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        Abstract 

 

Traditionally, vehicle emissions measurements have relied on reference-grade instruments whose 

high cost and complexity have limited their deployment in real-world environments. New simple-

to-operate, low-cost sensing technologies are a potential solution to this problem. This work aims 

to validate whether low-cost sensors, with proper calibration, could measure vehicle emissions and 

could support analysis of emission trends. Under that umbrella, this work provides a 

comprehensive low-cost solution to the measurement of vehicle emissions factors within the 

vehicle fleet. The Sensit Real-time, Affordable, Multi-Pollutant (RAMP) monitors measuring 

PM2.5, NO, NO2, CO2, O3, and CO were the low-cost sensor used. The RAMPs were first calibrated 

based on a collocation with a near-road regulatory site. To assess their suitability of measuring 

vehicle emissions, six RAMPs were deployed in three parking garages on the UBC Vancouver 

campus from April–August 2019. UBC Parking Services provided real-time vehicle counts to help 

validate our method. After sensor calibration, integrated pollutant and CO2 signals were converted 

to fuel-based emission factors (EFs) by developing a background subtraction and plume 

identification algorithm. The calculated EFs fell within the range of previous studies. Evening-

vehicle leaving EFs when vehicles were cold were 10-50% higher than in the morning. We also 

observed a disproportional contribution of high emitters; the top 25% of plumes contributed 45-

65% of total emissions. The findings indicate that low-cost sensors are a promising technology for 

real-world vehicle emissions measurement. 
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Lay Summary 

 

Recently, the development of low-cost sensing technologies has made widespread real-world 

pollution monitoring possible. This thesis explores how low-cost air pollution sensing can be 

applied to vehicle emissions measurement. As part of this exploration, a detailed calibration 

protocol was developed, and the sensors were piloted across parking garages on the UBC 

Vancouver campus. Based on a comparison of the data to published studies, low-cost sensors are 

a promising tool for the real-world measurement of vehicle emissions.  
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Chapter 1: Introduction 

1.1 Motivation: Air Pollution from Transportation 

According to the World Health Organization, air pollution is a leading cause of premature 

mortality and is associated with over 7 million deaths per year  (Campbell-Lendrum and Prüss-

Ustün, 2019; Dedoussi et al., 2020; Health Canada, 2016; Lelieveld et al., 2015; Wong, 2014).  

Among air pollution sources, the transportation sector is a large contributor; in North America, the 

transportation sector accounted for approximately 20% of total PM2.5 pollution in recent years 

(Anenberg et al., 2019; Meng et al., 2019). Furthermore, in 2019 almost a third of all fossil fuel 

consumption in the US was from the transportation sector, underscoring the critical role of 

transportation emissions monitoring and management as part of climate change abatement (U.S. 

Department of Energy, 2020). The majority of the emissions from the transportation sector are 

emitted by internal combustion engines (ICEs) (York and Rouleau, 2017). ICE vehicles have 

variable emissions rates due to numerous factors such as operating and environmental conditions, 

fuels, vehicle type, and after-treatment devices. Among the different working phases of an ICE 

engine, the cold start phase has a disproportionally high emission rate due to poorer combustion 

efficiency at lower temperatures, a lower air-to-fuel ratio, and reduced conversion efficiency of 

the after-treatment devices (such as the three-way-catalyst in gasoline engines which converts the 

NOx, CO and hydrocarbons into non-toxic components of air) below light-off temperature. The 

disproportional contribution of emissions during the cold start phase has been found by both in-

lab (up to 34% of NOx in the drive cycle) and on-road studies (more than 50% of CO in the driving 

route) (Johnson and Joshi, 2017; Khan and Frey, 2018; Singer et al., 1999). 
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1.2  Testing of Vehicle Emissions 

To limit the negative impacts of engine emissions and improve urban air quality, emissions 

regulations have been put forward and progressively tightened since the 1960s (Franco et al., 2013; 

Gerard and Lave, 2005; Johnson and Joshi, 2017; Kumar Pathak et al., 2016; Ropkins et al., 2017; 

Tietge et al., 2015a). Along with adjustments to vehicle emission regulations, emissions 

measurement procedures and technologies have also been evolving to better assess the factors 

affecting vehicle emission rates. The bulk of this evolution has been in the calculation of vehicle 

emission factors (EFs), which normalize emissions to the activity that causes them (e.g., emissions 

per distance travelled or per kg fuel burned) (Huang et al., 2018; Johnson and Joshi, 2017; Wang 

et al., 2018a). An EF can be calculated using either laboratory-based testing or real-world 

measurement (either near-road or on-road). In laboratory testing, vehicle or engine exhaust is 

sampled directly from the exhaust pipe and EFs are calculated for the specific engine or vehicle 

being tested (Franco et al., 2013; Johnson and Joshi, 2017). Real-world EFs can be separated into 

approaches that measure the fleet average, such as remote sensing and tunnel studies, and 

approaches for measuring individual vehicles, such as chase measurements or portable emissions 

monitoring systems (PEMS) (Franco et al., 2013; Huang et al., 2018; Wang et al., 2015; 

Zimmerman et al., 2016). The laboratory-based measurements have the advantage of precision and 

a detailed breakdown by operating condition; however, these measurements are expensive and 

only a limited number of vehicles can be tested. Furthermore, although transient operating phases 

are included in laboratory-based measurements, the driving cycles do not fully reflect real-world 

driving conditions due to meteorology conditions, external traffic conditions and unpredictable 

driving behaviours (Zimmerman, 2016). Real-world approaches can be used to assess far more 

vehicles, particularly when using remote sensing/near-road plume-based monitoring, however, the 
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EFs are only representative of the driving conditions encountered at the specific sampling location, 

and the uncertainty is increased (Huang et al., 2018; Wang et al., 2015; Zimmerman et al., 2016).  

 

1.3 New tools: Low-cost Sensors 

To date, high-cost regulatory-grade instruments have been the primary tool for assessing real-

world and laboratory-based EFs.  These instruments are well-designed with rigid quality assurance 

standards and a narrow range of signal uncertainty. Recently, low-cost sensors (LCSs) have been 

increasingly used in ambient air quality studies, with a focus on demonstrating their accuracy using 

different calibration approaches (Castell et al., 2017; Jiao et al., 2016; Malings et al., 2020; 

Zimmerman et al., 2018). The operation of LCS systems is far less complex than traditional 

instruments and these tools are typically small and portable, creating the potential for widespread 

deployment in urban areas where traffic-related pollution is substantial. One potential application 

of widespread LCS deployment is using LCS systems as a remote sensing tool for the measurement 

of fleet-based EFs. If these tools could be used for this purpose, LCS systems could be deployed 

at hundreds of locations to capture a broad range of vehicle operating conditions and environments, 

generating millions of vehicle plumes for analysis. However, it remains uncertain if the 

measurement sensitivity of LCS systems is capable of such measurements. 

 

1.4 Objectives and Outline 

The overarching objective of this thesis is to assess the suitability of LCS systems for determining 

fleet-based EFs using a remote-sensing-type approach. In this study, we deployed 6 LCS monitors 

in 3 parking garages on the University of British Columbia (UBC) campus in Vancouver, British 

Columbia. These traffic-rich environments combined with vehicle counting data provided by UBC 
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Parking Services enabled us to develop our method with some built-in validation. Four specific 

sub-objectives included: 

1. Calibrating low-cost sensors in a traffic-rich environment 

2. Developing a method for determining fleet-based vehicle emission factors with low-cost 

sensor data 

3. Comparing the calculated emission factors to those in the published literature 

4. Assessing the relative importance of cold start on vehicle emissions 

 

1.4.1 Thesis Outline 

This thesis comprises five chapters. Chapter 1 of this thesis provides the background for this study 

and outlines the thesis objectives. Chapter 2 of this thesis reviews the current literature within the 

topics of air pollution, vehicle emissions and emissions measurement. This includes a discussion 

of calibration approaches in the literature for low-cost air pollution monitors. Chapter 3 of this 

thesis describes the instrument calibration approach and performance. Chapter 4 discusses the 

comprehensive data processing method for converting low-cost sensor data into fleet-based 

emission factors. The diurnal pollutant concentrations, average emission factors compared to 

literature, and the estimated impact of cold start emissions are also discussed. In Chapter 5, the 

overarching conclusions from this thesis, limitations of the work, and future directions are 

discussed. 
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Chapter 2: Literature Review 

2.1 Introduction 

In this literature review, the fundamentals of vehicle emissions and their health impacts will be 

introduced.  Subsequently, the regulations surrounding vehicle emissions and the existing and 

emerging tools for measuring vehicle emissions are identified and evaluated. Lastly, new 

opportunities for mitigating and measuring vehicle emissions are discussed. 

 

2.2 Vehicle Emissions and Health Impacts 

On-road vehicles are a significant source of air pollutants (Fan and Perry, 2018). As such, 

management of vehicle emissions is a critical issue in the field of air quality (Henneman et al., 

2017; Bento et al., 2015; Kelly and Zhu, 2016). Despite vehicles being increasingly powered by 

renewable fuels (e.g., electricity, natural gas) that are expected to provide us with cleaner mobility 

(Yuan et al., 2015), vehicles powered by internal combustion engines (ICEs) will remain the 

dominant transportation technology in the near term (Johnson and Joshi, 2017). The most common 

ICEs used on vehicles are four-stroke ICEs, which have one combustion per two rotations, 

generating extremely high temperature and pressure followed by the downwards movement of the 

piston, completing the energy conversion (Zhao et al., 1999). Vehicles powered by ICEs emit 

numerous gaseous and particulate substances as a by-product of incomplete combustion. 

Typically, scientists have classified nitrogen oxides (NOx), sulfur oxides (SOx), carbon monoxide 

(CO), particulate matter (PM), and volatile organic compounds (VOCs) as major air pollutants 

from vehicles (Johnson and Joshi, 2017; Krecl et al., 2018). Most of these emissions are generated 

during fuel combustion, while some of the pollutants, such as PM and VOCs can also be emitted 

by the brake system, evaporative losses or the tire wear (Kukutschová and Filip, 2018; Boere et 

https://en.wikipedia.org/wiki/Volatile_organic_compound
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al., 2019; Man et al., 2020; Yamada et al., 2018). These pollutants may go on to react in the 

atmosphere, producing secondary pollutants such as ozone (O3). Emissions are significantly 

influenced by operating conditions, such as engine speed and load (Kumar Pathak et al., 2016; 

Wang et al., 2014; Zhao et al., 1999). For example, studies have shown that low temperatures 

during engine start-up periods (also referred to as cold start) can substantially increase emissions 

(Cédric et al., 2016; Reiter and Kockelman, 2016; Start et al., 2014). It has also been shown that 

NOx emissions correspond to the acceleration events (Kumar Pathak et al., 2016) and that idling 

increases emission of particles and multiple gaseous pollutants, especially VOCs (Lin et al., 2015; 

Zhang et al., 2020; Lee et al., 2018; Deng et al., 2020; Jabali and Laporte, 2016). 

 

Primary and secondary pollutants emitted by vehicles are associated with significant adverse 

health impacts such as cardiovascular disease and premature mortality (Brauer et al., 2016; 

Kennedy, 2007; Lelieveld et al., 2015; Pereira et al., 2014; Rice et al., 2016). Furthermore, engine 

exhaust has been classified as a carcinogen in humans by the International Agency for Research 

on Cancer based on long-term epidemiological studies (Silverman, 2012; Breuer and Burgard, 

2019; Peters et al., 2017; Franco et al., 2013; Taxell and Santonen, 2017). Within the exhaust, the 

toxicity of gaseous pollutants depends on their chemical properties, but have been shown to cause 

damage to the respiratory system by inducing inflammation or asphyxia (May et al., 2017; Wu et 

al., 2016). The health impacts of exposure to vehicle exhaust PM is more complex due to the 

various sizes, structures, and components of the PM. Due to this uncertainty, PM emissions are 

generally regulated based on total mass or number concentration of PM below a specific diameter 

(e.g., limits on mass concentrations of PM with a diameter of 2.5 µm or smaller). Basing regulation 

on particle diameter is due to research showing that fine particles (diameter <2.5 µm, PM2.5) and 
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ultra-fine particles (diameter < 100 nm) can enter the blood system through the lung, resulting in 

cell inflammation and possibly cell death (Alföldy et al., 2009; Creutzenberg, 2012). The health 

impacts from vehicle exhaust PM exposure can also depend on the composition; exposure to trace 

metals, such as zinc, lead, and manganese, can cause an acute inflammation response (Kennedy, 

2007; Rice et al., 2016).  

 

Traditionally, diesel engines have been the primary source of vehicle PM. However, with the 

introduction of gasoline direct injection (GDI) engines, gasoline vehicles are becoming a growing 

source of PM, especially in the ultrafine size range which has greater health impacts (Franco et al., 

2013; Zhu et al., 2016).  

