions in Equation (5.10) are discontinuous upon change of sign of

their argument. This has no effect in radial loading if the change of sign of (αααb
θ −αααM

θ ) : n occurs

when αααb
θ = αααM

θ because then α̇ααM = 0; but if it happens that for a continuously changing direction
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n the sign of (αααb
θ −αααM

θ ) : n changes without having αααb
θ = αααM

θ , then discontinuities on the value

of hM appear. However, this will show no discontinuous stress-strain response because it will only

affect the rate of evolution of MS without any discontinuity of the MS itself.

5.3.3 The role of MS

With Equations (5.7), (5.9) and (5.10) the evolution of the MS is complete. Its link to the DM04

model can then be expressed by modifying the value of the hardening coefficient h, listed in

Table 5.1, as follows:

h =
b0

(ααα −ααα in) : n
exp





µ0

||ααα in||u + ε

(

bM

bref

)w


 (5.11)

where bM = (αααM
θ −ααα) : n and bref = (αααb

θ −αααb
θ+π) : n (refer to Figure 5.4 for identification of the

foregoing tensors), ααα in is the value of ααα at the initiation of a new loading process as explained in

DM04, and µ0, u are model constants. Default values of w = 2 and ε = 0.001 are found very

effective. The exponential term in Equation (5.11) adds stiffness to the deviatoric response by

increasing the value of h in analogy to the distance bM of ααα from its image αααM
θ on the MS,

projected on n, a standard BS scheme, since the MS is in fact an auxiliary BS for stiffness control.

The analytical expression of this exponential term follows an initial suggestion by Liu et al.

(2019) where the factor (p/patm)
0.5 of this suggestion, that may adversely affect the simulation of

liquefaction resistance with increasing initial p, is substituted by (||ααα in||u + ε)−1 that accounts for

cyclic shear stress amplitude effects.

5.4 Semifluidized state

Based on the laboratory observations of undrained cyclic shear tests on sand, the concept of

“semifluidized state” is introduced in Barrero et al. (2020), which refers to the state of granular

material when the mean effective stress is very small, namely when p < pth with the threshold

mean effective stress pth being a model constant. An internal state variable named “Strain

Liquefaction Factor” (SLF) and symbolized by ℓ is introduced, whose purpose is to induce

stiffness degradation within the semifluidized state. The ℓ evolves only when p < pth according to

the rate equation:

ℓ̇= 〈L〉[cℓ〈1− pr〉(1− ℓ)nℓ]− crℓ|ε̇v| (5.12)
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where cℓ is a model constant controlling the evolution rate of ℓ; nℓ is a model constant with the

default value 8.0; the pressure ratio pr = p/pth compared to 1 determines if the stress state falls

into the semifluidized state, and pth is given the default value of 10 kPa, but it can be re-adjusted

if necessary for various sands. In regard to such re-adjusted values of pth, a more thorough

investigation should be undertaken in the future, possibly using the tool of Discrete Element

Method. A big advantage of the present scheme is that the analytical dependence of the response

on pth, is not very sensitive to a more exact and different value of pth. Because of 〈1− pr〉 the ℓ

evolves from min value 0 to max value 1 only when pr < 1 within the semifluidized state. The last

term of Equation (5.12) is zero for undrained loading where ε̇v = 0, and leads ℓ towards zero .

This last term is a very important constitutive element because it allows readjustment of ℓ to its

initial zero value, and eliminates the shortcoming of various models mentioned in the

Introduction associated with the use of the ever increasing cumulative plastic shear strain for

stiffness degradation. The effect of this last term is not addressed in this work because no draining

after undrained loading is considered. Yet, one can refer to Barrero et al. (2020) for a detailed

qualitative investigation on the role of the back-to-zero last term of Equation (5.12) to the

response after reaching liquefaction, followed by subsequent drainage and new cyclic loading till

re-liquefaction, where the significant effect of the value of model constant cr is illustrated.

Comparison with data is a future necessary endeavor.

The role of SLF is to decrease stiffness and dilatancy by decreasing the values of h0 and A0

listed in Table 5.1, according to the following two equations:

h0 = h′0
[

(

1−〈1− pr〉
)xℓ

+ fℓ

]

(5.13)

A0 = A′
0

[

(

1−〈1− pr〉
)xℓ

+ fℓ

]

(5.14)

where x and fℓ are model constants, the latter with the default value 0.01. The primed quantities

h′0 and A′
0 are in fact the quantities h0 and A0 of DM04 model, listed in Table 5.1. The new h0

of Equation (5.13) will transfer via b0 as listed in Table 5.1, the effect of ℓ on the value of h in

Equation (5.11). Thus, the resulting value of h will be simultaneously affected by the roles of MS

and SLF. Observe that outside the semifluidized state one has pr = p/pth > 1, hence, Equations

(5.13) and (5.14) become h0 = h′0 (1+ fℓ) and A0 = A′
0 (1+ fℓ), respectively, rendering h0 and

A0 almost equal to their original primed values, given the very small default value of fℓ = 0.01.

Finally, it follows from Equations (5.13) and (5.14) and the equations of Table 5.1, that h′0/A′
0 =

h0/A0 = Kp/D , and since the plastic volumetric strain rate is proportional to D/Kp, one has that

within the semifluidized state this rate is unaltered by the modifications of h′0 and A′
0 to h0 and

A0, in Equations (5.13) and (5.14), respectively. That was exactly what was intended to achieve,

based on experimental data the simulation of which required a strong softening related only to
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deviatoric plastic strain rate. It is worth noting that the SLF rate equation in Barrero et al. (2020),

corresponding to Equation (5.12) in the present work, had an additional term (p/pinr)
a to allow

for an overall fitting of the CSR-Nini curve, often inaccurately balanced between pre- and post

liquefaction stages, that is no longer needed given the role of the MS in pre-liquefaction model

performance.

Table 5.2 presents a summary of the transition from the modified DM04 model equations, to

those of the new SANISAND-MSf model, in conjunction with the newly introduced constants

including those with default values.

5.5 Calibration

The new SANISAND-MSf model requires the calibration of 21 model constants, divided into three

groups. The first group includes 16 constants inherited from DM04 and its modification as listed

in Table 5.1; details of their calibration can be found in Taiebat et al. (2010).

The second group is related to the effect of MS on stiffness by means of h, Equation (5.11),

and consists of two constants µ0 and u. Effects of µ0 and u on the simulated liquefaction strength

curve with initial liquefaction referring to ru = 0.95 are illustrated in Figures 5.6(a) and (b). It can
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Figure 5.6: Effects of SANISAND-MSf model constants µ0, u on the simulated liquefaction strength

curve with initial liquefaction referring to ru = 0.95 based on undrained cyclic torsional tests under

constant CSR: (a) role of µ0; (b) role of u.

be concluded that µ0 mainly affects the position of liquefaction strength curve while u affects both

the position and the slope.

The last group of model constants, linked to semifluidized state, is used to capture the post-

liquefaction shear strain development, without any effect on pre-liquefaction. It consists of cℓ

and cr, entering Equation (5.12) and x entering Equations (5.13) and (5.14). As mentioned after

Equation (5.12) the effect of cr is not addressed in this work, but a parametric study is carried
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Table 5.2: Changes from modified DM04 to SANISAND-MSf model equations related to memory surface and semifluidized state.

Description DM04 modified equations SANISAND-MSf Constants∗

Memory surface - f M =
√

(αααM
θ −αααM) : (αααM

θ −αααM)−
√

2/3mM = 0

Image point on MS - αααM
θ = αααM +

√

2/3mMn

α̇ααM = 〈L〉(2/3)hM(αααb
θ −αααM

θ )

ṁM = 〈L〉[
√

2/3cchM〈(αααb
θ −αααM

θ ) : n〉− cc = 1

mM/ς |(αααb
θ −αααM

θ ) : n|〈−D〉] ς = 0.00001

hM = {h+
√

3/2(mM/ς)sgn[(αααb
θ −αααM

θ ) : n]〈−D〉}/
(1+ ccH [(αααb

θ −αααM
θ ) : n])

Hardening coefficient h = b0/[(ααα −ααα in) : n] h = {b0/[(ααα −ααα in) : n]}× µ0, u

exp[{µ0/(||ααα in||u + ε)}(bM/bref)
w] ε = 0.01, w = 2

bM = (αααM
θ −ααα) : n

bref = (αααb
θ −αααb

θ+π) : n

SLF rate - ℓ̇= 〈L〉[cℓ〈1− pr〉(1− l)nℓ]− crℓ|ε̇v| cℓ, nℓ = 8, cr

pr = p/pth pth = 10 kPa

h0 h0 = h′0[(1−〈1− pr〉)xl + fℓ] x, fℓ = 0.01

A0 A0 = A′
0[(1−〈1− pr〉)xl + fℓ]

∗ Some constants have indicated default numerical values.

1
0
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out to illustrate the effect of cℓ and x on the post-liquefaction shear strain development. With

reference to the typical data of Toyoura sand at Dr = 70%, the numerical results shown in Figure 5.7

are obtained with a shear stress amplitude of 40 kPa for three combinations of cℓ and x keeping

the other model constants fixed. Based on the foregoing, the following calibration procedure is
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Figure 5.7: Effects of SANISAND-MSf model constants in semifluidized state on simulated stress-strain

response and effective stress path: (a), (b) x = 3.5, cℓ = 25; (c), (d) x = 5.5, cℓ = 25; (e), (f) x = 5.5, cℓ = 10.

Blue and red lines represent pre- and post-liquefaction, respectively.
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suggested: (1) keep cℓ, and vary x to capture the general trend of shear strain development; (2)

tune cℓ for local revision of this general trend towards a better match for each cycle.

