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Abstract 

Fecal-oral contamination promotes the persistence of early-life malnutrition. Systemic 

consequences of malnutrition include stunting, poor immune function, metabolic shifts, and 

neurocognitive impairment, but the underlying pathology and precise role of fecal microbes 

remain largely unknown. To address these knowledge gaps, I have utilized an established murine 

model (MAL-BG) that combines malnutrition and iterative exposure to fecal commensals. MAL-

BG mice exhibit altered behavioural and cognitive deficits—poor spatial memory and learning 

plasticity—putatively linked to aberrant microglia phagocytosis. Microglial alterations occurred 

independently from neuroinflammation and blood-brain barrier (BBB) disruption, but were 

linked to systemic lipoxidative stress. Fecal-oral contamination exacerbated systemic, 

malnutrition-induced oxidative stress within the gut, brain, and liver. Beyond oxidative damage, 

malnourished livers exhibit fatty liver features. Largely studied in the context of obesity, 

undernutrition can also trigger NAFLD (non-alcoholic fatty liver disease). A combination of 

histology, liver metabolomics, and microbiome analyses were performed to assess the impact of 

diet and gut microbes in the pathology and reversal of undernutrition-induced fatty liver. 

Intriguingly, fatty liver histology was only observed in the early-life, but not adult, MAL-BG 

model despite similar liver metabolomic profiles. These findings indicate a crucial window in 

early-life development that, when disrupted by nutritional deficits, likely shapes liver health 

trajectories. Importantly, dietary intervention largely mitigated aberrant metabolomic and 

microbiome features in MBG mice. Collectively, my doctoral work explores (1) gut-brain and 

(2) gut-liver interactions in the context of undernutrition and intervention. I anticipate my 

findings will not only provide valued insight into gut microbiota-systemic interactions, but also 

identify putative therapeutic targets to halt or reverse consequences of childhood malnutrition. 
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Lay Summary 

Early-life undernutrition impairs growth, metabolic, and neurocognitive potential. Chronic 

microbial exposure, due to poor sanitation and fecal-oral contamination, contributes to the 

persistence of undernutrition. This work examines the impact of fecal commensals on gut-

systemic pathology of undernutrition utilizing MAL-BG mice, a malnourished model combining 

protein/fat deficiencies and repeated exposure to fecal commensals. Here, I report that fecal-oral 

contamination exacerbates neurocognitive deficits of undernutrition and alters microglia, 

neuroimmune cells informing brain plasticity. In addition, fecal-oral contamination disrupts the 

gut-liver axis promoting NAFLD (non-alcoholic fatty liver disease). Dietary intervention restores 

microbiome shifts, altered liver metabolism, and fatty liver features in the MAL-BG model. 

Collectively, this work identifies putative pathways and therapeutic targets to address impaired 

gut microbiota-systemic interactions within the context of undernutrition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   v 

Preface 

Portions of this thesis utilize text I wrote and published in peer-reviewed journals, as of 28 

August 2020. Extracts from the following manuscripts were used with permission in Chapter 1 

and Chapter 6: Bauer et al. 2016 (DOI: 10.1111/cmi.12585), Tremlett et al. 2017 (DOI: 

10.1002/ana.24901), and Bauer et al. 2019 (DOI: 10.1002/bies.201800268), see below for full 

citation. Fig. 1.1 and Fig. 6.2 are modified from “Fig. 1” in Bauer et al. 2016 and “Figure 2” in 

Bauer et al. 2019, both which I originally conceptualized. I wrote this thesis and either 

performed, analyzed, and/or designed all experiments presented here. Portions of this thesis are 

in preparation for publication.  

 

Chapter 2: Dr. Eric Brown, Kelsey Huus, and Tahereh Bozorgmehr assisted me with the animal 

work presented here. Dr. Guobin Sun and Dr. Nancy Ford (UBC-CHTP) conducted micro-CT 

scanning and provided training in subsequent MicroView software analyses.  

 

Chapter 3: Sarah Woodward and Lisa Thorson (Finlay Lab), Rashad Gopaul (MacVicar and 

Snutch laboratories), and David Argilés (Ayala Lab) provided technical assistance for work 

presented. Dr. Tom Cheng provided initial training in AnyMaze (behavioural) analyses 

(Wellington Lab). Dr. Eli York (MacVicar Lab) conducted microglia imaging and CNS staining 

experiments. Dr. Charisse Petersen guided flow cytometry experiments. Dr. Eric Brown, Mihai 

Cirstea, Kelsey Huus, Tahereh Bozorgmehr, and Nina Radisavljevic assisted me during various 

mouse experiments. Kelsey Huus, Mihai Cirstea, and Dr. Charisse Petersen supported 

microbiome analyses, and Mihai Cirstea performed qPCR analyses. Dr. Victoria Ayala and 

Rebeca Berdún (IRB-Lleida) conducted fatty acid profiling and systemic oxidative stress 



   vi 

analyses. Zakhar Krekhno performed epithelial oxidative stress assays. Dr. Amy Huei-Yi Lee 

supported RNA-Seq analyses.  

 

Chapter 4: Tahereh Bozorgmehr, Kelsey Huus, Dr. Eric Brown, and Sarah Woodward aided 

with mouse experiments. Dr. Victoria Ayala and Dr. Reinald Pamplona (IRB-Lleida) performed 

fatty acid profiling.  

 

Chapter 5: Previously listed researchers (Chapter 4) supported the mouse work and fatty acid 

profiling presented in this chapter. Dr. Charisse Petersen, Mihai Cirstea, Kelsey Huus, and Dr. 

James McCoy contributed to metabolomic and microbiome data analyses, with Mihai Cirstea 

performing PICRUSt. Dr. Ian Welch (UBC Centre for Comparative Medicine) provided advice 

for all gut-liver histological assessments. In addition, I’m grateful to Dr. Haggai Bar-Yoseph, Dr. 

Manuel Portero, Paula Littlejohn, and Dr. Zack Gerbec for valued research and nutritional 

advice. 

 

Dr. B. Brett Finlay supervised the research presented in this manuscript. Dr. Eric Brown 

developed the MAL-BG model; original bacterial strains utilized in mouse work were provided 

by Dr. Emma Allen-Vercoe and Michelle Daigneault (University of Guelph). All untargeted 

metabolomic data was performed by Dr. Jun Han (TMIC). The directors and technicians from 

the Modified Barrier Facility and Animal Research Unit provided valued support in humane 

rodent care. All mouse work presented in this thesis was approved by the UBC Animal Care 

Committee, certificate number: A14-0164, A15-0236, and A19-0277. 

   



   vii 

Current list of manuscripts at the time of doctoral defense, 28 August 2020: 

 
1. K. C. Bauer, K. E. Huus, E. M. Brown, T. Bozorgmehr, C. Petersen, M. S. Cirstea, S. E. 

Woodward, J. McCoy, J. Hun, R. Pamplona, V. Ayala, and B. B. Finlay. “Dietary 
intervention reverses fatty liver and altered gut microbiota during early-life 
undernutrition”. 2020. (accepted at mSystems) 
 

2. K. C. Bauer, E. M. York, M. S. Cirstea, C. Petersen, K. E. Huus, E. M. Brown, R. 
Berdún, A. Lee, T. Bozorgmehr, J. Han, N. Radisavljevic, Z. Krekhno, S. E. Woodward, 
V. Ayala, B. A. MacVicar, B. B. Finlay. “Commensal microbes alter microglial 
phagocytosis and exacerbate cognitive deficits of malnutrition.” 2020. (in submission) 
 

3. K. Huus, K. C. Bauer, E. M. Brown, T. Bozorghmehr, S. E. Woodward, A. Serapio, B. 
Brett Finlay. “Commensal bacteria modulate surface IgA-binding in response to host 
nutrition”. 2020. Cell Host & Microbe. DOI: 10.1016/j.chom.2020.03.012 
 

4. P. Torres, D. Cacabelos, J. Pairada, K. C. Bauer, J. Boada, M. Povedano, R. Pamplona, 
B. Brett Finlay, M. Portero-Otín, V. Ayala. “Gender specific beneficial effects of 
docosahexaenoic acid dietary supplementation in G93A-SOD1 amyotrophic lateral 
sclerosis mice.” 2019. Neurotherapeutics. DOI: 10.1007/s13311-019-00808-2 
 

5. K. C. Bauer, T. Rees, B. B. Finlay. “The gut microbiota–brain axis expands neurologic 
function: A nervous rapport.” 2019. BioEssays. DOI: 10.1002/bies.201800268 
 

6. H. Tremlett, K. C. Bauer, S. Appel-Cresswell, B. B. Finlay, E. Waubant. “The gut 
microbiome in human neurological disease: A review.” 2017. Annals of Neurology. DOI: 
10.1002/ana.24901 
 

7. K. C. Bauer, K. E. Huus, B. B. Finlay. “Microbes and the mind: emerging hallmarks of 
the gut microbiota–brain axis.” 2016. Cellular Microbiology. DOI: 10.1111/cmi.12585 
 

 

 

 

 

 

 

 



   viii 

Table of Contents 

Abstract ................................................................................................................................... iii 

Lay Summary ........................................................................................................................... iv 

Preface ....................................................................................................................................... v 

Table of Contents .................................................................................................................. viii 

List of Tables ............................................................................................................................ xi 

List of Figures .........................................................................................................................xii 

List of Non-Numeric Symbols ................................................................................................ xv 

List of Abbreviations ............................................................................................................. xvi 

Acknowledgements ................................................................................................................ xxi 

Dedication............................................................................................................................. xxiv 

Chapter 1: Introduction of Gut Microbiota-Systemic Interactions ........................................ 1 

1.1 Of Matisse, Microbes, and the Metaorganism ................................................................... 1 

1.2 The Microbiome and the Metaorganism........................................................................................................ 3 

1.3 Gut-Systemic Interactions .............................................................................................................................. 4 
1.3.1 The Gut-Brain Axis................................................................................................................................. 4 
1.3.2 The Gut-Liver Axis ................................................................................................................................. 9 

1.4 Malnutrition and the Gut-Microbiota: Cause, Consequence, Therapy?......................................................13 
1.4.1 The Systemic Burden of Malnutrition and Fecal-Oral Contamination ................................................13 
1.4.2 The Malnourished Gut Microbiome ......................................................................................................15 

1.5 A Model Conclusion ......................................................................................................................................17 

Chapter 2: The MAL-BG Model Exhibits Features of Early-Life Malnutrition ................. 19 

2.1 Introduction...................................................................................................................................................19 

2.2 Modelling Malnutrition and Fecal Oral Contamination ..............................................................................22 

2.3 MAL-BG Exhibits Growth Faltering ............................................................................................................25 



   ix 

2.4 MAL-BG—An Informative and Experimentally Tractable Model ..............................................................27 

2.4 Chapter 2 Methodology .................................................................................................................................28 

2.5 Chapter 2 Summary ......................................................................................................................................30 

Chapter 3: Gut Microbes Shape Microglia and Neurocognitive Function During 
Malnutrition ............................................................................................................................ 31 

3.1 Introduction...................................................................................................................................................31 
3.1.1 Malnutrition and the Gut-Brain Axis ....................................................................................................31 
3.1.2 Microglia ................................................................................................................................................33 

3.2 MAL-BG Mice Display Altered Behaviour And Cognitive Function ...........................................................36 

3.3 Malnutrition and Gut Microbes Alter Microglia Morphology .....................................................................41 

3.4 Fecal-Oral Contamination Influences Function of Malnourished Microglia ...............................................43 

3.5 MAL-BG Microglial Alterations Occur Independently from Neuroinflammation and BBB Deficits .........48 

3.6 MAL-BG display altered neurometabolism ..................................................................................................51 
3.6.1 MAL-BG hippocampal metabolome linked to oxidative stress .............................................................51 
3.6.2 Fecal-oral contamination triggers systemic oxidative stress .................................................................54 

3.7 A Model of Malnutrition, Microbes and the Gut-Brain Axis .......................................................................56 

3.8 Chapter 3 Methodology .................................................................................................................................58 

3.9 Chapter 3 Summary ......................................................................................................................................72 

Chapter 4: Characterizing Undernutrition-Induced Fatty Liver ......................................... 73 

4.1 The Global Burden of NAFLD ......................................................................................................................73 
4.1.1 NAFLD: Pathology and Drivers ............................................................................................................73 
4.1.2 Undernutrition—An Unexpected and Silent Driver of Fatty Liver Disease .........................................75 

4.2 MAL and MAL-BG Models Exhibit Fatty Liver Features ...........................................................................76 

4.3 Metabolomic Profiling of Undernutrition-Induced Fatty Liver ...................................................................78 

4.5 Chapter 4 Methodology .................................................................................................................................83 

4.6 Chapter 4 Summary ......................................................................................................................................86 

Chapter 5: Dietary Intervention Reverses Microbiota Shifts and Fatty Liver Features 
During Early-Life Undernutrition ......................................................................................... 88 

5.1 Dietary Intervention: Efficacy and Limitation .............................................................................................88 
5.1.1 Reversing NAFLD..................................................................................................................................88 
5.1.2 Reversing Malnutrition..........................................................................................................................89 



   x 

5.2 Dietary Intervention Largely Improves Growth and Altered Fecal Microbiota..........................................90 

5.3 Dietary Intervention Largely Improves Fatty Liver Histology in MBG Mice .............................................96 

5.4 Diet and Gut Microbiome Shape the Undernutrition-Induced Fatty Liver Metabolome ............................98 

5.5 A Model of Undernutrition, Microbiome, and NAFLD .............................................................................. 105 

Chapter 6: Conclusion—Malnutrition, Microbes, and the Metaorganism......................... 112 

6.1 Diet and Fecal-Oral Contamination Influence Gut-Systemic Interactions ................................................ 112 
6.1.1 Gut Microbiota-Systemic Model.......................................................................................................... 112 
6.1.2 MAL-BG Gut Microbiota-Brain Axis ................................................................................................. 112 
6.1.2 MBG and the Gut Microbiota-Liver Axis ........................................................................................... 116 

6.2 Malnutrition and the Microbiota: A Case Study of the Expanded Gut-Systemic Model .......................... 121 

6.3 The Metaorganism Framework: A Postscript ............................................................................................ 127 

Bibliography .......................................................................................................................... 129 

Appendix ............................................................................................................................... 156 
 
 

 

 

 

 

 

 

 

 

 

 

 



   xi 

List of Tables 
 

Table S.1 Dietary Composition................................................................................................... 156 

Table S.2 Oxidative Pathways (RNA-Seq)................................................................................. 166 

Table S.3 Microbiome Diversity Analyses................................................................................. 173 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   xii 

List of Figures 

Fig. 1.1 Gut Microbiota-Brain Axis................................................................................................ 8  

Fig. 1.2 Hepatic Pathology and the Gut-Liver Axis...................................................................... 12  

Fig. 2.1 Cycle and Consequences of Malnutrition and Fecal-Oral Contamination ...................... 20 

Fig. 2.2 MAL-BG Model and Diet................................................................................................ 24 

Fig. 2.3 MAL and MBG Mice Display Altered Growth Profiles.................................................. 26 

Fig. 3.1 Diverse Microglial Functionality and Form..................................................................... 35 

Fig. 3.2 MAL-BG Mice Exhibit Altered Exploratory Behaviour ................................................ 37 

Fig. 3.3 MAL and MAL-BG Mice Exhibit Altered Cognition......................................................40 

Fig. 3.4 Gut Microbes and Malnutrition Modulate Microglia Morphology.................................. 42 

Fig. 3.5 MAL-BG Microglia Exhibit Altered Gene Profile.......................................................... 45 

Fig. 3.6 MAL-BG Microglia Display Increased Phagocytic Structures........................................ 47 

Fig. 3.7 Microglial Alterations Occur in The Absence of Neuroinflammation and BBB 

Disruption...................................................................................................................................... 50

Fig. 3.8 Malnutrition Promotes Altered PUFA Metabolism......................................................... 53

Fig. 3.9 MAL-BG Model Exhibits Systemic Oxidative Stress..................................................... 55 

Fig. 3.10 Model of Microbe-Microglia Axis in Health and Malnutrition..................................... 57 

Fig. 4.1 Fatty Liver Progression.................................................................................................... 74 

Fig. 4.2 Malnutrition and Fecal-Oral Contamination Promote Fatty Liver Features.................... 77

Fig. 4.3 Malnutrition and Fecal-Oral Contamination Affect Hepatic Fatty Acid Liver Profiles.. 79

Fig. 4.4 Malnourished Mice Display Robust PUFA Deficits........................................................ 81  

Fig. 5.1 Dietary Reversal Improves Growth Deficits.................................................................... 91 

Fig. 5.2 Dietary Intervention Partially Mitigates MBG Altered Gut Microbiota.......................... 95 



   xiii 

Fig. 5.3 Dietary Intervention Affects Fatty Liver Pathology.........................................................97 

Fig. 5.4 Dietary Reversal Informs the Liver Metabolome.............................................................98 

Fig. 5.5 Dietary Reversal Significantly Shapes the Liver Metabolome Largely Mitigating Fatty 

Liver Features.............................................................................................................................. 102 

Fig. 5.6 Multi-Hit Model of Undernutrition-Induced Fatty Liver and Dietary Intervention....... 107  

Fig. 6.1 Malnutrition and Fecal-Oral Contamination Alter Gut-Systemic Interactions.............. 123

Fig. 6.2 The Metaorganism and Gut-Systemic Study..................................................................126

Fig. S.1 Light-Dark and NORT Testing Support Altered MAL-BG Exploration Uncoupled from 

Anxiety-Like Behaviour.............................................................................................................. 157

Fig. S.2 MWM Methodology and Supplemental Data ............................................................... 159

Fig. S.3 Healthy and Malnourished Mice Exhibit Comparable Microglia Motility.................... 160

Fig. S.4 Altered Functional Profile in MAL-BG Microglia........................................................ 162 

Fig. S.5 MAL-BG Brain Lacks Neuroinflammation and BBB Disruption................................. 164

Fig. S.6 Altered Hippocampal Metabolomics and PUFA Metabolism in Malnourished Mice... 165

Fig. S.7 Fatty Liver and Inflammatory Profiling in MAL And MBG Mice................................ 167

Fig. S.8 Diet Alters Liver Metabolome....................................................................................... 168

Fig. S.9 Malnutrition Impairs Hepatic Fatty Acid Metabolism................................................... 169 

Fig. S.10 Comparable Tail Lengths Following Dietary Reversal............................................... 170

Fig. S.11 Diet and Fecal-Oral Contamination Influence Gut Microbiota................................... 171

Fig. S.12 Dietary Reversal Alters Predicted Microbiome Functionality..................................... 174

Fig. S.13 Dietary Reversal Affects the C-MBG and MBG-R Liver Metabolome................... 175 



   xiv 

Fig. S.14 Altered Fatty Acid and Glycerophospholipid Metabolism Linked to Undernourished 

Liver Metabolome and Microbiome............................................................................................ 176

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   xv 

List of Non-Numeric Symbols 

α  alpha 

γ  gamma 

µ   micro 

ω  omega 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   xvi 

List of Abbreviations  

αLA  α-linoleic acid, 

AA  arachidonic acid 

AAAM aromatic amino acid metabolism 

ANOVA analysis of variance 

BBB  blood-brain barrier 

BDNF  brain-derived neurotrophic factor 

CD  cluster of differentiation 

CEL  Nε -(carboxyethyl)-lysine 

CML  Nε -(carboxymethyl)-lysine 

CNS  central nervous system 

CIFAR Canadian Institute for Advanced Research 

CIHR  Canadian Institutes of Health Research 

CON  control mice (healthy)  

d  days 

DEG  differentially expressed gene 

DGLA  dihomo-γ-linolenic acid 

DHA  docosahexaenoic acid 

DNA  deoxyribonucleic acid  

EGFP  (enhanced) green fluorescent protein 

ELISA enzyme-linked immunosorbent assay  

FBS  fetal bovine serum  

FDR  false discovery rate 



   xvii 

FITC  fluorescein isothiocyanate  

FMT  fecal microbiota transplant 

FTMS  Fourier transform mass spectrometry 

GC/MS gas chromatography/mass spectrometry  

GEO  Gene Expression Omnibus (data repository) 

GF   germ-free 

GI  gastrointestinal 

gMFI  geometric mean fluorescent intensity 

GP1/GP2 glycerophospholipid 1/2 (module names in Chapter 5) 

GSA  glutamic semialdehyde 

H&E   hematoxylin and eosin 

HAVA [(2H5) 5-hydroxy-2-aminovaleric acid 

HILIC  hydrophilic interaction chromatography 

HPA  hypothalamic-pituitary-adrenal 

IEC  intestinal epithelial cells 

IFN  interferon  

Ig   immunoglobulin 

IL  interleukin 

IQ  intelligence quotient  

KEGG  Kyoto Encyclopedia of Genes and Genomes (database) 

LA  linoleic acid 

LC-MS liquid chromatography–mass spectrometry 

LSD  least significant difference 



   xviii 

MAL  malnourished mice 

MAL-BG/ malnourished + fecal-oral contamination via bacterial gavage mice 
MBG   

MCP  monocyte chemotactic protein 

MDAL Nε-(malondialdehyde)-lysine 

MDCF microbiota-directed complementary food 

METLIN METabolite LINk (database) 

MHC  major histocompatibility complex  

micro-CT micro-computed tomography 

MoMA Museum of Modern Art 

MSEA  metabolite set enrichment analyses 

MWMT Morris water maze test 

m/z  mass-to-charge ratio 

NADPH nicotinamide adenine dinucleotide phosphate 

NAFLD non-alcoholic fatty liver disease 

NASH  non-alcoholic steatohepatitis 

NIH  National Institutes of Health 

NORT  novel object recognition test 

n.s.  not significant 

NSERC Natural Sciences and Engineering Research Council 

OFT  open field test 

OFZ  open field zone 

Padj  FDR-adjusted P value 

PBS   phosphate-buffered saline 



   xix 

PC  phosphatidylcholine 

PCA  principal component analysis 

PCR/  polymerase chain reaction/  
RT-PCR real-time quantitative PCR 

PE  phosphatidylethanolamine 

PG   phosphatidylglycerol 

PI   phosphatidylinositol 

PLSDA partial least squares discriminant analysis 

PUFA  polyunsaturated fatty acid 

PS   phosphatidylserine 

RNA/  ribonucleic acid/ 
mRNA/ messenger RNA/ 
rRNA  ribosomal RNA 

ROS   reactive oxygen species 

rpm  revolutions per minute 

RPMI  Roswell Park Memorial Institute (media) 

RP-UPLC reversed-phase ultra-high-performance liquid chromatography 

RUTF  ready-to-use therapeutic foods  

SMPDB small molecule pathway database 

SPF  specific-pathogen-free 

SCFA  short-chain fatty acid  

SFA  saturated fatty acid 

SHINE Sanitation Hygiene Infant Nutrition Efficacy (clinical trial) 

SRA  Sequence Read Archive (database repository) 

SSC  side scatter (flow cytometry)  



   xx 

TLR   toll-like receptor  

TMIC  The Metabolomics Innovation Centre  

TMR  tetramethylrhodamine 

TNF   tumor necrosis factor 

UBC   University of British Columbia  

UFA  unsaturated fatty acid 

vs.   versus 

WASH Water, Sanitation and Hygiene (clinical trial) 

 

 

 

 

 

 

 
 
 

 

 

 

 



   xxi 

Acknowledgements 

This thesis could not have been accomplished without the support of Dr. Brett Finlay. Thank 

you, Brett, for the opportunity to pursue gut-systems research in the Finlay Lab and for providing 

academic, collaborative, and funding support throughout my doctoral studies. When I joined the 

Finlay lab, the current team described your leadership style as an “opportunity creator” –thank 

you for supporting incredible opportunities that included developing a gut-brain research crew 

and forging interdisciplinary research at the Djavad Mowafaghian Centre for Brain Health 

(Canada), Lee Kong Chian School of Medicine (Singapore), and Lleida Universitat (Spain). I am 

particularly grateful that you provided me the opportunity to join the CIFAR-Humans and the 

Microbiome Program as a reporter. 

 

My deepest gratitude to all the members of the Finlay Lab from 2015-2020. I am grateful to all 

of you not only for your friendship, but also for helping develop my research skills and providing 

training and mentorship in new experimental techniques and data analyses. Thank you for your 

encouragement and guidance navigating the successes and challenges of graduate school. I’m a 

better scientist because of all of you. To fellow Fall 2015 lab mates—Kelsey, Sarah, and 

Rozlyn—thank you for your support throughout graduate studies. I wish you the best of success 

as we keep investigating the microbial world. Kelsey thanks for being my partner in Team MAL-

BG, I’ve truly appreciated your advice, insight, and collaboration. Thank you to Andrew, Kate, 

and Jorge for advice in prepping for comprehensive exams, setting up committees, and 

maintaining work-life balance. Jorge thank you for training in the anaerobic chamber. I’m also 

grateful to Antonio, James, and Zack for their research perspective and advice in experimental 

designs. Thanks to all the members of malnutrition studies: Haggai, Anna, and Paula for 



   xxii 

providing a needed clinical and nutritional perspective. Also, a thank you to the growing Team 

Brain—Mihai, Nina, and Avril—I’ve enjoyed all our conversations and I’ve been challenged to 

think more critically and explore new research directions. Honorary Team Brain crew members, 

Charisse and Zakhar, thank you for your support in developing a microbe-microglia paper. 

Mihai, thanks for being a great bay mate and sharing alcohol-resistant makers. To you and 

Charisse thanks for all the long hours prepping microglia, for answering bioinformatic questions, 

and supporting my gut-brain projects. Finally, the lab could not function without Tahereh, 

Deng, and Lisa. Tahereh—thank you for the many long and challenging hours you dedicate to 

supporting my mouse studies, with efficiency and respect for the animals. I’m very grateful. 

Deng thank you especially for the warm and thoughtful Exit Seminar introduction. Lisa—thank 

you for supporting my research needs and helping me succeed within the Finlay Lab. Your 

support has been incredible.  

 

In addition, I want to thank the expanded support team during graduate studies—both my 

doctoral thesis committee comprised of Dr. Jennifer Gardy, Dr. Brian MacVicar, and Dr. 

Lisa Osborne, as well as the Microbiology and Immunology Department at UBC. Thank you 

for your support and academic guidance. Also, a special thank you to Darlene Birkenhead for 

helping me navigate requirements and funding opportunities during the graduate experience.   

 

This work was greatly supported through multidisciplinary collaboration. I am absolutely 

indebted to Eric Brown, currently at the Broad/Harvard, for teaching me the MAL-BG model 

and how to develop and critically plan research projects. I’m very grateful for your friendship 

and mentorship. Eli York—the microglial project could not have been accomplished without 



   xxiii 

your research skills and suggestions. Thank you for introducing me to this incredible 

neuroimmune regulator and your knowledge in glial biology. I wish you success in your research 

at Harvard University. I am also grateful to members of the CIFAR-HMB Program for 

allowing me to join your transdisciplinary discussion of the microbiome and expanding my study 

of microbial communities to consider perspectives embedded in health, evolution, and 

anthropology. Dr. Brian MacVicar, Dr. Sven Pettersson, and Dr. Victoria Ayala—thank you 

for allowing me to visit your labs to expand my training in neurology and metabolism. I am very 

grateful to the mentorship and opportunities that you all provided me. I look forward to future 

collaboration.   

 

Personal awards for research include a Vanier NSERC Canada Graduate Scholarship from 

the Canadian Federal government, Four Year Doctoral Fellowship from UBC, as well as 

funding from work as the Program Report of the CIFAR-Humans and the Microbiome 

Program. During my doctoral studies the Finlay Lab received support from the CIHR (Canada) 

and the Bill and Melinda Gates Foundation (United States). I’m grateful to these funding 

agencies for supporting research exploring the microbiome and gut-systems interactions.  

 

Finally, this success also reflects the love and support I received from my family. Mom—I 

wouldn’t be a scientist without you. Thank you for your wisdom, support, and helping me launch 

my work in research. Thank you for the gift of science. Dad—thank you for believing in me 

even when faith in myself faltered. Thank you for the knowledge of words. Khelsea—you are 

my best friend and role model, thank you and John for graciously opening up your home so I 

could write this thesis safely during a global pandemic. You are my heroes.         



   xxiv 

Dedication 
 

Solo Dei Gloria 
To my family—Paul, Celinda, John, & Khelsea—I love you



   1 

Chapter 1: Introduction of Gut Microbiota-Systemic Interactions 

1.1 Of Matisse, Microbes, and the Metaorganism 

On October 18, 1961 the MoMA (Museum of Modern Art) displayed the final artworks of Henri 

Matisse (1861-1954). The vibrant exhibition featured a series of economic paper cut-outs. One 

visitor felt a sense of unease by Matisse’s impression of a floating sailboat—Le Bateau. The 

boat’s reflection along the bottom, rather than the boat itself, featured the more complex cut-out 

form.  

 

The MoMA had hung a Matisse masterpiece upside-down and almost no one had noticed. 

 

The story of how Ms. Genevieve Habert, a New York stockbroker, discovered the MoMA’s error 

remains one of the most infamous cases of artwork hung incorrectly. Over 100,000 people, 

including the artist’s son, visited the exhibition without noticing the error. After MoMA staff 

dismissed her persistent complaints, Ms. Habert turned to The New York Times, which reported 

the story1. 

 

This may appear an odd start for a thesis on the gut-systemic axis of early-life malnutrition. But 

the case of Le Bateau broadly parallels the history of gut-systemic interactions. The study of gut-

system connections, particularly gut-brain interactions, stems from antiquity. When Galen of 

Pergamum observed the delicate neuronal meshwork linking the brain and upper digestive tract, 

he concluded, “Each [organ within the gut] has its nerve for sensation, with vein and artery for 

sustenance and life, all demonstrably distributed through them, like irrigation channels through a 
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garden”. Pioneering physiologists and psychologists from the 19th century, notably Ivan Pavlov, 

William Beaumont, and Carl Lange, later proposed bi-directional interactions between the gut 

and brain2,3. These researchers largely understood systemic processes as top-down interactions 

(e.g. the nervous system influencing gastrointestinal (GI) and digestive processes)4.  But it was 

the discovery of the gut microbiota, and its vast regulatory scope, that launched a 21st century 

renaissance of interdisciplinary research examining bidirectional gut-system interactions3,5.  

 

Commensal gut microbes exert systemic effects, shaping nervous and metabolic function within 

vital organs that regulate mammalian homeostasis5,6. Gut bacteria even influence complex 

behaviours ranging from satiation7 to mating selection8. And, in 2009, researchers first reported 

the concept of a gut microbiota-brain axis highlighting complex interactions between commensal 

microorganisms and the nervous system9. In addition to gut-brain processes, commensal 

microbes inform gut-liver functions via modulation of bile acid metabolism and gut barrier 

integrity5,10. Indeed, the dysbiotic gut microbiota has been linked to the aetiology and 

progression of systemic conditions from neurodegenerative disease to NAFLD5,11.  

 

Collectively, these findings challenge a top-down model of gut-systemic relations, in which the 

gut and microbial community within passively react to host systems. Despite profound advances, 

the full complement of conserved mechanisms driving gut microbiota-host interactions, even the 

complete scope of gut-systemic modulations, particularly in the context of undernutrition, 

remains unknown. Consequently, we, like the MoMA, may discover our perspective reversed. 
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1.2 The Microbiome and the Metaorganism 

Humans engage with the exterior world through a microbial-colored lens. 

 

Trillions of microorganisms colonize the mammalian host at birth12. Predominantly composed of 

non-pathogenic bacteria13,14, these host-associated microbes (microbiota) and their genomic 

potential (microbiome) have been conventionally examined within anatomical locations, notably 

the GI tract—the largest human-microbial interface15,16. Here, commensal gut microbes exert 

gut-systemic properties, extending host digestive, metabolic, immune, and nervous function6,15,17. 

In contrast, the altered (dysbiotic) gut microbiota has been linked with various metabolic and 

neurological pathologies17–19.  

 

An explosion in culturing methods, sequencing capacity, and bioinformatic pipelines has enabled 

researchers to interrogate both the compositional and functional capacity of the gut 

microbiota11,15. In 2012, the Human Microbiome Project Consortium reported striking inter-

individual variation of the human microbiota, but relatively stable functional profiles across 

individuals for a given body site (e.g. the gut)20. Phylogenetically distinct microbes may 

contribute to a metabolic pathway. Conversely, strains within the same bacterial member may 

perform highly diverse roles20,21.  Collectively, these findings highlight the importance of 

assessing both microbiota composition and functional capacity. As the gut microbiota exerts 

systemic effects, recent multiomics approaches—combining microbiome analyses (e.g. 

metagenomics) with host profiling methods (e.g. metabolomics)—have facilitated further 

exploration of host-microbe interactions.   
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Throughout early childhood the healthy gut microbiota rapidly develops and diversifies in 

response to the host experience12,22. Birth mode and breastmilk23,24, solid diets22,25, social 

interactions26–28, antibiotic usage29,30, and even sanitation practices12,31,32 influence gut 

microbiota composition, and, by extension, gut-systemic function.  

