
Energy Management in Wireless
Communications: From Convex

Optimization to Machine Learning

by

Yanjie Dong

M.A.Sc., The University of British Columbia, Canada, 2016
B.Eng., Xidian University, P.R. China, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2020

c© Yanjie Dong, 2020



 The following individuals certify that they have read, and recommend to the Faculty of Graduate 
and Postdoctoral Studies for acceptance, the dissertation entitled: 

 

Energy Management in Wireless Communications: From Convex Optimization to Machine Learning 

 

submitted by Yanjie Dong  in partial fulfillment of the requirements for 

the degree of Doctor of Philosophy 

in Electrical and Computer Engineering 

 

Examining Committee: 

Victor C. M. Leung, Department of Electrical and Computer Engineering, UBC 

Co-supervisor 

Julian Cheng, School of Engineering, UBC, Okanagan Campus 

Co-supervisor  

Md. Jahangir Hossain, School of Engineering, UBC, Okanagan Campus 

Supervisory Committee Member 

Vijay K. Bhargava, Department of Electrical and Computer Engineering, UBC 

University Examiner 

Michael F. Friedlander, Department of Computer Science and Department of Mathematics, UBC 

University Examiner 

 
 
Additional Supervisory Committee Members: 

Lutz Lampe, Department of Electrical and Computer Engineering, UBC 

Supervisory Committee Member 

 

ii



Abstract

Ever-increasing energy consumption of network infrastructures motivates wireless operators

to exploit renewable energy resources (e.g., sunlight and wind) to network infrastructure. When

solely powered by weather-dependent renewable energy, a base station can experience power

outages. Therefore, a smart-grid powered communication system (SGPCS) is proposed to avoid

the power outage at base stations. To successfully apply renewable energy to an SGPCS, wireless

operators need to develop energy management algorithms that can handle the unpredictable

and intermittent arrival of renewable energy. Since machine learning algorithms are inherently

designed for problems with random sources (i.e., stochastic optimization problems), we start by

investigating machine learning algorithms for different stochastic optimization problems. Then,

we adapt the potential machine learning algorithms to the long-term grid-energy expenditure

minimization problem under various practical constraints.

Using the finite-sample analytical methods, we quantify the convergence rates of the proposed

offline learning and online learning algorithms. Based on the derived convergence rates, we have

the following findings. When faulty users exist in the federated learning framework, our proposed

fault-resilient proximal gradient and local fault-resilient proximal gradient algorithms require fewer

communication rounds than the state-of-the-art benchmarks. Therefore, they are more energy-

efficient than the benchmarks. The proposed linear function approximation based decentralized

Q-learning converges as fast as the tabular Q-learning while retaining robustness to the large

state and action spaces. Based on Lyapunov learning algorithms, we can successfully integrate

the renewable energy in single-cell and multi-cell SGPCSs. Moreover, our proposed two time-

scale resource allocation algorithm can trade the grid-energy expenditure for access delay of user

equipments in single-cell SGPCS. Our proposed two time-scale resource allocation algorithm can

trade grid-energy expenditure for the end-to-end delay of user equipments in multi-cell SGPCS.
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Lay Summary

Wireless operators have deployed a massive number of base stations, which then causes their

energy bills to surge. Therefore sustainable solutions to integrate renewable energy and smart

grid into the network infrastructure are urgently needed. This thesis investigates machine learning

algorithms and applies them to address several practical problems in smart-grid powered com-

munication systems so that renewable energy can be used efficiently with less waste. This thesis

suggests the applicable scenarios of proposed algorithms and reveals that the tradeoff relations

between grid-energy expenditure and users’ delay. In other words, wireless operators can use our

proposed algorithms to reduce the grid-energy expenditure at the expense of users’ delay.
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Chapter 1

Introduction

Wireless traffic is estimated to exceed 131 exabytes per month by 2024 [1]. The huge volume

of wireless traffic requires a dense deployment of base stations (BSTs) [2]. It was reported that

the number of the fifth-generation (5G) BSTs reached 130,000 by the end of 2019 in China1. The

tremendous number of BSTs leads to a significant amount of greenhouse gas emissions and surg-

ing energy bills for wireless operators [3]. These emerging issues motivate wireless operators and

equipment manufacturers to search for green communication solutions [4–6]. In a typical wireless

communication system, BSTs consume 50% to 60% of energy [3]. Therefore, an eco-friendly and

cost-effective solution to reduce the energy bills is to utilize renewable energy resources (e.g., sun-

light and wind) at BSTs [7–10]. For example, Huawei and Telefonica have installed solar-powered

BSTs in central Chile [11]. Using energy harvesters (e.g., residential-level photovoltaic panels and

miniature wind turbines), each BST can scavenge energy from renewable energy resources such

that the surging energy bills can be reduced [7–14]. Nevertheless, the availability of renewable en-

ergy is highly weather-dependent and space-varying [7]; therefore, it is challenging to maintain an

acceptable communication quality-of-service (QoS) when BSTs are solely powered by renewable

energy [9].

1.1 Energy Management in Smart-Grid Powered

Communication Systems

A hybrid-powered communication system is preferred to reduce the energy bills of wireless

operators and guarantee communication QoS. While an energy harvester allows each BST to

scavenge energy from renewable energy resources, strategies need to be carefully developed to

1https://techblog.comsoc.org/2019/11/22/2019-world-5g-convention-in-beijing-china-has-built-1

13000-5g-base-stations-130000-by-the-end-of-2019/

1

https://techblog.comsoc.org/2019/11/22/2019-world-5g-convention-in-beijing-china-has-built-113000-5g-base-stations-130000-by-the-end-of-2019/
https://techblog.comsoc.org/2019/11/22/2019-world-5g-convention-in-beijing-china-has-built-113000-5g-base-stations-130000-by-the-end-of-2019/
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Figure 1.1: Different strategies of using renewable energy.

improve the utilization efficiency of harvested energy. Generally, popular usage strategies can be

classified into the following three categories.

• Harvest-use-store strategy. As shown in Fig. 1.1, the harvest-store-use strategy requires

a storage medium per BST to store harvested energy and to provide energy for a BST [12–

14]. The harvested energy in a storage medium can also be used when energy-harvesting

opportunities do not exist (or when energy demand of a BST has to be increased to support

communication QoS). However, nearly all practical storage media suffer energy loss and

leakage to varying extents, ranging from 10% to 30% [9].

• Harvest-store-use strategy. To mitigate energy loss and leakage, wireless operators

prefer the harvest-use-store strategy [15, 16]. As shown in Fig. 1.1, a decision device is

included in deciding whether the harvested energy per slot2 is used to operate a BST or is

stored for future usage. Unlike the harvested-use-store strategy, the harvested energy per

slot is prioritized for usage before being stored in a storage medium. Therefore, the storage

loss of the harvest-use-store strategy can be reduced compared with the harvest-store-use

strategy.

• Harvest-use-trade strategy. Harvest-store-use and harvest-use-store strategies require

an energy-storage medium, which can suffer from imperfections such as energy loss and leak-

age [9, 15–17]. When the traditional power grid is upgraded to a smart grid, the two-way

energy trading feature of the smart grid (as shown in Fig. 1.1) will benefit wireless opera-

tors [18]. In a smart-grid powered communication system (SGPCS), the harvest-use-trade

strategy is preferred to avoid the imperfections of storage media and to improve the utiliza-

2We assume that the investigated hybrid-powered communication systems operate in discrete-time mode with
the minimum interval defined as a slot.
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tion efficiency of renewable energy [19, 20]. Also, the two-way energy trading feature allows

wireless operators to generate revenue by selling surplus harvested energy to the power grid.

1.2 Machine Learning for Energy Management in SGPCSs

When applying the harvest-use-trade strategy to an SGPCS, unpredictable and intermittent

characteristics of renewable energy need to be harnessed by energy management algorithms. An

important first step is to choose the proper tools for designing energy management algorithms.

One potential tool is convex optimization that has been successfully applied to wireless commu-

nications [21]. Many optimization problems in SGPCSs can be formulated as (or converted to)

convex ones in wireless communications [19, 22]. For convex problems, a local optimum is also a

global optimum. Therefore, the optimal solutions to convex problems can be efficiently obtained

via existing toolboxes [23]. A non-convex problem can also be recast into a set of convex sub-

problems by successive convex approximation [24] and semi-definite relaxation [25]. Besides, the

optimality conditions and duality theory of convex optimization also provide the foundations for

other optimization algorithms. When unknown random sources are considered in an optimization

problem, the objective values are unknown to a convex optimization algorithm [26]. Therefore,

convex optimization algorithms cannot directly solve problems with unknown random sources

(i.e., stochastic optimization problems). When dealing with the unknown random sources, ma-

chine learning algorithms are good candidates to solve stochastic optimization problems [27–30].

In this thesis, we start by investigating machine learning algorithms for different stochastic op-

timization problems. We then adapt the potential machine learning algorithms to the long-term

grid-energy expenditure minimization problem in SGPCSs under various practical constraints.

A machine learning algorithm can transform the experience (e.g., data samples) into exper-

tise (e.g., model parameters3). Here, we briefly introduce the taxonomies of machine learning

algorithms that are related to the thesis, e.g., centralized learning versus distributed (decentral-

ized) learning, supervised learning versus unsupervised learning, and offline learning versus online

learning. Note that there are several taxonomies of machine learning algorithms, and we refer

interested readers to [27] for details.

3For example, the model parameters are employed to provide a mapping between the data samples and labels
in classification problems.
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Centralized learning, distributed learning, and decentralized learning. When ma-

chine learning algorithms need to process datasets at a central server, they are classified as central-

ized learning algorithms. However, copies of data at a central server render centralized learning

algorithms vulnerable to privacy leakage [31–33]. Besides, uploading datasets to a central server

also requires high bandwidth. Distributed learning algorithms have emerged to alleviate these

concerns based on the ever-improving computational capability of network-edge devices [33–35].

A distributed learning can be implemented when the parameter server only exchanges the model

parameters with associated agents4. Since the datasets are kept at the agents, the concerns of

privacy and bandwidth demand are alleviated. While centralized learning and distributed learn-

ing algorithms require a central server to coordinate the learning process, they may experience

failures of the central server. Therefore, decentralized learning algorithms are proposed so that

each agent is allowed to exchange information with other agents within certain communication

distance (i.e., neighboring agents). In decentralized learning algorithms, since each agent only

communicates with its neighboring agents, each agent can continue the learning process when the

central node has failed.

Supervised learning and unsupervised learning. Supervised learning algorithms require

labeled training datasets, while unsupervised learning algorithms do not require labeled training

datasets. In other words, supervised learning is instructed by the environment that sets labels

for training datasets. In contrast, unsupervised learning aims at generating some summaries of

unlabeled datasets. Clustering data samples into subsets of similar instances is a typical example

of unsupervised learning.

Offline learning and online learning. Based on the data-collecting process, machine

learning algorithms can be classified into two categories: offline learning algorithms [27, 28] and

online learning algorithms [29, 30]. In wireless networks, offline learning is usually performed

after a dataset has been obtained by an agent. Offline learning algorithms have seen increasing

wireless applications, such as channel estimation [36] and automatic modulation classification

[37]. In automatic modulation classification [37], an offline learning algorithm allows an agent

to learn model parameters of a deep neural network based on the received signals and their

modulation modes. Using the obtained model parameter, the agent can predict the modulation

4In this thesis, an agent can be either a user equipment or a BST based on the application scenario.
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modes of incoming signals. Note that offline learning algorithms aim at optimizing the expectation

of objective functions with unknown-distributed random sources. However, optimizing a time-

average expectation5 over an infinite horizon is a sequential decision-making process.

When the data-collecting process occurs simultaneously as the decision-making process, the

obtained decisions can be correlated. By ignoring the correlated decisions, offline learning al-

gorithms cannot handle time-average expectations over infinite horizons. The issue induced by

correlated decisions is solved since online learning allows an agent to make decisions based on the

accumulated impacts of previous decisions. Therefore, online learning algorithms are suitable to

optimize time-average expectations over infinite horizons.

An online learning algorithm is executed while an agent is collecting data. We review two

types of online learning algorithms, namely reinforcement learning6 and Lyapunov learning. A

reinforcement learning algorithm [29] allows an agent to learn optimal decisions under different

environment states such that a time-average expectation is optimized. Since the environmental

dynamic is unknown, the agent must discover the optimal decisions via sequential trial-and-error

experiments. Besides, each decision affects the current objective value and subsequent objective

values during the interactions between the agents and the environment. The optimization of

time-average expectation boils down to optimal control of a dynamic system when the dynamic

environment is formulated by a Markov decision process (MDP) [38]. Recent research has shown

that reinforcement learning algorithms can achieve human-level performance in several tasks,

such as video games [39], autonomous driving [40], and robotic control, when combined with deep

neural networks [41].

Another category of online learning algorithms is Lyapunov learning algorithms [30]. While

reinforcement learning algorithms are mainly designed for unconstrained optimization problems,

Lyapunov learning algorithms provide a flexible framework to handle long-term and short-term

constraints. After the original problem has been transformed into a set of per-slot subproblems,

Lyapunov learning algorithms can handle constrained optimization problems having time-average

expectations in the objective function and constraints. Therefore, Lyapunov learning algorithms

5In this thesis, a time-average expectation is obtained in two steps: taking the statistical expectation of a metric
and taking the time average of the obtained statistical expectations.

6When we discuss reinforcement learning in the thesis, we refer to online reinforcement learning algorithms.
Offline reinforcement learning algorithms have also been investigated to extract expertise from a fixed dataset.
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are more suitable to minimize the time-average expectation of grid-energy expenditure (TAEGEE)

in SGPCSs.

1.3 Related Works and Motivations

In this thesis, our primary goal is to solve the TAEGEE minimization problem in SGPCSs.

The primary goal will be realized via the following three steps. Our first step is to investigate

optimization problems with expectations in the objective function. In particular, we investigate

a secure federated learning problem. The proposed algorithms can find potential applications in

SGPCSs. Our second step is to investigate optimization problems with time-average expectations

in the objective function. During the second step, we propose a memory-efficient reinforcement

learning algorithm, namely the linear-approximate decentralized Q-learning. In the context of

SGPCSs, we also suggest potential problems that the linear-approximate decentralized Q-learning

can solve. Our final step is to investigate optimization problems with time-average expectations

in constraints and objective functions. During the final step, we leverage Lyapunov learning

algorithms to solve the TAEGEE minimization problem in SGPCSs. In the remaining part of

this section, we perform a detailed literature review to motivate the research gaps that will be

filled by this thesis.

1.3.1 Communication-Efficient Robust Federated Learning Over

Heterogeneous Datasets

Traditional machine learning algorithms require centralized data processing at a server cloud.

However, copies of data in a cloud make cloud-centric learning vulnerable to privacy leakage [31–

33]. Leveraging the ever-improving computational capability of network-edge devices, distributed

on-device learning has emerged to alleviate these privacy concerns. As an implementation of

distributed learning, federated learning has attracted growing attention from both industry and

academia [33–35]. In typical federated learning, multiple agents perform local training based on

local datasets, and a parameter server collects and processes the local training results for further

usage. Specifically, the parameter server updates and broadcasts global model parameters based

on local messages (e.g., local gradients and local model parameters). After receiving global model

6
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Figure 1.2: Illustration of a federated learning framework. The federated learning framework consists of a
parameter server, #R reliable agents, and #B faulty agents.

parameters and local datasets, agents compute local messages in parallel. Since datasets are kept

at agents in federated learning, the risk of privacy leakage is reduced. However, federated learning

is susceptible to faulty or malicious agents. When a faulty agent uploads an unreliable message to

the parameter server, the vanilla gradient descent algorithm and its stochastic version (Stochastic

Gradient Descent, SGD7) fail to converge [42]. Besides, the seminal work by [43] also shows that a

faulty agent can arbitrarily corrupt global gradients generated by the SGD algorithm. Therefore,

it is crucial to deal with faulty agents. Here, the faulty agents can perform arbitrarily bad actions

[42, 43]. The objective is to secure the federated learning framework in Fig. 1.2 via a secure

federated learning algorithm. Secure federated learning algorithms need to consider two major

topics: fault resilience and communication efficiency. Our first step is built on this research front.

Fault-resilient federated learning. When dealing with fault resilience in the federated

learning framework, recent research has reported some learning approaches based on the full gra-

dient per update [42, 44–46]. For strongly convex loss functions, the geometric median (GeoMed)

algorithm [42] converges to a near-optimal solution when less than 50% of the local messages

7In a distributed setup, the vanilla gradient descent and SGD algorithms [27, (14.1)] require the parameter server
to update model parameter based on the gradients uploaded by the agents.
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from the agents are unreliable. For (strongly) convex and smooth non-convex loss functions,

component-wise median and component-wise trimmed mean algorithms [44] can secure parame-

ter updates at the server in the presence of faulty agents. However, the component-wise median

and component-wise trimmed mean algorithms may converge to a saddle point that is far away

from a local minimizer for non-convex loss functions. As a remedy, a Byzantine perturbed gradient

algorithm [45] is proposed to obtain an approximate local minimizer of non-convex loss functions.

For large datasets, evaluating full gradient per iteration is computationally prohibitive. Com-

putational efficiency was investigated in different fault-resilient stochastic federated learning algo-

rithms, such as Krum [43], Bulyan [47], Byzantine SGD [48], Zeno [49], and DRACO [50]. After

obtaining the dissimilarity scores of local gradients, the Krum algorithm sets the global gradient

as the local gradient with the smallest score. When less than 50% of the agents are unreliable,

the Krum algorithm converges to a near-optimal solution [43]. When less than 25% of the agents

are unreliable, the Buylan algorithm [47] can reduce the radius of the neighborhood obtained by

the Krum algorithm. Using historical gradients, the Byzantine SGD algorithm [48] allows the pa-

rameter server to remove the faulty local gradients before performing gradient aggregation. The

Zeno algorithm [49] ranks the reliability of local gradients based on the weighted descent value

and magnitude of local gradients. The Zeno algorithm can still work when there is at least one

reliable agent by averaging the top-ranked local gradients. Based on coding theory and sample

redundancy (i.e., multiple copies of a data sample across different agents), the DRACO algorithm

[50] converges when there is at least one reliable agent.

The works above deal with homogeneous datasets in which samples from different agents are

independent and identically distributed. In several practical settings, agents can collect non-

identically distributed datasets (i.e., heterogeneous datasets) from the other agents. For exam-

ple, different YouTube subscribers are provided with different categories of advertisements and

video clips based on their search history. As a result, developing fault-resilient federated learn-

ing algorithms over heterogeneous datasets has emerged as an important research task. Given

heterogeneous datasets and faulty agents, a robust stochastic aggregation (RSA) framework was

investigated [51]. The proposed RSA algorithm converges to a near-optimal solution at a rate

O (log(:)/
√
:), where : is the number of communication rounds.

Communication-efficient federated learning. Frequent communications between the

8
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server and agents are inevitable in federated learning. Since bandwidth is a scarce resource for the

parameter server, the communication overhead becomes a bottleneck [52, 53]. A line of research

focuses on skipping the unnecessary communication rounds to reduce communication overhead

[54, 55], where the lazy aggregation (LAG) algorithm [54] avoids redundant information exchanges

and can be extended to use quantized gradients [55]. Compared with the vanilla gradient descent

algorithm, LAG has comparable convergence rate at reduced communication overhead; see also

[56–58] that leverage local SGD to allow intermittent server-agent exchanges.

Since the convergence rate O (log(:)/
√
:) of the RSA algorithm is relatively slow, we will use

Nesterov’s acceleration technique to improve the convergence rate. Besides, the fault-resilience

issue of LAG and local SGD algorithms are as yet unexplored. Motivated by the local SGD

algorithm, we allow the agents to communicate with the server periodically such that the commu-

nication overhead is reduced. We will analyze the convergence rates when Nesterov’s acceleration

technique and periodic communication are used. Such an analysis will provide insights into the

fault resilience of federated learning.

1.3.2 Linear-Approximate Decentralized Q-Learning

Environment

(Ak, Sk)(Rk, Sk+1)

Agent

SkAk

S
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A
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Figure 1.3: Illustration of a single-agent reinforcement learning process.

Reinforcement learning enables agents to make sequential decisions by interacting with an

unknown environment [29, 38]. With the environment state evolving as an MDP, the objective

of reinforcement learning is to maximize the long-term reward as shown in Fig. 1.3. In slot :,

an agent performs random action �: based on the environment state (: . Given the action �:

and environment state (: , the environment moves to state (:+1 and reveals a reward ': for the
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agent. When combined with deep neural networks, reinforcement learning algorithms can achieve

human-level performance in many tasks, such as video games [39], autonomous driving [40], and

robotic control [41].

Recently, multi-agent reinforcement learning (MARL) features increased computational and

statistical efficiencies and enhanced privacy-preserving properties based on the parallel compu-

tation and experience-sharing among agents. Despite the success of single-agent reinforcement

learning [29, 39, 41], algorithmic and theoretical developments of MARL remain challenging and

limited. This is mainly because each agent interacts with the environment and other agents in a

decentralized manner [59]. In general, MARL can be grouped into cooperative (or collaborative)

MARL [59–63], competitive MARL [64–67], and mixed (neither collaborative nor competitive)

MARL [68]. In particular, collaborative MARL is usually modeled as a multi-agent MDP, where

agents can share the same (or have private) rewards, while their collective goal is to learn optimal

policies to maximize the long-term team reward [62, 69, 70]. Competitive MARL is often studied

under the framework of Markov games, especially the two-player Markov games [64–67].

We investigate collaborative MARL with private rewards. For model representation, we use

the collaborative multi-agent MDP model [62, 70]. In this model, each agent selects an individual

action in a particular state by following a local policy; the resulting joint actions of all agents

determine the state transition, while each agent receives a private reward that may differ from

those of other agents. The global reward (or team reward) is the average of all individual rewards.

The private rewards distinguish our model from several other multi-agent models, where the global

reward is observable by all agents [69, 71]. In collaborative MDP, the goal of the agents is still

to optimize the global reward. Such a collaborative MARL task emerges naturally in several

applications, including autonomous driving [40], control of robotic swarms [72], and wireless

sensor networks [73].

Many model-free collaborative MARL algorithms have been proposed for systems with un-

known transition probabilities, and agents are tasked with estimating one (or more) of the quanti-

ties: state-value function, action-value function (i.e., Q-function), and policy [62, 69–71]. Praised

as one of the breakthroughs in reinforcement learning, tabular Q-learning8 was introduced in

8A tabular Q-learning algorithm requires each agent to maintain a lookup table for values of Q-function. See
Chapter 2 for details.

10



1.3. Related Works and Motivations

[74] for model-free control, which is central to modern artificial intelligence [39, 41]. Asymptotic

convergence of tabular Q-learning was shown under different assumptions [74–77], whose non-

asymptotic performances were studied in [78–81]. In an MARL setting, a decentralized tabular

&-learning algorithm and its asymptotic convergence were provided in [61]. To handle large state

and action spaces, Q-learning with function approximation has become the workhorse [39, 82].

The asymptotic performance of linear-approximate Q-learning was analyzed under a stability

condition on the behavior policy in [82].

In the Big Data era, recent interests have shifted toward understanding the data utilization

efficiency of machine learning algorithms—which is often characterized by the finite-sample error

bounds. In the context of reinforcement learning, finite-sample analysis of temporal-difference

(TD) learning, Q-learning, and state-action-reward-state-action (SARSA) learning algorithms

with linear-function approximation (LFA) have been recently studied [83–90]. In particular, it

was shown [87] that linear-approximate Q-learning using decaying stepsizes converges at rate

O (log(:)/:), which is slower than the best known rate O (1/:) of tabular Q-learning [81]. Despite

the existence of such exciting theoretical developments in single-agent reinforcement learning,

the finite-sample analyses of MARL algorithms are under-exploited. For MARL algorithms,

finite-sample analyses have recently attracted research attentions [62, 63, 91, 92]. For example,

finite-sample error bounds were provided for decentralized batch Q-learning with function approx-

imation [62] and for decentralized TD learning [91, 92]. However, conditions for convergence and

convergence rates remain unknown for the linear-approximate decentralized Q-learning. To shed

light on the unknown convergence conditions and convergence rates, we perform a finite-sample

analysis on the linear-approximate decentralized Q-learning.

1.3.3 Lyapunov-Learning Based TAEGEE Minimization

The research on hybrid-powered communication systems can be classified into three cate-

gories: grid energy expenditure (GEE) minimization [12–14, 16, 17, 93–96], throughput maxi-

mization [15, 97, 98], and energy efficiency maximization [99, 100]. In particular, GEE mini-

mization problems have been investigated in point-to-point systems [12, 13, 15, 16, 93], single-cell

systems [14, 17, 95, 99] and multi-cell systems [93, 98, 100]. GEE can be minimized under

energy-harvesting and outage constraints [16] or prior knowledge of hourly-varying energy price

11
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[94] when the non-causal channel state information (CSI) and non-causal energy state informa-

tion (ESI) are considered over multiple fading slots. Data-rate maximization algorithms were

developed for point-to-point hybrid-powered communication systems [13, 101] and cognitive radio

systems [97]. The energy-efficiency maximization algorithm [99] was developed for the single-cell

hybrid-powered communication systems. When the two-way energy trading feature is considered,

the design of SGPCS has become a topic of practical importance. However, the previous works

[12–17, 94, 95, 97–100] focus on the traditional grid and ignore the two-way energy trading feature

in a smart grid [102]. The two-way energy trading feature provides another dimension to reduce

the energy bills of hybrid-powered BSTs (i.e., SGPCSs) [19].