5.6 Model performance

5.6.1 Undrained cyclic torsional tests

The experimental data of undrained stress paths, shear strain development and pore pressure

generation under undrained cyclic torsional tests on Ottawa-F65 sand from Ueda (2018) will be

simulated by the SANISAND-MSf model. The samples are isotropically consolidated at around

100 kPa ending up with very similar relative densities of 50%. Four tests are carried out with CSR

values of 0.19, 0.15, 0.13 and 0.10. Recall that here CSR = τamp/p0. The model constants are

provided in Table 5.3 with most inherited from DM04 model, as determined in Ramirez et al.

(2018), while zmax and cz are tuned for better approaching the semifluidized state. The other

Table 5.3: SANISAND-MSf calibrated model constants for two types of sands

Model constant Symbol Ottawa-F65 Karlsruhe

Elasticity G0 125 100

ν 0.05 0.05

CSL M 1.26 1.28

c 0.735 0.75

eref
c 0.78 1.038

λc 0.0287 0.056

ξ 0.7 0.28

Yield surface m 0.01 0.01

Dilatancy nd 2.50 1.20

A′
0 0.626 0.56

ng 0.9 0.95

Kinematic nb 0.60 1.0
Hardening h′0 4.00 7.60

ch 0.968 1.015

Fabric-dilatancy zmax 15.0 15.0
cz 2000 1000

Memory surface µ0 4.08 7.80

u 0.96 0.87

Semifluidized state cℓ 35 25

x 3.5 3.3
cr 0∗ 0∗

∗ Calibration requires detailed data for multiple-liquefaction stages.
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model constants related to memory surface and semifluidized state are calibrated by following the

aforementioned procedures in the calibration section.

Figures 5.8–5.11 present experiments and simulations for the aforementioned four CSRs. The
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Figure 5.8: Simulations compared with experiments in undrained cyclic torsional test with CSR = 0.19

on isotropically consolidated sample of Ottawa-F65 sand with Dr = 50%: (a), (c) experimental data from

Ueda (2018); (b), (d) simulations using SANISAND-MSf; (e), (f) comparisons between experiments and

simulations in terms of pore pressure generation and shear strain development.
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Figure 5.9: Simulations compared with experiments in undrained cyclic torsional test with CSR = 0.15

on isotropically consolidated sample of Ottawa-F65 sand with Dr = 50%: (a), (c) experimental data from

Ueda (2018); (b), (d) simulations using SANISAND-MSf; (e), (f) comparisons between experiments and

simulations in terms of pore pressure generation and shear strain development.

loading process is divided into two stages, before and after the excess pore pressure ratio ru = 0.95

for the first time so that the comparisons can be made separately for pre- and post-liquefaction

stages, colored blue and red, respectively. Such comparisons are in general quite satisfactory as

eloquently shown in the figures and one can emphasize the following few points. As the CSR
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Figure 5.10: Simulations compared with experiments in undrained cyclic torsional test with CSR = 0.13

on isotropically consolidated sample of Ottawa-F65 sand with Dr = 50%: (a), (c) experimental data from

Ueda (2018); (b), (d) simulations using SANISAND-MSf; (e), (f) comparisons between experiments and

simulations in terms of pore pressure generation and shear strain development.

becomes progressively smaller, the model can capture the increasing number of cycles during the

pre-liquefaction stage shown by the blue curves of parts (b) as compared with the corresponding

experimental curves of parts (a) of Figures 5.8–5.11. In particular Figure 5.11(b) compared with

Figure 5.11(a) present successful simulations for the very low CSR = 0.10 that are beyond the

109



0 20 40 60 80 100 120
Mean effective stress, p (kPa)

−20

−10

0

10

20

S
h
e
a
r

s
tr

e
s
s
,
τ

(k
P
a
)

Experiment

(a)

0 20 40 60 80 100 120

Mean effective stress, p (kPa)

−20

−10

0

10

20

S
h
e
a
r

s
tr

e
s
s
,
τ

(k
P
a
)

Simulation

(b)

−10 −5 0 5 10
Shear strain, γ (%)

−20

−10

0

10

20

S
h
e
a
r

s
tr

e
s
s
,
τ

(k
P
a
)

Experiment

(c)

−10 −5 0 5 10

Shear strain, γ (%)

−20

−10

0

10

20

S
h
e
a
r

s
tr

e
s
s
,
τ

(k
P
a
)

Simulation

(d)

0 50 100 150 200 250
Number of cycles, N (−)

0.0

0.2

0.4

0.6

0.8

1.0

E
xc

e
s
s

p
o
re

p
re

s
s
u
re

ra
ti
o
,

r u
(−

)

ru = 0.95

Experiment

Simulation

(e)

0 50 100 150 200 250
Number of cycles, N (−)

−10

−5

0

5

10

S
h
e
a
r

s
tr

a
in

,
γ

(%
)

Experiment

Simulation

(f)

Figure 5.11: Simulations compared with experiments in undrained cyclic torsional test with CSR = 0.10

on isotropically consolidated sample of Ottawa-F65 sand with Dr = 50%: (a), (c) experimental data from

Ueda (2018); (b), (d) simulations using SANISAND-MSf; (e), (f) comparisons between experiments and

simulations in terms of pore pressure generation and shear strain development.

capabilities of most existing constitutive models, including DM04, but for SANISAND-MSf the

ingredient of memory surface allows to capture over 200 cycles in the pre-liquefaction stage till

reaching ru = 0.95. Similarly, owing to the constitutive ingredient of the semifluidized state, the

model can capture the increasing shear strain amplitude in the post-liquefaction stage shown by
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the red curves of parts (d) in comparison with the experiments of parts (c) of Figures 5.8–5.11.

Characteristically Figure 5.9(d) shows a slowdown of the strain strain amplitude increase, exactly

as the data in Figure 5.9(c) exhibit, and this is the result of the SLF ℓ approaching its saturation

value of 1. Parts (e) and (f) of Figures 5.8–5.11 illustrate the successful simulations of the previous

parts from the perspective of pore water pressure and shear strain amplitude variations versus the

number of cycles for the four different CSRs.

5.6.2 Undrained cyclic triaxial tests

Data of undrained cyclic triaxial loading on Karlsruhe fine sand from

Wichtmann and Triantafyllidis (2016) will be simulated by the SANISAND-MSf model. The

sand samples are isotropically consolidated around 100 kPa ending up with similar relative

densities around Dr ≈ 78%. Three experimental tests are carried out with different CSRs of 0.25,

0.20 and 0.15. Here CSR = qamp/(2p0), i.e., the ratio of the deviatoric stress amplitude to twice

the initial mean effective stress. The calibrated model constants are provided in Table 5.3 with

most related to DM04 model and adopted from Liu et al. (2018), while the others are calibrated as

mentioned in the calibration section.

Figures 5.12–5.14 present data and simulations for the aforementioned CSRs. The

asymmetries of the undrained stress path butterfly shapes in parts (b) and stress-strain loops in

parts (d) of the foregoing figures, are in agreement with the corresponding experimental data of

parts (a) and (c), respectively, and result from setting the model constant c = 0.712, while

size-wise the simulated strain is close to data thanks to the semifluidized state incorporation. For

the same reason of c = 0.712, one has the shifting of the stress-strain loops towards extension

observed experimentally in parts (c) and successfully simulated in parts (d) of Figures 5.12–5.14.

Such shifting is controlled by the introduction of g(θ ,c)ng in the modification of the DM04 shown

in Table 5.1, and had it not been introduced, the shifting would have been unrealistically larger.

Observe that shifting of the stress-strain loops in Figures 5.13(d) and 5.14(d) towards extension is

slightly larger than the data, and this can be attributed to the shifting occurring in the

pre-liquefaction stage, shown by the blue color loops. In conclusion, the successful simulation of

undrained stress paths, and the pore pressure generation and shear strain development in both pre-

and post-liquefaction stages, further confirms that SANISAND-MSf model can address the main

ingredients of granular material under undrained cyclic triaxial shearing.
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Figure 5.12: Simulations compared with experiments in undrained cyclic triaxial test with CSR = 0.25 on

isotropically consolidated sample of Karlsruhe find sand with Dr = 79%: (a), (c) experimental data from

Wichtmann and Triantafyllidis (2016); (b), (d) simulations using SANISAND-MSf; (e), (f) comparisons

between experiments and simulations in terms of pore pressure generation and axial strain development.

5.6.3 Liquefaction strength curve

The liquefaction strength curve, i.e., the plot of CSR versus the number of cycles to initial

liquefaction, is a different perspective and a practically important measure of a simulation
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Figure 5.13: Simulations compared with experiments in undrained cyclic triaxial test with CSR = 0.20 on

isotropically consolidated sample of Karlsruhe find sand with Dr = 78%: (a), (c) experimental data from

Wichtmann and Triantafyllidis (2016); (b), (d) simulations using SANISAND-MSf; (e), (f) comparisons

between experiments and simulations in terms of pore pressure generation and axial strain development.

success. The foregoing data and simulations will be used to plot the corresponding strength

curves, adopting four criteria for initial liquefaction, namely one ru-based and three shear

strain-based.

Figure 5.15 presents the liquefaction strength curves for the four undrained cyclic torsional tests
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Figure 5.14: Simulations compared with experiments in undrained cyclic triaxial test with CSR = 0.15 on

isotropically consolidated sample of Karlsruhe find sand with Dr = 78%: (a), (c) experimental data from

Wichtmann and Triantafyllidis (2016); (b), (d) simulations using SANISAND-MSf; (e), (f) comparisons

between experiments and simulations in terms of pore pressure generation and axial strain development.

on Ottawa F65 sand with Dr = 50%. The criteria for the initial liquefaction are excess pore pressure

ratio ru = 0.95, and three double amplitudes of shear strain, namely γDA = 1.5%, γDA = 3.0% and

γDA = 7.5%. The data imply that ru = 0.95 happens between γDA = 3.0% and γDA = 7.5% while

the model suggests a value of around 1.5%. The model can give very precise simulation on the
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Figure 5.15: Liquefaction strength curves on Ottawa-F65 sand with Dr = 50%: (a) ru = 0.95; (b)

γDA = 1.5%; (c) γDA = 3.0%; (d) γDA = 7.5%.

number of cycles for ru = 0.95 for all CSRs, as seen in Figure 5.15(a). For the three shear strain-

based criteria the model slightly overpredicts the number of cycles, with small variations between

higher and lower CSRs. In general, the performance is very satisfactory.

