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Abstract 

Knowledge of forest structure can be used to guide sustainable forest management decisions. 

Currently, Airborne Laser Scanning (ALS) has been well established as an effective tool to 

delineate and characterize canopy structure of forested biomes. However, the use of ALS to 

characterize forest secondary structure is less well developed. Secondary structure consists of 

suppressed sub-canopy trees, short-stature vegetation and coarse-woody-debris (CWD).  I 

utilized discrete return ALS to develop methodologies which characterize two of these secondary 

structural units, sub-canopy trees and CWD, within natural forest stands in central British 

Columbia. I first segmented the forest vertically into canopy versus sub-canopy and computed a 

suite of ALS metrics to develop predictive models of sub-canopy stand attributes. Calibrated 

against 28 ground plots, models were developed using stepwise regression resulting in the 

strongest predictors being a combination of height, structure and cover-based metrics. Two sets 

of models were developed, one with the canopy removed and another with it retained. The sub-

canopy set of models resulted in stronger cross-validated R-squared values for volume and basal 

area and as a result the sub-canopy volume model was used to map sub-canopy volume over the 

entire study area. The second structural unit, CWD, is a meaningful contributor to forest carbon 

levels and biodiversity. In this work I detail a novel methodology that isolates CWD returns from 

large diameter logs (>30cm) using a refined grounding algorithm, a mixture of height and pulse-

based filters and linear pattern recognition to transform returns into measurable vectorized 

shapes. Height values are extracted directly from the point cloud to calculate volume for detected 

shapes. This approach is then demonstrated by successfully mapping CWD and estimates of 

volume as well as providing an assessment of individual log and plot-level attributes that 

influence successful detection. I compared plot volume totals calculated from ALS-derived 
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CWD against field measured CWD and found a strong correlation. Lastly this methodology was 

applied over a larger region to quantify CWD volume differentials between stands. These 

methodologies demonstrate the capability to generate a secondary structure inventory that can 

highlight locations for selective logging, model fire susceptibility and carbon sequestration, and 

quantify wildlife habitat. 
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Lay summary 

Forest structure provides valuable insight into the productivity of the world’s forests by 

influencing habitat, temperature and resource availability. To properly prepare our forests for the 

future, a detailed knowledge of their structural arrangement is required. Airborne laser scanning 

is a technology that can be flown over large areas and produce a three-dimensional 

representation of structure. This technique is commonly used to assess the forest canopy 

however, much of the structure beneath the canopy is often overlooked. This research focus on 

using airborne laser scanning to measure two specific units beneath the canopy, sub-canopy trees 

and fallen logs. A novel method to measure sub-canopy trees is developed and displays the 

ability to estimate volume of these trees. A separate method is then developed to map and 

quantify log volume. The products of this research can be used to update forest inventories and 

provide insight on where to optimally locate forest resources. 
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Chapter 1: Introduction 

1.1. Introduction 

Forested landscapes are dynamic, and multi-faceted ecosystems that dominate more than one-

third of the Canadian landscape (Natural Resources Canada, 2018). Across Canada, forests vary 

in height, density and composition largely due to climatic variables however, due to resource 

limitations and geopolitical boundaries, local scales are where forest management decisions most 

often take place and where a deeper understanding of forest structure is required to guide the 

decision making process (Bunnell and Boyland, 2003; Shifley et al., 2017).  In place of climatic 

variables, forest diversity at the local scale, along with the ecosystems they encompass, are more 

influenced by the surrounding environment and the biophysical structure of the forest stand 

(Bohn and Huth, 2017). In the northern coniferous forest of British Columbia, the structural 

development of forest stands drivelandscape-level processes and reflect many stand-level factors 

such as temperature regimes, site condition, species composition, successional stage and past 

disturbances, all of which are critical aspects of forest ecosystems as habitat for other biota 

(Franklin et al., 2002; Larson et al., 2005). The cycle between these natural processes creates a 

variable range of forest structure and composition between stands and across spatial and 

temporal scales (Landers et al. 1999; Lertzman et al. 1998; Peterson et al. 1998; Peterson 2002; 

Turner 1989). Knowledge surrounding forest structure can provide insight into the myriad of 

ecosystem services influenced by forest structure including habitat availability, nutrient cycling 

and long-term carbon sequestration. As such, accurate representations of forest structure have 

become a critical component of effective forest ecosystem management (Lefsky et al. 2002; Guo 

et al., 2017) especially in the northern coniferous forests of British Columbia (Coops et al. 2007). 
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The structure of forested landscapes, defined as the spatiotemporal variance of forest structural 

elements (Zhang et al., 2017), is the key driver of stand-level forest dynamics (Spies, 1998) that 

sustain and influence ecosystems. Productivity of forests, both economically in terms of timber 

supply (Fantini and Guries, 2007) and ecologically in terms of biodiversity (Bohn and Huth, 

2017), can be summarised by the vertical and horizontal distribution the size, density and 

arrangement of woody biomass. The interactions between structural elements have been 

highlighted as biodiversity indicators across a multitude of forested ecosystems (Chirici et al., 

2011; Gao et al., 2014) and are known to influence the future composition of the forested 

landscape through nutrient and light availability (Martinuzzi et al., 2009; Lochhead and Comeau, 

2012), making characterization and classification of forest structure a focal point for forest 

managers and recent forest research efforts (Wallace et al., 2016; Lelli et al, 2019; Koontz et al., 

2020). Specifically, identifying locations with high degrees of structural complexity is important 

to forest managers as these stands are often the most productive and positively correlated with 

high levels of species richness (Brunialti et al. 2010; Taboada et al. 2010). Identifying and 

predicting the physical structures of forest stands is crucial in order to understand the complex 

interactions of the dynamic systems present within and between stands.  

The overall structure of a forest stand is an aggregate of different woody elements including 

canopy trees, sub-canopy trees, short-stature vegetation, standing dead snags and coarse woody 

debris (CWD) arranged in an array of sizes, densities and spatial orientations, that make uniform 

quantification and classification complicated. Instead, separate measurements exist to 

characterize individual aspects of forest structure. A common classification applied to 

characterize the temporal aspect of forest structure development in British Columbia is 

segregating forest stands into successional stages (Horn 1975; Shugart, 1984; Swanson et al., 
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2011). Typically, this is related to the age of the forest relative to the most recent disturbance and 

its intensity, which is noted as being one of the most influential factors driving forest structure 

(Bolton et al., 2017). Successional stages provide insight into the relative stand age and species 

associated with that stage. Successional stage is one of many parameters that begin to describe 

forest structure, however many more such as tree height (Zimble et al., 2003), density (Zheng et 

al., 2019), leaf-area index (Coops et al., 2007) and volume (Goodbody et al., 2016) have proven 

useful in obtaining a well-rounded understanding of local forest structure. Combinations of these 

have also be quantified into structural stage indices and applied to represent the overall 

complexity of a stand (del Rio et al., 2016; Caviedes and Ibarra, 2017).  

While the aforementioned structural measurements are largely representative of horizontal 

distributions of forest structure, stand structure can also be classified within a stand into vertical 

strata most commonly into five categories: canopy trees, sub-canopy trees, understory 

vegetation, standing dead snags and coarse-woody debris (CWD). Undoubtedly the most well-

researched of these strata is the canopy (Van Leeuwen et al., 2010; Bolton et al., 2013; Hilker et 

al., 2013; Hermosilla et al., 2014) as it contains the largest and most economically valuable trees 

for timber production. Canopy trees also have ecological influence over lower strata as well by 

facilitating understory development and creating competition for limited resources (Reigel et al., 

1992). Due to the explicit economic value and influence of dominant canopy trees the attributes 

and structural patterns associated with the forest canopy have been well documented and 

inventoried, however forested ecosystems are integrated entities consisting of much more than 

just the canopy (Franklin et al. 2002). Movement towards more detailed inventories that include 

a greater breath of forest structural components will be vital to managing British Columbia’s 

forests. 
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1.2. Forest secondary structure 

Forest secondary structure excludes the primary structure of the canopy and consists of the three 

remaining vertical strata including sub-canopy trees, understory vegetation, and deadwood, both 

standing snags and coarse-woody debris (CWD) (Connell et al., 1997).  The development and 

composition of secondary forest structure is a key characteristic of forest succession dynamics 

(Nilsson and Wardle, 2005) and therefore is critical for predicting future forest structure in order 

to implement the appropriate management decision for each stand.  In the northern coniferous 

forests of British Columbia, a simplified trajectory of forest development after stand-replacing 

disturbance will include several phases: establishment of a new trees,  stem exclusion and 

canopy stratification of the initial even-aged cohort of young trees; establishment of shade-

tolerant understory species; mortality of individuals and gap dynamics leading to the replacement 

of the initial cohort by the shade-tolerant cohort through mortality creating a complex multi-aged 

canopy structure. The later stages are defined by heights, densities and shade-tolerance of trees 

beneath the canopy (Province of British Columbia, 2015).  

The presence and characteristics of the forest sub-canopy influences functions in forest 

ecosystems through changes over time in the architecture of wildlife habitat, resulting in forage 

and shelter from predators (Nijland et al., 2014). Vertical stratification in the sub-canopy also 

determines fuel loading and presence of ladder fuels. The understory composition predicts 

wildfire intensity and the likelihood of surface fires spreading to crown fires. (Keane 2014), 

which are becoming more frequent in Western North America. Canopy species composition is 

also strongly influenced by sub-canopy conditions through gap dynamics (Yamamoto, 2000; 

Muscolo et al., 2014), which influence local timber supply. The sub-canopy portion of the forest 
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stand also represents a substantial component of species diversity in British Columbia (Coates et 

al., 2012). 

Characterization and a quantifiable inventory of secondary forest structural attributes is vital for 

making sound forest management decisions in British Columbia that consider all aspects of a 

forest stand as an integrated system rather than isolating primary structure as a representation of 

the wider ecosystem. Of the secondary structural units, short-stature understory vegetation is 

simplest to vertically discern from the canopy and has been the focus a considerable amount of 

recent research (Campbell et al., 2018; Krebs et al., 2019; Hillman et al., 2019). Alternately, sub-

canopy trees which are composed of intermediate sized trees and regenerating saplings, are well 

recognized for their importance to stand structure and forest succession (Pyke and Zamora, 1982) 

but have received less attention due to the lack of tools available to remotely observe and 

quantify them into inventories. 

Given the influence of advanced regeneration trees on multiple resource values, increased 

knowledge of the distribution of sub-canopy regeneration trees can improve integrated forest 

management. Identification of areas with a well-developed sub-canopy can be used to generate a 

sub-canopy inventory to guide modern harvesting and silvicultural systems such as partial 

cutting and shelterwood to manage local timber supply. Used properly, these retention-based 

silvicultural systems can be used in place of traditional clear cutting to achieve desired 

management outcomes related to wildfire mitigation, regeneration establishment of climate 

adapted tree species, carbon sequestration, local timber supply and management of wildlife 

habitat attributes.  Detailed metrics of forest secondary structure can help determine stand 

successional stage and condition to compare stands diversity across a landscape. As a result, the 

ability to efficiently measure the structural and spatial arrangements of sub-canopy attributes has 
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potential as a valuable tool for planning tactical forest management and deploying harvesting and 

silviculture practices to meet multiple resource objectives in the temperate forests of British 

Columbia.  

Detailed information on sub-canopy structure presents forest managers with opportunities for 

retention harvest strategies in an era where clearcuts in British Columbia are continually 

comprising lesser amounts of the total timber harvest on public land (British Columbia Ministry 

of Forests and Range, 2018). This trend is expected to continue due to public scrutiny around the 

visual appearance of large clearcuts and to address multiple resource values in integrated forest 

management. As we continue to approach forest management from an increasingly broader 

perspective, and under changing natural disturbance regimes, quantifying and mapping of the 

sub-canopy will aid in gaining a more comprehensive understanding of our forests from both and 

an ecological and local timber supply perspective. 

 

1.3. Coarse-woody debris 

The final category of forest secondary structure is deadwood, either standing snags or residual 

from fallen trees known as CWD. Individual snags have been detected with ALS by Wing et al. 

(2015), noting their importance to forest structure through providing habitat and carbon storage. 

Snags eventually decay and fall to become CWD but maintain their critical role in forest 

ecosystems. The amount, type and condition of CWD on the forest floor is an important 

component of the terrestrial carbon cycle and can provide key insights into forest stand history 

and is greatly impacted by both natural and anthropogenic disturbances. CWD is specifically 

required to be estimated when reporting under the United Nations Framework Convention on 

Climate Change, as it is one of the five pools of carbon in terrestrial ecosystems (Kimberley et 
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al., 2019). CWD represents an important transitional state for carbon stored within a forest stand 

as it will gradually emit stored carbon as it decays (Malhi et al., 1999; Pan et al., 2011). 