Several works have investigated the framework of SGPCSs [18, 102–106] and resource alloca-

tion algorithms [19, 22, 107–109]. More specifically, resource allocation algorithms in SGPCSs

can be classified into three categories: one-shot algorithms [19, 22], offline algorithms [107, 110],

and online algorithms [108, 109]. The one-shot algorithms in [19, 22] are applicable to scenarios

where the resources are independently allocated in each slot of SGPCS. The offline algorithms

[107, 110] were proposed to allocate jointly the SGPCS resources over a finite number of slots. In

contrast, the online algorithms [108, 109] were tailored to handle the volatility of renewable energy

arrivals in an SGPCS over infinite slots. Practical SGPCSs operate over infinite-time horizons,

and the statistical distributions of CSI and ESI are difficult to obtain. Therefore, online resource

allocation algorithms are preferred.

Single-Cell SGPCS. Different from the previous works, we study TAEGEE minimization in

a single-cell SGPCS while considering the packet rate of user equipments (UEs). Instead of using

the well-known log-concave function for data rate [17, 19, 97, 99, 103, 107, 108, 110, 111], we

formulate the packet rate as a sigmoid function, which captures the effects of packet transmission

failure and data rate. Therefore, algorithm design based on the sigmoidal packet rate provides a

realistic insight into the practical systems. However, the non-convexity of the sigmoidal packet

rate renders the design of beamforming algorithms to a cross-layer design problem, and no previous

work has developed algorithms to handle the sigmoidal packet rate. Therefore, we adopt Lyapunov

learning to propose an online cross-layer beamforming framework to minimize the long-term GEE

of a single-cell SGPCS.

Multi-Cell SGPCS. The aforementioned online resource allocation algorithms [108, 109]
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allocate resources over a single time scale. The scheduled UE indicators need to be reallocated

over several slots in practical systems since the frequent scheduling of the UEs can cause relia-

bility issues. Moreover, the frame-scale user scheduling has a more accurate characterization of

end-to-end delay than the slot-scale scheduling when the UEs can tolerate delay. Few studies

have investigated the two time-scale resource allocation schemes. Based on the two time-scale en-

ergy merchandising, a dynamic beamforming algorithm was proposed to minimize the long-term

GEE for a single-cell SGPCS [112]. The proposed two time-scale algorithm [112] allocates the

ahead-of-time energy-trading amount in each frame and the real-time energy-trading amount and

beamforming in each slot. Since the ahead-of-time energy-trading amount is a continuous vari-

able, it can be obtained by the subgradient method. Since the scheduled UE indicators are binary

variables, the proposed schemes in [108, 109, 112] cannot obtain the optimal indicators of sched-

uled UE. Exhaustive search is used in [113] to solve the network selection subproblem, and greedy

selection is used to address the subchannel allocation subproblem. However, exhaustive search is

computationally expensive, and greedy selection can lead to suboptimal solutions for the scheduled

UE indicators when the number of UEs is large. Besides, the proposed algorithms in [112, 113]

are not applicable when heterogeneous energy coordination and proportional-rate constraints are

considered in multi-cell SGPCSs. Compared with Lyapunov learning [106, 108, 112, 113], rein-

forcement learning methods [98, 114] can also be used to develop online optimization algorithms.

However, reinforcement learning requires the proper development of a function estimator to deal

with continuous states and continuous actions. Besides, it is more challenging to solve constrained

optimization problems via reinforcement learning algorithms. Therefore, we are motivated to

extend Lyapunov learning to a two time-scale optimization framework. Using the proposed opti-

mization framework, wireless operators can minimize the long-term GEE of a multi-cell SGPCS

by scheduling UEs in each frame, and calculating beamforming vectors and exchanging renewable

energy in each slot.

1.3.4 Objectives of the Thesis

Based on previous discussions, we briefly summarize the research objectives of the thesis as

follows.
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• We start by developing offline federated learning algorithms to handle random sources with

unknown distributions. When faulty agents coexist with reliable agents, obtaining a reliable

training model is important. An application of such algorithms can be energy planning for a

set of BSTs in SGPCSs, where some of BSTs may not honestly upload local training results

due to noisy channels or malicious functions. Besides, the communication overhead needs to

be reduced for such an application to save cost on bandwidth. Therefore, our first step is to

propose offline federated learning algorithms that are expected to reduce the communication

rounds of federated learning algorithms while retaining robustness to faulty agents.

• Certain practical applications require agents to make sequential decisions. Besides, deci-

sions in consecutive slots can be correlated to optimize long-term performance metrics. An

example of such applications can be cooperative spectrum sensing in SGPCSs, where the

spatially dispersed agents collaboratively detect spectrum vacancy and decide the usage of

renewable energy. Another potential application is cooperative spectrum sharing in SG-

PCSs, where the agents need to use renewable energy and spectrum bands collaboratively.

Therefore, we are motivated to investigate decentralized Q-learning that considers random

sources with unknown distributions and correlation for consecutive decisions. The major

issue of decentralized Q-learning is the prohibitive memory requirement for large state and

action spaces. Hence, our second step is to improve the memory efficiency of the tabu-

lar decentralized Q-learning algorithm by using LFA technique. Moreover, the unknown

convergence conditions and convergence rates are expected to be revealed for LFA based

decentralized Q-learning algorithm.

• While the proposed Q-learning algorithm can optimize long-term performance metrics, it

requires complex modifications to handle long-term and short-term constraints. Therefore,

our third step aims at adapting Lyapunov learning algorithms to SGPCSs. Given different

practical constraints, our last step is to minimize the TAEGEE in single-cell and multi-cell

SGPCSs.
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1.4 Thesis Structure and Contributions

The thesis is organized into six chapters. Chapter 1 presents a brief review of machine learning

algorithms and describes the applications in the energy management of wireless communication

systems. Besides, this chapter also provides a detailed literature review for the remaining chapters.

Chapter 2 provides some preliminary information on secure federated learning, Q-learning, and

Lyapunov learning. The technical chapters focus on two objectives: designing energy-efficient

machine learning algorithms (Chapters 3 and 4) and applying machine learning algorithms to

minimize long-term GEE of SGPCSs (Chapters 5 and 6).

Chapter 3 investigates fault-resilient federated learning when heterogeneous datasets are col-

lected by agents, and the number of faulty agents is unknown to the central server. Different

from the state-of-the-art fault-resilient algorithms, the proposed fault-resilient proximal gradient

(FRPG) and local FRPG (LFRPG) algorithms do not have a limitation on the number of faulty

agents. The theoretical results reveal that the proposed FRPG and LFRPG algorithms have con-

vergence rate O (1/:). Hence, the FRPG and LFRPG algorithms converge faster when compared

with the convergence rate O (log(:)/
√
:) of the RSA algorithm [51]. Numerical results performed

on various real datasets confirm that FRPG and LFRPG algorithms converge faster than the

state-of-the-art fault-resilient algorithms (i.e., RSA [51], Krum [43], and GeoMed [42]).

Chapter 4 investigates a linear-approximate decentralized Q-learning algorithm for collabo-

rative multi-agent reinforcement learning tasks with private rewards. Given behavior policies, a

group of agents collaboratively learn an optimal Q-function in a fully decentralized manner. When

the state-action pairs are sampled from an MDP, “stochastic gradients” used in the updates are

correlated and biased, making a convergence analysis challenging. Chapter 4 establishes conver-

gence rates for the proposed decentralized Q-learning algorithm in the cases of both decaying and

constant stepsizes. Under an appropriate assumption on the multi-agent joint behavior policy,

our results show that the convergence rates of the decentralized Q-learning algorithm match that

of tabular Q-learning, while the former gains scalability, privacy, and parallel computation when

handling large state-action spaces.

Chapter 5 considers a single-cell SGPCS with a harvest-use-trade strategy that can reduce the

GEE and improve the utilization efficiency of renewable energy. In this chapter, the investigated
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TAEGEE minimization problem considers the joint effects of packet failure, the data rates of UEs,

and unknown-distributed ESI and CSI. Using Lyapunov learning, we reformulate the TAEGEE

minimization problem into per-slot subproblems. In this case, a BST can design the beamforming

vectors based on the current state (i.e., ESI, CSI, and backlogs of UEs) of a single-cell SGPCS.

Since each per-slot subproblem is non-convex, two suboptimal algorithms are proposed based

on the successive approximation beamforming (SABF) and zero-forcing beamforming (ZFBF)

techniques. The convergence properties are established for the proposed suboptimal algorithms,

and the corresponding computational complexities are analyzed.

Chapter 6 investigates user scheduling, beamforming, and energy coordination in multi-cell

SGPCSs, where the BSTs are powered by a smart grid and natural renewable energy sources.

Heterogeneous energy coordination (i.e., energy merchandizing with the smart grid and energy

exchanging among BSTs) is considered in multi-cell SGPCSs. A TAEGEE minimization prob-

lem with proportional-rate constraints is formulated for multi-cell SGPCSs. Since scheduled UE

variables are coupled with the beamforming vectors, the formulated problem is challenging to

handle via standard convex optimization methods. In practice, the beamforming vectors need

to be updated over each slot according to the channel variations. User scheduling needs to be

updated over several slots (which constitute a frame) since the frequent scheduling of UEs can

cause reliability issues. Therefore, Lyapunov learning is used to decouple the problem. A two

time-scale algorithm is proposed to schedule users in each frame and obtain beamforming and

energy-exchanging variables in each slot. We prove that the proposed two time-scale algorithm

can asymptotically achieve the optimal solutions via tuning a control parameter.

Chapter 7 concludes the thesis and suggests several future research directions.
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Chapter 2

Background

In this chapter, we discuss the fundamental concepts on secure federated learning, reinforce-

ment learning, and Lyapunov learning.

2.1 Fundamental Concept in Secure Federated Learning

Traditional machine learning algorithms require centralized data processing at a server cloud.

However, copies of data in a cloud render cloud-centric learning vulnerable to privacy leakage [31–

33]. Leveraging the ever-improving computational capability of network-edge devices, distributed

on-device learning has emerged to alleviate these privacy concerns. As an implementation of

distributed on-device learning, federated learning has attracted growing attention from both in-

dustry and academia [33–35]. A popular realization of federated learning uses a parameter server

to interact with multiple agents, which are network-edge devices in practical systems. Specifically,

the parameter server updates and broadcasts global model parameters based on local messages

(e.g., local gradients and local model parameters) from/to agents. After receiving global model

parameters and local datasets, reliable agents compute local messages in parallel. Since datasets

are kept at agents in federated learning, the risk of privacy leakage is reduced. However, feder-

ated learning may fail when faulty agents upload corrupted local messages. Therefore, a secure

federated learning algorithm is required to mitigate the undesirable effects (e.g., a divergence of

algorithm and degradation of prediction accuracy) that are caused by faulty agents. Three com-

ponents are required to implement a secure federated learning algorithm, i.e., a parameter server,

a set of reliable agents, and a set of faulty agents. Their functions are defined as follows.

• A parameter server updates and broadcasts global model parameter to all agents.

• A reliable agent calculates the local information based on local datasets, and uploads local
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information (e.g., local gradient and local model parameter) to the parameter server.

• A faulty agent performs adverse actions by uploading faulty model parameters.

The objective of a secure federated learning algorithm is to obtain a convergent and optimal

solution to the following problem [42–44, 47]

min
w

#R∑
==1

5= (w) (2.1)

where w is the model parameter, and 5= (w) is the loss function of reliable agent =.

Different methods have been proposed to obtain an optimal solution to (2.1) in the pres-

ence of faulty agents. Current methods can be classified into four categories: secure-aggregation

based federated learning, secure-model based federated learning, fault-detection based federated

learning, and preprocessing based federated learning.

• Secure-aggregation based federated learning. The Krum algorithm [43] can generate

a sequence of global gradients, and each global gradient in each iteration has the smallest

sum Euclidean distance to its first #R − 2 closest local gradients. When the fraction of

faulty agents is less than 50% in each iteration, each global gradient can approximate the

true global gradient. Therefore, the negative effects of faulty agents are mitigated. Using

the fact that the median cannot be skewed by a small proportion of extremely large or small

values, two secure aggregation rules are proposed, namely GeoMed [42] and component-wise

median [44]. Here, Krum is applicable to non-convex loss functions. GeoMed is applicable

to strongly convex loss functions. The component-wise median is applicable to (strongly)

convex and non-convex loss functions.

• Secure-model based federated learning. Secure federated learning algorithms can be

obtained based on problem formulation. For example, a penalty function is introduced

to (2.1). Instead of uploading the local model parameter, each agent uploads a gradient

of penalty function. When the gradient of a penalty function is discrete, the obtained

algorithm is robust to faulty agents [51]. Moreover, a quantitative analysis was performed

in [51] to reveal the relation between optimality and the number of faulty agents.
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• Fault-detection based federated learning. Fault detection can be included to secure

the aggregation of local gradients. For example, the Byzantine stochastic gradient descent

algorithm uses a two-criterion approach to detect faulty agents. Local gradients of reliable

agents can introduce a limited variation of time-average local gradients and limited fluctu-

ation of time-average inner products of local gradient and model parameter. When either

one of the limitations is violated, the agent is detected as a faulty one.

• Preprocessing based federated learning. Using the sample redundancy, DRACO [50]

can remove some undesirable effects of faulty agents. Based on the information theory, the

optimal gradient can be recovered when reliable agents report sufficient information to a

parameter server. Another preprocessing method is named as Bulyan [47]. Bulyan uses

Krum [43] to refine a subset of uploaded local gradients. The parameter server constructs a

global gradient by taking the component-wise average to the refined subset of local gradients.

Since Bulyan is a refinement of Krum by removing several unnecessary local gradients, it

has a more strict limitation on the number of faulty agents. Specifically, the number of

faulty agents is limited to less than 25% of the number of agents.

2.2 Fundamental Concepts in Q-Learning

Q-learning provides a flexible framework for agents to make sequential decisions in an unknown

environment [29]. The goal of agents is to maximize the long-term reward by interacting with

the environment [38]. In the sequel, we provide a brief review of several fundamental concepts of

Q-learning.

2.2.1 Markov Decision Process and Tabular Q-Learning

Denote an MDP by a quintuple (S ,A ,P , W, A). The state space is S of size |S |, and the action

space is A of size |A |. The set of action-dependent transition probability matrices is denoted by

P = {[?B,B
′

0 ] ∈ R |S |× |S | |B, B′ ∈ S , 0 ∈ A } where ?
B,B′
0 = %(B′ |B, 0) is the transition probability from

state B to B′ by using the action 0. The constant W is a discounting factor. Performing action 0

under state B, the agent obtains a local reward A (B, 0) that is upper-bounded by Amax.

Let µ =
{
[`B0] ∈ R |S |× |A | |`B0 = %(0 |B), B ∈ S , 0 ∈ A

}
denote a behavior policy of the agent.
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Therefore, a Q-function is defined in terms of the discounted reward under the behavior pol-

icy µ as

&(B, 0) = E
[
 ∑
:=1

W:A ((: , �:)
��(1 = B, �1 = 0

]
(2.2)

where (: is a random state in slot :, �: is a random action in slot : following the behavior policy

µ.

The theory of dynamic programming [115] guarantees that there exists at least one optimal

behavior policy µ∗, under which the optimal Q-function satisfies the Bellman equation

&∗(B, 0) =B[&∗(B, 0)]

=
∑
B′∈S

?B,B
′

0

(
A (B, 0) + Wmax

0′∈A
&∗(B′, 0′)

) (2.3)

where B[·] is a Bellman operator.

It has been demonstrated [76, 80, 81] that the Bellman operator B[·] is a contraction mapping

with respect to the ℓ∞-norm [76, 80, 81]. Therefore, the optimal Q-function can be obtained

through a fixed-point iteration as

&:+1((: , �:) = (1 − U:)&: ((: , �:) + U:B[&: ((: , �:)] (2.4)

where U: is the stepsize.

When the action-dependent transition probability P is unknown, a stochastic approximation

of the fixed-point iteration (2.4) is used. Therefore, the tabular Q-learning algorithm is proposed

as [74]

&:+1((: , �:) = (1 − U:)&: ((: , �:) + U:
(
A ((: , �:) + Wmax

0′∈A
&: ((:+1, 0′)

)
. (2.5)

Since the iteration in (2.5) works without the action-dependent transition probability matrices

in P , the tabular Q-learning is a model-free algorithm. Based on (2.5), the tabular Q-learning

uses an off-policy9 method to generate data samples.

9The behavior policy µ is unchanged in tabular Q-learning.
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2.2.2 Q-Learning With Linear Functional Approximation

The iteration in (2.5) becomes intractable when the number of state-action pairs is large, also

known as curse of dimensionality [38, 82]. Therefore, the linear function approximation method

is proposed to obtain the optimal Q-function effectively [116].

Denote the basis function for the initial state B and action 0 by φ(B, 0) = [q1(B, 0), . . . , q3 (B, 0)]> ∈

R3. Hence, the approximated Q-function with the initial state B and action 0 is given by

&(B, 0) ≈ &̃(B, 0) = 〈φ(B, 0),w〉 (2.6)

where w ∈ R3 is the weight vector, and ‖φ(B, 0)‖ ≤ 1.

To approximate the Q-function initialized from all the states and actions, one can define a

feature matrix by stacking all the basis functions as

� = [. . . ,φ(B, 0), . . .]> ∈ R |S | |A |×3 (2.7)

where 3 � |S | |A |. The induced linear space of feature matrix � is obtained as Q =
{
�w

��w ∈ R3 }
,

and the feature matrix � is full rank.

Since the optimal Q-function may not belong to the linear space Q , a projection step is

required to obtain the fixed point of approximated Q-function &̃(B, 0). Therefore, the projected

Bellman equation for the approximate Q-function &̃(B, 0) is given by

&̃(B, 0) = projQ
{
B

[
&̃(B, 0)

]}
. (2.8)

The equivalent form of (2.8) is obtained as [87, Appendix A]

E
[
φ(B, 0)

(
A (B, 0) + Wmax

0′∈A
〈φ(B′, 0′),w〉 − 〈φ(B, 0),w〉

)]
= 0 (2.9)

where w∗ is the optimal weight vector.

Mimicking the tabular Q-learning, a stochastic approximation of (2.9) is used. Therefore, the
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weight vector w is updated via

w:+1 = w: + U:φ((: , �:)
(
A ((: , �:) + Wmax

0′∈A
〈φ((:+1, 0′),w〉 − 〈φ((: , �:),w〉

)
. (2.10)

Using the feature matrix � and non-summable and square-summable stepsize U: , one ob-

tains the optimal weight vector w∗ via (2.10) [87, Theorem 3.4]. With optimal w∗, the optimal

Q-function is obtained via (2.6).

2.2.3 Generation of Feature Vectors

In this section, we briefly introduce a method to generate feature vectors in this thesis. We

use the tabular representation to maintain a feature vector for each state-action pair. For discrete

state spaces, the number of feature vectors equals the number of state-action pairs. For continuous

state spaces, the state space needs to be discretized by separating equally the state space into

discrete levels. Then, the number of feature vectors equals the number of discrete levels. Since

a linear function is used to approximate the Q-function, the value of Q-function is represented

by an inner product of feature vector φ(B, 0) : S × A → R3 and parameter vector w ∈ R3, i.e.,

&(B, 0) = φ>(B, 0)w. Each entry of φ(B, 0) can be generated by cosine function or binary function

[92].

The set of feature vectors appropriate for a given problem is usually chosen by the experts

from the respective discipline. In general, there is no “one size fits all” solution to choose feature

vectors, and the generation of feature vectors is still an open problem within the machine learning

community. Please refer to [117, Chapter 3] for detailed information on feature vectors.

2.3 Fundamental Concepts in Lyapunov Learning

Lyapunov learning uses the Lyapunov drift function and penalty function to handle the envi-

ronment dynamics [30]. Suppose a system has # traffic queues for # UEs. Let @=,: be the backlog

of each queue = in slot :. A Lyapunov function C(q:) is defined as a scalar function of queue

vector q: = [@1,: , . . . , @# ,:]. When the queue vector q: is unstable, the value of the Lyapunov

function C(q:) approaches infinity as time evolves. Decisions are made in each slot to optimize
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a performance metric �: while keeping the Lyapunov drift function finite. We present a brief

review of the fundamental concepts in Lyapunov learning.

2.3.1 Queue Dynamics

The value of each queue = is non-negative and evolves with the stochastic arrival and serving

processes, and the initial backlog @=,0 is bounded = = 1, . . . , #. Note that the arrival rate a=,: and

serving rate A=,: are non-negative random variables in slot :. Based on the arrival and serving

processes, the queue dynamic function is defined as

@=,:+1 = max[@=,: − A=,: , 0] + a=,: . (2.11)

The value of @=,: can represent an amount of remaining tasks. For example, the value of @=,:

is the number of packets in Chapter 5 (or number of information bits in Chapter 6).

Definition 2.1 (Mean Rate Stable [30]). A queue = is mean rate stable when lim:→∞
1
:
E

[
@=,:

]
=

0, where E[·] is the expectation over all random sources.

When a backlog queue is mean rate stable, the time-average expectation of arrival rate is less

than or equal to the time-average expectation of serving rate. This statement can be justified as

follows. Based on the dynamic function (2.11), we obtain

@=,:+1 − @=,: = max[a=,: − A=,: , a=,: − @=,:] . (2.12)

Taking the expectation and the telescoping sums of (2.12) over : = 0, 1, . . . ,  , we have

E
[
@=, 

]
 

≥
E

[
@=, 

]
 

−
E

[
@=,0

]
 

≥
∑ 
:=0E

[
a=,: − A=,:

]
:

. (2.13)

Setting  →∞, we obtain lim →∞
1
 

∑ 
:=0E

[
a=,:

]
≤ lim →∞

1
 

∑ 
:=0E

[
A=,:

]
, where the terms

lim →∞
1
 

∑ 
:=0E

[
a=,:

]
and lim →∞

1
 

∑ 
:=0E

[
A=,:

]
correspond to the time-average expectations

of arrival rate and serving rate. A mean-rate-stable queue indicates the information bits in such

a queue will depart this queue in finite time.
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2.3.2 Lyapunov Drift Function

We define a scalar quadratic Lyapunov function as C(q:) := 1
2 ‖q: ‖

2 where the operator

‖·‖ is the ℓ2-norm. The quadratic Lyapunov function 1
2 ‖q: ‖

2 is non-negative, and it is equal

to zero if and only if all entries of q: are zero. Generally, there are some other forms of

Lyapunov function according to different applications, such as C(q:) := 〈q: , log(1 + q:)〉 and

C(q:) :=
∑#
==1 exp(−21(22 − @=,:)). Here, the parameters 21 and 22 are shape-forming constants.

2.3.3 One-slot Conditional Lyapunov Drift Function

With the defined Lyapunov function, we can calculate the one-slot conditional Lyapunov drift

function as

� (q:) := E ]
[
C(q:+1) − C(q:)

��q: ] (2.14)

where the expectation is taken over the random sources ], and the drift is a difference of Lyapunov

functions over slots : + 1 and : given q: .

By introducing a control parameter + > 0, we can define the Lyapunov drift-plus-penalty as

� (q:) ++E ]
[
�:

��q: ] (2.15)

where the performance metric �: can be used to trade for backlogs of queues.
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Chapter 3

Communication-Efficient Robust

Federated Learning Over

Heterogeneous Datasets

A federated learning algorithm can be used for ahead-of-time energy planning upon the

stochastic arrival of traffic demand and renewable energy of SGPCSs. Since the price of ahead-

of-time energy is lower than that of real-time energy10, performing ahead-of-time energy planning

can reduce the energy bills of wireless operators. Suppose that a set of BSTs is deployed to

cover a specific region. The BSTs are connected to the core network and smart grid through a

gateway as shown in Fig. 3.1. Each BST scavenges energy via an energy harvester and collects

log information of traffic demand, renewable energy arrival, and energy prices. The gateway aims

at obtaining a global model parameter that can estimate the demand for ahead-of-time energy of

all BSTs. The global model parameter can be obtained via a standard federated learning process

as follows.

• Given the log information, each BST calculates a local penalty gradient.

• Each BST uploads the local penalty gradient to the gateway.

• The gateway updates and broadcasts global model parameter based on the local penalty

gradients.

In practice, some of the received local penalty gradients at the gateway can be corrupted by

communication failures or malicious actions of hijacked BSTs. As discussed in [43], the corrupted

local penalty gradients can diverge vanilla SGD in the federated learning framework. Therefore,

10https://www.aepenergy.com/2018/01/05/december-2017-edition/
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Figure 3.1: Illustration of a federated learning framework for solving the optimization problem (3.5).

secure federated learning algorithms are required to handle the faulty local penalty gradients.

While some fault-resilient federated learning algorithms have been proposed to deal with faulty

agents such as Krum [43], Bulyan [47], Byzantine SGD [48], Zeno [49], and DRACO [50], they are

designed for homogeneous datasets. However, heterogeneous datasets should be considered while

designing secure federated learning algorithms for the energy planning problem. More specifically,

the log information is used as a dataset at each BST for energy planning of SGPCSs. The UEs’

behaviors can be changed at different BSTs, and the arrival rates of renewable energy can be varied

across different BSTs. The differences in renewable energy arrival rates and UEs’ behaviors result

in heterogeneous datasets at different BSTs. As mentioned in Chapter 1, the RSA framework

[51] is a promising framework to handle heterogeneous datasets. However, the convergence rate

O (log(:)/
√
:) of the RSA algorithm in [51] can still be improved such that the communication

overhead is reduced.