Figure 5.16 presents the liquefaction strength curve for the three undrained cyclic triaxial tests

on Karlsruhe fine sand with Dr ≈ 78%. The four criteria for initial liquefaction are excess pore

pressure ratio ru = 0.95, and three double amplitudes of axial strain εDA
a = 1.0%, εDA

a = 2.5% and

εDA
a = 5.0%. The data imply that ru = 0.95 happens between εDA

a = 2.5% and εDA
a = 5.0% while

the model suggests a range between εDA
a = 1.0% and εDA

a = 2.5%. For all four criteria data and

simulations are in good agreement on the average for all CSRs, with some small overprediction

of the number of cycles for the strain-based criteria, except from the test with the lowest CSR

that exhibits excellent performance shown in Figures 5.16(b), (c) and (d). The experiments from

Figures 5.15 and 5.16 indicate that large deformation happens along with excess pore pressure ratio

approaching 0.95, irrespective of which criterion is adopted for initial liquefaction. This message

is also conveyed by the present model.
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Figure 5.16: Liquefaction strength curves on Karlsruhe fine sand with Dr ≈ 78%: (a) ru = 0.95; (b)

εDA
a = 1.0%; (c) εDA

a = 2.5%; (d) εDA
a = 5.0%.

5.6.4 Effect of initial conditions

While the foregoing addressed simulations for various values of CSR at the same initial relative

density Dr and mean stress p0, the following address simulations for different values of Dr and

p0 under the same constant CSR. Various laboratory experiments (Vaid et al., 2001; Hyodo et al.,

2002; Kiyota et al., 2008; Yang and Sze, 2011; Wichtmann and Triantafyllidis, 2016) indicate that

cyclic liquefaction resistance increases with increasing relative density or decreasing initial mean

stress.

Figure 5.17 compares simulation and experimental plots of pore pressure generation and axial

strain development versus number of cycles, for two undrained cyclic triaxial tests on isotropically

consolidated samples of Karlsruhe fine sand with the same p0 = 100 kPa but different relative

densities subjected to a CSR of 0.15. Similarly, Figure 5.18 compares same plots of experiments

and simulations of two undrained cyclic triaxial tests on isotropically consolidated samples of

Karlsruhe fine sand with similar Dr ≈ 65% but different initial mean stresses under a CSR of

0.125. The reasonable agreement between simulations and experimental data in Figures 5.17 and
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Figure 5.17: SANISAND-MSf model performance in simulating effect of initial relative density Dr on

isotropically consolidated samples of Karlsruhe fine sand with p0 = 100 kPa and CSR = 0.15: (a) pore

pressure generation; (b) axial strain development.

5.18, show that SANISAND-SMf is capable of capturing the effects of different initial densities

and mean stresses.
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Figure 5.18: SANISAND-MSf model performance in simulating effect of initial pressure p0 on

isotropically consolidated samples of Karlsruhe fine sand with Dr ≈ 65% and CSR = 0.125: (a) pore

pressure generation; (b) axial strain development.

5.7 Conclusions

The new SANISAND-MSf constitutive model for sands is formulated by introducing minor and

major modifications into the DM04 model platform by Dafalias and Manzari (2004). The minor

modification consists of two parts, one that improves the accuracy of the non-associative flow rule

and a second that improves the cyclic shear stress-strain loops shifting under cyclic triaxial

loading by introducing a simple Lode angle dependence. The major modification has also two
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parts, incorporating two new constitutive ingredients. The first is a back-stress ratio-based

memory surface (MS), which is a drastic modification of the original idea proposed by Corti et al.

(2016) and adjusted by Liu et al. (2019) to align with the DM04 model. The role of the MS is to

increase the stiffness for back-stress ratios within it, in order to better simulate the stress paths for

undrained cyclic shear tests in the pre-liquefaction stage. Compared to the foregoing references,

the present MS ingredient addresses several important issues, among them a size of zero initial

value, greater simplicity and generality of its evolution and the avoidance of singularity occurring

by possible zeroing of a denominator in the formulation. The second constitutive ingredient is the

concept of semifluidized state for very low effective stresses, Barrero et al. (2020), within which

strong stiffness and dilatancy degradation is described by means of an evolving state variable

named Strain Liquefaction Factor (SLF), that can simulate large shear strain development in

post-liquefaction stage without affecting the response in the pre-liquefaction stage. The

SANISAND-MSf model is validated against two experimental databases, i.e., four undrained

cyclic torsional tests and three undrained cyclic triaxial tests. The simulations of undrained stress

path, stress-strain loops, excess pore pressure generation and shear strain development versus

number of cycles, are successfully compared with the experimental data. Furthermore, and unlike

other models, such simulation is successful separately for the pre- and post-liquefaction stages.

The corresponding strength curves of CSR versus number of cycles to initial liquefaction, the

latter defined in terms of both ru-based and shear strain-based criteria, show very satisfactory

comparisons with data, thus removing a simulation shortcoming of the reference base DM04

model. The constitutive ingredients of memory surface and semifluidized state have generic value

and can be incorporate in other similar to DM04 model, such as the zero elastic range model

developed and implemented by Dafalias and Taiebat (2016) and Petalas and Dafalias (2019), with

appropriate adjustments. It is also expected that the model will perform satisfactorily under

drained cyclic conditions as shown for similar formulations by Corti et al. (2016) and Liu et al.

(2019), and this will be addressed in future works. Simulations under undrained cyclic loading

remain though the most useful and difficult to achieve, and it is believed that the present work has

contributed positively in this endeavour. With such satisfactory performance in simulating

unidirectional cyclic shear tests, the next step is to conduct a systematic evaluation of

SANISAND-MSf with respect to multidirectional cyclic shear tests (Yang et al., 2019), where

effects of initial static bias and different cyclic shear paths are considered.

The present model is void of two common theoretical shortcomings with practical implications,

encountered in other constitutive models with similar simulative capabilities. First, it does not

use quantities like cumulative shear strain or cumulative fabric dependent quantity to describe

stiffness degradation, which remain in the model affecting unduly subsequent loading simulations.

Instead, the Strain Liquefaction Factor is introduced within the concept of semi fluidized state, that
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promptly fades away upon drainage following the cyclic loading. Second, it does not introduce

initial loading conditions, such as CSR or the initial value p0 of p, into the constitutive relations;

models which do, fall into the trap that any intermediate state can be virtually considered as initial

loading state, by means of a stop-and-start again loading event, thus, adversely modifying the

subsequent response for what is essentially the same loading process. Instead, only updatable

values of internal variables at the initiation of any new plastic loading process are used, such as

ααα in, and it was shown that the model is capable of capturing the effect of different initial conditions

on density and mean pressure.

Thermodynamic compatibility in the sense of positive dissipation (positive entropy production)

is a desired feature not always addressed in inelastic constitutive modeling works, as in the present

one. One way this can be achieved requires the making of sufficient but not necessary hypotheses

about the structure of free energy dependence on internal variables that eventually may impose

restrictions on the constant entering the evolution rate equations of such internal variables. In the

case of kinematic hardening internal variables, a basic feature of the present model family, there

is a standard approach that can be found in Feigenbaum and Dafalias (2008) for metals which,

however, will require adjustments to accommodate the dilatancy feature for soils that does not

exist in metals. An effort in this direction will be undertaken in the future.
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Chapter 6: Evaluation of SANISAND-MSf in Simulating Multidirectional

Cyclic Shear Tests

In this chapter, the SANISAND-MSf model developed in Chapter 5 is applied to simulate

multidirectional cyclic shear tests for the evaluation. This chapter inherits the general structure

from the paper co-authored with Gaziz Seidalinov and Mahdi Taiebat, which was published in

Soil Dynamics and Earthquake Engineering (Yang et al., 2019). The main modification is

replacing the original sand constitutive model DM04 (Dafalias and Manzari, 2004) with

SANISAND-MSf, along with updating the corresponding simulation results.

6.1 Introduction

In recent decades, the destructive nature of earthquakes on constructed facilities has led to

extensive research focused on the dynamic properties of soil. Simple shear test has been chosen

as a close configuration to model the plane strain condition and the rotation of principal stress

axes in soil (Boulanger et al., 1993). With or without an offset static shear stress in the same

direction as the cyclic shear stress, this unidirectional shear mode can be used to replicate the

response of soil subjected to one-dimensional propagation of shear waves. In the field, however,

shear wave propagation is multidirectional. Even if the vertical component of the seismic loading

is neglected, there exist two horizontal shear components as depicted in Figure 6.1(a), and

neglecting one of them can potentially lead to underestimation of seismic demand. To mimic the

response of soil element under level or sloping grounds, when subjected to multidirectional cyclic

shearing, a number of more sophisticated devices for simulating the multidirectional cyclic

shearing have been established, developed and refined over the years (Ishihara and Yamazaki,

1980; Boulanger et al., 1993; Kammerer et al., 2002; Matsuda et al., 2011; Sun, 2019). These

apparatuses are very useful in generating a comprehensive experimental database for evaluation

of various constitutive models in such complex loadings.