 

Consequently, gut microbiota systemic-interactions represent a continued, bidirectional dialogue 

between what was traditionally considered solely the (human) “self” and (microbial) “non-self”. 

This recognition has sparked a multidisciplinary movement conceptualizing the host-microbiota 

as an indistinguishable metaorganism. The metaorganism—a dynamic unit consisting of the host 

and commensal organisms—reflects a radical blurring between man and microbe6,33,34. This 

expanded model highlights the ongoing interplay across gut microbiota-systemic pathways. 

 

Are we human or are we metaorganism? 

 

My doctoral study explored how gut microbes influence two, major gut-systemic pathways 

during early-life malnutrition. I first provide a brief overview of the gut-brain and gut-liver axis 

in Chapter 1.3. 

 

1.3 Gut-Systemic Interactions 
 

1.3.1 The Gut-Brain Axis 

While anatomists catalogued gross brain structure since antiquity35, the groundbreaking research 

of the 18th and 19th centuries systematically described the brain as the organ which makes us 

human36,37. In the following centuries, further discoveries revealed the cell-specific functionality, 
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signaling mechanisms, and genomic networks codifying the nervous system36,38. Brain-gut 

interactions were recognized as early as the late 19th century, however, researchers considered 

these processes as top-down interactions (e.g. the nervous system influencing GI and digestive 

processes)4. Evidence that commensal gut microbes affect brain function was recognized through 

early neuroendocrine studies. Researchers observed exaggerated hypothalamic-pituitary-adrenal 

(HPA) stress in germ-free (GF) mice, while early-life exposure to microbial commensals 

partially mitigated aberrant HPA activity39. The subsequent surge of studies established the vast 

regulatory capacity of enteric microbes and led to the conceptualization of a gut microbiota-brain 

axis3,9. While barely a decade old, this model reflects a growing trend to examine the central 

nervous system (CNS) from a systemic perspective.  

 

CNS profiling within antibiotic and GF models implicates the gut microbiome as a key 

regulatory driver informing neurogenesis40,41, neuronal gene expression42,43, neurotrophic (e.g. 

BDNF) expression44,45, neurotransmitter profiles42,46,47, axonal myelination43, and glial biology48. 

Many of these aberrant features were resolved by colonization of gut microbial communities or 

microbial metabolites, demonstrating that the gut microbiome influences CNS structures. The 

brain, in turn, shapes gut physiology and microbial composition, e.g. via  HPA-dependent 

activation, psychosocial stress, and inflammatory responses26,49–51. 

 

Beyond shaping CNS architecture and functionality, gut microbiota-brain interactions modulate 

complex behavioural and cognitive processes18,44. In 2011, Bercik et al. first reported 

behavioural shifts in mouse strains following fecal microbiota transplant (FMT). BALB/c and 

NIH Swiss mice exhibit less exploratory and more exploratory behaviours, respectively. GF 
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BALB/c were exposed to the fecal microbiota community from a conventionalized NIH Swiss 

cohort and vice versa. Following microbial transplant, ex-GF mice transiently adopted the 

disposition and behavioural patterns of the donor microbiota44. More recently, gut microbiota-

targeted therapies have emerged as a promising approach to address neurological disorders52, 

with dietary shifts and probiotic consumption improving depressive-like features in murine and 

human cohorts18,53. Further study is warranted to examine whether microbiota-targeted 

intervention benefits malnourished gut-brain pathology.    

 

The full extent and exact mechanisms facilitating gut-brain interactions remain largely unknown, 

but involve systemic immune and nervous dialogue (Fig. 1.1). Next, I briefly highlight key gut-

brain pathways and components associated with the gut microbiota. For an extended review of 

the gut microbiota-brain axis, see Fung et al. 201717 and Bauer et al. 201918.  

 

Commensal microbes produce short-chain fatty acids (SCFAs) during fiber fermentation. Within 

the gut, SCFAs promote barrier integrity54. Abundant SCFAs—acetate, propionate, and 

butyrate—elicit broad metabolic and nervous functions, notably systemic anti-inflammatory 

responses55–57. Able to cross the blood-brain barrier (BBB), SCFAs regulate dietary glucose 

metabolism, BDNF expression, and neurodevelopment48,55,58,59. Specific gut microbes also 

regulate enteric neurotransmitter synthesis, modifying host-dependent neurotransmitter 

production (e.g. serotonin) or directly producing neurotransmitters (e.g. tryptamine)60,61. GI 

production alters peripheral availability of neurotransmitter precursors, which may influence 

CNS production62. While less probable that enteric neurotransmitters enter the brain, these 

neuroactive compounds may influence the CNS via activation of the vagus nerve.  
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The vagus nerve (cranial nerve X) links the CNS with the abdominal viscera. Primarily 

composed of afferent fibers and responsive to the gut microbiota, the vagus nerve relays sensory 

information (e.g. enteric inflammation) towards the CNS63,64. Beyond vagal nerve activation, 

gut-induced immuno-inflammatory responses trigger well-studied neurocognitive effects. 

Peripheral enteric infection can induce sickness behaviour—a collection of depression-like 

symptoms and impaired cognitive function—mediated by pro-inflammatory cytokines. Specific 

bacterial components (e.g. lipopolysaccharide) and/or microbial translocation from a ‘leaky’ gut 

barrier and/or general gut microbiota dysbiosis can also trigger inflammation and increased 

oxidative stress both peripherally and within the brain65–68. If unchecked, these aberrant shifts not 

only promote neurological pathology68, but also influence BBB integrity, a pathology reported 

across neurological disorders69,70. 

 

As the gatekeeper of the brain, the BBB provides an obvious substrate for microbial modulation. 

The BBB maintains neural homeostasis, regulating the passage of oxygen and nutrients from the 

circulatory system and guarding the CNS from toxins and pathogens71,72. While the exact 

aetiology of BBB deterioration is likely multifactorial, gut-systemic research highlights a causal 

role for the gut microbiota. Braniste et al. reported increased BBB permeability within young, 

GF mice. Microbial colonization or exposure to microbial-produced SCFAs, increased 

expression of endothelial tight junction proteins, significantly improving BBB integrity72. 
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Fig. 1.1 Gut Microbiota-Brain Axis 

 

 

 

Fig. 1.1 Legend  

Numerous signaling molecules and pathways comprise the gut microbiota–brain axis. Gut 

microbiota dysbiosis, enteric pathogens, and/or GI epithelial breach influence behaviour and 

neuroimmune responses via signaling pathways that include vagal nerve activation, systemic 

pro-inflammatory cytokine expression, and oxidative stress production. Gut microbes synthesize 

SCFAs that are absorbed into the circulatory system and pass through the BBB, affecting brain 
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and behaviour. Enteric and CNS levels of various neuromodulators compounds are altered in 

GF mice. Exposure to commensal gut microbes largely improves aberrant profiles, further 

demonstrating a causal role for the gut microbiota18. Recently, a microbe–host mechanism of 

serotonin production was described. Specific bacterial metabolites, including SCFAs, stimulate 

enterochromaffin cells (pink coloured) within the colon, promoting serotonin synthesis60. 

Adapted figure from Bauer et al. 20166. 

 

Chronic malnutrition increases the risk of behavioural disorders and impaired cognitive 

performance73. How the gut microbiota contributes to poor neurocognitive outcomes remains 

largely unknown. In Chapter 4 I utilize a malnourished murine model to examine gut-brain 

interactions in the context of gut microbiota dysbiosis. Malnutrition not only significantly 

influences neural functions, but also informs systemic metabolism. In the subsequent section, I 

introduce a systemic network orchestrating nutritional/metabolic processes of the 

metaorganism—the gut-liver axis.   

 

1.3.2 The Gut-Liver Axis 

An essential hub for systemic homeostasis, the liver orchestrates nutrient metabolism, storage, 

and transport74,75. The liver surpasses the brain as the largest internal organ of the human body74. 

Like the brain, the liver actively participates in gut-systemic dialogue. The gut-liver axis 

describes the collective bidirectional interactions between the liver and the GI tract with its 

microbial communities5,76.  
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Gut-liver interactions facilitate metaorganism digestive and metabolic functions. The gut 

microbiota expands mammalian digestion, metabolizing non-digestible complex carbohydrates 

and synthesizing essential vitamins77,78. Upon enteric absorption, the hepatic portal vein 

transports dietary and microbial products directly to the liver for downstream processing. The 

liver, in turn, shapes GI functionality and nutrient uptake via bile acids5,79.  

 

The liver synthesizes primary bile acids from cholesterol. Prior to excretion within the small 

intestine (duodenum), bile acids may be conjugated to amino acids (e.g. glycine, taurine)80. 

These primary bile acids (conjugated, unconjugated) not only facilitate absorption of dietary fats 

and fat-soluble vitamins, but also exert antimicrobial properties curbing expansion of the small 

intestinal microbiota5,81. If not reabsorbed within the small intestine, colonic gut microbes 

transform primary bile acids (e.g. via deconjugation reactions)82,83. These secondary bile acids 

exert broad metabolic effects, and liver pathologies linked to overnutrition or undernutrition 

display aberrant secondary bile acid profiles79,84,85. Intriguingly, a meta-analysis of fatty liver 

cohorts highlighted a significant association between fatty liver disease and SIBO (small 

intestinal bowel overgrowth), suggesting potential disruption of hepatic bile acid metabolism86.   

 

Gut microbiota dysbiosis has been reported across liver pathologies from hepatic steatosis (fatty 

liver) to hepatocellular carcinoma87,88, with increased relative abundance of Enterobacteriaceae 

members often reported5,87. Indeed, the critical regulatory role of the gut-liver axis is strikingly 

revealed by the study of liver pathology (see also Chapter 4.4.1). Aberrant gut-liver interactions 

involve many structural components (e.g. GI epithelium) and pathways (e.g. systemic 

inflammation), which also comprise the gut-brain axis (Fig. 1.2)5,18,79.  
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The complex GI barrier prevents systemic gut microbiome dissemination. Pathogenic insult 

and/or chronic gut microbiota dysbiosis promotes GI barrier permeability, facilitating escape of 

microorganisms/microbial components. Inappropriate microbial translocation triggers systemic 

immunoinflammatory responses and liver pathologies5,31,89. In addition to cytokine-mediated 

inflammation, oxidative stress and subsequent metabolic alteration contribute to liver 

pathology90,91. As enteric infection, the dysbiotic gut microbiota, and bacterial translocation all 

promote aberrant oxidation53,92,93, it is likely that microbial-mediated oxidative stress alters gut-

liver interactions. Beyond bile acid modulation, microbial metabolism generates 

hepatomodulatory compounds from beneficial SCFAs (activates fatty acid oxidation)94 to 

phenylacetic acid (exacerbates fatty liver)95.   
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Fig. 1.2 Hepatic Pathology and the Gut-Liver Axis 

  

 

 

Fig. 1.2 Legend 

The gut-liver axis describes bidirectional signaling between the gut/gut microbiota and the liver. 

Synthesized within the liver, primary bile acids modulate the gut microbiota and nutrient 

processing. Within the large intestine, microbe-dependent reactions transform primary bile acids 

into secondary bile acids, important metabolic modifiers. Gut microbiota alterations may 

contribute to gut-liver pathologies via impaired bile acid metabolism and/or systemic 

inflammation/oxidative stress and/or GI epithelial permeability. The hepatic portal vein links 

circulating GI products with the liver. Poor GI barrier function facilitates aberrant escape of 
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enteric microorganisms and/or microbial components. Microbial translocation triggers robust 

immunoinflammatory responses. Chronic gut-liver dysbiosis drives hepatic pathologies, 

including cirrhosis (upper right), whether recent microbiota-targeted approaches will 

significantly improve advanced hepatic conditions remains unknown. For further review, 

Sharpton et al. 201979 and Albillos et al. 20205 expertly detail the gut-liver axis during 

homeostasis and pathology. Image created with Biorender.   

 

The altered gut microbiota contributes to fatty liver pathologies and early microbial-targeted 

treatments report promising, and novel, intervention strategies5,79. Probiotic treatment reduced 

fatty liver severity in a pediatric cohort as assessed by a double-blinded randomized clinical 

trial96, while microbiota-directed complementary food (MDCF) intervention in undernourished 

mice modified liver metabolism, promoting metabolic pathways linked to lean mass 

development and protein synthesis97. In Chapter 4 and Chapter 5 I investigate how early-life 

malnutrition and dietary intervention shape the gut-liver axis and associated hepatic pathologies. 

To fully understand these gut-systemic interactions, we must first review a key driver of 

observed gut dysbiosis—the malnourished gut microbiome.  

 

1.4 Malnutrition and the Gut-Microbiota: Cause, Consequence, Therapy? 

 

1.4.1 The Systemic Burden of Malnutrition and Fecal-Oral Contamination  

Undernutrition affects one-tenth of the global population98. Nearly 150 million children under 

the age of five present with stunting (reduced height-for-age) and over 49 million children 

exhibit wasting (low weight-for-age)99. Malnutrition accounts for nearly half the deaths in this 
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highly vulnerable population73. Long-term consequences of early-life malnutrition include gut 

dysbiosis, metabolic alterations, impaired immunity, and neurocognitive deficits involving 

neurodevelopmental delays, behavioural alterations, and poor cognitive functioning73,97,100. 

These features have been repeatedly described across protein-energy malnutrition pathologies, 

including marasmus (severe wasting), kwashiorkor (growth deficits accompanied by edema, fatty 

liver, and skin lesions), and marasmic kwashiorkor (combined symptoms)101–104. 

  

Beyond nutritional deficits, a critical environmental insult—fecal-oral contamination—drives the 

persistence and pathology of early-life undernutrition, notably stunting and neurocognitive 

impairment (see also Chapter 2.1)31,73,105,106. Highly prevalent in regions with poor sanitation, 

chronic exposure to fecal microorganisms promotes GI insult and pathologies, notably tropical 

sprue (diarrheal condition) and environmental enteric dysfunction (subclinical gut atrophy). The 

enteric pathophysiologies of fecal-oral contamination include inflammation, epithelial 

permeability, and villous atrophy31,105. 

 

As discussed in Chapter 1.2, diet rapidly shapes the gut microbiota22,25,31. The gut microbiota 

informs metabolic, immune, and nervous properties of the metaorganism and it is not improbable 

that the malnourished gut microbiota actively contributes to systemic consequences of 

malnutrition6,15. Fecal-oral contamination exacerbates malnutrition-induced GI disruption31 and 

these shifts influence the composition and functionality of the gut microbiota. How, and to what 

extent, fecal-oral contamination shapes aberrant gut-systemic interactions remains largely 

unexplored.   
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1.4.2 The Malnourished Gut Microbiome   

Malnourished communities exhibit gut microbiota alterations12, with early-life undernutrition 

impairing gut microbiota assembly22, site-specific GI microbial colonization107, microbe-host 

recognition (e.g. IgA targeting)108,109, and bacterial metabolism85. While malnourished 

communities exhibit distinct gut microbiota profiles, increased relative abundance of specific 

Acidaminococcus, Bacteroidales, Escherichia coli, and Desulfovibrio members have been linked 

with stunting12,31,108. Fecal-oral contamination also influences the gut microbiota, promoting 

colonization by facultative anaerobes and increasing the risk of enteropathogens31,107,110.  

 

Though a consequence of diet and GI disruption, the dysbiotic gut microbiota itself exerts a 

causal role in malnutrition pathology. Researchers first demonstrated a causal influence of the 

malnourished gut microbiota through gnotobiotic studies. GF models maintained on a nutrient 

deficient diet were colonized with the fecal microbiota community from discordant pediatric 

twins (kwashiorkor, healthy). Malnourished mice exposed to the kwashiorkor microbiota 

displayed significant growth deficits compared to those colonized from age-matched, healthy 

donor samples103.  

 

Antibiotic treatment preceding dietary intervention reduces mortality and improves weight gain 

in malnourished children, further supporting a causal role for malnutrition-induced gut 

microbiota dysbiosis111. The 2018 MORDOR (Macrolides Oraux pour Réduire les Décès avec un 

Oeil sur la Résistance) trials assessed antibiotic treatment in >190,000 malnourished children and 

reported that antibiotic treatment reduced mortality by 13.5% in the antibiotic vs. placebo arm112. 
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While antibiotic approaches significantly improved malnutrition outcomes, these intervention 

protocols risk threats of antibiotic resistance111,112. 

 

Despite promising benefits associated with antibiotic usage, proper nutritional intake is essential 

throughout malnutrition treatment. Acute dietary intervention with ready-to-use therapeutic food 

(RUTF) improved growth and transiently mitigated features of gut microbiota dysbiosis in a 

Bangladeshi pediatric cohort22. These findings showcase microbial responsivity to diet-based 

intervention, highlighting the malnourished gut microbiota as an attractive therapeutic target. In 

follow-up studies, researchers identified growth-discriminatory bacteria within a Malawian 

pediatric cohort. Exposing young, malnourished mice to this growth-discriminatory consortium 

modified the undernourished microbiome and rescued growth deficits113. These findings 

launched the formulation and assessment of MDCFs114,115. As dietary interventions targeting the 

malnourished microbiome improved growth and aberrant metabolic features in gnotobiotic mice, 

MDCF efficacy was assessed against an established supplementary food intervention in a 

randomized, double-blind controlled feeding pilot in Bangladesh. The microbiome-targeted 

approach not only significantly improved pediatric growth, but also elevated systemic 

neurodevelopmental markers114. In contrast, complementary therapies specifically addressing 

reduction of fecal-oral contamination, namely largescale WASH (water, sanitation, and hygiene) 

interventions, report mixed outcomes12,116. Synbiotic (probiotic + prebiotic) interventions, 

however, may benefit fecal-oral contamination-associated pathologies as a randomized, double-

blind, placebo-controlled trial conducted in rural India with >4,500 newborns recently reported 

improved weight gain and reduced sepsis incidence amongst infants treated with Lactobacillus 
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plantarum + fructooligosaccharide12,117. Collectively, these results highlight diet and the gut 

microbiota as a therapeutic target and therapy addressing malnutrition-associated pathologies.   

 

Research utilizing malnutrition models launched innovative clinical approaches to reverse 

malnutrition pathology. Development and characterization of novel models that combine 

undernutrition and fecal-oral contamination is required to advance study of gut microbiota-

systemic interactions/therapeutic potential in the context of poverty-associated pathologies. 

 

1.5 A Model Conclusion   

Conventional models of malnutrition include protein-energy malnutrition31, maternal 

malnutrition118, and micronutrient deficiencies119. Certain models even feature designer diets 

matching both the dietary sources and nutritional content of particular malnourished 

communities97, while gnotobiotic rodents have facilitated much needed microbiome-focused 

study97,114.  

 

These models serve as a valuable resource for experimentally assessing malnutrition and the gut 

microbiota. The pediatric “impoverished gut”106, however, is shaped by a vast range of societal 

(e.g. socioeconomic status), environmental (e.g. poor sanitation), and biological (e.g. infection) 

factors12,73,110. And, as introduced in Chapter 1.4 and further reported in Chapter 2, a key driver 

contributing to early-life undernutrition is fecal-oral contamination—an umbrella term covering 

aberrant exposures to fecal microorganisms. This pathogenic driver spans societal, 

environmental, and biological components of malnutrition as poor infrastructure and waste 
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systems contribute to inappropriate fecal exposures and gut dysbiosis, increasing the risk of 

enteric infection and impaired health outcomes73,106,120. 

 

Despite the significant consequences and prevalence of fecal-oral contamination in regions 

associated with malnutrition, these interconnected features remain largely unexamined due to the 

lack of appropriate experimental models12,31. At the start of my doctoral research, the Finlay Lab 

published a novel murine model combining malnutrition and fecal-oral contamination via 

repeated bacterial gavage: MAL-BG (or MBG)31. This model provided an incredible tool to 

experimentally address prevalent biological and environmental conditions informing 

undernutrition. My research utilizes the MAL-BG model to (1) characterize the malnourished 

metaorganism (2) examine how malnutrition and specific disruption of the enteric microbiome 

alter brain and liver function, and (3) explore gut-systemic responses to dietary intervention. This 

work not only furthers understanding into gut microbiota-systemic interactions, but also 

highlights putative dietary and microbial targets addressing lasting pathologies of early-life 

undernutrition. 
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Chapter 2: The MAL-BG Model Exhibits Features of Early-Life Malnutrition 

 

2.1 Introduction 

Beyond diet, interdependent societal and environmental factors influence the pathology and 

consequences of childhood malnutrition73,97,120. A critical, environmental burden driving the 

persistence of malnutrition is fecal-oral contamination. Poor sanitation, water quality, and access 

to hygiene result in chronic exposure to fecal microbes. Fecal-oral contamination and subsequent 

GI insult or infection promote gut dysbiosis and impair nutrient absorption, exacerbating 

malnutrition while increasing susceptibility to enteric infections. For malnourished communities, 

chronic GI dysbiosis and nutrient deficiency form a deadly cycle of deteriorating nutritional 

status and health (Fig. 2.1)31,73,106. Gut-systemic consequences linked to these conditions include 

impaired neurocognitive development, poor immune responses, and altered systemic 

metabolism73,106,121. Indeed, recent evidence suggests that the malnourished gut microbiome 

contributes to long-term physical and systemic sequelae of malnutrition22,31,103.  Understanding 

how and to what extent diet and fecal commensals shape systemic pathology is critical to 

develop interventions and treatment for long-term consequences of undernutrition.   
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Fig. 2.1 Cycle and Consequences of Malnutrition and Fecal-Oral Contamination 

 

 

 

Fig. 2.1 Legend 

Model adapted from Guerrant et al. 2013106. Economic, political, and biological features drive 

the consequences of malnutrition, for a detailed review, see also Black et al. 201373. Specific 

environmental drivers of malnutrition may be collectively described as fecal-oral contamination. 

The precise roles of fecal-oral contamination promoting the lasting consequences of 

undernutrition (e.g. stunting) remain unknown. The Finlay lab examines the role of the 

microbiome in gut-systemic interactions of fecal-oral contamination within the context of early-

life malnutrition.   
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Despite advances in nutritional supplements, dietary interventions deliver inconsistent results, 

particularly reversal of growth deficits22,122. Recently, large-scale research clinical trials, notably 

SHINE (Sanitation, Hygiene, Infant Nutrition Efficacy) examined the efficacy of supplementing 

dietary intervention with WASH to reduce fecal contamination and improve health in 

malnourished communities. These trials resulted in largely disappointing results for growth 

benefits and enteric disease, but may be linked to improved cognitive functions123–125. As 

researchers contemplate more radical approaches tackling gut dysbiosis and malnutrition, the 

need for robust and tractable models of fecal-oral contamination has emerged. To experimentally 

examine malnutrition pathology and intervention in the context of fecal-oral contamination, the 

Finlay Lab developed a mouse model integrating diet and chronic exposure to fecal 

contamination.  

 

In 2015, Brown et al. described the MAL-BG mouse, a novel murine model that combined poor 

diet with repeated exposure to specific, gut commensals. During the initial study, malnourished 

mice were exposed to distinct ‘bacterial cocktails’ consisting of human bacterial isolates. Of 

these ‘bacterial cocktails’, only repeated Escherichia coli/Bacteroidales exposure in the context 

of malnutrition triggered enteric features present in regions of poor sanitation, notably epithelial 

permeability and reduced gut mucosa lining. Nevertheless, E. coli and Bacteroidales bacteria 

have been linked to murine stunting within independent research facilities31,109, and increased 

relative abundance of E. coli/Bacteroidales members were observed in pediatric malnutrition 

cohorts107,108. As such, this model provides an attractive tool to assess the influence of early-life 

malnutrition and fecal-oral contamination.  
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This model has several limitations. While enteric infection is prevalent amongst communities in 

regions with poor sanitation and fecal-oral contamination73,110, the specific bacterial isolates 

utilized in the MAL-BG model have no reported pathogenicity. Indeed, MAL-BG mice lack 

diarrhea and systemic inflammation, key features of enteric infection106. Our lab also 

characterized the enteric influence of E. coli/Bacteroidales exposure in healthy mice. Published 

work demonstrated that repeated E. coli/Bacteroidales exposure does not trigger growth faltering 

and/or gut dysbiosis and/or impaired immune responses in healthy mice31. As the E. 

coli/Bacteroidales bacterial gavage fails to robustly colonize healthy mice31, subsequent research 

reported here was not able to appropriately assess the impact of fecal exposures in the absence of 

malnutrition. In contrast, fecal-oral contamination robustly colonized the malnourished gut and 

triggered striking enteric features—GI barrier deficits and gut microbial dysbiosis—pathology 

observed in environmental enteric dysfunction, a subclinical syndrome reported in regions of 

malnutrition and fecal-oral contamination31,106. For detailed examination of MAL-BG model 

development, as well as assessment of enteric features, see Brown et. al 201531.    

 

Whether or not the MAL-BG model exhibits altered gut-systemic consequences of early-life 

malnutrition in the absence of immune insult remained unknown.  

 

2.2 Modelling Malnutrition and Fecal Oral Contamination 

The following work utilizes the MAL-BG model, developed and previously characterized by 

members of the Finlay lab31,109, to examine the impact of diet and the commensal gut microbiota 

in gut-systemic interactions of malnutrition (model setup reported in Fig. 2.2A).  
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Briefly, newly-weaned C57BL/6J mice were placed on a malnourished diet (MAL mice), a 

protein/fat deficient- and carbohydrate rich- chow reflecting nutritional shifts previously reported 

in undernourished communities31,126,127 (Table S.1). To model iterative fecal-oral contamination, 

a subset of MAL mice was exposed to E. coli/Bacteroidales via bacterial gavage (MAL-BG 

mice). CON mice, placed on a standard chow diet of equivalent caloric value, provided a healthy 

control (Fig. 2.2B). Both the standard and malnourished chow differ in macronutrient, but not 

micronutrient (e.g. vitamin, mineral), content. 
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Fig. 2.2 MAL-BG Model and Diet 

 

 

 

Fig. 2.2 Legend 

For MAL-BG characterization and compositional breakdown of the standard and malnourished 

diets see Brown et al. 201531 and Table S.1. (A) At weaning (3 weeks), C57BL/6J mice were 

placed on a standard (CON mice) or malnourished (MAL) diet. To model exposure to fecal 

microbes, a subset of malnourished mice (MAL-BG) were exposed to a mixture of E. 
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coli/Bacteroidales commensals via bacterial gavage. (B) Standard mouse chow contains 15% fat 

and 20% protein, whereas the isocaloric malnourished diet is comprised of 5% fat and 7% 

protein. Mouse chow was produced by Research Diets (New Brunswick, NJ, USA), ingredient list 

included in Table S.1.     

 

2.3 MAL-BG Exhibits Growth Faltering 

In my hands, MAL and MAL-BG (MBG) mice exhibit both growth faltering and reduced tail 

length, a proxy for stunting31, after 4 weeks on the malnourished diet (Fig. 2.3A, B). Growth 

deficits were further characterized via x-ray micro-computed tomography (micro-CT). Following 

micro-CT scanning, I reconstructed three-dimensional images segmenting bone, lean, and 

adipose tissues with MicroView software (Fig. 2.3C, D). MAL and MBG mice exhibited a 

modest, albeit not significant, decrease of total volume (Fig. 2.3C). Fecal-oral contamination 

exacerbated growth alterations, notably loss of bone and lean body percentage. In contrast, both 

total volume and percent of adipose tissues increased within MAL and MBG mice (Fig. 2.3D), 

indicative of impaired nutrient storage and metabolism, a process requiring healthy liver 

function128. 

 

 

 

 

 

 

 



   26 

Fig. 2.3 MAL and MBG Mice Display Altered Growth Profiles 
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Fig. 2.3 Legend 

(A) Microbial exposure promoted weight faltering in malnourished mice, while (B) tail length, a 

proxy for stunting, is reduced in malnourished mice (n = 19). (C) Representative images from 

reconstructed micro-CT scans. Mid-coronal plane with lean and adipose tissue highlighted in 

blue and green, respectively, overlaid on surface-rendered bone tissue (white), n = 5. Total body 

volume (voxels) of the murine body (shoulder blade through tail) with (D) % lean, bone, and 

adipose tissues. Bar graphs indicate mean and s.e.m. with statistical significance determined by 

one-way ANOVA with post hoc Dunnett’s test (growth measures) or Kruskal-Wallis with post 

hoc Dunn’s test (micro-CT assessment).  

 

2.4 MAL-BG—An Informative and Experimentally Tractable Model  

Globally, malnutrition accounts for a significant portion of early-life mortality73. Fecal-oral 

contamination contributes to the persistence of malnutrition in regions of poor sanitation106,129, 

likely through gut microbiome-mediated pathways. While the gut microbiome has been shown to 

have a causal role in malnutrition features within murine models—notably growth faltering and 

poor immune responses22,31,114, the precise role of fecal microbes in mediating gut-systemic 

impacts remains less studied106.  

 

Beyond the gut, the altered gut microbiota has been linked to impaired nervous and metabolic 

function6,17,95. The MAL-BG model, combining iterative exposure to fecal microorganisms and 

fat/protein deficits31, provides a valuable tool to examine how and to what extent gut microbes 

and diet inform gut-systemic dialogue.  
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In this work, I utilize the MAL-BG model to explore how this prevalent form of early-life 

undernutrition impacts brain and behaviour, independent of external factors (e.g. socioeconomic 

status, education access)73,120. This approach utilized classical, murine neurocognitive tests and a 

neurobiology (glial) perspective, studies that depended upon ex vivo gut and brain sampling not 

possible in the absence of murine models (Chapter 3). Finally, the MAL-BG model also 

provided a tool to (1) examine how diet and gut microbes contribute to fatty liver (Chapter 4) 

and (2) explore the role of dietary intervention during critical developmental periods for health 

trajectories (Chapter 5).  

 

2.4 Chapter 2 Methodology 

 

MOUSE STUDIES 

Newly-weaned, female C57BL/6J mice were purchased from Jackson Laboratory and housed at 

the UBC Modified Barrier Facility (12-h light–dark cycle, ad libitum chow and water access). 

Mice were randomized into experimental groups with comparable starting weights and housed in 

ventilated cages filled with wood chip bedding (3-5 per group). All mouse studies were 

approved by the Animal Care Committee at UBC and the Canadian Council on Animal Care 

guidelines.   

 

MBG MODEL  

Mice received either standard mouse chow “control diet” (D09051102) or an isocaloric 

“malnourished diet” (D14071001) developed by Research Diets, New Brunswick, NJ. A subset 

of mice on the malnourished diet were exposed to a cocktail of seven bacterial commensals, 
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(B. vulgatus 3/1/40A, B. fragilis 3/1/12, B. ovatus 3/8/47, B. dorei 5/1/36 (D4), P. distasonis 

2/1/33B, E. coli 3/2/53, and E. coli 4/1/47) given in a 1:1 ratio. Bacteria were plated in 

anaerobic conditions on fastidious anaerobe agar prior to oral gavage (100 µL). Following two 

weeks on the control or malnourished diet, all mice received a series of three gavages 

administered every other day: MAL-BG/MBG (109 bacterial cells/mL sterile, reduced PBS), 

non-MBG groups (sterile, reduced PBS). Full methodology and further dietary reports 

provided in published reports31,109. 

 

MICRO-CT  

Micro-CT scans were completed on seven-week-old anesthetized (isoflurane) mice within the 

Centre for High-Throughput Phenogenomics at the UBC using the eXplore CT 120 (TriFoil 

Imaging, Chatsworth, CA, USA). Micro-CT scanning was conducted with in-house protocols 

(rotation mode: continuous, single scan time: 4 min, entrance dose 175 mGy). Image datasets 

were reconstructed into three-dimensional volumes (isotropic voxel size: 100 µm). Based on 

published methodology130, we classified tissues into adipose, lean, and bone tissue with 

MicroView software (GE Healthcare Biosciences) with the following signal-intensity 

thresholds -200 to -275, -30 to -40, and 190 to 250 HU, respectively. 

 

STATISTICAL ANALYSIS  

Statistical analyses were performed using GraphPad Prism Software Version 7.00/8.1.1. 

