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Abstract

Variational inference is a popular alternative to Markov chain Monte Carlo methods

that constructs a Bayesian posterior approximation by minimizing a discrepancy to

the true posterior within a pre-specified family. This converts Bayesian inference

into an optimization problem, enabling the use of simple and scalable stochas-

tic optimization algorithms. However, a key limitation of variational inference

is that the optimal approximation is typically not tractable to compute; even in

simple settings the problem is nonconvex. Thus, recently developed statistical

guarantees—which all involve the (data) asymptotic properties of the optimal varia-

tional distribution—are not reliably obtained in practice. In this work, we provide

two major contributions: a theoretical analysis of the asymptotic convexity prop-

erties of variational inference in the popular setting with a Gaussian family; and

consistent stochastic variational inference (CSVI), an algorithm that exploits these

properties to find the optimal approximation in the asymptotic regime. CSVI con-

sists of a tractable initialization procedure that finds the local basin of the optimal

solution, and a scaled gradient descent algorithm that stays locally confined to that

basin. Experiments on nonconvex synthetic examples show that compared with

standard stochastic gradient descent, CSVI improves the likelihood of obtaining the

globally optimal posterior approximation.
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Lay Summary

Bayesian inference is a statistical methodology for obtaining insights from data.

Variational inference is a formulation of Bayesian inference as an optimization

problem. The optimization problem is generally quite difficult to solve reliably;

thus, although there is a wealth of previous work on understanding the statistical

properties of the optimal solution, these guarantees are not achievable in practice.

This thesis provides two major contributions: first, it provides a theoretical analysis

of the computational properties of the optimization problem given a large amount of

data; and then it exploits those properties to provide a simple and efficient scheme

to solve the optimization problem more reliably.
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Preface

This thesis is original, unpublished work by the author, Zuheng Xu, under the

supervision of Professor Trevor Campbell. T. Campbell proposed the methodology

in Chapter 4 and proved Theorems 3.3.2, 3.3.5 and A.2.1; aside from these, all other

results, software, and experiments were contributed by the author.
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Chapter 1

Introduction

Bayesian statistical models are powerful tools for learning from data, with the

ability to encode complex hierarchical dependence and domain expertise, as well as

coherently quantify uncertainty in latent parameters. Unfortunately, for many mod-

ern Bayesian models, exact computation of the posterior is intractable (Blei et al.,

2017, Section 2.1) and statisticians must resort to approximate inference algorithms.

Currently, the most popular type of Bayesian inference algorithm in statistics is

Markov Chain Monte Carlo (MCMC) (Gelfand and Smith, 1990; Hastings, 1970;

Robert and Casella, 2013), which provides approximate samples from the poste-

rior distribution supported by a comprehensive literature of theoretical guarantees

(Meyn and Tweedie, 2012; Roberts and Rosenthal, 2004). However, in the setting of

large-scale data, traditional MCMC methods tend to be computationally intractable

due to the need to compute the full data likelihood in each step, which is required to

maintain the Bayesian posterior as the stationary distribution.

Variational inference (Blei et al., 2017; Jordan et al., 1998; Wainwright and

Jordan, 2008) is a popular alternative to classical MCMC methods that approximates

the intractable posterior with a distribution chosen from a pre-specified family,

e.g., the family of Gaussian distributions parametrized by mean and covariance.

The approximating distribution is chosen by minimizing a discrepancy—such as

the Kullback-Leibler (KL) divergence (Murphy, 2012, Section 2.8) or Rényi α-

divergence (Van Erven and Harremos, 2014)—to the posterior distribution over

the family, thus converting Bayesian inference into an optimization problem. This
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formulation enables the use of simple, efficient stochastic optimization algorithms

(Bottou, 2004; Robbins and Monro, 1951) that require only a subsample of the data

at each iteration, avoiding computation on the entire dataset.

But despite its computational tractability, variational inference has two key

limitations that prevent its widespread adoption in the statistical community. First,

one must select an appropriate parametric family of distributions from which to

select the variational approximation. This choice of family presents a tradeoff: a

simple family typically enables the design of fast local optimization algorithms,

but limits the achievable fidelity of the posterior approximation. It is in general

difficult to know how limited the family is before actually optimizing; and not

only that, it is also often difficult to estimate the approximation error once the

optimization is complete (Huggins et al., 2020). For example, if one chooses a

mean-field variational family in which variables are assumed to be independent, the

resulting posterior approximation will typically underestimate their true posterior

variances and cannot capture their covariances (Murphy, 2012, Section 21.2.2), two

quantities of particular interest to statisticians. A more flexible variational family

may result in a lower achievable approximation error, but the error is still not known

in advance and typically results in more expensive computation. The second key

limitation is that even if the family could be chosen carefully to have favourable

computational properties and a global optimum with low approximation error, the

optimization problem itself is typically nonconvex and the global optimum cannot

be found reliably.

The key to addressing the first limitation of variational inference is to understand

the minimum approximation error within a particular variational family. This is quite

difficult given finite data; Han and Yang (2019) provides a non-asymptotic analysis

of the optimal mean-field variational approximation, but extending these results to

more general distribution families is not straightforward. However, multiple threads

of research have explored the statistical properties of variational inference in an

asymptotic regime by taking advantage of the limiting behavior of the Bayesian

posterior. Wang and Blei (2019) exploits the asymptotic normality of the posterior

distribution in a parametric Bayesian setting to show that the KL minimizer among

the variational family to the posterior converges to the KL minimizer to the limiting

distribution of posterior under infinite samples—a normal distribution. Alquier and
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Ridgway (2020) analyze the rate of convergence of the variational approximation to a

fractional posterior—a posterior with a tempered likelihood—in a high dimensional

setting where the posterior itself may not have the ideal asymptotic behavior. Zhang

and Gao (2020) studies the contraction rate of the variational distribution for non-

parametric Bayesian inference and provides general conditions on the Bayesian

model that characterizes the rate. Yang et al. (2020) and Jaiswal et al. (2019) build a

framework for analyzing the statistical properties of α-Rényi variational inference,

and provide sufficient conditions that guarantee an optimal convergence rate of

the point estimate obtained from variational inference. But while this literature

has built a comprehensive understanding of the asymptotic statistical guarantees of

optimal variational posterior approximations, the nonconvexity of the optimization

problem makes these guarantees difficult to obtain reliably in practice. In fact,

Proposition 3.3.3 of the present work demonstrates that the problem is nonconvex

even in the simple case of Gaussian variational inference with ideal asymptotic

posterior behaviour. Therefore, addressing the nonconvexity of variational inference

is meaningful for both computational and theoretical reasons.

In this work, we address the nonconvexity of Gaussian variational inference

in the data-asymptotic regime when the posterior distribution admits asymptotic

normality. However, rather than focusing on the statistical properties of the optimal

Gaussian variational proxy, we investigate and exploit the asymptotic properties of

the optimization problem itself (Chapter 3), and use these to design a procedure

(Chapter 4) which enables tractable Gaussian variational optimization and hence

makes theoretical results regarding the optimal solution applicable. We develop

consistent stochastic variational inference (CSVI), an efficient and simple algorithm

for Gaussian variational inference that guarantees the probability of achieving the

global optimum converges to 1 in the limit of observed data. The two key ingredients

of CSVI are the choice of initialization for the Gaussian mean (Section 4.1) and

the design of a scaled projected stochastic optimization algorithm (Section 4.2).

We use the mode of a smoothed posterior—the posterior distribution convolved

with Gaussian noise—as the mean initialization, which can be solved by a tractable

optimization formulated in Section 4.1. We show that this procedure initializes

Gaussian variational inference in a local region where the optimization becomes

convex with increasing sample size, and where the global optimum eventually
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lies. We then show that the novel scaled projected stochastic gradient algorithm

is guaranteed to stay inside this local region and eventually converge to the global

optimum. Experiments on synthetic examples in Chapter 5 show that CSVI provides

numerically stable and asymptotically consistent posterior approximations.
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Chapter 2

Gaussian Variational Inference

In the setting of Bayesian inference considered in this paper, we are given a sequence

of posterior distributions Πn, n ∈ N each with full support on Rd. The index n

represents the amount of observed data; denote Π0 to be the prior. We consider

the problem of approximating the posterior distribution via Gaussian variational

inference, i.e.,

arg min
µ∈Rd,Σ∈Rd×d

DKL (N (µ,Σ)||Πn) s.t. Σ � 0,

where the Kullback-Leibler divergence (Murphy, 2012, Section 2.8) is defined as

DKL (Q||P ) :=

∫
log

dQ

dP
dQ

for any pair of probability distributions P,Q such thatQ� P , and dQ
dP is the Radon-

Nikodym derivative of Q with respect to P (Folland, 1999, Section 3.2). We further

assume that each posterior Πn has density πn with respect to the Lebesgue measure,

and use the standard reparametrization of Σ using the Cholesky factorization Σ =

n−1LLT to arrive at the common formulation of Gaussian variational inference
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(Kucukelbir et al., 2017) that is the focus of the present work:

µ?n, L
?
n = arg min

µ∈Rd,L∈Rd×d
− n−1 log detL− E

[
n−1 log πn(µ+ n−1/2LZ)

]
s.t. L lower triangular with positive diagonal

Z ∼ N (0, I).

(2.1)

Denote the optimal Gaussian distribution N ?
n := N (µ?n, n

−1L?nL
?T
n ). Intuitively,

this optimization problem encodes a tradeoff between maximizing the expected

posterior density under the variational approximation—which tries to make L small

and move µ close to the maximum point of πn—and maximizing the entropy of the

variational approximation—which prevents L from becoming too small. It crucially

does not depend on the (typically unknown) normalization of πn, which appears

as an additive constant in Eq. (2.1); it is common to drop this constant and instead

equivalently maximize the expectation lower bound (ELBO) (Blei et al., 2017). Note

that there are a number of unconstrained parametrizations of the covariance matrix

variable Σ (Pinheiro and Bates, 1996). We select the (unique) positive-diagonal

Cholesky factor L as it makes the optimization problem Eq. (2.1) more amenable to

both theoretical analysis and computational optimization.

One typically attempts to solve Eq. (2.1) using an iterative local descent op-

timization algorithm. In cases where the expectation in the objective is analyti-

cally tractable—e.g. in exponential family models with a mean-field variational

approximation—coordinate descent is the standard approach (Bishop, 2006; Blei

et al., 2017). However, the expectation is intractable in most scenarios, and one must

instead rely on stochastic gradient estimates (Hoffman et al., 2013; Kingma and

Welling, 2014; Kucukelbir et al., 2017; Ranganath, 2014). In particular, assuming

one can interchange expectation and differentiation (see Section 3.1 for details), the

quantities

∇̂µ,n(µ,L, Z) :=−n−1∇ log πn(µ+ LZ)

∇̂L,n(µ,L, Z) :=−n−1(diagL)−1−n−3/2tril∇ log πn(µ+ n−1/2LZ)ZT ,
(2.2)

are unbiased estimates of the µ- and L-gradients of the objective in Eq. (2.1) given

Z ∼ N (0, I), where the functions diag : Rd×d → Rd×d and tril : Rd×d →

6



Rd×d set the off-diagonal and upper triangular elements of their arguments to 0,

respectively. These unbiased gradient estimates may be used in a wide variety

of stochastic optimization algorithms (Bottou, 2004; Robbins and Monro, 1951)

applied to Eq. (2.1). In this paper, we will focus on projected stochastic gradient

descent (SGD) (Bubeck, 2015, Section 3.) due to its simplicity; we expect that the

mathematical theory in this work extends to other related methods.

In general, Gaussian variational inference is a nonconvex optimization prob-

lem and standard iterative methods such as SGD are not guaranteed to produce a

sequence of iterates that converge to µ?n, L
?
n. The goal of this work is to address

this limitation by developing an iterative algorithm that uses only the black-box

stochastic gradient estimates from Eq. (2.2) to reliably find the globally optimal

solution of Eq. (2.1).
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Chapter 3

Properties of the Optimization
Problem

In this section, we investigate the properties of the Gaussian variational inference

optimization problem Eq. (2.1). We take advantage of the theory of statistical

asymptotics to show that as we obtain more data, the optimum solution of Eq. (2.1)

converges to a fixed value and the objective function becomes locally strongly

convex around that fixed value.

3.1 Statistical model and assumptions
As is common in past work (Ghosal et al., 2000; Kleijn and van der Vaart, 2012;

Shen and Wasserman, 2001), we take a frequentist approach to analyzing Bayesian

inference. We assume that the sequence of observations are independent and

identically distributed (Xi)
n
i=1

i.i.d.∼ Pθ0 from a distribution Pθ0 with parameter

θ0 ∈ Rd selected from a parametric family {Pθ : θ ∈ Rd}. We further assume

that for each θ ∈ Rd, Pθ has common support, has density pθ with respect to some

common base measure, and that pθ(x) is a Lebesgue measurable function of θ for

all x. Finally, we assume the prior distribution Π0 has full support on Rd with

density π0 with respect to the Lebesgue measure. Thus by Bayes’ rule, the posterior

distribution Πn has density proportional to the prior density times the likelihood,

8



i.e.,

πn(θ) ∝ π0(θ)
n∏
i=1

pθ(Xi).

In order to develop the theory in this work, we require a set of additional technical

assumptions on π0 and pθ given by Assumption 1. These are a collection of

regularity conditions that are standard for parametric models, which guarantee that

the maximum likelihood estimate (MLE) θMLE,n := arg maxθ∈Rd
∑n

i=1 log pθ (Xi)

is well-defined and asymptotically consistent for θ0 (Lehmann and Casella, 2006,

Chapter 6, Thm 3.7), and that the Bayesian posterior distribution of
√
n (θ − θ0)

converges in total variation to a Gaussian distribution; this is known as the Bernstein-

von Mises theorem (van der Vaart, 2000, p. 141).

Theorem 3.1.1 (Bernstein-von Mises & MLE consistency). Under Assumption 1,

θMLE,n
Pθ0→ θ0, and DTV

(
Πn , N

(
n−1/2∆n,θ0 + θ0, n

−1H−1
θ0

)) Pθ0−→ 0, (3.1)

where ∆n,θ0 = n−1/2
∑n

i=1H
−1
θ0
∇ log pθ(Xi).

Assumption 1. (Regularity Conditions)

1.
{
Pθ : θ ∈ Rd

}
is an identifiable family of distributions;

2. For all x, θ, the densities π0, pθ are positive and twice continuously differen-

tiable in θ;

3. For all θ, Eθ [∇ log pθ(X)] = 0;

4. For all θ,

Hθ := −Eθ
[
∇2 log pθ(X)

]
= Eθ

[
∇ log pθ(X)∇ log pθ(X)T

]
,

and Hθ0 � εI for some ε > 0. Further, for θ, θ′ in a neighbourhood of θ0,

(θ, θ′)→ Eθ′
[
−∇2 log pθ(X)

]
is continuous in spectral norm;
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5. There exists a measurable function g(x) such that for θ in a neighbourhood

of θ0 and for all x,

max
i,j∈[d]

∣∣∣[∇2 log pθ(x)
]
i,j

∣∣∣ < g(x), Eθ0 [g(X)] <∞.

Note that the above conditions in Assumption 1 are stronger (van der Vaart, 2000,

Lemmas 7.6 and 10.6) than the usual local asymptotic normality (van der Vaart,

2000, Section 7) and testability (van der Vaart, 2000, p. 141) conditions required

for asymptotic posterior concentration and Gaussianity in the Bayesian asymptotics

literature. Many of the results in this work would still hold with these weaker

conditions, but we prefer Assumption 1 for the present work as these conditions are

much simpler to state and check in practice.