The soil sample in a multidirectional cyclic shear test goes through two loading stages. The

first one, referred to as consolidation stage, is to reproduce the corresponding in situ state of soil

consolidated under level or sloping grounds as shown in Figure 6.1(a). For modeling the initial
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Figure 6.1: Multidirectional properties of seismic loading in real field: (a) seismic loading, (b)

consolidation stage, (c) cyclic shearing stage, (d) element in experimental tests, and (e) stress-strain

relationship.

condition of soil under a level ground (away from a slope), a soil element is consolidated

vertically with the lateral normal strains constrained; this is typically referred to as K0 condition.

For the soil element under the sloping ground, in addition to the above K0 consolidation, an offset

consolidation shear stress τc perpendicular to the strike direction of the slope is also exerted on

the element, as depicted in Figure 6.1(b) with blue dashed arrow; this is referred to as anisotropic

consolidation and denoted as Kα condition. Here α = τ/σ ′
vc is the normalized magnitude of the

offset consolidation shear stress, i.e., the ratio of τ and initial effective vertical stress σ ′
vc applied

on the top plane of the element. A good equivalent interpretation of the ratio α is static stress

ratio (SSR) (Yang and Pan, 2017), analogous to the widely-used notation cyclic stress ratio (CSR)

used to represent the normalized magnitude of cyclic shearing. It should be noted that this Kα

only defines the aforementioned anisotropic consolidation condition, different from the

well-known Kα correction used in liquefaction triggering analysis. A simpler case of initial

condition for the first loading stage, but perhaps less realistic in the nature, is isotropic

consolidation of the sample set-ups of Ishihara and Yamazaki (1980) and Ishihara and Nagase

(1988). Accounting for all these possibilities in laboratory tests, there are three kinds of

consolidation stages depending on whether the specimen is consolidated under isotropic, K0 or

Kα conditions, and these conditions are denoted by CI, CK0 and CKα , respectively. Among these

stages, only CKα would result in non-zero SSR.

The second loading stage is referred to as cyclic shearing stage. During seismic excitation

on level or sloping grounds, the vertically propagating shear waves within the soil profile induce
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irregular dynamic shearing in soil. This irregular shear loading may be simplified by introducing an

equivalent time history of harmonic shearing, denoted by τcyc(t). Similar to the irregular dynamic

loading, τcyc(t) can change in both magnitude and orientation. With the coordinate system shown

in Figure 6.1(a), i.e., the x-axis along the strike direction of the slope, the y-axis perpendicular to

that and along the slope projection on the horizontal plane, and the z-axis being vertical, the τcyc(t)

can be resolved into two orthogonal components, τcyc,x and τcyc,y, as depicted in Figure 6.1(c).

After the initial consolidation stage shown in Figure 6.1(b), the cyclic shear paths from the two

orthogonal cyclic shear components are to be applied in the element test as shown in Figure 6.1(c).

It should be noted that for this stage of element test, a stress controlled input is used in most of the

available multidirectional cyclic shear test devices, except the ones by Matsuda et al. (2011) where

the input path is strain controlled.

Majority of the laboratory element tests are performed under either drained or undrained

conditions. The rapid nature of seismic excitation does not allow enough time for dissipation of

pore pressure in the in situ state of soil, thereby requiring that laboratory tests be performed under

undrained conditions to mimic the idealized field condition. To the authors’ knowledge, almost all

the multidirectional cyclic shear tests in the literature are carried out in undrained condition.

Assuming a fully saturated condition and a nearly incompressible response for both water and

solid grains of soil, to model the undrained condition the volume of the specimen should be kept

constant during the cyclic shearing stage. With the lateral normal strains constrained, a constant

volume condition can be achieved either by keeping the height of the dry specimen (h0) constant

(“constant height” test) or by closing the drainage valve of the saturated specimen (“truly

undrained” test). The former manner is very common in simple shear testing where the top face

of the specimen is only allowed to deform along one shear direction while the latter one is

adopted in the multidirectional cyclic shearing test where the top face can move with variable

shear directions as shown in Figure 6.1(d) with shadows referring to the deforming directions.

More details about the equivalence of the “constant height” and “truly undrained” simple shear

tests are presented in Dyvik et al. (1987). Note that the state reflected in Figure 6.1(d) should be

referred to as “multidirectional cyclic shear” instead of “multidirectional cyclic simple shear” as

sometimes seen in the literature, because the typical adjective “simple” implies plane strain

condition, which does not apply to the multidirectional cyclic shearing (Yang et al., 2016). There

are known concerns and limitations common between the simple shear and multidirectional cyclic

shear tests, mainly related to the non-uniformity of stresses and strains, and equalization of pore

pressures. One should keep in mind these limitations when judging the results obtained from

these tests.

Given the well-established laboratory experimental database of multidirectional cyclic shear

tests, this chapter is focused on evaluation of the SANISAND-MSf model in simulating these
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tests. One can refer to Chapter 5 for details of this constitutive model, which is not repeated here

for brevity. First, an overall experimental database of multidirectional cyclic shear tests available

in the literature are summarized and presented, followed by details about the selected experiments

to be simulated in this chapter. Calibration of SANISAND-MSf model is presented mainly based

on cyclic simple shear tests, which enhances the capabilities of the constitutive model in

capturing response of sand subjected to conventional loading conditions. The corresponding

model simulations for multidirectional cyclic shear tests are presented and compared with the

experimental results afterwards. Discussion about the performance of SANISAND-MSf in the so

called neutral loading paths, very common in majority of elastoplasticity models, is presented at

the end.

6.2 Multidirectional cyclic testing data

6.2.1 Available experimental database

Based on the offset shear applied during the consolidation stage of the multidirectional cyclic

shear test in combination with the amplitudes, frequencies, and phase angle differences of the two

harmonic cyclic shear components applied during the shearing stage, different types of shearing

paths can be generated from this test. Eight types of such multidirectional cyclic shear tests, all

available in the literature, are presented in the space of the shear components of stress or strain in

Figure 6.2. In this figure, point O represents zero shear stress or strain states prior to the initial

consolidation stage. Point C along the x-direction shows the state of the sample after the CI, CK0,

or CKα consolidation stage, represented in blue; at this stage the normalized magnitude of the

offset consolidation shear stress is given in terms of static stress ratio, SSRx. Various undrained

cyclic shear stress or strain paths are presented in red, for which the normalized magnitudes of

the cyclic shear stresses along the x and y directions are given in terms of cyclic stress ratios,

CSRx and CSRy. Yang et al. (2016) have elaborated how these shearing paths can be produced

based on the mathematical expressions of the two shear components in the top plane of the sample.

Some general information about the related available tests in the literature on clays and sands are

summarized in Table 6.1.

The 1-D linear path, as shown in Figure 6.2(a), is the traditional unidirectional cyclic simple

shear test), which may also include an initial offset shear stress in the same direction as the

subsequent undrained cyclic shearing. This type of tests has been conducted by many researchers

on different types of soil, and there is a wealth of data available, such as Boulanger et al. (1991);

Kammerer et al. (2002); Sun (2019) presented in Table 6.1. When the undrained cyclic shearing

is applied perpendicular to the direction of initial offset shear stress, the shearing path is denoted
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Figure 6.2: Cyclic shearing paths summarized in Yang et al. (2016) during cyclic shearing stage: (a) 1-D

linear path, (b) 2-D linear path, (c) circular/oval path, (d) figure-8 type A path, (e) figure-8 type B path,

(f) rotated oval path, (g) alternate path, and (h) sector path.

Table 6.1: Experimental database for multidirectional cyclic shear tests on sands.

Shearing path Initial state Material Source

1-D linear path CKα Sacramento River sand Boulanger et al. (1991)

Monterey No. 0/30 sand Kammerer et al. (2002)

Hostun S28 sand Sun (2019)

2-D linear path CKα Sacramento River sand Boulanger et al. (1991)

Monterey No. 0/30 sand Kammerer et al. (2002)

Hostun S28 sand Sun (2019)

circular/oval path CI Fuji River sand Ishihara and Yamazaki (1980)

CK0 Monterey No. 0/30 sand Kammerer et al. (2002)

Hostun S28 sand Sun (2019)

CKα Monterey No. 0/30 sand Kammerer et al. (2002)

figure-8 type A path CK0 Monterey No. 0/30 sand Kammerer et al. (2002)

Hostun S28 sand Sun (2019)

CKα Monterey No. 0/30 sand Kammerer et al. (2002)

figure-8 type B path CK0 Monterey No. 0/30 sand Kammerer et al. (2002)

CKα Monterey No. 0/30 sand Kammerer et al. (2002)

rotated oval path CK0 Toyoura sand Matsuda et al. (2011)

GBFS Matsuda et al. (2011)

alternate path CI Fuji River sand Ishihara and Yamazaki (1980)

sector path CK0 North Sea sand Rudolph et al. (2014)

irregular path CI Fuji River sand Ishihara and Nagase (1988)
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by 2-D linear path, as shown in Figure 6.2(b). This type of shearing dates back to Boulanger et al.

(1991) on Sacramento River sand and later was adopted by Kammerer et al. (2002) on Monterey

No. 0/30 sand and Sun (2019) on Hostun S28 sand.

Circular/oval path in Figure 6.2(c) is first reported by Ishihara and Yamazaki (1980) on Fuji

River sand sample under CI condition. Later, such path was applied on Monterey No. 0/30

sand (Kammerer et al., 2002) under CK0 and CKα conditions, and Hostun S28 sand (Sun, 2019)

under CK0 condition. Figure-8 type A and figure-8 type-B are two non-trivial shearing paths, as

shown in Figures 6.2(d) and (e), respectively. They are first reported in the experiments on

Monterey No. 0/30 sand (Kammerer et al., 2002) and Sun (2019) also applied Figure-8 type A to

CK0 samples of Hostun S28 sand. Figure 6.2(f) shows another non-trivial path named rotated

oval as used by Matsuda et al. (2011) on Toyoura sand GBFS. Experiments with the so-called

alternate path shown in Figure 6.2(g) are reported by Ishihara and Yamazaki (1980) on Fuji River

sand under CI condition. Finally Figure 6.2(h) presents a case where only the orientation of the

planar shear stress magnitude continuously changes. This type of shearing has been adopted on

North Sea sand (Rudolph et al., 2014) under CK0 condition.

