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Abstract

Metabolic pathway prediction within and between cells from genomic sequence informa-
tion is an integral problem in biology linking genotype to phenotype. This is a prerequisite to
both understanding fundamental life processes and ultimately engineering these processes
for specific biotechnological applications. A pathway prediction problem exists because
we have limited knowledge of the reactions and pathways operating in cells even in model
organisms like Escherichia coli where the majority of protein functions are determined.
Consequently, over the past decades several computational tools were developed to auto-
mate the reconstruction of pathways given enzymes obtained from genomes. Unfortunately,
with an ever-increasing rate in the content and diversity of publicly available genomics
and metagenomics datasets, those algorithms, to this date, experience more prominent
and complex problems. These include incapability of systemically solving meta-level noise,
neglecting pathway interactions, not considering vagueness associated with enzymes, and
inadequate to scale to heterogeneous genomic datasets.

In an attempt to resolve the aforementioned problems, this thesis examines multiple
pathway prediction models given a list of enzymes based on multi-label learning approaches.
Specifically, it first introduces mlLGPR that encodes manually designed enzyme and path-
way properties to reconstruct pathways. Then, it proposes triUMPF, a more advanced model,
that characterizes interactions among pathways and enzymes, jointly, with community
detection from enzyme and pathway networks to improve the precision of predictions. This
requires pathway2vec, a novel representation learning model, to automatically generate
features aiding triUMPF’s prediction process. Next, the thesis presents leADS that subselects
more impacted examples from a dataset to increase the pathway sensitivity performance.
This model may rely on reMap, a novel relabeling algorithm, that incorporates the bag
concept which is composed of correlated pathways to articulate missing pathways from
data. Finally, all these models are integrated into a unified framework, mltS, to achieve the
desired balance between sensitivity and precision outputs while assigning a confidence
score to each model. The applicability of these models to recover pathways at the individual,
population, and community levels of organization were examined against the traditional in-
ference algorithms using benchmark datasets, where all the proposed models demonstrated
accurate predictions and outperformed the previous approaches.
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Lay Summary

Metabolic pathways are an important class of molecular networks comprising of compounds,
enzymes, and their interactions in a cell. The ability to reconstruct pathways from organisms
is extremely important for various biotechnological applications. Therefore, over the past
decades several computational methods were developed to predict pathways. However,
these approaches are either prone to increasing false-positive predictions or computation-
ally demanding. In both cases, they suffer from increase false-positive predictions requiring
periodic manual adjustments while being resilient to adapt and scale on heterogeneous
genomic sequence information. To improve pathway predictions for (meta)genomes with re-
duced human efforts, this thesis proposes multiple pathway predictors based on multi-label
learning approaches. All the developed models were examined against the traditional path-
way inference algorithms at the individual, population, and community levels of biological
organization, where these models demonstrated accurate predictions and outperformed
the previous approaches. Moreover, the proposed treatments are extensible to other closely-
associated studies in bioinformatics and multi-label learning.
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Chapter 1

Introduction
“They say 90% of the promotion of a book comes through word of mouth. But

you’ve somehow got to get your book into the hands of those mouths first!.”

– Claudia Osmond

Metabolic pathways are core components of cell’s metabolism [250]. They consist of complex

series of biochemical reactions that transform substrates into products. In a cell, reactions

may be catalyzed by a group of enzymes which are very specific biological catalysts that

accelerate reactions and are often referred to as enzymatic reactions [319]. Contextualizing

enzymes onto pathways [167, 168] is an integral problem in biology linking genotype to

phenotype. This is a prerequisite to both understanding fundamental life processes and ulti-

mately translating these processes for specific biotechnological applications. Emerging ap-

plications include the production of renewable biofuels and other bioproducts [26, 96, 191],

various applications in human health [202, 281], modeling disease networks to screening

chemical or ligand libraries [7, 348], developing new, more efficient, less harmful drugs

and new antimicrobial therapies [2, 69, 237], phylogenetic reconstruction [201], and study

related to reproduction of plants producing cheaper and higher quantity than with the

conventional methods [86, 113].

In the literature, studies anchored around pathways are known as pathway-centric [125],

which was sought to offset the limitations of traditional gene-centric (or enzyme-based)

approaches [139, 300, 312, 343]. That is, the pathway-centric analysis substantially reduces

the computational complexity by focusing on pathways that are far less in magnitude than

the number of gene families or enzymes. To give an insight, consider the MetaCyc database

[53], a multi-organism member of the BioCyc collection of Pathway/Genome Databases

(PGDB), which currently contains 2766 metabolic pathways and 12564 enzymes. If the

enzyme-based analysis were sought then we would require four times the computational

power than the pathway-based analysis. It is also important to note that pathway-centric
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approaches are easier to interpret at the higher-level biological roles (e.g. metabolic potential

of cells) than gene(enzyme)-centric approaches [4, 59, 129, 290]. These benefits led to

development of pathway mapping tools, formally known as pathway inference, prediction,

or reconstruction.

Early methods to inferring pathways (e.g. PathoLogic [165] and MinPath [370]) involve

“in silico” mapping enzymes onto reference metabolic pathway collection stored in trusted

repositories (e.g. MetaCyc [53] and KEEG [158]) using a set of manually specified rules. The

reference metabolic pathways serve as templates to organize enzymes to recover pathways,

where each inferred pathway may be associated with a numerical value highlighting the

prediction score. These methods were observed to be an integral component in hetero-

geneous bioinformatics pipelines (e.g. MetaPathways [126, 175, 176], HUMAnN [4], and

HUMAnN2 [99]) for reproducible (“easy-to-use”) genome DNA information processing for

the advancement of genomic research and its applications.

Let us illustrate the pipeline procedures in a more abstract form. Depending on the next

generation sequencing (NGS) platforms (e.g. Illumina HiSeq 2500), the DNA sequence of

an organism may be randomly shredded to produce millions or billions of short strings,

typically in the length of ∼ 150 base pairs (bp), referred to as sequencing library [110, 183].

The fragmented DNAs are then being sequenced in parallel at random, generating a set of

reads, which are small sub-sequences. Having the reads, those bioinformatics pipelines may

perform search against a reference database to learn what the DNA encodes or assemble

reads into longer contiguous sequences (contig) by merging their overlaps (e.g. SPAdes [21]).

The assembly step is computationally intensive, so is the identification of putative gene

boundaries that encode proteins through open reading frame (ORF) prediction methods

(e.g. Prokaryotic Dynamic Programming Gene-finding Algorithm (Prodigal) [146]). Following

ORF prediction, an aligner (e.g. DIAMOND [47] and BLAST [9]) may be used to perform

lookups in reference sequences databases with known functions (e.g. NCBI’s RefSeq non-

redundant proteins [264]) to recover the functional roles of ORFs, also known as annotation

of ORFs. While a fraction of ORFs can be assigned a function, many sequences will remain

uncharacterized. Of particular interest are those ORFs that encode known enzymes, putting

them in the context of metabolic pathways by applying an appropriate pathway reconstruc-

tion tool (e.g. PathoLogic [163]). With the exception of NGS, all the remaining processes can

be merged into a bioinformatics pipeline.

It is clear from this simple schematic procedure that pathway inference tools follow two

common consecutive steps: 1)- identify a list of enzymes encoding reactions (also known

as reactome inference) then 2)- reconstruct pathways from the detected enzymes. While
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the pathway inference tools can suboptimally recover pathways for a single organism, they

do not perform well for metagenomes [91, 310, 347], where fragments of sequences are

attributed to several different microorganisms, thereby, imposing challenges in the assembly

process and the downstream pipelines. Metagenome based approaches (or metagenomics)

were motivated by the limitations encountered in the lab itself. This is because the vast ma-

jority of microorganisms resist being cultured to produce colonies on standard Petri plates.

It is estimated that less than 1% of bacteria present in soils can be optimally grown and cul-

tured under standard conditions [256]. As a result, metagenomics approaches were followed

to solve this problem through culture-independent methods, involving high-throughput

sequencing, by analyzing the genetic material in microorganisms directly sampled from

the environment [124, 274]. This study is important in Microbiology given the fact that

microorganisms are the most abundant and the most ancient lifeforms on Earth [129, 211].

From diagnostics perspectives, the reconstruction of complete or near complete genomes

of all organisms from a metagenome remains less efficient [8, 39, 230, 285]. Instead, re-

searchers focus on partially recovering genomes to address higher-level questions related to

taxonomic (“who is there?”) and functional aspects of microbial communities (“what are

they doing?”). Both questions are equally important and constitute fundamental challenges

in Microbial Ecology. However, the latter question is more interesting as it reveals interac-

tions among microorganisms in communities consisting of myriad different but interacting

species [169], where each community performs its own task, and its produced waste be-

comes the starting engine for its neighbor [106, 211, 231, 346]. Despite being complex to

discern the coexistence of microbes in such communities, due to the enormous microbial

diversity and incompleteness of genomes, the reconstruction of pathways (together with

taxonomic profile) will provide unprecedented insight into discovering the essential rules

governing the ecology and evolution [170, 211]. Therefore, in the context of metagenomics,

the ultimate goal is to recover a subset of pathways to interpret various organisms’ interac-

tion, whereas for a single organism it is aimed to elucidate the metabolic network of that

organism [124].

Whether the attention was to recover pathways from a single genome or metagenome,

the pathway inference tools [163, 370] to this date face additional multiple challenges as-

sociated to adapting with an ever-increasing rate in the content and diversity of publicly

available genomics and metagenomics datasets [180, 209, 288, 349]. Consequently, con-

verting these data into actionable insights to achieve the goal of pathway prediction is far

from trivial or routine. This motivates the design of new approaches to disrupt the cur-

rent set of inference algorithms. In response, machine learning based approach, called
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PtwMLE [73], was developed. PtwMLE converts PathoLogic [165] rules into features to aid

the learning process. Then, the trained model can be applied to make predictions of a

newly sequenced and annotated genome. Experimental evaluation has shown that PtwMLE

equaled or marginally exceeded the performance of PathoLogic with the benefit of probabil-

ity estimation for pathway presence and increased flexibility. Following PtwMLE, several

other recent efforts incorporated metabolite information to improve pathway inference and

reaction rules to infer metabolic pathways [49, 75, 321, 326]. However, none of these tools

were dedicated to solving pathway inference given enzymes. Therefore, this thesis examines

multiple treatments to this problem from the mathematical perspective.

Thesis Objective
The overall objective of this thesis is to build intelligent systems that are

scalable across hundreds of genomes from diverse sources and, yet, accurate

for predicting pathways from enzymes while at the same time are robust to

some extent against errors propagated from many levels in a bioinformatics

pipeline.

1.1 Desiderata of Machine Learning based Pathway

Prediction

In order to deliver an applicable pathway inference tool based on machine learning, it is

important to aim for some if not all the desired characteristics listed below.

1. Noise insensitiveness. Noises are mainly propagated from the upstream bioinformat-

ics pipelines [152]. For example, if a sample is composed of multiple genomes then

during open reading frame (ORF) prediction, many ORF searches may fail [135, 242].

In such cases, only a fraction of the gene sequences may be annotated while the

overwhelming majority of sequences will remain unknown. Although battling with

upstream noise is intractable, nonetheless, estimating noise proportion may be ap-

proximated [134, 391]. Therefore, it is a fundamental requirement for machine learning

methods to systemically reduce noise.

2. Pathway correlation. Previous pathway inference tools largely ignored interactions

among pathways. For example, in homo sapiens the glycolysis pathway (glucose ox-

idation to obtain ATP) entails the presence of citric acid cycle (TCA cycle) pathway

4



(oxidation of carbohydrates and fatty acids) [236]. This imposes a prominent compu-

tational challenge that machine learning frameworks should address.

3. Enzyme disambiguation. Predicting accurate pathways from single or multiple or-

ganisms is impaired by either “multi-enzyme single-mapping” or “single-enzyme

multi-mapping” problems. The former case indicates that a set of enzymes (from

taxonomically distinct organisms) encoding the same metabolic pathway [211, 253].

For example, the set of carboxylic acids metabolites, represented in the TCA cycle

(tricarboxylic acid cycle) pathway, are present in all known organisms; however, they

may be produced by different enzymes depending on the organisms [305]. On the

other hand, the single-enzyme multi-mapping problem suggests that an enzyme may

contribute to multiple pathways. Enzymes, in such cases, are referred to as “promiscu-

ous enzymes”. For example, the enzyme acetylglutamate kinase contributes to both

ornithine and arginine biosynthesis pathways for Escherichia coli [164]. In both cases,

the assignment of enzymes to reference metabolic pathways is an ambiguous task.

Therefore, a machine learning model should consider solving this problem.

4. Taxonomic information. Taxonomically conserved genes are those set of genes found

only in certain species (or other ranks) [154]. Based on this, incorporating a taxonomic

profile may accurately recover pathways and should not be avoided whenever this

information is provided, conditioned on accurate annotations of genes. However, for

metagenome, the taxonomic information may negatively correlate with accuracy since

enzymes belong to many organisms [125].

To accommodate the above characteristics, this thesis examines multiple novel machine

learning models to accurately recover pathways from enzymes. More concretely, we cast the

solution in the context of multi-label learning. That is, the inference mechanism corresponds

to predicting multiple pathways for each annotated genomic sequence information. We

applied these methods to diverse genomic datasets in order to evaluate and assess the

recovered pathways, where we have demonstrated that our models achieved equal or exceed

the accuracy of classical methods.

1.2 Thesis Contributions and Road Map

The thesis is divided into six parts: i)- background, ii)- traditional binary relevance based

multi-Label pathway prediction, iii)- graph-based multi-label classification, iv)- ensemble

based multi-label subsampling and bagging, v)- multi-label learning from multiple sources,
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and vi)- conclusion and afterword. Table 1.1 outlines the overall structure of our research

with reference to parts and chapters of this thesis. The dependency structure among the

developed models (to achieving a reasonable trade-off between the characteristics described

in Section 1.1) is illustrated in Fig. 1.1. The road-map of this thesis can be summarized as:

Part I Background. Part I presents an overview of metabolic pathway databases and infer-

ence algorithms in Chapter 2 while the background materials of multi-label classification

approaches, including common definitions, evaluation metrics, and benchmark datasets,

are outlined in Chapters 3 and 4.

Part II Conventional Multi-Label Classification (Chapter 5). Part II describes an initial

construction of our metabolic pathway prediction model, called mlLGPR. The model follows

a multi-label classification approach that employs a rich pathway feature set based in part

on the work of Dale and colleagues [73] to predict metabolic networks at the individual,

population and community levels of organization. Moreover, this chapter establishes stan-

dard protocols to perform a comparative analysis of the previous state-of-the-art pathway

predictors across a wide range of datasets. Results indicated that mlLGPR were equaled or

exceeded previous reports for organismal genomes.

Part III Graph based Multi-Label Classification. This part consists of two chapters, where

the overall goal is to project components of pathways onto a graph to encode various asso-

ciations, for the pathway inference task. Specifically, Chapter 6 presents the pathway2vec

package to automatically generate features from a multi-layer heterogeneous information

network (HIN) [302] using MetaCyc. The metabolic pathways in HIN are decomposed into

three interacting layers: compounds, enzymes, and pathways, where nodes within a layer

manifest inter-interactions and nodes between layers manifest betweenness interactions.

This layered architecture captures relevant relationships used to learn a neural embedding-

based low-dimensional space of metabolic features using the Skip-Gram model [224]. In

the pathway prediction task, it is demonstrated that the incorporated embeddings is indeed

a viable choice for pathway inference than the features introduced in the mlLGPR model.

Moving forward, Chapter 7 adopts the embedding features using pathway2vec to exploit

the meta-level relationships in a network manner between enzymes and pathways using

three stages of non-negative matrix factorization technique, followed by the subnetwork

detection to extract the mesoscopic structure of pathways and enzymes networks learned

from a reference database and datasets. This model, called triUMPF, showed compelling

performances in detecting more accurate (less noise) and, at the same time, correlated

pathways on benchmark datasets introduced in Chapter 4.

Part IV Multi-Label Subsampling and Bagging. This part is decomposed into two chapters,

6



Part Research Task Chapter Publication

Part I Background

1. Metabolic Pathway Databases and
Inference Algorithms

Chapter 2 –

2. Multi-Label Learning and Preliminar-
ies

Chapter 3 –

3. Benchmark Data and Evaluation
Metrics

Chapter 4 –

Part II Conventional
Multi-Label Classifi-
cation

Multi-label Classification Approach to
Metabolic Pathway Inference with Rich
Pathway Features

Chapter 5 [214]

Part III Graph based
Multi-Label
Classification

1. Leveraging Heterogeneous Network
Embedding for Metabolic Pathway Pre-
diction

Chapter 6 [24]

2. Incorporating Triple NMF with Com-
munity Detection to Metabolic Path-
way Inference

Chapter 7 [22]

Part IV Multi-Label
Subsampling and
Bagging

1. Relabeling Metabolic Pathway
Dataset with Bags to Enhance Predic-
tive Performance

Chapter 8 [25]

2. Multi-label Pathway Prediction
based on Active Dataset Subsampling

Chapter 9 [23]

Part V Multi-Label
Learning from Mul-
tiple (Less-Trusted)
Sources

Leveraging Multiple (Less-Trusted)
Sources to Improve Metabolic Pathway
Prediction

Chapter 10 –

Part VI Afterword Conclusions and Future Work Chapter 11 –

Table 1.1: Structure of the thesis with reference to the associated parts and chapters.

where the goal is to reduce noise and subsampling the most informative examples in order

to reduce constraints imposed on triUMPF. In particular, Chapter 8 introduces reMap to per-

form relabeling examples into bags, where each bag is comprised of non-disjoint correlated

pathways and is collected from another proposed package SOAP. To relabel pathway dataset

into bags, reMap applies an iterative procedure by alternating between i)- assigning bags to

each example and ii)- updating reMap’s internal parameters. After the relabeling process is

accomplished, leADS, introduced in Chapter 9, may be used to infer metabolic pathways.

leADS is inspired by both tree-based multi-label classification and uncertainty based sub-

sampling approaches (presented in Chapter 3.4). While the tree-based (an ensemble type)

enhances the generalization ability, the subsampling seeks to reduce the negative impact

of training loss caused by the tail labels (also class-imbalance) problem. In comparison to

triUMPF, the dual strategy led to boosting both the precision and sensitivity of pathway

prediction performances on all datasets.

Part V Multi-Label Learning from Multiple (Less-Trusted) Sources (Chapter 10). This part
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Figure 1.1: Proposed models in this thesis with reference to the associated parts and chap-
ters. Each block describes the model and its overall objective.

addresses the problem of assigning weights to each pathway prediction model described in

the previous chapters. Having access to many pathway inference algorithms may obscure

the benefits of a specific model that may perform well under certain conditions and in other

cases, it may degrade. This raises concerns with regard to the trustworthiness of predictive

models. Motivated by this observation, mltS has quickly emerged which leverages reference

datasets to learn algorithmic specific weights (ascertaining the confidence level) while at

the same time global coefficient values are learned based on meta-learning approaches

[12, 92]. We showed that mltS achieved competitive results against pathway predictors while

we empirically demonstrated the impact of source related weights in making predictions

aggregated from all algorithms.

Part VI Afterword (Chapter 11). Finally, this part concludes the thesis and discusses the

successes and shortcomings of the analytical approaches taken. It then points out interesting

future directions that could have been explored either to optimize our proposed methods or

to merge with many downstream applications.
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Part I

Background
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Chapter 2

Metabolic Pathway Databases and

Inference Algorithms
“The man who does not read good books has no advantage over the man who

can’t read them.”

– Mark Twain

This chapter summarizes pathway databases (in Section 2.1) and the most up to date

pathway prediction algorithms (in Section 2.2). The survey is centered around metabolic

pathway databases and methods that take enzymes (or reactions) as inputs to predict

pathways. Therefore, algorithms residing outside this paradigm were not considered in the

discussion.

2.1 Metabolic Pathway Database

Curating a pathway database (PDB) is a complex procedure for a variety of reasons. Fore-

most, there is no established format and guidelines regarding biological pathway represen-

tation, hence, the same pathway may have different topological structures across multiple

databases. Over the past decade, many formats were proposed to integrate and unify path-

way definition, such as KEGG Markup Language (KGML) [14], Biological Pathway Exchange

(BioPAX) Levels 1, 2 and 3 [77], and System Biology Markup Language (SBML) [57]. However,

given the fact that information content and quality regarding pathways significantly vary

among PDBs, the solutions provided by unified framework approaches are limited. It is up

to bioinformatics practitioners and biologists to establish standard procedures to defin-

ing pathway topology and performing manual inspections to validate pathways. Here, we

discuss some of the widely used PDBs by the scientific community.
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MetaCyc [51]. This is a large comprehensive reference database of pathways (2,766 as of

January 2020) encompassing all domains of life. It contains non-redundant data elucidating

metabolic pathways, reactions, metabolites, genes, and enzymes, which were experimentally

determined, validated, and reported in the scientific literature. Pathways in MetaCyc are

of two types: i)- base pathways, comprising reactions, and ii)- super-pathways that are a

combination of base pathways or individual reactions. Each component in the MetaCyc

database is periodically updated to keep pace with new discoveries. The database can be

accessed through the BioCyc web portal [162] and integrated into Pathway Tools software

[163]. Although MetaCyc claims to be the largest collection of curated metabolic pathways,

in reality, no pathway database is complete, therefore, it is common to use multiple PDBs to

interpret the results, collectively [278].

KEGG [158]. As with MetaCyc, the Kyoto Encyclopedia of Genes and Genomes or KEGG is

a comprehensive knowledge base that contains a large-scale molecular information and

a set of manually curated pathways, collected from scientific literature and multiple in-

dividual resources, such as the ENZYME database [20], RefSeq [243], Genbank [30], and

NCBI Taxonomy [89]. The KEGG database is composed of 18 manually curated databases

grouped into five categories: systems information, genomic information, chemical informa-

tion, health information, and drug labels. To analyze components of KEGG databases, KEGG

Mapper engine was introduced, comprising of a collection of KEGG mapping tools, such as

KofamKOALA [15], BlastKOALA and GhostKOALA [159], for linking molecular objects (genes,

proteins, metabolites) to higher-level objects (pathways, modules, taxonomy).

Others. Several other publicly available pathway databases includes: NCI-PID [286], Bio-

Carta [37], PANTHER [223], MACADAM [186] that uses Pathway Tools software to generate

databases concerning microbes, community-driven databases such as Reactome [156] and

WikiPathways [258], and the SEED database [245, 246] that contains metabolic content

derived largely from the KEGG database. Some of these databases update their contents

regularly, while others do not, therefore, it is advisable to use the most up-to-date and

complete information for optimal pathway reconstruction from experimental data.

2.2 Metabolic Pathway Prediction Algorithms

Metabolic pathway prediction algorithms follow a common set of steps. The first step is

typically to map annotated protein-coding genes (or enzymes) onto reference pathway col-

lections, stored in trusted repositories, such as MetaCyc, followed by scoring the recovered

pathways. Many efforts were devoted to characterizing metabolic pathways from enzymes,
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Topic PathoLogic MinPath PtwMLE

Approach
a heuristic symbolic rule

based

a hybrid based (integer pro-

gramming combined with

symbolic rules)

statistical using a diverse ar-

ray of machine learning algo-

rithms

Dataset
a list of annotated genes in

GenBank format or Patho-

Logic format

a list of annotated genes

a dataset comprising of

5,610 pathway instances

from six organisms

Reference database MetaCyc KEGG, MetaCyc, & the SEED MetaCyc

Predict reactions? yes no no

Predict subnetworks? no no no

Predict pathways? yes yes yes

Estimate subnet-
work/pathway abun-
dance?

yes possible1 no

Sort outputs? possible possible no
Modularity no no yes

Biological component
interactions

no no yes (partially)

Taxonomic constraints yes no yes

Interface type standalone & web-based standalone –
Programming lan-
guage

Lisp, Java, & JavaScript Python Lisp

Open-source software? no yes not available2

Other issues

inefficient to handle metage-

nomic dataset, insufficient

to discriminate pathways

variants, report generation

excludes interpretation on

which rules were engaged

during the prediction, and

rely heavily on manual in-

spection to re-adjusting the

rules

same problems as Patho-

Logic; oversimplified model

has some level of inter-

pretablility but requires

to tune up many (hy-

per)parameters

Table 2.1: Comparison of pathway prediction algorithms. 1 various estimations, such as
pathway abundance, are not designed in the original implementation of the algorithms,
however, these estimations can be added as inputs to a downstream pipeline; 2 algorithms
are no longer available to the research community.

and here we summarize the current up-to-date panorama of prediction algorithms which

can be grouped into two categories: i)- the symbolic heuristic rule-based approach, such as

PathoLogic [163] and MinPath [370], that may adopt manually defined rules to predict path-

ways; and ii)- the machine learning (ML) approach, such PtwML [73] that are mathematical

and statistical driven approaches to automatically extract patterns, without using explicit

rules, for the pathway prediction. Table 2.1 provides a brief comparison of the algorithms

discussed in this section.

PathoLogic. This algorithm is a component of Pathway Tools software [163] that is main-

tained by SRI international [307]. The algorithm takes two input types: i)- an annotated
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genome/metagenome of an organism to be analyzed in GenBank format or PathoLogic

format and ii)- a pathway database extracted from MetaCyc. Then, it proceeds to predict

pathways in two sequential steps: i)- reaction inference and ii)- pathway inference from

its predicted reaction. The two-step predictions employ a set of manually created rules,

including rules based on the taxonomic range. For example, a predicted pathway is pruned

from an organism if that organism is outside the expected taxonomic distribution of that

pathway. While the designed rules are periodically inspected and investigated, they neglect

interactions among pathways. This is contrary to the acknowledgment of the interaction and

overlapping between pathways and the influence that a pathway can exert over another. The

results of prediction are stored in a pathway genome database (PGDB), containing objects

corresponding to genes, proteins, metabolites, biochemical reactions, predicted metabolic

pathways, and many others. PathoLogic was used to create more than 17000 PGDBs that

can be accessed through the BioCyc portal [38].

MinPath. This is an integer programming based approach to infer pathways [370]. The

inputs to this algorithm are of two types: i)- a set of pathways extracted from a database

and ii)- a list of annotated genes or enzymes. Afterward, the system outputs the smallest

number of pathways that can explain the genes or enzymes observed within samples through

an iterative procedure by integer programming algorithm [32]. MinPath (Minimal set of

Pathways) has since been incorporated as a core component to the integrative HUMAaN’s

processing modules [4], which was used to compare microbial functional diversity and

organismal ecology of 649 metagenomes as a part of the Human Microbiome Project (HMP)

[72].

PtwMLE. This was the first machine learning-based approach to pathway prediction [73],

that incorporates a diverse array of models (naïve Bayes, k-nearest neighbor, decision trees,

logistic regression, random forests) to train a dataset comprising of six organisms (EcoCyc,

AraCyc, YeastCyc, MouseCyc, CattleCyc, and SynelCyc). After training, the learned estimators

were applied to a newly sequenced and annotated genome for pathway inference. It was

reported that this approach has achieved a competitive performance against PathoLogic

on a test dataset. However, this framework is not suitable for the pathway reconstruction

because the input is pathway-related features (being either present or absent from MetaCyc)

whereas in a genomic sample, the input is both a list of enzymes and a reference pathway

collection (e.g. MetaCyc).

Others. Notable prediction algorithms include XPathway framework [324] that combines

both the pathway inference with differential analysis from RNA sequence data using KEGG

reference database, KEGG automatic annotation server (KAAS) [229], and MG-RAST [222]
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that first predicts protein-coding region from short reads and then maps the identified

functions onto the SEED subsystems. However, these algorithms are tightly connected to

the reference database, making them less flexible to adapt to a new reference collection.

2.2.1 Summary

The pathway prediction algorithms, discussed in this section, fall short on several aspects,

and we collectively point them out: 1)- with the exception of PtwMLE, they do not consider

pathway topological information and neither inter-interactions among genes or pathways;

2)- significance scores are not associated with the inferred pathways; 3)- the prediction

algorithms do not assume uncertainty in pathway recovery and neither do they consider

missing reactions in the input; 4)- some algorithms, such as PathoLogic, cope with rules to

recovering pathways, which are inflexible, thus, preventing any room for customization and

expansion; 5)- not being computationally feasible to large-scale sequenced genomes; and

6)- implementations, practicality, user-friendliness, output format, and the programming

languages used by the algorithms are less appealing to users with less software development

experience. These bottlenecks further motivate the need to develop a scalable computational

algorithm for the pathway prediction, which is the main objective of this thesis.
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Chapter 3

Multi-Label Learning and Preliminaries
“To have another language is to possess a second soul.”

– Charlemagne

In this chapter, we present definitions and some preliminary studies with respect to the

multi-label learning framework. First, we provide an overview of a metabolic pathway and

explain its internal components in Section 3.2.1 while we establish a formal definition

corresponding the pathway dataset in Section 3.2.2. Then, we state the problem with regard

to the pathway prediction task in Section 3.3. Finally, we discuss the current practices in

multi-label learning techniques according to the applications they solve in Section 3.4. The

topics is this chapter cover a broader range of research domains, however, we narrow our

discussions within the scope of this thesis. The main purpose of this chapter is to present

necessary backgrounds to understand methods presented in the coming chapters.

3.1 Notation

It is very difficult to come up with a single, consistent notation to cover the wide variety of

data, models and algorithms that we cover. Nonetheless, we present some basic and common

mathematical notations used in this thesis. Unless otherwise mentioned, we emphasize that

mathematical symbols are limited to the chapter in which they are introduced.

For symbols, all vectors are represented by boldface lowercase letters, such as x, and

are assumed to be column vectors, while x> represents the transposed row vectors. The i th

coordinate (where i ∈ {1, ...,n}) of a vector is referenced by xi . The matrices are denoted by

boldface upper case letters, such as X and Xi indicates the i -th row of X. The representation

Xi , j denotes the (i , j )-th entry of X corresponding to the i th row and j th column. If we

write X = [x1, ...,xd ], where the left hand side is a matrix, we mean to stack the xi along the

columns, creating a matrix, where d (∈Z) is some arbitrary number of vectors. The transpose

15



of X is denoted as X> and the trace of it is symbolized as tr(X). The Frobenius norm of X

is defined as ||X||F =
√

tr(X>X). Occasional superscript, X(i ) (or x(i )), suggests an index to a

sample, a power, or a position. We use calligraphic letters to represent sets (e.g. E ) while we

use the notation |.| to indicate the cardinality of a given set. We denote the set of natural

number byN, the set of integers by Z, and the set of real numbers by R. R+ represents the

non-negative half-space while Rn represents the n-dimensional vector space over R. With

these basic notations, we present some important definitions.

3.2 An Overview of a Metabolic Pathway

Having provided mathematical notations in the above section, here we present an overview

of a metabolic pathway and explain its internal components.

A metabolic pathway is a finite set of biochemical reactions occurring within a cell that

leads to a certain product or a change in a cell. Generally, a pathway can be either: catabolic,

where compounds are broken to release energy (such as glycolysis process converting glucose

into pyruvate); or anabolic, where compounds are synthesized (such as proteins, carbohy-

drates, lipids, and nucleic acids) [192]. A metabolic reaction, in turn, is the transformation of

one molecule (substrate) to a different molecule (product) and is often catalyzed by enzymes,

which are protein catalysts that can alter the rate and specificity of chemical reactions inside

cells [236]. A reaction catalyzed by a set of enzymes is called an enzymatic reaction [31]. If an

enzyme catalyzes a single unique reaction, it is called a key enzyme and the reaction is called

the key enzymatic reaction, while if it contributes to multiple reactions, it is referred to as a

promiscuous enzyme. The term key enzyme is coined from the “lock and key” model as a

mechanism of substrate binding, proposed by Emil Fischer [94] who suggested that both

the enzyme and the substrate possess a certain complementary geometric structure that

fits exactly into each other. If the key enzymatic reaction is dedicated to a specific pathway,

then it is an pathway unique key enzymatic reaction. Under some specific thermodynamic

conditions, the reactions may occur without the intervention of enzymes, and they are

referred to as spontaneous reactions [236]. All the reactants, products, and intermediates,

produced by metabolic reactions are called metabolites [325], and assumed to take place

within a dedicated boundary constituting a metabolic pathway. A subset of these pathways

(or reactions) corresponds to a subnetwork [152, 296] representing interactions among path-

ways. Subnetworks, in turn, may be associated among each other to form a wired diagram

representing a metabolic map (or network) [181] that determines the physiological and

biochemical properties of a cell.
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(a) A metabolic network of E. coli K-12 substr. MG1655

(b) A subnetwork of four metabolic pathways

Figure 3.1: A metabolic network of E. coli K-12 substr. MG1655 (represented by black,
lime, blue, magenta, and orange colors) from KEGG database [158] (Fig. 3.1a) and a sub-
network of four metabolic pathways (Fig. 3.1b) which are represented by lime, blue, ma-
genta, orange colors in Fig. 3.1a. The pathways in Fig. 3.1b are symbolized by y and corre-
sponds to: trans-cinnamate degradation (y2), fatty acid biosynthesis, initiation (y1), fatty acid
biosynthesis, elongation (y3), and beta-Oxidation (y4). The large circle surrounded by the
blue colored border in Fig. 3.1b corresponds to the fatty acid biosynthesis, initiation pathway
(y2) and its components defined as: compounds by c[∗], enzymes by e[∗], reactions by integer
numbers i ∈ {1,2,3,4,5,6,7,8,9,10} on directed edges (→), and enzymes catalyzing reactions
by dashed directed edges (99K).

17



Fig. 3.1a shows a metabolic network (obtained from KEGG database [158]) of E. coli K-12

substr. MG1655 (TAX-511145). An example of a subnetwork is shown in Fig. 3.1b correspond-

ing to trans-cinnamate degradation pathway (y2) and three pathways related to the fatty

acid metabolism: fatty acid biosynthesis, initiation (y1), fatty acid biosynthesis, elongation

(y3), and beta-Oxidation (y4). A schematic view of the fatty acid biosynthesis, initiation path-

way is indicated by the large circle surrounded by the blue colored border in Fig. 3.1b. Any

components inside the boundary are internal to the pathway while components residing

outside the boundary are external to the pathway and maybe contributing to other reactions

or pathways. Within the boundary, metabolites (e.g. c1) and enzymes (e.g. the promiscuous

enzyme e3) are represented by gray and red circled colors, respectively. Except for e5 and

e6, all the enzymes considered in this figure are key enzymes and are allocated inside the

boundary. Metabolic reactions are indicated by directed edges (with numbers), and the

arrows correspond to metabolites produced by the associated reactions. Every reaction, in

theory, is reversible, e.g. the reaction labeled by the number 5, however, conditions in the cell

are often such that it is thermodynamically infeasible for the flux of reactions to flow in an

opposite direction so the reaction becomes irreversible [152]. Transport reactions transform

external metabolites by consuming them inside internally, e.g. the reaction 1, or producing

them to outside the boundary, e.g. reactions 8 and 10 [74].

3.2.1 Terminology and Definition

The simplified description of a metabolic pathway can be translated into an undirected

graph representation. This approach is convenient for the better elucidation of pathways

and to reduce the computational burden. In what follows, we provide a series of definitions

to facilitate our discussions about a pathway graph.

Definition 3.1. Reaction Graph Topology. Let the reaction graph be represented by an

undirected graph G (rxn) = {C,Z (c)}, where C is a set of c metabolites and Z (c) represents r ′

links between compounds. Each link indicates a reaction, derived from a set of biochemical

reactions R of size r ′. Then, the reaction graph topology is defined by a matrixΩ(c) ∈Zr ′×c
≥0 ,

where each entry Ω(c)
i , j is a binary value of 1 and 0, indicating either the compound j is a

substrate/product in a reaction i or not involved in that reaction, respectively.

Z≥0 is a set of positive integer numbers.Ω(c) characterizes relationships between reac-

tions and their associated metabolites.
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Example 3.1. The incidence matrix Ω(c) for Fig. 3.1 is a subset consisting of 6 internal

metabolites and 10 reactions, and can be represented as:

Ω(c)> =

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 . . . w ′
r



k1 0 1 1 0 0 0 0 0 0 0 · · · · · ·
k2 0 0 1 0 0 1 0 0 0 0 · · · · · ·
k3 0 1 0 1 1 0 0 0 0 0 · · · · · ·
k4 0 0 0 0 1 1 1 1 0 0 · · · · · ·
k5 0 0 0 0 0 1 1 0 1 0 · · · · · ·
k6 0 0 0 0 0 0 0 0 1 1 · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

kc
...

...
...

...
...

...
...

...
...

...
. . .

where k ∈ C and w ∈R. In this matrix, the reaction w3 transforms k1 to produce the metabo-

lite k2. If a reaction does not involve in the production/conversion of a compound then its

value is 0 for that compound.

As discussed, a reaction in G (rxn) may be categorized as a spontaneous or an enzymatic

reaction catalyzed by enzymes, thereby, constituting enzyme to reaction association matrix.

Definition 3.2. Reaction-Enzyme Association (R2E). Let F represents a finite set of z

metabolic enzymes, then the reactions catalyzed by enzymes are represented as an in-

cident matrixΩ′(e) ∈Zr ′×z
≥0 , where an entryΩ′(e)

i , j indicates an enzyme j catalyzing a reaction

i and encoded as 1 and 0 otherwise.

Example 3.2. Again in Fig. 3.1, the incidence matrixΩ′(e) is a subset consisting of 6 enzymes

and 10 reactions, and is represented as:

Ω′(e)> =

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 . . . w ′
r



e1 0 0 1 0 0 0 0 0 0 0 · · · · · ·
e2 0 1 0 0 0 0 0 0 0 0 · · · · · ·
e3 0 0 0 1 0 1 0 0 0 0 · · · · · ·
e4 0 0 0 0 0 1 1 0 0 0 · · · · · ·
e5 0 0 0 0 0 0 0 0 1 0 · · · · · ·
e6 0 0 0 0 0 0 0 1 0 0 · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

ez
...

...
...

...
...

...
...

...
...

...
. . .
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where e ∈ F and w ∈ R. We observe two promiscuous enzymes, (e3 and e4), catalyzing

multiple reactions. Also, several spontaneous reactions having no enzymes, indicated by

zero values in columns.

The matrix Ω′(e) can be reduced to Ω(e), such that Ω(e) ⊆ Ω′(e) having only r ¿ r ′ en-

zymatic reactions by eliminating spontaneous reactions. It is important to note that an

enzymatic reaction can be given a hierarchical numerical category, known as an enzyme

commission number (EC) based on the chemical reaction catalyzed by a group of enzymes

[219]. Within the framework of this thesis, we only consider enzymatic reactions represented

by ECs. As explained before, an enzyme catalyzes a conserved set of reactions, where we

assume, without loss of generality, that it is one-to-one relation, such that z ≈ r . For MetaCyc,

a preliminary analysis indicated that for each enzymatic reaction there are less than 1.30

associated enzymes. Henceforth, we use e to synonymously indicate an enzymatic reaction.

With respect to metabolic pathways, there are several different ways to view them as a

graph: i)- pathway with compound, ii)- pathway with an enzyme (or gene), iii)- pathway with

reaction or iv)- a combination of all yielding a metabolic network [181]. Since metabolite

relationships are absorbed in G (rxn) according to Def. 3.1, it is easy to model pathway with

reaction relationships. Hence, an equivalent definition for the pathway graph topology

concerning reaction can be easily formulated.

Definition 3.3. Pathway Graph Topology. Let G (path) = {R,Z ′(r )} be an undirected graph,

whereR is presented in Definition 3.1, andZ ′(r ) represents a set of t ′ links between reactions.

Then, the pathway graph topology is defined by a matrixΩ(r ) ∈Zt×r ′
≥0 , where each entryΩ(r )

i , j

is either 0 or a positive integer, corresponding the absence or the frequency of the reaction j

in pathway i , respectively, and t is the number of pathways in a set Y = {y1, y2, . . . , yt }.

In a similar manner to Def. 3.2, we slightly abuse the notations to formulate the pathway

to enzymatic reaction association matrix.

Definition 3.4. Pathway-EC Association (P2E). Let G ′,(path) = {E ,Z (r )} be a subgraph of

G (path), such that E ⊂R with r ¿ r ′ enzymatic reactions. Then, the Pathway-EC association

is defined as a matrix M ∈Zt×r
≥0 , where each row corresponds to a pathway, and each column

represents an EC, such that Mi , j ≥ 1 if an EC j is in pathway i and 0 otherwise.

The pathway and reaction topology enables us to build various interaction adjacency

matrices among associated components as follows.

Definition 3.5. Pathway-Pathway Interaction (P2P). Given G (path), we define a Pathway-

Pathway interaction matrix A ∈Zt×t
≥0 such that an entry Ai , j is a binary value indicating an
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interaction between pathways i and j iff there exists a reaction k ∈R where its associated

compounds are either substrate or product in both i and j pathways.

Definition 3.6. EC-EC Interaction (E2E). Given G ′(rxn) ⊂ G (rxn), we define an EC-EC inter-

action matrix B ∈ Zr×r
≥0 such that an entry Bi , j is a binary value encoding an interaction

between two ECs i and j iff they both share a compound, i.e.,Ω(c)
i ,k ∧Ω(c)

j ,k = 1 where k ∈ C.

For the metabolic network, our definition is loosely adapted from on [181].

Definition 3.7. Metabolic Network. A metabolic network is represented by N = (Grxn,Gpath

,Ω(c),Ω′(e),Ω(r ),A,B).

Metabolic networks are complex and highly interconnected, and, thus, to understand

metabolic genotype-phenotype associations, the global network is compartmentalized into

a smaller subunit, called subnetwork, which can be described as:

Definition 3.8. Metabolic Subnetwork. A subnetwork is represented by N s = (Gs,rxn,Ωs,(c)

,Ω′s,(e),Bs), where Gs,rxn ⊆Grxn,Ωs,(c) ⊆Ω(c),Ω′s,(e) ⊆Ω′(e), Bs ⊆ B.

In the literature, a subnetwork may also be referred to as a community [277], which

defines a set of densely connected nodes within that subnetwork. Note that a subnetwork

agrees with the constraints supplied in the above definitions and does not necessarily

establish an interconnected set of pathways. For example, if i ∈R, j ∈ C andΩs,(c)
i , j = 0, then

the subgraph Gs,rxn should exclude those components jointly with their associations in the

corresponding matrices, even ifΩ(c)
i , j = 1. Nonetheless, a subnetwork is considered a building

block for metabolic network reconstruction from a bank of annotated genomic sequences

datasets [82] that is our topic in the next section.

3.2.2 Pathway Dataset

Genome-scale pathway recovery is hampered by the absence of efficient computation tools

that cope with quality control and evaluation standards (see Chapter 2.2). This is due to

limited resources available to the research community to conduct quantitative assessments

of their tools, leading to wide variations in the produced results that may alter our un-

derstandings of system biology. Collectively, these in-silico models initially investigate the

accuracy of pathway reconstruction through simulations based on their designed standard

metrics. Afterward, qualitative analyses are performed on preferred high-throughput ge-

nomic datasets to demonstrate the potential utility of the models to interpret the results.

21



Despite the benefits provided by these tools, the conducted experiments are biased towards

datasets, thereby, leaving questions about standard approaches to perform evaluations.

e1e2 e3

e4e5 e6

y1

y2

y3

y4

Figure 3.2: Enzymatic reaction and pathway graphs. The left panel corresponds to the EC
graph where a group of nodes constitutes an input instance. The right panel indicates the
pathway graph where the blue colored node represents the true hidden pathways that are to
be recovered while the light gray colored nodes indicate false pathways.

Fig. 3.2 illustrates a graphical representation of pathway dataset, corresponding pathway

and enzymatic reactions for Fig. 3.1. The darker gray, blue, and light gray colors represent

observed, true hidden (not predicted), and negative nodes, respectively. The goal is to

recover y1, visualized by blue color, given e1:6 which constitute an instance of pathway

data. This problem is relatively easy if all the enzymes are unique key enzymatic reactions

for y1, however, the two enzymes e5 and e6 violate this assumption and may participate

in multiple reactions or pathways. In reality, an annotated genome comes with a large

collection of ECs with abundance information, i.e., the number of copies of each EC. Fig.

3.3 shows a schematic view of such data, where abundance information is symbolized as

doubly-circled EC nodes. In this figure, recovering true pathways, highlighted by blue colors,

possess challenges if there exist promiscuous enzymes contributing to y3 and y5 which may

result in incorrectly inferring them using naïve mapping approaches.

Another important limitation to recovering pathways that is specifically observed for

metagenomic datasets [91, 310, 347], where enzymes from multiple species are packed

together, as depicted in Fig. 3.4. It should be understood that the multi-enzyme single

mapping problem, discussed in Chapter 1.1, hampers precise reconstruction of pathways

from microorganisms. Therefore, for metagenomic datasets, it is common to partially recover

pathways in order to infer organismal interactions wherein the case of single cells the

reconstruction corresponds to elucidation of cellular processes [124].

Thus far, we have considered enzymatic reactions corresponding a single organism. For

multiple genomes, the matrix format is a more standard way to represent multiple annotated

genomic samples.
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Figure 3.3: Enzymatic reaction and pathway graphs. The left panel corresponds to the EC
graph where where a group of nodes constitutes an input instance and the double circled
nodes indicate the abundance information (more than 1 enzymatic reaction). The right
panel indicates the pathway graph where the blue colored nodes represent the true hidden
pathways that are to be recovered while the light gray colored nodes indicate false pathways.
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Figure 3.4: Enzymatic reaction and pathway graphs. The left panel corresponds to the
EC graph where a group of nodes constitutes an input instance and the double circled
nodes indicate the abundance information (more than 1 enzymatic reaction). Each color
represents a distinct organism. The right panel indicates the pathway graph where the blue
colored nodes represent the true hidden pathways that are to be recovered while the light
gray colored nodes indicate false pathways.

Example 3.3. A pathway dataset of n examples (genomes or metagenomes) and r enzymatic

reactions can be organized in a matrix X while pathways can be represented in a binary

23



e1e2 e3

e4e5 e6

e7 e8e9

e10

Figure 3.5: The enzymatic reaction graph. The nodes are considered to be input and the
doubly-circled nodes indicate the abundance information (more than 1 enzymatic reaction).
Each color represents a distinct subnetwork. The dashed link indicates possible edges
between discovered subnetworks.

matrix Y of size n examples and t pathways:

X =

e1 e2 e3 e4 e5 e6 e7 . . . e ′r



x(1) 0 1 5 0 7 0 1 · · ·
x(2) 12 10 0 11 0 0 0 · · ·
x(3) 2 3 0 1 0 1 0 · · ·
x(4) 0 0 5 1 0 11 4 · · · · · ·

...
...

...
...

...
...

...
...

. . .

x(n)
...

...
...

...
...

...
...

. . .

Y =

y1 y2 y3 y4 y5 . . . yt



1 1 1 0 0 · · · · · ·
1 0 0 1 1 · · · · · ·
0 1 1 0 1 · · · · · ·
1 0 1 0 1 · · · · · ·
...

...
...

...
...

...
. . .

...
...

...
...

...
...

. . .

where Xi , j is the abundance of EC j in example i and an entry in Yi , j indicates the predicted

pathway j being associated with the sample i .

Now, if we were given only X without labeled responses then in the context of machine

learning an unsupervised learning approach is a more convenient approach to detect pat-

terns. Methods discovering subnetworks [98, 152, 185, 296] follow this type of learning. They

all aim to find an optimum set of subnetworks using a suitable cost function, then, the dis-

covered subnetworks are chained together to form metabolic pathways or linked reactions

as shown in Fig. 3.5. While such methods may be applied to pathway recovery, verification

and validation of pathways by these methods are nontrivial tasks.

On the contrary, if a model leverages both X and Y (assuming pathways are provided) then

the supervised learning approach is more efficient to detect patterns related to pathways.

In this strategy, the goal is to learn a hypothesis function mapping EC space onto pathway

space given a pathway dataset. Since each annotated genomic data instance is associated
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with multiple outputs (pathways), this type of data is called multi-label pathway dataset

which can be defined according to:

Definition 3.9. Multi-label Pathway Dataset. A genomic pathway dataset is characterized

by S = {(x(i ),y(i )) : 1 < i É n} consisting of n examples, where x(i ) is a vector indicating the

abundance information corresponding to enzymatic reactions. An enzymatic reaction, in

turn, is denoted by e, which is an element of a set of enzymatic reactions E = {e1,e2, ...,er },

having r possible reactions. The abundance of an enzymatic reaction for an example i , say

e(i )
l , is defined as a(i )

l (∈R≥0). The class labels y(i ) = [y (i )
1 , ..., y (i )

t ] ∈ {−1,+1}t is a pathway label

vector of size t that represents the total number of pathways, which themselves are derived

from a set of universal metabolic pathways Y . For each example i , y (i )
j =+1 indicates the

presence of the label j while y (i )
j =−1 means the same category is absent for i . The matrix

form of x(i ) and y(i ) are symbolized as X and Y, respectively.

Both E and Y can be extracted from reliable knowledge-bases discussed in Chapter

2.1 (e.g. KEGG [158] and MetaCyc [51]). In this thesis, we adopted MetaCyc. Furthermore,

because Y is composed of multiple outputs for each annotated genome, the supervised

learning is categorized as a multi-label learning, which is examined in the next section.

3.3 Multi-Label Learning Problem Formulation

In Def. 3.9, we assumed that there is a numerical representation behind every instance

and pathway label. We use x ∈X = Rr to denote the r -dimensional feature vector (input

space), representing an instance and U =Rd for the d-dimensional numerical label vector.

In practice, each input example is mapped into an arbitrary m-dimensional vector (m À r )

based on a preferred transformation function Φ : X → Rm , which may be described as

feature engineering process. Furthermore, each example in S is considered to be drawn

independent, identically distributed (i.i.d) from an unknown distribution D over X ×U .

Given this notation and a multi-label dataset S , the goal of multi-label classification

is to learn a hypothesis function h : Φ(x) → {−1,+1}t from S , such that it predicts the

best metabolic pathways for a hitherto unseen instance [397]. The value −1 indicates a

corresponding pathway is absent while +1 suggests it is present in an example. The estimator

h is obtained by optimizing the expected risk of h with regard to a loss function l (y,h(Φ(x))) :

h(Φ(x))×y →R, where y ∈ {−1,+1}t , according to:

(3.3.1) εl (h) = ED[l (Y,h(Φ(X)))]
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Since D is unknown, it is infeasible to estimate the Eq. 3.3.1, instead, we apply its empirical

counterpart �εl (h) [3, 228]. In many modern multi-label learning systems, the estimator h(.)

is formulated as:

(3.3.2) h(Φ(x)) = vec

({
+1 if f (Φ(x), j ) ≥ τ
−1 otherwise

)
∀ j ∈ t

where τ ∈R is a cut-off threshold, vec is a vectorized operation, and f (Φ(x), j ) ∈R is a real-

valued score representing the predictive confidence of j ∈ t being a proper label index for

Φ(x). The form of output transformation in Eq. 3.3.2 is adopted in this thesis. Next, we review

multi-label learning algorithms given S .

x(1) x(2) x(3)

y1 y2 y3

OneXOnePathway

x(1) x(2) x(3)

y1 y2 y3

OneXChainPathway

x(1) x(2) x(3)

y1 y2 y3

OneXPartitionPathway

x(1) x(2) x(3)

y1 y2 y3

ManyXManyPathway

x(1) x(2) x(3)

y1 y2 y3

ManyXChainPathway

x(1) x(2) x(3)

y1 y2 y3

ManyXPartitionPathway

x(1) x(2) x(3)

y1 y2 y3

OneXTreePathway

x(1) x(2) x(3)

y1 y2 y3

OneXFanPathway

x(1) x(2) x(3)

y1 y2 y3

ManyXTreePathway

x(1) x(2) x(3)

y1 y2 y3

ManyXFanPathway

Figure 3.6: 10 types of correlations among pathways and 3 input instances. The dark gray
colored nodes indicate input samples while the light-colored nodes represent pathways.
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3.4 Multi-Label Learning Algorithms

Probably, the fundamental challenge of learning from multi-label data is to design a suitable

solution with strong generalization ability while attaining correlations among labels and

instances [76]. There could be a mixture of 10 types of correlations in a given multi-label

dataset [251] that can be represented as undirected graphs in Fig. 3.6, where the top layer

with dark-colored nodes indicate an input instance while the corresponding pathways is

depicted in the bottom layer with light-colored nodes:

1. OneXOnePathway. Each pathway label is associated with one x. This form of relation-

ship is rare for the pathway dataset.

2. OneXChainPathway. A pathway, say y1, is strongly associated with a single observed

example x(1) while the remaining pathways are inferred based on y1, hence, forming

a chain structure, i.e., y2 is related to y1 and y3. This form is mostly observed for

pathways that include only spontaneous reactions. Other examples are not observed

to be linked to the three pathways.

3. OneXPartitionPathway. In this case, a partition is formed based on a correlation of

two pathways, y1 and y2, with an observed input, x(1), while the pathway y3 may

only be detected through x(1). For the pathway y2, it constitutes a strong bond with

y1 and can not be inferred directly from x(1), which has similar representation as

OneXChainPathway. Moreover, the two remaining instances may not be linked to the

three pathway labels.

4. ManyXManyPathway. All pathways are linked to three instances, but pathways are

not associated with each other. This form corresponds to organisms sharing the same

set of pathways. Perhaps, this may constitute duplicate instances in a pathway dataset.

5. ManyXChainPathway. This is the same as OneXOnePathway, but a pathway, e.g. y1, is

linked to all instances. This form corresponds to organisms that may share the three

pathways, but, may contain different pathway set outside the scope of three pathways.

6. ManyXPartitionPathway. Similar to the explanation presented for OneXPartition-

Pathway, however, both y1 and y3 are now linked to the three input instances. Again,

organisms may not exhibit similar patterns outside the scope of three pathways.
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7. OneXTreePathway. This is similar to OneXPartitionPathway and OneXChainPathway.

Here, inferring a pathway y1 entails all its presumed correlated pathways should be

recovered through only y1.

8. OneXFanPathway. Similar explanation as OneXTreePathway, but y3 can be inferred

either one of the pathways y1 and y2 and not from the input data x(1).

9. ManyXTreePathway. The same explanation as OneXTreePathway, but y1 is associated

with the three input data. Again, instances may not exhibit similar patterns outside

the scope of three pathways.

10. ManyXFanPathway. Similar to OneXFanPathway, however, the y1 is linked to the three

observed input data. Organisms may not have the same pathway set outside three

pathways.

Among all the correlation structure, OneXOnePathway is rarely or not observed in the

pathway dataset, defined in Def. 3.9, while the remaining forms may be exhibited with dif-

ferent proportions in the input data. If pathway is linked to all input data, then it constitutes

an element of an universal pathway set, such as TCA cycle. While directed graph is more

convenient to illustrate various dependencies in Fig. 3.6, nonetheless, this type of graph

is known to be computationally intractable, therefore, we use the undirected counterpart.

With regard to discovering and assessing the distributions of correlation structure in data,

it’s whole another research domain that is outside the scope of this thesis and constitutes an

interesting research topic.

Over the past decade, many models were proposed to articulate correlation and multi-

label problems. Historically, they were compartmentalized into two categories [132, 216,

386]: i)- algorithm adaptation and ii)- problem transformation. The multi-label models that

adapt and extend specific single-label algorithms for the task of multi-label classification

were called algorithm adaptation methods, such as multi-label kNN [385], multi-label de-

cision tree [68], ranking support vector machine [85], collective multi-label classifier [105],

AdaBoostMH [287], and hierarchical multi-label decision trees [331]. The problem transfor-

mation methods translate the multi-label learning problem into well-established learning

scenarios so that traditional single-label classifiers can be applied without modification,

such as binary relevance [43], label power-set, and pair-wise methods, classifier chains [270],

calibrated label ranking [102], and random k-label sets [327].

Although such division is common in the literature [216, 381, 386, 397], nonetheless,

this created difficulty to characterize new models. Therefore, in the context of this thesis,

we categorize multi-label algorithms based on the task-driven approaches according to: i)-
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binary relevance, ii)- low rank algorithms, iii)- ensemble and deep learning methods, iv)-

partially labeled approaches, v)- active learning methods, and vi)- notable algorithms.