Statistical significance throughout the thesis given as ****P <0.0001, ***P <0.001 **P <0.01, 

*P <0.05, and Padj = FDR correction. Analyses are expressed as the mean with s.e.m. unless 

otherwise stated. The same statistical parameters were applied in Chapters 3-5.   
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2.5 Chapter 2 Summary  

The MAL and MAL-BG models display growth faltering and stunting—expected deficits 

observed in pediatric, undernourished communities73. Fecal-oral contamination exacerbated 

specific growth alterations, notably altering adipose accumulation in malnourished mice. As this 

aberrant growth profile is linked to impaired fat metabolism and storage128, the MAL-BG model 

provides a useful tool to not only assess the role of diet and the gut microbiota during 

malnutrition, but also gut-systemic alterations in fatty tissues. To start exploring how the gut 

microbiota influences systemic consequences of malnutrition, I now turn to the fattiest organ in 

the mammalian body—the brain. 
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Chapter 3: Gut Microbes Shape Microglia and Neurocognitive Function During 

Malnutrition 

3.1 Introduction  

 

3.1.1 Malnutrition and the Gut-Brain Axis  

Childhood malnutrition affects neurodevelopment, impairing neurocognitive function and 

increasing the risk of depression and anxiety131,132. Early-life undernutrition triggers long-term 

cognitive deficits with multiple studies reporting that previously malnourished youths and adults 

display worse IQ and academic performance compared to control cohorts that never experienced 

food insecurity73,133–136. These deficits largely remained even after correcting for external factors. 

Nevertheless, neurocognitive development, is certainly shaped by external forces, including 

parental IQ, socioeconomic status, maternal health, and educational access73,132,134,136. 

Consequently, researchers recommend combining nutrient-based interventions with behavioural 

practices (e.g. increasing early-life cognitive stimulation) to address poor developmental 

trajectory within undernourished communities73,120. In the future, intervention strategies may 

target specific CNS components and gut-brain interactions abused from dietary deficiency. But 

what are the underlying biological drivers contributing to neurocognitive deficits? 

 

Early-life dietary deficiency influences head circumference and brain volume, a feature observed 

in both human populations and malnutrition models137,138. Rodent models provided additional 

insights into the specific neurological consequences of malnutrition. Beyond total growth 

deficits, malnutrition impairs formation of cerebral cortex and hippocampus, critical regions of 

cognition and memory formation. While total numbers of cortical neurons remained comparable 
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between healthy and malnourished rodent models, early-life malnutrition triggered subtle, yet 

damaging, shifts in neuronal connectivity132,139. Glia, non-neuronal cells, inform synaptic 

pruning140 and malnutrition likely disrupts neuron-glia interactions. Moreover, malnutrition 

affects non-CNS components that undoubtedly contribute to altered brain health trajectories. 

Indeed, these components may not even be mammalian, but rather microbial. The GI tract, the 

site of nutritional absorption, is coated with trillions of commensal microbes, which respond to 

dietary cues, informing host health and function18.     

 

Diet rapidly alters the composition and functional capacity of the gut microbiota25,31. Commensal 

microbes, in turn, modulate brain and behaviour18,48, and the malnourished microbiota likely 

contributes to the neurological consequences linked to undernutrition. The altered gut microbiota 

has been linked to poor CNS function through key gut-brain pathways including: 

neuroinflammation17,141, BBB deficits72, and disrupted neurometabolism48,142. Despite the 

prevalence of early-life malnutrition, how and to what extent malnutrition and gut microbes 

shape gut-brain interactions have been largely unexplored.  

 

The MAL-BG model provides a valuable tool to assess the effects of fecal-oral contamination on 

neurocognitive outcomes of early-life malnutrition. In this chapter, my work specifically 

examines how diet and microbes influence a key regulatory cell that continuously surveys and 

responds to the CNS environment—the microglia.  
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3.1.2 Microglia 

While rodent models assessing malnutrition and the CNS have largely focused on neuronal 

assessments and total brain volume137, far less is known regarding undernutrition and glial cells, 

non-neuronal cells whose functionality and maturation are shaped by commensal microbes48 

(Fig. 3.1A). 

 

In contrast with other brain cells, microglia originate from erythromyeloid progenitors from the 

yolk sac before colonizing the prenatal CNS143. These immune cells eventually account for 

~12% of cells in the mature brain144. Highly motile, microglia processes continuously survey 

surrounding synapses in physiological conditions145 and rapidly respond to CNS injury and/or 

immune stimuli143. Intriguingly, the gut microbiota has been shown to influence microglia 

maturation and neuroimmune function48,141. GF mice exhibit an immature microglia phenotype 

characterized by increased process length and process complexity (number of branch points) and 

poor neuroimmune responses compared to specific-pathogen-free (SPF) counterparts. Microbial 

recolonization with commensal gut microbes or supplementation with microbial metabolites, 

specifically SCFAs, partially rescued microglia features48.  

  

Functional microglia regulate neuroimmune responses within the CNS. Microglia can recognize 

pathogenic agents via toll-like receptors (TLRs), scavenge neuronal debris, mediate 

inflammatory responses, and phagocytose noxious elements144,146. Overactivation of microglia 

elicits neurotoxic effects through aberrant pro-inflammatory cytokines release and reactive 

oxygen species (ROS) production via NADPH oxidase activity143,147. This microglial 

dysregulation is thought to drive progression of neurodegenerative and psychiatric 
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disorders148,149. In addition to neuroimmune functions, microglial phagocytic activity modulates 

brain plasticity through programmed elimination of neuronal synapses (synaptic pruning) during 

development. Specific chemokines and members of the classical complement cascade (e.g. C1q) 

have been identified as CNS markers triggering microglial phagocytic responses. Throughout 

development and beyond, microglia continuously regulate synaptic plasticity and strength via 

these elimination pathways140,150. 

 

Finally, microglia morphology provides a valuable indicator for microglia activation and broad 

functionality151. The spectrum of dynamic microglial phenotypes ranges from quiescent “resting” 

(ramified morphology with extended processes) to “activated” (amoeboid morphology with 

retracted processes), see Fig. 3.1B. 
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Fig. 3.1 Diverse Microglial Functionality and Form 
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Fig. 3.1 Legend 

(A) Microglia provide an attractive CNS feature to assess during malnutrition as these 

macrophage-like cells exhibit broad immune and homeostatic function. Moreover, microglia are 

shaped by and respond to the commensal microbiome. Erny et al. 201548 reported that compared 

to colonized (SPF) mice, GF microglia exhibit altered morphology and impaired immune 

function. (B) Microglia exhibit a range of phenotypes. Even in a “resting” state, highly dynamic 

microglial processes survey the CNS environment and secrete signaling factors, including 

cytokines. Microglial phagocytic functions may modulate brain plasticity during synaptic 

pruning or in response to activating signals from a strained CNS environment (e.g. elevated 

oxidative stress within the brain). During microglial activation, processes retract and the cells 

assume an amoeboid form. Activated microglia release elevated levels of proinflammatory 

cytokines as well as ROS via NADPH oxidase. Images partially created with Biorender. For a 

detailed review of microglial form and function, see Block et al. 2007144 and York et al. 2018152.     

 

3.2 MAL-BG Mice Display Altered Behaviour And Cognitive Function 

I first assessed whether the MAL-BG model displays behavioural and cognitive deficits 

associated with childhood undernutrition and fecal-oral contamination73,153. As we have 

previously demonstrated that repeated E. coli/Bacteroidales exposure does not trigger growth 

faltering, gut dysbiosis, or robust colonization of these fecal commensals in healthy mice31, we 

focused on assessing how fecal-oral contamination shapes behavioural differences during 

malnutrition using the MAL and MAL-BG models. CON mice provided a healthy control for 

behavioural and cognitive testing.  
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The Open Field Test (OFT) measures locomotion and exploration154,155. Increased aversion of 

the central open field zone (OFZ) suggests anxiety-like behaviour in rodents (Fig. 3.2A)154. I 

initially hypothesized that malnutrition would increase anxiety-like behaviour in MAL and 

MAL-BG mice. Both distance and total immobility during the OFT were measured to assess 

potential locomotion deficits. All groups exhibited comparable locomotion activity, indicating 

that altered exploration would not result from gross physical differences (Fig. 3.2B). 

Unexpectedly, MAL-BG mice spent more time within the OFZ (Fig. 3.2C, D), displaying 

increased exploration (F2, 57 = 6. 878, P = 0.0021). Immobility (resting) within the OFZ increased 

amongst MAL-BG mice, supporting an absence of OFZ-induced anxiety (Fig. 3.2D).  

 

Fig. 3.2 MAL-BG Mice Exhibit Altered Exploratory Behaviour 
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Fig. 3.2 Legend 

(A) OFT setup with OFZ highlighted in blue, pooled data from three independent experiments. 

(B) Total distance travelled (top) from a representative OFT experiment and total immobility 

“resting” (bottom) were comparable across the groups, indicative of similar physicality.  

(C) Representative heatmap and tracking plots displaying OFT exploration patterns. (D) MAL-

BG mice exhibit altered exploratory behaviour, spending significantly more time within the OFZ 

(top), including increased OFZ immobility (bottom). OFT assessments were conducted with 

blinded Anymaze software tracking. Graphs indicate mean and s.e.m. with statistical 

significance determined by one-way ANOVA with post hoc Tukey’s test.  

 

Further behavioural testing supported increased exploratory behaviour in the absence of anxiety-

life features within the MAL-BG model. All mice displayed comparable anxiety-like behaviour 

during the light-dark box test (Fig. S.1A, B)156, while the novel object recognition test (NORT) 

examined both novelty exploration and memory performance (Fig. S.1C, D)155. During a brief 

familiarization period, individual mice freely explored an arena with two identical objects. After 

familiarization, one object was replaced with a similarly-sized but distinctly “novel” object (Fig. 

S.1C). Individual mice were returned to the disinfected arena after several hours for the recall 

period. As rodents typically exhibit novelty preference, decreased exploration of the novel item 

connotes impaired novel object recognition. All groups exhibited novelty preference (novel:old 

exploration ratio >1) and comparable total exploration time, a measure of interaction (Fig. S.1C, 

D). MAL-BG mice, however, exhibited a non-significant increase of interactions with the novel 

object (Fig. S.1C), further supporting altered exploratory behaviour.  
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To specifically assess cognitive function, I utilized the Morris water maze test (MWMT), a 

measure of spatial learning, reference memory, and cognitive flexibility157. Mice underwent two 

training periods (acquisition, reversal) to learn the location of a hidden platform. Recorded 

learning periods consisted of eight, 60 s trials across two days with randomized entry locations 

(Fig. 3.3A and Fig. S.2A-C). Average swim speeds were recorded during a 30 s free swim (no 

platform) 24 h after both learning periods (Fig. S.2B). As MAL and MAL-BG mice displayed 

similar swimming capability to healthy controls, the MWMT results were not influenced by 

altered physicality.  

 

We observed comparable reference memory and spatial learning during acquisition training (Fig. 

3.3A). We next probed learning within the context of cognitive flexibility, placing the hidden 

platform within the opposite pool quadrant (reversal learning). Upon reversal, MAL and MAL-

BG escape latencies (time to platform) increased, indicative of impaired learning157. Learning 

deficits persisted, even broadened, across the reversal period (Fig. 3.3A-C). Accidental platform 

discovery did not drive these findings, as reversal escape latencies during the initial trial were 

comparable across groups (Fig. S3.2C). CON mice rapidly learned the new location of the 

hidden platform, while malnourished mice persistently honed to the prior platform location, 

indicative of impaired memory extinction. By the final training day (Day 2R), CON mice had 

largely eliminated prior platform entries, rapidly locating the hidden platform. In contrast, MAL-

BG mice were ~3X more likely to return to the prior platform zone (Fig. 3.3B, C), exhibiting 

marked cognitive inflexibility158. Collectively, these results indicate that exposure to fecal 

microbes possibly exacerbates behavioural shifts and poor cognitive flexibility during early-life 

malnutrition.   



   40 

 

Fig. 3.3 MAL and MAL-BG Mice Exhibit Altered Cognition 

 

 

 

Fig. 3.3 Legend 

(A) MWM setup, pooled results from two independent experiments. Detailed MWM procedures 

provided in Methods and Fig. S.2. During the initial learning phase (acquisition = A) all mice 

learned to locate a hidden platform (four trials/d; gray arrows denote approximate mouse entry 

locations). All groups displayed comparable escape latencies (time to platform). We report 

averaged escape latencies of individual mice. Malnourished mice exhibit increased escape 

latency when platform location changed (reversal = R). (B) Representative swim paths from the 

final Acquisition and Reversal trial: solid circle = platform location, dotted circle = prior 

platform location, blue dot = start position, and red dot = final position. (C) Entries to the prior 

platform location of each mouse averaged across four trials, for the 1st day of reversal learning 

(top) and 2nd day of reversal learning (bottom). MWMT assessments were conducted with 
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blinded Anymaze software tracking. Graphs indicate mean and s.e.m. with statistical 

significance determined by one-way ANOVA with post hoc Dunnett’s test.  

 

As cognitive processes and learning flexibility require hippocampal synaptic plasticity and 

appropriate glia function140,157–159, we characterized form and function of microglia, key 

regulators of brain homeostasis which are responsive to microbiome shifts48.   

 

3.3 Malnutrition and Gut Microbes Alter Microglia Morphology 

As microglial phenotypes are linked to functionality and neural environment, we first examined 

CON, MAL, and MAL-BG microglial morphology. Using two-photon microscopy, we assessed 

microglia within the hippocampus (CA1 region) of CX3CR1+/EGFP mice on a C57BL/6J 

background160. 3DMorph provided semi-automatic, multidimensional morphological 

measurements from four independent experiments161. Microglia from CON hippocampi display 

expected ramified morphology. In contrast, MAL and MAL-BG microglia exhibit divergent 

phenotypes compared to healthy controls with larger and smaller cell volumes, respectively (Fig. 

3.4A). We observed comparable numbers of hippocampal microglia across mice regardless of 

diet and microbial exposure (Fig. 3.4B). Compared to MAL morphology, MAL-BG microglia 

exhibit an activated-like phenotype with decreased microglial cell and territory (total 

surveillance area) volume (F2,35 = 3.942, P = 0.0286 for cell volume; F2,35 = 10.06, P = 0.0004 

for territorial volume). However, these alterations did not significantly influence process number 

(endpoints) or process complexity (branch points), see Fig. 3.4C. 
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Fig. 3.4 Gut Microbes and Malnutrition Modulate Microglia Morphology  

 

 

 

Fig. 3.4 Legend 

(A) Microglia cells within the CA1 hippocampal region of CX3CR1+/EGFP, CA1 hippocampal 

images with representative CON, MAL, and MAL-BG microglia (inset). (B) Data pooled from 

three experiments with counts normalized to the CON group of each experiment. (C) Microglia 

morphology was quantified from four separate experiments using 3DMorph software and 

normalized to the CON group of each experiment. MAL microglia exhibit increased cell and 

territorial volume, while MAL-BG microglia exhibit smaller volumes. Graphs indicate mean and 

s.e.m. with statistical significance determined by one-way ANOVA with post hoc Tukey’s test 

(morphology).  
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3.4 Fecal-Oral Contamination Influences Function of Malnourished Microglia  

We next investigated microglial surveillance capacity. CON, MAL, and MAL-BG mice exhibit 

comparable motility as measured by process additions and retractions across time (Fig. S.3A). 

We then assessed microglia surveillance in the context of acute hippocampal insult. Microglial 

processes rapidly respond to damaged and apoptotic cells, cordoning off injured tissue162. 

Focused two-photon laser scanning induced precise lesions in ex vivo hippocampal slices from 

CON, MAL, and MAL-BG mice. Microglial response strength (fluorescent intensity surrounding 

lesion) was comparable across CON, MAL, and MAL-BG (Fig. S.3B, C). After characterizing 

microglial morphology and motility, we assessed transcriptional profiles to explore whether 

fecal-oral contamination alters putative microglial function during malnutrition. 

 

To examine transcriptional alterations, we conducted RNA-Seq following microglial enrichment 

(CD11b+ population) from CON, MAL, and MAL-BG whole brains (~90% microglia), Fig. 

S.4A). Count transformation and identification of differentially expressed genes (DEGs) from 

RNA-Seq data were determined by DESeq2163. PCA of transformed mRNA gene counts 

revealed a striking shift in the transcriptional profile of MAL-BG microglia (Fig. 3.5A). After 

filtering low gene counts, 4,685 genes were differentially expressed between MAL-BG and CON 

samples, while 4,454 genes were differentially expressed between MAL-BG and MAL samples 

(Padj < 0.05, FC > |1.5|). Remarkably, no DEGs were observed between CON and MAL 

samples (Fig. 3.5B). 

 

Nearly 1,800 DEGs were overexpressed in MAL-BG samples (Padj < 0.05, FC >1.5), compared 

to CON and MAL mice (Fig. 3.5B). ReactomePA (hypergeometric model164) identified 
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biological pathways enriched in control and malnourished microglia. Enrichment profiles were 

comparable between MAL-BG vs. CON and MAL-BG vs. MAL conditions, with more pathways 

identified in the MAL-BG vs. CON pathway analysis. Enriched CON vs. MAL-BG pathways 

identified multiple homeostatic processes, notably neurotransmitter signaling and axon/synapse 

regulation, while MAL-BG microglia display altered lipid and carbohydrate metabolism. 

Notably, major histocompatibility (MHC) Class I and antigen-processing pathways were highly 

enriched in MAL-BG samples, functional processes linked to phagocytosis and increased 

degradation events (Fig. 3.5C)165,166. 
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Fig. 3.5 MAL-BG Microglia Exhibit Altered Gene Profile 

 

 

 

Fig. 3.5 Legend  

(A) PCA of transformed gene counts from RNA-Seq data of microglial-enriched samples 

(CD11b+). (B) Venn diagram reporting overexpressed MAL-BG DEGs compared to CON (dark 

gray) and MAL (blue) samples. (C) Pathway enrichment analyses conducted with 

ReactomePA164 (DEGs: Padj <0.05, FC >1.5); MAL-BG vs. CON (left) or MAL-BG vs. MAL 

(right). Far right panel: CON vs. MAL-BG pathway enrichment analysis (top 30 pathways).  



   46 

 

To further probe alterations in principal microglial functions, we identified the most abundant 

genes present across samples. MAL-BG mice, once again, exhibit a distinct microglial 

transcriptional profile (Euclidean clustering). NIH (National Center for Biotechnology 

Information, NCBI) and Weizmann Institute (GeneCards®) gene databases provided broad gene 

function (Fig. 3.6A) and selected DEG expression was validated by flow cytometry and RT-

qPCR (Fig. S.4B, C). As anticipated, highly expressed non-DEGs serve essential cellular 

activities, including key transcriptional regulators (Malat1 and Btg2). The function of many 

highly expressed DEGs were broadly categorized into (1) lipid metabolism (e.g. Enpp2) and 

degradation pathways, including (2) lysosomal processing, notably cathepsin proteases (Ctsd and 

Ctss) and (3) phagocytosis regulation and/or synaptic pruning (C1qa, C1qc, C1qb, and Sirpa). 

Interestingly, genes linked to immune function were not differentially expressed, such as Jun and 

Junb, genes involved in TLR and interleukin (IL) signaling. 

 

To validate a phagocytic MAL-BG profile, we counted the number of large phagocytic cups—

actin rich, lasso-like structures formed during microglial envelopment/engulfment167. Increased 

phagocytic structures were present in malnourished brains with MAL-BG mice exhibiting nearly 

3x more phagocytic cups compared to healthy controls (Fig. 3.6B).  
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Fig. 3.6 MAL-BG Microglia Display Increased Phagocytic Structures 

 

 

 

Fig. 3.6 Legend 

(A) Heatmap of transformed gene counts with DEG (Padj <0.05, FC >|1.5|) and gene function 

data provided. DESeq2 identified the top 50 most abundant microglial genes; MAL-BG samples 

exhibit low intrasample variability (Euclidean distance). DEGs in blue and non-DEGs in yellow 

(t = true, f = false). Genes were searched against the NCBI and GeneCards® databases to 

determine function. (B) Representative microglial phagocytic cup (pink arrow, top). Data from 

four independent experiments, each symbol represents average microglial cup number per 

hippocampal region. Bar graph indicates mean and s.e.m. with statistical significance 

determined by one-way ANOVA with post hoc Tukey’s test.    
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Microglia exhibit diverse phagocytic functions, from modulation of brain plasticity via synaptic 

pruning throughout neurodevelopment, to engulfment of noxious stimuli during neuroimmune 

responses140,152. To identify the scope of MAL-BG microglia function and examine how fecal-

oral contamination contributes to the aetiology of aberrant microglial phagocytosis, we assessed 

key gut microbiota-brain pathways, namely inflammation, barrier integrity, and 

neurometabolism6,18.  

 

3.5 MAL-BG Microglial Alterations Occur Independently from Neuroinflammation and 

BBB Deficits 

 Chronic microbial exposures can trigger systemic inflammation, inducing sickness behaviour—

a neuroinflammatory condition often characterized by depression-like features and 

neurocognitive impairment168. Indeed, sickness behaviour, as well as neurodegenerative and 

encephalitis conditions, trigger microglial activation associated with neuroinflammation and 

robust cytokine production48,141,168. 

 

Malnutrition often presents with systemic comorbidities including immune dysregulation31,100,169. 

With an activated-like morphology, we initially hypothesized that MAL-BG microglia likely 

survey and respond to neuroinflammation. Somewhat unexpectedly, MAL and MAL-BG brain 

tissues exhibited low proinflammatory cytokines levels (Fig. 3.7A). We next examined whether 

peripheral inflammation contributed to microglia alterations. Cytokines measurements from 

serum revealed low pro-inflammatory cytokine levels in MAL-BG, comparable or lower than 

CON sera (Fig. S.5A). To specifically address microglial-mediated inflammatory responses, we 
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measured expression of key immune receptors by flow cytometry (CD11bhigh/ F480high/CD45low 

population), Fig. S.5B. The frequency and geometric mean fluorescent intensity (gMFI) of 

CD86, MHC II, and TLR 4 were comparable across dietary conditions (Fig. 3.7B), Collectively, 

these findings suggest that the morphological and transcriptional profile observed in MAL-BG 

microglia is distinct from classical, inflammatory microglial activation.  

 

Our lab previously reported that fecal-oral contamination influences small intestinal permeability 

in malnourished mice31. In addition to regulating the enteric barrier, gut microbes have been 

linked in the development and maintenance of the CNS analogue—the BBB72. CON, MAL, and 

MAL-BG BBB permeability was measured by IgG immunostaining and tetramethylrhodamine 

biocytin (biocytin-TMR) permeability across the neural vasculature. All groups exhibited low 

levels of interstitial IgG, indicative of BBB integrity170 (Fig. S.5C). To confirm results, we 

measured biocytin intensity within the brain following biocytin-TMR tail vein injection. CNS 

endothelial cells lack vitamin transporter Slc5a6 required for expected biocytin transport, though 

BBB deficits enable biocytin-TMR CNS distribution171. We observed no difference in biocytin-

TMR intensity throughout cortical tissue in CON, MAL, and MAL-BG mice (Fig. 3.7C, D and 

Fig. S.5D). BBB integrity was measured at the standard endpoint—14 d following bacterial 

gavage. These findings do not exclude the possibility of transitory BBB deficits at earlier 

timepoints. However, as we observed comparable macrophage populations (CD11bhigh/CD45high) 

via flow cytometry in CON, MAL, and MAL-BG brains (see Fig. S.4A), infiltration by 

peripheral immune cells due to transient neuroinflammation and/or BBB disruption is likely not 

driving MAL-BG microglial shifts.  
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Fig. 3.7 Microglial Alterations Occur in The Absence of Neuroinflammation and BBB 

Disruption 

 

 

 

Fig. 3.7 Legend  

(A) Proinflammatory cytokines (TNF-α, IL-6) from cortical brain tissues, cytokine levels 

normalized to tissue weight (n = 19 CON, 21 MAL, 16-17 MAL-BG), data from three 

independent experiments. (B) Percent microglia within the cell population of CON, MAL, and 

MAL-BG brains. Microglia identified as CD11bhigh/F480high within a CD45low cell population 

with flow gating in Fig. S.5B. TLR4, CD86, and MHC Class II gMFI and frequency (% 

microglia) presented. (C) Averaged biocytin fluorescent intensity following biocytin-TMR tail-

vein injection (D) Representative CON, MAL, and MAL-BG cortical slices (bottom) with 

matched rostral à caudal CNS images, biocytin-TMR appears white. Graphs indicate mean and 
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s.e.m. with statistical significance determined by Kruskal-Wallis with post hoc Dunn’s test (flow 

cytometry) or one-way ANOVA with post hoc Dunnett’s test (biocytin and cytokines). 

 

3.6 MAL-BG display altered neurometabolism  

 

3.6.1 MAL-BG hippocampal metabolome linked to oxidative stress  

We then assessed neurometabolism, specifically targeting the hippocampus, a critical region for 

cognitive function and spatial memory158. Untargeted metabolomic analyses were conducted on 

single hippocampi from CON, MAL, and MAL-BG mice by reversed-phase ultra-high-

performance liquid chromatography–Fourier transform mass spectrometry (RP-UPLC-FTMS). 

This method identified and relatively quantified >6,300 unique metabolite features with 25 

differentially abundant hits (one-way ANOVA Fischer’s LSD, Padj < 0.05), far fewer compared 

to the previously reported small intestine metabolome31, likely highlighting CNS resilience 

against malnutrition. Indeed, both the BBB and high nutritional requirement contribute to a 

distinct, and energetically resilient, metabolomic profile within the brain172,173.  

 

Partial least squares discriminant analysis (PLSDA) and unsupervised PCA revealed moderate 

shifts in the hippocampal metabolome (Fig. 3.8A and Fig. S.6A). Differentially abundant m/z 

features were putatively annotated with the METLIN database174. Ion mode, m/z, and putative 

annotations are reported in Fig. S.6B. Many differentially abundant metabolites participated in 

lipid metabolism, recalling the microglial transcriptome (Fig. 3.5C and Fig. 3.6A) and previously 

published metabolic alterations within the malnourished small intestine31. Notably, MAL-BG 
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mice exhibited altered polyunsaturated fatty acid (PUFA) metabolism (Fig. S.6B), validated by 

PUFA profiling via GC.  

 

Compared to standard chow, the malnourished diet contains ~1/3rd of essential PUFAs: linoleic 

acid (LA, 18:2 ω6) and a-linolenic acid (aLA, 18:3 ω3)31. Despite a modest increase in chow 

consumption (Fig. S.6C), malnourished mice fail to match CON PUFA availability. While 

dietary LA and aLA are reduced in malnourished cortical tissue, CON, MAL, and MAL-BG 

mice exhibit comparable levels of total PUFA species (Fig. 3.8B, C). Levels of ω6 PUFAs 

derived from LA were unaltered (e.g. arachidonic acid, AA) or even elevated (e.g. dihomo-γ-

linolenic acid, DGLA) in MAL and MAL-BG brains (Fig. 3.8C), supporting putative metabolite 

hits (Fig. S.6B), indicating efficient shunting of LA into ω6 PUFAs. Elevated ω6/ω3 PUFA 

ratios, indicative of metabolic-induced inflammatory stress175, were not observed in MAL and 

MAL-BG cortical tissue despite altered PUFA metabolism (Fig. S.6D).  

 

Comprised of multiple unsaturated double bonds, PUFAs are highly susceptible to oxidation176. 

As oxidative stress has been linked with microglial dysfunction and neurocognitive 

conditions176–178, we measured markers of lipoxidative stress as well as markers of direct amino 

acid (protein) oxidation and glycoxidation (Fig. 3.8C). Malnutrition alone was sufficient to 

increase oxidative stress within the brain, as demonstrated by increased HAVA [(2H5) 5-

hydroxy-2-aminovaleric acid] and CEL [Nε -(carboxyethyl)-lysine] levels, biomarkers of protein 

oxidation and glycoxidative stress, respectively (F2,24 = 9.494, P = 0.0009; F2,24 = 9.576, P = 

0.0009). Fecal bacterial exposure, however, significantly exacerbated lipoxidative stress during 

malnutrition. MAL-BG brains displayed elevated CML [Nε -(carboxymethyl)-lysine] (general 
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lipoxidation/glycoxidation maker) and MDAL [Nε-(malondialdehyde)-lysine] (PUFA-dependent 

lipid peroxidation) levels (F2,24 = 6.954, P = 0.0042 for CML; F2,23 = 5.618, P = 0.0103 for 

MDAL)176. Moreover, select microglial genes involved in PUFA-dependent activation of 

NADPH oxidase (e.g. S100a8, S100a9), a major source of microglial-produced ROS152,179,180, 

were elevated in MAL-BG microglia (Table S.2). These findings indicate that MAL-BG 

microglia may both respond or contribute to CNS oxidative stress.  

 

Fig. 3.8 Malnutrition Promotes Altered PUFA Metabolism 

 

 

 

Fig. 3.8 Legend 

(A) PLSDA of untargeted hippocampal metabolomics, data from the negative ion channel (see 

also Fig. S.6A). (B) Relative abundance PUFA levels within cortical tissue, collective levels 

normalized to controls. (C) The relative abundance of PUFAs from cortical brain tissue reveal 
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altered ω6 and ω3 metabolism, major PUFAs labelled, including LA, DGLA, AA, aLA, and DHA 

= docosahexaenoic acid (n = 8-9 CON, 7 MAL, 10 MAL-BG). (D) HAVA, CEL, CML, and 

MDAL levels from murine cortical tissue. Data normalized to tissue mol lysine. Bar graphs 

indicate mean and s.e.m. with statistical significance determined by one-way ANOVA with post 

hoc Tukey’s test. 

 

3.6.2 Fecal-oral contamination triggers systemic oxidative stress 

Aberrant oxidative stress has long been considered both a driver and feature of early-life 

malnutrition83,181,182. As gut microbiota dysbiosis, including altered E. coli abundance, have been 

linked to systemic oxidative stress93,183,184, we hypothesized that aberrant oxidation may originate 

at the interface of the gut microbiota and host with increased ROS levels. Volatile ROS triggers 

production of reactive aldehydes, such as MDAL, which initiates a positive feedback of 

continued lipid peroxidation176,185,186. To assess oxidative strain in the gut, we measured ROS in 

ex vivo epithelial cells harvested from the CON, MAL, and MAL-BG small intestine. Following 

E. coli/Bacteroidales exposure, the average ROS levels roughly doubled within the malnourished 

intestine (Fig. 3.9A). As fecal-oral contamination promotes gut dysbiosis, we also assessed 

compositional and functional changes to the fecal microbiota. Principal component analysis 

(PCA) of unweighted UniFrac distances generated from 16S rRNA sequencing revealed marked 

shifts in the MAL and MAL-BG fecal microbiota, with samples clustering by bacterial exposure, 

then diet (Fig. 3.9B).  

 

Finally, to test whether MAL-BG gut and brain oxidative stress reflects a systemic profile, we 

measured we measured oxidative stress markers within another fatty organ informing metabolic 
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homeostasis—the liver. As anticipated, chronic microbial exposure largely exacerbated oxidative 

stress within the liver. Fecal-oral contamination promoted levels of hepatic MDAL, but not 

CML, during malnutrition, demonstrating a systemic PUFA lipoxidation profile in the MAL-BG 

model (Fig. 3.9C). 

 

Fig. 3.9 MAL-BG Model Exhibits Systemic Oxidative Stress 

 

 

 

Fig. 3.9 Legend 

(A) Cellular ROS levels within ex vivo intestinal epithelial cells from the CON, MAL, and MAL-

BG small intestine, fluorescent intensity was measured via plate reader following 30 min 

treatment with CellROX® (15 µM final concentration). (B) The average relative abundance of 

the fecal microbiota (n = 4) by family classification determined by the 16S rRNA gene (left). 

Unweighted UniFrac PCA and α-diversity (Shannon index) of the CON, MAL, and MAL-BG 

microbiota (right). Microbiome analyses conducted using QIIME2 (v. 2018.2). (C) Oxidative 
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profiling within liver tissue; fecal-oral contamination exacerbates specific systemic oxidative 

stress markers in malnourished mice. Data normalized to mol lysine. Systemic fatty acid 

oxidative profiling from the same mice. Bar graphs indicate mean and s.e.m. with statistical 

significance determined by one-way ANOVA with post hoc Dunnett’s test (ROS measurement) or 

one-way ANOVA with post hoc Tukey’s test (fatty acid profiling). 

 

3.7 A Model of Malnutrition, Microbes and the Gut-Brain Axis 

Chronic exposure to fecal microbes altered the composition and function of the MAL-BG gut 

microbiota, driving GI dysbiosis and ROS during malnutrition. We propose that fecal-oral 

contamination triggers systemic oxidation, notably fatty acid lipoxidation, during malnutrition. 