 

2.3 Emissions Regulations 

As our understanding of the impacts of vehicle emissions has grown, so too have vehicle emissions 

regulations (Yuan et al., 2015). The United States was the first country to introduce a nationwide 

air quality act in 1955, the Air Pollution Control Act, which paved the way for the 1963 Clean Air 

Act and the 1965 Motor Vehicle Exhaust Control Act (Kuklinska et al., 2015; Stern et al., 2012). 

Currently, two sets of emission standards exist in the United States: the federal standard established 

by the US Environmental Protection Agency (US EPA), and the often stricter regulations 

established by the California Air Resources Board (CARB) (Kuklinska et al., 2015). Current US 

EPA standards (Tier 3) are mostly harmonized with the current CARB LEV III standards, and 

Canadian emissions standards are harmonized with those set out by the US EPA. These emissions 

regulations limit the amount of CO, NOx, total hydrocarbons (THC), non-methane hydrocarbons 

(NMHC), non-methane organic gases (NMOG), PM, and total particle number (PN) emitted per 
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unit distance, known as a distance-based emission factor. The United States and European 

Emissions regulations for light-duty vehicles (LDVs) are outlined in Table 2.1. Compliance with 

the emissions limits in Table 2.1 is assessed using either laboratory or real-world based emissions 

testing on specified drive cycles (e.g., FTP-75). This is discussed in Section 2.4. Heavy duty 

vehicles (HDVs) also contribute to a large portion of the total emissions (especially for NOx and 

PM) while accounting for the minority of the on-road fleet (Gertler, 2005; H. Wang et al., 2008) 

and the emission standards for HDVs are also being enforced in both United States and Europe.  

 Table 2.1 Past and current emissions standards for light-duty vehicles in the United States and Europe. 

  United States Europe 

  Tier 1a Tier 2b Tier 3c EURO 4d EURO 5d EURO 6d 

  1994-1997 2004-2009 2017-2025 2005 2009 2014 

THC g/km -- -- -- 0.1 0.1 0.1 

NMHC g/km 0.50 -- -- -- 0.068 0.068 

NMOG g/km -- 0.06 -- -- -- -- 

NOx + 

NMOG 

g/km -- -- 0.1 -- -- -- 

NOx g/km 0.96 0.04 -- 0.08 0.06 0.06 

CO g/km 2.61 2.61 2.61 1.00 1.00 1.00 

HCHO mg/km -- 11.2 2.49 -- -- -- 

PM mg/km -- 6.2 
1.86e 

0.62f 
-- 4.5 4.5 

PN# #/km -- -- -- -- -- 
6E+12g 

6E+11h 

a Passenger cars, 100,000 miles / 10 years, FTP-75 drive cycle 
b Light-duty vehicles, Bin 5, 120,000 miles / 10 years, FTP-75 drive cycle 
c Light-duty vehicles, Bin 160, 120,000 miles / 10 years, FTP-75 drive cycle 
d Category M1 vehicles, New European Drive Cycle (NEDC) 
e phased in 2017-2021 (3 mg/mile) 
f phased in 2025-2028 (1 mg/mile) 
g 2014-2017 
h 2017-onwards 
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2.4 Emissions Measurement Techniques 

2.4.1 Laboratory-Based Measurement 

As introduced in Section 2.3, compliance with emissions regulations is typically assessed using 

laboratory-based measurements. During laboratory testing, the engine or entire vehicle is mounted 

on a dynamometer, run through drive cycles, and exhaust is directly sampled for analysis (Franco 

et al., 2013; Zhao et al., 1999; Zhu et al., 2016). A drive cycle is a prescribed operating pattern for 

the engine and is designed to represent different driving behaviours such as cold start, idling, 

acceleration, and steady-state driving (Franco et al., 2013; Yuan et al., 2015; Zimmerman, 2016). 

 

Example drive cycles include the US Federal Test Procedure (FTP-75, illustrated in Figure 2.1), 

the New Europe Driving Cycle (NEDC), which is used in Europe, and the Worldwide Harmonized 

Light Vehicles Test Procedure (WLTC), which is replacing the NEDC.  

 

Figure 2.1 The United States Federal Test Procedure (FTP-75), an example drive cycle used to assess vehicle 

emissions compliance with regulatory standards. 

https://en.wikipedia.org/wiki/Worldwide_harmonized_Light_vehicles_Test_Procedure
https://en.wikipedia.org/wiki/Worldwide_harmonized_Light_vehicles_Test_Procedure
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Even though the regulatory laboratory-based drive cycles assess vehicle emissions during dynamic 

operation across a wide operating range, some studies have identified discrepancies between drive-

cycle-based emission rates and emission rates measured in real-world environments  

(Chang et al., 2018; Pathak et al., 2016).  For example, numerous studies have shown that the fuel 

economy (and subsequent CO2 emissions) as reported by engine manufacturers are difficult to 

replicate in real-world contexts (Franco et al., 2013; Tietge et al., 2015).  Ramos et al. (2018) also 

found that engine parameters, such as fuel injection quantity or exhaust gas recirculation valve 

position, were different between laboratory testing using the NEDC and on-road testing using the 

newly developed European Real-Driving Emissions test; NOx emissions were also higher during 

real-driving operation. Similarly, Degraeuwe and Weiss. (2017) raised concern about the current 

certification procedure yielding lower emissions than what is observed in the real-world.  In real-

world conditions, higher emission rates have been observed at traffic intersections when vehicles 

accelerate or turn (Lin et al., 2015; Qiao et al., 2005). In addition to discrepancies between 

laboratory-based testing and real-world emissions, choice of drive cycle will also affect emissions. 

The different speed and acceleration profiles in the NEDC and WLTC cycles have been shown to 

result in different CO2 emissions estimates (Ko et al., 2017). Bielaczyc et al. (2020) also compared 

emissions under FTP-75, NEDC and WLTC and identified systematic differences. Finally, 

secondary pollutants are generally not measured using laboratory-based drive cycle tests. In some 

cases, the secondary PM may account for the majority of the PM emitted from vehicles, as such 

laboratory-based tests may underestimate the true emissions impacts (Kennedy, 2007). 
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2.4.2 Real-world Based Measurement 

As introduced in Section 2.4.1, laboratory-based testing may not reflect the air quality impacts 

vehicles in the real-world. For example, in Khan and Frey. (2018), a large gap was found between 

laboratory-based testing and on-road real-world testing, with the real-world test showing 

substantially higher emissions. Real-world emissions are affected by meteorological conditions, 

external traffic conditions and unpredictable driving behaviours. Furthermore, primary pollutants 

may have subsequent reactions after being released into the air resulting in the production of 

secondary pollutants, which should ideally be considered while assessing vehicle emissions (Gong 

et al., 2018; Huang et al., 2018; Johnson and Joshi, 2017b; Kumar Pathak et al., 2016; Wang et al., 

2008). 

 

To address this issue, there has been increasing interest in assessing vehicle emissions in the real-

world to increase the representativeness of the measurements (Huang et al., 2018; Khan and Frey, 

2018), while also acknowledging that real-world tests are not as repeatable as laboratory tests 

(Johnson and Joshi, 2017). Different real-world measurement methods have different advantages 

and drawbacks. The real-world measurement method closest to that measured in the laboratory is 

the portable emissions monitoring system (PEMS). A PEMS samples directly from the tailpipe 

during real-world vehicle operation. As such, the PEMS method takes the different driving 

behaviour and can provide emissions measurements on an individual-vehicle basis (Franco et al., 

2013; Khan and Frey, 2018). However, the PEMS method cannot measure secondary pollutants 

due to sampling directly from the tailpipe, and its high cost limits its broad application across entire 

vehicle fleets.  
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Alternative real-world measurements that do not require physical interaction with the vehicle 

include remote sensing (including roadside measurement), vehicle chasing, and tunnel studies. In 

all of these measurements, emissions are sampled after their release into the atmosphere either at 

the side or above to road (remote sensing/roadside measurement), downwind on the road (chasing) 

or at the entrance and exit of traffic tunnels. Chase studies involve a mobile air quality laboratory 

following target vehicles while driving to measure their emissions. This has the advantage of 

capturing a wide range of vehicle operating conditions without physically interfering with the 

vehicle, but the cost is typically very high and the number of vehicles that can be sampled is very 

limited (Franco et al., 2013). Tunnel measurements involve pairing traffic counting with air 

pollution sampling at tunnel entrance and exits to develop fleet-based emissions estimates.  

 

Remote sensing/roadside measurement involves installing instruments for measuring vehicle 

emissions at the roadside to capture emissions and optionally vehicle data via cameras. 

Measurement typically only occurs at one location,  potentially missing emissions across the full 

range of driving conditions and can be subject to more influence from the environmental 

conditions such as wind direction (Breuer and Burgard, 2019; Burgard et al., 2011; Franco et al., 

2013; Hilker et al., 2019; Ropkins et al., 2017; Wang et al., 2018a). This method has mostly been 

applied by regulatory agencies, typically at a small number of locations due to the complex 

operation and high cost of the instruments (Johnson and Joshi, 2017; Ke et al., 2013; Lu et al., 

2011; Moltchanov et al., 2015). Despite these limitations, a growing number of research studies 

have been done using roadside measurement. Zimmerman et al. (2016) applied road-side 

measurement to measure individual vehicle emissions from gasoline direct injection (GDI) 

engines. Wang et al. (2015) used high-time resolution (< 10 sec) roadside measurement and 
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subsequently identified emissions plumes from the vehicle fleets to calculate emission factors. 

Hiker et al. (2019) applied roadside measurement at a slower time resolution (hourly) the 

difference between sites. As such, there is evidence that roadside measurement may be a useful 

tool for assessing vehicles at different scales, from the individual vehicle to fleet-wide. The 

different emissions monitoring approaches are summarized in Table 2.2. 

Table 2.2 Comparison of different emissions monitoring approaches. 

Type Advantages Drawbacks 

Laboratory: 

Dynamometer 

(engine or chassis) 

• Precise 

• Range of operating conditions  

• Repeatability 

• Very expensive ($$$), 

• Time intensive, 

• Limited number of vehicles tested 

Real-world:  

Chasing 
• Measure secondary PM 

• Large # of vehicles 

• Very expensive ($$$) 

• Safety considerations 

Real-world:  

Tunnel studies 
• Large # of vehicles 

• Track trends over time 

• Fleet-specific (not vehicle 

specific) 

• Limited range of vehicle operation 

Real-world: 

On-board PEMS 
• Range of operating conditions 

• Simple to use 

• Relatively inexpensive 

• Limited # of vehicles that can be 

tested 

• Added mass (30-70 kg) 

Real-world: 

Remote sensing 
• Large # of vehicles (1000s/day) 

• ID high emitters quickly 

• Snapshot at a location 

• Limited variability in vehicle 

operation 

• High uncertainty 

 

Some studies have compared the different real-world emissions monitoring approaches. In 

Ropkins et al. (2017), a new laser-based remote sensing roadside instrument was compared with 

PEMS. The result indicates a good correlation between the actual gas concentration and 

measurement results with r2 of 0.97 and slope of 0.71. In an urban campaign conducted by Huang 

et al. (2018), the potential capability of remote sensing systems to identify high emitters was 

demonstrated but the author acknowledged the uncertainty in whether this method could be as 

convincing as PEMS whose accuracy is closer to in-lab testing. 
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Increasingly, regulatory agencies are incorporating real-world emissions testing requirements into 

their policies and programs. Given the identified mismatch between laboratory and real-world 

testing, and the possibility to cheat regulations as seen with the Volkswagen scandal, real-world 

monitoring has fewer blind spots when it comes to law enforcement. Europe is now working on 

applying the PEMS test to light-duty vehicles (LDVs) to enforce future emission legislations, and 

heavy-duty vehicles (HDVs) have already been required to go through PEMS testing procedures 

since 2009 (Vlachos et al., 2019). The United States Environmental Protection Agency (U.S. EPA) 

is also conducting small-scale PEMS tests with in-use vehicles (Nam and Mitcham, 2019). Though 

not as repeatable standardized as laboratory tests, real-world emission tests are still promising 

testing programs in the future. 