3.4.1 Binary Relevance Methods

Binary relevance (BR) addresses the multi-label learning by decomposing the problem into

t independent binary classifiers, where t is the total number of labels in Y . Each binary

classification problem j ∈ t is trained on examples that are tagged positive for j while

the remaining instances are considered negative. During prediction, this approach query

outputs for each label given x∗ and then aggregate the produced labels to tag the example

x∗ with a set of relevant labels according to:

(3.4.1) y∗ = vec

({
+1 if h j (Φ(x∗)) ≥ 0

−1 otherwise

)
∀ j ∈ t

where h j (Φ(x∗)) corresponds the predictive result for the label j , which has similar rep-

resentation as Eq. 3.3.2. With the exception of OneXOnePathway or ManyXManyPathway

correlation structure, this approach is ineffective to exploit other types of relations among

labels in the decision function h j . Fortunately, one can easily address this limitation by

introducing constraints in the objective function during training according to:

(3.4.2) C (h) =⊕ t∑
j=1

(
1

n

n∑
i=1

l (Y:, j ,h j (Φ(X)))︸ ︷︷ ︸
loss function

� λΩ(h j )︸ ︷︷ ︸
constraint function

)

where C is the objective cost function comprising of both loss l and constraintΩ functions.⊕
indicates a model-dependent operation with regard to h which is usually either mini-

mization or maximization,� could be an additive or subtractive operation, λ> 0 is a tuning

hyper-parameter that controls the trade-off between l (.) andΩ(.). The last termΩ(h j ) can

be understood as a series of penalties, which may correspond to a combination of regulariza-

tions to prevent overfitting and constraints on coefficients to enforce semantical similarities

among labels or instances. It is, therefore, the choice of h(.) andΩ(.) that discriminate the

models under this context.

For example, Zhang and colleagues [390] proposed support vector machine (SVM) based

method as a decision function h to explicitly extract relationships among labels, extending

the previous conventional SVM based model [85]. Babbar and colleagues [18, 19] also applied

SVM for the extreme multi-label classification domain, where the number of labels in such

cases often exceeds thousands. Concretely, they suggested an adversarial perturbation

technique applied to every training data to address the tail labels that occur infrequently
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across examples in a multi-label data. Similar to the probabilistic based learning [120], Cheng

and colleagues [61] proposed multi-label logistic regression to capture interdependencies

between labels from instances that is motivated from multi-label k-nearest neighbor (KNN)

classifier with Bayesian inference techniques [385].

In addition to the above models, almost all recent binary relevance models enforce con-

straints to optimize the learned parameters. These include LIFT [382], meta-level features

[367], oracle teacher based labels induction algorithm [377], shared subspaces based on

input space [149], labeling importance based learning that incorporates the relative im-

portance of each relevant label [200, 384], and self-paced learning that simulates human

learning process by gradually learning from easy to hard instances [193]. However, in many

cases, a naïve assumption regarding the existence of correlations among labels may poten-

tially deteriorate the performance, hence, Xu and colleagues [358] suggested an alternative

solution based on the causality learning. Although this model achieved good results, it is

impractical for the pathway dataset which consists of a large number of pathways (t > 2500).

Coupling between constrains and decision function definitely improved the performance

of binary relevance models, nonetheless, it is still imperfect in mining discriminative features

for certain correlation structures, such as OneXChainPathway in Fig. 3.6. Regardless, these

methods are arguably the most intuitive solution to learning from multi-label data, in

particular when data are exposed to noise (e.g. missing labels) [48, 360, 366], due to their

simplicity and easiness in distributing learning and prediction tasks across multiple cluster

nodes for large-scale data as we shall see in Section 3.4.3. In Chapter 5, we will be presenting

mlLGPR that follows this formulation to solve the pathway inference problem.

3.4.2 Low Rank Methods

Algorithms introduced in the last section are limited only to explore for certain correlations,

which are detrimental to classification performances. A feasible strategy is to assume that

both instance X and label Y matrices have effectively low rank, and, by projecting them

onto low-dimensional linear subspaces, one may recover the shared subspaces that can be

supplemented to a multi-label classification model [150]. This approach is called low rank

based methods, which exhibits strong generalization guarantees [18]. In addition, low-rank

generally reduces the dimension of input and/or label space, hence, they are also considered

as dimensionality reduction methods. In the literature, there are multiple variants of low-

rank methods, where they mainly differ in their choices of reduction and decompression

techniques [262], and we can roughly compartmentalize them into three major categories:

i)- feature space, ii)- label space, and iii)- hybrid space reduction methods.
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i)- Feature space reduction. Methods in this approach compress input variables inde-

pendently of labels, and has the following minimization objective formula:

(3.4.3) min ||Φ(X)�−Y||ub +λ||Ω||ub

where� is a feature coefficient matrix with arbitrary dimension size, where each entry

in �i , j corresponds the importance of i-th feature in approximating Φ(X). b and u

are `∗ norm and power operations, respectively, to encourage specific conditions.

For example, applying `2,1 and u = 2, where `2,1 is the sum of the Euclidean norms

of columns of a matrix, will promote sparse representation to �. Ω has a similar

explanation as in Def. 3.4.2 which is a series of constraint terms.

Notable methods in this group include principal component analysis (PCA) [155],

which projects high-dimensional features onto a low-dimensional space. A similar

line of works are followed in [138, 265, 314]. In summary, this approach uses the

smoothness assumption, where examples close to each other in the input space

are more likely to share a label without exploiting labels, hence, they achieve poor

performances on multi-labeling.

ii)- Label space reduction. This approach performs label space reduction by approximat-

ing the label matrix to a low-dimensional subspace according to:

(3.4.4) min ||Φ(X)−Y� ||ub +λ||Ω||ub

where� is a low-rank matrix with arbitrary dimensions. Some works were proposed

using this approach. For example, Tai and colleagues [322] presented a solution by

mapping label sets to vertices in a hypercube, and then optimize the solutions using

singular value decomposition (SVD).

ii)- Hybrid space reduction. This is a widely adopted strategy that provides diagnostics

to preserving input-label correlation. There are various forms of this approach as:

min ||Φ(X)−�||ub +||Y−�||ub +λ||Ω||ub(3.4.5)

min ||Φ(X)>Y−�||ub +λ||Ω||ub(3.4.6)

min ||Φ(X)>Φ(X)−Y>� ||ub +|λ||Ω||ub(3.4.7)

min ||Φ(X)>Φ(X)−Y||ub +λ||Ω||ub(3.4.8)

where� is low-rank matrices with arbitrary dimensions.
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Some prominent models include multi-label informed feature selection [151], non-

negative matrix factorization based [44], global and local correlation among labels and

instances based [34, 144, 359], incorporating extensive meta-features [299], singular

value decomposition [358] (possibly followed by clustering labels [316]), dictionary

learning based [153], canonical correlation analysis [315], maximize margin based

[207], output codes [389], and a unified framework for sparse local embeddings with

nonconvex penalty to extreme multi-label classification [206].

The prediction strategy among these models differs. As an example, in Eq. 3.4.3, it can be

defined as:

(3.4.9) y∗ = vec

({
+1 if sign

(
Φ(X)�

)> 0

−1 otherwise

)
∀ j ∈ t

where sign(.) corresponds the sign of the multiplicative terms inside.

Collectively, low-rank methods have been at the forefront in multi-label classification due

to three main factors: i)- they adopt the low-rank structure of instance and/or label matrices

to extract abstract representations of labels while preserving local and global correlations;

ii)- they assume the low dimensional label vectors are smooth, where points close to each

other are more likely to share a label; and iii)- they solve the optimization problem in an

integrative way by adopting an efficient alternating minimization strategy. However, these

approaches can be slow for training and prediction, especially, for the extreme multi-label

case, consisting of thousands of labels. In addition, to classify new examples, many low-rank

methods perform projection of the low-rank matrices back to the original high-dimensional

space, which is an error prone task. In Chapter 7, we will be presenting triUMPF, which is

customized low-rank hybrid space reduction technique that is dedicated to solve pathway

prediction problem.

3.4.3 Ensemble and Deep Learning Methods

In this section, we first examine the ensemble based multi-label learning paradigm then

we review the deep learning models. In general, all algorithms in this category are highly

effective, but, they can be extremely slow for training and predicting multi-label datasets

containing a large number of labels.

3.4.3.1 Ensemble Methods

Ensemble learning aims to build a set of accurate and diverse multi-label base learners,

simultaneously, considering correlations among labels [301]. To date, most ensemble algo-
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rithms can be divided into: i)- cascade based, ii)- tree based, and iii)- low rank based.

i)- Cascade based. The core theme of this approach is to incorporate labels dependency

into the prediction. Almost all the correlation structure presented in Fig. 3.6 are ap-

plicable using this technique. There are multiple types of cascading scheme, most

notably probabilistic classifier chain [62], where a binary classifier for a label, say y j ,

is trained, conditioned on a given instance x and the other remaining labels y− j , to

estimate the predictive probability of that label according to:

(3.4.10) h j (Φ(x)) = argmax p(y j =±1|x,y− j )

Afterward, the inference can be made as a maximum a posterior probability (MAP) for

all labels:

(3.4.11) y∗ = argmax
y j∈{−1,+1}t

t∏
j=1

p(y j |x∗,y− j )

A similar analytical expression is also exhibited in other chain models, such as classifier

chains and ensembled classifier chains [270, 271]. One of the most fundamental

concerns associated with this approach is the coordination of labels. This has an

important implication because the inference requires an enumeration over t possible

labels, i.e., 2
t (t−1)

2 , which is a computationally-intensive process with high memory

usage. Consequently, a number of methods have been proposed, including conditional

label dependence [157, 383], marginal accuracy [313], stochastic based ordering [267],

the order space given a fixed structure [268], the structure space given a fixed order

[323], and undirected chains [118]. However, the chain methods also suffer from the

class imbalance problems, due to the sparseness exhibited in the label matrix, i.e. Y, as

in the case of pathway dataset. Solving these two aforementioned problems constitute

the main obstacles in these methods, and are left open to future research studies.

ii)- Tree based. Models under this category have received significant attention in recent

years due to various factors, most importantly the reduction in the computational

complexity for the extreme multi-label classification domain. Specifically, these meth-

ods [148, 259–262] follow the decision tree structure by recursively partitioning the

space of labels (or features) at each non-leaf node comprising of a small subset of

relevant labels. However, to split instances at each node, these methods learn a base

classifier (that is a weighted combination of all input features), instead of metrics

employed in the traditional decision tree (e.g. information gain [123]). In practice, the

tree based methods follow three key aspects: 1)- construct an ensemble of trees, each
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of which is induced based on subsampling instance/label features (either randomly or

deterministically) at each level of the tree, 2)- cluster examples sharing similar labels

into one node, and 3)- retrieve a small set of highly relevant true-positive labels.

During prediction, each example is passed through the root until a leaf in each induced

tree, where the base classifier at each node is applied to predict labels, then, labels

are aggregated over all trees using some form of voting strategy [108, 275, 284]. Conse-

quently, the inference complexity is reduced. For example, consider B is the number

of induced trees, D is the depth of trees, and t ′ is the average number of labels per

leaf. Then, the overall prediction cost can be approximated as O(B Hm+B t ′+ t ′ log t ′)
[204]. If the induced trees are balanced, then D ≈ log t and prediction cost is near

O(Bm log t), which is logarithmic in the number of labels. However, the computa-

tional cost is still troublesome since these methods require to induce multiple trees.

Besides, due to the hierarchical nature, errors introduced at the top-level will be down

propagated to the lower levels of trees. As a result, they may not have good prediction

accuracy. Nonetheless, for the extreme multi-label case, a compromise is usually made

to take advantage of logarithmic prediction speed over the prediction accuracy.

iii)- Low rank based. This approach is related to Section 3.4.2, which was reported to be

effectively capturing the label correlation. SLEEC (sparse local embedding for extreme

classification) [33] is the best known ensemble model which solves the problem in

two sequential steps: 1)- partitioning examples into smaller regions followed by 2)-

extracting low dimensional label vectors. The clustering step in SLEEC can be unstable

in high dimensional spaces, hence, an ensemble of SLEEC learners is employed to

achieve good prediction accuracy. However, the models under this category may

converge to a local-minima preventing to achieve an optimal solution.

Notable other ensembled approaches include subset selection methods that cluster labels

into disjoint sets then treat each set as a single label to train a classifier while taking into

account correlations between labels [269, 276, 328]. A similar approach was sought in Slice

[147], which first retrieves a list of most probable true labels using a generative model then

evaluate discriminative classifiers only for the shortlisted true labels. Thanks to Slice, in

Chapter 9 we will be presenting leADS which is an ensemble approach based on the bag

idea [353] for the pathway prediction problem.
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3.4.3.2 Deep Learning

With the exception of low-rank methods, vast majority of ensemble models consider features

are non-dependent among each other when making label predictions, which is a funda-

mental limitation of these methods. Deep learning can provide a solution to this problem.

Specifically, this approach adapts deep learning models to generate low dimensional latent

continuous features, known as embeddings [225] from raw examples. An earliest attempt to

incorporate deep learning is the convolutional neural network (CNN) model [204], which

produced promising results for the extreme multi-label classification task. Unfortunately,

this model does not consider label smoothness assumption where labels that are semanti-

cally tied with an instance (or context) information should be grouped together. Also, many

label dependency structures, as ManyXChainPathway and OneXTreePathway, were not ad-

dressed. Hence, several extensions to CNN model were proposed and the most emergent

models include ensemble tree-based methods [364, 375], fusing label specific information

using long-short term memory (LSTM) model [355], and combination of CNN and LSTM

with attention-based strategy [60].

Despite the benefits gained by the proposed novel deep learning models, they do not

utilize dependencies among labels. A cascade of recurrent neural networks was proposed

which considers labels ordering according to dynamic shuffling strategy [232], as opposed

to the static ordering in [233], thereby, replicating the traditional chain classifiers and label

powerset approaches [270, 271, 328], as discussed in Section 3.4.3.1. However, this model is

impractical for the pathway dataset because they require a cascade of length ∼ 100 labels

where relevant pathway size to be retrieved is usually > 100 pathways. An alternative solution

is based on graph learning techniques [187, 342, 371, 376, 388].

It is worth mentioning that deep learning models are closely related to low-rank meth-

ods discussed in Section 3.4.2, and interestingly both are computationally demanding

approaches [204]. But, they provide many solutions including mitigating from the extensive

feature engineering process. In Chapter 6, we will be introducing a deep learning-based

model, called pathway2vec, to automatically generate embeddings in order to supplement

them to the pathway prediction.

3.4.4 Partial Labeled Methods

Conventional multi-label learning often assumes that each training example is associated

with multiple ground-truth labels. However, in many real-world applications, including

pathway datasets, each training instance is annotated with a partially valid candidate label
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set. Formally, for each example, i in S , described in Def. 3.9, the labels are manipulated

according to y(i ) = [y (i )
1 , ..., y (i )

t ] ⊆ {−1,0,+1}t , where y (i )
j =+1 indicates the presence of the

label j , y (i )
j =−1 means the same category is absent for i , and y (i )

j = 0 suggests the label j is

not annotated. This formulation of dataset is called partial multi-labeled dataset, where the

task is same as in Section 3.3. The learning paradigm (partial multi-label learning or PML) in

this situation is overly challenging as the true labels are concealed among many irrelevant

labels, thereby, an estimator is prone to retrieve many false positive outputs.

An earlier approach to PML is to treat the missing labels as negatives [46, 318]. This

straightforward solution neglects the possible ground-truth positive labels for each example,

hence, inducing inferior prediction models. As an alternative, many methods adopt the low

rank-based approaches to fill the instance-label matrix [48, 173, 339, 350–352, 356, 357, 360,

378, 399]. These models, in general, treat labels and instances as graphs where the label

information is iteratively propagated, and choose the candidate labels associated with some

scoring metrics (e.g. confidence values). However, they all suffer from the cumulative errors

induced in propagation, which may impair the predictive model. Besides, the estimation

of label scores is error-prone, especially when noisy labels dominate that can seriously

deteriorate the predictors performance. Others formulate the problem in the context of

transductive learning that seems to be efficient for large-scale datasets [172]. Studies from

the perspective of probabilistic modelings were also considered, where missing labels are

treated as latent variables [161, 330].

Deep learning models were also investigated. Models in this category include a deep

sequential generative model based on a variational auto-encoder framework [66], a con-

volutional neural network with adaptive loss function [83], and tree ensemble-based deep

learning method [340]. Recently, the PML-GAN model was proposed accommodating gener-

ative adversarial networks (GANs) [109], which uses minimax adversarial training over two

networks: generation and discrimination. This model is comprised of four networks: 1)- a

disambiguation network that estimates the noise probability of each label for each example;

2)- a prediction network that predicts a set of probable true labels of each instance; 3)- a

generation network that synthesizes samples given label vectors; and 4)- a discrimination

network that separates the synthetic samples from the true data. However, PML-GAN does

not incorporate various correlations among labels which are an integral part of the pathway

dataset. In Chapters 8 and 10 we will be presenting reMap and mltS models aiming to solve

various noises consumed in the pathway dataset.
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3.4.5 Active Learning Methods

The overall goal to active learning (AL) is to subselect training examples from a large pool of

unlabeled instances to design a high-quality prediction model using the acquired examples

[70]. The general procedure for multi-label active learning methods, under the pool-based

scenarios [63], is provided in Algorithm 1, where the inputs comprised of two datasets, a

small set of labeled data L and a pool of unlabeled instances U . At the very beginning, a

classifier h is trained using L (line 2). Then, the algorithm proceeds in an iterative manners

until enough number of examples, say k, are queried, where at each step: 1)- a query

algorithm is applied to assess the information content of each instance from U (line 4); 2)-

an oracle (e.g. a human annotator) labels each selected example (line 5); 3)- the selecting

points are added to L and removed from U (line 6-7); and 4)- the base classifier h is retrained

with the new set L (line 9).

Inputs : labeled set L, unlabeled set U
1 i = 1;
2 Train multi-label classifiers hi using L;
3 repeat
4 {x}k

i=1 ←− query(U ,L,hi );

5 {y}k
i=1 ←− oracle({x}k

i=1);

6 L←−L⊕ {(x,y)}k
i=1;

7 U ←−U ª {(x,y)}k
i=1;

8 i = i +1;
9 Retrain multi-label classifiers hi using L;

10 until enough instances are queried;

Algorithm 1: General multi-label active learning
framework

Intuitively, the most informative points should be picked at each iteration. A common

approach is to pick the candidate instances based on the uncertainty or informativeness

criterion, which measures the effectiveness of an example by reducing the classification

uncertainty [195, 196, 352]. This metric does not consider the future predictive informative-

ness of the candidate instance from U , leading to suboptimal performance [143]. However,

methods under this category have two key advantages: i)- being computationally efficient

[293] and ii)- being extensible to consolidate an aggregation operation over labels scores

with regard to the multi-label learning [63, 363].

Representativeness-based is another approach to acquiring samples that measure the

discrepancy of a candidate instance with respect to the underlying distribution of U . Promi-
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nent methods include the generalization error minimization based on trained classifiers

[70, 71, 279]. These approaches are generally computationally intensive because they require

a new prediction model to be re-trained for each candidate instance or requiring to query a

relatively large number of examples before an optimal decision boundary is reached [143].

Other approaches apply heuristic measures to exploit U , such as estimating the density of

unlabeled data [294, 330, 379].

Unfortunately, all the previous selection criteria fail to quantify the overlapping labels

across a set of candidate examples. To address this limitation, the diversity-based criterion

was proposed. Notable methods in this category include clustering instances [117, 119] and

clustering label-instance pair [240, 332]. However, both methods suffer from either informa-

tion redundancy or ignoring label correlation. Alternative approaches were introduced, such

novel queries [140] and compressed sensing and Bayesian principal component analysis

[303]. For a more comprehensive review of active learning, see [115, 273, 292, 368].

In the context of pathway dataset, the methods discussed above avoid addressing im-

balanced and tailed label distribution problems. In Chapter 9 we will be presenting leADS

that is capable to select samples based on either uncertainty or diversity to subsample

examples and, then, train leADS using these subsampled data. As we shall see leADS was

able to minimize the impact of imbalanced problem while partially solving the infrequently

occurring pathways.

3.4.6 Other Notable Approaches

Having defined a variety of multi-label models, in this section we describe three other

existing approaches that are remotely related to this thesis: i)- semi-supervised based, ii)-

multi-instance methods, and iii)- multi-label topic modeling. Among them, topic modeling

was the most widely used approaches in the past decade. Our discussions are kept at a

higher level of abstraction without considering analytical or in-depth explanations.

Semi-supervised methods. If a multi-label dataset is comprised of a fraction of annotated

examples within a pool of unlabeled instances [398], then the approach to learning from

this type of data is called semi-supervised learning (SSL). It is important to note that the cor-

responding dataset is different from the partial multi-labeled dataset, discussed in Section

3.4.4, wherein the later case each example is annotated with partially valid labels. SSL is

less explored because one may formulate this problem in the context of partial multi-label

learning framework through randomly imputing missing annotated examples with labels,

then, obtaining classifiers that preserve tight bonds among instances, labels, and instances

with labels. Indeed, all models in this category are semi-identical to PML [56, 116, 361, 390].
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What deserves attention here is a class of dataset that consists of valid/invalid labeled or

unannotated instances, which is frequently observed for the pathway dataset. To learn from

this type of data weakly supervised multi-label learning was proposed which is a generaliza-

tion of both semi-supervised and partial multi-label learning approaches. Nevertheless, the

methods used for this case study is also seen similar to PML approaches. Models include

deep generative weakly-supervised multi-label classification [66], which is a sequential deep

networks to learn multi-label classifiers from the aforementioned training data. Liu and

colleagues [208] proposed knowledge distillation based weak learning that jointly trains two

models, teacher and student models. In this scenario, the teacher model learns the label

correlation and then passes this information to the student model which utilizes this knowl-

edge to acquire feature representations, thereby, forming strong dependencies between

labels and instances. A related work was performed in [213].

Multi-instance methods. In the pathway dataset, a collection of examples belonging to a

specific species may exhibit similar pathways. From this perspective, one may formulate

the problem of multi-label learning as multi-instance multi-label learning (MIML). In this

learning framework, every training example is represented with a group (or bag [353])

of multiple instances, and annotated with multiple labels to express its semantics, i.e.,

(x(i ),y(i )) ∈S where x(i ) = {z(i )
1 , ...,z(i )

ni
} is a group of ni number of instances belonging to x(i ).

Fig. 3.7 illustrates the three learning frameworks. As can be seen, the multi-instance learning

addresses the ambiguity associated in the input space where an object (a group), represented

by black-colored nodes, may comprise of multiple instances, multi-label learning studies

the ambiguity of an input being associated with multiple labels, and, MIML considers the

uncertainties corresponding both input and label spaces simultaneously [396].

x(1) x(2) x(3)

y

Multi-instance learning

x(1)

y1
y2

y3

Multi-label learning

x(1) x(2) x(3)

y1
y2

y3

Multi-instance Multi-label learning

Figure 3.7: Three learning frameworks. Node color indicates the category of the node type,
where dark gray indicates input samples, black indicates grouping objects, and light grey is
reserved for metabolic pathways.
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Prior works in this context include MIMLSVM [392], generative model [365], and nearest-

neighbor based approach [380]. However, these methods are usually computationally-

extensive and do not scale to process the massive volumes of data. Consequently, Huang and

colleagues [142] proposed a fast MIML algorithm by exploiting label correlation with shared

space. Similarly, the instance representation learning-based approach was introduced in

[90]. Alternatively, a model that combines multi-instance multi-label with active learning

was introduced in [141] to efficiently reduce labeling and computational budgets.

For the pathway prediction task, the MIML framework may be a suitable approach if the

pathway data involves species information, where one can incorporate species along with

input patterns and labels. However, without having access to grouping information, MIML

would require pre-steps to discovering such groups bags. In Chapters 7 and 8, we will be

discussing triUMPF and reMap that attempt to partially address this key observation.

Multi-label topic modeling. This approach merges the ingredients of generative statistical

topic models with multi-label classification, thereby, resulting in models that achieve inter-

pretability and predictions simultaneously. The generative topic modelings are a class of

probabilistic hierarchical Bayesian networks to discover the hidden composition of latent

topics or concepts given a collection of examples. In particular, models as latent Dirichlet

allocation [42], assumes that each example is composed of mixed proportions of topics, and,

topics, in turn, are comprised of a mixture of features with different distributions. To esti-

mate the mixture components, these approaches either apply approximate samplings, such

as MCMC [10, 11] and Gibbs sampling [50, 329], or use tractable optimization algorithms,

such as variational inference [41, 136, 184]. Since the process is completely accomplished in

an unsupervised manner, an additional component is necessary to tag concepts with labels,

which is the fundamental problem associated with this approach.

Despite this limitation, several directions have been already explored, such as Prior-

LDA and Dependency-LDA [280] that are subsequently extended to Frequency-LDA and

Dependency-Frequency- LDA by Li and colleagues [197]. Correlations among labels were

also considered in the correlated labeling model [338]. A Bayesian non-parametric approach

[241] was considered to learn from possibly unknown (infinite) number of multi-label

correlation. Padmanabhan and colleagues [247] presented an interesting multi-label topic

model that accounts for multiple noisy annotations from the crowd. All of these models

are capable of learning rare labels, however, as mentioned tagging concepts to labels and,

then, transforming a set of real-valued predictions into binary predictions for each instance

are non-trivial tasks. Several strategies were explored to articulate this bottlenecks, notably,

rank-based cut-off thresholds [280].
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Models in this category are closely related to SOAP and SPREAT, discussed in Chapter 8,

which were designed to model pathway distributions while addressing the missing pathways

that were not annotated in pathway datasets.

3.5 Summary

This chapter contributes a much-needed resource about the mathematical formulation

of a metabolic pathway in the context of multi-label learning. There have been numerous

attempts to represent pathways, nevertheless, those studies intricate the prediction problem

even further. Motivated by this demand, we simplified the problem by projecting the pathway

onto two-layer graph networks, an enzyme layer, contributing to pathways, and a pathway

layer. This representation enabled us to establish a sequence of terminologies (serving as a

cascade of building blocks) that ended up with the definition of a pathway genome dataset.

The problem can then be articulated efficiently as multi-label classification approaches.

Since the pathway is depicted as a graph structure, it is inevitable fact to address the

ambiguity associated with multiple levels of correlations. For this, we browsed the current

state-of-the-art of multi-label learning methods that provide possible diagnostics to this

problem. However, instead of trying to go through all the learning techniques within con-

fined space, which would lead to only abridged introductions, we restricted the review

process within our own designed paradigms according to the delivered tasks. Consequently,

frameworks that did not fit within the landscape of our discussions were ignored, such as

multi-view multi-label learning [397] and max-margin based approach [372].

Supported by our observations, the vast majority of discussed multi-label learning

algorithms fell under the low-rank based methods and have seen to gradually shifting

towards deep learning-based techniques. However, measurements with regard to correlation

studies are not well crystallized. To the best of our knowledge, Park and colleagues [251]

was the first attempt to formally characterize the label correlation concept by pinpointing

multiple scenarios that may exist in a multi-label data. In the context of pathway prediction,

this thesis formulates and proposes multiple multi-label learning models customized to

systemically solve this problem. In the next subsequent chapters, we will be providing

detailed elaborations and experimental results about these models.
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Chapter 4

Benchmark Data and Evaluation Metrics
“Many options are not transparent. They need to be explored and evaluated with

care. What you see is not always what you get.”

– J. Grant Howard

In this chapter, we discuss database, datasets, and algorithms used in our experiments in

Sections 4.1, 4.2, and 4.3, respectively. Then, we explain the metrics used for evaluating the

performance of pathway prediction algorithms in Section 4.4.

4.1 Benchmark Pathway Database

We used MetaCyc knowledge-base v21 [51]. Various configurations of MetaCyc were ex-

amined throughout this thesis and is summarized in Table 4.1, where V represents the

aggregation of nodes as described in Def. 3.7 while Z indicates a set of all edges among

nodes in V . The configurations are: i)- full content MetaCyc consisting of nodes with links

among themselves as described in Def. 3.7; ii)- reduced content of MetaCyc (r) which is

comprised of all nodes that have links over 2 degrees; iii)- MetaCyc (uec) by removing links

among EC nodes while retaining links of all other node types; and iv)- MetaCyc (uec + r)

which comprises of unconnected EC and trimmed nodes. Three association matrices were

also applied: Pathway-EC (M) in Def. 3.4; Pathway-Pathway interaction (A) in Def. 3.5; and

EC-EC interaction (B) in Def. 3.6.

4.2 Benchmark Pathway Datasets

Experiments were conducted using a corpus of 13 experimental datasets manifesting diverse

multi-label properties, including manually curated organismal genomes, synthetic microbial
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Database #EC #Compound #Pathway |V | |Z |
MetaCyc 6378 13689 2526 22593 37631
MetaCyc (r) 3606 6469 2467 12542 37631
MetaCyc (uec) 6378 13689 2526 22593 33353
MetaCyc (uec + r) 3229 6469 2467 12165 33353
M 3650 – 2526 – 8576
A – – 2526 – 9938
B 3650 – – – 35629

Table 4.1: Different configurations of compound, enzyme and (EC) and pathway objects
extracted from the MetaCyc database. These are: i)- full content (MetaCyc), ii)- reduced
content based on trimming nodes below 2 links (MetaCyc r), iii)- links among enzymatic
reactions are removed (MetaCyc uec)), and iv)- combination of unconnected enzymatic
reactions and trimmed nodes (MetaCyc uec + r). The “–” indicates non applicable operation.

communities, and low complexity microbial communities. The quality of these datasets

can be arranged onto a four-tiered (T) structure hierarchy in descending order of manual

curation and functional validation in Fig. 4.1, where top tiers reflect detailed biochemical

knowledge from a complete reference genome (e.g., T1 in the information hierarchy) while

the very bottom layer (T4) indicate more complex organismal diversity found in natural and

engineered environments.

The detailed characteristics of the applied datasets are summarized in Table 4.4. For each

dataset S , we use |S | and L(S) to represent the number of instances and pathway labels,

respectively. In addition, we also present some characteristics of the multi-label datasets,

which are denoted as:

1. Label cardinality (LCard(S) = 1
n

∑i=n
i=1

∑ j=t
j=1 I[Yi , j 6= −1]), where I is an indicator function

and t is pathway size. It denotes the average number of pathways in S .

2. Label density (LDen(S) = LC ar d(S)
L(S) ). This is simply obtained through normalizing

LCard(S) by the number of total pathways in S . This metric is related to LCard:

LCard(S) = t× LDen(S).

3. Distinct label sets (DL(S)). This notation indicates the number of distinct pathway

labels observed in S .

4. Proportion of distinct label sets (PDL(S) = DL(S)
|S | ). It represents the normalized version

of DL(S), and is obtained by dividing DL(.) with the number of instances in S .
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Figure 4.1: Genomic information hierarchy encompassing individual, population and
community levels of cellular organization. (a) Building on the BioCyc curation-tiered struc-
ture of Pathway/Genome Databases (PGDBs) constructed from organismal genomes, two
additional data structures are resolved from single-cell and plurality sequencing methods to
define a 4 tiered hierarchy (T1-4) in descending order of manual curation and functional
validation. (b) Completion scales for organismal genomes, single-cell amplified gemomes
(SAGs) and metagenome assembled genomes (MAGs) within the 4 tiered information hier-
archy. Genome completion will have a direct effect on metabolic inference outcomes with
incomplete organismal genomes, SAGs or MAGS resolving fewer metabolic interactions.

The following notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar mean-

ings as before but they are in the context of enzymatic reactions E in S . Finally, PLR(S)

represents a ratio of L(S) to R(S). We briefly describe these experimental datasets.

4.2.1 Golden Dataset

T1 golden datasets composed from six PGDBs, retrieved from biocyc 1: EcoCyc (v21), Human-

Cyc (v19.5), AraCyc (v18.5), YeastCyc (v19.5), LeishCyc (v19.5), and TrypanoCyc (v18.5), and

are refined to include only information content overlapping with MetaCyc v21 (full content)

[51]. In addition, a composite golden dataset was curated, referred to as SixDB, that consists

1https://biocyc.org/
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Figure 4.2: Matrix layout for all possible pathway intersections among EcoCyc, Human-
Cyc, AraCyc, YeastCyc, LeishCyc, and TrypanoCyc. Brown circles in the matrix indicate sets
that are part of the intersection and their distributions are shown as a vertical bar above the
matrix while the aggregated number of pathways from intersected sets for each sample is
represented by a horizontal bar at the bottom left. More information is provided in Table 4.4.

of 63 permuted combinations of T1 PGDBs, using the following formula:

(4.2.1) |S | =
k=6∑
k=1

(
6

k

)
where |.| denotes the number of samples in S .

Fig 4.2 demonstrates the intersected pathways among the six databases, where the

columns of the matrix use binary circled-shaped patterns to define the applied intersected

datasets, and the bars, just above the matrix columns, represent the number of elements

in each intersection. The bars at the bottom left, plotted along the rows of the matrix,

provide information regarding the total intersection size of a dataset. Several interesting

observations can be summarized, for example, LeishCyc has the lowest number in both: the
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MetaCyc Pathway MataCyc Pathway ID Metabolism

L-phenylalanine biosynthesis I PHESYN Phenylalanine
L-tryptophan biosynthesis TRPSYN-PWY Tryptophan
L-arginine biosynthesis II (acetyl cycle) ARGSYNBSUB-PWY Arginine
L-valine biosynthesis VALSYN-PWY Valine
L-leucine biosynthesis LEUSYN-PWY Leucine
L-lysine biosynthesis I DAPLYSINESYN-PWY Threonine
L-threonine biosynthesis HOMOSER-THRESYN-PWY Threonine
L-isoleucine biosynthesis I (from threonine) ILEUSYN-PWY Isoleucine
L-histidine biosynthesis HISTSYN-PWY Histidine
L-methionine biosynthesis I HOMOSER-METSYN-PWY Methionine

Table 4.2: Nine amino acids, indicated by metabolism, for the symbiont dataset. These
pathways are distributed between Candidatus Moranella endobia and Candidatus Tremblaya
princeps genomes [218].

distinct pathways, having only 4 pathways, and the aggregated number of pathways from all

enumeration of intersected sets, which represents the cardinality of LeishCyc pathways, i.e.,

87 pathways (see Table 4.4), while AraCyc data has the highest number in both categories

(271 distinct pathways and 510 the aggregated number of pathways). These observations

were substantially beneficial during our experimental inspections. The golden T1 datasets

serve as baselines to cross-examine the performances of all pathway prediction algorithms.

4.2.2 BioCyc Dataset

BioCyc (v20.5 T2-3) [52] consists of 9255 PGDBs (Pathway/Genome Databases) collected

from more than 1000 distinct species. We preprocessed the collections to extract ECs and

pathways that cross intersect with MetaCyc v21. This has resulted in 1463 distinct pathway

labels and 2705 distinct ECs. The dataset is mainly used to train models in this thesis.

4.2.3 Symbiont Dataset

The symbiont data (T4) illustrates distributed metabolic pathways between two interacting

organismal reduced genomes for Candidatus Moranella endobia (GenBank NC-015735) and

Candidatus Tremblaya princeps (GenBank NC-015736) [218]. We used MetaPathways v2.5

[175] and Pathway Tools v21 to generate the environmental Pathway/Genome Database

(ePGDB) with the default settings. This dataset was used to investigate the likeliness of

pathway inference algorithms to predict 9 amino acid biosynthetic pathways, provided in

Table 4.2, on individual symbiont genomes and a composite genome consisting of both.
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4.2.4 CAMI Dataset

The CAMI 2 (Critical Assessment of Metagenome Interpretation) T4 dataset [289] is a simu-

lated dataset from 40 genomes of low complexity. Similar to symbiont data, MetaPathways

v2.5 [175] was employed to generate ePGDBs. We mainly used the CAMI dataset to compare

the performance gap, according to PathoLogic, of various proposed models in this thesis.

4.2.5 Hawaii Ocean Time-Series (HOTS) Dataset

The HOTS metagenome (DNA) T4 dataset is composed of complex microbial communities

from 25m, 75m, 110m (sunlit) and 500m (dark) ocean depth intervals [309]. Unassembled

metagenomic pyrosequences from the Hawaii Ocean Time-Series (10m, 75m, 110m, and

500m) can be obtained from the NCBI Sequence Read Archive under accession numbers

SRX007372, SRX007369, SRX007370, SRX007371. To generate ePGDBs, MetaPathways v2.5

[175] was used. Out of 781 unique pathways, we selected 45 previously reported pathways

[125], outlined in Table 4.3, to perform qualitative assessments over PathoLogic and the

proposed pathway prediction algorithms in this thesis.

4.2.6 Synthetic Dataset

Two in silico datasets, namely Synset-1 and Synset-2, were constructed by selecting a list

of pathways, at first, then creating samples to curate a dataset (summarized in Appendix

A). These datasets were used to train and evaluate the mlLGPR’s predictive performance

(in Chapter 5). Since these datasets are simulated, we cannot map them onto the four tier

information hierarchy.

4.3 Benchmark Pathway Algorithms

We evaluated the performances of our models against Naïve [370], MinPath v1.2 [370],

and PathoLogic v21 (without taxonomic pruning) [163] using the default settings. Besides,

we introduce the BASELINE algorithm, which is the most straightforward way to recover

pathways. In this strategy, the enzymatic reactions for an example map directly onto the true

representation of all reference pathways in MetaCyc v21. Then, we apply a cutoff threshold

(0.5) to retrieve a list of pathways for that example.

2https://edwards.sdsu.edu/research/cami-challenge-datasets/
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MetaCyc Pathway MataCyc Pathway ID Metabolism Topology

L-selenocysteine biosynthesis II (archaea and eukaryotes) PWY-6281 Amino acids Biosynthesis
glycine biosynthesis IV GLYSYN-THR-PWY Amino acids Biosynthesis
homocysteine and cysteine interconversion PWY-801 Amino acids Biosynthesis
CMP-N-acetylneuraminate biosynthesis I (eukaryotes) PWY-6138 Carbohydrates Biosynthesis
CMP-N-acetylneuraminate biosynthesis II (bacteria) PWY-6139 Carbohydrates Biosynthesis
glycogen biosynthesis I (from ADP-D-Glucose) GLYCOGENSYNTH-PWY Carbohydrates Biosynthesis
ADP-L-glycero-β-D-manno-heptose biosynthesis PWY0-1241 Carbohydrates Biosynthesis
phosphopantothenate biosynthesis III (archaebacteria) PWY-6654 Cofactors Biosynthesis
menaquinol-8 biosynthesis MENAQUINONESYN-PWY Cofactors Biosynthesis
5,6-dimethylbenzimidazole biosynthesis II (anaerobic) PWY-7729 Cofactors Biosynthesis
5,6-dimethylbenzimidazole biosynthesis I (aerobic) PWY-5523 Cofactors Biosynthesis
mycothiol biosynthesis PWY1G-0 Cofactors Biosynthesis
coenzyme M biosynthesis I P261-PWY Cofactors Biosynthesis
pyridoxal 5’-phosphate biosynthesis II PWY-6466 Cofactors Biosynthesis
coenzyme B/coenzyme M regeneration PWY-5207 Cofactors Biosynthesis
thiamine diphosphate biosynthesis II (Bacillus) PWY-6893 Cofactors Biosynthesis
thiamine diphosphate biosynthesis I (E. coli) PWY-6894 Cofactors Biosynthesis
thiamine diphosphate biosynthesis IV (eukaryotes) PWY-6908 Cofactors Biosynthesis
lipoate biosynthesis and incorporation I PWY0-501 Cofactors Biosynthesis
glutathione biosynthesis GLUTATHIONESYN-PWY Cofactors Biosynthesis
biotin biosynthesis from 8-amino-7-oxononanoate I PWY0-1507 Cofactors Biosynthesis
trans, trans-farnesyl diphosphate biosynthesis PWY-5123 Cofactors Biosynthesis
UDP-<i>N</i>-acetyl-D-galactosamine biosynthesis II PWY-5514 Cofactors Biosynthesis
flavonoid biosynthesis PWY1F-FLAVSYN Secondary metabolites Biosynthesis
diploterol and cycloartenol biosynthesis PWY-6098 Secondary metabolites Biosynthesis
salidroside biosynthesis PWY-6802 Secondary metabolites Biosynthesis
L-threonine degradation II THREONINE-DEG2-PWY Amino acids Degradation
L-threonine degradation III (to methylglyoxal) THRDLCTCAT-PWY Amino acids Degradation
L-rhamnose degradation II PWY-6713 Carbohydrates Degradation
D-mannose degradation MANNCAT-PWY Carbohydrates Degradation
2-methylcitrate cycle II PWY-5747 Carboxylates Degradation
acetate formation from acetyl-CoA II PWY-5535 Carboxylates Degradation
citrate degradation PWY-6038 Carboxylates Degradation
reductive monocarboxylic acid cycle PWY-5493 C1 compounds Degradation
methane oxidation to methanol I PWY-1641 C1 compounds Degradation
hydrogen production VIII PWY-6785 Hydrogen production amino acids Degradation
L-methionine degradation III PWY-5082 Hydrogen production amino acids Degradation
ammonia oxidation I (aerobic) AMMOXID-PWY Non-carbon nutrients Degradation
nitrite-dependent anaerobic methane oxidation PWY-6523 Non-carbon nutrients Degradation
nitrate reduction IV (dissimilatory) PWY-5674 Non-carbon nutrients Degradation
guanosine nucleotides degradation III PWY-6608 Nucleotides Degradation
ribitol degradation RIBITOLUTIL-PWY Secondary metabolites Degradation
D-sorbitol degradation I PWY-4101 Secondary metabolites Degradation
pyruvate fermentation to (S)-acetoin PWY-6389 Fermentation Energy
photosynthesis light reactions PWY-101 Photosynthesis Energy

Table 4.3: Selected 45 pathways for HOTS metagenome (DNA) dataset. The dataset is com-
posed of complex microbial communities from 25m, 75m, 110m (sunlit) and 500m (dark)
ocean depth intervals [309].

4.4 Evaluation Metrics

Here, we discuss common performance metrics used to evaluate the performances of

pathway predictors. Additional metrics, including normalized mutual information (NMI),

will be discussed in their associated contexts.
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4.4.1 Performance Metrics

Four standard metrics were used to report on performance of prediction algorithms: average

precision, average recall, average F1 score (F1), and Hamming loss, [354]. Formally, let us de-

note y(i ) and ŷ(i ) to be the true and the predicted pathway set for the i th sample, respectively.

Then, the four measurements can be defined as:

(4.4.1) Average Precision (Pr) = 1

n

n∑
i=1

(
y(i )>ŷ(i )∑

j∈t ŷ(i )
j

)

(4.4.2) Average Recall (Rc) = 1

n

n∑
i=1

(
y(i )>ŷ(i )∑

j∈t y(i )
j

)

(4.4.3) Average F1 = 2Pr×Rc

Pr+Rc

(4.4.4) Hamming Loss (hloss) = 1

nt

n∑
i=1

t∑
j=1

1(y(i )
j 6= ŷ(i )

j )

where 1(.) denotes the indicator function, respectively. Each metric is averaged based on

sample size. The values of average precision, average recall, and average F1 vary between 0−1

with 1 being the optimal score. Average Precision relates the number of true pathways to the

number of predicted pathways including false positives, while recall relates the number of

true pathways to the total number of expected pathways including false negatives. While

recall tells us about the ability of each prediction method to find relevant pathways, precision

tells us about the accuracy of those predictions. Average F1 represents the harmonic mean

of average precision and average recall by taking the trade-off between the two metrics into

account. The hloss is the fraction of pathways that are incorrectly predicted providing a

useful performance indicator. From Eq 4.4.4, we observe that when all of the pathways are

correctly predicted, then hloss = 0, whereas the other metrics will be equaled to 1. On the

other hand, when the predictions of all pathways are completely incorrect hloss = 1, whereas

the other metrics will be equaled to 0.
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4.4.2 Equalized Loss of Accuracy

We also evaluated the effects of noise on the robustness of a model’s performance using

equalized loss of accuracy (ELA) metric [283]:

ELAρ = RLAρ+ s(M0)

where RLAρ =
M0 −Mρ

M0
and s(M0) = 1−M0

M0

(4.4.5)

The ELA score combines both i)- the robustness of a model, computed by RLAρ at a con-

trolled noise threshold ρ and ii)- the performance of a model without noise, i.e., s(M0),

where s represents the average F1 score for a model M0 without noise (any performance

metrics can be employed). A low ELA score indicates that a model continues to exhibit good

performance with increasing background noise.

Dataset |S | L(S) LCard(S) LDen(S) DL(S) PDL(S) R(S) RCard(S) RDen(S) DR(S) PDR(S) PLR(S) Domain

AraCyc 1 510 510 1 510 510 2182 2182 1 1034 1034 0.2337
Arabidopsis
thaliana (v18.5)

EcoCyc 1 307 307 1 307 307 1134 1134 1 719 719 0.2707

Escherichia
coli K-12 sub-
str.MG1655
(v21)

HumanCyc 1 279 279 1 279 279 1177 1177 1 693 693 0.2370
Homo sapiens
(v19.5)

LeishCyc 1 87 87 1 87 87 363 363 1 292 292 0.2397
Leishmania
major Friedlin
(v19.5)

TrypanoCyc 1 175 175 1 175 175 743 743 1 512 512 0.2355
Trypanosoma
brucei (v18.5)

YeastCyc 1 229 229 1 229 229 966 966 1 544 544 0.2371
Saccharomyces
cerevisiae (v19.5)

SixDB 63 37295 591.9841 0.0159 944 14.9841 210080 3334.6032 0.0159 1709 27.1270 0.1775
Composed from
six databases

BioCyc 9255 1804003 194.9220 0.0001 1463 0.1581 8848714 956.1009 0.0001 2705 0.2923 0.2039
BioCyc v20.5 (tier
2 & 3)

Symbiotic 3 119 39.6667 0.3333 59 19.6667 304 101.3333 0.3333 130 43.3333 0.3914
Composed of
Moranella and
Tremblaya

CAMI 40 6261 156.5250 0.0250 674 16.8500 14269 356.7250 0.0250 1083 27.0750 0.4388
Simulated micro-
biomes of low
complexity

HOTS 4 2178 311.1429 0.1429 781 111.5714 182675 26096.4286 0.1429 1442 206.0000 0.0119

Metagenomic
Hawaii Ocean
Time-series
(10m, 75m,
110m, and 500m)

Synset-1 15000 6801364 453.4243 0.00007 2526 0.1684 30901554 2060.1036 0.00007 3650 0.2433 0.2201
Synthetically
generated (un-
corrupted)

Synset-2 15000 6806262 453.7508 0.00007 2526 0.1684 34006386 2267.0924 0.00007 3650 0.2433 0.2001
Synthetically
generated (cor-
rupted)

Table 4.4: Characteristics of 13 datasets. The notations |S |, L(S), LCard(S), LDen(S), DL(S),
and PDL(S) represent number of instances, number of pathway labels, pathway labels
cardinality, pathway labels density, distinct pathway labels set, and proportion of distinct
pathway labels set for S , respectively. The notations R(S), RCard(S), RDen(S), DR(S), and
PDR(S) have similar meanings as before but for the enzymatic reactions E in S . PLR(S)
represents a ratio of L(S) to R(S). The last column denotes the domain of S .
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Part II

Conventional Multi-Label Classification
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Chapter 5

Multi-label Classification Approach to

Metabolic Pathway Inference with Rich

Pathway Features
“Your assumptions are your windows on the world. Scrub them off every once in a

while, or the light won’t come in.”

– Isaac Asimov

Metabolic inference from genomic sequence information is an essential step in determining

the capacity of cells to make a living in the world at different levels of biological organization.

A common approach to determining the metabolic potential encoded in genomes is to map

conceptually translated open reading frames onto a reference database containing known

product descriptions. Such gene-centric methods are limited in their capacity to predict

pathway presence or absence and do not support standardized rule-sets for automated

and reproducible research. Pathway-centric methods based on defined rule sets or ma-

chine learning algorithms provide an adjunct or alternative inference method that supports

hypothesis generation and testing of metabaolic relationships within and between cells.

This chapter presents mlLGPR, multi-label based on logistic reg ression for pathway

pr ediction, a software package that uses supervised multi-label classification and rich

pathway features to infer metabolic networks at the individual, population and community

levels of organization. mlLGPR was evaluated using a a subset of experimental datasets,

introduced in Chapter 4.2. Resulting performance metrics equaled or exceeded previous

reports for organismal genomes and identify specific challenges associated with features

engineering and training data for community-level metabolic inference.
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5.1 Introduction

As discussed in previous chapters, metabolic inference from genomic sequence information

is a fundamental problem in biology with far reaching implications for our capacity to

perceive, evaluate and engineer cells at the individual, population and community levels

of organization [122, 244]. Predicting metabolic interactions can be described in terms of

molecular events or reactions coordinated within a series or cycle. The set of reactions within

and between cells defines a reactome, while the set of linked reactions defines pathways

within and between cells. Reactomes and pathways can be predicted from primary sequence

information and refined using mass spectrometry to both validate known and uncover novel

pathways.

The development of reliable and flexible rule sets for metabolic inference is a non-trivial

step that requires manual curation to add accurate taxonomic or pathway labels [326].

This problem is compounded by the ever increasing abundance of different information

structures sourced from organismal genomes, single-cell amplified gemomes (SAGs) and

metagenome assembled genomes (MAGs) (in Fig. 4.1). Under ideal circumstances, pathways

are inferred from a bounded reactome that has been manually curated to reflect detailed

biochemical knowledge from a closed reference genome (e.g. T1 in the information hierarchy

in Fig. 4.1). While this is possible for a subset of model organisms, it becomes increasingly

difficult to realize when dealing with the broader range of organismal diversity found in

natural and engineered environments. At the same time, advances in sequencing and mass

spectrometry platforms continue to lower the cost of data generation resulting in exponential

increases in the volume and complexity of multi-omic information (DNA, RNA, protein and

metabolite) available for metabolic inference [13].

While PathoLogic (in Chapter 2.2), provides a powerful engine for pathway-centric

inference, it is a hard coded and relatively inflexible application that does not not scale

efficiently for community sequencing projects. Moreover, PathoLogic does not provide

probability scores associated with inferred pathways further limiting its statistical power

with respect to false discovery. An alternative inference method called MinPath uses integer

programming to identify the minimum number of pathways that can be described given a

set of defined input sequences (e.g. KO family annotations in KEGG [370]). However, such

a parsimony approach is prone to false negatives and can be difficult to scale. Issues of

probability and scale have led to the consideration of machine learning (ML) approaches for

pathway prediction based on rich feature information. Dale and colleagues conducted a

comprehensive comparison of PathoLogic to different types of supervised ML algorithms
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including naive Bayes, k nearest neighbors, decision trees and logistic regression, converting

PathoLogic rules into features and defining new features for pathway inference [73]. They

evaluated these algorithms on experimentally validated pathways from six T1 PGDBs in

the BioCyc collection randomly divided into training and test sets. Resulting performance

metrics indicated that generic ML methods equaled or marginally exceeded the performance

of PathoLogic with the benefit of probability estimation for pathway presence and increased

flexibility of use.

Despite the potential benefits of adopting ML methods for pathway prediction from ge-

nomic sequence information, PathoLogic remains the primary inference engine of Pathway

Tools [165], and alternative methods for pathway-centric inference expanding on the algo-

rithms evaluated by Dale and colleagues remain nascent. Several recent efforts incorporate

metabolite information to improve pathway inference and reaction rules to infer metabolic

pathways [49, 75, 321, 326]. Others, including BiomeNet [296] and MetaNetSim [152] omit

pathways and model reaction networks based on enzyme abundance information.

This chapter describes a multi-label classification approach to metabolic pathway infer-

ence using rich pathway feature information called mlLGPR. mlLGPR uses logistic regression

and feature vectors re-adapted from the work of Dale and colleagues to predict metabolic

pathways for individual genomes as well as more complex cellular communities (e.g. mi-

crobiomes). We evaluated mlLGPR performance in relation to other inference methods

including PathoLogic and MinPath on a subset of datasets in Chapter 4.2, where mlLGPR

achieved remarkable performances on golden T1 datasets.

5.2 Problem Formulation

As explained in Chapter 3.3, an input data x ∈X , where X = Rr , can be transformed into

an arbitrary m-dimensional vector using an appropriate function where m À r . The trans-

formation function for each example is defined as Φ : X → Rm , and is known as feature

extraction and transformation process (see Section 5.3.1).

Metabolic Pathway Prediction

Given a multi-label dataset S (Def. 3.9), the goal of mlLGPR is to learn a

hypothesis function f : Φ(x) → 2Y , such that it efficiently predicts target

pathways for a hitherto unseeen instance x∗ as close as to the actual path-

ways for that sample.
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Figure 5.1: mlLGPR workflow. Datasets spanning the information hierarchy are used in
feature engineering. The Synthetic dataset with features is split into training and test sets
and used to train mlLGPR. Test data from the Gold Standard dataset (T1) with features
and Synthetic dataset with features is used to evaluate mlLGPR performance prior to the
application of mlLGPR on experimental datasets (T4) from different sources.

5.3 The mlLGPR Method

In this section, we provide a description of mlLGPR components including: i)- features

representation, ii)- the prediction model, and iii)- the multi-label learning process.

5.3.1 Feature Engineering

The design of feature vectors is critical for accurate classification and pathway inference. We

consider five types of feature vectors inspired by the work of Dale and colleagues [73]: i)- en-
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zymatic reactions abundance vector (φa), ii)- reactions evidence vector (φ f ), iii)- pathways

evidence vector (φy ), iv)- pathway common vector (φc ), and v)- possible pathways vector

(φd ). The transformation process φa is represented by r -dimensional frequency vector, cor-

responding to the number of occurrences for each enzymatic reaction asφa = [a1, a2, ..., ar ]>.

An enzymatic reaction is characterized by an enzyme commission (EC) classification num-

ber [20]. The reaction evidence vector φ f indicates the properties of the enzymatic reaction

for each sample. The pathway evidence features φy include a subset of features developed

by Dale and colleagues expanding on core PathoLogic rule sets to include additional infor-

mation related to enzyme presence, gaps in pathways, network connectivity, taxonomic

range, etc [73]. The pathway common feature vector φc , for a sample x(i ) is represented by

r -dimensional binary vector and the possible pathways vector φd is a t-dimensional binary

vector. Each of the transformation function maps x to a different dimensional vector, and

the concatenated feature vector Φ= [φa(x(i )),φ f (x(i )),φy (x(i )),φc (x(i )),φd (x(i ))] has a total

of m-dimensional features for each sample. For a more in-depth description of the feature

engineering process please refer to Appendix B).

5.3.2 Prediction Model

We use the logistic regression (LR) model to infer a set of pathways given an instance feature

vectorΦ(x(i )). LR was selected because of its proven power in discriminative classification

across a variety of supervised machine learning problems [216]. In addition to direct prob-

abilistic interpretation integrated into the model, LR can handle high-dimensional data,

efficiently. The LR model represents conditional probabilities through a non-linear logistic

function f (.) defined as

(5.3.1) f (θ j ,Φ(x(i ))) = p(y(i )
j = 1|Φ(x(i ));θ j ) =

exp(θ>j Φ(x(i )))

exp(θ>j Φ(x(i )))+1

where y(i )
j is the j -th element of the label vector y(i ) ∈ {0,1}t and θ j is a m-dimensional

weight vector for the j -th pathway. Each element ofΦ(x(i )) corresponds to an element of θ j

for the j -class, therefore, we can retrieve important features that contribute to the prediction

of j by sorting the elements ofΦ(x(i )) according to the corresponding values of the weight

vector θ j . The Eq 5.3.1 is repeated for all the t classes for an instance i , hence multi-labeling,

and, for an individual pathway, the results are stored in a vector q(i ) ∈Rt . Predicted pathways

are reported based on a cut-off threshold τ, which is set to 0.5 by default:

(5.3.2) ŷi = vec
({

1 if q(i )
j ≥ τ

0 otherwise

)
∀ j ∈ t
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where vec is a vectorized operation. Note that Eq. 5.3.2 resembles Eq. 3.3.2. Given that Eq.

5.3.1 produces a conditional probability over each pathway, and the j -th class label will be

included to y(i ) only if f (θ j ,Φ(x(i ))) ≥ τ we adopt a soft decision boundary using T-criterion

rule [386] as:

(5.3.3) ŷi = vec

(
1 if q(i )

j ≥ τ
1 if q(i )

j Ê fmax(q(i )
j )

0 otherwise

)
∀ j ∈ t

where fmax( f (θ j ,Φ(x(i )))) =β ·max
(
{ f (θ j ,Φ(x(i )) : ∀ j ∈ t }

)
, which is the maximum pre-

dictive probability score. The hyper-parameter β ∈ (0,1] must be tuned based on empirical

information, and it cannot be set to 0, which implies retrieving all of the t pathways. The

predicted set of pathways using the Eq 5.3.3 is referred to as adaptive prediction because the

decision boundary, and its corresponding threshold, are tuned to the test data [336].