Latitudinal gradients influence decay rates and result in the CWD of northern forests of British 

Columbia largely being a carbon sink (Woodall and Liknes, 2008). Decay rates and structure of 

CWD also varies among species (Harmon et al., 2020) and between disturbed and undisturbed 

forest (Schmid et al, 2016), with completely undisturbed forest contributing less to the carbon 

pool and severely disturbed forests often resulting in large quantities of CWD which become the 

primary substrate for microbial decomposition (Amiro et al., 2010; Russell et al., 2014).  This 

variability of carbon within different states of CWD highlights the need for a direct CWD 

quantification and mapping procedure to develop reliable landscape-level management models. 

In addition to carbon, accumulation and decomposition of CWD are important drivers for local 

abundance, distribution and composition of forest wildlife (Harmon et al., 1986). CWD in 

northern coniferous forests are known to store water and essential nutrients (Laiho and Prescott, 

2004) that provide ideal microsites for habitat (Harmon and Fraklin, 1989). CWD volume and 

composition is known to affect habitat quality (McComb, 2003) for insects to large mammals. 

Primary decomposers who are largely contribute to nutrient cycling in forests, such as beetles 

and fungi, rely on CWD as an energy source and have been found to be more abundant in areas 

with greater CWD (Zhou et al., 2007; Sahlin and Ranius, 2009). Small mammals such as the red-

backed vole (Ucitel et al., 2003) are reliant on CWD as it provides nesting habitat, thermal 

shelter and cover from predators (McComb, 2003). In British Columbia, Canada alone, 51 

vertebrates are known to be supported by CWD (Kiesker, 2000). Vertebrates tend to select CWD 

logs with a larger diameter more often as habitat (Rondeux and Sanchez, 2010; Wilbert et al. 

2000), as these logs decay at a slower rate and can provide larger nesting cavities. Locating these 
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large CWD logs would allow forest and wildlife managers to optimize spatial allocation of their 

resources. 

CWD is strongly linked to fuel load estimates for forest fires. Alongside duff/litter and 

understory vegetation, CWD represents one of the three main elements of the fuel complex 

(Lutes and Keane, 2006).  As such, CWD has been a common measurement taken in studies 

looking to assess surface fuel loading (Cansler et al., 2019; Choi et al., 2015; Aponte et al., 2014; 

Rollins et al. 2004). Prescribed burns have also become more commonplace and are kept under 

control in part by selecting areas with the ideal amount of CWD fuel present. Larger pieces and 

greater volumes of CWD tend to burn longer and are closely linked with fire effects such as 

combustion emissions and soil heating (Lutes and Keane, 2006). Quantification of CWD in 

forest stands would be beneficial for selecting optimal locations for these prescribed burns. 

Additionally, wildfire severity, extent and frequency have increased in Western North America 

over the past decade (e.g., Halofsky et al. 2020, Kirchmeier-Young, 2019). With this trend 

predicted to continue, knowledge of CWD fuel volume and distribution would lead to more 

efficient wildfire management and potentially a reduction of fire severity and extent and even 

assist with wildfire mitigation and prevention. Identifying the spatial distribution of CWD 

volume could assist with wildfire management by allowing forest managers in B.C. to identify 

areas with high fuel loading and consequently, high fire severity potential.   

The development of CWD volume and distribution maps is needed to update a range of forest-

related inventories including carbon and wildfire fuel loads estimates. Any forest inventory 

system requiring carbon estimates would benefit from a quantifiable measurement of CWD as it 

is one of the main carbon pools required for reporting carbon budgets (Kimberley et al., 2019). 

Forest and wildlife managers can utilize CWD maps to highlight forested regions containing the 
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most and least CWD volume. The identification of these areas can provide spatially explicit 

details on potential habitat location for the multitude of species which rely on CWD. 

Additionally, fuel load maps describing susceptibility to wildfire would also benefit from a 

spatial description regarding the distribution of CWD fuel. Lastly, research studies focusing on 

CWD could utilize these maps to identify areas with the specified amounts of CWD to guide 

optimal plot selection. As forest management becomes an increasingly critical aspect in the 

adaptation to a changing climate, understanding of the spatial distribution and quantity of CWD 

within British Columbia’s forests is needed to provide local forest managers with the necessary 

information to assess, evaluate and manage CWD into the future. 

 

1.4. Remote Sensing of forest structure 

Ground-truth data acquisition provides the most accurate description of sub-canopy structure and 

CWD however, field-based approaches are labour and financially restrictive (Hall, 2005). More 

recently, knowledge surrounding the structure, diversity and functions of forests has become 

increasingly detailed with the continued advancements of earth observation and remote sensing 

technologies allowing for unprecedented large-scale acquisition of forest spatial information 

(Wulder, 2004). Even the most basic technologies such as aerial photointerpretation have been 

used to predict simple forest structure and composition with success over large areas (Stone, 

1998; Franklin et al., 2001). Satellite imagery, such as the free and open access Landsat archive 

(Woodcock et al., 2008), has progressed to direct spacebourne modelling of forest structural 

parameters (Feely et al., 2005; Hall et al., 2006) and disturbances regimes that predate and 

influence forest structure (Pflugmacher et al., 2012; Hermosilla et al., 2018). Aboveground forest 

biomass has also been estimated using both optical imagery (Lu, 2005) and RADAR sensors 
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(Hensley et al., 2013). RADAR application is notably limited based on terrain and soil moisture 

conditions (Wulder, 1998) while optical sensors are restricted by spatial resolution and 

specifically a two-dimensional representation of a three-dimension attribute (Lovell et al., 2003), 

despite impressive spatial range and temporal histories.  

Alternatively, light detection and ranging (LiDAR) is an active remote-sensing technology that 

measures the return times of laser pulses to directly capture three-dimensional information with 

high spatial resolution and vertical accuracy. This type of data is particularly useful for 

estimating the vertical variation of biophysical structures such as forest structure across spatial 

gradients (Dubayah and Drake, 2000). Application of this technology towards forest structural 

measurements has been demonstrated using a range of different platforms including terrestrial 

laser scanning, (TLS) (Danson et al., 2007) airborne laser scanning (ALS) (Kim, 2003; Hudak et 

al., 2008; Guo et al., 2017) and spaceborne laser scanning (SLS) (Qi and Dubayah, 2016; 

Duncanson et al., 2020). TLS provides an extremely dense and detailed point cloud but has 

spatial and mobility restrictions influenced by terrain (Liang et al., 2016) while SLS is currently 

unable to capture an entire forest stand at a uniform density and is better suited for global-scale 

analysis. 

Comparatively, ALS can be conducted from a plane or unmanned aerial vehicle over a specified 

geographical area providing an optimal balance of spatial extent and resolution to characterize 

forest stands at the landscape level. Furthermore, ALS has customizable acquisition parameters 

to cater to the desired density, spatial coverage and cost (White et al., 2013). Advancements in 

LiDAR technology have resulted in an increasing density of ALS footprints and decreasing 

acquisition costs.  The majority of contemporary and commercially used LiDAR systems 

produce discrete-return data (Lindberg et al., 2012) which contributes 1-5 returns per pulse and 
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can penetrate through overstorey canopy providing direct interactions with sub-canopy forest 

structures. Sub-meter vertical accuracy from discrete return ALS has been reported by multiple 

sources (e.g., Reutebuch et al., 2003; Schenk, 2001). Specifically, ALS has previously proven 

effective at measuring forest structural attributes relating to height, biomass, basal area, density 

and foliage indices (Coops et al., 2007), highlighting the potential to transfer and apply these 

measurements to a sub-canopy context. CWD characterization also greatly benefits from the 

recent advancements in the density of ALS technology as historical quantification efforts have 

relied on indirect modelling based upon other structural attributes (Pesonen et al., 2008; Van 

Aardt et al., 2011). Alternatively, modern point clouds offer detailed visualizations of the forest 

floor and associated CWD (Nystrom et al, 2014; Lindberg et al., 2013; Joyce et al., 2019), which 

presents an opportunity to directly characterize and model this important component of forest 

structure. 

New opportunities now exist to utilize ALS to characterize and inventory secondary structural 

components in forests stands such as sub-canopy structure and CWD that were previously 

overlooked by other remote sensing technologies. Using ALS to produce maps detailing the 

location and quantity of sub-canopy structure and CWD can fill the need for updated biomass 

estimates along with ecosystem and successional stage classifications for the existing Vegetation 

resource inventory polygons (VRI), which are currently interpreted primarily from aerial photo 

interpretation. VRI covers most of British Columbia; VRI could be updated with ALS-derived 

CWD and sub-canopy structure inventories across the province as provincial ALS coverage 

continues to increase. Integration of stand-level forest secondary structure characterization using 

ALS can provide the VRI with the detailed landscape-level inventory required to manage these 

important forest attributes.  
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1.5. Research Objective and thesis overview 

The objective of this research was to evaluate the ability of ALS to locate and quantify secondary 

structural attributes within the natural forest stands of central British Columbia. Forest managers 

could greatly benefit from the spatial identification of these structural elements that influence the 

anthropogenic and ecological values of their surrounding ecosystems. To address this objective, 

the investigation was broken down into two specific research questions: 

1. Can sub-canopy trees and stand characteristics of naturally regenerating forests be quantified 

using ALS? 

2. Can CWD attributes such as spatial location and volume be accurately mapped and detected 

from ALS in naturally regenerating forest stands? 

Chapter 2 provides detailed information on the study area including climate, topography and 

dominant vegetative species. Additionally, it outlines the ALS acquisition characteristics as well 

as the sampling procedure undertaken to obtain a diverse field-based representation of a range of 

forest structures. 

Chapter 3 describes a novel methodology for defining the sub-canopy and separating it from the 

dominant canopy. This chapter illustrates the application of this methodology to derive 

predictive models of quantifiable sub-canopy attributes from a suite of ALS metrics that are used 

to generate a sub-canopy map. 

Chapter 4 details a novel processing strategy for spatially isolating CWD returns within the ALS 

point cloud and transforming them into measurable vectors to generate volume estimates. The 

methodology is applied to produce CWD volume maps. Accuracy diagnostics are then conducted 



13 
 

at the individual log, plot and stand level to determine characteristics that influence CWD 

detection rates.  

Chapter 5 highlights the key findings and draws conclusions from previous chapters. Limitations 

are addressed along with recommendations for future research. 
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Chapter 2 - Study area and design 

2.1. Study area 

The study area is located between the communities of Smithers and Houston in central British 

Columbia (54.7°N, 126.9° W). It occupies 48,000 ha of primarily conifer forest of the Deception 

Lake operating area of BC Timber Sales. Climatically, British Columbia is classified into 

Biogeoclimatic (BGC) zones that use climax vegetation communities to infer the grouped 

ecological effects of climate and soil (Mackenzie and Meidinger, 2018). The study area occurs in 

the Sub-Boreal Spruce moist cold; Babine variant (SBSmc2), and Engelmann Spruce – 

Subalpine Fir moist cold subzone (ESSFmc) biogeoclimatic units (Banner et al. 1993) (Figure 1). 

Within both climate areas the dominant tree species are Abies lasiocarpa (subalpine fir), Pinus 

contorta (lodgepole pine) and Picea engelmannii x glauca (“interior” spruce). Picea mariana 

(black spruce), Populus tremuloides (trembling aspen), Alnus incana (mountain alder), Betula 

papyrifera (paper birch) and Salix scouleriana (Scouler’s willow) are found in low densities 

primarily at lower elevations of the study area. The region is mountainous with elevation ranging 

from 700 - 1550m and has been actively managed for forestry, resulting in a mosaic of second 

growth and mature old-growth forest. Within the study area, VRI units have been delineated via 

photo interpretation representing a variety of stand ages, heights and structures. Ground-level 

vegetation and shrub density varies with soil moisture and stand successional stage. The mean 

annual precipitation for the region is 660mm and mean annual temperature ranges from 0.5°C to 

3.1°C depending on elevation (Wang et al., 2007). Forest fires are also frequent (B.C. Ministry 

of Forests, 1998). 
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Figure 1. Map of the Deception Lake operating area and associated BGC subzone/variants near 

Smithers in northwestern British Columbia.      
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2.2. ALS data and pre-processing 

Discrete-return ALS data were acquired over the entire forest management unit over the period 

of August 6th to 22nd 2016. Collection at this time of year ensured full leaf coverage providing a 

realistic representation of forest and sub-canopy. This dataset consists of a relatively high point 

density of 23 points/m2 (Table 1) and up to a maximum of six returns per pulse. This high 

density ALS dataset provides unique opportunity to describe structural aspects of forests that are 

often overlooked by other remote sensing technologies due to the ability to know where, in the 

vertical forest structure, the reflective surfaces are located (Miller et al., 2003). The ALS data 

was filtered for noise returns and normalized following standard point cloud processing routines 

within LAStools (Isenburg, 2014), similar to those described in a best practices guide for 

generating forest inventory attributes from ALS (White et al., 2013).   