 

One area of promise in this regard is the use of low-cost air quality sensors (discussed more fully 

in Section 2.6). Recently, researchers have started to use low-cost sensors near roadsides and 

across urban areas. This new technology could allow us to have sensors with a much lower price 

at a reasonable accuracy (Zimmerman et al., 2018). It is possible that with the help of low-cost 

sensors, high-density roadside monitoring networks could be constructed to capitalize on the 

advantages of roadside measurement while reducing the total cost (Hasan et al., 2018; Johnson 

and Joshi, 2017; Ke et al., 2013; Lu et al., 2011). The data from high-density roadside monitoring 

networks could offer promising solutions for several challenges from identifying high emitters to 

assessing the outcomes of related environmental policies. 
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2.5 Emissions Reduction Strategies 

2.5.1 After-treatment 

New combustion technologies and after-treatment technologies have long been used to reduce 

pollutants from on-road vehicles (Thurnheer et al., 2011; Jang et al., 2015; Bonatesta et al., 2014; 

Zhu et al., 2016; Johnson and Joshi, 2017a). The effectiveness of after-treatment technologies is 

well proven by laboratory experiments using both engine and vehicle dynamometers. Emission 

control technologies can be divided into 2 streams, particulate pollutant control and gaseous 

pollutant control. Diesel vehicles and GDI-powered vehicles are the primary sources of PM 

emissions. To suppress PM emissions, for both diesel and GDI vehicles, the most common way is 

to install particulate filters, such as a diesel particulate filter (DPF) in the after-treatment system. 

DPF filtration efficiencies typically range from 70% to 100% (Johnson and Joshi, 2017; Wang et 

al., 2014). For gaseous pollutants, diesel vehicles and gasoline vehicles have different strategies 

due to differences in their air-to-fuel ratio. Gasoline engines typically work at the stoichiometric 

air-fuel ratio, and as such, the three-way catalyst (TWC) is the most widely applied system to 

reduce CO, hydrocarbons (HC), and NOx. For diesel engines working at lean air to fuel ratios, 

catalytic reduction (SCR) is typically used to reduce NOx and oxidation catalysts are used to 

oxidize CO and HCs. An important characteristic of the TWC in gasoline vehicles is that the 

conversion efficiency of the TWC is lower when the temperature is below the light-off 

temperature, so one of the directions of current studies on vehicle emissions is cold start emissions 

when the TWC is at a lower temperature (Bielaczyc et al., 2014; Cédric et al., 2016; Khan and 

Frey, 2018; Yao et al., 2012).  
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2.5.2 Other approaches 

There are a variety of other approaches aside from after treatment to reduce emissions. Some 

studies have shown that emissions could be reduced by optimizing the driving behaviours (Çolak 

et al., 2016; Fan and Perry, 2018; Rakha et al., 2000). In Rakha et al. (2000), speed and acceleration 

were identified as factors influencing vehicle emissions. The results prove that acceleration has a 

significant influence on the emissions, indicating the possibility of reducing emissions by 

optimizing the acceleration. In the work of Lin et al. (2015), the influence of the traffic delay at 

intersections on vehicle emissions have been quantified. They find that by reducing traffic delay, 

or in other words, making the vehicles pass smoothly at intersections, the emissions are reduced. 

Apart from the modification of driving behaviours and after-treatment systems, researchers are 

also trying to make changes to the operating modes of the vehicle to reduce emissions. Hybrid 

vehicle technologies could reduce emissions by optimizing engine working conditions (Zhang et 

al., 2020; Thomas et al., 2020). Also, traffic control strategies could have a significant influence 

on emission reductions, by reducing idling time and average acceleration (Lin et al., 2015). 

 

2.6 Low-cost air pollution sensors 

2.6.1 Characteristics of low-cost sensors 

Traditionally, measurement of air pollutants relies on high-cost reference-grade instruments, 

whose costs start from $1000-$20,000 USD to measure one criteria air pollutant (Clemitshaw, 

2010; Zimmerman et al., 2018; Snyder et al., 2013). Reference-grade instruments have the 

advantage of being accurate, however, they are typically complex instruments, requiring 

professional operation (Mead et al., 2013). Regulatory instruments are far more difficult to deploy 

within a larger air pollution monitoring network, such as what might be needed to measure the 
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emissions of the real-world transportation system (Chong et al., 2003), due to weatherproofing, 

power demands and large size limitations. As such, existing regulatory monitoring networks have 

typically relied on a few, spatially widespread sensing locations. To quantify the air quality 

impacts of vehicles, a high spatial-density monitoring network, as well as real-time data, are 

needed since vehicle emissions vary dynamically in both space and time, depending on weather, 

road conditions, maintenance, fuel, and how the vehicle is operated (Kumar et al., 2015).  

 

With new lower-cost sensing technology comes the opportunity to build a high spatial-density 

monitoring network capable of measuring multiple pollutants at a significantly lower cost 

(Zimmerman et al., 2018; Masson et al., 2015; Doherty et al., 2006). Commercially available low-

cost air pollution sensors are dominated by a few technologies including light-scattering particle 

matter sensors and electrochemical or metal oxide gas sensors (Maag et al., 2018). Over the past 

few years, intensive research has been done to characterize and develop low-cost particle and gas 

sensors. In Budde et al. (2018), a low-cost particle sensor was tested and was found to have a 

strong reliance on relative humidity and poorer detection of smaller particles. In Kelly et al. (2017), 

an assessment of a  low-cost particle sensor showed that the sensor was more influenced by 

properties of the particulate matter (e.g, composition) than typical research instruments while also 

having good accuracy during an in-lab test. Studies on low-cost gas sensors have mostly 

demonstrated that the gas sensors are influenced by the environmental conditions as well as other 

pollutant cross-sensitivities (Maag et al., 2018; Zimmerman et al., 2018; Pang et al., 2018; Malings 

et al., 2019). In Hossain et al, the cross-sensitivity between NOx and O3 was addressed with a pair 

of sensors (Hossain et al., 2016), however, it remains uncertain whether other gases may interfere 
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with the measurement. The long-term stability and selectivity could also change as electrolytes 

degrade or metal oxide sensors undergo irreversible reactions (Yang et al., 2019). 

 

Recently, some mature low-cost air pollution sensors have been made commercially available 

which combine a group of sensors with data acquisition systems and remote data transmission 

modules. Using these remote data transmission modules, data can be easily uploaded on customer 

servers, providing users with convenience to collect and analyze large data sets with little to no in-

person interaction. Still, low-cost sensors have ongoing accuracy challenges compared to 

reference-grade instruments (US EPA Tier 5 data quality). However, with the new calibration 

methods, the accuracy of low-cost sensor could meet the requirements of certain purposes outlined 

by US EPA, such as hotspot identification (Tier 2) and supplementary monitoring (Tier 4) (Mead 

et al., 2013; Cross et al., 2017; Malings et al., 2019; Zimmerman et al., 2018). The user-friendly 

and budget-friendly nature of low-cost sensors, combined with new calibration approaches 

(Section 2.6.2), could support the collect the real-time emissions profile of vehicles across cities. 

With a larger sensor network, the real-time data could provide important information on the air 

quality impacts of traffic management technologies and help characterize vehicle fleets (Kumar et 

al., 2015).   

 

2.6.2 Calibration techniques 

Due to the cross-sensitivity and sensitivity to environmental factors of the low-cost sensors 

mentioned in Section 2.6.1, calibration must be conducted before or during the measurement with 

low-cost sensors (Zimmerman et al., 2018). Electrochemical gas sensors have been shown to have 

cross-sensitivity between NOx and ozone, as well as between CO and molecular hydrogen as a 
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first-order effect (due to redox reactions) and ambient temperature (affects diffusion 

coefficient)and relative humidity (affects condensation on potentiostat electronics) as a second-

order effect (Mead et al., 2013; Zimmerman et al., 2018). A first-order effect is essentially 

chemical interference that directly affects the current in the sensor circuit, which can be hard to 

resolve with linear models. More complex models, including random forests and artificial neural 

networks, have been introduced to address this effect.  A second-order effect does not directly 

change the current, but it affects the chemical reaction rate and subsequent current generation 

which then influences concentrations. The second-order effect has been well addressed with linear 

models (Maag et al., 2018; Malings et al., 2019; Zimmerman et al., 2018). Malings et al. (2020) 

demonstrated that low-cost PM sensors also require calibration due to the influence of relative 

humidity, particle hygroscopicity, and temperature. Earlier research indicated an even wider range 

of cross-sensitivities between electrochemical sensors and that exposure to cross-sensitive species 

had long-lasting ‘memory’ effects (Austin and Goyer, 2006). Even when the sensors receive 

factory calibration by the manufacturer, it has been shown that these calibrations are not robust 

over time and regular calibration should be done to ensure the accuracy (Hodgson et al., 1999; 

Cavellin et al., 2016; Papapostolou et al., 2017). To address this, there has been ongoing research 

on calibration approaches and how frequently calibration algorithms should be updated. 

 

Different methods have been developed for low-cost sensor calibration. Linear regression models 

are the most straightforward method. These models assume linearity between the increments of 

low-cost sensor signal response and the change in actual concentrations (Maag et al., 2018). 

However, linear regression models are poorly suited to sensors that are influenced by a variety of 

factors in the ambient environment (Castell et al., 2017). During the calibration of electrochemical 
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gas sensors, according to Zimmerman et al. (2018), the linear regression model only worked well 

on CO sensors (Pearson R of 0.91). Castell et al. (2017) further indicate this method could not 

make the low-cost sensors suitable for monitoring due to the low accuracy post-calibration. Some 

research has shown a reasonable performance of low-cost sensors with linear regression calibration 

models in the laboratory. However, the work of Esposito et al. (2016) indicates that the calibration 

accuracy decreases significantly when moving from the lab to the field. The linear regression 

model is more likely to be accepted as a factory calibration method rather than being applicable to 

air pollution monitoring or even research purposes. As an extension of the simple linear regression 

model, multiple linear regression models including other pollutants and meteorological parameters 

such as temperature and relative humidity have been explored (Maag et al., 2018; Malings et al., 

2019; Zimmerman et al., 2018). Despite including more parameters, the consensus is that multiple 

linear regression calibration models do not provide satisfactory performance except for PM sensors 

which use light scattering (Malings et al., 2020).  

 

It has been hypothesized that the poor performance of multiple linear regression models is due to 

nonlinearity in sensor response to cross-sensitive pollutants or environmental conditions. Being 

more capable of handling nonlinearity, machine learning calibration methods have been another 

popular method accepted in real-world research. The machine learning models mostly use the 

signal from a sensor array (including temperature and relative humidity) as the predictors and use 

these models to reproduce complex relationships between different input factors (Maag et al., 

2018; Malings et al., 2019). Lewis et al. (2016) applied boosted regression trees and Gaussian 

process emulation to sensor calibration and found that the corrected signal replicated the 

concentrations measured by reference-grade instruments well. De Vito et al. (2009) applied 
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artificial neural network models to a low-cost sensor system for measuring NOx, CO and CO2. 

They found that an artificial neural network model could maintain accuracy stability within an 

acceptable range. Recently, Zimmerman et al. (2018) introduced random forest models into sensor 

calibration of NOx, CO, CO2, and O3  sensors and tested these algorithms in long-term studies 

spanning 16 months. Malings et al. (2019) then went on to develop a comprehensive evaluation 

framework and also concluded that the random forest model had similar performance to artificial 

neural network model calibrations when calibrating the same dataset, however the random forest 

model was slightly more consistent across different sensing units.  

 

2.7 Conclusions 

Vehicle emissions are a complex mixture ubiquitous in urban environments with significant 

negative impacts on air quality and human health. Countries around the world have been making 

more stringent emission regulations and encouraging the development and application of emission 

reduction technologies. From optimizing the combustion process in the engine to optimizing traffic 

management, different methods have been taken to reduce vehicle emissions.  

 

These reductions have generally been mandated by increasingly strict vehicle emissions policies 

that require a range of tests, and increasingly, assessment of emissions in a real-world context. 

However, widespread real-world measurement approaches are limited by the instrument 

limitations (size, power), costs and the complexity of operation. Low-cost air pollution sensing 

technologies may be a promising alternative for the measurement of real-world vehicle emissions. 

These tools could increase the coverage of emission measurement and air quality monitoring. 

Ideally, the low-cost sensors could provide researchers with high spatial and temporary density 
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measuring results to convert the pollutant signal into meaningful metrics such as vehicle emissions 

factors. Though low-cost sensors noted accuracy limitations, new calibration methods have been 

developed to enable more accurate readings.  As such, with low-cost sensors, a vehicle emission 

measurement network could be developed, and the real-world emissions of the vehicle fleet could 

be fully characterized. The data from such a network could be used to assess the impact of vehicle 

emission regulations, for instance, nation-wide fleet emission factors could be developed, and 

could then be used to evaluate the impact of the policy. Also, this method could potentially be 

applied to identify high-emitting fleets. Subsequent policies targeting that specific fleet could be 

put forward to reduce emissions more efficiently. Apart from policy assessment, we could apply 

this method to evaluate the change of vehicle emissions with new technologies, for instance, 

connected vehicles. However, this is all contingent on low-cost sensors having adequate 

measurement sensitivity to detect vehicle emissions. The subsequent chapters will explore this 

idea in a controlled parkade setting (Chapter 4) following instrument calibration (Chapter 3). 
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Chapter 3: Instrumentation and Calibration 

3.1 Introduction 

In this chapter, the primary instrument used in this study is introduced, the Real-time Affordable 

Multi-Pollutant (RAMP, SENSIT Technologies), a monitor composed of multiple commercially 

available low-cost sensors. One of the essential steps of this work is to improve the accuracy of 

low-cost sensing instruments for vehicle emission measurement. The calibration models needed 

for this assessment have been developed (trained) and evaluated in this chapter. The calibration of 

the RAMPs was based on a three-week collocation with regulatory-grade instruments at a near-

road monitoring station (Section 3.3.1). In this work, a machine-learning random forest (RF)-

multiple linear regression (MLR) hybrid model was developed and applied to correct the data 

collected by the RAMP gas sensors following the approach of  Malings et al. (2019) and 

Zimmerman et al. (2018), which evaluated these models extensively (Section 3.3.2).  