5.3.3 Multi-Label Learning Process

The learning process corresponds to the binary relevance technique discussed in Chapter

3.4.1. Specifically, mlLGPR decomposes the prediction problem into t independent binary

classification problems, where each binary classification problem corresponds to a possible

pathway in the label space. Then, LR is used to define a binary classifier f (.), such that for a

training example (Φ(x(i )),y(i )), an instanceΦ(x(i )) will be involved in the learning process of

t binary classifiers. Given n training samples, we attempt to estimate all the weight vectors

individually θ1,θ2, ...,θt by maximizing the logistic loss function as follows:

(5.3.4) ll(θ j ) = max
θ j

1

n

n∑
i=1

(y(i )
j θ

>
j Φ(x(i ))− log(1+exp(θ>j Φ(x(i ))))

Usually, a penalty or regularization term Ω(θ j ) is inserted into the loss function to

enhance the generalization properties to unseen data, particularly if the dimension m of

features is high. Thus, the overall objective cost function (after dropping the maximized

term for brevity) is defined as:

(5.3.5) C (θ j ) = ll(θ j )−λΩ(θ j )

where λ> 0 is a hyper-parameter that controls the trade-off between ll(θ j ) andΩ(θ j ).

Here, the regularization termΩ(θ j ) is chosen to be the elastic net:

(5.3.6) Ω(θ j ) = 1−α
2

||θ j ||22 +α||θ j ||1
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The elastic net penalty of Eq 5.3.6 is a compromise between the L1 penalty of LASSO (by

setting α= 1) and the L2 penalty of ridge-regression (by setting α= 0) [400]. While the L1

term of the elastic net aims to remove irrelevant variables by forcing some coefficients of θ j

to 0, leading to a sparse vector of θ j , the L2 penalty ensures that highly correlated variables

have similar regression coefficients. Substituting Eq 5.3.6 into Eq 5.3.5, yields the following

objective function:

(5.3.7) C (θ j ) = ll(θ j )−λ(
1−α

2
||θ j ||22 +α||θ j ||1)

During learning, the aim is to estimate parameters θ j so as to maximize C (θ j ), which

is convex; however, the last term of Eq 5.3.7 is non-differentiable, making the equation

non-smooth. For the rightmost term, we apply the sub-gradient [254] method allowing

the optimization problem to be solved using mini-batch gradient descent (GD) [190]. We

initialize with random values for θ j , followed by iterations to maximize the cost function

C (θ j ) with the following derivatives:

(5.3.8)
∂

∂θ j
C (θ j ) = 1

n

n∑
i=1
Φ(x(i ))[y(i )

j − f (θ j ,Φ(x(i )))]−λ[(1−α)θ j +α sign(θ j )]

Finally, the update algorithm for θ j at each iteration u is obtained as:

(5.3.9) θu+1
j = θu

j +η(
1

n

n∑
i=1
Φ(x(i ))[y(i )

j − f (θ j ,Φ(x(i )))]−λ[(1−α)θ j +α sign(θ j )])

5.4 Experimental Setup

In this section, we describe an experimental framework used to demonstrate mlLGPR path-

way prediction performance, using the metrics described in Chapter 4.4, across multiple

datasets spanning the genomic information hierarchy (in Fig. 4.1). The mlLGPR frame-

work was written in Python v3 and depends on scikit-learn v0.20 [252], Numpy v1.16 [335],

NetworkX v2.3 [121], and SciPy v1.4[333].

For training purposes Synset-1 and Synset-2, where subdivided in three subsets: (training

set, validation set, and test set), using a stratified sampling approach [291] resulting in 10,869

training, 1,938 validation and 2,193 testing samples for Synset-1 and 10,813 training, 1,930

validation, and 2,257 test instances for Synset-2. Features extraction was implemented for

each dataset in Table 4.4, resulting in total feature vector size of 12,452 for each instance,

where |φa | = 3650, |φ f | = 68, |φy | = 32, |φc | = 3650, and |φd | = 5052. Integral parameter

settings included Θ initialized to a uniform random value in the range [0,1], batch-size
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.0776 0.0645 0.1069 0.0487 0.0412 0.0602 0.1365
mlLGPR-L2 (+AB+RE+PE) 0.0606 0.0515 0.1112 0.0412 0.0234 0.0344 0.1426
mlLGPR-EN (+AB+RE+PE) 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.6253 0.6686 0.7390 0.6815 0.4525 0.5395 0.7391
mlLGPR-L2 (+AB+RE+PE) 0.7437 0.7945 0.8418 0.7934 0.6186 0.7268 0.8488
mlLGPR-EN (+AB+RE+PE) 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.9023 0.8244 0.7275 0.8690 0.9310 0.8971 0.6738
mlLGPR-L2 (+AB+RE+PE) 0.7655 0.7204 0.5529 0.7380 0.8391 0.8057 0.5211
mlLGPR-EN (+AB+RE+PE) 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.7387 0.7384 0.7332 0.7639 0.6090 0.6738 0.6919
mlLGPR-L2 (+AB+RE+PE) 0.7544 0.7556 0.6675 0.7647 0.7122 0.7642 0.6306
mlLGPR-EN (+AB+RE+PE) 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098

Table 5.1: Predictive performance of mlLGPR on T1 golden datasets. mlLGPR-L1: the mlL-
GPR with L1 regularizer, mlLGPR-L2: the mlLGPR with L2 regularizer, mlLGPR-EN: the
mlLGPR with elastic net penalty, AB: abundance features, RE: reaction evidence features,
and PE: pathway evidence features. For each performance metric, ‘↓’ indicates the lower
score is better while ‘↑’ indicates the higher score is better.

set to 500, epoch number set to 3, adaptive prediction parameter β in the range (0,1],

regularization parameters λ and α set to 10000 and 0.65, respectively. The learning rate η

was adjusted based on 1
λ+u , where u denotes the current step. The development set was used

to determine critical values of λ and α. Default parameter settings were used for MinPath

and PathoLogic. All tests were conducted using a Linux server using 10 cores on an Intel

Xeon CPU E5-2650.

5.5 Experimental Results and Discussion

Four types of analysis including parameter sensitivity, features selection, robustness, and

pathway prediction potential were used to tune and evaluate mlLGPR performances.

5.5.1 Parameter Sensitivity

Experimental setup. Three consecutive tests were performed to ascertain: 1)- the impact of

L1, L2, and elastic-net (EN) regularizers on mlLGPR performance using T1 golden datasets,

2)- the impact of changing hyper-parameter λ ∈ {1,10,100,1000,10000} using T1 golden
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Figure 5.2: Average F1 scores of mlLGPR-EN on a range of regularization hyper-
parameter λ ∈ {1,10,100,1000,10000} values on EcoCyc, HumanCyc, AraCyc, YeastCyc,
LeishCyc, TrypanoCyc, and SixDB dataset. The x-axis is log scaled.

datasets, and 3)- the impact of adaptive beta β ∈ (0,1] using Synset-2 and the SixDB golden

datasets.

Experimental results. Table 5.1 indicates test results across different mlLGPR parameter

settings. Although the F1 scores of mlLGPR-L1, mlLGPR-L2 and mlLGPR-EN were compara-

ble, precision and recall scores were inconsistent across the T1 golden datasets. For example,

high precision scores were observed for mlLGPR-L2 on AraCyc (0.8418) and YeastCyc (0.7934)

with low recall scores of 0.5529 and 0.7380, respectively. In contrast, high recall scores were

observed for mlLGPR-L1 on AraCyc (0.7275) and YeastCyc (0.8690) with low precision scores

of 0.7390 and 0.6815, respectively. The increased recall with reduced precision scores by

mlLGPR-L1 indicates a low variance model that may eliminate many relevant coefficients.

The impact is especially observed for datasets encoding a small number of pathways as is

the case for LeishCyc (87 pathways) and TrypanoCyc (175 pathways). Similarly, the increased

precision with reduced recall scores by mlLGPR-L2 is a consequence of the existence of

highly correlated features present in the test datasets [128], resulting in a high variance
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model. The impact is especially observed for LeishCyc and TrypanoCyc suggesting that

mlLGPR-L2 performance declines with increasing pathway number. mlLGPR-EN tended

to even out the scores relative to mlLGPR-L1 and mlLGPR-L2 providing more balanced

performance outcomes.

Based on these results, hyper-parameters λ and β were tested to tune mlLGPR-EN

performance. Fig. 5.2 indicates that the relationship between F1 score and the regularization

hyper-parameter λ increases monotonically for the T1 golden datasets peaking at λ= 10000

(having an F1 score of > 0.6 for all datasets). For the adaptive β test, in Fig. 5.3 shows the

performance of mlLGPR-EN on Synset-2 test samples across a range of β ∈ (0,1] values,

indicating that this hyper-parameter has minimal impact on performance.

Figure 5.3: Performance of mlLGPR-EN according to the β adaptive decision hyper-
parameter on datasets. (a)- Synset-2 test dataset. (b)- SixDB dataset.

Taken together, parameter testing results indicated that mlLGPR-EN provided the most

balanced implementation of mlLGPR, and the regularization hyper-parameter λ at 10000 re-

sulted in the best performance for T1 golden datasets. This hyper-parameter should be tuned

when applied to new datasets to reduce false positive pathway discovery. Minimal effects on

prediction performance were observed when testing the adaptive β hyper-parameter.

5.5.2 Features Selection

Experimental setup. In this study, a series of feature set “ablation” tests were conducted

using Synset-2 as a training set in a reverse manner, starting with only reaction abundance

features (AB), a fundamental feature set consisting of 3650 features and then successively
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aggregating additional feature sets while recording predictive performance on golden T1

datasets using the settings and metrics described in Section 5.4. Because testing individual

features is impractical, this form of aggregate testing provides a tractable method to identify

the relative contribution of feature sets to pathway prediction performance.

Experimental results. Table 5.2 indicates ablation test results. The AB feature set promotes

the highest average recall on EcoCyc (0.9511) and a comparable F1-score of 0.6952. This is not

unexpected given the ratio of pathways to the number of enzymatic reactions (PLR) indicated

by EC numbers for EcoCyc is high (see Table 4.4). However, although functional annotations

with EC numbers increase the probability of predicting a given pathway, pathways with

few or no EC numbers such as pregnenolone biosynthesis require additional feature sets to

avoid false negatives. As additional feature sets were aggregated, mlLGPR-EN performance

tends to improve unevenly for different T1 organismal genomes. For example, adding the

enzymatic reaction evidence (RE) feature set consisting of 68 features to the AB features

set improves F1 scores for YeastCyc (0.7394), LeishCyc (0.5830), and TrypanoCyc (0.6753).

Further aggregating the pathway evidence (PE) feature set, consisting of 32 features to the

AB feature set improves the F1 score for AraCyc (0.7532) but reduces the F1 score for the

remaining T1 organismal genomes. Aggregating AB, RE and pathway evidence (PE) feature

sets resulted in the highest F1 scores for HumanCyc (0.7468), LeishCyc(0.6220), TrypanoCyc

(0.6768), and SixDB (0.7078) with only marginal differences between the highest F1 scores for

EcoCyc (0.7275) and AraCyc (0.73432). Additional combinations of features did not improve

overall performance across the T1 golden datasets.

Taken together, ablation testing results indicated that mlLGPR-EN in combination with

AB, RE and PE feature sets result in the most even pathway prediction performance for

golden T1 datasets.

5.5.3 Robustness

Experimental setup. Robustness also known as accuracy loss rate was determined for mlLGPR-

EN with AB, RE and PE feature sets using the intact Synset-1 dataset and a "corrupted" or

noisy version of the Synset-2 dataset using setting in Section 5.4. Relative Loss of Accuracy

(RLA) and equalized loss of accuracy (ELA) scores [283] were used to describe the expected

behavior of mlLGPR-EN in relation to introduced noise (see Chapter 4.4.2). A low ELA score

indicates that model continues to exhibit good performance with increasing noise.

Experimental results. Table 5.3 indicates robustness test scores. mlLGPR-EN with intro-

duced noise performed better for HumanCyc (−0.0502), YeastCyc (−0.0301), LeishCyc

(−0.1189), and TrypanoCyc (−0.0151), but was less robust for AraCyc (0.0416) and SixDB
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-AB 0.1013 0.0887 0.1025 0.0907 0.1124 0.1073 0.1412
mlLGPR-AB-RE 0.0788 0.0697 0.1101 0.0558 0.0447 0.0598 0.1348
mlLGPR-AB-PP 0.2835 0.2922 0.2898 0.2724 0.2553 0.2759 0.2842
mlLGPR-AB-PE 0.1017 0.0835 0.1002 0.0891 0.1172 0.1089 0.1387
mlLGPR-AB-PC 0.1041 0.0938 0.1409 0.0879 0.1081 0.0899 0.1844
mlLGPR-AB-RE-PP 0.2815 0.2882 0.2961 0.2648 0.2526 0.2759 0.2825
mlLGPR-AB-RE-PE 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281
mlLGPR-AB-RE-PC 0.0966 0.0732 0.1394 0.0677 0.0515 0.0625 0.1793
mlLGPR-AB-PE-PC 0.1029 0.0899 0.1441 0.0914 0.1148 0.0903 0.1820
mlLGPR-AB-PP-PC 0.2019 0.2070 0.2142 0.1876 0.1884 0.1880 0.2299
mlLGPR-AB-RE-PE-PP 0.2894 0.2993 0.2953 0.2736 0.2530 0.2755 0.2838
mlLGPR-AB-RE-PE-PC 0.0954 0.0816 0.1441 0.0673 0.0451 0.0641 0.1806
mlLGPR-AB-RE-PE-PP-PC 0.2003 0.2063 0.2209 0.1924 0.1924 0.1928 0.2317

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-AB 0.5478 0.5610 0.7390 0.5000 0.2316 0.3873 0.7323
mlLGPR-AB-RE 0.6205 0.6373 0.7275 0.6410 0.4293 0.5414 0.7412
mlLGPR-AB-PP 0.2755 0.2508 0.3926 0.2303 0.1037 0.1855 0.4300
mlLGPR-AB-PE 0.5473 0.5773 0.7495 0.5048 0.2257 0.3843 0.7402
mlLGPR-AB-PC 0.5618 0.5673 0.7810 0.5113 0.2265 0.4217 0.7650
mlLGPR-AB-RE-PP 0.2795 0.2536 0.3845 0.2375 0.1081 0.1885 0.4322
mlLGPR-AB-RE-PE 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561
mlLGPR-AB-RE-PC 0.6019 0.6926 0.7992 0.6330 0.3862 0.5362 0.7761
mlLGPR-AB-PE-PC 0.5681 0.5844 0.7645 0.4969 0.2188 0.4223 0.7727
mlLGPR-AB-PP-PC 0.3241 0.3000 0.4730 0.2761 0.1309 0.2283 0.5122
mlLGPR-AB-RE-PE-PP 0.2706 0.2482 0.3870 0.2301 0.1068 0.1873 0.4309
mlLGPR-AB-RE-PE-PC 0.6065 0.6466 0.7744 0.6277 0.4237 0.5291 0.7715
mlLGPR-AB-RE-PE-PP-PC 0.3299 0.2997 0.4580 0.2701 0.1285 0.2244 0.5084

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-AB 0.9511 0.9068 0.7608 0.9258 0.9770 0.9429 0.6775
mlLGPR-AB-RE 0.9055 0.8566 0.7275 0.8734 0.9080 0.8971 0.6774
mlLGPR-AB-PP 0.8176 0.8280 0.7961 0.8559 0.8391 0.8800 0.7696
mlLGPR-AB-PE 0.9414 0.9104 0.7569 0.9170 0.9885 0.9486 0.6795
mlLGPR-AB-PC 0.6515 0.6344 0.4196 0.6900 0.8851 0.8000 0.3827
mlLGPR-AB-RE-PP 0.8339 0.8280 0.7765 0.8690 0.8736 0.9029 0.7768
mlLGPR-AB-RE-PE 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904
mlLGPR-AB-RE-PC 0.6059 0.6057 0.4137 0.6026 0.8391 0.7200 0.3820
mlLGPR-AB-PE-PC 0.6384 0.6452 0.4137 0.6900 0.9080 0.8229 0.3923
mlLGPR-AB-PP-PC 0.6091 0.6559 0.5333 0.6594 0.7931 0.7200 0.5053
mlLGPR-AB-RE-PE-PP 0.8143 0.8423 0.7922 0.8603 0.8621 0.8914 0.7758
mlLGPR-AB-RE-PE-PC 0.6124 0.5771 0.4039 0.6332 0.8621 0.6743 0.3776
mlLGPR-AB-RE-PE-PP-PC 0.6287 0.6487 0.5137 0.6594 0.7931 0.7257 0.5074

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-AB 0.6952 0.6932 0.7498 0.6493 0.3744 0.5491 0.6754
mlLGPR-AB-RE 0.7364 0.7309 0.7275 0.7394 0.5830 0.6753 0.6938
mlLGPR-AB-PP 0.4122 0.3850 0.5259 0.3630 0.1846 0.3065 0.5386
mlLGPR-AB-PE 0.6922 0.7065 0.7532 0.6512 0.3675 0.5470 0.6802
mlLGPR-AB-PC 0.6033 0.5990 0.5459 0.5874 0.3607 0.5523 0.4683
mlLGPR-AB-RE-PP 0.4186 0.3882 0.5143 0.3730 0.1924 0.3119 0.5422
mlLGPR-AB-RE-PE 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098
mlLGPR-AB-RE-PC 0.6039 0.6463 0.5452 0.6174 0.5290 0.6146 0.4853
mlLGPR-AB-PE-PC 0.6012 0.6133 0.5369 0.5777 0.3527 0.5581 0.4779
mlLGPR-AB-PP-PC 0.4231 0.4117 0.5014 0.3892 0.2248 0.3466 0.4857
mlLGPR-AB-RE-PE-PP 0.4062 0.3834 0.5199 0.3631 0.1901 0.3095 0.5407
mlLGPR-AB-RE-PE-PC 0.6094 0.6098 0.5309 0.6304 0.5682 0.5930 0.4805
mlLGPR-AB-RE-PE-PP-PC 0.4327 0.4100 0.4843 0.3832 0.2212 0.3428 0.4847

Table 5.2: Ablation tests of mlLGPR-EN trained using Synset-2 on T1 golden datasets. AB:
abundance features, RE: reaction evidence features, PP: possible pathway features, PE:
pathway evidence features, and PC: pathway common features. mlLGPR is trained using
a combination of features, represented by mlLGPR-*, on Synset-2 training set. For each
performance metric, ‘↓’ indicates the lower score is better while ‘↑’ indicates the higher score
is better.
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Dataset
Average F1 Score ↑ Robustness Score ↓

mlLGPR-EN0 mlLGPR-ENρ RLAρ s(M0) ELAρ
EcoCyc 0.7280 0.7275 0.0007 0.3736 0.3743
HumanCyc 0.7111 0.7468 −0.0502 0.4063 0.3561
AraCyc 0.7662 0.7343 0.0416 0.3051 0.3468
YeastCyc 0.7176 0.7392 −0.0301 0.3935 0.3634
LeishCyc 0.5559 0.6220 −0.1189 0.7989 0.6800
TrypanoCyc 0.6667 0.6768 −0.0151 0.4999 0.4848
SixDB 0.7448 0.7098 0.0470 0.3426 0.3896

Table 5.3: Performance and robustness scores for mlLGPR-EN with AB, RE and PE feature
sets trained on both Synset-1 and Synset-2 training sets at 0 and ρ noise. The best perfor-
mance scores are highlighted in bold. The ‘↓’ indicates the lower score is better while ‘↑’
indicates the higher score is better.

(0.0470) based on RLAρ scores. This suggests that noise inversely correlates with the pathway

size. The more pathways present within a dataset can upset correlations among features.

However, the impact of negative correlations is minimized when a dataset contains fewer

pathways. Note that the average number of ECs associated with pathways has little or

negligible effects on robustness.

Taken together, the RLA and ELA results for T1 golden datasets indicate that mlLGPR-EN

trained on noisy datasets is robust to perturbation. This is a prerequisite for developing

supervised ML methods tuned for community-level pathway prediction.

5.5.4 Pathway Prediction Potential

Experimental setup. Pathway prediction potential of mlLGPR-EN with AB, RE and PE fea-

ture sets trained on Synset-2 training set was compared to four additional prediction meth-

ods in Chapter 4.3 on T1 golden datasets using the settings and metrics described above.

For community-level pathway prediction on the T4 datasets including symbiont, CAMI low

complexity, and HOTS datasets, mlLGPR-EN and PathoLogic (without taxonomic pruning)

results were compared.

Experimental results. Table 5.4 shows performance scores for each pathway prediction

method tested. The BASELINE, Naïve, and MinPath methods infer many false positive

pathways across the T1 golden datasets, indicated by high recall with low precision and F1

scores. In contrast, high precision and F1 scores were observed for PathoLogic and mlLGPR-

EN across the T1 golden datasets. Although both methods gave similar results, PathoLogic F1

scores for EcoCyc (0.7631), YeastCyc (0.7890) and SixDB (0.7479) exceeded those for mlLGPR-

64



Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
BASELINE 0.2217 0.2486 0.3230 0.2458 0.1591 0.2526 0.3096
Naïve 0.3856 0.4113 0.4592 0.4216 0.3215 0.4319 0.4392
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561 0.3124
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424 0.1141
mlLGPR-EN (+AB+RE+PE) 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
BASELINE 0.3531 0.3042 0.3832 0.2694 0.1779 0.2153 0.4145
Naïve 0.2384 0.2081 0.3035 0.1770 0.0968 0.1382 0.3357
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129 0.4124
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480 0.7522
mlLGPR-EN (+AB+RE+PE) 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
BASELINE 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860
Naïve 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829 0.7499
mlLGPR-EN (+AB+RE+PE) 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
BASELINE 0.5205 0.4632 0.5516 0.4245 0.3021 0.3543 0.5784
Naïve 0.3843 0.3428 0.4640 0.3007 0.1765 0.2429 0.4939
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511 0.5763
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447 0.7479
mlLGPR-EN (+AB+RE+PE) 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098

Table 5.4: Pathway prediction performance between methods using T1 golden datasets.
mlLGPR-EN: the mlLGPR with elastic net penalty, AB: abundance features, RE: reaction
evidence features, and PE: pathway evidence features. For each performance metric, ‘↓’
indicates the lower score is better while ‘↑’ indicates the higher score is better.

EN. Conversely, mlLGPR-EN F1 scores for HumanCyc (0.7468), AraCyc (0.7343), LeishCyc

(0.6220) and TrypanoCyc (0.6768) exceeded those for PathoLogic. In addition, the statistical

analysis in Appendix C has shown that mlLGPR (with all variants) is indeed comparable to

PathoLogic rule-based algorithm.

To evaluate mlLGP-EN performance on distributed metabolic pathway prediction be-

tween two or more interacting organismal genomes a symbiotic system consisting of the

reduced genomes for Candidatus Moranella endobia and Candidatus Tremblaya princeps,

encoding a previously identified set of distributed amino acid biosynthetic pathways [218],

was selected. mlLGPR-EN and PathoLogic were used to predict pathways on individual

symbiont genomes and a composite genome consisting of both, and resulting amino acid

biosynthetic pathway distributions were determined (Fig. 5.4). mlLGPR-EN predicted 8

out of 9 expected amino acid biosynthetic pathways while PathoLogic recovered 6 on the
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Figure 5.4: Predicted pathways for symbiont datasets between mlLGPR-EN with AB, RE
and PE feature sets and PathoLogic. Red circles indicate that neither method predicted a
specific pathway while green circles indicate that both methods predicted a specific pathway.
Blue circles indicate pathways predicted solely by mlLGPR. The size of circles scales with
reaction abundance information.

Metric mlLGRPR-EN (+AB+RE+PE)
Hamming Loss (↓) 0.0975
Average Precision Score (↑) 0.3570
Average Recall Score (↑) 0.7827
Average F1 Score (↑) 0.4866

Table 5.5: Predictive performance of mlLGPR-EN with AB, RE and PE feature sets on
CAMI low complexity data.

composite genome. The missing pathway for phenylalanine biosynthesis (L-phenylalanine

biosynthesis I was excluded from analysis because the associated genes were reported to

be missing during the ORF prediction process. False positives were predicted for individual

symbiont genomes in Moranella and Tremblaya using both methods although pathway

coverage was low compared to the composite genome. Additional feature information re-

stricting the taxonomic range of certain pathways or more restrictive pathway coverage

could reduce false discovery on individual organismal genomes.
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To evaluate pathway prediction performance of mlLGPR-EN on more complex community-

level genomes the CAMI low complexity and HOTS datasets were selected. Table 5.5 shows

performance scores for mlLGPR-EN on the CAMI dataset. Although recall was high (0.7827)

precision and F1 scores were low when compared to the T1 golden datasets. Similar results

were obtained for the HOTS dataset. In both cases it is difficult to validate most pathway

prediction results without individual organismal genomes that can be replicated in culture.

Moreover, the total number of expected pathways per dataset is relatively large, encom-

passing metabolic interactions at different levels of biological organization. On the one

hand, these open conditions confound interpretation of performance metrics while on

the other they present numerous opportunities for hypothesis generation and testing. To

better constrain this tension, mlLGPR-EN and PathoLogic prediction results were compared

for a subset of 45 pathways previously reported in the HOTS dataset [125]. Fig. 5.5 shows

pathway distributions spanning sunlit and dark ocean waters predicted by PathoLogic and

mlLGPR-EN, grouped according to higher order functions within the MetaCyc classification

hierarchy. Between 25 and 500 m depth intervals, 7 pathways were exclusively predicted

by PathoLogic and 6 were exclusively predicted by mlLGPR-EN. Another 20 pathways were

predicted by both methods, while 6 pathways were not predicted by either method including

glycine biosynthesis IV, thiamine diphosphate biosynthesis II and IV, flavanoid biosynthesis,

2-methylcitrate cycle II and L-methionine degradation III. In several instances, the depth dis-

tributions of predicted pathways were also different from those described in [125] including

L-selenocysteine biosythesis II and acetate formation from acetyl-CoA II. It remains uncertain

why current implementation of PathoLogic resulted in inconsistent pathway prediction

results, although changes have accrued in PathoLogic rules and the structure of the MetaCyc

classification hierarchy in the intervening time interval.

Taken together, the comparative pathway prediction results indicate that mlLGPR-EN

performance equals or exceeds other methods including PathoLogic on organismal genomes

but diminishes with dataset complexity.

5.6 Summary

In this chapter, we have presented mlLGPR, a new method using multi-label classification

and logistic regression to predict metabolic pathways at different levels in the genomic

information hierarchy (Fig. 4.1). mlLGPR effectively maps annotated enzymatic reactions

using EC numbers onto reference metabolic pathways sourced from the MetaCyc database.

We provide a detailed open source process from features engineering and the construc-
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Figure 5.5: Comparison of predicted pathways for HOTS datasets between mlLGPR-EN
with AB, RE and PE feature sets and PathoLogic. Red circles indicate that neither method
predicted a specific pathway while green circles indicate that both methods predicted a
specific pathway. Blue circles indicate pathways predicted solely by mlLGPR and gray circles
indicate pathways solely predicted by PathoLogic. The size of circles scales with reaction
abundance information.
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tion of synthetic samples, on which the mlLGPR is trained, to performance testing on

increasingly complex real world datasets including organismal genomes, nested symbionts,

CAMI low complexity and HOT. With respect to features engineering, five feature sets were

adapted from Dale and colleagues [73] to guide the learning process. Feature ablation studies

demonstrated the usefulness of aggregating different combinations of feature sets using the

elastic-net (EN) regularizer to improve mlLGPR prediction performance on golden datasets.

Using this process we determined that abundance (AB), enzymatic reaction evidence (RE)

and pathway evidence (PE) feature sets contribute disproportionately to mlLGPR-EN per-

formance. After tuning several hyper-parameters to further improve mlLGPR performance,

pathway prediction outcomes were compared to other methods including MinPath and

PathoLogic. The results indicated that while mlLGPR-EN performance equaled or exceeded

other methods including PathoLogic on organismal genomes, its performed more marginally

on complex datasets. This is likely due to multiple factors including the limited validation

information for community-level metabolism as well as the need for more subtle features

engineering and algorithmic improvements.

Several issues were encountered during testing and implementation that need to be

resolved for improved pathway prediction outcomes using machine learning methods. While

rich feature information is integral to mlLGPR performance, the current definition of feature

sets relies on manual curation based on prior knowledge. We observed that in some instances

the features engineering process is susceptible to noise resulting in low performance scores.

Moreover, individual enzyme reactions may participate in multiple pathways, resulting

in increased false discovery without additional feature sets that relate the presence and

abundance of EC numbers to other factors. This problem has been partially addressed

by designing features based on side knowledge of a pathway, such as information about

“key-reactions” in pathways that increase the likelihood that a given pathway is present. In

the next chapter, we will be introducing another form of side knowledge to improve pathway

prediction, called representational learning approach [28].
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Part III

Graph based Multi-Label Classification
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Chapter 6

Leveraging Heterogeneous Network

Embedding for Metabolic Pathway

Prediction
“Productivity is never an accident. It is always the result of a commitment to

excellence, intelligent planning, and focused effort.”

– Paul J. Meyer

In previous chapter, we discussed mlLGPR that is a machine learning approach to infer

pathways. This method relied on rich feature information that may be susceptible to noise.

This chapter presents pathway2vec, a software package consisting of six representational

learning based modules used to automatically generate features for pathway inference.

Specifically, we build a three layered network composed of compounds, enzymes, and

pathways, where nodes within a layer manifest inter-interactions and nodes between layers

manifest betweenness interactions. This layered architecture captures relevant relationships

used to learn a neural embedding-based low-dimensional space of metabolic features.

Modules in pathway2vec were evaluated based on node-clustering, embedding visualization

and pathway prediction using MetaCyc as a trusted source, introduced in Chapter 2.1. In

the pathway prediction task, results indicate that it is possible to leverage embeddings to

improve pathway prediction outcomes.

6.1 Introduction

Metabolic pathway reconstruction from genomic sequence information is a key step in

predicting regulatory and functional potential of cells at the individual, population and
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community levels of organization [4]. As we discussed in Chapter 2.2, the most common

methods (e.g. PathoLogic and MinPath) for metabolic pathway reconstruction rely on a

set of manually specified rules. Unfortunately, the development of accurate and flexible

rule sets for pathway prediction remains a challenging enterprise informed by expert cura-

tors incorporating thermodynamic, kinetic, and structural information for validation [326].

Updating these rule sets as new organisms or pathways are described and validated can

be cumbersome and out of phase with current user needs. This has led to the considera-

tion of machine learning (ML) approaches for pathway prediction based on rich feature

information, such as mlLGPR in Chapter 5. One of the primary challenges encountered in

developing mlLGPR relates to engineering reliable features representing heterogeneous and

degenerate functions within cellular communities e.g. microbiomes [185].

Advances in representational learning have led to the development of scalable methods

for engineering features from graphical networks e.g. networks composed of multiple nodes

including information systems or social networks [81, 114, 255]. These approaches learn fea-

ture vectors for nodes in a network by solving an optimization problem in an unsupervised

manner, using random walks followed by Skip-Gram extraction of low dimensional latent

continuous features, known as embeddings [225]. This chapter presents pathway2vec, a soft-

ware package incorporating multiple random walks based algorithms for representational

learning used to automatically generate feature representations of metabolic pathways,

which are decomposed into three interacting layers: compounds, enzymes and pathways,

where each layer consists of associated nodes. A Skip-Gram model is applied to extract

embeddings for each node, encoding smooth decision boundaries between groups of nodes

in that graph. Nodes within a layer manifest inter-interactions and nodes between layers

manifest betweenness interactions resulting in a multi-layer heterogeneous information

network [302]. This layered architecture captures relevant relationships used to learn a

neural embedding-based low-dimensional space of metabolic features (Fig. 6.1).

In addition to implementing several published random walk methods, we developed

RUST (unit-circle based jump and stay random walk), adopting a unit-circle equation to

sample node pairs that generalize previous random walk methods [81, 114, 145]. The mod-

ules in pathway2vec were benchmarked based on node-clustering, embedding visualization,

and pathway prediction. In the case of pathway prediction, pathway2vec modules provided

a viable adjunct or alternative to manually curated feature sets used in ML based metabolic

pathway reconstruction from genomic sequence information. The distinction of this work

lies in decomposing pathway into components, so various graph learning methods can be

applied to automatically extract semantic features of metabolic pathways, and to incorporate
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(a) (b)

Figure 6.1: Three interacting metabolic pathways (a), depicted as a cloud glyph, where
each pathway is comprised of compounds (green) and enzymes (red). Interacting com-
pound, enzyme and pathway components are transformed into a multi-layer heterogeneous
information network (b).

the learned embeddings for pathway inference.

6.2 Definitions and Problem Statement

The pathway inference task can be formulated as retrieving a set of pathway labels for an

example i given features learned according to a heterogeneous information network defined

as:

Definition 6.1. Heterogeneous Information Network A heterogeneous information net-

work is defined as a graph G = (V ,E ), where V and E denote to the set of nodes and edges

(either directed or undirected), respectively [317]. Each v ∈V is associated with an object

type mapping function φ(v) : V →O, where O represents a set of object types. Each edge

e ∈ E ⊆ V ×V includes multiple types of links, and is associated with a link type map-

ping function φ(e) : E →R, where R represents a set of relation types. In particular, when

|O|+ |R| > 2, the graph is referred to as a heterogeneous information network.

In heterogeneous information networks, both object types and relationship types are

explicitly segregated. For the undirected edges, notice that if a relation exists from a type

Oi (∈O) to a type O j (∈O), denoted as Oi RO j and R ∈R, the inverse relation R−1 holds

naturally for O j R−1Oi . However, in many circumstances, R and its inverse R−1 are not equal,

unless the two objects are in the same domain, and R is symmetric. In addition, the network
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Figure 6.2: Graphical representation of pathway2vec framework. Main components: (a) a
multi-layer heterogeneous information network composed from MetaCyc, showing meta-
level interaction among compounds, enzymes, and pathways, (b) four random walks, and
(c) two representational learning models: traditional Skip-Gram (top) and Skip-Gram by
normalizing domain types (bottom). In the subfigure (a), the highlighted network neighbors
of T1 (nitrifier denitrification) indicate this pathway interacts directly with T2 (nitrogen
fixation I (ferredoxin)) and indirectly to T3 (nitrate reduction I (denitrification)) by second-
order with relationships to several compounds, including nitric oxide (C3) and nitrite (C4)
converted by enzymes represented by the EC numbers (Z2: EC 1.7.2.6, Z3: EC 1.7.2.1, and
Z4: EC 1.7.2.5). The black colored nodes in subfigure (b) indicate the current position of the
walkers and red links suggest the next possible nodes to sample while black links indicate
route taken by a walker to reach the current node. node2vec is parameterized by local search
s and in-out h hyperparameters. These two hyperparameters constitute a unit circle, i.e.,
h2 + s2 = 1, for RUST. M stores previously visited node types which is 2 and only applied for
JUST and RUST. c is number of nodes of the same domain type as the current node which is
3 and is associated with JUST. For metapath2vec, a walker requires a prespecified scheme
which is set to “ZCTCZ”. The normalized Skip-Gram in the subfigure (c) bottom is simply
trained based on the domain type, in contrast to the traditional Skip-Gram model. More
information related to both learning strategies is provided in Section 6.3.2.

may be weighted where each edge ei , j , of nodes i and j , is associated with a weight of type

R. The linkage type of an edge automatically defines the node types of its end points. The

graph articulated in this work is considered directed and weighted (in some cases), but for

simplification is converted to a undirected network by simply treating edges as symmetric

links. Note that if |O| = |R| = 1, the network is homogeneous; otherwise, it is heterogeneous.

Example 6.1. MetaCyc (in Chapter 2.1) can be abstracted as a heterogeneous information
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network, in Fig 6.1(b), which contains 3 types of objects, namely compounds (C), enzymes

(Z), and pathways (T). There exist different types of links between objects representing

semantic relationships e.g. “composed of” and “involved in”, relationships between path-

ways and compounds or relations between enzymes and compounds e.g. “transform” and

“transformed by”. An enzyme may be mapped to a numerical category, known as an enzyme

commission number (EC) based on the chemical reaction it catalyzes.

Two objects within heterogeneous information networks describe meta-level relation-

ships refereed to as meta-paths [317].

Definition 6.2. Meta-Path A meta-path P ∈P is a path over G in the form of O1
R1−→O2

R2−→
Oi

Rk−→ . . .
R j−→O j+1, which defines an aggregation of relationships U = R1◦R2◦. . .◦R j between

type O1 and O j+1, where ◦ denotes the composition operator on relationships and Oi ∈O
and Rk ∈R are object and relation type, respectively.

Example 6.2. MetaCyc contains multiple meta-paths conveying different semantics. For

example, a meta-path “ZCZ” represents the co-catalyst relationships on a compound (C)

between two enzymatic reactions (Z), and “ZCTCZ” may indicate a meta-path that requires

two enzymatic reactions (Z) transforming two compounds (C) within a pathway (T). Another

important meta-path to consider is “CZC”, which implies “C + Z ⇒ C” transformation

relationship.

Metabolic Pathway Prediction

Given three inputs: i)-a heterogeneous information network G , ii)- a dataset

S (Def. 3.9), and iii)- an optional set of meta-paths P , the goal is to automat-

ically resolve node embeddings such that leveraging the features will effec-

tively improve pathway prediction for a hitherto unseeen instance x∗ ∈Rr ,

where r corresponds the number of enzymatic reactions (Chapter 3.2.2).

6.3 The pathway2vec Framework

The pathway2vec framework is a package composed of five modules: i)- node2vec [114],

ii)- metapath2vec [81], iii)- metapath2vec++ [81], iv)- JUST [145], and v)- RUST (this work),

where each module contains a random walk modeling and node representation step. A

graphical representation of the pathway2vec framework is depicted in Fig 6.2.
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C1. Random Walks. In this step, a sequence of random walks over an input graph (whether

heterogeneous or homogeneous) is generated based on the selected model. (see

Section 6.3.1).

C2. Learning Node Representation. Resulting walks are fed into the Skip-Gram model to

learn node embeddings [81, 100, 114, 225]. An embedding is a low dimensional latent

continuous feature for each node in G, which encodes smooth decision boundaries

between groups or communities within a graph. Details are provided in Section 6.3.2.

6.3.1 Random Walks

To capture meaningful graph relationships, existing techniques such as DeepWalk [255],

design simple but effective algorithms based on random walks for representational learning

of features. However, DeepWalk does not address in-depth and in-breadth graph exploration.

Therefore, node2vec [114] was developed to traverse local and global graph structures based

on the principles of: i)- homophily [97, 238] where interconnected nodes form a community

of correlated attributes and ii)- structural equivalence [133] where nodes having similar

structural roles in a graph should be close to one another. node2vec simulates a second-

order random walk, where the next node is sampled conditioned on the previous and the

current node in a walk. For this, two hyper-parameters are adjusted, s ∈ R>0 that extracts

local information of a graph, and h ∈R>0 that enables local and global traversals by moving

deep in a graph or walking within the vicinity of the current node. This method is illustrated

in Fig. 6.2 (b) top.

First-order and second-order random walks were initially proposed for homogeneous

graphs, but can be readily extended to heterogeneous information networks. Sun and

colleagues [317] have observed that random walks can suffer from implicit bias due to initial

node selection or the presence of a small set of dominant node types skewing results toward

a subset of interconnected nodes. metapath2vec was developed [81], to resolve implicit

bias in graph traversal to characterize semantic associations embodied between different

types of nodes according to a certain path definition. This method is illustrated in Fig. 6.2

(b) bottom.

metapath2vec overcome the limitation of nove2vec by enabling to extract semantical

representations over heterogeneous graph. However, the use of meta-paths requires either

prior domain-specific knowledge to recover semantic associations of HIN according to

a certain path definition. As a result, groups of vertices with the heterogeneous informa-

tion network may not be visited or revisited multiple times. This limitation was partially
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Figure 6.3: An illustrative example showing the selection of the next node for both JUST
and RUST on HIN extracted from MetaCyc. The walker is currently stationed at C3 arriving
from node C2 (indicated by black colored link), where M stores two previously visited node
types and c (for JUST) holds 3 consecutive nodes that are of the same domain as C3. As
can be seen JUST would prefer selecting the next node of type pathway while RUST may
prefer returning to C2 than jumping to T1 or T2, as indicated by red edges, because s < h
represented by an ellipsis glyph.

addressed by leveraging multiple path schemes [100] to guide random walks based on a

meta-path length parameter. Hussein and colleagues developed the Jump and Stay (JUST)

heterogeneous graph embedding method using random walks [145] as an alternative to

meta-paths. JUST randomly selects the next node in a walk from either the same node type

or from different node types using an exponential decay function and a tuning parameter

based on two history records: i)- c corresponding the number of nodes consecutively visited

in the same domain as the current node and ii)- a queue M of size m storing the previously

visited node types. This method is illustrated in Fig. 6.2 (b) second from top.

However, in order to balance the node distribution over multiple node types, JUST con-

strains the number of memorized domains m to be within the range of [1, |O|−1] ∈Z>1. This

can misrepresent graph structure in two ways: i)- explorations within domain because the

last visited consecutive c nodes may enforce sampling from another domain, or ii) jumping

deep towards nodes from other domains because M is constrained. To alleviate these prob-

lems we develop a novel random walk algorithm, RUST, adopting a unit-circle equation to

sample node pairs that generalize previous representational learning methods, as illustrated

in Fig. 6.2 (b) second from bottom. The two hyper-parameters s and h constitute a unit

circle, i.e., h2 + s2 = 1, where h ∈ [0,1] indicates how much exploration is needed within a

domain while s ∈ [0,1] defines the in-depth search towards other domains such that s > h

encourages the walk to explore more domains and vice versa. Consequently, RUST blends

both semantic associations and local/global structural information for generating walks
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without restricting domain size m in M .

To better illustrate the effect of s and h on RUST, consider an example in Fig. 6.3, where

the walkers in JUST and RUST are currently stationed at C3 of compound type. While JUST

enforces its walker to jump towards pathway domain, because of the combined effect of c

that holds three consecutive nodes of compound type and M that is currently storing EC

and compound types, RUST may prefer returning to C2 (no links exist to C4) than jumping

to T1 or T2. This is because s < h entailing to explore more within the same domain as C3. If,

however, s > h then RUST will perform in-depth search by selecting a node of type pathway.

For formal definitions about the discussed random walks, see Appendix Section D.1.

6.3.2 Learning Latent Embedding in Graph

Random walks W generated using node2vec, metapath2vec, JUST and RUST are fed into the

Skip-Gram model to learn node embeddings [225]. The Skip-Gram model exploits context

information defined as a fixed number of nodes surrounding a target node. The model

attempts to maximize co-occurrence probability among a pair of nodes identified within a

given window of size q in W based on log-likelihood:∑
l∈W

∑
j∈l

∑
−q≤k≤q, j 6=0

log p(v j+k |v j )(6.3.1)

where v j−c , ..., v j+c are the context neighbor nodes of node v j and p(v j+i |v j ) defines the

conditional probability of having context nodes given the node v j . The p(v j+k |v j ) is the

commonly used softmax function, i.e,= e
D

v j+k .D
v j∑

i∈V e
D

vi .D
v j

, where D ∈R|V |×d stores the embeddings

of all nodes and Dv is the v-th row corresponding to the embedding vector for node v

and d represents the embeddings size. In practice, the vocabulary of nodes may be very

large, which intensifies the computation of p(v j+k |v j ). The Skip-Gram model uses negative

sampling, which randomly selects a small set of nodes N that are not in the context to reduce

computational complexity. This idea, represented in updated Eq. 6.3.1 is implemented in

node2vec, metapath2vec, JUST, and RUST according to:∑
l∈W

∑
j∈l

∑
−q≤k≤q, j 6=0

(
logσ(Dv j+k .Dv j )+ ∑

u∈N∧u∉N ( j )

Evu [log p(vu |v j )]
)

(6.3.2)

where σ(v) = 1
1+e−v is the sigmoid function.

In addition to the equation above, Dong and colleagues proposed a normalized version

of metapath2vec, called metapath2vec++, where the domain type of the context node is

considered in calculating the probability p(v j+k |v j ), resulting in the following objective
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Figure 6.4: Parameter sensitivity of RUST based on NMI metric.

formula: ∑
l∈W

∑
j∈l

∑
−q≤k≤q, j 6=0

(
logσ(Dv j+k .Dv j )+ ∑

u∈N∧u∉N ( j )∧φ(vu )=φ(v j+k )

Evu [log p(vu |v j )]
)

(6.3.3)

where φ(vu) =φ(v j+k ) suggests that the negative nodes are of the same type as the context

node φ(v j+k ). The above formula is also applied for RUST, and we refer it to RUST-norm.

Through iterative update over all the context nodes, whether using Eq. 6.3.2 or Eq. 6.3.3,

for each walk in W , the learned features are expected to capture semantic and structural

contents of a graph, thereby, can be made useful for pathway inference.

6.4 Predicting Pathways

For pathway inference, the learned EC embedding vectors are concatenated into each

example i according to:

x̃(i ) = x(i ) ⊕ 1

r
x(i )Dv :v∈Z(6.4.1)

where ⊕ denotes the vector concatenation operation and Dv :v∈Z indicates feature vec-

tors for r enzymatic reactions. By incorporating enzymatic reaction features into x(i ), the

dimension size is extended to r +d , where r is the enzyme vector size while d corresponds

to embeddings size. This modified version of x(i ) is denoted by x̃(i ), which then can be used

by an appropriate machine learning algorithm, such as mlLGPR (in Chapter 5), to train and

infer a set of metabolic pathways from enzymatic reactions.
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6.5 Experimental Setup

In this section, we explain the experimental settings and outline materials used to evaluate

the performance of pathway2vec modules that were written in Python v3 and trained using

tensorflow v1.10 [1]. Unless otherwise specified all tests were conducted on a Linux server

using 10 cores of Intel Xeon CPU E5-2650.

6.5.1 Preprocessing MetaCyc

We constructed three hierarchical layers of HIN using MetaCyc v21 [51], according to: EC

(bottom-layer), compound (mid-layer), and pathway (top-layer) as in Fig. 6.2(a). Relation-

ships among these layers establish inter-interactions and betweenness interactions. Three

inter-interactions were built: i)- ECs interactions that were collected based shared metabo-

lites, e.g., if a compound is engaged in two ECs then the two ECs were considered connected;

ii)- compounds interactions that were processed based on shared reactions, e.g., if any

two compounds constituting substrate and product of an engaged enzymatic reaction they

would be linked; and iii)- pathways interactions that were constructed based on shared

metabolites, e.g., if any product in one pathway is being consumed by another then these

two pathways were linked. With regard to betweenness interactions, we considered two

forms: i)- EC-compound interaction if any enzyme (represented by an EC number) engages

in any compound then nodes of both types were linked and ii)- compound-pathway interac-

tion if any compound involves in any pathway then those nodes were considered related.

After building multi-layer HIN, we apply different configurations (MetaCyc, MetaCyc (r),

MetaCyc (uec), and MetaCyc (uec+r)), as summarized in Table 4.4, to explore the relationship

between different graph types and the quality of generated walks and embeddings.

6.5.2 Parameter Settings

Parameterization for the other random walk methods can be found in [81, 114, 145]. For

training, we randomly initialized model parameters with a truncated Gaussian distribution,

and set the learning rate to 0.01, the batch size to 100, and the number of epochs to 10. Unless

otherwise indicated, for each module, the number of sampled path instances is K = 100,

the walk length is l = 100, the embedding dimension size is d = 128, the neighborhood

size is 5, the size of negative samples is 5, and the number of memorized domain m for

JUST and RUST are 2 and 3, respectively. The explore and the in-out hyperparameters for

node2vec and RUST are h = 0.7 (or h = 0.55) and s = 0.7 (or s = 0.84), respectively, using
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the uec configuration. For metapath2vec and metapath2vec++, we applied the meta-path

scheme “ZCTCZ” to guide random walks. For brevity, we denote node2vec, metapath2vec,

metapath2vec++, JUST, RUST, and RUST-norm as n2v, m2v, cm2v, jt, and rt, crt, respectively.

6.6 Experimental Results and Discussion

In this section, we first evaluate parameter sensitivity of RUST prior to benchmarking the four

random walk algorithms, jointly with the two learning methods, based on node-clustering,

embedding visualization, and pathway prediction.

6.6.1 Parameter Sensitivity of RUST

Experimental setup. In this section, the effect of different hyperparameter settings in RUST

on the quality of learned nodes embeddings is described. Since the hyperparameter space

involved in RUST, is infinite, exhaustive searches for optimal settings are prohibitive. There-

fore, settings were sub-selected to determine RUST performance. Specifically, the effects of

the dimensions d ∈ {30,50,80,100,128,150}, the neighborhood size q ∈ {3,5,7,9}, the memo-

rized domains m ∈ {3,5,7}, and the two hyperparameters s and h (∈ {0.55,0.71,0.84}) were

evaluated based on Normalized Mutual Information (NMI) scores, after 10 trials. The NMI

produces scores between 0, indicating no mutual information exists, and 1, indicating node

clusters (feature groups) are perfectly correlated based on class information: enzyme, com-

pound, and pathway. Clustering was performed using the k-means algorithm [16] to group

data based on the learned representations from RUST as described in [81, 145]. Random

walks W were generated using MetaCyc with uec option for RUST test parameters.

Experimental results. Fig 6.4a indicates that RUST performance tends to saturate when the

memorized domains are concentrated around m = 5 and h = 0.55, indicating a preference

to explore more domain types. By fixing m = 3 and h = 0.55 the optimal results of NMI

score w.r.t. the number of embedding dimensionality was found to be at 80 and 128 (Fig.

6.4b). Beyond this value RUST performance deteriorated. A similar trend was also observed

when the context neighborhood size was increased beyond q > 5 (Fig 6.4c). Based on these

observations, the following settings m = 3, h = 0.55, d = 80 or d = 128, and q = 5 provide

the most efficient and accurate clustering outcomes using MetaCyc with uec option. For

comparative purposes, we set d = 128.
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Figure 6.5: Node clustering results based on NMI metric using MetaCyc data. n2v:
node2vec, m2v: metapath2vec, jt: JUST, rt: RUST, r: reduced content of MetaCyc based
on trimming nodes below 2 links, uec: links among enzymatic reactions are removed in
MetaCyc, and uec + r: combination of unconnected enzymatic reactions and trimmed nodes
in MetaCyc.

6.6.2 Node Clustering

Experimental setup. The performance of different random walk methods was tested in

relation to node clustering using NMI after 10 trials and the hyperparameters described

above on all MetaCyc graph types depicted in Table 4.1. Clustering was performed using the

k-means algorithm to group homogeneous nodes based on the embeddings learned by each

method.

Experimental results. Fig 6.5 indicates node clustering results for node2vec, metapath2vec,
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Figure 6.6: Node clustering results of metapath2vec++ (cm2v) and RUST-norm (crt) based
on NMI metric using MetaCyc data.

JUST and RUST. node2vec, JUST and RUST exhibited similar performance across all con-

figurations, indicating that these methods are less likely to extract semantic knowledge,

characterizing node domains, from MetaCyc. However, RUST performed optimally better

than node2vec and JUST in learning representations. In the case of metapath2vec, the

random walk follows a predefined meta-path scheme, capturing the necessary relational

knowledge for defining node types. For example, nitrogenase (EC-1.18.6.1), which reduces

nitrogen gas into ammonium, is exclusively linked to the nitrogen fixation I (ferredoxin)

pathway [84]. Without a predefined relation, a walker may explore more local/global struc-

ture of G, hence, become less efficient in exploiting relations between these two nodes.

Among the four walks, only metapath2vec is able to accurately group those nodes, according

to their classes. Despite the advantages of metapath2vec, it is biased to a scheme, as de-

scribed in ([145]), which is explicitly observed for the case of “uec+r” (Fig 6.5d). Under these

conditions, both isolated nodes and links among ECs are discarded, resulting in a reduced

number of nodes that are more easily traversed by a meta-path walker. metapath2vec++

exhibited trends similar to metapath2vec because they share the same walks. However,

metapath2vec++ is trained using normalized Skip-Gram. Therefore, it is expected to achieve

good NMI scores, yielding over 0.41 on uec+full content (in Fig. 6.6), which is also similar

to RUST-norm NMI score (∼ 0.38). This is interesting because RUST-norm employs RUST

based walks but the embeddings are learned using normalized Skip-Gram.

Taken together, these results indicate that node2vec, JUST, and RUST based walks are

effective for analyzing graph structure while metapath2vec can learn good embeddings.

However, RUST strikes a balance between the two proprieties through proper adjustments

of m and the two unit-circle hyperparameters. Regarding the MetaCyc type, we recommend
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“uec” because the associations among ECs are captured at the pathway level. The trimmed

graph is contraindicated, because it eliminates many isolated, but important pathways and

ECs.

6.6.3 Manifold Visualization

Experimental setup. In this section, learned high dimensional embeddings are visualized

by projecting them onto a two-dimensional space using two case studies. The first case

examines the quality of learned nodes embeddings according to the generated random walks

an approach commonly sought in most graph learning embedding techniques [114, 337].

We posit that a good representational learning method defines clear boundaries for nodes

of the same type. For illustrative purposes, nodes corresponding to nitrogen metabolism

were selected. The second case examines the limitations of meta-path based random walks,

extending our discussions in Section 6.6.2. For illustrative purposes we focus on the pathway

layer in Fig 6.2a and consider representation of pathways having no enzymatic reactions.

For visualization, we use UMAP, a.k.a. uniform manifold approximation and projection [220]

using 1000 epochs with the remaining settings set to default values.

Experimental results. Fig 6.7 visualizes 2D UMAP projections of the 128 dimension embed-

dings, trained under uec+full setting depicting 185 nodes related to nitrogen metabolism

in MetaCyc. Each point denotes a node in HIN and each color indicates the node type.

node2vec (Fig 6.7a), JUST (Fig. 6.7c), and RUST (Fig. 6.7d) appear to be less than optimal

in extracting walks that preserve three layer relational knowledge e.g. nodes belonging to

different types form unclear boundaries and diffuse clusters. In the cases of metapath2vec

(Fig. 6.7b), metapath2vec++ (Fig. 6.7f), and RUST-norm (Fig. 6.7f), nodes of the same color

are more optimally portrayed. In the second use case 80 pathways were identified, having no

enzymatic reactions, with their 109 pathway neighbors, as shown in Fig. 6.8a. From Fig. 6.8,

we observe that, in contrast to node2vec, JUST, RUST, and RUST-norm, pathway nodes are

skewed incorrectly in both metapath2vec and metapath2vec++ and (with lesser degree). This

demonstrates the rigidness of meta-path based methods that follow a defined scheme that

limits their capacity to exploit local structure in learning embeddings. Interestingly, RUST-

norm, based on RUST walks, is the only method that combines structural and semantic

information as indicated in Fig. 6.8g and Fig. 6.7f, respectively. Taken together, these results

indicate that RUST based walks with training using Eq. 6.3.3 provide efficient embeddings,

consistent with node clustering observations.
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(a) n2v (b) m2v (c) jt

(d) rt (e) cm2v (f) crt

Figure 6.7: 2D UMAP projections of the 128 dimension embeddings, trained under
uec+full setting depicting 185 nodes related to nitrogen metabolism. Node color indicates
the category of the node type, where red indicates enzymatic reactions, green indicates com-
pounds, and blue is reserved for metabolic pathways. n2v: node2vec, m2v: metapath2vec, jt:
JUST, rt: RUST, cm2v: metapath2vec++, and crt: RUST-norm.