Table 1. ALS acquisition characteristics for Deception Lake, B.C. 

Characteristic 2016 LiDAR 

Sensor Riegl Q 1560  

Wavelength 1064 nm 

Flying altitude 1200m 

Flying speed 140 Kts 

Scan rate 800 Khz 

Scan angle 58°  

Minimum overlap 55% 

Average point density 23 per m2 

Average pulse density 10 per m2 
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2.3. Plot selection 

In order to capture the range of forest structure present in the study area a structurally guided 

sampling approach was used (Nijland et al., 2015). Three ALS metrics, gridded at a 20m 

resolution, were chosen to guide the sampling: 1) normalized average height of the 95th 

percentile (P95); 2) proportion of normalized returns above 2 meters; and 3) normalized point 

height coefficient of variation (CoV). These metrics were chosen to guide sampling as they 

represent the three metric categories that describe forest structure (Coops et al. 2016). P95 

represents canopy height, proportion over 2 meters represents canopy cover and CoV represents 

vertical height distribution. Additionally, the metrics have been individually identified as key 

variables for describing forest structure (Matasci et al., 2018). Each metric was stratified using 

equal breaks along their respective ranges into four separate classes to capture the range of these 

key metrics. (Figure 2). Of the potential 64 unique combinations of the original three ALS 

metrics, the result was 14 dominant structural classes representing unique forest structure spread 

over a range of BGC zone variants. Each class was sampled twice for a total of 28 plots. For 

accessibility purposes, plots were required to be within 250 m of a road. 
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Figure 2. ALS metric-based stratification results for Deception Lake, B.C. Four classes 

representing proportion of returns above 2 m (a), height of the 95th percentile (b) and coefficient 

of variation (c). 

 

2.4. Plot measurements 

Field work was conducted by a four-person field crew in August, 2018 and focused on two 

primary sets of measurements, stand inventory and CWD measurements. Following the 

suggested best practices for describing stand inventory attributes from ALS (White et al. 2013), 

each of the 28 plot locations contains a 400m2 circular plot that has the diameter at breast height 

(DBH) and species of every tree (above 9cm DBH) recorded. The height of tree and height to 

crown was measured for every third tree in the plot. Species-specific DBH-to-height regression 

models were derived from the measured trees then applied to impute tree and crown heights for 

unmeasured trees in the plot (Mehtätalo et al., 2015). Each plot was then assigned a structural 

and successional stage based on visual interpretation, as outlined in the BC Government Field 

Manual for Describing Terrestrial Ecosystems (Province of British Columbia, 2015). 

a) b) c) 
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Additionally, the forest was segmented into three layers, dominant/co-dominant layer, 

intermediate layer and a layer for trees below 2 m. Cover (in %, rounded to the nearest multiple 

of ten) was also visually assessed for the three vertical layers.   

Nested and centered within the circular stand inventory plots, a 10x10m square plot was used to 

record and map CWD information (Figure 3). This square plot was then gridded into 2m squares 

to aid in accurately mapping the spatial location, length and orientation of CWD pieces. All 

pieces of CWD over 8cm diameter, trees, shrubs and stumps were mapped within each gridded 

subplot. Each log was then visually assessed and given one of four bark decay and vegetation 

growth classes to assist in aging the CWD, similar to the aging strategy implemented by Farnell 

et al. (2020). Class zero represents 0-10% vegetative growth or bark present on the log, class one 

represents 10-50, class 2 represents 50-90% and class 3 90-100%.  For each piece of CWD, 

height above ground was measured at each end or at the point the log exited the plot, overall 

length was measured between these same points. CWD pieces that were more than 50% buried 

were not counted in data collection.   
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Figure 3. Example of sampling plots and CWD map. Tree inventory extent displayed in blue. 

The extent of the CWD map and example features are displayed within the grey square.  

 

 

 

 

 

 

 

 

 



21 
 

Chapter 3:  Detection of Sub-Canopy Forest Structure Using 

Airborne LiDAR 

3.1. Introduction 

In forested systems, distinct aspects of forest structure occur at definable scales (Angelstam 

1996; Bunnell 1995; Holling 1992). Resident species have adapted to persist within the structure 

and composition that result from natural disturbance regimes (Bunnell 1995; Holling 1992; 

Hunter 1999). Forest succession that is influenced by these regimes may be categorized into 

structural stages that describe, in part, the development of and relation between an overstorey 

main canopy and a developing understory sub-canopy (Province of British Columbia, 1998; 

Martinuzzi et al., 2009).  While attributes and structural patterns associated with the forest 

canopy are well documented, less is known about the sub-canopy or understory structure (Wing 

et al., 2012). The sub-canopy consists of many structural elements such as sub-dominant trees, 

regenerating saplings of shade-tolerant species, shrubs, herbs, snags and coarse woody debris 

(Connell et al., 1997). The size, density and composition of these sub-canopy structural elements 

aids in the structural characterization of overall forest structure. In this chapter I primarily focus 

on trees that are not part of the canopy but are taller than shrubs as these trees are considered to 

be the sub-canopy structure of the forest.  

 

Forest health and timber production are particularly important like British Columbia, Canada, 

where forestry is a major economic driver (Bourgeois 2004). A critical component of sub canopy 

structure are the intermediate-sized trees that exist beneath the main canopy. These sub-canopy 

trees represent the future forest canopy and have value for future timber supply if maintained 

during first-pass harvesting (Coates, 2012). Tree regeneration rate is a sub-canopy process 
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indicative of forest health (Rogers, 2002); another important component in forecasting possible 

timber supply (Korpela et al., 2012). More in-depth knowledge on regeneration trends will allow 

for more accurate assessments of harvest outlooks.  Forests in British Columbia have been 

severely affected by the mountain pine beetle outbreak, which killed a large percentage of 

canopy trees (Coates, 2012). Management focus has now turned to the structure and composition 

of the sub-canopy to assess the remaining healthy trees and their potential contribution to future 

timber supply (Coates et al., 2006; Amoroso et al., 2013).  

Field-based data collection provides the best description of sub-canopy attributes, however field 

approaches are labour and financially intensive (Hall, 2005). Alternatively, remote sensing 

technologies such as ALS have proven effective at measuring 3-D forest attributes across wide 

spatial extents (Lefsky, 2002).  The major advantage of remotely sensed data is the ability to 

extract spatially explicit information from a broad landscape in a time-efficient and cost-effective 

manner (Lim, 2003). Considering the canopy intercepts a large number of LiDAR pulses, 

secondary-structure trees are conceptually more difficult to identify than canopy trees. However, 

discrete-return ALS can penetrate the canopy and accumulate up to six returns per pulse 

providing spatial detail on sub-canopy structures. While difficulties exist surrounding the ability 

to isolate where the canopy ends and the sub-canopy begins (Chasmer et al., 2006), ALS has 

demonstrated success when utilized to model understory characteristics including snags and 

shrubs (Martinuzzi et al., 2009; Nijland et al., 2014), vegetation cover (Goodwin et. al., 2007), 

vegetation density (Campbell et al., 2018) and forest successional stages (Falkowski et al., 

2009). Additionally, ALS has been combined with multispectral imagery to generate understory 

fuel models (Jakubowksi, et al., 2013, Multu et al., 2008). These studies highlight the ability of 

ALS to isolate sub-canopy attributes, especially in the lowermost sections (0-4m).  Furthermore, 
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this indicates potential of ALS based technology to assess the sub-canopy with a goal of 

developing a sub-canopy forest inventory. 

 

A sub-canopy inventory in British Columbia would have a number of important management 

applications including forecasting forest health, timber supply, fire susceptibility, wildlife habitat 

quality, and carbon sequestration. Given these potential applications, coupled with advancements 

in availability and density of ALS data, there is an obligation to examine how well ALS can 

describe the structural characteristics of the sub-canopy. In this chapter I will investigate the 

following questions:  

1. What is the process for deriving field-based sub-canopy structure measurements 

from an ALS point cloud? 

Considering forests are complex ecosystems that are made up of more than just the canopy 

(Franklin et al. 2002), a successful analysis of the sub-canopy from an aerial source requires a 

differentiation of the attributes of the main canopy and the sub-canopy. Due to the variation of 

canopy height present in naturally regenerating forests (Kral et al., 2010), a fixed height 

threshold is unlikely to be representative at a landscape scale. In order to capture this variability, 

there is a need for a procedure which provides a relative canopy height definition on a stand-

level scale. 

2. How well can ALS metrics describe the sub-canopy characteristics of forest stands in 

central British Columbia? 

After isolating the sub-canopy portion of the point cloud, I will quantify volume, basal area and 

number of trees and will construct models to predict these sub-canopy attributes. These attributes 
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aim to describe the sub-canopy trees that are well-established to become a part of the canopy and 

play an important role in future forest succession (Pyke and Zamora, 1982). Alternatively, from a 

harvesting perspective, retaining sub-canopy trees will preserve the later, more commercially 

valuable, successional stages of forests (Leemans, 1991). Predicting information on the structural 

makeup of the sub-canopy using ALS could guide forest management planning and practices to 

focus on tree vigor to produce more valuable forest stands. 

3. How does sub-canopy structure vary across the landscape? 

Using the predictive models from research question 2, I will assess spatial distribution of sub-

canopy attributes relative to climatic variants and topography. Landscape-level interpretations of 

sub-canopy structure are required for tactical assessments of the interaction of forest attributes 

with disturbance regimes, and to prudently integrate wildfire risk reduction with planning for 

carbon sequestration, timber supply, the establishment of climate-adapted regeneration and 

management of wildlife habitat. Sub-canopy trees often become ladder fuels, allowing surface 

fires to spread to the canopy and become full-fledged crown fires (Helms 1979; Buckley 1992). 

Given the recent increase and predicted future increase in the number, extent and severity of fires 

in western North America (Schoennagel et al., 2017), the ability to identify those areas with 

greater fuel loads and susceptibility to crown fires is needed. Mapping areas of high fuel load in 

the sub-canopy could pinpoint where common fire-reduction strategies such as understory 

thinning (Agee, 1996) should be taking place. Knowledge about where to spatially concentrate 

fire-reduction efforts can help protect communities and infrastructure in fire-prone regions.  

 In addressing these questions, I aim to assess the feasibility of using ALS to predict sub-

canopy attributes and develop the predictive models capable of mapping these attributes at a 

landscape level to improve the allocation of resources for integrated forest management. 
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3.2. Materials and methods 

3.2.1. Sub-canopy structural definition 

In order to properly characterize the sub-canopy, I first established a consistent definition of the 

focal stratum. Sub-canopy structural elements of a stand were defined as trees taller than 2 m but 

of shorter stature than the sub-dominant component of the main canopy. These canopy layers are 

established in relation to each other based on the mean height of the co-dominant layer (Figure 

2). Vegetation below these canopy levels and still above 2 m are considered sub-canopy 

structure. Main canopy height is variable due to stand age and site quality and therefore needs to 

be defined on an individual stand level based on relative metrics as opposed to a predetermined 

height. Therefore, to establish the origin of the co-dominant canopy layer, Lorey’s mean height 

(HL) (Equation 1) was used (Table 2). This incorporates height and basal area, giving more 

weight to trees with a larger DBH, which are more likely to be part of the canopy (Husch et al. 

1982). Several studies (Hyyppa et al., 2001; Naesset, 2002; Maltamo et al., 2006) utilize HL as it 

can provide a much more representative description of the canopy, regardless of unusual stand 

structure or outstanding maximum canopy height. Figure 4 provides an example of a stand and 

how trees would be classified into the canopy. 

Equation 1. Lorey’s Mean Height where g is basal area and h is measured tree height. 

𝐻𝐿 =  
∑ 𝑔 ∗ ℎ

∑ 𝑔
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Table 2. Canopy and sub-canopy definitions relative to HL.  

Canopy Class Definition 

Dominant >110 % of HL 

Co-dominant 90-110% of HL 

Sub-dominant 70-90% of HL 

Sub-canopy < 70% of HL 

 

 

Figure 4. Canopy stratification for determining sub-canopy structure 

  

Using our ground height and DBH measurements, HL was calculated for each plot and applied to 

the canopy definition as the center of the co-dominate canopy. This determined which trees in 
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the plots were considered sub-canopy structure for the focus of our analysis. After establishing 

which trees represented the sub-canopy, three variables were derived to describe sub-canopy 

structure. The first variable was the number of trees (NSC) that were considered part of the sub-

canopy (i.e. not part of the canopy and greater than 2m tall). The second variable was basal area 

of all sub-canopy trees in meters squared (BASC). Basal area is the cross-sectional area of a tree 

at 1.37 meters and was derived from our DBH measurements (Whitehead, 1979). The third 

variable was the volume of all sub-canopy trees in meters cubed (VSC), which is calculated by 

multiplying basal area by measured height. These variables were then calculated for the 28 

sample plots across the study region.  Using these variables two sets of modelling approaches, 

retained canopy modelling and removed canopy modelling, were tested to compare field-based 

sub-canopy structure measurements to the metrics derived from the point cloud. 

