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Abstract

In this thesis, an Iterative Learning (IL) approach to disturbance predic-
tion that uses intelligent iteration grouping is proposed for Economic Model
Predictive Control (EMPC), and applied to an Integrated Solar Thermal
System (ISTS) in order to improve controller performance. An ISTS con-
sists of a Solar Thermal Collector (STC) which collects energy from the sun,
a Thermal Storage Tank (TST) which stores this energy for later use, and
an auxiliary Heat Pump (HP) which acts as the actuator for the system,
providing additional energy as required. The disturbance in the system is
then the user hot water demand. In order to optimize the control perfor-
mance of an ISTS with EMPC, it is important to be able to accurately
predict this hot water demand before it happens. To solve this problem, a
novel IL-based approach to disturbance prediction for EMPC is presented.

This approach involves separating long-term disturbance data, which in
this case is user hot water demand, into a number of 24 hour iterations.
These iterations are then further divided into groups using unsupervised
learning based on the individual iteration profiles. Following the grouping
of iterations, each iteration is given features such as the day of the week
it occurs on, and a supervised learning classifier is trained to map from
features to groups in order to predict the group of future iterations. Finally,
IL is applied to learn patterns within each group iteratively and predict the
actual hot water demand trajectory for future iterations.

A simulation of an ISTS using real world hot water demand data then
demonstrates the effectiveness of the proposed approach to disturbance pre-
diction, achieving higher performance EMPC than can be attained with
existing disturbance prediction methods. Specifically, the EMPC imple-
mentation using the IL-based disturbance prediction algorithm is shown to
prevent constraint violations within the ISTS more effectively than all other
EMPC implementations while decreasing the average daily system cost by
over 6%.
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Lay Summary

A majority of the world currently relies on fossil fuels to meet energy de-
mands. These resources are environmentally harmful and are nonrenewable,
thus solar energy is becoming a more popular alternative. One application
of solar energy is to provide hot water for household tasks. In this setting an
additional heat source is often paired with the solar system to ensure that
hot water demands can always be met. This added heat source is operated
by a control system, which functions more efficiently if it knows how much
hot water is required ahead of time. That is the main focus of this the-
sis, where a method for accurately predicting the future hot water demand
for a household based on past hot water usage is presented. This accurate
prediction improves the efficiency of the control system, thus reducing sys-
tem costs and making the use of solar energy for heating applications more
feasible.
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Chapter 1

Introduction

A majority of the world currently relies on fossil fuels to meet energy de-
mands. These resources are harmful to the environment and do not re-
plenish themselves, causing energy prices to rise as they become more and
more scarce [1]. One abundantly available renewable alternative is the sun,
which provides the earth with more raw energy in one hour than the human
population consumes in an entire year [2]. When it comes to solar energy,
solar thermal systems are the most efficient option and are typically used
for heating applications as opposed to electricity production. While heat-
ing is not the only energy requirement for humans, it represents a crucial
area of need. This need is particularly strong in northern countries such
as Canada, where hot water accounts for approximately 25% of domestic
energy consumption [3].

1.1 Solar Thermal Systems

The idea of harnessing the sun’s energy for heating applications has been
around for some time. In fact, the origin of solar thermal systems as they
are known today can be traced back to patents from the early 1900’s [4].
These systems are employed all over the world, providing renewable heat
energy to numerous countries. This technology is also used in a wide range
of applications, from large solar thermal power plants which provide heat
to large factories, to small residential systems that provide hot water to
individual households [5–7]. Some examples of solar thermal systems in use
can be seen in Fig. 1.1. This thesis focuses specifically on domestic solar
thermal systems.

Two main components form the backbone of modern residential solar
thermal systems. These are the Solar Thermal Collector (STC) which ab-
sorbs the thermal energy from the sun, and the Thermal Storage Tank (TST)
which stores this energy for future use, acting as a sort of battery for the
system. Most domestic solar thermal systems also feature an auxiliary heat
source to ensure hot water demands can always be met. The combination
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(a) Example of a large solar thermal power plant
(https://www.sciencealert.com)

(b) Example of a small residential solar thermal setup
(https://www.thegreenage.co.uk)

Figure 1.1: Two examples showing the wide variation in scale of solar ther-
mal systems

of this external source with an STC is called an Integrated Solar Thermal
System (ISTS), which is the primary subject of this thesis.

1.2 Problem Statement

In order to truly realize the potential in harnessing the sun’s energy, the sys-
tems in place to harness it must provide clear incentives relative to classical
energy production methods, beyond just that of decreased environmental
impact. In residential settings, solar thermal systems are not nearly as
prevalent as other more traditional methods for hot water heating such as
gas and electric. The main reason for this is the high upfront cost to im-
plement a solar thermal system, coupled with limited future returns. These
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limitations in returns are due to inefficiencies in current implementations
of ISTSs for domestic applications. With this in mind, by improving the
performance of ISTSs, their wide spread use becomes a lot more viable.

The goal of this research is to improve the performance of domestic ISTSs
from a control engineering perspective. This means decreasing the operat-
ing costs of the system while simultaneously improving the ISTS’ adherence
to hot water temperature constraints relative to existing control methods.
This will be accomplished by accurately predicting future Hot Water De-
mand (HWD) in a given household, and incorporating this prediction into
a modern control algorithm so as to increase the algorithms effectiveness in
the context of this domestic solar thermal application.

1.3 Control Review of an ISTS

When it comes to controlling an ISTS, it is important to maximize efficiency
by using the auxiliary heat source intelligently. Past research into this ap-
plication has found Economic Model Predictive Control (EMPC) to be the
most effective control algorithm as it can be optimized while accounting for
case specific factors such as input constraints. Halvaard et al. used simple
linear EMPC for a smart solar tank to control the temperature of a house,
showing that EMPC led to a decrease of up to 25% in annual electrical
costs compared to a simple on/off controller, provided the prediction hori-
zon was sufficiently long [8]. Godina et al. further highlighted the benefits of
EMPC by comparing its performance with on/off and Proportional-Integral-
Derivative (PID) controllers for domestic energy management. They found
that the use of EMPC saved consumers approximately 9.2% in energy con-
sumption costs [9]. Weeratunge et al. then provided more insight by using
EMPC to reduce the operational costs of a solar assisted heat pump system
compared to conventional control methods, achieving a 7.8% cost reduc-
tion [10].

1.3.1 Economic Model Predictive Control

Model Predictive Control (MPC) is a predictive feedback control methodol-
ogy that optimizes the control input of a process through the use of a pro-
cess model while satisfying system specific constraints [11]. EMPC builds
on MPC by incorporating the economic cost of the process into the cost
function to be optimized. As a result, EMPC is able to combine economic
optimization with optimal system performance, which has led to a rapid in-
crease in its popularity in the process control industry [12]. Numerous stud-
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ies have examined the impact of EMPC, demonstrating its benefits across
various applications from chemical process control [13, 14] to building en-
ergy control [15, 16]. The range of applications where EMPC is effective
also includes solar thermal systems, and EMPC represents the base control
algorithm used in this research.

1.3.2 Shortcomings

An issue with the majority of research to date into EMPC for solar thermal
and general energy saving applications, however, is the lack of considera-
tion for the impact of different user load scenarios. In relation to domestic
solar thermal systems used for heating water, most works assume a con-
stant daily HWD profile for simplicity [17], whereas in reality user load can
vary drastically, both day-to-day within a household and between different
households [18]. This is an area of concern as EMPC algorithms tend to
behave poorly when system output predictions are inaccurate, which would
be the case with any model that assumes a single load trajectory. EMPC
algorithms have even been shown to perform worse than a classical PID
controller in the presence of disturbance prediction error, both in terms of
constraint violation and economic cost [19].

To overcome this challenge, a number of disturbance prediction meth-
ods have been proposed, including time-series methods such as Autoregres-
sive Integrated Moving Average Models (ARIMA) [20–22], and hybrid ap-
proaches that combine autoregressive processes with artificial neural net-
works (ARANN) [23, 24]. While useful in certain settings, these methods
require constant online updates, which can be quite taxing computationally
for many process control problems that already incorporate online optimiza-
tion for EMPC [25, 26]. Further, these types of time-series methods tend
to perform poorly when it comes to long-term prediction. Such poor distur-
bance prediction is an issue when it comes to implementing EMPC, as this
control scheme requires accurate prediction of the state trajectory over the
entire control horizon [27].