(a) True
Pathways

(b) n2v (c) m2v (d) jt (e) rt (f) cm2v (g) crt

Figure 6.8: 2D UMAP projections of 80 pathways that have no enzymatic reactions, indi-
cated by the blue color, with 109 corresponding pathway neighbors, represented by the
grey color. n2v: node2vec, m2v: metapath2vec, jt: JUST, rt: RUST, cm2v: metapath2vec++,
and crt: RUST-norm.
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6.6.4 Metabolic Pathway Prediction

Experimental setup. In this section, the effectiveness of the learned embeddings from

pathway2vec modules is determined across different pathway inference methods (in Chapter

4.3) and mlLGPR-elastic net (EN) (in Chapter 5) on T1 golden datasets (in Chapter 4.2.1) using

the settings and metrics described above. In contrast to previous multi-label classification

methods [114, 145, 255], where the goal is to predict the most probable label set for nodes,

we leverage the learned vectors and the multi-label dataset, according to Eq. 6.4.1. Pathway

prediction with mlLGPR-EN used the default hyperparameter settings, after concatenating

features from each learning method, to train on BioCyc (in Chapter 4.2.2). Results are

reported on T1 golden datasets including EcoCyc, HumanCyc, AraCyc, YeastCyc, LeishCyc,

and TrypanoCyc using the four evaluation metrics in Chapter 4.4.1.

Experimental results. Table 6.1 shows micro F1 scores for each pathway predictor. Numbers

in boldface represent the best performance score in each column while the underlined text

indicates the best performance among the embedding methods. From the results, it is

obvious that all variation of embedding methods performs consistently better than MinPath

across the 4 T1 golden datasets (EcoCyc, YeastCyc, LeishCyc, and TrypanoCyc). With the

excpetion of EcoCyc the performance of embeddings resulted in less optimal micro F1

scores than PathoLogic or mlLGPR. In the case of mlLGPR, embeddings were trained on less

than 1470 pathways, potentially obscuring the actual benefits of the learned features. Taken

together, different pathway2vec modules performed similar to one another indicating that

embeddings are potential alternatives to the pathway and reaction evidence features used

in mlLGPR.

6.7 Summary

We have developed the pathway2vec package for learning features relevant to metabolic

pathway prediction from genomic sequence information. The software package consists of

six representational learning modules used to automatically generate features for pathway

inference. Metabolic feature representations were decomposed into three interacting layers:

compounds, enzymes and pathways, where each layer consists of associated nodes. A Skip-

Gram model was applied to extract embeddings for each node encoding smooth decision

boundaries between groups of nodes in a graph resulting in a multi-layer heterogeneous

information network for metabolic interactions within and between layers. Three extensive

empirical studies were conducted to benchmark pathway2vec, indicating that the repre-

sentational learning approach is a promising adjunct or alternative to features engineering
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
mlLGPR+n2v 0.0558 0.1021 0.1706 0.0768 0.0424 0.0883
mlLGPR+m2v 0.0558 0.0998 0.1742 0.0740 0.0412 0.0926
mlLGPR+cm2v 0.0586 0.1041 0.1742 0.0744 0.0420 0.0867
mlLGPR+jt 0.0550 0.1041 0.1738 0.0724 0.0459 0.0895
mlLGPR+rt 0.0554 0.0990 0.1746 0.0752 0.0428 0.0855
mlLGPR+crt 0.0542 0.1017 0.1615 0.0760 0.0439 0.0855

Methods
Micro Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
mlLGPR+n2v 0.7923 0.5745 0.6965 0.6446 0.4153 0.3974
mlLGPR+m2v 0.7862 0.6015 0.6786 0.6750 0.4261 0.3745
mlLGPR+cm2v 0.7770 0.5556 0.6620 0.6723 0.4159 0.4076
mlLGPR+jt 0.7979 0.5556 0.6732 0.6949 0.3840 0.3924
mlLGPR+rt 0.7889 0.6014 0.6635 0.6560 0.4146 0.4113
mlLGPR+crt 0.7993 0.5873 0.7898 0.6581 0.3983 0.4105

Methods
Micro Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
mlLGPR+n2v 0.7329 0.2903 0.2745 0.3406 0.5632 0.5314
mlLGPR+m2v 0.7427 0.2867 0.2608 0.3537 0.5632 0.5029
mlLGPR+cm2v 0.7264 0.2867 0.2804 0.3493 0.5402 0.5543
mlLGPR+jt 0.7329 0.2867 0.2706 0.3581 0.5517 0.5314
mlLGPR+rt 0.7427 0.3082 0.2745 0.3581 0.5862 0.5429
mlLGPR+crt 0.7394 0.2652 0.2725 0.3362 0.5402 0.5371

Methods
Micro F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
mlLGPR+n2v 0.7614 0.3857 0.3938 0.4457 0.4780 0.4548
mlLGPR+m2v 0.7638 0.3883 0.3768 0.4642 0.4851 0.4293
mlLGPR+cm2v 0.7508 0.3783 0.3939 0.4598 0.4700 0.4697
mlLGPR+jt 0.7640 0.3783 0.3860 0.4726 0.4528 0.4515
mlLGPR+rt 0.7651 0.4076 0.3883 0.4633 0.4857 0.4680
mlLGPR+crt 0.7682 0.3654 0.4052 0.4451 0.4585 0.4653

Table 6.1: Predictive performance of each comparing algorithm on 6 benchmark golden
T1 datasets. For each performance metric, ‘↓’ indicates the smaller score is better while ‘↑’
indicates the higher score is better.
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based on manual curation. At the same time, we introduced RUST, a novel and flexible

random walk method that uses unit-circle and domain size hyperparameters to exploit

local/global structure while absorbing semantic information from both homogeneous and

heterogeneous graphs.

Looking forward, we intend to leverage embeddings and graph structure on more com-

plex community level metabolic pathway prediction problems, which will be discussed in

the following chapters.
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Chapter 7

Incorporating Triple NMF with

Community Detection to Metabolic

Pathway Inference
“Networking is not collecting contacts! Networking is about planting relations.”

– MiSha

As we discussed in Chapter 6, machine learning provides a probabilistic framework for

metabolic pathway inference; however, several challenges including pathway features engi-

neering, multiple mapping of enzymatic reactions and emergent or distributed metabolism

within populations or communities of cells can limit prediction performances. Here, we

present triUMPF, triple non-negative matrix factorization (NMF) with community detection

for metabolic pathway inference, that combines three stages of NMF to capture relationships

between enzymes and pathways (using embeddings from pathway2vec) within a network

followed by community detection to extract higher order structure based on the clustering

of vertices sharing similar statistical properties. We evaluated triUMPF performance using

datasets, presented in Chapter 4.2. Resulting performance metrics equaled or exceeded

other prediction methods on organismal genomes with improved prediction outcomes on

multi-organism datasets.

7.1 Introduction

Pathway reconstruction from genomic sequence information is an essential step in describ-

ing the metabolic potential of cells at the individual, population and community levels of

biological organization [125, 176, 214]. Resulting pathway representations provide a foun-

dation for defining regulatory processes, modeling metabolite flux and engineering cells
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and cellular consortia for defined process outcomes [122, 244]. In Chapter 5, we introduced

mlLGPR that performed effectively on organismal genomes, pathway prediction outcomes

for multi-organismal data sets were less optimal due in part to missing or noisy feature

information. In an effort to grapple with this problem, pathway2vec was introduced to

learn a neural embedding-based low-dimensional space of metabolic features based on a

three-layered network architecture consisting of compounds, enzymes, and pathways (see

Chapter 6). Based on several experiments, the learned feature vectors motivated the use of

multi-layer networks for organismal and multi-organismal genomes.

This chapter describes triUMPF that combines three stages of NMF to capture relation-

ships between enzymes and pathways within a network [101] followed by community detec-

tion to extract higher order network structure [98]. NMF is a data reduction and exploration

method in which the original and factorized matrices have the property of non-negative

elements with reduced ranks or features [101, 107]. In contrast to other dimension reduction

methods, such as principal component analysis [45], NMF both reduces the number of

features and preserves information needed to reconstruct the original data [369]. This has

important implications for noise robust feature extraction from sparse matrices including

data sets associated with gene expression analysis and pathway prediction [369].

For pathway prediction, triUMPF uses three graphs, one representing associations be-

tween pathways and enzymes indicated by enzyme commission (EC)) numbers [20], one

representing interactions between enzymes and another representing interactions between

pathways. The two interaction graphs adopt the subnetwork or community concept (in

Chapter 3.2.1). Community detection is performed on both interaction graphs to identify

subnetworks as shown in Fig. 7.1A, where a pathway network, extracted from MetaCyc,

is represented as interactions among pathways. The detected pathway communities are

illustrated in Fig. 7.1B. Similar to Fig. 7.1, enzyme interactions are used to create the enzyme

network, which is used to detect enzyme communities.

We evaluated triUMPF’s paramater sensitivity, robustness and prediction performance in

relation to other inference methods including PathoLogic, MinPath and mlLGPR on datasets

in Chapter 4.2 and Esherichia coli strains. Resulting performance metrics exceeded other

prediction methods on multiple benchmark datasets with improved prediction outcomes.

7.2 Problem Formulation

Here, we state the problem discussed in this chapter.
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Figure 7.1: The set of complete metabolic pathways extracted from MetaCyc (A) and their
discovered communities (B). Zoomed in region of the pathway-pathway and community-
community interactions, C and D respectively. Nodes are metabolic pathways or communi-
ties for A,C and B,D respectively. Edges correspond to number of shared enzymatic reactions
or shared pathways for the pathway and community nodes respectively.

Metabolic Pathway Prediction

Given: i)- Pathway-EC matrix M (Def. 3.4), ii)- a Pathway-Pathway interaction

matrix A (Def. 3.5), iii)- an EC-EC interaction matrix B (Def. 3.6), and iv)- a

dataset S (Def. 3.9), the goal is to efficiently reconstruct pathway labels for

a hitherto unseeen instance x∗ ∈ Rr , where r corresponds the number of

enzymatic reactions (Chapter 3.2.2).
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Figure 7.2: A workflow diagram showing the proposed triUMPF method. The model takes
two graph topology, corresponding Pathway-Pathway interaction and EC-EC interaction,
and a dataset to detect pathway and EC communities while, simultaneously, decomposing
Pathway-EC association information to produce a constrain low rank matrix. Afterwards, a
set of pathways is detected from a newly annotated genome or metagenome.
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7.3 The triUMPF Method

In this section, we provide a description of triUMPF components, presented in Fig. 7.2, in-

cluding: i)- decomposing the pathway EC association matrix, ii)- subnetwork or community

reconstruction, and iii)- the multi-label learning process.

7.3.1 Decomposing the Pathway EC Association Matrix

Inspired by the idea of NMF, we decompose the P2E association matrix to recover low-

dimensional latent factor matrices [101]. Unlike previous application of NMF to biological

data sets [234], triUMPF incorporates learned embeddings into the matrix decomposition

process. Formally, given the non-negative M standard NMF decomposes the matrix into the

two low-rank matrices, i.e. M ≈ WH>, where W ∈Rt×k stores the latent factors for pathways

while H ∈ Rr×k , known as the basis matrix, can be thought of as latent factors associated

with ECs and k ¿ t ,r . We extend standard NMF by incorporating the two constraints: i)-

interactions within ECs or pathways and ii)- interactions between pathways and ECs. For

this, we apply the pathway2vec framework (discussed in Chapter 6) to extract features in

the form of continuous vectors, for each EC and pathway while incorporating interaction

constraints. This set of features can then be used to obtain the following minimization

objective function:

J fact(W,H,U,V) = min
W,H,U,V

||M−WH>||2F +λ1||W−PU||2F +λ2||H−EV||2F
+λ3||U−V||2F +λ4(||W||2F +||H||2F +||U||2F +||V||2F )

s.t. {W,H,U,V} ≥ 0

(7.3.1)

where λ∗ are regularization hyperparameters. The leftmost term is the well-known squared

loss function that penalizes the deviation of the estimated entries in both W and H from the

true association matrix M. The second term corresponds the relative differences of latent

matrix W from the pathway features P ∈Rt×m , learned using pathway2vec framework, where

the matrix U ∈Rm×k absorbs different scales of matrices W and P. Similarly, the third term

indicates the squared loss of H from E ∈Rr×m , which denotes the feature matrix of ECs, and

their differences are captured by V ∈Rm×k . In the fourth term, we minimize the differences

between factors U and V, capturing the shared prominent features for the low dimensional

coefficients.
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7.3.2 Subnetwork or Community Reconstruction

Graph abstraction is a process of reducing a set of linked nodes into a more compact form,

such as isolating densely connected nodes that possess similar properties or functions.

The task of discovering distinct group of nodes is known as the community detection

problem [54, 98, 298]. Motivated by this work, we use community detection to guide the

learning process for pathways on the two adjacency matrices A and B, indicating P2P and

E2E associations, respectively. For example, Fig. 7.1 shows 90 communities in pathway

network, where the intra-group of nodes, within a community, interacts with each other

more frequently than with those outside the group.

The two matrices A and B represent first-order proximity, capturing pairwise proximity

among their related vertices [341]. However, as discussed in [198, 277], the first-order prox-

imity is inadequate to fully characterize distant relationships among pathways or ECs. As

such, higher-order, in particular second and third order, proximity is pursued, which can be

obtained using the formula [198]:

Aprox = ∑
i∈lp

ωi Al , Bprox = ∑
i∈le

γi Bl
(7.3.2)

where Aprox and Bprox are polynomials of order lp and le , respectively, and ω and γ are

weights associated to each term. Using these higher order matrices, we invoke again NMF to

recover communities.

Formally, let T ∈ Rm×p be a non-negative community representation matrix of size p

communities for pathways, where the j -th column in T:, j denotes the representation of

community j . The pathway community indicator matrix is denoted by C ∈Rt×p conditioned

on tr(C>C) = t , where each entry Ci ,l and C j ,l encodes the probability that pathways i and

j generates an edge belonging to a community l . The probability of i and j belonging to

the same community can be assessed as: �Aprox
i , j = (Pi C:,l T>

l ,i )>(P j C:,l T>
l , j ). Similar discussion

follows for the non-negative representation matrix R ∈Rm×v and the EC community indica-

tor matrix K ∈ Rr×v of v communities, conditioned on tr(K>K) = r . Unfortunately, due to

the constraints emphasized on C and K, it is not straightforward to analytically derive an

expression, instead, we resort to much more tractable solution provided in [341], and relax

the condition to be an orthogonal constraint, resulting in the following objective function:

J comm(C,K) =min
C,K

||Aprox −PTC>||2F +||Bprox −ERK>||2F
+α||C>C− I||2F +β||K>K− I||2F +λ5(||C||2F +||K||2F )

s.t. {C,K} ≥ 0

(7.3.3)
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where I denotes an identify matrix, λ5 is a regularization hyperparameter while α and β are

both positive hyperparameters. The value of these hyperparameters is usually set to a large

number, e.g. 109 in this work, for adjusting the contribution of corresponding terms. The

obtained communities in Eq 7.3.3 are directly linked to the underlying graph topologies, i.e.,

Aprox and Bprox.

7.3.3 Multi-label Learning Process

We now bring together the NMF and community detection steps with multi-label classifica-

tion for pathway prediction. The learning problem must obey rules mandated by M while

being lenient towards the dataset S , which should provide enough evidence to generate

representations of communities among pathways and ECs, as suggested by Aprox and Bprox.

We present a weight termΘ ∈Rt×r that enforces X to be close enough to both Y and M. We

also introduce two auxiliary terms L ∈Rn×m , which capture correlations between X and Y

and Z ∈Rr×r , enforcing the pathway coefficients associated with M resulting in the following

objective function:

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(
1+e−y(i )

k Θ
ᵀ
k x(i )

)
+||X−LRK>||2F +||Y−LTC>||2F
+ρ||Θ−ZHW>||2F +λ5(||T||2F +||R||2F )

+λ6(||Θ||2,1 +||L||2F +||Z||2F )

s.t. {T,R} ≥ 0

(7.3.4)

where λ5, λ6, and ρ are regularization hyperparameters, and ||.||2,1 represents the sum of the

Euclidean norms of columns of a matrix introduced to emphasize sparseness. Notice that

we do not restrict the terms L and Z to be non-negative. Both the second and the third terms

in Eq. 7.3.4, are needed to discover pathway and EC communities, i.e., C and K, respectively.

The Eqs 7.3.1, 7.3.3, and 7.3.4 are jointly non-convex due to non-negative constraints

on the original and the approximation factorized matrices, implying the solutions to tri-

UMPF are only unique up to scalings and rotations [369]. Hence, we adopt an alternating

optimization algorithm to solve each objective function simultaneously, which is provided

in Appendix E.
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7.4 Experimental Setup

Here, we describe the experimental framework used to demonstrate triUMPF pathway

prediction performance across multiple datasets introduced in Chapter 4.2. triUMPF was

implemented in the Python programming language (v3). Unless otherwise specified all tests

were conducted on a Linux server using 10 cores of Intel Xeon CPU E5-2650.

7.4.1 Association Matrices

MetaCyc v21 ([51]) was used to obtain the three association matrices, P2E (M), P2P, (A),

and E2E (B). Some of the properties for each matrix are summarized in Table 4.1. All three

matrices are extremely sparse. For example, M contains 2526 pathways, having an average of

four EC associations per pathway, leaving more than 3600 columns with zero values. These

matrices will be utilized to obtain higher-order proximity (Section 7.5.1) and to analyze

triUMPF’s robustness (Section 7.5.2).

7.4.2 Pathway and Enzymatic Reaction Features

The pathway and EC features, indicated by P and E, respectively, were obtained using

pathway2vec. The following settings were applied to learn pathway and EC features: the

embedding method was “crt”, the number of memorized domain is 3, the explore and

the in-out hyperparameters are 0.55 and 0.84, respectively, the number of sampled path

instances was 100, the walk length is 100, the embedding dimension size was m = 128, the

neighborhood size was 5, the size of negative samples was 5, and the used configuration of

MetaCyc was “uec”, indicating links among ECs are being trimmed.

7.4.3 Parameter Settings

For training, unless otherwise indicated, the learning rate was set to 0.0001, batch size to

50, number of epochs to 10, number of components k = 100, number of pathway and EC

communities to p = 90 and v = 100, respectively. The higher-order proximity for Aprox and

Bprox (corresponding P2P and E2E matrices, respectively, in Section 7.4.1) were set to l p = 3

and l e = 1 and their associated weights fixed as ω = 0.1 and γ = 0.3, respectively. The α

and β were fixed to 109. For the regularized hyperparameters λ∗, we performed 10-fold

cross-validation on MetaCyc and a subsampled of BioCyc T2 &3 data and found the settings

λ1:5 = 0.01, λ6 = 10, and ρ = 0.001 to be optimum on golden T1 data.

96



7.5 Experimental Results and Discussion

Four consecutive tests were performed to ascertain the performance of triUMPF includ-

ing parameter sensitivity, network reconstruction, visualization, and metabolic pathway

prediction effectiveness.

7.5.1 Parameter Sensitivity

Experimental setup. The impact of seven hyperparameters (k, p, v, lp , le , ω and γ) was eval-

uated in relation to reconstruction cost of the associated matrices (M, Aprox, and Bprox). The

reconstruction cost (or error) defines the sum of mean squared errors accounted in the

process of transforming the decomposed matrices into its original form where lower cost

entails the decomposed low dimensional matrices were able to better capture the represen-

tations of the original matrix. We specifically evaluated the effects of varying the following

parameters: i)- the number of components k ∈ {20,50,70,90,120}, ii)- the community size of

pathway p ∈ {20,50,70,90,100} and EC v ∈ {20,50,70,90,100}, iii)- the higher-order proximity

lp and le ∈ {1,2,3}, and iv)- weights of the polynomial order ω and γ ∈ {0.1,0.2,0.3}. We used

the full matrix M, for each test, however, for community detection, we used BioCyc T2 &3

data that is divided into training (80%), validation (5%) and test sets (15%). The final costs for

community detection are reported based on the test set after 10 successive trials. In addition,

we contrast triUMPF with the standard NMF for monitoring the reconstruction costs of M

by varying k values. We emphasize that M, Aprox, and Bprox were collected from MetaCyc

(Section 7.4.1) and not from BioCyc T2 &3 (Chapter 4.2.2).

Experimental results. Fig. 7.3 shows the effect of rank k on triUMPF performance. In gen-

eral, we observe that the performance is steady with the increase of k. This is in contrast to

standard NMF where the reconstruction error decreases as the number of features increases.

This is expected because, unlike standard NMF, triUMPF exploits two types of correlations

to recover M: i)- within ECs or pathways and ii)- betweenness interactions, hence, serving

as regularizers. As observed from Fig. 7.3, higher k values result in improved outcomes.

Consequently, we selected k = 100 for performing downstream testing.

For community detection, we observed optimal results with respect to pathway com-

munity size at p = 20 under parameter settings k = 100 and v = 100, as shown in Fig. 7.4a.

However, because Aprox is so sparse, we suggest that this low rank may not correspond to the

optimum community size. As with all methods of community detection triUMPF is sensitive

to community size and requires empirical testing. There, we tested settings between p = 20

and p = 100 and observed a decrease in performance under parameter settings k = 100
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Figure 7.3: Sensitivity of components k based on reconstruction cost.

and v = 100 with p = 90 providing a balance between cost and increased community size.

A similar result was observed for EC community size at v = 100 under parameter settings

p = 90 and k = 100 in Fig. 7.4b.

Finally, we show the effect of changing polynomial orders, and their weights on triUMPF

performance. From Fig. 7.4c, we see that the reconstruction error progressively increases

with varying higher orders for all the three weights ω. However, for the same reasons de-

scribed above, we prefer more long distances with less weight to preserve community

structure, and remarkably, when ω= 0.1 triUMPF performance was relatively stable after

the second order. The same conclusion can be drawn for le and its associated weights γ in

Fig. 7.4d.

Based on these results, triUMPF performance is stable while minimizing cost under

the following parameter settings: k = 100, p > 90, e > 90, lp = 3, ω= 0.1, le = 1, and γ= 0.3.

Therefor, we recommend these settings for both MetaCyc and BioCyc T2 &3.

98



20 50 70 90 100
p

51.0

51.5

52.0

52.5

53.0
R

ec
on

st
ru

ct
io

n
co

st

(a) Pathway community p (k = 100, v = 100)

20 50 70 90 100
v

67

68

69

70

R
ec

on
st

ru
ct

io
n

co
st

(b) EC community v (k = 100, p = 90)

1 2 3
lp

52.01

52.02

52.03

52.04

R
ec

on
st

ru
ct

io
n

co
st

ω = 0.1 ω = 0.2 ω = 0.3

(c) Effect of lp

1 2 3
le

68.50

68.55

68.60

68.65

68.70

R
ec

on
st

ru
ct

io
n

co
st

γ = 0.1 γ = 0.2 γ = 0.3

(d) Effect of le

Figure 7.4: Sensitivity of community size and higher order proximity with weights based
on reconstruction cost.

7.5.2 Network Reconstruction

Experimental setup. We next examined the robustness of triUMPF when exposed to noise.

Links were randomly removed from M, A, and B according to ε ∈ {20%,40%,60%,80%}. We

used the partially linked matrices to refine parameters while comparing the reconstruction

cost against the full association matrices M, A and B. Specifically for M, we varied com-

ponents of M according to k ∈ {20,50,70,90,120} along with ε. For all experiments, both

MetaCyc and BioCyc T2 &3 were applied for training using hyperparameters described in

Section 7.4.3.

Experimental results. Fig. 7.5a indicate that by progressively increasing noise ε to M, the
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Figure 7.5: Link prediction results by varying noise levels ε ∈ {20%,40%,60%,80%} based
on reconstruction cost.

reconstruction cost increases when k is low. As more features are incorporated the cost at

all noise levels steadily decreases up to k = 100. This tendency indicates that both pathway

and EC features (P and E contain useful correlations that contribute to the resilience of

triUMPF’s performance when M is perturbed.

For Aprox and Bprox, as shown in Figs 7.5b and 7.5c, the costs are reduced in the presence

of noise, which is not surprising as the reconstruction of associated communities are con-

strained on both data and Aprox and Bprox. These results are directly linked to the sparseness

of both matrices, as previously described in [98]. The pathway graph network, depicted in

Fig. 1 of the primary text, indicates that many pathways constitute islands with no direct

links, while some pathways are densely connected. For community detection, it is sufficient

to group nodes that are densely connected, while links between communities can remain

sparse. The same line of reasoning follows for the EC network.

7.5.3 Visualization

Experimental setup. Recall that community detection (in Sections 7.3.2 and 7.3.3) was used

to guide the learning process using both MetaCyc and BioCyc T2 &3. Under circumstances

where BioCyc T2 &3 are excluded from Eq. 7.3.4, triUMPF identifies pathway communities

from A defined according to MetaCyc. However, when trained with both MetaCyc and BioCyc

T2 &3 connected pathways may be distributed across multiple communities. This happens

due to the heterogeneous nature of the BioCyc collection and presents an opportunity to

evaluate the statistical properties of pathway communities in relation to both taxonomic

and functional diversity within the training set.

To explore these properties in more detail, we visualized MetaCyc and BioCyc com-
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(a) Communities from MetaCyc (b) Communities from BioCyc

Figure 7.6: TCA cycle and associated pathways. Pathway communities visualized with and
without training using BioCyc T2 &3. (a) MetaCyc communities and (b) BioCyc communities
observed using triUMPF. Nodes coloured black indicate the TCA cycle (TCA) while dark
grey nodes indicate associated pathways. Remaining pathway communities not associated
with the TCA cycle are indicated in light grey. PWY-7180: 2-deoxy-α-D-ribose 1-phosphate
degradation; PWY-6223: gentisate degradation I.

munities associated with the tricarboxylic acid (TCA) cycle. The TCA cycle represents a

series of reactions central to cellular metabolism and can be found in different forms called

pathway variants in aerobic and anaerobic organismal genomes. We then visualized the

impact of community detection on pathway prediction by comparing metabolic networks

predicted for E. coli K-12 substr. MG1655 (TAX-511145), uropathogenic E. coli str. CFT073

(TAX-199310), and enterohemorrhagic E. coli O157:H7 str. EDL933 (TAX-155864) using both

PathoLogic (taxonomic pruning) and triUMPF. All experiments were conducted based on

the settings in Section 7.4.3.

Experimental results. Fig. 7.6a shows pathway communities obtained using MetaCyc,

where pathways associated with the TCA cycle grouped together in the graph according

to Aprox. For example, the pyruvate decarboxylation to acetyl CoA pathway that converts

pyruvate to acetyl-CoA as input to the TCA cycle was identified in the same TCA commu-

nity. In contrast, triUMPF trained using MetaCyc and BioCyc T2 &3 assigned TCA associ-

ated pathways to several distinct communities as exhibited in Fig. 7.6b. For example, the

pathways 2-deoxy-α-D-ribose 1-phosphate degradation that produces inputs to glycolysis

(D-glyceraldehyde-3-phosphate) and TCA cycle (acetyl-coA), and gentisate degradation I
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Community Index MetaCyc Pathway ID MetaCyc Pathway Name Status

67

PWY0-1182 trehalose degradation II (trehalase) true
PWY-6910 hydroxymethylpyrimidine salvage true
HOMOSER-THRESYN-PWY L-threonine biosynthesis true
PUTDEG-PWY putrescine degradation I true
PWY-6611 adenine and adenosine salvage V true
FERMENTATION-PWY mixed acid fermentation true
ENTNER-DOUDOROFF-PWY Entner-Doudoroff pathway I true

34

ASPARAGINESYN-PWY L-asparagine biosynthesis II true
PWY-5340 sulfate activation for sulfonation true
PWY-6618 guanine and guanosine salvage III true
PWY0-1314 fructose degradation true
PWY-7181 pyrimidine deoxyribonucleosides degradation true
PWY0-1299 arginine dependent acid resistance true
PWY0-42 2-methylcitrate cycle I true

9

NAGLIPASYN-PWY lipid-A-precursor biosynthesis (E. coli) true
PWY-7221 guanosine ribonucleotides de novo biosynthesis true
KDOSYN-PWY Kdo transfer to lipid IVA I (E. coli) true
PWY0-1309 chitobiose degradation true
PPGPPMET-PWY ppGpp biosynthesis true
PWY-6608 guanosine nucleotides degradation III true
PWY-5656 mannosylglycerate biosynthesis I false

47

PLPSAL-PWY pyridoxal 5’-phosphate salvage I true
PWY0-1313 acetate conversion to acetyl-CoA true
PYRUVDEHYD-PWY pyruvate decarboxylation to acetyl CoA true
PWY-4381 fatty acid biosynthesis initiation (bacteria and plants) true
PWY0-662 PRPP biosynthesis true

81

HISTSYN-PWY L-histidine biosynthesis true
PWY-6147 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I true
PWY-7176 UTP and CTP de novo biosynthesis true
PWY-6932 selenate reduction false

Table 7.1: Top 5 communities with pathways predicted by triUMPF for E. coli K-12 substr.
MG1655 (TAX-511145). The last column asserts whether a pathway is present in or absent
(a false-positive pathway) from EcoCyc reference data.

that produces inputs to the TCA cycle (fumarate and pyruvate) were not grouped in the

same TCA community. Closer inspection of the training data indicated that these pathways

appear together in 250 organismal genomes altering the statistical association of pathway

occurrences in the network. In this light, pathway communities reflect less the MetaCyc

pathway ontology and more the statistical properties of the network itself. This aspect of

triUMPF can be leveraged to improve prediction outcomes.

To demonstrate this, we compared pathways predicted for the T1 gold standard E. coli

K-12 substr. MG1655 (TAX-511145), henceforth referred to as MG1655, using PathoLogic and

triUMPF. Fig. 7.7a shows the results, where both methods inferred 202 true-positive path-

ways (green-colored) in common out of 307 expected true-positive pathways (using EcoCyc

as a common frame of reference). In addition, PathoLogic uniquely predicted 39 (magenta-

colored) true-positive pathways while triUMPF uniquely predicted 16 true-positives (purple-

colored). This difference arises from the use of taxonomic pruning in PathoLogic which
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(a) MG1655 (b) CFT073 (c) EDL933

Figure 7.7: Pathway community networks for related T1 and T3 organismal genomes.
Pathway communities for (a) E. coli K-12 substr. MG1655 (TAX-511145), (b) E. coli str.
CFT073 (TAX-199310), and (c) E. coli O157:H7 str. EDL933 (TAX-155864) based on com-
munity detection. Nodes colored in dark grey indicate pathways predicted by PathoLogic;
lime pathways predicted by triUMPF; salmon pathways predicted by both PathoLogic and
triUMPF; red expected pathways not predicted by both PathoLogic and triUMPF; magenta
expected pathways predicted only by PathoLogic; purple expected pathways predicted solely
by triUMPF; and green expected pathways predicted by both PathoLogic and triUMPF. light-
grey indicates pathways not expected to be encoded in either organismal genome. The node
sizes reflect the degree of associations between pathways.

improves the recovery of taxonomically constrained pathways and limits false-positive

identification. With taxonomic pruning enabled, PathoLogic inferred 79 false-positive path-

ways, and over 170 when pruning was disabled. In contrast triUMPF which does not use

taxonomic feature information inferred 84 false-positive pathways. This improvement over

PathoLogic with pruning disabled reinforces the idea that pathway communities improve

the precision of pathway prediction with limited impact on overall recall. Based on these

results it is conceivable to train triUMPF on subsets of organismal genomes resulting in

more constrained pathway communities for pangenome analysis. Examples with regard to

pathway community see Table 7.1.

To further evaluate triUMPF performance on closely related organismal genomes, we

performed pathway prediction on E. coli str. CFT073 (TAX-199310), and E. coli O157:H7

str. EDL933 (TAX-155864) and compared results to the MG1655 reference strain [345]. Both

CFT073 and EDL933 are pathogens infecting the human urinary and gastrointestinal tracts,

respectively. Previously, Welch and colleagues described extensive genomic mosaicism be-

tween these strains and MG1655, defining a core backbone of conserved metabolic genes

interspersed with genomic islands encoding common pathogenic or niche defining traits
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(a) PathoLogic (taxonomic prun-
ing)

(b) PathoLogic (without taxo-
nomic pruning)

(c) triUMPF

Figure 7.8: A three way set difference analysis of pathways predicted for E. coli K-12 substr.
MG1655 (TAX-511145), E. coli str. CFT073 (TAX-199310), and E. coli O157:H7 str. EDL933
(TAX-155864) using (a) PathoLogic (taxonomic pruning) and (b) triUMPF.

[345]. Neither CFT073 nor EDL933 genomes are represented in the BioCyc collection of

organismal pathway genome databases. A total of 335 and 319 unique pathways were pre-

dicted by PathoLogic and triUMPF, respectively. The resulting pathway lists were used to

perform a set-difference analysis with MG1655 (Figs 7.8a and 7.8c). Both methods predicted

more than 200 pathways encoded by all three strains including core pathways like the TCA

cycle (Figs 7.7b and 7.7c). CFT073 and EDL933 were predicted to share a single common

pathway (TCA cycle IV (2-oxoglutarate decarboxylase)) by triUMPF. However this pathway

variant has not been previously identified in E. coli and constitutes a false-positive predic-

tion based on recognized taxonomic range. Both PathoLogic and triUMPF predicted the

aerobactin biosynthesis pathway involved in siderophore production in CFT073 consistent

with previous observations [345]. Similarly, four pathways (e.g. L-isoleucine biosynthesis III

and GDP-D-perosamine biosynthesis) unique to EDL933 were inferred by both methods.

Given the lack of cross validation standards for CFT073 and EDL933 we were unable

to determine which method inferred fewer false-positive pathways across the complete

set of predicted pathways. Therefore, to constrain this problem on a subset of the data,

we applied GapMind [263] to analyze amino acid biosynthetic pathways encoded in the

genomes of the MG1655, CFT073 and EDL933 strains. GapMind is a web-based application

developed for annotating amino acid biosynthetic pathways in prokaryotic microorganisms

(bacteria and archaea) where each reconstructed pathway is supported by a confidence

level. After excluding pathways that were not incorporated in the training set a total of 102

pathways were identified across the three strains encompassing 18 amino acid biosynthetic

pathways and 27 pathway variants with high confidence (Table 7.2). PathoLogic inferred
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Amino Acid MetaCyc Pathway ID MetaCyc Pathway Name

Arginine
ARGSYNBSUB-PWY L-arginine biosynthesis II (acetyl cycle)
PWY-5154 L-arginine biosynthesis III (via N-acetyl-L-citrulline)
PWY-7400 L-arginine biosynthesis IV (archaebacteria)

Asparagine
ASPARAGINE-BIOSYNTHESIS L-asparagine biosynthesis I
ASPARAGINESYN-PWY L-asparagine biosynthesis II

Chorismate PWY-6163 chorismate biosynthesis from 3-dehydroquinate

Cysteine
CYSTSYN-PWY L-cysteine biosynthesis I
PWY-6308 L-cysteine biosynthesis II (tRNA-dependent)

Glutamine GLNSYN-PWY L-glutamine biosynthesis I

Glycine
GLYSYN-PWY glycine biosynthesis I
GLYSYN-THR-PWY glycine biosynthesis IV

Histidine HISTSYN-PWY L-histidine biosynthesis

Isoleucine
ILEUSYN-PWY L-isoleucine biosynthesis I (from threonine)
PWY-5104 L-isoleucine biosynthesis IV

Leucine LEUSYN-PWY L-leucine biosynthesis

Lysine
DAPLYSINESYN-PWY L-lysine biosynthesis I
PWY-2941 L-lysine biosynthesis II
PWY-2942 L-lysine biosynthesis III

Methionine
HOMOSER-METSYN-PWY L-methionine biosynthesis I
PWY-702 L-methionine biosynthesis II

Phenylalanine PHESYN L-phenylalanine biosynthesis I
Proline PROSYN-PWY L-proline biosynthesis I
Serine SERSYN-PWY L-serine biosynthesis

Threonine HOMOSER-THRESYN-PWY L-threonine biosynthesis
Tryptophan TRPSYN-PWY L-tryptophan biosynthesis

Tyrosine TYRSYN L-tyrosine biosynthesis I
Valine VALSYN-PWY L-valine biosynthesis

Table 7.2: 18 amino acid biosynthetic pathways and 27 pathway variants with high confi-
dence.

49 pathways identified across the three strains encompassing 15 amino acid biosynthetic

pathways and 17 pathway variants while triUMPF inferred 54 pathways identified across the

three strains encompassing 16 amino acid biosynthetic pathways and 19 pathway variants

including L-methionine biosynthesis in MG1655, CFT073 and EDL933 that was not predicted

by PathoLogic. Neither method was able to predict L-tyrosine biosynthesis I (see Fig. 7.9).

Finally, we note that when taxonomic pruning is disabled PathoLogic infers over 90

additional pathways (Fig. 7.8b). With regard to GapMind results, PathoLogic with non

taxonomic pruning predicted 56 pathways across the three strains encompassing 15 amino

acid biosynthetic pathways and 20 pathway variants, including L-proline biosynthesis II (from

arginine) pathway that is known only for eukaryotes (Fig. 7.10), consequently, increasing

false-positive pathway prediction.
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Figure 7.9: Comparison of predicted pathways for E. coli K-12 substr. MG1655 (TAX-
511145), E. coli str. CFT073 (TAX-199310), and E. coli O157:H7 str. EDL933 (TAX-155864)
datasets between PathoLogic (taxonomic pruning) and triUMPF. Red circles indicate that
neither method predicted a specific pathway while green circles indicate that both methods
predicted a specific pathway. Lime circles indicate pathways predicted solely by mlLGPR and
gray circles indicate pathways solely predicted by PathoLogic.The size of circles corresponds
to associated pathway coverage information.
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Figure 7.10: Comparison of predicted pathways for E. coli K-12 substr. MG1655 (TAX-
511145), E. coli str. CFT073 (TAX-199310), and E. coli O157:H7 str. EDL933 (TAX-155864)
datasets between PathoLogic (without taxonomic pruning) and triUMPF. Red circles in-
dicate that neither method predicted a specific pathway while green circles indicate that
both methods predicted a specific pathway. Lime circles indicate pathways predicted solely
by mlLGPR and gray circles indicate pathways solely predicted by PathoLogic. The size of
circles corresponds the associated coverage information.
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Figure 7.11: Effect of ρ based on the average F1 scores using golden T1 datasets. The hy-
perparameter ρ in Eq. 7.3.4 controls the amount of information propagation from M to
pathway label coefficientsΘ.

7.5.4 Metabolic Pathway Prediction

Experimental setup. Pathway prediction potential of triUMPF was evaluated using the pa-

rameter settings described in Section 7.4.3. The sensitivity of ρ was initially determined

across a range of values {10,1,0.1,0.01,0.001,0.0001} using BioCyc as a training set. triUMPF

performance on T1 golden datasets was compared to pathway inference methods (in Chap-

ter 4.3) and mlLGPR-elastic net (EN) (in Chapter 5). In addition to testing on T1 golden

datasets, triUMPF performance was compared to both PathoLogic and mlLGPR on mealy-

bug symbionts, CAMI low complexity, and HOTS multi-organismal datasets (Chapter 4.2).

We used the metrics introduced in Chapter 4.4.1 to report results.

Experimental results. Fig. 7.11 shows the inverse effect in predictive performance on T1

golden datasets when decreasing the ρ before reaching a performance plateau at ρ = 0.001.

The hyperparameter ρ in Eq. 7.3.4 controls the amount of information propagation from

M to pathway label coefficients Θ. This suggests, in practice, lesser constraints should be

emphasized onΘ, while not neglecting associations between EC numbers and pathways in-

dicated in M. Having obtained the optimum value of ρ, we compared triUMPF performance

to that of MinPath, PathoLogic and mlLGPR. As shown in Table 7.3, triUMPF achieved

competitive performance against the other methods in terms of average precision with
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
triUMPF 0.0435 0.0954 0.1560 0.0649 0.0443 0.0776

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
triUMPF 0.7590 0.3835 0.3529 0.3319 0.7126 0.6229

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266

Table 7.3: Predictive performance of each comparing algorithm on 6 benchmark golden
T1 datasets. For each performance metric, ‘↓’ indicates the smaller score is better while ‘↑’
indicates the higher score is better.

optimal performance on EcoCyc (0.8662). However, with respect to average F1 scores, it

under-performed on HumanCyc and AraCyc, yielding average F1 scores of 0.4703 and 0.4775,

respectively.

To evaluate triUMPF performance on distributed metabolic pathways we used the re-

duced genomes of the mealybug symbionts Moranella (GenBank NC-015735) and Tremblaya

(GenBank NC-015736) ([218]). Collectively the two symbiont genomes encode intact biosyn-

thetic pathways for 9 essential amino acids. PathoLogic, mlLGPR, and triUMPF were used

to predict pathways on individual symbiont genomes and a composite genome consisting

of both, and resulting amino acid biosynthetic pathway distributions were determined as

illustrated in Fig. 7.12). Both triUMPF and PathoLogic predicted 6 of the expected amino acid

biosynthetic pathways on the composite genome while mlLGPR predicted 8 pathways. The
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Figure 7.12: Comparative study of predicted pathways for symbiotic data between Patho-
Logic, triUMPF, and mlLGPR. The size of circles corresponds the EC coverage information.

pathway for phenylalanine biosynthesis (L-phenylalanine biosynthesis I) was excluded from

analysis because the associated genes were reported to be missing during the ORF prediction

process. False positives were predicted for individual symbiont genomes in Moranella and

Tremblaya using both methods although pathway coverage was reduced in relation to the

composite genome.

To evaluate triUMPF performance on more complex multi-organismal genomes we used

the CAMI low complexity ([289]) and HOTS data sets ([309]) comparing resulting pathway

predictions to both PathoLogic and mlLGPR. For CAMI low complexity triUMPF achieved

an average F1 score of 0.5864 in comparison to 0.4866 for mlLGPR which is trained with

more than 2500 labeled pathways (Table 7.4). Similar results were obtained for HOTS (Fig.

7.13). Among a subset of 80 selected water column pathways, PathoLogic and triUMPF

predicted a total of 54 and 58 pathways, respectively, while mlLGPR inferred 62. From a real

world perspective none of the methods predicted pathways for photosynthesis light reaction

nor pyruvate fermentation to (S)-acetoin although both are expected to be prevalent in the

water column. Perhaps, the absence of specific ECs associated with these pathway limits

rule-based or ML prediction. Indeed, closer inspection revealed that the enzyme catabolic

acetolactate synthase was missing from the pyruvate fermentation to (S)-acetoin pathway,

which is an essential rule encoded in PathoLogic and represented as a feature in mlLGPR.
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Conversely, although this pathway was indexed to a community, triUMPF did not predict its

presence, constituting a false-negative.

Metric mlLGPR triUMPF
Hamming Loss (↓) 0.0975 0.0436
Average Precision Score (↑) 0.3570 0.7027
Average Recall Score (↑) 0.7827 0.5101
Average F1 Score (↑) 0.4866 0.5864

Table 7.4: Predictive performance of mlLGPR and triUMPF on CAMI low complexity data.

7.6 Summary

In this chapter, we present a novel ML approach for metabolic pathway inference that

combines three stages of NMF to capture relationships between enzymes and pathways

within a network followed by community detection to extract higher order network structure.

First, a Pathway-EC association (M) matrix, obtained from MetaCyc, is decomposed using

the NMF technique to learn a constrained form of the pathway and EC factors, capturing

the microscopic structure of M. Then, we obtain the community structure (or mesoscopic

structure) jointly from both the input datasets and two interaction matrices, Pathway-

Pathway interaction and EC-EC interaction. Finally, the consensus relationships between

the community structure and data, and between the learned factors from M and the pathway

labels coefficients are exploited to efficiently optimize metabolic pathway parameters.

We evaluated triUMPF performance using a corpora of experimental datasets presented

in Chapter 4.2. During the benchmarking process we realized that the BioCyc collection suf-

fers from a class imbalance problem [130] where some pathways infrequently occur across

PGDBs. This results in a significant sensitivity loss on T1 golden data, where triUMPF tended

to predict more frequently observed pathways while missing more infrequent pathways.

One potential approach to solve this class-imbalance problem is subsampling the most

informative PGDBs for training, hence, reducing false-positives [182].

Despite the observed class imbalance problem, triUMPF improved pathway prediction

precision without the need for taxonomic rules or EC features to constrain metabolic po-

tential. From an ML perspective this is a promising outcome considering that triUMPF was

trained on a reduced number of pathways relative to mlLGPR. Future development efforts

will explore subsampling approaches to improve sensitivty and the use of constrained taxo-

nomic groups for pangenome and multi-organismal genome pathway inference. Moreover,
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Figure 7.13: Comparative study of predicted pathways for HOT DNA samples. The size of
circles corresponds the pathway abundance information.
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triUMPF showed promising results to solve multiple types pathway correlation, addressed

in Chapter 3.4, based on statistical associations (e.g. OneXChainPathway and OneXTreePath-

way).

In the next part of this thesis, we will be examining the class imbalance problem.
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Part IV

Multi-Label Subsampling and Bagging
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Chapter 8

Relabeling Metabolic Pathway Dataset

with Bags to Enhance Predictive

Performance
“Be the change that you wish to see in the world.”

– Mahatma Gandhi

In this chapter, we propose reMap pipeline (relabeling multi-label dataset based on bagging

approach), a simple, and yet, generic framework, that performs relabeling examples to a dif-

ferent set of labels, characterized as bags, where a bag is comprised of correlated pathways.

Bag based classification was considered to improve the sensitivity of the pathway predictors.

To obtain bags, we also present two hierarchical mixture models, SOAP (sparse correlated

bag pathway) and SPREAT (distributed sparse correlated bag pathway), that incorporate

pathway abundance information to encode each example as a mixture distribution of bags,

and each bag, in turn, is a mixture of pathways with different mixing proportions. After

obtaining bags, reMap preforms relabeling by alternating between (1) assigning bags to each

sample and (2) updating reMap’s internal parameters. reMap’s effectiveness were evaluated

on parameter sensitivity, visualization, annotation progress, and metabolic pathway predic-

tion. The later experimental study confirmed that this approach outperforms triUMPF on

several golden T1 datasets introduced in Chapter 4.2.1.

8.1 Introduction

In Chapter 7, we introduced triUMPF, which consumes interactions among pathways and

enzymes, in a network manner, to escalate the accuracy of reconstructing pathways in terms
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of communities. Despite of triUMPF’s predictive gains, its recall scores on pathway datasets

(in Chapter 4.2) were reported to be deteriorated.

In this chapter, we introduce reMap pipeline that annotates each example with a new

label set, called “bag” set, inspired by the multi-graph classification (MGC) technique [353],

to strike the balance between precision and recall for the downstream metabolic pathway

prediction task. Each bag is comprised of correlated pathways from a pathway label set,

which are allowed to be inter-mixed across bags with different proportions, resulting in

overlapping subset of pathways over a subset of bags (non-disjoint). Hence, this approach

is fundamentally different than triUMPF that follows the clustering strategy. Moreover, the

bag-based technique has an important implication for the pathway prediction task (in Fig.

8.1) . That is, unlike mlLGPR and triUMPF, the bag based pathway prediction applies two

consecutive steps, where a set of bags are inferred at first then pathways within these bags

are recovered. Since pathways are distributed over bags, it is conceivable that a pathway

may be revisited multiple times, thereby, increasing the chance of boosting sensitivity scores

while improving precision. This potential benefit was not leveraged in mlLGPR and neither

triUMPF.

To initiate the relabeling process, reMap takes two label sets: i)- pathway label set and

ii)- bag set that can be obtained using either one of the two developed mixed-membership

hierarchical Bayesian models, SOAP and SPREAT. These two models are proposed to capture

mixed bags given pathway datasets (involving abundance information). In addition, SOAP

and SPREAT incorporates “background” or “supplementary” pathway (with different propor-

tion) on top of the pathways provided in pathway datasets to partially resolve noisy pathway

data. Moreover, the two models induce dual sparseness, where we allow an individual exam-

ple to select only a few bags and also each bag to select its optimum set of pathways. Once

bags are obtained, reMap performs an iterative relabeling by alternating between assigning

bags to examples and updating parameters, mirroring expectation-maximization algorithm

[80] while enforcing tight integrity among pathways, bags, and input enzyme instances.

Using reMap, we empirically examined it on four test cases: parameter sensitivity of

SOAP and SPREAT; bag visualization; assessments of the annotation process; and metabolic

pathway prediction task using leADS (presented in Chapter 9). For the last experimental

study, the results outperformed triUMPF on golden T1 datasets.
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Figure 8.1: The traditional vs the proposed bag based multi-label classification ap-
proaches. The traditional supervised multi-label classification is displayed on the left panel,
where labels (i.e., red or green colors) are associated with an input instance x(i ). This ap-
proach sought to predict a set of labels for x(i ) without considering any compartmental-
ization of labels. On contrary, bag based multi-label classification approach, on the right,
applies two steps, where it predicts a set of positive bags (depicted as a cloud glyph), at first,
then the labels within these bags are predicted (green colored labels).

8.2 Definitions and Problem Formulation

In this section, we provide important notations and definitions. Unless otherwise mentioned,

we emphasize that mathematical symbols are constrained within the context of this chapter.

We define the term bag, which is borrowed from multi-graph classification (MGC) tech-

nique [353]. In MGC, the goal is to learn a model from a set of labeled bags each containing

several graphs. A bag is tagged positive, if at least one graph in the bag is positive, and

negative otherwise. Here, we slightly abuse the term and reserve it to describe a composition

of several correlated pathways.

Definition 8.1. Pathway Bag. Denote B = {B1,B2, ...,Bb} a set with b bags, where each bag

Bc ∈ {−1,+1}t is presumed to contain a subset of correlated pathways, i.e., Yc ⊆ Y , and t

is the number of pathways in Def. 3.9. The presence or absence of a pathway in bag c is

indicated by +1 or −1, respectively. The matrix representation of B is B ∈ {−1,+1}t×t .

Bags are also assumed to be correlated, i.e, non-disjoint, and can be modeled by a Gaus-

sian covariance matrix, denoted by Σ ∈Rb×b . Each entry si , j in Σ characterizes the i -th bag

association with j -th bag, where a larger score indicates both bags are highly correlated.

This correlation can be discovered using either SOAP or SPREAT given pathway datasets,

(Y) introduced in Def. 3.9, incorporating pathway abundance information which can be

117



Figure 8.2: An example of feature vectors for bags. The subfigure in the left represents the
feature vector for six pathways corresponding to two instances. The right subfigure indicates
two bags, B1 and B2, and their features for the same two instances, where the first sample,
D1, suggests that B1 is positive because the corresponding pathways y3 and y4 are present,
while the bag feature vector for the second example, D2, suggests that both bags are present.

obtained by mapping enzyme with abundances onto pathways. Both models are a form of

mixed-membership hierarchical Bayesian network, where each example is encoded as a

vector of bag probabilities and each bag, in turn, is comprised of a set of correlated path-

ways. The pathways are permitted to be inter-mixed across bags with different proportion,

resulting in overlapping pathways over bags.

These two models extend the functions of CTM (correlated topic model) [40] by incor-

porating dual sparseness and supplementary pathways in modeling bag proportions. That

is, SOAP and SPREAT encodes missing probable pathways as “background” without com-

promising the original pathway labels, i.e., Y. The supplementary pathways are stored in

a matrix M ∈ Zn×t
≥0 , where each entry is an integer value indicating the abundance of the

pathway associated with a specific sample and n corresponds the number of samples. These

background pathways can be modeled as in the case of SPREAT or employed directly as in

SOAP. With regard to dual sparseness, it is applied to encourage selection of: i)- few focused

bags for each individual example and ii)- few focused pathways for each bag. For thorough

discussions about these models, see Appendix F.1.

As a result of correlation, we define the following two terminologies: bag feature vector

and bag’s neighbor.

Definition 8.2. Bag Feature Vector. Given an example i , the associated bag feature vector

is indicated by d(i ) ∈ {−1,+1}b , where d(i )
j =+1, iff the bag j is observed for the sample i and

d j =−1 otherwise. The matrix form in represented as D ∈ {−1,+1}n×b .
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Example 8.1. An example of feature vectors for bags is illustrated in Fig. 8.2, where 2-

dimensional feature vectors for bags encode presence or absence of two bags B1 and B2,

given a set of 6 pathways and bag-pathway association information, depicted as a cloud

glyph.

Definition 8.3. Bag’s Neighbors. A bag Bc ∈B is said to be a neighbor to another bag B j ∈B
s.t. c 6= j , iff there exits an intersected pathway l in both bags, i.e., Bc,l ∧B j ,l = 1.

With the above definitions, we formulate the problem in this chapter.

Relabeling Multi-label Pathway Dataset

Given a set of bags B and a multi-label pathway dataset S (Def. 3.9), the goal

is to learn an optimum relabeling function hbag : X → {+1,−1}b , such that

leveraging bags to X ∈Rn×r , where r corresponds the number of enzymatic

reactions (Def. 3.9), incurs a high predictive score for the multi-label pathway

prediction task.

To better crystallize the idea of incorporating bags in the pathway prediction, consider

the following example.

Example 8.2. Fig. 8.1 illustrates the benefit of incorporating bags for multi-label pathway

classification (right panel). Here, a dataset consists of two bags, each of which groups a set

of 4 correlated pathways. To determine positive pathways (y2, y3, and y4) given Xi , we first

predict the relevant bag, indicated by +, then classify pathways within that bag. In contrast,

the traditional multi-label classification approaches (left figure), mostly based on binary

relevance technique, proceeds on predicting multiple pathway labels for Xi .

Relabeling a multi-label dataset S will result in another dataset of Sbag .

Definition 8.4. Multi-label Bag Dataset. A bag dataset is represented by Sbag = {(x(i ),d(i )) :

1 < i É n} consisting of n examples. d(i ) = [d (i )
1 , ...,d (i )

t ] ∈ {−1,+1}b is a bag label vector of

size b. Each element of d(i ) indicates the presence/absence of the associated bag that is

inherited from a set B = {B1,B2, ...,Bb}. Each bag Bc ∈ {−1,+1}t is presumed to contain a

subset of correlated pathways, i.e., Yc ⊆Y . The presence or absence of a pathway in bag c

is indicated by +1 or −1, respectively. The matrix representation of B is B ∈ {−1,+1}t×t . In

addition, bags are correlated through overlapping pathways, i.e., for two correlated bags Bc

and B j s.t. c 6= j , there exits an intersected pathway l in both bags, i.e., Bc,l ∧B j ,l =+1. The

matrix form of bag label vector with n instances is denoted by D (∈Zn×b
≥0 ).
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8.3 The reMap Method

In this section, we provide a description of reMap framework (depicted in Fig. 8.3), which

iteratively alternates between the following two phases: i)- feed-forward, where it consists of

three components: 1)- constructing pathway bag, 2)- building bag centroid, 3)- re-assigning

labels to each example; and ii)- feed-backward to update reMap’s parameters.

8.3.1 Feed-Forward Phase

During this phase, a minimal subset of bags is picked to tag each example according to the

following three steps.

8.3.1.1 Constructing Pathway Bag

In this step, the pathways in S are partitioned into non-disjoint b bags using any correlated

bag models (CTM, SOAP or SPREAT). Moreover, the correlated models provide us with mean

covariance matrix of bags (Σ ∈Rb×b) that is transformed to a correlation matrix ρ =C−1ΣC−1,

where C =√
diag(Σ). The correlated bag models also provide us with pathway distribution

over bags, denoted byΦ ∈Rb×t , where we trim the pathway distributionΦ′ ∈Rb×k (⊆Φ) by

keeping top k pathways for each bag, provided that aggregation of k pathways from all bags

is equal to t .

Modeling pathway distribution and bag’s correlations have two important implications:

First, organisms encoding similar functions may share similar bags, thus, encouraging to

have near-identical statistical strength (as in triUMPF); and Second, pathways that are

observed to be frequently occurring together may suggest a similar relative contribution to

a bag.