We require two conditions beyond the basic regularity conditions in Assump-

tion 1. First, we require that the maximum a posteriori (MAP) estimate θMAP,n :=

arg maxθ∈Rd log πn(θ) converges at a
√
n rate to θ0. This is not a particularly

strong assumption—the MAP estimate typically has the same asymptotic properties

as the MLE—but we require this to ensure that we can initialize the optimization

algorithm for variational inference in a manner that ensures convergence to the

global optimum. Readers who are interested in sufficient conditions for ensuring

MAP consistency may consult Bassett and Deride (2019); Dashti et al. (2013);

Grendár and Judge (2009); Stefanski and Boos (2002). Second, we require control

on the smoothness of the log posterior density log πn asymptotically. In this work,

we impose a bound on the second derivative, but we conjecture that bounds on

higher-order derivatives would also suffice; see Section 3.3 for details.

Assumption 2. (MAP
√
n -consistency) The maximum a posteriori point satisfies

‖θMAP,n − θ0‖ = OPθ0 (1/
√
n ).

Assumption 3. (Asymptotic Smoothness) There exists an ` > 0 such that

P
(

sup
θ

∥∥n−1∇2 log πn(θ)
∥∥

2
> `

)
→ 0,

where the ‖ · ‖2 denotes the spectral norm of matrices.
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3.2 Global optimum consistency
The first important property of Gaussian variational inference is that the optimum

solution µ?n, L
?
n converges in probability to θ0, L0 under the same conditions re-

quired for the Bernstein-von Mises theorem (Theorem 3.1.1), where θ0 is the true

data-generating parameter and L0 is the unique positive-diagonal Cholesky factor

of the inverse Fisher information matrix H−1
θ0

= L0L
T
0 . In other words, the global

solution of Gaussian variational inference is a statistically consistent estimator; if

we can develop an algorithm that solves Eq. (2.1) reliably, we therefore have an

asymptotically consistent Bayesian inference procedure. Theorem 3.2.1 makes

this statement precise; the proof follows directly from a result regarding the total

variation consistency of the optimal variational distribution (Wang and Blei, 2019)

and the continuity of the positive-diagonal Cholesky decomposition (Schatzman,

2002, p. 295).

Theorem 3.2.1. Under Assumption 1,

∀ε > 0, lim
n→∞

P (‖µ?n − θ0‖ < ε, ‖L?n − L0‖ < ε) = 1.

Proof. We consider the KL cost for the scaled and shifted posterior distribution.

Let Π̃n be the Bayesian posterior distribution of
√
n (θ − θ0). The KL divergence

measures the difference between the distributions of two random variables and is

invariant when an invertible transformation is applied to both random variables

(Qiao and Minematsu, 2010, Theorem 1). Note that Π̃n is shifted and scaled from

Πn, and that this linear transformation is invertible, so

DKL (N (µ,Σ)||Πn) = DKL

(
N
(√
n (µ− θ0), nΣ

)
||Π̃n

)
.

Let µ̃?n, Σ̃
?
n be the parameters of the optimal Gaussian variational approximation to

Π̃n, i.e.,

µ̃?n, Σ̃
?
n = arg min

µ∈Rd,Σ∈Rd×d
DKL

(
N (µ,Σ)||Π̃n

)
s.t. Σ � 0,
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and let

Ñn
?

:= N
(
µ̃?n, Σ̃

?
n

)
= N

(√
n (µ?n − θ0), L?nL

?T
n

)
.

Wang and Blei (2019, Corollary 7) shows that under Assumption 1,

DTV

(
Ñn

?
,N
(

∆n,θ0 , H
−1
θ0

)) Pθ0→ 0.

Convergence in total variation implies weak convergence, which then implies

pointwise convergence of the characteristic function. Denote φ̃?n(t) and φn(t) to be

the characteristic functions of Ñ ?
n and N

(
∆n,θ0 , H

−1
θ0

)
. Therefore

∀t ∈ Rd,
φ?n(t)

φn(t)
= exp

(
i(
√
n (µ?n − θ0)−∆n,θ0)T t− 1

2
tT
(
L?nL

?T
n −H−1

θ0

)
t

)
Pθ0−→ 1,

which implies

µ?n
Pθ0→ 1√

n
∆n,θ0 + θ0, and L?nL

?T
n

Pθ0→ H−1
0 = L0L

T
0 .

Under Assumption 1, van der Vaart (2000, Theorem 8.14) states that

‖∆n,θ0 −
√
n (θMLE,n − θ0)‖

Pθ0→ 0,

and θMLE,n
Pθ0→ θ0 according to Eq. (3.1), yielding µ?n

Pθ0→ θ0.

Finally since the Cholesky decomposition defines a continuous mapping from

the set of positive definite Hermitian matrices to the set of lower triangular matrices

with positive diagonals (both sets are equipped with the spectral norm) (Schatzman,

2002, p. 295), we have

L?n
Pθ0→ L0.
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3.3 Convexity and smoothness
The statistical consistency of the optimal parameters µ?n, L

?
n alone does not provide

a complete analysis of the asymptotics of Gaussian variational inference; indeed, it

is in general not tractable to actually compute or approximate the solution µ?n, L
?
n,

which diminishes the utility of Theorem 3.2.1 in practice. In order to make use of

the consistency result, we require that solving the Gaussian variational inference

problem is tractable in some sense. In this section, we investigate the tractability

of Gaussian variational inference as formulated in Eq. (2.1). Since we have access

only to (stochastic estimates of) the gradient of the objective function in Eq. (2.1),

and projected stochastic gradient descent is known to solve optimization problems

with strongly convex and Lipschitz smooth objectives (Bottou, 2004; Rakhlin et al.,

2012), this amounts to investigating the convexity and smoothness of the objective

function.1

We will begin by focusing on the expectation term in the objective of Eq. (2.1),

fn : Rd → R, fn(x) := −n−1 log πn(x) (3.2)

Fn : Rd × Rd×d → R, Fn(µ,L) := E
[
fn(µ+ n−1/2LZ)

]
, Z ∼ N (0, I).

The first main result of this section is that convexity and smoothness of the log

posterior density fn implies the same for Fn(µ,L). We begin with a generalization

of the typical definitions of strong convexity and Lipschitz smoothness found in the

literature (Boyd and Vandenberghe, 2004) in Definition 3.3.1, and then provide the

precise theoretical statement in Theorem 3.3.2.

Definition 3.3.1 (Convexity and Smoothness). Let g : X → R be a twice differ-

entiable function on a convex set X ⊆ Rd, and let D : X → Rd×d be a positive

definite matrix depending on x. Then g is D-strongly convex if

∀x ∈ X , ∇2g(x) � D(x),

1There are many other properties one might require of a tractable optimization problem, e.g.,
pseudoconvexity (Crouzeix and Ferland, 1982), quasiconvexity (Arrow and Enthoven, 1961), or
invexity (Ben-Israel and Mond, 1986). We focus on convexity as it does not impose overly stringent
assumptions on our theory and has stronger implications than each of the aforementioned conditions.
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and g is D-Lipschitz smooth if

∀x ∈ X , −D(x) � ∇2g(x) � D(x).

Theorem 3.3.2. Suppose fn is D-strongly convex (-Lipschitz smooth) for positive

definite matrixD ∈ Rd×d. Then Fn reinterpreted as a function from R(d+1)d → R—

by stacking µ and each column of L into a single vector—is D′-strongly convex

(-Lipschitz smooth), where

D′ = blockd (D,n−1D, . . . , n−1D) ∈ R(d+1)d×(d+1)d,

and blockd creates a block-diagonal matrix out of its arguments.

Proof. We provide a proof of the result for strong convexity; the result for Lipschitz

smoothness follows the exact same proof technique. Note that ifD′ does not depend

on x, Fn(x) is D′-strongly convex if and only if Fn(x)− 1
2x

TD′x is convex. We

use this equivalent characterization of strong convexity in this proof.

Note that for Z ∼ N (0, I),

E
[

1

2
(µ+ n−1/2LZ)TD(µ+ n−1/2LZ)

]
=

1

2
µTDµ+

1

2
trLT (n−1D)L.

Define λ ∈ [0, 1], vectors µ, µ′ ∈ Rd, positive-diagonal lower triangular matrices

L,L′ ∈ Rd×d, and vectors x, x′ ∈ R(d+1)d by stacking µ and the columns of L

and likewise µ′ and the columns of L′. Define x(λ) = λx + (1 − λ)x′, µ(λ) =

λµ+ (1− λ)µ′, and L(λ) = λL+ (1− λ)L′. Then

Fn(x(λ))− 1

2
x(λ)T diag(D,n−1D, . . . , n−1D)x(λ)

=Fn(µ(λ), L(λ))−
(

1

2
µ(λ)TDµ(λ) +

1

2
trL(λ)T (n−1D)L(λ)

)
=E

[
n−1 log πn(µ(λ) + n−1/2L(λ)Z)− 1

2
(µ(λ) + n−1/2L(λ)Z)TD(µ(λ)

+n−1/2L(λ)Z)
]
.

14



By the D-strong convexity of n−1 log πn,

≤λ
(
Fn(µ,L)− 1

2
µTDµ− 1

2
trLT (n−1D)L

)
+ (1− λ)

(
Fn(µ′, L′)− 1

2
µ′TDµ′ − 1

2
trL′T (n−1D)L′

)
=λ

(
Fn(x)− 1

2
xT diag(D,n−1D, . . . , n−1D)x

)
+ (1− λ)

(
Fn(x′)− 1

2
x′T diag(D,n−1D, . . . , n−1D)x′

)
.

For example, if the posterior distribution Πn is a multivariate Gaussian distri-

bution N (µn, n
−1Σn) with mean µn and covariance n−1Σn, then the expectation

component of the Gaussian variational inference objective function becomes

Fn(µ,L) = n−1 tr Σ−1
n LLT + (µ− µn)T Σ−1

n (µ− µn) ,

which is a jointly convex quadratic function in µ,L with Hessian matrix (for µ and

columns of L stacked together in a single vector) equal to

blockd (Σ−1
n , n−1Σ−1

n , . . . , n−1Σ−1
n ) ∈ R(d+1)d×(d+1)d.

Combined with the convexity of the log determinant term −n−1 log detL (Boyd

and Vandenberghe, 2004, p.73), Gaussian variational inference for strongly convex

and Lipschitz smooth log posterior density −n−1 log πn is itself strongly convex

and Lipschitz smooth in any compact set contained in the optimization domain.

However, in a typical statistical model, the posterior is typically neither Gaussian

nor strongly convex. But when the Bernstein-von Mises theorem holds (van der

Vaart, 2000), the posterior distribution (scaled and shifted appropriately) converges

asymptotically to a Gaussian distribution. Thus, it may be tempting to think that

the Bernstein von-Mises theorem implies that Gaussian variational inference should

eventually become a convex optimization problem. This is unfortunately not true,

essentially because Bernstein-von Mises only implies convergence to a Gaussian

in total variation distance, but not necessarily in the log density function or its
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gradients. The second main result in this section—Proposition 3.3.3—is a simple

demonstration of the fact that the Bernstein-von Mises theorem is not sufficient to

guarantee the convexity of Gaussian variational inference.

Proposition 3.3.3. Suppose d = 1, fn is differentiable to the third order for all n,

that there exists an open interval U ⊆ R and ε > 0 such that

sup
θ∈U

d2fn
dθ2

≤ −ε,

and that there exists η > 0 such that

sup
θ∈R

∣∣∣∣d3fn
dθ3

∣∣∣∣ ≤ η.
Then there exists a δ > 0 such that

sup
σ<δ, µ∈U

d2

dµ2
DKL

(
N (µ, σ2)||Πn

)
< 0.

Proof. Note that by reparameterization,

arg min
µ

DKL

(
N (µ, σ2)||Πn

)
= arg min

µ
E
[
−n−1 log πn(µ+ σZ)

]
,

where Z ∼ N (0, 1). Using a Taylor expansion,

− E
[
d2

dµ2

(
−n−1 log πn(µ+ σZ)

)]
= E

[
−n−1 log π(2)

n (µ)− n−1 log π(3)
n (µ′) · σZ

]
,

for some µ′ between µ and µ+ σZ. By the uniform bound on the third derivative

and local bound on the second derivative, for any µ ∈ U ,

E
[
−n−1 log π(2)

n (µ)− n−1 log π(3)
n (µ′) · σZ

]
≤ −ε+ ησE |Z|

≤ −ε+ ησ.

The result follows for any 0 < δ < ε/η.
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Although Proposition 3.3.3 is a negative result about the global convexity of

Fn, it does hint at a very useful fact: the local convexity (Definition 3.3.4) of

Fn matches that of fn, assuming that we control the global behaviour of fn, e.g.,

through a uniform bound on the kth derivative. This is essentially due to the fact

that the two functions differ only by a smoothing under a standard multivariate

Gaussian variable, which has finite moments of all orders. The third main result

of this section, Theorem 3.3.5—which we exploit later in Chapter 4 to develop a

reliable variational inference algorithm—makes the general link between the local

convexity behaviour of fn and Fn precise under global Lipschitz smoothness, i.e., a

uniform bound on the Hessian.

Definition 3.3.4 (Local Strong Convexity). In the same setting of Definition 3.3.1, if

there exists a convex subset Y ⊂ X such that the restriction of g to Y is εD-strongly

convex, then g is locally εD-strongly convex.

Theorem 3.3.5. Suppose there exist ε, `, r > 0 and x ∈ Rd such that fn is globally

`I-Lipschitz smooth and locally εI-strongly convex in the set {y : ‖y − x‖ ≤ r}.
Define

Dn := blockd
(
I, n−1I, . . . , n−1I

)
∈ R(d+1)d×(d+1)d

τn(µ,L) := 1− χ2
d+2

(
n

(r2 − 2‖µ− x‖2)

2‖L‖2F

)
, (3.3)

where χ2
k is the CDF of a chi-square random variable with k degrees of freedom.

Then Fn reinterpreted as a function of R(d+1)d → R—by stacking µ and each

column of L into a single vector—is `Dn-Lipschitz smooth; and is (ε− τn(µ,L) ·
(ε+ `))Dn-strongly convex when ‖µ− x‖2 ≤ r2

2 .

Proof. Note that we can split L into columns and express LZ as

LZ =

d∑
i=1

LiZi,

where Li ∈ Rp is the ith column of L, and (Zi)
d
i=1

i.i.d.∼ N (0, 1). Denoting ∇2fn :=
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∇2fn(µ+ LZ) for brevity, the 2nd derivatives in both µ and L are

∇2
µµFn = E

[
∇2fn

]
∇2
LiLjFn = n−1E

[
ZiZj∇2fn

]
∇2
µLiFn = n−1/2E

[
Zi∇2fn

]
where we can pass the gradient and Hessian through the expectation by dominated

convergence because Z has a normal distribution and fn has `-Lipschitz gradients.

Stacking these together in block matrices yields the overall Hessian,

A =
[
I n−1/2Z1I . . . n−1/2ZdI

]
∈ Rd×d(d+1)

∇2Fn = E
[
AT∇2fnA

]
∈ Rd(d+1)×d(d+1).

Since fn has `-Lipschitz gradients, for all x ∈ Rd,−`I � ∇2fn(x) � `I . Applying

the upper bound and evaluating the expectation yields the Hessian upper bound (and

the same technique yields the corresponding lower bound):

∇2Fn = E
[
AT∇2fnA

]
� `E

[
ATA

]

= `


I 0 0 0

0 n−1I 0 0

0 0
. . . 0

0 0 0 n−1I

 = `Dn.

To demonstrate local strong convexity, we split the expectation into two parts:

one where n−1/2LZ is small enough to guarantee that ‖µ+ n−1/2LZ − x‖2 ≤ r2,

and the complement. Define

r2
n(µ,L) := n

(r2 − 2‖µ− x‖22)

2‖L‖2F
.
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Note that when ‖Z‖2 ≤ r2
n(µ,L),∥∥∥∥µ+

1√
n
LZ − x

∥∥∥∥2

2

≤ 2‖µ− x‖2 + 2n−1‖LZ‖2

≤ 2‖µ− x‖2 + 2n−1‖L‖2F ‖Z‖2

≤ r2.