1.4 Research Outline

One aspect of many control problems that can be exploited in order to pro-
vide more accurate prediction is a cyclic nature to the disturbance pattern.
Humans are creatures of habit who tend to repeat similar daily routines.
As a result, any control problem that features human load usage will tend
to have a repetitive disturbance. This involves the control of any process
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dealing with daily human consumption from electricity use to internet ac-
tivity levels to any type of heating or cooling application across commercial,
residential, and industrial settings [28–31]. Of course, this also includes
domestic ISTSs for heating water. While different households use differ-
ent amounts of hot water and this usage can vary day-to-day, individual
households often follow repetitive load profile patterns [32, 33]. With this
repetitive property in mind, an effective approach for HWD prediction in
the ISTS application is to utilize Iterative Learning (IL) techniques to take
advantage of the repetitive nature of domestic hot water usage.

IL is based on the idea that the performance of a system completing
a repetitive task can be improved by learning from past iterations of the
task [34]. To date some attempts to combine IL with MPC have been
undertaken in literature. These efforts have mainly focused on using IL to
update the terminal constraints in the MPC algorithm [35], or to improve
controller performance in batch processes by iteratively updating the model
parameters or state estimation [36, 37]. Contrarily, the idea presented in
this research is to employ the IL framework to predict future disturbances,
allowing for more effective control.

In order to maximize the disturbance prediction performance of IL, it is
beneficial to sort disturbance iterations into groups. When discussing do-
mestic hot water consumption, the period of repetition is 24 hours. The
consumption pattern over each of these iterations adheres to some cyclic
pattern, but will not be constant and can fluctuate drastically from one
iteration to the next [17]. With these fluctuations in mind, by grouping
similar iteration types together before applying IL, the patterns of each spe-
cific group can be learned separately, allowing for more accurate prediction
than could be achieved by simply using IL to learn the general pattern of
all iterations combined.

When it comes to grouping disturbance iterations for the purpose of aid-
ing in IL-based prediction, however, it is also necessary to predict which
group future iterations will likely belong to. This means that the grouping
process as a whole involves both the clustering and classification of distur-
bance iterations. There are a number of ways to tackle these tasks ranging
from simple naive methods, such as grouping and classifying iterations based
on a single measurable feature, to more complex methods, such as incorpo-
rating machine learning techniques. This research will explore the intelligent
grouping and classifying of iterations using both supervised and unsuper-
vised machine learning methods, and present this approach along with the
IL idea discussed above.

The main contribution of this thesis is to propose a novel IL-based distur-
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bance prediction algorithm that works to improve EMPC performance to a
level that cannot be achieved with existing disturbance prediction methods.
This algorithm iteratively analyzes grouped disturbance iterations, recog-
nizes patterns within each group, and uses these patterns to make distur-
bance predictions for future iterations. In order to improve the functionality
of the algorithm, a machine learning based procedure to group the distur-
bance iterations intelligently is also proposed as a further contribution of
this research.

1.5 Thesis Organization

In order to convey the contributions described above in Section 1.4, this
thesis is organized as follows. In Chapter 2, a description of the specific ISTS
considered in this research is given, and a state space model for the system
is detailed. The control objectives are then explained in Chapter 3 and the
EMPC strategy is designed. The IL algorithm for disturbance prediction
is then presented as a means to improve the performance of the designed
EMPC in Chapter 4. Next, the grouping aspect of the IL algorithm is further
explored in Chapter 5, and a procedural approach to iteration clustering and
classification using machine learning is described. A system simulation using
real domestic hot water consumption data demonstrates the efficiency of the
proposed IL-based disturbance prediction approach to EMPC in Chapter 6.
Finally, the research outcome is summarized in Chapter 7 and potential
areas for future work are discussed.
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Chapter 2

System Description

In this chapter, the ISTS considered in this research is introduced and a
discrete-time nonlinear state space model for the ISTS is described.

2.1 Integrated Solar Thermal System

Figure 2.1: Integrated solar thermal system configuration

The ISTS in question features an STC, a TST, and an auxiliary heat
source in the form of an electric Heat Pump (HP). All components are set
up in a parallel fashion as seen in Fig. 2.1. The system has three loops, each
containing a pump operating at a constant speed to circulate the fluid inside.
In the STC loop the working fluid is glycol, while in the other loops it is
water. A Heat eXchanger (HX) is used to transfer heat from the STC loop to
the TST loop. The HP loop then supplies further heat to the TST as needed.
The control input for the system deals with actuating the compressor speed
ratio of the HP to select the amount of auxiliary heat added to the system
and will be described in more detail later on. Finally, the user HWD is
taken from the top of the TST and is replaced by relatively cold tap water
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at the bottom. The system also features numerous temperature sensors to
measure the temperature of the working fluid at different points throughout
the configuration, as well as a flow meter that measures the HWD.

2.2 State Space Model

Consider a general discrete-time nonlinear state space model:

xk+1 = f(xk, uk, wk), (2.1)

where xk ∈ Rn is the state vector at time k, uk ∈ Rm is the control input
at time k, wk ∈ R is the disturbance vector at time k, and f is a nonlinear
function with respect to these vectors.

For the specific model describing the ISTS seen in Fig. 2.1, this discrete-
time nonlinear state space model takes the following form:

Tk+1 = f(Tk, uk, wk) (2.2)

Here T ∈ Rn is the state vector consisting of the fluid temperatures at n
different locations in the ISTS, measured with n temperature sensors placed
throughout the system. This n state setup serves as a lumped approximation
to the real system. Additionally, u ∈ R is the compressor speed ratio of the
HP and w ∈ R is the user HWD (ṁhwd) [Kgs ]. Lastly, the output (y) of the
model is the temperature at the top layer of the TST.

The details of the nonlinear function f(Tk, uk, wk) describing the rate of
temperature change in the various locations of the ISTS are then detailed
throughout the rest of this section. Note that the presented equations de-
scribe a continuous-time system, but this system was discretized for use in
EMPC, as described in Chapter 3. A 7-state version of the general state
space model in continuous-time can be seen in closed form in the Appendix.
In the 7-state case the locations of the seven fluid temperatures comprising
the state vector are denoted by the temperature sensors in Fig. 2.1.

2.2.1 Conservation of Energy

When it comes to modeling a thermal system, the fundamental equation to
consider is the conservation of energy principle:

Q̇in − Q̇out = Ėthermal, (2.3)

where Q̇in [kJs ] and Q̇out [kJs ] are rates of changes of the total energy entering

the system and total energy leaving the system, respectively. Ėthermal [kJs ]
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is then the rate of change of the total energy of the system. This term can
then be written as

Ėthermal = mCpṪ, (2.4)

with m[kg] being the mass of the fluid in the system, Cp [ JK ] being the

specific heat capacity of the fluid, and Ṫ [Ks ] being the time rate of change

of the fluid temperature. Additionally, Q̇in and Q̇out can be further broken
down as

Q̇in = ṁCpTin + Q̇in,E , (2.5)

Q̇out = ṁCpTout + Q̇out,E , (2.6)

where ṁ [kgs ] is the mass flow rate of the fluid and Tin [K] and Tout [K] are
the fluid temperatures at the inlet and outlet of the system, respectively.
Here the first term in each equation represents the rate of energy added
to or taken from the system by moving fluid, and the second term in each
represents the rate of energy being added to (Q̇in,E [kJs ]) or removed from

(Q̇out,E [kJs ]) the system by its surroundings.
In the following subsection, this idea of the conservation of energy is

explored for each of the individual components of the ISTS.

2.2.2 Component Modeling

To begin, components that can be modeled as static systems are examined.
These are the STC and the HP.

Solar Thermal Collector

Energy generated by the STC can be described as follows:

Q̇stc = AeffGTKατηstc. (2.7)

Here Aeff [m2] is the area of the STC normal to the solar radiation, GT
[ W
m2 ] is the solar intensity which is based on the relative position of the sun

and the STC, Kατ is the incident angle modifier, and ηstc is the efficiency of
the STC as provided by the manufacturer of the specific STC being used.
Note that the specific method for calculating Aeff , GT , and Kατ is given
in [38]. The temperature of the fluid leaving the STC is then computed as

Tout,stc = Tin,stc +
Q̇stc

ṁstcCp,stc
. (2.8)

9



Heat Pump

Similar to the STC, the temperature of the fluid exiting the HP can be found
using:

Tout,hp = Tin,hp +
Q̇hp

ṁhpCp,hp
, (2.9)

where Q̇hp is the energy supplied by the HP. In this case Q̇hp is written as

Q̇hp = Q̇hp,fPhp, (2.10)

where Q̇hp,f is the maximum heating capacity of the HP as given by the
manufacturer and Php is the percentage of the heating capacity used based
on the input compressor speed ratio of the HP. This percentage can be
calculated based on work done in [38] using:

Php = −0.3498V 2
hp + 1.35Vhp, (2.11)

where Vhp is the compressor speed ratio of the HP and is equivalent to u in
(2.2).