This chapter aims at designing secure federated learning algorithms that can reduce the com-

munication overhead of the RSA framework. An FRPG algorithm is proposed to secure federated

learning in the presence of faulty agents. By allowing the agents to exchange information pe-

riodically with the server, an LFRPG algorithm is also developed. Theoretical and numerical
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results confirm that the LFRPG algorithm requires fewer communication rounds than the FRPG

algorithm. Moreover, our numerical results also show that the FRPG and LFRPG algorithms

converge faster than the state-of-the-art fault-resilient federated learning algorithms.

3.1 Problem Statement

Consider a federated learning framework comprising a parameter server and # agents. The

overall loss given by [33]
#∑
==1

5= (w=) + 50(w0) (3.1)

where w0 ∈ R3 denotes model parameter at the server; w= ∈ R3 are model parameter at agent =;

and 50(w0) is a regularization function. The local loss at agent = is

5= (w=) = E-= [ 5 (w=; -=)] (3.2)

where E-= [·] is the expectation over random data -= with possibly different distributions, and

5 (w=; -=) is the corresponding loss with respect to w= and -=.

The objective of fault-resilient federated learning is to minimize the loss function in (3.1) in a

distributed fashion subject to the consensus constraints, expressed as

w0 = w=, = = 1, . . . , #. (3.3)

When there are multiple faulty agents, several researchers have demonstrated that obtaining

the minimizer of (3.1) subject to (3.3) is less meaningful [42, 43, 51]. Therefore, the goal will be to

minimize the loss function while avoiding consensus with faulty agents. The server cannot differ-

entiate reliable agents from faulty ones and does not even know the number of faulty agents. The

proposed algorithms should be robust to faulty agents under these challenging conditions. When

analyzing the convergence rate in the presence of faulty agents, #R agents are assumed to be

reliable among # agents. For notational convenience, we will index the #B = # −#R faulty agents

by = = #R + 1, . . . , #.
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Dropping the losses of faulty agents in (3.1), the optimal solution needs to satisfy

min
w

#R∑
==1

5= (w=) + 50(w0)

s.t. w0 = w=, = = 1, . . . , #R.

(3.4)

where w := vec(w0,w1, . . . ,w# ).

Without information about faulty agents, it is ideal (and thus not meaningful) for the server

to seek the solution to (3.4). Instead, we will adapt the robust stochastic aggregation approach

[51] by adding a penalty term ?= (w0 −w=) with weight W > 0 for local loss 5= (w=). We will then

provide a solution to the penalized version of (3.4), namely

min
w

� (w) :=

#R∑
==1

( 5= (w=) + W?= (w0 −w=)) + 50(w0). (3.5)

Different from (3.4), the penalty terms in (3.5) allow the server parameter w0 to differ from

those of faulty agents when heterogeneous datasets are considered. We will select convex and

differentiable {?= (·)}, e.g., of the Huber type. Moreover, the gradients of {?= (·)} for reliable and

faulty agents must be similar, so that the undesirable influence of faulty agents is mitigated. As

shown in Fig. 3.1, the parameter server broadcasts global model parameter w0 in each slot. Each

reliable agent = uploads the gradient of penalty W∇?= (w0 −w=) in each slot, and each faulty agent

uploads an arbitrary gradient in each slot.

Our communication-efficient solvers to a non-ideal version of (3.5) will be developed in Sections

3.2 and 3.3, based on the following assumptions about 50, 5=, and ?=, for = = 1, . . . , #.

Assumption 3.1 (Lipschitz Continuity [118, (1.2.11)]). Regularizer 50 has an !0-Lipschitz con-

tinuous gradient, and 5= has an !=-Lipschitz continuous gradient for = = 1, . . . , #.

Assumption 3.2 (Strong Convexity [118, (2.1.20)]). Regularizer 50 is strongly convex with mod-

ulus X0, and loss 5= is strongly convex with modulus X= for = = 1, . . . , #.

Assumption 3.3 (Penalty). Penalty function ?= (w0 − w=) is convex and differentiable, with

bounded gradients ‖∇w0 ?= (w0 −w=)‖2 ≤ �, and ‖∇w= ?= (w0 −w=)‖2 ≤ � for = = 1, . . . , #.

Note that Assumption 3.1 is easily satisfied. Several functions have Lipschitz-continuous gra-
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Information of Reliable Agent

Information of Faulty Agent

True Information

(a) Exchange Model Parameter (b) Exchange Penalty Gradient

Figure 3.2: An illustration of the theoretical intuition of our proposed algorithms.

dients, such as the square of ℓ2-norm, logistic regression function, and multinomial logistic regres-

sion function. Besides, some artificial neural networks also have Lipschitz-continuous gradients

[119]. Assumption 3.2 can also be easily satisfied when the square of ℓ2-norm is added to convex

functions. Assumptions 3.1 and 3.2 are standard when the learning criterion entails smooth and

strongly convex local loss functions. The negative effects of faulty agents can be bounded through

Assumption 3.3, which is satisfied by, e.g., a Huber-type penalty.

Figure 3.2 shows the theoretical intuition for our proposed algorithms. When the model pa-

rameters are exchanged between the server and the agents in Fig. 3.2(a), red dots, blue dots,

and black dot respectively represent the faulty model parameters, reliable model parameters, and

true parameter at the server. When the penalty gradients are exchanged between the server and

agents in Fig. 3.2(b), red dots, blue dots, and black dot represent the faulty penalty gradients,

reliable penalty gradients, and true penalty gradients at the server.

Since the server cannot differentiate the model parameters of reliable agents from the model

parameters of faulty agents, the average aggregation rule in [33] can result in a skewed estimation

of true model parameter at server as shown in 3.2(a). The penalty functions {?= (·)}&==1 allow the

model parameter of server to be close but not equal to model parameters of agents. In this way,

the model parameters of server can be different from the model parameters at the faulty agents.

Besides, exchanging gradients of penalty functions can also unified the information from faulty

agents and reliable agents as shown in Fig. 3.2(b). Comparing Fig. 3.2(a) and Fig. 3.2(b), the

negative effects of faulty agents are mitigated by exchanging penalty gradients between the server

and agents. As shown in Fig. 3.2(b), the penalty gradients from faulty agents and reliable agents

are close to the true penalty gradient even when the model parameters of faulty agents can be
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3.2. Fault-Resilient Proximal Gradient

arbitrarily falsified. Therefore, our developed algorithms can still obtain a suboptimal solution to

(3.5) by exchanging the penalty gradients between server and agents.

3.2 Fault-Resilient Proximal Gradient

kth slot

Server Server . . . Server . . .

Agents . . .Agents Agents . . .

w
0
,k

g
n
,k, n

 =
 1

, …
, N

Figure 3.3: In each iteration of FRPG, the server broadcasts w0,: , and the agents upload g=,: , = = 1, . . . , #.

In this section, we present our novel FRPG algorithm for the server to solve the non-ideal

version of (3.5), with # replacing #R when faulty agents exist. Figure 3.3 shows the communica-

tion protocol of FRPG algorithm, and we will analyze the convergence behavior of our iterative

FRPG algorithm.

3.2.1 Algorithm

Along the lines of [120], the parameter server in our federated learning approach maintains

three sequences in slot :, namely u0,: , w0,: and v0,: . The resultant FRPG algorithm updates

these three sequences using the iterations

u0,: = (1 − V:)w0,:−1 + V:v0,:−1 (3.6a)

w0,: = u0,: −
1

U0,:
∇ 50

(
u0,:

)
(3.6b)
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3.2. Fault-Resilient Proximal Gradient

v0,: = v0,:−1 −
X0

(
v0,:−1 − u0,:

)
+ ∇ 50

(
u0,:

)
+

#∑
==1
g=,:

X0 + U0,: V:
(3.6c)

where w0,:−1 are the server parameter on slot (: − 1); and likewise for the auxiliary iterates v0,:−1;

scalars U0,: and V: are stepsizes; and the sum over # in (3.6c) accounts for the non-ideal inclusion

of faulty agents, where g=,: is given by

g=,: := W∇w0 ?=
(
w0,: −w=,:

)
. (3.7)

Each reliable agent also maintains sequences u=,: , w=,: and v=,: in slot :, that are locally

updated as

u=,: = (1 − V:)w=,:−1 + V:v=,:−1 (3.8a)

w=,: = w0,: − prox W?=
U=,:

{
w0,: − u=,: +

∇ 5
(
u=,: ; -=,:

)
U=,:

}
(3.8b)

v=,: = v=,:−1 −
X=

(
v=,:−1 − u=,:

)
+ ∇ 5

(
u=,: ; -=,:

)
− g=,:

X= + U=,: V:
(3.8c)

where subscript :−1 is the index of the previous slot; while U=,: and V: denote stepsizes as before;

and -=,: is a random sample at slot :. Without adhering to (3.8a)–(3.8c), faulty agents generate

model parameter {w=,: }#==#R+1 using an unknown mechanism.

Based on (3.6) and (3.8), our novel FRPG solver of (3.5) is listed under Algorithm 1 with lines

5–12 showing that the agents generate their local model parameter in parallel. The motivations

of several key steps in the FRPG algorithm are as follows.

• After receiving g=,: , the server performs summation over all penalty gradients {g=,: }&==1 as

shown in (3.6c). Since the server has no information on faculty agents, the negative effects

of faulty agents are mitigated by using bounded penalty gradients {∇w= ?= (w0 − w=)}&==1.

More specifically, we observe from the term
∑&

==1 g=,: in (3.6c) that the impacts of a reliable

agent and a faulty agent on v0,: are similar. Recalling the bounded gradient property of

penalty, we envision that the number of faulty agents (instead of the magnitudes of faulty

parameters {w=,: }&==#R+1) will have influence on the update in (3.6c). In this case, the

FRPG algorithm is robust to any type of faulty agents.
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• After receiving w0,: , each reliable agent = performs the local calculation (3.8). In the

presence of faculty agents, it is reasonable to allow a slight difference between the reliable

parameters {w=,: }#R

==1 and the server parameter w0,: in slot :. Therefore, the proximal step

in (3.8b) is used to obtain the reliable parameter w=,: while retaining a slight difference

from the server parameter w0,: , = = 1, . . . , #R. Besides, the local parameter w=,: is updated

based on ∇w= ?= (w0,: − w=,:) when the proximal step (3.8b) is used; otherwise, the local

parameter w=,: is updated based on outdated information ∇w= ?= (w0,: −w=,:−1) that slows

down the convergence.

Note that while our algorithm is inspired by [120], the updates in (3.6) and (3.8) are distinct

in three aspects. The update step in (3.6b) does not require a proximal operation since w0,: and

w=,: must be recursively updated. Since FRPG is a distributed algorithm, the update step in

(3.6c) contains penalty gradients {g=,: }#==#R+1 from faulty agents. These three differences render

the ensuing convergence analysis of FRPG challenging.

Algorithm 1 FRPG Algorithm

1: Initialize: w=,0 and v=,0 for = = 0, . . . , #, and stepsizes as (3.18)
2: for : = 1, . . . ,  do
3: The server updates u0,: and w0,: via (3.6a) and (3.6b)
4: The server broadcasts the model parameter w0,:

5: parfor = = 1, . . . , # do ⊲ Parallel Computation
6: if = = 1, . . . , #R then
7: Reliable agent = updates w=,: via (3.8)
8: end if
9: if = = #R + 1, . . . , # then

10: Faulty agent = generates faulty parameter
11: end if
12: end parfor
13: All agents upload g=,: to the server
14: The server updates v0,: via (3.6c)
15: end for

3.2.2 Convergence Analysis

Our analysis here is for a single realization of -= in each slot, but can be directly extended to

mini-batch realizations of -=. Let us define the gradient error at agent = in slot : as

ζ=,: := ∇ 5
(
u=,: ; -=,:

)
− ∇ 5=

(
u=,:

)
(3.9)
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and adopt the following assumption on its moments [121].

Assumption 3.4 (Bounded Stochastic Noise). The gradient error (a.k.a. noise) is zero mean,

that is E-=,: [ζ=,:] = 0, with bounded variance E-=,: [‖ζ=,: ‖2] ≤ f2
= , for = = 1, . . . , #.

When the data samples are uniformly drawn from a local dataset, the gradient error in (3.9)

is zero mean. In our analysis, we consider the worst-case effect of gradient error by choosing a

large value of f2
= .

Lemma 3.1. If Assumptions 3.1–3.3 hold, eq. (3.6b) implies that

50
(
w0,:

)
− 50(u0) ≤

〈
#R∑
==1

g=,: + ζ0,: ,u0−w0,:

〉
−

(
U0,: −

!0

2

) 

u0,: −w0,:



2
(3.10)

+





 #∑
==1

g=,:






 

u0,: −w0,:



 − X0

2



u0 − u0,:



2

−
〈
U0,:

(
u0,: −w0,:

)
+

#∑
==1

g=,: ,u0 − u0,:

〉
,∀u0

where ζ0,: :=
∑#
==#R+1 g=,: .

Lemma 3.2. If Assumptions 3.1–3.3 hold, eq. (3.8b) implies that

5=
(
w=,:

)
− 5= (u=) ≤

〈
ζ=,: − g=,: ,u= −w=,:

〉
−

(
U=,: −

!=

2

) 

u=,: −w=,:

2
(3.11)

− U=,:
〈
u=,: −w=,: ,u= − u=,:

〉
− X=

2



u= − u=,:

2
,∀u=.

As ?= (w0 −w=) is a convex and differentiable function (cf. Assumption 3), eq. (3.7) implies

that W∇w= ?=
(
w0,: −w=,:

)
= −g=,: , and thus

W?=
(
w0,: −w=,:

)
− W?= (u0 − u=) ≤

〈
g=,: ,u= −w=,:

〉
−

〈
g=,: ,u0 −w0,:

〉
. (3.12)

Summing up (3.10)–(3.12) and using the definition of � (w) in (3.5), we obtain

� (w:) − � (u) ≤
#R∑
==0

〈
ζ=,: ,u= −w=,:

〉
+






 #∑
==1

g=,:






 

u0,: −w0,:



 (3.13)

−
#R∑
==0

(
U=,: −

!=

2

) 

u=,: −w=,:

2 −
#R∑
==0

X=

2



u= − u=,:

2
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−
#R∑
==1

U=,:
〈
u=,: −w=,: ,u= − u=,:

〉
−

〈
U0,:

(
u0,: −w0,:

)
+

#∑
==1

g=,: ,u0 − u0,:

〉
where w: := vec(w0,: , . . . ,w# ,:), and u := vec(u0, . . . ,u# ).

Based on the definition of ζ0,: and Assumption 3.3, it follows that ‖ζ0,: ‖ ≤ #B‖g1,: ‖ and

‖∑#
==1 g=,: ‖ ≤ # ‖g1,: ‖. Using also that ‖g1,: ‖2 ≤ W2�, ‖∑#

==1 g=,: ‖ ≤ # ‖g1,: ‖ and ‖ζ0,: ‖ ≤

#B‖g1,: ‖, we deduce that

(




 #∑
==1

g=,:






 + 

ζ0,:



)2

≤ W2(# + #B)2� := f2
0 . (3.14)

Lemma 3.3. Under Assumptions 3.1–3.4 and optimal solution u∗, FRPG obtains model param-

eter w: that satisfies

� (w:) − � (u∗) ≤ (1 − V:) (� (w:−1) − � (u∗)) +
#R∑
==0

(
_5,=,: + _6,=,:

)
+ 2W2#2�

U0,:
+ W

2#2
B�

2n
V: (3.15)

where n > 0, while the scalars _5,=,: and _6,=,: are specified by

_5,=,: :=


n V:+U0,:V2:

2



u0 − v0,:−1



2 − X0V:+U0,:V2:
2



u0 − v0,:



2
, = = 0

U=,:V
2
:

2



u= − v=,:−1



2 − X=V:+U=,:V2:
2



u= − v=,:

2
, = = 1, . . . , #R

(3.16)

and

_6,=,: =


3f2

0

2(2U0,:−3!0) , = = 0

f2
=

2(U=,:−!=) , = = 1, . . . , #R.

(3.17)

Using Lemma 3.3, we now assert the convergence of the FRPG algorithm.

Theorem 3.4 (Convergence of FRPG). If under Assumptions 3.1–3.4, the stepsizes are updated

as

U=,: =


X0
14 (: + 2)2 + 3

2!0, = = 0

3X=
14 (: + 2)2 + !=, = = 1, . . . , #

and V: =
2

: + 2
(3.18)

FRPG converges as

� (w ) − � (u∗) ≤
4[� (w0) − � (u∗) + _9]

( + 2)2
+ 4_10 

( + 2)2
+O

(
W2#2

B�

X0

)
(3.19)
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where  is the number of communication rounds, while scalars _9 and _10 are defined as

_9 :=

(
3

8
X0 +

1

2
U0,1

) 

u∗0 − v0,0



2 +
#R∑
==1

1

2
U=,1



u∗= − v=,0

2
(3.20)

and

_10 :=
8W2#2� + 21f2

0

8X0
+
#R∑
==1

7f2
=

12X=
. (3.21)

As confirmed by the last term in (3.19), FRPG converges to a neighborhood of the optimum

with radius on the same order as that of RSA [51]. Besides, the convergence rate of FRPG is

O (1/ 2 + 1/ ), which is faster than O (log( )/
√
 ) of RSA. This observation implies that FRPG

is more communication-efficient than RSA. Base on the last term of (3.19), we observe that the

radius increases with the number of faulty agents. Moreover, we can reduce the values of W

and � to improve convergence accuracy. Since each agent reports W∇w0 ?=
(
w0,: −w=,:

)
where

‖∇w0 ?=
(
w0,: −w=,:

)
‖2 ≤ �, either W or � cannot be zero. Otherwise, the server cannot obtain

useful information from the agents. While achieving a faster convergence rate over RSA, FRPG

still requires the agents to communicate with the parameter server on each slot. Our LFRPG

algorithm developed in the next section reduces this overhead by skipping several communication

rounds.

However, two questions remain: what is the convergence rate of LFRPG, and how does the

convergence of LFRPG depend on the communication period between the agents and parameter

server? We answer these two questions next.

3.3 Local Fault-Resilient Proximal Gradient

3.3.1 Algorithm

To reduce the communication overhead, the LFRPG algorithm allows the server to update

periodically the model parameter w0 [8] and the stepsizes U= [8] and V[8] at the start of frame 8,

= = 0, 1, . . . , #R (as shown in Fig. 3.4). Here, each frame 8 consists of ) slots. With u0 [8], w0 [8],

and v0 [8] denoting the server sequences in frame 8, the model parameter at the server are updated
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Server Server

Agents . . .Agents Agents Agents . . . 

ith frame

Server

Tth slot1st slot

w
0
,k
[i
]

Figure 3.4: LFRPG iteration, where the server broadcasts w0 [8] at the beginning of frame 8, and the agents
upload )−1

∑)
:=1 g=,: [8] at the end of frame 8, = = 1, . . . , #.

as

u0 [8] = (1 − V[8])w0 [8 − 1] + V[8]v0 [8 − 1] (3.22a)

w0 [8] = u0 [8] −
1

U0 [8]
∇ 50(u0 [8]) (3.22b)

v0 [8] = v0 [8 − 1] −
X0(v0 [8 − 1] − u0 [8]) + ∇ 50(u0 [8]) + 1

)

)∑
:=1

#∑
==1
g=,: [8]

X0 + U0 [8]V[8]
(3.22c)

where superscripts 8 and 8−1 are indices of the corresponding frame in the sequences and stepsizes

V[8], U0 [8]; while g=,: [8] is defined as

g=,: [8] := W∇w0 ?= (w0 [8] −w=,: [8]). (3.23)

Accordingly, sequences at reliable agent =, slot :, and frame 8 are updated using stepsizes

U= [8], V[8], as

u=,: [8] = (1 − V[8])w=,: [8 − 1] + V[8]v=,:−1 [8] (3.24a)

w=,: [8] = w80 − prox W?=
U= [8 ]

{
w0 [8] − u=,: [8] +

∇ 5
(
u=,: [8]; -=,: [8]

)
U= [8]

}
(3.24b)

v=,: [8] = v=,:−1 [8] −
X=

(
v=,:−1 [8] − u=,: [8]

)
+ ∇ 5

(
u=,: [8]; -=,: [8]

)
− g=,: [8]

X< + U= [8]V[8]
(3.24c)
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while the resultant gradient noise is given by

ζ=,: [8] := ∇ 5
(
u=,: [8]; -=,: [8]

)
− ∇ 5=

(
u=,: [8]

)
. (3.25)

Based on (3.22) and (3.24), our proposed LFRPG algorithm is listed in Algorithm 2, where lines

6–13 show that the agents update local model parameter in parallel. To proceed with convergence

analysis of LFRPG, we need an assumption on the per-frame gradient noise too.

Algorithm 2 LFRPG Algorithm

1: Initialize: w0 [0], v0 [0], w=,1 [0] and v=,0 [1] for = = 1, . . . , #, and stepsizes as (3.34).
2: for 8 = 1, . . . , � do
3: The server updates u0 [8] and w0 [8] via (3.22a) and (3.22b)
4: The server broadcasts the model parameter w80
5: for : = 1, . . . , ) do ⊲ Local Iterations
6: parfor = = 1, . . . , # do ⊲ Parallel Computation
7: if = = 1, . . . , #R then
8: Reliable agent = updates w8

=,:
via (3.24)

9: end if
10: if = = #R + 1, . . . , # then
11: Faulty agent = generates faulty parameter
12: end if
13: end parfor
14: end for
15: All agents upload 1

)

∑)
:=1 g=,: [8] to the server

16: The server updates v80 via (3.22c)
17: end for

3.3.2 Convergence Analysis

Assumption 3.5 (Bounded Stochastic Noise). The gradient noise is zero mean; that is, E-= [ζ=,: [8]] =

0, with bounded mean-square error: E-= [‖ζ=,: [8] ‖2] ≤ f2
= , for = = 1, . . . , #.

Lemma 3.5. Under Assumptions 3.1–3.3 and 3.5, eq. (3.22b) implies that

50
(
w80

)
− 50(u0) ≤

〈
#R∑
==1

g=,: [8] + ζ0,: [8],u0 −w80

〉
−

(
U0 [8] −

!0

2

)
‖u0 [8] −w0 [8] ‖2 (3.26)

+





 #∑
==1

g=,: [8]





 ‖u0 [8] −w0 [8]‖ −

X0

2



u0 − u80


2

(3.27)

−
〈
U0 [8] (u0 [8] −w0 [8]) +

#∑
==1

g=,: [8],u0 − u0 [8]
〉
,∀u0

where ζ0,: [8] :=
∑#
==#R+1 g=,: [8].
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Lemma 3.6. Under Assumptions 3.1–3.3 and 3.5, eq. (3.24b) implies that

5=
(
w=,: [8]

)
− 5= (u=) ≤

〈
ζ=,: [8] − g=,: [8],u= −w=,: [8]

〉
−

(
U= [8] −

!=

2

) 

u=,: [8] −w=,: [8]

2

(3.28)

− U= [8]
〈
u=,: [8] −w=,: [8],u= − u=,: [8]

〉
(3.29)

−X=
2



u= − u=,: [8]

2
,∀u=.

Since u0 [8] and w0 [8] are updated at the start of frame 8, we set u0 [8] = u0,: [8] and w0 [8] =

w0,: [8] with : = 1, . . . , ) . Summing (3.26) and (3.28), it follows after straightforward algebraic

manipulations that the overall loss at w: [8] := vec(w0,: [8],w1,: [8], . . . ,w# ,: [8]) obeys

� (w: [8]) − � (u) ≤
#R∑
==0

〈
ζ=,: [8],u= −w=,: [8]

〉
+






 #∑
==1

g=,: [8]





 ‖u0 [8] −w0 [8]‖ (3.30)

−
#R∑
==0

X=

2



u= − u=,: [8]

2 −
#R∑
==1

U=,: [8]
〈
u=,: [8] −w=,: [8],u= − u=,: [8]

〉
−
#R∑
==0

(
U= [8] −

!=

2

)
‖u0 [8] −w0 [8] ‖2

−
〈
U= [8] (u0 [8] −w0 [8]) +

#∑
==1

g=,: [8],u0 − u80,:

〉
.

Lemma 3.7. Under Assumptions 3.1–3.3 and 3.5, LFRPG obtains model parameter w: [8] that

satisfies

1

)

)∑
:=1

� (w: [8]) − � (u∗) ≤(1 − V[8])
(

1

)

)∑
:=1

� (w: [8 − 1]) − � (u∗)
)
+ W

2#2
B�

2n
V[8]

+
#R∑
==0

V2 [8]
(
_14,= [8] + _15,= [8]

) (3.31)

where _14,= [8] and _15,= [8] are defined as

_14,= [8] :=


3f2

0+8W
2# 2�

2(2U0 [8 ]−3!0)V2 [8 ] , = = 0

f2
=

2(U= [8 ]−!=)V2 [8 ] , = = 1, . . . , #R

(3.32)
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and

_15,= [8] :=


n +U0 [8 ]V [8 ]

2V [8 ]


u∗0 − v0 [8 − 1]



2 − X0+U0 [8 ]V [8 ]
2V [8 ]



u∗0 − v0 [8]


2
, = = 0

U= [8 ]
2)



u∗= − v=,) [8 − 1]


2 − X=+U= [8 ]V [8 ]

2) V [8 ]


u∗= − v=,) [8]

2

, = = 1, . . . , #R.