 

Temperature and relative humidity are two known factors that cause disagreement between 

reference-grade PM sensors and low-cost optical PM sensors since most optical low-cost PM 

sensors report data at ambient conditions while reference-grade PM monitors have rigid 

requirements for temperature (20-23ºC) and relative humidity (30%-40%) (Malings et al., 2020; 

USEPA, 2016). Accordingly, PM2.5 mass concentration was corrected with a multiple linear 

regression model (Malings et al., 2020) with the predictors being sensor-reported PM2.5 mass 

concentration, relative humidity, and temperature in this work (Section 3.3.3). The performance 

of the calibration models was assessed on three days of independent testing data not used in the 

calibration model building. 
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3.2 Real-time Affordable Multi-Pollutant Monitor 

In this study, we used the Real-time Affordable Multi-Pollutant (RAMP, SENSIT Technologies) 

monitor (Figure 3.1, Figure 3.2). The RAMP contains commercially available low-cost sensors for 

measuring PM2.5, NO, NO2, CO, O3 and CO2 (Table 3.1) within a weather-proof shell (Zimmerman 

et al., 2018). The sensors are passive (no active airflow) with no conditioning processes. Details 

of the RAMP have been described in detail elsewhere (Malings et al., 2019; Zimmerman et al., 

2018) but are described here briefly. 

Table 3.1 Configurations of the sensors inside the RAMP monitor. 

Measurement (Unit) Sensing method Serial number (Manufacturer) 

CO (ppb) 

Electrochemical (with auxiliary 

and working electrodes) 

CO-B41 (Alphasense) 

NO (ppb) NO-B4 (Alphasense) 

NO2 (ppb) NO2-B43F (Alphasense) 

O3 (ppb) Ox-B431 (Alphasense) 

PM2.5 (µg/m3) Laser scattering PA-II (Plantower) 

CO2 (ppm) Nondispersive infrared (NDIR) 

SST CO2S-A (SST Technologies) Temperature (°C)* Bandgap 

Rel. Humidity (%)* Capacitive 

* Temperature and relative humidity measurements are built-into the CO2 sensor 

 

The electrochemical gas sensors used in this study work by acquiring the current generated by the 

reduction-oxidation reaction between the target gas and the electrode. The NDIR sensor used in 

this study measures the absorption ratio of infrared light to determine the concentration of CO2. 

The PM sensor uses a light-scattering technique, based on the principle that the direction of light 

will be changed when it meets small particles and the light diffracted (scattered) by the 

proportional to the concentration of particles. The reacting time of the sensors varies from 15 to 

90 seconds. 
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Figure 3.1 RAMP mounted in a parking garage (right) and the bottom of a RAMP monitor showing the location 

of the sampling units (left). 

 

 

Figure 3.2 Picture inside the weather-proof shell of the RAMP, each low-cost sensor is marked with the target 

it measures. The sensors inside this package are independent of each other and could be replaced quickly when 

damaged. 

 

The RAMP can use external power or a built-in rechargeable battery which supports approximately 

5 days of measurement with all sensors operational. A built-in customized data acquisition and 
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control system measures the analog signal from the sensors, conditions the analog output with 

filtering circuitries removing noise signatures and converts the conditioned analog signal to a 

digital signal which becomes the final output. These outputs are uploaded wirelessly (using cellular 

networks) to an online server enabling remote monitoring. The data is also saved on an SD card 

inside the monitor for backup (Zimmerman et al., 2018). The RAMP records data with a 15-second 

sampling resolution. This was down-sampled to 5 min averages to increase the signal-to-noise 

ratio (Li et al., 2019; Zimmerman et al., 2018). 

 

Typically, the output of the gas sensors is influenced by various factors including relative humidity 

(RH), temperature (T), and cross-sensitivities to other pollutants that increase the uncertainty 

(Mead et al., 2013). For example, the NO2 sensor output is influenced by RH (affects condensation 

on potentiostat electronics), T (affects diffusion coefficient) and also the concentrations of O3 and 

other gases (due to conflicting redox reactions) (Zimmerman et al., 2018).  The accuracy of low-

cost optical PM sensors signal is affected by the omission of particles smaller than minimum 

detectable size (<300 nm) as well as the influence of T and RH, all of which can cause a 

discrepancy between the measurement result and measurements with reference grade instruments 

(Malings et al., 2020). As such, calibration is needed for both the gas phase and PM sensors. The 

calibration methods are discussed in Section 3.3. 

 

3.3 Sensor Calibration 

3.3.1 Collocation Campaign 

Calibration was based on a three-week collocation with regulatory-grade instruments at the Clark 

Drive Near-Road Monitoring Station operated by Metro Vancouver, the air quality regulatory 
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authority in the region. The Clark Drive site, shown in Figure 3.3, is within 15 m of a major 

intersection and is disproportionately impacted by traffic-related air pollution, making it an ideal 

calibration location. The reference-grade instruments equipped at Clark Drive site are listed in 

Table 3.2. 

Table 3.2 Configurations of the sensors at Clark Drive site. 

Measurement (Unit) Sensing method Manufacturer (Serial number) 

CO (ppb) Filter correlation infrared Thermo Scientific (48i-TLE) 

CO2 (ppm) Nondispersive infrared  LI-COR (840A) 

NO (ppb) Chemiluminescence Thermo Scientific (42i) 

NO2 (ppb)  

O3 (ppb) UV photometric Thermo Scientific (49i) 

PM2.5 (µg/m3) Nephelometer Thermo Scientific (SHARP5030) 

 

The filter correlation infrared CO sensor compares the difference between the absorption rate of 

the sample and the pure target gas to determine the concentration of the target gas in the sample. 

The chemiluminescence NOx sensor uses the emission of light during the reaction between NO 

and O3. The light will be measured to determine the concentration of NO. After the determination 

of NO, the same process will be repeated with NO2 converted into NO and the difference between 

the new measurement and previous NO concentration is used to calculate the NO2 concentration. 

The UV photometric O3 sensor determines the concentration of O3 by comparing the difference of 

absorption rate between sample gas and sample gas without O3. The nephelometer measure the 

light reflected by the particles in the sample air to determine the concentration of PM2.5. 
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Figure 3.3 Picture of the collocation site at Clark Drive in Vancouver, BC beside a major roadway the sensors 

are deployed close to (within 2 meters) the sampling pipe of reference-grade instruments. The primary 

monitoring target of this site is the emissions from vehicles passing by. 

 

The collocation campaign started on September 24th and ended on October 11th in 2019. The 

collocation data from September 24th to October 8th was selected as a training dataset and the rest 

of the collocation data was used for evaluation of calibration results. 

 

The calibration results normally retain their quality and consistency for around 4 months (Malings 

et al., 2019; Zimmerman et al., 2018), while there have been no further studies testing the further 

accuracy change in longer-term. As such, for this study, the calibration model is expected to remain 
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valid. However, in general, it’s recommended that the calibration process be repeated as frequently 

as is reasonably possible. 

 

3.3.2 Calibration of Gas Sensors 

3.3.2.1 Random forest (RF) model 

The random forest model was first introduced to the calibration of low-cost sensors by Zimmerman 

et at. (2018) and is described briefly here. The RF model is essentially an ensemble of decision 

trees and each decision tree is composed of many nodes. In this study, the forest is composed of 

100 decision trees. In a decision tree, each parent node splits into its child nodes by considering a 

random subset of predictive variables (mtry) until reaching the terminal nodes. In this study, the 

number of predictive variables in the random subset (mtry) considered in generating the child nodes 

are tuned by the user to reach the minimum root mean square error (RMSE) and one predictive 

variable is selected from the subset based on how well it could predict response. Here, the mtry was 

set to include all possible variables (n=7). This process is repeated for each split between a parent 

node and a child node until a terminal node is reached. Here, the terminal node was reached when 

the node contained 5 data points. Each decision tree is formed in the training process with random 

datapoints bootstrapped from the training dataset. When predicting the results, the input data will 

be applied to every decision tree and the results from all of the decision trees will be averaged to 

give the final predicted result. 

 

3.3.2.2 Hybrid model 

The calibration model of gases is based on a hybrid random forest (RF)-multiple linear regression 

(MLR) model developed by Malings et al. (2019). The purpose of a hybrid RF-MLR calibration 
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model is to account for the RF model’s inability to extrapolate outside of the training concentration 

range. To develop a hybrid model, RF and MLR calibration models are constructed separately and 

then an algorithm is written to switch from the RF model to the MLR model if the model outputs 

are close to the boundary of the training range. Both the RF and MLR models used the same 

predictors (CO2, CO, NO, NO2, O3, relative humidity, and temperature) and the cut-off point to 

switch from RF to MLR was optimized using an exploratory analysis to maximize overall 

calibration accuracy. Calibration model performance was assessed on three days of independent 

testing data not used in the calibration model building.  

 

The random forest model is expressed in Equation (3.1) where CO is used as an example, RH 

stands for relative humidity and T stands for temperature. 

 

COCorrected = FRF(CO2 Origninal, COOriginal, NOOriginal, NO2 Original, O3 Original, RH, T) Eq. (3.1) 

 

The MLR model is expressed in Equation (3.2) where CO is used as an example: 

 

COCorrected = β0 + (β1 ∗ COOriginal) + (β2 ∗ T) + (β3 ∗ RH) Eq. (3.2) 

 

Overall, a unique model was been trained for each sensor in every sensor package. Each RF model 

was trained with 100% of the training dataset. The part of the training data corresponding to the 

top 10th percentile of the output of RF model was used to train the MLR model since the goal of 

the MLR model was to accurately predict at higher concentrations. When applying the hybrid 



31 

 

model, all data is first corrected by RF model, it will then switch between the RF model and the 

MLR model by determining whether the output of RF model exceeds the cut-off value. 

 

To find out this cut-off value, we first determine the percentile of the RF model’s output results 

where the RF models lose accuracy and that percentile is referred to as the ‘upper percentile’, and 

the corresponding output value of RF model at upper percentile is referred to as the ‘cut-off value’. 

The optimal percentile was determined by evaluating overall model performance with cut-point 

percentiles ranging from 90 to 99%.  In this study, 98% has been determined to be the optimal 

percentile where the RF models lose accuracy. The parameters used to make this evaluation were 

the coefficient of variation of the mean absolute error (CvMAE, essentially mean absolute error 

normalized by the average concentration) and the Pearson correlation coefficient (Pearson R) 

during the evaluation of the calibration on the testing data. CvMAE and Pearson R are calculated 

according to Equations (3.3) and (3.4). As is shown in Figure 3.4 for the CO models, the R2 

approaches a maximum when the model switches from RF to MLR at the 98th percentile of the 

training data. 

 

 
Pearson R =  

ε[(Predicted − µPredicted)(Reference − µReference)]

σPredictedσReference
 

Eq. (3.3) 

     

Pearson R mainly assesses the linear correlation between corrected data and the corresponding 

reference data. In the equation, 𝜀 stands for the expectation, µ𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  stands for the mean of 

predicted dataset and µReference stands for the mean of the reference dataset. CvMAE is calculated 

as: 
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CvMAE =

1

Avg. Reference
× [

1

n
 ∑|Predictedi − Referencei|

n

i=1

] 
Eq. (3.4) 

Avg. Reference stands for the average value of the reference data, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖, and 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖 

stand for the 𝑖th datapoint in the predicted dataset and reference dataset respectively. The results 

of the calibration are shown in Figure 3.5. 

 

Figure 3.4 Determination of the cut-off point for switching from the random forest model to the MLR model 

based on changes to r2. In this case, the r2 is approaching the greatest value when the upper percentage limit 

for the RF model is around 98%, thus 98% is selected. 
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Figure 3.5 Performance of the calibration models on the withheld testing data for the gas sensors of all of the 

RAMPs in this study. CvMAE is the coefficient of variation of the mean absolute error (i.e., the mean absolute 

error normalized by the average concentration). CvMAE can be interpreted as the approximate percent error 

(e.g., ~ 15% for ozone). For the box plots, whiskers are 10th and 90th percentile, box edges are 25th and 75th 

percentiles, and the line is the median. 