Aside from these, Ishihara and Nagase (1988) have reported applying the reproduced shearing

paths from real earthquakes on Fuji River sand specimen under CI condition, as listed in Table 6.1.

There are also some other complex paths such as half-circular/oval path and cropped figure-8 path

in Kammerer et al. (2002), which for brevity are not illustrated in Figure 6.2 or listed in Table 6.1.

6.2.2 Experimental tests for this study

From the described types of shearing paths, Table 6.1 includes one relatively rich group of

multidirectional cyclic shear tests on Monterey No. 0/30 sand from Kammerer et al. (2002). This

group of laboratory tests appears to be suitable for the performance evaluation of various

constitutive models for multidirectional cyclic shearing of sand. Particularly this database has

been shared publicly by the authors where they provide all the experimental data online, from

which such an evaluation study benefits extensively.

Details of all the multidirectional cyclic shear tests to be simulated in this study are listed in

Table 6.2. The first seven 1-D linear tests with zero SSRx from Wu (2002) are used for calibration

of the constitutive model. The laboratory tests used for evaluation of the model consist of two 1-D

linear tests with nonzero SSRx, two 2-D linear tests, three circular/oval tests and three figure-8

tests. It should be noted that the three tests for both circular/oval and figure-8 paths have nearly

zero, medium and large SSRx, respectively while the SSRy is relatively small. To numerically

replicate the initial state of each sample, at least the initial void ratio ein and the initial stress state

prior to cyclic shearing stage are required for each case. All of these tests are carried out under
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Table 6.2: Simulated experimental tests on Monterey No. 0/30 sand.

Test type Test # ein (−)
Consolidation stage Shearing stage

σ ′
vc (kPa) SSRx (−) SSRy (−) CSRx (−) CSRy (−)

1-D linear Ms15j∗ 0.699 95.00 0.195

Ms16j∗ 0.682 85.00 0.166

Ms19j∗ 0.696 80.00 0.323

Ms25j∗ 0.692 85.00 0.339

Ms28j∗ 0.692 85.00 0.247

Ms59j∗ 0.685 98.00 0.223

Ms79j∗ 0.679 79.00 0.233

Ms66cyck 0.617 73.24 0.290 0.510

Ms67cyck 0.579 77.65 0.150 0.480

2-D linear Ms20cyck 0.665 76.75 0.101 0.234

Ms61cyck 0.668 82.58 0.141 0.254

Circular/oval Ms44cyck 0.651 84.52 0.025 0.007 0.232 0.397

Ms35cyck 0.655 87.91 0.094 0.030 0.233 0.118

Ms59cyck 0.696 54.66 0.216 0.009 0.192 0.376

Figure-8 Ms42cyck 0.672 90.75 -0.003 0.030 0.203 0.392

Ms38cyck 0.668 88.11 0.086 0.024 0.227 0.118

Ms51cyck 0.668 83.49 0.225 0.000 0.439 0.220
∗ tests from Wu (2002) for calibration of the constitutive model.

either CK0 or CKα condition. In the initial consolidation stage, as the soil specimen is consolidated

with lateral normal strains constrained, the initial consolidation effective vertical stress is denoted

by σ ′
vc and the normalized magnitude of initial offset shear stress along the x-direction is denoted

by SSRx. In order to simulate the experiments more accurately, in some cases a small value of

SSRy is also considered as reported in Table 6.2. For cyclic shearing stage, the quantities of CSR

along the x and y directions, and the number of loading cycles are listed in the table.

6.3 Calibration of SANISAND-MSf

The SANISAND-MSf model is calibrated using experimental data of Monterey sand Wu (2002);

Kammerer et al. (2002). The calibration process is briefly discussed in this section, with emphases

on the parameters responsible for cyclic loading simulations.

The Monterey No. 0/30 sand database used in this study comes from a testing program at

the University of California, Berkeley (Wu, 2002; Kammerer et al., 2002). To calibrate the model

constants of SANISAND-MSf, both monotonic and cyclic tests are required. The above reference

database however only includes unidirectional and multidirectional cyclic shear tests. Although
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the Monterey No. 0/30 sand was also used as the standard laboratory testing sand at the University

of Colorado, Boulder (Horita, 1985; Chen, 1988), it has been reported by Wu (2002) that this

type of Monterey No. 0/30 sand at the University of Colorado is substantially different from

the sand at the University of California, Berkeley. In view of unavailability of monotonic tests

on Monterey No. 0/30 sand, undrained monotonic triaxial tests on Monterey No. 0 sand from

Riemer (1992) are chosen for the calibration because both materials show the similarity in the

respective gradation curves (Wu, 2002). In this case, most of the model constants except ones

of fabric dilatancy, memory surface and semifluidized state, which are pertinent to cyclic loading

simulations, are calibrated based on Monterey No. 0 sand. For calibration of the other model

constants unidirectional cyclic shear tests from Wu (2002) on Monterey No. 0/30 sand are used.

The SANISAND-MSf model requires the calibration of 21 model constants, divided into three

groups. The first group consists of 16 constants inherited from DM04 (Dafalias and Manzari,

2004) and details of their calibrations can be found in Taiebat et al. (2010). Based on the small

strain domain of the deviatoric stress and axial strain curves provided in Riemer (1992), from

several monotonic triaxial compression tests, an initial estimate is made for the the shear modulus

coefficient G0. From the critical state information of monotonic triaxial compression tests, the

model constants related to the critical state line (CSL) are determined by curve fitting, and then

tuned a little according to Wang and Ma (2019). Some other model parameter are typically found

by a trial-and-error procedure for matching certain aspects of stress-strain response; e.g., ν , m, nd,

A′
0, nb, h0 and ch are determined from monotonic loading, and zmax and cz from cyclic loading.

In the present study, given the considerable size of experimental database, instead of using the

inefficient trial-and-error procedure, an optimization algorithm suggested by Liu et al. (2016) is

used for faster and better calibration of these model parameters. With the CSL parameters fixed

and an initial guess on G0, plus reasonable guesses on the initial value and bounds of the other

model parameters except the ones related to cyclic test, three undrained triaxial compression tests

are chosen to build the objective function. Later, cz and zmax are determined by trial and error

procedure on dozens of cyclic simple shear tests from Wu (2002).

The second group is related to memory surface, which controls the pace of pore pressure

generation. According to the seven undrained cyclic simple shear tests in Table 6.2, one can

estimate the liquefaction strength curve with initial liquefaction referring to ru = 0.95. The

simulated liquefaction strength curve is allowed to match the experimental one by tuning the

model constants µ0 and u, where µ0 affects the position while u affects both the position and the

slope.

The last group of model constants related to semifluidized state requires determination of x

and cℓ for capturing post-liquefaction shear strain development. The following procedure is

recommended: (1) keep cℓ, and vary x to capture the general trend of shear strain development;
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(2) tune cℓ for local revision of this general trend towards a better match for each cycle.

The complete list of the calibrated model constants is given in Table 6.3. An example of the

Table 6.3: Model constants of SANISAND-MSf for Monterey No. 0/30 sand

Model constants Symbol Value

Elasticity G0 101

ν 0.04

CSL M 1.32

c 0.718

eref
c 0.900

λc 0.03

ξ 0.7
Yield surface m 0.01

Dilatancy nd 2.0
A′

0 0.213

ng 0.9
Kinematic nb 0.80

Hardening h′0 7.93

ch 1.14

Fabric-dilatancy zmax 25

cz 1000

Memory surface µ0 4.08

u 2.6
Semifluidized state cl 20

x 2.5

results of the calibration procedure on cyclic simple shear test is presented in Figure 6.3, including

stress path, stress strain response, pore pressure generation and shear strain development. One

can observe an overall satisfying comparison between experiment and simulation. In addition,

Figure 6.4 displays the liquefaction strength curve with initial liquefaction defined by the first

time that the double amplitude of shear strain reaches 6.0%, summarizing simulation results of all

the seven undrained cyclic simple shear tests. The solid lines are fitted according to the function

CSR = aNb
IL where a and b are parameters to be determined. Despite certain mismatch for some

comparisons, generally, this calibration is trustworthy.

For the above mentioned cyclic loading scenarios on Monterey sand and the subsequent

multidirectional simulations presented in the next section, the initial conditions considered for the

numerical simulations are that of the end of the consolidation stage from the experiments. In

other words, the initial consolidation stage is not simulated by SANISAND-MSf. This is partly

because it is usually difficult to obtain the sample information such as the void ratio prior to the

initial consolidation stage. In addition SANISAND-MSf does not consider effects from the initial
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Figure 6.3: SANISAND-MSf simulation versus experiment in undrained cyclic simple shear test on CK0

sample of Monterey No. 0/30 sand with Dr = 58% and σ ′
vc = 98 kPa under a CSR of 0.223: (a) experiment

from Wu (2002) and (b) simulation.
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Figure 6.4: Cyclic liquefaction strength curve on CK0 samples of Monterey No. 0/30 sand with Dr ≈ 60%

and σ ′
vc ≈ 80 kPa: experimental data from Wu (2002).

fabric, so there is not much point in trying to simulate the sample state during the consolidation

stage. As the lateral normal stresses are not measured in the experiments, to account for the initial

CK0 and CKα conditions an assumption is made that both initial lateral normal stresses are equal

to half of the initial effective vertical stress σ ′
vc , i.e., K0 = 0.5 for both types of samples.