 

3.2.2. Canopy modelling 

3.2.2.1. Retained-canopy modelling 

To establish a baseline for quantifying sub-canopy forest inventory attributes that is consistent 

with current literature (Irwin, 2018; Kramer et al., 2014; Martinuzzi et al., 2009; Clark et al., 

2004) the unsegmented canopy ALS point cloud was used. First, an area-based approach (ABA) 

was implemented for predicting the NSC, BASC, and VSC at a 20 x20m grid cell resolution. When 

using ABA, statistical models are created to relate ALS data at the cell level to the desired forest 

inventory attributes measured at ground plots. These models are then applied across the area of 

ALS coverage to obtain wall-to-wall estimates of the attributes (White et al., 2013). A suite of 

metrics were calculated that describe four elements of the forest stand: height, height variability, 

cover, and structure (Table 3). Height, and height variability metrics are commonly used for 
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predicting basal area and tree volume (Ferster et al., 2009; Babcock et al., 2012), while cover 

metrics can provide insight about gaps and canopy influence (Falkowski et al., 2009). Lastly, 

structural metrics including vertical complexity index (VCI) and vertical rumple, segment the 

point cloud into voxels for assessment of vertical structure variance (Tompalski et al, 2015). All 

metrics were tested for multicollinearity and removed from analysis if correlation to another 

metric was greater than 0.8. These metrics were then used to develop predictive linear regression 

models for NSC, BASC, and VSC. Models were developed by testing all combinations of 

uncorrelated metrics through a forward-stepwise regression using 10-fold cross-validation while 

withholding 30% of plots for validation. The final models chosen for each sub-canopy variable 

produced the combination of lowest root-mean-square-error (RMSE) value and highest r2 value 

when cross-validated.  

Table 3. ALS Metrics and associated classes tested to predict sub-canopy variables 

Metric Description Source Category 

Pn 
Height of the nth percentile of returns  

(n = a single value multiple of 5, up to 95) 

Roussel and 

Auty, 2019 
Height 

Max Maximum height return 
Roussel and 

Auty, 2019 
Height 

St_Dev Standard deviation of return heights 
Roussel and 

Auty, 2019 

Height 

Variability 

Skewness, 

Kurtosis 
Skewness and Kurtosis of return heights 

Roussel and 

Auty, 2019 

Height 

Variability 
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Mean, Median, 

Mode 
Mean, median and mode of return heights 

Roussel and 

Auty, 2019 

Height 

Variability 

Above_Mean Percentage of returns above mean 
Roussel and 

Auty, 2019 

Height 

Variability 

Above_Median Percentage of returns above median 
Roussel and 

Auty, 2019 

Height 

Variability 

Cumu_% 
Cumulative percentage of return heights in the lowest      

10, 20, 30, 40, 50, 60, 70, 80, and 90% respectively 

Roussel and 

Auty, 2019 
Cover 

P_D_2,        

P_D_5,      

P_D_10,    

P_D_15 

% Density above 2, 5, 10 and 15m height returns 

respectivly 

Isenburg,   

2014 
Cover 

All_Above_ t2, 

All_Above_ t5, 

All_Above_ t10, 

All_Above_ t15 

Total number of returns above 2, 5, 10 and 15m 

respectively 

Isenburg,  

2014 
Cover 

LAD_Min, 

LAD_Max, 

LAD_Mean 

Minimum, maximum and mean leaf area density 
Bouvier et al., 

2015 
Structure 

VCI 
Vertical Complexity Index - Distribution of abundance of 

returns in 1m height bins 

Van Ewijk et 

al. 2011 
Structure 

Vertical_Rumple 
Measure of variance of vertical structure as a function of 

filled voxels in point cloud 

Tompalski, 

2015 
Structure 
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3.2.2.2. Removed-canopy modelling 

The second modeling approach utilized a LiDAR-based approach for removal of the canopy. 

Since the sub-canopy definition was defined using HL, a model was generated to predict HL 

from the ALS point cloud. HL has been accurately predicted by ALS in previous studies (Zhang 

et al., 2017, Maltamo et al., 2010) and most often uses upper height metrics such as the 95th 

percentile of height returns (P95) as a predictor variable (White et al., 2017). This relationship 

was then implemented through linear regression to develop a model for predicting HL using P95. 

I then applied the ABA by generating wall-to-wall metrics for P95 and apply our model to 

generate a raster of predicted HL across the study area at 20 x 20m grid cell resolution (White et 

al., 2013).  

The resulting raster of predicted HL was then used as an input for the canopy threshold 

calculation and the corresponding result used as a filter that removed the canopy from the point 

cloud across the study region. This ensured the canopy was removed based on stand 

characteristics at a stand level, i.e. 20 x 20 m. The same suite of metrics (Table 3) were then 

generated for each plot and an ABA applied for the removed canopy using the forward-stepwise 

regression and 10-fold cross-validation approach to develop relationships between NSC, BASC, 

VSC and ALS derived metrics. Lastly, a test for significance between modeling procedures was 

conducted by using a two-sample t-test on the residuals of predicted values produced from both 

modelling methods for each NSC, BASC and VSC. 

 

 

 



31 
 

3.2.3. Spatial distribution 

Results of both modelling approaches were compared to determine if retaining or removing the 

canopy produced more accurate models for each sub-canopy variable. The ABA was then 

applied using the strongest models and a predictive map was then produced for each variable 

across the entire study region. Lastly, these maps were overlain with BGC variant mapping to 

visualize how sub-canopy variables vary in relation to known forest attributes and topographical 

variation at the landscape scale. 

 

3.3. Results 

3.3.1. Sub-canopy composition 

The field-based definition of the sub-canopy using HL coupled with the structurally guided 

sampling approach successfully produced plots with a variation of sub-canopy composition 

(Figure 5). The canopy -- sub-canopy threshold for the plots ranged from 6.7m to 14.3m. The 

number of trees considered part of the sub-canopy range from 0 to 30, while the percentage of 

trees in the plot that were considered sub-canopy trees varied between 0 and 55%. Notably, plot 

25 which was composed of the highest P95, average height and low CoV, had considerably 

higher sub-canopy volume compared to other plots. 
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Figure 5. Summary of sub-canopy structure within the 28 ground plots using canopy case height, 

number of sub-canopy trees and percentage of trees classified as sub-canopy. 

 Figure 6 displays the linear regression model using P95 to predict HL (r2 = 0.96, RMSE = 

0.73m) for the 28 ground truth sites. The strong performance of the model indicated HL could be 

confidently estimated from an ALS point cloud.  
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Figure 6. Predicted vs. observed HL using a linear regression model. Regression line displayed 

in black and 1:1 line displayed as dashed line. 

3.3.2. Sub-canopy models  

Table 4 describes the metrics used in the strongest performing models for each sub-canopy 

variable for both modelling approaches. When the canopy was removed, only metrics from the 

height and structure classes were selected. When the canopy was retained, there was a more 

diverse selection across metric classes including height variability and cover.  

 

Figure 7 Linear regression results for predicting sub-canopy volume using A) Canopy retention 

B) Canopy removal. Regression line displayed in black and 1:1 line displayed as dashed line.
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Figure 8. Linear regression results for predicting sub-canopy basal area using A) Canopy 

retention B) Canopy removal. Regression line displayed in black and 1:1 line displayed as 

dashed line. 

 

Figure 9: Linear regression results for predicting number of sub-canopy trees using A) Canopy 

retention B) Canopy removal. Regression line displayed in black and 1:1 line displayed as 

dashed line. 

Removing the canopy resulted in stronger predictive models for two-thirds of the variables when 

compared to using the retained canopy approach (Table 4). Sub-canopy tree volume (Figure 7) 

using the canopy removal approach was the most accurately predicted (r2 = 0.88, RMSE = 0.654 

m3, Bias% = 0). When the canopy was not removed the predictive capability dropped 

considerably, RMSE nearly doubled and small overestimation was present (r2 = 0.57, RMSE = 

1.21 m3, Bias% = 2.42). Sub-canopy basal area (Figure 8) was predicted moderately well when 

the canopy was removed (r2 = 0.68, RMSE = 0.064 m2) and not as strongly when the canopy was 

retained (r2 = 0.52, RMSE = 0.078 m2). Bias percentage for both basal area models was less than 

1%. Prediction trends when removing the canopy indicated an overestimation of stands with 
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lower basal area and an underestimation with stands with greater basal area. This trend also 

occurred in the number of trees and basal area canopy removal models (Figure 9). Additionally, 

Figure 7 indicates that as opposed to volume and basal-area, predictive strength for number of 

sub-canopy trees was stronger when the canopy was retained (r2 = 0.59, RMSE = 5.436 trees) 

compared to when it was removed (r2 = 0.55, RMSE = 5.892 trees).The retained model had a 

small bias percentage of 1.45% while the removed canopy model had almost none (Bias% = 

0.05). All predictor variables for each model were significant (95% CI). Significance testing 

between the residuals of the retained and removed canopy models found the removed canopy 

model for volume to be significantly different (p = 0.049), while basal area and number of trees 

not significantly different (p = 0.621 and p = 0.915). Statistics were completed using R 3.5.0 (R 

Core Team, 2018), and the caret (v6.0-84; Kuhn, 2008) package. 

Table 4. Summary of regression model statistics.  

Model Predictor Variables R2 RMSE RMSE% Bias% 

VSC- Removed Max 0.88 0.654 34.04% 0.00% 

 LAD_max     

 P_D_15     

VSC-Retained P95 0.57 1.21 63.02% 2.42% 

 Above_median     

BASC- Removed Vertical_rumple 0.68 0.064 38.29% 0.91% 

 LAD_Max     

 Mean     

BASC- Retained St_Dev 0.52 0.078 46.57% 0.00% 
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NSC - Removed Vertical_Rumple 0.55 5.892 45.32% 0.05% 

 LAD_Max     

 P_D_15     

NSC- Retained P15 0.59 5.436 41.82% 1.45% 

 All_Above_Mean     

 All_Above_t5     

 

 

3.3.3. Landscape distribution 

Figure 10 displays the use of the strongest performing model, to generate a predictive map of 

sub-canopy tree volume for the study area at a 20m grid resolution. The central region of the 

study area contains the most sub-canopy volume. High levels of sub-canopy volume also appear 

at the lower elevations, specifically in valleys. Figure 8 also contains the two climatic zones 

present in the study site. The Sub-boreal spruce variant indicates considerably more sub-canopy 

volume compared to the Engelmann spruce-subalpine fir variant. 
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Figure 10. Predicted sub-canopy volume of Deception Lake overlain with local BGC variants. 

ESSF variants represent higher elevations while SBS variants represent lower elevations. Areas 

in white are either recently harvested, roads or water and are masked for evaluation. 
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3.4. Discussion 

3.4.1. Sub-canopy description 

To address research question one, I created and assessed a methodology for removing forest 

canopy from an ALS point cloud to examine sub-canopy structural characteristics. I exhibit that 

by using the 95th percentile of a point cloud HL can be accurately predicted. This is consistent 

with others who have been able to predict HL from ALS metrics with similar accuracy (e.g., 

Holmgren, 2004). Using predicted Lorey’s mean height as a baseline for a percentile-based 

canopy threshold enabled us to differentiate the sub-canopy at the stand level, and address the 

natural variability in canopy structure between stands. Agca et al. (2011) also used HL to 

calculate canopy base height at the stand level and found it to be an effective method. Within my 

study, removing the canopy using this method increased the accuracy of the two best predicted 

sub-canopy variables, volume and basal area. While a single canopy height cannot be uniformly 

representative of a 400-m2 stand, these results indicate that our canopy separation procedure 

removes a substantial portion of the main canopy and allows an improved assessment of sub-

canopy basal area and a significantly better assessment of tree volume.  

 

3.4.2. ALS characterization  

The sub-canopy models indicate the capability to predict sub-canopy structural variables with 

reasonable accuracy using ALS-derived metrics. Our second research question is addressed in 

particular by the strong prediction of key forest inventory metric, sub-canopy volume. Prediction 

accuracy ranged depending on the variable and maintenance of the canopy structure. Two 

models, sub-canopy volume and basal area, performed better with the canopy removed and 

explained 88% and 68% of the variation in the data respectively. Total stand volume and basal 



39 
 

area are highly correlated (Naesset, 1999) and our results imply sub-canopy volume and basal 

area are likewise correlated. These models share a predictor metric (LAD_Max) highlighting its 

importance in describing the sub-canopy. Height metrics in both models establish the upper 

threshold of the sub-canopy, while LAD_Max represents the variation and density of structure 

within. This coincides with previous studies where LAD metrics proved to inform on the vertical 

heterogeneity of sub-canopy vegetation (Bouvier et al., 2015) while upper percentile height 

metrics excel at predicting volume and basal area (White et al., 2017). Sub-canopy volume was 

likely predicted better compared to basal area due to tree volume being a direct function of 

height. This is reiterated by the significance testing between models where the removed canopy 

volume model is significantly stronger than the retained canopy model. Alternatively, the 

removed canopy basal area model has a better fit (r2 and RMSE) than the retained canopy model, 

but is not significantly different in predictive accuracy. Overall, these findings exhibit 

requirement for both height and structure-based metrics for accurate representation of the sub-

canopy. 