 

Based on the previous similar work of RAMP calibration with a random forest model by 

Zimmerman et al. (2018) and Malings et al. (2019), our calibration achieved similar or better 

performance. The comparison between the previous study and this work is provided in Table 3.2. 

Though NO sensor was not assessed in the past studies, the NO sensor showed similar CvMAE 

and Pearson R values as other pollutants, suggesting the calibration similarly successful as the 

other pollutants. Putting the results in the context of EPA air quality sensor performance 

guidelines, the error is still too high for regulatory monitoring, which requires the error to be less 

than 7% to 15% (USEPA, 2016). However, the current target of this initial study is to explore the 

method to measure vehicle emissions. Further studies are expected to characterize the uncertainty 

in full detail. 
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Table 3.3 Comparison of Calibration Results between our attempt and the original results published by 

Zimmerman et al. (2018) and Malings et al. (2019). 

 

  Average Pearson R Average CvMAE 

CO This study 0.96 21.7% 

Zimmerman et al. (2018) 

Malings et al. (2019) 

0.95 

0.88 

14% 

20%  

NO2 This study 0.88 21.2% 

Zimmerman et al. (2018) 

Malings et al. (2019) 

0.82 

0.69 

29% 

42%  

CO2 This study 0.95 2.4% 

Zimmerman et al. (2018) 0.88 2.2%  

O3 This study 0.97 18.8% 

Zimmerman et al. (2018) 

Malings et al. (2019) 

0.93 

0.9 

15% 

22%  

 

 

3.3.3 Calibration of PM2.5 Sensor 

Temperature and relative humidity are the first two factors that cause the disagreement between 

reference grace PM sensors and low-cost optical PM sensors since most optical low-cost PM 

sensors report data at ambient conditions while the reference-grade PM has rigid requirement on 

temperature (20-23o) and relative humidity (30%-40%) (Malings et al., 2020; U.S. Environmental 

Protection Agency, 2016). Accordingly, PM2.5 mass concentration was corrected with a multiple 

linear regression model (Malings et al., 2020) with the predictors being PM2.5 mass concentration, 

relative humidity, and temperature in this study. The calibration results are evaluated with the same 

criteria as Section 3.3.2 and are shown in Figure 3.6. 

 

COCorrected = β0 + (β1 ∗ PM2.5Original) + (β2 ∗ T) + (β3 ∗ RH) + (β4 ∗ DP(RH, T))    Eq. (3.5) 



35 

 

Though Malings et al (2020) provided a set of β  coefficients based on reference monitor 

collocation in Pittsburgh, we independently fit our own β coefficients based on a Vancouver 

collocation. Our model coefficients were of a similar magnitude and direction to those calculated 

in Malings et al. (2020).  In Equation (3.5), DP stands for dew point at a certain relative humidity 

and temperature. The DP is calculated with one form of the Magnus-Tetens Formula (Camuffo et 

al., 2018; Dario, 2019) due to its appropriateness at room temperature conditions, similar to our 

study, as per equations (3.6) and (3.7). 

 

 
𝛾(𝑇, 𝑅𝐻) = ln (

𝑅𝐻

100
) +

𝑏𝑇

𝑐 + 𝑇
 

Eq. (3.6) 

 
𝐷𝑃 =

𝑐𝛾(𝑇, 𝑅𝐻)

𝑏 − 𝛾(𝑇, 𝑅𝐻)
 

Eq. (3.7) 

 

Where T and DP are in Celsius, RH is in percentage, b=17.62, c=243.12ºC (Camuffo et al., 2018; 

Dario, 2019). The results of the PM2.5 calibration are shown in Figure 3.6. 
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Figure 3.6 Performance of the calibration models on the withheld testing data for the PM2.5 sensors of all of the 

RAMPs in this study. CvMAE is the coefficient of variation of the mean absolute error (i.e., the mean absolute 

error normalized by the average concentration). CvMAE can be interpreted as an approximate percent error. 

For the box plots, whiskers are 10th and 90th percentile, box edges are 25th and 75th percentiles, and the line is 

the median. 

 

 

The results of PM2.5 sensor calibration was compared with the previous work by Malings et al. 

(2020) in Table. Generally, the Pearson R and CvMAE were close to the previous results. But the 

results still cannot meet the standard of regulatory monitoring (<10% error for PM2.5). 

 

Table 3.4 Comparison of PM2.5 Calibration Result between our attempt and the original results published by 

Malings et al. (2020). 

 

 Average Pearson R Average CvMAE 

This study 

 

0.9 27% 

Malings et al. (2020) 0.91 14% 

 

 



37 

 

3.4 Conclusions 

In this chapter, we briefly described the primary instrument used in this study, the RAMP. Its small 

size and ability to measure multiple pollutants suggest it may be applied to vehicle emission 

measurement. To calibrate the sensors, the calibration procedures designed by Zimmerman et al. 

(2018), Malings et al. (2019) and Malings et al. (2020) were adopted. We found the results of the 

calibration mostly match the previous studies.  
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Chapter 4: Development of Vehicle Fleet Emission Factors in Parkades 

4.1 Introduction 

As introduced in Chapter 2, one potential application of widespread low-cost sensor deployment 

is using LCS systems as a remote sensing tool for the measurement of fleet-based emission factors 

(EFs). If these tools could be used for this purpose, low-cost sensor systems could be deployed at 

hundreds of locations to capture a broad range of vehicle operating conditions and environments, 

generating millions of vehicle plumes for analysis. However, it remains uncertain if the 

measurement sensitivity of low-cost sensor systems is capable of such measurements. 

 

To address this question, this chapter assesses the suitability of the RAMP low-cost sensor systems 

for determining fleet-based EFs using a remote-sensing-type approach. In this study, we deployed 

6 low-cost monitors in 3 parking garages on the University of British Columbia (UBC) campus in 

Vancouver, British Columbia for three months. These traffic-rich environments combined with 

vehicle counting data provided by UBC Parking Services enabled us to develop our method with 

some built-in validation. The calculated EFs are then compared to the published literature.  

 

4.2 Measurement Sites 

4.2.1 Physical Features of Sampling Locations 

Three parking garages operated by UBC Parking Services were sampled in this study. A short 

description of the sites is provided in Table 4.1. For simplicity, the three parking garages will be 

henceforth referred to as AG1 and AG2 (above-ground parking garages 1 and 2) and BG1 (below-

ground parking garage 1). 
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Table 4.1 Characteristics of the parking garages. 

Garage 

Name 
Location Ventilation Abbreviation 

Average daily 

traffic 

Health 

Science  

Above ground 

(AG) 

 

Open-air, Venetian walls 

on 2 sides 

AG1 1903 

Thunderbird  Above ground 

(AG) 

Open-air AG2 1484 

Rose Garden  Below ground 

(BG) 

Mechanical ventilation BG1 970 

 

Sites AG1 and AG2 are above ground open structures; site AG1 has Venetian blind wall on two 

sides and open-air on the other two sites, site AG2 is open to the air on all sides.  Site BG1 is 

underground and has only one opening at the gate. As such, there are ventilation fans at the corners 

of each floor inside the parking garage. All the ventilation fans and their pipes are built into the 

wall and covered with wire mesh at each opening. The fans work intermittently due to their high 

noise level. Due to this garage being underground, proper ventilation in BG1 is a serious concern 

and multiple CO detectors are installed at each level by UBC Building operations which are 

triggered when there are risks for CO poisoning. A simplified schematic of the selected parking 

garages, as well as the relative positions of RAMPs, are shown in Figure 4.1. 
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Figure 4.1 Schematic of the parking garages and relative positions of RAMPs, see Table 4.1 for details. The 

white hexagons represent the RAMP measurement locations. The dash outlines and solid outlines represent an 

open structure and closed structure, respectively. The angled walls on the top and bottom of AG1 represent the 

Venetian blind walls on the exterior of the garage. All of the RAMPs are on the same floor except for the 

RAMPs in Site AG2 in which the RAMP in the center is on the second floor and the distance between the 

sensors on the same Site is around 50m. 

 

In each parking garage, one RAMP was installed at the gate and one RAMP was installed in the 

main corridor at the center of each site 1.5-1.8 m above the pavement. Since the parking garages 

are all multiple level buildings, the sensors at the center are on ground level or between the ground 

level and next level where the main corridor is a long ramp. There were electricity outlets at the 

gate of all three garages and at the center of the Site AG2 where RAMPs operated on the external 

power supply. At Site AG1 center and Site BG1 center, RAMPs were supported by built-in 

batteries which required a weekly recharge. To keep the continuity of the measurement campaign, 

two RAMPs were assigned for each of those spots such that there was continuous measurement 

while one RAMP was charging and thus in total 8 RAMPs were used in this study. 

 

4.2.2 Traffic Patterns at the Sites 

Traffic count cameras are installed at the gate of each parking garage and operated by UBC Parking 

Services. These cameras count the number of vehicles both entering and leaving. Diurnal plots of 
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the hourly average of the total number of vehicles passing the gate (entering + leaving) are shown 

in Figure 4.2. Only the vehicle counts on workdays (weekdays, excluding holidays) have been 

included due to the significant reduction in traffic flow on the weekend and on holidays. 

 

Figure 4.2 Hourly average vehicle counts at the three parking garages in this study. 

 

4.3 Data processing 

4.3.1 Background Subtraction 

Since the pollutant concentration measured by an air quality monitor is a function of regional 

background concentration and local sources, to isolate the vehicle emissions signal the background 

air pollutant concentrations were removed. An algorithm developed by Wang et al. (2018a) was 

applied to determine and remove this background concentration. This baseline determination 

algorithm approximates the baseline concentration using 3 input variables including the total 

concentration, window length and smoothing index. The original algorithm and source code is 

available in Wang et al. (2018a) but is also described here. 
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This algorithm determines the baseline concentration by separating the time series into individual 

windows, identifying the local minimum in each window, and interpolating between the local 

minima from each window. The output baseline is then smoothed by shifting the window start 

point and repeating the process. This method can be represented by the following function 

(represented by f) (Equation 4.1), where the  PWindow  parameter is the window length and 

  PSmooth parameter determines to which extent the background curve is smoothed. PSmooth was 

assigned to be 3 in this study. 

 

 CBackground = f(CTotal,  PWindow,   PSmooth) Eq. (4.1) 

 

When  PSmooth = 1, then the baseline concentrations CBackground is the result of interpolation of 

minimum values determined in each window of width  PWindow. This process is repeated 3 times 

to reduce the bias caused by the length of the window and there will be an offset in start in time 

by floor (
 PWindow

3
). Then the final baseline value is determined as an average (Equation 4.2). 

 

 

CBackground =  f(CTotal,  PWindow,   PSmooth = 1) =
1

3
∙ ∑ CBackground i

3

i=1

 Eq. (4.2) 

 

When  PSmooth > 1, the process in above equation will be repeated PSmooth times and the window 

width will increase by a factor of PWindow each time, in which case the window length will be 

 PWindow,  2PWindow… PSmooth × PWindow. The final baseline level is determined as an average as 
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well (Equation 4.3). Lastly, any value of CBackground  will be replaced by the corresponding 

original concentration if it is greater than the original concentration. 

 

CBackground =  f(CTotal,  PWindow,   PSmooth) =
1

3  PSmooth
∙ ∑ ∑ CBackground i,j

3
i=1

PSmooth
j=1     Eq. (4.3) 

 

The  PWindow was selected by analyzing two factors of the background levels compared with the 

original concentrations: (1) whether the background level matches the total signal during the quiet 

hours when no vehicles are entering or exiting the sites and there are few to no vehicles passing 

the sites; and (2) whether the background level is stable during the peak hours in the afternoon.  

 

For factor 1, the sum of the difference between the total concentration and background 

concentration on each day was calculated and normalized by the standard deviation of total 

concentration. The average value of that sum reflects how close the background concentration is 

to the total concentration during the quiet hours. This result is referred to as ‘Adherence’. The 

lower the adherence value is, the closer the background concentration is to the total concentration 

during the quiet hours. For factor 2, the standard deviation of the background concentration during 

the evening peak hours was calculated for each day and the average value of that standard deviation 

indicates whether the background concentration could be stable during peak hours. This result is 

referred to as ‘Stability’. The lower stability is, the more stable the background concentration is 

during the evening peak hours. 

 

These calculations can be expressed according to Equations (4.4) and (4.5) 
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Adherence (i) =  ∑
CTotal(t) − CBackground(t)

SD(CTotal(T1), CTotal(T2) … CTotal(Tn))

Tn

T1

 Eq. (4.4) 

Stability(i) =  SD(CTotal(T1′), CTotal(T2′) … CTotal(Tn′)) Eq. (4.5) 

 

In the equation, i corresponds to the day and the two parameters are calculated for each day. 𝑇1, 𝑇𝑛 

are the beginning and end of the time-period when typically no vehicles are entering or leaving the 

sites. In this study, T1=1AM and T2=4AM.  𝑇1′, 𝑇𝑛′ are the beginning and ending of the time-

period during afternoon hours when the vehicle counts yield a peak. T1’=3PM and T2’=7PM in 

this study. 