(3.33)

Lemma 3.7 leads to the convergence result for LFRPG.

Theorem 3.8 (Convergence of LFRPG). If Assumptions 3.1–3.3 and 3.5 hold, and stepsizes are

respectively updated as

U= [8] =


X0
14 (8 + 2)2 + 3

2!0, = = 0

3X=
14 (8 + 2)2 + !=, = = 1, . . . , #

and V[8] = 2

8 + 2
(3.34)

then LFRPG obtains model parameter w̄[�] := )−1 ∑)
:=1w: [�] that converges

� (w̄[�]) − � (u∗) ≤ 2_16

) (� + 2)2
+ _17 + �_18

(� + 2)2
+O

(
W2#2

B�

X0

)
(3.35)

where _16, _17 and _18 are respectively defined as

_16 :=

#R∑
==1

U= [1]


u∗= − v= [0]

2

(3.36)

_17 :=

(
3

2
X0 + 2U0 [1]

) 

u∗0 − v0 [0]


2 + 4

)

)∑
:=1

� (w: [0]) − 4� (u∗) (3.37)

and

_18 :=

#R∑
==1

7f2
=

3X=
+

11f2
0 + 28W2#2�

X0
. (3.38)

We observe that the first term of (3.35) converges faster than that of (3.19), the second term

of (3.35) converges with same rate as that of (3.19), and the third term of (3.35) confirms that

the convergence accuracy of LFRPG is the same as FRPG. Therefore, eq. (3.35) reveals that

LFRPG outperforms FRPG in communication efficiency. Based on (3.35), we observe that a long

communication period of LFRPG can only reduce the first term of (3.35) and has no effect on

the second and the third terms of (3.35). In other words, the communication reduction brought

by the intermittent communication of LFRPG is diminishing with respect to the communication

period.
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3.4. Numerical Results

3.4 Numerical Results

To validate our analytical results, we test the performance of FRPG and LFRPG numerically

on real datasets (USPS11 [122], MNIST12 [123], and FMNIST13 [124]). In the USPS set, we use

8, 000 data vectors of size 256 × 1 for training and 3, 000 for testing. In MNIST, we use 60, 000

data vectors of size 784 × 1 for training, and 10, 000 for testing. In FMNIST, we use 60, 000 data

vectors of size 784 × 1 for training, and 10, 000 for testing. The top-1 accuracy is the ratio that

predicted labels match the correct labels in the test set of data samples. The predicted labels are

calculated by using the obtained model parameter at the server. The heterogeneity of datasets

was manifested as follows. Each pair of agents is assigned data samples with the same labels, and

50% of the data samples were removed. For example, the data samples with labels 6, 7, 8, and

9 are removed in half of the tests. We consider the Label-Flipping attack [44] and the Gaussian

attack [34] to verify the robustness of FRPG and LFRPG. For the Label-Flipping attack, the

original label H is skewed to 9 − H; while for the Gaussian attack the faulty gradient is set as

2 ×N (0, 1) with 2 = 1 × 104. The numerical experiments are run on MATLAB R2018b with Intel

i7-8700 CPU @ 3.20 GHz and 16 Gb RAM.

The multinomial logistic regression was employed as the loss with regularizer (X=/2) ‖w=‖2.

At the parameter server, we set 50(w0) = (X0/2) ‖w0‖2. Huber’s cost with smoothing constant

` = 10−3 was adopted as the penalty function

?= (w0 −w=) =


1
2` ‖w0 −w=‖2, ‖w0 −w=‖ ≤ `

‖w0 −w=‖ − `

2 , otherwise.
(3.39)

We considered a setting with # = 20 agents, #R = 16 reliable ones, and weight W = 1.6. The

training data are evenly distributed across the agents. With faulty agents attacking by flipping

labels, the mini-batch size is set to 15; while for those adopting a Gaussian attack, the mini-batch

size is set to 10. To obtain a good top-1 accuracy convergence, we set the stepsizes for benchmark

11The USPS dataset contains grayscale images of postcodes that are automatically scanned from envelopes by
the U.S. Postal Service.

12The MNIST dataset contains grayscale handwritten digits, which range from zero to nine. The digits are
written by high school students and employees of the United States Census Bureau.

13The FMNIST dataset contains grayscale pictures for fashion products from ten categories, namely T-shirt/top,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. The pictures are collected by Zalando
Research.

40



3.4. Numerical Results

schemes to 3/
√
:. A strongly convex modulus with X= = 0.003 is chosen for = = 0, 1, . . . , #; while

the Lipschitz constants for the USPS, MNIST and FMNIST datasets are respectively set to 156,

295, and 524. The agents in LFRPG communicate with the server every ten slots.

We also test communication efficiency in comparison with Krum [43], GeoMed [42], and RSA

[51] benchmarks. To demonstrate the negative effects of different attacks, we employ SGD by

averaging the local gradients of agents heuristically. Figs. 3.5 and 3.6 show the convergence of

FRPG, LFRPG and RSA under Label-Flipping, and Gaussian attacks, respectively. After 4, 000

communication rounds, FRPG and LFRPG converge faster than RSA, while LFRPG outperforms

FRPG for the same number of rounds. To reach the same loss value with the FMNIST dataset,

LFRPG takes about 400 communication rounds versus 800 required by FRPG under Label-

Flipping attacks.
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Figure 3.5: The loss values over the number of communication rounds under Label-Flipping attack and
heterogeneous datasets.
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Figure 3.6: The loss values over the number of communication rounds under Gaussian attack and hetero-
geneous datasets.

Figure 3.7 compares the top-1 accuracy with Krum, GeoMed and RSA, under Label-Flipping

attacks, respectively. With Label-Flipping, both FRPG and LFRPG converge faster than the
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3.4. Numerical Results

benchmarks. FRPG and LFRPG also achieve better top-1 accuracy for the USPS, MNIST, and

FMNIST datasets, while Krum fails because it is designed for homogeneous datasets. When the

USPS dataset is used, we observe that the top-1 accuracy of FRPG reaches about 71% after

about 1200 communication rounds, and the top-1 accuracy of LFRPG reaches about 71% after

400 communication rounds. LFRPG allows agents to communicate with the parameter server

every ten slots, during which each reliable agent updates the local model parameter based on

the local dataset. Compared with FRPG, LFRPG has ten times the local computational cost.

Therefore, we conclude that LFRPG can reduce the communication overhead at the expense of

local computational cost. Besides, SGD requires 4000 communication rounds to reach the same

top-1 accuracy as FRPG and LFRPG. GeoMed and RSA require more than 4000 communication

rounds to achieve 71% accuracy. In other words, FRPG and LFRPG can reduce at-least 70%

and 90% of communication overhead when the USPS dataset is used. Besides, the reduction of

communication overhead can also be observed when the MNIST and FMNIST datasets are used.
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Figure 3.7: Top-1 accuracy over the number of communication rounds under Label-Flipping attack and
heterogeneous datasets.

Since Label-Flipping attacks do not change the magnitude of local gradients, their negative

effects on SGD are limited when heterogeneous datasets are used. For this reason, we considered

the more severe Gaussian attack. Fig. 3.8 illustrates that SGD fails in the presence of Gaussian

attacks. However, both FRPG and LFRPG converge faster and achieve better top-1 accuracy

than Krum, GeoMed, and RSA. Using Gaussian attacks and the FMNIST dataset, the top-1

accuracy of FRPG and LFRPG is 4.13% better than that of GeoMed, and 9.89% better than that

of RSA.
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Figure 3.8: Top-1 accuracy over the number of communication rounds under Gaussian attack and hetero-
geneous datasets.

3.5 Summary

Adopting Nesterov’s method, we have studied the fault resilience and communication effi-

ciency issues in the federated learning framework. We have proposed two fault-resilient federated

learning algorithms (FRPG and LFRPG algorithms) that can handle heterogeneous datasets.

We have derived the convergence rates of the proposed FRPG and LFRPG algorithms. Using

different practical datasets, we have performed numerical simulations to show the reduction in

communication overhead. We have obtained the following engineering insights.

• Compared with the RSA algorithm, the obtained convergence rates show that the proposed

FRPG and LFRPG algorithms can reduce the communication overhead from O (log(:)/
√
:)

to O (1/:2 + 1/:). Our numerical simulations also confirm the communication overhead over

the benchmarks.

• Information exchanging between the parameter server and agents are necessary. Therefore,

either W or � cannot be set to zero. Besides, the convergence rate of LFRPG shows that

the overhead reduction resulted from intermittent communication diminishes with respect

to communication period.
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Chapter 4

Linear-Approximate Decentralized

Q-Learning

Motivated by the collaborative spectrum sensing and collaborative spectrum sharing problems

in SGPCSs, decentralized Q-learning algorithms become a popular research topic. A potential

application scenario of a decentralized Q-learning is discussed as follows. Several secondary BSTs

collaboratively sense the spectrum bands of a primary BST, and exchange local sensing results

with its neighboring secondary BSTs. Each secondary BST is powered by renewable energy and

a smart grid, and consumes a certain amount of energy for spectrum sensing and exchanging

local sensing results. Here, the environment state includes a map of spectrum occupancy and the

renewable energy arrival at secondary BSTs. Each secondary BST decides whether to perform

spectrum sensing or energy trading. A secondary BST needs to choose the set of spectrum bands

for sensing if the secondary BST decides to perform spectrum sensing. A secondary BST needs

to determine the number of energy units that will be sold to (or purchase from) a smart grid

if the secondary BST decides to perform energy trading. The reward of each secondary BST

is the number of identified vacant spectrum bands in each slot. The exchanged information

between neighboring secondary BSTs is the local parameter that can characterize the statistics

(i.e., whether the spectrum bands of primary BST are vacant or occupied) for the spectrum bands

of primary BST.

Since the algorithmic and theoretical developments of decentralized Q-learning algorithms are

limited, this chapter builds on this research front. In particular, a decentralized Q-learning is

based on a multi-agent MDP, where agents have private rewards and collaboratively optimize a

long-term global reward. Based on local behavior policy, each agent interacts with the environ-

ment and communicates with the other agents within its communication range (i.e., neighboring
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4.1. Preliminaries and Problem Statement

agents). Then, the joint actions of agents determine the state transition of the environment. While

current decentralized Q-learning algorithms mainly focus on tabular setups, this chapter proposes

a decentralized Q-learning algorithm using LFA, called the linear-approximate decentralized Q-

learning algorithm. Besides, a finite-sample analysis is performed to quantify the convergence

rate of the linear-approximate decentralized Q-learning algorithm.

4.1 Preliminaries and Problem Statement

To facilitate the study of MARL, we begin by introducing some background on the multi-agent

MDP, Q-function, and Bellman operators. We refer the readers to sources [29, 38, 115] for more

details.

4.1.1 Collaborative Multi-Agent MDPs and the Q-Function

Consider a collaborative #-user MDP denoted by a hextuple (S , {A=}#==1,P , {A=}
#
==1, W), where

agents form an undirected network, S is the state space of size |S |, and A= is the action space of

agent =. Moreover, we define the joint action space as A = A1 × · · · × A# . The set P = {[?B,B
′

a ] ∈

R |S |× |A | |B, B′ ∈ S ,a := [01, · · · , 0# ] ∈ A } collects all action-dependent transition probabilities,

where ?
B,B′
a = %(B′ |B,a) is the probability of the environment transiting to state B′ when taking

joint action a ∈ A at state B ∈ S . Associated with a state transition, each agent = is given a

real-valued reward A= (B,a) that is assumed upper-bounded by Amax > 0, while 0 ≤ W < 1 is the

discounting factor. In this model, we assume that current state B of the environment, its successor

state B′, and the joint action a can be observed by all agents, whereas the rewards {A= (B,a)}#==1

corresponding to each transition are kept confidential for agent =. See Figure 4.1 for a depiction

of such a model.

Let `= : S → A= denote the policy of agent =, which determines the probability of taking

action 0= ∈ A= at state B ∈ S . The joint policy of all agents is denoted by µ = [`1, · · · , `# ], which

along with P dictates the state transitions, the trajectory, and the stationary distribution c of

the induced Markov chain {(: }:≥1. The quality of policy µ is measured by the expectation of

average discounted rewards of all agents given an initial state-action pair (B,a) ∈ S × A , while
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Environment: Sk+1~ P(Sk+1=s’| Sk =s, Ak=a)

125

34

State Transition: (Sk , Ak , Sk+1 )

A5,k r5,k A4,k r4,k A3,k r3,k A2,k r2,k A1,k r1,k

Figure 4.1: Illustration of a five-user MDP. In slot :, each agent = selects action �=,: based on state (:
following policy `=, the environment moves to state (:+1, and agent = receives reward A=,: .

following policy µ to take future actions–that is, the so-called Q-function

&(B,a) = E
[

1

#

∞∑
:=1

#∑
==1

W:A=,:
��(1 = B, �1 = a

]
(4.1)

where A=,: := A= ((: , �:), and �: ∼ µ((:) with : ≥ 1.

4.1.2 Bellman Equation, Function Approximation, and Projected Bellman

Equation

The goal is to obtain an optimal joint behavior policy µ∗ such that the Q-function in (4.1)

is maximized for the state-action pair (B,a) ∈ S × A . For finite-state MDPs, it is well known

[29, 74, 76] that there always exists an optimal deterministic policy µ∗, which gives rise to the

optimal Q-function and satisfies the following Bellman’s optimality equation [61, 81, 82, 87, 125]

&∗(B,a) = B[&∗(B,a)] ,∀(B,a) ∈ S × A (4.2)

where the Bellman operator B[·] is defined as

B[&∗(B,a)] :=
1

#

#∑
==1

A= (B,a) + W
∑
B′∈S

?B,B
′

a

[
max
a′∈A

&∗(B′,a′)
]
. (4.3)
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It has been shown [76, 80, 81] that the Bellman operator B[·] is a contraction mapping with

respect to the ℓ∞-norm. In light of this fact, the optimal Q-function &∗(B,a) can be asymptotically

found in a decentralized manner using stochastic approximation methods for solving (4.2) with

suitable stepsizes, such as the decentralized tabular Q-learning algorithm [61]. However, when

the state and action spaces become large, the explicit representation of Q-function for large state

and action spaces becomes computationally burdensome or even intractable due to the issue of

curse-of-dimensionality [38, 82]. To overcome this difficulty, a common approach is to combine

the tabular Q-learning with parameterized function approximation, such as linear approximators

[82] or a deep neural network [39]. Even though deep neural networks could offer more powerful

approximations, the simplicity of reinforcement learning algorithms with LFA [83–87, 126] allows

us to analyze them in detail.

We focus on LFA of the Q-function. Specifically, the approximate Q-function is defined as

&(B,a) ≈ 〈φ(B,a),w〉, where φ(B,a) = [q1(B,a), . . . , q3 (B,a)]> ∈ R3 is a basis vector, and w ∈ R3

is the unknown parameter vector to be estimated, and ‖φ(B,a)‖ ≤ 1 for all pairs (B,a) ∈ S × A

[82]. Oftentimes, we have the number of unknown parameters 3 � |S | |A | required by tabular

Q-learning algorithms, thus offering scalability to deal with large state and/action spaces.

Upon fixing a canonical ordering on the elements (B,a) of S × A , we can define the feature

matrix by stacking up the ordered feature vectors as its rows, namely � = [· · · φ(B,a) · · · ]> ∈

R |S | |A |×3. The induced linear subspace of feature matrix � is given by Q = {�w |w ∈ R3}. In

general, the optimal Q-function may not belong to Q , so the exact solution of (4.2) cannot be

obtainable. In the collaborative MARL setting, we are motivated to seek the best approximation

of &∗(B,a) in the linear subspace Q , which can be shown to satisfy the so-called projected Bellman

equation

&̃∗(B,a) = projQ
{
B

[
&̃∗(B,a)

]}
. (4.4)

Due to the unknown transition probabilities and the unknown reward functions, the projected

Bellman equation (4.4) cannot be directly evaluated. Nonetheless, any irreducible and aperi-

odic Markov chain converges geometrically fast to its unique stationary distribution (e.g., [127,

Thm. 4.9]). Similar to the linear-approximate centralized Q-learning, an equivalent form of the

projected Bellman equation (4.4) is first established that is amenable to deriving decentralized
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Q-learning algorithms.

To that end, let - := (B,a, B′) denote a state transition consisting of current state B ∈ S , joint

action a ∈ A , and the new state B′ ∈ S . Define the centralized TD error that is found with all

local rewards

g (w; -) = 1

#

#∑
==1

A= (B,a) + Wmax
a′∈A
〈φ(B′,a′),w〉 − 〈φ(B,a),w〉 . (4.5)

It can be shown that for any irreducible and aperiodic Markov chain, the Q-function &̃∗(B,a) =

〈φ(B,a),w∗〉 evaluated at the fixed point w∗ ∈ R3 of the next equation obeys (4.4) for all state-

action pairs (B,a) ∈ S × A

E- [∇5 (w∗; -)] = 0 (4.6)

where ∇5 (F∗; -) := g (F∗; -)φ(B,a), c denotes the stationary distribution of the Markov chain. Please

see Appendix B.1 for a proof and detailed discussions.

Algorithm 3 Linear-Approximate Decentralized Q-Learning

1: Input: Stepsize U: , features �, mixing matrix B
2: Initialize: Parameters {w=,1}#==1.
3: for : = 1, . . . ,∞ do
4: for = = 1, . . . , # do ⊲ Parallel computation
5: Based on current state (=,: , agent = takes action �=,: according to policy `=
6: agent = observes the state transition ((: , �: , (:+1) and a local reward A=,:
7: agent = receives parameters from its neighbors as {1=′=w=′,: }#=′=1
8: agent = finds estimated action �̂=,:+1 via (4.9), and the TD error via (4.8)
9: Each agent = updates w=,:+1 via (4.10)

10: end for
11: end for

4.2 Linear-Approximate Decentralized Q-Learning

The goal is to develop a decentralized stochastic approximation scheme for finding the fixed-

point solution of (4.6) with multiple agents acquiring data along a trajectory of a multi-agent

MDP. Agents are allowed to exchange their local parameters with neighbors over a fixed commu-

nication network. The communication model is described by a mixing matrix B =
[
1=,=′

]
∈ R#×# ,

where 1=,=′ scales the information from agent = to =′. In particular, we extend the decentralized

tabular Q-learning algorithm [61] to handle large state and action spaces by LFA. The resulting

linear-approximate decentralized Q-learning algorithm is summarized in Algorithm 4.
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In slot : ≥ 1, each agent = takes an action �=,: based on the current state (: by following

its behavior policy `=, and the environment transits from current state (: to a new state (:+1.

Meanwhile, agent = receives a private reward A= ((: , �:). Upon observing the state transition

-: := ((: , �: , (:+1), each agent = computes the local TD error

g=,: := g= (w=,: ; -:) = A= ((: , �:) + Wmax
a′∈A

〈
φ((:+1,a),w=,:

〉
−

〈
φ((: , �:),w=,:

〉
(4.7)

:= A=,: + W
〈
φ̂=,: ,w=,:

〉
−

〈
φ: ,w=,:

〉
(4.8)

where we define A=,: := A= ((: , �:), φ: := φ((: , �:), and φ̂=,: := φ((:+1, �̂=,:+1) for notational

convenience, with the estimated joint action �̂=,:+1 by agent = in slot : given by

�̂=,:+1 = arg max
a′∈A

〈
φ((:+1,a′),w=,:

〉
. (4.9)

Subsequently, agent = updates parameter w=,: via the local “stochastic gradient” ∇ 5 (w=,: ; -:) :=

g=,:φ: with a stepsize U: > 0, and the parameters {1=′,=w=′,: }#=′=1 received from its neighbors, by

w=,:+1 =

#∑
=′=1

1=′,=w=′,: + U:g=,:q: . (4.10)

Similar to centralized Q-learning, Algorithm 4 does not require any statistical information on

the multi-agent MDP, operates with fixed behavior policies of agents, and performs no projection

steps unlike that analyzed in [89]. In other words, the proposed linear-approximate decentralized

Q-learning is a model-free, and off-policy algorithm, whose benefits are that the learning and

data sampling processes are decoupled; and learning process can be conveniently done through

collected data trajectories. Hereinafter, we investigate the convergence properties, especially the

statistical efficiency of Algorithm 4.

4.3 A Unifying Finite-Sample Convergence Analysis

The goal of this section is to analyze the finite-sample convergence performance of Algorithm 4

in a realistic setting where transitions are sampled along a trajectory of multi-agent MDP. For

completeness, learning with both decaying and constant stepsizes will be studied. To proceed, we
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4.3. A Unifying Finite-Sample Convergence Analysis

will need the ensuing assumptions on the communication network and the behavior policies.

Assumption 4.1. The communication network is undirected and connected. The mixing matrix

B = [1=,=′] is non-negative and doubly stochastic, namely
∑#
==11=,=′ = 1,

∑#
=′=11=,=′ = 1, and

1=,=′ ≥ 0.

Assumption 4.1 is standard and has been commonly adopted in decentralized optimization

and learning; see e.g., [62, 63, 91, 92, 128]. On the other hand, it is well-known that Q-learning

with function approximation can diverge in general [82, 129, 130]. This is mainly because Q-

learning implements off-policy sampling to acquire data, which may render expectation of the

Q-learning update (cf. (4.10)) diverge [131]. Under some regularity condition on the behavior

policy, asymptotic convergence properties of the linear-approximate centralized Q-learning have

been derived in [82]. Finite-sample performance guarantees have recently been provided in [86, 87,

89]. In light of those results, here we also introduce such a regularity condition for the collaborative

multi-agent Q-learning on the joint policy µ, which is key to perform finite-sample analysis of the

linear-approximate decentralized Q-learning algorithm in Algorithm 4.

Algorithm 4 Linear-Approximate Decentralized Q-Learning

1: Input: Stepsize U: , features �, mixing matrix B
2: Initialize: Parameters {w=,1}#==1.
3: for : = 1, . . . ,∞ do
4: for = = 1, . . . , # do ⊲ Parallel computation
5: Based on current state (=,: , agent = takes action �=,: according to policy `=
6: agent = observes the state transition ((: , �: , (:+1) and a local reward A=,:
7: agent = receives parameters from its neighbors as {1=′=w=′,: }#=′=1
8: agent = finds estimated action �̂=,:+1 via (4.9), and the TD error via (4.8)
9: Each agent = updates w=,:+1 via (4.10)

10: end for
11: end for

Assumption 4.2. Assume that the Markov chain {(: }:≥1 determined by the joint policy µ and

the transition probability matrices in P is irreducible and aperiodic. Denote its unique stationary

distribution by c. Furthermore, assume that the joint behavior policy µ guarantees the following

condition for all agents = with some constant 0 < 20 < 1

W2E-

[
max
a′∈A
〈φ(B′,a′),w=〉2

]
− E-

[
〈φ(B,a),w=〉2

]
≤ −20‖w=‖22 . (4.11)
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Concerning Assumption 4.1, note that the first part (i.e., the irreducibility and aperiodicity) is

a standard requirement for the theoretical analysis of reinforcement learning algorithms [81, 83–

86, 132]. The second part (i.e., (4.11) for the joint policy) essentially guarantees the stability

of our multi-agent, linear-approximate decentralized Q-learning algorithm, that resembles those

imposed for their single-user counterparts in [82, 87].

When 3 = |S | |A | and W2 ≥ 1/|A |, there is no behavior policy satisfying Assumption 4.2 [87].

We consider another case that 3 � |S | |A |. Setting the left-hand side of (4.11) to be less than

zero, it holds that E
[∑

B c
B (W2 maxa′∈A 〈φ(B,a′),w=〉2 −

∑
a∈A µ

B
a 〈q(B,a),w=〉2)

]
< 0. One can

employ the inequality W2 <
∑
a∈A ′ µ

B
a 〈q(B,a),w=〉2/maxa′∈A 〈φ(B,a′),w=〉2, where 〈q(B,a),w=〉

with a ∈ A ′ and B ∈ S . Since F= ∈ R3 can be orthogonal to at most 3 − 1 basis functions, we

have |A ′ | = |A | − 3 + 1. The inequality on W2 implies that the upper bound on W increases with

|A | − 3. Thus, we can find a behavior policy satisfying Assumption 4.2 when 3 � |S | |A | and

W2 > 1/|A |. Therefore, the proposed algorithm aims at solving a category of problems, where

small dimensional feature vectors can represent the optimal Q-function (i.e., 3 � |S | |A |).

Now, we are ready to analyze the convergence properties of Algorithm 4. Let us concatenate

all local parameters {w=,: }#==1 and stochastic gradients {∇5
(
w=,: ; -:

)
}#
==1 into vectors as follows

∇f (w; -) :=


∇5 (w1; -)

...

∇5 (w# ; -)


and ∇f̄ (w; -) :=


5̄ (w1; -)

...