Within this strained CNS environment, neurometabolic alteration and accompanying oxidative 

stress contribute to altered microglial function, ultimately impairing behaviour and cognition 

(Fig. 3.10). These findings do not exclude alternative pathologies in malnourished communities, 

including blood-brain barrier disruption or neuroinflammation; but rather highlight the complex 

gut-brain pathways affected by diet and gut microbes. 
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Fig. 3.10 Model of Microbe-Microglia Axis in Health and Malnutrition  

 

 

 

Fig. 3.10 Legend 

Summary model: Fecal-oral contamination contributes to the persistence of early-life 

malnutrition and alters the composition/function of the gut microbiota. Long-term consequences 



   58 

of malnutrition include brain and behavioural deficits, linked to impaired gut-brain interactions. 

We propose that poor diet and combined chronic exposure to specific gut microbes trigger 

systemic oxidation, promoting aberrant microglial function and contributing to neurocognitive 

features of undernutrition. Image partially created with Biorender.  

 

3.8 Chapter 3 Methodology 

MOUSE WORK 

To visualize microglia, we utilized weaned male and female mice (CX3CR1+/EGFP on C57BL/6 

background160, bred and housed under controlled conditions at the Animal Research Unit 

facility at UBC. Housing conditions and model setup previously described in Chapter 2.4. 

 

MOUSE BEHAVIOURAL TESTS 

Order of testing (CON, MAL, and MAL-BG) were randomized prior to behavioural tests. Mouse 

movements were recorded via Go-PRO (HERO 4, HERO Black 6). Tracking and scoring were 

analyzed during blinded analyses with AnyMaze software or a blinded observer (NORT videos).  

 

OFT: The OFT measures rodent locomotion and anxiety-like behaviour. Mice were placed in an 

OFT box (49 Liter Tote, Home Depot: 39.4 cm x 56.4 x 31.8 cm). The base of the box was 

divided into a grid with a defined open field (25.4 cm x 25.4 cm). Individual mice were placed in 

the OFT box for 5 min and allowed to explore freely. The OFT box was cleaned with 70% 

ethanol between use.  
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NORT: To assess exploratory behaviours, two identical objects were placed in the OFT box at 

opposing sides. Individual mice were allowed to freely explore objects for a 3 min habituation 

phase. Following a delay period of several hours, one object was replaced by a distinct, yet 

similarly-sized object (novel object). Individual mice were returned to the OFT for a 3 min test 

phase. A blinded observer recorded interaction times. For this test we defined mouse interaction 

as sniffing and/or placing the snout on the object. 

 

Light-Dark Test: Mice were placed in a 10.5 cm x 34.5 cm light-dark box (1/3rd light zone, 2/3rd 

dark zone). Animals were allowed to freely explore for 3 min, the light-dark box was cleaned 

with 70% ethanol between use.  

 

MWMT: The MWM was utilized to assess learning and spatial memory in mice. Testing 

occurred at the UBC Modified Barrier Facility. Mice were tested in a pool ~116 cm diameter 

(water temperature, 21-23 0C). The testing arena was supplied with indirect lighting with the 

MWM pool surrounded by distal visual cues. A circular platform (11 cm diameter) was used as 

the goal platform (Fig. S.2A). Any fecal droppings were removed from the platform between 

trials. After testing, mice were gently dried and placed in a warming cage prior to returning to 

their home cage. Platform and animal start positions were randomly determined for each of the 

training and testing days.  

Visible platform training (1 d, 4 trials): Fixed mouse start position/variable platform location—In 

this habituation day, individual mice were given 60 sec to locate the visible goal platform 

(opaque top, 1-1.5 cm above water). Mice that failed to climb the platform within 60 sec were 

gently guided onto the goal platform. To promote spatial memory, mice were given a 30 sec rest 
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period on the platform between successive trials. All mice were able to recognize the platform by 

the end of training.   

Acquisition training (2 d, 12 trials): Variable mouse start position/fixed platform location—The 

goal platform was not visible (clear top, 0.5 cm submerged) during acquisition periods. 

Individual mice were given 60 sec to locate the goal platform. Mice that failed to locate the 

platform were gently guided onto the platform following the trial period. Mice were allowed to 

rest on the platform for 30 sec for the first four consecutive trials of each day. In remaining trials, 

mice were immediately removed after locating the platform. Only the first four trials each day 

were analyzed. 

Free swim 1 (1 d): Variable mouse start position/platform removed—mice were allowed to 

freely explore the pool during a 30 sec probe run.   

Acquisition training reversal (2 d, 12 trials): Variable mouse start position/fixed platform 

location—before training, the goal platform was moved to a different quadrant. Mice repeated 

acquisition training protocol.  

Free swim 2 (1 d, 1 probe): Same protocol as initial free swim. Free swims occurred 24 h 

following the final acquisition trial.  

  

EX VIVO CYTOKINE PROFILING 

Whole brain tissues were collected following euthanasia within individual Eppendorf tubes 

containing 1 mL dPBS and cOmplete™ EDTA-free Protease Inhibitor, prior to storage at -70/80 

0C or immediate homogenization using a Retsch MM 301 Mixer Mill or FastPrep®-24 (MP 

Biomedicals) at top speed 2x for 1 min using tungsten beads. Collected blood was spun at 6,000 

g for 8 min to obtain sera. Cytokine measurements from tissue supernatant and sera were 
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obtained with the BD Biosciences Cytometric Bead Array Mouse Inflammation Kit. Cytokine 

measurements from whole brain samples were normalized to tissue weight.  

 

ACUTE HIPPOCAMPAL SLICE PREPARATION 

CX3CR1+/EGFP C57BL/6 mice were decapitated and brains were dissected and sliced horizontally 

with a vibratome (Leica VT1200S) to 300 µm thick in ice-cold N-methyl-D-glucamine slicing 

solution containing (in mM): 120 N-methyl-ᴅ-glucamine, 2.5 KCl, 25 NaHCO3, 1 CaCl2, 7 

MgCl2, 1.2 NaH2PO4, 20 ᴅ-glucose, 2.4 sodium pyruvate, and 1.3 sodium L-ascorbate, which 

was constantly oxygenated with 95% O2 and 5% CO2. Hippocampal slices were immediately 

transferred to artificial cerebral spinal fluid (aCSF), which was continuously oxygenated with 

95% O2 and 5% CO2. aCSF contained (in mM): 126 NaCl, 2.5 KCl, 26 NaHCO3, 2 CaCl2, 2 

MgCl2, 1.25 NaH2PO4, and 10 ᴅ-glucose, pH 7.3–7.4, osmolarity 300 mOsm. Slices were 

recovered in aCSF at 32 0C for a minimum of 30 minutes before imaging for time-lapse and 

lesion experiments, or before fixation by the SNAPSHOT protocol187. Briefly, this involved a 2-

minute fixation in 4% PFA at 80 0C, followed by a PBS wash, and storage in clearing solution 

(20% DMSO and 2% Triton X-100 in PBS) at 4 0C.  

 

TWO-PHOTON MICROSCOPY, TIME-LAPSE IMAGING, AND LESION ANALYSIS 

Acute slices from CX3CR1+/EGFP C57BL/6 mice were imaged immediately after recovery using a 

Coherent Chameleon Ultra II laser (mode-locked pulse train at 80 MHz at 920 nm) with a Zeiss 

LSM 7 MP microscope and Zeiss 20x-W/1.0 NA objective. Green fluorescence was detected by 

a 520/60 nm filter (Chroma tech) and GaAsP photo-multiplier tube (PMT; Zeiss LSM BiG). 

Images were acquired as a z-stack (zoom factor 2.8; 151.82 x 151.82 µm xy scale, 8-line 
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averaging) 18 µm thick, centered approximately 150 µm below the slice surface (2 µm slice 

interval) in the stratum radiatum region of CA1 hippocampus. Following a 10-minute baseline 

imaging period, a lesion was created by focusing the laser to the region of interest and scanning 

at 800 nm at 100% power for approximately 30 s. Microglial response to this lesion was then 

imaged for an additional 15 min using the same imaging parameters as baseline.  

 

For motility analysis, baseline movies were maximum projected and loaded into a custom 

MATLAB program. This program quantifies the number of new pixels (additions) and number 

of removed pixels (retractions) across time as the Motility Index. To quantify the microglial 

response to lesion, a circular region of interest with a diameter of 30 µm was centered on the 

lesion (lesion response region), and the mean intensity was measured at each frame. 

 

3D-MORPH and PHAGOCYTIC CUP QUANTIFICATION  

EGFP is well preserved by the SNAPSHOT protocol187, and these slices were ready to image 

immediately after a one-week incubation in clearing solution at 4 0C. By two-photon 

microscopy, a z-stack at 1024 x 1024 (zoom factor 1.5; 283.12 x 283.12 µm xy scale, 16-line 

averaging) from 125 – 175 µm deep (2 µm slice interval) was acquired. Using these images, 3D-

Morph MATLAB analysis was completed as previously reported161 to quantify microglial 

morphologies. Before analysis, all images were processed by background subtraction in Fiji, and 

all treatment rounds were batch processed using the same analysis parameters. From these 

morphological images, the number of phagocytic cups were manually counted.  
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BLOOD-BRAIN BARRIER INTEGRITY: IgG and BIOCYTIN 

To investigate BBB permeability, 100 µL TMR Biocytin (AnaSpec AS-60658; reconstituted 

with sterile PBS; MW= 869 Da) was delivered by tail-vein injection to mice 20 min prior to 

cardiac perfusion. Following brain dissection and coronal slicing (300 µm thick by vibratome), 

tissue was imaged using a Zeiss Axio Zoom microscope with TMR emission filter settings. 

Fluorescence intensity was measured from slices spanning the entire rostral-caudal area of the 

brain. Mean intensity was compared between treatments.  

 

As an additional permeability measure, slices were stained for anti-mouse IgG, which should not 

be present in the brain parenchyma. For staining, thick slices were cleared (20% DMSO and 2% 

Triton X-100 in PBS) for one week, blocked in 4% normal goat serum overnight at room 

temperature, and incubated with Alexa Fluor 488 goat anti-mouse IgG for 6 days at 4 0C. After 

four one-hour washes in PBS at room temperature, the tissue was imaged by two-photon 

microscopy using a 20x-W/1.0 NA objective and 5x zoom factor. The mean fluorescence 

intensity was averaged across three separate images per slice, and compared between mice. 

Photothromobotic tissue was generously donated by Dr. Louis-Philippe Bernier.  

 

RNA-SEQ ANALYSIS  

Whole mouse cerebra were stored on ice in RPMI growth media prior to tissue dissociation. 

Tissues were dissociated via the Adult Brain Dissociation kit with the gentleMACS™ Octo 

Dissociator with Heaters (program: 37C_ABDK_01) from Miltenyi Biotec. Following 

dissociation, microglia were enriched through magnetic separation with CD11b MicroBeads and 

MidiMACSTM, according to Miltenyi Biotec protocols. Microglia made up ~90% of CD11b+ 
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samples as determined by flow cytometry (Fig. S.4A). Enriched microglia samples were stored 

in RNAlater prior to RNA isolation with RNEasy Micro Kit (QIAGEN). 

 

Samples were sent to the Biomedical Research Centre Sequencing Core at UBC. Prior to RNA-

Seq, sample quality control was performed via the Agilent 2100 Bioanalyzer. Qualifying samples 

were prepared according to established protocols for the NEBnext Ultra II Stranded mRNA 

(New England Biolabs). Sequencing was performed on the Illumina NextSeq 500 with Paired 

End 42bp × 42bp reads and demultiplexed with Illumina's bcl2fastq2. De-multiplexed read 

sequences were aligned to the Mus musculus reference sequence (GRCm38.p6188) using STAR v. 

2.6.1d, followed by read-count generation using HTSeq v. 0.11.2189. Differential gene expression 

was estimated with DeSEQ2 v. 3.9 with further pathway analyses conducted using the 

ReactomePA pipeline, as described163,164. Analyses were conducted with R (v. 3.5.1). Raw and 

processed data files were deposited to the NCBI GEO, private until manuscript publication.  

 

qPCR 

RT-qPCR analysis was performed using QuantiTect SYBR Green PCR Master Mix (Qiagen) 

from ileum or whole brain (cortical) tissue using the following primers, Ctsd (F: 

GACATCTCTTCTGGTGGGGC, R: GGCTGGACACCTTCTCACAA), Gapdh (F: 

ATTGTCAGCAATGCATCCTG, R: ATGGACTGTGGTCATGAGCC), Hprt (F: 

GATTAGCGATGATGAACCAGGTT, R: CCTCCCATCTCCTTCATGACA), and Sirpa (F: 

TCCGCGTCCTGTTTCTGTAC, R: TTCAGAACGGTCGAATCCCC) based on established 

PCR protocols31. Hprt provided an endogenous control for microglial genes of interest and was 

used for normalization. ddCT calculations provided relative expression to control samples. 
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FLOW CYTOMETRY  

Microglia cells were isolated through Percoll gradient, as described above, or Miltenyi Adult 

Brain Dissociation kit using either manual disruption or gentleMACS™ Octo Dissociator with 

Heaters (program: 37C_ABDK_01) from Miltenyi Biotec. Microglia staining occurred in 1X 

dPBS-/-(Thermo Fischer) supplemented with 0.5% FBS, 0.4% 0.5M EDTA, and 1% 

hydroxyethyl piperazineethanesulfonic acid at 4 0C for 20 min. Cells were stained with the 

following antibodies: anti-CD11b (clone:M1/70, eBioscience), anti-CD45 (clone:30-F11, 

eBioscience), anti-F480 (clone:BM8, eBiosience), anti-CX3CR1 (clone:SA011F11, Biolegend), 

anti-CD31 (clone:MEC13.3, Biolegend), anti-CCR3 (clone:J073E5, Biolegend), anti- I-A/I-E 

(clone:M5/114.15.2, Biolegend), anti-CD80 (clone:16-10A1, eBioscience), anti-CD86 

(clone:GL1, eBioscience), and anti-TLR4 (clone:SA15-21, Biolegend). Following staining, cells 

were washed twice and fixed in a 1:1 solution of supplemented dPBS-/-: 4% paraformaldehyde 

overnight at 4 0C. After fixation, cells were re-suspended in supplemented dPBS-/-and 

enumerated via flow cytometry (BD LSR II with 561 laser). Microglia populations were 

identified as CD11bhigh/CD45low (Fig. S.5B). Subsequent data was analyzed using FlowJo 

software (v. 10.5.3). 

   

METABOLOMICS 

Mouse hippocampal tissues were collected for untargeted RP-UPLC-FTMS metabolomics 

analysis. Tissue samples were kept in dry ice prior to storage at -70/80 0C. Metabolomics were 

completed by TMIC. 
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Metabolite Extraction: Each mouse hippocampal sample in an Eppendorf tube was mixed with 

water, 5 µL per mg of the tissue, and two 4-mm metal balls were added. The tissue was 

homogenized on a MM 400 mill mixer at a vibrating frequency of 30 Hz for 1 min twice.  After 

5-s spin-down, a mixture of methanol-chloroform (4:1) was added, at 25 µL per mg tissue, to 

each tube.  The sample was homogenized again for metabolite extraction using the same setup 

for 1 min twice, followed by sonication in an ice-water bath for 5 min.  The tube was centrifuged 

at 15,000 rpm and at 10 0C for 20 min. The clear supernatant was transferred to a 1.5-mL 

Eppendorf tube.  A 60-µL aliquot from each sample was dried down inside the same nitrogen 

evaporator and the residue was reconstituted in 40 µL of 80% methanol. 10 µL was injected for 

RP-UPLC-FTMS.  Two rounds of sample injections were made, with positive- and negative-ion 

detection, respectively.  

 

RP-UPLC-FTMS Analysis: A Dionex Ultimate 3000 UHPLC system coupled to a Thermo LTQ-

Orbitrap Velos Pro mass spectrometer, equipped with an electrospray ionization (ESI) source, 

was used. RP-UPLC-FTMS runs was carried out with a Waters BEH C8 (2.1 x 50 mm, 1.7 µm) 

column for chromatographic separations. The mobile phase was (A) 0.01% formic acid in water 

and (B) 0.01% formic acid in acetonitrile-isopropanol (1:1). The elution gradient was 5% to 50% 

B in 5 min, 50% to 100% B in 15 min, and 100% B for 2 min before column equilibration for 4 

min between injections. The column flow was 400 µL/min and the column temperature was 60 

0C. For relative quantitation, the MS instrument was run in the survey scan mode with FTMS 

detection at a mass resolution of 60,000 full width at half maximum (m/z 400). The mass scan 

range was m/z 80 to 1800, with a reference lock-mass for real-time calibration. Two UPLC-

FTMS datasets were acquired for each sample, one with positive-ion detection and the other with 
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negative-ion detection. LC-MS/MS data was also acquired from each sample set with collision 

induced dissociation at different levels of normalized collision energy. 

 

Data Processing: Each LC-FTMS dataset was respectively processed with XCMS 

(https://xcmsonline.scripps.edu/) in R for peak detection and two rounds of retention time shift 

correction, peak grouping and peak alignment. Mass de-isotoping and removal of chemical and 

electronic background peaks were performed with manual interventions based on several rules in 

chemistry and ESI/MS. The output of data processing includes m/z pairs, retention time (RT, 

min), and LC-MS peak areas of the detected metabolites or metabolite features across the 

samples for each set.  

 

Metabolomics Analyses: To assign the metabolite candidates of any potential biomarkers, the 

measured m/z’s were searched against metabolome databases, namely: METLIN 

(https://metlin.scripps.edu/metabo_batch.php)174. During database searches, the allowable mass 

errors were ≤ 5 ppm.  For the (+) ion detection data, ion forms of (M+H)+ , (M+Na)+, (M-

H2O+H)+, and (M-NH3+H)+ were considered for the database searches. For the (-) ion 

detection, ion forms of (M-H)-, (M+Na-2H)-, (M-H2O-H)-, and (M-NH3-H)- were considered. 

PCA/PLSDA and pathway analyses were carried out using Metaboanalyst v. 3.0/4.0 software190: 

mass tolerance 0.0003, retention time tolerance 30, log-transformation, and auto data scaling. 

Analyses were conducted based on previously analyses31. A one-way ANOVA was used to 

determine significant changes between groups (P<0.05; fold change >2). 
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BRAIN INFLAMMATORY and FATTY ACID PROFILE  

Whole brains were collected and immediately placed in dry ice prior to storage at -70 0C prior to 

processing. Tissues were homogenized with Ultra-Turrax (3420000 IKA, Alemanya) in 

homogenization buffer (180 mM KCl, 5 mM MOPS, 2 mM EDTA, 1 mM DTPA, and 1 uM 2,6-

di-tert-butil-4-metilfenol; pH 7,4). Homogenates were normalized by protein content as 

determined by Bradford assay.   

 

Fatty acid preparation: Total lipids from homogenates (50-150 mg) tissue were extracted with 

chloroform/methanol (2:1 v/v; 3 times) in the presence of 0.01% butylated hydroxytoluene. The 

chloroform phase was evaporated under nitrogen and the fatty acids. After lipid extraction, fatty 

acyl groups were analyzed as methyl esters derivatives by GC. Briefly, fatty acids were 

transesterified by incubation in 2 mL of 5% methanolic hydrochloric acid at 75 0C for 90 min. 

The resulting fatty acid methyl esters were extracted by adding 2 mL of n-pentane and 1 mL of 

saturated NaCl solution. The n-pentane phase was separated, evaporated under N2 gas, and 

dissolved in 80 µL of carbon disulfide. Two µL were used for GC analysis.  

 

GC method: Analyses was performed on a GC System 7890A with a Series Injector 7683B 

(Agilent, Barcelona, Spain) and a flame ionization detector equipped with a DBWAX capillary 

column (length 30 m × inner diameter 0.25 mm × film thickness 0.20 µm). The injections were 

performed with the splitless mode at 220 0C. The flow rate of carrier gas (helium 99.99%) was 

maintained at a constant rate of 1.8 mL/min. The column temperature was held at 145 0C for 5 

min, increased by 2 0C/min to 245 0C for 50 min, and held at 245 0C for 10 min with a post-run 

of 250 0C for 10 min.  
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Data Analysis: Identification of the twenty-five fatty acid methyl esters was made by comparison 

with authentic standards (Larodan Fine Chemicals, Malmö, Sweden). Results were expressed as 

%mol and then normalized to CON. The fatty acid profile detected, identified, and quantified 

represents more than 95% of the total chromatogram. The following fatty acid indexes were 

calculated: polyunsaturated fatty acids (PUFA) from ω3 and ω6 series (PUFA ω3 and PUFA 

ω6); a pro-inflammatory index (ω6/ω3): (PUFA ω6/PUFA ω3).  

 

GC/MS Measurement of Oxidative Stress Markers: GSA, CEL, CML, CMC, and MDAL 

concentrations in total proteins from whole brain and liver homogenates were measured by 

GC/MS as described176,191. Samples containing 0.5 mg of protein were delipidated as described 

above and proteins were precipitated by adding 10% trichloroacetic acid (final concentration) 

and subsequently centrifuged at 4400 rpm, 40 C, 15 min. Protein samples were reduced overnight 

with 500 mM NaBH4 (final concentration) in 0.2M borate buffer, pH 9.2, containing 1 drop of 

hexanol as an anti-foam reagent. To eliminate crystals, proteins were then reprecipitated by 

adding 1 mL of 10% trichloroacetic acid and subsequent centrifugation. The following 

isotopically labelled internal standards were then added: [2H8] lysine (12 nmols), [2H5 HAVA 

(72 pmols) (for GSA quantization), [2H4]CEL (144,1 pmols), [2H8]MDA-Lisina (20,6 pmols), 

[2H2]CML (162,2 pmols), and [13H2]CMC (112,4 pmols).  

 

The samples were hydrolyzed at 155 0C for 30 min in 1 mL of 6N HCl, and then concentrated by 

speed-vac. The N,O-trifluoroacetyl methyl ester derivatives of the protein hydrolysate were 

prepared as previously described192. Briefly, hydrolyzed samples were incubated in 1 mL of 5% 
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acetyl chloride-methanol solution. Methyl esters from hydrolyzed samples were incubated with 1 

mL of trifluoroacetic anhydride acid for 1 h and then evaporated with nitrogen gas (Nevap 

Model 113 Organomation Association, Berlin, MA, EUA) to obtain N,O-trifluoracetyl esters 

methyl derivates from amino acids in the hydrolyzed solution. Finally, the samples were re-

dissolved with 80 µL of dichloromethane as a vehicle to posterior analysis by GC/MS. GC/MS 

analyses were carried out on a Hewlett-Packardmodel 6890 GC equipped with a 30m HP-5MS 

capillary column (30m x 0.25mm x 0.25µm) coupled to a Hewlett-Packard model 5973A mass 

selective detector (Agilent, Barcelona, Catalonia). The injection port was maintained at 275 0C. 

Two µL of sample were injected for each run. The column temperature was held at 110 0C for 5 

min, then 2 0C/min to 150 0C, then 5 0C/min to 240 0C, then 25 0C/min to 300 0C, and finally 

held at 300 0C for 5 min. 

 

Quantification was performed by external standardization using standard curves constructed 

from mixtures of deuterated and non-deuterated standards:  

lysine; [2H8]lysine; HAVA; [2H5]HAVA; CEL; [2H4]CEL; MDA-lysine; [2H8]MDA-lysine; 

CML; [2H2]CML; CMC; [13C2]CMC (PolyPeptide Group, Strasbourg, France; Sigma-Aldrich, 

Madrid, Spain or donated by Dr. Requena). Analytes were detected by selected ion-monitoring 

GC/MS. The following ions were utilized: lysine and d8-lysine, m/z 180 and 187, respectively; 

5-hydroxy-2-aminovaleric acid and d5-5-hydroxy-2-aminovaleric acid (stable derivatives of 

GSA), m/z 280 and 285, respectively; CML and d4-CML , m/z 392 and 396, respectively; CEL 

and d4-CEL, m/z 379 and 383, respectively; CMC and d13-2C-CMC, m/z 271 and 273 and 

MDAL and d8-MDAL, m/z 474 and 482, respectively. The amounts of products were expressed 

as the ratio µmol CML, CEL, CMC or MDAL per mol lysine. 
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GUT ISOLATION and CellROX® ASSAY 

Intestinal epithelial cells (IECs) were harvested from CON, MAL, and MAL-BG small intestinal 

tissue (ileum: 5 cm). After removal of luminal content, tissues were washed multiple times in 

PBS +/+ with 0.1% BSA. Individual tissues were then added to IEC buffer (PBS -/- with 5% 

FBS, 1mM EDTA, and 1 mM dithiothreitol). After 10 min at 37 0C with shaking, individual 

samples were strained through a 70 µm strainer and then centrifuged at 1500 rpm. Cell pellets 

were resuspended in RPMI 1640 and IEC digestion was repeated again. Following the second 

digestion step isolated IECs were plated at 37 0C (~15,000 cells/well) and stained using 

CellROX® Deep Red Reagent (final concentration 15 µM) for 30 min in the dark with shaking. 

Upon oxidation from ROS, the CellROX® reagent becomes fluorescent (emission maxima ~665 

nm), fluorescent intensity was measured via plate reader with RPMI blanks serving as a control.  

 

MICROBIOME ANALYSES 

Fecal samples were collected from mice and kept in -70 0C prior to isolation. Fecal DNA was 

released by boiling sample suspensions for 15 min at 100 0C. Library preparation for 16S rRNA 

sequencing was then performed by Microbiome Insights according to a standardized pipeline 

(https://microbiomeinsights.com/itag-microbiome-analysis/). Briefly, PCR amplification of the 

16S rRNA gene was performed using barcoded primers against the V4 region (Kozich, Schloss 

et al, 2013), with 2 µL of lysate as template. PCR amplicons were cleaned using a SequalPrep 

96-well plate kit (ThermoFisher A1051001) and were sequenced on a Miseq platform to obtain 

2x250 bp reads. Microbiota analyses were conducted using the QIIME2 pipeline (v. 2018.2) with 

Deblur feature table construction. Visualization was created with RStudio (Version 1.1.463). 
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Raw sequencing data was deposited to the NCBI sequence read archive (SRA), private until 

manuscript publication. 

 

3.9 Chapter 3 Summary  

These findings demonstrate that fecal-oral contamination shapes learning plasticity and 

microglial function during early-life malnutrition. We show that gut microbes modulate the 

morphology, transcriptional profile, and phagocytic activity of microglia during malnutrition. 

Unexpectedly, these microglial alterations occur independently of neuroinflammation or BBB 

deficits. Increased lipoxidation markers, however, were observed in the MAL-BG CNS 

following neurometabolic profiling. Finally, we demonstrate that fecal-oral contamination not 

only alters composition and function of the gut microbiota, but also triggers systemic 

lipoxidative strain, likely initiated within the malnourished gut. Collectively, this work highlights 

dynamic microglial responses to commensal microbes and diet, identifying systemic oxidative 

stress as a key gut-brain pathway informing neurocognitive consequences of childhood 

malnutrition. 

 

Systemic oxidative stress profiling revealed elevated lipoxidative markers within the MAL-BG 

liver. Early-life undernutrition markedly shapes the mammalian liver, a critical modulator of 

systemic metabolism. To further explore gut-systemic interactions we assessed hepatic 

repercussion of dietary deficiency—fatty liver102,193.   
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Chapter 4: Characterizing Undernutrition-Induced Fatty Liver 

 
4.1 The Global Burden of NAFLD 

 
4.1.1 NAFLD: Pathology and Drivers 

Non-alcoholic fatty liver disease (NAFLD), with an estimated global prevalence over 25%, 

remains a critical health epidemic, but is largely studied in the context of obesity and aging194. 

While NAFLD incidence increases with age, recent studies estimate that NAFLD also affects 3-

12% of the pediatric population91,194.  

 

NAFLD is defined as ≥5% hepatic steatosis (fat retention) in the absence of excessive alcohol 

intake194. NAFLD histopathology ranges from microvesicular (lipid accumulation) to 

macrovesicular (significant lipid accumulation, hepatic nucleus displaced) steatosis195. Largely 

asymptomatic, up to 30% of NAFLD cases may progress to NASH (non-alcoholic 

steatohepatitis), a condition additionally characterized by hepatocellular ballooning, lobular 

inflammation, and fibrosis195,196. As NASH advances, irreversible damage including liver 

cirrhosis or hepatocellular carcinogenesis may occur, potentially resulting in liver transplant or 

even mortality84,194,195 (Fig. 4.1).  
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Fig. 4.1 Fatty Liver Progression 

  

 

 

Fig. 4.1 Legend 

Progression of fatty liver disease from healthy liver (red coloured) though NAFLD, NASH, and 

cirrhosis (pale coloured). Beyond gross pathological changes, tissue biopsies reveal marked 

alterations in NAFLD hepatic histology from hepatic steatosis in NAFLD to inflammation, 

hepatocellular degeneration, and fibrotic scarring evident in NASH or cirrhotic tissue195. Unlike 

irreversible liver cirrhosis, obese-associated NAFLD may be reversed by a healthy lifestyle197. 

Image created with Biorender.  

 

NAFLD has long been associated with various metabolic comorbidities, including type 2 

diabetes and cardiovascular disease, and is considered both a driver and manifestation of 

metabolic syndrome—a cluster of aberrant metabolic features that include obesity, elevated 

fasting plasma glucose, hypertriglyceridemia, hypertension, and decreased high-density 

lipoprotein (HDL) cholesterol levels194,198. 
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Less prevalent contributors of NAFLD progression include genetic (e.g. familial 

hypobetalipoproteinemia), autoimmune (e.g. celiac disease), and infectious (e.g. viral hepatitis) 

etiologies impairing hepatic function193,199. Gut microbes have also been implicated in NAFLD 

pathology as recent work reports changes in microbial composition and function, including 

alterations of bacterial-mediated bile acid metabolism, which have been reported in NAFLD 

cohorts79,84. Whether gut microbial dysbiosis promotes NAFLD and/or results as a consequence 

of hepatic steatosis remains less clear. Notwithstanding, the primary cause of NALFD is due to 

aberrant nutritional intake. While the vast majority of NAFLD research studies the impact of 

overnutrition193,196, dietary deficiencies also promote fatty liver193.  

 

4.1.2 Undernutrition—An Unexpected and Silent Driver of Fatty Liver Disease  

Severe undernutrition drives the development of fatty liver through impaired lipid 

metabolism102,193,200. Altered fat metabolism and transport have been reported in undernourished 

populations193,200,201. Recently, rodent studies have offered key insights into the mechanisms 

driving undernutrition-induced fatty liver disease. Impaired fatty acid oxidation, hepatic 

peroxisome loss, and poor lipid transport contribute to fatty liver in rodent models of protein-

deficient fatty liver102,202. However, the role of commensal microbes in the progression of 

undernutrition-induced fatty liver has remained largely unexamined.  

 

To explore whether the malnourished microbiota contributes to fatty liver pathology, I utilized 

the previously characterized MBG (MAL-BG) murine model31,109. We have previously reported 

an association between malnutrition/fecal-oral contamination and fatty liver pathology. Prior 

studies demonstrated that enteric S. Typhimurium infection increases hepatic lipidosis and 
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inflammatory markers within MBG and MAL livers. In addition, these malnourished mice 

exhibited a striking increase of hepatic Salmonella burden. Enteric infection, however, failed to 

trigger immune and hepatic alterations in CON mice repeatedly exposed to E. 

coli/Bacteroidales31. Our reported findings indicate that the deleterious effects of E. 

coli/Bacteroidales fecal exposures require malnutrition. Whether fecal-oral contamination 

promotes fatty liver features in the absence of enteric insult remained undetermined. 

 

4.2 MAL and MAL-BG Models Exhibit Fatty Liver Features   

After four weeks on the malnourished diet, MAL and MBG livers exhibit a paler appearance, 

suggestive of fatty liver (Fig. 4.2A). Despite visual discrepancies, liver weights and body-

normalized liver weights were comparable across conditions (Fig. S.7A). Hematoxylin and eosin 

(H&E) staining revealed diffuse hepatic steatosis throughout malnourished livers (Fig. 4.2A). 