Then we may write

∇2Fn = E
[
1
[
‖Z‖2 ≤ r2

n(µ,L)
]
AT∇2fnA

]
+ E

[
1
[
‖Z‖2 > r2

n(µ,L)
]
AT∇2fnA

]
.

Since fn has `-Lipschitz gradients and is locally ε-strongly convex,

∇2Fn � ε · E
[
1
[
‖Z‖2 ≤ r2

n(µ,L)
]
ATA

]
− ` · E

[
1
[
‖Z‖2 > r2

n(µ,L)
]
ATA

]
.

Note thatATA has entries 1 and n−1Z2
i along the diagonal, as well as n−1ZiZj , i 6=

j and n−1/2Zi on the off-diagonals. By symmetry, since Z is an isotropic Gaussian,

censoring by 1
[
‖Z‖2 ≤ . . .

]
or 1

[
‖Z‖2 > . . .

]
maintains that the off-diagonal

expectations are 0. Therefore E
[
1
[
‖Z‖2 ≤ r2

n(µ,L)
]
ATA

]
is diagonal with co-

efficients 1 − αn(µ,L) and n−1βn(µ,L), and E
[
1
[
‖Z‖2 > r2

n(µ,L)
]
ATA

]
is

diagonal with coefficients αn(µ,L) and n−1τn(µ,L) where

αn(µ,L) = P
(
‖Z‖2 > r2

n(µ,L)
)

βn(µ,L) = E
[
Z2

11
[
‖Z‖2 ≤ r2

n(µ,L)
]]

= d−1E
[
‖Z‖221

[
‖Z‖2 ≤ r2

n(µ,L)
]]

τn(µ,L) = E
[
Z2

11
[
‖Z‖2 > r2

n(µ,L)
]]

= d−1E
[
‖Z‖221

[
‖Z‖2 > r2

n(µ,L)
]]
.

Note that ‖Z‖2 ∼ χ2
d; so αn(µ,L) = 1− χ2

d(r
2
n(µ,L)) and

τn(µ,L) =

∫ ∞
r2n(µ,L)

1 [x ≥ 0]
1

2(d+2)/2Γ((d+ 2)/2)
x
d+2
2
−1e−x/2dx

= 1− χ2
d+2(r2

n(µ,L))

βn(µ,L) = 1− τn(µ,L).
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Therefore,

∇2Fn

� diag
(
(ε(1− αn(µ,L))−`αn(µ,L))I, (εn−1(1−τn(µ,L))−`n−1τn(µ,L))I,

. . . , (εn−1(1−τn(µ,L))− `n−1τn(µ,L))I
)

= εDn − (ε+ `) diag
(
αn(µ,L)I, n−1τn(µ,L)I, . . . , n−1τn(µ,L)I

)
� εDn − (ε+ `) diag

(
τn(µ,L)I, n−1τn(µ,L)I, . . . , n−1τn(µ,L)I

)
= Dn (ε− τn(µ,L) · (ε+ `)) .

The most complicated part of the statement of Theorem 3.3.5 is the function

τn(µ,L), which characterizes how much the tails of fn can influence the local

strong convexity of Fn around the point x. In particular, as long as µ is close to

x and ‖L‖F (which modulates the effect of noise) is sufficiently small, then the

argument of the χ2
d+2 CDF is large, so τn is small, so (ε− τn(µ,L) · (ε+ `)) ≈ ε;

thus we recover local strong convexity of the same magnitude as fn. A further

note is that although Theorem 3.3.5 requires a uniform bound on the Hessian of fn,

we conjecture that a similar result would hold under the assumption of a uniform

bound on the kth derivative. For simplicity of the result and ease of use later on in

Chapter 4, we opted for the second derivative bound.

The final step of this section is to examine when the assumptions of Theo-

rem 3.3.5 hold. This is where statistical asymptotics provide their benefit in varia-

tional optimization: although the function fn need not be locally strongly convex

for any particular n, the probability (under the data-generating distribution) that it

becomes locally strongly convex around θ0 converges to 1 under weak conditions

on the statistical model as n → ∞. Lemma 3.3.6 states the result precisely, and

Example 3.3.7 provides an example of a sequence of functions that individually

have no guarantees regarding their convexity, but which are asymptotically locally

strongly convex.
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Lemma 3.3.6. Under Assumption 1, there exist r, δ > 0 such that

lim
n→∞

P (fn is δI-strongly convex in the set Br(θ0)) = 1,

where Br(θ0) := {θ ∈ Rd : ‖θ − θ0‖ ≤ r}.

Proof. Given Assumption 1, we know fn is twice continuously differentiable. Thus,

using the second order characterization of strong convexity, it is equivalent to show

the existence of r, δ > 0 such that

P
(
∀θ ∈ Br(θ0), ∇2fn(θ) � δI

)
→ 1,

as n→∞. Note that by Weyl’s inequality

∇2fn(θ) =∇2fn(θ)−Hθ +Hθ (3.4)

�λmin

(
∇2fn(θ)−Hθ

)
I + λmin(Hθ)I.

Condition 4 of Assumption 1 guarantees that Hθ0 � εI and that there exists a κ > 0

such that Hθ is continuous in Bκ(θ0). Hence there exists 0 < κ′ ≤ κ, such that

∀θ ∈ Bκ′(θ0), Hθ � ε
2I .

We then consider λmin

(
∇2fn(θ)−Hθ

)
. We aim to find a 0 < r ≤ κ′ such

that |λmin

(
∇2fn(θ)−Hθ

)
| is sufficiently small. Note that for any fixed r > 0,

sup
θ∈Br(θ0)

∣∣λmin

(
∇2fn(θ)−Hθ

)∣∣
≤ sup

θ∈Br(θ0)

∥∥∇2fn(θ)−Hθ

∥∥
2

= sup
θ∈Br(θ0)

∥∥∇2fn(θ)− Eθ0
[
−∇2 log pθ(X)

]
+ Eθ0

[
−∇2 log pθ(X)

]
−Hθ

∥∥
2

≤ sup
θ∈Br(θ0)

(∥∥∇2fn(θ)−Eθ0
[
−∇2 log pθ(X)

]∥∥
2
+
∥∥Eθ0[−∇2 log pθ(X)

]
−Hθ

∥∥
2

)
.
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Now we split fn into prior and likelihood, yielding that

≤ sup
θ∈Br(θ0)

∥∥∥∥∥−n−1
n∑
i=1

∇2 log pθ(Xi)− Eθ0
[
−∇2 log pθ(X)

]∥∥∥∥∥
2

(3.5)

+ sup
θ∈Br(θ0)

‖ − n−1∇2 log π0(θ)‖2 + sup
θ∈Br(θ0)

∥∥Eθ0 [−∇2 log pθ(X)
]
−Hθ

∥∥
2
.

Given Condition 2 of Assumption 1, for all θ, π0(θ) is positive and ∇2π0(θ) is

continuous; and further due to the compactness of Br(θ0), we have that

∀r > 0, sup
θ∈Br(θ0)

‖ − n−1∇2 log π0(θ)‖2 → 0, as n→∞. (3.6)

Then, it remains to bound the first term and the last term of Eq. (3.5). For the first

term, we aim to use the uniform weak law of large numbers to show its convergence

to 0. By Condition 5 of Assumption 1, there exists a 0 < r1 ≤ κ′ and a measurable

function g such that for all θ ∈ Br1(θ0) and for all x,

max
i,j∈[d]

∣∣∣(∇2 log pθ(x)
)
i,j

∣∣∣ < g(x), Eθ0 [g(X)] <∞.

Then, by the compactness of Br1(θ0), we can apply the uniform weak law of large

numbers (Jennrich, 1969, Theorem 2), yielding that for all i, j ∈ [d],

sup
θ∈Br1 (θ0)

∣∣∣∣∣∣
(
−n−1

n∑
i=1

∇2 log pθ(Xi)

)
i,j

−
(
Eθ0

[
−∇2 log pθ(X)

])
i,j

∣∣∣∣∣∣ Pθ0→ 0.

Since the entrywise convergence of matrices implies the convergence in spectral

norm,

sup
θ∈Br1 (θ0)

∥∥∥∥∥−n−1
n∑
i=1

∇2 log pθ(Xi)− Eθ0
[
−∇2 log pθ(X)

]∥∥∥∥∥
2

Pθ0→ 0. (3.7)
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For the last term of Eq. (3.5), by Condition 4 of Assumption 1,

lim
r→0

sup
θ∈Br(θ0)

∥∥Eθ0 [−∇2 log pθ(X)
]
−Hθ

∥∥
2

= lim
r→0

sup
θ∈Br(θ0)

∥∥Eθ0 [−∇2 log pθ(X)
]
− Eθ

[
−∇2 log pθ(X)

]∥∥
2

→ 0.

Thus, there exists a sufficiently small r2 > 0 such that

sup
θ∈Br2 (θ0)

∥∥Eθ0 [−∇2 log pθ(X)
]
−Hθ

∥∥
2
≤ ε

8
. (3.8)

Then, we combine Eqs. (3.6) to (3.8) and pick r = min(r1, r2) ≤ κ′, yielding that

P

(
sup

θ∈Br(θ0)

∣∣λmin

(
∇2fn(θ)−Hθ

)∣∣ ≤ ε

4

)
→ 1, (3.9)

as n→∞.

Then the proof is complete. Note that we have already shown for all θ ∈
Bκ′(θ0), Hθ � ε

2I . By Eqs. (3.9) and (3.4), we conclude that for all δ ≤ ε
4 ,

lim
n→∞

P
(
∀θ ∈ Br(θ0), ∇2fn(θ) � δI

)
= 1.

Example 3.3.7. Let fn(y) = y2 +
(

1
n

∑n
i=1Xi

)
cos 5y, where Xi ∼ N (0, 1).

Then ∣∣∣∣d2fn
dy2

− 2

∣∣∣∣ = 25 |cos(5y)| ·

∣∣∣∣∣n−1
n∑
i=1

Xi

∣∣∣∣∣ .
Therefore by the law of large numbers and the fact that | cos(5y)| ≤ 1, for any ε > 0,

the sequence (fn)n∈N is asymptotically (2−ε)-strongly convex and (2+ε)-Lipschitz

smooth. Fig. 3.1 visualizes the asymptotic behaviour of fn as n increases.

The last result of this section—Corollary 3.3.8—combines Theorems 3.3.5

and 3.2.1 and Lemma 3.3.6 to provide the key asymptotic convexity/smoothness
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Figure 3.1: Plots of the function fn(y) from Example 3.3.7. Each row of
figures represents a single realization of the sequence (fn)n∈N for in-
creasing sample sizes 5, 20, 100, and 1000. Each column includes three
repetitions of fn under a single n. As n increases, the function fn(y) is
more likely to be strongly convex and Lipschitz smooth with constants
approaching 2.

result that we use in the development of the optimization algorithm in Chapter 4.

Corollary 3.3.8. Suppose Assumptions 1 and 3 hold, and define Dn as in Theo-

rem 3.3.5. Then there exist ε, `, r > 0 such that Fn reinterpreted as a function of

R(d+1)d → R—by stacking µ and each column of L into a single vector—satisfies

P
(
Fn is

ε

2
Dn-strongly convex in Br,n and globally `Dn-Lipschitz smooth

)
→ 1,
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as n→∞, where

Br,n=

{
µ ∈ Rd, L ∈ Rd×d : ‖µ− µ?n‖2≤

r2

4
and ‖L− L?n‖2F ≤ 4‖I − L?n‖2F

}
.

Proof. We begin by verifying the conditions of Theorem 3.3.5 for fn. By Assump-

tion 1 we know that fn is twice differentiable. We also know that by Lemma 3.3.6,

under Assumptions 1 and 3, there exist `, r′, ε > 0 such that

P
(

sup
θ

∥∥−n−1∇2 log πn(θ)
∥∥

2
> `

)
→ 0

P
(

inf
‖θ−θ0‖<r′

λmin

(
−n−1∇2 log πn(θ)

)
< ε

)
→ 0.

By Theorem 3.2.1 we know that µ?n
Pθ0→ θ0, so there exists an r′ > r > 0 such that

P
(

inf
‖θ−µ?n‖<r

λmin

(
−n−1∇2 log πn(θ)

)
< ε

)
→ 0.

Therefore by Theorem 3.3.5, the probability that

∀µ,L, −`Dn �n−1∇2E
[
− log πn(µ+ 1/

√
n LZ)

]
� `Dn, (3.10)

and

for all L and for ‖µ− µ?n‖2 < r2/2,

n−1∇2E
[
− log πn(µ+ n−1/2LZ)

]
� Dn(ε− τn(µ,L) · (ε+ `)),

(3.11)

hold converges to 1 as n→∞, where Dn and τn(µ,L) are as defined in Eq. (3.3)

and x = µ?n. Note that the gradient and Hessian in the above expression are taken

with respect to a vector in Rd(d+1) that stacks µ and each column of L into a single

vector.

Then for all (µ,L) ∈ Br,n, we have

‖µ− µ?n‖2 ≤ r2/4

‖L− L?n‖2F ≤ 4‖I − L?n‖2F =⇒ ‖L‖F ≤ 2‖I − L?n‖F + ‖L?n‖F ,
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yielding

r2 − 2‖µ− µ?n‖2

n−12‖L‖2F
≥ nr2

4 (2‖I − L?n‖F + ‖L?n‖F )2 .

Hence ∀(µ,L) ∈ Br,n, τn(µ,L) → 0 as n → ∞, yielding that under sufficiently

large n,

ε− τn(µ,L) · (ε+ `) > ε/2.

Therefore, the probability that for all (µ,L) ∈ Br,n,

1

n
∇2E

[
− log πn(µ+ 1/

√
n LZ)

]
� ε

2
Dn (3.12)

converges in Pθ0 to 1 as n→∞.

Combining Eqs. (3.10) to (3.12), the proof is completed.
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Chapter 4

Consistent Stochastic Variational
Inference (CSVI)

In this section, we use the strong convexity and smoothness results from Chapter 3

to develop an optimization algorithm—Consistent Stochastic Variational Inference

(CSVI)—that asymptotically solves the Gaussian variational inference problem in

Eq. (2.1), in the sense of Definition 4.0.1: the probability that the iterates converge

to the global optimum converges to 1 in the asymptotic limit of observed data.

Definition 4.0.1. An iterative algorithm asymptotically solves a (random) sequence

of optimization problems indexed by n ∈ N, each with a single global optimum

point x?n ∈ Rd, if the sequence of iterates (xk,n)k∈N produced by the algorithm

satisfies

lim
n→∞

P
(

lim
k→∞

‖xk,n − x?n‖ = 0

)
= 1.

As mentioned earlier, the CSVI algorithm is based on projected stochastic gradi-

ent descent (SGD) (Bubeck, 2015, Section 3.). Since we know that the expectation

component Fn of the Gaussian variational inference objective function is asymp-

totically locally strongly convex and globally Lipschitz smooth, there are three

remaining issues to address to ensure that the algorithm satisfies Definition 4.0.1.

First, we need to ensure that we can initialize the optimization algorithm within

the locally strongly convex region, i.e., the set Br,n from Corollary 3.3.8. We
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address this challenge by solving a smoothed version of the maximum a posteriori

(MAP) problem, which is formulated and shown to be asymptotically tractable in

Section 4.1. Second, since the gradient estimates are noisy, we need to ensure that

the iterates of CSVI stay in Br,n for all iterations so that the usual convergence

guarantees of SGD apply. Finally, note that the regularization term −n−1 log detL

in the objective of Eq. (2.1) is not itself Lipschitz smooth, making the overall op-

timization problem not Lipschitz smooth. We address both the second and third

issue in Section 4.2 by applying a novel scaling matrix to the gradient steps, and

developing new theoretical results on the local confinement of projected stochastic

gradient descent.

4.1 Initialization via smoothed MAP
The goal of this section is to design an algorithm that initializes the variational

optimization within the asymptotically strongly convex local region Br,n. Note that

the challenging part of this problem is to set µ, as we can simply initialize L = I .