6.4 Simulation results for multidirectional cyclic loading

Based on the parameters calibrated in the previous section, the SANISAND-MSf model is used

here for illustration of its simulative capabilities according to simulation results of ten related

multidirectional cyclic shear tests. The simulated cyclic shear paths include 1-D and 2-D linear,

circular/oval, and figure-8. From the large number of tests that are simulated, detailed results

are presented for only selected ones. Then selected aspects are the results for all of the tests are

summarized at the end.

Some of the presented results are in terms of shear strain magnitude γ =
√

γ2
x + γ2

y . Of course

in the 1-D linear path, it yields γ = |γx| due to the absence of the γy component and instead γ = γx

is widely used by removing the operator of absolute value. In the presentation of the selected

complete sets of the results two layouts are considered, each consisting of four subplots.

(i) For 1-D linear paths, normalized stress path (τ/σ ′
vc against σ ′

v/σ ′
vc), and stress-strain path

(τ/σ ′
vc against γ) are plotted as the top two subplots of the layout. Accumulation of pore

pressure ratio with number of cycles (ru against N) and development of shear strain

magnitude with number of cycles (γ against N) are plotted as the bottom two subplots of the

layout.
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(ii) For 2-D linear, circular/oval and figure-8 paths, normalized shear stress path (τy/σ ′
vc against

τx/σ ′
vc), and shear strain path (γy against γx) are plotted as the top two subplots of the layout.

The bottom two subplots of this layout are same as those used for 1-D and 2-D linear paths.

The layout of the summary plots consists of accumulation of pore pressure ratio with number

of cycles (ru versus N), and development of shear strains with number of cycles (γx and γy versus

N).

Simulations against experiment results for Monterey No. 0/30 are provided next. The tests

include two 1-D linear, two 2-D linear, three circular/oval, and three figure-8 shear paths.

6.4.1 1-D and 2-D linear stress paths

A complete set of simulation results for a 1-D linear path test Ms67cyck with initial static shear

stress is presented in Figure 6.5. The model captures the contractive and dilative parts of various

cycles, and with a slightly faster pace than the experiment it reaches the non-symmetric “butterfly”

stress orbit where it better captures the cycles of excess pore pressure variation. In terms of shear

strains development, the simulated stress-strain curve tends to shift along the initial static shear

stress direction with a bit smaller amplitude of oscillation than those in the experiment. It appears

that in the reverse loading cycles toward decreasing of shear stress, the model does not generate

as much reversal strain as those observed in the experiment, and this is why the strain path tends

toward the positive shear strain direction.

Comparison between experiments and simulation results for the two selected 1-D linear tests

is summarized in Figure 6.6, including results of Ms66cyck and Ms67cyck. Simulations of pore

water pressure are in acceptable agreement with the experiments in terms of both accumulation and

oscillation, while simulations of shear strain γx overestimate the observed pace of accumulation

from the experiments for the two CSRs.

A complete set of simulation results for a 2-D linear test Ms61cyck is shown in Figure 6.7. The

model is successful in simulating the trend of pore pressure accumulation, despite a bit faster pace

than the experiments in the beginning of the cyclic loading. Given the shear stress path shown in

this figure, the simulated shear strain orbit reveals that the model behaves softer than the experiment

along the initial static shear stress direction. Note that, with x and y referring to the intended

slope dip and strike directions, respectively, this type of loading can be seen as a problem that an

element of soil under a slope (hence under initial shearing in the slope dip direction) is subjected

to an unidirectional earthquake along the slope strike direction. Similar to the experiment, the

simulation indicates that accumulation of considerable shear strain should be expected along the

slope dip direction, and it is insightful that the model captures this phenomenon. According to

the relation of total shear strain γ and the number of cycles N, the model could not simulate the
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Figure 6.5: SANISAND-MSf simulation versus experiments in 1-D linear multidirectional cyclic shear

test Ms67cyck on Monterey No. 0/30 sand: (a) experiment from Kammerer et al. (2002) and (b)

simulation.
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Figure 6.6: SANISAND-MSf simulations versus experiments in 1-D linear multidirectional cyclic shear

tests on Monterey No. 0/30 sand: (a) experiments from Kammerer et al. (2002) and (b) simulations.

convex trend (implying a shakedown in development of γ), revealing further improvement in either

calibration or modification of the constitutive model.

Comparison between experiments and simulation results for 2-D linear tests is summarized

in Figure 6.8, including results of Ms20cyck and Ms61cyck. Simulations of pore pressure are

in good agreement with the experiments in terms of the accumulation, but with slightly smaller

oscillation magnitudes in each cycle. One may notice the simulated pace of ru for the two tests

is different from the experiments. According to Table 6.2, both tests have a similar initial void

ratio but Ms61cyck has a higher SSRx and CSRy than Ms20cyck. Thus one may expect a faster

development of ru for Ms61cyck, not reflected by the experiments. It is likely that the simulations

are more convincing. For the shear strain along the initial static shear stress direction γx, the

average trend of the simulations is good but the model behaves softer than the experiment. In

particular, after the first few cycles, the model seems to exhibit a nearly constant shear stiffness

for all subsequent cycles, while in the experiment the stiffness appears to have an increasing trend

with the number of cycles. From those two experiments, it is easy to assert that the mobilized

maximum pore pressure ratio does not reach beyond 0.8 but the accumulated shear strain can go

beyond 10%. This contradicts a very common assumption that large deformation is usually induced

by liquefaction with pore pressure ratio of around 1.0.

133



−0.4 −0.2 0.0 0.2 0.4

τx/σ
′
vc (−)

−0.4

−0.2

0.0

0.2

0.4

τ y
/σ

′ v
c

(−
)

−20 −10 0 10 20

γx (%)

−20

−10

0

10

20

γ
y

(%
)

1.0 0.8 0.6 0.4 0.2 0.0

ru (−)

0

10

20

30

40

50

N
(−

)

0 5 10 15 20

γ (%)

0

10

20

30

40

50

N
(−

)

(a)

−0.4 −0.2 0.0 0.2 0.4

τx/σ
′
vc (−)

−0.4

−0.2

0.0

0.2

0.4

τ y
/σ

′ v
c

(−
)

−20 −10 0 10 20

γx (%)

−20

−10

0

10

20

γ
y

(%
)

1.0 0.8 0.6 0.4 0.2 0.0

ru (−)

0

10

20

30

40

50

N
(−

)

0 5 10 15 20

γ (%)

0

10

20

30

40

50

N
(−

)

(b)

Figure 6.7: SANISAND-MSf simulation versus experiments in 2-D linear multidirectional cyclic shear

test Ms61cyck on Monterey No. 0/30 sand: (a) experiment from Kammerer et al. (2002) and (b)

simulation.
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Figure 6.8: SANISAND-MSf simulations versus experiments in 2-D linear multidirectional cyclic shear

tests on Monterey No. 0/30 sand: (a) experiments from Kammerer et al. (2002) and (b) simulations.

6.4.2 Circular/oval stress path

A complete set of simulation results for a circular/oval test Ms35cyck with a medium SSRx is

presented in Figure 6.9. The model still performs very well in capturing pore pressure

accumulation. The simulated strain orbit of γy versus γx seems to deviate noticeably from the

experiment as it only shifts along y direction rather than expands gradually. One can argue that

this may share the same reason with the 1-D linear case in Figure 6.5 where the shear strain is not

able to expand on both shearing directions. The constitutive ingredient of semifluidized state is

helpful to increase the shear strain amplitude in Figure 6.5 at the instance of the sample falling

into states of low effective stresses. However, it does not contribute to expanding the strain orbit

of Figure 6.9 as the sample does not enter semifluidized state, i.e., ru is not getting close to 1.

Nevertheless, careful examination of the resultant strain shows that the model captures well the

average shear strain in each cycle, implying the model deals with the effect of SSRx properly. But

the main problem here is missing the magnitude of the oscillations in each loading cycle.

Experiments and simulation results for circular/oval multidirectional cyclic shear tests are

summarized in Figure 6.10, including results of Ms44cyck, Ms35cyck, and Ms59cyck. Model

simulations of accumulation of pore pressure are quite similar to those observed in the

experiments, with slight under-prediction of the magnitude of the oscillations. As for two shear
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Figure 6.9: SANISAND-MSf simulation versus experiment in circular/oval multidirectional cyclic shear

test Ms35cyck on Monterey No. 0/30 sand: (a) experiment from Kammerer et al. (2002) and (b)

simulation.
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strains of γx and γy, the model exhibits very good qualitative simulations on the development

trend, but missing the amplitude of the cycles as observed and discussed before. Roughly

speaking, for the element test with a small SSR, i.e., Ms44cyck, the simulated strain path tends to

stay around zero while the experiment produces shear strains oscillating around 0% and

increasing in magnitude up to about 10% for γx with the number of cycles. For the element test

with a medium SSRx, i.e., Ms35cyck, shear strains can develop and accumulate to larger values.

0 5 10 15 20 25

N (−)

−0.5

0.0

0.5

1.0

r u
(−

)

Ms44cyck

Ms35cyck

Ms59cyck

0 5 10 15 20 25

N (−)

−0.5

0.0

0.5

1.0

r u
(−

)

0 5 10 15 20 25

N (−)

−30

−20

−10

0

10

20

30

γ
x

(%
)

0 5 10 15 20 25

N (−)

−30

−20

−10

0

10

20

30

γ
x

(%
)

0 5 10 15 20 25

N (−)

−30

−20

−10

0

10

20

30

γ
y

(%
)

(a)

0 5 10 15 20 25

N (−)

−30

−20

−10

0

10

20

30

γ
y

(%
)

(b)

Figure 6.10: SANISAND-MSf simulations versus experiments in circular/oval multidirectional cyclic

shear tests on Monterey No. 0/30 sand: (a) experiments from Kammerer et al. (2002) and (b) simulations.
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6.4.3 Figure-8 stress path

A complete set of simulation results for a figure-8 test Ms42cyck with a small SSRx is presented in

Figure 6.11. The results of the model simulation with respect to the reported experiments, in terms

of both pore pressure and shear strains show similar trends as those observed in the oval stress path

of Figure 6.9. Although the applied shear path is close to be symmetric with respect to τx = 0, the

strain orbits of both experiment and simulation tend to evolve along the positive γx side. Here the

simulation presents a higher development pace of γx and does not reflect the continuous increasing

amplitude of γy. The general trend of the average response in terms of pore pressure is properly

captured by the model, despite the faster accumulation pace in the first several cycles. In addition,

the model overestimates the development pace of the resultant shear strain due to the simulated

overfast γx, and the oscillation magnitudes in each cycle are not properly captured either.