8.3.1.2 Building Bag Centroid

Having obtained a set of bags, reMap computes centroids of each bag to harness the relative

association of each pathway to each bag’s centroid. We assume that pathways in a bag are

semantically “close enough” to the center of that bag and, hence, pathways in that bag should

share similar low-level representation while also ensuring similar semantics among bags

with overlapping pathways. Using this simple assumption, reMap computes the centroid cs

of a bag s according to:

(8.3.1) cs = α

ns

∑
j∈Bs, j=+1

P j

||P j ||
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Figure 8.3: A workflow diagram showing the proposed reMap pipeline to relabel a multi-
label data. The method consists of two phases: i)- feed-forward and ii)- feed-backward. The
forward phase is composed of three components: (b) construction of pathway bag that aims
to build correlated bags given data (a), (c) building bag centroid that retrieves centroids of
bags based on the associated pathways, and (d) re-assigning labels that maps samples to
bags. The feed-backward phase (e) optimizes reMap’s parameters to maximize accuracy of
mapping examples to bags. The process is repeated τ times. If the current iteration q reaches
a desired number of rounds τ, the training is terminated while producing the final Sbag data
points (f). The bag dataset then can be used to train leADS (g).
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where P ∈ Rt×m is a matrix storing pathway representation obtained from pathway2vec

framework (in Chapter 6), ns is the number of associated pathways to bag s, ||.|| is the length

of a feature vector, and α is a hyper-parameter, which is determined by empirical evaluation

(16 in this work). It is important to note that bags centroids enable us to obtain a maximum

number of expected bags for a given example by applying a suitable metric, such as cosine

similarity [212] as:

D̂(i ) =vec
({
I
( c>s c̃(i )

s

||cs || · ||c̃(i )
s ||

≥ υ
)

: 1 ≤ s ≤ b

})
c̃(i )

s = α

ns

∑
j∈Yi , j∧Bs, j=+1

P j

||P j ||
(8.3.2)

where I(.) is an indicator function that results in either +1 or −1 depending on a user-defined

threshold υ ∈R>0, c̃(i )
s is the centroid for bag s, and D̂(i ) is an aggregated hypothetical bags

for an example i of size b after the results are vectorized into a series of +1 and −1 using vec

operation.

8.3.1.3 Re-assigning Pathways to Bags

The goal of this step is to map an example’s input space onto a bag space using a decision

function hbag which would produce an optimum multi-label bag set (�Dopt ∈Zn×b
≥0 ). Formally,

let us denote a set of bags that are picked to relabel an example as B(i )
P ⊆ arg{D̂i , j = +1 :

∀ j } while we denote B(i )
U the set of remaining bags, where D̂(i ) obtained using Eq. 8.3.2.

Collectively, both sets of bags are stored in L(i ) = {B(i )
P ∪B(i )

U }. Then, the process of re-

annotation is achieved iteratively, mirroring sequential learning and prediction strategy

[112], where for each example, a bag B j at round q is either: i)-added to L(i ), indicated by

L(i )
q =L(i )

q−1 ⊕ {B j : 1 < j ≤ |B(i )
U |}; or ii)- removed from the set of selected bags, represented

by L(i )
q =L(i )

q−1 ª {B j : 1 < j ≤ |B(i )
P |}.

More concretely, at each iteration q , we estimate the probability of an example i given

the selected bags at q −1, using threshold closeness (TC) metric [55]:

p
(
x(i )|H(i )

q−1,L(i )
q−1,D̂i , j =+1

)
=

p̄H(i )
q−1

(
D̂i , j |L(i )

q−1,x(i )
)
G +ζ

Z
(8.3.3)

where G = 1−p̄H(i )
q−1

(D̂i , j |L(i )
q−1,x(i )), D̂i , j =+1 if bag B j is in example i , and p̄H(i )

q−1
(D̂i , j |L(i )

q−1,x(i ))

is the average probability of classifying x(i ) into the bag B j over values collected in H(i )
q−1

that represents the history of prediction probability storing all p(D̂i , j |L(i )
q−1,x(i )) before the

current iteration q . The term ζ is a smoothness constant while Z is a normalization constant.
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Note that TC is a class conditional probability density function that encourages correct class

probability to be close to the true unknown decision boundary.

To estimate p(D̂i , j |L(i )
q−1,x(i )), we jointly compute the probability of bags and pathways

that are associated with D̂i , j at round q −1 as:

p(D̂i , j |L(i )
q−1,x(i )) ∝H(i )

q−1

( ∑
e∈L(i )

q−1

z j ,e

( ∑
s∈B j ,s=+1

p(D̂i , j |ls =+1,Θbag
j )p(y (i )

s |x(i ),Θpath
s )

))

z j ,e =
ρ j ,e −min(ρ)

max(ρ)−min(ρ)

p(D̂i , j |ls =+1,Θbag
j ) = 1

1+e−Θ
bag,T
j |c̃(i )

j −Ps |

p(y (i )
s |x(i ),Θpath

s ) = 1

1+e−Θ
path,T
s x(i )

(8.3.4)

where y (i )
s = 1 if the pathway index s is found to be present in both bag j and in sample x(i )

and 0 otherwise, and ls = 1 if the pathway index s is associated to bag j and 0 otherwise. z j ,e

is a normalized correlation between bags j and e, respectively, obtained from ρ (see Section

8.3.1.1) and c̄(i )
j is presented in Eq 8.3.2.Θbag

j ∈Rm andΘpath
s ∈Rr denote parameters for the

bag j and the pathway s model’s, respectively, and are learned during the feed-backward

stage in Section 8.3.2.

To reduce computational latency, instead of applying the above procedure to all bags for

each example at every round, we randomly sub-sample bags of size γ. Also, the estimate is

still in the probability realm, therefore, we utilize a cutoff decision threshold (β) to retrieve a

subset of bags having less overlapping pathways. Afterwards, L(i ) will be updated either by

adding or removing bags from a previous iteration.

8.3.2 Feed-Backward Phase

Here, we set up a learning framework for computing reMap’s bags and pathways parameters,

jointly denoted asΘ= {Θbag,Θpath}. From Eq. 8.3.3, it is clear that our algorithm has three

learning components: i)- a hyper-plane in the bag feature space to absorb bag correlation, ii)-

a hyper-plane in the pathway feature space to encode semantic information about pathways,

and iii)- a joint learning between bags and pathways to exploit bag-pathway relationship.

Let us define three empirical loss functions, corresponding the three components: εbag :

{0,1}b →R≥0, εpath : {0,1}t →R≥0, and εbag-path : {0,1}b →R≥0 of margin dhbag(x), yhpath(x),

and dhbag-path(y), respectively, where h(.) are decision functions. The last two loss functions

are based on the logistic loss while the first loss is a sum of the two other losses. Now, to
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computeΘ, we maximize the posterior probability of Eq. 8.3.4:

Θ̂= argmax
Θ

q=τ∏
q=1

i=n∏
i=1

H(i )
q−1

j=b∏
j=1

p(D̂i , j |L(i )
q−1,x(i ))

×
( ∑

s∈B j ,s=+1
p(D̂i , j |ls =+1,Θbag

j )p(y (i )
s |x(i ),Θpath

s )
))(8.3.5)

Estimation of parameters in Eq. 8.3.5 is intractable due to the chain of probabilities

H(i )
q−1 and the two marginalizations over Lq−1 and s. Hence, we propose the following two

diagnoses: i)- conditional independence assumptions where the previous history values are

independent given the most recent estimates and ii)- collapse the marginalization over Lq−1

by choosing only the maximum correlation z, irrelevant to which bags were considered.

These simplified treatments provide an efficient way to optimize the parameters, where we

adopt the “one-vs-all” scheme learning for each bag and pathway, discussed in Chapter 3.4.

In addition, we apply four constraints to retrieve a good set of parameters: i)- enforcing

similarity between bags’ and the associated pathway labels’ parameters; ii)- weights of

pathways, assembled in a bag, should be close to each other; iii) the input space (i.e.,

enzyme) and the pathway space should share similar statistical properties, which entails

that if two instances in feature space exhibit strong association then they may share the

same label set in the label space; and iv) all reMap’ parameters should not be too large or

too small.

With much simplifications and adding constraints, we can now minimize an upper

bound approximation of the negative log-likelihood of Eq. 8.3.5, which leads to independent

optimization objective functions for all classifiers (bags and pathways), according to the

multi-label 1-vs-All approach. For the analytical expression and pseudocode for reMap’s

prediction and training algorithms, see Appendix Section F.2.

8.3.3 Closing the loop

The two phases are repeated to all samples, until a predefined number of rounds (τ) is

reached. At the end, a new dataset is constructed, Sbag = {(x(i ), àD(i ),opt) : 1 < i É n} consisting

of n examples and �Dopt is an optimum set of bags that contain a small number of b bags

annotated to each example.
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Figure 8.4: Illustration of pathway frequency (averaged on all examples) in BioCyc (v20.5
T2 &3) and CAMI data, and their background pathways, indicated by M.

8.4 Experimental Setup

In this section, we describe the experimental settings and outline the materials used to

evaluate the performance of reMap. The reMap pipeline was written in Python v3 and

depends on third party libraries (e.g. Numpy [335]). We use a subset of datasets introduced

in Chapter 4.2. Unless otherwise specified all tests were conducted on a Linux server using

10 cores of Intel Xeon CPU E5-2650.

8.4.1 Parameter Settings

For training reMap, we used BioCyc collection with the following default settings: the learn-

ing rate η= 0.0001, the batch size to 30, the number of epochs to τ= 10, the bag centroid

hyperparameter α= 16, the cutoff threshold for cosine similarity v = 0.2, the cutoff decision

threshold for bags β= 0.3, the number of bags b = 200, and the subsampled bag size γ= 50.
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Figure 8.5: Log predictive distribution on CAMI data.

For the regularized hyperparameters λ1:5 and κ (see Appendix F.2.5), we performed 10-fold

cross-validation on a subsampled of BioCyc data and found the settings λ1:5 = 0.01 and

κ= 0.01 to be optimum on golden T1 datasets.

To obtain pathway features, we applied pathway2vec module using “crt” as the em-

bedding method, the number of memorized domain is 3, the explore and the in-out hy-

perparameters are 0.55 and 0.84, respectively, the number of sampled path instances was

100, the walk length is 100, the embedding dimension size was m = 128, the neighborhood

size was 5, the size of negative samples was 5, and the used configuration of MetaCyc was

“uec”, indicating links among ECs are being trimmed. For the pathway prediction task, we

applied leADS (presented in Chapter 9) with the predictive uncertainty being set to “factor-

ization” option, enabling to train the obtained bags and pathways, simultaneously, and the

prediction strategy was set to “pref-vrank” with the ranking hyperparameter was set to 200.

The hyperparameters settings for CTM, SOAP, and SPREAT are provided in Appendix

Section F.3. Both SOAP and SPREAT have an option ‘collapse2ctm” (c2m) that enables

reduction to CTM while inducing dual sparseness. The supplementary pathways M for

BioCyc T2 & 3, CAMI, and golden T1 datasets were obtained using mlLGPR. For this, we

trained mlLGPR using enzymatic reaction and pathway evidence features. A schematic

view of pathway frequency across datasets for BioCyc T2 & 3 and CAMI, along with their

augmented pathways is depicted in Fig. 8.4. All the remaining configurations in mlLGPR,

SOAP, pathway2vec, and leADS, they were fixed to their default values.
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8.5 Experimental Results and Discussion

We conducted several experimental studies: parameter sensitivity and visualization for

correlated models, assessing prediction probability history during relabeling process of

reMap, and metabolic pathway prediction effectiveness after obtaining Sbag using leADS.

8.5.1 Sensitivity Analysis of Correlated Models

Experimental setup. A fundamental challenge for the reMap pipeline is to acquire a good

distribution of bags and pathways from correlated models for the purpose of relabeling.

Following the common practice, here we examined various hyperparameters associated

with correlated models. First, we compared the sensitivity of SOAP and SPREAT against CTM

by incorporating the background pathways M while varying the number of bags according

to b ∈ {50,100,150,200,300}. Next, we examined the c2m option for SOAP and SPREAT to

show that these two models exhibit similar performances as CTM. Finally, we conducted

sparsity analysis of bag distribution by varying the cutoff threshold value according to

k ∈ {50,100,150,200,300,500}. For the comparative analysis, we used CAMI as a test data to

report the log predictive distribution [136], where a lower score entails higher generalization

capability for the associated models. Appendix Section F.1.5 provides the mathematical

derivation of such metric for SPREAT.

Experimental results. While the log predictive scores for SOAP and SPREAT in Fig. 8.5a

appears to be horizontal across bag size, the CTM model projects a more realistic view where

its performances are seen to be gaining by including more bags. For the former models, this

phenomena is not a consequence of design flaw, instead, it is expected due to the effects of

supplementary pathways. That is, both models are encouraged to learn more pathways from

M because the average pathway size for an example in M is ∼ 500 whereas in BioCyc T2 & 3

is ∼ 195 while only retaining 100 pathways for each bag. By excluding M (through enabling

c2m option), we observe that the log predictive distribution of SOAP and SPREAT are similar

with that of CTM, as shown in Fig. 8.5b, which supports our previous discussion. We found

that b = 200 gives a good set of overlapping pathways while having on average ∼ 15 distinct

pathways for each bag from 2526 pathways. By fixing b = 200, we search for an optimum

k value. As illustrated in Fig. 8.5c, both SOAP and SPREAT deteriorate their performances

(<−0.6) when k > 100. Taken together, we suggest the settings b ∈Z[150,300] and k ∈Z[50,100]

to recover good bag and pathway distributions.
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(a) SOAP (#bags: ∼
74; #pathways: ∼
138)

(b) SPREAT
(#bags: ∼ 55;
#pathways: ∼ 141)

(c) CTM (#bags: ∼
50; #pathways: ∼
69)

(d) SOAP+c2m
(#bags: ∼ 52;
#pathways: ∼ 8)

(e) SPREAT+c2m
(#bags: ∼ 51;
#pathways: ∼ 8)

Figure 8.6: Visualizing 50 randomly picked bags for each model, trained with b = 200. The
first term within the bracket, i.e., #bags, corresponds to the average number of correlated
bags while the second term, i.e., #pathways, represents the average number of pathway size
per bag. The circles represent bags, and their sizes reflect the correlation strength with other
bags. Two clusters of bags can be seen for the last three models indicating the two clusters
contain distinct pathways.

8.5.2 Bag Visualization

Experimental setup. Here, we visualized the discovered bags using models in Section 8.5.1

with the goal to assess the quality of bags. First, we examined the influence of augmented

pathways on bag correlation patterns, i.e., Σ, in SOAP and SPREAT and contrast the outputs

with CTM, SOAP+c2m, and SPREAT+c2m. Then, we performed an in-depth comparison

between the sparse models (SOAP+c2m and SPREAT+c2m) with CTM to ensure that our

modeling assumptions are aligned with the observed data, where a bag containing more

focused and fewer pathways is preferred. For all experiments here, we applied the settings

described in Section 8.4.1.

Experimental results. From Fig. 8.6, we notice two core findings. First, in contrast to CTM,

SOAP+c2m, SPREAT, and SPREAT+c2m, bags in SOAP are densely connected (∼ 74 bags)

where the width of edges indicates the strength of correlations. Second, leveraging back-

ground pathways in SOAP and SPREAT resulted in gathering more pathways for each bag.

These observations demonstrate the influence of M (obtained from mlLGPR) to pathway

distribution over bags. As an example, Fig. 8.7 shows samples from BioCyc T2 & 3 pathways

and corresponding background pathways after projecting them onto 2D space using UMAP

[220]. The colors encode samples from BioCyc T2 & 3 pathways that are clustered using the

K-means algorithm [160] with 10 groups. While examples of the same color in BioCyc T2

& 3 pathways form a clear distinct group, the same examples are seen to be intermixed for

M, possibly comprising of many false-positive pathways as depicted in Fig. 8.4 where many

pathways (represented as column bars) are differentially distributed between BioCyc T2 & 3
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(a) BioCyc (b) BioCyc (M)

Figure 8.7: 2D UMAP projections of BioCyc T2 & 3 pathways and the corresponding back-
ground pathways. Fig. 8.7a serves as a basis for color-coding where examples of one color
in BioCyc are clustered together while the same examples are seen to be spread across the
augmented BioCyc pathways (M) in Fig. 8.7b. Better viewed in color.

pathways and M. For the collapsed models, they are observed to share similar behaviors as

CTM (Fig. 8.5b). However, their bag distribution consists of fewer pathways than CTM (Fig.

8.6). For example, Fig. 8.8 shows 50 randomly selected bags with associated 100 pathways,

where CTM is shown to encapsulate more pathways per bag (encoded by gradient darker

colors) while SOAP+c2m and SPREAT+c2m exhibit a sparse distribution.

The results from these experiments link with our previous remarks, entailing that SOAP

and SPREAT are equipped to reduce irrelevant pathways by applying dual sparseness. In

particular, SPREAT is observed to generate fewer correlations than SOAP. With regard to in-

corporating supplementary pathways, SOAP and SPREAT are both sensitive to false-positive

pathways, therefore, including accurate augmented pathways may recover better pathway

distribution over bags.

8.5.3 Assessing the History Probability

Experimental setup. After analyzing the correlated models in Sections 8.5.1 and 8.5.2, here

we investigated the accumulated history probability H on relabeling golden T1 datasets,

during the feed-forward phase, using the settings in Section 8.4.1. Recall that reMap employs

four constraints in the feed-backward phase to select bags with high probability to annotate

data. The hope is to obtain an optimum hbag to remapping pathways to bags. For the

demonstration purposes, we only focused on SOAP to collect bags although any models can

be used to conduct this experiment.
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Figure 8.8: Heatmap representing bag distribution of CTM, SOAP+c2m, SPREAT+c2m for
randomly picked 50 bags with their associated 100 pathways. The entries is color-coded
on a gradient scale ranging from light-gray to dark-gray, where higher intensity entails higher
probability.

Experimental results. Fig. 8.9 shows H during the annotation process of the six datasets. In

the beginning, reMap attempts to select a set of bags from D̂, corresponding to the maximum

number of bags that may exist for each example. However, with progressive updates and

calibration of parameters, reMap rectifies bags assignments where it picks fewer bags,

containing more informative contents associated with each sample. For instance, at q = 1,

the HumanCyc is tagged with multiple bags, represented by darker colors where higher

intensity indicates a high probability of assigning the corresponding bag to HumanCyc, but

at q = 10 less than 35 bags were retained out of 200 possible bags. Table 8.1 shows the 11

HumanCyc pathways corresponding the assigned bag index 16, which includes L-proline

biosynthesis I, thyroid hormone metabolism II (via conjugation and/or degradation), and bile

acid biosynthesis, neutral pathway. The pathway set in bag 16 for HumanCyc is an indication

that reMap is robust to a certain degree and able to capture relevant pathways for a bag.

Bags preferences by reMap can be further examined by computing similarity (measured

in cosine distance metric) among datasets according to EC, pathway, and bag spaces, de-

picted in Fig. 8.11. As elucidated in Section 8.3.2, reMap exploits four constraints to strike

balance among these spaces. This is particularly sighted for AraCyc and EcoCyc, where

the ECs (in Fig. 8.11a) have similar density with the remaining golden data, however, the

pathways are differentially represented (in Fig. 8.11b). Hence, this information is down

propagated to the bag annotation process depicted in Fig. 8.11c. Overall, reMap exhibits a

steady, albeit slow, annotation progression while preserving consistency across different

spaces.
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Figure 8.9: Snapshot of the history probability H during the relabeling process of golden
T1 data for 10 successive rounds. The x-axis shows 200 bags while the y-axis corresponds
data. Darker colors indicate high probability to assigning bags to the corresponding data.

8.5.4 Metabolic Pathway Prediction

Experimental setup. In this section, we quantified the quality of annotation by leveraging

the obtained bags for the pathway prediction task. We used the correlated models in Section

8.5.2 to obtain bags. Next, we trained leADS using the configuration discussed in Section

8.4.1. After 10 epochs, we reported the results on golden T1 data against triUMPF using four

evaluation metrics presented in Chapter 4.4.1.

Experimental results. From Table 8.2, we observe that all correlated models outperform

triUMPF on (HumanCyc, AraCyc, YeastCyc, and TrypanoCyc) in terms of average F1 scores
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Figure 8.10: The probability history H during annotation of T1 golden data after 10 suc-
cessive rounds. The x-axis shows 200 bags while the y-axis corresponds the associated
probability. Darker colors indicate high probability to assigning bags to the corresponding
data.

where numbers in boldface represent the best performance score in each column while the

underlined text indicates the best performance among the correlated models. In addition,

the sensitivity scores are also seen improved with the exception to EcoCyc. In summary, this

experiment demonstrates that bag based approach improves pathway prediction perfor-

mance.
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(a) EC (b) Pathway (c) Bag

Figure 8.11: Similarity among golden datasets, measured by cosine distance. Best viewed
in color.

# MataCyc Pathway ID MataCyc Pathway Name
1 PROSYN-PWY L-proline biosynthesis I
2 PWY-5137 fatty acid β;-oxidation III (unsaturated, odd number)
3 PWY-3982 uracil degradation I (reductive)
4 TRNA-CHARGING-PWY tRNA charging

5
MANNOSYL-CHITO-DOLICHOL-
BIOSYNTHESIS

protein N-glycosylation initial phase (eukaryotic)

6 PWY-5667 CDP-diacylglycerol biosynthesis I
7 PWY0-662 PRPP biosynthesis I
8 PWY-46 putrescine biosynthesis III

9 PWY-6261
thyroid hormone metabolism II (via conjugation
and/or degradation)

10 PWY-6061 bile acid biosynthesis, neutral pathway
11 PWY66-388 fatty acid α;-oxidation III

Table 8.1: The 11 HumanCyc pathways corresponding the bag index 16.

8.6 Summary

In this chapter, we demonstrated the merit of iteratively relabeling pathway datasets with

a new label set, referred to as bags using reMap pipeline. Specifically, reMap transforms

pathway labels into bags, and then train examples, jointly, with pathways and bags to opti-

mize the relabeling process. In addition, two novel hierarchical mixture models, SOAP and

SPREAT, were developed to collecting bags. Both models were motivated by the problem of

missing pathways, which is very common in pathway datasets. Backed by our empirical stud-

ies in the pathway prediction task on golden T1 datasets, reMap showed promising results

in boosting the performance against triUMPF. In the next chapter, we will be performing

rigorous analysis of bag based metabolic pathway prediction using leADS.
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
triUMPF 0.0435 0.0954 0.1560 0.0649 0.0443 0.0776
SOAP+vrank 0.0598 0.0819 0.1449 0.0724 0.0629 0.0566
SPREATE+vrank 0.0519 0.0827 0.1489 0.0748 0.0629 0.0503
CTM+vrank 0.0558 0.0835 0.1425 0.0804 0.0622 0.0503
SOAP+c2m+vrank 0.0590 0.0780 0.1457 0.0772 0.0614 0.0534
SPREATE+c2m+vrank 0.0542 0.0796 0.1520 0.0772 0.0598 0.0558

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561
SOAP+vrank 0.8900 0.6800 0.8600 0.6150 0.3200 0.5800
SPREATE+vrank 0.9400 0.6750 0.8350 0.6000 0.3200 0.6200
CTM+vrank 0.9150 0.6700 0.8750 0.5650 0.3250 0.6200
SOAP+c2m+vrank 0.8950 0.7050 0.8550 0.5850 0.3300 0.6000
SPREATE+c2m+vrank 0.9250 0.6950 0.8150 0.5850 0.3400 0.5850

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
triUMPF 0.7590 0.3835 0.3529 0.3319 0.7126 0.6229
SOAP+vrank 0.5798 0.4875 0.3373 0.5371 0.7356 0.6629
SPREATE+vrank 0.6124 0.4839 0.3275 0.5240 0.7356 0.7086
CTM+vrank 0.5961 0.4803 0.3431 0.4934 0.7471 0.7086
SOAP+c2m+vrank 0.5831 0.5054 0.3353 0.5109 0.7586 0.6857
SPREATE+c2m+vrank 0.6026 0.4982 0.3196 0.5109 0.7816 0.6686

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266
SOAP+vrank 0.7022 0.5678 0.4845 0.5734 0.4460 0.6187
SPREATE+vrank 0.7416 0.5637 0.4704 0.5594 0.4460 0.6613
CTM+vrank 0.7219 0.5595 0.4930 0.5268 0.4530 0.6613
SOAP+c2m+vrank 0.7061 0.5887 0.4817 0.5455 0.4599 0.6400
SPREATE+c2m+vrank 0.7298 0.5804 0.4592 0.5455 0.4739 0.6240

Table 8.2: Predictive performance of each comparing algorithm on 6 golden T1 datasets.
For each performance metric, ‘↓’ indicates the smaller score is better while ‘↑’ indicates the
higher score is better. Values in boldface represent the best performance score while the
underlined score indicates the best performance among correlated models.



Chapter 9

Multi-label Pathway Prediction based on

Active Dataset Subsampling
“Ants are good citizens, they place group interests first.”

– Clarence Day

In Chapters 5 and 7, we have introduced mlLGPR and triUMPF, respectively, to automatically

recover pathways from large-scale pathway datasets. However, several complications remain

that can degrade prediction performance including inadequately labeled training data,

missing feature information, and inherent imbalances in the distribution of enzymes and

pathways within a dataset. This class imbalance problem is commonly encountered by the

machine learning community when the proportion of instances over class labels within a

dataset are uneven, resulting in poor predictive performance for underrepresented classes.

In this chapter, we present leADS, multi-label learning based on active dataset subsampling,

that leverages the idea of subsampling examples from data to reduce the negative impact

of training loss. Specifically, leADS performs an iterative procedure to: (a)- constructing an

acquisition model in an ensemble framework; (b) subselecting informative points using

an appropriate acquisition function; and (c)- training on subsampled data. The ensemble

approach was followed to enhance the generalization ability of the multi-label learning

systems by concurrently building and executing a group of multi-label base learners, where

each is assigned a portion of samples, to learn pathways. leADS was evaluated on the path-

way prediction task using datasets in Chapter 4.2, where the experiments revealed that

leADS achieved very compelling and competitive performances against all the previous

machine learning models and the rule-based approaches.
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9.1 Introduction

Recall that metabolic pathways are chemical reaction chains occurring in a cell, often

catalyzed by a collaboration of enzymes, where metabolites (or chemical products) are built-

up or broke-down for cellular processes. Reconstruction of metabolic pathways is pivotal

in studying biological systems, as interpreting pathways help deciphering relationships

between genotype and phenotype, and may assist us to elucidate essential mechanisms

underlying an organism’s metabolism [167].

In Chapters 5 and 7, we presented two multi-label based approaches, called mlLGPR

and triUMPF, respectively, that performed effectively on organismal genomes. However,

one of the major drawbacks to fully adopt machine learning models is the limited access to

having high-quality datasets where potential pathways to each instance are being properly

annotated. As such, reMap was developed in Chapter 8, which, instead of adapting models to

learn from pathway data, takes an alternative route by projecting pathways onto a different

set of labels, known as bags, where a bag is comprised of correlated pathway labels. This

process has resulted in a very good performance while suggesting to consider sub-selecting

samples that are more informative to the relabeling process. For example, BioCyc collection

T2 &3 contains 112 samples related to Salmonella species with more than 100 pathways are

cross-intersected. Therefore, it is conceivable that BioCyc contains many Salmonella related

examples that either do not contribute or may negatively effect the model’s performance.

Moreover, pathways in BioCyc T2 &3 follow a power law distribution (Fig. 9.1) where more

than 30% of pathways were observed to occur in less than 25 BioCyc examples. These less

frequent pathways are referred to as tail labels (class-imbalance). A potential approach to

reduce the impact of redundant samples on training and solve the tail labels problem lies at

the heart of subsampling [182].

In response, this chapter presents leADS (Fig. 9.2) that extends the previously established

work in the active dataset subsampling (ADS) domain [64] by incorporating an ensemble

of multi-label learners [102, 269, 271, 364, 386], jointly, with hard example mining strategy

[64] to address the challenge of subselecting informative samples from genomic data. With

regard to the example selection, in the literature there are two opposing strategies that work

well under different scenarios: i)- incremental learning from easier to harder instances and

ii)- hard example mining. While easy instance mining approach may be effective when

a model tries to learn from data tainted with many noisy labels (as in BioCyc T2 &3) by

gradually increasing the loss of hard examples, such as curriculum learning or self-paced

learning [29, 179, 210, 221, 257, 304], sampling harder instances is more convenient for
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Figure 9.1: Number of samples for each pathway in BioCyc T2 &3 data. The horizontal axis
indicates the indices of pathways while the vertical axis represents the number of associated
examples in BioCyc T2 &3 collection.

BioCyc T2 &3 data that consists of more than 1450 pathway labels. This is because the size

of both BioCyc data and its corresponding pathways are large where hard example mining

can accelerate the learning process efficiently [6, 111, 210, 304, 393].

Specifically, leADS executes, in parallel, a group of multi-label base learners (constituting

an ensemble) where each is allocated to learn from a portion of samples that are selected

randomly. Then, each member in the ensemble selects data according to predefined choices

of: i)- sample size and ii)- an acquisition function. Afterwards, samples from all base learners

are aggregated and reduced based on the sample size. These samples are then fed into the

next round to all members in the ensemble while incorporating additional points as required

to continue learning. At the end of training, leADS produces samples that are packed with

informative content that could aid researchers in their investigations. The whole process

is based on the ensemble learning approach that is known to enhance the generalization

ability (at the expense of training and, sometimes, performance costs) while being robust to

the overfitting problem [364]. Also, the ensemble learning is suitable to confront with the

class-imbalance problem [271, 386].

To verify the effectiveness of leADS, we conducted three experimental studies: parameter

sensitivity, scalability, and metabolic pathway prediction. In the later case study, laADS
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was demonstrated to significantly improve the pathway prediction results on 10 datasets

(see Chapter 4.2). This work, to the best of our knowledge, is the first study that leverages

subsampling with multi-label ensemble learning to address the metabolic pathway inference

problem from enzymatic reactions. Moreover, leADS is not constrained with the genomic

data and can be utilized to any multi-label dataset type.

9.2 Problem Formulation

Here, we state the problem raised in this chapter.

Multi-label Pathway Active Dataset Subsampling

Given either an aggregated set of the two multi-labeled datasets, Spath (Def.

3.9) and Sbag (Def. 8.4), denoted by SA = {(x(i ),y(i ),d(i )) : 1 < i É n} or Spath ,

the goal is to retrieve a subset of SA (or Spath), denoted by Sper%, where per%

is a pre-specified hyper-parameter, indicating the proportion of samples to

be chosen from SA (or Spath), such that learning on Sper% incurs similar

predictive score as if it was trained on full dataset, SA (or Spath).

9.3 The leADS Method

In this section, we describe the leADS framework consisting of three consecutive steps: i)-

building an acquisition model, ii)- active dataset sub-sampling, and iii)- learning using the

reduced sub-sampled data. These three steps interact with each other in an iterative process

as illustrated in Fig. 9.2. At the very first iteration, a set S0
per% is initialized with a randomly

selected data. In the next subsequent iteration q , instead of re-initializing Sq
per% with a ran-

domly selected samples, Sq−1
per% data collected from previous iteration q −1 is used, thereby,

constituting the build-up scheme as followed in many active learning approaches ([65]). This

process is repeated until the maximum number of rounds τ is reached. Below, we provide a

detailed description of each step at round q −1 for SA. Similar steps is straightforward to

utilize for Spath by excluding bags in factorization based approach.
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Figure 9.2: A schematic diagram showing the proposed leADS pipeline. Using a multi-label
(bag or pathway) dataset (a), leADS randomly selects data at the very first iteration (b), then it
builds g members of an ensemble (c), where each is trained on a randomly selected portion
of the training set. Next, leADS applies acquisition function (d), which is based on either:
entropy, mutual information, variation ratios, or normalized PSP@k, to pick per% samples.
Upon selecting a set of sub-sampled data, leADS performs an overall training on these
samples (e). The process (b-e) is repeated τ times (f), where at each round the selected per%
samples are fed back into the dataset, and another set of samples are picked in addition to
the previously selected set of samples. If the current iteration q reaches a desired number of
rounds τ, then training is terminated while producing the final per% data points (g).
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9.3.1 Building an Acquisition Model

Given SA = {(x(i ),y(i ),d(i )) : 1 < i É n}, this stage builds an acquisition model, denoted

by E , which consists of g models. As depicted in Fig. 9.2(c), each model of an ensemble,

say s, is devoted to learn a binary classifier for each bag according to the multi-label 1-

vs-All approach (in Chapter 3) based on either one of the two functions: dependency or

factorization. These are based on inquiring the posterior predictive uncertainty with regard

to a new test point x∗.

1. Dependency. This strategy assumes samples are conditionally independent from bags

given pathways. So, the uncertainty about x∗ for a bag d j is estimated according to:

p(d j =+1|x∗,SA) =
∫

p(d j =+1|x∗,Θdep
j )p(Θdep

j |SA)∂Θdep
j

= ∑
k∈B j ,k=+1

∫ ∫
p(d j =+1|lk ,Θbag

j )

×p(yk |x∗,Θpath
k )p(Θpath

k |SA)

×p(Θbag
j |SA)∂Θpath

k ∂Θ
bag
j

(9.3.1)

where Θdep = {Θbag ∈Rb×m ,Θpath ∈Rt×r } denotes bag’s and pathway’s parameters, respec-

tively. b is the bag size, m is the dimension of features, t is the number of pathways, and r is

the total number of enzymatic reactions. Eq 9.3.1 involves summation and marginalization

overΘdep parameters, which is hard to compute [184, 235]. One way to mitigate this issue is

to approximate the above equation using Monte Carlo (MC) techniques [182] by generating

multiple samples for each member of E , hence, resulting in the following formula:

p(d j =+1|x∗,SA) ≈ 1

g

∑
s∈g

p s
j

p s
j =

∑
k∈B j ,k=+1

p(d j =+1|lk ,Θs,bag
j )p(yk |x∗,Θs,path

k )

p(d j =+1|lk ,Θs,bag
j ) = 1

1+e
−Θs,bag,T

j

∣∣c̃ j−Pk

∣∣
p(yk |x∗,Θs,path

k ) = 1

1+e−Θs,path,T
k x∗

c̃ j = α

n j

∑
k∈Yi ,k∧B j ,k=+1

Pk

||Pk ||

(9.3.2)

whereΘs,bag
[.] andΘs,path

[.] are sampled from qbag(Θ) and qpath(Θ), respectively, which them-

selves are considered to be in the same family distribution as the true hidden variables

p(Θpath
k |SA) and p(Θbag

j |SA). c̃ j represents the centroid for bag j , and P ∈Rt×m is a pathway

representation matrix, obtained from pathway2vec ( Chapter 6).
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Figure 9.3: The two possible strategies in building acquisition model. (Left) Dependency
based acquisition model assumes input data x(i ) is associated with with multiple labels y(i ),
which are in turn associated with multiple bags d(i ). (Right) Factorization based method
assumes both y(i ) and d(i ) are independent to each other, given x(i ).

2. Factorization. Under this approach, both pathways and bags are factorized given x∗.

Similar to the previous expression, the MC estimation of the factorized posterior predictive

is:

p(d j =+1, yk =+1|x∗,SA) ≈ 1

g

∑
s∈g

p s
j

where,

p s
j = p(d j =+1|x∗,Φs,bag

j )p(yk =+1|x∗,Θs,path
k )

p(d j =+1|x∗,Φs,bag
j ) = 1

1+e
−Φs,bag,T

j x∗

(9.3.3)

whereΦbag ∈Rb×r is factorized bag’s parameters.

Both strategies are illustrated in Fig. 9.3. As it can be seen, the factorization decomposes

the input data x into elementary units of independent b bags and t pathways so the opti-

mization of E can be made applicable (see Section 9.4). However, the dependency-based

approach takes an alternative route aiming to maintain an integrity between bags and path-

ways, forming a correlation structure, which can be efficiently exploited through ensemble-

based multi-label learning, as demonstrated in numerous studies [62, 269–271, 276, 311].

It is important to note that while the size of base learners in E plays a pivotal role in

the predictive performance, theoretical studies addressing the number of members is still

underdeveloped. Furthermore, the error of the MC estimation is expected to decrease ( in

theory) by adding more samples and members in E , but, due to label correlation problem,

the computational burden at both training and inference stages may be overly complex, as

examined in Section 9.7.2.
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Figure 9.4: The two approaches for constructing multi-label learning algorithm. The in-
dividual multi-label learner (on the left) and the ensemble based multi-label learning (on
the right).

If we use only one multi-label base learner (Fig. 9.4a), then, depending on the learning

process, we may be able to exploit label correlations. However, the individual learner may

still suffer from consequences of generalization error owing to the overfitting problem. On

the contrary, the goal of multi-label ensemble learning (Fig. 9.4b) is to build a group of

multi-label base learners which are not only accurate but also diverse (with regard to the

allocated samples), thereby, potentially reducing the overfitting risk.

9.3.2 Sub-sampling Dataset

During this step, a subset of SA, denoted as Sq−1
per% ⊆ SA, is picked for each member using

an acquisition function f : x → R where per% is a pre-specified threshold, indicating the

proportion of samples to be chosen from SA, at iteration q −1. The calculated predictive

uncertainty distribution, obtained from the previous step, is accommodated into one the

following four acquisition functions for subsampling: entropy, mutual information, variation

ratios, and normalized PSP@k. In all of these functions, we retrieve top per% samples that

contain high acquisition (or uncertainty) values, reflecting the ranking based scoring strategy.

Though more sophisticated active learning based selection methods, such as [117, 119, 195,

196, 303, 330, 352, 363], can be utilized to improve selection criterion, nonetheless, they are

computationally intensive approaches, hence, neglected.

1. Entropy (H) [297]. The entropy measures the uncertainty of a sample given the pre-
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dictive distribution of that sample:

(9.3.4) H=−pᵀ log(p)

where p is a vector of predictive probabilities over b bags (or t pathways).

2. Mutual information (M) [306]. This function looks for low mutual information be-

tween g models, encouraging samples with high disagreement to be selected during

the data acquisition process:

(9.3.5) M=H− 1

g

∑
s∈g

Hs

where Hs denotes the entropy obtained from an individual member of E for a sample

before marginalization. Since entropy is always positive, the maximum possible value

for M is H. However, when the models make similar predictions, then 1
g

∑
s∈g Hs →H,

resulting in M→ 0, which is its minimum value [64]. Note that this formula is similar

to multi-label negative correlation learning [301], which estimates pairwise negative

correlation of each learner’s error with respect to errors of other members in E .

3. Variation ratios (V) [103]. This metric measures the number of members in E that

disagree with the majority vote for a sample according to k desired pathway size,

where larger values indicate higher uncertainty:

V =1− 1

|V |g
∑
s∈g

∣∣∣({arg p s
j : 1 ≤ j ≤ k}

)
∩V

∣∣∣ where V = Mode
s∈g

(
{arg p s

j : 1 ≤ j ≤ k}
)

(9.3.6)

V corresponds the disagreement of k bags (or pathways) across g models, where

k ∈Z>0 is a pre-specified number of bags (or pathways) to be considered in computing

the mode operation.

4. Normalized propensity scored precision at k (nPSP@k). This is a modified version of

PSP@k [148], which measures the average precision of top k relevant bags (or path-

ways) for a data point i . This means the higher the score is for i , the less uncertainty

is:

nPSP@k =1−Norm
( 1

k

∑
j∈rankk (p)

y j

ps j

)
where ps j =

1

1+ (n j +1)−1(9.3.7)

where Norm(.) scales the score within [0,1]. The term p is a vector of predictive proba-

bilities over b bags (or t pathways), rankk (p) returns the indices of k largest value in p,

ranked in a descending order, where k ∈Z>0 is a hyperparameter. ps j is the propensity
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score for the j -th bag (or pathway), where n j is the number of the positive training

instances for the bag (or pathway) j . In the context of extreme multi-label problem,

PSP@k was used to derive an upper bound for missing/miss-classified labels ([344]),

and is reported to be a good performance metric for long-tail distribution in which a

significant portion of labels are tail labels ([19, 147, 259, 260]).

9.3.3 Training on the Reduced Dataset

Depending on the acquisition model, each member in E is assigned to train on randomly se-

lected samples from Sq−1
per%, where each is comprised of a set of b and t models, representing

bags and pathways, respectively, mirroring an individual multi-label learner, shown in Fig.

9.4. The Sq−1
per% is expected to contain hard samples that are difficult to learn and classify. By

only focusing to train on these samples, leADS provide an alternative treatment to boosting

the overall performance. After learning, leADS aggregates samples from all members and

then selects the top per% based on their acquisitions values to feed these selected samples

to repeat the process until the maximum number of rounds τ has reached.

9.4 Optimization

All parameters are updated based on the samples allocated to each base learner. The two

objective functions Eqs 9.3.2 and 9.3.3, can be solved by decomposing them into t and b

independent binary classification problems according to the multi-label 1-vs-All approach

(see Appendix Section G.1), which enables us to train them in parallel. For example, the

optimization for a member s:

min
Θs,bag

∑
i∈ns

∑
j∈b

∑
k∈B j ,k=+1

log
(
1+e

−d(i )
j Θ

s,bagᵀ
j |c̃(i )

j −Pk |
)
+ ∑

j∈b
λ1||Θs,bag

j ||2,1

)
min
Φs,bag

∑
i∈ns

∑
j∈b

∑
k∈B j ,k=+1

log
(
1+e

−d(i )
j Φ

s,bagᵀ
j x(i ))+ ∑

j∈b
λ2||Φs,bag

j ||2,1

min
Θs,path

∑
i∈ns

∑
k∈t

log
(
1+e−y(i )

k Θ
s,pathᵀ
k x(i )

)
+ ∑

k∈t
λ3||Θs,path

k ||2,1

(9.4.1)

where ||.||22,1 is the L2,1 regularization term, which is the sum of the Euclidean norms of

columns of a matrix. The L2,1 norm imposes sparsity on model’s parameters to minimize the

negative effect of label correlations, where λ[.](∈R>0) is employed to govern the relative con-

tributions of L2,1 and the remaining terms. Although the joint formula in Eq 9.4.1 is convex,

the logistic log-loss function still posses a problem where there exists no analytical solution
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for it. A possible treatment would be to adopt the standard gradient-based method to learn

all the models parameters, gradually. In this work, the mini-batch gradient descent [190] was

considered, which begins with some initial random guess for all leADS’s parameters, and

repeatedly performs an update to minimize Eq 9.4.1. The similar line of discussion follows

for parametersΘs,path obtained using Spath for each member s.

9.5 Efficient Pathway Label Prediction

Predictions need to be made efficiently for the downstream pathway classification task. For

a test point x, the existing 1-vs-All approaches (Chapter 3.4) are infeasible for low-latency

and high-throughput applications as their prediction times are linear in the number of

both labels and members (O(t g )). In addition, some of those approaches apply strict cut-off

threshold ξ ∈R≥0 so only the labels with the largest probability values are retainedLpath(x) =
{k : p(yk = +1|x,Θs,path

k ) ≥ ξ,∀k ∈ t ,∀s ∈ g }, where p(yk = +1|x,Θs,path
k ) = 1

1+e
−Θs,path,T

k
x(i )

is a

well-known non-linear logistic function. This strategy may neglect a set of true labels.

leADS addresses these limitations through factorization based acquisition model type, by

shortlisting a set of bags for each member as Ls
bag (x) = { j : p(d j =+1|x,Φs,bag

j ) ≥ ξ,∀ j ∈ b}.

Then, the most probable pathways can be retrieved using a cut-off threshold ξ as L1
path(x) =

{l : p(yl = +1|x,Θs,path
l ) ≥ ξ, l ∈ B j ,l = +1,∀ j ∈ Ls

bag (x)}. We refer this approach as “pref-

voting”. Alternatively, instead of using ξ, leADS deploys rankk (.) operation to sort the prob-

abilities of both bags and pathway labels, similar to [388]. After that, the label probability

is obtained by marginalizing over the probabilities of bags and labels, where the goal is to

retrieve pathways with k highest scores, L2
path(x) = {l : rankk (p(yl =+1|x,Θs,path

l )×p(d j =
+1|x,Φs,bag

j )), l ∈ B j ,l =+1,∀ j ∈ b}. This approach is quite effective because it compromises

between capturing the tail labels, obtained by bag scores, and predicting the head labels,

indicated by pathway label scores. We name this strategy as “pref-vrank”. In both approaches,

we make hard voting, which is based on the majority class label over g members.

The overall complexity of leADS, based on the factorization type, using the pref-voting

strategy for a test point x is reduced to O(g (b + t)/2) cost while the pref-vrank may incur

on average less than O(g (b + t)/2+k) cost. With proper adjustments of hyperparameters,

leADS is able to make accurate predictions under an hour on large scale datasets. For the

dependency based, leADS outputs pathways then proceed to predict bags. Hence, this

approach is not suitable for pathway prediction. Nonetheless, the acquired samples using

dependency based can be used for learning pathways, as demonstrated in Section 9.7.1.
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9.6 Experimental Setup

In this section, we describe the experimental settings to evaluate the performance of leADS

that was written in Python v3. Unless otherwise specified all tests were conducted on a

Linux server using 10 cores of Intel Xeon CPU E5-2650. We use the same datasets applied in

Chapter 7.

9.6.1 Parameter Settings and Protocols

We applied pathway2vec module (Chapter 6)) to obtain pathway and EC features using

“crt” as the embedding method, the number of memorized domain is 3, the explore and

the in-out hyperparameters are 0.55 and 0.84, respectively, the number of sampled path

instances was 100, the walk length is 100, the embedding dimension size was m = 128, the

neighborhood size was 5, the size of negative samples was 5, and the used configuration of

MetaCyc was “uec”, indicating links among ECs are being trimmed. The features are used to

solve the limited number of pathways in BioCyc using Eq. 6.4.1.

To define bags, we employed SOAP (Appendix Section F.1) by setting the number of

bags to 200 and using “collapse2ctm” option, which reduces SOAP to CTM model [40]

while applying dual spareness in the number of bags and pathway distribution over bags.

Then, we relabel pathways for BioCyc collection using reMap (Chapter 8) to build SA. For

the hyperparameters involved in pathway2vec, SOAP, and reMap, we applied the default

settings.

Having obtained bags and features, we trained leADS using the following default settings

(unless otherwise specified): the learning rate is 0.0001, the batch size is 50, the number of

epochs is 10, the number of models is g = 3, the predictive uncertainty is “factorization”,

the acquisition function is “variation ratios”, the prediction is set to “pref-voting” strategy

with cutoff threshold ξ= 0.5, and the regularizer hyperparameters λ are set according to

λ1:2 = 0.01 and λ3 = 10, respectively.

9.7 Experimental Results and Discussion

Three tests were performed to ascertain the performance of leADS including parameter

sensitivity, scalability, and metabolic pathway prediction effectiveness.
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Figure 9.5: Impact of acquisition function on dependency (a) and factorization (b) predic-
tive uncertainty types. Each function performed on par to each other despite the variation
ratios is outperforming (an average F1 score of 52.84%) on both uncertainty functions.

9.7.1 Parameter Sensitivity

Experimental setup. This experiment explores the impact of two predictive uncertainty type

across four acquisition functions discussed in Section 9.3.2. We used an ensemble of g = 3

members to train leADS for 3 epochs, and at every round, each member is allocated only 30%

of randomly picked BioCyc data to subsample per% = 30%. Since the dependency-based

does not incorporate pathway prediction, we re-used the sampled instances, obtained from

the previous tests, then re-trained leADS using Spath , while circumventing the three steps

in Section 9.3. Next, we run experiments for 3 iterations using the best acquisition function

obtained from the previous study to diagnose the effect of varying per% ∈ {30%,50%,70%},

from randomly picked 30% of BioCyc data. We contrasted the results of the two uncertainty

functions with random subsampling approach that was trained on {30%,50%,70%} of ran-

domly selected BioCyc data. For all of the above experiments, we fix the hyperparameter

k to 3 (applied in variation ratios and nPSP) and the performances are reported using the

average F1 score on CAMI data.

Experimental results. Fig. 9.5a shows results from four acquisition functions for the depen-

dency based, where the performances are observed to be comparable to each other, despite

the variation ratios is outperforming (an average F1 score of 52.84%). Similar discussions

follow for the factorization based uncertainty in Fig. 9.5b. Having this insight, we further

examined the effect of predictive uncertainty on leADS’s performances, reported on CAMI

using variation ratios as the acquisition type. Fig. 9.6 shows the performance on CAMI gener-
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Figure 9.6: Effect of dependency, factorization, and random subsampling by varying sam-
ple size. For dependency and factorization, they were trained on per% of 30% of BioCyc
data.

ally improves by including more samples for both dependency and factorization. Although

random subsampling is seen to be outperforming the two uncertainty functions, this ap-

proach require more samples to train which is in contrast to the uncertainty functions that

collect harder samples to train. When per% = 70%, both approximates random subsampling

score, which is compelling as per% = 70% contain less than 2000 instances.

Taken together, there are no particular preferences for the acquisition functions, albeit

variation ratios performed slightly better, which was also reported to be the best acquisition

type in [64]. Also, both uncertainty functions attained comparable results on CAMI data

with marginal gain for the factorization based uncertainty.

9.7.2 Scalability to the Ensemble Size

Experimental setup. In this experiment, we analyzed the scalability of leADS when the

model size increases as g ∈ {1,3,5,10,15,20} while reporting the performance on CAMI data

using average F1 score metric. For this experiment, we set per% to 30% from randomly

picked 30% of BioCyc data to train leADS using two uncertainty type. In addition, pathway

labels were subsampled randomly at 500 pathways to each member in E at every epoch.
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Figure 9.7: Average F1 score on CAMI data as a function of g . The ensemble size g varies
across {1,3,5,10,15,20} for both dependency and factorization (a) predictive uncertain-
ties while the elapsed training time (in minutes) per epoch (averaged over 3 epochs) is
demonstrated in (b) based on the same ensemble size variation.

The results were based on: pref-voting and pref-vrank (k = 200). Simultaneously, we also

recorded elapsed training time of each configuration of g . Due to the problem associated

with the aggregation of results, we expected that the performance would be reduced when

the member size increases while the training time would be increased.

Experimental results. Fig. 9.7a shows that by including more members in E , leADS tends to

deteriorate its performance under the pref-voting strategy. Conversely, the pref-vrank based

prediction strategy exhibits improvements after adding 10 members, achieving an average

F1 score of 0.4752, after that the prediction score is almost constant. In both strategies,

the dual effects of pathway and instance subsampling to each member in E contribute in

performance depletion. However, based on empirical assessments, we suggest to include

members in the range of [3,10] ∈ Z>0 in E to obtain better prediction accuracy and to

minimize the training time that is seen to be exploded by adding more members, especially

for dependency based uncertainty approach in Fig. 9.7b.

9.7.3 Metabolic Pathway Prediction

Experimental setup. In this case study, we evaluated leADS’s effectiveness regarding the

pathway prediction. Here, we employ the following two settings using factorization based
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
triUMPF 0.0435 0.0954 0.1560 0.0649 0.0443 0.0776
leADSb+vrank 0.0542 0.0693 0.1425 0.0812 0.0598 0.0495
leADSb+voting 0.0697 0.0918 0.1394 0.0891 0.0918 0.1061
leADSp 0.0321 0.0764 0.1235 0.0562 0.0265 0.0420

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561
leADSb+vrank 0.9250 0.7600 0.8750 0.5600 0.3400 0.6250
leADSb+voting 0.6601 0.5477 0.6660 0.5066 0.2559 0.3921
leADSp 0.9185 0.7240 0.8960 0.8595 0.5862 0.6605

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
triUMPF 0.7590 0.3835 0.3529 0.3319 0.7126 0.6229
leADSb+vrank 0.6026 0.5448 0.3431 0.4891 0.7816 0.7143
leADSb+voting 0.8795 0.9677 0.6216 0.6725 0.8736 0.9657
leADSp 0.8078 0.4982 0.4392 0.4541 0.7816 0.8114

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266
leADSb+vrank 0.7298 0.6347 0.4930 0.5221 0.4739 0.6667
leADSb+voting 0.7542 0.6995 0.6430 0.5779 0.3958 0.5578
leADSp 0.8596 0.5902 0.5895 0.5943 0.6700 0.7282

Table 9.1: Predictive performance of each comparing algorithm on 6 golden benchmark
datasets. For each performance metric, ‘↓’ indicates the smaller score is better while ‘↑’
indicates the higher score is better. Values in boldface represent the best performance score
while the underlined score indicates the best performance among leADS variances.

predictive uncertainty: i)- leADSp, trained on Spath , and ii)- leADSb, trained on SA. For both,

we trained leADS on per% = 70% samples from BioCyc using hyperparameters discussed in

Section 9.6.1. leADS performance on T1 golden datasets was compared to pathway inference
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Metric mlLGPR triUMPF leADSb+vrank leADSb+voting leADSp

Hamming Loss (↓) 0.0975 0.0436 0.0725 0.0490 0.0407
Average Precision Score (↑) 0.3570 0.7027 0.4335 0.6225 0.7419
Average Recall Score (↑) 0.7827 0.5101 0.5044 0.6187 0.5283
Average F1 Score (↑) 0.4866 0.5864 0.4774 0.5522 0.6125

Table 9.2: Predictive performance of mlLGPR with elastic net penalty, triUMPF, and
leADS on CAMI low complexity data. Values in boldface represent the best performance
score while the underlined score indicates the best performance among leADS variances.

methods (Chapter 4.3), mlLGPR-elastic net (EN) (Chapter 5), and triUMPF (Chapter 7). In

addition to testing on T1 golden datasets, leADS performances were compared to mlLGPR,

triUMPF, and PathoLogic on symbiont, CAMI, and HOTS datasets in Chapter 4.2. We used

the metrics introduced in Chapter 4.4.1 to report results. The two prediction strategies in

Section 9.5 were applied for leADSb where k in pref-vrank was set to 200. For leADSp, we

only record the results obtained from the non-linear logistic function (i.e., Lpath).

Experimental results. As shown in Table 9.1, the two inference strategies of leADS achieved

comparable and competitive performances against the other methods with respect to the

average F1 scores, where numbers in boldface represent the best performance score in

each column while the underlined value indicates the best performance among leADS

variances. In particular, the high precision triUMPF model exhibits performance loss against

leADSp+voting on all golden datasets. Surprisingly, for LeishCyc and TrypanoCyc, leADSp

yielded exceptional average F1 scores of 0.67 and 0.73, which is also the best results over all

the models. All the variations of leADS constantly surpassed triUMPF in terms of sensitivity

values while contributing comparable average F1 scores.

With regard to symbiont data, the goal is to recover the reported 9 amino acid path-

ways [218] on the composite genome. All the flavors of leADS (Fig. 9.8) and PathoLogic

recorded 7 pathways on combined genomes. The pathway for phenylalanine biosynthesis

(L-phenylalanine biosynthesis I) was excluded from analysis because the associated genes

were reported to be missing during the ORF prediction process.

For the CAMI low complexity data, leADSp exceeded mlLGPR and triUMPF, achieving

an average F1 score of 0.61 in compare to 0.49 (mlLGPR) and 0.59 (triUMPF), indicated in

Table 9.2. A similar trend was observed for the HOTS data, where leADSb+vrank (Fig. 9.12),

leADSb+voting (Fig. 9.13), and leADSp (Fig. 9.14) were able to recover a total of 57, 64, and 69

pathways while triUMPF, mlLGPR, and PathoLogic detected 58, 62, and 54 pathways, respec-

tively, from 180 previously reported pathways [125]. These compelling results are attributed

to leADS subsampling strategies, which reduced the number of selected samples (more than

half for some species related instances) (illustrated in Figs 9.9 and 9.10) while improving the
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(a) leADSb+vrank (b) leADSb+voting

(c) leADSp

Figure 9.8: Comparative study of predicted pathways for symbiont data between Patho-
Logic and leADS (with different configurations). Orange circles indicate that neither
method predicted a specific pathway while blue circles indicate that both methods pre-
dicted a specific pathway. Red circles indicate pathways predicted solely by leADS. The size
of circles scales with reaction abundance information.

performance. For example, from a total of 112 Salmonella related instances, leADSp and

leADSb retained only 41 and 39 instances, respectively. As discussed in Section 9.1, more

than 100 pathways in 112 Salmonella instances were observed to be cross-intersected. From

the perspective of information theory, the non-selected Salmonella related examples may

be considered redundant and do not contribute to training. By removing less impacted

examples, the retained BioCyc T2 &3 examples were less than 6500 for both leADSp and

leADSb models (Fig. 9.11).

In summary, this experiment demonstrates the novelty of leADS that is capable of ex-

tracting informative examples while, simultaneously, learning bags with pathway labels to
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Figure 9.9: Samples corresponding top 100 species in BioCyc T2 &3. The black colored bars
represent leADSp (per% = 70%) selected samples while the grey colored bars indicate an
overall number of samples associated with species in BioCyc T2 &3.

effectively recover pathways from a list of enzymatic reactions.

153



Figure 9.10: Samples corresponding top 100 species in BioCyc T2 &3. The black colored
bars represent leADSb (per% = 70%) selected samples while the grey colored bars indicate
an overall number of samples associated with species in BioCyc T2 &3.
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(a) leADSp (b) leADSb

Figure 9.11: Number of reduced examples for each pathway in BioCyc T2 &3 data. The
horizontal axis indicates the indices of pathways, while the vertical axis represents the
number of associated examples in BioCyc T2 &3 collection. The black colored area in Figs
9.11a and 9.11b represent leADSp and leADSb (per% = 70%) selected instances, respectively,
while the grey colored area indicates an overall number of samples corresponding pathways
in BioCyc T2 &3.