 

The determination of the optimal window is shown with CO from the gate of Site AG2. There will 

be one value of Adherence as well as Stability on each day. To simplify the comparison process, 

average Adherence value and average stability value has been calculated and shown in Figure 4.3. 

 

Figure 4.3 Average Stability and Adherence parameters across all campaign days for CO at Site AG2 as a 

function of window length. 
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From this analysis, a window length of 5 was chosen across all sites and all pollutants. The 

influence of window length as well as the smooth index on the background concentrations is shown 

in Figure 4.4. 

 

Figure 4.4 The influence of window width and smoothing index on the background concentrations. This is an 

example of the monitoring data from Site AG2 for around 24 hours.  

 

In this study, a window size of 5 data points (25 minutes) and a smoothing function of 3 (smooth 

index) was used as the input parameter to develop the baseline concentration of all pollutants and 

CO2. 

 

4.3.2 Fuel-based Emission Factors 

A fuel-based EF describes the amount of pollutant emitted per unit fuel consumed. Since the time 

resolution of the data is 5 min, EFs of a group of vehicles (fleet-based EFs) rather than EFs from 

individual vehicles are calculated. Here, a plume is defined as a concurrent rise and fall in pollutant 
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and CO2 concentrations. The plume detection method is detailed in Section 4.3.4. Each plume 

contains many vehicles and thus the calculated emission factors are more representative of fleet 

averages. 

 

To calculate the EFs, we used the background-subtracted CO2 and CO RAMP signals to calculate 

the amount of carbon released by the combustion which can be converted into a fuel-based estimate 

based on the carbon content of gasoline (0.86 kg carbon/kg gasoline).  

 

The EF of pollutant Y is calculated according to Eq. (4.6) which is a general equation (Franco et 

al., 2013; Huang et al., 2016; Pokharel et al., 2002; Wang et al., 2018b, 2018a; Yli-Tuomi et al., 

2005). 

 

EFY = (
∆[Y]

g
m3

(∆[CO2] + ∆[CO]) 
g carbon

m3

) ×
1000 g carbon

1 kg carbon
× ωC (

kg carbon

kg fuel
)  Eq. (4.6) 

   

EFY  (g/kg fuel) is the fuel-based emission factor of Y while ∆[Y] (g/m3) is the background-

subtracted concentrations of pollutant Y in a plume and (∆[CO2] + ∆[CO]) (g carbon/m3) is the 

increment of carbon in a plume after background subtraction. 𝜔𝐶  is the percentage weight of 

carbon in the fuel, which is 86.7% for gasoline and 85.7% for diesel (Yli-Tuomi et al., 2005). In 

this study 𝜔𝐶 was determined to be 86% as it is a routinely used value for the mixed fleet (Wang 

et al., 2018a, 2018b). 

 



47 

 

Equation 4.6 provides a simplified version of the calculation. To calculate the EF of pollutant Y 

(NO, NO2, CO), we need to convert the unit of the concentration of Y from part per billion (ppb) 

as measured by the RAMP sensor to g/m3. To do this, we use the molecular weight of pollutant Y 

and the ideal gas law as shown in Equation 4.7. 

PV = nRT Eq. (4.7) 

 

Where P is the pressure (Pa), V is the volume of gas (m3), n is the number of moles, R is the ideal 

gas constant and equal to 8.314J K-1mol-1, T (K) is the absolute temperature and roughly equals 

293.15K, standard room temperature. 

 

The concentration of CO and CO2 also needs to be converted similarly. However, since we are 

interested in g of carbon in the denominator, we first convert mol of CO and CO2 to mol of carbon, 

and then multiple by the molecular weight of carbon. This will be illustrated in the calculation of 

an EF of NO according to equation 4.8. 

EFNO (
g

kg fuel
)

=
(∆[NO] ×

10−9m3 NO
m3air

×
P

RT
 〈

mol NO
m3NO

〉 × 30 〈
g NO

mol NO
〉) ×

0.86 g C
g fuel

×
1000 g fuel

1kg fuel

(∆[CO2] ×
10−6m3 CO2

m3air
×

P
RT

 〈
mol CO2

m3CO2
〉 ×

1 mol C
1mol CO2

+ ∆[CO] ×
10−9m3 CO

m3air
×

P
RT

 〈
mol CO
m3CO

〉 ×
1 mol C
1mol CO

) ×
12 g C

1 mol C

   

                                                                                                                                            Eq. (4.8) 

 

The EFs of other pollutants are calculated similarly, with the only replacement being the molecular 

weight in the numerator of the target pollutant (NO2 = 46 g/mol; CO = 28 g/mol). In Equation 4.8, 

units of ppb and ppm are represented on a m3 pollutant per m3
 air basis. 
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4.3.3 Determination of Vehicle Emissions Detection Limit 

Due to the noise inherent to low-cost sensor (LCS) signals, there is a need to develop a cut-off 

value to classify a valid plume from noise. Using the vehicle count data provided by Parking 

Services, the average background-subtracted concentrations between 1-4 AM were analyzed, 

removing periods when vehicles entered/exited the parking garages, and used as a representative 

noise signal.  Since the sensors can also be influenced by vehicles passing by on the main road 

outside the parking garages, we took the 90th percentile value as the noise signal to determine our 

plume threshold. To be considered for EF calculation, both the pollutant and CO2 plumes had to 

exceed this threshold. These cut-off values are reported in Appendix A. 

 

4.3.4 Plume Identifying and Matching 

To detect plumes, we first identified every local maximum and minimum in the background-

subtracted data set. To be successfully identified as a plume, the following criteria were 

considered. First, each local maximum (plume peak) needed to exceed the emissions detection 

limit (Section 4.3.3). Secondly, for each local maximum meeting this requirement, the start and 

endpoints of the plume were found by identifying the nearest local minima bracketing the peak 

meeting one or more of the following requirements: 1) local minimum is less than the emissions 

detection limit; 2) the difference between the peak and minimum concentrations exceeds the 

emissions detection limit; or 3) the difference between the next furthest peak and the minimum 

should exceed the emissions detection limit. Local minima criteria number 3 ensures that each 

local maximum is only included in one plume. The plume identification process is conducted for 

the pollutants (NOx, CO, PM2.5) and for CO2. To calculate the fuel-based EFs, the CO2 plumes 

need to be matched with the pollutant plumes.  To account for differences in sensor response times, 
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a small offset of 2 data points in pollutant and CO2 plume start and endpoints is allowed. This 

method is illustrated in Figure 4.5. 

 

Figure 4.5 Flowchart for identifying start and end times of pollutant and CO2 plumes. Here [x,y] is the start 

and end time of a pollutant plume and [a,b] is the start and end time of the CO2 plume. If plume peaks and 

local minimums meet specific criteria based on the emissions cut off, and the pollutant and CO2 plumes are 

within 2 data points of each other, then an emission factor is calculated. 

 

4.4 Results and Discussion 

4.4.1 Diurnal Pollutant Patterns 

The weekday diurnal patterns of CO, NOx, and PM2.5 concentration in Site AG2 (Figure 4.6) show 

that the concentration at the parking garage gate is generally lower than at the center of the garages; 

this was observed in all three parking garages. For both CO and NOx, morning and evening rush 

hour peaks in the center of the garage aligned with the vehicle count peaks from Figure 4.2. 

Concentrations were generally higher for the evening rush hour peak, likely due to the influence 
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of cold start emissions. This is discussed in greater detail in Section 4.4.3. PM2.5 emissions are less 

clearly linked with vehicle traffic in the garages.  

 

Figure 4.6 Diurnal trend of the hourly average concentrations of targeted gases in Site AG2. The orange curves 

represent the measurement spot inside the Site AG2, and the blue curves represent the measurement spot at 

the gate of Site AG2. 

 

At the garage gate, the two rush hour peaks are less distinguishable. At the gate of garage AG2, 

the sensor is well-exposed to the outside environment and pollutants may be significantly diluted 

due to wind conditions (Wang et al., 2018a). Furthermore, vehicles pass the Gate sensors more 

rapidly than the Center sensor, potentially reducing the magnitude of the emissions measured. 

 

The sensors at the center of the garages are more likely exposed to more concentrated plumes due 

to the slower dispersion limited by the less airflow and ventilation inside the garage. The vertical 

dispersion of plumes is constrained at each level and the horizontal dispersion is limited by the 

bearing walls inside the garages. Although AG2 has no exterior walls, there exist multiple bearing 

walls on each level of Site AG2, which makes the air flowing inside each level lower and slows 

pollutant plume decay (Leitl and Schatzmann, 2000).  
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The PM2.5 concentration is not well correlated with the vehicle count data, indicating that the fleet 

entering and exiting the parking facilities is not a major contributor to the fine particles matter 

mass. Since garages in this study only allow the entry of vehicles smaller than a certain size, the 

fleet composition was mostly light-duty passenger vehicles predominantly burning gasoline which 

are less likely to be a significant source of PM2.5 compared to diesel vehicles (Li et al., 2018). 

 

There exist air quality standards limiting the concentrations of NO2, PM2.5 outlined in Canadian 

Ambient Air Quality Standards (CAAQS). The hourly NO2 concentration limit recommended by 

CAAQS is 42 ppb and the concentrations of NO2 are within this range. The recommended upper 

limit of PM2.5 concentration was given as 8.8µg/m3 (8-hour average). The 8-hour average PM2.5 

concentration in the parking garage is also under this limit. The CO concentration limit is 

recommended by British Columbia Ambient Air Quality Objectives and the hourly CO 

concentration limitation recommended is 13,000 ppb which is well above the CO level in the 

parkade. However, this limit is based on occupational hazards and asphyxiation. Comparing with 

the regulatory standards of the corresponding pollutants, we found the concentration levels are 

mostly below the values outlined by Canadian standards and B.C. standards.  

 

4.4.2 Overall Fleet-based Emission Factors 

Emission factors were calculated for CO, NOx and PM2.5 and compared with previously published 

studies of real-world, gasoline vehicle EFs using reference-grade instruments (Table 4.2). As we 

used the plume-based approach, fuel-based EFs were directly calculated. However, to expand our 

ability to compare to published studies, we also converted published distance-based EFs to 

approximate fuel-based emission factors using an average fuel economy of 9 L/100 km (Evans et 
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al., 2019) and a fuel density of 0.755 kg/L. There is some uncertainty within this conversion since 

the average fuel economy we used was estimated from a recent multi-year study on a heavily 

trafficked road in Vancouver; however, the fuel economy normally varies within a stable range 

(Tsokolis et al., 2020), which supports this conversion. Our reported average EFs were calculated 

excluding EFs from the center of Site BG1. Since the airflow at the center of BG1 was noticeably 

lower than other measurement spots (poor ventilation), pollutants were stagnant and not rapidly 

decaying, making background subtraction and plume identification highly uncertain. 

Table 4.2 Comparing the average emission factors developed in this study with previous work (light-duty 

vehicles only). To convert fuel-based emission factors into distance-based emission factors, we used an average 

fuel economy of 9L/100 km and a fuel density of 0.755 kg/L. Our EFs are expressed as average +/- a 95% 

confidence interval (The emission factors developed from Site BG1 center were not included) and the 

uncertainty of the instruments after calibration is not included. 

 

Pollutant 

This study Other studies Units Studies 

All 

Morning 

entering only 

  

CO 18.5 ± 0.4 14.5 ± 0.6 10.3 – 26.4 g kg-fuel-1 1, 2, 3, 4, 5 

NOx 1.84 ± 0.03 1.78 ± 0.06  1.2 – 3.2 g kg-fuel-1 1, 2, 3, 4, 5, 6, 7 

PM2.5 0.22 ± 0.03 0.27 ± 0.03 0.15 – 1.1 g kg-fuel-1 8, 9, 10 

1Dallmann et al. (2013), 2Wang et al., (2015), 3Bishop and Stedman (2014), 4Larson et al. 

(2017), 5May et al. (2014), 6Hudda et al. (2013), 7Li et al. (2020), 8Lawrence et al. (2016), 
9Krecl et al. (2018), 10Abu-Allaban et al. (2003) 

 

Compared to other studies, our calculated EFs were similar to those from the published literature. 

The average published CO EF was approximately 17.9 g kg-fuel-1, in line with what was observed 

here. While the upper range of the NOx emission factors reported is 3.2 g kg-fuel-1, the average 

across the seven studies was approximately 2.2 g kg-fuel-1, higher than the 1.8 g kg-fuel-1 reported 

here. However, this may be a function of changing fleet characteristics due to tightening 

regulations over time; a recent study in Pittsburgh, PA determined a NOx emission factor of 1.2 g 

kg-fuel-1 (Li et al., 2020).  The most uncertainty is in the PM2.5 emission factors, as there is limited 
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published data available for gasoline vehicles and a wide range of published emission factors 

depending on the source of the PM including brake wear, tire wear and tailpipe PM2.5.  