While MAL and MBG mice exhibit comparable fat-associated space within the liver histology 

(fasted mice), fecal-oral contamination exacerbated hepatic fat/glycogen-associated steatosis 

(non-fasted mice) and triglyceride levels during malnutrition (Fig. 4.2B, C). Despite fatty liver 

features, both MAL and MBG mice lacked histological evidence of significant steatohepatitis 

associated with NASH and inflammatory profiling revealed similar cytokine levels (IFN-γ, IL-6, 

IL-12, MCP-1, and TNF-α) across CON, MAL, and MBG livers (Fig. 4.2A and Fig. S.7B). As 

overnutrition-associated NAFLD and metabolic syndrome are highly connected198, we also 

assessed clinical features of metabolic disruption. Insulin levels were comparable across groups 

under non-fasting and fasting conditions. While non-fasting mice exhibited comparable glucose 

concentrations, fasting glucose levels were elevated within MAL and MBG sera, possibly 

indicative of early insulin resistance and altered glucose metabolism (Fig. 4.2D and Fig. S.7C). 
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Collectively, these results indicate that MAL/MBG mice model fatty liver features, with fecal-

oral contamination promoting fat/glycogen-associated steatosis and impaired triglyceride 

metabolism. 

 

Fig. 4.2 Malnutrition and Fecal-Oral Contamination Promote Fatty Liver Features  

 

 

 

Fig. 4.2 Legend  

 (A) Representative whole liver (left) and H&E stained liver histology (right). (B) Percent of 

fat/glycogen associated space (open spaces, top) and fat-associated space (bottom) in liver 

histology from non-fasted and fasted (overnight) mice, respectively. For (top) figure, data was 

pooled from four mouse experiments. Images assessed with ImageJ software, each point 

represents a biological sample. (C) Triglyceride level normalized to liver weights, data pooled 
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from three experiments with triglyceride levels normalized to the CON group of each experiment. 

(D) Serum insulin and glucose levels from fasted mice. Mice from A (histology), B (bottom), and 

D are from the same mouse experiment; B (top) and C contain mice from the same experiment. 

Bar graphs indicate mean and s.e.m. with statistical significance determined by Kruskal-Wallis 

with post hoc Dunn’s test (histology) or one-way ANOVA with post hoc Dunnett’s test 

(triglycerides, insulin, glucose).  

 

4.3 Metabolomic Profiling of Undernutrition-Induced Fatty Liver  

To further characterize metabolic shifts, we conducted untargeted metabolomics for less polar 

and polar metabolites via RP-UPLC–FTMS and hydrophilic interaction chromatography-FTMS 

(HILIC-FTMS), respectively. Over 1,000 differentially abundant hits were detected following 

FTMS (one-way ANOVA Fisher’s LSD, Padj < 0.05). Of these, ~350 differentially abundant 

metabolic features were annotated using the METLIN database. Diet predominantly shifted the 

liver metabolome as reported by unsupervised PCA (Fig. 4.3 and Fig. S.8A), and pathway 

analyses found no significantly enriched MAL vs. MBG metabolomic pathways following FDR 

correction (data not shown). Subsequent metabolite set enrichment analyses (MSEA) using 

Metaboanalyst 4.0 focused on dietary-driven metabolomic shifts190. 

 

MSEA identified phosphatidylethanolamine (PE) biosynthesis, sphingolipid metabolism, and 

phospholipid biosynthesis as the top enriched metabolomic pathways identified in malnourished 

(MAL and MBG) livers (Fig. S.8B), metabolic shifts observed in both undernutrition and hepatic 

steatosis models31,203. PE, a highly abundant mammalian glycerophospholipid, contributes to 

lipid signaling and serves as a precursor to phosphatidylcholine (PC)204,205. Both elevated PE 
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metabolism and altered PC:PE glycerolipid ratios are associated with fatty liver 

progression203,205. Compared to malnourished counterparts, CON livers exhibit enriched 

pathways linked to bile and PUFA metabolism, specifically αLA and LA metabolism (Fig. 

S.8C), broadly reflecting shifts previously reported within the healthy small intestine31. 

 

Fig. 4.3 Malnutrition and Fecal-Oral Contamination Affect Hepatic Fatty Acid Liver Profiles  

 

 
Fig. 4.3 Legend  

PCA plots of untargeted metabolomics via RP-UPLC–FTMS (left) and HILIC-FTMS (right), 

data from the positive ion channel presented, see also Fig. S.8A.   

 

To confirm untargeted metabolomic data, we conducted fatty acid profiling of liver tissue via gas 

chromatography (GC). Malnourished mice displayed a reduction in saturated fatty acid (SFA) % 

content (Fig. 4.4A). In contrast, malnutrition elevated relative unsaturated fatty acid (UFA) % 

content (Fig. S.9A). This increase was largely driven by monounsaturated fatty acid (MUFA) 
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content, as MAL and MBG livers display nearly half the PUFA mol% of CON livers (Fig. 4.4B, 

C).  

 

As discussed in Chapter 3.6.1, dietary LA and αLA serve as precursors of downstream ω6 and 

ω3 PUFAs, respectively. In contrast to brain PUFA profiles, MAL and MBG mice exhibit a 

persistent loss of ω6 and ω3 metabolism beyond LA and αLA deficits, supporting MSEA 

findings (Fig. S.8C and Fig. 4.4A, B). Elevated ω6/ω3 ratios—an inflammatory marker often 

associated with Western diets, have been associated with NALFD and NASH90,206. In our model, 

healthy and malnourished mice exhibit comparable ω6/ω3 ratios (Fig. S.9B), further suggesting 

that moderate undernutrition may trigger hepatic steatosis uncoupled from significant 

inflammation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   81 

Fig. 4.4 Malnourished Mice Display Robust PUFA Deficits  

 

 

Fig. 4.4 Legend 

(A) Fatty acid profiles in CON, MAL, and MBG livers determined by GC: total SFA, MUFA, and 

PUFA mol%. (B) The relative abundance of ω6 and ω3 PUFAs, normalized to CON values. In 

addition to LA and αLA, major PUFAs include DGLA, AA, and DHA207,208. All fatty acid 

profiling from the same experiment. Bar graphs indicate mean and s.e.m. with statistical 

significance determined by ANOVA with post hoc Dunnett’s test.  
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4.4 Fecal-Oral Contamination Influences an Undernutrition-Induced Fatty Liver Model 

MAL and MBG mice provide a useful model of early-life, undernutrition-induced fatty liver. We 

report that fecal-oral contamination exacerbates clinical markers of fatty liver during 

malnutrition, notably hepatic triglyceride and fat/glycogen content. Interestingly, systems-based 

approaches have recently highlighted causal roles for the gut microbiome in NAFLD pathology. 

Aberrant metabolic function of gut bacteria, notably impaired bile acid metabolism and aromatic 

amino acid catabolism, were linked to NAFLD severity within the context of obesity84,95. Further 

study of the malnourished microbiome was required to assess whether the MBG model exhibits 

similar metabolic patterns.  

 

While fecal-oral contamination influenced specific fatty liver features, the liver metabolome was 

largely informed by diet. Malnutrition triggered significant deficits in hepatic PUFA metabolism. 

The metabolism of LA and αLA, essential fatty acids, forms ω6 and ω3 PUFAs, respectively. 

Integral components of the cellular membrane, PUFAs regulate diverse immune, metabolic, and 

signaling pathways207,209. Aberrant PUFA profiles, notably elevated ω6/ω3 PUFA ratios have 

been linked to fatty liver210. As the ω3 family contributes to anti-inflammatory processes and 

promotes fatty acid oxidation207,210, these PUFAs have been assessed for potential therapeutic 

benefits. Clinical interventions addressing obese-associated NAFLD report a beneficial impact of 

ω3 PUFAs on hepatic steatosis and markers of metabolic syndrome206,210,211. While we reported 

comparable ω6/ω3 PUFA ratios in our malnourished model (Fig. S.9B), MAL and MBG livers 

display ω3 PUFA deficiencies observed in obese-associated NAFLD. Whether healthy dietary 

intervention would mitigate deficient PUFA content and fatty liver features in this early-life 

malnutrition model remained unknown. 
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In Chapter 5, I report the first MBG dietary reversal study, in which I examine how and to what 

extent the gut microbiome and diet contribute to the progression and reversal of fatty liver.    

   

4.5 Chapter 4 Methodology 

HISTOLOGY MEASUREMENTS 

Individual liver lobes were stored in 10% formalin for 12-24 hrs at room temperature. 

Following formalin storage, tissues were transferred into 70% ethanol. Parrafin-embedded 

tissues were sliced and stained with H&E using established practices by the Biomedical 

Research Centre (Ingrid Barta) or Wax-it Histology Services at the University of British 

Columbia. H&E tissues were imaged under a light microscope at 40X and the percent of fat- 

or fat/glycogen-associated space per image was determined by Fiji (Image J) on 8-bit images. 

The threshold of “open” space was set by CON histology and the same threshold settings were 

applied to all samples.   

 

EX VIVO CYTOKINE QUANTIFICATION 

Liver tissues were collected for cytokine analysis. Tissue samples were stored in 1 mL of PBS 

with cOmplete™ EDTA-free Protease Inhibitor prior to homogenization and frozen at -70/80 0C. 

Tissue homogenates were centrifuged at top speed (≥ 16,000 g) for 15 minutes at 4 0C and the 

resulting supernatants were stored at −80 0C. Cytokine levels from liver supernatants were 

measured with the BD Biosciences Cytometric Bead Array Mouse Inflammation Kit. All 

cytokine concentrations were normalized to starting tissue weight. 
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TRIGLYCERIDE, GLUCOSE, and INSULIN 

Triglyceride measurements were determined from liver supernatants using the Abcam 

Triglyceride Assay Kit (ab65336). Triglyceride levels were first normalized to starting tissue 

weight and then compared against CON samples. Following euthanasia, blood was collected 

from non-fasted and fasted (overnight) mice. Immediately upon collection, blood glucose was 

measured via glucometer, while insulin levels were measured from mouse sera by ALPCO 

Mouse Insulin ELISA kit (80-INSMS-E10). ELISA assays were completed according to 

manufacturer recommendations.   

 

UNTARGETED METABOLOMICS and METABOANALYST ANALYSES 

Untargeted metabolomics (RP-UPLC-FTMS, HILIC-FTMS) were conducted at TMIC. Murine 

liver lobes were collected and weighted postmortem. Prior to analyses, tissues were kept in 

storage at -70/80 0C.  

 

RP-UPLC-FTMS Analysis: Methodology was based on previously published methodology31 and 

described in Chapter 3.8. Full methodology reports are listed at the NIH Common Fund’s Data 

Repository and Coordinating Center website: studies ST001367 and ST001368, which also 

contains raw data of the untargeted metabolomic experiments, including HILIC-FTMS analyses, 

conducted in Chapters 3-5. Unpublished raw data to be released at the time of publication.  

 

HILIC-FTMS Analysis: Individual sample supernatants were mixed with 120 µL of water, 180 

µL of methanol and 195 µL of chloroform. The mixture was vortex mixed at 3000 rpm for 30 s 

before centrifugal clarification. Three hundred µL of the upper, aqueous phase was precisely 
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taken out and transferred to a “V”-shaped LC injection microvial and was dried down under a 

gentle nitrogen gas flow in the nitrogen evaporator. The residue was reconstituted in 50 µL of 

80% acetonitrile. 10 µL was injected for HILIC-FTMS.  

 

HILIC-FTMS was performed on a Waters HILIC column (2.1 x 100 mm, 1.8 µm) for 

chromatographic separation of very polar metabolites. The mobile phase was (A) 0.01% formic 

acid in water and (B) 0.01% formic acid in acetonitrile for binary gradient elution: 85% B for 1 

min; 85% to 25% B in 8 min; followed by column equilibration at 85% B for 6 min between 

injections. The flow rate was 0.3 mL/min and the column temperature was 30 0C. The MS 

instrument was run in the survey scan mode with FTMS detection at a mass resolution of 60,000 

full width at half maximum at m/z 400. Two HILIC-FTMS datasets were acquired per sample: a 

positive-ion detection and negative-ion detection. The mass scan range was m/z 80 to 800.  

 

Data Processing and Metabolomic Analyses: was conducted with XCMS 

(https://xcmsonline.scripps.edu/) in R to procure m/z, retention time (RT, min), and LC-MS peak 

areas. The m/z pairs were searched against metabolome databases to identify putative biological 

targets, specifically METLIN (Scripps Research Institute) with acceptable mass errors set at ≤ 3 

ppm174. For + ion detection data, (M+H)+ , (M+Na)+, (M-H2O+H)+, and (M-NH3+H)+ were 

allowed. For - ion detection, (M-H)-, (M+Na-2H)-, (M-H2O-H)-, and (M-NH3-H)- were 

allowed. PCA plots and MSEA (pathway analyses) were carried out using on Metaboanalyst v. 

4.0 software using the following settings: mass tolerance = 0.0003, retention time tolerance = 30, 

data filtering = non-parametric relative standard deviation (MAD/median), normalization = 

pooled CON samples, transformation = log-transformation, and scaling = auto data scaling. A 
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one-way ANOVA identified significant m/z alterations between groups (P < 0.05; fold change 

>2). These analyses followed protocols described in Chapter 3.8 and were based on published 

methodology31. MSEA was conducted using the small molecule pathway database (SMPDB)212, 

unless otherwise stated. 

 

LIVER FATTY ACID PROFILE  

Liver tissues were collected and immediately placed in dry ice prior to storage at -70/80 0C 

before processing at IRB-Lleida, Spain. Methodology, previously detailed in Chapter 3.8, was 

based on earlier studies213.  

 

4.6 Chapter 4 Summary 

Obesity-associated NAFLD remains a leading cause of liver disease around the world194. 

Nutritional deficits, however, also trigger hepatic steatosis and influence health trajectories in 

undernourished pediatric populations193,214. Exposure to specific gut microbes exacerbated fatty 

liver features in the malnourished liver, notably increased fat/glycogen buildup and hepatic 

triglyceride levels. Diet, however, largely shaped liver metabolomic profiles and metabolomic 

pathway analysis revealed an enrichment of PUFA metabolism within the CON liver. As 

anticipated from untargeted metabolomic results and previous profiling of brain PUFAs, MAL 

and MBG livers displayed significant ω6 and ω3 fatty acid deficits.  

 

Were these metabolic alterations lasting features of early-life undernutrition? To further explore 

both the (1) reversibility of undernutrition-induced NAFLD and (2) more precise roles of gut 
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microbes in the progression and intervention of fatty liver conditions, I conducted a dietary 

reversal study with a multiomic perspective.  
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Chapter 5: Dietary Intervention Reverses Microbiota Shifts and Fatty Liver Features 

During Early-Life Undernutrition 

 

5.1 Dietary Intervention: Efficacy and Limitation 

 

5.1.1 Reversing NAFLD  

Obese-associated NAFLD is typically considered a reversible condition through dietary 

modification and weight loss198,215. Specifically, adherence to a Mediterranean diet—reduced 

carbohydrate intake, increased ω3 PUFA content—improved hepatic steatosis and metabolic 

syndrome features in multiple trials and has been adopted as the recommended dietary practice 

for NAFLD management strategy by various clinical guidelines216. The metabolites of ω3 

PUFAs exert largely anti-inflammatory/oxidative stress properties and ongoing trials link PUFA 

supplementation with beneficial outcomes for inflammatory and/or metabolic pathologies217,218. 

Largely comprised of nuts, legumes, vegetables, fish, fruits, and olive oil, the Mediterranean diet 

provides higher PUFA intake in contrast with the low-fat/high carbohydrate diet recommended 

by the American Heart Association diet (developed for cardiovascular disease management). In a 

randomized, 6-week cross-diet NAFLD intervention, placement on the Mediterranean diet 

significantly reduced hepatic steatosis when compared with a low-fat/high carbohydrate diet219. 

 

While lifestyle changes offer a safe remedy for NAFLD, compliance to dietary modification is 

poor in pediatric populations. More focused therapies, notably supplementation of ω3 PUFAs, 

have proved beneficial76. As the dysbiotic gut microbiota has been implicated in NAFLD79,84, 

microbiota-targeted approaches including probiotics have been assessed76. Indeed, 
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supplementation with VSL#3, a cocktail of eight probiotic members, improved fatty liver 

features in both obese rodent models and a randomized, pediatric intervention study96. In the 

most severe cases, pharmacological therapies (e.g. Orlistat) or surgery (e.g. gastric bypass) may 

be considered for older children76. 

 

While no universal treatment plan exists for obese-associated NAFLD, nutritional modification 

remains the key therapeutic strategy and first-line course for intervention. While dietary 

intervention has largely been studied in clinical studies of pediatric malnutrition, whether, or to 

what extent, nutritional intervention improves undernutrition-induced fatty liver has been largely 

unexamined.  

 

5.1.2 Reversing Malnutrition  

The current guidelines for treating pediatric undernutrition largely address nutritional 

supplementation, i.e. promoting breastfeeding, RUTF, and micronutrient supplementation (e.g. 

vitamin A tablets)122. While these strategies significantly reduce childhood mortality, acute 

dietary intervention fails to fully restore pediatric health, notably stunting and microbial 

dysbiosis, in malnourished populations12,22,103. As the malnourished gut microbiota has been 

implicated in poor health trajectories22,103, more recent interventions have assessed gut 

microbiota manipulation via antibiotics112, probiotics117, and reduction of fecal-oral 

contamination, with mixed success116. While the effects of dietary intervention on pediatric, 

undernutrition-induced fatty is poorly studied, a recent study reported that sustained placement 

on standard chow mitigated hepatic steatosis in mice previously fed a low-protein diet, 

demonstrating that dietary intervention also benefits undernutrition-induced fatty liver201.  But 



   90 

how the liver metabolome, gut microbiome, and gut-liver axis were altered by and/or contributed 

to fatty liver reversal was not explored in the study.  

 

To address these research gaps, our team designed a dietary reversal study presented here. I 

assessed whether malnutrition and fecal-oral contamination intensify fatty liver features, 

specifically within early critical windows (childhood), or whether these perturbations trigger 

comparable fatty liver features observed in adult mice. Furthermore, this work explored whether 

dietary intervention halts or reverses fatty liver features of early malnutrition.   

 

5.2 Dietary Intervention Largely Improves Growth and Altered Fecal Microbiota  

As MAL and MBG mice exhibited similar liver metabolomic profiles, I chose to utilize the MBG 

model during subsequent intervention studies. CON and MBG mice served as healthy and 

undernutrition-induced fatty liver controls, respectively. Following an initial four-week phase, a 

subset of control mice was switched to the MBG model—C-MBG (adult-onset malnutrition)—

while a subset of MBG mice received the control diet—MBG-R (reversal arm)—in order to 

assess the impact of dietary intervention on MBG fatty liver (Fig. 5.1A). 

 

After early malnutrition (7-week timepoint), MBG mice displayed significant weight faltering (t 

= 3.73, P = 0.0008). During the subsequent reversal phase, C-MBG mice exhibited modest, but 

not significant, weight loss. MBG-R final weights, however, were comparable with CON and C-

MBG mice by week 11 (F3,28 = 6.786, P = 0.0014; Fig. 5.1B). We observed no significant 

difference in tail size at week 11, suggesting that tail length differences, previously reported in 
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young malnourished mice (Chapter 2.3 and Brown et al. 201531), are largely resolved by 

adulthood and not influenced by adult-onset malnutrition (Fig. S.10). 

 

Fig. 5.1 Dietary Reversal Improves Growth Deficits  

 

 

 

Fig. 5.1 Legend 

(A) Reversal experimental setup: following four weeks on a healthy or malnourished diet, a 

subset of healthy (CON) and malnourished (MBG model) mice were “reversed” on the opposite 

diet to assess impacts of adult-onset malnutrition (C-MBG) and dietary intervention (MBG-R). 

Initial diet started at weaning (~3 weeks) and mice were euthanized at 11 weeks. (B) Weekly 

mouse weights across time; at 11 weeks MBG-R mice exhibit significant weight improvement (n 

= 8). Statistical significance determined by unpaired t-test (Malnutrition Phase) and one-way 
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ANOVA with post hoc Tukey’s test (Reversal Phase), asterisk colour reports significant multiple 

comparisons (i.e. black asterisk = significant difference in MBG vs. CON).  

 

We have previously reported striking shifts in microbial composition across CON, MAL, and 

MBG models, demonstrating that fecal-oral contamination and diet significantly alter the gut 

microbiota (Chapter 3.6.2 see also Brown et al. 201531 and Huus et al. 2020109). As we 

introduce E. coli/Bacteroidales species in the initial malnutrition phase (MBG, MBG-R mice) 

and reversal phase (C-MBG mice), we also assessed fecal microbiota composition by 16S rRNA 

sequencing across time with fecal pellets taken upon weaning (arrival), after the initial 

malnutrition phase (week 7), and following reversal (week 11). We report relative abundance of 

bacterial members by family classification (Fig. S.11A and Fig. 5.2A, B). The relative 

abundance of specific bacterial gavage members was increased in C-MBG and/or MBG and/or 

MBG-R mice, but not CON animals, supporting 16S rRNA analyses (Fig. S.11B). 

 

PCA of unweighted UniFrac distances revealed distinct clustering by dietary group (CON, 

MBG) at week 7 (Fig. 5.2C). This MBG cohort exhibited increased α-diversity (Faith’s 

Phylogenetic Diversity, Kruskal-Wallis: H = 7.71, P = 0.05; Table S.3). Upon reversal, the fecal 

microbiota composition of C-MBG and MBG-R mice significantly shifted towards MBG and 

CON, respectively, as observed in Unweighted UniFrac PCA and UniFrac distance metrics (Fig. 

5.2C, Fig. S.11C, and Table S.3). Moreover, dietary intervention reduced MBG-R α-diversity, a 

pattern observed in CON counterparts, while C-MBG mice exhibited increased α-diversity 

(Faith’s Phylogenetic Diversity, Kruskal-Wallis: H = 9.04, P = 0.03), see Table S.3. 
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Diet significantly influenced the relative abundance of select bacterial members (Fig. 5.2A, B). 

Bacteria from Coriobacteriaceae and Streptococcaceae families exhibit divergent shifts in 

response to malnourished diet. The relative abundance of Coriobacteriaceae species increases 

upon malnutrition, while dietary intervention partially mitigates Coriobacteriaceae bloom in 

MBG-R mice. Interestingly, increased relative abundance of Coriobacteriaceae has been reported 

in rodent models following chronic stress220,221, suggesting that this bacterial family may be a 

marker of systemic strain. In contrast, the relative abundance of Streptococcaceae bacteria was 

decreased in malnourished mice (C-MBG, MBG), while MBG-R mice displayed increased 

relative abundance approaching CON abundance. Like Streptococcaceae, Erysipelotrichaceae 

bacteria have been linked with higher fat intake222,223. However, the relative abundance of 

Erysipelotrichaceae remained elevated in C-MBG mice and reduced in MBG-R mice, matching 

the original, early-life diet. This finding may indicate that early malnutrition sets a long-term 

trajectory for Erysipelotrichaceae abundance, which is resilient against sustained dietary shifts 

during murine adulthood. Relative abundance of the Peptostreptococcaceae was also increased in 

CON mice, but showed a striking reduction in the C-MBG, MBG, and MBG-R gut microbiota, 

suggesting that bacteria within this family are highly sensitive to the malnourished diet and may 

not recover even after prolonged dietary intervention. 

 

As these alterations may reflect model-specific bacterial shifts, we also predicted microbiome 

metabolic signatures of health and malnutrition using predictive PICRUSt analyses224. Like 

compositional alterations, putative metabolic pathways of the C-MBG and MBG-R microbiota 

largely shifted towards MBG and CON counterparts, respectively, highlighting a robust 

microbial response to diet. Top differentially abundant PICRUSt hits following FDR correction 
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included amino acid biosynthesis and degradation pathways, broadly matching metabolomic 

patterns between CON and MAL intestinal content31. Malnourished mice (MBG, C-MBG) 

exhibited elevated pathways contributing to the tricarboxylic acid cycle (TCA or citric acid 

cycle), potentially reflecting increased carbohydrate load in the MAL diet (Fig. S.12).  
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Fig. 5.2 Dietary Intervention Partially Mitigates MBG Altered Gut Microbiota 

 

 

 

Fig. 5.2 Legend 

(A) Relative abundance of bacteria by family classification (16S rRNA gene) at final timepoint. 

Select bacterial families indicated by † and shown in (B), line indicates median with statistical 
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significance determined by Kruskal-Wallis and post hoc Dunn’s test. (C) Unweighted UniFrac 

PCA with α-diversity (Faith’s Phylogenetic Diversity) of the CON and MBG microbiota (left) 

and the CON, C-MBG, MBG, and MBG-R microbiota (right). Individual symbols represent 

independent mice and symbol shape reveals reversal diet. Microbiome analyses conducted using 

QIIME2 (v. 2018.2).    

 

5.3 Dietary Intervention Largely Improves Fatty Liver Histology in MBG Mice 

Dietary reversal also mitigated fatty liver features. As anticipated, CON hepatocytes exhibited 

low-fat/glycogen content as observed by H&E staining, while 11-week-old MBG mice displayed 

diffuse hepatic macrovesicular lipidosis. Undernutrition-induced fatty liver histology, however, 

was not observed in either C-MBG or MBG-R livers (Fig. 5.3A, B). In contrast, triglyceride 

content was significantly elevated in both C-MBG and MBG mice, while triglyceride levels 

within MBG-R livers were comparable with CON mice (Fig. 5.3C).  
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Fig. 5.3 Dietary Intervention Affects Fatty Liver Pathology 

 

 

 

Fig. 5.3 Legend 

(A) Representative H&E staining of the liver following dietary reversal. (B) The percent of 

fat/glycogen-associated space in non-fasted liver histology determined with ImageJ analysis, 

each point represents a biological sample. (C) Total triglyceride content in liver normalized to 

tissue weight, data normalized to CON levels. Analyses conducted from murine tissue of the 

same experiment. Bar graphs indicate mean and s.e.m with statistical significance determined by 

one-way ANOVA with post hoc Tukey’s test. 
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5.4 Diet and Gut Microbiome Shape the Undernutrition-Induced Fatty Liver Metabolome 

PCA of untargeted metabolomics for both less polar and polar metabolites confirmed a 

significant change in liver metabolomes, with the C-MBG and MBG-R metabolomic profile 

shifting towards MBG and CON, respectively (Fig. 5.4 and Fig. S.13A). 

 

Fig. 5.4 Dietary Reversal Informs the Liver Metabolome 

 

  

 

Fig. 5.4 Legend 

Reversal phase PCA plots of untargeted liver metabolomics via RP-UPLC–FTMS (left) and 

HILIC-FTMS (right), data from the positive ion channel presented, see also Fig. S.13A.   

 

Over 2,000 differentially abundant hits were detected following RP-UPLC-FTMS and HILIC-

FTMS analyses (one-way ANOVA Fisher’s LSD, Padj < 0.05). Nearly 800 differentially 

abundant hits were putatively annotated by m/z values against the METLIN database. We first 
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explored metabolomic distinctions between chronic, early-onset malnutrition (MBG) and adult-

onset malnutrition (C-MBG). While MBG and C-MBG livers exhibit largely similar 

metabolomic profiles (Fig. 5.4), we identified metabolites elevated in persistent early 

malnutrition vs. adult-onset malnutrition (45 metabolites: MBG enriched over C-MBG + MBG 

enriched over CON) for MSEA.  

 

The top enriched pathway for the MBG profile was phenylacetate metabolism (Fig. S.13B). 

Phenylacetic acid, a bacterial product from aromatic amino acid metabolism (AAAM), has 

previously been shown to promote hepatic steatosis within the context of obesity95. To determine 

whether the malnourished microbiome contributes to enriched phenylacetic acid metabolism, we 

returned to microbiome PICRUSt analyses. The MBG microbiome exhibits significantly 

elevated AAAM pathways compared to healthy controls (ARO-PWY, Padj = 0.001; 

COMPLETE-ARO-PWY, Padj = 0.002). While these pathways did not reach statistical 

significance in post-reversal CON, C-MBG, MBG, and MBG-R samples (ARO-PWY, Padj = 

0.105; COMPLETE-ARO-PWY, Padj = 0.078), the relative frequency of AAAM pathways was 

higher in the MBG microbiome compared to the C-MBG microbiome as well as the microbiome 

of mice fed a healthy diet (CON, MBG-R), indicating a putative causal role for the MBG 

microbiota in undernutrition-induced fatty liver (Fig. S.13C).  

 

We then categorized MBG-R metabolomic features as “reversible” or “resilient” to dietary 

intervention. We considered reversible metabolites as those significantly different between 

MBG-R and MBG but not MBG-R and CON, while resilient metabolites were significantly 

altered between MBG-R and CON but not MBG-R and MBG. Of the differentially abundant 
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metabolite hits, 505 were categorized as reversible, while only 106 metabolite features were 

considered resilient, supporting the robust reversal of the fatty liver metabolome upon dietary 

intervention observed in PCA analyses (Fig. 5.4). Metabolites were then classified and grouped 

into metabolomic pathways using the SMPDB. Adaptive immune pathways—BCR Signaling 

Pathway and T-Cell Receptor Signaling Pathway—were observed in both reversible and resilient 

metabolomic profiles. The resilient profile featured many pathways associated with amino acid 

metabolism within the liver. In contrast, the reversible profile included metabolites contributing 

to retinol (vitamin A1) metabolism. Moreover, nearly 60% of reversible metabolites were 

involved in lipid and fatty acid metabolism, notably AA Metabolism and various phospholipid 

biosynthesis pathways (Fig. 5.5A). 

 

To confirm untargeted metabolomic profiling, we profiled both vitamin A metabolites and long-

chain fatty acids in post-reversal mice. While the healthy and malnourished diets have distinct 

macronutrient profiles (e.g. reduced fat, elevated carbohydrates), both diets contain identical 

micronutrient content, including vitamin availability (Brown et al. 201531 and Table S.1). 

Following absorption within the small intestine, dietary retinol can be esterified into retinyl ester 

(storage form) or oxidized to retinal and retinoic acid. Both storage and metabolism of this fat-

soluble vitamin largely occurs within liver hepatocytes and hepatic stellate cells225.  

 

We quantified retinoid levels within murine liver tissue using targeted LC-MS. While retinol 

levels were comparable across groups, malnourished mice (MBG, C-MBG) displayed reduced 

retinal and retinoic acid levels. As expected from metabolomic pathway analyses, dietary 

intervention mitigated retinoid shifts in MBG-R mice (Fig. 5.5B), supporting a reversible 
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metabolic pattern. Intriguingly, retinoids are important regulators of hepatic adiposity and fatty 

acid oxidation with retinaldehyde administration inhibiting diet-induced weight gain in 

mice226,227. 

 

As fatty acid metabolism was enriched in the reversible metabolomic pathways, we also assessed 

long-chain fatty acid profiles in CON, C-MBG, MBG, and MBG-R livers. Fatty acid profiles of 

11-week-old CON and MBG mice exhibit similar patterns as their 7-week counterparts (Fig. 

5.5C, D and Fig. S.14A, B). As expected, SFA and PUFA % content remained elevated within 

healthy livers and reduced in malnourished mice, while the MBG liver displayed increased 

MUFA mol% (Fig. 5.5C). The reversal (end) diet, rather than early-life diet, shaped fatty acid 

content, as C-MBG and MBG livers exhibited similar fatty acid profiles with MBG and CON 

mice, respectively (Fig. 5.5C, D and Fig. S.14A). We specifically assessed whether dietary 

intervention increased the relative abundance of ω6 and ω3 PUFAs within the liver. Decreased 

LA mol% observed in malnourished mice (C-MBG, MBG mice) was reversed upon dietary 

intervention (MBG-R mice). While αLA relative abundance was elevated in CON livers, dietary 

intervention largely failed to shift αLA % content in MBG-R mice. Dietary intervention, 

however, reversed shifts in downstream PUFA ω3 members, including 20:5 ω3 and 22:6 ω3 

(DHA). Despite PUFA alterations, ω6/ω3 PUFA ratios remained comparable across all groups 

following dietary reversal (Fig. 5.5D and Fig. S.14B). 
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Fig. 5.5 Dietary Reversal Significantly Shapes the Liver Metabolome Largely Mitigating Fatty 

Liver Features 
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Fig. 5.5 Legend 

 (A) Metabolomic pathway profiles of reversible (top) and resilient (bottom) metabolites. One-

way ANOVA of metabolites with post hoc Fisher’s LSD identified metabolites significantly 

altered between MBG-R and MBG but not MBG-R and CON (reversible), as well as metabolites 

altered between MBG-R and CON but not MBG-R and MBG (resilient). Metabolites were 

searched in the SMPDB to identify biopathway/s. Gray circles indicate number of metabolites 

belonging to reversible or resilient pathways, while the adjacent numeric value refers to the total 

number of pathways within each circle graph. (B) Retinol, retinal, and retinoic acid levels within 

hepatic livers conducted by targeted LC-MS and normalized to tissue weights. (C) The mol% of 

SFA, MUFA, and PUFA liver content assessed by GC. (D) The relative abundance ω6 and ω3 

PUFAs, normalized to CON values. Analyses conducted from murine tissue of the same reversal 
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experiment. Bar graphs indicate mean and s.e.m with statistical significance determined by one-

way ANOVA with post hoc Tukey’s test. 