5̄ (w# ; -)


(4.12)

where w = vec(w1, . . . ,w# ), ∇5 (w=; -) := g= (w=; -)φ(B,a) and 5̄ (w=; -) := g (w=; -)φ(B,a)

based on the local and global TD errors in (4.8) and (4.5), respectively. Moreover, ∇f̄ (w) =

E-
[
∇f̄ (w; -)

]
, and it is evident from (4.6) that we have ∇f̄ (w∗) = 0 withw∗ := vec(w∗1, . . . ,w∗# ) ∈

R#3. With these definitions, the decentralized Q-learning update (4.10) can be compactly rewrit-

ten as follows

w:+1 = (B ⊗ �3)w: + U:∇f (w: ; -:) . (4.13)

Our goal now boils down to derive finite-sample bounds on the mean-square error of iterates

w: generated by (4.10) from the fixed point w∗. Since dataset {-: }:≥1 constitutes a trajec-

tory of the Markov chain induced by µ, the resultant stochastic gradients {∇f (w; -:)} asso-
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4.3. A Unifying Finite-Sample Convergence Analysis

ciated with {-: }:≥1 are biased estimates of the expected gradient in the limit, i.e., ∇f̄ (w) :=

lim:→∞E-:
[
∇f̄ (w; -:)

]
, where expectation is taken over samples obtained from the stationary

distribution. This is known as the gradient bias in reinforcement learning algorithms that deal with

Markovian data, which has been the major hurdle challenging their non-asymptotic performance

analyses.

Let us introduce the average operator � = #−11#×# ⊗ �3 ∈ R#3 that first computes the

average of all local quantities and replicates it # times; and also the difference operator � :=

(�# − #−11#×# ) ⊗ �3, which subtracts the averaged quantity (e.g., parameter vector) over all

agents from each local one. Then, we can define the averaged parameter vector w̄ := �w, and the

difference vector �w := w− w̄. Since the mixing matrix B is doubly stochastic, it can be verified

that �(B ⊗ �3) = �#3 = (B ⊗ �3)�. Then, pre-multiplying both sides of (4.13) by � yields

w̄:+1 = �(B ⊗ �3)w: + U:�∇f (w: ; -:) = w̄: + U:�∇f (w: ; -:) . (4.14)

Subtracting (4.14) from (4.13), the difference vector �w:+1 = w:+1 − w̄:+1 can be found as follows

�w:+1 = (B ⊗ �3) �w: + U:�∇f (w: ; -:) . (4.15)

To gain control over the gradient bias, we consider the )-step iteration of (4.14) as

w̄:+) = w̄: + �
) +:−1∑
C=:

UC∇f̄ (w:) + ζ)(w: ; -:::+) −1) (4.16)

where the residual ζ)(w: ; -:::+) −1) is the )-step accumulated gradient bias.

Before characterizing the convergence properties of Algorithm 4, we begin by establishing

several lemmas.

Lemma 4.1. Fix any w,w′ ∈ R#3. For each transition -, then ∇f (w; -) satisfies that

‖∇f (w; -) − ∇f (w′; -)‖ ≤ !‖w −w′‖ (4.17)

and

‖∇f (w; -)‖ ≤ ! (‖w −w∗‖ + �) (4.18)
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4.3. A Unifying Finite-Sample Convergence Analysis

where ! = 1 + W, and � = ‖w∗‖ +
√
#Amax!

−1.

Proof of Lemma 4.1 is deferred to Appendix B.2 for readability. Lemma 4.1 shows that the

stochastic gradient ∇f (w; -:) is Lipschitz-continuous in w, which will be useful for controlling

(i.e., upper-bounding) the accumulated gradient bias ζ)(w: ; -:::+) −1) in (4.16).

Lemma 4.2. For any w,w′ ∈ R#3, the following holds for f̄ (w) with constant 0 < X ≤ 20!
−1/2

〈
w −w′,∇f̄ (w) − ∇f̄ (w′)

〉
≤ −X!‖w −w′‖2. (4.19)

Proof of Lemma 4.2 is provided in Appendix B.3. This condition can be viewed as a strongly

monotone property of the nonlinear mapping ∇f̄ (w). Using Lemma 4.2, we develop upper bounds

on ζ)(w: ; -:::+) −1) conditioning on w: .

Lemma 4.3. Let Assumptions 4.1 and 4.2 hold. For any non-increasing sequence of stepsizes

{U: ≥ 0}:≥1, the )-step accumulated gradient bias ζ)(w: ; -:::+) −1) satisfies



E[
ζ)(w: ; -:::+) −1)

��w: ]

 ≤ U:!) [_1(), :)+U:!)_2())] (‖w: −w∗‖ + �) (4.20)

where the expectation is taken over -:::+) −1, and

‖ζ)(w: ; -:::+) −1)‖2 ≤ 3U2
:!

2)2
[
3 + 2U2

:!
2)2_2

2())
]
‖w: −w∗‖2 + 6U2

:!
2)2�2

[
1 + U2

:!
2)2_2

2())
]

(4.21)

where _1(), :) = )−1 ∑:+) −1
C=: 221d

C with constants 21 > 0 and 0 < d < 1 depending only on the

induced Markov chain, and _2()) = )−2 ∑) −1
C=1 C (1 + U1!)) −1−C .

Proof of Lemma 4.3 is relegated to Appendix B.4. Lemma 4.3 essentially implies that the

accumulated gradient bias ζ)(w: ; -:::+) −1) does not grow rapidly in ‖w:−w∗‖, which is indeed the

key in developing our subsequent convergence rate. Noting that ‖w:−w∗‖ ≤ ‖w:−w̄: ‖+‖w̄:−w∗‖,

we will divide our analysis into establishing the convergence rate of each of the two terms on the

right-hand-side (RHS); that is, the multi-agent consensus error ‖w: − w̄: ‖, and the parameter

average estimation error ‖w̄: −w∗‖.

To start, we formally present the convergence results of ‖�w: ‖ = ‖w: − w̄: ‖ in the cases of

decaying and constant stepsizes in Lemma 4.4, whose proof is provided in Appendix B.5.
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Lemma 4.4. Consider the iteration (4.13) with non-increasing stepsizes {U: ≥ 0}:≥1, and let

22 ∈ [0, 1) denote the second largest singular value of the mixing matrix B. Under Assumptions 4.1

and 4.2, the following results hold true for any initialization w1.

i) When decaying stepsize U: = Ū!
−1/: is used with Ū < (1 − 22)/2, we have that

‖�w: ‖ ≤ (22 + 2Ū): ‖�w1‖ +
23Ū
√
#Amax

:
(4.22)

where 23 > 0 is some constant defined in (B.42).

ii) When constant stepsize U: = Ū!
−1 is used with Ū < (1 − 22)/4, we have that

‖�w: ‖ ≤ (22 + 2Ū): ‖�w1‖ +
2Ū
√
#Amax

! (1 − 22)
. (4.23)

To establish the convergence rate of ‖w̄: −w∗‖, we note from Lemma 4.4 that the )-step gra-

dient bias ζ)(w: ; -:::+) −1) in (4.20) is bounded. This motivates us to consider a )-step Lyapunov

function C) ,: =
1
2

∑:+) −1
C=: ‖w̄C −w∗‖2, where ) is a parameter chosen such that convergence can be

ensured. Before presenting the main results, we derive an upper bound on the drift of the )-step

Lyapunov function in Lemma 4.5.

Lemma 4.5. Let Assumptions 4.1 and 4.2 hold. For any non-increasing stepsizes {U: ≥ 0}:≥1

with U1 ≤ Un , there exist n > 0 and )n ≥ 1 such that: 1) _1()n , :) < )−1
n log(1 + )n )X/2 − n for

decaying stepsize U: = Ū!
−1/: with Ū < (1 − 22)/2, or 2) _1()n , :) < X/2 − n for constant stepsize

U: = Ū!
−1 with Ū < (1− 22)/4. Then, the drift of the )n -step Lyapunov function is upper bounded

by

E
[
C)n ,:+1 − C)n ,:

]
≤ −nU:!)nE

[
‖w̄: −w∗‖2

]
+ _3()n , U:)E

[
‖�w: ‖2

]
+ 2U:!)n�

2_4()n , U:)

(4.24)

where

_3()n , U:) = 18U2
:!

2)2
n + 12U4

:!
4)4
n _

2
2()n ) + 4−1)−2

n

[
1 + _2

1()n , :) + U2
:!

2)2
n _

2
2()n )

]
(4.25)

_4()n , U:) = _1()n , :) + 3U:!)n + U:!)n _2()n ) + 3U3
:!

3)3
n _

2
2()n ). (4.26)

54



4.3. A Unifying Finite-Sample Convergence Analysis

Proof of Lemma 4.5 is presented in Appendix B.6. At this point, two remarks come in order. By

means of carefully considering a multistep Lyapunov function, a unifying upper bound on the drift

of the Lyapunov function is obtained for both decaying and constant stepsizes. Moreover, the

bound in (4.24) couples drift, consensus error, and average parameter estimation error altogether.

The following two subsections will analyze the average parameter estimation error under decaying

and constant stepsizes separately. The convergence rates of linear-approximate decentralized Q-

learning will then be established for decaying and constant stepsizes.

4.3.1 Decaying Stepsize

When the decaying stepsize in Lemma 4.4 is used, we formally establish the convergence rate

of ‖w̄: −w∗‖ in the following theorem, which relies critically on the results in Lemmas 4.1–4.5. Its

proof is provided in Appendix B.7.

Theorem 4.6. Let Assumptions 4.1 and 4.2 hold. Let n > 0 and )n ≥ 1 satisfy _1()n , 1) <

)−1
n log(1 + )n )X/2 − n. Choosing stepsize U: = Ū!−1/: with Ū < min{!Un , (1 − 22)/2}. Then for

all : ≥ 1, we have that

1

#
E

[
‖w̄: −w∗‖2

]
≤ 225

#:
(4.27)

where 25 := max{E
[
C)n ,1

]
, 24n

−1Ū−2)−1
n exp(2Ū)n )}, and 24 is a constant defined in (B.75).

Note that 22 reflects the connectivity of the communication graph [133]. When 22 = 0, each

agent = can directly exchange local weight w= with the other agents in the system. When 22

increases from zero to one, each agent = can directly exchange local weight w= with less and less

agents in the system. When 22 = 1, each agent cannot talk with other agents. Based on Lemma

4.4 and Theorem 4.6, we have the following observations.

• Based on (4.4), we observe that smaller 22 leads to smaller 22 + 2Ū given Ū, and thus the

first term on the RHS of (4.4) converges faster.

• As shown in (B.42), we observe that 23 is a monotonically increasing function of 22. Given

Ū, we observe that a smaller value of 22 can make the second term on the RHS of (4.4)

converge faster.
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• From (B.75), we observe that 24 is a monotonically increasing function of 22. Hence, the

term ‖w̄: −w∗‖2 converges faster with a smaller value of 22 based on (4.27).

Based on the above three observations, we conclude that the linear-approximate decentralized

Q-learning converges faster when each agent = has more agents to exchange directly the local

weight (i.e., smaller value of 22).

Since )n reflects the mixing time of the #-agent MDP, we observe that the terms E
[
C)n ,1

]
and 24n

−1Ū−2)−1
n exp(2Ū)n ) are monotonically increasing with )n . If an initial state distribution is

close to the stationary distribution induced by a behavior policy µ, the mixing time of the #-agent

MDP decreases. Thus, the convergence rate of the linear-approximate decentralized Q-learning

is improved.

Given the fact that all stochastic gradients in (4.10) and the initialization w1 are bounded, it is

evident that E
[
C)n ,1

]
= 1

2

∑)
C=1‖w̄C −w∗‖2 is bounded. Using E

[
‖w: −w∗‖2

]
≤ 2E

[
‖w: − w̄: ‖2

]
+

2E
[
‖w̄: −w∗‖2

]
, and putting the results of Theorem 4.6 and Lemma 4.4 together, we can derive

the convergence rate for the linear-approximate decentralized Q-learning in Algorithm 4.

Corollary 4.7. Under the assumptions and conditions in Theorem 4.6, the following inequality

holds for all : ≥ 1

1

#
E

[
‖w: −w∗‖2

]
≤ 2

#
(22 + 2Ū)2:E

[
‖�w1‖2

]
+ 225

#:
+

2Ū222
3A

2
max

:2
. (4.28)

Corollary 4.7 characterizes the relationship between convergence rate of w: and iteration

index :. The first and the third terms on the RHS of (4.28) correspond to the convergence of

w: to w̄: at rate 1/:2; while the second term incorporates a gradient bias that vanishes at rate

1/:. Corollary 4.7 shows that Algorithm 4 with suitable decaying stepsizes enjoys a sub-linear

convergence rate of O (1/:). It is known that tabular Q-learning converges at rate O (1/:) too

[81]. We conclude that the rate of our linear-approximate decentralized Q-learning matches that

of tabular Q-learning. Moreover, when compared with the finite-sample results of the centralized

linear-approximate Q-learning in [87], our error bounds in (4.28) hold for all : ≥ 1, whereas

those of [87] become available only after a mixing-time of updates. Moreover, our convergence

rate O (1/:) is tighter than the rate O (log(:)/:) provided in [87].
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4.3.2 Constant Stepsize

Leveraging Lemmas 4.1–4.5, we establish the convergence rate of ‖w̄: − w∗‖ with constant

stepsizes in Theorem 4.8. Its proof is provided in Appendix B.8.

Theorem 4.8. Let Assumptions 4.1 and 4.2 hold. Choose n > 0 and )n ≥ 1 such that _1()n , 1) <

X/2 − n. Fix any constant stepsize U = Ū!−1 with Ū < min{!Un , (1 − 22)/4}. Then, it holds for all

: ≥ 1 that

1

#
E

[
‖w̄: −w∗‖2

]
≤

2E
[
C)n ,1

]
#

2:−1
6 + _5(: − 1) + 2Ū

n)n

)n −1∑
g=0

(1 + Ū)2g27 (4.29)

where 26 = 1 − Ūn)n /
∑)n −1
g=0 (1 + Ū)2g, 27 =

8A2max

!2 (1−22)_3()n , Ū!−1) + ) 2
n �

2

#
[6 + 2_2()n ) + nŪ)n +

6Ū)n _
2
2()n )] and

_5(:) =
4_3

(
)n , Ū!

−1
)
[2:6 − (22 + 2Ū)2:]E

[
‖�w1‖2

]
#

[
26 − (22 + 2Ū)2

] +
8Ū21�

2(2:6 − d:)
# (26 − d) (1 − d)

. (4.30)

Again combining Theorem 4.8 and Lemma 4.4, the convergence rate of Algorithm 4 with

constant stepsizes can be summarized in the following result.

Corollary 4.9. Under the same assumptions and conditions in Theorem 4.8, it holds for all : ≥ 1

that

1

#
E

[
‖w: −w∗‖2

]
≤

2E
[
C)n ,1

]
#

2:−1
6 + _5(: − 1) +

2E
[
‖�w1‖2

]
#

(22 + 2Ū)2(:−1) + 2Ū28 (4.31)

where 28 =
27
n)n

∑)n −1
g=0 (1 + Ū)2g +

4ŪA2max

!2 (1−22) .

Corollary 4.9 asserts that Algorithm 4 converges exponentially fast to a neighborhood of the

optimal vector w∗, whose size can be made arbitrarily small by taking small enough U. Specifi-

cally, the first two terms in (4.31) are associated with the linear convergence of E
[
‖w̄: −w∗‖2

]
,

the third term captures the convergence of E
[
‖w: − w̄: ‖2

]
, while the last term defines the

neighborhood. We further observe that a smaller stepsize can increase the convergence rate of

E
[
‖w: − w̄: ‖2

]
at the expense of sacrificing that of E

[
‖w̄: −w∗‖2

]
. Different from the two-phase

convergence behaviors [84, 86, 87, 92], our results feature a single-phase convergence to an Ū-

neighborhood of the optimal vector w∗.
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4.4 Numerical Results

In this section, we present simulation results to demonstrate the performance of linear-

approximate decentralized Q-learning. We consider a six-agent MDP, where the six agents can

talk through a predefined topology. The six-agent MDP has 20 states, and each agent can choose

three actions. For each state-action pair, the reward is generated by following the standard uni-

form distribution, and the feature vector is generated by cosine functions. Dimension of features

3, value of W and stepsize U: are respectively set as 30, 0.7, and Ū = [̄/! (: + 3 × 105) where

! = 1 + W. For each action, the state transition matrix is set as 1
20120×20. The mixing matrix B

of the predefined topology is set as


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. (4.32)
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Figure 4.2: Convergence behavior of the proposed linear-approximate decentralized Q-learning.

Figure 4.2 shows the convergence of the linear-approximate decentralized Q-learning under

different values of W. Given discounting factor W, we observe that a larger [̄ leads to a faster

convergence. For example, Fig. 4.2(a) shows that it takes 6×105 iterations to convergence for the
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case [̄ = 100, while extra 3×105 iterations are required by the case [̄ = 60 to converge. Given [̄, we

observe that a larger discounting factor W requires more iterations to converge. When comparing

Fig. 4.2(a) and Fig. 4.2(b), we observe that the case with [̄ = 100 and W = 0.5 takes around

6× 105 iterations to converge. When W increases to 0.9 given [̄ = 100, it requires 8× 105 iterations

to converge. This is because a larger discounting factor W requires the Q-function to store more

historical information, which slows down the linear-approximate decentralized Q-learning.

4.5 Summary

In this chapter, we have addressed policy optimization in a collaborative MARL setting, where

agents cooperate to learn an optimal Q-function in a fully decentralized manner allowing only

simple neighboring communications. We have proposed a decentralized Q-learning algorithm.

Considering a single state-action trajectory of a multi-agent MDP, we have established the con-

vergence rates of the proposed algorithm for decaying and constant stepsizes. Our rate results

match the rates of tabular Q-learning, but improve upon those of existing linear-approximate

centralized Q-learning.
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Chapter 5

Grid-Energy Expenditure

Minimization in SGPCSs

Applying renewable energy to wireless communication systems is an effective way to reduce

the energy bills of wireless operators. When a BST is solely powered by renewable energy, the

unpredictable and intermittent arrival of renewable energy can result in power outages of BST.

Therefore, the BST needs to obtain electricity from the power grid and renewable resources.

While the harvest-store-use and harvest-use-store strategies suffer from the imperfections of stor-

age media, the harvest-use-trade strategy can avoid such imperfections (See Chapter 1). Besides,

the harvest-use-trade strategy can also generate revenue for wireless operators by selling surplus

harvested energy to the power grid by using the two-way energy-trading capability in SGPCS.

Therefore, this chapter aims at solving the TAEGEE minimization problem in a single-cell SG-

PCS by considering the random system states (e.g., CSI, ESI, and packet arrival) and long-term

communication QoS constraints. The decisions are dependent across different slots when optimiz-

ing a time-average expectation under long-term constraints. The analysis method of Lyapunov

learning is adopted to reformulate the TAEGEE minimization problem as per-slot subproblems.

Solving each subproblem, the BST can directly obtain beamforming vectors for each slot. Since

each subproblem is non-convex, two algorithms (i.e., SABF and ZFBF algorithms) are proposed

to obtain the suboptimal solution to each subproblem. The convergence behaviors of SABF and

ZFBF algorithms are established, and the corresponding computational complexities are analyzed.

Besides, the properties of the obtained beamforming vectors are investigated.
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Figure 5.1: An illustration of SGPCS with # UEs.

5.1 System Model and Problem Statement

Consider the downlink transmissions of an SGPCS with a BST and # UEs. The BST is

equipped with 3 antennas, and each UE is equipped with a single antenna. Fig. 5.1 shows

that the BST is powered by the smart grid and energy harvesters, such as photovoltaic panels

and wind turbines. The BST can obtain instantaneous CSI by exploiting channel reciprocity and

handshaking signals. The UEs receive information from the BST via beamforming in the downlink

period. The SGPCS operates in discrete-time mode with index :, : = 1, 2, . . ., denoting a unit

duration; therefore, the term “power” and “energy” can be used interchangeably. We assume that

the channel fading and renewable energy arrivals follow the block-based model, where the channel

coefficient vectors and renewable energy arrival rate remain constant during each slot and vary

over different time scales. Specifically, the CSI changes over different slots, and the ESI varies

over several slots. This assumption is reasonable because the coherence time of the renewable

energy arrival is generally longer than the channel coherence time [134]. In this chapter, we do not

consider the storage of renewable energy; therefore, the BST can sell the surplus renewable energy

to (or purchase energy from) the power grid via a smart meter. Moreover, such an operation can

reduce the GEE of SGPCS.
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5.1. System Model and Problem Statement

5.1.1 Signal Model

Allocating each UE = with a beamforming vector w=, the received signal at the UE = at slot

: is obtained as

H=,: = h
H

=,:w=,: +
#∑
;≠=

hH

=,:w;,: + I=,: (5.1)

where I=,: ∼ C N
(
0, f2

=

)
is the additive white Gaussian noise (AWGN) at UE =; F=,: is the single-

stream beamforming vector for the UE = in slot :; and h=,: ∈ C3 is the channel coefficient vector

of UE = in slot :, and each entry of h=,: is a circularly-symmetric complex Gaussian (CSCG)

random variable with mean zero and variance l−1
= , where l= is the pathloss of UE =. Here, we

note that the vector h=,: captures the composite effects of multipath fading and pathloss. We

consider that the SGPCS operates in time-division-duplex mode. At the beginning of each slot,

each UE sends a pilot signal to the BST. After receiving the pilot signals, the BST estimates the

channel associated with each UE that sends the pilot signal. Since each UE facilitates each uplink

transmission with a pilot signal, the BST can exploit the uplink reciprocity to update periodically

the downlink CSI for BST-UE links.

The received signal-to-interference-plus-noise ratio (SINR) of UE = in slot : is given as

SINR=,: =
|hH

=,:
w=,: |2∑#

;≠= |hH

=,:
w;,: |2 + f2

=

. (5.2)

A certain amount of power is consumed to enable the information transmission [135]. In

particular, the power consumption of SGPCS is denoted by

%BST

: =
1

[

#∑
==1



w=,:

2 + %CIR (5.3)

where [ is the efficiency of the power amplifier; the term %CIR is the circuit power which is

calculated as [135]

%CIR = 0.87%SP + 0.13%SP + 0.0332%SP (5.4)

where the linear term of 3 in (5.4) represents power overhead of MISO pilots, and the quadratic

term of 3 in (5.4) stands for power overhead of MISO signal processing. Note that since our

objective is to minimize the energy expenditure for access links, we ignore the power consumed
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5.1. System Model and Problem Statement

for backhaul transmission in this work.

5.1.2 Grid Energy Expenditure Model

Since the renewable energy arrival varies over several slots, we denote the renewable energy

arrival rate in slot : by �HAV

:
. Setting the price of purchasing (selling) a unit energy from (to)

the power grid as W1 > 0 (WB > 0), the GEE in slot : is calculated as

� (%BST

: ) = W1
[
%BST

: − �HAV

:

]+ − WB [�HAV

: − %BST

:

]+
(5.5)

where [G]+ = max[G, 0]. To avoid the operator of SGPCS making non-justifiable profit, the

operator of smart grid should set W1 ≥ WB > 0.

5.1.3 Packet Rate and Traffic Queues

For the wireless data traffic, multiple modulation and coding schemes (MCSs) can be used

to achieve tradeoff between the data rate and the transmission reliability [136]. High order

modulation schemes, which allow more information bits to be transmitted per symbol, shorten

the Euclidean distance of the signal constellation points. Therefore, more errors occur in the

decoding process. Various coding schemes, accompanied with the modulation schemes, are used

to adapt to the channel variations. Decreasing the coding rate leads to a decrease in the effective

packet rate. Suppose that a packet has � information bits, and an error occurs when one of the

� information bits is erroneously decoded. Hence, packet rate of UE = in slot : is obtained as

20,=

�∏
g=1

[
1 − %g (SINR=,:)

]
(5.6)

where 20,= is packet transmission rate of UE = in slot :, and %g (SINR=,:) is the error probability

of gth bits for UE = in slot :. Using the approximation method developed in [137], we obtain the

correct packet reception rate as

20,=

1 + exp(−21,= [10 log10(SINR=,:) − 22,=])
(5.7)

where 21,= and 22,= are MCS specific parameters.

63



5.1. System Model and Problem Statement

Dividing the packet departure process and packet arrival process at UE = by 20,=, we obtain

the normalized packet rate as [20]

A=,: =
1

1 + exp(−21,= [10 log10(SINR=,:) − 22,=])
. (5.8)

Given the fixed MCS and noise-free channel model, the BST-UE rate is determined by 20,= as

shown in (5.6) and (5.7). When noise and interference are considered, decoding errors may occur

for each bit of a packet. In our formulation, we consider that a packet can be correctly decoded

when each bit of the packet is correctly decoded. Therefore, the packet rate, its approximate

version, and its normalized approximate version are respectively shown in (5.6), (5.7), and (5.8).

In other words, the normalized packet rate is a sigmoid function of SINR as shown in (5.8) when

the joint impacts of data rate and decoding error are considered. Besides, the packet rate of UEs

are controlled by tuning adaptively the beamforming vectors of UEs as shown in (5.8).

The BST maintains # access queues to buffer the random arrival packets for the corresponding

to the # UEs. Denote the backlog of each access queue = in slot : by @=,: . Thus, the backlog of

access queue = evolves as

@A

=,:+1 =
[
@A

=,: − A=,:
]+ + a=,: (5.9)

where a=,: ∈ (0, 1) is normalized packet arrival rate, which is assumed to be an independent and

identically distributed over different slots with mean value ā= = E
[
a=,:

]
.