Number of trees present in the sub-canopy was the weakest performing model with the canopy 

removed (r2 = 0.55). This was expected given previous difficulties in counting and segmenting 

understory trees with a point cloud density of less than 170 points per square meter (Hamraz et 

al., 2017). However, this model performed marginally better when the canopy was retained (r2 = 

0.59) which was unexpected given the improved performance of the volume and basal area 

models without the canopy. This may be due to the spruce and subalpine fir trees growing in 

clumps which affects habitat and potential growth value (B.C. Ministry of Forests, 1998). Our 

models are able to predict volume and basal area of these clumps but lack the density to identify 

individual trees. Removing the canopy in this situation would further lower the density and 
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possibly explain the poorer performance of the removed canopy model. Alternatively, the 

retained canopy model which maintains a comparatively higher agreement exhibits a noticeably 

different composition of metrics (All_Above_t5, P15 and Above_Mean). By utilizing two cover-

based metrics and a lower percentile height metric, the model is able to form a relationship 

between canopy cover and quantity of sub-canopy trees. This is similar to Latifi et al. (2016) 

who indicated that prediction of intermediate forest layers are correlated to canopy cover metrics. 

While our model appears to estimate the general proportion of sub-canopy trees correctly, the 

remaining uncertainty surronding the number of trees is likely due to the inability of ALS 

metrics to perform segmentation of these tree clumps at a 20 m scale. This is agreeable with Yin 

et al. (2019) who suggest that for individual tree segmentation, pixel size must be at least one 

quarter of the crown diameter. 

 

3.4.3. Distribution 

Our final research question was addressed by Figure 8, where patterns of sub-canopy volume 

become evident at the landscape scale. Areas with high levels of sub-canopy volume stand out in 

the valleys and flatter terrain. This relationship is especially visible by the lower volume found in 

the higher elevation and more rugged ESSF variant compared to the SBS variant (Meidinger and 

Pojar, 1990). The comparatively shorter and cooler growing seasons of the higher sections of the 

ESSF (Meidinger and Pojar, 1990) do not appear to develop sub-canopy structure well. In 

contrast, sub-canopy volume within the SBS variant is shown to be highly variable but appears in 

clusters or elongated shapes of high volume corresponding with the woodland subzone. This is 

suggestive of a relationship with one or more topographic variables, which may be partially 
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related to the stand level classes in the BGC classification hierarchy (i.e., site series, Meidinger 

and Pojar 1990) and could be the focus of future research.  

 

3.4.4. Applications 

Improved understanding of sub-canopy structure patterns can be useful for a range of tasks from 

harvest management planning to fire-risk assessments to planning for climate adapted 

regeneration and carbon sequestration. While this chapter focused on using an ABA, there is 

potential to apply individual tree segmentation approaches after implementing the canopy 

removal strategy. From a timber supply perspective, sub-canopy volume in the understory have 

shown positive growth responses when sections of the canopy have been removed (Hawkins et 

al., 2013). By retaining sub-canopy structure, the subsequent successional stages are preserved, 

capturing additional commercial, carbon or microclimate value (e.g., Leemans, 1991). 

Understory retention is also a harvesting strategy currently being implemented in boreal forests 

in Alberta, Canada (Charchuk, 2018).  

Expanding beyond stand attributes with a timber focus, sub-canopy structure can substantially 

influence forest fires. As fire severity and frequency continue to increase in Western North 

America, sub-canopy volume can be used as an input for models predicting fire susceptibility 

and severity. These models often contain fuel classification layers or presence of intermediate 

canopy ladders fuels (Whitman et al., 2013; Scott and Reinhardt, 2001; Rothermel 1991). The 

sub-canopy attributes predicted in this chapter show potential to improve model reliability by 

replacing or augmenting traditional input layers, which can currently be based off of as little as 

normalized difference vegetation index (NDVI) values (Whitman et al., 2013). Combined with 

other ALS fuel predictive layers (Kramer et al., 2016), our predicted sub-canopy attributes 
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present opportunities to create more robust fire management models. These attributes can also be 

used as inputs into predictive ecological modeling efforts to determine stand successional stage. 

Other applications exist including quantification and location of sub-canopy structure for 

identifying habitat potential for wildlife and carbon stock modelling procedures (Hill and 

Broughton, 2009).   
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Chapter 4 – Spatial Detection and Volumetric Quantification of 

Coarse Woody Debris in Natural Forest Stands Using Airborne 

LiDAR. 

 

4.1. Introduction 

As management of the sources and sinks of carbon is increasingly recognized as a tool to 

mitigate climate change, efforts to quantify and predict carbon sources and sinks are increasing 

(Grote et al., 2011; Merganičová 2019). Forests are important carbon sinks which absorb around 

30% of anthropogenic carbon emissions (Schulze et al, 2000). Coarse woody debris (CWD), 

defined as dead woody biomass on the forest floor with a diameter greater than a given 

threshold, is an important component of the terrestrial carbon cycle within forest stands 

(Smallman et al., 2017), with over a quarter of forest carbon stored as CWD (Pan et al. 2011). 

CWD, defined as residual dead woody biomass in close proximity to the forest floor with a 

diameter greater than a given threshold, is an influential functional and structural element of 

forest ecosystems (Harmon et al., 1986). Dependent on time since mortality and environmental 

conditions, CWD is present in a range of sizes and decompositional stages. As a single element 

of the overall forest structure, the amount and type of CWD is a function of the other structural 

elements in a stand including species composition, canopy height, sub-canopy tree density and 

stand age (Sturtevant et al., 1997). In natural forest stands, large volumes of CWD are generally 

associated with later forest successional stages (Harmon and Hua, 1991), as they are 

representative of trees that are no longer part of the canopy. This opens up gaps in the canopy 

leading to understory regeneration and increased vertical heterogeneity of forest structure 

(Feldmann et al., 2018). Information involving the size and volume of CWD in a stand could 
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provide insight into both successional and structural forest stages, as well as site-level 

classifications for ecosystem mapping. 

CWD is often referenced as an indicator of diverse and productive old-growth stands as it 

represents multiple age cohorts and vertical heterogeneity (Feller, 2003; Keren and Diaci, 2018), 

plays an important role in carbon storage (Gough et al., 2007), providing habitat for a range of 

wildlife (McComb, 2003; Ucitel et al., 2003) and wildfire fuel load (Cansler et al., 2019; Choi et 

al., 2015; Aponte et al., 2014). Considering these relations, the presence of CWD contributes to 

the maintenance of heterogeneous structural and biological diversity.  

Developing reliable CWD estimates and inventories has multiple challenges (Woodall et al. 

2008, Campbell et al. 2019). The volume and mass of CWD in forests is highly variable across 

stand types, successional stage, climate, disturbance history and forest management regimes 

(Harmon et al. 1986). Conventional efforts to detect CWD often rely on site-specific and 

intensive field-based measurements which can be time-consuming. Jordan et al. (2004) for 

example, reports an average time of 90 seconds to measure end diameters, length, species and 

decay class for a single piece of CWD. Old and decomposed logs can prove difficult to measure 

as the majority of the log may be buried in the forest floor, complicating diameter measurements. 

Additionally, smaller CWD pieces are often tapered and only partially meet the requirements to 

be recorded as CWD. Accessibility can also prove to be an obstacle for CWD field-

measurements as large CWD may extend over multiple shrubs and ground depressions, further 

adding to the difficulty of hand measurements. Given the increasing importance of reliable 

estimates of CWD; novel, accurate and cost-effective inventory methods are needed. Remote 

sensing methods have to potential to improve CWD inventories (Pan et al. 2011).  
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Airborne laser scanning (ALS) presents an opportunity to obtain spatially explicit information 

over broad landscapes in a manner considerably more time-efficient and cost-effective when 

compared to field-based CWD measurements. The number of ALS pulses to reach the forest 

floor is influenced by overstory canopy cover, height, density and shrub presence (Venier et al., 

2012). Despite this, detection of understory vegetation, CWD, as well as attributes of the forest 

floor are able to be consistently detected and as a result ALS has been shown to provide detailed 

three-dimensional representations of the canopy (White et al., 2018), sub-canopy (Jarron et al., 

2020), and understory attributes (Campbell et al., 2018). This characterization of both vertical 

and horizontal structure provides ALS with a substantial advantage over other remotely sensed 

data such as aerial photography and satellite imagery, which are restricted to assessing forest 

structure based on upper canopy attributes.  

The three-dimensional capability of ALS have resulted in widespread use of the technology 

worldwide to map forest attributes including habitat structure (Coops et al., 2016), tree health 

(Shendryk et al., 2016) and standing dead snags (Wing et al., 2015). However, comparatively 

less research has focused on detection of ground-level woody biomass using ALS. The ability to 

identify and characterize more detailed ground-level forest attributes will improve as the average 

ALS point return density continues to increase. Table 5 summarizes recent studies that focus on 

using ALS to delineate or quantify CWD. 

Table 5.  Summary table of recent studies focusing on CWD detection and quantification. 

Author Location Forest type and 
condition 

Point 
Density 

Method Height 
Thresholds 

Findings 

Pesonen et 
al. (2008) 

Finland Mixed-wood; 
Natural stands. 
Leaf-off conditions 

4 points/m2 Generated ALS-
derived metrics to 
establish a 
relationship between 
metrics and plot level 
CWD volume.  

Lower: 10cm 
Upper: 
Canopy 

Applied a mixture of height 
and intensity metrics to 
establish predictive model (R2 
= 0.61, RMSE% = 51.6%) 
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Queiroz et 
al. (2020) 

Alberta, 
Canada 

Mixed-wood Boreal; 
disturbed. 
Leaf-on conditions. 

11 
points/m2 

Used optical imagery 
derived form 
multispectral ALS to 
generate predictive 
models for CWD 
volume.  

Lower: 0cm 
Upper: 
100cm 

 Successful models were 
developed (R2 = 0.62) and use 
to generate predictive maps 
for the study area. 

Blanchard et 
al. (2011) 

California, 
USA 

Open site with 
recent fire site; 
minimal canopy 
cover. Low density 
vegetation 
conditions 

10.5 
points/m2 

Created fine-scale 
raster layers derived 
from ALS data and 
employed an object 
based image analysis 
to detect CWD.  

None 73% of measured logs were 
detected. Over classification 
was present in areas with 
vegetation and tree canopy. 

Lindberg et 
al. (2013) 

Sweden Managed hemi-
boreal; site recently 
hit by storm. 
Leaf-on conditions 

69 
points/m2 

Used a line template 
matching algorithm to 
vectorize and directly 
match the point cloud 
to 651 field-measured 
CWD and produced a 
raster displaying 
support levels for each 
line as a detected log.  

Lower: 20cm 
Upper:  
100cm 

48% of the field-measured 
CWD could be directly linked 
to detected lines. Issues with 
complex overlap of CWD and 
false positives with other 
linear ground features and 
dense vegetation cover.  

Joyce et al. 
(2019) 

Minnesota, 
USA 

Managed, Mixed 
forest; leaf-off 
conditions 

25 
points/m2 

Used height 
thresholds to isolate 
CWD and manually 
inspected the point 
cloud for logs.  

Lower: 0cm 
Upper: 
130cm 

Manually detected 23% of 
known CWD. Developed 
logistic regression models 
describing how log and site 
attributes influenced 
detection rates. Detection 
rates surpassed 50% when 
logs were > 30cm diameter 
and pulse density > 7 pls/m2 

Nystrom et 
al.  (2014) 

Sweden Managed Boreal 
forest; wind throw 
site. Leaf-on 
conditions 

65 
points/m2 

Established the height 
difference between 
two elevation models 
and combines that 
layer with a line 
matching template to 
detect individual logs. 

None 38% of wind thrown trees 
were detected, larger trees 
detect at higher percentages. 
Large commission errors 
related to linear ground 
elements such as shrubs and 
ditches.  

  

For ALS data collected during leaf-off conditions, studies have found that shrub cover and 

density do not have a significant impact on CWD detection (Seielstad and Queen, 2003; Pesonen 

et al., 2008; Joyce et al., 2019); principally because studied shrubs are deciduous in nature. The 

ALS data that were acquired during leaf-on conditions, indicate that leafy shrubs can complicate 

CWD detection (Nystrom et al., 2014; Lindberg et al., 2013). As such, a method is required to 

filter out shrub returns from CWD returns that likely occur within the same vertical stratum 

(Wing et al., 2012). 