Experiments and simulation results for figure-8 multidirectional cyclic shear test are

summarized in Figure 6.12, including results of Ms42cyck, Ms38cyck, and Ms51cyck. The whole

picture tells a similar story to circular/oval path in Figure 6.12. The model performs very well in

simulating the average trend of the pore pressure generations. As for shear strain accumulation,

the model tends to predict the general trend well despite certain mismatch. The key part is that

simulations of Ms42cyck, Ms38cyck and Ms51cyck could not produce the oscillations with large

amplitude. For the test with nearly zero SSRx, i.e., Ms42cyck, the sample may fall into the

semifluidized state, where considerable shear strain change corresponding to these oscillations

can be simulated. However, given the level of shear strain in the experiments larger than 10%, it

may be a bit demanding for the feature of semifluidized state mainly developed based on

observations of cyclic simple shear tests where the deformation level is usually less than 10%. For

the tests with noticeable SSRx, the existence of SSRx can drive the sample to deform largely, but

how to capture the magnitudes well on the shear plane is still challenging.

6.4.4 Accumulated pore pressure ratio and shear strains

The SANISAND-MSf model was evaluated in modeling multidirectional cyclic shear tests on

Monterey No. 0/30 sand. The shearing paths examined include 1-D and 2-D linear, circular/oval

and figure-8. The total of ten experiments examined reveal a lot of information about the

complexity of the material response and the capabilities and limitations of the model. A

summarized comparison of the simulated and measured response for these ten tests are presented

in Figure 6.13, which is conducted by selecting a state in the cyclic shearing history. Here for

each case, the comparison is made at the end of the 10th cycle as shown in the legend of this

figure. The results at the end of selected cycles are compared in terms of pore pressure ratio and

shear strains γx and γy. The horizontal and vertical axes of each plot represent values from the
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Figure 6.11: SANISAND-MSf simulation versus experiment in figure-8 multidirectional cyclic shear test

Ms42cyck on Monterey No. 0/30 sand: (a) experiment from Kammerer et al. (2002) and (b) simulation.
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Figure 6.12: SANISAND-MSf simulations versus experiments in figure-8 multidirectional cyclic shear

tests on Monterey No. 0/30 sand: (a) experiments from Kammerer et al. (2002) and (b) simulations.

experiments and simulations, respectively, with the diagonal dashed line representing the ideal

situation of perfect match between the experimental and simulation results. This method of

comparing the experiments as simulations at the end of selected loading cycles does not reveal

many detailed aspects of the cyclic response; yet it is a way of getting an overall comparison in

dealing with this extensive amount of information.

From Figure 6.13, the model simulates pore pressure ratio in good agreement with the

experiments. The accumulated γx values are well simulated except for the 1-D linear tests

Ms66cyck and Ms67cyck, figure-8 tests Ms42cyck and Ms51cyck where the model response is

too soft. It should be noted that the simulated γx of Ms66cyck, Ms42cyck and Ms51cyck is larger

than 20%, outside the scope of Figure 6.13(b) and here they are placed near the positive limit of
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the simulated γx for illustration. The accumulated γy values are scattered along 1 : 1 line but show

the good trend except Ms42cyck. Note that almost all the related points are located in the first and

third quarters of the plot, which means that simulation results share the same sign with the

experiments.
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Figure 6.13: Simulations versus experiments of (a) pore pressure ratio ru, (b) shear strain γx and (c) shear

strain γy at the selected points of loading for different types of multidirectional cyclic shear tests on

Monterey No. 0/30 sand (points close to 1 : 1 line suggests that the corresponding simulation result is

close to experiment and vice versa for the points away from 1 : 1 line).
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6.5 Evaluating the proximity to neutral loading

In an attempt of revealing potential shortcoming in the models, an investigation is conducted next

on the proximity of SANISAND-MSf to the neutral loading when simulating these tests. Dafalias

and Taiebat (Dafalias and Taiebat, 2016) recently pointed out the stress reversal surface models

and the generalized plasticity models are not truly zero elastic range models, even when they

are intended to be, and they produce pure elastic response for the so called neutral loading path

that are normal to the “loading direction”. It should be emphasized that in reality soils are not

expected to exhibit purely elastic response, and the neutral loading is merely an artificial response

of many constitutive models. The SANISAND-MSf model inherits the possibility of facing neutral

loading condition as they fall in the category of models with stress reversal surfaces. It is therefore

interesting to examine these models in the complex stress paths explored in this study.

For a plasticity model with a finite size of yield surface f , neutral loading would occur when

the loading path σ̇σσ is tangential to the yield surface f , i.e., (∂ f/∂σσσ) : σ̇σσ = 0 with ∂ f/∂σσσ being

the gradient of the yield surface in the multiaxial stress space, σ̇σσ being the stress increment in the

stress-controlled simulations, and : representing the inner product operator. For SANISAND-MSf,

the neutral loading can be further simplified as the loading path ṙ being tangential to the yield

surface in the stress ratio space. In other words, it takes place when n : ṙ = 0 with n being a

gradient of the yield surface in the stress ratio space and ṙ being the stress ratio increment in the

stress controlled simulations.

In a complex loading path, one can quantify the proximity of the model response to neutral

loading by continuously examining the angle Θ between the loading direction and the stress

increment. When Θ = 90◦, the neutral loading takes place and the model produces a purely

elastic response. For the multidirectional cyclic shear paths, the variation of Θ is expected to be

significant. For SANISAND-MSf, Θ is the angle between n and ṙ given as follows:

Θ = arccos

(

n : ṙ

‖n‖‖ṙ‖

)

(6.1)

where‖xxx‖ represents the magnitude of tensor xxx. In the formulation of SANISAND-MSf, the finite

size of the yield surface allows for having Θ > 90◦ under elastic unloading until stress reversal is

detected. The variations of Θ for selected 1-D linear and 2-D linear, circular/oval, and figure-8

paths are plotted in Figure 6.14 for the first 10 cycles of the loadings. For all the applied paths

except Ms51cyck, the Θ is always far away from the neutral loading.
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(a) 1-D linear - Ms67cyck: SSRx = 0.15
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(b) 2-D linear - Ms61cyck: SSRx = 0.141
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(c) circular/oval - Ms44cyck: SSRx ≈ 0
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(d) circular/oval - Ms59cyck: SSRx = 0.216
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(e) figure-8 - Ms42cyck: SSRx ≈ 0
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(f) figure-8 - Ms51cyck: SSRx = 0.225

Figure 6.14: SANISAND-MSf: the angle Θ between the gradient of yield surface in the stress ratio space

n and the stress ratio increment ṙ for cyclic tests simulations.

143



6.6 Conclusions

In this chapter, an experimental database for laboratory multidirectional cyclic shear tests of sands

is established. The new model SANISAND-MSf, which has shown impressive performance in

simulating unidirectional cyclic shear tests, is adopted to simulate selective multidirectional cyclic

shear tests on Monterey No. 0/30 sand, including 1-D linear, 2-D linear, circular/oval and figure-8

paths. The model is calibrated based on undrained cyclic simple shear tests without initial static

bias. In the simulations of multidirectional cyclic shear tests, SANISAND-MSf tends to produce

better results for pore pressure accumulation (volumetric response) but does not perform well in

development of shear strains (deviatoric response), which is reflected in two aspects: (1) the overall

shear strain orbits do not oscillate as heavily as experiments; (2) for the tests with a higher SSRx,

the total shear strain is over-predicted.

In 1-D linear tests without initial shear stress, the first deficiency is not reflected due to

semifluidized state activated when mean effective stress p drops below 10 kPa. However, this

activation does not take place for the multidirectional cyclic shear tests with zero initial shear

stress, i.e., circular/oval path, or the ones with large initial shear stress including 2-D linear,

circular/oval and figure-8 paths. Thus, it is necessary to explore another mechanism for sand

under multidirectional cyclic shearing (mainly referring to circular/oval and figure-8 paths) which

allows for sufficient expansion of shear strain orbits even when the sample does not fall into

semifluidized state. A possibility is to introduce an internal variable accumulating deviatoric

shear strain used for decreasing the plastic modulus (Wang et al., 1990) since the start of cyclic

shearing. But one should pay extra attention to introduce the healing mechanism as mentioned in

Chapter 5 and balance its role with semifluidized state in unidirectional cyclic shear test.

The second deficiency is attributed to the fact that the SANISAND-MSf does not perform very

well in capturing effects of a variety of initial shear stresses. The calibration was conducted only

based on 1-D linear tests with SSR = 0. In multidirectional cyclic shear tests with a medium SSRx

like Ms35cyck and Ms38cyck, the simulated total shear strain develops in good agreement with

the experiments, but for the tests with the high SSRx, SANISAND-MSf tends to over-predict the

level of deformation.