 

Untargeted metabolomics revealed diet-induced alterations of phenylacetate, retinol, and fatty 

acid metabolism; but the critical metabolites specifically linked to hepatic steatosis remained 

uncertain. Furthermore, we wanted to examine where these metabolic shifts were associated 

with, or uncoupled from, microbiome features. 

 

To address these unknowns, I conducted undirected, weighted gene co-expression network 

analysis (WGCNA) with untargeted metabolomic data. Using the WGCNA R package228, highly 

correlated metabolites were clustered into 52 modules across samples. Module relationship to 

clinical traits—including hepatic histology and triglyceride content—the definitive diagnostic 

features of NAFLD193,196 was determined by Spearmen rank correlation (Padj < 0.05). Two 

modules significantly correlated with fatty liver traits: “yellow” module (positive correlation) 

and “turquoise” module (negative correlation). These modules also correlated with the end diet 

(reversal diet), but not starting diet, indicating that metabolites within these modules were 

responsive to dietary intervention (Fig. S.14C). Metabolites within these modules and the “red” 

module, which was not correlated to any group or clinical trait, were also selected for further 

study.  

 

Significantly correlated modules were predominantly comprised of glycerophospholipids, 

hereafter referred to as GP1 (yellow = Glycerophospholipid 1: 105 annotated, 183 non-annotated 

metabolites) and GP2 (turquoise = Glycerophospholipid 2: 243 annotated, 418 non-annotated). 
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In contrast, the red module (28 annotated, 56 non-annotated metabolites) was largely comprised 

of cholanoic and taurocholic bile acid metabolites and was designated BA. While GP1 and GP2 

contain PE and PC members, modules also exhibit distinct phospholipid patterns. Total number 

and relative abundance of glycerophosphoglycerols (PGs) were more prevalent in GP1, while 

GP2 was enriched with glycerophosphoserines (PSs) and glycerophosphoinositols (PIs), see Fig. 

S.14C, D. In addition, GP2, but not GP1, contains SFAs. We then examined the relationship 

between these modules and predicted microbiome functionality. GP1 and GP2, but not BA, 

display divergent and significant correlations with key PICRUSt pathways (Fig. S.14E). This 

multiomic perspective not only identifies glycerophospholipid and fatty acid metabolism as key 

pathways linked to hepatic steatosis, but also supports a causal role for the gut microbiota in 

driving undernutrition-induced fatty liver.  

 

5.5 A Model of Undernutrition, Microbiome, and NAFLD 
 

Collectively, these findings demonstrate that diet and the gut microbes alter multiple pathways 

that contribute to fatty liver features in a mouse model of early-life malnutrition. The MBG 

model exhibits NAFLD-like features, accompanied by alteration of the (1) liver metabolome and 

(2) the gut microbiome composition and predicted function.  

 

More specifically, untargeted metabolomics and targeted validation methods reported aberrant 

PUFA and retinol metabolism within the fatty liver. In addition, both MSEA and WGCNA 

independently identified altered lipid metabolism, notably glycerophospholipid shifts, correlated 

with both hepatic steatosis and the altered gut microbiome. Additional MSEA findings further 

supported a causal role of the undernourished microbiome in fatty liver progression, as the MBG 



   106 

liver metabolome displayed altered metabolism of phenylacetate, a bacterial metabolite linked to 

NAFLD severity95. Predictive profiling of the gut microbiome revealed an increase in the relative 

frequency of metabolic pathways producing phenylacetic acid (AAAM), in the MBG 

microbiome. Sustained dietary intervention largely mitigated these aberrant features, while 

improving growth markers and reducing fatty liver histology (Fig. 5.6). Unexpectedly, despite 

marked shifts in microbiome and metabolomic profiles, adult mice failed to exhibit fatty liver 

histology following malnutrition and fecal-oral contamination, possibly indicative of a critical 

developmental window for programming a fatty liver trajectory within this model.  

  

Childhood malnutrition and NAFLD remain global health concerns. The prevalence of fatty liver 

disease, specifically amongst pediatric populations, is expected to rise during the oncoming 

decades91. Much research has examined NAFLD arising from one arm of the malnutrition 

spectrum—overnutrition and obesity. Our gut-liver study provides a multifaceted, multiomic 

assessment of undernutrition-induced fatty liver within an early-life model that addresses global 

health burdens, dietary deficiency, and gut microbiota dysbiosis31,73,169. We anticipate that these 

findings will provide critical launching points to identify putative dietary, microbial, and/or 

metabolomic targets that address fatty liver pathology within undernourished communities. 
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Fig. 5.6 Multi-Hit Model of Undernutrition-Induced Fatty Liver and Dietary Intervention 

 

 
 

 

Fig. 5.6 Legend  

Chronic exposure to specific, fecal microbes exacerbates hepatic steatosis in malnourished mice. 

The early-life MBG model exhibits an impaired liver metabolome characterized by shifts in 

phenylacetate, retinol (vitamin A), long-chain fatty acid, and glycerophospholipid metabolism. 

These changes are accompanied by striking alterations in gut microbiota community and 

function. Enriched metabolism of phenylacetic acid, a bacterial product of AAAM metabolism, 

corresponds with the relative frequency of AAAM microbiome pathways, while altered 

glycerophospholipid metabolism correlates with both microbiome functional profiles and hepatic 

steatosis. Adult-onset malnutrition elicits metabolomic shifts largely uncoupled from hepatic 

steatosis (not shown), highlighting the importance of an early-life developmental period for liver 

function. In contrast, sustained dietary intervention largely mitigates microbial and host 
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metabolic shifts during malnutrition (see above), reducing hepatic steatosis and improving 

growth. Collectively, these findings demonstrate a putative role for commensal gut microbes in 

NAFLD and highlight putative host/microbial targets to reduce fatty liver burden in 

undernourished communities. Figure made with Biorender: PA = phenylacetate, A/a = retinoids.     

 

5.6 Chapter 5 Methodology 

HISTOLOGY MEASUREMENTS 

Analyses conducted as presented in Chapter 4.4. 

 

TRIGLYCERIDE ELISA 

Analyses conducted as presented in Chapter 4.4. 

 

UNTARGETED METABOLOMICS and METABOANALYST ANALYSES 

RP-UPLC-FTMS and HILIC-FTMS were conducted by TMIC. Untargeted metabolomics and 

downstream analyses as reported in Chapter 3.8 and Chapter 4.4.   

 

VITAMIN A METABOLOMICS 

Vitamin A metabolites were assessed at TMIC. Mouse liver tissue was homogenized in 50% 

aqueous methanol (25 µL/mg tissue) in Eppendorf tubes with 2, 4-mm metal balls/tube using the 

MM 400 mixer mill (shaking frequency: 30 Hz for 1 min x 2), followed by sonication in a water 

bath for 2 min. Hexane (50 µL/mg tissue) containing 20 µg/mL BHT (antioxidant) was added to 

the tube and the mixture was vortex-mixed at 3000 rpm for 30s before 6 min centrifugation at 

15000 rpm and at 10 0C to split the whole phase into an upper organic phase and a lower aqueous 
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phase. The organic phase was removed with a gel-loading tip and the aqueous phase was 

extracted with hexane again at 50 µL/mg tissue. After centrifugation, the organic-phase extracts 

from two rounds of liquid-liquid extraction were combined and then dried in a nitrogen 

evaporator. The residue was dissolved in methanol (5 µL per mg tissue), containing 0.5 µg/mL 

of beta-tocopherol-D3 as internal standard. 10 µL of sample was injected to a C8 UPLC column 

(2.1 x 50 mm, 1.7 µm) to run UPLC-high-resolution MS on a Thermo Scientific LTQ-Orbitrap 

mass spectrometer, which was operated with positive-ion FTMS detection at 60,000 full width at 

half maximum (m/z 400) in a mass scan range of m/z 100 to 1800. Serially diluted, mixed 

standard solutions of fat-soluble vitamin A (retinol, retinal and retinoid acid) in a concentration 

range of 0.01 to 100 nmol/mL per compound were prepared in the same internal standard 

solution and 10-µL aliquots were injected to acquire the data to construct the linear calibration 

curves for the quantitation. The mobile phase was 5-µM silver-ion solution (A) and acetonitrile-

isopropanol (1:1) (B) for binary-solvent gradient elution, with a gradient of 30% to 100% B in 10 

min at a flow rate of 250 µL/min. Vitamin A concentrations were calculated from the linear-

regression calibration curves of their standard compounds.  

 

LIVER FATTY ACID PROFILE  

Following euthanasia, CON, MBG, C-MBG, and MBG-R liver lobes were stored at -70/80 0C 

prior to analyses. For further methodology, refer to protocols in Chapter 3.8 and Chapter 4.4. 

 

MICROBIOME and MULTIOMIC ANALYSES  

16S Sequencing and Analyses: Collected fecal pellets were stored in -70 0C prior to DNA 

isolation with the QIAamp PowerFecal DNA kit (QIAGEN 12830). Library preparation for 16S 
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rRNA sequencing was performed with barcoded primers (V4 region) as described in Kozich et 

al. 2013229. Upon ensuring successful amplification via gel electrophoresis, PCR amplicons were 

cleaned and normalized with the Sequal-Prep kit (ThermoFisher A1051001), pooled, and 

sequenced on an Illumina MiSeq (v2 kit, 2x250 bp reads). Raw 16S rRNA data was been 

deposited to an SRA folder (PRJNA629327), public following manuscript publication. 

 

Demultiplexed reads were analyzed and annotated in QIIME2 (v 2018.2) using the DADA2 

pipeline (sampling depth of 22051 bp) and Greengenes 97% OUT230–232. Additional filtering 

excluded contaminants (mitochondria, chloroplast). QIIME provided Padj for bacterial families. 

Downstream microbiome analyses and visualization were performed in R. 

  

PICRUSt: To assess functional changes in the fecal microbiota we conducted PICRUSt 

(v2.1.3b), here we report Padj < 0.0002. Metabolic pathways were annotated using MetaCyc 

224,233. 

 

WGCNA: WGCNA R package228 identified metabolomic modules (modular eigengene) that 

correlated with clinical features, traits, and PICRUSt output (Spearman rank correlation test, 

Padj < 0.05). WGCNA was completed on the less polar metabolomic data (positive run) 

following normalization (as described earlier in Untargeted Metabolomics and Metaboanalyst 

Analyses). Based on a scale-free topology we chose a soft threshold β = 13. Modules containing 

≥ 5 metabolites were identified; additional clustering criteria include, power = 12, 

mergeCutHeight = 0.3, and corType = "bicor". Metabolites within modules of interest were auto-

annotated using MassTRIX: Mass TRanslator into Pathways v. 3234. 
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5.7 Chapter 5 Summary  

Non-alcoholic fatty liver disease (NAFLD) remains a global epidemic, but is largely studied in 

the context of obesity and aging. Early-life undernutrition promotes fatty liver pathology in 

malnourished mice, accompanied by physical stunting and gut microbiota dysbiosis. In contrast, 

the adult-onset malnutrition model (C-MBG) lacks fatty liver histology, yet exhibits striking 

alterations of the liver metabolome. While these metabolic shifts may presage development of 

hepatic steatosis, our findings raise an intriguingly possibility that undernutrition-induced fatty 

liver is established within an early-life developmental window. Importantly, we demonstrate that 

dietary intervention largely mitigated fatty liver features and gut microbiome alterations in the 

MBG model. Dietary intervention reversed aberrant metabolic features of the malnourished liver 

(e.g. phenylacetic acid and glycerophospholipid pathways) linked to the altered gut microbiome 

and hepatic steatosis, highlighting putative diet/microbiota therapeutic targets for the treatment 

of undernutrition-induced fatty liver. 
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Chapter 6: Conclusion—Malnutrition, Microbes, and the Metaorganism 

 

6.1 Diet and Fecal-Oral Contamination Influence Gut-Systemic Interactions 

 

6.1.1 Gut Microbiota-Systemic Model  

In the early 21st century, recognition of the gut microbiome and its functional capacity marked a 

critical paradigm shift in gut-systems research, revealing that commensal microbes actively 

maintain host homeostasis, while the dysbiotic gut microbiota exerts pathophysiological effects. 

The continued surge in gut microbiota research has revealed extensive bidirectional interactions 

between gut microbes and the host, although the precise signaling pathways remain 

underexplored18. Here, I review how malnutrition and fecal-oral contamination shapes the gut-

brain and gut-liver axes utilizing the MAL-BG/MBG model. To conclude, I place these findings 

within a framework first introduced in Chapter 1—the metaorganism.  

 

6.1.2 MAL-BG Gut Microbiota-Brain Axis 

A significant portion of my doctoral studies examined the gut-brain interactions in the context of 

malnutrition and fecal-oral contamination. This work utilized the MAL-BG murine model first 

reported in Brown et al. 201531 and further characterized in Huus et al. 2020109 and Chapter 2. 

MAL-BG mice not only exhibit significant growth deficits and gut dysbiosis, but also provide a 

valuable model to explore gut-systemic consequences of early-life undernutrition.  

 

Nearly a quarter of the world lacks access to adequate sanitation and these regions largely 

overlap with areas at a higher prevalence of poverty and malnutrition73,235. Indeed, fecal-oral 
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contamination has been linked with poor neurocognitive function in malnourished 

populations73,110. Despite the prevalence of these external insults, the pathways and pathologies 

informing altered gut-brain interactions, particularly non-neuronal components of the CNS, 

remain greatly understudied. Early malnutrition models have largely examined the impact of diet 

on brain growth and neural function137. In Chapter 3 I explore the gut microbiota-brain axis of 

malnutrition with an emphasis on microbe-microglia interactions.   

 

Microglia contribute to CNS homeostasis through dynamic phagocytic processes. During 

development, microglia actively prune neuronal synapses, promoting appropriate communication 

along neural networks140. Microglial phagocytic processes continuously inform cognitive 

capacity, modulating synaptic strength and neural plasticity throughout adulthood140,152,159. 

Microglia also utilize phagocytosis when orchestrating neuroimmune responses, scavenging 

debris and pathogenic agents143,178. Altered cognitive features accompanied increased phagocytic 

structures on MAL-BG microglia, suggesting that specific fecal commensals shape CNS features 

via microglia.  

   

In 2015, Erny et al. first reported that commensal gut microbes influence microglia maturation 

and function. GF mice exhibit an immature microglial phenotype characterized by increased 

volume, process length, and process complexity (branching). GF morphology was largely 

mitigated in mice exposed to a complex microbial community. Further studies specifically 

identified bacterial-derived SCFAs as a key regulator of microglial modulation. SCFA exposure 

improved GF microglial immune deficits, while GF-associated microglial features were observed 

in SPF mice lacking the SCFA receptor FFAR248. Diet has also been reported as a major driver 
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of gut-microglial interactions. Valdearcos et al. 2017 demonstrated that overnutrition triggers 

inflammation-dependent microglial activation. Mice fed a high-fat diet displayed decreased 

microglial volume and gliosis (microglial proliferation) within the mediobasal hypothalamus, 

altering host metabolism236.  

 

How does gut dysbiosis in the MAL-BG model impact microglial function? While GF mice lack 

SCFAs, we previously reported comparable SCFA levels within the GI tract of our control and 

malnourished models31. We focused on key pathways of the gut-brain axis linked to diet and the 

microbiota: neuroinflammation, epithelial permeability, and metabolic alteration6,48,72,236. 

Unexpectedly, neither cytokine-induced microglial activation nor BBB disruption were observed 

in this fecal-oral contamination model. We had previously reported marked alteration of amino 

acid and lipid metabolism within the MAL small intestine31, broadly matching reported shifts in 

the serum metabolome of children treated for malnutrition100. To address the influence of gut 

microbes and malnutrition on neurometabolism, we profiled the hippocampal metabolome. 

Similar to the intestinal metabolomic profile, the MAL and MAL-BG hippocampal metabolome 

exhibits perturbed lipid metabolism, particularly PUFA pathways.  

 

Within the brain, PUFAs serve as essential phospholipid components, participating in lipid 

signaling, inflammatory regulation, neurodevelopment, and synaptic plasticity208.  While 

malnutrition affected PUFA metabolism, overall PUFA levels were comparable across CON, 

MAL, and MAL-BG mice. These findings highlight persistent PUFA maintenance within the 

brain, a metabolic resilience not observed in another fatty organ, the liver, which displayed 

consistent, dietary-induced reduction of PUFA members (Chapter 4.3). Despite similar PUFA 
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content, we observed a significant increase in PUFA-specific lipoxidation and oxidative stress 

markers within the MAL-BG brain. Fecal-oral contamination also exacerbated oxidative stress 

within the liver and gut, suggesting that specific, gut microbes trigger malnutrition features 

linked to systemic oxidative strain. To our knowledge, this is the first study exploring the 

combined impact of undernutrition-microbial interactions on microglia function.   

 

This work supports research linking enteropathogenic burden and microbial dysbiosis with 

poorer cognitive development73,110,153. Furthermore, as our model captures post-weaning 

development, these findings highlight an early critical window of neurodevelopment, during 

which impaired microglial function likely shapes cognitive trajectories and long-term brain 

plasticity, particularly as MAL/MAL-BG mice exhibited impaired brain plasticity as reported by 

the MWMT. While neurocognitive consequences of childhood malnutrition are unquestionably 

shaped by societal, economical, and political factors120,237; MAL-BG findings demonstrate that 

poor diet and specific gut microbes may trigger neuropathologies independent of these “external” 

influences.  

 

The altered gut microbiota-brain axis has emerged as a critical regulator of CNS function and, by 

extension, a potent therapeutic target18. Largescale WASH and SHINE interventions have 

yielded modest reductions of fecal-oral contaminants in malnourished communities without 

linear growth (stunting) benefits123. Combining diet- and microbial-targeted interventions, 

however, modestly improved early cognitive measures in a Bangladeshi WASH trial125, while 

diets designed to benefit microbiome development increased plasma biomarkers of 

neurodevelopment in children with persistent moderate acute malnutrition114. Whether 
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interventions targeting fecal-oral microbial exposures will robustly improve learning deficits 

associated with childhood malnutrition remains to be determined238.  

 

In summary, chronic exposure to fecal commensals impairs behaviour and learning plasticity in 

malnourished mice—deficits linked to aberrant microglial function. We propose that gut-induced 

oxidative stress contributes to the aetiology of neurocognitive pathology of malnutrition, altering 

microglia phagocytic features. Aberrant microglia contribute to diverse psychiatric and 

neurodegenerative conditions, impairing neuroimmune and cognitive function143,152,178. As such, 

we anticipate that the findings highlighted in Chapter 3 will provide valued insight into dynamic 

gut microbiota-brain interactions and inform therapies targeting microglial pathologies, including 

microbiome-targeted interventions mitigating lasting consequences of childhood malnutrition.  

 

6.1.2 MBG and the Gut Microbiota-Liver Axis 

The MAL and MAL-BG/MBG model exhibited altered adipose accumulation (Chapter 2) 

indicative of impaired host metabolism and liver function128. Indeed, the malnourished liver 

exhibited elevated markers of glycoxidation and PUFA-dependent lipoxidation (Chapter 3.6.2). 

Initial characterization of the MBG model by Brown et al. 2015 reported hepatic lipidosis and 

inflammation in malnourished livers following systemic infection from S. Typhimurium31. As 

undernutrition and oxidative stress can promote NAFLD91,193, we utilized the MBG model to 

examine how diet and fecal-oral contamination influence fatty liver in the absence of pathogenic-

induced inflammation.  
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While undernutrition triggers fatty liver193, NAFLD has largely been studied as a condition 

associated with overnutrition193,198.  Published studies have previously assessed how 

undernutrition triggers fatty liver. For example, hepatic steatosis accompanied impaired 

mitochondrial fatty acid oxidation and hepatic peroxisomes loss in a protein-deficient rodent 

model. Fenofibrate treatment, a PPARα (peroxisome proliferator-activated receptor α) stimulant, 

not only restored peroxisome deficits and improved mitochondrial function, but also reduced 

hepatic steatosis, demonstrating a critical peroxisome-mitochondrial role in undernutrition-

induced fatty liver102. In addition to poor fatty acid oxidation, proinflammatory mediators, 

epigenetic modification, impaired lipid transport, and ROS disruption have all been implicated in 

the progression of pediatric NAFLD91,200,202. Finally, intrauterine growth restriction and maternal 

undernutrition facilitate fatty liver development, suggesting a critical developmental window 

shaping liver health trajectories200. 

 

Beyond diet, the gut microbiome has also been implicated in the pathology of obese-associated 

NAFLD via modulation of bile acids79,84. Synthesized within the liver, bile acids are secreted in 

the small intestine. Gut microbes modify these primary bile acids forming secondary bile acids82. 

We have previously reported shifts in bile acid metabolism in our malnourished model, notably 

reduction of both primary and secondary tauro-conjugated bile acids, indicative of impaired host 

function and gut dysbiosis31. In contrast, obese NAFLD/NASH cohorts exhibit increased plasma 

taurocholate levels84,239, perhaps suggestive of an overnourished NAFLD biomarker or systemic 

plasma profile. Surprisingly, undirected WGCNA (Chapter 5.4) found no significant correlation 

between a taurocholic bile acid-rich metabolic module (BA) and fatty liver features or key 

microbiome pathways. These findings suggest that alterations in taurocholic metabolism are 
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potentially a consequence of, rather than contributor to, hepatic steatosis within the MBG and 

dietary reversal models. Alternatively, altered taurocholic metabolism may be a driver of 

classical NAFLD, but not undernutrition-induced fatty liver. 

 

The malnourished diets utilized in our work reflects dietary aberrations observed during food 

insecurity—a poor diet comprised of refined carbohydrates and reduced intake of unsaturated 

fats and lean proteins126,240,241. This form of malnutrition exists across both developed and 

developing countries240,242,243. MBG also models a “secondary hit” contributing to persistent 

undernutrition—chronic exposure to fecal commensals due to poor sanitation/hygiene access and 

fecal-oral contamination31,169. As MBG fecal contamination consists of commensal bacteria (E. 

coli and Bacteroidales species) associated with fatty liver and undernutrition95,107,108, this model 

provides a valuable tool to examine fatty liver in the context of dietary deficiency and gut 

microbial dysbiosis. We demonstrate that repeated exposure to specific, fecal commensals 

exacerbates hepatic fat/glycogen-accumulation and triglyceride content; although diet, not fecal-

oral contamination, shaped the MAL and MBG liver metabolome (Chapter 4).   

 

In Chapter 5, we examined how dietary reversal affects the liver metabolome and malnourished 

gut microbiota in CON (healthy “positive” control), C-MBG (adult-onset malnutrition), MBG 

(malnutrition “negative” control), and MBG-R (malnutrition reversed to control diet) mice.   

 

Here, I reported two hepatic metabolomic pathways linked to the MBG microbiome—

phenylacetate and glycerophospholipid metabolism. While adult-onset malnutrition significantly 

altered the liver metabolome, hepatic steatosis was not observed in C-MBG mice. MSEA 
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identified metabolomic distinctions between the MBG and C-MBG liver, highlighting 

phenylacetic acid metabolism enriched in the MBG vs. the C-MBG metabolome. Phenylacetic 

acid was recently identified as a driver of hepatic steatosis in a cohort of obese, non-diabetic 

women (FLORINASH study). Researchers combined hepatic transcriptome, plasma/urine 

metabolomics, and fecal metagenomics to identify signatures and metabolic contributors of fatty 

liver. These multiomic analyses revealed disruption of AAAM, a microbial pathway producing 

phenylacetic acid. Chronic phenylacetic acid exposure elevated hepatic triglyceride content 

triggering NAFLD-like features in mice95. PICRUSt predictions from our study also revealed 

elevated aromatic biosynthesis pathways in the MBG microbiome prior to and following reversal 

treatment, supporting a microbiome-dependent role in undernutrition-induced NAFLD 

progression. 

 

Both MSEA and WGCNA independently identified aberrant lipid metabolism during 

undernutrition, notably altered glycerophospholipid and fatty acid metabolism. Altered 

glycerophospholipid profiles have been reported in murine and human cohorts of fatty liver 

disease and are implicated in hepatic steatosis pathology203,205,244. To experimentally modify 

hepatic glycerophospholipid metabolism in mice, Leornardi et al. 2009 disrupted PE 

biosynthesis via elimination of the CDP-ethanolamine pathway, which resulted in a 10-fold 

increase of triacylglycerol content within murine livers203. While our methodology lacks the 

capacity to identify specific glycerophospholipids species driving hepatic steatosis, further study 

to explore glycerophospholipids as a mechanism driving hepatic steatosis and steatohepatitis are 

warranted. 
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MSEA, however, identified specific shifts in fatty acid profiles—PUFA metabolism. Key cell 

membrane components, PUFAs modulate inflammatory processes, lipid signaling, and 

triglyceride accumulation206–208, with dietary ω3 PUFA supplementation shown to be a 

promising NAFLD treatment206,211. While MAL/MBG mice displayed a striking reduction of 

hepatic PUFA content, dietary intervention largely restored ω6 and ω3 PUFA profiles. 

 

PUFAs are metabolized via fatty acid oxidation, a catabolic process influenced by vitamin A 

metabolites or retinoids226. Beyond fatty acid regulation, retinol, retinal, and retinoic acid 

contribute to diverse biological functions including vision, adaptive T-cell immunity, and gene 

transcription245,246. Prevalent in malnourished communities, vitamin A deficiencies drive vision 

impairments, growth deficits, and even mortality rates247–249. Largely stored in the liver, hepatic 

steatosis is linked to vitamin A deficiencies75. As both CON and MBG mice consume diets with 

equivalent vitamin A availability and exhibit comparable dietary retinol levels within the liver, 

retinal/retinoic acid deficits in malnourished mice likely reflect liver dysfunction. Similar to 

improved PUFA profiles, dietary intervention mitigated impaired vitamin A metabolism in 

MBG-R mice, likely due to reduced hepatic steatosis. Clinical trials assessing vitamin A 

supplementation and anthropometric measurements in pediatric populations have reported 

promising, albeit inconsistent results250,251. These findings might occur as a consequence of 

undernutrition-induced fatty liver and subsequent impairment of retinol metabolism.  

 

To summarize, we demonstrate that diet and the gut microbes alter multiple pathways that 

contribute to fatty liver features in a mouse model of early-life malnutrition. Malnutrition 

triggered diffuse macrovesicular lipidosis accompanied by (1) microbiome alterations and (2) 
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metabolomic shifts in phenylacetate, glycerophospholipid, PUFA, and vitamin A metabolism 

within the MBG liver. Beyond characterizing malnutrition-induced hepatic steatosis, this work 

highlights microbial-dependent shifts in composition and function which may contribute to fatty 

liver pathology and persistence. Sustained dietary intervention largely mitigated these aberrant 

features, while improving growth markers and reducing fatty liver histology. Despite marked 

shifts in microbiome and metabolomic profiles, adult mice failed to exhibit fatty liver histology 

following malnutrition and fecal-oral contamination. These metabolic shifts may precede future 

development of macrovesicular lipidosis in C-MBG mice maintained on the malnourished diet. 

Alternatively, our findings raise an intriguingly possibility that the characteristic diffuse 

macrovesicular lipidosis observed in diet-induced fatty liver is largely established during a 

critical developmental window in early life and/or may involve additional disruptions not 

captured by metabolomic studies. 

 

6.2 Malnutrition and the Microbiota: A Case Study of the Expanded Gut-Systemic Model   

In conclusion, both diet and fecal-oral contamination trigger broad gut-systemic interactions 

(Fig. 6.1). The addition of fecal-oral contamination largely exacerbates injurious effects of 

malnutrition from poor neurocognitive function to NAFLD. While presented discussions have 

largely examined the gut-brain and gut-liver as independent signaling axes, collective findings 

suggest that MAL-BG pathology emerges from systems cross-talk. MAL-BG mice exhibit 

cognitive deficits linked to aberrant microglia, neurometabolism, and lipoxidation. Fecal-oral 

contamination elicits gut dysbiosis triggering systemic oxidative stress likely stemming from the 

GI tract. Indeed, elevated markers of lipoxidation and PUFA-dependent oxidative stress were 

present in the MAL-BG liver and this strained environment likely contributes to fatty liver 



   122 

observed in the malnourished liver. Malnutrition affects the liver metabolome altering PUFA and 

vitamin A processing, as well as phenylacetic acid and glycerophospholipid metabolism—

pathways linked to the malnourished gut microbiota. As the gut-liver axis modulates nutrient 

processing252 it is not unlikely that aberrant metabolic function within the MAL-BG liver 

informs the metabolic milieu of the CNS. Moreover, as lipoxidative intermediates (e.g. MDAL) 

trigger cascading oxidation events, unchecked oxidative stress within the gut/liver possibly 

contributes to systemic oxidative stress176,253.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   123 

Fig. 6.1 Malnutrition and Fecal-Oral Contamination Alter Gut-Systemic Interactions  

 

 

 

Fig. 6.1 Legend 

Long-term consequences of malnutrition include growth faltering, gut dysbiosis, metabolic 

disruption, and impaired neurocognitive functions, consequences stemming from impaired gut-

systemic interactions. We propose that poor diet and combined exposure to specific gut microbes 
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(Bacteroidales/E. coli) trigger impaired metabolism (e.g. PUFA alterations) and oxidative 

stress, promoting NAFLD features and aberrant microglial function. The MAL-BG model 

provides a unique tool to not only assess malnourished gut-systemic pathways, but also identify 

putative microbial/dietary targets that halt or reverse early-life malnutrition. Pictured 

nutritional items not modeling a particular diet, but reflective of general fat/protein deficiencies. 

Image partially created with Biorender.  

 

These findings demonstrate that fecal-oral contamination significantly contributes to the 

persistence and pathologies of early-life undernutrition. While gut-systemic disruptions have 

long been reported in malnutrition, only recently has the gut microbiome been acknowledged as 

a key contributor of malnourished health trajectories22,73,106,113. MAL-BG research provides an 

attractive approach to experimentally assess (1) specific disruption of the malnourished gut 

microbiota and (2) gut microbiota-systemic pathologies of early-life undernutrition.  

 

Host diet and environment shape the gut microbiota and gut microbes, in turn, modulate host 

health18. Consequently, we propose continued study of pediatric malnutrition from a 

metaorganism framework (Fig. 6.2). The concept of the human metaorganism—human + 

commensal microorganisms—reflects the profound interdependency between hosts and 

microbial communities. In the expanded framework of the metaorganism, research no longer 

maintains a complete division between microorganisms (“non-selves”) and the human (“self”), 

but rather explores gut microbiota-systems interactions as an indistinguishable, dynamic unit.  
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The dynamic interactions between malnutrition and fecal-oral contamination observed in the 

MAL-BG model provides a powerful case study for integrating gut microbiota-systemic research 

within a metaorganism framework. This is a novel frontier.  

 

Recognition of the gut microbiota as a critical, “forgotten organ”14 emerged in 21st century with 

the first conceptualization of a “brain-gut-enteric microbiota axis”9 appearing in the past decade.  

Concurrent growth of new technologies, improved analytical pipelines, and increased 

collaborative efforts will likely reveal undiscovered microbial mechanisms that drive gut-

systemic interactions. Extensive reviews and perspectives showcase the promise of the gut 

microbiome, cataloguing a growing list of microbes and/or microbial metabolites associated with 

human pathologies and early-life undernutrition6,17,89. Further study is warranted to determine 

whether microbial-targeted therapies benefit impaired gut-systemic interactions within 

malnourished populations. While largely uncharted, we predict that gut-systemic research will 

continue sailing towards mechanism-focused, multidisciplinary, and medically germane 

territories.  
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Fig. 6.2 The Metaorganism and Gut-Systemic Study 

 

 

 

Fig. 6.2 Legend 

I propose continued study of early-life malnutrition from a metaorganism perspective—an 

expanded framework that comprises both host and microbiome. This approach fosters 

transdisciplinary dialogue and research, acknowledging the influence of environment and social 

interactions on the microbiome, and, by extension, the gut microbiota-liver-brain interactions 

contributing to metaorganism development and function. Continued studies from a 

metaorganism perspective will not only offer valued insight into human health, but may also 

identify novel therapeutics (e.g. microbial-based interventions, FMT development) addressing 
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early-life undernutrition. Figure partially created with Biorender and adapted from Bauer et al. 

201918. 