As shown in Table 1, the majority of studies of CWD detection using ALS have occurred in open 

canopy conditions or leaf-off canopy conditions which are ideal for increased density of returns 
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lower in the canopy and from the forest floor. While useful for assessing CWD after 

disturbances, most natural forests contain much denser canopies. Canopy occlusion can severely 

reduce the number of ALS returns that reach the lower levels of a forest stand, and has been 

highlighted as a significant limiting factor when characterizing understory structural elements 

(Hill and Broughton 2009; Morsdorf et al., 2010). As a result, CWD under dense canopies is 

more commonly estimated using indirect volume modelling such as the ABA applied in Chapter 

3 (Pesonen et al 2008.; Van Aardt et al., 2011) were statistical models relate point cloud 

distributions within a given area to plot level volume estimates of CWD. Interpretations based on 

manual identification of CWD within a height-filtered point cloud have also been implemented 

to quantify CWD (Joyce et al., 2019).  Quantification of this sensitivity to point density is 

presented in relation to CWD by Joyce et al. (2019) who demonstrate that CWD detection rates 

surpassed 50% when understory pulse density reached 7 pulses per m2.  

Given the important role of CWD in the terrestrial carbon cycle, and its important role in 

providing a range of ecological goods and services, coupled with advancements in availability 

and density of ALS data, there is an opportunity to develop new approaches to automatically 

detect and assess the dimension  abundance of CWD across a range of forest stand types. The 

overall goal of this chapter therefore is to develop an automated process to detect, quantify and 

map CWD directly from ALS data.  

 

4.2. Methods 

To begin, I develop a methodology that identifies ALS returns likely to be associated with CWD 

over a range of forest structural classes during leaf-on conditions. Once detected, individual 

pieces of CWD were identified and vectorized and their dimensional and positional accuracy 
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assessed using digitized field maps at known CWD locations. CWD estimates were then 

compared to field-based measurements to assess the ability of the methodology to predict plot 

level CWD volume from individually mapped pieces. In addition, I assessed the influence of 

CWD and plot-level forest structural metrics on CWD detection rates such as canopy cover, 

stand density and decay state of the CWD. Utilizing the detected CWD logs, plot-level CWD 

volume were used to estimate ALS derived height and length measurements directly from the 

detected logs. Lastly, I implement the method over a forest management area covering a range of 

different structural attributes to generate maps of estimated CWD volume, allowing the 

examination of CWD variation patterns within and between forest stands. 

 

4.2.1. Plot refinement 

Given the reliance on pulse density to accurately characterize understory attributes, I required 

plots to have a minimum average of 7 pulses/m2 below 1 m elevation based on the 

recommendations of Joyce et al. (2019), resulting in 16 of the original 28 plots being suitable for 

analysis. Additionally, large-diameter CWD considered as greater than 30 cm in diameter 

(Jönsson and Jonsson 2007; Bunnell and Dunsworth, 2014), have been identified as more 

ecologically valuable (Arsenault, 2002) as increasing diameter is positively correlated with 

biodiversity (Johnson and Joshnson, 2007) with vertebrates being observed to select CWD 

greater than 25 cm in diameter for habitat (Bunnell and Houde, 2010) and the slower decay rates 

associated with large CWD having positive impacts on forest carbon stocks (Nunery and Keeton, 

2010). Considering the ecological and management importance of large-diameter CWD, 

combined with previous CWD studies having observed successful segmentation of CWD having 

a minimum of 30 cm diameter (Mϋcke, 2013; Inoue et al., 2014; Joyce et al., 2019) we 
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established 30cm as the minimum diameter for detection of CWD logs in our study. 

Additionally, an analysis of our data showed CWD with a minimum diameter of 30cm to account 

for 79% of total volume across all 16 plots. 

With my plots set and my targeted CWD pieces defined, a set of linked processing steps were 

developed to locate, map and measure CWD across the study area. These steps included: a 

refined ground point classification approach that minimizes the points assigned to the ground 

surface, implementation of point cloud height thresholds, short stature vegetation removal and 

lastly linear feature extraction. Each step required a small set of parameters to allow the CWD to 

be extracted from the full normalized point cloud.  

 

4.2.2. Delineating CWD with ALS 

4.2.2.1. Ground point classification 

Given the low elevation of CWD and the tendency of near-ground returns to be misclassified as 

ground returns (Kim et al., 2003; Brubaker et al., 2013), it was imperative to differentiate CWD 

returns from ground returns to reduce the number of CWD returns lost through normalization. To 

achieve this, I implemented the cloth simulation filter (CSF) normalization algorithm (Zhang et 

al., 2016). The CSF method inverts the point cloud and simulates covering the inverted surface 

with a ridged cloth. Nodes in the simulated cloth are related to the ALS returns to establish the 

surface. If a node deviates too much from the cloth, as a CWD return may, they are excluded 

from the cloth and considered non-ground returns. The CSF contains a minimum threshold 

parameter, where returns below are revalued to 0m, allowing returns above the threshold to stand 

out more from the surface. Given that the minimum diameter of logs I aimed to detect was 30cm, 

the CSF threshold was also set at 30cm. 
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4.2.2.2. Point cloud thresholds 

Once normalized, the point cloud was vertically segmented using a combination of lower and 

upper height thresholds. Previous studies have demonstrated that successful detection of CWD 

relies on a height-filtered point cloud (Abalharth et al., 2013; Lindberg et al., 2013; Pesonen et 

al., 2008). The lower threshold was set at 30cm, analogous with the CSF minimum threshold, 

which excluded all points classified as ground by the CSF. Next, an upper threshold needed to be 

established to vertically isolate potential CWD returns from other, relatively taller, understory 

structures. Given the majority of CWD is oriented relatively horizontal to the ground, as 

elevation increases the likelihood of CWD being present decreases.  A visual analysis of our 

field measured CWD displayed 98% of logs occurring below 1m and was therefore set as the 

upper height threshold. 

 

4.2.2.3. Vegetation removal 

With upper and lower CWD height thresholds set, returns required separation from short-stature 

vegetation such as shrubs that are present in the same stratum as CWD (Wing, 2012). ALS 

pulses may pass through these short stature vegetative leaves by providing partial hits on small 

branches and twigs, creating multiple returns from a single pulse (Raber et al., 2002). These are 

unlikely to be CWD as Béland et al. (2014) found 81% of multi-return pulses to be associated 

with small branches and twigs from trees and shrubs.  Alternatively, larger and denser objects 

such as CWD logs usually allow for only single returns from a pulse. Removing these multi-

return pulses would eliminate some of the returns associated with these unwanted vegetative 

structures. However, some multi-return pulses may interact with the canopy and within the 

established height thresholds, which could still feasibly represent CWD returns. Considering this, 
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removing multi-return pulses must be limited to those that have multiple returns within the 

isolated height stratum. Therefore, to filter out potential shrub returns from our plots, pulses with 

multiple returns under 1m were removed. 

 

4.2.2.4. Linear feature extraction 

In the final step, linear feature extraction was undertaken to segment the isolated ALS returns 

into discernible linear objects. Due to the extremely high point density required for the raster-

based line matching template undertaken by Lindeberg et al. (2013) and Nystrom et al., (2014) 

instead I utilized the approach of Olivier and Lindbergh (2015) that classifies each return as 

linear or non-linear relative to the neighbouring returns. Once returns classified as linear were 

identified, our approach transitioned to vectorization of the linear points. 

To vectorize the linear returns from the filtered ALS point cloud, returns were run through a 

series of spatial transformations. First, the points were buffered with a distance of 60cm, twice 

the estimated horizontal accuracy for our ALS data (Table 2), and dissolved to create continuous 

elongated polygons that likely represented CWD. A centerline was then established within each 

polygon by constructing a skeleton polyline feature to represent the CWD. The line features were 

then simplified to form more ridged lines that emulate the shape of a log. In order to connect line 

features that are likely separated sections of the same CWD log, line features were extended two 

meters in both directions. If these extended lines intersected another linear segment, they were 

merged into a single line and simplified once again to represent a straight log. If the extension 

line did not intersect any other features, it was deleted and the original length of the segment was 

maintained. A 60 cm buffer was then created around each line segment and the resulting polygon 

dissolved to connect spatially close linear features that are oriented in such a way that line 
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extensions failed to connect them. The centerline and ridged simplification procedure were then 

repeated to produce the final line segments representing detected CWD. A 30 cm buffer was then 

generated around the final line segments and spatially overlain with the ALS point cloud to 

extract the mean height of returns within the buffer zone which was then divided by two to 

represent a constant radius of the CWD. For all plots, the volume from each detected line 

segment was (i.e., CWD log) summed to generate plot-level CWD volume estimates.  

Lastly, this entire procedure was applied to a forest management area which has been segregated 

into four VRI units with different structural attributes. Each unit is of a different average age, 

height and species composition. Applying the methodology to these four different VRI stands 

provided a comparison between the known forest structures of these units and predicted volume 

of CWD. Given that taller and older forest stands are generally known to contain greater volume 

of CWD then younger smaller stands, the ALS predicted CWD volumes were assessed against 

this assumption. 

 

4.2.3. Accuracy assessments 

Accuracy of CWD detection was assessed at three scales; the individual CWD log level, the plot 

level and the stand level. First, accuracy of individual CWD log detection was evaluated by 

comparing known log locations and dimensions with detected line segments. Findings were then 

summarized in histograms displaying individual log detection relative to average diameter, 

maximum diameter, length, average height above ground, bark class and growth class. Second, 

the volume for each detected piece of CWD was summed to create a plot level estimate of total 

CWD volume. Estimates for each plot were then compared to the measured volume for each plot 

and a regression model was developed to calculate how correlated the predicted plot volumes 
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were with the measured volumes. To summarize the structure at each plot and its influence over 

detections rates, a group of ALS metrics including percent of returns classified as ground, 

number of multi-return pulses under 1m, canopy cover percentage and Lorey’s mean height were 

generated to assess CWD detection rates. An unpaired t-test between detected and undetected 

CWD was conducted for each metric to assess for significant influence on successful detection. 

Lastly, when the linear object detection was expanded over the VRI polygons, the volume within 

each identified log was summed into a 5m raster to present a volume map across the four VRI 

stands. These stands vary by height, age and canopy composition. The volumes associated with 

the raster layer were then compared to the recorded forest structural attributes associated with 

each VRI stand. 

 

4.2.4. Software and routines 

Segmentation and normalization of the ALS point cloud to isolate CWD returns were completed 

within R 3.5.0 (R Core Team, 2018) using the “lidR” package (Roussel and Auty, 2019). The 

linear detection feature used within “lidR” was a boolean linear detection function called 

“shp_line”, based on the linear detection algorithm presented by Olivier and Lindbergh (2015). 

The algorithm has two parameter settings that can be adjusted depending on the density of the 

point cloud. For consistency, the parameters for this study were set as th1= 7 and k = 8. The 

CWD object detection was completed within ArcMap (ESRI, 2019) and developed into an 

automated, single-input model. 
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4.3. Results 

4.3.1. Individual log detection 

Of the 16 plots, 12 contained CWD meeting our minimum diameter requirement while four plots 

did not. Across the 16 plots a total of 28 CWD logs with an average diameter 35.2 cm, average 

height above the ground of 39.2 cm and an average length of 4.64 m were measured in the field. 

Analysis of ALS-detected logs indicated that of the 28, 18 were successfully detected while 10 

were not. Figure 11 provides a breakdown of how detection varied based on individual log 

attributes. Diameter of the log, average or maximum, did not appear to have any influence over 

detection rate. However, detection rate appears to increase for longer logs and logs that were 

more elevated from the ground. This suggests that length and height above ground are more 

influential in detection than is average or maximum log diameter. Level of CWD decay, 

measured by growth and bark classes, suggests that older, more decayed logs were detected less 

often. Bark Class 0 and 1 represent logs with zero and minimal bark on them. This loss of bark is 

a result of decomposition and CWD in these two classes are detected notably less compared to 

bark classes 2 and 3 which contain most and all of the bark and represent more recently fallen 

CWD.  

The other measure of decay, increased vegetation growth on CWD, also resulted in lower rates 

of detection with growth classes 0 and 1, which contain no and minimal vegetative growth 

respectively, being detected considerably more often than those in growth classes 2 and 3 for 

which the majority is covered and fully covered by vegetation growth.  Using an unpaired t-test 

the log diameter, average (p =0.618) or maximum (p =0.964), did not significantly influence 

detection rate. Increasing CWD length had a strong influence but not a statistically significant 

one (p = 0.166) while average height above ground proved to be the only continuous attribute 

that was significant (p= 0.038), with 11 of 12 logs greater than 50 cm off the ground being 
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detected. The strongest trends were seen across bark classes as CWD in classes 2 and 3 were 

detected 85% of the time compared to only 47% for classes 0 and 1. A similar trend was found 

for vegetation growth classes which saw CWD classified into class 0 and 1 detected 74% of the 

time in contrast to only 44% for classes 2 and 3. 