9.8 Summary

In this chapter, we presented a novel ensemble-based hard example mining in the context of

multi-label classification, which aims to construct a set of diverse multi-label base learners

to jointly improve the subselection of samples and generalization ability of multi-label

learning system. The proposed solution was referred to as leADS, and is achieved iteratively

in three steps: i)- building an acquisition model, based on a preferred uncertainty function

(dependency or factorization), for a predefined number of members; ii)- subsampling of

data, based on a pre-specified threshold, using one the following four acquisition functions:

entropy, mutual information, variation ratios, and normalized PSP@k; and iii)- training all

members using the reduced subsampled data. To validate the effectiveness of leADS, various

tests were performed which all showed promising results of leADS. Compared with the

other pathway prediction methods, leADS was reported to achieve the state-of-art results in

reconstructing metabolic pathways from those benchmark datasets, hence, establishing a

shred of evidence that by focusing on acquired samples the multi-label ensemble model

can achieve better predictive results than the conventional approaches.

leADS pathway prediction is based on an aggregation of results from all members in an

ensemble without including a probability score attached to each member. This entails that

each member is equally likely to predict a specific pathway, which defeats the purpose of an

ensemble approach. This is because each member is trained on a portion of examples that

may not contain a subset of pathways. Partially, this can be addressed by adopting a better
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Figure 9.12: Comparative study of predicted pathways for HOT DNA samples. The size of
circles corresponds the associated abundance information. Orange circles indicate none of
the methods are able to recover the pathway while red, gray, and blue circles indicates that
leADSb+vrank, PathoLogic, and both are able to predict the associated pathway, respectively.
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Figure 9.13: Comparative study of predicted pathways for HOT DNA samples. The size of
circles corresponds the associated abundance information. Orange circles indicate none of
the methods are able to recover the pathway while red, gray, and blue circles indicates that
leADSb+voting, PathoLogic, and both are able to predict the associated pathway, respectively.
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Figure 9.14: Comparative study of predicted pathways for HOT DNA samples. The size of
circles corresponds the associated abundance information. Orange circles indicate none of
the methods are able to recover the pathway while red, gray, and blue circles indicates that
leADSp, PathoLogic, and both are able to predict the associated pathway, respectively.
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voting strategy [108, 275, 284], or by incorporating an additional learner that integrates

coefficients obtained from all the base learners, similar to the federated learning approaches

[171, 194]. Both of these suggestions are well-established in the next part of this thesis.
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Part V

Multi-Label Learning from Multiple

(Less-Trusted) Sources
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Chapter 10

Leveraging Multiple (Less-Trusted)

Sources to Improve Metabolic Pathway

Prediction
“Group interaction tends to amplify people’s initial inclinations.”

– David Myers

As diversification of pathway inference tools progress, selection of a well projected machine

learning models becomes daunting, since examining the reliability of these methods re-

main untapped. In this chapter, we present mltS, multi-label learning based on less-trusted

sources, that leverages the idea of estimating each model’s reliability score in the presence

of small reference collection dataset. Specifically, mltS performs an iterative procedure to:

(a)- train multiple local learners where each is assigned to learn outputs from a particular

model; (b) build a discrepancy table of learners; (c)- estimate the reliability of learners; and

(d)- optimize an overall global parameter vectors. Through this approach, mltS is capable to

assess the reliability of each model while providing a solution to voting during prediction

in an adaptive manner. mltS was evaluated based on parameter sensitivity, local learners

analysis, reliability associated with these learners, and metabolic pathway prediction ef-

fectiveness. In the pathway prediction task, the experiments revealed that mltS achieved

very compelling and competitive performances against all the previous machine learning

models and the rule-based approaches.

10.1 Introduction

In the previous chapters, we discussed a variety of machine learning methods to predict-

ing pathways. With their predictive gains, questions concerning “which of these models”
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retrieve a set of relevant pathways from pathway datasets and “why?” remain unresolved

not addressed. That is, the pathway datasets (e.g. BioCyc T2 & 3) were observed to be tainted

with meta-level of noise (both in input and output spaces (see Chapter 8). Of particular type

of frequently occurring noise is related to partially annotating each instance with a small

valid pathways. Obviously, the presence of such partially-tagged responses were reflected in

the performances of all the previous models.

In light of the above discussion, this chapter extends leADS (in Chapter 9) and presents

mltS that estimates the reliability score associated with a model assuming responses of each

training instance in a pathway dataset were obtained from multiple sources of varying quality.

That is, each training sample is composed of an input feature vector with sets of responses

where each set is collected from a specific source, hence, constituting multi-source multi-

label (MSML) dataset. Then, the reliability of sources is estimated through risk minimization,

similar to the studies on robustness of learning algorithms [58, 79, 134, 174]. More concretely,

mltS executes multiple learning instances where each is trained to minimize a risk function

corresponding a specific source in MSML datasets. Then, all the trained models are used to

compute their risks against a reference noise-free dataset serving as an oracle golden data.

By comparing both risks, mltS can identify models reliability values, thereby, providing an

answer to the “which?” question, while, at the same, enabling to learn a composite global

parameters (by simulating approaches used in meta-learning [92, 93]). Furthermore, mltS

stores those differential risks in a probability label matrix to address the second issue “why”.

With regard to the pathway prediction, mltS has three built-in prediction strategies: meta-

adaptive (that utilizes probability matrix), meta-weight (that uses models reliability values),

and meta-predict (that applies global vectors).

Using mltS, we showed that the pathway prediction performances of our proposed

architecture were exceeded or equaled other pathway inference algorithms on datasets

in Chapter 4.2. It is important to note that mltS was able to achieve a desirable balance

between sensitivity and precision scores on all datasets. We further performed in-depth

analysis with regard to various settings of mltS, local learners behaviors, and the probability

matrix. We discovered that mlLGPR related MSML data has high reliability weight in relation

to PathoLogic, triUMPF, and leADS because it was trained on a larger scale Synset-2 dataset.

10.2 Problem Formulation

As reported in Chapters 8 and 9, the trained pathway datasets (i.e., BioCyc T2 & 3) is of low

fidelity, and contains many errors, hence, impeding machine learning models to perform
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efficiently. These datasets were not manually curated, and neither inspected by a group

of domain experts. That is, these were generated by the PathoLogic algorithm [163] which

vividly follows a set of rules to enable fast reconstruction of pathways with significantly

many pitfalls as indicated in [125]. Therefore, these annotated datasets are considered of

“less trustworthiness”. However, without having good quality datasets, we proceeded to use

these data to train models (in Chapters 6, 7, 8 and 9) while enforcing many constraints (e.g.

graph smoothness assumption). Inspired by recent studies on robustness of learning from

multiple sources [58, 79, 174], we provide a general treatment to learning from this type of

datasets in a more rigorous way.

Definition 10.1. Multi-Source Multi-Label Dataset (MSML). Let us denote a set of U al-

gorithms as A. Each a ∈A. generates responses from its own distribution D(a) (possibly

unknown) over X, corresponding the multi-label input instance in Def. 3.9. The target labels,

however, is determined by the underlying labeling functions f a : X → {−1,+1}t , where

X =Rm to denote the m-dimensional feature vector and t is the pathway size. The observa-

tions are same across U algorithms, but the labels may be different depending on f a , which

results in a multi-label dataset S (a) = {(x(i ),y(i )) ∈D(a) : ∀i ∈ n} for each source a ∈A, where

x and y are provide in Def. 3.9.

A corresponds a subset of algorithms examined so far in this thesis and Sa for each a is

the predicted responses obtained using the a-th algorithm with inputs that are considered to

be same across U . Notice that f a is unknown, therefore, we assume there exists a hypothesis

class F ⊆ {h : X → 2Y } where each ha ∈F is derived such that the expected loss for ha is

minimum with regard to it’s distribution D(a). Here, we define the loss function, for any

a with it’s own D(a), as l : Y×ha(X) → R≥0, while it’s expected loss is denoted by εa(ha) =
εD(a) (ha) = E(x,y)∼D(a) [l (ha(x),y)]. The corresponding empirical representation of εa(ha) is

denoted by ε̂a(ha). In addition to pathway labels data, obtained from algorithms, we assume

the presence of few datasets that are considered as oracle golden data (e.g. EcoCyc [164]) to

estimate the discrepancy of each algorithm.

Definition 10.2. Reference Dataset. A set of reference (trusted) dataset with high quality is

denoted by S (z) of nz samples drawn i.i.d. from a target distribution D(z) over X×Y, possibly

different from any distribution D(a) for any algorithm a ∈A.

Now, we state the problem discussed in this chapter.
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Algorithmic Specific Weights and Global Coefficients

Given S (z) and a set of S (a) for each a ∈A, the objective is to search for: i)-

models weights (or reliability coefficients)ω and ii)- a global hypothesis ĥglob

that contributes with low expected loss on D(z), resulting in a high pathway

predictive performance for a hitherto unseen instance x∗.

It turns out that solving this problem also provides a procedure to assessing the predictive

probability of each label over each model stored in a matrix (also called discrepancy label

matrix). Such information can be obtained during the learning phase, then, at the prediction

stage, a set of true pathways can be inferred for a test example by either incorporating the

probability matrix, models weights, or ĥglob.

10.3 The mltS Method

In this section, we describe mltS, presented in Fig. 10.1, which consists of four iterative steps:

i)- training multiple learners, ii)- building a discrepancy table, iii)- updating algorithmic

specific weights, and iv)- calibrating global parameters.

Let us explore the steps. At the very first iteration, multiple instances of multi-label

learning are executed, concurrently, where each instance is designated to learn from a subset

of dataset generated by a particular algorithm. At every round, discrepancies of learning

instances using a trusted dataset S (z) are estimated and stored in a discrepancy table, where

each cell in that table indicates a particular learner’s ability to predict the corresponding

label. Using this table, the models specific weights are updated to demonstrate which model

is high likely to produce noisy labels. Then, mltS perform aggregation of models parameters,

constituting a global learner. In the next section, we discuss each step of mltS’s learning

stages.

10.3.1 Training Multiple (Local) Learners

Multiple instances of (local) learners are initiated in this step, where each learner is assigned

to train a specific dataset (responses) produced by an algorithm according to:

Assumption 1. Denote M as a set of U learning instances. Then, a g ∈M is optimized to

learn patterns from an allocated dataset, say S (a), such that the empirical risk of ε̂a(hg ) on

S (a) is minimized, i.e., ε̂a(hg ) ≥ ε̂a(ha).
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Figure 10.1: A schematic diagram showing the proposed mltS pipeline. Using a multi-
source multi-label pathway dataset (a), mltS trains U models (b), then it builds a discrepancy
table Q (c). Next, mltS optimizes source specific weights ω (d). Q is used to optimize the
global parametersΘglob (e). The process (b-e) is repeated τ times (f). If the current iteration
q reaches a desired number of rounds τ, then training is terminated while producing U
source and global related weights (g).

The above claim is important as ε̂a(ha) may be unknown to us. Instead, we minimize
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ε̂a(hg ), where hg can be learned using 1-vs-All approaches, one for each pathway label as:

min
Θg

∑
j∈t
ε̂a(hg

j )+λ||Θg
j ||2,1

where,

ε̂a(hg
j ) = 1

na

∑
i∈na

l (hg
j (xi ),y(i )

j )

l (hg
j (xi ),y(i )

j ) = log
(
1+e

−y(i )
j Θ

gᵀ
j x(i ))

(10.3.1)

whereΘg ∈Rt×m denotes the pathway’s parameters for model g learned using S (a). The

term l(.) is the log-loss enforcing the output of Θgᵀ
j x(i ) to be adjacent to y(i ). The second

term is the L2,1 regularization term, which is the sum of the Euclidean norms of columns of

a matrix, that aims to reduce the generalization error. The relative weights of the two terms

are governed by a trade-off parameter λ(∈R>0). na is the number of examples associated

with an algorithm a ∈A, which is same across U .

10.3.2 Similarity (Discrepancy) Measures

This step computes the discrepancies of pathways for each model in U . For this, we utilize

the reference dataset S (z) to estimate the disagreements among learning instances. As

suggested in [17, 134, 199], having some amount of trusted training data enables significant

robustness gains and provide an estimation of noise.

To this end, we use H-divergence metric [227], that defines a discrepancy value for each

individual pathway. That is, the value is calculated based on the differences (distances) for

a pathway, say j , between the distributions D(a) (which is the underlying assumption for

generating S (a) using an algorithm a) and D(z) (which represents a distribution of trusted

dataset S (z)) with respect to the hypothesis class F :

(10.3.2) d g
F , j

(D(a),D(z)) = sup
h∈F

(|εa(hg
j )−εz(hg

j )|)

where g is the model assigned to learn from S (a) and sup is a least upper bound of the

set indicated within |.|. According to [27], the distance mirrors the difficulty to distinguish

the two distributions, which suggests that the discrepancy between D(a) and D(z) is large

for the label j if there exits an estimator in F that performs well on one of the dataset

and poor on the other. However, if all the predictors in F perform similarly on both, then

both distributions have low disagreement score. Therefore, in cases where all predictors

performing poorly on both datasets, then the disagreement score would be low, which
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defeats the purpose of noise estimation of each g ∈M. Accordingly, we modify Eq. 10.3.2 as:

(10.3.3) d g
F , j

(D(a),D(z)) = sup
h∈F

(|εa(hg
j )−εz(hg

j )|+εz(hg
j ))

This modified distance will always favor the risk of trusted dataset. Since the true distri-

butions are not known to us, we empirically compute them as:

d g
F , j

(D(a),D(z)) = sup
h∈F

(|ε̂a(hg
j )− ε̂z(hg

j )|)

= sup
h∈F

(∣∣∣ 1

na

∑
i∈na

l (hg
j (xi ),y(i )

j )− 1

nz

∑
i∈nz

l (hg
j (x(i )),y(i )

j )
∣∣∣

+ 1

nz

∑
i∈nz

l (hg
j (x(i )),y(i )

j )
)(10.3.4)

where l(.) is the log-loss. We apply Eq. 10.3.4 to every pathway and for all models in M.

Finally, the collected disagreement score is stored in a matrix Q ∈RU×t .

10.3.3 Update Algorithmic Specific Weights

Having obtained Q, we estimate the algorithmic related coefficients ω ∈ RU , conditioned

on
∑

g←S (a):∀a∈Aωg =∑
g∈Mωg = 1 and ωg ≥ 0 for all g , where ← indicates an assignment

operation of S (a) to the learner g . A procedure to the calculation of ω has been described in

[174] and will be modified for the multi-labeling case.

First, let us define the ω-weighted empirical risk of a predictor h ∈F as:

ε̂ω(h) = ∑
g∈M

ωg
∑
j∈t
ε̂a(hg

j )(10.3.5)

where ε̂a(hg
j ) is defined in Eq. 10.3.1. In this step, the goal is to obtain an efficient estimation

of ω, such that the predictor ĥω = argmin
h∈F

ε̂ω(h) performs well on D(z), i.e., such that the

empirical risk ε̂z(ĥω) under the trusted dataset distribution is at it’s minimum value.

Combing Theorem 1 presented in [174] while assumingF is fixed, we derive the following

equation to optimize the algorithmic coefficients ω:

min
ω

∑
g∈M

ωg
∑
j∈t

Qg , j︸ ︷︷ ︸
empirical distribution discrepancy

+β
√√√√ ∑

g←S (a):∀a∈A

ω2
g

na︸ ︷︷ ︸
weight regularization

s.t. ωg ≥ 0 ∀g and
∑

g∈M
ωg = 1

(10.3.6)

where β> 0 is a hyper-parameter. The Eq. 10.3.6 posses several important properties:
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Figure 10.2: A schematic view of global weights update algorithm. Three individual learn-
ers (Θ[1,2,3]) are learned using a small mini batch based on allocated datasets, then Θglob

weights are optimized to accumulate patterns from the three learners. ∇l[1,2,3] gradients of
loss functions associated with those three learners.

• The empirical distribution disagreement governs the weight vector ω. So, if the dis-

crepancy score of g is small, it means that assigned dataset S (a) is very similar to S (z),

and its corresponding coefficient ωg will be assigned more weight, and vice versa.

Intuitively, this means the model g is considered more trustworthy.

• The regularization term aims to reducing overfitting. That is in contrast to [174], where

their work encourages exploring more samples from multiple sources whenever ω are

distributed proportionally to the number of examples per source (algorithm in this

work), mltS assumes the sample size is constant across algorithms, hence, this term is

used to minimize overfitting.

• Finally, the β hyper-parameter play a pivotal role in estimating ω. Having high value

β→∞ entails that weights for each g ∈M will be uniform. However, if β→ 0 then

ω becomes sensitive to the differences between S (a) and S (z). Therefore, to estimate

noise, it is important to set β as close to 0 (0.01 in this work).
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10.3.4 Learning Global Parameters

As discussed, each instance g ∈M is dedicated to learn from its designated dataset. Regret-

tably, some source algorithms (e.g. MinPath) may produce noisy responses, which will be

consumed to those assigned learners. Therefore, to effectively learn a global parameters,

denoted by Θglob ∈ Rt×m , we accumulate knowledge across U learners based on ω so this

global coefficients can be employed to predict pathway labels with high precision.

The aforementioned idea is inspired by meta-learning or learning to learn approach

[12, 93, 95, 127, 266, 272, 282, 373, 395], which aims to bootstrap from a pool of tasks to

learn faster on a new (test) task. That is, it attempts to find a model complied from several

training tasks (illustrated in Fig. 10.2), such that when a test data is provided from the test

task, the model can be quickly fine-tuned on the new task. This resembles our approach

where each g ∈M can be thought of as a task (without requiring a new task). Therefore, the

global parametersΘglob can be optimized following a meta gradient descent step averaged

over all learners [92, 374]:

Θglob,q =argmin
Θglob

∑
g∈M

ωg

(
l
(
l (Θg ,q ,S (a)

mini),S (a)
glob

)
+ α

2
||Θg ,q −Θglob,q−1||2 + ∑

k∈t
γ||Θglob,q−1

k ||2,1

)
s.t. g ←S (a)

(10.3.7)

where q is the current iteration. l (.) is defined in Eq. 10.3.1, where mini corresponds

mini-batch samples while glob indicates meta-update of larger sample size. γ ∈ R>0 is a

hyperparameter to control the sparsity imposed onΘglob,q−1. The proximal regularization

term in Eq. 10.3.7 aims to transfer knowledge fromΘg ,q toΘglob,q−1, thereby, maintaining a

strong dependency relationship. The amount of information to disseminate is governed by

another regularization hyper-parameter α ∈R>0. Minimizing Eq. 10.3.7 will result inΘglob

that accumulate parameters from U learners according to the information uncertainty in ω.

This strategy has an important implication during prediction as discussed in Section 10.4.

10.3.5 Closing the Loop

As outlined in Algorithm 2, parameters in the mltS framework are optimized iteratively

until a predefined number of iterations τ is reached. At each round q , for each model

g ∈ M, Eq. 10.3.1 is applied to optimize individual learner’s (local) parameters using a

predefined gradient step size η ∈N>1. Next, the discrepancy table is estimated using Eq 10.3.4

which is used to minimize the ω-weighted empirical risk over U models using Eq. 10.3.5,
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Inputs :{S (a)}U
a=1, S (z), λ, β, α, γ, τ, η;

Outputs :
1 Θglob: the optimum global weights (Θglob ∈Rt×m);

2 Θlocal: the individual learning weights (Θlocal ∈RU×t×m);
3 ω: the algorithmic specific weights (ω ∈RU );
4 Q: the disagreement score of U sources over labels (Q ∈RU×t );

Process :
5 Q ← 0;

6 Initialize ω,Θglob, andΘlocal;
7 Randomly allocate datasets to M models from {S (a)}U

a=1;
8 parallel-for q ← 1 to τ do
9 parallel-for g ← 1 to U do

10 Sample a mini-batch S (a)
mini from S (a);

11 Θg ,q ← by optimizing in Eq. 10.3.1;
12 Update the discrepancy table using S (z) in Eq. 10.3.4;
13 Qg ← store the disagreement scores;

14 Compute the ω-weighted empirical risk in Eq. 10.3.5;
15 ω← by optimizing in Eq. 10.3.6;

16 Θglob,q ← using Eq. 10.3.7;

17 ReturnΘglob,Θlocal, ω, and Q;

Algorithm 2: mltS learning framework

subsequently, Eq. 10.3.6 is applied to compute ω weights. Finally, the global coefficients are

estimated by applying Eq. 10.3.7.

10.4 Prediction

The mltS framework is an ensemble of U models. Here, we define three strategies for in-

ference: “meta-predict (mp)”, “meta-weight (mw)”, and “meta-adaptive (ma)”. In the later

approach, mltS leverages adaptive criteria where the prediction of recovering a true pathway

j for a test point x∗ is adjusted according to the estimated discrepancy matrix Q as:

(10.4.1)
∑

g∈M
Lg , j I

[
p(y(i )

j =+1|x∗,Θg ) ≥ ξ
]

where I(.) is an indicator function producing either +1 or −1 depending on a user-defined

threshold ξ ∈ (0,1] (0.5 in this work). The term L ∈ (0,1)U×t is called the label reliability

matrix where Lg , j = (1−Qg , j )∑
g∈M(1−Qg , j ) . In literature, this prediction type can be referred to as

“weighted soft voting”, which is based on the probability of class labels over U models (hence
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Source L(S) LCard(S) LDen(S) DL(S) PDL(S) L(S∗) LCard(S∗) LDen(S∗) DL(S∗) PDL(S∗)
S (1) 1804003 194.9230 0.0001 1463 0.1581 1531569 165.4856 0.0001 776 0.0838
S (2) 7708097 832.8576 0.0001 2157 0.2331 3658365 395.2853 0.0001 879 0.0950
S (3) 2718576 293.7413 0.0001 2123 0.2294 1845303 199.3844 0.0001 872 0.0942
S (4) 1808336 195.3902 0.0001 1256 0.1357 1524509 164.7227 0.0001 631 0.0682
S (5) 1826869 197.3927 0.0001 1287 0.1391 1544938 166.9301 0.0001 670 0.0724

Table 10.1: Characteristics of 5 source specific datasets. S (1) −S (5) corresponds MSML
datasets obtained using PathoLogic, MinPath, mlLGPR, triUMPF, and leADS, respectively.
The notations L(S), LCard(S), LDen(S), DL(S), and PDL(S) represent number of pathway
labels, pathway labels cardinality, pathway labels density, distinct pathway labels set, and
proportion of distinct pathway labels set for corresponding source S , respectively. The
asterisk ∗ symbol in S∗ indicates cross intersected pathways between source specific data
and the golden T1 data.

soft) scaled by L (hence weighted voting) [108]. Since mltS aggregates learning from multiple

diverse datasets, conditioned on having access to reference trusted data, the voting here is

more efficient and less biased. Similarly, meta-weight is defined according to:

(10.4.2)
∑

g∈M
ωg I

[
p(y(i )

j =+1|x∗,Θg ) ≥ ξ
]

For the meta-predict based inference [36], we simply useΘglob to make prediction for x∗

and for a pathway j :

(10.4.3) I
[

p(y(i )
j =+1|x∗,Θglob

j ) ≥ ξ
]

In addition, each model g ∈U can be utilized to make prediction similar to Eq. 10.4.3 by

substitutingΘglob
j withΘg

j , as we shall see in Section 10.6.2.

10.5 Experimental Setup

In this section, we describe the experimental framework to show the efficacy of mltS (written

in Python v3) pathway prediction performance across datasets introduced in Chapter 4.2.

In all experiments, mltS performances were compared to pathway inference methods (in

Chapter 4.3), mlLGPR-elastic net (EN) (in Chapter 5), triUMPF (in Chapter 7), and leADS (in

Chapter 9 using pathway dataset). Unless otherwise specified all tests were conducted on a

Linux server using 10 cores of Intel Xeon CPU E5-2650.

10.5.1 Parameter Settings

For training, unless otherwise indicated, the learning rate was set to 0.0001, batch size to

50, number of epochs to 10, the mini-batch (mini) size to 30%, and the meta-update size
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(glob) to 70%. The hyperparameters for the source specific β and the global α were fixed to

0.1 and 5, respectively. For the regularized hyperparameters λ and γ, we performed 10-fold

cross-validation on a subsampled of BioCyc data and found the value 10 for both to be

optimum. Hence, we recommend these configurations for mltS.

10.5.2 Source Specific Multi-label Datasets

We used 5 datasets obtained from: mlLGPR-elastic net (EN) (Chapter 5) trained on Synset-2

data, triUMPF (Chapter 7) trained on BioCyc, leADS (Chapter 9) trained on BioCyc, MinPath

retrieved pathways from BioCyc, and PathoLogic. For each model, the default settings were

applied to train and then generate responses on BioCyc. With regard to PathoLogic, since

BioCyc was curated using PathoLogic we treated BioCyc as PathoLogic. The reference data in

all experiments were fixed to the six T1 golden data described in Chapter 4.2.1. The general

characteristics of each source data are summarized in Table 10.1. Please consult Section 4.2

for L(.), LCard(.), LDen(.), DL(.), and PDL(.) definitions.

10.6 Experimental Results and Discussion

Four consecutive tests were performed to ascertain the performance of mltS including

parameter sensitivity, analysis of local models, investigating source specific weights, and

metabolic pathway prediction effectiveness.

10.6.1 Parameter Sensitivity

Experimental setup. This experiment explores the impact of two hyperparameters α and β

on the predictive performance of mltS. We used the 5 datasets to train mltS for 3 epochs,

and at every round, each model’s mini-batch (mini) size was allocated only to 30% while the

meta-update size (glob) was to set 30%. We first run experiments to diagnose the effect of

varying α ∈ {0.001,0.01,0.1,1,5,10,15,20}. Then, we selected the best α value to study the

impact of β using the same specified range as with α. In both consecutive tests, we applied

meta-predict strategy to report the performances of mltS on CAMI data using the average F1

score as a metric.

Experimental results. Fig. 10.3 shows that by varyingα value the performances are observed

to be optimum at α = 5. This demonstrates that information propagation from local to

global parameters should preserve some degree of smoothness by maintaining a moderate

amount of penalty in Eq. 10.3.7. Having this insight, we further examined the effect of β on
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Figure 10.3: Average F1 score on CAMI data as a function of α and β. Values for both
hyperparameters α and β in figures (a) and (b), respectively, vary across {0.001,0.01,
0.1,1,5,10,15,20}.

mltS’s performances, reported on CAMI, which is shown in the same figure. Although mltS’

performances are seen to be constant, β at 0.001 is observed to be marginally better than the

other values. This follows with our discussions in Section 10.3.3, which suggests to choose a

smaller β← 0 for recovering a good set of reliability weights. In summary, we observed that

by setting α and β to 5 and 0.001, respectively, mltS’s achieved an optimum performance on

CAMI data.

10.6.2 Analysis of Local Learners

Experimental setup. Recall that mltS executes multiple local models M, where each model

g ∈M is assigned to learn a hypothesis function hg that best describes the associated source

specific dataset. Therefore, the goal of this experiment is to examine the average F1 scores

of models on the same source datasets the models were trained on, also known as training

scores, where we expect that models should produce high scores on the assigned training

datasets. We then cross examined each learner against datasets that were not allocated

to it, where the objective is to understand the distributions of source generated datasets

according to Def. 10.1. We applied the experimental configurations described in Section

10.5.1 to report the average F1 scores while the prediction was based on the final discussion
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Figure 10.4: Average F1 scores on MSML datasets. Each entries indicates a score associated
with a trained model, symbolized by g , on an allocated dataset, characterized by S .

note in Section 10.4.

Experimental results. Fig. 10.4 illustrates the average F1 scores of each individual learner

g across MSML datasets, symbolized by S . The description regarding source datasets is

provided in Table 10.1. The on-diagonal entries in the figure represent training scores of

models against their allocated MSML datasets. Immediately, we observe that all models

retained high training scores (> 0.8), entailing that they were able to learn the hypothesis

functions from associated MSML datasets. The scores, however, do not necessary reflect

the ability of these models to adapt to a new dataset. For this, we defer the discussions to

Section 10.6.4.

Moving forward, the off-diagonal entries in the same figure exhibit two distinguished

behaviors. Models (g 1, g 4, and g 5) trained on S1 (PathoLogic), S4 (triUMPF), and S5 (leADS)

datasets are appeared to have similar performances (and symbols representations) when

comparing against each others but utterly different on S2 (MinPath) and S3 (mlLGPR),

indicating they may have generated from the same distribution. Indeed, S1, S4, and S5
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Figure 10.5: A sketch of each model’s reliability weight with associated pathway reliability
scores for randomly subsampled 100 pathways. The x-axis in the left figure shows 100
pathways while the y-axis represents models. Darker gradient colors for pathways indicate
high reliability scores. The rightmost figure illustrates the models reliability weights.

share similar characteristics as BioCyc T2 & 3, discussed in Section 10.5.2. With regard to

g 2 and g 3 they display diverse performances, entailing they may correspond to different

distributions. As presented in Section 10.5.2, S3 was generated using mlLGPR which was

trained using Synset-2 while S3 corresponds to MinPath. The two behaviors directly links to

recovering source specific weights that may be distinctively expressed between (g 1, g 4, g 5)

and (g 2, g 3) models. This will be examined thoroughly in the next subsequent section.

10.6.3 Analysis of Source-Specific Weights

Experimental setup. A fundamental challenge of mltS is ensuring that the latent reliability

weights (ω), describing models uncertainty information, are accurately recovered. Hence,

this case study diagnoses source-specific weights and the pathway label reliability matrix,

explained in Section 10.4, where a model obtaining a high reliability weight would have fewer

disagreement values in Q (or high scores in L), and vice versa. We followed the configurations

described in Section 10.5 to conduct this experiment.

Experimental results. Fig. 10.5 shows the label reliability matrix (L) in the left panel, where

x-axis represents 100 randomly selected pathways and y-axis corresponds models, while

the right panel illustrates models weights (ω). Values in L are characterized by gray gradient

color scheme palette, where each entry corresponds a value in (0,1) interval. Low (resp. high)

175



values in L are depicted by whitish (resp. darker grayish) colors indicating low (resp. high)

reliability strength. As can be seen, the three models (g 1, g 4, and g 5) have similar reliability

values ∼ 0.2. For g 2, mltS assigned below < 0.1 score as a consequence of producing high

(resp. low) disagreement (resp. reliability) values in Q (resp. L). For example, in the left panel

in Fig. 10.5, we can observe multiple pathways have near zero values for the g 2 model (e.g.

abscisic acid degradation to neophaseic acid (PWY-7640) and 3-chlorobenzoate degradation I

(via chlorocatechol) (PWY-6088) have < 0.1 scores). On the contrary, mltS was generous for

the model g 3 leading to assigning the highest score (∼ 0.4) among all models.

The three models g 1, g 4, and g 5 were trained on a reduced number of pathways as

demonstrated in Table 10.1, where their associated sources comprise of 1256−1463 distinct

pathways (DL(S)). We also observed that the number of cross-shared pathways between

these sources with the golden T1 is even low (in the range of 631−776 pathways out of

944) with the average number of pathway occurrence for each example or labels cardinality

(LCard(S)) is approximately 170 pathways. This is in contrast to g 2 and g 3 models that

consider a relatively larger number of distinct pathways in their corresponding source data.

The variation in the pathway size and labels cardinality among MSML datasets and

between golden T1 and these source-specific data would be absorbed in the process of

estimating disagreement matrix Q using Eq. 10.3.4 and, then, ultimately be contributed

to ω computation in Eq. 10.3.6. Therefore, mltS assigned low weights to g 1, g 4, and g 5

models in comparison to g 3. With regard to g 2, its allocated dataset is MinPath (S2) which

was demonstrated, in Chapter 5, to infer many spurious pathways (both false-positive and

false-negative), yielding a low reliability score.

Above observations demonstrate that models uncertainty scores reflect algorithms ability

to predicting a precise set of pathways. This has an important implication in the pathway

prediction stage which will be investigated in the next section.

10.6.4 Metabolic Pathway Prediction

Experimental setup. Pathway prediction potential of mltS was analyzed using the configu-

rations settings described in Section 10.5.1. mltS performance on T1 golden datasets was

compared to pathway inference methods introduced in Section 10.5.2 using the metrics

presented in Chapter 4.4.1. In addition to testing on T1 golden datasets, mltS performances

were evaluated against those algorithms on symbiont, CAMI, and HOTS datasets introduced

in Chapter 4.2. This experiment ties with our previous observation which demonstrated that

source-specific weights were dissimilar among models, thereby, enabling to predict path-

ways adjusted according to either reliability label values (meta-adaptive), source weights
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(meta-weight), or estimated using global coefficients (meta-predict). In principle, the results

obtained from these prediction strategies should approximate to each other because the

local learners in mltS are used to estimating source-specific weights and global coefficients.

Experimental results. Table 10.2 shows the results of all inference methods where the

boldface values in each column represent the best performance score while the underlined

values indicate the best obtained score among mltS prediction strategies proposed in Section

10.4. As can be seen, mltS achieved competitive performances against the other methods in

terms of average F1 scores with optimal performances on EcoCyc (0.8639) and HumanCyc

(0.7879). Also, mltS was able to strike a balance between recall and precision scores on all

data due to composite learning from all local models. All the prediction strategies were

found to perform on par with each other, although the meta-adaptive approach has shown

to be marginally better than the other two strategies. This is because a subset of models

may predict pathways with high reliability scores, thereby, contributing to predicting many

golden T1 pathways. The same line of argument follows with the meta-weight approach that

calibrates all the predicted pathways using source-specific weights (ω). For meta-predict,

it is based on the influence of local learners exerting over global vectors, which may result

in optimum or sub-optimum performances. For example, Fig. 10.6 shows 87 LeishCyc

related pathways where we observe that ribose degradation (RIBOKIN-PWY) and mevalonate

pathway (PWY-922) pathways were solely inferred by both meta-adaptive and meta-weight

strategies while the sucrose degradation III (PWY-621) was solely predicted by the meta-

predict strategy.

With regard to the symbionts dataset, all the prediction strategies, PathoLogic, triUMPF,

and leADS, recovered 6 of the expected 9 amino acid biosynthetic pathways on the composite

genome while mlLGPR predicted 8 pathways (Fig. 10.7 ). For the same reasons discussed

previously, mltS were not able to recover the remaining pathways. False positives were

predicted for individual symbiont genomes in Moranella and Tremblaya using all algorithms

although pathway coverage was reduced in relation to the composite genome.

For CAMI low complexity data in Table 10.3, both meta-adaptive and meta-weight

approaches outperforming all the inference methods, achieving similar performances in

terms of average F1 scores (∼ 0.635). Along with the same line of experiments, we applied

mltS to infer a set of pathways from the HOTS data (see Figs 10.8, 10.9, 10.10, and 10.11).

Among selected 180 pathways [125], mltS+ma, mltS+mw, and mltS+mp were able to infer a

total of 67, 65, and 61 pathways, respectively, while leADS, triUMPF, mlLGPR, and PathoLogic

detected 69, 58, 62, and 54 pathways, respectively.

Taken together, this experiment demonstrates the novelty of mltS that aggregates learn-
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Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561
mlLGPR 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590
triUMPF 0.0435 0.0954 0.1560 0.0649 0.0443 0.0776
leADS 0.0321 0.0764 0.1235 0.0562 0.0265 0.0420
mltS+ma 0.0321 0.0495 0.1156 0.0499 0.0352 0.0558
mltS+mw 0.0325 0.0471 0.1231 0.0542 0.0364 0.0562
mltS+mp 0.0348 0.0776 0.1350 0.0622 0.0364 0.0558

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129
mlLGPR 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455
triUMPF 0.8662 0.6080 0.7377 0.7273 0.4161 0.4561
leADS 0.9185 0.7240 0.8960 0.8595 0.5862 0.6605
mltS+ma 0.8924 0.7655 0.8707 0.7910 0.4805 0.5654
mltS+mw 0.8947 0.7837 0.8618 0.7674 0.4933 0.5647
mltS+mp 0.8982 0.7044 0.8477 0.7432 0.4830 0.5739

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000
mlLGPR 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914
triUMPF 0.7590 0.3835 0.3529 0.3319 0.7126 0.6229
leADS 0.8078 0.4982 0.4392 0.4541 0.7816 0.8114
mltS+ma 0.8371 0.8029 0.5020 0.5764 0.8506 0.8400
mltS+mw 0.8306 0.7957 0.4647 0.6114 0.8506 0.8229
mltS+mp 0.8046 0.5125 0.4039 0.4803 0.8161 0.7543

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511
mlLGPR 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768
triUMPF 0.8090 0.4703 0.4775 0.4735 0.5254 0.5266
leADS 0.8596 0.5902 0.5895 0.5943 0.6700 0.7282
mltS+ma 0.8639 0.7803 0.6368 0.6633 0.6245 0.6759
mltS+mw 0.8615 0.7879 0.6038 0.6897 0.6167 0.6698
mltS+mp 0.8488 0.5934 0.5471 0.5836 0.6068 0.6519

Table 10.2: Predictive performance of each comparing algorithm on 6 benchmark golden
T1 datasets. ma: meta-adaptive; mw: meta-weight; mp: meta-predict. For each performance
metric, ‘↓’ indicates the smaller score is better while ‘↑’ indicates the higher score is better.
Values in boldface represent the best performance score while the underlined score indicates
the best performance among mltS prediction strategies.
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Figure 10.6: 87 LeishCyc pathways. The x-axis indicate models while y-axis represents Leish-
Cyc pathways. Black circles indicate true pathways predicted by models while grey circles
represent false negative pathways that were not inferred by models. The size of circles indi-
cates the pathway reliability score obtained from L. The © symbols are pathways that were
recovered while + suggests pathways that were incorrectly not predicted by mltS.
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(a) Moranella (b) Tremblaya

(c) Composite genome

Figure 10.7: Comparative study of predicted pathways for symbiont data between Patho-
Logic, mlLGPR, triUMPF, leADS, and mltS (with different prediction strategies). ma:
meta-adaptive; mw: meta-weight; mp: meta-predict. Black circles indicate that predicted
pathways by associated models while grey circles indicate pathways that were not recovered
by models. The size of circles scales with reaction abundance information.

ing from a coalition of local learners (where each was trained on a designated MSML dataset)

to effectively predict pathways either by performing adjusted voting using all local models

or from global vectors. On the selected datasets, mltS’s achieved competitive performances

and sometimes excelled other pathway inference algorithms.
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Metric mlLGPR triUMPF leADS mltS+ma mltS+mw mltS+mp
Hamming Loss (↓) 0.0975 0.0436 0.0407 0.0396 0.0394 0.0417
Average Precision Score (↑) 0.3570 0.7027 0.7419 0.7338 0.7379 0.7206
Average Recall Score (↑) 0.7827 0.5101 0.5283 0.5709 0.5666 0.5325
Average F1 Score (↑) 0.4866 0.5864 0.6125 0.6358 0.6352 0.6080

Table 10.3: Predictive performance of mlLGPR with elastic net penalty, triUMPF, leADS,
and mltS on CAMI low complexity data. ma: meta-adaptive; mw: meta-weight; mp: meta-
predict. Values in boldface represent the best performance score while the underlined score
indicates the best performance among mltS prediction strategies.

10.7 Summary

In this chapter, we presented a novel solution to estimate the reliability of all pathway in-

ference algorithms that are discussed in the previous chapters. The proposed solution was

referred to as mltS, and is achieved iteratively in four steps: i)- executing multiple local

learners where each is allocated to learn from a specific dataset originated from a path-

way inference algorithm; ii)- computing a discrepancy pathway label matrix that describes

the disagreement score for each pathway using a reference dataset for each model; iii)-

obtaining reliability weights (uncertainty) for each model; and iv)- optimizing global coeffi-

cients using meta-learning based approach. To validate the performance of mltS, several

empirical studies were conducted on local models, their estimated reliability weights, and

pathway inference using the following prediction strategies: meta-adaptive, meta-weight,

and meta-predict, which all showed promising results of mltS. Compared with the other

pathway prediction methods, mltS was reported to perform equal or better than the previous

approaches using benchmark datasets in Chapter 4.2.
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Figure 10.8: Comparative study of predicted pathways for HOT DNA 25m data between
PathoLogic, mlLGPR, triUMPF, leADS, and mltS (with three prediction strategies). ma:
meta-adaptive; mw: meta-weight; mp: meta-predict. Black circles indicate predicted path-
ways by the associated models while grey circles indicate pathways that were not recovered
by models. The size of circles corresponds the pathway abundance information.



Figure 10.9: Comparative study of predicted pathways for HOT DNA 75m data between
PathoLogic, mlLGPR, triUMPF, leADS, and mltS (with three prediction strategies). ma:
meta-adaptive; mw: meta-weight; mp: meta-predict. Black circles indicate predicted path-
ways by the associated models while grey circles indicate pathways that were not recovered
by models. The size of circles corresponds the pathway abundance information.
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Figure 10.10: Comparative study of predicted pathways for HOT DNA 110m data between
PathoLogic, mlLGPR, triUMPF, leADS, and mltS (with three prediction strategies). ma:
meta-adaptive; mw: meta-weight; mp: meta-predict. Black circles indicate predicted path-
ways by the associated models while grey circles indicate pathways that were not recovered
by models. The size of circles corresponds the pathway abundance information.
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Figure 10.11: Comparative study of predicted pathways for HOT DNA 500m data between
PathoLogic, mlLGPR, triUMPF, leADS, and mltS (with three prediction strategies). ma:
meta-adaptive; mw: meta-weight; mp: meta-predict. Black circles indicate predicted path-
ways by the associated models while grey circles indicate pathways that were not recovered
by models. The size of circles corresponds the pathway abundance information.
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Chapter 11

Conclusions and Future Work
“Good judgment comes from experience, and experience comes from bad judg-

ment.”

– Rita Mae Brown

From the very inception of this thesis work, we aimed to deliver an efficient pathway predic-

tion model that researchers, especially biologists, could adopt it to reconstruct pathways

from individual organisms and more complex community level of organization. In this final

chapter, we first summarize the main contributions of this thesis in Section 11.1 and what

hurdles remain in Section 11.2. We will briefly navigate the methods introduced in this

thesis and their limitations while we will suggest and, yet, speculate several promising future

research directions to pursue, particularly to overcome some limitations addressed in this

thesis.

11.1 Thesis Summary

Over the past decade, there has seen an enormous increase in the breadth and scope of

publicly available genomic (ranging from bacteria to humans) and metagenomic (spanning

from population to complex cellular communities) dataset [180, 209, 308]. Consequently,

several ambitious projects were initiated to interpret the data and discern knowledge from

DNA sequences. Of these, metabolic pathway inference tools were developed [73, 163, 370].

While these tools have not only helped interdisciplinary researchers to extend the frontiers

of knowledge associated with genomic/metagenomic data, they have been successfully

integrated into bioinformatics pipelines [4, 163], hence, providing an automated way to

hypothesis testing and, at the same time, constituting scaffolds to designing novel pathway

inference methods. That is, the conventional tools lack many functionalities (discussed in

Chapter 2) (e.g. not including a confidence score for each recovered pathway).
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In response, we proposed mlLGPR model in Chapter 5 for making good predictions

using datasets and metrics discussed in Chapter 4. The mlLGPR method accommodates

predefined manually designed rules according to the previously established work of Dale

and colleagues [73] to improve the predictive performance over the traditional methods as

demonstrated in the experimental analysis with some successful and failed predictions.

Unfortunately, several issues were encountered in developing mlLGPR and are mainly

attributed to the definition of the ruleset (or features). We observed that some of the adopted

features in mlLGPR were susceptible to noise (under specific conditions) resulting in low-

performance scores. Therefore, in Chapter 6, we have developed the pathway2vec package

that is comprised of six representational learning modules (node2vec [114], metapath2vec

[81], metapath2vec++ [81], JUST [145], RUST, RUST-norm) to automatically generate fea-

tures for the pathway inference task. In all of these modules, a metabolic pathway was

decomposed into three interacting layers: compounds, enzymes, and pathways, where each

layer consists of associated nodes resulting in a multi-layer heterogeneous information

network. Then, a Skip-Gram model was applied to learn embeddings for each node. The

pathway2vec contains a flexible random walk method called RUST that uses unit-circle and

domain size hyperparameters to exploit local/global structure while absorbing semantic

information from any graph type. During the empirical investigation of pathway prediction,

it was demonstrated that the representational learning approaches were promising adjuncts

or alternatives to features engineering.

Consequently, the triUMPF algorithm in Chapter 7 was developed. This novel model

combines three stages of non-negative matrix factorization (NMF) to capture myriad rela-

tionships between enzymes and pathways within a graph network followed by community

detection to clustering nodes sharing similar community profiles across examples. We

showed that the triUMPF’s precision scores on golden T1 datasets were substantially im-

proved over mlLGPR while discovering communities consisting of few correlated enzymes

and pathways. This proves that communities contain relevant information to recovering

associated (loosely coupled) pathways from BioCyc dataset constrained on MetaCyc.

However, the triUMPF’s overall performance was found to be heavily influenced by the

size of pathways and miss labeled pathways in the training BioCyc data, hence, resulting

in significant sensitivity loss. This has lead to embrace the bag idea, presented in Chapter

8, where a bag is comprised of correlated (or spurious associated) pathways. Specifically,

we introduced reMap that performs relabeling examples to bags which can be obtained

using either SOAP or SPREAT. Both of the former models incorporate pathway abundance

information to encode each example as a mixture distribution of bags and each bag is com-
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posed of a mixture of pathways with different distributions. After recovering bags, leADS,

described in Chapter 9, can be employed to the pathway recovery task. The preliminary

investigations revealed that the bag idea showed promising results in boosting the perfor-

mance against triUMPF. This enforced us to perform in-depth analysis using leADS, which

in addition, has the builtin capability to subselect the most informative samples to solve the

class-imbalance problem in an ensemble manner. Backed by empirical studies, leADS was

exhibited to achieve competitive performances against all the prediction algorithms.

leADS can be trained in two ways either dependency or factorization, hence, intriguing

questions regarding “which of these models” retrieve a true set of pathways from pathway

datasets and “why?”. To quest for a solution, we started working on the concept of agglomer-

ative learning. The idea evolved to mltS described in Chapter 10. Specifically, mltS assigns

weights to models by learning the predicted responses corresponding to each of these mod-

els. The weights imply the confidence of models and are estimated using risk minimization

that requires reference noise-free datasets (golden T1). Once the weights are obtained, the

label probability matrix for each label per source is calculated to answer the “why?” ques-

tion. We showed that by using weights we can learn global (agglomerated) parameters by

fusing coefficients from all pathway prediction models based on meta-learning approach. In

addition, the probability matrix can serve as weighted votes during prediction where each

model’s results are calibrated according to the label matrix probability. We closely studied

the empirical behavior of weights and the matrix using real-world datasets in Chapter 4.

We explained reasons behind the successes of some models in terms of their confidence

weights. The mltS framework was the first work to propose a solution for predicting pathways

combined from multiple models using a weighted voting scheme for multi-label learning.

We expect mltS would be intensively employed by many interesting users in the future for

the purpose of pathway prediction.

In summary, this thesis examined multiple machine learning based pathway models

where their predictive performances were observed to be equaled or exceeded the classical

algorithms. Furthermore, we have shown that our approaches in many cases were simple

while in other situations we followed more convenient approaches by adopting graph

techniques to predicting pathways. In either scenarios, we speculate that in the future these

methods will likely be improved based on dataset type and case studies. In the following

section, we will provide some directions that worth pursuing in the future studies.
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11.2 Future Work

Recall that in Chapter 1 we proposed four desired characteristics that should be adopted by a

pathway inference algorithm. These are: noise insensitiveness, correlation among pathways,

enzyme disambiguation, and taxonomic information. During our Ph.D. research, we made

sure that our models were complying some (if not all) of these desiderata. While the later

two characteristics were rarely examined, additional issues were encountered during the

course of Ph.D. work. Here, we outline these problems and treatments to solve them.

Throughout this thesis, we argued that annotated pathway datasets (e.g. BioCyc collec-

tion) are usually of low quality where pathways and enzymes (or ECs) may be miss-annotated

or left blank due to upstream analysis. Models as triUMPF and reMap were developed to

reduce the impact of noise, however, they both add a level of intricacy, in the computa-

tional perspective and the elucidation of results. Moreover, the constraints applied to the

coefficient values in triUMPF reside outside the hypothesis function and merely serve as

regularization, i.e., ||Θ−ZHW>||2F in Eq. 7.3.4, while reMap persists to produce bags that are

semi-constant over many iterations (reaching local minima). One may consider leveraging

meta-level associations, similar to pathway2vec, to guess which pathways and enzymes

were tainted or missed. This is probable in the context of partial multi-label learning. Many

methods follow this approach and have shown superiority over the traditional multi-label

algorithms as discussed in Chapter 3.4.4. Therefore, an extension to triUMPF would be

approaching pathway prediction problem based on partial labeling technique.

In addition to the above, pathway datasets exhibit a long-tail distribution in which a

significantly large fraction of pathways is tail labels. For example, the BioCyc collection

contains more than 600 pathways that are infrequently occurring (less than 5 examples).

In Chapter 9, we showed that by using leADS one may pick the most informative instances

with tail pathways to boost training. Nonetheless, this approach has limitations. To this date,

leADS do not incorporate MetaCyc constraints to predicting pathways instead it relies on

features generated by pathway2vec. An interesting solution would be either to incorporate

the subselection strategy in triUMPF or integrate graph in laADS. Since leADS leverage

bags, it would be extremely beneficial to follow the later suggestion while also merging

the relabeling technique introduced in reMap that was reported to boost the sensitivity

scores. Alternatively, one may incorporate all the above properties in mltS through adopting

weighted graph techniques [88, 339, 342] to learn global coefficients.

With regard to taxonomic information, at the beginning of Ph.D. research, we manually

designed rules that exclusively perform mapping pathways and enzymes to taxa according to
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MetaCyc. Moreover, our ruleset included filtering out enzymes based on taxa in an attempt

to address the enzymes disambiguation problem. These rules were employed in mlLGPR

for improved pathway prediction precision. However, they introduced problems for the

metagenomic datasets and subsequently were abandoned favoring graph and representa-

tion learning methods. Therefore, a possible angle in the future that should be considered is

to identify the taxonomic compositions in a metagenome and then apply an appropriate

pathway inference model. With that being said, this simple procedure may be impeded with-

out taking pathway causality (i.e., influence of a pathway contributing to other pathways) or

association information involving organisms interactions for optimum pathway recovery

from a metagenome.

Finally, comparative analysis using more advanced multi-label models (e.g. SLICE [147],

a combination of CNN and LSTM [60], and Parabel [260]) were not investigated in this thesis.

At the time of evaluation, these tools were inaccessible, not designed for pathways, not

maintained, or the framework is not suitable for large scale data processing (e.g. scikit-

multilearn [320]). A valuable direction for future work is to build a community-driven

integrated ecosystem encompassing bleeding-edge approaches dedicated to solving the

pathway prediction while making it accessible to researchers. This could provide valuable

resources for many downstream applications (e.g. differential pathway analysis [104, 215]

and discovering novel pathways [178, 321, 326]).

Final Words
The pathway inference tool is a core component of many bioinformatics ap-

plications and should be utilized by researchers to perform pathway recovery,

evaluation, and generate hypotheses. We believe that the contributions made

in this thesis touched several key ideas, methods, and datasets to achieve

our intended overall objectives.
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Appendix A

Synthetic Samples Generation

The in silico synthetic data generation process can be summarized in three key stages:

• Phase 1: Specifying Pathways. All available pathways from the MetaCyc database and

T1 data are collected. A list of pre-specified pathways is selected while truncating the

rest. The selected pathway list Ŷ is used for training and performance evaluation.

• Phase 2: Generation Process. We construct an instance by randomly selecting a sub-

set of pathways from Y , i.e., Ŷi ⊂Y . Given Ŷi , we perform mapping onto MetaCyc to

retrieve a list of enzymatic reactions with abundances so as to generate an instance x(i ).

Together (x(i ),y(i )) forms a synthetic sample. Replicating this process n times results

in a dataset S = {(x(i ),y(i ))|1 < i ≤ n}. The enzymatic reactions are indicated by the

EC (Enzyme Commission) numbers, which denote the numerical classification of

enzymes based on the reactions they catalyze. In the experiment, we consider all EC

numbers, including the incomplete ones, such as EC 1.2.3.-.

• Phase 3: Corruption Process. The corruption is explicitly applied by first selecting a

sample (x(i ),y(i )), uniformly, from a newly created S . Then, for each pathway y j ∈ y(i ),

one of the three options is selected: i)- retain y j , ii)- remove a list of enzymatic reactions

associated with y j , or iii)- insert a list of false enzymatic reactions to y j . This process

is replicated for each individual pathway and for every sample in S with four specific

constraints (reflecting the rules definitions in PathoLogic [163]):

1. If only a single enzymatic reaction is attached to y j , we retain that pathway.

2. If a set of enzymatic reactions is unique to y j , we do not remove those unique

reactions.
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3. If y j is a biosynthesis pathway, we do not remove the last two enzymatic reactions

from that pathway.

4. If y j is a biodegradation pathway, we do not remove the first two enzymatic

reactions from y j .

Because the set of pathways, as defined in the MetaCyc database, is unique, distinct,

and reflects only a subset of the earth’s still unexplored organismal diversity, the pathway

corruption technique is adopted to create various forms of true pathways that might be

encountered in the experimental data due to the errors propagated from the upstream data

analysis. In creating the synthetic dataset, the above procedure neglects completely the true

biological rules; nonetheless, this dataset will provide a separate unbiased measurement on

the performance of mlLGPR. We created two synthetic datasets: Synset-1 that follows Phase

1 and 2 of the generation process while the Synset-2 includes Phase 3. Based to empirical

assessments, the number of expected pathways for both datasets is assumed to follow the

Poisson distribution with mean value equal to 500. We assume that x̂(i ) = x(i ) +ε, where ε is

the amount of corruption. Given that we are not trying to recover the true sample x(i ) x̂(i ) is

denoted as x(i ).
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Appendix B

Features Adopted in mlLGPR

Given a set of ECs with abundance information, we define the following four sets of features:

i)- reactions evidence features, ii)- pathways evidence features, iii)- pathway common

features, and iv)- possible pathways features. Many features were re-designed from the work

of Dale and colleagues [73].

B.1 Reactions Evidence Features

These real-valued features capture various reactions properties that are acquired from

samples.

1. fraction-total-ecs-to-distinct-ecs (numeric).

The fraction of the total number of ECs, present in a sample, to the distinct set of ECs

observed in that sample.

2. fraction-total-possible-pathways-to-distinct-pathways (numeric)

The fraction of the total number of possible pathways that could be present in a sample

to the distinct set of pathways represented in the total possible pathways.

3. fraction-total-ecs-to-ecs-mapped-to-single-pathways (numeric)

The fraction of the total number of ECs that are associated with single pathways, to

the total number of ECs, present in a sample.

4. fraction-total-ecs-mapped-to-pathways (numeric)

The fraction of the total number of ECs, present in a sample, to the total number of

pathways that are mapped according to MetaCyc database.
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5. fraction-total-distinct-ecs-contribute-in-subpathway-as-inside-superpathways (nu-

meric)

The fraction of the total number of distinct ECs, contributing in pathways that are

subpathways to superpathways according to MetaCyc database, to the total number

of ECs, present in a sample.

6. fraction-total-ecs-contribute-in-subpathway-as-inside-superpathways (numeric)

The fraction of the total number of ECs, contributing in pathways that are subpathways

to superpathways according to MetaCyc database, to the total number of ECs, present

in a sample.

7. fraction-total-distinct-ecs-act-as-initial-reactions (numeric)

The fraction of the total number of distinct ECs, contributing at the beginning of

pathways, to the total number of ECs, present in a sample.

8. fraction-total-ecs-act-as-initial-reactions (numeric)

The fraction of the total number of ECs, contributing at the beginning of pathways, to

the total number of ECs, present in a sample.

9. fraction-total-distinct-ecs-act-as-final-reactions (numeric)

The fraction of the total number of distinct ECs, contributing at the rear-end of path-

ways, to the total number of ECs, present in a sample.

10. fraction-total-ecs-act-as-final-reactions (numeric)

The fraction of the total number of ECs, contributing at the rear-end of pathways, to

the total number of ECs, present in a sample.