 

In 1961, a Matisse appreciator realized that Le Bateau hung upside-down. The error was 

evidenced by the more intricate detailing on the work’s lower half. The metaorganism nervous 

system boasts a far more elaborate pattern. Throughout history, nervous and metabolic function 

has largely centered around vital mammalian organs (e.g. the brain and liver), while critically 

significant, this “narrow” perspective overlooks the vast complexity and functional capacity of 

the commensal microorganisms thriving below. Perhaps the MoMA had it right after all.        

 

6.3 The Metaorganism Framework: A Postscript  
 

Edwin Hubble first observed evidence that we live within an expanding universe. The resulting 

inflation theory challenged our conceptualization of an inert cosmos. The metaorganism with its 

dynamic microbiome also impels us to profoundly reassess our understanding of human 

autonomy, anatomy, and activity.  

 

We are more than human. Perhaps even more than the individual metaorganism. 

 

The developing microbiome acquires diversity and functional complexity through connections 

with new environments and communities, interactions contributing to healthy metaorganism 

development12,33,142. Injurious (e.g. malnutrition) or even inappropriate (e.g. chronic exposure to 

fecal microbes) environments trigger gut microbiota dysbiosis likely shaping health trajectories 

of metaorganism communities31,142. As such, study of metaorganism gut-systemic interactions 
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not only presents an opportunity for multidisciplinary research and reexamination of academic 

curricula and clinical practice, but also highlights new signaling pathways and players 

contributing to disease prevention and treatment within affected communities. I anticipate that 

interdisciplinary exploration from a gut-systemic perspective will continue to provide valuable, 

as well as thought-provoking, insights into our understanding of human health and the elegant 

interplay of gut-systemic interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   129 

Bibliography 

1. Robertson, N. Modern Museum Is Startled by Matisse Picture. The New York Times (1961). 

2. Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat Rev 

Neurosci 12, (2011). 

3. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota 

on brain and behaviour. Nat Rev Neurosci 13, 701–712 (2012). 

4. Haas, L. F. Ivan Petrovich Pavlov (1849-1936). Journal of Neurology, Neurosurgery & 

Psychiatry 67, 299–299 (1999). 

5. Albillos, A., Gottardi, A. de & Rescigno, M. The gut-liver axis in liver disease: 

Pathophysiological basis for therapy. Journal of Hepatology 72, 558–577 (2020). 

6. Bauer, K. C., Huus, K. E. & Finlay, B. B. Microbes and the mind: emerging hallmarks of 

the gut microbiota–brain axis. Cellular Microbiology 18, 632–644 (2016). 

7. Bercik, P. et al. Role of gut-brain axis in persistent abnormal feeding behavior in mice 

following eradication of Helicobacter pylori infection. American Journal of Physiology-

Regulatory, Integrative and Comparative Physiology 296, R587–R594 (2009). 

8. Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila 

melanogaster. PNAS 201009906 (2010) doi:10.1073/pnas.1009906107. 

9. Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the 

brain–gut–enteric microbiota axis. Nature Reviews Gastroenterology & Hepatology 6, 306–

314 (2009). 

10. Kozakova, H. et al. Colonization of germ-free mice with a mixture of three lactobacillus 

strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cellular 

& Molecular Immunology 13, 251–262 (2016). 



   130 

11. Tremlett, H., Bauer, K. C., Appel-Cresswell, S., Finlay, B. B. & Waubant, E. The gut 

microbiome in human neurological disease: A review. Ann Neurol. 81, 369–382 (2017). 

12. Robertson, R. C., Manges, A. R., Finlay, B. B. & Prendergast, A. J. The Human 

Microbiome and Child Growth – First 1000 Days and Beyond. Trends in Microbiology 27, 

131–147 (2019). 

13. Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and Evolutionary Forces Shaping 

Microbial Diversity in the Human Intestine. Cell 124, 837–848 (2006). 

14. O’Hara, A. M. & Shanahan, F. The gut flora as a forgotten organ. EMBO Rep 7, 688–693 

(2006). 

15. Turnbaugh, P. J. et al. The Human Microbiome Project. Nature 449, 804–810 (2007). 

16. Mosca, A., Leclerc, M. & Hugot, J. P. Gut Microbiota Diversity and Human Diseases: 

Should We Reintroduce Key Predators in Our Ecosystem? Front Microbiol 7, 455 (2016). 

17. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and 

nervous systems in health and disease. Nat Neurosci 20, 145–155 (2017). 

18. Bauer, K. C., Rees, T. & Finlay, B. B. The Gut Microbiota–Brain Axis Expands Neurologic 

Function: A Nervous Rapport. BioEssays 0, 1800268 (2019). 

19. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–

484 (2009). 

20. Consortium, T. H. M. P. Structure, function and diversity of the healthy human 

microbiome. Nature 486, 207–214 (2012). 

21. Blount, Z. D. The unexhausted potential of E. coli. eLife 4,. 

22. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi 

children. Nature (2014) doi:10.1038/nature13421. 



   131 

23. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the 

initial microbiota across multiple body habitats in newborns. PNAS 107, 11971–11975 

(2010). 

24. Azad, M. B. et al. Impact of maternal intrapartum antibiotics, method of birth and 

breastfeeding on gut microbiota during the first year of life: a prospective cohort study. 

BJOG: An International Journal of Obstetrics & Gynaecology 123, 983–993 (2016). 

25. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 

505, 559–563 (2014). 

26. Bharwani, A. et al. Structural & functional consequences of chronic psychosocial stress on 

the microbiome & host. Psychoneuroendocrinology 63, 217–227 (2016). 

27. Dunphy-Doherty, F. et al. Post-weaning social isolation of rats leads to long-term 

disruption of the gut microbiota-immune-brain axis. Brain, Behavior, and Immunity 68, 

261–273 (2018). 

28. Browne, H. P., Neville, B. A., Forster, S. C. & Lawley, T. D. Transmission of the gut 

microbiota: spreading of health. Nature Reviews Microbiology 15, 531–543 (2017). 

29. Fröhlich, E. E. et al. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of 

gut microbiota-brain communication. Brain, Behavior, and Immunity 56, 140–155 (2016). 

30. Cox, L. M. et al. Altering the Intestinal Microbiota during a Critical Developmental 

Window Has Lasting Metabolic Consequences. Cell 158, 705–721 (2014). 

31. Brown, E. M. et al. Diet and specific microbial exposure trigger features of environmental 

enteropathy in a novel murine model. Nat Commun 6, 7806 (2015). 

32. Stiemsma, L. T., Reynolds, L. A., Turvey, S. E. & Finlay, B. B. The hygiene hypothesis: 

current perspectives and future therapies. Immunotargets Ther 4, 143–157 (2015). 



   132 

33. Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology (Jena) 

114, 185–190 (2011). 

34. McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. 

Proceedings of the National Academy of Sciences 110, 3229–3236 (2013). 

35. Galen, Singer, C. & Wellcome Historical Medical Museum. Galen on anatomical 

procedures [electronic resource] : de Anatomicis administrationibus. (London : Oxford 

University Press for the Wellcome Historical Medical Museum, 1956). 

36. Rees, T. Plastic Reason: An Anthropology of Brain Science in Embryogenetic Terms. (Univ 

of California Press, 2016). 

37. Hagner, M. Homo cerebralis: der Wandel vom Seelenorgan zum Gehirn. (Suhrkamp, 

2008). 

38. Bota, M., Dong, H.-W. & Swanson, L. W. From gene networks to brain networks. Nature 

Neuroscience 6, 795–799 (2003). 

39. Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic–pituitary–

adrenal system for stress response in mice. The Journal of Physiology 558, 263–275. 

40. Möhle, L. et al. Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in 

Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Reports 15, 1945–1956 (2016). 

41. Ogbonnaya, E. S. et al. Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. 

Biological Psychiatry 78, e7–e9 (2015). 

42. Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. 

PNAS 108, 3047–3052 (2011). 

43. Hoban, A. E. et al. Regulation of prefrontal cortex myelination by the microbiota. 

Translational Psychiatry 6, e774 (2016). 



   133 

44. Bercik, P. et al. The Intestinal Microbiota Affect Central Levels of Brain-Derived 

Neurotropic Factor and Behavior in Mice. Gastroenterology 141, 599-609.e3 (2011). 

45. Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior 

and central neurochemical change in germ-free mice. Neurogastroenterology & Motility 23, 

255-e119. 

46. Clarke, G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal 

serotonergic system in a sex-dependent manner. Molecular Psychiatry 18, 666–673 (2013). 

47. Gao, K. et al. Antibiotics-induced modulation of large intestinal microbiota altered 

aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of 

piglets. Journal of Neurochemistry 146, 219–234 (2018). 

48. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in 

the CNS. Nat Neurosci 18, 965–977 (2015). 

49. Demaude, J., Salvador-Cartier, C., Fioramonti, J., Ferrier, L. & Bueno, L. Phenotypic 

changes in colonocytes following acute stress or activation of mast cells in mice: 

implications for delayed epithelial barrier dysfunction. Gut 55, 655–661 (2006). 

50. O’Mahony, S. M. et al. Early Life Stress Alters Behavior, Immunity, and Microbiota in 

Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses. Biological 

Psychiatry 65, 263–267 (2009). 

51. Foster, J. A., Rinaman, L. & Cryan, J. F. Stress & the gut-brain axis: Regulation by the 

microbiome. Neurobiology of Stress 7, 124–136 (2017). 

52. Hayes, C. L., Peters, B. J. & Foster, J. A. Microbes and mental health: Can the microbiome 

help explain clinical heterogeneity in psychiatry? Frontiers in Neuroendocrinology 100849 

(2020) doi:10.1016/j.yfrne.2020.100849. 



   134 

53. Slyepchenko, A. et al. Gut Microbiota, Bacterial Translocation, and Interactions with Diet: 

Pathophysiological Links between Major Depressive Disorder and Non-Communicable 

Medical Comorbidities. PPS 86, 31–46 (2017). 

54. Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R. & Lin, J. Butyrate Enhances the Intestinal 

Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein 

Kinase in Caco-2 Cell Monolayers. J. Nutr. 139, 1619–1625 (2009). 

55. De Vadder, F. et al. Microbiota-Generated Metabolites Promote Metabolic Benefits via 

Gut-Brain Neural Circuits. Cell 156, 84–96 (2014). 

56. Huuskonen, J., Suuronen, T., Nuutinen, T., Kyrylenko, S. & Salminen, A. Regulation of 

microglial inflammatory response by sodium butyrate and short-chain fatty acids. British 

Journal of Pharmacology 141, 874–880 (2004). 

57. Bourassa, M. W., Alim, I., Bultman, S. J. & Ratan, R. R. Butyrate, neuroepigenetics and the 

gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett. 625, 56–63 

(2016). 

58. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic 

mechanism. Nature Communications 5, 3611 (2014). 

59. Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the 

histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 

(2007). 

60. Yano, J. M. et al. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin 

Biosynthesis. Cell 161, 264–276 (2015). 



   135 

61. Williams, B. B. et al. Discovery and Characterization of Gut Microbiota Decarboxylases 

that Can Produce the Neurotransmitter Tryptamine. Cell Host & Microbe 16, 495–503 

(2014). 

62. Fernstrom, J. D. Dietary effects on brain serotonin synthesis: relationship to appetite 

regulation. Am. J. Clin. Nutr. 42, 1072–1082 (1985). 

63. Forsythe, P., Bienenstock, J. & Kunze, W. A. Vagal Pathways for Microbiome-Brain-Gut 

Axis Communication. in Microbial Endocrinology: The Microbiota-Gut-Brain Axis in 

Health and Disease 115–133 (Springer, New York, NY, 2014). doi:10.1007/978-1-4939-

0897-4_5. 

64. Wang, X. et al. Evidences for vagus nerve in maintenance of immune balance and 

transmission of immune information from gut to brain in STM-infected rats. World J. 

Gastroenterol. 8, 540–545 (2002). 

65. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From 

inflammation to sickness and depression: when the immune system subjugates the brain. 

Nature Reviews Neuroscience 9, 46–56 (2008). 

66. Dinan, T. G. & Cryan, J. F. Regulation of the stress response by the gut microbiota: 

Implications for psychoneuroendocrinology. Psychoneuroendocrinology 37, 1369–1378 

(2012). 

67. Kelly, J. R. et al. Breaking down the barriers: the gut microbiome, intestinal permeability 

and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience 9, (2015). 

68. Maes, M. et al. Depression and sickness behavior are Janus-faced responses to shared 

inflammatory pathways. BMC Medicine 10, 66 (2012). 



   136 

69. Stolp, H. B. & Dziegielewska, K. M. Review: Role of developmental inflammation and 

blood–brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. 

Neuropathology and Applied Neurobiology 35, 132–146 (2009). 

70. Kahles, T. et al. NADPH Oxidase Plays a Central Role in Blood-Brain Barrier Damage in 

Experimental Stroke. Stroke 38, 3000–3006 (2007). 

71. Daneman, R. & Prat, A. The Blood–Brain Barrier. Cold Spring Harb Perspect Biol 7, 

(2015). 

72. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. 

Sci Transl Med 6, 263ra158 (2014). 

73. Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and 

middle-income countries. The Lancet 382, 427–451 (2013). 

74. Mitra, V. & Metcalf, J. Metabolic functions of the liver. Anaesthesia & Intensive Care 

Medicine 13, 54–55 (2012). 

75. Liu, Y. et al. Association of serum retinoic acid with hepatic steatosis and liver injury in 

nonalcoholic fatty liver disease. Am J Clin Nutr 102, 130–137 (2015). 

76. Clemente, M. G., Mandato, C., Poeta, M. & Vajro, P. Pediatric non-alcoholic fatty liver 

disease: Recent solutions, unresolved issues, and future research directions. World J 

Gastroenterol 22, 8078–8093 (2016). 

77. Carmody, R. N. & Wrangham, R. W. The energetic significance of cooking. Journal of 

Human Evolution 57, 379–391 (2009). 

78. Gill, S. R. et al. Metagenomic Analysis of the Human Distal Gut Microbiome. Science 312, 

1355–1359 (2006). 



   137 

79. Sharpton, S. R., Yong, G. J. M., Terrault, N. A. & Lynch, S. V. Gut Microbial Metabolism 

and Nonalcoholic Fatty Liver Disease. Hepatol Commun 3, 29–43 (2018). 

80. Mertens, K. L., Kalsbeek, A., Soeters, M. R. & Eggink, H. M. Bile Acid Signaling 

Pathways from the Enterohepatic Circulation to the Central Nervous System. Front. 

Neurosci. 11, (2017). 

81. Tremblay, S. et al. Bile Acid Administration Elicits an Intestinal Antimicrobial Program 

and Reduces the Bacterial Burden in Two Mouse Models of Enteric Infection. Infection and 

Immunity 85, (2017). 

82. Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue 

compartments. PNAS 108, 4523–4530 (2011). 

83. Preidis, G. A. et al. The Undernourished Neonatal Mouse Metabolome Reveals Evidence of 

Liver and Biliary Dysfunction, Inflammation, and Oxidative Stress. J Nutr 144, 273–281 

(2014). 

84. Puri, P. et al. The Presence and Severity of Nonalcoholic Steatohepatitis is Associated with 

Specific Changes in Circulating Bile Acids. Hepatology 67, 534–548 (2018). 

85. Zhang, L. et al. Impaired Bile Acid Homeostasis in Children with Severe Acute 

Malnutrition. PLoS One 11, (2016). 

86. Wijarnpreecha, K. et al. Small intestinal bacterial overgrowth and nonalcoholic fatty liver 

disease: a systematic review and meta-analysis. European Journal of Gastroenterology & 

Hepatology 1 (2019) doi:10.1097/MEG.0000000000001541. 

87. Jiang, W. et al. Dysbiosis gut microbiota associated with inflammation and impaired 

mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. 

Scientific Reports 5, 8096 (2015). 



   138 

88. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via 

NKT cells. Science 360, (2018). 

89. Chassaing, B., Etienne-Mesmin, L. & Gewirtz, A. T. Microbiota-liver axis in hepatic 

disease. Hepatology 328–339 (2020) doi:10.1002/hep.26494@10.1002/(ISSN)1527-

3350(CAT)VirtualIssues(VI)HepatologyReviews. 

90. Videla, L. A., Rodrigo, R., Araya, J. & Poniachik, J. Oxidative stress and depletion of 

hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver 

disease. Free Radical Biology and Medicine 37, 1499–1507 (2004). 

91. Bush, H., Golabi, P. & Younossi, Z. M. Pediatric Non-Alcoholic Fatty Liver Disease. 

Children (Basel) 4, (2017). 

92. Heijden, J. van der et al. Salmonella Rapidly Regulates Membrane Permeability To Survive 

Oxidative Stress. mBio 7, (2016). 

93. Qiao, Y., Sun, J., Ding, Y., Le, G. & Shi, Y. Alterations of the gut microbiota in high-fat 

diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol 97, 1689–1697 

(2013). 

94. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut 

microbiota, and host energy metabolism. J Lipid Res 54, 2325–2340 (2013). 

95. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-

diabetic obese women. Nature Medicine 24, 1070–1080 (2018). 

96. Alisi, A. et al. Randomised clinical trial: the beneficial effects of VSL#3 in obese children 

with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 39, 1276–1285 (2014). 



   139 

97. Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T. & Gordon, J. I. Childhood 

undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science 352, 

1533–1533 (2016). 

98. Roser, M. & Ritchie, H. Hunger and Undernourishment - Our World in Data. 

https://ourworldindata.org/hunger-and-undernourishment (2019). 

99. UNICEF/WHO/World Bank Group. WHO | Joint child malnutrition estimates - Levels and 

trends (2019 edition). WHO http://www.who.int/nutgrowthdb/estimates2018/en/ (2019). 

100. Di Giovanni, V. et al. Metabolomic Changes in Serum of Children with Different Clinical 

Diagnoses of Malnutrition. J Nutr 146, 2436–2444 (2016). 

101. Forrester, T. E. et al. Prenatal Factors Contribute to the Emergence of Kwashiorkor or 

Marasmus in Severe Undernutrition: Evidence for the Predictive Adaptation Model. PLoS 

One 7, (2012). 

102. van Zutphen, T. et al. Malnutrition-associated liver steatosis and ATP depletion is caused 

by peroxisomal and mitochondrial dysfunction. Journal of Hepatology 65, 1198–1208 

(2016). 

103. Smith, M. I. et al. Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor. 

Science 339, 548–554 (2013). 

104. Galler, J. et al. Early Childhood Malnutrition Predicts Depressive Symptoms at Ages 11–

17. J Child Psychol Psychiatry 51, 789–798 (2010). 

105. Korpe, P. S. & Petri Jr., W. A. Environmental enteropathy: critical implications of a poorly 

understood condition. Trends in Molecular Medicine 18, 328–336 (2012). 



   140 

106. Guerrant, R. L., DeBoer, M. D., Moore, S. R., Scharf, R. J. & Lima, A. A. M. The 

impoverished gut—a triple burden of diarrhoea, stunting and chronic disease. Nature 

Reviews Gastroenterology & Hepatology 10, 220 (2013). 

107. Vonaesch, P. et al. Stunted childhood growth is associated with decompartmentalization of 

the gastrointestinal tract and overgrowth of oropharyngeal taxa. PNAS 115, E8489–E8498 

(2018). 

108. Kau, A. L. et al. Functional characterization of IgA-targeted bacterial taxa from 

undernourished Malawian children that produce diet-dependent enteropathy. Science 

Translational Medicine 7, 276ra24-276ra24 (2015). 

109. Huus, K. E. et al. Commensal Bacteria Modulate Immunoglobulin A Binding in Response 

to Host Nutrition. Cell Host & Microbe 0, (2020). 

110. Guerrant, R. L., Oriá, R. B., Moore, S. R., Oriá, M. O. & Lima, A. A. Malnutrition as an 

enteric infectious disease with long-term effects on child development. Nutr Rev 66, 487–

505 (2008). 

111. Trehan, I. et al. Antibiotics as Part of the Management of Severe Acute Malnutrition. N 

Engl J Med 368, 425–435 (2013). 

112. Keenan, J. D. et al. Azithromycin to Reduce Childhood Mortality in Sub-Saharan Africa. 

New England Journal of Medicine 378, 1583–1592 (2018). 

113. Blanton, L. V. et al. Gut bacteria that rescue growth impairments transmitted by immature 

microbiota from undernourished children. Science 351, (2016). 

114. Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and 

undernourished children. Science 365, (2019). 



   141 

115. Raman, A. S. et al. A sparse covarying unit that describes healthy and impaired human gut 

microbiota development. Science 365, (2019). 

116. Humphrey, J. H. et al. Independent and combined effects of improved water, sanitation, and 

hygiene, and improved complementary feeding, on child stunting and anaemia in rural 

Zimbabwe: a cluster-randomised trial. The Lancet Global Health 7, e132–e147 (2019). 

117. Panigrahi, P. et al. A randomized synbiotic trial to prevent sepsis among infants in rural 

India. Nature 548, 407–412 (2017). 

118. Holemans, K., Aerts, L. & Van Assche, F. A. Fetal Growth Restriction and Consequences 

for the Offspring in Animal Models. Journal of the Society for Gynecologic Investigation 

10, 392–399 (2003). 

119. Keen, C. L. et al. Developmental Consequences of Trace Mineral Deficiencies in Rodents: 

Acute and Long-Term Effects. J Nutr 133, 1477S-1480S (2003). 

120. Smith, L. C. & Haddad, L. Reducing Child Undernutrition: Past Drivers and Priorities for 

the Post-MDG Era. World Development 68, 180–204 (2015). 

121. Semba, R. D. et al. Metabolic alterations in children with environmental enteric 

dysfunction. Scientific Reports 6, 28009 (2016). 

122. Bhutta, Z. A. et al. What works? Interventions for maternal and child undernutrition and 

survival. The Lancet 371, 417–440 (2008). 

123. Pickering, A. J. et al. The WASH Benefits and SHINE trials: interpretation of WASH 

intervention effects on linear growth and diarrhoea. The Lancet Global Health 7, e1139–

e1146 (2019). 

124. Dangour, A. D. et al. Interventions to improve water quality and supply, sanitation and 

hygiene practices, and their effects on the nutritional status of children. in Cochrane 



   142 

Database of Systematic Reviews (John Wiley & Sons, Ltd, 2013). 

doi:10.1002/14651858.CD009382.pub2. 

125. Tofail, F. et al. Effect of water quality, sanitation, hand washing, and nutritional 

interventions on child development in rural Bangladesh (WASH Benefits Bangladesh): a 

cluster-randomised controlled trial. The Lancet Child & Adolescent Health 2, 255–268 

(2018). 

126. Nr, T., Es, L., Sa, R. & Rc, G. A regional basic diet from northeast Brazil as a dietary 

model of experimental malnutrition. Arch Latinoam Nutr 40, 533–547 (1990). 

127. Santos de Souza, A. et al. Brain fatty acid profiles and spatial learning in malnourished rats: 

effects of nutritional intervention. Nutritional Neuroscience 11, 119–127 (2008). 

128. Duwaerts, C. C. & Maher, J. J. Macronutrients and the Adipose-Liver Axis in Obesity and 

Fatty Liver. Cell Mol Gastroenterol Hepatol 7, 749–761 (2019). 

129. Prendergast, A. & Kelly, P. Enteropathies in the Developing World: Neglected Effects on 

Global Health. Am J Trop Med Hyg 86, 756–763 (2012). 

130. Beaucage, K. L. et al. Loss of P2X7 nucleotide receptor function leads to abnormal fat 

distribution in mice. Purinergic Signal 10, 291–304 (2014). 

131. Walker, S. P., Chang, S. M., Powell, C. A., Simonoff, E. & Grantham-McGregor, S. M. 

Early Childhood Stunting Is Associated with Poor Psychological Functioning in Late 

Adolescence and Effects Are Reduced by Psychosocial Stimulation. J. Nutr. 137, 2464–

2469 (2007). 

132. Scrimshaw, N. S. Malnutrition, brain development, learning, and behavior. Nutrition 

Research 18, 351–379 (1998). 



   143 

133. Richardson, S. A. The Relation of Severe Malnutrition in Infancy to the Intelligence of 

School Children with Differing Life Histories. Pediatric Research 10, 57–61 (1976). 

134. Waber, D. P. et al. Impaired IQ and academic skills in adults who experienced moderate to 

severe infantile malnutrition: a 40-year study. Nutr Neurosci 17, 58–64 (2014). 

135. Schoenmaker, C. et al. Cognitive and health-related outcomes after exposure to early 

malnutrition: The Leiden longitudinal study of international adoptees. Children and Youth 

Services Review 48, 80–86 (2015). 

136. Webb, K. E., Horton, N. J. & Katz, D. L. Parental IQ and cognitive development of 

malnourished Indonesian children. European Journal of Clinical Nutrition 59, 618–620 

(2005). 

137. Levitsky, D. A. & Strupp, B. J. Malnutrition and the Brain: Changing Concepts, Changing 

Concerns. J Nutr 125, 2212S-2220S (1995). 

138. Winick, M. & Rosso, P. Head circumference and cellular growth of the brain in normal and 

marasmic children. The Journal of Pediatrics 74, 774–778 (1969). 

139. Morgane, P. J., Mokler, D. J. & Galler, J. R. Effects of prenatal protein malnutrition on the 

hippocampal formation. Neuroscience & Biobehavioral Reviews 26, 471–483 (2002). 

140. Wu, Y., Dissing-Olesen, L., MacVicar, B. A. & Stevens, B. Microglia: Dynamic Mediators 

of Synapse Development and Plasticity. Trends Immunol. 36, 605–613 (2015). 

141. Sampson, T. R. et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a 

Model of Parkinson’s Disease. Cell 167, 1469-1480.e12 (2016). 

142. Borre, Y. E. et al. Microbiota and neurodevelopmental windows: implications for brain 

disorders. Trends in Molecular Medicine 20, 509–518 (2014). 



   144 

143. Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to 

neuropsychiatric disease. Nat Rev Neurosci 15, 300–312 (2014). 

144. Block, M. L., Zecca, L. & Hong, J.-S. Microglia-mediated neurotoxicity: uncovering the 

molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007). 

145. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting Microglial Cells Are Highly 

Dynamic Surveillants of Brain Parenchyma in Vivo. Science 308, 1314–1318 (2005). 

146. Hanisch, U.-K. Microglia as a source and target of cytokines. Glia 40, 140–155 (2002). 

147. Zhang, J. et al. Microglial CR3 activation triggers long-term synaptic depression in the 

hippocampus via NADPH oxidase. Neuron 82, 195–207 (2014). 

148. Mhatre, S. D., Tsai, C. A., Rubin, A. J., James, M. L. & Andreasson, K. I. Microglial 

malfunction: the third rail in the development of Alzheimer’s disease. Trends Neurosci. 38, 

621–636 (2015). 

149. Yirmiya, R., Rimmerman, N. & Reshef, R. Depression as a Microglial Disease. Trends in 

Neurosciences 38, 637–658 (2015). 

150. Wu, L.-J., Stevens, B., Duan, S. & MacVicar, B. A. Microglia in neuronal circuits. Neural 

Plast. 2013, 586426 (2013). 

151. Karperien, A., Ahammer, H. & Jelinek, H. Quantitating the subtleties of microglial 

morphology with fractal analysis. Front. Cell. Neurosci. 7, (2013). 

152. York, E. M., Bernier, L.-P. & MacVicar, B. A. Microglial modulation of neuronal activity 

in the healthy brain. Developmental Neurobiology 78, 593–603 (2018). 

153. Investigators, M.-E. N. Early childhood cognitive development is affected by interactions 

among illness, diet, enteropathogens and the home environment: findings from the MAL-

ED birth cohort study. BMJ Global Health 3, e000752 (2018). 



   145 

154. Gould, T. D., Dao, D. T. & Kovacsics, C. E. The Open Field Test. in Mood and Anxiety 

Related Phenotypes in Mice: Characterization Using Behavioral Tests (ed. Gould, T. D.) 

1–20 (Humana Press, 2009). doi:10.1007/978-1-60761-303-9_1. 

155. Leger, M. et al. Object recognition test in mice. Nature Protocols 8, 2531–2537 (2013). 

156. Bourin, M. & Hascoët, M. The mouse light/dark box test. European Journal of 

Pharmacology 463, 55–65 (2003). 

157. Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and 

related forms of learning and memory. Nat. Protocols 1, 848–858 (2006). 

158. Mills, F. et al. Cognitive flexibility and long-term depression (LTD) are impaired following 

β-catenin stabilization in vivo. PNAS 111, 8631–8636 (2014). 

159. Galloway, D. A., Phillips, A. E. M., Owen, D. R. J. & Moore, C. S. Phagocytosis in the 

Brain: Homeostasis and Disease. Front. Immunol. 10, (2019). 

160. Jung, S. et al. Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion 

and Green Fluorescent Protein Reporter Gene Insertion. Molecular and Cellular Biology 

20, 4106–4114 (2000). 

161. York, E. M., LeDue, J. M., Bernier, L.-P. & MacVicar, B. A. 3DMorph Automatic Analysis 

of Microglial Morphology in Three Dimensions from Ex Vivo and In Vivo Imaging. 

eNeuro 5, ENEURO.0266-18.2018 (2018). 

162. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. 

Neurosci. 8, 752–758 (2005). 

163. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biology 15, 550 (2014). 



   146 

164. Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome pathway 

analysis and visualization. Mol. BioSyst. 12, 477–479 (2016). 

165. Fu, R., Shen, Q., Xu, P., Luo, J. J. & Tang, Y. Phagocytosis of Microglia in the Central 

Nervous System Diseases. Mol Neurobiol 49, 1422–1434 (2014). 

166. Münz, C. Antigen processing via autophagy – not only for MHC class II presentation 

anymore? Curr Opin Immunol 22, 89–93 (2010). 

167. Persaud-Sawin, D.-A., Banach, L. & Harry, G. J. Raft aggregation with specific receptor 

recruitment is required for microglial phagocytosis of Abeta42. Glia 57, 320–335 (2009). 

168. Hines, D. J., Choi, H. B., Hines, R. M., Phillips, A. G. & MacVicar, B. A. Prevention of 

LPS-Induced Microglia Activation, Cytokine Production and Sickness Behavior with TLR4 

Receptor Interfering Peptides. PLoS ONE 8, e60388 (2013). 

169. Crane, R. J., Jones, K. D. J. & Berkley, J. A. Environmental enteric dysfunction: An 

overview. Food Nutr Bull 36, S76–S87 (2015). 

170. Readnower, R. D. et al. Increase in Blood Brain Barrier Permeability, Oxidative Stress, and 

Activated Microglia in a Rat Model of Blast Induced Traumatic Brain Injury. J Neurosci 

Res 88, 3530–3539 (2010). 

171. Knowland, D. et al. Stepwise Recruitment of Transcellular and Paracellular Pathways 

Underlies Blood-Brain Barrier Breakdown in Stroke. Neuron 82, 603–617 (2014). 

172. Camandola, S. & Mattson, M. P. Brain metabolism in health, aging, and neurodegeneration. 

The EMBO Journal 36, 1474–1492 (2017). 

173. Qi, G., Mi, Y. & Yin, F. Cellular Specificity and Inter-cellular Coordination in the Brain 

Bioenergetic System: Implications for Aging and Neurodegeneration. Front. Physiol. 10, 

(2020). 



   147 

174. Smith, C. A. et al. METLIN: A Metabolite Mass Spectral Database. Therapeutic Drug 

Monitoring 27, 747–751 (2005). 

175. Maes, M. et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: 

leads for future research and new drug developments in depression. Metab Brain Dis 24, 

27–53 (2008). 

176. Pamplona, R. et al. Proteins in Human Brain Cortex Are Modified by Oxidation, 

Glycoxidation, and Lipoxidation Effects of Alzheimer Disease and Identification of 

Lipoxidation Targets. J. Biol. Chem. 280, 21522–21530 (2005). 

177. Padurariu, M. et al. Changes of some oxidative stress markers in the serum of patients with 

mild cognitive impairment and Alzheimer’s disease. Neuroscience Letters 469, 6–10 

(2010). 

178. Brown, G. C. & Neher, J. J. Microglial phagocytosis of live neurons. nrn 15, 209–216 

(2014). 

179. Bouzidi, F. & Doussiere, J. Binding of arachidonic acid to myeloid-related proteins 

(S100A8/A9) enhances phagocytic NADPH oxidase activation. Biochemical and 

Biophysical Research Communications 325, 1060–1065 (2004). 