Note that the nature of the heat pump and the compressor speed ratio
will be discussed in further detail in Chapter 3. For now the focus shifts to
dynamic components of the ISTS.

Heat Exchanger

In the HX, hot glycol from the STC loop flows through a cylindrical coil in
one direction, while relatively cold water from the TST loop flows through
a shell surrounding the coil in the other direction. As a result of the close
proximity of these two fluids, heat is transferred from the glycol to the water.
In addition to the heat gained from the glycol, the water in the shell may
also lose some heat to the surrounding air. The resulting equations for Q̇in,E
and Q̇out,E within each control volume inside the HX are:

Q̇in,E = UcoilAcoil(Tglycol − Twater), (2.12)

Q̇out,E = UshellAshell(Twater − Tamb). (2.13)

Here Ucoil[
kJ

m2Ks
] and Ushell[

kJ
m2Ks

] are respectively the heat loss coefficients
between the glycol and the water, and between the water and the air. These
can be determined based on the specifics of the HX being used along with
the heat transfer coefficients between glycol and water and between water
and air. Further, Acoil[m

2] is the area of contact between the coil and the
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shell within each control volume, Ashell[m
2] is the area of contact between

the shell and the surrounding air within each control volume, Tglycol[K] is
the glycol temperature inside the coil within each control volume, Twater[K]
is the water temperature inside the shell within each control volume, and
Tamb[K] is the ambient air temperature.

Thermal Storage Tank

The TST in this ISTS is a cylindrical tank with a vertical orientation that
is filled with water. For modeling purposes the volume of the TST is broken
into a number of layers where it is assumed that the temperature of the water
within each layer is uniform, and that the temperature gradually decreases
from the top layer to the bottom layer. It is further assumed that the flow
rate of the tap water entering the bottom of the TST is equal to the HWD
such that the volume in the TST remains constant, and that each layer in the
TST simultaneously experiences three separate flows. These flows consist of
the flow through the TST loop (ṁtst), the flow through the HP loop (ṁhp),
and the HWD (ṁhwd). The resulting energy balance for convective heat
transfer to and from the water in the jth level of the TST due to these flows
is then given as

Q̇outlet − Q̇inlet = Cp(ṁtst + ṁhp)(Tj − Tj+1) +Cpṁhwd(Tj−1 − Tj). (2.14)

Here Tj of course represents the temperature of the water in the jth level of
the TST. The heat loss from level j to the surrounding air is then given as

Q̇out,E = UtstAj,tst(Tj − Tamb), (2.15)

where again Utst[
kJ

m2Ks
] is the heat loss coefficients between the water in

level j of the TST and the surrounding air, and Aj,tst[m
2] is the area of

contact between the jth level of the TST and the surrounding air. Note that
conductive heat transfer between the various fluid levels within the TST is
assumed to be negligible and is thus ignored.

Pipes

In this sort of ISTS the pipes lead to negligible heat loss relative to other
heat loss in the system, as was shown by Rostam et al. in [39]. This means
that fluid temperature is assumed to be constant as fluid flows through the
pipes, and the effect of the pipes can be ignored in developing the state
space model.
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Chapter 3

Controller Design

In this chapter, the control objectives for the ISTS are stated and the base
EMPC set up for use in realizing these objectives is defined.

3.1 Control Objective

The control objectives for the ISTS are as follows:

(O1) Maintain the top layer temperature in the TST within a desired tem-
perature range at all times by regulating the compressor speed ratio
of the HP.

(O2) Minimize HP operating costs while completing (O1).

The main challenge in achieving these objectives is the varying nature of
hot water demand. The ideal controller must be able to efficiently perform
the control task for households featuring a unique load pattern that changes
over time.

3.2 Economic Model Predictive Control

For the ISTS, an EMPC problem with a prediction horizon of N can be
formulated as follows [40]:

min
{uk+j|k ∈ U}Nj=1,

{(
¯
γj , γ̄j)}Nj=1

N∑
j=1

J(Tk+j|k, uk+j|k,
¯
γj , γ̄j , k),

s.t.

{
Tk+j+1|k = f(Tk+j|k, uk+j|k, ŵk+j|k),

¯
T−

¯
γj ≤ Tk+j|k ≤ T̄ + γ̄j , j = 1, . . . , N.

(3.1)

Here
¯
T ∈ Rn and T̄ ∈ Rn respectively represent the component-wise lower

and upper boundaries of the desired range of the state vector, and the nota-
tion vk+j|k indicates the value of a vector v at time k+ j when calculated at
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time k. Further, the control input for the system is constrained to U := [0, 1]
with zero relating to the HP being turned off and one relating to the HP
functioning at full heating capacity. Lastly, to maintain the state vector
within the desired range while allowing slight violations to avoid an infeasi-
ble optimization problem, soft constraints are applied with the non negative
slack variables γ̄j ∈ Rn and

¯
γj ∈ Rn. Note that (3.1) can be solved using

various non-convex optimization methods such as the Interior Point Opti-
mization (IP) method or Sequential Quadratic Programming (SQP) [41, 42].

The cost function J in (3.1) consists of two terms:

J(x, u,
¯
γ, γ̄, k) := JEC(x, u, k) + JCV(

¯
γ, γ̄). (3.2)

The first term JEC represents the economic cost of operating the system
while the second term JCV penalizes state constraint violations. The second
term is detailed further as

JCV (
¯
γ, γ̄) :=

¯
η‖

¯
γ‖2 + η̄‖γ̄‖2, (3.3)

where the positive scalar constants
¯
η and η̄ can be tuned to increase or

decrease the controller’s emphasis on preventing constraint violations.
Looking again at (3.1), ŵk+j|k indicates the disturbance prediction at

time k for time k + j. It is this distrubance prediction that is the main
focus of this research. In the past, research into EMPC has considered two
common approaches to deal with this disturbance prediction. The first is to
simply use the average disturbance profile for prediction [43, 44]. The issue
here is that the prediction will tend to be inaccurate in many cases, leading
to poor controller performance. The second common approach is a robust
approach that uses the worst possible disturbance for prediction [45, 46].
This method may lead the controller to be overly conservative, resulting in
unnecessarily high economic cost to the system.

3.3 Actuator Limitations

As described in the previous chapter, the input u for the ISTS is the com-
pressor speed ratio of the HP. Theoretically it makes sense that a HP could
contain a variable speed compressor and so any input between 0 and 1 would
be possible. In reality though, the vast majority of commercially available
HPs are two-stage or three-stage. A two-stage HP is such that its only op-
erational level is at full heating capacity which corresponds to input values
of either u = 0 or u = 1, while a three-stage HP can operate at input values
of u = 0, u = 0.5, or u = 1. As a result, the conventional EMPC approach
described in the previous section is not feasible here.
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3.3.1 Possible Approaches

In order to implement EMPC despite the compressor speed limitations as-
sociated with most HPs, there are two options. The first is to implement
a variation of EMPC that optimizes a set of discrete inputs over the con-
trol horizon. Depending on the HP available, this could be done using only
inputs of 0 and 1 or with inputs of 0, 0.5. and 1. An example of the for-
mulation of this sort of EMPC using on/off inputs can be found in [47].
The issue with this approach is that there will inevitably be degradation of
the control performance from both a constraint violation perspective and
an economic cost perspective relative to that of normal EMPC paired with
a variable speed HP. If at any point the optimal control input for the next
time step is a value outside of the set of possible discrete input values, then
the performance of the discrete EMPC approach will fall short of the normal
EMPC approach. Additionally, the new discrete EMPC problem becomes
much harder to optimize than the problem presented in (3.1).

Figure 3.1: Pulse width modulation example

The second option is to utilize Pulse Width Modulation (PWM), which
allows two-stage and three-stage HPs to function as variable speed HPs as
far as control algorithms are concerned [48]. The way PWM works for an
on/off actuator is to turn the actuator fully on for a portion of each time
step so as to replicate the effect of the actuator acting at some level less than
100% for the entire time step. An example of this is displayed in Fig. 3.1,
where the black line represents the actual actuator signal while the brown
line represents the average actuator level over each time step. This process
can also be adapted to a three-stage actuator by pulsing the actuator at 50%
to achieve output levels below 50% and pulsing the actuator between 100%
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and 50% to achieve output levels above 50%. From an EMPC perspective,
PWM allows the algorithm to function as intended, determining the optimal
control input from a continuous set. In the ISTS environment, this optimal
input is then implemented by pulsing a two-stage or three-stage heat pump
for the correct portion of the time step as opposed to simply setting the
compressor speed ratio to the optimal input for the whole time step.