5.1.4 Problem Statement

After obtaining the instantaneous CSI and ESI, the BST performs dynamic beamforming

to minimize the time-average expectation of GEE in the SGPCS with harvest-use-trade proto-

col. Based on the aforementioned description, the time-average GEE minimization problem is

mathematically formulated as follows.

• Access queue constraints:

Traffic queue @A

=,:
, n = 1, . . . , N, is mean rate stable. (5.10)
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5.2. Dynamic Cross-Layer Beamforming via Lyapunov Learning

• UEs’ SINR constraints:

SINR=,: ≥ WREQ
= , = = 1, . . . , # (5.11)

where WREQ
= is required SINR of UE =. This set of constraints is used to guarantee that the

packet error probability of each WN is at an acceptable level in slot :.

• Transmission power constraint: Due to the circuit limitation, the transmission power is

limited by
#∑
==1



w=,:

2 ≤ %max (5.12)

where %max is the maximum transmit power of BST.

Our objective is to minimize the time-average expectation of GEE under the constraints on

access queue (5.10), instantaneous SINR requirement (5.11), and transmit power (5.12). To in-

corporate the uncertainty of ESI, the objective function is defined as the time-average expectation

of GEE. Therefore, we can obtain the corresponding problem via a stochastic optimization model

as

min
{F=,: }=,:

lim
 →∞

1

 

 ∑
:=1

E
[
� (%BST

: )
]

(5.13a)

s.t. (5.10) − (5.12). (5.13b)

The optimization problem in (5.13) is a cross-layer optimization because it considers the effects

of CSI, ESI, and packet failure while designing the beamforming vectors.

5.2 Dynamic Cross-Layer Beamforming via Lyapunov Learning

Since the problem (5.13) includes the time-average objective function and time-average con-

straints in (5.10), it is challenging to solve the problem (5.13) via standard convex optimization.

Therefore, we leverage the Lyapunov learning technique to obtain a set of slot-by-slot subprob-

lems, whose solutions satisfy the time-average constraints in (5.10). Moreover, we also reveal a

tradeoff relation between the GEE and access delay of UEs.

We first construct a Lyapunov drift-plus-penalty function with respect to the time-average
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5.2. Dynamic Cross-Layer Beamforming via Lyapunov Learning

objective (5.13a) and constraints in (5.10) as

�
(
qA

:

)
++E ]1,:

[
� (%BST

: ) |q
A

:

]
(5.14)

where ]1,: := {h=,: , �HAV

:
, a=,: }#==1 is the set of random sources; qA

:
:= [@A

1,: , . . . , @
A

# ,:
]; and + > 0

is an introduced control parameter. The one-slot conditional drift function �
(
qA

:

)
is defined as

�
(
qA

:

)
:=

1

2
E ]1,:

[

qA

:+1


2 −



qA

:



2 |qA

:

]
. (5.15)

Lemma 5.1. When the random sources in ]1,: are independent and identically distributed over

slots, the upper bound of Lyapunov drift-plus-penalty function in (5.14) is derived as [30]

�
(
qA

:

)
++E ]1,:

[
� (%BST

: ) |q
A

:

]
≤ # ++E ]1,:

[
� (%BST

: ) |q
A

:

]
+

#∑
==1

@A

=,:E ]1,:
[
a=,: − A=,: |qA

:

]
. (5.16)

It can be shown that the minimizer to the right-hand side of (5.16) given the random set ]1,:

and backlog of access queues qA

:
is also a feasible solution to the problem (5.13). Moreover, a

tradeoff relation between the GEE and the average backlog of the traffic queues will be revealed

in Theorem 5.2. The introduced control parameter + is used to control the tradeoff between the

GEE and the average backlog of the traffic queues. Thus, the RHS of (5.16) is useful in developing

the dynamic cross-layer beamforming algorithm.

We observe that the constant # and the term E ]1,:
[
a=,: |qA

:

]
have no effect on the beamforming

vectors. Minimizing the conditional expectation E ]1,:

[
+� (%BST

:
) −∑#

==1 @
A

=,:
r=,: |qA

:

]
can be ma-

nipulated as minimizing +� (%BST

:
) −∑#

==1 @
A

=,:
A=,: after obtaining the random set ]1,: and backlog

of access queues qA

:
according to the principle of opportunistically minimizing an expectation [30,

Section 1.8]. Hence, we can simplify the original optimization problem (5.13) according to (5.16)

as

min
{w=,: }=,:

+� (%BST

: ) −
#∑
==1

qA

=,:A=,: (5.17a)

s.t. SINR=,: ≥ WREQ
= , = = 1, . . . , # (5.17b)

#∑
==1



w=,:

2 ≤ %max. (5.17c)
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5.2. Dynamic Cross-Layer Beamforming via Lyapunov Learning

Note that the objective function of problem (5.17) is non-convex, which is still challenging to

be handled by standard convex optimization methods. Hence, we are motivated to obtain the

suboptimal solutions to the problem (5.17). Besides, different beamforming techniques induce

different feasible regions of problem (5.17). We will introduce the feasibility check methods for

the developed beamforming techniques.

Algorithm 5 Dynamic Cross-Layer Beamforming Framework

1: In slot :, the BST observes backlogs of access queues qA
:

, channel coefficient vectors {h=,: }#==1 and the
amount of harvested energy �HAV

:

2: if the optimization problem (5.17) is feasible then
3: The BST obtains GEE of slot : via solving suboptimally the optimization problem (5.17)
4: else
5: The BST obtains GEE of slot : via choosing randomly the beamforming vectors {w=,: }#==1 under

the transmit power constraint (5.17c)
6: end if
7: The BS updates backlogs of access queues qA

:
according to (5.9)

When the optimization problem (5.17) is feasible, we can apply the respective algorithm

to solve (5.17) as shown in line 3 of Algorithm 5. When the optimization problem (5.17) is

infeasible, the BST will equally allocate the transmit power to each UE and randomly generate a

beamforming vector as shown in line 5 of Algorithm 5. Following the procedures in Algorithm 5,

the beamforming vectors {w=,: }= are updated per slot. Algorithm 5 achieves a tradeoff between

the GEE and access delay of UEs, and the quantified tradeoff relation is revealed in Theorem 5.2.

Theorem 5.2. Suppose the random sources in {]1,: }: are independent and identically distributed

over slots, and the initial expected backlog of access queues E
[
‖qA

1 ‖2
]
< ∞. When the expected

traffic arrival rate ā= is in the stable region of system for = = 1, . . . , #, the proposed Algorithm 5

achieves the following properties.

1. Each access queue @A

=,:
is mean rate stable [30] for = = 1, . . . , #.

2. The time-average expected GEE is upper bounded by

lim
 →∞

1

 

 ∑
:=1

E
[
� (%BST

: )
]
≤ #

+
+ �SOPT (5.18)

where �SOPT is the maximum suboptimal value of GEE in (5.17).
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3. The average backlog of access queues is upper-bounded by

lim
 →∞

1

 

 ∑
:=1

#∑
==1

E
[
@A

=,:

]
≤
# ++

(
�SOPT − �min

)
n

(5.19)

where �min is the minimum GEE.

Following the Little’s law, the backlog of access queues is proportional to the access delay of

UEs (i.e., ā=×delay = average queue length). Therefore, we obtain two conclusions from Theorem

5.2: 1) the output of Algorithm 5 is a feasible solution to the problem (5.13), and 2) the tradeoff

between the GEE and access delay of UEs is quantitatively revealed. More specifically, the time-

average expected GEE of SGPCS is reduced by increasing the control parameter � at the expense

of increasing access delay of UEs, and vice versa. We also observe that the proposed Algorithm 5

does not have a limitation on the number of antennas for UEs; therefore, the proposed Algorithm

5 can be used to the multiple-input and multiple-output channels.

5.3 Design of Beamforming in Each Slot

We observe that the BST needs to consume a certain amount of power to guarantee the

instantaneous SINR constraints in (5.17c). Since the transmit power of BST is upper-bounded

by %max, the problem (5.17) can be infeasible under certain CSI and network scenarios when

{WREQ
= }#

==1 is too high. Hence, the feasibility of (5.17) should be checked via solving the following

optimization problem

find {w=,: }#==1

s.t. SINR=,: ≥ WREQ
= , = = 1, . . . , #

#∑
==1



w=,:

2 ≤ %max.

(5.20)

The optimization problem (5.20) can be solved by standard optimization techniques, such as

a second-order cone programming [138] and uplink-downlink duality based algorithm [139].

To deal with the non-convex terms {SINR=,: }#==1 in the objective function (5.17), we intro-

duce a set of auxiliary variables {_1,=,: }#==1. Performing several mathematical manipulations, the
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5.3. Design of Beamforming in Each Slot

optimization problem (5.17) is recast as

min
{w=,: ,_1,=,: }#==1

+� (%BST

: ) −
#∑
==1

@A

=,:

1 + exp(−21,= [10 log10(SINR=,:) − 22,=])
(5.21a)

s.t. SINR=,: ≥ _1,=,: , = = 1, . . . , # (5.21b)

SINR=,: ≥ WREQ
= , = = 1, . . . , # (5.21c)

#∑
==1



w=,:

2 ≤ %max. (5.21d)

Note that the constraints in (5.21c) are active at each suboptimal point; otherwise, the ob-

jective function (5.21a) can take a strictly smaller value by increasing {_1,=,: }#==1. Based on this

observation, we can also conclude that each local optimal value of _1,=,: satisfies the following

inequality

_1,=,: ≥ WREQ
= , = = 1, . . . , #. (5.22)

The major challenges in solving (5.21d) are two folds: 1) the sum-of-ratios component in the

objective function (5.21a), and 2) the non-convex constraints (5.21b) and (5.21c). We leverage

the Lagrangian duality theorem to deal with the sum-of-ratios component in (5.21a) and obtain

an equivalent form of problem (5.21), which is established in Theorem 5.3.

Theorem 5.3. If {w=,: , _1,=,: }#==1 satisfy the Karush-Kuhn-Tucker (KKT) conditions of the op-

timization problem (5.21), we can conclude that there exist parameters

23,=,: =
1

1 + exp(−21,= [10 log10(_1,=,:) − 22,=])
(5.23a)

24,=,: =
@A

=,:

1 + exp(−21,= [10 log10(_1,=,:) − 22,=])
(5.23b)

such that an optimization problem has the same KKT conditions as in (5.21), which is shown as

min
{w=,: ,_1,=,: }#==1

+� (%BST

: ) +
#∑
==1

23,=,:24,=,: exp(−21,= [10 log10(_1,=,:) − 22,=]) (5.24a)

s.t. SINR=,: ≥ _1,=,: , = = 1, . . . , # (5.24b)

SINR=,: ≥ WREQ
= , = = 1, . . . , # (5.24c)
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#∑
==1



w=,:

2 ≤ %max. (5.24d)

We note that the GEE � (%BST

:
) in (5.24a), can be reformulated as

� (%BST

: ) = (W1 − WB)
[
%BST

: − �HAV

:

]+ + WB [%BST

: − �HAV

: ] (5.25)

which is a convex function of {w=,: }#==1. The second term of (5.24a) is a convex function of

{_1,=,: }#==1. Hence, the objective function (5.24a) is a convex function of {w=,: , _1,=,: }#==1. Intro-

ducing two constants 23,=,: and 24,=,: , Theorem 5.3 shows the equivalence between the problems

(5.21) and (5.24). Moreover, the objective function in (5.24) is strictly convex such that the

complexity of obtaining the solution to (5.24) is lower than that of (5.21). In the remaining part

of this chapter, the design of algorithm is based on the optimization problem (5.24).

5.3.1 Successive Convex Approximation Based Beamforming

To handle the non-convex constraints in (5.24b), we use the successive approximation tech-

nique. Introducing another set of auxiliary variables {_2,=,: }#==1, we can reformulate the optimiza-

tion problem (5.24) as

min
{Y1,=,: }#==1

+� (%BST

: ) +
#∑
==1

23,=,:24,=,: exp(−21,= [10 log10(_1,=,:) − 22,=]) (5.26a)

s.t.
#∑
==1



w=,:

2 ≤ %max (5.26b)

hH

=,:w=,: ≥ _2,=,:

√
W

REQ
= , = = 1, . . . , # (5.26c)

hH

=,:w=,: ≥ _2,=,:

√
_1,=,: , = = 1, . . . , # (5.26d)√√√

f2
= +

#∑
;≠=

���hH

=,:
w;,:

���2 ≤ _2,=,: , = = 1, . . . , # (5.26e)

Im
(
hH

=,:w=,:

)
= 0, = = 1, . . . , # (5.26f)

where Y1,=,: := {w=,: , _1,=,: , _2,=,: } is the set of optimization variables, and the operator Im(G)

takes the imaginary part of a complex value G.

We justify the equivalence between the problems (5.24) and (5.26) based on the following
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two arguments: 1) forcing the phase of hH

=,:
w=,: to zero does not change the value of the objec-

tive function since rotating the phase of w=,: leads to the same value of |hH

=,:
w=,: |, and 2) the

constraints in (5.26e) are active. See Appendix C.4 for detailed proof.

The remaining non-convexity of problem (5.26) comes from the constraints in (5.26d). We

recast (5.26d) into a quadratic-over-linear term as

|hH

=,:
w=,: |2

_1,=,:
≥ _2

2,=,: (5.27)

which is a joint convex function of w=,: and _1,=,: , and has a liner lower bound as

|hH

=,:
w=,: |2

_1,=,:
≥

2Re
(
wg,H

=,:
h=,:h

H

=,:
w=,:

)
_g1,=,:

−
(
|hH

=,:
wg
=,:
|2

_g1,=,:

)
_1,=,: , = = 1, . . . , #. (5.28)

where g represents the iteration index.

Using (5.28), we obtain the convex approximation of the non-convex constraints in (5.26d)

successively in each iteration g as

2Re
(
wg,H

=,:
h=,:h

H

=,:
w=,:

)
_g1,=,:

−
(
|hH

=,:
wg
=,:
|2

_g1,=,:

)
_1,=,: ≥ _2

2,=,: , = = 1, . . . , #. (5.29)

Finally, we obtain a convex approximation of problem (5.24) as

min
{Y1,=,: }#==1

+� (%BST

: ) +
#∑
==1

23,=,:24,=,: exp(−21,= [10 log10(_1,=,:) − 22,=])

s.t. (5.26b), (5.26c), (5.26e), (5.26f) and (5.29).

(5.30)

Using (5.23a), (5.23b) and (5.30), we summarize the procedures of the SABF algorithm in

Algorithm 6. The proposed SABF algorithm converges to a solution that satisfies the KKT

conditions of (5.21), and the proof is relegated to Appendix C.5.

5.3.2 Zero-Forcing Beamforming

The SABF algorithm incurs a high computational complexity since multiple auxiliary variables

are introduced. Therefore, we are motivated to investigate the low-complexity algorithm by using
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Algorithm 6 SABF Algorithm

1: Initialize: iteration index g = 0, stop threshold n , maximum number of iterations )max
1 , and backlogs

of access queues qA
:

2: BST obtains a feasible point {w0
=,:
}#
==1 via (5.20)

3: BST respectively updates {_0
1,=,:
}#
==1, {20

3,=,:
}#
==1, and {20

4,=,:
}#
==1 via (5.22), (5.23a), and (5.23b)

4: repeat
5: g ← g + 1
6: Via {wg−1

=,:
, _g−1

1,=,:
, 2g−1

3,=,:
, 2g−1

4,=,:
}#
==1, BST solves the problem (5.30), and obtains {wg

=,:
, _g

1,=,:
}#
==1

7: BST updates the following parameters:

2g3,=,: =
1

1 + exp(−21,= [10 log10(_g1,=,: ) − 22,=])

2g4,=,: =
@A
=,:

1 + exp(−21,= [10 log10(_g1,=,: ) − 22,=])

8: BST stacks cg
3,:

:= [2g
3,1,:

, . . . , 2g
3,# ,:

] and cg
4,:

:= [2g
4,1,:

, . . . , 2g
4,# ,:

]

9: until




cg3,:−cg−13,:







cg−13,:




 ≤ n and




cg4,:−cg−14,:







cg−14,:




 ≤ n or g > )max

the ZFBF technique, where the beamforming vectors are designed to null the interference among

UEs. However, to perform ZFBF, the number of transmission antennas should be equal to or

larger than the number of UEs (3 ≥ #).

To derive the ZFBF vector, we first decouple the power ?=,: from the corresponding beamform-

ing vector w=,: , = = 1, . . . , #. Then, we define the channel coefficient matrix and beamforming

matrix as H: := [h1,: , . . . ,h# ,:] and W: := [w1,: , . . . ,w# ,:]. One each choice of W: that has

zero-interference is the pseudo-inverse of H: as

W: =H:

(
HH

:H:

)−1
. (5.31)

Since HH

:
W: = I# , we respectively obtain the ZFBF vector and receive signal-to-noise ratio

for UE =

w=,: =W: (:, =) and SNR=,: =
?=,:

f2
=

. (5.32)

Using the beamforming vector w=,: in (5.32), the effective channel gain of UE = is ‖w=,: ‖−2
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[140]. Based on (5.32) and effective channel gains {‖w=,: ‖−2}#
==1, we obtain

min
{?=,: }#==1

+� (%BST

: ) +
#∑
==1

23,=,:24,=,: exp(−21,= [10 log10(?=,:f−2
= ) − 22,=])

s.t.
#∑
==1

?=,:


w=,:

2 ≤ %max

?=,: ≥ WREQ
= f2

= , = = 1, . . . , #.

(5.33)

Note that the feasibility check of (5.33) as a linear problem is

find {?=,: }#==1

s.t.
#∑
==1

?=,:


w=,:

 ≤ %max

?=,: ≥ WREQ
= f2

= , = = 1, . . . , #.

(5.34)

The corresponding 23,=,: and 24,=,: reduce to

23,=,: =
1

1 + exp(−21,= [10 log10(?=,:f−2
= ) − 22,=])

(5.35a)

24,=,: =
@A

=,:

1 + exp(−21,= [10 log10(?=,:f−2
= ) − 22,=])

. (5.35b)

Based on the above analysis, we propose the ZFBF algorithm, the detailed procedures of which

are summarized in Algorithm 7, and the proposed ZFBF algorithm converges to a KKT point of

(5.24) with 3 ≥ #.

5.3.3 Complexity Analysis

The major complexity of the SABF algorithm in slot lies in the iteration loop in lines 6–8.

Therefore, we focus on analyzing the computational complexity of the iteration loop. Moreover,

the major computational complexity in the iteration loop comes from solving problem (5.30)

via the interior-point method. Hence, we evaluate the worst-case computational complexity of

solving (5.30) via the interior-point method and multiply it by the number of iterations )max
1 .

Problem (5.30) belongs to the class of second-order conic optimization. The number of second-

order cone with dimension 3# is # + 1, and the number of linear constraints is 3#. Thus,
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Algorithm 7 ZFBF Algorithm

1: Initialize: iteration index g = 0, stop threshold n , maximum number of iterations )max
1 , and backlogs

of access queues qA
:

2: BST obtains a feasible point {?0
=,:
}#
==1 via (5.34).

3: BST updates {20
3,=,:
}#
==1 and {20

4,=,:
}#
==1 via (5.35a) and (5.35b)

4: repeat
5: g ← g + 1
6: Via {2g−1

3,=,:
, 2g−1

4,=,:
}#
==1, BST solves the optimization problem (5.33), and obtains {?g

=,:
}#
==1

7: BST updates the following parameters:

2g3,=,: =
1

1 + exp(−21,= [10 log10 (?g=,:f
−2
= ) − 22,=])

2g4,=,: =
@A
=,:

1 + exp(−21,= [10 log10 (?g=,:f
−2
= ) − 22,=])

8: BST stacks cg
3,:

:= [2g
3,1,:

, . . . , 2g
3,# ,:

] and cg
4,:

:= [2g
4,1,:

, . . . , 2g
4,# ,:

]

9: until




cg3,:−cg−13,:







cg−13,:




 ≤ n and




cg4,:−cg−14,:







cg−14,:




 ≤ n or g > )max

the number of iterations to solve (5.30) is O (log n−1
√

4# + 1), where n is the required accuracy

[141, 142]. Since the number of variables is (3 + 2)#, the computational complexity in each

iteration is O ((3 + 2)#2 [3 + 32(#2 + #) + (3 + 2)2#]). The computational complexity of the

SABF algorithm is O (log n−1)max
1

√
4# + 1(3 + 2)#2 [3 + 32(#2 + #) + (3 + 2)2#]). Since the ZFBF

algorithm has # + 1 linear constraints and # variables, following similar arguments, we obtain

the number of iterations to solve (5.33) as O (log n−1
√
# + 1), and the computational complexity in

each iteration is O (# (#2+#+32)). Therefore, the computation complexity of the ZFBF algorithm

is O (log n−1)max
1

√
# + 1# (#2 + # + 32)).

We observe that the ZFBF algorithm has a lower computational complexity than the SABF

algorithm. The next section will show that the SABF algorithm has a lower GEE than the ZFBF

algorithm. Hence, the proposed SABF and ZFBF algorithms provide the operators with flexibility

in balancing the performance and convergence.

5.4 Numerical Results

In this section, we present simulation results to evaluate the proposed dynamic cross-layer

beamforming framework with the SABF and ZFBF algorithms. The pathloss of UE = is calculated
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5.4. Numerical Results

as

l= = 17.3 + 38.3 log10 ^= + 24.9 log10 52 dB (5.36)

where ^= is the link distance of UE =, and carrier frequency 52 = 2.1 GHz.

The BST is associated with three UEs and is equipped with six antennas. The distance between

BST and UE is set as 200 m, and it is a representative value for cell-edge UEs. The AWGN power

is set as 1 × 10−10.7 mW. The power amplifier efficiency, maximum transmit power, baseband

processing power of BSTs are, respectively, set as [ = 0.8, %max = 27 dBm and %SP = 20 dBm.

The minimum SINR requirement WREQ
= = 2 dB. The MCS related factors are set as 21,= = 0.451

and 22,= = 20. Unless otherwise specified, the purchasing and selling prices of a unit energy is

set as W1 = 1.6 × 10−9 cents/slot/mW and WB = 0.6 × 10−9 cents/slot/mW. The average traffic

arrival rate is set as ā= = 0.3 packets/slot, the arrival rate of renewable energy is 150 mW14, and

the duration of slot is set as 1 ms. The value of control parameter + is empirically tuned to

demonstrate tradeoff between the GEE and access delay.
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Figure 5.2: Number of iterations for the SABF and ZFBF algorithms, obtained for 30 different channel
realizations with control parameter + = 0.001 and initial backlog of access queue as @=,0 = 5, = = 1, . . . , #.

Figure 5.2 illustrates the number of iterations for the SABF and ZFBF algorithms obtained

for 30 different channel realizations. We select the initial point of the SABF algorithm as the

output of the ZFBF algorithm when the ZFBF algorithm is feasible; otherwise, we randomly select

a feasible point of SABF algorithm in the feasible region. Therefore, the number of iterations

for the SABF algorithm is counted as the summation of iterations for finding a solution to the

14For notational convenience, milliwatt is used to measure the arrival rate of renewable energy. In our system
setup, 1 mW = 1 × 10−6 joules/slot.
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ZFBF algorithm and the local optimal solution. We observe that the SABF and ZFBF algorithms

can converge to the local optimal value within 30 iterations in most of the considered channel

realizations.
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Figure 5.3: An illustration of moving-average queue dynamics and GEE with window size 50.

Figure 5.3 illustrates the dynamics of access queues of each UE and the GEE over 1000 slots.

The prices of purchasing a unit of grid energy varies per 250 slots, and the prices are set as

1.6 × 10−9 cents/slot/mW, 1.9 × 10−9 cents/slot/mW, 1.3 × 10−9 cents/slot/mW and 1.8 × 10−9

cents/slot/mW. The dynamics of access queues demonstrates that combining the proposed dy-

namic cross-layer beamforming framework with the proposed SABF algorithm and ZFBF algo-

rithm can stabilize the access queues of SGPCS. We also observe that a larger control parameter

+ leads to a larger backlog of access queues and a smaller GEE. We conclude that the access delay

of UEs increases with the control parameter + based on Little’s law. These observations confirm

that the proposed dynamic cross-layer beamforming framework can effectively control the average

transmission power via tuning + . We also observe that the GEE fluctuates at around the 250th,

500th, 750th, and 1000th slot, and the fluctuations come from the variation of the purchasing

price of grid energy.

Figures 5.4 and 5.5 show the tradeoff between the annualized average GEE and access delay
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Figure 5.5: The access delay of UEs under different power budgets %max and required SINR W
REQ
= .

of UEs under different transmit power budgets of BST %max and required SINR W
REQ
= . Here,

the GEE is annualized by considering the duration of a slot as 1 ms. We observe from Fig. 5.4

that the annualized average GEE decreases monotonically with the control parameter + , and the

average access delay of UEs increases with the control parameter + . Therefore, the operator of

SGPCS can tune the control parameter to achieve the target GEE at the expense of access delay

of UEs. The SABF algorithm performs better than the ZFBF algorithm in the annualized average

GEE and access delay under different parameter settings. We also observe that the performance

gap in access delay increases with the control parameter + . For example, the gap of access delay

increases from 0.27 slot to 0.83 slot when the power budget of BST is 24 dBm. This is due to the

fact that a large control parameter + means a stringent demand for GEE and a loose requirement

for access delay. Moreover, a large power budget of BST %max gives the BST more flexibility

to allocate the transmit power over different slots such that the GEE decreases when the power
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budget of BST increases from %max = 24 dBm to %max = 27 dBm.
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Figure 5.6: The impact of required SINR on the annualized average GEE and access delay of UEs.
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Figure 5.7: The impact of energy arrival on annu-
alized average GEE.