 

Figure 11. Distribution of measured individual CWD log attributes and associated ALS 

detection rates (n=28). 

Figure 12 displays an example of two ecologically different plots, 16 and 35, that both presented 

successful detection of CWD.  Plot 16 was a relatively wet site containing horsetail and sporadic 

clumps of short stature vegetation. It was classified as a young forest undergoing the stem-
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exclusion phase of forest succession with a relatively uniform canopy dominated exclusively by 

black and interior spruce trees with maximum DBH and tree heights reaching 36cm and 26m 

respectively. A considerable number of standing dead trees were also present. Comparatively, 

plot 35 is a drier site classified as a mature forest consisting of a dominant canopy of lodgepole 

pine reaching 29m in height and 39cm DBH and a regenerating sub-canopy of subalpine fir. A 

few standing dead trees were present and short stature vegetation presence was minimal. ALS 

measured logs for each site are displayed as line segments overlain on a digitized version of the 

original CWD map for the 100m2 plots. All of the logs in plot 16, represented by figure 12a, are 

detected to some degree. CWD 1 is detected in the proper location however the orientation is 

shifted while CWD 2 is represented as two individual line segments, where the middle section of 

the log is not detected but the location and orientation are relatively accurate.  Lastly, CWD 3 

matches the ALS measured CWD however, it slightly overextends past the field measured 

endpoint. Plot 35, represented by Figure 12b, has three of four logs detected. ALS did not detect 

CWD 1 while CWD 2 and 3 were detected in the correct location but were shorter than the field 

measured logs. CWD 4 has the correct length; however it appears shifted from the field 

measured location by 50cm. Table 6 details the field measured attributes of all 28 logs and the 

corresponding attributes of those ones that were successfully detected.  

Table 6. Comparison of field measured CWD attributes against diameter and length of ALS 

detected and measured CWD. Plots displayed in figure 12 are highlighted with a grey 

background. 

Plot ID 
Average 

Diameter (cm) 

Average Height 
Above Ground 

(cm) 

Length 
(m) 

Bark 
Class 

Growth 
Class 

Detection 
Detected 
Diameter 

(cm) 

Detected 
Length 

(m) 

1 1 30.5 20 2.9 0 3 Missed NA NA 

1 2 28.5 33 2.8 0 2 Detected 30 3.18 
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16 1 26.85 67.5 2.65 2 0 Detected 30 0.45 

16 2 26.75 55 8.36 2 0 Detected 32 5.77 

16 3 49.05 80 3.65 2 1 Detected 34 4.88 

17 1 26.5 37 5.6 2 1 Missed NA NA 

17 2 25.75 45 4.9 3 0 Detected 31 2.94 

28 1 48.5 31.5 3.3 0 2 Missed NA NA 

35 1 23.15 28 4.7 1 0 Missed NA NA 

35 2 26.5 13.5 6.2 0 2 Detected 30 1.71 

35 3 23.45 23 5.8 2 0 Detected 30 5.58 

35 4 24.15 35.5 5 3 0 Detected 35 3.08 

37 1 27.75 80 4.9 0 0 Detected 69 1.27 

37 2 44.5 40.5 3.6 0 0 Missed NA NA 

39 1 30.45 66.5 10.1 1 1 Detected 56 6.31 

39 2 46.5 46.5 2.95 2 1 Detected 41 1.99 

44 1 32.45 33 4.57 0 0 Detected 30 3.37 

47 1 27.65 31 10 3 0 Detected 35 7.21 

47 2 27 90 3.6 3 0 Detected 43 1.66 

67 1 30.5 19 1.1 0 0 Missed NA NA 

69 1 31.75 36.5 10.2 1 3 Missed NA NA 

69 2 27.2 50 2.3 2 1 Missed NA NA 

69 3 37.5 40 3.05 2 0 Detected 31 2.43 

69 4 33 69.5 5.65 3 0 Detected 36 4.01 

71 1 32.5 24.5 4.5 0 3 Detected 46 3.51 

71 2 30 17.5 2.6 0 3 Missed NA NA 

71 3 32.5 27 2.4 0 3 Missed NA NA 

71 4 32.85 23 4.9 0 3 Detected 30 1.78 

 



58 
 

 

4.3.2. Plot-level volume 

The volume of each ALS detected CWD log was summed for each plot and compared to the 

field-measured summed CWD volumes (Figure 13). Results suggest that the relationship 

between the field and the ALS-derived volume was strong (R = 0.81, RMSE = 0.328 m3). Figure 

13 displays the ALS-measured CWD volume increasing in a linear pattern at the plot level with 

some variation from the field measured volume. One trend present is overestimation of CWD in 

plots containing lower volumes of CWD, with eight of the nine lowest-volume plots all seeing 

overestimated CWD volume. However, three of the four plots containing no CWD were also the 

plots with the lowest predicted volume using ALS. Minor underestimation of CWD at larger 

CWD volumes is also visible. 

Figure 12. Digitized representations of the 10x10m plots 16 (a) and 35 (b). Detected 

linear segments are displayed in red, digitized measured logs are displayed in brown 

and ALS points <1m are displayed as green points.  

 

 

a b 
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Figure 13. Regression comparison of ALS-predicted CWD volume versus observed field-

measured CWD volume for 16 plots. Regression line displayed in black and 1:1 line displayed as 

a dashed line. 

Assessment of the relationship between CWD detection and plot-level forest structure revealed 

the presence of some expected influences (Figure 14). Overall leaf-on vegetation presence, 

summarized by the percentage of ALS returns classified as ground, proved to be the most 

significant discriminating factor (p = 0.015) between detected and undetected logs with a higher 

percentage of ground points resulting in greater detection probability. A decrease in short stature 

vegetation presence, characterized by the number of sub-meter multi-return pulses, was also 

found to significantly increased the probability of CWD detection (p = 0.039). On average, plots 



60 
 

with a lower percentage of canopy cover had a better chance of detection; however, this 

relationship proved not statistically significant (p = 0.094). Height of the canopy, summarized by 

Lorey’s mean height, presented no discernible trend over successful detection and was also 

proven insignificant (p = 0.901). 

 

Figure 14. Influence of plot-level metrics over successful CWD detection (N= 15) and missed 

CWD (N=10). 

 

4.3.3. Stand-level volume 

Application of the methodology over a larger 2500 m2 forested area consisting of four 

structurally different VRI polygons is displayed in figure 15.  The map illustrates the four 

polygons located in the north-central region of the Deception Lake study area which was chosen 

due the structural gradient present within close proximity. The top left polygon of figure 15a is a 
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dry stand estimated at 110 years old with an average height of 21m and a canopy comprised of 

subalpine fir and lodgepole pine. The top right polygon is also an older stand estimated at 130 

years old with an average height of 23 m, and the canopy is almost exclusively dominated by 

subalpine fir. The polygon located in the bottom right is a very old, late successional stage stand 

with a mixed canopy of subalpine fir and interior spruce with an estimated age of 165 years and 

an average height of 24 m. Lastly, the polygon in the bottom left is younger at 90 years, shorter 

with a 19 m average, and has a more homogenous canopy height dominated by lodgepole pine. 

The spatial distribution of CWD volume appears to vary both within and between these VRI 

units. The stand containing the greatest CWD volume is the oldest and tallest stand located in the 

bottom right with an average volume of 0.077 m3 per pixel compared to 0.042 m3 for the top 

right polygon and 0.040 m3 for the top left polygon. The stand with the lowest CWD volume was 

the youngest and most homogenous stand located in the bottom left with an average volume of 

0.022 m3 per pixel. The polygon ALS-derived CWD estimation results suggest that older, more 

heterogenous stands have greater volumes of CWD. Regardless of stand type, large 

concentrations of CWD are present in clumps, with some linear features visible even at a five-

meter pixel resolution. Figure 15b and 15c demonstrate that most of the detected linear points 

were transformed into CWD line segments in the highlighted area.  
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Figure 15. A) Predictive CWD volume map of VRI polygons. B) ALS point cloud displaying 

points identified as linear in red, all other points in blue, and detected logs in black. C) Inset of 

5A, combining 5m raster cells and detected logs from 5B. 
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4.4. Discussion 

In this chapter, I develop a methodology for isolating ALS returns associated with CWD greater 

than 30 cm in diameter and spatially transforming them into vectorized line segments with 

dimensional attributes extracted directly from the ALS point cloud. Additionally, a detailed 

analysis is conducted over a group of individual log and plot-level structural characteristics to 

identify any notable influences on detection rates. The developed methodology successfully 

detected 64% of CWD found in plots meeting the minimum density threshold of 7 pluses per 

meter. Successful detection was significantly influenced by log attributes as well as plot-level 

forest structural characteristics. Specifically, our analysis indicates that we can expect to 

accurately detect recently fallen CWD in natural forest stands containing relatively low 

understory vegetation cover. Despite the observed variance in detection rates, the overall plot-

level CWD volume estimates generated by our methodology were strongly related to field-

measured values. When applied at the stand level, the distribution of predicted CWD volume 

within and between stands followed the expected pattern of older and more vertically 

heterogeneous stands containing greater volumes of CWD.  

 

4.4.1. Individual CWD assessment 

Analysis of individual CWD attributes presented some unexpected findings, namely the 

insignificant influence of maximum or average diameter. Previous studies assessing CWD 

detection using ALS (Joyce et al., 2019; Nystrom et al., 2014) found CWD with greater diameter 

to be detected more frequently, however this effect was not observed in our study. A potential 

cause for this disagreement could be related to the minimum diameter considered for these 

studies having being lower. The minimum diameter of 30 cm may be an inflection point where 
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other attributes become more influential over detection; specifically, the average height above 

ground. Our results exemplify that an increase in average height above ground significantly 

increased detection rates (p= 0.038). Most undetected logs had a relatively low average height 

above the ground with some well below 30 cm, likely as a result of decomposition or being 

angled in a non-horizontal manner. Naturally, those logs which have a portion below 30cm are 

less likely to be detected with the implemented height filter. More elevated logs are less likely to 

be confused with low-lying shrubs or rocks, as there are fewer horizontal linear features that are 

not CWD as height above ground increases. These logs are also more likely to have recently 

fallen and less likely to be occluded by understory structure. Increasing CWD length also 

displayed a trend, suggesting that longer logs were more successfully detected, also noted by 

Joyce et al. (2019). However statistical testing for this study proved the relationship to be 

insignificant (p=0.166). Two notable influences towards this result were the longest CWD log in 

our study area not being detected (Table 3) combined with our smaller-than-desired sample size. 

Despite the length of this log, it was relatively low to the ground and is in a late stage of decay 

which suggests both these attributes are more influential than length. 

The level of CWD decay, summarized in this chapter by bark and vegetation growth class, did 

demonstrate strong influence over CWD detection. CWD in later stages of decay were detected 

much less frequently then were logs with minimal decay. Recently fallen CWD, which would 

still have most of its bark and no vegetative growth, is more likely to fall on pre-existing 

understory structures such as boulders or older CWD and will therefore be more elevated, which 

has proved to aid in detection. In comparison, as CWD decomposes it becomes slowly engulfed 

by the organic layers of the forest floor, lowering average height above ground and making ALS 

detection less likely. Similar difficulty has been noted when attempting to detect late-stage 
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decomposition logs with ALS technology (Mucke et al. 2012). Additionally, these older logs are 

known to provide nutrients and become nurse logs for the growth of young saplings (Monleon, et 

al, 2002). Vegetation growing atop CWD would obscure the height and shape of the log 

represented in an ALS point cloud, further hindering detection probability. Although our 

methodology filters out multi-return pulses under two meters, considering them as shrubs, there 

is potential that vegetative growth atop old pieces of CWD would result in them being 

considered a shrub and filtered out of the analysis. Overall, the lower height and greater 

vegetative coverage of decomposed logs highlight why lower amounts of decayed CWD were 

detected. 

 

4.4.2. Plot-level assessment 

Analysis of plot-level metrics provided two stand-level attributes that proved influential 

in CWD detection: percentage of ALS returns classified as ground (p = 0.015) and the number of 

multi-return pulses under a meter (p = 0.039).  Both metrics characterize vegetation cover with 

percent of ground returns representing overall vegetation cover including canopy, shrubs and 

herbs, while multi-return pulses only represent short statue vegetation. Both metrics provide a 

measure of physical obstructions that decrease the number of ALS returns that can interact with 

CWD. As such, plots with less vegetation cover are significantly more likely to result in 

successful CWD detection. Interestingly, Lorey’s mean height which is a factor of tree height, 

had no influence at all, while the canopy cover metric did appear to inhibit CWD detection to 

some degree but not significantly (p = 0.094). This supports the finding that the percentage of 

ground returns is the most significant metric, as it is a combination of the multi-return and 

canopy cover metrics. These characteristics suggest that very dense canopies or understories may 
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inhibit successful CWD detection. At the plot level, the optimal forest structure for detection 

consists of a high percentage of ground returns, and an overall ALS pulse density greater than 7 

pls/m2. 