The clear benefit of the PWM approach relative to the discrete EMPC
approach is that the former will perform identically to a true variable speed
HP from a constraint violation perspective. This is true for both two-stage
and three-stage HPs so long as the frequency of actuator action comes in at
approximately one actuation or less every 5 minutes. This limit is in place
so as to prevent damage to the pump [49]. As a result, the time step for
control action in the ISTS should be set no lower than 10 minutes, which is
very reasonable considering the relatively slow nature of thermal systems.

While the PWM approach allows an ISTS with a two-stage or three-
stage HP to function as if it had a variable speed HP as far as constraint
violations are concerned, it will lead to increased costs due to the nature
of heat pump power and energy curves. These costs are analyzed in the
following subsection.

3.3.2 Pulse Width Modulation Cost Analysis

In order to compare the cost of a PWM approach with a two-stage HP and
with a three-stage HP to that of a variable speed HP, it is first necessary
to determine how to implement PWM. Looking to (2.11) it can be seen
that Php(1) = 1. This implies that for implementing the two-stage case it
is simply a matter plugging the desired compressor speed ratio into (2.11),
obtaining an operating percentage, and turning the two-stage HP on for that
same percentage of the time step. The three-stage case requires slightly more
work but can also be determined from (2.11).

The cost of operating the HP can then be calculated by multiplying the
amount of electrical power needed by the cost of electricity. The amount of
power needed is actually calculated in a very similar manner to the heating
capacity calculation in (2.10), with the power calculation given as

Ėhp = Ėhp,fPĖhp . (3.4)

Here Ėhp is the power required to run the HP, Ėhp,f is the power required
to run the HP at full heating capacity, and PĖhp is the percentage of that

full power actually needed. PĖhp is based on the compressor speed ratio and
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can be found using the following equation based on work completed in [38]:

PĖhp = 0.2597V 2
hp + 0.7448Vhp. (3.5)

Figure 3.2: Cost comparison between a two-stage HP, a three-stage HP, and
a variable speed HP at various compressor speed ratios

The actual cost and heating capacity of a HP will depend on the specific
HP being used. Therefore, some assumptions must be made in order to
compare the cost of a two-stage HP with PWM, the cost of a three-stage HP
with PWM, and the cost of a variable speed HP in a general sense. Firstly,
it is assumed that all HPs are identical in terms of their maximum heating
capacity, and this value is assumed to be 8 kW. The cost of electricity is then
taken as 10 cents per kWh. Based on these assumptions, a cost comparison
of the three HP options can be seen in Fig. 3.2. In the figure, the blue
curve represents the cost to run the variable speed HP for an hour at the
various compressor speed ratios. The red and yellow curves then represent
the minimum cost to supply the same amount of heat energy with a two-
stage HP and a three-stage HP, respectively. It is clear in the figure that,
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due to the discrepancy between the power and the heat capacity curves,
the PWM approach costs more to supply the same amount of heat energy.
That being said, the three-stage HP is much more cost effective than the
two-stage HP, and offers very comparable costs to that of the variable speed
HP.

To conclude, three-stage HPs are available for purchase and, when incor-
porating PWM, are able to perform quite similarly to variable speed HPs.
Further, the PWM approach allows EMPC to be implemented as described
by (3.1).

In the next chapter, an effective approach to determining ŵk+j|k in (3.1)
based on the concept of IL is proposed so as to improve the performance of
the ISTS.
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Chapter 4

Iterative Learning for
Disturbance Prediction

In order to achieve the control objectives defined by (3.2), a controller struc-
ture is proposed in Section 4.1, followed by a description of the disturbance
prediction problem to be solved in Section 4.2 and an explanation of a novel
solution to this problem in the form of an IL method for disturbance predic-
tion in Section 4.3. The memory requirements of the proposed IL method
are then defined in Section 4.4 and a theorem supporting the validity of
the proposed IL approach is provided in Section 4.5. Note that, while the
disturbance in this research is the HWD of the ISTS, this chapter is written
so as to describe the IL approach to disturbance prediction in general.

4.1 Control Framework

Figure 4.1: Control framework of proposed method

In typical IL control, the error in a system’s output relative to a reference
trajectory is used to adjust the input for the next iteration [34]. In contrast,
this research uses disturbance information from past iterations along with
the error in past predictions to make disturbance predictions for the next it-
eration. The block diagram for the control framework is depicted in Fig. 4.1.

18



In this framework, previous disturbance information is fed into the IL por-
tion (dash-dotted rectangle in Fig. 4.1) of the controller, which outputs an
updated disturbance trajectory prediction after each iteration for use in the
EMPC system model. Note that, in addition to the prediction algorithm,
the IL portion of the disturbance predictor also contains a memory compo-
nent to store past information for use in future predictions. The specifics of
the IL prediction process are detailed further in Section 4.3.

4.2 Disturbance Trajectory Prediction Problem

In order to formulate a disturbance trajectory prediction problem, some
notation is first introduced:

W :=
[
w1, w2, . . . , wkf

]
. (4.1)

Here W is a disturbance iteration that contains kf discrete disturbance
values representing its disturbance trajectory. Now consider a series of M
disturbance iterations:

W1,W2, . . . ,WM , (4.2)

where the subscript of W denotes the iteration number and Wi ∈ Rkf ,
i = 1, 2, . . . ,M .

Iterations can also be grouped with the help of a grouping strategy. The
specific intelligent iteration grouping strategy used in this paper is detailed
in Chapter 5. Based on the chosen grouping strategy, if a disturbance iter-
ation Wi belongs to group gi then this grouping will be indicated with the

superscript as W
(gi)
i .

As an example, let us assume a six-day disturbance signal that exhibits
one distinct pattern on weekdays and another on weekends. This signal can
be divided into six iterations Wi, i = 1, . . . , 6. If it is assumed that the first
iteration occurs on a Wednesday and iterations are naively grouped based
on whether they fall on a weekday (g = 1) or a weekend (g = 2), then the
six iterations can be denoted with grouping information as

W
(1)
1 ,W

(1)
2 ,W

(1)
3 ,W

(2)
4 ,W

(2)
5 ,W

(1)
6 . (4.3)

A possible sequence of disturbance iterations for such a system, along with
their groupings, are displayed in Fig. 4.2. Here it is clear that the weekdays
and the weekend days have different patterns, with the peak value in the
morning and in the evening respectively.

With the notation described above, the disturbance profile prediction
problem is then formulated as follows.
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Problem 1. It is assumed that the past M disturbance iterations are known,
and that they have been grouped into G separate groups:

W
(gi)
i , gi ∈ {1, . . . , G}, i = 1, . . . ,M. (4.4)

It is also assumed that the group gM+1 of iteration M + 1 is known, even
though the future disturbance trajectory WM+1 is not. Under these assump-
tions the disturbance prediction problem is to obtain a prediction for the next

iteration W
(gM+1)
M+1 denoted by Ŵ

(gM+1)
M+1 .

When related directly to the previous example, Problem 1 is to predict
the disturbance trajectory for the seventh iteration based on the distur-
bances from the previous six iterations.

4.3 Disturbance Trajectory Prediction Algorithm

In this subsection the proposed disturbance trajectory prediction algorithm
will be presented mathematically. The prediction algorithm actually consists
of two sub-algorithms, which are denoted the primary prediction algorithm
and the final prediction algorithm. As a compliment to the mathematical
descriptions of these two algorithms, further explanations and examples will
be given in Section 4.3.1 and Section 4.3.2 for the primary prediction and
final prediction algorithms, respectively.

To begin, let us consider general set of K vectors

VK := {v1, v2, . . . , vK}. (4.5)

A weighted averaging function for this general set of vectors can then be
defined as

Aρ {VK} :=
1∑K
d=1 ρd

K∑
d=1

ρdvK+1−d, (4.6)

with ρ ∈ RK+ being a given weighting factor selected by the user on a case

by case basis. Note that in the case where ρ = ~1 then the averaging function
will simply be denoted as A.