Since we aim to initialize µ sufficiently close to µ?n—and µ?n converges to θ0 per

Theorem 3.2.1—we might like to find something akin to the maximum a posteriori

(MAP) value of log πn, due to its similar convergence to θ0. However, since log πn

is typically not concave, obtaining the MAP point is generally intractable.

In this section, we formulate a tractable MAP-like problem by convolving the

posterior distribution with Gaussian noise prior to finding the maximum point of

the log density. This Gaussian noise essentially results in smoothed log density

with fewer spurious optima; hence, we denote this the smoothed MAP problem.

In Section 4.1.1, we show that the smoothed MAP problem is asymptotically

convex—and hence tractable—under conditions similar to those that guarantee the

Bernstein-von Mises theorem, and that the solution is asymptotically consistent

for θ0, albeit at a slower-than-
√
n rate. In Section 4.1.2, we provide a stochastic

optimization algorithm that depends only on black-box access to the gradients of

the original log density function. Taken together, these results demonstrate that we

can tractably initialize CSVI in the asymptotically strongly convex local region Br,n
as required.
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4.1.1 Smoothed MAP problem

Given the nth posterior distribution Πn, we define the smoothed posterior Π̂n with

smoothing variance αn to be the θ-marginal of the generative process

W ∼ Πn, θ ∼ N (W,αnI).

Alternatively, the smoothed posterior distribution Π̂n can be viewed as the distribu-

tion of the sum of independent realizations from Πn andN (0, αnI). The probability

density function π̂n of Π̂n is given by the convolution of πn with a multivariate

normal density,

π̂n(θ) =

∫
1

(2π)d/2α
d/2
n

exp

(
− 1

2αn
‖θ − w‖2

)
πn(w)dw

=E

[
1

(2π)d/2α
d/2
n

exp

(
− 1

2αn
‖θ −W‖2

)]
. (4.1)

Given these definitions, the smoothed MAP problem is the MAP inference problem

for the smoothed posterior distribution, i.e.,

θ̂n = arg min
θ∈Rd

− logE
[
exp

(
− 1

2αn
‖θ −W‖2

)]
. (4.2)

Gaussian smoothing is commonly used in image and signal processing (Forsyth

and Ponce, 2002; Haddad and Akansu, 1991; Lindeberg, 1990; Nixon and Aguado,

2012), and has previously been applied to reduce the presence of spurious local

optima in nonconvex optimization problems, making them easier to solve with

local gradient-based methods (Addis et al., 2005; Mobahi, 2013). The variance αn
controls the degree of smoothing; larger values create a smoother density π̂n, at

the cost of making π̂n a poorer approximation of the original function πn. Figure

Fig. 4.1 demonstrates how increasing αn increases the smoothing effect, resulting

in fewer and flatter local optima in the objective.

In general, although intuitively reasonable, Gaussian smoothing does not typ-

ically come with strong practical theoretical guarantees, essentially because the

best choice of the smoothing variance αn is not known. Mobahi (2013) shows for
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Figure 4.1: Plots of the smoothed posterior density π̂n with increasing smooth-
ing variance.

a continuous integrable function with quickly decaying tails (at rate ‖x‖−d−3 as

‖x‖ → ∞), the smoothed function is strictly convex given a large enough selection

of αn. Addis et al. (2005) studies the smoothing effect of a log-concave kernel on a

special type of piecewise constant function, and proves that the smoothed function

is either monotonic or unimodal. To the best of our knowledge, previous analyses

of smoothed optimization are not sufficient to guide the choice of αn and do not

provide bounds on the error of the smoothed optimum point versus the original.

In contrast to these previous studies, we use the asymptotic concentration of

the statistical model as n → ∞ to address both of these issues. In particular,

Theorem 4.1.1 shows that if the sequence αn is chosen to decrease more slowly

than n−1/3, the smoothed MAP problem is eventually strictly convex within any

arbitrary compact domain; and that the solution of the smoothed MAP problem is

asymptotically consistent for θ0 at a
√
αn
−1 rate.

Theorem 4.1.1. Suppose Assumption 1 holds and nα3
n →∞. Then for all M > 0,

the probability that the smoothed MAP optimization problem

min
‖θ−θ0‖≤M

− log π̂n(θ)

is strictly convex converges to 1 as n→∞ under the data generating distribution.

If additionally Assumption 2 holds, then

‖θ̂n − θ0‖ = OPθ0 (
√
αn ).
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4.1.2 Smoothed MAP optimization

In practice, we use SGD to solve the smooth MAP problem. The gradient of the

smoothed MAP objective function in Eq. (4.2) is

∇(− log π̂n(θ)) =−∇ logE
[
exp

(
− 1

2αn
‖θ −W‖2

)]

=−
E
[
exp

(
− 1

2αn
‖θ −W‖2

)(
− 1
αn

)
(θ −W )

]
E
[
exp

(
− 1

2αn
‖θ −W‖2

)] ,

where W ∼ Πn. By change of variables and reparametrization, the gradient can be

reformulated as

∇(− log π̂n(θ)) =α−1/2
n

E
[
Wπn

(
θ − α1/2

n W
)]

E
[
πn

(
θ − α1/2

n W
)] ,

where W ∼ N (0, I). Note that the unknown normalization constant in πn cancels

in the numerator and denominator. We obtain stochastic estimates of the gradient

using a Monte Carlo approximation of the numerator and denominator using the

same samples, i.e., self-normalized importance sampling (Robert and Casella, 2013,

p. 95). It is known that the variance of this gradient estimate may be quite large or

even infinite; although techniques such as truncation (Ionides, 2008) and smoothing

(Vehtari et al., 2015) exist to address it, we leave this issue as an open problem

for future work. The resulting SGD procedure with explicit gradient estimates are

shown in Algorithm 1.

4.2 Optimization via scaled projected SGD
As shown in Chapter 3 and Section 4.1, Gaussian variational inference Eq. (2.1) is

locally strongly convex, globally Lipschitz smooth, and the initialization µ = θ̂n,

L = I is asymptotically tractable and lies in the locally convex region. We now

design a stochastic optimization algorithm and prove that it asymptotically solves

Eq. (2.1) per Definition 4.0.1.

Given a sequence of step sizes (γk)k∈N, γk ≥ 0 and (Zk)k∈N
i.i.d.∼ N (0, I), and
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Algorithm 1 Smoothed MAP estimation

procedure SMOOTHEDMAP(πn, αn, x0, K, S, (γk)k∈N)
for k = 0, 1, . . . ,K − 1 do

Sample (Zs)
S
s=1

i.i.d.∼ N (0, I)

∇̂k ← α
1/2
n

(∑S
s=1 Zs · πn(xk − α

1/2
n Zs)

)/(∑S
s=1 πn(xk − α

1/2
n Zs)

)
xk+1 ← xk − γk∇̂k

end for
return xK

end procedure

initialization µ0 = θ̂n, L0 = I , the standard stochastic gradient update applied to

the Gaussian variational inference problem is

µk+1 ← µk − γk∇̂µ,n(µk, Lk, Zk)

Lk+1 ← Lk − γk∇̂L,n(µk, Lk, Zk).

There are two major issues with this update: first, the regularization term− 1
n logdetL

is not globally Lipschitz smooth and has a large gradient when L is small, which is

likely to produce an iterate outside the locally convex area; and second, the update

might produce an infeasible iterate L with nonpositive diagonal.

We resolve the first issue by applying a scaling to the L gradient prior to the

update. In particular, define the scaled L gradient matrix ∇̃L,n(µ,L, Z) ∈ Rd×d

via

[
∇̃L,n(µ,L, Z)

]
ij

=


[
∇̂L,n(µ,L, Z)

]
ij

j 6= i

1
1+(nLii)−1

[
∇̂L,n(µ,L, Z)

]
ii

j = i, Lii > 0

−1 j = i, Lii = 0.

(4.3)

This scaling prevents the gradient of L from diverging when diagonal elements of

L→ 0, and also creates a well-defined gradient for L at the boundary of the feasible

region. Given this scaled L gradient, we resolve the second issue by employing

a simple projection step after each update: we set any negative diagonal entry in

the current iterate Lk to 0. SGD with these two simple modifications is presented

in Algorithm 2. The final theoretical result of this work, Theorem 4.2.1, is that
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Algorithm 2 Consistent stochastic Gaussian variational inference

procedure CSVI(fn, g, (γk)k∈N, K)
µ0 ←SmoothedMAP (Algorithm 1)
L0 ← I
for k = 0, 1, . . . ,K − 1 do

Sample Zk ∼ N (0, I)
µk+1 ← µk − γk∇̂µ,n(µk, Lk, Zk)
∇̃L,n ← ∇̂L,n(µk, Lk, Zk)
for i = 1, . . . , d do

if Lk,ii > 0 then[
∇̃L,n

]
ii
← 1

1+(nLk,ii)−1

[
∇̃L,n

]
ii

else[
∇̃L,n

]
ii
← −1

end if
end for
Lk+1 ← Lk − γk∇̃L,n
for i = 1, . . . , d do

Lk+1,ii ← max {0, Lk+1,ii}
end for

end for
return µK , LK

end procedure

Algorithm 2 asymptotically solves Gaussian variational inference given a weak

condition on the step size sequence (γk)k∈N.

Theorem 4.2.1. Suppose that we initialize L0 = I and µ0 such that ‖µ0 − θ̂n‖22 ≤
r2

32 . Then there exists a constant C > 0 such that if

γk = Θ(k−ρ) for some ρ ∈ (0.5, 1) and ∀k ∈ N, 0 < γk < C, (4.4)

then Algorithm 2 asymptotically solves Gaussian variational inference.

33



Chapter 5

Experiments

In this section, we compare CSVI to standard Gaussian stochastic variational

inference (SVI)—i.e., reparametrized Gaussian variational inference via projected

stochastic gradient descent—on one-dimensional synthetic inference problems. We

run all optimization algorithms for 50,000 iterations, and base the gradients for the

smoothed MAP mean initialization (Algorithm 1) on 100 samples.

5.1 Synthetic Gaussian mixture
In the first experiment, we highlight the reliability of CSVI as opposed to SVI on

the simple problem of approximating a Gaussian mixture target distribution Π,

Π = 0.7N (0, 4) + 0.15N (−30, 9) + 0.15N (30, 9). (5.1)

We set n = 1 and αn = 10 in the implementation of CSVI, and initialize the

smoothed MAP optimization and the mean of SVI uniformly in the range (−50, 50).

For both methods, we initialize the log standard deviation log σ uniformly in the

range (log 0.5, log 10). We set γk ≈ 0.1/(1+k0.85) for CSVI and γk = 0.5/(1+k)

for SVI.

Fig. 5.1 shows the result of 10 trials of each of CSVI and SVI. The majority

of the mass of the Gaussian mixture target distribution (grey) concentrates on

the central mode with mean 0 and standard deviation 2; the optimal variational

approximation has these same parameters. However, as shown in the plot, SVI
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Figure 5.1: The result of running 10 trials of CSVI (blue) and SVI (pink) with
the Gaussian mixture target (grey) given in Eq. (5.1). The output of CSVI
reliably finds the global optimum solution corresponding to the central
mixture peak; SVI often provides solutions corresponding to spurious
local optima.

with randomized µ0 often finds a spurious local optimum solution, corresponding

to the two peaks centered at ±30. On the other hand, the smoothed MAP mean

initialization helps guarantee that the CSVI optimization starts close enough to the

central mode that it recovers the global optimum solution in each trial. The gradient

scaling also aids the stability of the algorithm; whereas SVI has unstable behaviour

when σ is initialized to a small value due to the log-determinant regularization term,

the scaling of CSVI in Eq. (4.3) ensures that the algorithm is stable in this region.

35



Figure 5.2: The Bayesian posterior density for increasing dataset sizes. Note
the large number of spurious local optima, resulting in the unreliability
of local optimization methods in variational inference.

Figure 5.3: The smoothed Bayesian posterior density for the same dataset
sizes as in Fig. 5.2. Black curves correspond to the smoothed posterior,
red dots show local optima of the density, and the blue histogram shows
the counts (over 100 trials) of the output of the smoothed MAP initial-
ization. Note that there are fewer local optima relative to the original
posterior density, and that the smoothed MAP initialization is likely to
provide a mean close to that of the optimal variational distribution.

5.2 Synthetic model with a nonconvex prior
In this section, we compare the performance of CSVI and SVI on a synthetic

Bayesian model across a range of observed dataset sizes (n = 10, 100, 1000, 10000).

The model is as follows,

θ ∼ 1

5
N (0, 0.152) +

1

5
N (1, 0.12) +

1

5
N (−4, 0.32) +

1

5
N (4, 0.32)

+
1

5
N (−8, 0.12)

Xi | θ
i.i.d.∼ N (θ, 5000),

where the data are truly generated from (Xi)
n
i=1

i.i.d.∼ N (3, 10). We use a smoothing

constant of αn = 10n−0.3, and set γk = n
10/(1 + k0.85) for CSVI and γk =
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Figure 5.4: Box-plots of the final ELBO for 100 trials of CSVI and SVI.

0.5/(1 + k) for SVI. We construct this model to have a posterior distribution that

has multiple modes and approaches a normal distribution in total variation as sample

size increases. As shown in Fig. 5.2, the posterior has a number of peaks when n is

small, and gradually converges to a unimodal distribution as n increases. However,

even seemingly small peaks in the density may present significant local optima in

the log density that prevent SVI from obtaining the global optimum, as illustrated in

previous Gaussian mixture example. In contrast, Fig. 5.3 shows that the smoothed

posterior tends to have fewer modes, smoothing smaller peaks and merging closeby

peaks; thus the smoothed posterior can be used to find a reliable initialization for

SVI and reduce the likelihood that SVI becomes trapped in bad local optimum. And

because the smoothed MAP usually finds dominating peaks of the posterior, e.g.,

the larger peak in the last figure of Fig. 5.2, this initialization is usually closer to the

optimal mean and thus often results in a better final variational approximation.

Fig. 5.4 provides a quantitative comparison of CSVI and SVI on this problem,

confirming this intuition and demonstrating that CSVI more reliably finds low-cost

variational approximations in comparison to SVI. In particular, Fig. 5.4 compares

the final expectation lower bound (ELBO) Blei et al. (2017) for each method,

which is equivalent to the negative KL divergence between posterior and variational

distribution up to a normalizing constant. For comparison, we estimate ELBO using

1000 Monte Carlo samples.

The box-plots of Fig. 5.4 shows the results of running CSVI and SVI for 100

trials. Note that larger ELBO means a better approximation and a less spread box-

plot represents better numerical stability. It is clear that when n = 10000, SVI tends

to become trapped in local optima while CSVI tends to find the global optimum

reliably; under all sample sizes, CSVI tends to provide a higher ELBO than SVI,
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meaning a more accurate approximation. Moreover, CSVI is significantly more

stable than SVI when the true posterior is peaky (e.g., n = 10, 100). We also find

that training SVI on a peaky distribution can have diverging σ and hence yields

numerical instability. CSVI, in contrast, shows great numerical stability because of

the scaled gradient for σ.

It is worth noting that the performance of CSVI seems to degrade at n =

1000. We find that the posterior at n = 1000 in this example (3rd figures from

the left in Fig. 5.2) happens to have two big peaks in the smoothed posterior

density. Thus the smoothed MAP initialization finds these two peaks with similar

probability (see the blue bars of Fig. 5.3 at n = 1000), leading to similar final

ELBO values when CSVI/SVI converges to these local optima. However, even in

this pathological setting, CSVI provides a benefit over SVI, as the smoothing kernel

removes other spurious local optima. Finally, it is worth pointing out that as with

all local optimization methods, a careful choice of the learning rate for CSVI is

important to ensure its performance. This matches the statement of Theorem 4.2.1,

which guarantees that the output of CSVI is asymptotically consistent for θ0 as long

as the learning rate satisfies Eq. (4.4). However, if the learning rate is too large,

CSVI may jump out of the local basin found by its initialization due to the noise in

the gradient, and eventually become trapped in a spurious local optimum. But even

when the learning rate is not carefully tuned, CSVI performs at least as well as SVI.
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Chapter 6

Conclusion

This work provides an extensive theoretical analysis of the computational aspects of

Gaussian variational inference, and uses the theory to design a general procedure

that addresses the nonconvexity of the problem in the data-asymptotic regime. We

show that under mild conditions, Gaussian variational optimization is locally asymp-

totically convex. Based on this fact, we developed consistent stochastic variational

inference (CSVI), a scheme that asymptotically solves Gaussian variational infer-

ence. CSVI solves a smoothed MAP problem to initialize the Gaussian mean within

the locally convex area, and then runs a scaled projected stochastic gradient descent

to create iterates that converge to the optimum. The asymptotic consistency of CSVI

is mathematically justified, and experimental results demonstrate the advantages

over traditional SVI.