These two deficiencies seem to be contradictory in terms of whether the constitutive model

presents too stiff or too soft response when the sample stays outside semifluidized state. This

contradiction can be argued if one considers whether the existing shear stress induces stress rotation

or not. Initial shear stress does not bring stress rotation while the circular/oval and figure-8 paths

do, which may imply that the SANISAND-MSf does not handle problems related to stress rotation

very well. Thus, the work of Zhang and Wang (2012) and Petalas et al. (2018) motivated by stress

principal axes rotation deserve extra attention.
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Chapter 7: Summary, Conclusions and Future Work

7.1 Summary

This dissertation is focused on numerical modeling of the response of granular material under

uni- and multidirectional cyclic shearing, with the aim of (i) exploring the physics of the granular

system and (ii) developing a constitutive model for liquefaction-related problems.

Recognizing the discrete nature of soil, discrete element method (DEM) was adopted for the

simulations in the first part of the thesis. A three dimensional (3D) DEM program GRFlow3D

was modified to build a bi-periodic system and conduct several constant volume cyclic shear tests.

The element simulation results of cyclic simple shear tests presented a promising

macro-mechanical response, much like the experiments. Micro-mechanical investigations were

performed with respect to contact-based quantities, including particle connectivity, force

transmission, and fabric and force anisotropies. In terms of multidirectional cyclic shear test,

more than fifty DEM simulations were carried out to explore effects of loading paths on the

macro-mechanical response of the granular system, including limiting pore pressure ratio and

strain-based liquefaction resistance. The microscopic investigation consisted of particle

connectivity, particle-void fabric, and fabric and force anisotropies, corresponding to the system

stability, deformation, and load-bearing network, respectively.

Given the continuum approximation of the granular system, an advanced constitutive model

was developed for adequately capturing the response of sands under undrained unidirectional

cyclic shearing, especially in terms of pre-liquefaction pore pressure generation and

post-liquefaction shear strain development. The first aspect was achieved by formulating and

incorporating a novel constitutive ingredient of memory surface into the reference model. A

recently proposed concept of semifluidized state that can simulate large shear strain development

in post-liquefaction stage was simplified due to the existence of memory surface. This new model

called SANISAND-MSf were also validated against a series of undrained cyclic torsional and

triaxial tests with different CSRs. With the achieved success in simulation of unidirectional cyclic

shear tests, SANISAND-MSf was also applied to simulate a list of multidirectional cyclic shear

tests on Monterey No. 0/30 sand with the loading paths of 1-D linear, 2-D linear, circular/oval and
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figure-8. Comparisons between experiments and simulations were carried out and the proximity

of these simulations to neutral loading was also quantified.

7.2 Conclusion

The novel contributions of the dissertation are as follows:

• Microstructural evolution in isochoric cyclic simple shear test: a 3D-DEM was adopted

to study the cyclic response of granular assembly. The DEM simulations were able to

replicate the key macroscopic response as observed in laboratory experiments. At grain

scale, evolution of particle connectivity, force transmission and anisotropies of contact and

force networks along the whole shearing process was explored. On the way to initial

liquefaction (zero mean effective stress), particle connectivity and force transmission varied

mildly and fabric anisotropy increased noticeably. Entering semifluidized state was

characterized by a sudden drop of coordination number and non-rattler fraction, a

significant widening of normal contact force distribution and a high percentage of

mobilized contacts, and random particle collisions and short fragile force chains. The

system needed to deform significantly to reconstruct the contact network, providing the

geometrical basis for rebuilding the force network, thereby exiting liquefaction state. The

DEM simulations suggested a critical value of geometrical coordination number 3.6 for

onset and offset of liquefaction state, irrespective of the initial and loading conditions. The

relationship between deviatoric stress ratio and anisotropies, known to hold in the triaxial

setting, also held with reasonable accuracy in the cyclic simple test. Interestingly, fabric

and force anisotropies at the peak shear stress appeared to level off after several cycles in

post-liquefaction period. Their respective contributions to deviatoric stress ratio were not

affected by changing initial and loading conditions.

• Effects of shear paths on mechanical response of the granular system: a comprehensive

series of simulations covering 1-D linear, 2-D linear, circular/oval and figure-8 shear paths

were generated. Macroscopically, effect of shear paths on pore pressure generation was

studied, revealing a linear relationship between the limiting pore pressure ratio and the

minimum resultant shear stress. Strain-based criterion liquefaction strength curve also

indicated the liquefaction resistance decreased in the order of 1-D linear, 2-D linear,

circular and figure-8. At the grain scale, evolution of particle connectivity indicated the

system became unstable instantaneously for the selected 1-D and figure-8 paths, and stayed

stable for 2-D and circular paths. A particle-void descriptor named centroid distance was

also monitored to shed light on the shear strain development, from which a general
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decreasing trend with shear strain accumulation was evidenced. Finally, evolution of fabric

and force anisotropies at specified states of each loading cycle revealed that fabric one

needed more time to follow the external shearing compared with the force ones. All these

anisotropies tend to level off in post-liquefaction period and their proportions contributing

to the deviatoric stress ratio were not affected by the shear paths.

• Constitutive modeling of sands under undrained unidirectional cyclic shearing: an

advanced constitutive model called SANISAND-MSf was formulated by introducing minor

and major modifications into the DM04 model platform by Dafalias and Manzari (2004).

The minor modification consisted of modifying the non-associative flow rule for more

accurate simulation in non-proportional loading and introducing a simple Lode angle

dependence to improve the stress-strain loops shifting in undrained cyclic shear test. The

major modification had two parts, incorporating two constitutive ingredients. The first was

back-stress ratio-based memory surface used to increase the stiffness for back-stress ratios

within it, in order to accurately capture pre-liquefaction pore pressure generation. The

second one was the concept of semifluidized state for low effective stresses proposed by

Barrero et al. (2020) and simplified herein due to introducing memory surface, allowing

simulation of post-liquefaction shear strain development. The SANISAND-MSf model was

validated against two experimental databases, undrained cyclic torsional tests and

undrained cyclic triaxial tests.

• Evaluation of the constitutive model in simulating multidirectional cyclic shearing: by

collecting the experimental database for laboratory multidirectional cyclic shear tests, the

newly developed SANISAND-MSf model was applied to simulate some of them.

SANISAND-MSf tended to produce good simulations for pore pressure accumulation but

needed improvement in capturing the oscillations of shear strains, especially for the tests

not frequently entering semifluidized state. A quantity was proposed to quantify the

proximity of the simulations to neutral loading.

7.3 Recommendations for future work

A number of very interesting studies that may be explored as extension of this thesis are as follows:

• Effect of particle shape and particle size distribution on the response of granular

material under isochoric cyclic simple shearing: the present unidirectional DEM study

adopts one type of particle shape (sphere) and one type of particle size distribution

(uniform). The findings of using the zg = 3.6 to quantify onset of semifluidized state and
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the weights of each anisotropy contributing to the deviatoric stress ratio may be influenced

when other particle shapes or particle size distributions are used. In addition, one can also

analyze their effects on the macroscopic response (like stress path and stress-strain) of the

granular systems under the same initial and loading conditions.

• Evaluation of SANISAND-MSf in capturing effect of static shear stress on the

response of sands under undrained cyclic shearing: this model was mainly validated

against undrained cyclic shear tests without static shear stress in this dissertation. To apply

it to simulate slope-related dynamic problems, evaluating its performance in capturing the

effect of static shear stress on the stress path and stress-strain curve is necessary, which can

be achieved by simulating a series of the corresponding laboratory element tests. If

modification is needed, two directions may deserve extra attention: revisiting the

expression of relating the distance of current stress state and the image on the bounding

surface to the plastic modulus, and varying the formula of incorporating memory surface

into plastic modulus.

• Application of SANISAND-MSf in simulating boundary value problems related to

seismic excitation of sand deposits: given the success of SANISAND-MSf in simulating

undrained cyclic simple shear tests, it is straightforward to apply it to certain boundary

value problems of sand deposits under dynamic shaking. Achieving this goal requires a

robust numerical implementation and integration in a continuum modeling platform that

accounts for fluid-mechanical interactions. One can simulate the centrifuge experiments

from the Verification of Liquefaction Analyses and Centrifuge Studies

(VELACS) (Arulanandan and Scott, 1993) and the Liquefaction Experiments and Analysis

Projects (LEAP) (Manzari et al., 2014) including LEAP-GWU-2015 (Kutter et al., 2018),

LEAP-UCD-2017 (Kutter et al., 2020), LEAP-Aisa-2019 (Tobita et al., 2020) for the

validation process. After that, statistical analyses of running a number of simulations by

varying model constants may help proper use of this constitutive model.

• Improvement of SANISAND-MSf in simulating large shear strain oscillations of

multidirectional cyclic shear tests: SANISAND-MSf has attained a considerable

improvement compared to DM04 in capturing the response in cyclic shearing. However, it

needs further refinement for simulating development patterns of shear strains under

complex multidirectional stress paths such as circular/oval and figure-8, especially in terms

of the oscillations when the sample does not fall into the semifluidized state. This is a very

challenging task, not only theoretically but also given the limited experimental laboratory

databases. It would be valuable to explore further the reasons for shear strain development

in some of these complex stress paths, such as circular/oval, via discrete element modeling,

148



maybe with much attention on the effect of stress rotation or local failure. This, of course,

is not a straightforward task, but if and once the mechanism is understood, it would lead to

ideas for refined constitutive formulations to approximate the physics behind such

mechanism.
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constitutive modelling of sand. Géotechnique Letters, 9(2):136–141.

Wood, D. M. (1990). Soil behaviour and critical state soil mechanics. Cambridge university

press.

Wu, J. (2002). Liquefaction triggering and post-liquefaction deformation of Monterey 0/30 sand

under uni-directional cyclic simple shear loading. PhD thesis, University of California at

Berkeley, Department of Civil and Environmental Engineering.

Yang, J. and Sze, H. Y. (2011). Cyclic behaviour and resistance of saturated sand under

non-symmetrical loading conditions. Géotechnique, 61(1):59–73.
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