Next, a set of the previous D disturbance iteration vectors belonging to
the same group g and occurring on or before iteration M can be defined

as W(g)
M,D. Using the example from Section 4.2 again, the set of the last 3

iteration vectors in group g = 1 occurring on or before iteration 6 is defined
as:

W(1)
6,3 :=

{
W

(1)
6 ,W

(1)
3 ,W

(1)
2

}
, (4.7)
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while the set of the last 2 iterations in group g = 2 is:

W(2)
6,2 :=

{
W

(2)
5 ,W

(2)
4

}
, (4.8)

With this notation in place, the following iterative algorithm for the
primary disturbance trajectory prediction is proposed:

Ŵ
(gM+1)
M+1 = Aρ

{
W(gM+1)
M,D

}
(4.9)

In this algorithm, the primary disturbance trajectory prediction for iteration
M + 1 is taken as a weighted average of the disturbance trajectories for the

past D iterations belonging to group gM+1. Note that Ŵ
(gM+1)
M+1 is un-bolded

to distinguish it as the primary prediction.
In addition to utilizing past disturbance information, the proposed IL

prediction algorithm also makes use of the error in past predictions. This is

done by comparing the primary prediction Ŵ
(gi)
i for each iteration with the

actual disturbance W
(gi)
i once the iteration has occurred. Specifically, the

error in the primary prediction for iteration i is defined as

E
(gi)
i :=

(
W

(gi)
i − Ŵ (gi)

i

)
� Ŵ (gi)

i , (4.10)

where � denotes element-wise division. A set of the error in the primary
prediction of the last Dα disturbance iteration vectors belonging to group g

and occurring on or before iteration M can then be defined as E(g)M,Dα
. The

resulting error in past primary predictions is then incorporated in the final
disturbance trajectory prediction algorithm, which is proposed as:

Ŵ
(gM+1)
M+1 =

[
ŵ1, ŵ2, . . . , ŵkf

]
= α

(gM+1)
M+1 � Ŵ (gM+1)

M+1 , (4.11)

where
α
(gM+1)
M+1 := ~1 +A

{
E(gi)M,Dα

}
, (4.12)

and � denotes element-wise multiplication. As a whole, α
(gM+1)
M+1 ∈ Rkf

is a vector representing the average percentage error in the disturbance
prediction at each time over the past Dα iterations of group gM+1. It is
used to account for trends, such as seasonal trends, in the disturbance data
that lead to consistent errors in primary disturbance predictions. Since the

goal of α
(gM+1)
M+1 is to correct for consistent errors, all past errors are of equal

importance and no weighting is used in (4.12). Random errors not exhibiting

any particular trend have little impact on α
(gM+1)
M+1 as they tend to cancel each

other out in the averaging function [50].
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Figure 4.2: Demonstration of grouping and primary disturbance prediction

4.3.1 Primary Prediction

In order to better understand the primary prediction algorithm, let us circle
back to the example given in Section 4.2 that features the disturbance itera-
tions displayed in Fig. 4.2. As mentioned, the problem here is to predict the
disturbance trajectory for the upcoming iteration based on the disturbances
of the previous iterations. By choosing D = 3 and ρ =

[
1, 1, 1

]
in (4.9)

the predicted disturbance trajectory, which is also displayed in Fig. 4.2, can
be obtained. In accordance with (4.9), this primary prediction (dotted black
curve) is taken as an average of the previous 3 disturbance iterations belong-
ing to group g = 1, which encompasses the iterations falling on weekdays.

4.3.2 Final Prediction

Now, to help visualize the functionality of the proposed final prediction al-
gorithm, a second disturbance prediction example is illustrated in Fig. 4.3.
In this figure, an arbitrary disturbance profile (blue curve) is assumed to
vary steadily with each 24 hour iteration. For simplicity all iterations here
are considered to be in the same group, and values of D = 1 and Dα = 1
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Figure 4.3: Demonstration of final IL prediction algorithm

are implemented in (4.9) and (4.12). During the first iteration, previous
disturbance data is stored in memory and used to make disturbance pre-
dictions for iteration i = 2. At this point, the initial and final disturbance
predictions are identical as there is not yet any information available on the
prediction error of past iterations. After the second iteration, the error in
the initial prediction can then be calculated and used to adjust the final
prediction for iteration i = 3. As expected, this final prediction matches the
actual disturbance trajectory for iteration i = 3 perfectly while the initial
prediction once again lags behind the trend.

4.4 Memory Requirements

In order to run the proposed IL disturbance prediction algorithm, some
memory is required to store past disturbance iterations as well as past pri-
mary disturbance predictions. As a whole the exact amount of memory
required will depend on user choices for D and Dα as well as the number of
groups G in the disturbance data, but in general the requirements should be
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quite reasonable. Assuming each data point can be stored as a floating point
number, and noting that it takes approximately 4 bytes to store one floating
point number in memory, it can be proven that the total storage required by
the proposed IL disturbance prediction algorithm is either 4Gkf (D + Dα)
bytes or 8GkfDα bytes depending on the choices of D and Dα.

Theorem 1. The memory storage requirement for the proposed IL distur-
bance prediction algorithm is 4Gkf (D +Dα) bytes if D < Dα and 8GkfDα

bytes if Dα ≥ D.

Proof. Solely considering past disturbance iterations, it can be seen by look-
ing at (4.9) that for each group gi ∈ {1, . . . , G} the past D must be stored,
with each iteration containing kf discrete data points. Looking now to
(4.11), the previous Dα disturbance iterations for each group must be stored.
Since both (4.9) and (4.11) require the storage of a number of previous dis-
turbance iterations, the exact amount of iterations needed can be determined
by multiplying Gkf by the larger of D and Dα.

In addition, (4.11) requires the storage of the last Dα primary predictions
for each group. Each of these primary predictions also have kf discrete data
points, leading to a total storage requirement for past primary predictions
of GkfDα.

Adding the storage requirements for previous disturbance iterations to
those for previous primary predictions leads to a memory storage require-
ment of either Gkf (D+Dα) data points if D > Dα or 2GkfDα data points
if Dα ≥ D. Finally, factoring in 4 bytes of storage for each data point leads
to a total memory storage requirement of 4Gkf (D + Dα) bytes if D > Dα

and 8GkfDα if if Dα ≥ D.

4.5 Validity of the Proposed Disturbance
Prediction Method

In this subsection, it will be shown that the proposed disturbance predic-

tion algorithm (4.11) eventually generates a prediction Ŵ
(gi)
i which exactly

matches the actual disturbanceW
(gi)
i , under the condition that the iterations

within group gi exhibit steadily varying disturbances. This property sup-
ports the validity of the proposed IL-based disturbance prediction method.

Let us say there exists a series S containing M disturbance iterations
grouped into a single group g:

S :=
[
W

(g)
1 , W

(g)
2 , . . . , W

(g)
M

]
. (4.13)
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Let us further assume that after some disturbance iteration i the disturbance
iterations in S begin to exhibit repetition along with a steady shift quantified
by:

W
(g)
i+k = βok �W (g)

i . (4.14)

Here k ∈ Z+ represents the number of iterations that have passed. Further,
β ∈ Rkf is the steady shift operator, and o denotes an element-wise power. In
this case it can be proven that the convergence of the proposed disturbance
prediction method to the actual disturbance can be guaranteed in a finite
number of iterations. Note that this set up with only a single group g is
without loss of generality in the sense that the same result can be proven as
long as the iterations in group g exhibit the steady shift property, regardless
of how many groups G there are.

Theorem 2. The prediction algorithm given in (4.11) is such that ∀S ∈
RM×kf , ∀D, Dα ∈ Z+,∀ρ ∈ RD+ ,∀c ∈ Z+ | c ≥ (D+Dα), the final prediction

Ŵ
(g)
i+c = W

(g)
i+c.

Proof. The proof can be completed by expanding and simplifying the final
disturbance prediction algorithm based on the stated conditions.

To begin, Ŵ
(g)
i+c is expanded:

Ŵ
(g)
i+c = Aρ

{
W(g)
i+c−1,D

}
= Aρ

{
(βo(c−1) �W (g)

i , . . . , βo(c−D) �W (g)
i

}
= Aρ

{
βo(D−1), . . . , 1

}
� βo(c−D) �W (g)
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Next, α
(g)
i+c is expanded:
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(4.16)

The transition from line 5 to 6 in (4.16) follows from the fact that i + c −
D − Dα ≥ i. Since the oldest disturbance iteration considered in (4.16) is

W
(g)
i+c−Dα−D it is therefore clear that all iterations considered abide by (4.14).