There are many avenues of further exploration for the present work. For example,

we limit consideration to the case of Gaussian variational families due to their

popularity; but aside from the mathematical details, nothing about the overall

strategy necessarily relied on this choice. It would be worth examining other

popular variational families, such as mean-field exponential families (Xing et al.,

2002).

Furthermore, the current work is limited to posterior distributions with full

support on Rd—otherwise, the KL divergence variational objective is degenerate.

It would be of interest to study whether variational inference using a Gaussian

variational family truncated to the support of the posterior possesses the same bene-
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ficial asymptotic properties and asymptotically consistent optimization algorithm as

developed in the present work.

Another interesting potential line of future work is to investigate other proba-

bility measure divergences as variational objectives. For example, the chi-square

divergence (Csiszár, 1967; Liese and Vajda, 1987, p. 51), Rényi α-divergence

(Van Erven and Harremos, 2014), Stein discrepancy (Stein, 1972), and more (Gibbs

and Su, 2002) have all been used as variational objectives. Along a similar vein, we

studied the convergence properties of only a relatively simple stochastic gradient

descent algorithm; other base algorithms with better convergence properties exist

(Duchi et al., 2011; Kingma and Ba, 2015; Nesterov, 1983), and it may be fruitful

to see if they have similar asymptotic consistency properties.

A final future direction is to investigate the asymptotic behaviour of variational

inference with respect to other measures of optimization tractability. In particular,

(local) pseudoconvexity (Crouzeix and Ferland, 1982), quasiconvexity (Arrow and

Enthoven, 1961), and invexity (Ben-Israel and Mond, 1986; Craven and Glover,

1985) are all weaker than (local) convexity, but provide similar guarantees for

stochastic optimization. These may be necessary to consider when examining other

divergences as variational objectives.
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Appendix A

Proofs

In this appendix, we provide proofs of Theorems 4.1.1 and 4.2.1.

A.1 Proof for Theorem 4.1.1

A.1.1 Gradient and Hessian derivation

The gradient for smoothed posterior is as follows,

∇ log π̂n(θ) =∇ log

{
E
[
exp

(
− 1

2αn
‖θ −W‖2

)]}

=
E
[
exp

(
− 1

2αn
‖θ −W‖2

)(
− 1
αn

)
(θ −W )

]
E
[
exp

(
− 1

2αn
‖θ −W‖2

)] ,

and the Hessian matrix is given by

∇2 log π̂n(θ) =
1

α2
n

E
[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn W (W −W ′)T
]

E
[
e−
‖θ−W‖2

2αn

]2 − 1

αn
I, (A.1)

where W,W ′ i.i.d.∼ Πn.
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A.1.2 Proof of 1st statement of Theorem 4.1.1

Proof of 1st statement of Theorem 4.1.1. To show the MAP estimation for smoothed

posterior is asymptotically strictly convex, we will show that

lim
n→∞

P

(
sup

‖θ−θ0‖≤M
λmax

(
∇2 log π̂n(θ)

)
< 0

)
= 1.

We focus on the first term of Eq. (A.1), and show that asymptotically it is uni-

formly smaller than α−1
n so that the overall Hessian is negative definite. For the de-

nominator of Eq. (A.1), defineBn := {W,W ′ : max{‖W ′ − θ0‖, ‖W − θ0‖} ≤ βn}
for any sequence βn = o(αn). Then we have

E
[
e−
‖θ−W‖2

2αn

]2

= E
[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn 1Bn

]
+ E

[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn 1Bcn

]
≥ E

[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn 1Bn

]
≥ E

[(
inf

v,v′∈Bn
e
−‖θ−v‖2−‖θ−v′‖2

2αn

)
1Bn

]
=

(
inf

v,v′∈Bn
e
−‖θ−v‖2−‖θ−v′‖2

2αn

)
P(Bn).

By minimizing over v, v′ ∈ Bn, the above leads to

E
[
e−
‖θ−W‖2

2αn

]2

≥ e
−2(‖θ−θ0‖+βn)2

2αn P(Bn). (A.2)

For the numerator of the first term of Eq. (A.1), since W,W ′ are i.i.d.,

E
[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn W (W −W ′)T
]

=
1

2
E
[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn (W −W ′)(W −W ′)T
]
,
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and since λmax
(
(W −W ′)(W −W ′)T

)
= ‖W −W ′‖2,

λmax

(
E
[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn W (W −W ′)T
])

(A.3)

≤ 1

2
E
[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn ‖W −W ′‖2
]
.

With Eqs. (A.2) and (A.3), we can therefore bound the maximal eigenvalue of the

Hessian matrix,

λmax
(
∇2 log π̂n(θ)

)
(A.4)

≤ 1

2α2
nP(Bn)

E
[
e
−‖θ−W‖2−‖θ−W ′‖2

2αn e
2(‖θ−θ0‖+βn)2

2αn ‖W −W ′‖2
]
− 1

αn
.

We now bound the supremum of this expression over {θ ∈ Rd : ‖θ − θ0‖ ≤ M}.
Focusing on the exponent within the expectation,

sup
‖θ−θ0‖≤M

1

αn

[
2(‖θ − θ0‖+ βn)2 − ‖θ −W‖2 − ‖θ −W ′‖2

]
= sup
‖θ−θ0‖≤M

1

αn

[
2(‖θ − θ0‖+ βn)2 − ‖θ − θ0 + θ0 −W‖2

−‖θ − θ0 + θ0 −W ′‖2
]

≤ 1

αn

[(
2β2

n + 4Mβn
)
−
(
‖θ0 −W‖2 + ‖θ0 −W ′‖2

)
+2M

(
‖θ0 −W‖+ ‖θ0 −W ′‖

)]
,

where the inequality is obtained by expanding the quadratic terms and bounding

‖θ − θ0‖ with M . We combine the above bound with Eq. (A.4) to show that

α2
nλmax

(
∇2 log π̂n(θ)

)
+ αn is bounded above by

βn
2P(Bn)

e
2β2n+4Mβn

αn E

[
e

2M(‖θ0−W‖+‖θ0−W
′‖)−(‖θ0−W‖2+‖θ0−W ′‖2)
αn

‖W −W ′‖2

βn

]
. (A.5)
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By multiplying and dividing by exp
(
‖W−W ′‖√

βn

)
, one notices that

‖W −W ′‖2

βn
= exp

(
‖W −W ′‖√

βn

)
exp

(
−‖W −W

′‖√
βn

)
‖W −W ′‖2

βn

≤4e−2 exp

(
‖W − θ0‖+ ‖W ′ − θ0‖√

βn

)
,

where the inequality is by the fact that x2e−x maximized at x = 2 with value 4e−2

and ‖W −W ′‖ ≤ ‖W‖ + ‖W ′‖. If we combine this bound with Eq. (A.5) and

note that W,W ′ are iid, Eq. (A.5) is bounded above by

2e−2βn
P(Bn)

e
2β2n+4Mβn

αn E
[
e

(
1
αn

M+β
−1/2
n

)
‖W−θ0‖− 1

2αn
‖W−θ0‖2

]2

. (A.6)

To show that the Hessian is asymptotically negative definite, it suffices to show

that Eq. (A.6) is oPθ0 (αn). For the terms outside the expectation, βn = o(αn)

implies that 2e−2βne
2β2n+4Mβn

αn = o(αn), and Assumption 1 and Lemma A.1.1

together imply that

P(Bn) = Πn ({W : ‖W − θ0‖ ≤ βn})2 Pθ0→ 1,

so

2e−2βn
P(Bn)

e
2β2n+4Mβn

αn = oPθ0 (αn).

Therefore, in order to show Eq. (A.6) is oPθ0 (αn), it is sufficient to show that

E
[
e

(
1
αn

M+β
−1/2
n

)
‖W−θ0‖− 1

2αn
‖W−θ0‖2

]
= OPθ0 (1).

The next step is to split the expectation into two regions—‖W − θ0‖ ≤ βn and

‖W − θ0‖ > βn—and bound its value within them separately.

1. When ‖W − θ0‖ ≤ βn, the exponent inside the expectation is shrinking

49



uniformly since βn = o(αn):

E
[
1{‖W−θ0‖≤βn}e

(
1
αn

M+β
−1/2
n

)
‖W−θ0‖− 1

2αn
‖W−θ0‖2

]
≤ E

[
1{‖W−θ0‖≤βn}

]
e

(
1
αn

M+β
−1/2
n

)
βn

= OPθ0 (1).

2. When ‖W − θ0‖ > βn, we take the supremum over the exponent (a quadratic

function), yielding ‖W − θ0‖ = M + αnβ
−1/2
n and the following bound,(

1

αn
M + β−1/2

n

)
‖W − θ0‖ −

1

2αn
‖W − θ0‖2 (A.7)

≤ sup
‖v−θ0‖

((
1

αn
M + β−1/2

n

)
‖v − θ0‖ −

1

2αn
‖v − θ0‖2

)
=

(
1

αn
M + β−1/2

n

)(
M + αnβ

−1/2
n

)
− 1

2αn

(
M + αnβ

−1/2
n

)2

=
M2

2αn
+

M

β
1/2
n

+
αn
2βn

.

This yields

E
[
1{‖W−θ0‖>βn}e

(
1
αn

M+β
−1/2
n

)
‖W−θ0‖− 1

2αn
‖W−θ0‖2

]
≤ Πn ({W : ‖W − θ0‖ > βn}) exp

(
M2

2αn
+

M

β
1/2
n

+
αn
2βn

)
.

Note that it is always possible to choose βn = o(αn) with βn = ω(α2
n). With

this choice of βn, the dominating term among the three of Eq. (A.7) is M2

2αn
.

Then by Lemma A.1.1, there exists a sequence βn = o(αn) with βn = ω(α2
n)

such that the following holds,

Πn({W : ‖W − θ0‖ > βn}) = oPθ0

(
exp

{
−M

2

2αn

})
,
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which implies

E
[
1{‖W−θ0‖>βn}e

(
1
αn

M+β
−1/2
n

)
‖W−θ0‖− 1

2αn
‖W−θ0‖2

]
= oPθ0 (1).

This finishes the proof.

In the last step of the above proof, we require an exponential tail bound for

the posterior Πn. We provide this in the following lemma, following the general

proof strategy of van der Vaart (2000, Thm 10.3). The proof of Lemma A.1.1

involves many probability distributions; thus, for mathematical convenience and

explicitness, in the proof of Lemma A.1.1 we use square bracket—P [X]—to denote

the expectation of random variable X with respect to a probability distribution P .

When taking expectation to a function of n data points f(X1, . . . , Xn) , where

(Xi)
n
i=1

i.i.d.∼ Pθ, we still write Pθ[f ]; and Pθ here represents the product measure.

Lemma A.1.1. Under Assumption 1, α3
nn→∞, there exists a sequence βn satisfy-

ing βn = o(αn), βn = ω(α2
n) and βn = ω(n−1/2) such that for any fixed constant

M ,

Πn({W : ‖W − θ0‖ > βn}) = oPθ0

(
exp

{
−M

2

2αn

})
.

Proof of Lemma A.1.1. In order to show that βn satisfies the tail probability bound,

it suffices to prove that

e
1
αn Pθ0 [Πn({W : ‖W − θ0‖ > βn})]→ 0,

due to Markov’s inequality (we absorb the M2/2 constant into αn because it does

not affect the proof). To achieve this, we take advantage of the existence of a test

sequence applied from Assumption 1. By van der Vaart (2000, Lemma 10.6), given

the 1st and the 2nd conditions of Assumption 1 and the fact that the parameter space

Rd is σ-compact, there exists a sequence of tests φn : X n → [0, 1], where X n is

the space of (X1, . . . , Xn), such that as n→∞,

Pθ0 [φn]→ 0, sup
‖θ−θ0‖>ε

Pθ [1− φn]→ 0.
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Further, by Kleijn (2004, Lemma 1.2) and van der Vaart (2000, Lemma 10.3), under

Assumption 1 and the existence of the above test sequence φn, for every Mn →∞,

there exists a constant C > 0 and another sequence of tests ψn : X n → [0, 1] such

that for all ‖θ − θ0‖ > Mn/
√
n and sufficiently large n,

Pθ0 [ψn] ≤ exp{−Cn}, Pθ [1− ψn] ≤ exp{−Cn(‖θ − θ0‖2 ∧ 1)}. (A.8)

Using ψn, we split the expectation as following,

e
1
αn · Pθ0 [Πn({W : ‖W − θ0‖ > βn})]

= e
1
αn · Pθ0 [Πn({W : ‖W − θ0‖ > βn})ψn]︸ ︷︷ ︸

(I)

+ e
1
αn · Pθ0 [Πn({W : ‖W − θ0‖ > βn})(1− ψn)]︸ ︷︷ ︸

(II)

,

and we aim to show both parts converging to 0.

For term (I), the first statement of Eq. (A.8) implies that ∃C > 0 such that

e
1
αn · Pθ0 [Πn({W : ‖W − θ0‖ > βn})ψn] ≤ e

1
αn Pθ0 [ψn] ≤ e

1
αn e−nC .

where the first inequality follows by Πn({W : ‖W − θ0‖ > βn}) ≤ 1. Since

nα3
n →∞, the last bound in the above expression converges to 0.

For term (II), we work with the shifted and scaled posterior distribution. Define

Zn =
√
n (W − θ0) and Bn = {Zn : ‖Zn‖ >

√
nβ2

n }, and let Π̃0 be the

corresponding prior distribution on Zn and Π̃n be the shifted and scaled posterior

distribution, which yields

e
1
αn · Pθ0 [Πn({W : ‖W − θ0‖ > βn})(1− ψn)]

= e
1
αn · Pθ0

[
Π̃n (Bn) (1− ψn)

]
.

(A.9)

Let U be a closed ball around 0 with a fixed radius r, then restricting Π̃0 on U

defines a probability measure Π̃U
0 , i.e., for all measurable set B, Π̃U

0 (B) = Π̃0(B ∩
U)/Π̃0(U). Write Pn,z for the joint distribution of n data points (X1, . . . , Xn)
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parameterized under θ0 + z/
√
n and hence write the marginal distribution of

(X1, . . . , Xn) under Π̃U
0 for Pn,U =

∫
Pn,zdΠ̃U

0 (z). The densities of these distri-

butions will be represented using lower case, e.g., pn,U (x) =
∫
pn,z(x)π̃U0 (z)dz is

the PDF of Pn,U . Here we abuse the notation that x represents (x1, . . . , xn).

We replace Pθ0 in Eq. (A.9) with Pn,U . Under Assumption 1, by van der Vaart

(2000, P. 141), Pn,U is mutually contiguous to Pθ0 (LeCam, 1960), that is, for any

statistics Tn (a Borel function of Xn), Tn
Pθ0→ 0 iff Tn

Pn,U→ 0. Thus, considering

Π̃0 (Bn) (1 − ψn) as the statistics Tn, the convergence to 0 of the expression in

Eq. (A.9) is equivalent to

e
1
αn · Pn,U

[
Π̃n (Bn) (1− ψn)

]
→ 0.