While the above conditions are optimal for CWD detection, our CWD volume estimates predict 

plot level volume across a range of optimal and sub-optimal forest types. Examination of ALS 

measured plot volume against the field measurements revealed notable variation (RMSE = 0.328 

m3) but an overall strong correlation (R = 0.81). Compared to the field measured volume, the 

ALS derived methodology slightly overestimates plots with little or no CWD present. This is a 

result of small linear segments being generated from short-stature shrubs that are present in a 

linear orientation within the point cloud, a problem also noted by Lindberg et al. (2013) and 

Nystrom et al. (2014). Fortunately, it is rare for shrubs to grow in a linear fashion at length, 

leading to these false-positive line segments being short and resulting in only small 

overestimations. In plots with greater volumes of CWD, notable underestimation of CWD 

volume is present, which can be largely attributed to undetected CWD and detected line 

segments not representing the entire length of a log. Examples are present in Figure 12 where 

one large log is clearly detected in two separate line segments and other logs are not delineated 

to their complete length. Specifically, this is noticeable in plots with dense vegetation cover. 

Although our methodology attempts to connect nearby line segments, it is a purposely 

conservative approach to avoid the inclusion of non-CWD features being vectorized. From a 

volume perspective, the underestimation in length is partially offset by the liberal use of a single 

CWD height value as a proxy for diameter. A single height-based measurement assumes that all 

logs are perfectly horizontal, which is not the case in forest stands. However, based on the 
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majority of plot CWD volume still being underestimated, the use of a single diameter 

measurement does not appear to have a strong effect. 

 

4.4.3. Stand-level assessment 

Overall, the generated dimensions of length and height for each vectorized line vary and do not 

perfectly match the CWD they represent. However, total volume at the plot level seems to 

minimize this variation observed at the individual log level. As such, relative amounts and 

proportions of CWD volume estimated between plots are considerably accurate (R= 0.81) and 

present this methodology as a viable option for plot, stand and forest level quantification. This 

idea is reinforced when the methodology was applied over a larger area containing forest stands 

with known attributes to generate a predictive map of CWD volume. Within the map, older and 

more heterogeneous stands have a greater volume of CWD present which is in agreement with 

forest succession theory and current literature (Keeton et al., 2010; Stutz and Lang, 2017; Bilous 

et al, 2019). Taller stands generally have more CWD volume, but the tallest trees in a stand were 

not in the same location as the greatest CWD volume. Instead, the areas of highest CWD volume 

appear mainly in canopy gaps within these older stands, supporting the described influence of 

disturbances and gap dynamics on CWD accumulation (Tanhuanpää et al. 2015, Brazee et al., 

2014). Longer logs also considerably increase the overall pixel volume, which is to be expected 

as longer logs are likely to have a great diameter and therefore greater volume. These are the 

most important CWD logs to identify as they will contribute the most to wildlife habitat and 

carbon stocks.  
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Chapter 5: Conclusion  

5.1. Overview 

The ability of ALS to characterize secondary forest structure was investigated over the course of 

this thesis. Secondary forest structure excludes the well-researched dominant canopy and 

focusses on the four lowest strata of forest structure, sub-canopy trees, understory vegetation, 

standing dead snags and CWD. The assessment was divided between the two secondary structure 

units that were lacking spatially quantifiable information, sub-canopy trees and CWD. In Chapter 

3 a procedure is outlined with the flexibility to define the canopy and subcanopy at the stand 

level using relative position based on ALS-predicted HL. This procedure allowed for the removal 

of the canopy and generation of a suite of ALS metrics to describe attributes in the sub-canopy. 

Utilizing this removed-canopy methodology resulted in models with improved predictive 

capability for sub-canopy volume and basal area estimates over the retained canopy models. 

Utilizing the sub-canopy volume model, a predictive map was created across all forested 

landscapes in the Deception Lake study area that highlights locations and patterns of high sub-

canopy volume across environmental gradients.  

In Chapter 4 I investigated the capacity of ALS to detect and measure CWD directly from the 

point cloud. This was undertaken by creating an automated processing strategy which isolated 

ALS returns distributed in a linear pattern from short-stature vegetation and near-ground 

variability. The elevation of the registered CWD returns were then used to predict plot-level 

CWD volume. Results indicated the majority of CWD was detected and the proceeding volume 

estimates were strongly correlated with field-measured values. This processing strategy was then 

applied over a larger forested area to create a predictive map highlighting CWD volume 

gradients across multiple forest stands. Lastly, CWD detection rates are assessed against 
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measured individual, plot-level and stand-level attributes highlighting which attributes 

significantly increase detection rates. 

 

5.2. Key findings 

Assessment of sub-canopy tree structure revealed two important findings. First, ALS can be used 

to separate and distinguish sub-canopy components for the main canopy. Lorey’s mean height 

can be reliably used as a baseline for a variable height threshold to distinguish between canopy 

and sub-canopy at the landscape level. This presents potential for further sub-canopy assessment 

to be conducted across a range of forest types with a uniform definition. Second, by applying this 

canopy threshold and using the sub-canopy model outlined in Chapter 3, volume of sub-canopy 

trees can be mapped with considerable accuracy (r2 = 0.88, RMSE = 0.654 m3) using common 

ALS metrics. Using the model to generate a predictive sub-canopy maps allows for inventory of 

the sub-canopy which is important for guiding land use decisions around locations for alternative 

harvesting practices, wildfire fuel load management and habitat retention. 

The CWD portion of the investigation highlighted three key findings. First, ALS returns 

associated with CWD can be successfully spatially isolated and mapped directly from an ALS 

point cloud utilizing the processing strategy outlined in Chapter 4. This strategy transforms 

selected point could returns into measurable polyline vectors. Second, average return height of 

detected CWD points may be used as a substitute for a diameter measurement to generate 

reliable plot-level and stand-level CWD volume. Third, detection of CWD using ALS is 

significantly influenced by individual log as well as plot-level attributes. More decayed pieces of 

CWD were detected considerably less often while CWD with a high average height above 

ground were significantly more often (p= 0.038). Plots with a higher percentage of ground 
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returns and a lower percentage of multi-hit returns proved to increase detection rates. These plot 

level metrics can be used to determine forest stands where the processing strategy can be applied 

and most effective. 

 

5.3. Implications 

The results presented in Chapter 3 have important implications for forest mangers who have 

acquired, or are planning to obtain, ALS data. If ALS data exists, it would be possible to 

implement the methodology outlined in this thesis as it consists of commonly used and easily 

generated ALS metrics to create an inventory of sub-canopy forest structure previously only 

obtainable though field measurements. This inventory can be used by land managers for a 

number of purposes including selecting candidate locations for selective logging to preserve mid-

term timber opportunities, fire susceptibility and carbon sequestration modelling, and wildlife 

habitat values. The sub-canopy approach produces new descriptive metrics of forest structure 

that can aid in updating and refining classification system within British Columbia including site 

series mapping, succession and structural stages of forested landscapes as outlined in the BC 

Government Field Manual for Describing Terrestrial Ecosystems (Province of British Columbia, 

2015). Repeated acquisition of ALS over time coupled with sub-canopy inventory generation 

could highlight changes in the subcanopy and present a spatial representation of forest growth 

and successional patterns over time. Lastly, future studies focusing on sub-canopy trees can use 

this inventory to located optimal sites containing the desired quantity of sub-canopy trees. 

 

Given the importance of CWD for carbon modelling, detecting and mapping CWD will highlight 

regions with increased levels of carbon storage and allows for a spatial representation of this 
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import carbon sink. Production of CWD maps can aid forest professionals in locating and 

quantifying CWD over a range of natural forest stands to sponsor a more well-rounded 

quantification of carbon levels, wildlife habitat and fuel loading in the terrestrial biosphere. 

Obtaining these more accurate carbon estimates is critical for land managers given the recent 

emphasis on reporting stored carbon levels (Boisvenue et al., 2016; Ford and Keeton, 2017). 

Quantifying CWD volume for a stand can also be integrated into the conventional polygon based 

VRI system as an attribute to enhance reliability and descriptive capability of current VRI 

polygons.   

 

5.4. Limitations 

The canopy removal using Lorey’s mean height outlined in Chapter 3 proved to be successful, 

however some limitations need to be considered. Even once the canopy was removed structural 

elements of canopy trees such as stems and branches are still present in the removed canopy 

point cloud. Although this suggests the removed canopy point cloud is not a direct representation 

of sub-canopy trees, the models developed in this study still appear to provide as a reliable 

proxy. Another limitation is the smaller-than-desired number of sample sites and was constrained 

to forest types typical of only a limited set of biogeoclimatic units. Characteristics of tree species 

and forest structure in other regions may have differing opacity to canopy penetration with ALS 

that could affect predictive capability. The predictive capability amongst other forest types must 

be further explored and validated to support broader application of this approach. 

Limitations surrounding Chapter 4 include the relatively small number of CWD pieces 

measured. The structural sampling procedure implemented for plot selection provided a diverse 

range of forest structure however, many of these contained little or no CWD, contributing to the 
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low number. Additionally, a minimum point density of 7 points/m2 between 0 and 1m was 

required for optimal detection. Although this is within the range of modern operational-level 

ALS, dense canopy coverage can severely reduce the point density at ground level, as it did for 

twelve of my plots. Volume estimates generated in this study only account for logs greater than 

30cm diameter. While these logs contribute 79% of total CWD volume and are more influential 

for carbon estimates and wildlife studies, there is a notable amount under 30cm diameter that is 

excluded. Lastly, this methodology expands CWD detection into naturally forested areas with 

moderate canopy cover, but predictive was shown to still be restricted by increasing dense 

canopy coverage. 

 

5.5. Future research 

The methodologies presented within this thesis provide a starting point for the development of a 

detailed sub-canopy forest inventory to complement and enhance existing forest inventories. The 

primary direction for future research should focus on testing the applicability of the sub-canopy 

models in the other biogeoclimatic zones of British Columbia and beyond. If successful, a 

province-wide inventory of sub-canopy structure could provide a holistic representation of forest 

structure and bolster the current provincial inventory (Bourgeois et al., 2018).  

Large-scale application of any ALS methodology requires expanded data acquisition. To limit 

costs, research into point cloud thinning is suggested to assess if similar results can be achieved 

at lower point cloud densities, a strategy commonly used in conjunction with other ALS 

attributes (Wilkes et al., 2015; Hamraz et al., 2017). Additionally, results from Chapter 3 are 

indicative of a relationship between sub-canopy tree volume and topographic variables. 
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Characterizing this relationship could provide a stronger connection between sub-canopy volume 

and productivity patterns.  

The successful delineation of CWD presented in Chapter 4 presents an opportunity for expansion 

into different ecosystems. Specifically, the methodology has potential to be adapted to aquatic 

environments such as rivers and streams where CWD is a critical component of ecosystem 

heterogeneity and fish habitat (Gippel, 1995; Mossop and Bradford, 2004). Stream environments 

generally contain less canopy coverage and the results from chapter 4 indicate these areas would 

likely result in more accurate detection. The relative lack of ground-level vegetation in stream 

environments also presents an opportunity to integrate intensity value filtering into the CWD 

processing strategy. Woody material would return greater intensity compared to water (Hooshyar 

et al., 2015) and has previously been used to separate water returns from terrestrial objects 

(Höfle et al., 2009) This would further isolate CWD related returns and improve upon the 

delineation presented in Chapter 4, although intensity calibration issues should be considered 

(Ahokas et al., 2006; Boyd and Hill, 2007). 

Further research into the spatial distribution of CWD volume may be useful in generating habitat 

suitability indices for the multitude of species reliant on CWD (Jonsson et al., 2005). 

Implementing the CWD detection methodology also presents potential work investigating the 

integration of CWD thresholds into forest classification systems.  CWD is a common indicator of 

old-growth ecosystems (Feller, 2003; Keren and Diaci, 2018) and the quantification of CWD 

presented in Chapter 4 could be used to establish thresholds for classification of high-value old-

growth forest stands. 

Lastly, opportunities exist for future studies to combine the products of Chapter 3 and Chapter 4 

to characterize the relationship between sub-canopy attributes. Comparing sub-canopy tree 
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volume to understory vegetation coverage and CWD volume could yield further insights into 

overall forest structure, development and growth patterns (Acker et al., 2017; Kumar et al., 

2018). This integrated overview of forested landscapes would provide valuable details to forest 

and land mangers to optimize resources allocation. Future research into sub-canopy forest 

structure should focus on integrating the methodologies and products presented in this thesis into 

and integrated inventory of forest structure. 
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