Finally, in order to arrive at the final disturbance prediction in (4.11) , (4.16)
must be multiplied element wise by (4.15):

Ŵ
(g)
i+c = α

(g)
i+c � Ŵ

(g)
i+c

=
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}
� βo(c−D) �W (g)

i

)
= βo(c) �W (g)

i

Ŵ
(g)
i+c = W

(g)
i+c

This theorem demonstrates why the proposed prediction algorithm is
effective in the case of quasi-repetitive disturbances. Note that, in the case
where the assumptions used in Theorem 2 hold, the best choice for D and
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Dα will always be 1, as this choice guarantees the fastest convergence. In
reality though, disturbance profiles are unlikely to exhibit perfect repetition
or perfectly steady shifts. In such imperfect scenarios, D and Dα can be
adjusted to average over more iterations, leading to predictions that are
more robust to disturbance fluctuations.
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Chapter 5

Intelligent Grouping

In Chapter 4, by assuming that the groups {1, . . . , G} for disturbance iter-
ations were known, an IL-based method for future disturbance trajectory
prediction was presented. In this section, a method for intelligently group-
ing past disturbance iterations will be proposed, along with a method for
assigning groups to unknown future iterations. A high level overview of the
intelligent grouping approach is first provided in Section 5.1. The specifics
of the intelligent clustering are then detailed in Section 5.2 while various
options for intelligent classification are finally explored in Section 5.3. Simi-
larly to the previous chapter, this chapter describes the proposed intelligent
grouping approach for disturbance iterations in a general manner. This ap-
proach is then applied specifically to grouping HWD iterations in the ISTS
simulation detailed in Chapter 6

5.1 Overview

At a high level, the proposed intelligent grouping method begins by cluster-
ing a set of disturbance iterations, based on their disturbance trajectories
themselves, into several groups. This is completed using the unsupervised
learning method k-means as shown by the first arrow in Fig. 5.1. Each it-
eration is then paired with corresponding measurable features, such as day
of the week and average temperature of the day, so that every iteration has
both a set of features and a group label. This process corresponds to the sec-
ond arrow in Fig. 5.1. The data set is further split into testing and training
sets and multiple supervised learning classifiers are trained on the training
set to map from features to group label; see the third arrow in Fig. 5.1. The
best supervised learning approach for the given data set is then determined
based on the performance of all the trained classifiers on the test set. Fi-
nally, future iterations are classified with this ‘best’ classifier, allowing the
IL prediction algorithm in (4.11) to be applied. This step is depicted by the
final arrow in Fig. 5.1.
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Figure 5.1: Visual representation of proposed approach to intelligent group-
ing

5.2 Clustering

Examining the initial IL prediction algorithm in (4.9), it is evident why
intelligent grouping is necessary for improved disturbance prediction. The
prediction is based on a weighted average of the past D iterations of group g.
As a result, the smaller the Euclidean distance between the past D iterations
and the upcoming iteration of group g, the more accurate the prediction.
By grouping the iterations intelligently, this distance can be lowered within
every group and a reduced prediction error can be achieved. The grouping
process is referred to as clustering, which is a type of unsupervised machine
learning.

The clustering algorithm implemented in this research is k-means clus-
tering. This is the most widely used clustering algorithm and was selected
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due to its relative simplicity, allowing it to be effectively applied to many
fields [51–55]. The algorithm attempts to separate a set of examples into
k clusters, with k being a hyper-parameter. In this research, the features
for clustering are the disturbance values at each time step of a disturbance
iteration.

The main issue with regard to the k-means algorithm is selecting the
ideal number of means k. Note that in this case k is synonymous with the
number of groups G. The most commonly applied approaches for optimizing
k are termed the elbow method [56] and the gap statistic method [57], with the
former being a simple visual tool and the latter being a more sophisticated
approach. In this research, the gap statistic method is used as it allows
the optimal k value to be determined even in the case when no clear value
presents itself visually through the elbow method, thus rendering it more
generally applicable [57].

5.3 Classification

After clustering the pastM disturbance iterationsW1, . . . ,WM intoG groups,
the remaining issue is determining which group gM+1 the next iteration
M + 1 belongs to. This is necessary in order to make a disturbance pre-

diction Ŵ
(gM+1)
M+1 for iteration M + 1, based on the proposed IL prediction

algorithm in (4.11). The process of determining the group of a future iter-
ation is referred to as classification, which is a type of supervised machine
learning. In the case of naive clustering where groups are determined based
on a single feature, classification is simple and can be completed in the same
naive manner. In the case of intelligent clustering however, the nature of
the groups is much more abstract and an intelligent classification method is
required.

With the clustering complete and all disturbance iterations labeled, a
supervised learning classifier must be trained on the data. In the cluster-
ing section, the features for each iteration simply consisted of disturbance
data. However, since future disturbance data is unknown, new features are
required for each disturbance iteration. The exact features used for a given
ISTS application will of course be case-dependent, but some possible fea-
tures include things such as day of the week, work day or holiday, and month
of the year.

Once features are in place, the ideal type of classification method must be
determined. The no-free-lunch theorem of supervised learning states there
is no ultimate supervised learning approach, with some algorithms working
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better for certain problems and other algorithms proving superior on other
problems [58]. With this theorem in mind, a number of methods should be
examined for any given application. While hundreds of supervised learning
algorithms exist, a good starting point is to explore some of the top ranked
classifiers presented by Delgado et al. [59].

In order to evaluate the effectiveness of the different methods, training
and testing sets must be allocated. In this research two thirds of the available
data will be randomly selected and held in a training set while the remain-
ing third is put aside for testing. Further, the various hyper-parameters
for the different supervised learning models will be tuned with an effective
method called k-fold cross-validation [60]. After hyper-parameter tuning,
each classifier is then trained on the entire training set and tested on the
test set.

The model with the best performance in the test set is then selected
for actual use in the disturbance iteration classification, assuming this best
performance is up to an adequate standard. The level of performance that
constitutes ‘adequate’ will depend on the specific application and can be
confirmed on a case-by-case basis by exploring the prediction ability of the
resulting IL prediction algorithm on the test set data. In the case of inade-
quate performance, adjustments can be made such as updating the features.
Once a specific method is selected, the model is trained one last time on the
entire data set. It is then incorporated into the IL process and used online
to predict the group of upcoming disturbance iterations. Note that after an
iteration is complete, it is then grouped based on its actual disturbance data,
as opposed to its predicted group, for use in future disturbance prediction.
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Chapter 6

Simulation

A computer simulation is included to demonstrate the effectiveness of the
proposed method for disturbance prediction within EMPC on an ISTS con-
trol problem. The benefits of the proposed method are evaluated relative
to other common disturbance prediction approaches both in terms of the
disturbance prediction itself and the corresponding controller performance.

6.1 Simulation Settings

6.1.1 Component Specifics

The specific ISTS used in the simulation features a Seido 1-16 STC, a cylin-
drical TST with a volume of 200 L, and a three-stage auxiliary HP with 3
kW of power set up in a parallel fashion as seen in Fig. 2.1. The system
has three loops, each containing a pump to circulate the fluid inside. The
control objective for the ISTS in this simulation is to maintain the top layer
temperature in the TST between 600C and 750C by regulating the compres-
sor speed ratio of the HP (O1) while minimizing energy costs (O2). These
temperature limits are based on the building code for domestic hot water in
Canada. The operating cost of the HP at a given time is a function of the
cost of electricity at that time. Canadian electrical time-of-use price periods
in Table 6.1 are adopted for this simulation.

Table 6.1: Time-of-use electrical price pe-
riods

Time of day (hours) 0-7 7-11 11-17 17-19 19-24

Cost (¢/kWh) 6.5 9.4 13.4 9.4 6.5
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6.1.2 Model Parameters

For this simulation a 7-state version of the general discrete-time nonlinear
state space model shown in (2.2) is implemented:

Tk+1 = f(Tk, uk, wk), T ∈ R7. (6.1)

Here the state vector consists of fluid temperatures at seven different loca-
tions in the glsists, denoted by the temperature sensors in Fig. 2.1. The full
equation for the specific state space model used in the simulation can be seen
in the Appendix. Note that the model in the Appendix is a continuous-time
model that was discretized before being used in the simulation.

6.1.3 Disturbance Description

The disturbance data used in this simulation is real domestic hot water
consumption flow rate data taken at 1 minute intervals over an entire year.
The data is taken from [33] for a specific house in Halifax, Canada over the
period of time from July 31st, 2014 to July 30th, 2015. The average daily
consumption profile seen in the data for this house over the course of the
year is displayed in Fig. 6.1.

6.1.4 Disturbance Prediction

In this subsection the disturbance prediction algorithms specific to this case
study are detailed. In addition to the method proposed in this research, a
few other common disturbance prediction methods are explored for compar-
ison purposes. Note that the simulation detailed in Section 6.1.5 simulates
controller performance for 2 random days from each month and as such the
data for these 24 days are withheld from the prediction algorithm develop-
ment process. That leaves 341 days of data to work with for training and
tuning various aspect of the prediction methods outlined below.