Manipulating the expression of Pn,U and Π̃n (Bn) (we write Π̃n (Bn, x) in the

integral and write Π̃n (Bn, (Xi)
n
i=1) in the expectation to make the dependence of

posterior on the data explicit),

Pn,U

[
Π̃n (Bn, (Xi)

n
i=1) (1− ψn)

]
=

∫
Π̃n (Bn, x) (1− ψn)dPn,U (x)

=

∫
Π̃n (Bn, x) (1− ψn)pn,U (x)dx.

Note that pn,U (x) =
∫
pn,z(x)dΠ̃U

0 (z),

=

∫
Π̃n (Bn, x) (1− ψn)

(∫
pn,z(x)dΠ̃U

0 (z)

)
dx.

Recall that for all measurable set B, Π̃U
0 (B) = Π̃0(B ∩ U)/Π̃0(U), thus

=
1

Π̃0(U)

∫
Π̃n (Bn, x) (1− ψn)

(∫
U
pn,z(x)dΠ̃0(z)

)
dx.

By using Bayes rule, we expand Π̃n (Bn, x) =
∫
1[Bn]pn,z(x)dΠ̃0(z)∫
pn,z(x)dΠ̃0(z)

,

=

∫
(1− ψn)

(∫
1[Bn]pn,z(x)dΠ̃0(z)

)(∫
U pn,z(x)dΠ̃0(z)

)
dx

Π̃0(U)
∫
pn,z(x)dΠ̃0(z)

.
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Note that Π̃n (U, x) =
∫
U pn,z(x)dΠ̃0(z)∫
pn,z(x)dΠ̃0(z)

,

=
1

Π̃0(U)

∫ (∫
1[Bn]pn,z(x)dΠ̃0(z)

)
(1− ψn)Π̃n (U, x) dx.

By Fubini Theorem and Π̃n (U, x) ≤ 1,

≤ 1

Π̃0(U)

∫
Bn

(∫
(1− ψn)pn,z(x)dx

)
dΠ̃0(z)

=
1

Π̃0(U)

∫
{‖z‖>

√
nβ2

n }
Pn,z[1− ψn]dΠ̃0(z).

Note that Pn,z[1− ψn] ≡ Pθ[1− ψn] for θ = θ0 + z/
√
n and that

√
nβ2

n → ∞
due to βn = ω(n−1/2). Thus, we can use the second statement of Eq. (A.8) to

bound Pn,z[1− ψn], yielding

1

Π̃0(U)

∫
{‖z‖>

√
nβ2

n }
Pn,z[1− ψn]dΠ̃0(z)

≤ 1

Π̃0(U)

∫
{‖z‖>

√
nβ2

n }
exp{−C(‖z‖2 ∧ n)}dΠ̃0(z).

We then derive upper bounds for both the fraction and the integral to show the above

is o
(
e−

1
αn

)
. For the fraction, we define Un :=

{
w ∈ Rd :

√
n (w − θ0) ∈ U

}
,

then

Π̃0(U) =Π0(Un) ≥ π
d
2

γ(d2 + 1)

(
n−1/2r

)d
inf
w∈Un

π0(w).

By Assumption 1, for all w ∈ Rd, π0(w) is positive and continuous, and hence

infw∈Un π0(w) is an increasing sequence that converges to π0(θ0) > 0 as n→∞.

Thus, there is a constant D > 0 such that for sufficiently large n,

Π̃0(U) ≥ Dn−d/2, (A.10)
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yielding that

∃C > 0, s.t.
1

Π̃0(U)
≤ Cnd/2.

For the integral, by splitting Bn into {
√
nβ2

n < ‖zn‖ ≤ k
√
n } and {‖zn‖ >

k
√
n } for some positive k < 1,∫

{‖z‖>
√
nβ2

n }
exp{−C(‖z‖2 ∧ n)}dΠ̃0(z)

≤
∫
{k
√
n≥‖z‖>

√
nβ2

n }
exp{−C‖z‖2}dΠ̃0(z) + e−Ck

2n.

Then by change of variable to w = 1√
n
z + θ0,

=

∫
{k≥‖w−θ0‖>βn}

exp{−Cn‖w − θ0‖2}π0(w)dw + e−Ck
2n.

Note that by Assumption 1, π0(w) is continuous for all w ∈ Rd, we can choose a

sufficiently small k such that π0(θ) is uniformly bounded by a constant C over the

region {k ≥ ‖w − θ0‖ > βn}. Thus, the above can be bounded above by

C

∫
{k≥‖w−θ0‖>βn}

exp{−Cn‖w − θ0‖2}dw + e−Ck
2n

= Cn−d/2
∫
{k
√
n≥‖z‖>

√
nβ2

n }
exp

{
−C‖z‖2

}
dz + e−Ck

2n

≤ Cn−d/2
∫
{‖z‖>

√
nβ2

n }
exp

{
−C‖z‖2

}
dz + e−Ck

2n,

where the equality is by change of variable back to z =
√
n (w − θ0). Then,

consider the integral on RHS. Using spherical coordinates, there exists a fixed

constant D > 0 such that∫
{‖z‖>

√
nβ2

n }
exp

{
−C‖z‖2

}
dz = D

∫
{r>
√
nβ2

n }
e−Cr

2
rd−1dr

= DC−d/2
∫
{s>Cnβ2

n}
e−ss

d
2
−1ds,
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where the second equality is by setting s = Cr2. Note that the integrand of RHS is

proportional to the PDF of Γ(d2 , 1). Using the tail properties of the Gamma random

variable (Boucheron et al., 2013, p. 28), we have that for some generic constant

D > 0, ∫
{‖z‖>

√
nβ2

n }
exp

{
−C‖z‖2

}
dz ≤ De−Cnβ2

n .

Therefore, for some generic constants C,D > 0,∫
{‖z‖>

√
nβ2

n }
exp{−C(‖z‖2 ∧ n)}dΠ̃0(z) (A.11)

≤ Dn−d/2e−Cnβ2
n + e−Ck

2n.

Then we combine Eqs. (A.10) and (A.11), yielding that for some constantsC,D > 0

independent to n,

e
1
αn · Pn,U

[
Π̃0 (Bn) (1− ψn)

]
≤ e

1
αn

1

Πn,0(U)

∫
{‖z‖>

√
nβ2

n }
exp{−C(‖z‖2 ∧ n)}dΠ̃0(z)

≤ e
1
αnC
√
n de−Cn + e

1
αnDe−Cnβ

2
n .

Lastly, it remains to show that there exists a positive sequence βn satisfying both

βn = o(αn) and βn = ω(α2
n) such that the RHS converges to 0. The first term

always converges to 0 due to α3
nn → ∞. For the second term, we consider two

different cases. If αn = o(n−1/6), we pick βn = n−1/3, which is both o(αn) and

ω(α2
n). Then

e
1
αnDe−Cnβ

2
n = D exp

{
α−1
n − Cn1/3

}
−→ 0,

where the convergence in the last line is by nα3
n → ∞ ⇔ 1

αn
= o(n1/3). If
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αn = ω(n−1/6), we pick βn = α2
n. Then

e
1
αnDe−Cnβ

2
n = D exp

{
α−1
n − Cnα4

n

}
.

Since αn = ω(n−1/6), 1
αn

= o(n1/6) and nα4
n = ω(n1/3), yielding that the above

converges to 0 as n→∞.

This completes the proof.

A.1.3 Proof of 2nd statement of Theorem 4.1.1

In this section, we show that the smoothed MAP estimator (θ̂n) is also a consistent

estimate of θ0, but with a convergence rate that is slower than the traditional
√
n . This is the case because the variance of the smoothing kernel satisfies αn =

ω(n−1/3), and the convergence rate of θ̂n is determined by αn via

‖θ̂n − θ0‖ = OPθ0 (
√
αn ). (A.12)

Recall that θMAP,n := arg maxπn(θ) is the MAP estimator for the exact pos-

terior, which is a
√
n -consistent estimate of θ0. Thus, it is sufficient to show∥∥∥θ̂n − θMAP,n

∥∥∥ = OPθ0

(√
αn
)
.

Note that θ̂n and θMAP,n are maximals of stochastic process π̂n(θ) and πn(θ)

respectively, which can be studied in the framework of M-estimator (van der Vaart,

2000; van der Vaart and Wellner, 2013). A useful tool in establishing the asymptotics

of M-estimators is the Argmax Continuous Mapping theorem (van der Vaart and

Wellner, 2013, Lemma 3.2.1), which is introduced as follows.

Lemma A.1.2 (Argmax Continuous Mapping (van der Vaart and Wellner, 2013)).
Let {fn(θ)} and f(θ) be stochastic processes indexed by θ, where θ ∈ Θ. Let θ̂ be

a random element such that almost surely, for every open sets G containing θ̂,

f(θ̂) > sup
θ/∈G

f(θ).
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and θ̂n be a random sequence such that almost surely

fn(θ̂n) = sup
θ∈Θ

fn(θ).

If supθ∈Θ |fn(θ)− f(θ)| = oP (1) as n→∞, then

θ̂n
d→ θ̂.

The proof strategy of the 2nd statement of Theorem 4.1.1 is to apply Lemma A.1.2

in a setting where fn is π̂n(θ) and f is a Gaussian density. Using the Bernstein-von

Mises Theorem 3.1.1, we show that π̂n(θ) converges uniformly to this Gaussian

density, which implies that the MAP of π̂n(θ) converges in distribution to the MAP

of this Gaussian distribution by the Argmax Continuous Mapping theorem. The

detailed proof is as follows.

Proof of 2nd statement of Theorem 4.1.1. Assumption 2 guarantees ‖θMAP,n−θ0‖=

OPθ0 (1/
√
n ). Note that

‖θ̂n − θ0‖ ≤ ‖θ̂n − θMAP,n‖+ ‖θMAP,n − θ0‖.

Since
√
αn = ω(1/

√
n ), in order to get Eq. (A.12), it suffices to show∥∥∥θ̂n − θMAP,n

∥∥∥ = OPθ0 (
√
αn ) .

Thus, in this proof, we aim to show
∥∥∥θ̂n − θMAP,n

∥∥∥ = OPθ0 (
√
αn ) and it is

sufficient to prove

1
√
αn

(
θ̂n − θMAP,n

) Pθ0→ 0.

Let ξ = 1√
αn

(θ − θMAP,n), ξ∗n = 1√
αn

(
θ̂n − θMAP,n

)
and t = 1√

αn
(w − θMAP,n).
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By expressing π̂n(θ), which is defined in Eq. (4.1),

ξ∗n = arg max
ξ

π̂ (
√
αn ξ + θMAP,n)

= arg max
ξ

∫
πn (
√
αn t+ θMAP,n) exp

(
− 1

2αn
‖
√
αn ξ −

√
αn t‖2

)
dt

= arg max
ξ

∫
αd/2n πn (

√
αn t+ θMAP,n) exp

(
−1

2
‖ξ − t‖2

)
dt.

Define

fn(ξ) =

∫
αd/2n πn (

√
αn t+ θMAP,n) exp

(
−1

2
‖ξ − t‖2

)
dt,

gn(ξ) =

∫
φ

(
t; 0,

1

nαn
H−1

0

)
exp

(
−1

2
‖ξ − t‖2

)
dt,

f(ξ) =(2π)d/2φ (ξ; 0, I) ,

where φ(·;µ,Σ) denotes the PDF of N (µ,Σ).

By adding and subtracting f(ξ),

ξ∗n = arg max
ξ

fn(ξ)

= arg max
ξ

{fn(ξ)− f(ξ) + f(ξ)} .

We then apply Lemma A.1.2 to show ξ∗n
d→ arg maxξ f(ξ). We start by verifying a

condition of the argmax continuous mapping theorem that

lim
n→∞

sup
ξ
|fn(ξ)− f(ξ)| = 0. (A.13)

By triangle inequality, for all n,

sup
ξ
|fn(ξ)− f(ξ)| ≤ sup

ξ
|fn(ξ)− gn(ξ)|+ sup

ξ
|gn(ξ)− f(ξ)|. (A.14)

Later we show both two terms on the RHS converging to 0.

For the first term. Note that αd/2n πn(
√
αn t+ θMAP,n) is the probability density
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function of Π√αn t+θMAP,n , which is the posterior distribution parameterized on t.

Thus, for all n,

sup
ξ
|fn(ξ)− gn(ξ)|

= sup
ξ

{∫ ∣∣∣∣αd/2n πn(
√
αn t+θMAP,n)−φ(t; 0,

1

nαn
H−1

0 )

∣∣∣∣exp

(
−1

2
‖ξ − t‖2

)
dt
}

≤ DTV

(
Π√αn t+θMAP,n ,N

(
0,

1

nαn
H−1

0

))
,

where the inequality is by supξ,t exp(−1
2‖ξ − t‖

2) ≤ 1. Under Assumption 1, the

posterior distribution admits Bernstein-von Mises theorem (Theorem 3.1.1) that

DTV

(
Πn,N

(
0,

1

n
H−1

0

))
= oPθ0 (1).

With the invariance of total variation under reparametrization, we have

DTV

(
Π√αn t+θMAP,n ,N

(
0,

1

nαn
H−1

0

))
= oPθ0 (1).

This shows the uniform convergence from fn(ξ) to gn(ξ).

For the second term in Eq. (A.14). Note that we can evaluate gn(ξ) since it is a

convolution of two Gaussian PDFs, that is

gn(ξ) = (2π)d/2φ

(
ξ; 0,

1

nαn
H−1

0 + I

)
.

Comparing this to f(ξ) = (2π)d/2φ (ξ; 0, I), one notices that 1
nαn

H−1
θ0

+ I → I

due to α3
nn → ∞. And further for Gaussian distributions, the convergence of

parameters implies the uniform convergence of PDFs, yielding that

lim
n→∞

sup
ξ
|gn(ξ)− f(ξ)| = 0.

Thus, we have Eq. (A.14) converging to 0 as n→∞.

Now we look at f(ξ) with the goal to apply Lemma A.1.2 and to obtain ξ∗n
d→
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arg maxξ f(ξ). Note that

arg max
ξ

f(ξ) = 0 and sup
ξ
f(ξ) = det (I)−1/2 = 1.

To apply Lemma A.1.2, we need to ensure that for any open set G that contains 0,

f(0) > sup
ξ∈G

f(ξ). (A.15)

This holds by the unimodality of standard Gaussian distirbution.

Therefore, with both conditioins Eq. (A.13) and Eq. (A.15), we can apply

Lemma A.1.2 to conclude that

1
√
αn

(
θ̂n − θMAP,n

) Pθ0→ 0.

This completes the proof.
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A.2 Proof for Theorem 4.2.1
Proof of Theorem 4.2.1. In this proof, we aim to apply Theorem A.2.1 with

X = {µ ∈ Rp, L lower triangular with non-negative diagonals},

which is closed and convex. Note that in the notation of this theorem, x =

(µT , LT1 , . . . , L
T
p )T ∈ R(d+1)d and V ∈ R(d+1)d×(d+1)d is set to be a diagonal

matrix with entries 2 for the µ components and r/(2‖I − L?n‖F ) for the L compo-

nents. Therefore

J(x) = J(µ,L) = 4‖µ− µ?n‖2 +
r2

4‖I − L?n‖2F
‖L− L?n‖2F .

This setting yields two important facts. First, by Theorems 4.1.1 and 3.2.1,

θ̂n
Pθ0→ θ0 and µ?n

Pθ0→ θ0,

yielding that

P
(
‖θ̂n − θ0‖+ ‖µ?n − θ0‖ ≤

r

4
√

2

)
→ 1, as n→∞.

For ‖µ0 − θ̂n‖2 ≤ r2

32 , by triangle inequality, the probability that the following

inequalities hold converges to 1 in Pθ0 as n→∞,

‖µ0 − µ?n‖ ≤ ‖µ0 − θ̂n‖+ ‖θ̂n − θ0‖+ ‖µ?n − θ0‖ ≤
r

2
√

2
.