 

4.4.3 Determination of the Relative Importance of Cold Start 

To compare the EFs of cold start with normal operations, plumes from each measurement spot 

have been classified into several groups by the time of the plume and the direction of most of the 

vehicles in the plume (entering vs. leaving). Considering that there is no clear and consistent 

definition of the timing, engine conditions and vehicle conditions for cold start phase in published 

literature and that we are not able to isolate the cold start phase absolutely in this fleet-based 

research, the impacts we are measuring we refer to as cold start could be considered a “pseudo” 

cold start. 

 

Here we distinguish between two conditions: 1) vehicles entering the garage in the morning 

(expected to be fully warmed up) and 2) vehicles leaving the garage in the evening (potential 

influence of cold start). In condition 1, we isolated all plumes where >75% of the vehicle traffic 

was entering the garage between the hours of 6-10 AM. In condition 2, we isolated all plumes 

where >75% of the vehicles were leaving the garage between the hours of 4-8 PM. As part of this 

plume classification, we also required at least 5 vehicles per plume. We expect plumes classified 

as part of condition 2 to represent cold-start emissions since it has been shown that these effects 

persist for the first few miles of the trip due to the low temperature of the three-way catalyst and 

coolant, as well as less efficient combustion caused by the lower air-to-fuel ratio during the cold 

start phase (Badshah et al., 2016; Ligterink, 2016; Reiter and Kockelman, 2016). 
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In this study, we compared the impacts of cold start on CO and NOx EFs. We hypothesize that the 

PM2.5 EFs are mostly brake and tire-wear particles which are much larger and fell within the 

detecting range of our instruments. We expect the primary influence of cold start on PM to be 

within the ultrafine particle size range (<100 nm), which is beyond the range of detection for our 

sensors. The resulting time-separated EFs of CO and NOx are shown in Figure 4.7.  

 

Figure 4.7 Comparison of Emission factors (1: CO; 2: NOx) between morning entering vehicles and evening 

leaving vehicles from 6 measurement spots of 3 sites. For the box plots, whiskers are 10th and 90th percentile, 

box edges are 25th and 75th percentiles, the line is the median, and the circle markers in blue are the average. 

 

In general, the morning EFs (yellow bars) across the different locations and sites are similar. In 

the evening (green bars), most EFs are similar across locations except for site BG1 center. The 

airflow and ventilation at that measurement spot is limited due to the indoor and underground 

environment, thus there exists more uncertainty in the calculation of EFs of which one of the 

assumptions is the same dilution rate for pollutants and CO2. We believe that the accumulation of 

pollution throughout the day at the center of site BG1 yielded evening EFs inconsistent with the 

other sites.  
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The CO EFs in the evening leaving plumes (Figure 4.7, green) tended to be higher than the morning 

entering plumes (Figure 4.7, yellow), though the increase at the gate of Site AG2, the most well-

ventilated site, is the smallest. This shows that the LCS system is capable of measuring some cold 

start emissions and that effect is still detectable when the vehicles are passing the gates. 

Theoretically, CO engine-out emissions are high during cold start period because of the lower air-

to-fuel ratio (Dardiotis et al., 2013; Franco et al., 2013; Khan and Frey, 2018; Suarez-bertoa and 

Astorga, 2018; Zhu et al., 2016), which is a common control strategy against the low gasification 

rate of fuel to provide enough combustible charge during low-temperature operation. CO is a 

common product of incomplete combustion. Simultaneously, the three-way catalyst (TWC) also 

needs approximately 2 minutes to reach its light-off temperature (Bielaczyc et al., 2014; Reiter 

and Kockelman, 2016). The conversion efficiency of the TWC below the light-off temperature is 

significantly lower and yields higher tail-pipe CO emissions.  

 

There exist more specific reasons to explain the increased evening emissions for individual 

vehicles since the characteristics of the engine and the TWC, the cold start control strategies, and 

the vehicle emission standards vary widely. Though we are not able to confirm every vehicle would 

have an increased CO EF during the cold start phase, the result reflects the fleet exhibiting higher 

CO emissions at the start of a trip by approximately 52%. Though previous studies mostly quantify 

the concentration of pollution rather than EFs during the cold start, an estimated increase in CO 

EF of 50% to 100% compared with normal operating conditions is expected assuming the emission 

of CO2 is constant (Favez et al., 2009). The smaller increase in our study is not unexpected since 

the plumes we measured cannot be guaranteed to be the first phase of the cold start when the 

emission rate is highest (Suarez-bertoa and Astorga, 2018). 
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The NOx EFs had a slightly increasing trend when comparing morning entering and evening 

leaving. In this study, we observed NOx EFs approximately 9% higher in the leaving evening 

plumes, however, it is uncertain how long that effects persist since we don’t see an increase in the 

evening at the gate of sites AG1 and AG2. Previous research has shown uncertain results about 

the impact of cold start on fuel-based NOx EFs of individual vehicles (Bielaczyc et al., 2014; 

Cédric et al., 2016; Dardiotis et al., 2013; He et al., 2018; Khan and Frey, 2018; Yao et al., 2009). 

NOx is produced by the reaction between components of air, rather than the fuel, which means the 

connection between fuel and NOx is indirect. The low air-to-fuel ratio at cold start is presumably 

contributing to less engine-out NOx but the low-efficiency of the TWC below light-off temperature 

would lead to more tailpipe NOx emissions. Previous research indicated that cold start NOx 

emission has complex trends determined by the after-treatment configurations as well as cold start 

control strategies (Ligterink, 2016; Suarez-bertoa and Astorga, 2018; Yao et al., 2009). The slight 

increase of NOx emission factor in the morning at the Site AG1 gate might be partially due to that 

complex uncertainty, however, the location of Site AG1 and also the gate sampling location may 

also have affected the results; the AG1 gate sensor is approximately 5 meters from an intersection 

controlled by stop signs where vehicles would undergo a series of transient operation modes and 

potentially produce more emissions (Qiao et al., 2005). The slightly higher EFs may come from 

the plumes from the intersection or the road outside the gate.  

 

The AG2 garage gate sensor is roughly 3 meters from an intersection controlled by traffic lights 

on a major road leading to the campus. Heavy-duty vehicles, including recycling trucks and 

delivery trucks, going past and idling at the intersection could have significant impacts on the NOx 

levels detected by the AG2 gate sensor due to the significantly higher levels of NOx emissions 
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from heavy-duty vehicles as well as the long decaying time of NOx plumes (Karner et al., 2010; 

Quiros et al., 2018). These campus HDVs are mostly active in the morning. Thus, we are not able 

to conclusively determine the impact of cold start on NOx EFs. 

 

4.4.4 Assessing the relative contribution of high emitters 

The relative contribution of high emitters was assessed based using the morning-entering EFs 

(Figure 4.8, left side) and for both morning-entering and evening leaving EFs (Figure 4.8, right 

side). Due to the aforementioned ventilation concerns, the EFs from Site BG1 center were not 

included. As has been mentioned in previous studies, the fuel economy does not change 

significantly (Tsokolis et al., 2020) which allows us to consider the fuel consumption of each 

plume as generally consistent. The amount of pollutant (AoP) emitted during each plume is then 

calculated with the corresponding emission factor and consistent fuel consumption.  

 

Here we use CO as an example to illustrate this process and 𝐸𝐹𝑖 is the EF of one CO plume (plume 

i). Since the mixing and diluting of exhaust, as well as the formation of the plume, has not been 

characterized, we assume there is a signature emitter that causes the emission of that plume. The 

fuel economy of LDVs are mostly constant and F here stands for the fuel economy of a typical 

LDV, with the unit being L/100km and the distance a vehicle travels while leaving the parking 

garage is another constant value D with the unit being km. The calculation of AoP of plume i is 

given as Eq. (4.9). 

 

𝐴𝑜𝑃𝑖 = 𝐸𝐹𝑖 × 𝐹 × 𝐷     Eq. (4.9) 

 



58 

 

The AoPi is then ranked from the smallest to the greatest. Total amount of emission is calculated 

as  AoPTotal = ∑ AoPi. The contribution of the top 5% emitters is calculated as Eq. (4.10): 

𝑃𝑇𝑜𝑝 5% = ∑ 𝐴𝑜𝑃𝑖

𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝐴𝑜𝑃𝑖 

95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝐴𝑜𝑃𝑖

𝐴𝑜𝑃𝑇𝑜𝑡𝑎𝑙⁄  

Eq. (4.10) 

 

Similarly, the contribution of the top 10%, 25% emitters is calculated. Once that calculation is 

repeated for a continuous percentile of emitters, we can plot the cumulative distribution as shown 

on the right of Figure 4.8. 

 

 

Figure 4.8 Relative contribution of heavy emitters. Side 1 shows the morning entering EFs, and Side 2 shows 

both morning entering and evening leaving EFs (excluding site BG1 center). 

 

As is shown in Figure 4.8, high emitters disproportionately contribute to fleet emissions. For 

example, the top 25% emitters account for nearly 50% of the total CO and NO emissions. Similar 

findings were presented in previous studies (Wang et al., 2015). The greater contribution from 

high emitters indicates the majority of the fleet is having a lower emission factor and there exists 
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a possibility to reduce total emission significantly by optimizing the emissions of a smaller number 

of vehicles or targeting these vehicles for removal.  

 

By plotting this data on a cumulative curve (Figure 4.8, right side) we can see this effect further. 

If the total emissions are distributed proportionally (each plume contributes equally to total 

emissions), the cumulative percentage curve should follow the 1:1 line. Here, the curves bend 

upwards, illustrating the relative contribution of high emitters. This trend doesn’t change 

significantly when including the cold, evening-leaving EFs, which indicates both regular emitters 

and high emitters’ EFs changed in a similar way when the cold start phase is included. For CO and 

NOx, both high emitters and regular emitters have a similar increase when we include the cold-

start phase. 

 

4.5 Errors and uncertainty 

4.5.1 Uncertainty of the instruments 

There have been multiple uncertainties that remain in this method. Firstly, the errors of the 

instruments after the calibration is not included in the calculation of the EF in this chapter. Also, 

the error generated by relocating the instruments from the calibration sites to the parking garages 

exist but is not certain. With more progress in sensor calibration and additional validation at the 

parking garages, the uncertainty with the instruments could be further quantified and reduced. Here 

the thesis sought to replicate published emission factor approaches, which tend to not propagate 

instrument uncertainty.  
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4.5.2 Uncertainty of the methods 

There exists uncertainty within the methods, including determining the background 

concentrations, determining the noise cut-off value, detecting the plumes, matching the plumes 

and calculating the EF. It’s uncertain whether the background concentration is accurate due to the 

lack of actual measurement of the background level with a nearby background station. While 

finding out the noise cut-off concentration, it’s uncertain the percentage of noise being filtered out 

in this way and how much real signal is removed as noise. When we determine a plume from the 

time series, the error rate is not certain. Especially for the EF carbon balance calculation, due to 

the time resolution of the data, the amount of pollutants and CO2 is a rough estimation. Overall, 

the EF developed in this study may not reflect the real EF of the fleet since there is very limited 

published studies to confirm or compare against and we did not include the uncertainty in the EFs 

as calculated by low-cost sensors. The uncertainty within the methods is especially challenging to 

quantify since the methods are applied for the first time to low-cost sensing studies and the 

uncertainty needs more future work to be fully quantified. However, the main target of this work 

is to answer the question: Can we use low-cost sensors to measure vehicle emissions. The value 

of this work is that a comprehensive method applying low-cost sensors to vehicle emissions 

measurement has been proposed and tested. The quantification and reduction of uncertainty is 

important but would not be the most important target of this work and will be addressed in future 

studies. 

 

4.6 Conclusions 

In this chapter, we found the concentrations of CO and NOx correlate with the vehicle traffic count; 

the peaks in the concentrations of CO and NOx correspond to peaks in the vehicle count data. 
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Meanwhile, we found the concentrations of pollutants and CO2 measured in the center are 

generally higher than those measured at the gate. After developing a background subtraction 

algorithm and converting the pollutant signal to emission factors, we found that emission factors 

of CO, NOx and PM2.5 developed in this study aligned well with previous studies using regulatory 

instruments. By isolating the morning-entering plumes from the evening-leaving plumes the 

impact of pseudo-cold start was assessed. We found that the cold start phase has more significant 

impacts on the emission of CO than that of NOx. Also, the high emitters are found to have 

disproportionally high contribution to the total emissions which suggests that upgrading or 

scrapping a small fraction of vehicles may improve emissions greatly. 
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Chapter 5: Conclusions and Future work 

5.1 Overall Conclusions 

Low-cost sensors are a promising option for measuring vehicle emissions as well as calculating 

fleet-based EFs. As sensors and data analysis methods continue to evolve, low-cost sensors could 

be deployed on a large scale to support real-time air quality monitoring and the assessment of fleet 

characteristics under a wide range of operating conditions. This large quantity of high-resolution 

data from a broad air quality sensor network would strengthen environmental policy decisions and 

assessment of policy impacts. 