Figure 5.6 illustrates the impact of required SINR on the annualized average GEE and access

delay of UEs. We observe that a larger value of required SINR results in a larger GEE between

the SABF and ZFBF algorithms. This observation can be explained by the fact that more energy

needs to be consumed to satisfy the instantaneous SINR requirements. Increasing the value of

required SINR also diminishes the gap of access delay between the SABF and ZFBF algorithms.

This is due to the fact that the ZFBF algorithm can obtain a near-optimal solution in the high

SINR region, for example, WREQ
= ≥ 6 dB in our setting. Fig. 5.7 shows that the annualized average

GEE monotonically decreases with the arrival rate of renewable energy. This observation confirms

that the application of renewable energy can reduce the energy bills of wireless operators. For
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example, the GEE can be reduced by 33.65% and 63.73% when arrival rates of renewable energy

are 150 mW and 300 mW with the control parameter + = 0.003. Besides, Figs. 5.6 and 5.7 also

confirm that the proposed SABF algorithm performs better than the ZFBF algorithm in GEE

and access delay of UEs.

5.5 Summary

We have developed cross-layer beamforming algorithms in the SGPCS using harvest-use-trade

strategy, where the BST can purchase electricity from the smart grid if the harvested energy

is insufficient and sell the surplus harvested energy to generate revenue. We have leveraged a

Lyapunov learning model to formulate the TAEGEE minimization problem. Reformulating the

TAEGEE minimization problem into a set of per-slot Lyapunov drift-plus-penalty minimization

problems, we have revealed a tradeoff between the time-average expected GEE and access delay

of UEs. For example, setting a large value of control parameter + , the GEE can be reduced at

the expense of large access delay of UEs. Therefore, the operators can set the control parameter

according to the arrival rate of renewable energy. Due to the non-convexity of per-slot Lyapunov

drift-plus-penalty minimization problem, two suboptimal algorithms, namely SABF and ZFBF

algorithms, have been proposed. The SABF algorithm outperforms the ZFBF algorithm in both

GEE and access delay of UEs at the expense of a higher computational complexity.
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Chapter 6

Joint Scheduling and Beamforming in

Multi-Cell SGPCS With Energy

Coordination

Chapter 5 investigates the application of renewable energy in a single-cell SGPCS and demon-

strates that using renewable energy can reduce long-term GEE. The present chapter develops

algorithms for integrating renewable energy into a multi-cell SGPCS. Besides, the present chapter

considers the local energy exchanging among BSTs. More specifically, user scheduling, beam-

forming, and energy coordination are investigated in the multi-cell SGPCS, where the BSTs are

powered by a smart grid and renewable energy resources. Heterogeneous energy coordination (i.e.,

energy merchandising with grid and energy exchanging among BSTs) is considered in the multi-

cell SGPCS. On the one hand, users need to be rescheduled over several slots to avoid draining

users’ battery quickly (see discontinuous reception mode15 in LTE). On the other hand, beam-

forming and energy exchanging need to be performed to adapt the channel variations in each slot.

Therefore, a two time-scale resource allocation algorithm is required to minimize the long-term

GEE in the multi-cell SGPCS. While the proposed algorithms in Chapter 5 are designed for one

time-scale resource allocation, a practical two time-scale algorithm is required to schedule users in

each frame16, and obtain the beamforming vectors and amount of exchanged renewable energy in

each slot. Base on the finite-sample analysis method, we prove that the proposed two time-scale

algorithm can asymptotically achieve the optimal solutions via tuning a control parameter. The

computational complexity of the proposed two time-scale algorithm is analyzed.

15https://www.sharetechnote.com/html/Handbook_LTE_DRX.html
16In our system setup, each frame consists of several slots.
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Figure 6.1: An illustration of multi-cell SGPCS.

6.1 System Model and Problem Statement

As shown in Fig. 6.1, we consider the downlink transmission of a multi-cell SGPCS with "

BSTs. Each BST is equipped with 3 antennas. BST < is associated with #< single-antenna UEs.

Therefore, the total number of UEs is # =
∑"
<=1 #<. Each BST connects to the core network

and UEs via an optical-fiber link and wireless links, respectively. Moreover, each BST is powered

by renewable resources (e.g., solar and/or wind) and a smart grid. A two time-scale framework

is considered for scheduling UEs, design beamforming vectors, and exchange renewable energy.

Since the arrival rates of renewable energy and channel-coefficient vectors vary at different time

scales in practice [134], the arrival rates of renewable energy and channel-coefficient vectors are

respectively updated over frames and slots. Here, each frame consists of ) discrete slots. We

respectively denote the indices for the frame and slot as frame 8 and slot : with : = 1, . . . , ) and

8 = 0, 1, . . . ,∞. Following Chapter 5, each slot has unit duration; therefore, the terms “energy”

and “power” are used interchangeably.

6.1.1 Signal Model

Let h8
<,=,:

∈ C3 denote the channel-coefficient vector of link between UE = and BST < (or

the (<, =)th access link) in slot : of frame 8. Each entry of h8
<,=,:

follows CSCG with mean zero

81



6.1. System Model and Problem Statement

and variance l−1
<,=, where l<,= is the pathloss of the (<, =)th access link. We define the scheduled

UE indicator as 0<,= [8] which equals to one when the (<, =)th access link is scheduled at frame

8; otherwise, it equals to zero. Hence, the received signal and SINR of the (<, =)th access link in

slot : of frame 8 are, respectively, denoted as

H<,=,: [8] =
√
0<,= [8]hH

<,=,: [8]w<,=,: [8] +
∑
9≠=

√
0<, 9 [8]hH

<,=,: [8]w<,;,: [8]

+
∑
;≠<

# 9∑
9=1

√
0;, 9 [8]hH

;,=,: [8]w;, 9 ,: [8] + I<,=,: [8] (6.1)

and

SINR<,=,: [8] =
0<,= [8] |hH

<,=,:
[8]w<,=,: [8] |2

� INTRA

<,=,:
[8] + � INTER

<,=,:
[8] + f2

<,=,:
[8]

(6.2)

where the term I<,=,: [8] ∼ C N
(
0, f2

<,=

)
is the AWGN of the (<, =)th access link in slot : of frame

8; w8
<,=,:

is the single-stream beamforming vector for the (<, =)th access link in slot : of frame 8;

and the intra-cell interference and inter-cell interference are, respectively, given as

� INTRA

<,=,: [8] =
∑
9≠=

0<, 9 [8] |hH

<,=,: [8]w<, 9,: [8] |
2 (6.3)

and

� INTER

<,=,: [8] =
∑
;≠<

# 9∑
9=1

0;, 9 [8] |hH

;,=,: [8]w;, 9 ,: [8] |
2. (6.4)

Hence, the data rate of the (<, =)th access link in slot : of frame 8 is given as A<,=,: [8] =

log
(
1 + SINR<,=,: [8]

)
.

Based on (6.1), the consumed power of BST < in slot : of frame 8 is denoted by

%BST

<,: [8] =
1

[

∑
=∈N ACT

< [8 ]

‖w8<,=,: ‖
2 + %CIR

< (6.5)

where the circuit power consumption is defined as %CIR
< := %SP

<

(
0.87 + 0.13 + 0.0332

)
with %SP

< as

the consumed power on baseband processing of BST < [20]; and [ is the power amplifier efficiency

of BSTs. Here, N ACT
< [8] denotes the set of scheduled UEs of BST < in frame 8.
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6.1.2 Energy-Coordination Model

As shown in Fig. 6.1, the BSTs have two options to perform the heterogeneous energy coor-

dination: 1) energy merchandizing via the on-grid power lines; and 2) energy exchanging via the

local power lines.

Energy merchandizing. Since smart meters enable BSTs to trade energy bi-directionally

with the smart grid, BSTs can purchase/sell energy when the renewable energy of the BSTs is

insufficient/surplus. Let W1, and WB respectively denote the price of unit energy when the BSTs

purchase from and sell to the smart grid. Following Chapter 5, we set W1 > WB ≥ 0 to avoid the

redundant energy merchandizing.

Energy exchanging. Another way to share energy is leveraging the local power lines. Due

to the issues of regulation and resistive loss, the BSTs are partially connected as shown in Fig.

6.1. Let s<→;,: [8] and s;→<,: [8] respectively denote the amount of power delivered from BST

< to BST ; and vice versa in slot : of frame 8. Two-way energy flow needs to be avoided in a

specific slot. Hence, we include the energy-flow constraints as

s<→;,: [8] +s;→<,: [8] = 0. (6.6)

The case s<→;,: [8] ≥ 0 indicates that the renewable energy is delivered from BST < to BST

;, and vice versa. Moreover, s<→<,: [8] = 0, < = 1, 2, . . . , ". We formulate the attenuation of

local power lines by considering the efficiency of local power line between BST < to BST ; as

j<→; ∈ (0, 1) with j<→; = j;→<. Let the set N < be the neighbor BSTs who have one-hop local

power lines to BST <. The amount of net exchanged energy via the local power lines for BST <

in slot : of frame 8 is denoted as

�LPE

<,: [8] =
∑
;∈N <

max
{
s<→;,: [8], j<→;s<→;,: [8]

}
. (6.7)

The amount of net exchanged energy in (6.7) is calculated as follows.

• When the value of s<→;,: [8] is positive, the energy is flowing from BST < to BST ; in

slot : of frame 8. The net output energy of BST < and net input energy of BST ; are,

respectively, s<→;,: [8] and j<→;s<→;,: [8]. Therefore, the net output energy of BST ; is
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−j<→;s<→;,: [8]. Recalling the energy-flow constraints in (6.6) and the fact j<→; = j;→<,

the net output energy of BST ; is j;→<s;→<,: [8].

• When the value of s<→;,: [8] is negative, the energy is flowing from BST ; to BST < in slot

: of frame 8. Following similar arguments, we respectively obtain the net energy outputs of

BST < and BST ; as j<→;s<→;,: [8] and s;→<,: [8].

The wireline delivers electricity using electrons, and the electrons are uniformly distributed

in the wireline. When voltage increases between two ends of a wireline, the electricity can be

exchanged between two BSTs in real time. In practical system, changing the direction of electric

current can take some time (i.e., turnaround time). However, we assume the turnaround time to

be zero to exploit the upper bound of grid-energy saving when the renewable energy is used in

the multi-cell SGPCS.

Using energy merchandizing and exchanging, the GEE of BST < in slot : of frame 8 is

calculated as [20]

� (%BST

<,: [8]) = (W1 − WB)
[
%BST

<,: [8] + �
LPE

<,: [8] −
1

)
�HAV
< [8]

]+
+ WB

[
%BST

<,: [8] + �
LPE

<,: [8] −
1

)
�HAV
< [8]

]
(6.8)

where �HAV
< [8] denotes the amount of harvested renewable energy of BST < in frame 8. Since

arrival of renewable energy remains stable in a frame, the amount of harvested renewable energy

by BST < is 1
)
�HAV
< [8].

When the (<, =)th link has a larger inter-cell interference term, BST < will consume more

energy to guarantee a certain SINR requirement based on (6.2). Based on (6.5) and (6.8), the GEE

of BSTs is a function of BSTs’ transmit power and exchanged energy. To reveal the interaction

between exchanged energy and inter-cell interference, we assume the same renewable energy arrival

rates at the two BSTs. When inter-cell interference is zero, the renewable energy will flow from

the low-load BST to the high-load BST17 for the compensation of energy usage. When inter-

cell interference increases, the energy exchanging direction will depend on the level of inter-cell

interference and traffic volume at the two BSTs. When the associated UEs of high-load BST

suffer more interference than UEs of low-load BST, the high-load BST will consume more energy.

17By comparing the traffic volume (i.e., backlogs in access queues), the BST with lower traffic volume than
another BST is termed as low-load BST; otherwise, the BST is termed as high-load BST.
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6.1. System Model and Problem Statement

Therefore, the renewable energy flows from low-load BST to high-load BST.

6.1.3 Traffic Model

Access queue. At each BST, we consider that BST < maintains #< access queues for the

associated UEs. The dynamic equation for the =th access queue of BST < (or the (<, =)th access

queue) is given as

@A

<,=,:+1 [8] = @
A

<,=,: [8] − A<,=,: [8] + a<,=,: [8] (6.9)

where @A

<,=,:+1 [8] and @A

<,=,:
[8] are the backlogs of the (<, =)th access queue in slots : + 1 and :

of frame 8 with @A

<,=,) +1 [8] = @A

<,=,1 [8 + 1]; a<,=,: [8] and A<,=,: [8] are, respectively, the arrival rate

and data rate of the (<, =)th access queue in slot : of frame 8.

Processing queue. At each UE, we consider that UE = of BST < (or the (<, =)th UE)

maintains a processing queue (or the (<, =)th processing queue) for upper layer processing corre-

sponding to the (<, =)th access queue. The dynamic equation for the (<, =)th processing queue

is given as

@U

<,=,:+1(8) = @
U

<,=,: [8] − B<,=,: [8] + A<,=,: [8] (6.10)

where @U

<,=,:+1(8) and @U

<,=,:
[8] are the backlogs at the beginning of slots :+1 and : of frame 8 with

@U

<,=,) +1 [8] = @U

<,=,1 [8 + 1]. We consider the constant processing rate of the (<, =)th processing

queue. Therefore, the processing rate B<,=,: [8] := min{B̃<,=, @U

<,=,:
[8]} where B̃<,= denotes the

constant processing rate of the (<, =)th processing queue.

Here, we consider that the (<, =)th UE is associated with an access queue @A

<,=,:
[8] at the

BST < and a processing queue at the (<, =)th UE. The motivations can be justified as follows.

Since the transmit power of BSTs is finite, the data rate of the (<, =)th UE A<,=,: [8] is limited.

Therefore, a buffer (i.e., access queue) is required at BST < to store the data that has not been

transmitted to the (<, =)th UE. When the (<, =)th UE has limited computational capability, a

buffer (i.e., processing queue) is required to store the unprocessed information bits that have been

received at the (<, =)th UE. Note that the system setup of access and processing queues can be

adopted to delay insensitive traffics (e.g., file transfer and hypertext transfer traffics).

In practical systems, the values of arrival rate a<,=,: [8], data rate A<,=,: [8] and processing rate
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B<,=,: [8] are bounded as

a<,=,: [8] ∈ [0, amax]

A<,=,: [8] ∈ [0, Amax]

B<,=,: [8] ∈ [0, Bmax]

(6.11)

where amax, Amax and Bmax are, respectively, the maximum arrival rate, maximum data rate and

maximum processing rate.

The average arrival rate of the (<, =)th access queue and the average processing rate of the

(<, =)th processing queue are, respectively, given as ā<,= := E
[
a<,=,: [8]

]
and B̄<,= := E

[
B<,=,: [8]

]
.

Moreover, the average arrival rate vector is given as ν̄ = vec(ā1,1, . . . , ā",#" ), and the average

processing rate vector is given as s̄ = vec( B̄1,1, . . . , B̄",#" ).

6.1.4 Problem Statement

Our objective is to minimize the time-average GEE via designing jointly the scheduled UE

indicators {0<,= [8]}<,=,8 in each frame and the beamforming vectors {w<,=,: [8]}<,=,:,8 and ex-

changed renewable energy variables {s<→;,: [8]}<,;,:,8 in each slot. Due to the lack of knowledge

on stochastic arrival of renewable energy and variations of channel states, we consider the following

constraints in the time-average GEE minimization problem:

• Rate-limit constraints:

A<,=,: [8] ≤ @A

<,=,: [8], = = 1, . . . , #< and < = 1, . . . , " (6.12)

which guarantee that each BST does not transmit blank information in slot : of frame 8.

• Dynamic proportional-rate constraints:

A<,=,: [8]
A;, 9 ,: [8]

=
@A

<,=,:
[8]

@A

;, 9 ,:
[8] , = ∈ N ACT

< [8], 9 ∈ N ACT

; [8], <, ; = 1, . . . , " (6.13)

which guarantees that the UE with larger backlog obtains a better service rate in the

respective slot.
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• Slot-level power constraints:

∑
=∈#ACT

< [8 ]



w<,=,: [8]

2 ≤ %max
< , < = 1, . . . , " (6.14)

where %max
< is the maximum transmit power of BST <.

• Queue-stable constraints:

lim sup
�→∞

1

�

�∑
8=1

E
[
@A

<,=,1 [8] + @U

<,=,1 [8]
]
< ∞,∀<, = (6.15)

which guarantee that the data of UEs will be served in finite time.

As a result, the TAEGEE minimization problem is formulated as

min
{w<,=,: [8 ],0<,= [8 ],s<→;,: [8 ] }<,;,=,:,8

lim
�→∞

1

�)

�∑
8=1

)∑
:=1

"∑
<=1

E
[
� (%BST

<,: [8])
]

(6.16a)

s.t. (6.6) and (6.12) − (6.15). (6.16b)

When the proportional ratios are not set according to the backlog at access queues as shown in

(6.13), certain BSTs will waste some time slots. This observation can be justified by the following

three-UE case. Suppose that we have @A

<,1,: [8] = 2 nats/slot/Hz, @A

<,2,: [8] = 3 nats/slot/Hz,

and @A

<,3,: [8] = 5 nats/slot/Hz. Setting the rate ratios of the three UEs as A<,1,: [8] : A<,2,: [8] :

A<,3,: [8] = 1 : 1 : 1. When the optimal rates are A<,1,: [8] = A<,2,: [8] = A<,3,: [8] = 2 nats/slot/Hz

in slot :, the BST cannot send information to the second and third UEs in slots : + 1 to ) of

frame 8 based on the predefined ratio A<,1,: [8] : A<,2,: [8] : A<,3,: [8] = 1 : 1 : 1. Therefore, we use

constraints in (6.13) to allocate adaptively the transmission rate of scheduled UEs without wasting

time slots. Since the scheduled UE indicators are coupled with the beamforming vectors, the

TAEGEE minimization problem (6.16) is challenging to handle via classical convex optimization

methods. Therefore, we are motivated to use the Lyapunov learning technique to obtain a feasible

solution to the TAEGEE minimization problem (6.16). The optimality of a feasible solution is

analyzed. Moreover, we also investigate the tradeoff between the GEE and the end-to-end delay

of UEs.
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6.2 Tradeoff Between Grid Energy Expenditure and

End-to-End Delay

We construct a Lyapunov drift-plus-penalty function as

�
(
qA [8], qU [8]

)
++

"∑
<=1

E ]2,: [8 ]
[
� (%BST

<,: [8])
]

(6.17)

where + is an introduced control parameter; the operator E ]2,: [8 ] [·] is expectation over random

sources ]2,: [8] = {h<,=,: [8], �HAV

<,:
[8], a<,=,: [8], B<,=,: [8]}<,=; and qA [8] and qU [8] are respectively

obtained by stacking the backlogs of access queues and processing queues as

qA [8] := vec(@A

1,1,1 [8], . . . , @A

",#" ,1
[8])

qU [8] := vec(@U

1,1,1 [8], . . . , @U

",#" ,1
[8]).

The one-frame drift function �(qA [8], qU [8]) is obtained as

�
(
qA [8], qU [8]

)
=

1

2
E ]2,: [8 ]

[
‖qA [8 + 1] ‖2 − ‖qA [8] ‖2 + ‖qU [8 + 1] ‖2 − ‖qU [8] ‖2

��qA [8], qU [8]
]
. (6.18)

When random sources in ]2,: [8] are independent and identically distributed over different slots,

we obtain the upper bound of the Lyapunov drift-plus-penalty function in (6.17) as

�
(
qA [8], qU [8]

)
++

"∑
<=1

)∑
:=1

E ]2,: [8 ]
[
� (%BST

<,: [8]) |q
A [8], qU [8]

]
≤)21 ++

"∑
<=1

)∑
:=1

E ]2,: [8 ]
[
� (%BST

<,: [8]) |q
A [8], qU [8]

]
+

)∑
:=1

E>
]2,: [8 ]

[
ν: [8] − r: [8] |qA [8]

]
qA [8] +

)∑
:=1

E>
]2,: [8 ]

[
r: [8] − s: [8] |qU [8]

]
qU [8]

(6.19)

where 21 = 1
2 [(B

max)2+2(Amax)2+ (amax)2]∑"
<=1 #<. The traffic arrival, data rate, and service rate

vectors are obtained as ν: [8] := vec(a1,1,: [8], . . . , a",#" ,: [8]), r: [8] := vec(A1,1,: [8], . . . , A",#" ,: [8]),

and s: [8] := vec(B1,1,: [8], . . . , B",#" ,: [8]), respectively. The proof of (6.19) is relegated to Ap-

pendix D.1.

Minimizing the RHS of (6.19) under the constraints in (6.6) and (6.12)–(6.14) gives us a
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feasible solution to the time-average GEE minimization problem (6.16). Due to the constraints

in (6.14), the GEE is bounded by ����� "∑
<=1

E
[
� (%BST

<,: [8])
] ����� ≤ �. (6.20)

The properties of the obtained feasible solution is discussed in Theorem 6.1.

Theorem 6.1. Suppose the random sources in {]2,: [8]}:,8 are independent and identically dis-

tributed over slots, and the initial expected backlogs of access queues and processing queues satisfy

E
[
‖qA [1] ‖2

]
< ∞ and E

[
‖qU [1] ‖2

]
< ∞. Suppose the resource allocation variables {w<,=,: [8], 0<,= [8], s<→;,: [8]}<,;,=,:,8

satisfy

ν̄ + n1#×1 ≤ E[r: [8]] ≤ s̄ − n1#×1 (6.21)

where n is a small positive constant.

When the above assumptions are satisfied, the minimizer to RHS of (6.19) under the con-

straints in (6.6) and (6.12)–(6.14) asymptotically achieves the optimal GEE �∗ as

�∗ ≤ lim
�→∞

1

�)

�∑
8=1

)∑
:=1

"∑
<=1

E
[
� (%BST

<,: [8])
]
≤ �∗ + 21

+
(6.22)

when the control parameter + approaches infinity.

Moreover, the queue backlogs satisfy

lim sup
�→∞

1

�

�∑
8=1

E
[
@A

<,=,1 [8] + @U

<,=,1 [8]
]
≤ 21 + 2+�

n
(6.23)

such that the constraints in (6.15) are satisfied.

Based on Theorem 6.1, we conclude that the set of minimizers to the RHS of (6.19) under the

constraints in (6.6) and (6.12)–(6.14) is a feasible solution to the TAEGEE minimization problem

(6.16). Based on (6.22), we observe that gap between the optimal GEE and obtained GEE

decreases with the control parameter as O (1/+). Here, O (1/+) is a polynomial of 1/+ . By Little’s

law and (6.23), we observe that the end-to-end delay of UEs is a linearly increasing function of the

control parameter + as O (+). When the control parameter + approaches infinity, the end-to-end

delay of UEs increases to infinity. Hence, we conclude that the time-average expected GEE can
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be traded for the end-to-end delay of UEs by tuning the control parameter. Besides, the proposed

analysis method in Appendix D.2 also explicitly defines the stable region of multi-cell SGPCS as

shown in (6.21).

6.3 Two Time-Scale UE Scheduling, Beamforming and Energy

Exchanging

Based on Theorem 6.1, we observe the elegance of a minimizer to the RHS of (6.19) under

the constraints in (6.6) and (6.12)–(6.14). In this section, we propose a practical two time-

scale algorithm that jointly designs the scheduled UE indicators {0<,= [8]}<,= in frame 8 and the

beamforming vectors and exchanged renewable energy variables {w<,=,: [8], s<→;,: [8]}<,;,= in slot

: of frame 8.

6.3.1 Optimal Scheduled UE Indicator in Each Frame

After some algebraic manipulations on the RHS of (6.19), we obtain the term related to

{A<,=,: [8]}<,= as
"∑
<=1

#<∑
==1

(
@U

<,=,1 [8] − @A

<,=,1 [8]
)
E ]2,: [8 ]

[
)∑
:=1

A<,=,: [8]
]
. (6.24)

The term related to GEE in the RHS of (6.19) is denoted by

+

"∑
<=1

E ]2,: [8 ]

[
)∑
:=1

�

(
%BST

<,: [8]
)]
. (6.25)

We observe that the terms
)∑
:=1

A<,=,: [8] and
)∑
:=1

� (%BST

<,:
[8]) are coupled via 0<,= [8]. In order to

minimize the RHS of (6.19), we obtain the optimal scheduled UE indicator as

0∗<,= [8] =


0, @U
<,= [8] − @A

<,=,1 [8] ≥ 0 or @A

<,=,1 [8] = 0

1, otherwise.
(6.26)

The optimality of (6.26) is justified via contradiction. Based on the principle of opportunis-
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tically minimizing an expectation [30], the optimal scheduled UE indicators minimize

+

"∑
<=1

)∑
:=1

�

(
%BST

<,: [8]
)

︸                   ︷︷                   ︸
GEE

+
"∑
<=1

)∑
:=1

#∑
==1

(
@U

<,=,1 [8] − @A

<,=,1 [8]
)
A<,=,: [8]︸                                                   ︷︷                                                   ︸

Data Rates of UEs

. (6.27)

Since
m�

(
%BST
<,:
[8 ]

)
m0<,= [8 ] ≥ 0 is based on the definition of �

(
%BST

<,:
[8]

)
in (6.8), the GEE monotonically

increases with 0<,= [8]. Therefore, we have the following reasoning.