Further with L0 = I , J(µ0, L0) ≤ 3r2

4 ≤ r
2. Hence, if we initialize L0 = I and µ0

such that ‖µ0 − θ̂n‖22 ≤ r2

32 ,

P
(
x0 ∈ {x : J(x) ≤ r2}

)
→ 1, as n→∞. (A.16)
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Second, if J ≤ r2 then µ is close to the optimal and ‖L‖F is not too large, i.e.,

J(µ,L) ≤ r2 =⇒ ‖µ− µ?n‖2 ≤ r2/4

J(µ,L) ≤ r2 =⇒ ‖L− L?n‖2F ≤ 4‖I − L?n‖2F
=⇒ ‖L‖F ≤ 2‖I − L?n‖F + ‖L?n‖F ,

yielding that {J(µ,L) ≤ r2} ⊆ Br,n. Recall that

Br,n =

{
µ ∈ Rd, L ∈ Rd×d : ‖µ− µ?n‖2 ≤

r2

4
and‖L− L?n‖2F ≤ 4‖I − L?n‖2F

}
.

Then by Corollary 3.3.8, under Assumptions 1 and 3, the probability of the event

that

Fn is
ε

2
Dn-strongly convex in {J(µ,L) ≤ r2} (A.17)

and globally `Dn-Lipschitz smooth

converges to 1 in Pθ0 as n→∞.

For brevity, we make the following definitions for the rest of this proof: recall

the definition of fn, Fn in Eq. (3.2) (we state here again):

In : X → R, In(x) := − 1

n
log detL

fn : Rd → R, fn(θ) := − 1

n
log πn(θ)

f̃n : (X ,Rd)→ R, f̃n(x, Z) := − 1

n
log πn

(
µ+

1√
n
LZ

)
Fn : X → R, Fn(x) := E

[
− 1

n
log πn

(
µ+

1√
n
LZ

)]
φn := In + f̃n, Φn := In + Fn.

Here φn(x, z) is the KL cost function with no expectation, and Φn(x) is the cost

function with the expectation. To match the notation of Theorem A.2.1, we refor-
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mulate the scaled gradient estimator defined in Eq. (4.3) as gn,

gn(x, Z) =

{
Rn(x)∇φn(x, Z) x ∈ X o

limy→xRn(y)∇φn(y, Z) x ∈ ∂X
,

for a diagonal scaling matrix Rn(x) ∈ Rd(d+1)×d(d+1). Define that Rn(x) has

entries 1 for the µ components, 1 for the off-diagonal L components, and 1/(1 +

(nLii)
−1) for the diagonal L components. Note that x→ ∂X means that Lii → 0,

ensuring that gn(x, Z) has entries −1 for the Lii. Since Z is a standard normal

random variable, under the event that− 1
n log πn has Lipschitz gradient, the gradient

can be passed through the expectation so that the true gradient is defined as below,

Gn(x) := E [gn(x, Z)] = Rn(x)∇Φn(x).

Note that the projected stochastic iteration

xk+1 = ΠX (xk − γkgn(xk, Zk)) , k = N ∪ {0},

with ΠX (x) := arg miny∈X ‖V (x − y)‖2 is equivalent to the iteration described

in Algorithm 2. Note that the differentiability of φn only holds for x ∈ X o. For

the case where Lii = 0 for some i ∈ [d], we can use continuation via the limit

limLii→0− (nLii)
−1

1+(nLii)−1 = −1 to evaluate even though the gradient is not defined.

For the following proof, we do not make special treatments to those boundary points

when applying Taylor expansion and taking derivative.

Next we apply Theorem A.2.1 to carry out the proof. The rest of the proof con-

sists two parts: to show the confinement result (statement 2. of Theorem A.2.1)
and to show the convergence result (statement 3. of Theorem A.2.1) ). We

prove these two results under the event that Eqs. (A.16) and (A.17) hold; since the

probability that these events hold converges in Pθ0 to 1 as n→∞, the final result

holds with the same convergent probability.

We first show the confinement result by analyzing ε(x), `2(x), and σ2(r),

which are defined in Eqs. (A.23) and (A.24) respectively. We aim to obtain that
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i. We can find sufficiently small γk > 0 such that

αk = 1 + 1
[
J(xk) ≤ r2

]
(−2γkε(r) + 2γ2

k`
2(r)) ∈ (0, 1]

holds for all x ∈ X , i.e,

∀x ∈ X : J(x) ≤ r2, 0 ≤ 2γkε(x)− 2γ2
k`

2(x) ≤ 1. (A.18)

ii. σ2(r)→ 0 as n→∞ to guarantee the SGD iterations are eventually locally

confined as n→∞ (based on Theorem A.2.1).

To show the statement i., Eq. (A.18), we start by deriving a lower bound for

2γkε(x)− 2γ2
k`

2(x). Examine the expression,

2γkε(x)− 2γ2
k`

2(x)

= 2γkJ(x)−1(x− x?)TV TV Rn(x) (∇Φn(x)−∇Φn(x?))

−2γ2
kJ(x)−1 (∇Φn(x)−∇Φn(x?))T RT (x)V TV Rn(x) (∇Φn(x)−∇Φn(x?))

=
2γk
J(x)

(V (x− x?))T V Rn(x)

(∫
· · ·
)
V −1 (V (x− x?))

−
2γ2

k

J(x)
(V (x− x?))TV −T

(∫
· · ·
)T

(V Rn(x))2

(∫
· · ·
)
D−1 (V (x− x?)) ,

where
(∫
· · ·
)

=
(∫ 1

0 ∇
2Φn((1− t)x? + tx)dt

)
. By splitting Φn into the regular-

ization In(x) and the expectation Fn(x); and defining

A(x) := V Rn(x)

(∫ 1

0
∇2In((1− t)x? + tx)dt

)
V −1

B(x) := V Rn(x)

(∫ 1

0
∇2Fn((1− t)x? + tx)dt

)
V −1

v(x) := V (x− x?),
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the above expression can be written as

2γkε(x)− 2γ2
k`

2(x)

= 2γk
v(x)T (A(x) +B(x))v(x)− γk‖(A(x) +B(x))v(x)‖2

‖v(x)‖2

≥ 2γk
v(x)TA(x)v(x)+v(x)TB(x)v(x)−2γk‖A(x)v(x)‖2−2γk‖B(x)v(x)‖2

‖v(x)‖2

≥ 2γk

{
v(x)TA(x)v(x) + v(x)TB(x)v(x)− 2γk‖A(x)v(x)‖2

‖v(x)‖2

−2γk‖B(x)(V Rn(x)`DnV
−1)−1‖2‖V Rn(x)`DnV

−1v(x)‖2

‖v(x)‖2

}
= 2γk

{
v(x)TA(x)v(x) + v(x)T (B(x)− V Rn(x) ε2DnV

−1)v(x)

‖v(x)‖2

+
v(x)T

(
V Rn(x) ε2DnV

−1
)
v(x)− 2γk‖A(x)v(x)‖2

‖v(x)‖2

−2γk‖B(x)(V Rn(x)`DnV
−1)−1‖2‖DRn(x)`DnV

−1v(x)‖2

‖v(x)‖2

}
Note that by Corollary 3.3.8 that ε

2Dn � ∇2Fn(x) � `Dn and all the V , Rn(x)

are positive diagonal matrices, leading to

B(x)− V Rn(x)
ε

2
DnV

−1 � 0I

‖B(x)(V Rn(x)`DnV
−1)−1‖2 ≤ 1.
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Thus, the above expression can be bounded below by

2γkε(x)− 2γ2
k`

2(x)

≥ 2γk

{
v(x)TA(x)v(x) + v(x)T

(
V Rn(x) ε2DnV

−1
)
v(x)

‖v(x)‖2

−2γk‖A(x)v(x)‖2 − 2γk‖V Rn(x)`DnV
−1v(x)‖2

‖v(x)‖2

}
=

2

‖v(x)‖2
v(x)T

{[
γkA(x)− 2γ2

kA
2(x)

]
+

1

2

[
εγkRn(x)Dn − 4`2 (γkRn(x)Dn)2

]}
v(x)

≥ 2λmin

([
γkA(x)− 2γ2

kA
2(x)

]
+

1

2

[
εγkRn(x)Dn − 4`2 (γkRn(x)Dn)2

])
.

Now, notice thatA(x) ,Rn(x)Dn are all diagonal matrices with non-negative entries,

γkA(x)− 2γ2
kA

2(x) = γkA(x) (I − 2γkA(x)) (A.19)

εγkRn(x)Dn − 4`2 (γkRn(x)Dn)2 = γkRn(x)Dn

(
ε− 4`2γkRn(x)Dn

)
.

As long as the entries of A(x), Rn(x)Dn are bounded above by a constant for all n,

there exists a sufficiently small constant c such that for all γk < c, Eq. (A.19) are

both non-negative. Given that for all n and ∀x ∈ X ,

A(x) = diag

(
0, · · · , (nLii)

−1

1 + (nLii)−1

1

L?ii
, · · · , 0

)
� 1

mini∈[d] L
?
ii

I

Rn(x)Dn � I,

we obtain the boundedness of the entries of A(x), Rn(x)Dn. Therefore, we con-

clude that

∀x ∈ X , 0 ≤ 2γkε(x)− 2γ2
k`

2(x).
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It remains to show the second inequality of Eq. (A.18), i.e.,

sup
x∈X :J(x)≤r2

2γkε(x)− 2γ2
k`

2(x) ≤ 1.

This is true if

sup
x∈X :J(x)≤r2

ε(x) ≤ γ−1
k .

Since γk → 0 as k →∞, the above holds if supx∈X :J(x)≤r2 ε(x) is bounded above

by a constant that is independent to n. Now we consider the upper bound for

supx∈X :J(x)≤r2 ε(x). Expanding ε(x),

ε(x) = J(x)−1(x− x?)TDTDRn(x) (∇Φn(x)−∇Φn(x?))

=
v(x)T (A(x) +B(x))v(x)

‖v(x)‖2

≤ λmax(A(x) +B(x))

= λmaxRn(x)1/2

(∫ 1

0
∇2Φn((1− t)x? + tx)dt

)
Rn(x)1/2.

Split Φn into the regularization In(x) and the expectation Fn(x). For the expecta-

tion, by Corollary 3.3.8 that ∇2Fn(x) � `Dn and entries of Rn(x) are bounded by

1, we have

Rn(x)1/2∇2Fn(x)Rn(x)1/2 � `I,

and for the regularization, note that ∇2In is a diagonal matrix with 0 for µ and

off-diagonals of L and L−2
ii /n for diagonals of L, so

Rn(x)1/2

(∫ 1

0
∇2In((1− t)x? + tx)dt

)
Rn(x)1/2

= diag

(
0, · · · , (nLii)

−1

1 + (nLii)−1

1

L?ii
, · · · , 0

)
� 1

mini∈[d] L
?
ii

I

(A.20)
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By the fact that ∀i ∈ [d], L?ii > 0, we have Eq. (A.20) is bounded above by a

constant C. Use the Weyl’s inequality to bound the maximal eigenvalue of the

summation of two Hermitian matrices, we conclude that

sup
x∈X :J(x)≤r2

ε(x) ≤ `+ C.

Therefore, we have completed the proof for statement i., Eq. (A.18).

Then we show the statement ii. by getting upper bound on σ2(r). Recall

that σ2(r) is the upper bound of the fourth moment of

‖V Rn(x) (∇φn(x, Z)−∇Φn(x))‖ .

Since the regularizor is cancelled in this expression, we only consider the expectation

part. Note that V Rn(x) is a diagonal matrix with positive diagonals,

E
[∥∥∥V Rn(x)

(
∇f̃n(x, Z)−∇Fn(x)

)∥∥∥4
]1/4

≤ max
i∈[d(d+1)]

(V Rn(x))iiE
[∥∥∥∇f̃n(x, Z)−∇Fn(x)

∥∥∥4
]1/4

.

Let Z1, Z2 be independent copies, by tower property of conditional expectation,

= max
i∈[d(d+1)]

(V Rn(x))iiE
[∥∥∥E [∇f̃n(x, Z1)−∇f̃n(x, Z2)|Z1

]∥∥∥4
]1/4

.

By the convexity of ‖ · ‖4 and Jensen’s inequality,

≤ max
i∈[d(d+1)]

(V Rn(x))iiE
[
E
[∥∥∥∇f̃n(x, Z1)−∇f̃n(x, Z2)

∥∥∥4
|Z1

]]1/4

= max
i∈[d(d+1)]

(V Rn(x))iiE
[∥∥∥∇f̃n(x, Z1)−∇f̃n(x, Z2)

∥∥∥4
]1/4

.

By
∥∥∥∇f̃n(x, Z1)−∇f̃n(x, Z2)

∥∥∥≤∥∥∥∇f̃n(x, Z1)
∥∥∥+∥∥∥∇f̃n(x, Z2)

∥∥∥ and Minkowski’s
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inequality,

≤ max
i∈[d(d+1)]

(V Rn(x))ii

{
E
[
‖∇f̃n(x, Z1)‖4

]1/4
+ E

[
‖∇f̃n(x, Z1)‖4

]1/4
}

= 2 max
i∈[d(d+1)]

(V Rn(x))iiE
[
‖∇f̃n(x, Z)‖4

]1/4
.

Now we focus on bounding E
[
‖∇f̃n(x, Z)‖4

]1/4
. We examine ‖∇f̃n(x, Z)‖,

∇f̃n(x, Z) =


∇fn

(
µ+ 1√

n
LZ
)

Z1√
n
∇fn

(
µ+ 1√

n
LZ
)

...
Zp√
n
∇fn

(
µ+ 1√

n
LZ
)

 ∈ Rd(d+1),

yielding

‖∇f̃n(x, Z)‖4 =

∥∥∥∥∇fn(µ+
1√
n
LZ

)∥∥∥∥4(
1 +

ZTZ

n

)2

.

By Cauchy-Schiwartz inequality,

E
[
‖∇f̃n(x, Z)‖4

]1/4
≤ E

[∥∥∥∥∇fn(µ+
1√
n
LZ

)∥∥∥∥8
]1/8

E

[(
1 +

ZTZ

n

)4
]1/8

.

We then bounds these two terms on RHS separately. We use the sub-Gaussian

property of
∥∥∥∇fn (µ+ 1√

n
LZ
)∥∥∥ to bound its 8th moment. First notice that∥∥∥∇fn (µ+ 1√

n
LZ
)∥∥∥ is a maxi∈[d] Lii √̀n -Lipschitz function of Z,

∣∣∣∣∥∥∥∥∇fn(µ+
1√
n
LZ1

)∥∥∥∥− ∥∥∥∥∇fn(µ+
1√
n
LZ2

)∥∥∥∥∣∣∣∣
≤
∥∥∥∥∇fn(µ+

1√
n
LZ1

)
−∇fn

(
µ+

1√
n
LZ2

)∥∥∥∥
=

∥∥∥∥∫ 1

0
∇2fn

(
µ+ (1− t)LZ2/

√
n + tZ1/

√
n
)

dt
L√
n

(Z1 − Z2)

∥∥∥∥ .
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Given that∇2fn � `I , the above is bounded by

`√
n

√
(Z1 − Z2)TLTL(Z1 − Z2) ≤ `√

n
λmax(LTL)‖Z1 − Z2‖

=
`√
n

max
i∈[d]

L2
ii‖Z1 − Z2‖.

Since a Lipschitz function of Gaussian noise is sub-Gaussian (Kontorovich, 2014,

Thm 1), i.e., let Z ∼ N (0, Id), ψ : Rd → R be L-Lipschitz, then

P (|ψ(Z)− E[ψ(Z)]| > ε) ≤ 2 exp

(
− ε2

4L2

)
.

Thus,
∥∥∥∇fn (µ+ 1√

n
LZ
)∥∥∥ is 4`2

n maxi∈[d] L
2
ii-sub-Gaussian. Then note that for

a σ2-sub-Gaussian random variable X ∈ R, for any positive integer k ≥ 2,

E
[
|X|k

]1/k ≤ σe1/e
√
k . Hence we obtain

E

[∥∥∥∥∇fn(µ+
1√
n
LZ

)∥∥∥∥8
]1/8

≤ 2`√
n
e1/e
√

8 max
i∈[d]

Lii.