11. fraction-total-distinct-ecs-act-as-initial-and-final-reactions (numeric)

The fraction of the total number of distinct ECs, contributing at either the beginning

or the rear-end of pathways, to the total number of ECs, present in a sample.

12. fraction-total-ecs-act-as-initial-and-final-reactions (numeric)

The fraction of the total number of ECs, contributing at either the beginning or the

rear-end of pathways, to the total number of ECs, present in a sample.

13. fraction-total-distinct-ecs-act-in-deg-or-detox-pathway (numeric)

The fraction of the total number of distinct ECs that act either in degradation or

detoxification pathways to the total number of ECs, present in a sample.
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14. fraction-total-ecs-act-in-deg-or-detox-pathway (numeric)

The fraction of the total number of ECs that act either in degradation or detoxification

pathways to the total number of ECs, present in a sample.

15. fraction-total-distinct-ec-act-in-biosynthesis-pathway (numeric)

The fraction of the total number of distinct ECs that act in biosynthetic pathways to

the total number of ECs, present in a sample.

16. fraction-total-ec-act-in-biosynthesis-pathway (numeric)

The fraction of the total number of ECs that act in biosynthetic pathways to the total

number of ECs, present in a sample.

17. fraction-total-distinct-ec-act-in-energy-pathway (numeric)

The fraction of the total number of distinct ECs that act in energy pathways to the total

number of ECs, present in a sample.

18. fraction-total-ec-act-in-energy-pathway (numeric)

The fraction of the total number of ECs that act in energy pathways to the total number

of ECs in a sample, present in a sample.

19. fraction-total-ecs-to-total-reactions (numeric)

The fraction of the total number of ECs to the total number of reactions that are

catalyzed by enzymes, encoded as ECs, in a given sample.

20. fraction-total-distinct-ecs-to-total-distinct-reactions (numeric)

The fraction of the total number of distinct ECs to the total number of distinct reactions

that are catalyzed by enzymes, encoded as ECs, in a given sample.

21. fraction-total-ec-contribute-in-unique-reaction (numeric)

The fraction of the total number of ECs to the total number of reactions unique to ECs

that are catalyzed by enzymes in a given sample.

22. fraction-total-distinct-ec-contribute-to-reactions-has-taxonomic-range (numeric)

The fraction of the total number of distinct ECs that have taxonomic information to

the total number of ECs, present in a sample.

23. fraction-total-pathways-over-total-ecs (numeric)

The fraction of the total number of possible pathways that could be present in a sample

to the total number of ECs in that sample.

234



24. fraction-total-pathways-over-distinct-ec (numeric)

The fraction of the total number of possible pathways that could be present in a sample

to the total number of distinct ECs in that sample.

25. fraction-total-distinct-pathways-over-distinct-ec (numeric)

The fraction of the total number of distinct possible pathways that could be present in

a sample to the total number of distinct ECs in that sample.

26. fraction-distinct-ec-contributes-in-subpathway-over-distinct-pathways (numeric)

The fraction of the total number of distinct ECs, contributing in subpathways, to the

total number of distinct possible pathways that could be present in a given sample.

27. fraction-ec-contributes-in-subpathway-over-total-pathways (numeric)

The fraction of the total number of ECs, contributing in subpathways, to the total

number of possible pathways that could be present in a given sample.

28. fraction-distinct-ec-act-in-deg-or-detox-pathway-over-distinct-pathways (numeric)

The fraction of the total number of distinct ECs, acting in degradation or detoxification

pathways, to the total number of possible distinct pathways that could be present in a

given sample.

29. fraction-distinct-ec-act-in-deg-or-detox-pathway-over-total-pathways (numeric)

The fraction of the total number of distinct ECs, acting in degradation or detoxification

pathways, to the total number of possible pathways that could be present in a given

sample.

30. fraction-ec-act-in-deg-or-detox-pathway-over-total-pathways (numeric)

The fraction of the total number of ECs, acting in degradation or detoxification path-

ways, to the total number of possible pathways that could be present in a given sample.

31. fraction-distinct-ec-act-in-biosynthesis-pathway-over-distinct-pathways (numeric)

The fraction of the total number of distinct ECs, acting in biosynthetic pathways, to

the total number of possible distinct pathways that could be present in a given sample.

32. fraction-distinct-ec-act-in-biosynthesis-pathway-over-total-pathways (numeric)

The fraction of the total number of distinct ECs, acting in biosynthetic pathways, to

the total number of possible pathways that could be present in a given sample.
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33. fraction-ec-act-in-biosynthesis-pathway-over-total-pathways (numeric)

The fraction of the total number of ECs, acting in biosynthetic pathways, to the total

number of possible pathways that could be present in a given sample.

34. fraction-distinct-ec-act-in-energy-pathway-over-distinct-pathways (numeric)

The fraction of the total number of distinct ECs, acting in energy pathways, to the total

number of possible distinct pathways that could be present in a given sample.

35. fraction-distinct-ec-act-in-energy-pathway-over-total-pathways (numeric)

The fraction of the total number of distinct ECs, acting in energy pathways, to the total

number of possible pathways that could be present in a given sample.

36. fraction-ec-act-in-energy-pathway-over-total-pathways (numeric)

The fraction of the total number of ECs, acting in energy pathways, to the total number

of possible pathways that could be present in a given sample.

37. fraction-total-reactions-over-total-pathways (numeric)

The fraction of the total number of reactions, catalyzed by enzymes, encoded as ECs,

to the total number of possible pathways that could be present in a given sample.

38. fraction-total-reactions-over-distinct-pathways (numeric)

The fraction of the total number of reactions, catalyzed by enzymes and encoded as

ECs, to the total number of possible distinct pathways that could be present in a given

sample.

39. fraction-distinct-reaction-over-distinct-pathways (numeric)

The fraction of the total number of distinct reactions, catalyzed by enzymes and

encoded as ECs, to the total number of possible distinct pathways that could be

present in a given sample.

40. ecs-in-energy-pathways-mostly-missing (numeric)

The total number of energy pathways that have more than half of their true ECs

mapping are missing in a given sample.

41. ecs-in-pathways-mostly-present (numeric)

The total number of pathways that have more than half of their true ECs mapping are

present while missing only one ECs in a given sample.
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42. all-initial-ecs-present-in-pathways (numeric)

The total number of pathways that have at least two of their beginning ECs are present

in a given sample.

43. all-final-ecs-present-in-pathways (numeric)

The total number of pathways that have at least two of their final ECs are present in a

given sample.

44. all-initial-and-final-ecs-present-in-pathways (numeric)

The total number of pathways that have at least two of their beginning and final ECs

are present in a given sample.

45. all-initial-ecs-present-in-deg-or-detox-pathways (numeric)

The total number of degradation or detoxification pathways that have at least two of

their beginning ECs are present in a given sample.

46. all-final-ecs-present-in-deg-or-detox-pathways (numeric)

The total number of degradation or detoxification pathways that have at least two of

their final ECs are present in a given sample.

47. all-initial-ecs-present-in-biosynthesis-pathways (numeric)

The total number of biosynthetic pathways that have at least two of their beginning

ECs are present in a given sample.

48. all-final-ecs-present-in-biosynthesis-pathways (numeric)

The total number of biosynthetic pathways that have at least two of their final ECs are

present in a given sample.

49. most-ecs-absent-in-pathways (numeric)

The total number of pathways that have only one of their true ECs mapping is present

in a given sample.

50. most-ecs-absent-not-distinct-in-pathways (numeric)

The total number of pathways that have half of their true ECs mapping are not distinct

to pathways and missing in a given sample.

51. one-ec-present-but-in-minority-in-pathways (numeric)

The total number of pathways that have only one of their true ECs mapping is present

and is considered minority to pathways in a given sample.
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52. all-distinct-ec-present-in-pathways (numeric)

The total number of pathways that have all of their true distinct ECs mapping are

present in a given sample.

53. all-ecs-present-in-pathways (numeric)

The total number of pathways that have all of their true ECs mapping are present in a

given sample.

54. all-distinct-ec-present-or-orphaned-in-pathways (numeric)

The total number of pathways that have all of their true distinct ECs mapping are

present or are orphaned according to MetaCyc in a given sample.

55. all-ec-present-or-orphaned-in-pathways (numeric)

The total number of pathways that have all of their true ECs mapping are present or

are orphaned according to MetaCyc in a given sample.

56. majority-of-ecs-absent-in-pathways (numeric)

The total number of pathways that have more than half of their true ECs mapping are

missing in a given sample.

57. majority-of-ecs-present-in-pathways (numeric)

The total number of pathways that have more than half of their true ECs mapping are

present in a given sample.

58. majority-of-distinct-ecs-present-in-pathways (numeric)

The total number of pathways that have more than half of their true distinct ECs

mapping are present in a given sample.

59. majority-of-reactions-present-distinct-in-pathways (numeric)

The total number of pathways that have more than half of their true ECs mapping are

present and distinct to pathways in a given sample.

60. missing-at-most-one-ec-in-pathways (numeric)

The total number of pathways that have only one of their true ECs mapping is absent

in a given sample.

61. has-distinct-ecs-present-in-pathways (numeric)

The total number of pathways that some of their true distinct ECs mapping are present

in a given sample.
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62. fraction-distinct-ecs-present-or-orphaned-in-pathways (numeric)

The total fraction of distinct ECs or orphaned reactions associated to the possible

pathways in a given sample to the pathways true ECs mapping.

63. fraction-reactions-present-or-orphaned-distinct-in-pathways (numeric)

The total fraction of ECs or orphaned reactions that are distinctly associated to possible

pathways in a given sample to the pathways true ECs mapping.

64. fraction-reactions-present-or-orphaned-in-pathways (numeric)

The total fraction of ECs or orphaned reactions associated to the possible pathways in

a given sample to the pathways true ECs mapping.

65. num-distinct-reactions-present-or-orphaned-in-pathways (numeric)

The total number of distinct ECs or orphaned reactions associated to the possible

pathways are present in a given sample.

66. num-reactions-present-or-orphaned-in-pathways (numeric)

The total number of ECs or orphaned reactions associated to the possible pathways

are present in a given sample.

67. evidence-info-content-norm-present-in-pathways (numeric)

The total evidence information content of pathways, normalized by the number of

reactions associated with pathways that are present in a given sample. For a single

pathway y j of sample xi , this feature is computed as:

evi dence = 1∑
â∈y(i )

j
â

∑
a∈x(i )

1∑
yk∈Y

∑
(e,a′)∈yk

δ(a′)

where δ(a′) =
1, if a′ ≥ 1 and a′ ∈N

0, otherwise

(B.1.1)

where Y represents the universal set of pathways while e represents an EC and a, a′

and â are abundances in x(i ), yk , and y(i )
j , respectively and are elements in N. This

feature measures how strongly the evidence for the pathway j based on ECs. The ECs

contributing to many pathways have low evidence for the presence of the reactions

that EC catalyze.

68. evidence-info-content-present-in-pathways (numeric)

The total evidence information content of pathways in a given sample.
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B.2 Pathways Evidence Features

These features are designed to capture simple patterns for each pathway from samples. They

are combination of two types: boolean and numeric.

1. ecs-mostly-present-in-pathway (boolean)

True if a pathway is: a)- missing at most one EC and b)- half of its ECs is present.

2. prob-ecs-mostly-present-in-pathway (numeric)

The fraction of the total number of ECs associated to a pathway, present in a sample,

to the true ECs mapping of that pathway, satisfying two conditions: a)- missing at

most one EC and b)- half of that pathway’s ECs is present.

3. all-initial-ecs-present-in-pathway (boolean)

True if the first two ECs associated to a pathway are present in a sample.

4. prob-initial-ecs-present-in-pathway (numeric)

The fraction of the first two ECs associated to a pathway, if present in a sample, to the

first two true ECs mapping of that pathway.

5. all-final-ecs-present-in-pathway (boolean)

True if the last two ECs associated to a pathway are present in a sample.

6. prob-final-ecs-present-in-pathway (numeric)

The fraction of the last two ECs associated to a pathway, if present in a sample, to the

last two true final ECs mapping of that pathway.

7. all-initial-and-final-ecs-present-in-pathway (boolean)

True if the first two and the last two ECs associated to a pathway are present in a

sample.

8. prob-all-initial-and-final-ecs-present-in-pathway (numeric)

The fraction of the first two and the last two ECs associated to a pathway, if present in

a sample, to the first two and the last two true ECs mapping of that pathway.

9. all-initial-ecs-present-in-deg-or-detox-pathway (boolean)

True if the first two ECs associated to a degradation or a detoxification pathway are

present in a sample.
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10. prob-all-initial-ecs-present-in-deg-or-detox-pathway (numeric)

The fraction of the first two ECs associated to a degradation or a detoxification pathway,

if present in a sample, to the first two true ECs mapping of that pathway.

11. all-initial-ecs-present-in-biosynthesis-pathway (boolean)

True if the first two ECs associated to a biosynthetic pathway are present in a sample.

12. prob-all-initial-ecs-present-in-biosynthesis-pathway (numeric)

The fraction of the first two ECs associated to a biosynthetic pathway, if present in a

sample, to the first two true ECs mapping of that pathway.

13. most-ecs-absent-in-pathway (boolean)

True if only one EC associated to a pathway is present in a sample.

14. most-ecs-absent-not-distinct-in-pathway (boolean)

True if half of ECs associated to a pathway in a sample is not distinct to that pathway.

15. one-ec-present-but-in-minority-in-pathway (boolean)

True if only one EC associated to a pathway is present in a sample and is considered a

minority to that pathway.

16. all-distinct-ec-present-in-pathway (boolean)

True if all distinct ECs associated to a pathway are present in a sample.

17. all-ecs-present-in-pathway (boolean)

True if all ECs associated to a pathway are present in a sample.

18. all-distinct-ec-present-or-orphaned-in-pathway (boolean)

True if all distinct ECs associated to a pathway are present in a sample or orphaned

according to MetaCyc.

19. all-ec-present-or-orphaned-in-pathway (boolean)

True if all ECs associated to a pathway are present in a sample or orphaned according

to MetaCyc.

20. majority-of-ecs-absent-in-pathway (boolean)

True if more than half of ECs associated to a pathway in a sample are missing.

21. majority-of-ecs-present-in-pathway (boolean)

True if more than half of ECs associated to a pathway in a sample are present.
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22. majority-of-distinct-ecs-present-in-pathway (boolean)

True if more than half of distinct ECs associated to a pathway in a sample are present.

23. majority-of-reactions-present-distinct-in-pathway (boolean)

True if more than half of ECs associated to a pathway in a sample are present and

distinct to that pathway.

24. missing-at-most-one-ec-in-pathway (boolean)

True if only one EC associated to a pathway in a sample is missing.

25. has-distinct-ecs-present-in-pathway (boolean)

True if some distinct ECs associated to a pathway in a sample are present.

26. fraction-distinct-ecs-present-or-orphaned-in-pathway (numeric)

The fraction of distinct ECs or orphaned reactions associated to a pathway in a sample.

27. fraction-reactions-present-or-orphaned-distinct-in-pathway (numeric)

The fraction of ECs or orphaned reactions that are distinctly associated to a pathway

in a sample.

28. fraction-reactions-present-or-orphaned-in-pathway (numeric)

The fraction of ECs or orphaned reactions associated to a pathway in a sample.

29. num-distinct-reactions-present-or-orphaned-in-pathway (numeric)

The number of distinct ECs or orphaned reactions associated to a pathway is present

in a sample.

30. num-reactions-present-or-orphaned-in-pathway (numeric)

The number of ECs or orphaned reactions associated to a pathway is present in a

sample.

31. evidence-info-content-norm-present-in-pathway (numeric)

The total evidence information content of a pathway, normalized by the number of

reactions associated with that pathways which are present in a sample.

32. evidence-info-content-present-in-pathway (numeric)

The total evidence information content of a pathway in a sample.
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B.3 Pathway Common Features

This feature set is designed to recognize (mis-)matches between a list of ECs from samples

and the true mappings of pathways to ECs.

1. ec-pathway-common-present (boolean)

B.4 Possible Pathways Features

This feature set is of two types: i)- a boolean representation indicating the presence/absence

of pathways in samples that exceed a user-defined cutoff threshold (0.5 in our setting), and

ii)- a numerical representation encoding the probabilities of pathways to be present in

samples.

1. possible-pathways-present (boolean)

2. prob-possible-pathways-present (numeric)
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Appendix C

Statistical Analyses of Pathway Prediction

Algorithms for mlLGPR

Inspired by the Friedman test [78], we conduct a systematic approach to compare and rank

the pathway prediction algorithms presented in Chapter 5. Let r j
i denote the rank of the

m-th of C algorithms, based on a performance metric discussed in Chapter 4.4, on the i -th

of |S | dataset. Also, let Rm = 1
|S |

∑
i r m

i be the average rank for the m-th algorithm under the

null-hypothesis that states “all algorithms are equally likely to perform”. Then, the Friedman

statistic is distributed according to the F-distribution with C−1 and (C−1)(|S |−1) degrees

of freedom:

FF = (|S |−1)χ2
F

|S |(C−1)−χ2
F

, where χ2
F = 12|S |

C(C+1)
[
∑
m

R2
m − C(C+1)2

4
]

The results of this test are summarized in Table C.1. With 7 algorithms and 7 dataset,

the critical value of FF (6,36) for τ= 0.05 significance level is 2.3638, so we reject the null-

hypothesis in terms of all metrics because their FF values are higher than the critical value.

Metric FF Critical value (τ= 0.05)
Hamming Loss 41.4783

2.3638
Average Precision 111.3000
Average Recall 57.5250
Average F1 32.1111

Table C.1: Summary of the Friedman statistics FF for 7 algorithms and 7 datasets. The
critical value τ is set to 0.05 significance level.

Consequently, we proceed with a Nemenyi (post-hoc) [78] test to analyze the relative

performance among the pathway prediction algorithms where the mlLGPR-EN is treated as
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Figure C.1: Comparison of seven methods against each other with the Nemenyi test us-
ing CD diagrams. Groups of methods that are not significantly different (at τ = 0.05) are
connected. (a)- CD diagram for Hamming loss. (b)- CD diagram for average precision score.
(c)- CD diagram for average recall score.(d)- CD diagram for average F1 score.

the control algorithm:

Critical Difference (CD) = qτ

√
C(C+1)

6|S |

where qτ = 2.949 at significance level τ= 0.05, hence, the critical difference (CD) = 3.4052

(C = 7, |S | = 7) (see the paper [78]). This means the performance of mlLGPR-EN in compare

to the remaining pathway inference algorithm is considered to be significantly different

if the average ranking based on a performance metric on 7 datasets differs by more than

3.4052 CDs. Fig. C.1 shows the CD diagrams for four evaluation metrics at 0.05 significance

level, where the average rank of each comparing algorithm is marked along the axis. In each

sub-figure, methods that are not considered significantly different are interconnected with

a thick line. In summary, among 49 comparisons (7 methods ×7 datasets), all variants of

mlLGPR statistically outperformed the other methods in terms of Hamming loss and average

F1 metrics. With regard to average precision, all variants of mlLGPR achieve statistically

comparable performances with PathoLogic, however, both mlLGPR-EN and mlLGPR-L1

have similar rankings as BASELINE, Naïve, and MinPath in terms of average recall. These

observations indicate the competitive performance of mlLGPR-EN, against the rest of the

pathway prediction algorithms, in all of the evaluation metrics.
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Appendix D

pathway2vec

This chapter provides several definitions of random walk methods in Section D.1. Then, we

provide additional experimental results, including scalability in Section D.2, and similarity

search in Section D.3. For the definition of each symbol used in this chapter, we argue the

readers to the main Chapter 6.

D.1 Definitions

The following is the definition of a first-order random walk as implemented in DeepWalk

[255], extending a nodes immediate neighbors to include nodes that are locally connected.

Definition D.1. Random Walk [255]. A random walk W of length l , rooted at node v , is a

stochastic process with random variables v1, v2, ..., v l , v l+1 such that v j+1 is a vertex sampled

at random from the neighbors of vertex v j for all 1 ≤ j ≤ l according to the following

distribution:

p(v j+1|v j ) =
{απ j , j+1

Q if (v j , v j+1) ∈ E
0 otherwise

(D.1.1)

where π j , j+1 ∈R|V |×|V | is an unnormalized transition probability, indicating the probability

of a random walker visiting a node v j+1 conditioned on the current node being v j , Q is a

normalizing term, and α ∈ [0,1] is a prior probability.

The above definition does not address in-depth and in-breadth graph exploration. There-

fore, node2vec [114] was proposed where the process of node2vec random walks can be
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defined by manipulating α in Def. D.1 according to:

αs,h( j −1, j +1) =


1
s if β j−1, j+1 = 0

1 if β j−1, j+1 = 1
1
h if β j−1, j+1 = 2

(D.1.2)

where β j−1, j+1 ∈ {0,1,2} denotes the distance between the previously visited node v j−1 and

the next neighbor node v j+1.

First-order and second-order random walks were initially proposed for homogeneous

graphs, but can be readily extended to heterogeneous information networks. This lead to

developing metapath2vec [81] where meta-path based walks can be defined as:

Definition D.2. Meta-Path based Random Walk [81]. Given a meta-path P ∈ P and G, a

meta-path based random walk W of length l , rooted at node v ∈ O as dictated by P , is a

stochastic process with random variables v1
1 , v2

2 , ..., v l
k , v l+1

k+1 such that v j+1
k+1 is a vertex of type

Ok+1 sampled randomly from the neighbors of vertex v j
k ∈Ok for all 1 ≤ j ≤ l according to

the following distribution:

p(v j+1|v j
k ,P ) =


1

|Nk+1(v
j
k )| if (v j

k , v j+1) ∈ E ,φ(v j+1) = k +1

0 if (v j
k , v j+1) ∈ E ,φ(v j+1) 6= k +1

0 if (v j
k , v j+1) ∉ E

(D.1.3)

where v j
k ∈ Ok and Nk+1(v j

k ) denotes the neighbors of v j
k that are of type Ok+1 as pre-

specified by the meta-path scheme P .

metapath2vec overcome the limitation of nove2vec by enabling to extract semantical

representations over heterogeneous graph. However, the use of meta-paths requires either

prior domain-specific knowledge to recover semantic associations of HIN according to

a certain path definition. Hussein and colleagues developed the Jump and Stay (JUST)

heterogeneous graph embedding method using random walks [145] as an alternative to

meta-paths. JUST randomly selects the next node in a walk from either the same node type

or from different node types using an exponential decay function and a tuning parameter.

Definition D.3. Jump and Stay based Random Walk (JUST)[145]. Given a set of domain

types O, a graph G, a queue M of size m, and an initial stay probability α ∈ [0,1], a JUST

based random walk W of length l , rooted at node v ∈O, is a stochastic process with random

variables v1, v2, ..., v l , v l+1 such that v j+1 is selected according to the two following consecu-

tive steps:
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1. Predict the stay probability p st ay as:

pst(v j ) =


0 if S(v j ) =∅
1 if J (v j ) =∅
αc if otherwise

(D.1.4)

where c is the number of nodes consecutively visited in the same domain as v j and

the remaining terms S(v j ) and J (v j ) are:

S(v j ) = {v j+1|(v j , v j+1) ∈ E ∧φ(v j ) =φ(v j+1)}

J (v j ) = {v j+1|(v j , v j+1) ∈ E ∧φ(v j ) 6=φ(v j+1)}

2. Sample v j+1 either: i)- from the same domain as v j or ii)- apply the equation below,

iff pst(v j ) = 0 or pst(v j ) = 1−αc :

H(v j ) =
{

{k|k ∈O∧k ∉ T, J (v j ) 6=∅} if not empty

{k|k ∈O,k 6=φ(v j ), J (v j ) 6=∅} if otherwise
(D.1.5)

where M is a queue of size m that stores m previously visited types.

If the set S(v j ) is empty, meaning no edges exist between v j and any nodes in V that

share the same domain type as v j , then a node is sampled from different types based on

Eq. D.1.5, which suggests to select randomly any domains not included in M . If, however,

the latter condition is not satisfied then simply choose one domain that is different than

the current node type. If J (v j ) is empty, i.e., no heterogeneous edges connected to v j , then

the random walker is forced to stay in the same domain. Finally, if both homogeneous and

heterogeneous edges are connected to v j then the walker may choose to either stay with

αc or jump with 1−αc , where α value decays exponentially by c that stores the number of

nodes sequentially visited in the same type of v j . This can misrepresent graph structure

in two ways: i)- explorations within domain because the last visited consecutive c nodes

may enforce sampling from another domain, or ii) jumping deep towards nodes from other

domains because M is constrained. To alleviate these problems we develop a novel random

walk algorithm, RUST, adopting a unit-circle equation to sample node pairs that generalize

previous representational learning methods.

Definition D.4. Unit-Circle based Jump and Stay Random Walk (RUST). Given a set of

domain types O, a graph G , a queue M of size m, and two hyper-parameters s and h, a RUST

based random walk W of length l , rooted at node v ∈O, is a stochastic process with random

variables v1, v2, ..., v l , v l+1 such that v j+1 is chosen in two steps:
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1. Estimate domain types transition probabilities given v j :

πdom
j , j+1 =


h.β jπ j−1, j

Q if S(v j ) =∅
s.β jπ j−1, j

Q if J (v j ) =∅
(D.1.6)

where Q is a normalizing term, β j ∈ (0,1] is a domain weight hyperparameter of v j

added to give more weights, if necessary, to some domains, and π j−1, j is an unnor-

malized transition probability from previous node v j−1 to the current node v j . The

remaining terms:

S(v j ) = {v j+1|(v j , v j+1) ∈ E ∧φ(v j ) =φ(v j+1)}

J (v j ) = {v j+1|(v j , v j+1) ∈ E ∧φ(v j ) 6=φ(v j+1)}

2. Sample a domain type k at random from πdom
j , j+1 according to:

H(v j ) = {k|k ∈O,αk .πk
j , j+1}(D.1.7)

where αk = 1/eck and ck is the number of nodes with type k that is stored in M . Finally,

select randomly a node v j+1 based on H(v j ).

The two hyper-parameters s and h constitute a unit circle, i.e., h2+s2 = 1, where h ∈ [0,1]

indicates how much exploration is needed within a domain while s ∈ [0,1] defines the

in-depth search towards other domains such that s > h encourages the walk to explore

more domains and vice versa. Consequently, RUST blends both semantic associations and

local/global structural information for generating walks without restricting the number of

memorized domains m while the αk serves as a function of node size having the type k as

stored in M . Algorithm 3 presents the pseudocode of RUST based random walk.

249



Inputs :A graph G = (V ,E ), a prior probability α, number of memorized domains

m, explore hyperparameter h, in-out hyperparameter s, walk length l ,

number of random walks per node K

Outputs :A set of walks W
Process :

1 Initialize a type transition probability πp over all nodes;

2 for v ∈V do

3 for i ← 1 to K do

4 walk=[v];

5 T ←∅;

6 for j ← 1 to l −1 do

7 πdom
j , j+1 ← by applying Eq. D.1.6;

8 H(v j ) ← by applying Eq. D.1.7;

9 if |M | = m then

10 Update αk = 1/eck ;

11 Sample a v j from H(v j );

12 walk.append(v j)

13 Add walk to W ;

14 Return W ;

Algorithm 3: RUST based Random Walk
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Figure D.1: Scalability measured in seconds (×103) under uec+full configuration. n2v:
node2vec, m2v: metapath2vec, cm2v: metapath2vec++, jt: JUST, rt: RUST, crt: RUST-norm.

D.2 Scalability

Here, we analyzed training times (after 3 epochs) under full+uec MetaCyc, where node2vec

(n2v), in Fig. D.1, was observed to be scalable to thousands of nodes without requiring prior

knowledge on meta-paths, while metapath2vec++ (cm2v) and RUST-norm (crt) are less likely

to scale on a larger graph.

D.3 Similarity Search

We conducted cosine similarity search to determine the distance between the query pathway

and the rest of pathways using metapath2vec++ (any other method discussed in this work

can be employed). For this, we selected a total of 23 nitrogen metabolism pathways, including

pathway variants in Table D.1. For illustration purposes, Table D.2 lists only the top 5 results

for querying the 7 pathway ids. One can observe that for the query id “DENITRIFICATION-

PWY” (nitrate reduction I (denitrification)), cm2v returns pathways that are similar to it,

such as “PWY-5674” (nitrate reduction IV (dissimilatory)) and “PWY-5675” (nitrate reduction

V (assimilatory)). Similar results can also be recovered when querying other pathways (or

ECs).
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Pathway ID Pathway name
PWY-6964 ammonia assimilation cycle II
GLNSYN-PWY L-glutamine biosynthesis I
AMMOXID-PWY ammonia oxidation I (aerobic)
P303-PWY ammonia oxidation II (anaerobic)
PWY-2242 ammonia oxidation III
DENITRIFICATION-PWY nitrate reduction I (denitrification)
PWY-6748 nitrate reduction VII (denitrification)
PWY-6523 nitrite-dependent anaerobic methane oxidation
PWY-381 nitrate reduction II (assimilatory)
PWY0-1321 nitrate reduction III (dissimilatory)
PWY-5674 nitrate reduction IV (dissimilatory)
PWY490-3 nitrate reduction VI (assimilatory)
PWY-6748 nitrate reduction VII (denitrification)
PWY0-1352 nitrate reduction VIII (dissimilatory)
PWY0-1581 nitrate reduction IX (dissimilatory)
PWY0-1584 nitrate reduction X (dissimilatory, periplasmic)
PWY0-1573 nitrate reduction VIIIb (dissimilatory)
N2FIX-PWY nitrogen fixation I (ferredoxin)
PWY-7576 nitrogen fixation II (flavodoxin)
PWY-1263 taurine degradation I
PWY-1264 taurine degradation II
TAURINEDEG-PWY taurine degradation III
PWY0-981 taurine degradation IV

Table D.1: 23 nitrogen metabolism pathways, including variants, as extracted from Meta-
Cyc.

Rank PWY-6964 AMMOXID-PWY P303-PWY PWY-2242
1 GLUTAMINDEG-PWY PWY-5366 PWY-7058 PWY-1269
2 PWY-7672 PWY-6014 PWY-862 AMMOXID-PWY
3 GLUTAMINEFUM-PWY PWY-5373 PWY-7562 HEMESYN2-PWY
4 CITRULBIO-PWY PWY-7802 PWY-5789 PWY-6557
5 PWY-5675 PWY-6837 PWY-6310 PWY-6873

Rank DENITRIFICATION-PWY PWY490-3 PWY-1264 TAURINEDEG-PWY
1 PWY-5674 PWY-5675 PWY-5944 PWY-5046
2 PWY-5675 PWY-381 TAURINEDEG-PWY PWY-6043
3 PWYQT-4471 PWY-6840 PWY-5844 PWY-282
4 PWY-7405 TRNA-CHARGING-PWY PWY-6423 PWY-6388
5 PWY-6275 PWY-6945 PWY-1263 PWY-7833

Table D.2: Top 5 Pathway IDs for nitrogen metabolism.
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Appendix E

triUMPF

Here, we derive the optimization of each individual triUMPF’s parameter. Consult the

Chapter 7 for symbol definitions.

E.1 Optimization

The triUMPF’s objective function is defined as:

J =J fact(W,H,U,V)+J comm(C,K)+J path(T,R,Θ,Z,L)(E.1.1)

where,

J fact(W,H,U,V) = min
W,H,U,V

||M−WH>||2F +λ1||W−PU||2F +λ2||H−EV||2F
+λ3||U−V||2F +λ4(||W||2F +||H||2F +||U||2F +||V||2F )

s.t. {W,H,U,V} ≥ 0

J comm(C,K) =min
C,K

||Aprox −PTC>||2F +||Bprox −ERK>||2F +α||C>C− I||2F
+β||K>K− I||2F +λ5(||C||2F +||K||2F )

s.t. {C,K} ≥ 0

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(
1+e−y(i )

k Θ
ᵀ
k x(i )

)
+||X−LRK>||2F

+||Y−LTC>||2F +ρ||Θ−ZHW>||2F +λ5(||T||2F +||R||2F )

+λ6(||Θ||2,1 +||L||2F +||Z||2F )

s.t. {T,R} ≥ 0

(E.1.2)

where M ∈Zt×r
≥0 is the Pathway-EC association matrix, W ∈Rt×k stores the latent factors

for pathways, and H ∈Rr×k , known as the basis matrix, can be thought of as latent factors
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associated with ECs. The pathway and EC features are represented by P ∈Rt×m and E ∈Rr×m ,

respectively. Both U ∈Rm×k and V ∈Rm×k are linear transformation matrices. Aprox ∈Zt×t
≥0

and Bprox ∈ Zr×r
≥0 are two higher order Pathway-Pathway and EC-EC interaction matrices.

The pathway and EC community representation matrices are denoted by T ∈ Rm×p and

R ∈Rm×v , respectively, while their associated community indicator matrices are symbolized

as C ∈Rt×p and K ∈Rr×v , respectively. L ∈Rn×m and Z ∈Rr×r are the two auxiliary matrices

andΘ ∈Rt×r is the weight matrix.

The objective function in Eq. E.1.2 is non-convex due to multiple non-negative con-

straints. Numerous algorithms have been proposed to optimize the objective function,

including alternating non-negative least squares [166] and hierarchical alternating least

squares [67]. Here, we employ the original algorithm for NMF which was introduced in [189]

and consists of simple multiplicative update rules (with auxiliary variables) that are based

on the gradient descent technique [107]. Beginning with random positive initialization,

element-wise updates of Eq E.1.1 w.r.t W, H, U, V, C, K, T, R,Θ, Z, and L at each iteration are

applied until convergence. The gradient descent aims to search for a local minima of the

cost function by moving in the direction of its steepest descent. By introducing Lagrangian

multipliers (auxiliary variables), which areψ,φ,ϕ, %, ζ,$, κ, and ξ to enforce the constraints

for W, H, U, V, C, T, R, K, respectively, Eq. E.1.2 can be reformulated as:

J fact(W,H,U,V) = min
W,H,U,V

tr
(
(M−WH>)>(M−WH>)

)
+λ1tr

(
(W−PU)>(W−PU)

)
+λ2tr

(
(H−EV)>(H−EV)

)
+λ3tr

(
(U−V)>(U−V)

)
+λ4

(
tr(W>W)+ tr(H>H)+ tr(U>U)+ tr(V>V)

)
+ tr(ψW)+ tr(φH)+ tr(ϕU)+ tr(%V)

(E.1.3)

J comm(C,K) =min
C,K

tr
(
(Aprox −PTC>)>(Aprox −PTC>)

)
+ tr

(
(Bprox −ERK>)>(Bprox −ERK>)

)
+αtr

(
(C>C− I)>(C>C− I)

)
+βtr

(
(K>K− I)>(K>K− I)

)
+λ5

(
tr(C>C)+ tr(K>K)

)
+ tr($C)+ tr(ξK)

(E.1.4)
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J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(
1+e−y(i )

k Θ
ᵀ
k x(i )

)
+ tr

(
(X−LRK>)>(X−LRK>)

)
+ tr

(
(Y−LTC>)>(Y−LTC>)

)
+ρtr

(
(Θ−ZHW>)>(Θ−ZHW>)

)
+λ5

(
tr(T>T)+ tr(R>R)

)
+λ6

(
||Θ||2,1 + tr(L>L)+ tr(Z>Z)

)
+ tr(ζT)+ tr(κR)

(E.1.5)

where tr(.) denotes the trace of a matrix. Using the addition property of the transpose,

(X+Y)> = X>+Y>, and its multiplication property, (XY)> = Y>X>, we can expand the trace

of the first term as

tr
(
(M−WH>)>(M−WH>)

)
=tr

(
M>M−M>WH>−W>HM+HW>WH>

)
(E.1.6)

By expanding the remaining terms in Eq. E.1.3 and using the trace of a sum of matrix

property, tr(X+Y) = tr(X)+ tr(Y), we obtain the following formula:

J fact(W,H,U,V) = min
W,H,U,V

tr(M>M)− tr(M>WH>)− tr(W>HM)+ tr(HW>WH>)

+λ1

(
tr(W>W)− tr(W>PU)− tr(U>P>W)+ tr(U>P>PU)

)
+λ2

(
tr(H>H)− tr(H>EV)− tr(V>E>H)+ tr(V>E>EV)

)
+λ3

(
tr(U>U)−2tr(U>V)+ tr(V>V)

)
+λ4

(
tr(W>W)+ tr(H>H)+ tr(U>U)+ tr(V>V)

)
+ tr(ψW)+ tr(φH)+ tr(ϕU)+ tr(%V)

(E.1.7)

Similar to the process of getting Eq. E.1.7, we expand the Eq. E.1.4 as:

J comm(C,K) =min
C,K

tr(Aprox>Aprox)− tr(Aprox>PTC>)− tr(CT>P>Aprox)+ tr(CT>P>PTC>)

+ tr(Bprox>Bprox)− tr(Bprox>ERK>)− tr(KR>E>Bprox)+ tr(KR>E>ERK>)

+α
(
tr(C>CC>C)−2tr(C>C)+ t

)
+β

(
tr(K>KK>K)−2tr(K>K)+ r

)
+λ5

(
tr(C>C)+ tr(K>K)

)
+ tr($C)+ tr(ξK)

(E.1.8)
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Expand the Eq. E.1.5, we obtain the following:

J path(T,R,Θ,L,Z) = min
T,R,Θ,L,Z

∑
i∈n

∑
k∈t

log
(
1+e−y(i )

k Θ
ᵀ
k x(i )

)
+ tr(X>X)− tr(X>LRK>)− tr(KR>L>X)+ tr(KR>L>LRK>)

+ tr(Y>Y)− tr(Y>LTC>)− tr(CT>L>Y)+ tr(CT>L>LTC>)

+ρ
(
tr(Θ>Θ)− tr(Θ>ZHW>)− tr(WH>Z>Θ)+ tr(WH>Z>ZHW>)

)
+λ5

(
tr(T>T)+ tr(R>R)

)
+λ6

(
||Θ||2,1 + tr(L>L)+ tr(Z>Z)

)
+ tr(ζT)+ tr(κR)

(E.1.9)

As explained earlier, the objective functions in Eqs E.1.7, E.1.8, and E.1.9, are not convex

with respect to all parameters combined. Instead in NMF, W, H, U, V, C, K, T, R, Θ, L, and

Z are individually optimized in an iterative process, where we update one matrix at a time

while keeping the remaining matrices fixed. This ensures that each subproblem converges

to the local minima. This methods is called block-coordinate descent. Hence, the update of

parameters occur in the following four alternate optimization steps for J fact: i)- the basis

matrix W, representing pathway factors, ii)- the latent coefficient matrix H, representing

EC factors, iii)- the linear transformation U, and iv)- the other linear transformation V. For

J comm, we alternate between the community indicator matrix C for pathways and the

other community indicator matrix K for ECs. Finally, we optimize, alternatively, the two

community representation matrices T and R for pathways and ECs, respectively, the two

auxiliary matrices L and Z, and the input weight matrixΘ. The three sub-objective functions,

J fact, J comm, and J path are run simultaneously in a divide and conquer strategy. Detailed

rules for updating all the variables are outlined below.

1. Update the basis matrix W. To update the feature matrix W, we fix H, U and V. Then,

the objective function in Eq. E.1.7 w.r.t W is reduced to, after dropping min for brevity:

J fact(W) =− tr(M>WH>)− tr(W>HM)+ tr(HW>WH>)

+λ1

(
tr(W>W)− tr(W>PU)− tr(U>P>W)

)
+λ4tr(W>W)+ tr(ψW)

(E.1.10)

whereψ is the Lagrange multiplier for the constraint W ≥ 0. For computing the gradient
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of this equation, we use the following properties with respect to X:

∇Xtr(X>X) =2X

∇Xtr(XY) =Y>

∇Xtr(X>Y) =Y

∇Xtr(X>YX) =(Y+Y>)X

∇Xtr(XYX>) =X(Y>+Y)

∇Xtr(YXZ) =Y>Z>

∇Xtr(YX>Z) =ZY

(E.1.11)

By computing the gradient of the cost function in Eq. E.1.10 w.r.t W to 0, we have:

ψ=2MH−2W(H>H+Q)+2λ1PU(E.1.12)

where Q = (λ1 +λ4). Following the Karush-Kuhn-Tucker (KKT) condition for the non-

negativity of W, we have the following equation:

2
(
MH−W(H>H+Q)+λ1PU

)
k, j

W j ,k =ψ j ,k W j ,k = 0(E.1.13)

Given an initial value of W, the successive updating rule of W is:

W ←W◦ MH+λ1PU

W(H>H+Q)
(E.1.14)

The iterative update rules in Eq. E.1.14 is transformed into multiplicative update

rules, which cannot generate negative elements since all values are positive and only

multiplications and divisions are involved at each iteration [188].

2. Update the latent coefficient matrix H. The feature matrix H is updates as described

above in which W, U and V are fixed to obtain the objective function for Eq. E.1.7 w.r.t

H as:

J fact(H) =− tr(M>WH>)− tr(W>HM)+ tr(HW>WH>)

+λ1

(
tr(H>H)− tr(H>EV)− tr(V>E>H)

)
+λ4tr(H>H)+ tr(φH)

(E.1.15)

Taking the derivative of the cost function in Eq. E.1.15 w.r.t H to 0 and using the

gradient properties in Eq. E.1.11, we obtain the following:

φ=2M>W−2H(W>W+Q)+2λ1EV(E.1.16)
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where Q = (λ1 +λ4). With the KKT complementary condition for the nonnegativity of

H, we have:

2
(
M>W−H(W>W+Q)+λ1EV

)
j ,k

H j ,k =φ j ,k H j ,k = 0(E.1.17)

The multiplicative updates after some algebraic manipulation w.r.t parameter H:

H ←H◦ M>W+λ1EV

H(W>W+Q)
(E.1.18)

3. Update the linear transformation U. Suppose that W, H and V are fixed, then Eq.

E.1.7 w.r.t U is reduced to:

J fact(U) =λ1

(
− tr(W>PU)− tr(U>P>W)+ tr(U>P>PU)

)
+λ3

(
tr(U>U)−2tr(U>V)

)
+λ4tr(U>U)+ tr(ϕU)

(E.1.19)

Then we take the derivative of above formula with respect to the transformation matrix

U to 0:

ϕ=2λ1P>W−2(λ1P>P+D)U+2λ3V(E.1.20)

where D = (λ3 +λ4). Formulating the above equation based on Karush–Kuhn–Tucker

conditions for the nonnegativity of U results in:

2
(
λ1P>W− (λ1P>P+D)U+λ3V

)
j ,k

U j ,k =ϕ j ,k U j ,k = 0(E.1.21)

Then, the parameter U is updated according to:

U ←U◦ λ1P>W+λ3V

(λ1P>P+D)U
(E.1.22)

4. Update the linear transformation V. To update the linear transformation matrix V,

that W, H and U are fixed, then the transformation matrix V is updated such that the

error is minimized:

J fact(V) =λ2

(
− tr(H>EV)− tr(V>E>H)+ tr(V>E>EV)

)
+λ3

(
−2tr(U>V)+ tr(V>V)

)
+λ4tr(V>V)+ tr(%V)

(E.1.23)

Taking the derivative of this error with respect to V to 0 and after some manipulations,

we have:

%=2λ2E>H−2(λ2E>E+D)V+2λ3U(E.1.24)
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where D = (λ3 +λ4). Following the Karush–Kuhn–Tucker conditions for the nonnega-

tivity of V, we have:

2
(
λ2E>H− (λ2E>E+D)V+λ3U

)
j ,k

V j ,k = % j ,k V j ,k = 0(E.1.25)

As usual, the parameter V is updated according:

V ←V◦ λ2E>H+λ3U

(λ2E>E+D)V
(E.1.26)

5. Update the community indicator matrix C for pathways. In a similar process, we fix

K, and update C. The matrix C is updated such that the error is minimized:

J (C) =− tr(Aprox>PTC>)− tr(CT>P>Aprox)+ tr(CT>P>PTC>)

+α
(
tr(C>CC>C)−2tr(C>C)

)
+λ5tr(C>C)+ tr($C)

− tr(Y>LTC>)− tr(CT>L>Y)+ tr(CT>L>LTC>)

(E.1.27)

Taking the derivative of this error with respect to C to 0, we have:

$=2Aprox>PT+2Y>LT+4αC−2C(T>P>PT+T>L>LT+2αC>C+λ5)(E.1.28)

Again, we follow the Karush–Kuhn–Tucker conditions for the nonnegativity of C

2
(
Aprox>PT+Y>LT+2αC−C(T>P>PT+T>L>LT+2αC>C+λ5)

)
j ,k

C j ,k =$ j ,k C j ,k = 0

(E.1.29)

The parameter C is updated according:

C ←C◦ Aprox>PT+Y>LT+2αC

C(T>P>PT+T>L>LT+2αC>C+λ5)
(E.1.30)

6. Update the community indicator matrix K for ECs. Once the parameter C is updated,

we use it to update K. The matrix K is updated such that the error is minimized:

J (K) =− tr(Bprox>ERK>)− tr(KR>E>Bprox)+ tr(KR>E>ERK>)

+β
(
tr(K>KK>K)−2tr(K>K)

)
+λ5tr(K>K)+ tr(ξK)

− tr(X>LRK>)− tr(KR>L>X)+ tr(KR>L>LRK>)

(E.1.31)

Taking the derivative of this error with respect to K to 0, we have:

ξ=2Bprox>ER+2X>LR+4βK−2K(R>E>ER+R>L>LR+2βK>K+λ5)(E.1.32)
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Using the Karush–Kuhn–Tucker conditions for the nonnegativity of K, we obtain:

2
(
Bprox>ER+X>LR+2βK−K(R>E>ER+R>L>LR+2βK>K+λ5)

)
j ,k

K j ,k = ξ j ,k K j ,k = 0

(E.1.33)

The parameter K is updated according:

K ←K◦ Bprox>ER+X>LR+2βK

K(R>E>ER+R>L>LR+2βK>K+λ5)
(E.1.34)

7. Update the community representation matrix T for pathways. By fixing the parame-

ters C, R, and K, we update T. The matrix T is updated such that the error is minimized:

J (T) =− tr(Aprox>PTC>)− tr(CT>P>Aprox)+ tr(CT>P>PTC>)

− tr(Y>LTC>)− tr(CT>L>Y)+ tr(CT>L>LTC>)

+λ5tr(T>T)+ tr(ζT)

(E.1.35)

Taking the derivative of this error with respect to T to 0, we have:

ζ=2P>AproxC+2L>YC−2(P>CC>P+λ5)T−2L>LTC>C(E.1.36)

Using the Karush–Kuhn–Tucker conditions for the nonnegativity of T, we obtain:

2
(
P>AproxC+L>YC− (P>CC>P+λ5)T−L>LTC>C

)
j ,k

T j ,k = ζ j ,k T j ,k = 0(E.1.37)

The parameter T is updated according:

T ←T◦ P>AproxC+L>YC

(P>CC>P+λ5)T+L>LTC>C
(E.1.38)

8. Update the community representation matrix R for EC features. By fixing the pa-

rameters C, T, and K, we update R. The matrix R is updated such that the error is

minimized:

J (R) =− tr(Bprox>ERK>)− tr(KR>E>Bprox)+ tr(KR>E>ERK>)

− tr(X>LRK>)− tr(KR>L>X)+ tr(KR>L>LRK>)

+λ5tr(R>R)+ tr(κR)

(E.1.39)

Taking the derivative of this error with respect to R to 0, we have:

κ=2E>BproxK+2L>XK−2(E>KK>E+λ5)R−2L>LRK>K(E.1.40)
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Using the Karush–Kuhn–Tucker conditions for the nonnegativity of R, we obtain:

2
(
E>BproxK+L>XK− (E>KK>E+λ5)R−L>LRK>K

)
j ,k

R j ,k = κ j ,k R j ,k = 0(E.1.41)

The parameter R is updated according:

R ←R◦ E>BproxK+L>XK

(E>KK>E+λ5)R+L>LRK>K
(E.1.42)

9. Update the weight matrixΘ. By fixing the other parameters, we updateΘ. The matrix

Θ is updated such that the error is minimized:

J path(Θ) =∑
i∈n

∑
k∈t

log
(
1+e−y(i )

k Θ
ᵀ
k x(i )

)
+ρ

(
tr(Θ>Θ)− tr(Θ>ZHW>)

− tr(WH>Z>Θ)
)
+λ6||Θ||2,1

(E.1.43)

where f (.) is a non-lniear sigmoid function, i.e., f (x) =σ(x) = 1
1+e−x . This choice can

be generalized to any non-linear functions. By transforming X with σ(.) and Θ, our

method enables pathway prediction. Taking the derivative of this error with respect to

Θ to 0, we have:

∇ΘJ path(Θ) = 1

n

∑
i∈n

∑
k∈t

( −y(i )
k x(i )

1+ey(i )
k Θ

>
k x(i )

)
+2ρ(Θ−ZHW>)+λ6tr(

Θ

2||Θ||2
)(E.1.44)

Due to non-closed form of the above equation, we use iterative gradient descent

approach with a defined learning rate η. Hence, the general update rule forΘ becomes:

Θi+1 ←Θi −η◦∇ΘJ path(Θi )(E.1.45)

10. Update the auxiliary matrix L. By fixing the rest of parameters in J path, the matrix L

is updated such that the error is minimized:

J path(L) =− tr(X>LRK>)− tr(KR>L>X)+ tr(KR>L>LRK>)− tr(Y>LTC>)

− tr(CT>L>Y)+ tr(CT>L>LTC>)+λ6tr(L>L)
(E.1.46)

Taking the derivative of this error with respect to L to 0, we have:

∇LJ path(L) = 2(LTC>CT>+LRK>KR>−YCT>−XKR>+λ6L)(E.1.47)

The parameter L is updated according:

Li+1 ←Li −η◦∇LJ path(Li )(E.1.48)
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11. Update the auxiliary matrix Z. By fixing the rest of parameters in J path, the matrix Z

is updated such that the error is minimized:

J path(Z) =−ρtr(Θ>ZHW>)−ρtr(WH>Z>Θ)+ρtr(WH>Z>ZHW>)

+λ6tr(Z>Z)
(E.1.49)

Taking the derivative of this error with respect to Z to 0, we have:

∇ZJ path(Z) = 2(ρZHW>WH>−ρΘWH>+λ6Z)(E.1.50)

The parameter Z is updated according to gradient descent approach as:

Zi+1 ←Zi −η◦∇ZJ path(Zi )(E.1.51)
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Appendix F

reMap

The materials in this chapter is divided into three parts: i)- descriptions about the correlated

models (Section F.1), ii)- algorithms and optimization for reMap’s parameters (Section F.2),

and iii)- parameter setting for correlated models (Section F.3).

F.1 Modeling Metabolic Pathways as Bags (with

Augmentation)

We provide definitions in Section F.1.1. Next, we provide backgrounds regarding correlated

models in Section F.1.2. Moving forward, we provide analytical expression on deriving the

evidence lower bound (ELBO) [184, 249], associated with the SPREAT model in Section

F.1.3, and the procedure to optimize each variational parameters in Section F.1.4. Finally,

we provide the posterior predictive formula for SPREAT in Section F.1.5. Note that each

mathematical symbol is only related in the context of this section.

F.1.1 Definitions and Problem Statement

In this section, we start by giving some background and notations, then state our research

problem that aims to recover the distribution of correlated pathways.

Definition F.1. Pathway Collection. Let P = {y(i ) : 1 < i É n} be a collection of n examples,

where each example y(i ) = (y (i )
1 , y (i )

1 , . . . , y (i )
t ) is a vector encoding the unnormalized abun-

dance information of pathways and t is the pathway size. Let Y = {h1,h2, . . . ,ht } be a set of

all t known metabolic pathways, as defined from a trusted source, such as MetaCyc [53], and

Yi ⊆Y corresponds to a subset of true pathways associated with the sample i .
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Recovering latent distributions of P mirrors the concept modeling paradigm, which

was introduced to reconstruct the thematic structure, called “topics”, from a corpus [42]. In

genomic studies, the concept modeling has been subject to a wide range of applications,

such as extracting latent microbial communities as in BioMiCo [295] and MetaTopics [362],

binning metagenomic reads (TM-MCluster) [387], and inferring metabolic interactions from

a microbial community as in BiomeNet [296]. A detailed overview of concept modeling in

biological data is outlined in [205].

Definition F.2. Concept Modeling. Given a collection of n samples, a concept distribution

for i -th example is a multinomial distribution vector, denoted by η(i ) of size b concepts,

i.e., {p(Φa |η(i ))}a=b
a=1 , whereΦ j in a multinomial feature distribution over the concept j , i.e.,

{p(yk |Φ j )}k=t
k=1. The overall goal of concept modeling is to recover the b salient concepts of

each example.

In this thesis, the term concept is referred to as “bag” which is coined from the multi-

graph classification (MGC) technique [353], where each bag is comprised of several corre-

lated pathways. For brevity purposes, the following terms: concept, topic, or bag, are used

interchangeably. Also, features correspond to pathways.

The classical studies in concept modeling attempt to discover concepts from a collection

of examples that are composed of features, as in the case of latent Dirichlet allocation (LDA)

[42]. This model assumes an example is a mixture of concepts derived from a Dirichlet prior,

η(i ) ∼ Dir(α), and each concept j , in turn, is a mixture of features, sampled from another

Dirichlet prior, i.e.,Φ j ∼ Dir(β). However, the assumptions imposed on the Dirichlet prior to

the concept distributions restrains the capability of LDA to capture possible dependencies

among concepts. Naturally, we expect that concepts are not independent of each other. For

example, in genomic samples, we expect to exhibit a collection of observed pathways to be

grouped under the metabolic nitrogen network while a subset of the same pathways may be

related to the carbon cycle [87, 129].

For this, Blei and Lafferty [40] proposed an extension of LDA, referred to as correlated

topic model (CTM), by incorporating logistic-normal prior, which models pairwise concept

correlations with the Gaussian covariance matrix. This model has been further examined

in [131] by employing continuous distributed representations for both latent concepts and

examples, thus, enabling to capture concept correlations using simple Euclidean distance

metric. This embedding based correlation has resulted in downscaling the computational

burden required to perform inference. We take advantage of the inherent thematic structure
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of examples and model the concept dependencies to extract the concept distributions of

examples.

Definition F.3. Concept Correlation. Given P , the pairwise concept-correlation is defined

by a Gaussian covariance matrix, denoted by Σ. Each entry si , j in Σ characterizes the i -th

bag association with the bag j , where a larger score indicates both concepts are highly

correlated.

However, as highlighted in [125], by manual inspection of HOT samples, the authors

identified a set of pathways that are not curated in P for HOT samples, such as pathway

variants related to tricarboxylic acid cycle (TCA). Hypothetically, accommodating those

pathways back to P may improve the precision of recovering pathways. Unfortunately, given

the dynamic nature of pathway prediction and discovery, this treatment may exacerbate

false discovery. Because there exist situations where a set of pathways that were identified

earlier as a putative set, may be triggered as a false positive in the subsequent stage of

experimental studies. A good compromise would be to record those missing pathways in a

separate list while keeping the original pathway collection intact for further investigation.

To this end, we store a potential set of missing pathways in a matrix M ∈ Zn×t
≥0 , where

each entry is an integer value indicating the abundance of the pathway associated with

a specific sample. The matrix M is referred to as a “background” or “supplementary” set,

analogous to the previous studies in [137, 394]. With the above definitions, we are now able

to constitute the problem discussed in this section.

Problem Statement 1. Given both P and M, the goal is to recover the concept distribution η

of samples such that it incurs a high predictive score for the downstream analysis, including

the pathway prediction task.

F.1.2 Correlated Models

In this section, we provide an overview of the correlated topic model. Then, we present two

bag pathway models that incorporate background pathways while also enforcing sparsity in

modeling bag proportions.

F.1.2.1 The Correlated Topic Model

The correlated topic model (CTM) is a probabilistic graphical model that extends the gen-

erative story of LDA [42] to incorporate correlation among concepts. Fig. F.1 (a) shows the
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Figure F.1: Graphical representation of the correlated concept models. The boxes are
“plates” representing replicates. The outer plate represents instances, while the inner plate
represents the repeated choice of features within an example. The logistic normal distribu-
tion, used to model the latent concept proportions of an example, can represent capture
correlations among concepts that are impossible to capture using a single Dirichlet. The
observed data for each example x(i ) are a set of annotated features y(i ) and a set of hypothet-
ical features Mi while per-example concept proportions η(i ), per-example concept selection
parametersΛ(i ), per-example hypothetical feature distributionsΩ(i ), per-feature concept
assignment z(i )

j , and per-concept distribution over featuresΦa , and per-example beta dis-

tribution β(i ) are hidden variables. The remaining hyperparameters should be provided as
inputs.