Iterative Learning With Intelligent Grouping

This is the approach presented in this research based on the prediction algo-
rithm proposed in Chapter 4 and the grouping method proposed in Chap-
ter 5. The disturbance data was initially sorted into disturbance iterations,
with one iteration for each day, and the k-means algorithm was applied.
Based on the gap statistic method it was determined that the number of
groups G = 5. The resulting 5 mean consumption profiles can be seen in
Fig. 6.2.
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Figure 6.1: Average dialy hot water consumption profile for a house in
Halifax, Canada

Upon completing the grouping, new features were assigned to each HWD
iteration. The selected features were day of the week, month of year, whether
or not the day is a holiday, the average visibility [km], the average temper-
ature [oC], the average humidex index, and the average wind-chill index.
Historical weather data for Halifax, Canada was obtained from [61]. The
data was then randomly split into training and testing sets with two thirds
for training and one third for testing. The following 6 classification meth-
ods were then trained on the training set with 5-fold cross-validation for
hyper-parameter tuning:

ANN Artificial Neural Network

RF Random Forests

AB Adaboost

GB Gaussian Boosting

SVM Support Vector Machines

KNN K-Nearest Neighbors

Note that all algorithms were implemented in Python using the scikit-learn
library. The trained algorithms were then tested on the test set based on
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Figure 6.2: The 5 mean hot water consumption profiles

their ability to correctly classify disturbance iterations by group. Testing
results are depicted in Table 6.2.

Table 6.2: Performance of various supervised clas-
sification methods

Classification Method ANN RF AB GB SVM KNN

Training Accuracy (%) 80 100 77 89 98 100

Test Accuracy (%) 73 86 68 77 57 56

From the results it is clear that RF is the optimal classification method
in this case study, correctly classifying 86% of the unseen test examples. As
a result, RF was implemented for group predication. The specific random
forests model selected through cross-validation uses 1000 trees and considers
3 features for each split.

Methods For Comparison

Iterative Learning With Naive Grouping: The prediction algorithm used
in this approach is again the algorithm proposed in Chapter 4. The difference
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here is that iterations are grouped naively based on a single measurable
feature. The feature used in this case is the day of the week, generating
seven groups G = 7. There is evidence that hot water consumption data
is fairly repetitive for specific days of the week which is why this feature is
chosen over others [28].
ARANN: The specific ARANN approach used in this case study is the most
recently published general approach for applications across a wide number
of problem types [25] and is presented by Wang et al. in [62]. The described
multiplicative hybrid strategy was trained on the same training set used in
Section 6.1.4. A 5-fold cross-validation approach was then taken for hyper-
parameter tuning.
Average Profile: This approach simply uses the average consumption profile
seen in Fig. 6.1 for prediction. This method is common in past research into
EMPC with disturbance based on human consumption and provides a good
baseline for both prediction and control performance [43, 44, 63, 64].
Perfect Prediction: The final prediction method is included to act as a
performance ceiling and simply predicts the future disturbances perfectly.
It is useful for determining how close the proposed method’s performance is
to optimal.

6.1.5 Controller Settings

In order to verify the effectiveness of the proposed disturbance prediction
approach to EMPC with regards to this case study, a simulation was carried
out in Matlab comparing the performance of five different economic model
predictive controllers, each using a different prediction method outlined in
Section 6.1.4. The specific EMPC scheme used is the one detailed in (3.1),
(3.2), and (3.3) with N = 12 hours, U := [0, 1],

¯
η = 100 and η̄ = 0. The

prediction horizon is set at 12 hours to allow the controller sufficient time
to react to upcoming hot water consumption rate changes and the 3 kW
input capacity is scaled between 0 and 1. A time step of 15 minutes is
also implemented in the EMPC scheme. For each controller the designed
EMPC was implemented in MATLAB using SQP based on the fmincon
function for solving the optimization problem at each iteration. Also note
that the optimal control inputs were applied to the three-stage HP using the
PWM approach detailed in Section 3.3.1. For simplicity, the five different
controllers are denoted as follows:

(IIL) IL with intelligent grouping

(NIL) IL with naive grouping
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(ARC) ARANN prediction

(A) Average profile prediction

(P) Perfect prediction

For (IIL) and (NIL) values of D = 5 and ρ =
[
1.25 1.25 1 1 1

]
are used

in (4.9) while Dα = 3 is used in (4.12).
Two days were randomly selected from every month of available data

and the performance of each controller was evaluated on these days in the
simulation. As mentioned, the rest of the available data was set aside for
use in training the prediction methods. The selected days are displayed in
Table 6.3, where the months start from August 2014 through to July 2015.

Table 6.3: Selected days for control performance
simulation

Month Aug Sep Oct Nov Dec Jan

Days 4, 17 2,8 12,28 7,30 11,16 8,31

Month Feb Mar Apr May Jun Jul

Days 3,20 9,18 6,24 22,25 16,22 5,9

Finally, the solar radiation data used on each simulated day is based on
a mathematical model of the solar radiation profile for Halifax, Canada on
said day of the year [65].

6.2 Simulation Results

Prediction results for the various disturbance prediction methods outlined
in Section 6.1.4 are detailed in Section 6.2.1 while the performance results
of the corresponding controllers are displayed in Section 6.2.2.

6.2.1 Prediction

As a precursor to the control simulation results, the four non-perfect dis-
turbance prediction methods outlined in Section 6.1.4 were compared based
purely on their disturbance profile prediction ability. They were each tested
on the 114 days featured in the test set from Section 6.1.4 with their perfor-
mance evaluated based on the Euclidean distance between their predictions
and the true disturbance profiles. This evaluation is a measure of prediction
error and is described mathematically by
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Err =
∑
j∈Test

‖Ŵ j −Wj‖2, (6.2)

where Test is the test set containing 114 disturbance iterations. Note that
for all methods it was assumed that data for previous days not included in
the test set was available for prediction. Also note that the average daily
hot water consumption for this household is 121.07 kg. The results of the
test can be seen in Table 6.4.

Table 6.4: Error in prediction over 114 day test set

Prediction method IL w/ intelligent IL w/ naive ARANN Average
grouping grouping profile

Total error (kg) 365.90 463.08 591.95 519.21

Avg daily error (kg) 3.21 4.06 5.19 4.55

The proposed prediction method clearly outperforms all other methods,
decreasing prediction error by approximately 27% relative to the second
best prediction method. It is also interesting to note that the ARANN
prediction performs worse than even the average profile prediction method,
indicating that despite its benefits in some fields, this modern style of time
series prediction is not suitable for making long range predictions relative
to the time step.

6.2.2 Control Performance

Complete results for the controller simulations are summarized in Table 6.5,
where the important performance metrics to consider are cost, average con-
straint violation (ACV), and average daily maximum constraint violation
(AMCV). Disturbance profile prediction and output temperature plots for
December 16th, 2014 and March 18th, 2015 are then displayed in Fig. 6.3
and Fig. 6.4 respectively. The plots for December 16th, 2014 depict the
results in the case when the disturbance profile is fairly typical and (IIL)
performs comparatively to the other controllers. The March 18th, 2015 plots
then show the case when the disturbance is ”unusual” and (IIL) greatly out-
performs the other controllers. In this ISTS application typical disturbance
profiles feature a HWD peak in the morning, much like the average dis-
turbance profile in Fig. 6.1, while unusual disturbance profiles have HWD
peaks at other times of the day or no distinct peak at all.
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Table 6.5: Performance results of examined con-
trollers

Controller P IIL NIL ARC A

Avg daily cost ($) 2.17 2.19 2.33 2.52 2.36
Deviation (%) - 0.92 7.37 15.98 8.76

ACV (°C) 0.036 0.040 0.057 0.093 0.059
Deviation (%) - 11.11 58.33 158.33 63.89

AMCV (°C) 0.64 0.71 1.04 1.55 1.14
Deviation (%) - 10.94 62.50 142.19 78.13

Examining Table 6.5, it is clear that (IIL) performed nearly as well
as (P), while outperforming the other control strategies in every category.
Most notably, while outperforming all non-idealistic controllers with regards
to constraint violations, (IIL) reduced the average daily cost relative to the
next best controller by 6.01%.