180. Wang, S. et al. S100A8/A9 in Inflammation. Front. Immunol. 9, (2018). 

181. Manary, M. J., Leeuwenburgh, C. & Heinecke, J. W. Increased oxidative stress in 

kwashiorkor. The Journal of Pediatrics 137, 421–424 (2000). 

182. Khaled, M. Oxidative Stress in Childhood Malnutrition and Diarrhoeal Diseases. Journal of 

Diarrhoeal Diseases Research 12, 165–172 (1994). 



   148 

183. Cani, P. D. et al. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced 

Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes 57, 1470–

1481 (2008). 

184. Kostic, A. D., Xavier, R. J. & Gevers, D. The Microbiome in Inflammatory Bowel Disease: 

Current Status and the Future Ahead. Gastroenterology 146, 1489–1499 (2014). 

185. Kwiecien, S. et al. Lipid peroxidation, reactive oxygen species and antioxidative factors in 

the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative 

stress - induced gastric injury. J. Physiol. Pharmacol. 65, 613–622 (2014). 

186. Barrera, G. et al. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: 

Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products. Antioxidants (Basel) 5, 

(2016). 

187. Dissing-Olesen, L. & MacVicar, B. A. Fixation and Immunolabeling of Brain Slices: 

SNAPSHOT Method. Current Protocols in Neuroscience 71, 1.23.1-1.23.12 (2015). 

188. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res 46, D754–D761 (2018). 

189. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-

throughput sequencing data. Bioinformatics 31, 166–169 (2015). 

190. Chong, J. & Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis 

of metabolomics data. Bioinformatics 34, 4313–4314 (2018). 

191. Naudí, A. et al. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial 

proteins: effects of caloric and methionine restriction. Amino Acids 44, 361–371 (2013). 

192. Knecht, K. J. et al. Effect of Diabetes and Aging on Carboxymethyllysine Levels in Human 

Urine. Diabetes 40, 190–196 (1991). 



   149 

193. Kneeman, J. M., Misdraji, J. & Corey, K. E. Secondary causes of nonalcoholic fatty liver 

disease. Therap Adv Gastroenterol 5, 199–207 (2012). 

194. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease—Meta-

analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016). 

195. Takahashi, Y. & Fukusato, T. Histopathology of nonalcoholic fatty liver 

disease/nonalcoholic steatohepatitis. World J Gastroenterol 20, 15539–15548 (2014). 

196. Dyson, J. K., Anstee, Q. M. & McPherson, S. Non-alcoholic fatty liver disease: a practical 

approach to diagnosis and staging. Frontline Gastroenterology 5, 211–218 (2014). 

197. Zelber-Sagi, S., Ratziu, V. & Oren, R. Nutrition and physical activity in NAFLD: An 

overview of the epidemiological evidence. World J Gastroenterol 17, 3377–3389 (2011). 

198. Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of 

metabolic syndrome. The Lancet Diabetes & Endocrinology 2, 901–910 (2014). 

199. Freeman, H. J. Hepatobiliary and pancreatic disorders in celiac disease. World J 

Gastroenterol 12, 1503–1508 (2006). 

200. Li, M., Reynolds, C. M., Segovia, S. A., Gray, C. & Vickers, M. H. Developmental 

Programming of Nonalcoholic Fatty Liver Disease: The Effect of Early Life Nutrition on 

Susceptibility and Disease Severity in Later Life. BioMed Research International 

https://www.hindawi.com/journals/bmri/2015/437107/ (2015) 

doi:https://doi.org/10.1155/2015/437107. 

201. Dalvi, P. S. et al. Long-term metabolic effects of malnutrition: Liver steatosis and insulin 

resistance following early-life protein restriction. PLoS One 13, (2018). 



   150 

202. Kwon, D.-H. et al. Dietary protein restriction induces steatohepatitis and alters leptin/signal 

transducers and activators of transcription 3 signaling in lactating rats. The Journal of 

Nutritional Biochemistry 23, 791–799 (2012). 

203. Leonardi, R., Frank, M. W., Jackson, P. D., Rock, C. O. & Jackowski, S. Elimination of the 

CDP-ethanolamine Pathway Disrupts Hepatic Lipid Homeostasis. J. Biol. Chem. 284, 

27077–27089 (2009). 

204. Calzada, E., Onguka, O. & Claypool, S. M. Chapter Two - Phosphatidylethanolamine 

Metabolism in Health and Disease. in International Review of Cell and Molecular Biology 

(ed. Jeon, K. W.) vol. 321 29–88 (Academic Press, 2016). 

205. Li, Z. et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences 

membrane integrity and steatohepatitis. Cell Metabolism 3, 321–331 (2006). 

206. He, X.-X. et al. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic 

Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS One 11, 

(2016). 

207. Tapiero, H., Nguyen Ba, G., Couvreur, P. & Tew, K. D. Polyunsaturated fatty acids 

(PUFA) and eicosanoids in human health and pathologies. Biomedicine & 

Pharmacotherapy 56, 215–222 (2002). 

208. Bazinet, R. P. & Layé, S. Polyunsaturated fatty acids and their metabolites in brain function 

and disease. Nature Reviews Neuroscience 15, 771–785 (2014). 

209. Yaqoob, P. & Calder, P. C. Fatty acids and immune function: new insights into 

mechanisms. British Journal of Nutrition 98, S41–S45 (2007). 



   151 

210. Delarue, J. & Lallès, J.-P. Nonalcoholic fatty liver disease: Roles of the gut and the liver 

and metabolic modulation by some dietary factors and especially long-chain n-3 PUFA. 

Molecular Nutrition & Food Research 60, 147–159 (2016). 

211. Yan, J.-H., Guan, B.-J., Gao, H.-Y. & Peng, X.-E. Omega-3 polyunsaturated fatty acid 

supplementation and non-alcoholic fatty liver disease. Medicine (Baltimore) 97, (2018). 

212. SMPDB: The Small Molecule Pathway Database | Nucleic Acids Research | Oxford 

Academic. https://academic.oup.com/nar/article/38/suppl_1/D480/3112152. 

213. Arranz, L., Naudí, A., De la Fuente, M. & Pamplona, R. Exceptionally old mice are highly 

resistant to lipoxidation-derived molecular damage. Age (Dordr) 35, 621–635 (2013). 

214. Lynch, C., Chan, C. S. & Drake, A. J. Early life programming and the risk of non-alcoholic 

fatty liver disease. Journal of Developmental Origins of Health and Disease 8, 263–272 

(2017). 

215. Caldwell, S. H. & Kowdley, K. V. Treating NAFLD: Future Prospects. Journal of Clinical 

Gastroenterology 40, S67 (2006). 

216. Romero-Gómez, M., Zelber-Sagi, S. & Trenell, M. Treatment of NAFLD with diet, 

physical activity and exercise. Journal of Hepatology 67, 829–846 (2017). 

217. Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A. & Millington, K. J. The health benefits of 

omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition 

and Dietetics 17, 449–459 (2004). 

218. Calder, P. C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms 

and clinical relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology 

of Lipids 1851, 469–484 (2015). 



   152 

219. Ryan, M. C. et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity 

in individuals with non-alcoholic fatty liver disease. Journal of Hepatology 59, 138–143 

(2013). 

220. Bangsgaard Bendtsen, K. M. et al. Gut Microbiota Composition Is Correlated to Grid Floor 

Induced Stress and Behavior in the BALB/c Mouse. PLoS One 7, (2012). 

221. Zhang, J. et al. Beneficial effect of butyrate-producing Lachnospiraceae on stress-induced 

visceral hypersensitivity in rats. Journal of Gastroenterology and Hepatology 34, 1368–

1376 (2019). 

222. Zeng, H., Ishaq, S. L., Zhao, F.-Q. & Wright, A.-D. G. Colonic inflammation accompanies 

an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the 

hind gut of high-fat diet-fed mice. J. Nutr. Biochem. 35, 30–36 (2016). 

223. Magnusson, K. R. et al. Relationships between diet-related changes in the gut microbiome 

and cognitive flexibility. Neuroscience 300, 128–140 (2015). 

224. Douglas, G. M. et al. PICRUSt2: An improved and customizable approach for metagenome 

inference. bioRxiv 672295 (2020) doi:10.1101/672295. 

225. O’Byrne, S. M. & Blaner, W. S. Retinol and retinyl esters: biochemistry and physiology. J 

Lipid Res 54, 1731–1743 (2013). 

226. Amengual, J., Petrov, P., Bonet, M. L., Ribot, J. & Palou, A. Induction of carnitine 

palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells. The 

International Journal of Biochemistry & Cell Biology 44, 2019–2027 (2012). 

227. Ziouzenkova, O. et al. Retinaldehyde represses adipogenesis and diet-induced obesity. 

Nature Medicine 13, 695–702 (2007). 



   153 

228. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network 

analysis. BMC Bioinformatics 9, 559 (2008). 

229. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. 

Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing 

Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ 

Microbiol 79, 5112–5120 (2013). 

230. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon 

data. Nat. Methods 13, 581–583 (2016). 

231. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing 

data. Nature Methods 7, 335–336 (2010). 

232. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and 

workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006). 

233. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc 

collection of Pathway/Genome Databases. Nucleic Acids Res 42, D459–D471 (2014). 

234. Suhre, K. & Schmitt-Kopplin, P. MassTRIX: mass translator into pathways. Nucleic Acids 

Res 36, W481–W484 (2008). 

235. Global WASH Fast Facts | Global Water, Sanitation and Hygiene | Healthy Water | CDC. 

https://www.cdc.gov/healthywater/global/wash_statistics.html (2018). 

236. Valdearcos, M. et al. Microglial Inflammatory Signaling Orchestrates the Hypothalamic 

Immune Response to Dietary Excess and Mediates Obesity Susceptibility. Cell Metabolism 

26, 185-197.e3 (2017). 

237. Webb, P. et al. Hunger and malnutrition in the 21st century. BMJ 361, k2238 (2018). 



   154 

238. Aboud, F. E. & Yousafzai, A. K. Health and nutrition interventions for infant development. 

The Lancet Child & Adolescent Health 2, 231–233 (2018). 

239. Kalhan, S. C. et al. Plasma Metabolomic Profile in Non-Alcoholic Fatty Liver Disease. 

Metabolism 60, 404–413 (2011). 

240. Seligman, H. K., Laraia, B. A. & Kushel, M. B. Food Insecurity Is Associated with Chronic 

Disease among Low-Income NHANES Participants. J Nutr 140, 304–310 (2010). 

241. Morales, M. E. & Berkowitz, S. A. The Relationship Between Food Insecurity, Dietary 

Patterns, and Obesity. Curr Nutr Rep 5, 54–60 (2016). 

242. Ke, J. & Ford-Jones, E. L. Food insecurity and hunger: A review of the effects on children’s 

health and behaviour. Paediatr Child Health 20, 89–91 (2015). 

243. Pereira, A. L., Handa, S. & Holmqvist, G. Prevalence and Correlates of Food Insecurity 

Among Children Across the Globe. (2017) doi:https://doi.org/10.18356/9206b37d-en. 

244. Gorden, D. L. et al. Increased Diacylglycerols Characterize Hepatic Lipid Changes in 

Progression of Human Nonalcoholic Fatty Liver Disease; Comparison to a Murine Model. 

PLoS One 6, (2011). 

245. Hall, J. A. et al. Essential Role for Retinoic Acid in the Promotion of CD4+ T Cell Effector 

Responses via Retinoic Acid Receptor Alpha. Immunity 34, 435–447 (2011). 

246. Blomhoff, R. & Blomhoff, H. K. Overview of retinoid metabolism and function. Journal of 

Neurobiology 66, 606–630 (2006). 

247. Sommer, A. Vitamin A Deficiency and Clinical Disease: An Historical Overview. J Nutr 

138, 1835–1839 (2008). 

248. Sommer, A., Hussaini, G., Tarwotjo, I. & Susanto, D. Increased Mortality in Children with 

Mild Vitamin A Deficiency. The Lancet 322, 585–588 (1983). 



   155 

249. Carrero, C. et al. Effect of Vitamin A, Zinc and Multivitamin Supplementation on the 

Nutritional Status and Retinol Serum Values in School-Age Children. in Data Mining and 

Big Data (eds. Tan, Y., Shi, Y. & Tang, Q.) 748–758 (Springer International Publishing, 

2018). doi:10.1007/978-3-319-93803-5_70. 

250. Hadi, H. et al. Vitamin A supplementation selectively improves the linear growth of 

Indonesian preschool children: results from a randomized controlled trial. Am J Clin Nutr 

71, 507–513 (2000). 

251. Sedgh, G., Herrera, M. G., Nestel, P., el Amin, A. & W. Fawzi, W. Dietary Vitamin A 

Intake and Nondietary Factors Are Associated with Reversal of Stunting in Children. J Nutr 

130, 2520–2526 (2000). 

252. Zeuzem, S. Gut-liver axis. Int J Colorect Dis 15, 59–82 (2000). 

253. Pamplona, R. Membrane phospholipids, lipoxidative damage and molecular integrity: A 

causal role in aging and longevity. Biochimica et Biophysica Acta (BBA) - Bioenergetics 

1777, 1249–1262 (2008). 

 

 

 

 

 

 

 

 

 



   156 

Appendix 

 

(Supplemental Tables and Figures) 

Table S.1 Dietary Composition  

  

 

 

Table S.1 Legend 

Ingredient list from the standard and malnourished diets provided by Research Diets (New 

Brunswick, NJ, USA). 

 

 

Mouse Groups

Diet Name
Ingredient List gm kcal gm kcal
Casein 200 800 71 284
L-Cystine 3 12 1.07 4
Corn Starch 346 1384 557 2228
Maltodextrin 10 45 180 70 280
Dextrose 250 1000 250 1000
Sucrose 0 0 2.41 10
Cellulose, BW200 75 0 75 0
Inulin 25 25 25 25
Soybean Oil 70 630 23.3 210
Mineral Mix S10026 10 0 10 0
Dicalcium Phosphate 13 0 13 0
Calcium Carbonate 5.5 0 5.5 0
Potassium Citrate, 1 H2O 16.5 0 16.5 0
Vitamin Mix V10001 10 40 10 40
Choline Bitartrate 2 0 2 0

CON MAL, MAL-BG/MBG
Standard Diet 

D09051102
Malnourished Diet 

D14071001



   157 

Fig. S.1 Light-Dark and NORT Testing Support Altered MAL-BG Exploration Uncoupled from 

Anxiety-Like Behaviour   

 

 

 

Fig. S.1 Legend  

(A) Light-dark test setup: a measure of anxiety-like behaviour (dark region preference), the light-

dark box is comprised of an open light region and enclosed dark region. (B) CON, MAL, and 

MAL-BG exhibit comparable behaviour within the light-dark box. (C) NORT schematic 

showing the familiarization and recall setup. During familiarization mice exhibit impartial object 

exploration (interaction ratio ~1). All groups distinguished the novel object during recall (novel: 

old interaction ratio > 1), with MAL-BG mice exhibiting moderately increased novelty 

exploration. (D) Total mouse-object interaction time (novel and old object interaction) for the 
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NORT. Light-dark test assessments were conducted with blinded Anymaze software tracking, 

NORT interactions were scored by a blinded observer. Light-dark testing and NORT were 

conducted on the same mice, data pooled from two independent experiments. Graphs indicate 

mean and s.e.m. with statistical significance determined by one-way ANOVA with post hoc 

Dunnett’s test.   
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Fig. S.2 MWM Methodology and Supplemental Data  

 

 

 

Fig. S.2 Legend 

(A) Complete MWMT setup: during habituation, mice were released from the same position and 

learned to locate a visible platform, platform location moved after each trial. During learning 

phases (acquisition, reversal) individual mice attempted to locate a hidden platform based on 

spatial memory and external cues. Mice entered the pool at variable locations (north, south, east, 

and west quadrants); trial order and location entries were randomized prior to testing. 

Habituation and learning trials lasted 60 s each with a rest period. Individual mice were placed in 

an empty pool (30 s swim) 24 hr following the final acquisition and reversal trial. (B) Average 

swim speed for the initial (left) and final (right) free swims, demonstrating comparable swim 

capacity across groups. (C) The escape latency for the initial reversal learning trial. Mice that 

failed to locate the new platform location within 60 s were gently guided to the platform, 

following trial (failed trials represented at the dotted line). Graphs indicate mean and s.e.m. with 

statistical significance determined by one-way ANOVA with post hoc Dunnett’s test.  
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Fig. S.3 Healthy and Malnourished Mice Exhibit Comparable Microglia Motility   

 

 

 

Fig. S.3 Legend 

(A) To assess whether morphological alterations affect motility, we examined microglial process 

additions and retractions over 10 min. Representative images from motility assays: yellow = 

static, red = process addition, green = process retraction. Motility indices determined by custom 

MATLAB program that identified pixel additions/removal in eGFP+ cells. We observed no 

striking difference in CON, MAL, and MAL-BG microglia motility, as quantified by process 

addition (bottom) or retraction motility indices (data not shown), n = 9. (B) Representative 

images from two-photon microscopy of the hippocampal CA1 region prior, at, and following 

lesion induction via intensive two-photon laser scanning. (C) Microglial process response to 
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lesion region: mean fluorescent intensity/microscopy frames. Lesion experiments conducted on a 

subset of mice utilized for reported microglial morphology analyses (Fig. 3.4). Graphs indicate 

mean and s.e.m. with statistical significance determined by one-way ANOVA. 
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Fig. S.4 Altered Functional Profile in MAL-BG Microglia 

 

 

 

Fig. S.4 Legend 

(A) RNA-Seq was conducted on CD11b+ population from CON, MAL, and MAL-BG whole 

brain tissue. Representative flow cytometry gating verifying microglial enrichment 

(CD11bhigh/CD45low population) following dissociation (Miltenyi Biotec Adult Brain 

Dissociation kit) and CD11b separation. (B) Representative flow cytometry gating (left) of 

CX3CR1 gMFI and frequency (% microglia) from an independent cohort (right), supporting 

RNA-Seq findings. (C) Whole brain qPCR results from an independent mouse cohort, while 

assessed DEGs did not reach statistical significance by RT-qPCR, overall patterns support 

microglial Sirpa (phagocytic marker) and Ctsd (lysosomal marker) RNA-Seq results. Fold 

change and ddct values plotted, Hprt provided the endogenous control. Flow cytometry graphs 
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show mean and s.e.m. with statistical significance determined by Kruskal-Wallis with post hoc 

Dunn’s test. 
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Fig. S.5 MAL-BG Brain Lacks Neuroinflammation and BBB Disruption 

 

 

 

Fig. S.5 Legend 

(A) TNF-α and IL-6 levels in CON, MAL, and MAL-BG sera, data from two independent 

experiments. (B) Representative flow cytometry gating for inflammatory microglia panel. 

Microglia reported as CD11bhigh/F480high within a CD45low cell population. (C) Quantification of 

IgG immunostaining revealed low levels of IgG antibodies within the brain parenchyma of all 

groups. High IgG presence in control photothrombotic brain tissue (PTB+, ischemic stroke 

model). (D) Biocytin-TMR intensity across murine CNS slices, each line represents a mouse, 

symbols denote slice. Bar graphs indicate mean and s.e.m. with statistical significance 

determined by one-way ANOVA with post hoc Dunnett’s test; CBLM = cerebellum, PFC = 

prefrontal cortex.  
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Fig. S.6 Altered Hippocampal Metabolomics and PUFA Metabolism in Malnourished Mice 

 

 

 

Fig. S.6 Legend 

(A) PCA (+/- ion channels) and PLSDA (+ ion channel) of untargeted metabolomics from 

murine hippocampi. (B) Putative m/z identification for differentially abundant metabolites 

determined by Metaboanalyst v. 3.0/4.0 (one-way ANOVA, Padj < 0.05, post-hoc Fischer’s 

LSD), features annotated against METLIN databases. (C) Chow weights/day normalized to 

number of mice per cage. Chow consumption data from three cages (n = 9), averaged across 

three 24 hr timepoints, each symbol represents a cage. (D) ω6/ω3 ratio from cortical CON, MAL, 

and MAL-BG tissue, normalized to controls. Bar graphs indicate mean and s.e.m. with statistical 

significance determined by Kruskal-Wallis post hoc Dunn’s test (chow consumption) or one-way 

ANOVA with post hoc Tukey’s test (fatty acid metabolism). 
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Table S.2 Oxidative Pathways (RNA-Seq) 

 

 

 
Table S.2 Legend 
 
Gene expression of microglial oxidation pathways from RNA-Seq data.  
 
 
 
 
 
 
 
 
 
 

Genes linked to Microglial Oxidation Pathways RNA-Seq (CD11b+) DEG analyses
GeneCards® (Weizmann Institute; https://www.genecards.org)
AmiGO 2 (http://amigo.geneontology.org/amigo) 

Arachidonic Acid -> NADPH Oxidase Pathway
MAL-BG v CON
Gene Gene Function baseMean log2FoldChange lfcSE stat pvalue padj
S100a8* Calcium binding protein 3592.105801 2.64172224 0.97523693 2.708800445 0.00675269 0.0208964
S100a9 Calcium binding protein 5529.04365 2.831110905 1.0112796 2.799533299 0.00511765 0.01677229

MAL-BG v MAL
Gene Gene Function baseMean log2FoldChange lfcSE stat pvalue padj
S100a8 Calcium binding protein 3592.105801 2.340699151 0.93229516 2.510684646 0.01204973 0.03349451
S100a9 Calcium binding protein 5529.04365 2.430597404 0.96682999 2.513986367 0.0119375 0.03324615

GO:0016175 superoxide-generating NADPH oxidase activity
GO:0043020 NADPH oxidase complex

MAL-BG v CON
Gene Gene Function baseMean log2FoldChange lfcSE stat pvalue padj
Cyba Cytochrome b-245 5062.35957614 1.26081471 0.24423084 5.16238946 0.00000024 0.00000567
Cybb Cytochrome b-245 1919.39593717 0.04744807 0.33950588 0.13975625 0.88885258 0.92295130
Ncf1 neutrophil cytosolic factor 7297.94269368 -0.12797968 0.22020090 -0.58119508 0.56110899 0.66788792
Ncf2 neutrophil cytosolic factor 3025.27657556 0.15687929 0.17658153 0.88842408 0.37431268 0.49631771
Ncf4 neutrophil cytosolic factor 1087.35465236 0.17556710 0.26260265 0.66856562 0.50377261 0.61802429
Noxo1 NADPH oxidase organizer 1 209.71311044 -0.07841787 0.29789151 -0.26324306 0.79236325 0.85317253
Pdgfb platelet derived growth factor B 7416.847941 0.519363668 0.254404554 2.04148731 0.04120241 0.08842124
Sh3pxd2a SH3 and PX domains 2A 1320.48437209 -0.68151553 0.19663674 -3.46586057 0.00052854 0.00270885
Sh3pxd2b SH3 and PX domains 2B 211.38421577 -0.55726303 0.21713396 -2.56644800 0.01027460 0.02925967

MAL-BG v MAL
Gene Gene Function baseMean log2FoldChange lfcSE stat pvalue padj
Cyba Cytochrome b-245 5062.35957614 1.19125478 0.23348647 5.10202915 0.00000034 0.00000717
Cybb Cytochrome b-245 1919.39593717 -0.44862267 0.32449496 -1.38252585 0.16681030 0.26602894
Ncf1 neutrophil cytosolic factor 7297.94269368 -0.03117306 0.21056054 -0.14804799 0.88230489 0.91910712
Ncf2 neutrophil cytosolic factor 3025.27657556 0.07598941 0.16879851 0.45017817 0.65258197 0.74610863
Ncf4 neutrophil cytosolic factor 1087.35465236 0.01009513 0.25095508 0.04022684 0.96791228 0.97902609
Noxo1 NADPH oxidase organizer 1 209.71311044 -0.25943413 0.28429997 -0.91253661 0.36148631 0.48451359
Pdgfb platelet derived growth factor B 7416.84794134 0.65100048 0.24326216 2.67612723 0.00744784 0.02282486
Sh3pxd2a SH3 and PX domains 2A 1320.48437209 -0.43358583 0.18819225 -2.30395154 0.02122536 0.05260199
Sh3pxd2b SH3 and PX domains 2B 211.38421577 -0.49546195 0.20794134 -2.38270055 0.01718617 0.04451986

*Italics indicate DEG
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Fig. S.7 Fatty Liver and Inflammatory Profiling in MAL And MBG Mice 

 

 
 

Fig. S.7 Legend 

(A) Liver weights (top) and body normalized-liver weights (bottom). (B) Proinflammatory 

cytokine levels were comparable within CON, MAL, and MBG livers, samples normalized to 

tissue weight. (C) Non-fasting sera insulin and glucose levels. Bar graphs indicate mean and 

s.e.m. with statistical significance determined by Kruskal-Wallis with post hoc Dunn’s test (liver 

weight and inflammatory panels) or one-way ANOVA with post hoc Dunnett’s test (insulin, 

glucose).  
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Fig. S.8 Diet Alters Liver Metabolome 
 
 

 
 

Fig. S.8 Legend  

(A) PCA plots of untargeted metabolomics via RP-UPLC–FTMS (top) and HILIC-FTMS 

(bottom), data from the negative ion channel, see also Fig. 4.3a. (B, C) MSEA conducted with 

Metaboanalyst v 4.0 reported alterations in metabolomic pathways in the malnourished (MAL + 

MBG, B) and healthy (CON, C) liver. Metabolomic pathways beyond the dotted red bar exhibit 

>1.5-fold enrichment compared to background metabolomic database. Fold enrichment 

determined as number of observed pathways hits divided by expected hits. Untargeted 

metabolomics from the same experiment. Full metabolomic pathway names: *Alpha Linolenic 

Acid and Linoleic Acid Metabolism, **Mitochondrial Beta-Oxidation of Long-Chain Fatty 

Acids. 
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Fig. S.9 Malnutrition Impairs Hepatic Fatty Acid Metabolism 

 

 

 

Fig. S.9 Legend 

(A) The mol% of UFA identified by GC. (B) Ratios of ω6/ω3 hepatic PUFAs were comparable 

across groups. Fatty acid analyses conducted from mice within the same experiment. Bar graphs 

indicate mean and s.e.m. with statistical significance determined by one-way ANOVA with post-

hoc Dunnett’s test.    
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Fig. S.10 Comparable Tail Lengths Following Dietary Reversal  

 

 

 

Fig. S.10 Legend  

Mouse tail lengths at experimental endpoint (11 weeks). Graphs indicates mean and s.e.m. with 

statistical significance determined by one-way ANOVA with post-hoc Tukey’s test.  
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Fig. S.11 Diet and Fecal-Oral Contamination Influence Gut Microbiota  

 

 

 

Fig. S.11 Legend 

(A) Relative abundance of bacterial families determined at arrival (upon weaning), at week 7 

(CON, MBG mice), and at week 11 (CON, C-MBG, MBG, and MBG-R mice). Columns 

represent microbiota composition from the fecal sample of individual mice. (B) Relative 

abundance for select bacterial gavage members following the reversal phase, genus level 

reported. (C) Box plot graph reporting unweighted UniFrac distances to CON mice at week 11. 

Post-reversal UniFrac distance provides a measure of fecal microbiota similarity, C-MBG and 

MBG-R distances are between CON and MBG mice (PERMANOVA, P = 0.001*), pairwise 

analyses reported in Table S.3. Fecal microbiota composition determined by 16S rRNA 

sequencing and analyzed with QIIME (v. 2018.2). Bar graphs in B indicate mean and s.e.m. with 
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statistical significance determined by or Kruskal-Wallis with post hoc Dunn’s test *lowest P-

value possible = 0.001 for 999 permutations (see Table S.3). 
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Table S.3 Microbiome Diversity Analyses 

 

 

 

Table S.3 Legend 

Faith’s Phylogenetic Diversity and Unweighted UniFrac distances from QIIME (v. 2018.2) 

analyses. Week 7 = prior to reversal diet and Week 11 = post dietary reversal. At the 7-week-

timepoint, CMBG = CON, MBGR = MBG, a fecal sample not collected from one MBG mouse.  

Week_7_Faith's_PD
Kruskal-Wallis (all groups)

Result
H 7.712125576
p-value 0.052351375

Kruskal-Wallis (pairwise)
Group 1 Group 2 H p-value q-value
CON (n=8) C-MBG (n=8) 0.540441 0.46225 0.46225

MBG (n=7) 2.263393 0.132464 0.198695
MBG-R* (n=8) 4.411765 0.035692 0.107076

C-MBG (n=8) MBG (n=7) 2.625 0.105193 0.198695
MBG-R (n=8) 4.411765 0.035692 0.107076

MBG (n=7) MBG-R (n=8) 1.084821 0.297621 0.357146

Week_11_Unweighted_UniFrac_Distances
PERMANOVA results
method name PERMANOVA
test statistic name pseudo-F
sample size 32
number of groups 4
test statistic 2.12131
p-value 0.001
number of permutations 999

Pairwise permanova results
Group 1 Group 2 Sample size Permutations pseudo-F p-value q-value
CON C-MBG 16 999 2.2426 0.001 0.0015

MBG 16 999 2.885136 0.001 0.0015
MBG-R 16 999 1.688551 0.006 0.006

C-MBG MBG 16 999 1.60447 0.002 0.0024
MBG-R 16 999 2.025079 0.001 0.0015

MBG MBG-R 16 999 2.238985 0.001 0.0015

Week_11_Faith's_PD
Kruskal-Wallis (all groups)

Result
H 9.042613636
p-value 0.028729648

Kruskal-Wallis (pairwise)
Group 1 Group 2 H p-value q-value
CON (n=8) C-MBG (n=8) 1.863971 0.172167 0.258251

MBG (n=8) 6.352941 0.011719 0.054846
MBG-R (n=8) 0.099265 0.752714 0.903257

C-MBG (n=8) MBG (n=7) 4.863971 0.027423 0.054846
MBG-R (n=8) 0.011029 0.916359 0.916359

MBG (n=8) MBG-R (n=8) 4.863971 0.027423 0.054846
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Fig. S.12 Dietary Reversal Alters Predicted Microbiome Functionality  

 

 

 

Fig. S.12 Legend  

Differentially abundant microbiome pathways connote microbiome functionality. Fecal 

microbiome pathway analyses determined by PICRUSt224 (left) and annotated with the MetaCyc 

(right); reporting Padj < 0.0002.  
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Fig. S.13 Dietary Reversal Affects the C-MBG and MBG-R Liver Metabolome 

 

 

 

Fig. S.13 Legend 

(A) PCA plots of untargeted metabolomics via RP-UPLC–FTMS (top) and HILIC-FTMS 

(bottom), data from the negative ion channel, see also Fig. 5.4. (B) MSEA conducted with 

Metaboanalyst v 4.0 (SMPDB database) reported enriched metabolomic pathways in the MBG 

vs. C-MBG liver metabolome. Metabolomic pathways beyond the dotted red bar exhibit >1.5-

fold enrichment. Fold enrichment determined as number of observed pathways hits divided by 

expected hits. (C) Relative frequency (%) of AAAM microbiome pathways prior to and 

following reversal studies, Padj reported. Functional microbiome analyses conducted via 

PICRUSt224.  
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Fig. S.14 Altered Fatty Acid and Glycerophospholipid Metabolism Linked to Undernourished 

Liver Metabolome and Microbiome  

 

 

 

Fig. S.14 Legend 

GC assessment of hepatic (A) UFA mol% and (B) ω6/ω3 ratios. (C-E) WGCNA228 results: (C) 

the left panel reports associations between metabolomic clusters and clinical traits (left) and 

group/diet (right). Start_Mal_Diet and End_Mal_Diet describe malnourished vs. healthy diet, i.e. 

MBG/MBG-R vs. CON/C-MBG and MBG/C-MBG vs. CON/MBG-R, respectively. WGCNA 

randomly assigned modules a colour name. (D) Three modules were annotated for further 

analyses (1) yellow “GP1” (positive correlation to hepatic steatosis: glycerophopholipid 

enriched), (2) turquoise “GP2” (negative correlation to hepatic steatosis: glycerophospholipid 

and SFA enriched), and red “BA” (no correlation: bile acid enriched). Metabolite rundown of 
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GP1 (top) and GP2 (bottom) modules presenting annotated glycerophospholipid profiles. (E) 

Spearman correlation coefficient between metabolomic module and differentially abundant fecal 

microbiome pathways (PICRUSt224 reporting Padj < 0.0002), † indicates annotated modules and 

MEcolour refers to assigned colour for each modular eigengene. See Chapter 5.6 for detailed 

WGCNA methodology. A and B bar graphs indicate mean and s.e.m. with statistical significance 

determined by ANOVA with post hoc Tukey’s test. For C and E, circle size and colouring 

represent Spearman correlation coefficient (significance = Padj < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 