Bayesian graphical model for CTM using plate notation. Like latent Dirichlet allocation

[42], the CTM is comprised of a hierarchical Bayesian mixture model, where features (words

as described in the original paper) are mixed to constitute concepts. And, the concepts,

in contrast to LDA, are assumed to be correlated to each other, as reflected by a Gaussian

covariance matrix.

Formally, let n be the total number of a collection, where each example i consists of

feature indices as y(i ). Then, the generative process for CTM is described as follows. First, we

draw a multinomial feature distributionΦa from a Dirichlet prior α>R>0 for each concept

a ∈ {1, . . . ,b}. Then, for each example i , a Gaussian random variable is drawn η(i ) ∼N (µ,Σ),

where µ is a b dimensional mean and Σ ∈ Rb×b is the covariance matrix. The random

variable η(i ) is projected onto the probability simplex to obtain the concept distributions

θ(i ) = softmax(η(i )), corresponding the logistic-normal distribution, from which a concept

indicator z(i )
j ∈ {1, . . . ,b} is sampled. Finally, each observed feature j ∈ {1, . . . , t i } is drawn from

the associated feature distribution, as indicated by it’s concept assignment, i.e., y (i )
j ∼Φz(i )

j
.
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1. For each concept a ∈ {1, . . . ,b}:
(a) Sample a distribution over featuresΦa ∼ Dir(.|α);

2. For each example i ∈ {1, . . . ,n}:
(a) Draw the example concept weight η(i ) ∼N (.|µ,Σ);
(b) Draw concept proportions θ(i ) = softmax(η(i ));
(c) For each feature j ∈ {1, . . . , t (i )}:

i. Sample a concept assignment z(i )
j ∼ Mult(.|θ(i ));

ii. Sample a feature y (i )
j ∼ Mult(.|Φz(i )

j
);

Algorithm 4: The generative process for CTM given a collection

The CTM’s generative process is outlined in Algorithm 4, which can be observed that the

process is identical to LDA except the concept distributions is sampled from the logistic

normal rather than a Dirichlet prior.

F.1.2.2 The Correlated Bag-Pathway Model

The correlated bag pathway is an extension to CTM and comes in two flavors, as depicted

in Fig. F.1 (b) and (c): i)- sparse correlated bag pathway (SOAP) and ii)- distributed sparse

correlated bag pathway (SPREAT). Both models incorporate dual sparseness and supplemen-

tary pathways in modeling bag proportions. These important properties are not adopted

in CTM. In contrast to SOAP, SPREAT is equipped to reconstruct the latent distribution of

supplementary pathways. Let us formally explain both models in detail. For the purpose of

coherence, we use features to define pathways as before.

Analogous to CTM, given n number of examples and a matrix encoding the missing

features M, the generative process for SOAP and SPREAT can be described as follows. First,

we draw a multinomial feature distribution Φa from asymmetric Dirichlet prior α ∈ R>0

for each concept a ∈ {1, ...,b}, where b is assumed to be known and fixed in advance. The

symmetric assumption is appropriate, in such a scenario, because our prior knowledge,

associated with these features, is inaccessible. Similar to CTM, for each example i , a concept

proportion is drawn θ(i ) = softmax(η(i )), where η(i ) is a Gaussian random variable with mean

and covariance are denoted by µ and Σ, respectability.

To sample a concept, it is reasonable to expect that each example is usually explained

with a handful set of a mixed proportion of concepts, which may include interactions among

them. Besides, a concept should cover only a few focused features, instead of absorbing

all features. Thus, we borrow the idea from [5, 35, 131, 203, 226] to enforce dual sparsity to
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1. For each concept a ∈ {1, ...,b}:
(a) Sample a distribution over featuresΦa ∼ Dir(.|α);

2. For each example i ∈ {1, ...,n}:
(a) Draw the example concept weight η(i ) ∼N (.|µ,Σ);
(b) Draw concept proportions θ(i ) = softmax(η(i ));
(c) Draw beta distribution β(i ) ∼ Beta(.|γ,κ);
(d) Draw a sparsity indicator vectorΛ(i ) ∼ Bernoulli(.|β(i ));
if SPREAT:

i. Sample a vector Mi ∼ Prior(.|ι);
ii. Sample background distributionΩ(i )|Mi ∼ Dir(.|ξ);

else:
i. Draw background feature proportionsΩ(i ) ∼ Dir(.|ξ);

(e) For each feature j ∈ {1, . . . , t (i )}:
i. Sample a concept assignment z(i )

j ∼ Mult(.|Λ(i ) ¯θ(i ));

ii. Sample a feature y (i )
j ∼ Mult(.|(1−Ω(i )

z(i )
j

)¯Φz(i )
j

);

Algorithm 5: The generative process for SOAP and SPREAT

retain those relevant focused concepts and features by: i)- introducing an auxiliary Bernoulli

variableΛ(i ) of size b to determine whether a concept is selected for an example i or ignored,

and ii)- applying a cutoff threshold to keep only the top k ¿ t features for each concept.

Instead of sampling each entry in Λ(i ) directly from a Bernoulli coin toss, we assume that

each entry is sampled from a Beta distribution β(i ), parameterized by two hyperparameters

γ ∈R>0 and κ ∈R>0. Applying this dual sparsity, we aim to enhance the interpretability of

the learned concepts while minimizing the negative correlation among concepts on Σ.

Next, a concept indicator z(i )
j ∈ {1, ...,b} is drawn according to the example-specific

mixture proportionΛ(i ) ¯θ(i ), where ¯ represents the Hadamard product. Now each feature

y (i )
j in example i is generated from a weighted distributionΩ(i )

z(i )
j

¯Φz(i )
j

, as indicated by it’s

concept assignment, using a smoothing prior $ ∈ R>0. The parameter Ω(i ) ∈ Rt , derived

from Mi , represents a normalized supplementary feature of size t , which is assumed to

be drawn from a symmetric Dirichlet prior ξ ∈ R>0. For SPREAT, this parameter encodes

distribution, where each element ofΩ(i )
j corresponds to the example’s probability of using

feature y j ∈ Mi . Here, the background feature is assumed to be drawn from a sparse binary

vector prior ι ∈R>0 that is included for completeness because each example’s feature Mi is

already observed.

By representing SOAP and SPREAT as layer-wise mixing components supports the hier-
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archical modularity of metabolic pathway generation, where the components of one level

(e.g., features) permit to contribute to other structures with different degrees of granular-

ity (e.g., examples). The generative process of the proposed SOAP and SPREAT models is

summarized in Algorithm 5. Note that by setting all entries inΩ, Λ, and $ to 1, SOAP and

SPREAT are reduced to CTM (“collapse2ctm” or c2m), which is an additional benefit to the

former models.

F.1.3 Deriving the Evidence Lower Bound (ELBO) for SPREAT

Here, we discuss inference for SPREAT model. Similar expression is straightforward to derive

for SOAP. Given P , the goal of inference is to compute the posterior distribution of the

per-example concept proportions η(i ), the per-example concept selection parametersΛ(i )

and the associated beta distributions β(i ), the per-example background feature distributions

Ω(i ), the per-feature concept assignment z(i )
j , and the per-concept distribution over features

Φa .

Looking at the topology of the Bayesian network, we can specify the complete-data

likelihood, i.e., the joint distribution of all observed and latent variables given the hyper-

parameters and sparse supplementary feature matrix using the model’s independence

assumptions:

(F.1.1)

p(z, y,η,Φ,Λ,β,Ω|M,γ,κ,α, ι,ξ,β) =
[ b∏

a=1
p(Φa |α)

][ n∏
i=1

p(η|µ,Σ)p(Λ(i )|βi )p(βi |γ,κ)

×p(Ω(i )|M(i ),ξ)
[ ti∏

j=1
p(y (i )

j |z(i )
j ,Ω(i )

j ,Λ(i ),Φ,$)

×p(z(i )
j |η)

]]
By denoting all the parameters asΘ and variables as V while omitting the hyperparame-

ters, we obtain the following posterior expression:

(F.1.2) p(Θ,V|Y,M) = p(Y,M,Θ,V)

p(Y,M)

Unfortunately, the exact posterior distribution of the latent variables is computationally

intractable. The numerator is easy to compute for any configuration of the hidden variables

and parameters. The problem is the denominator, which is the marginal probability of the

data:

(F.1.3) p(Y,M) =
∫
Θ

∫
V

p(Y,M,Θ,V)
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Original parameter Φ µ Σ Λ Ω z
Variational parameter φ ν ζ2 λ ω ς

Table F.1: Correspondence between variational and original parameters.

Computing the marginal requires a complicated integral over n examples of |Θ| parameters

and another integral over the |V|n configurations multiplied by the size of each variable

in V. As such, we appeal to variational inference, which has been extensively employed in

many complex probabilistic models. Examples include latent Dirichlet allocation (LDA) [42],

sparse LDA [226], supervised topic models [217], mixed membership stochastic blockmodels

[5], nested hierarchical Dirichlet process [248], and many others. The main intuition behind

variational methods is to first posit a family of distributions over the hidden parameters

and variables that are indexed by a set of free parameters, and then fitting the parameters

to find the member of the family that is closest to the true posterior of interest in Eq. F.1.2.

The closeness is commonly measured using Kullback–Leibler (KL) divergence [177]. The

resulting variational distribution is simpler than the true posterior so that the solution can

be approximated.

However, directly minimizing the KL divergence is infeasible due to the same reason

that the posterior is difficult to compute, but, we can optimize an objective function that is

equal to the negative KL divergence up to a constant. This is known as the evidence lower

bound (ELBO), a lower bound on the logarithm of the marginal probability in Eq. F.1.3, i.e.,

log p(Y,M). This ELBO can be defined using Jensen’s inequality on a variational distribution

over the hidden variables q(Θ,V) as:

log p(Y,M) = log
∫
Θ

∫
V

p(Y,M,Θ,V)

= log
∫
Θ

∫
V

p(Y,M,Θ,V )
q(Θ,V)

q(Θ,V)

= log(Eq [
p(Y,M,Θ,V)

q(Θ,V)
])

≥ Eq [log p(Y,M,Θ,V)]+H(q)

4=L(q)

(F.1.4)

The ELBO contains two terms. The first term, Eq [log p(Y,M,Θ,V)], captures how well

q(Θ,V) describes a distribution that is likely under the model, keeping both the priors and

data in mind through the joint distribution. The second term is the entropy of the variational

distribution, Eq [− log q(Θ,V)], which protects the variational distribution from “overfitting”

[41]. Both of these terms depend on q(Θ,V), the variational distribution of the hidden
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variables. The simplest variational family of distributions is the mean-field family where

each hidden variable/parameter is fully-factorized and governed by its own parameter. This

allows us to tractably optimize the parameters to find a local minimum of the KL divergence.

For SPREAT, the mean-field variational distribution is expressed as:

q(η,Λ, z,d ,β,Φ,Ω) =
b∏

a=1
q(Φa |φa)

[ n∏
i=1

q(η(i )|ν,ζ2)q(Λ(i )|λ(i ))q(Ω(i )|ω(i ))

j=ti∏
j=1

q(z(i )
j |ς(i )

j )

](F.1.5)

where φ,ν,ζ2,λ,ω and ς are variational free parameters. Table F.1 shows the correspondence

between variational and the original parameters.

Taking together, the first term in Eq. F.1.4, Eq [log p(Y,M,Θ,V )], can be decomposed into:

Eq [log p(Y,M,Θ,V )] =
a=b∑
a=1

Eq [log p(Φa |α)]+
i=n∑
i=1

(
Eq [log p(η|µ,Σ)]

+Eq [log p(Λ(i )|βi )]+Eq [log p(βi |γ,κ)]

+Eq [log p(Ω(i )|M(i ),ξ)]

+
j=ti∑
j=1

(
Eq [log p(y (i )

j |z(i )
j ,Ω(i )

j ,Λ(i ),Φ,$)]+Eq [p(z(i )
j |η)]

))
(F.1.6)

And, the second termH(q) in Eq. F.1.4 can be defined as:

H(q) =−
a=b∑
a=1

Eq [log q(Φa |φa)]−
i=n∑
i=1

(
Eq [log q(η(i )|ν,ζ2)]+Eq [log q(Λ(i )|λ(i ))]

+Eq [log q(Ω(i )|ω(i ))]+
j=ti∑
j=1

Eq [log q(z(i )
j |ς(i )

j )]

)(F.1.7)

F.1.3.1 Variational Lower Bound

Given Eq. F.1.6, we derive expressions for each term:
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1. For the concept distribution over features, which are Dirichlet-distributed,

Eq [log p(Φa |α)] = Eq [logDir(Φa |α)]

= Eq

[
log

(Γ(
∑ j=t

j=1α j )∏ j=t
j=1Γ(α j )

j=t∏
j=1
Φ
α j−1
a, j

)]

= Eq

[
log

(Γ(
∑ j=t

j=1α j )∏ j=t
j=1Γ(α j )

)
+

j=t∑
j=1

logΦ
α j−1
a, j

]

= logΓ
( j=t∑

j=1
α j

)
−

j=t∑
j=1

logΓ(α j )+
j=t∑
j=1

(α j −1)Eq [logΦa, j ]

(F.1.8)

2. For the concepts probabilities for each example, which are Gaussian distributed,

Eq [log p(η|µ,Σ)] = Eq

[
log

(
N (η|µ,Σ)

)]
= Eq

[(1

2
log |Σ−1|− b

2
log2π− 1

2
(η−µ)>Σ−1(η−µ)

)]
= 1

2
log |Σ−1|− b

2
log2π

− 1

2

(
tr(diag(ζ2)Σ−1)+ (ν−µ)>Σ−1(ν−µ)

)
(F.1.9)

3. For the focused concept distributions for each example, which are Bernoulli dis-

tributed,

Eq [log p(Λ(i )|β(i ))] = Eq

[
logBernoulli(Λ(i )|β(i ))

]
= Eq

[
log

(a=b∏
a=1

β
(i ),Λ(i )

a
a (1−βa)(i ),1−Λ(i )

a

)]
=

a=b∑
a=1

(
λ(i )

a logβ(i )
a + (1−λ(i )

a ) log(1−β(i )
a )

)(F.1.10)

4. For selecting a set of focused concepts for each example, which are beta distributed,

Eq [log p(β(i )|γ,κ))] = Eq

[
logBeta(β(i )|γ,κ)

]
=

a=b∑
a=1

(
(γ−1)log(β(i )

a )+ (κ−1)log(1−β(i )
a )− log(B(γ,κ)

)(F.1.11)

5. For the hypothetical feature distributions for each example, which are Dirichlet dis-
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tributed,

Eq [log p(Ωi |M(i ),ξ)] = Eq

[
log

(Γ(
∑ j=t

j=1ξ j +M(i )
j )∏ j=t

j=1Γ(ξ j +M(i )
j )

j=t∏
j=1
Ω

(i ),ξ j+M(i )
j −1

j

)]

= logΓ
( j=t∑

j=1
ξ j +M(i )

j

)
−

j=t∑
j=1

logΓ(ξ j +M(i )
j )

+
j=t∑
j=1

(ξ j +M(i )
j −1)Eq [logΩ(i )

j ]

(F.1.12)

6. For the feature assignments from both concept-feature and hypothetical feature

distributions,

Eq [log p(y (i )
j |z(i )

j ,Ω(i )
j ,Λ(i ),Φ,$)] = Eq

[
log

( c=t∏
c=1

a=b∏
a=1

$Φ
I(a=z(i )

a, j∧Λ(i )
a ,c=y (i )

j ),(1−Ω(i )
c )

a,c

)]
= log$+

c=t∑
c=1

a=b∑
a=1

(
y (i )

j ,cς
(i )
a, jλ

(i )
a Eq [(1−Ω(i )

c )]Eq [logΦa, j ]
)

(F.1.13)

7. For the concept assignments over features, the expectation of the log probability of

the latent concepts is given by:

Eq [log p(z(i )
j |η)] = Eq

[
log

(exp(η>(diag(z(i )
j ))∑k=b

k=1 exp(ηk )

)]
= Eq

[
η>(diag(z(i )

j ))
]
−Eq

[
log

(k=b∑
k=1

exp(ηk )
)]

=
a=b∑
a=1

νaς
(i )
a, j −Eq

[
log

(k=b∑
k=1

exp(ηk )
)]

(F.1.14)

The second term is hard to compute, hence, we appeal to the solution suggested by

[40] in order to pertain the tightest lower bound on −Eq

[
log

(∑k=b
k=1 exp(ηk )

)]
using

a first-order Taylor expansion. Because the function − log is convex, a first-order

Taylor expansion about the point %, a variational parameter, produces the following

inequality:

−Eq

[
log

(k=b∑
k=1

exp(ηk )
)]

≥− log%−

(∑k=b
k=1 Eq [exp(ηk )]

)
−%

%

= 1− log%−
(k=b∑

k=1
Eq [exp(ηk )]

)
%−1

(F.1.15)
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Plugging back the results into Eq. F.1.14, we obtain:

Eq [log p(z(i )
j |η)] ≈ 1− log%+

a=b∑
a=1

νaς
(i )
a, j −

(k=b∑
k=1

Eq [exp(ηk )]
)
%−1(F.1.16)

Now, for the entropyH(q) in Eq. F.1.7, we decompose their expectations as:

1. For the concept-feature distributions, which are Dirichlet distributed,

Eq [log q(Φa |φa)] = Eq [logDir(Φa |φa)]

= Eq

[
log

(Γ(
∑ j=t

j=1φa, j )∏ j=t
j=1Γ(φa, j )

j=t∏
j=1
Φ
φa, j−1
a, j

)]

= logΓ
( j=t∑

j=1
φa, j

)
−

j=t∑
j=1

logΓ(φa, j )+
j=t∑
j=1

(φa, j −1)Eq [logΦa, j ]

(F.1.17)

2. For the concept distributions, which are Gaussian distributed,

Eq [log q(η(i )|ν,ζ2)] =Eq

[
log

a=b∏
a=1

N (η(i )
a |νa ,ζ2

a)
]

=−
a=b∑
a=1

1

2

(
logζ2

a + log(2π)+1
)(F.1.18)

3. For the concept choice parameter, which are Bernoulli distributed,

Eq [log q(Λ(i )|λ(i ))] = Eq [log
a=b∏
a=1

Bernoulli(Λ(i )
a |λ(i )

a )]

=
a=b∑
a=1

(
λ(i )

a logλ(i )
a + (1−λ(i )

a ) log(1−λ(i )
a )

)(F.1.19)

4. For the supplementary feature distributions over examples, which are Dirichlet dis-

tributed,

Eq [log q(Ω(i )|ω(i ))] = Eq [logDir(Ω(i )|ω(i ))]

= Eq

[
log

(Γ(
∑ j=t

j=1ω
(i )
j )∏ j=t

j=1Γ(ω(i )
j )

j=t∏
j=1
Ω

(i ),ω(i )
j −1

j

)]

= logΓ
( j=t∑

j=1
ω(i )

j

)
−

j=t∑
j=1

logΓ(ω(i )
j )+

j=t∑
j=1

(ω(i )
j −1)Eq [logΩ(i )

j ]

(F.1.20)

5. For the feature assignments over examples, which are multinomially distributed,

Eq [log q(z(i )
j |ς(i )

j )] = Eq

[
log

a=b∏
a=1

(ς(i )
a, j )

z(i )
a, j

]
=

a=b∑
a=1

ς(i )
a, j logς(i )

a, j
(F.1.21)
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where the exceptions of all the above equations can be derived using:

Eq [logΦa, j ] =
(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
)

Eq [logΩ(i )
j ] =

(
Ψ(ω(i )

j )−Ψ(
k=t∑
k=1

ω(i )
k )

)
Eq [(1−Ω(i )

c )] = 1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

Eq [exp(ηk )] = exp(νa + 1

2
ζ2

a)

B(γ,κ) = Γ(γ)Γ(κ)

Γ(γ+κ)

Not that Γ denotes the Gamma function whileΨ is the logarithmic derivative of the Gamma

function.

F.1.3.2 Merging All the Expectations of the ELBO Terms

Now, by joining all the terms in Section F.1.3.1, the full ELBO can be defined as:
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L(q) =
a=b∑
a=1

(
logΓ

( j=t∑
j=1

α j

)
−

j=t∑
j=1

logΓ(α j )+
j=t∑
j=1

(α j −1)
(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
))

+
i=n∑
i=1

(
1

2
log |Σ−1|− b

2
log2π− 1

2

(
tr(diag(ζ2)Σ−1)+ (ν−µ)>Σ−1(ν−µ)

))
+

i=n∑
i=1

a=b∑
a=1

(
λ(i )

a log(β(i )
a )+ (1−λ(i )

a ) log(1−β(i )
a )

)
+

i=n∑
i=1

a=b∑
a=1

(
(γ−1)log(β(i )

a )+ (κ−1)log(1−β(i )
a )− log(B(γ,κ)

)

+
i=n∑
i=1

(
logΓ

( j=t∑
j=1

ξ j +M(i )
j

)
−

j=t∑
j=1

logΓ(ξ j +M(i )
j )+

j=t∑
j=1

(ξ j +M(i )
j −1)

(
Ψ(ω(i )

j )−Ψ(
k=t∑
k=1

ω(i )
k )

))

+
i=n∑
i=1

j=ti∑
j=1

(
log$+

c=t∑
c=1

a=b∑
a=1

(
y (i )

j ,cς
(i )
a, jλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
)))

+
i=n∑
i=1

j=ti∑
j=1

(
1− log%+

a=b∑
a=1

νaς
(i )
a, j −

(k=b∑
k=1

exp(νk +
1

2
ζ2

k )
)
%−1

)

−
a=b∑
a=1

(
logΓ

( j=t∑
j=1

φa, j

)
−

j=t∑
j=1

logΓ(φa, j )+
j=t∑
j=1

(φa, j −1)
(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
))

+
i=n∑
i=1

a=b∑
a=1

(
1

2

(
logζ2

a + log(2π)+1
))

−
i=n∑
i=1

a=b∑
a=1

(
λ(i )

a logλ(i )
a + (1−λ(i )

a ) log(1−λ(i )
a )

)

−
i=n∑
i=1

(
logΓ

( j=t∑
j=1

ω(i )
j

)
−

j=t∑
j=1

logΓ(ω(i )
j )+

j=t∑
j=1

(ω(i )
j −1)

(
Ψ(ω(i )

j )−Ψ(
k=t∑
k=1

ω(i )
k )

))

−
i=n∑
i=1

j=ti∑
j=1

a=b∑
a=1

ς(i )
a, j logς(i )

a, j

(F.1.22)

F.1.4 Optimizing the ELBO Terms

In this section, we maximize the bound in Eqs F.1.6 & F.1.7 with respect to each variational

parameters using coordinate ascent updates, which optimizes each variational parameter

while holding the remaining variables fixed. Practically, a more convenient way is to apply

the mini-batch gradient approach, as outlined in [136] that alternates between subsampling

a batch of examples and updating each variational parameter, after being scaled by a learning
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rate. This structure of learning assists us to approximate the posterior with massive examples,

making the complete problem computationally scalable.

1. Optimizing w.r.t. ς. Gathering only the terms in the bound that contain ς, we obtain:

L(q)[ς] =
i=n∑
i=1

j=ti∑
j=1

c=t∑
c=1

a=b∑
a=1

y (i )
j ,cς

(i )
a, jλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
)

+
i=n∑
i=1

j=ti∑
j=1

a=b∑
a=1

νaς
(i )
a, j −

i=n∑
i=1

j=ti∑
j=1

a=b∑
a=1

ς(i )
a, j logς(i )

a, j

(F.1.23)

Taking derivatives w.r.t. ς(i )
a, j , we obtain:

∂L(q)[ς]

∂ς(i )
a, j

=
c=t∑
c=1

y (i )
j ,cλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
)

+νa − logς(i )
a, j −1

(F.1.24)

The analytical expression of the variational concept assignment q(ς) for each feature

y j and concept a is not amenable due to the non-conjugacy of logistic-normal with

latent variables. Instead, we approximate the solution according to:

ς(i )
a, j ∝exp

( c=t∑
c=1

y (i )
j ,cλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
)
+νa −1

)
(F.1.25)

whereΨ(.) is the digamma function. Observe how the variational parameterω(i )
∗ serves

as the smoothing term in selecting concepts for each feature, either from Mi or from

P , when ω(i )
c > 0. However, if ω(i )

c = 0, then ς(i )
a, j is updated based on φa, j .

2. Optimizing w.r.t. ν. Collecting only the terms in the bound that contain ν gives,

L(q)[ν] =
i=n∑
i=1

(
− 1

2
(ν−µ)>Σ−1(ν−µ)+

j=ti∑
j=1

a=b∑
a=1

νaς
(i )
a, j

−
j=ti∑
j=1

(k=b∑
k=1

exp(νk +
1

2
ζ2

k )
)
%−1

)(F.1.26)

Taking derivatives w.r.t. νa for each concept a, we obtain:

∂L(q)[ν]

∂νa
=−Σ−1(ν−µ)+

j=ti∑
j=1

ς(i )
a, j −

(
exp(νa + 1

2
ζ2

a)
)
ti%

−1(F.1.27)

where % is another variational parameter, as in CTM [40]. However, the above equation

in hard to optimize, instead, we use a conjugate gradient algorithm.
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3. Optimizing w.r.t. ζ2. By symmetry, we gather all the terms that has ζ2 from Eq. F.1.22:

L(q)[ζ2] =− 1

2

i=n∑
i=1

tr
(
diag(ζ2)Σ−1

)
−

i=n∑
i=1

j=ti∑
j=1

(k=b∑
k=1

exp
(
νk +

1

2
ζ2

k

))
%−1

+ 1

2

i=n∑
i=1

a=b∑
a=1

logζ2
a

(F.1.28)

Taking derivatives w.r.t. ζ2
a for each concept a, we obtain:

∂L(q)[ζ2]

∂ζ2
a

=− 1

2

(
Σ−1

a,a + ti%
−1 exp

(
νa + 1

2
ζ2

a

)
− 1

ζ2
a

)
(F.1.29)

Again, there is no analytic solution. We use Newton’s method for each coordinate,

constrained such that ζa ∈R>0.

4. Optimizing w.r.t. %. Extracting the terms involving % in the bound gives,

L(q)[%] =−
i=n∑
i=1

j=ti∑
j=1

log%−
i=n∑
i=1

j=ti∑
j=1

(k=b∑
k=1

exp(νk +
1

2
ζ2

k )
)
%−1(F.1.30)

Taking derivatives w.r.t. %, we obtain:

∂L(q)[%]

∂%
=−ti n%−1 + ti n

(k=b∑
k=1

exp(νk +
1

2
ζ2

k )
)
%−2(F.1.31)

Equating the above formula to zero to obtain a maximum, we get:

%=
k=b∑
k=1

exp(νk +
1

2
ζ2

k )(F.1.32)

5. Optimizing w.r.t. ω. Isolating only the terms in the bound that contain variational

background feature distributions q(ω), we obtain:

L(q)[ω] =
i=n∑
i=1

j=t∑
j=1
Ψ(ω(i )

j )(ξ j +M(i )
j −ω(i )

j )−
i=n∑
i=1

j=t∑
j=1
Ψ(

k=t∑
k=1

ω(i )
k )(ξ j +M(i )

j −ω(i )
j )

+
i=n∑
i=1

j=ti∑
j=1

c=t∑
c=1

a=b∑
a=1

(
y (i )

j ,cς
(i )
a, jλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
))

+
i=n∑
i=1

j=t∑
j=1

logΓ(ω(i )
j )−

i=n∑
i=1

logΓ
( j=t∑

j=1
ω(i )

j

)
(F.1.33)

Taking derivatives w.r.t. ω(i )
c gives

∂L(q)[ω]

∂ω(i )
c

=
(
Ψ′(ω(i )

c )−Ψ′(
k=t∑
k=1

ω(i )
k )

)
(ξc +M(i )

c −ω(i )
c )

−
(1−ω(i )

c −∑k=t
k=1(1−ω(i )

k )

(
∑k=t

k=1(1−ω(i )
k ))2

) j=ti∑
j=1

a=b∑
a=1

y (i )
j ,cς

(i )
a, jλ

(i )
a

(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
)

(F.1.34)

278



Setting it’s derivatives to zero does not lead to a closed-form solution, instead, we

approximate ω(i )
c for each sample i according to:

ω(i )
c ∝ξc +M(i )

c −
(1−ω(i )

c −∑k=t
k=1(1−ω(i )

k )

(
∑k=t

k=1(1−ω(i )
k ))2

) j=ti∑
j=1

a=b∑
a=1

y (i )
j ,cς

(i )
a, jλ

(i )
a

×
(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
)(F.1.35)

6. Optimizing w.r.t. λ. Collecting the terms that contain λ, we obtain:

L(q)[λ] =
i=n∑
i=1

a=b∑
a=1

λ(i )
a (log(β(i )

a )− logλ(i )
a )

+
i=n∑
i=1

a=b∑
a=1

(1−λ(i )
a )

(
log(1−β(i )

a )− log(1−λ(i )
a )

)(F.1.36)

Taking derivatives w.r.t. λ(i )
a , we obtain:

∂L(q)[λ]

∂λ(i )
a

= log(1−λ(i )
a )− logλ(i )

a + log(β(i )
a )− log(1−β(i )

a )(F.1.37)

Equating the above formula to zero to obtain a maximum, we get the canonical

parameterisation of the Bernoulli distribution:

θ = log
( λ(i )

a

1−λ(i )
a

)
= log(β(i )

a )− log(1−β(i )
a )(F.1.38)

Therefore, we get the following updates:

λ(i )
a = 1

1+exp−θ(F.1.39)

7. Optimizing w.r.t. φ. Finally, the optimal solution of the variational concept feature

distribution q(Φa |φa) for each concept a is obtained by isolating terms involved in

the bound Eq. F.1.4:

L(q)[φ] =
a=b∑
a=1

c=t∑
c=1
Ψ(φa,c )

(
αc −φa,c +

i=n∑
i=1

j=ti∑
j=1

y (i )
j ,cς

(i )
a, jλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

)
−

a=b∑
a=1

c=t∑
j=1
Ψ(

k=t∑
k=1

φa,k )
(
αc −φa,c +

i=n∑
i=1

j=ti∑
j=1

y (i )
j ,cς

(i )
a, jλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

)
−

a=b∑
a=1

logΓ
( j=t∑

j=1
φa, j

)
+

a=b∑
a=1

j=t∑
j=1

logΓ(φa, j )

(F.1.40)
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After taking derivatives w.r.t. φa,c , we obtain:

∂L(q)[φ]

∂φa,c
=Ψ′(φa,c )

(
αc −φa,c +

i=n∑
i=1

j=ti∑
j=1

y (i )
j ,cς

(i )
a, jλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

)
−Ψ′(

k=t∑
k=1

φa,k )
(
αc −φa,c +

i=n∑
i=1

j=ti∑
j=1

y (i )
j ,cς

(i )
a, jλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

)(F.1.41)

Equating the above formula to zero to obtain a maximum, we get:

φa,c =αc +
i=n∑
i=1

j=ti∑
j=1

y (i )
j ,cς

(i )
a, jλ

(i )
a

1−ω(i )
c∑k=t

k=1(1−ω(i )
k )

(F.1.42)

The variational inference algorithm samples a mini-batch from a collection, and use it to

compute the local latent parameters in Eqs F.1.25, F.1.27, F.1.29, F.1.32, F.1.35, and F.1.39 until

the evidence lower bound (in Eq. F.1.4) converges. Then, the global variational parameter φ

is updated using the posteriors (β,Λ, η, z,Ω) collected from the previous step in Eq. F.1.42,

after being scaled according to the learning rate τ = (s + l )−g , where s is the current step,

l ≥ 0 is the delay factor, and g ∈ (0.5,1] is the forgetting rate. We summarize our variational

inference in Algorithm 6.
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1 Initialize φ, ν, ζ2, λ, ω, ς, γ, κ, ξ, α, $, ι, s = 0, l ≥ 0, g ∈ (0.5,1]

2 repeat
3 s = s +1;
4 Sample a minibatch randomly B ⊂P ;
5 for i ∈B do
6 repeat
7 Update ς(i ) with Eq. F.1.25;
8 Update ν(i ) with Eq. F.1.27 using conjugate gradient algorithm;
9 Update ζ2,(i ) with Eq. F.1.29 using Newton’s method;

10 Update %(i ) with Eq. F.1.32;
11 Update ω(i ) with Eq. F.1.35;
12 Update λ(i ) with Eq. F.1.39;
13 until local variational parameters converge;

14 Compute optimal values µ= ν
|B| , Σ= diag( ζ

2

|B| )+µµ>;

15 Compute global optimal values φ with Eq. F.1.42;
16 Update the current estimate of the global variational paramters,

x = (1−τ)x +τx, where x ∈ {φ,µ,Σ};

17 Update the learning rate τ= (s + l )−g ;
18 until global convergence criterion is satisfied;

Algorithm 6: Stochastic variational inference for SPREAT

F.1.5 Posterior Predictive Distribution for SPREAT

We apply posterior predictive distribution to evaluate model’s fitness, which estimates the

distribution of unobserved values given the observed values and parameters trained on a

held-out training set [136]. This metric is useful in evaluating models as it avoids comparing

bounds of those models. The predictive distribution is formulated as follows:
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p(Ỹ|Yobs ,M) =
∫
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(
1− log%+

a=b∑
a=1

νaς
(i )
a, j −

(k=b∑
k=1

exp(νk +
1

2
ζ2

k )
)
%−1

)

−
a=b∑
a=1

(
logΓ

( j=t∑
j=1

φa, j

)
−

j=t∑
j=1

logΓ(φa, j )+
j=t∑
j=1

(φa, j −1)
(
Ψ(φa, j )−Ψ(

k=t∑
k=1

φa,k )
))

+
i=n∑
i=1

a=b∑
a=1

(
1

2

(
logζ2

a + log(2π)+1
))

−
i=n∑
i=1

a=b∑
a=1

(
λ(i )

a logλ(i )
a + (1−λ(i )

a ) log(1−λ(i )
a )

)

−
i=n∑
i=1

(
logΓ

( j=t∑
j=1

ω(i )
j

)
−

j=t∑
j=1

logΓ(ω(i )
j )+

j=t∑
j=1

(ω(i )
j −1)

(
Ψ(ω(i )

j )−Ψ(
k=t∑
k=1

ω(i )
k )

))

−
i=n∑
i=1

j=ti∑
j=1

a=b∑
a=1

ς(i )
a, j logς(i )

a, j

(F.1.43)

F.2 Algorithms and Optimization for reMap

In this section, we present four algorithms for reMap: i)- building bags’ centroids (Section

F.2.1), ii)- extracting maximum number of bags for each sample (Section F.2.2), iii)- re-

assigning labels to examples (Section F.2.3), and iv)- feed-backward (Section F.2.4). Then,

we derive analytical expression to updating parameters (Section F.2.5). We note that each

mathematical symbol is only related in the context of this section.

282



F.2.1 Algorithm for Computing Bag Centroid

Algorithm 7 presents the pseudocode for computing bag centroid in Eq. 8.3.1.

Inputs :

1 P: pathway features matrix (P ∈Rt×m)

2 B: a set of b bags (B = {B1, ...,Bb})

3 α: a hyper-parameter for bags’ centroids construction (α ∈R>0)

Outputs :

4 C: the centroids of bags (C ∈Rb×m)

Process :

5 C: 0 (∈Rb×m);

6 for k ← 1 to b do

7 nk ← ∑
j I(Bk, j =+1);

8 ck ← apply Eq. 8.3.1;

9 Ck,: = ck ;

10 Return C

Algorithm 7: BAGCENTROID(P, B, α)
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F.2.2 Algorithm to Extracting the Maximum Number of Bags

The algorithm 8 describes pseudocode for Eq. 8.3.2.

Inputs :

1 n: number of samples (n ∈N>2)

2 X: input space training set (X ∈Rn×r )

3 Y: pathway space training set (Y ∈Zn×t
≥0 )

4 P: pathway features matrix (P ∈Rt×m)

5 B: a set of b bags (B = {B1, ...,Bb})

6 C: the centroids of bags (C ∈Rb×m)

7 v : a cutoff hyper-parameter (v ∈R≥0)

Outputs :

8 D̂: the expected maximum number of bags (D̂ ∈Zn×b
≥0 )

Process :

9 // an empty matrix that will contain maximum

10 // number of bags for each example

11 D̂ ← 0;

12 // n is the number of samples

13 for i ← 1 to n do

14 // b is the number of bags

15 for k ← 1 to b do

16 for j ← 1 to Yi ,: do

17 if j ∈ Yi , j ∧Bk, j then

18 D̂i ,k ← [apply Eq. 8.3.2];

19 Return D̂

Algorithm 8: MAXBAGS(n, X, Y, P, B, C, v)

F.2.3 Algorithm for Re-assigning Labels to Data

Algorithm 9 presents the pseudocode for relabeling multi-label dataset with bags.
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Inputs :

1 n: number of samples (n ∈N>2)

2 X: input space training set (X ∈Rn×r )

3 Y: pathway space training set (Y ∈Zn×t
≥0 )

4 D̂: the expected maximum number of bags (D̂ ∈Zn×b
≥0 )

5 B: a set of b bags (B = {B1, ...,Bb })

6 P: pathway features matrix (P ∈Rt×m )

7 Θbag: bags’ parameters (Θbag ∈Rb×m )

8 Θpath: pathways’ parameters (Θpath ∈Rt×r )

9 C: the centroids of bags (C ∈Rb×m )

10 z: normalized bags’s correlation (z ∈Rb×b )

11 α: a hyper-parameter for bags’ centroids construction (α ∈R>0)

12 d : a subsample size hyper-parameter (d ∈N>1)

13 ε: a smoothness constant (ε ∈R>0)

14 v : a cutoff hyper-parameter for the maximum number of bags (v ∈R≥0)

15 ζ: a decision threshold for selecting bags (ζ ∈R≥0)

16 τ: number of rounds (τ ∈N>1)

Outputs :

17 �Dopt: an optimum multi-label bag set (�Dopt ∈Zn×b
≥0 )

Process :

18 // an empty matrix that will contain maximum
19 // number of bags for each example

20 �Dopt ← 0;

21 for i ← 1 to n do

22 // an initial set of bags for an example i
23 L(i ) = arg{�Di , j =+1 : ∀ j };

24 // sub sample d bags from |L(i )| bags
25 bsub ← randomly select d bags from |L(i )|;
26 H(i ) = 0(∈Rτ×b ) ;

27 for q ← 1 to τ do

28 for j ← 1 to bsub do

29 if j ∈L(i ) then

30 continue;

31 tmp1 = 0;

32 for e ← 1 to |L(i )| do

33 tmp2 = 0;

34 for k ← 1 to |B j | do

35 p j = 1

1+e
−Θbag,T

j

∣∣c̃(i )
j

−Pk

∣∣ ;

36 pk = 1

1+e
−Θpath,T

k
x(i )

;

37 tmp2 = tmp2 + p j pk ;

38 tmp1 = tmp1 + z j ,e× tmp2;

39 H(i )
q, j = z j ,e× tmp1;

40 if q −1 > 0 then

41 H(i )
q, j = H(i )

q−1, j ×H(i )
q, j ;

42 A = AVG(H(i ));

43 G = 1 - A;

44 Q(i ) = A.G+ε
Z ;

45 for j ← 1 to bsub do

46 if Q(i )
j ≥ ζ then

47 L(i ) =L(i ) ⊕ j ;

48 else

49 L(i ) =L(i ) ª j ;

50 // the transform function is a simple operation to translate bags
51 // from L(i ) bags into +1, -1 indicating presence/absence of bags

52
�
Dopt

i ← transform(L(i ));

53 Return �Dopt

Algorithm 9: RELABEL2BAG(n, X, Y, D̂, B, P,Θbag,Θpath, C, z, α, d , ε, v , ζ, τ)
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F.2.4 Algorithm for Feed-Backward

Algorithm 10 provides a pseudocode for feed-backward phase.
Inputs :

1 n: number of samples (n ∈N>2)

2 X: input space training set (X ∈Rn×r )

3 Y: pathway space training set (Y ∈Zn×t
≥0 )

4 D̂: bag space training set (D̂ ∈Zn×b
≥0 )

5 P: pathway features matrix (P ∈Rt×m )

6 C: the centroids of bags (C ∈Rb×m )

7 z: normalized bags’s correlation (z ∈Rb×b )

8 d : a subsample size hyper-parameter (d ∈N>1)

9 ξ: number of epochs (ξ ∈N)

10 // for brevity, the collection of all hyperparamters
11 // is represented as λ

12 λ: a set of all hyperparameters, including cut-off thresholds

13 γ: learning rate (l r ∈R>0)

Outputs :

14 Θbag: bags’ parameters (Θbag ∈Rb×m )

15 Θpath: pathways’ parameters (Θpath ∈Rt×r )

16 W: bag-projection parameters (W ∈Rb×t )

17 U: pathway-projection parameters (W ∈Rr×m )

18 S: instance-similarity specific parameters (S ∈Rn×n )

Process :

19 // bags’ parameters (Θbag ∈Rb×m)
20 Θbag ← 0;

21 // pathways’ parameters (Θpath ∈Rt×r )
22 Θpath ← 0;

23 for q ← 1 to ξ do

24 D̂q ← RELABEL2BAG(n, X, Y, �Dq−1, B, P, áΘbag,q−1, áΘpath,q−1, C, z, λ);

25 // update W’s parameters using Eq. F.2.3
26 Wq ← Wq−1 −γ∇Wq ;

27 // update U’s parameters using Eq. F.2.4
28 Uq ← Uq−1 −γ∇Uq ;

29 // update Θbag’s parameters using Eq. F.2.5
30 Θbag,q ←Θbag,q−1 −γ∇Θbag,q ;

31 // update Θpath’s parameters using Eq. F.2.6
32 Θpath,q ←Θpath,q−1 −γ∇Θpath,q ;

33 // update S’s parameters using Eq. F.2.8
34 Sq ← Sq−1 −γ∇Sq ;

35 // update D̂ using gradient score strategy
36 D̂q ← apply Eq. F.2.10;

37 ReturnΘbag,Θpath, W, U, S

Algorithm 10: BACKWARD(n, X, Y, D̂, P, C, z, d , ξ, λ, γ)

F.2.5 Optimization

Recall that reMap adopts four constraints: i)- enforcing similarity between bags’ parameters

and the associated pathway labels’ parameters; ii)- features of pathways, assembled in a
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bag, should be close to each other; iii) the input feature space and the label space should

share similar local topological structure, which entails that if two instances in feature space

exhibit strong association then they may share the same group of labels in the label space;

and iv) the models’ parameters should not be too large or too small.

Applying these four constraints, a bag set (�Dopt) and a pathway label set (Y), the reMap’s

objective function is formulated according to:

min
Θbag,W,U,S

− ∑
q∈τ

∑
i∈n

∑
j∈b

∑
k∈B j ,k=+1

vi log
(
p(D̂i , j |lk =+1,Θbag

j )
)
+ ∑

q∈τ

∑
i∈n

||y(i ) − d̂(i )W||22 +
∑
j∈b

C (Θbag
j )

min
Θpath,W,S

− ∑
q∈τ

∑
i∈n

∑
k∈t

vi log
(
p(y (i )

k |x(i ),Θpath
k )

)
+ ∑

q∈τ

∑
i∈n

||y(i ) − d̂(i )W||22 +
∑
k∈t

C (Θpath
k )

(F.2.1)

where,

v (i ) =p(x(i )|H(i )
q−1,L (i )

q−1,D̂i , j =+1)

− log
(
p(D̂i , j |lk =+1,Θbag

j )
)
= log

(
1+e

−d(i )
j Θ

bagᵀ
j |c̃(i )

j −Pk |
)

4= εbag-path(d(i )
j hbag-path

j (l (i )
k ),Θbag

j )

− log p(y(i )
k |x(i ),Θpath

k ) = log
(
1+e−y(i )

k Θ
pathᵀ
k x(i )

)
4= εpath(y(i )

k hpath
k (x(i )),Θpath

k )

l bag(d(i )
j hbag

j (x(i )),Θbag
j )

4= εbag-path(d(i )
j hbag-path

j (l (i )
k ),Θbag

j )

+ ∑
k∈B j ,k=+1

εpath(y(i )
k hpath

k (x(i )),Θpath
k )

C (Θbag
j ) = ∑

k∈B j ,k=+1
||UᵀΘpath

k −Θbag
j ||22︸ ︷︷ ︸

pathways within a bag

+ λ1

2

∑
q,l∈n

Sq,l ||d̂(q) − d̂(l )||22︸ ︷︷ ︸
correlated bags

+λ2||Θbag
j ||2,1 +λ3||U||2,1 + 1

2
κ||S1−1||22

C (Θpath
k ) = ∑

q∈B j ,q=+1
||Θpath

q −Θpath
k ||22︸ ︷︷ ︸

pathways closeness

+ λ4

2

∑
q,l∈n

Sq,l ||y(q) −y(l )||22︸ ︷︷ ︸
correlated pathways

+ 1

2

∑
q,l∈n

Sq,l ||Θpathᵀ
k x(q) −Θpathᵀ

k x(l )||22︸ ︷︷ ︸
correlated instances of a pathway

+λ5||Θpath
k ||2,1 + 1

2
κ||S1−1||22

(F.2.2)
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where ||.||22 represents the squared L2 norm, ||.||22,1 is the sum of the Euclidean norms of

columns of a matrix, v (i ) is the weight of a sample x(i ) to emphasize selection of informative

samples, and λ[1,2,3,4,5] are hyper-parameters controlling the relative contributions of the

associated constraint terms. Let us explain all the terms involved in Eq. F.2.2. The function

||UᵀΘpath
k −Θbag

j ||22 reflects the first constraint, where it enforces similarities between path-

ways, associated to a bag j , and the bag j itself. U ∈Rr×m is the linear transformation matrix

from r onto m dimensional space. For the second constraint, the term ||Θpath
q −Θpath

k ||22
considers the similarities among pathway labels, grouped under a specific bag. To adopt

the third constraint, we used four terms: ||y(i ) − d̂(i )W||22, ||d̂(q) − d̂(l )||22, ||y(q) − y(l )||22, and

||Θpathᵀ
k x(q) −Θpathᵀ

k x(l )||22.

The term ||y(i ) − d̂(i )W||22 maintains the integrity of both bag and pathway label vectors

on example i , thus, encouraging bags to have similar contents as pathway labels, and

W ∈Rb×t captures the correlation between bags and pathway labels. Both ||d̂(q) − d̂(l )||22 and

||y(q) −y(l )||22 describes the resemblances between the two bag label vectors, d̂(q) and d̂(l ),

and the two pathway label vectors, y(q) and y(l ), suggesting the similarity between input

instances x(q) and x(k). The similarity scores of the aforementioned instances are captured

by Sq,k ∈ Rn×n
≥0 , where a high score, indicates both examples have near identical pathway

labels and, hence, should have similar bags, and vice-versa hold as well.

The formula ||Θpathᵀ
k x(q) −Θpathᵀ

k x(l )||22 addresses the neighborhood relationship in the

feature space between x(q) and x(k), as characterized by Sq,l score [361]. As discussed before,

if two instances are close to each other then they may possess relevant labels, which leads to

relabeling a dataset with a proper subset of bags, hence, mitigating from the negative influ-

ences of imperfectly labeling bags. The terms ||Θbag
j ||2,1, ||Θpath

j ||2,1, and ||U||2,1, constitute

the fourth constraint in the form of L2,1-norm on all weights, which reduces the negative

impact of label correlations in the model while at the same time shrink weights and perform

feature selection. Finally, κ||S1−1||22 enforces equality constraint such that ∀q,
∑

k∈n Sq,l = 1,

where κ is a Lagrange multiplier, and 1 denotes a column vector with all of it’s elements are

equal to 1.

Taken together, the trainable parameters of reMap are: 1)- bag-projection weight ma-

trix W, 2)- pathway-projection weight matrix U, 3)- bag-specific weight matrix Θbag, 4)-

pathway-specific weight matrixΘpath, 5)- instance-similarity specific weight matrix S, and

6)- bag-specific updating matrix D̂. The last parameter is a binary matrix indicating the

presence/absence of bags in the training dataset, which is gradually updated based on the

gradient score strategy.

Unfortunately, the objective function in Eq. F.2.1 involves L2,1-norm that is non-smooth
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and difficult to be solved, instead we perform iterative gradient descent method for reMap

which alternatively optimizes over one of six classes of variables (W,U,Θbag,Θpath,S, and

D̂) at a time while the others are held constant. The partial derivative of each term in Eq

F.2.1 is a positive semi-definitive, hence, the whole term is jointly convex, which leads to the

following independent optimization problems for all pathways and bags classifiers.

• Update W. The gradient of Eq. F.2.1 w.r.t. W has the following formula:

∇W = 2

nb

(
D̂ᵀD̂W− D̂ᵀy

)
+λ3KWW(F.2.3)

where,

KW =




1
2||W1||2

. . .
1

2||Wb ||2

• Update U. The gradient of Eq. F.2.1 w.r.t. U becomes:

∇U =1

b

∑
j∈b

2∑
k I(B j ,k =+1)

∑
k∈B j ,k=+1

(
Θ

path
k Θ

pathᵀ
k U−Θpath

k Θ
bagᵀ
j

)
+λ3KUU

(F.2.4)

where,

KU =




1
2||U1||2

. . .
1

2||Ur ||2

• UpdateΘbag. The partial derivative for each bag, sayΘbag
j , is:

∇Θbag
j = 1

n

∑
i∈n

vi

(
1∑

k I(B j ,k =+1)

∑
k∈B j ,k=+1

−D̂i , j |c̃(i )
j −Pk |

1+e
D̂i , jΘ

bagᵀ
j |c̃(i )

j −Pk |

)

+ 1∑
k I(B j ,k =+1)

∑
k∈B j ,k=+1

(
−2Û

ᵀ
Θ

path
k +2Θbag

j

)
+λ2

Θ
bag
j

2||Θbag
j ||2

(F.2.5)

where Û obtained from Eq. F.2.4.
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• UpdateΘpath. The partial derivative w.r.t one pathway k ofΘpath with the new Û and�Θbag updates has the following form:

∇Θpath
k = 1

n

i=n∑
i=1

vi

( −y(i )
k x(i )

1+ey(i )
k Θ

pathᵀ
k x(i )

)
+2ÛÛ

ᵀ
Θ

path
k − 2

b

∑
j∈b

ÛΘ̂bag
j

+ 1

b

∑
j∈b

2∑
k I(B j ,k =+1)

∑
q∈B j ,q=+1

(
Θ

path
k −Θpath

q

)

+XᵀLXΘpath
k +λ5

Θ
path
k

2||Θpath
k ||2

(F.2.6)

where L , M − S is the graph Laplacian matrix and M is a diagonal matrix with

M j , j = ∑
k=1 S j ,k . Note that 1

2

∑
q,l∈n Sq,l ||Θpathᵀ

k (x(q) − x(l ))||22 = tr
(
Θ

pathᵀ
k XᵀLXΘpath

k

)
.

Following the work of [239], it is important for practical purpose to normalize the

graph Laplacian, to account for the fact that some examples are more similar than oth-

ers [334]: L̄,M−1/2LM−1/2 = I−M−1/2SM−1/2. Adhering to this property, we consider

the following formula: 1
2

∑
q,l∈n Sq,l ||Θpathᵀ

k

( x(q)p
Mq,q

− x(l )p
Ml ,l

)||22 = tr
(
Θ

pathᵀ
k XᵀL̄XΘpath

k

)
.

• Update S. Given the updated values of Û and Θ̂path, we obtain the equivalent objective

function of Eq. F.2.1 with the terms only related to S as:

min
0≤Sq, j≤1

λ1tr(D̂ᵀLD̂)+λ4tr(YᵀLY)+ tr(�ΘpathXᵀLXàΘpathᵀ)+κ||S1−1||22(F.2.7)

For the inequality constraint, during iterative updates we force values of S to be within

the range of [0,1]. Then, the gradient update can be written as:

∇S =λ1D̂D̂ᵀ+λ4YYᵀ+XàΘpathᵀ�ΘpathXᵀ+2κ(S−1)(F.2.8)

As we have mentioned, the proposed similarity matrix S captures reliable and discrim-

inative locality information in the projected feature space, and this information is

utilized to optimize correlations in the predicted label space, which ensures feature-

label space consistency. Consequently, a set of bags can be inferred with high fidelity,

for each example, if features with labels correlation information is disseminated to

features with bags correlations, thus, alleviating the effects of imperfectly detecting

negative bags. That is what exactly S is expected to behave.

• Update D̂. We iteratively update bags, where a set of bags are added or removed at

each round. In particular, a positive subset of bags is selected B(i )
P ⊆ arg{D̂i , j =+1 : ∀ j },

for each example x(i ), and the remaining bags are considered to be negative to that
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example. While it is relatively easy to compile a set of positive bags for an example,

however, bags not belonging to that example are too diverse to be considered as

negative. Thus, it is better to consider the remaining bags as unassigned B(i )
U . We use

the gradient score strategy, where the values of D̂ is updated based on the gradient

score according to:

∇D̂ = 1

n

∑
i∈n

vi
∑
j∈b

(
1∑

k I(B j ,k =+1)

∑
k∈B j ,k=+1

−Θbagᵀ
j |c̃(i )

j −Pk |

1+e
D̂i , jΘ

bagᵀ
j |c̃(i )

j −Pk |

)
+λ1LᵀD̂+ 2

nb

(
D̂WWᵀ−λ3yWᵀ

)(F.2.9)

After getting the gradient score, we ascertain the labels of examples based on:

D̂i , j =


+1 if ∇D̂i , j ≥ 1

0 if 0 <∇D̂i , j < 1

−1 if ∇D̂i , j ≤ 1

(F.2.10)

where D̂i , j =+1 (resp. −1 and 0) means the bag is selected to be positive (resp. negative

and unknown) given a training example i . Having acquired a new selected set of bags

for each instance, we update L(i ) accordingly.

F.3 Parameter Settings for Correlated Models

The three correlated models, described in Section F.1, were implemented in Python v3. For

training, we used BioCyc T2 & 3 collection with the following settings: Φ were initialized

using gamma distribution (with shape and scale parameters were fixed to 100 and 1/100,

respectively), the forgetting rate to g = 0.9, the delay rate to l = 1, the batch size to 100,

the number of epochs to 3, the number of concepts b = 200, top k pathways to 100 (only

for SOAP and SPREAT), the Dirichlet hyperparameters α and ξ to 0.0001, and the beta

hyperparameters γ and κ to 2 and 3, respectively. The supplementary pathways M for

BioCyc, CAMI, and golden T1 datasets were obtained using mlLGPR (in Chapter 5). We

trained mlLGPR (elastic-net) using enzymatic reaction and pathway evidence features

where hyperparameters were fixed to their default values.
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Appendix G

leADS

G.1 Optimization

We optimize each individual variable in Eqs 9.3.2 and 9.3.3, corresponding dependency

and factorization objective functions, respectively, using gradient descent method. Refer

to Chapter 9 for symbol definitions. In this approach, we alternatively update one variable

while fixing the others. Hence, the partial derivatives ofΘs,bag,Φs,bag, andΘs,path are:

• UpdateΘs,bag. The partial derivative for each bag, sayΘbag
j , is:

∇Θs,bag
j = 1

n

i=ns∑
i=1

(
1∑

k I(B j ,k =+1)

∑
k∈B j ,k=+1

−Di , j |c̃(i )
j −Pk |

1+e
Di , jΘ

s,bagᵀ
j |c̃(i )

j −Pk |

)

+λ1

Θ
s,bag
j

2||Θs,bag
j ||2

(G.1.1)

• UpdateΦs,bag. The partial derivative for each bag,Φbag
j , is:

∇Φs,bag
j = 1

n

i=ns∑
i=1

( −Di , j x(i )

1+e
Di , jΦ

s,bagᵀ
j x(i )

)
+λ2

Φ
s,bag
j

2||Φs,bag
j ||2

(G.1.2)

• UpdateΘs,path. The partial derivative with regard to one pathway k ofΘpath is:

∇Θs,path
k = 1

n

i=ns∑
i=1

( −y(i )
k x(i )

1+ey(i )
k Θ

s,pathᵀ
k x(i )

)
+λ3

Θ
s,path
k

2||Θs,path
k ||2

(G.1.3)
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