Along with the fact that Gaussian random variable has arbitrary order moments,

E

[(
1 +

ZTZ

n

)4
]
≤ C,

for some constant C, we obtain

E
[
‖∇xfn‖4

]1/4 ≤ 2C1/4`√
n

e1/e
√

8 max
i∈[d]

Lii,

and hence

E
[
‖V Rn(x) (∇xfn −∇xFn)‖4

]1/4

≤ max
i∈[d(d+1)]

(V Rn(x))ii
2C1/4`√

n
e1/e
√

8 max
i∈[d]

Lii.

Taking supremum over J(x) ≤ r2, the RHS is bounded above by a universal
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constant, we therefore conclude that

σ2(r) = sup
x∈X :J(x)≤r2

E
[
‖V Rn(x) (∇φn(x, Z)−∇Φn(x))‖4

]1/4
→ 0, n→∞.

Therefore, with ∀x ∈ X : J(x) ≤ r2, 0 ≤ 2γkε(x)−2γ2
k`

2(x) ≤ 1 and σ2(r)→ 0

as n→∞, applying Theorem A.2.1 yields the confinement result, i.e.,

P
(

sup
k∈N

J(xk) ≤ r2

)
→ 1

in Pθ0 as n→∞.

Lastly, by statement 3. of Theorem A.2.1, we prove the convergence result
by checking

inf
x∈X ,J(x)≤r2

ε(x) > 0.

We use the similar way to expand the expression,

ε(x) = J(x)−1(x− x?)TV TV Rn(x) (∇Φn(x)−∇Φn(x?))

=
v(x)T (A(x) +B(x))v(x)

‖v(x)‖2

≥ λmin(A(x) +B(x))

= λminRn(x)1/2

(∫ 1

0
∇2Φn((1− t)x? + tx)dt

)
Rn(x)1/2.

By splitting Φn into the regularization and the expectation, we have

R1/2
n (x)

(∫ 1

0
∇2In((1− t)x? + tx)dt

)
Rn(x)1/2

= diag

(
0, · · · , (nLii)

−1

1 + (nLii)−1

1

L?ii
, · · · , 0

)
� 0I,

(A.21)
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and

Rn(x)1/2

(∫ 1

0
∇2Fn((1− t)x? + tx)dt

)
Rn(x)1/2

≥ Rn(x)1/2Dnε

2
Rn(x)1/2

� ε/2n > 0.

(A.22)

We then combine Eqs. (A.21) and (A.22) and use Weyl’s inequality to bound the

minimal eigenvalue of the summation of two Hermitian matrices, yielding

inf
x∈X ,J(x)≤r2

ε(x) > ε/n > 0.

This gives the convergence result.

Then the proof is complete by applying Theorem A.2.1. We know that ξk is

strictly positive. Since ε(r) > 0 and `(r) is bounded above, there exists γk =

Θ(k−ρ), ρ ∈ (0.5, 1) so that it satisfies the condition of the theorem. We have that

σ → 0, which makes 3. in the statement of Theorem A.2.1 become

P
(

lim sup
k→∞

‖V (xk − x?)‖2 = 0

)
p→ 1, n→∞

Even though D is a function of n, n is fixed as Algorithm 2 runs. Since D is

invertible,

P
(

lim sup
k→∞

‖xk − x?‖2 = 0

)
Pθ0→ 1, n→∞

which is exactly our desired result: as the number of data n→∞, the probability

that Algorithm 2 finds the optimum (as we take more iterations, k →∞) converges

to 1. In other words, variational inference gets solved asymptotically.

Theorem A.2.1. Let X ⊆ Rp be closed and convex, g : X ×Z → Rp be a function,

G(x) := E [g(x, Z)] for a random element Z ∈ Z , x? ∈ X be a point in X such

that G(x?) = 0, V ∈ Rp×p be invertible, J(x) := ‖V (x − x?)‖2, and r ≥ 0.
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Consider the projected stochastic iteration

x0 ∈ X , xk+1 = ΠX (xk − γkg(xk, Zk)) , k = N ∪ {0},

with independent copies Zk of Z, γk ≥ 0, and ΠX (x) := arg miny∈X ‖V (x−y)‖2.

If

1. For all k ∈ N ∪ {0}, the step sizes satisfy

∀x ∈ X : J(x) ≤ r2, 0 ≤ 2γkε(x)− 2γ2
k`

2(x) ≤ 1 (A.23)

ε(x) :=
1

J(x)
(x− x?)TV TV (G(x)−G(x?))

`2(x) :=
1

J(x)
‖V (G(x)−G(x?))‖2 ,

2. For all x ∈ X ,
(
E‖V (g(x, Z)−G(x))‖4

)1/4 ≤ σ̃(x) for σ̃ : X → R≥0,

and

σ(r) := sup
x∈X : J(x)≤r2

σ̃(x), (A.24)

then

1. The iterate xk is locally confined with high probability:

P
(
J(xk) ≤ r2

)
≥

ξ2
k

ξ2
k + 8σ(r)2ζk

ξk(r) := max{0, r2 − J(x0)− 2σ2(r)
∑
j<k

γ2
j }

ζk(r) := r2
∑
j<k

γ2
j + σ2(r)

∑
j<k

γ4
j .

2. The iterate xk stays locally confined for all k ∈ N with high probability:

P
(

sup
k∈N

J(xk) ≤ r2

)
≥ ξ2

ξ2 + 8σ2(r)ζ

ξ(r) := lim
k→∞

ξk(r) ζ(r) := lim
k→∞

ζk(r).
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3. If additionally

inf
x∈X :J(x)≤r2

ε(x) > 0 and γk = Θ(k−ρ), ρ ∈ (0.5, 1),

the iterate xk converges to x? with high probability:

P
(

lim sup
k→∞

J(xk) = 0

)
≥ P

(
sup
k∈N

J(xk) ≤ r2

)
.

Proof. To begin, we show ΠX is non-expansive,

‖V (ΠX (x)−ΠX (y))‖2 ≤ ‖V (x− y)‖2.

For all x, y ∈ Rp, define 〈x, y〉V = xTV TV y. Since V is invertible, V TV is

symmetric and positive definite, and hence (Rp, 〈·, ·〉V ) forms a Hilbert space. Any

projection operator of a Hilbert space is non-expansive (Bauschke and Combettes,

2011, Prop. 4.4).

Note that x? = ΠX (x?) and the projection operation is non-expansive, expand-

ing the squared norm yields

‖V (xk+1 − x?)‖2 ≤ ‖V (xk − x?)‖2

− 2γk(xk − x?)TV TV g(xk, Zk) + γ2
k ‖V g(xk, Zk)‖2 .

Adding and subtracting G(xk) in the second and third terms, using the elementary

bound ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, and defining

βk(x) := −2γk(x− x?)TV TV (g(x, Zk)−G(x))

+ 2γ2
k ‖V (g(x, Zk)−G(x))‖2 − 2γ2

kE
[
‖ · ‖2

]
ε(x) :=

1

J(x)
(x− x?)TV TV (G(x)−G(x?))

`2(x) :=
1

J(x)
‖V (G(x)−G(x?))‖22 ,
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we have that

J(xk+1) ≤J(xk)
(
1− 2γkε(xk) + 2γ2

k`
2(xk)

)
+ βk(xk) + 2γ2

kσ̃
2(xk).

We now define the filtration of σ-algebras

Fk = σ(x1, . . . , xk, Z1, . . . , Zk−1),

and the stopped process for r > 0,

Y0 = J(x0)

Yk+1 =

{
Yk Yk > r2

J(xk+1) o.w.

Note that Yk is Fk-measurable, and that Yk “freezes in place” if J(xk) ever jumps

larger than r2; so for all t2 ≤ r2,

P
(
J(xk) > t2

)
= P

(
J(xk) > t2, Yk−1 > r2

)
+ P

(
J(xk) > t2, Yk−1 ≤ r2

)
= P

(
J(xk) > t2, Yk > r2, Yk−1 > r2

)
+P

(
Yk > t2, Yk−1 ≤ r2

)
≤ P

(
Yk > r2, Yk−1 > r2

)
+ P

(
Yk > t2, Yk−1 ≤ r2

)
≤ P

(
Yk > t2, Yk−1 > r2

)
+ P

(
Yk > t2, Yk−1 ≤ r2

)
= P

(
Yk > t2

)
.

Therefore if we obtain a tail bound on Yk, it provides the same bound on J(xk).

Now substituting the stopped process into the original recursion and collecting

terms,

Yk+1

≤Yk
(
1+1

[
Yk≤r2

]
(−2γkε(xk)+γ2

k`
2(xk))

)
+1
[
Yk≤r2

](
βk(xk)+2γ2

kσ̃
2(xk)

)
≤Yk

(
1+1

[
Yk≤r2

]
(−2γkε(xk)+γ2

k`
2(xk))

)
+1
[
Yk≤r2

]
βk(xk)+2γ2

kσ
2(r).
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Using the notation of Lemma A.2.2, set

αk = 1 + 1
[
Yk ≤ r2

]
(−2γkε(xk) + 2γ2

k`
2(xk))

βk = 1
[
Yk ≤ r2

]
βk(xk)

ck = 2γ2
kσ

2(r).

By the fourth moment assumption, βk has variance bounded above by τ2
k conditioned

on Fk, where

τ2
k = 8γ2

k1
[
Yk ≤ r2

]
‖V (xk − x?)‖2σ̃(xk)

2 + 8γ4
k1
[
Yk ≤ r2

]
σ̃4(xk)

≤ 8γ2
kr

2σ2(r) + 8γ4
kσ

4(r).

Therefore, using the descent Lemma A.2.2 and the fact that 0 ≤ αk ≤ 1,

P

Yk − Y0 > t+ 2σ2(r)
∑
j<k

γ2
j


≤

8σ2(r)
(
r2
∑

j<k γ
2
j + σ2(r)

∑
j<k γ

4
j

)
t2 + 8σ2(r)

(
r2
∑

j<k γ
2
j + σ2(r)

∑
j<k γ

4
j

) .
Finally let ξk and ζk be defined as

ξk := max{0, r2 − Y0 − 2σ2(r)
∑
j<k

γ2
j }

ζk := r2
∑
j<k

γ2
j + σ2(r)

∑
j<k

γ4
j ,

yielding the first result,

P
(
Yk > r2

)
≤ 8σ2(r)ζk
ξ2
k + 8σ2(r)ζk

.

Now since Yk+1 ≤ r2 =⇒ Yk ≤ r2 for all k ≥ 0, the sequence of events
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{
Yk ≤ r2

}
is decreasing. Therefore the second result follows from

P

( ∞⋂
k=0

{
Yk ≤ r2

})
= lim

k→∞
P
(
Yk ≤ r2

)
≥ lim

k→∞
1− 8σ2(r)ζk

ξ2
k + 8σ2(r)ζk

=
ξ2

ξ2 + 8σ2(r)ζ
,

where ξ := limk→∞ ξk and ζ := limk→∞ ζk (or ∞ if ζk diverges). Finally, we

analyze the conditional tail distribution of Yk given that it stays confined, i.e.,

∀k ≥ 0, Yk ≤ r2. First define

0 ≤ ak := sup
x∈X :J(x)≤r2

1− 2γkε(x) + 2γ2
k`

2(x) ≤ 1,

i.e., ak is the largest possible value of αk when Yk ≤ r2. So again applying

Lemma A.2.2,

P

Yk − Y0

k−1∏
j=0

aj > t

k−1∏
j=0

aj +

k−1∑
j=0

cj

k−1∏
m=j+1

am | ∀k Yk ≤ r2


=

P
(
Yk − Y0

∏k−1
j=0 aj > t

∏k−1
j=0 aj +

∑k−1
j=0 cj

∏k−1
m=j+1 am,∀k Yk ≤ r2

)
P (∀k Yk ≤ r2)

=
P
(
Yk − Y0

∏k−1
j=0 αj > t

∏k−1
j=0 αj +

∑k−1
j=0 cj

∏k−1
m=j+1 αm, ∀k Yk ≤ r2

)
P (∀k Yk ≤ r2)

≤
P
(
Yk − Y0

∏k−1
j=0 αj > t

∏k−1
j=0 αj +

∑k−1
j=0 cj

∏k−1
m=j+1 αm

)
ξ2

ξ2+8σ2(r)ζ

≤

(
8σ2(r)ζk

t2+8σ2(r)ζk

)
(

ξ2

ξ2+8σ2(r)ζ

) .
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If we set t = s
∏k−1
j=0 a

−1
j for any s ≥ 0, this implies that

P

Yk > s+ Y0

k−1∏
j=1

aj +

k−1∑
j=0

cj

k−1∏
m=j+1

am | ∀k Yk ≤ r2



≤

(
8σ2(r)ζk

s2
∏
j<k a

−2
j +8σ2(r)ζk

)
(

ξ2

ξ2+8σ2(r)ζ

) .

Now since γk = Θ(k−ρ), ρ ∈ (0.5, 1), and infx∈X :J(x)≤r2 ε(x) > 0, we know that∏
j<k a

−2
j = Θ

(
exp

(
Ckρ

′
))

for some ρ′, C > 0. So therefore for any s ≥ 0,

P
(
Yk > s | ∀k Yk ≤ r2

)
= O

(
exp

(
−Ckρ′

))
.

By the Borel Cantelli lemma, we have that P
(
limk→∞ Yk = 0 | ∀k Yk ≤ r2

)
= 1.

Therefore

P
(

lim
k→∞

Yk = 0

)
≥ P

(
lim
k→∞

Yk = 0 | ∀k Yk ≤ r2

)
P
(
∀k Yk ≤ r2

)
= P

(
∀k Yk ≤ r2

)
,

and the result follows.

Lemma A.2.2 (Descent). Suppose we are given a filtration Fk ⊆ Fk+1, k ≥ 0. Let

Yk+1 ≤ αkYk + βk + ck, k ≥ 0,

where Yk ≥ 0 and 0 ≤ αk ≤ 1 are Fk-measurable, βk is Fk+1-measurable and

has mean 0 and variance conditioned on Fk bounded above by τ2
k , and τ2

k , ck ≥ 0

are F0 measurable. Then

P

Yk − Y0

k−1∏
i=0

αi ≥ t
k−1∏
i=0

αi +
k−1∑
i=0

ci

k−1∏
j=i+1

αj

 ≤ ∑k−1
i=1 τ

2
i

t2 +
∑k−1

i=1 τ
2
i

.
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Proof. Solving the recursion,

Yk ≤ αk−1Yk−1 + βk−1 + ck−1

≤ αk−1 (αk−2Yk−2 + βk−2 + ck−2) + βk−1 + ck−1

≤ . . .

≤ Y0

k−1∏
i=0

αi +

k−1∑
i=0

βi

k−1∏
j=i+1

αj +

k−1∑
i=0

ci

k−1∏
j=i+1

αj .

So

P

Yk − Y0

k−1∏
i=0

αi −
k−1∑
i=0

ci

k−1∏
j=i+1

αj ≥ t
k−1∏
i=0

αi


≤ P

k−1∑
i=0

βi

k−1∏
j=i+1

αj ≥ t
k−1∏
i=0

αi


= P

k−1∑
i=0

βi

i∏
j=0

αj ≥ t

 .

By Cantelli’s inequality and the fact that the ith term in the sum is Fi-measurable,

P

k−1∑
i=0

βi

i∏
j=0

αj ≥ t

 ≤ ∑k−1
i=1 E

[
β2
i

∏i
j=0 α

2
j

]
t2 +

∑k−1
i=1 E

[
β2
i

∏i
j=0 α

2
j

]
≤

∑k−1
i=1 E

[
β2
i

]
t2 +

∑k−1
i=1 E

[
β2
i

]
≤

∑k−1
i=1 τ

2
i

t2 +
∑k−1

i=1 τ
2
i

.
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