By looking at Fig. 6.3 and Fig. 6.4, it is apparent that (IIL) was able to
manage the ISTS output temperature quite effectively while limiting cost.
Looking to Fig. 6.3a it can be seen that all methods aside from (ARC) predict
similar consumption profiles, only varying in amplitude. As a result the
output plot for these methods in Fig. 6.3b depicts comparable performance
across the board, with (IIL) performing slightly more efficiently than other
non-deal controllers by not heating the system unnecessarily thanks to the
improved amplitude accuracy in its prediction.

Next, looking to Fig. 6.4a it can be seen that (IIL) is the only controller
that predicts a load profile somewhat resembling the actual load. The im-
portance of this prediction accuracy is revealed in Fig. 6.4b, where (NIL)
and (A) do no sufficiently preheat the system between hours 10 and 18 ahead
of the load peak at hour 18 since they don’t expect it. Since (IIL) is able to
predict the load trajectories with greater accuracy, it avoids this problem.
Meanwhile, the prediction for (ARC) is so far off from hours 5 to 15 that
heavy constraint violations are already incurred before the peak at 18 hours
even arrives.
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(a) Hot water consumption profile prediction

(b) Top layer temperature of the TST

Figure 6.3: Performance of various controllers on December 16th, 2014
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(a) Hot water consumption profile prediction

(b) Top layer temperature of the TST

Figure 6.4: Performance of various controllers on March 18th, 2015
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Chapter 7

Conclusion and Future
Works

7.1 Summary

This thesis presented a novel IL approach to disturbance prediction in
EMPC for an ISTS. The proposed approach also incorporated intelligent
iteration grouping for improved functionality through the use of both su-
pervised and unsupervised machine learning techniques. The goal of this
IL-based approach was to improve the accuracy of prediction in the EMPC
relative to existing methods so as to allow it achieve a higher level of control
performance in the ISTS. This higher level control performance is quantified
by maintaining the system output within a desired temperature range while
minimizing electrical costs relative to EMPC implementations using other
disturbance prediction approaches.

In Chapter 2 of the thesis a description of the ISTS to be considered
in this research was given. This ISTS consists of an STC which collects
energy from the sun, a TST which stores this energy for later use, and an
auxiliary HP which provides additional heat energy as needed. The control
input for the system actuates the HP by setting the compressor speed ratio.
Mathematical descriptions of all the system components were also detailed
in Chapter 2, leading to the development of discrete-time nonlinear state
space model for the ISTS. The control objectives of the system were then
explained in Chapter 3 and the EMPC strategy was designed. A PWM
approach was also proposed in this chapter, allowing the EMPC strategy to
be implemented in cases where a variable speed HP is not available.

The IL algorithm for disturbance prediction in EMPC was then proposed
in Chapter 4, and validated with Theorem 2. This algorithm consists of
a primary prediction algorithm that iteratively analyzes past disturbance
iterations as well as a final prediction algorithm that analyses the error in
past disturbance predictions. Next, the grouping aspect of the IL algorithm
was further explored in Chapter 5, and a procedural approach to iteration
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clustering and classification using machine learning was described.
Finally, an ISTS simulation using real domestic hot water consump-

tion data was presented in Chapter 6. This simulation demonstrated the
efficiency of the proposed IL-based approach to disturbance prediction in
EMPC relative to other disturbance prediction approaches. In the simu-
lation the IL method was able to decrease HWD prediction error by 38%
relative to the next best prediction strategy. This improved prediction accu-
racy led to heightened controller performance, as the EMPC implementation
using the proposed IL method for disturbance prediction was able to avoid
temperature constraint violations more effectively than all other EMPC im-
plementations, while also decreasing the average daily system costs by over
6%.

7.2 Contribution

The main contribution of this research was to propose a novel IL-based dis-
turbance prediction algorithm that works to improve EMPC performance to
a level that cannot be achieved with existing disturbance prediction meth-
ods. This algorithm iteratively analyzes grouped disturbance iterations,
recognizes patterns within each group, and uses these patterns to make
disturbance predictions for future iterations. In order to improve the func-
tionality of the algorithm, a machine learning based procedure to group the
disturbance iterations intelligently was also proposed as a an additional con-
tribution. This intelligent grouping approach utilizes both supervised and
unsupervised machine learning techniques to group past disturbance itera-
tions based on their disturbance trajectories and predict the groups of future
disturbance iterations with unknown trajectories.

7.3 Future Works

There are a number of potential directions that could be taken for future
work on this topic. From a theoretical perspective, it would be interesting to
try and guarantee the stability of the ISTS when controlled with an EMPC
scheme using the proposed disturbance prediction method. It would also be
interesting to explore the impact of varying solar radiation. In this work it
was assumed that that the solar radiation profile on a given day was known
by the EMPC but in reality that is not the case. It would be useful to see
what kind of impact error in the prediction of the solar radiation profile
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would have on the performance of the controller, and to come up with a
strategy for improving the accuracy of that prediction.

From an experimental point of view, it would be nice to be able to
confirm the results of this thesis in practice with real equipment. Work
in this regard is already underway at the University of British Columbia,
where there is a prototype solar thermal setup on the roof of the Centre for
Interactive Research on Sustainability that can be seen in Fig. 7.1 below.

Figure 7.1: Experimental solar thermal setup at the University of British
Columbia
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Appendix A

Supporting Materials

A.1 Closed Form State Space Model

In this section of the Appendix, the specific non-linear state space model for
the case when the system model uses 7 states is provided. When containing
7 states, the state vector T ∈ R7 takes the following form:

T =



T(1)

T(2)

T(3)

T(4)

T(5)

T(6)

T(7)


.

Here T(1) is at the exit of the STC, T(2) is at the entrance to the STC,
T(3) is at the exit of the HX in the TST loop, T(4) = y is the output of the
system which is at the top of the TST, T(5) is in the middle of the TST,
T(6) is at the bottom of the TST, and T(7) is at the exit of the HP. With
that, the state space model itself becomes:

dT(1)

dt
=
Q̇STC + ṁSTCCp,1(T

(2) −T(1))

M1Cp,1

dT(2)

dt
=
ṁSTCCp,2(T

(1) −T(2))− UcoilAcoil(T(2) −T(3))

M2Cp,2

dT(3)

dt
=
ṁTSTCp,3(T

(6) −T(3)) + UcoilAcoil(T
(2) −T(3))

M3Cp,3

− UshellAshell(T
(3) − Tamb)

M3Cp,3

(continued on next page)
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dT(4)

dt
=
ṁTSTCp,4(T

(3) −T(4)) + ṁHPCp,4(T
(7) −T(4))

M4Cp,4

− ṁHWDCp,4(T
(4) −T(5)) + U4A4(T

(4) − Tamb)
M4Cp,4

dT(5)

dt
=

(ṁTST + ṁHP )Cp,5(T
(4) −T(5))− ṁHWDCp,5(T

(5) −T(6))

M5Cp,5

− U5A5(T
(5) − Tamb)

M5Cp,5

dT(6)

dt
=

(ṁTST + ṁHP )Cp,6(T
(5) −T(6))− ṁHWDCp,6(T

(6) − Ttap)
M6Cp,6

− U6A6(T
(6) − Tamb)

M6Cp,6

dT(7)

dt
=
Q̇HP + ṁHPCp,7(T

(6) −T(7))

M7Cp,7
.

Entering the values used in the simulation in Chapter 6 then gives:

dT(1)

dt
= 0.5256Q̇STC + 0.1156(T(2) −T(1))

dT(2)

dt
= 0.1156(T(1) −T(2))− 1.177 ∗ 10−2(T(2) −T(3))

dT(3)

dt
= 1.099 ∗ 10−2(T(6) −T(3)) + 5.878 ∗ 10−4(T(2) −T(3))

− 1.992 ∗ 10−3T(3) + 0.5840

dT(4)

dt
= 1.543 ∗ 10−3(T(3) −T(4) + T(7) −T(4))

− 1.543 ∗ 10−2ṁHWD(T(4) −T(5))

− 4.792 ∗ 10−6T(4) + 1.404 ∗ 10−3

dT(5)

dt
= 3.087 ∗ 10−3(T(4) −T(5))− 1.543 ∗ 10−2ṁHWD(T(5) −T(6))

− 4.792 ∗ 10−6T(5) + 1.404 ∗ 10−3

(continued on next page)
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dT(6)

dt
= 3.087 ∗ 10−3(T(5) −T(6))− 1.543 ∗ 10−2ṁHWD(T(6) − 288.15)

− 4.792 ∗ 10−6T(6) + 1.404 ∗ 10−3

dT(7)

dt
= 2.624 ∗ 10−2Q̇HP + 1.099 ∗ 10−2(T(6) −T(7)).
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