 

Within our study, CO and NOx concentrations increase significantly during peak hours, especially 

inside the parking garage. Pedestrians walking to their cars will have more exposure to vehicle 

emissions during that time. Given the very high concentrations in the BG1 garage, fans and other 

methods increasing ventilation should be enhanced to minimize the risks and drivers should be 

encouraged to use the parking garages out of peak hours when possible. 

 

According to our real-world measurement results, most light-duty vehicles had higher fuel-based 

CO, NOx emission factors during the pseudo-cold-start phase when leaving the garage in the 

evening. The increase in CO EF is much more significant than that of NOx, which indicates 

reducing CO emissions during cold-start should still be a priority. This could be achieved by 

optimizing the control strategies during cold start as well as improving the conversion efficiency 

of the TWC at cold temperatures. 
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5.2 Revisiting the Objectives 

5.2.1 Objective 1: Calibrating low-cost sensors in a traffic-rich environment 

By applying the calibration algorithms developed previously to a sensor collocation at a near-road 

regulatory monitoring station in partnership with Metro Vancouver, a hybrid machine-learning and 

multiple linear regression model was tuned and validated. The calibration performance was similar 

to previously published studies. Based on the calculated emission factors and observed 

concentrations in the parking garages, the calibration algorithm had good transferability to the 

parking garage environment.  

 

5.2.2 Objective 2:  Developing a method for determining fleet-based vehicle emission 

factors with low-cost sensor data 

In this study, an advanced background subtraction algorithm and noise limit determination method 

was developed and testing, using vehicle counting data collected by UBC Parking Services as a 

built-in validation. A plume identification algorithm was developed and applied to the background-

subtracted data and converted into a fuel-based emission factor using the carbon balance method. 

A protocol for determining minimum plume magnitude for consideration was also determined. 

These thresholds can serve as guidelines for future deployments.  

 

5.2.3 Objective 3:  Comparing the calculated emission factors to those in the published 

literature 

The emission factors of NOx, CO, and PM2.5 calculated here were compared to ten published 

studies. The emissions factors calculated with the low-cost sensing system were in-line with those 

from published studies using reference-grade instruments orders of magnitude more expensive. 
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This preliminary assessment suggests that low-cost sensors are promising tools for the 

measurement of vehicle emission factors in urban environments.  

 

5.2.4 Objective 4:  Assessing the relative importance of cold start on vehicle emissions 

By categorizing emission factor plumes as morning-entering or evening-leaving within certain 

time windows, the impacts of the pseudo-cold start were assessed, assuming that vehicles leaving 

the parking garages in the evening have been parked for most of the business day and the engines 

are relatively colder. We found that most light-duty vehicles had higher fuel-based CO and NOx 

emission factors during the evening. The increase in CO emission factor (approximately 50%) is 

much more significant and common than that of NOx (approximately 10%), which indicates 

reducing CO emissions during cold start should still be of priority. The PM2.5 emission factor was 

not significantly impacted by the cold start phase in this study.  

 

5.3 Limitations of This Work and Challenges of the Field 

5.3.1 The limitation of our study exists in several aspects 

1. There is limited validation of the background concentration of pollutants and CO2, due to 

a lack of reference-grade instruments deployed at any nearby regional background location. 

 

2. There is a lack of laboratory testing of vehicle fuel-based emission factors during the cold 

start phase in previous studies as well as in our study. Whether the real-world results 

would match the laboratory results remains unknown.  
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3. We did not quantify the influence from the vehicles passing the sensors on the roads 

parallel to the sites which would also cause uncertainty. Ideally, sensors would be placed 

in the parking garages and on the parallel road to subtract this effect. 

 

4. There is a lack of validation of the calibration after relocating to the parking facilities from 

the roadside regulatory collocation site. As was mentioned in Chapter 2, the location will 

influence the performance of the low-cost sensors if the primary components of pollutants 

are not identical. There is a need to do a site-based validation to prove the calibration model 

is valid after being moved to the real sites. However, since both methods were dominated 

by traffic, we expect these effects to be small. 

 

5. Detailed vehicle statistics beyond vehicle count were missing. As such, there is some 

uncertainty about the percentage of diesel vehicles and old vehicles. Our results assume 

that there is no systemic schedule of when these special vehicles appear and that they are 

evenly distributed in a day. However, further validation may be needed to remove the 

possible influence of the emission patterns from the special high emitters. 

 

5.3.2 Challenges in the field more broadly 

1. There is an ongoing challenge in collecting data from a large fleet. Based on the literature, 

most of the studies have compared the emission factors between the cold-start phase and 

normal operation from individual vehicles. That could be due to the high cost of the 

instruments as well as the complex procedures installing the instruments on the testing 
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vehicle. Though we have low-cost sensors, tests based on reference-grade instruments are 

still required for comparison and validation. 

 

2. There is a challenge in defining the cold start phase. Previous pieces of literature have had 

different definitions of the length of that transient phase which makes it hard to make a 

practical comparison between cold start and normal operations since the cold start emission 

change quickly with engine temperature rising. There should be a systematic definition of 

cold start, for example, the temperature of the engine, catalyst converter, etc. In 

acknowledgement of this issue, we refer to our cold start impacts as “pseudo” cold start. 

 

3. There is a challenge in finding the individual contribution out of a mixed plume with 

multiple vehicles. Previous research could find out the individual plume either by 

conducting the campaign without other vehicles, for example, at night or by chasing 

measurement or by using fast instrumentation, which is less subject to the interference from 

vehicles nearby. Current low-cost sensors are not responsive enough to detect individual 

vehicles and as such, this is an area needing further development. 

 

4. There is a challenge in conducting roadside studies with low-cost sensors. The low-cost 

sensors are not as sensitive as traditional instruments. The roadside environment is not as 

pollutant intensive as parking garages and the dilution of pollutants is also faster which 

makes the signal much less intense and creates further challenges separating the signal 

from the noise. Also, the environmental conditions such as the wind will have more impact 

on the results, for instance, the emission measured downwind from the source is higher 
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than at an upwind location. Environmental conditions need to be documented and taken 

into account.  

 

5.4 Implications for stakeholders and future research directions 

5.4.1 Implications for stakeholders 

From this study, there are a few recommendations for the stakeholders further reduce vehicle 

emissions and exposure. 

1. Parking operators: The real-time emissions of vehicles could be reported to the public to 

increase public awareness of vehicle emissions and environmental impacts. More 

ventilation machinery could also be installed, especially at the underground parking 

garages to reduce the health hazards of the accumulated exhaust. 

 

2. Car owners: Discourage private vehicle use and take public transportation instead to reduce 

exposure when in the garages. Owners should be encouraged to maintain their vehicles 

frequently to ensure TWC and other after-treatment devices can work with high efficiency.  

 

3. Vehicle manufacturers: Optimize the after-treatment system as well as control strategies to 

reduce emissions during the cold-start phase. The vehicle should also be able to indicate 

the working conditions of the after-treatment system and inform the driver once any part 

of the after-treatment system needs to be replaced. 

 

4. Policymakers: Continue to support policies that motivate the public to switch to clean 

technologies, to reduce the impact of combustion emissions. Enhance vehicle emissions 
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testing procedures to use real-world based estimates to better capture vehicle emissions 

variability and reinstate “cash for clunkers” programs to remove old, high emitting vehicles 

from the roadway.  

 

5.4.2 Future research directions 

1. Further testing and validation of the calibration results is recommended going forward. 

Based on previous research, very few studies validate their calibration model and results at 

different locations. Previously, we validated the calibration model with the testing data 

collected at the same place and there exists some uncertainty of whether the model will 

hold after the relocation. Going forward, a new calibration model based on machine 

learning could be built after the collocation campaign, followed by a validation near-road 

campaign at a different place, preferably on the UBC Vancouver campus, with a mobile 

lab being the reference. The results of the near-road campaign could be compared with the 

mobile lab data to see the error rate of the calibration model.  

 

2. Testing the capability of low-cost sensing packages in a more general scenario, for 

instance, the next step could be installing RAMPs by the side of major roads on the UBC 

Vancouver campus, with a vehicle counting device helping determine if vehicles are 

passing by. Emission factor calculations could also be conducted at the Metro Vancouver 

Clark Drive station. The purpose of this test is to see the potential of monitoring vehicle 

emissions from a less emission-intensive location with less traffic density while vehicles 

are more likely to be operating under normal speed. Also, this will help explore the 

relationship between the intersection and emissions. Based on the new results, we could 
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make conclusive statements about the suitability of low-cost sensors like the RAMPs for 

measuring vehicle emission factors.  Sampling at a near-road location would also better 

replicate the sampling conditions of most of the previous roadside / remote sensing studies. 

 

3. After the campaign on UBC Vancouver campus, we will need to further evaluate the 

potential of low-cost sensors to quantify the emission factors in more complex scenarios, 

for example, we may deploy a larger number of RAMPs near various roads in Vancouver 

and evaluate the emission factors of the vehicle fleets in the city and even western Canada. 

Using a mobile lab installed with reference-grade instruments and moving around different 

locations will help with calibration as well as evaluation of the emission factors. Chasing 

measurement could also be applied to measure specific vehicles to bridge the emission 

factors of individual vehicles and vehicle fleets. The target is to have a thorough 

comparison between different measurement methods, instruments to fully utilize the 

potential of low-cost sensors in urban air quality monitoring and emissions evaluation. 
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Appendices 

Appendix A   

A.1 Plume detection and matching details. 

Using the vehicle count data provided by Parking Services, we analyzed the average background 

subtracted concentrations between 1-4AM, removing periods when vehicles entered/exited the 

parking garages, and used this as a representative noise signal.  Since the sensors can also be also 

influenced by vehicles passing by on the main road outside the parking garages, we took the 90th 

percentile value as the noise signal and to determine our plume threshold. The cut-off value for 

each pollutant is different between sensors and has been listed in Table A1.  

 

 AG1 

entrance 

AG1 

center 

AG2 

entrance 

AG2 

center 

BG1 

entrance 

BG1 

center 

CO2 (ppm) 3.9 5.2 4.4 5.1 5.5 3.4 

CO (ppb) 15 16 13 17 34 24 

NO (ppb) 0.5 1.0 0.4 0.9 1.0 1.1 

NO2 (ppb) 2.9 1.8 2.1 2.4 2.6 1.1 

PM2.5 (µg/m3) 0.8 0.7 0.7 0.6 0.7 0.5 

Table A.1 Pollutant cut-off values at the different measurement sites to determine our plume threshold. 

 

For a pollutant plume to be identified, it needed to be matched with a CO2 plume also meeting 

the plume identification criteria. The number and percentage of matched plumes is provided in 

Table A.2. 
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 AG1 

entrance 

AG1 

center 

AG2 

entrance 

AG2 

center 

BG1 

entrance 

BG1 

center 

Total 

CO2 95% 

(1431/1504) 

92% 

(1970/2128) 

94% 

(1271/1351) 

94% 

(2609/2778) 

70% 

(2060/2947) 

89% 

(1714/1934) 

87% 

(11055/12642) 

CO 50% 

(1237/2479) 

72% 

(1728/2404) 

54% 

(1077/1975) 

81% 

(2194/2698) 

78% 

(1883/2401) 

65% 

(1156/1766) 

67% 

(9275/13723) 

NO 47% 

(1223/2576) 

74% 

(1721/2325) 

49% 

(951/1945) 

78% 

(2350/3000) 

76% 

(1834/2398) 

64% 

(1336/2097) 

66% 

(9415/14341) 

NO2 79% 

(638/806) 

83% 

(1343/1620) 

57% 

(1034/1802) 

84% 

(1748/2070) 

74% 

(1775/2386) 

66% 

(1214/1826) 

74% 

(7752/10510) 

PM2.5 28% 

(365/1306) 

50% 

(331/660) 

30% 

(158/525) 

64% 

(962/1501) 

49% 

(271/547) 

39% 

(470/1214) 

44% 

(2557/5753) 

Table A.2 Number of matched pollutant-CO2 plumes for emission factor calculations. 
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A.2 Diurnal trend of hourly average pollutant concentrations before and after 

background subtraction 

 

Figure A.1 Diurnal trends of hourly average pollutant total concentrations. The orange curve is the 

concentration at the center of the garage and the blue curve is the concentration at the gate of the garage. 
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Figure A.2 Diurnal trends of hourly average background-subtracted concentrations. The orange curve is the 

concentration at the center of the garage and the blue curve is the concentration at the gate of the garage. 

 

  