• Suppose that the (<, =)th UE is scheduled (namely 0<,= [8] = 1) when @U

<,=,1 [8]−@A

<,=,1 [8] ≥ 0

or @A

<,=,1 [8] = 0. In the case with @U

<,=,1 [8] − @A

<,=,1 [8] ≥ 0, we observe that data rate of the

(<, =)th UE increases the value of (6.27). To minimize (6.27), the data rate of the (<, =)th

UE needs to be set to zero in frame 8. The data rate of the (<, =)th UE with @A

<,=,1 [8] = 0

needs to be set to zero following the similar arguments. The scheduled UE indicator of the

(<, =)th UE needs to be set as 0<,= [8] = 0 which contradicts the assumption. Therefore, we

conclude that 0<,= [8] = 0 when @U

<,=,1 [8] − @A

<,=,1 [8] ≥ 0 or @A

<,=,1 [8] = 0.

• Suppose that the (<, =)th UE is not scheduled (namely 0<,= [8] = 0) when @U

<,=,1 [8] −

@A

<,=,1 [8] < 0 and @A

<,=,1 [8] ≠ 0. Based on the previous reasoning, we obtain that the (<, =)th

UE is not scheduled when @U

<,=,1 [8] − @A

<,=,1 [8] ≥ 0 or @A

<,=,1 [8] = 0. When the (<, =)th UE

will not be scheduled in the case @U

<,=,1 [8] − @A

<,=,1 [8] < 0 and @A

<,=,1 [8] ≠ 0, the backlog

of access queue @A

<,=,1 [8] will become infinite which contradicts the (<, =)th queue-stable

constraint in (6.15). Therefore, we conclude that 0<,= [8] = 1 when @U

<,=,1 [8] − @A

<,=,1 [8] < 0

and @A

<,=,1 [8] ≠ 0.

In our setting, the unscheduled UE is set into deep sleep mode18 such that the unscheduled

UE can save more energy than the traditional idle mode. It usually takes time to recover from the

deep sleep mode to the operation mode in practice. When the per-slot optimization is used, the

recovery time from deep sleep mode cannot be negligible compared the the duration of slot. Hence,

the obtained end-to-end delay by the per-slot optimization is inaccurate. Using our proposed two-

scale optimization framework, one can choose a frame duration such that the recovery time from

18Here, the deep sleep mode is similar to discontinuous reception model [143, Section 5.7].
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deep sleep mode is negligible. Therefore, the two-scale optimization framework obtains a more

accurate characterization of the end-to-end delay compared with the per-slot optimization.

6.3.2 Optimal Beamforming and Renewable Energy Exchanging in Each Slot

The arrival rates of renewable energy {�HAV
< [8]}< remain constant in frame 8, and channel

states in {h<,=,: [8]}<,= are independent and identically distributed over slots. Based on the

principle of opportunistically minimizing an expectation [30], the optimal beamforming vectors

and exchanged renewable energy variables to RHS of (6.19) with the constraints in (6.6) and

(6.12)–(6.14) can be obtained by solving a per-slot optimization problem as

min
Y2,:,8

"∑
<=1

#<∑
==1

(
@U

<,=,1 [8] − @A

<,=,1 [8]
)
A<,=,: [8] ++

"∑
<=1

�

(
%BST

<,: [8]
)

(6.28a)

s.t.(6.6) and (6.12) − (6.14). (6.28b)

where Y2,:,8 = {w<,=,: [8], s<→;,: [8]}<,;,= is the set of optimization variables. Note that different

values {@U

<,=,1 [8] − @A

<,=,1 [8]}<,= can lead to different relations between GEE
∑"
<=1 � (%BST

<,:
[8]) and

data rates
∑"
<=1

∑#<
==1(@U

<,=,1 [8] − @A

<,=,1 [8])A<,=,: [8].

Solving the per-slot optimization problem (6.28) is challenging due to the non-convexity of

rate-limit constraints in (6.12) and the proportional-rate constraints in (6.13). To handle the

non-convex proportional-rate constraints in (6.13), we introduce an auxiliary variable \<,=,: [8]

such that A<,=,: [8] = @A

<,=,:
[8]\: [8]. Hence, we obtain the proportional-rate constraints in (6.13)

as

hH

<,=,:
[8]w<,=,: [8]√

exp(@A

<,=,:
[8]\: [8]) − 1

=

√
� INTRA

<,=,:
[8] + � INTER

<,=,:
[8] + f2

<,=, = ∈ N ACT
< [8], < = 1, . . . , " (6.29)

Im
(
hH

<,=,: [8]w<,=,: [8]
)
= 0, = ∈ N ACT

< [8], < = 1, . . . , ". (6.30)

where the range of \<,=,: [8] is set as [0, 1] to guarantee the constraints in (6.12).
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Replacing A<,=,: [8] by @A

<,=,:
[8]\<,=,: [8] in the objective function (6.28a), we obtain

OB J<,: [8] =+ (W1 − WB)
[
%BST

<,: [8] + �
LPE

<,: [8] −
1

)
�HAV
< [8]

]+
++WB

[
%BST

<,: [8] + �
LPE

<,: [8] −
1

)
�HAV
< [8]

]
+

∑
=∈N ACT

< [8 ]

(
@U

<,=,1 [8] − @A

<,=,1 [8]
)
@A

<,=,: [8]\<,=,: [8]

(6.31)

where %BST

<,:
[8] is defined in (6.5), and �LPE

<,:
[8] is defined in (6.7).

Relaxing the constraints in (6.29), we obtain a convex optimization problem as

min
Y2,:,8

"∑
<=1

OB J<,: [8] (6.32a)

s.t. s<→;,: [8] +s;→<,: [8] = 0, ; ∈ N <, < = 1, . . . , " (6.32b)

hH

<,=,:
[8]w<,=,: [8]√

exp(@A

<,=,:
[8]\: [8]) − 1

≥
√
� INTRA

<,=,:
[8] + � INTER

<,=,:
[8] + f2

<,=, = ∈ N ACT
< [8], < = 1, . . . , " (6.32c)

Im
(
hH

<,=,: [8]w<,=,: [8]
)
= 0, = ∈ N ACT

< [8], < = 1, . . . , " (6.32d)∑
=∈N ACT

< [8 ]

‖w<,=,: [8] ‖2 ≤ %max
< , < = 1, . . . , ". (6.32e)

In slot :, the constraints in (6.32b)–(6.32e) constitute a convex hull of the constraints in (6.6),

(6.14), (6.29) and (6.30), when the values of \: [8] and {0<,= [8]}<,= are fixed. Therefore, the

objective value of (6.32) is lower than that of (6.28). Since the constraints in (6.32c) are active

(see Appendix D.3 for a detailed proof), we conclude that the objective value of (6.32) is equal

to that of (6.28). Motivated by Proposition 2 of [144], the optimal \∗
:
[8] can be obtained via

a one-dimensional search method. Therefore, the optimization problem (6.28) can be optimally

solved.

Based on (6.26), the scheduled UE indicators are updated in each frame. Performing a one-

dimensional search and solving the optimization problem (6.32), the beamforming vectors and

exchanged renewable energy variables are updated in each slot. Therefore, we summarize the two

time-scale UE scheduling, beamforming, and energy trading (TSUBE) algorithm in Algorithm 8.
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Algorithm 8 TSUBE Algorithm

1: In frame 8, the core network estimates the harvested renewable energy as {�HAV
< [8]}<

2: In slot : of frame 8, the core network obtains backlogs of access queues {@A
<,=,:

[8]}<,= and processing

queues {@U
<,=,:

[8]}<,=
3: At the start of frame 8, the core network updates the scheduled UE indicators {0<,= [8]}<,= via (6.26)
4: repeat
5: In slot : of frame 8, the core network estimates the channel-coefficient vectors {h<,=,: [8]}<,=
6: In slot : of frame 8, the core network solves the optimization problem (6.32) based on {h<,=,: [8]}<,=

and {0<,= [8]}<,=
7: In slot : of frame 8, the core network performs one dimensional search for the optimal \: [8]
8: until The optimal \∗

:
[8] is obtained

9: At the end of slot :, the core network updates the access queues and processing queues according to
(6.9) and (6.10)

6.3.3 Complexity Analysis

For notational brevity, we assume that # = #<, < = 1, . . . , ". The number of UEs in the

multi-cell SGPCS is "#. The complexity of scheduling UEs via (6.26) is calculated as "# at

the start of each frame.

The major complexity of the TSUBE Algorithm in each slot lies in the iteration loop in

lines 4–8. Hereinafter, we focus on analyzing the computational complexity of the iteration loop.

Moreover, the computational complexity of the iteration loop in lines 4–8 comes from solving

(6.32) via the interior-point method and the one-dimensional search. Hence, we evaluate the

worst-case computational complexity of solving (6.32) via the interior-point method and multiply

it by the number of points in the one-dimensional search to obtain the computational complexity

of the iteration loop in lines 4–8. We observe that the optimization problem (6.32) is second-order

conic programming. In the optimization problem (6.32), the number of second-order cones with

dimension 3"# is ", and the number of second-order cones having dimension 3# is ". The

number of linear constraints is 22 = "# + 1
2

∑"
<=1 |N < |. The number of variables is 23 = 3"# +

1
2

∑"
<=1 |N < | in the optimization problem (6.32). According to [141, 142], an n-accurate solution

to (6.32) requires 24 = O (log n−1
√
"# + 2" + 1

2

∑"
<=1 |N < |) iterations, and the computational

complexity in each iteration is O ((23 + 1)2322 + 2325 + 23
3) where 25 = "# (" + 1). Therefore, the

computational complexity of the iteration loop in lines 4–8 is O ()max
2 2423

(
(23 + 1)22 + 25 + 22

3

)
)

where )max
2 is the number of points for a one-dimensional search.
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6.4 Numerical Results

In this section, we present simulation results to evaluate the proposed TSUBE algorithm. The

pathloss of the (<, =)th access link is calculated as

l<,= = 17.3 + 38.3 log10 ^<,= + 24.9 log10 52 dB (6.33)

where ^<,= is the link distance of the (<, =)th access link, and carrier frequency 52 = 2.1 GHz.

We consider a two-BST SGPCS, where each BST is associated with three UEs and is equipped

with six antennas. The multi-cell SGPCS operates in two time scales, where each frame consists of

five slots. The inter-BST distance is set as 400 meters. The UEs are deployed at the middle point

between the two BSTs such that the worst-case interference is considered. The AWGN power

is set as 1 × 10−10.7 mW. The power amplifier efficiency, maximum transmit power, baseband

processing power of BSTs are, respectively, set as [ = 0.8, %max
< = 400 mW and %SP

< = 100 mW.

The efficiency of local power lines is set as j<→; = 0.8. Unless otherwise specified, the purchasing

and selling prices of a unit energy are respectively set as W1 = 1.6 × 10−9 cents/slot/mW and

WB = 0.6 × 10−9 cents/slot/mW. The average arrival rate ā<,= and constant processing rate B̃<,=

are, respectively, set as 2.1 nats/slot/Hz and 8 nats/slot/Hz. The arrival rates of renewable energy

for the first BST and the second BST are respectively set as 300 mW and 200 mW. The duration

of a slot is set as 1 ms. The number of slots in each frame is set as 5. The value of the control

parameter + is empirically tuned to demonstrate the tradeoff between the end-to-end delay and

GEE. We consider two benchmarks, namely without local power exchanging (WOLPE) algorithm

and ZFBF algorithm.

Figures 6.2 and 6.3 show the moving-average annualized GEE and moving-average end-to-

end delay of UEs when the moving-average window is set as 10. We observe that the moving-

average GEE of the proposed TSUBE algorithm, the WOLPE algorithm, and the ZFBF algorithm

converge within 1, 000 slots. The moving-average end-to-end delay of UEs becomes stable after 400

slots. Note that the end-to-end delay is calculated according to Little’s law for the two cascading

queues. When the control parameter + is set as 0.01, 0.1 and 1, the GEE of the proposed TSUBE

algorithm are, respectively, 3.15%, 7.85% and 8.85% lower than that of the WOLPE algorithm,
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Figure 6.2: The moving-average GEE with window size = 10.
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Figure 6.3: The moving-average end-to-end delay with window size = 10.

and 37.67%, 48.12% and 41.82% lower than that of the ZFBF algorithm. This observation is due

to the facts that 1) the proposed TSUBE algorithm intelligently makes decisions on whether to

purchase grid energy or exchange renewable energy to avoid redundant grid energy transactions,

and 2) the WOLPE algorithm introduces redundant purchasing/selling of grid energy when the

multi-cell SGPCS has insufficient/surplus renewable energy; 3) the ZFBF algorithm prefers to

mitigate interference.

Figure 6.4 reveals the tradeoff between the average GEE and the end-to-end delay of UEs under

different average arrival rates of UEs in the second BST (i.e., ā2,=). We observe that increasing the

control parameter induces a decrease in the GEE (as shown in Fig. 6.4(a)) and an increase in the

96



6.4. Numerical Results

10-2 10-1 100

Control Parameter, V

20

40

60

80

100

120

140

160

180
A

ve
ra

ge
 G

E
E

 (
$/

ye
ar

/c
hn

/B
S

T
)

(a) GEE v.s. control parameter
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(b) End-to-end delay v.s. control parameter

Figure 6.4: The tradeoff between the average GEE and average end-to-end delay of UEs.

end-to-end delay of UEs (as shown in Fig. 6.4(b)). Therefore, the proposed TSUBE algorithm, the

WOLPE algorithm, and the ZFBF algorithm provide the operator with flexibility in controlling

the GEE while maintaining a satisfactory level of communication QoS. Moreover, we also observe

that the proposed TSUBE algorithm outperforms the WOLPE algorithm and ZFBF algorithm in

terms of the GEE. For example, when + = 0.1 and ā2,= = 1.5 nats/slot/Hz, the TSUBE algorithm

achieves 11.32% lower GEE than the WOLPE algorithm by sacrificing 3.86% the end-to-end delay

of UEs. When + = 1 and ā2,= = 1.5 nats/slot/Hz, the TSUBE algorithm achieves 12.51% lower

GEE than the WOLPE algorithm by sacrificing 5.45% the end-to-end delay of UEs. Moreover, the

TSUBE algorithm outperforms the ZFBF algorithm in terms of GEE and end-to-end delay. For

example, when + = 0.1 and ā2,= = 1.8 nats/slot/Hz, the TSUBE algorithm achieves 35.08% lower

GEE and 7.41% lower end-to-end delay than the ZFBF algorithm. This observation is because

the local power exchanging introduces a new dimension of freedom to reduce the GEE when the

multi-cell SGPCS has a more stringent energy demand. When more renewable energy is traded

to reduce the GEE, the end-to-end delay of UEs increases.

Figure 6.5 shows that the GEE increases with the purchasing price of unit energy under various

control parameters. More specifically, the gap of GEE between the proposed TSUBE algorithm

and the WOLPE algorithm increases with the purchasing price U1. The reason is as follows.
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Figure 6.5: The average GEE versus the purchasing price U1.

A higher purchasing price U1 motivates the BSTs to exchange renewable energy via the local

power line such that the GEE of the TSUBE algorithm increases slower than that of the WOLPE

algorithm. Compared with the WOLPE algorithm, the proposed TSUBE algorithm can reduce

the GEE by 9.07%, 9.71%, and 10.58% when the control parameters are respectively set as 0.1,

0.5 and 1. In other words, a higher control parameter induces a more effective GEE reduction

of the TSUBE algorithm than the WOLPE algorithm. Besides, we also observe that the GEE of

the TSUBE algorithm is lower than that of the ZFBF algorithm. This observation is because the

ZFBF algorithm requires the BSTs to consume more grid energy than the TSUBE algorithm to

guarantee the stability of multi-cell SGPCS.

Figure 6.6 illustrates the GEE as a function of the arrival rate of renewable energy for the

first BST under different control parameters. Increasing the arrival rate of renewable energy of

the first BST from 250 mW to 500 mW, we observe that the GEE of the proposed TSUBE al-

gorithm, WOLPE algorithm, and ZFBF algorithm decrease. Moreover, by increasing the arrival

rate of renewable energy, we also observe that the gaps of GEE between the proposed TSUBE

algorithm and WOLPE algorithm increase from 2.07 $/year/chn/BST, 2.18 $/year/chn/BST and

2.22 $/year/chn/BST to 8.25 $/year/chn/BST, 8.45 $/year/chn/BST and 8.40 $/year/chn/BST

when the control parameters are respectively set as + = 0.1, + = 0.5 and + = 1. These obser-

vations demonstrate that the proposed TSUBE algorithm outperforms the WOLPE algorithm.
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Figure 6.6: The average GEE versus the average renewable energy arrival rate of the first BST.

Moreover, the proposed TSUBE algorithm can reduce the GEE by 72.99% when the control pa-

rameter and the arrival rate of renewable energy are + = 1 and 500 mW. Since the arrival rate

of renewable energy at the second BST is 200 mW, we conclude that a more asymmetric arrival

rate of renewable energy induces a more frequent local energy exchange under symmetric data

rate. Therefore, the gaps in GEE between the proposed TSUBE algorithm and the WOLPE

algorithm can increase with the arrival rate of renewable energy of the first BST. Figure 6.6 also

shows that the proposed TSUBE algorithm outperforms the ZFBF algorithm when the arrival

rate of renewable energy increases. The gaps of GEE are as large as 42.64 $/year/chn/BST, 36.75

$/year/chn/BST and 30.89 $/year/chn/BST when the control parameters are respectively 0.1,

0.5 and 1. This observation indicates that the wireless operator can choose the ZFBF algorithm

for low computational complexity at the expense of GEE.

Figure 6.7 shows that the GEE increases with the average arrival rate of UEs in the second BST

under different control parameters. Fig. 6.7 also confirms that the proposed TSUBE algorithm

outperforms the WOLPE and ZFBF algorithms under different control parameters.

6.5 Summary

We have investigated the TAEGEE minimization problem with proportional-rate constraints

in multi-cell SGPCSs and proposed a TSUBE algorithm for multi-cell SGPCSs to allocate the
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Figure 6.7: The average GEE versus the average arrival rate ā2,=.

scheduled UE indicators, beamforming vectors jointly and exchanged renewable energy variables.

We have leveraged the Lyapunov learning method to decouple the beamforming vectors and

scheduled UE indicators allocation. The scheduled UE indicators are optimally allocated at each

frame in order to avoid redundant scheduling/unscheduling UEs based on the proposed TSUBE

algorithm. The beamforming vectors and exchanged renewable energy variables are optimally

allocated to minimize the per-slot subproblems. When the control parameter approaches infinity,

the proposed TSUBE algorithm asymptotically achieves the optimal GEE. The tradeoff between

the GEE and end-to-end delay of UEs has been theoretically established when three sets of

resources (i.e., scheduled UE indicators, beamforming vectors, and exchanged renewable energy

variables) are jointly allocated. Numerical results have been presented to demonstrate that the

TSUBE algorithm outperforms the WOLPE and ZFBF algorithms in terms of GEE. Therefore,

the joint allocation of three-dimensional resources (scheduled UE indicators, beamforming vectors,

and exchanged renewable energy variables) helps to reduce GEE and yields a better tradeoff

between GEE and end-to-end delay of UEs compared with the joint allocation of two-dimensional

resources (scheduled UE indicators and beamforming vectors).
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Chapter 7

Conclusions and Future Works

This chapter concludes the thesis with some comments and discusses several extensions in the

future.

7.1 Concluding Remarks

In this thesis, we have investigated the convergence behaviors and applications of machine

learning algorithms in SGPCSs. In particular, the contributions are summarized as follows.

• Motivated by the applications in energy planning of SGPCSs, we have investigated the

issues in federated learning algorithms. In the presence of faulty UEs, the classical federated

learning algorithms (such as gradient descent and stochastic gradient descent algorithms)

may diverge. As a remedy, we have developed an FRPG algorithm by adapting Nesterov’s

acceleration [118, 120] and stochastic approximation for fault-resilient federated learning in

Chapter 3. To further reduce communication overhead, we have also developed an LFRPG

algorithm where the parameter server periodically communicates with UEs. We have proved

that LFRPG has a lower communication overhead than FRPG. We have established the

convergence rates for the proposed FRPG and LFRPG algorithms, which are challenging

to analyze when faulty UEs exist. Our theoretical results demonstrate that the FRPG

and LFRPG algorithms require lower communication overheads than existing fault-resilient

federated learning algorithms.

• When the agents are spatially dispersed, decentralized machine learning algorithms are

required to finish some tasks in SGPCSs, such as the collaborative spectrum sensing and

collaborative spectrum sharing tasks. Therefore, we have investigated the issues that are

related to decentralized Q-learning algorithms. We have derived an equivalent form of the
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multi-user Bellman equation in Chapter 4, based on which the local vectors are updated. To

gain control over the gradient bias and variance present in each agent’s local updates, we have

performed a unifying finite-sample analysis of collaborative multi-agent Q-learning with LFA

in a fully decentralized setting, by studying a multi-step Lyapunov function carefully. When

a decaying stepsize 2/: is used, we have shown that the LFA based decentralized Q-learning

algorithm converges to the fixed point of Bellman’s optimality equation at rate O (1/:) under

an appropriate condition on the joint behavior policy. While gaining scalability, privacy,

and parallel computation to deal with large state and action spaces, the linear-approximate

decentralized Q-learning converges as fast as the tabular Q-learning [81]. Besides, our

obtained convergence rate improves upon that of centralized Q-learning with LFA reported

in [87].

• Considering the uncertainties of ESI and CSI, we have formulated the TAEGEE minimiza-

tion problem via Lyapunov learning in Chapter 5. Different from using a log-concave data

rate, we have considered the joint effects of packet failure and data rate of each UE while

designing beamforming algorithms. Therefore, the investigated optimization problem is a

cross-layer one. Using Lyapunov learning, we have reformulated the TAEGEE minimization

problem to per-slot subproblems. Moreover, each per-slot subproblem is non-convex and

challenging to handle. Two suboptimal beamforming algorithms have been proposed based

on SABF and ZFBF techniques. The convergence properties have been established, and the

corresponding computational complexities have been analyzed. By tuning the introduced

control parameter, the proposed algorithms allow the wireless operator to trade the GEE

for the access delay of UEs.

• We have investigated the TAEGEE minimization problem in multi-cell SGPCSs via the joint

design of scheduled UE indicators, beamforming vectors, and exchanged renewable-energy

variables in Chapter 6. Beamforming and energy exchanging are physical-layer functions,

and user scheduling is a link-layer function. Hence, the investigated TAEGEE minimization

problem is a cross-layer problem. After transforming the TAEGEE minimization problem

into minimizing the upper bound of drift-plus-penalty function, we have decoupled beam-

forming and energy exchanging from user scheduling. Hence, the TSUBE algorithm has
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been proposed for beamforming and energy exchanging per slot, update the scheduled UE

indicators per frame. We have theoretically proved that the minimizer to the upper bound

of drift-plus-penalty function can be obtained via the proposed TSUBE algorithm. Based on

Lyapunov learning, we have revealed that the obtained minimizer can achieve the optimal

grid-energy expenditure via tuning a control parameter at the expense of end-to-end delay.

7.2 Future Works

The design of machine learning algorithms and their applications in wireless communications

are still hotspots of research communities. We briefly review several open problems, which are

extensions to the thesis.

• Robust decentralized learning algorithms with Byzantine adversaries: The pro-

posed FRPG and LFRPG algorithms in Chapter 3 still require a parameter server to collect

the local parameters of UEs. When the parameter server stops working, the FRPG and

LFRPG algorithms will fail. Therefore, decentralized robust learning algorithms are pre-

ferred. However, faulty UEs will have more severe effects by injecting multiple falsified local

parameters to their neighbors such that the introduced penalty functions in FRPG and

LFRPG algorithms cannot mitigate the negative effects of faulty UEs. Based on the recent

development of the adversary detection method in [48], we are motivated to investigate de-

centralized methods to detect the Byzantine adversaries. The statistical characteristics of

byzantine local gradients need to be revealed. Moreover, the convergence rates for (smooth)

convex and non-convex loss functions need to be investigated for the decentralized fault-

resilient algorithms.

• Finite-sample analysis for linear-approximate deep reinforcement learning: By

approximating the state-value function, action-value function, and policy gradient via deep

neural networks, deep reinforcement learning has many successful industrial applications

(e.g., AlphaGo and Atari 2600 games [39]). While the proposed finite-sample analysis

in Chapter 4 is for linear-approximate decentralized Q-learning, the finite-sample analysis

for (decentralized) deep reinforcement learning is unknown. Moreover, the finite-sample
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analysis can also estimate the required data samples of an algorithm to achieve a certain

accuracy. Therefore, a finite-sample analysis of (decentralized) deep reinforcement learning

deserves a future investigation.

• Lyapunov learning with time-correlated data samples: Using Lyapunov learning,

the proposed algorithms in Chapters 5 and 6 are based on the assumption that the random

sources are independent and identically distributed over different slots. When the random

sources are non-independent or non-identically distributed, the tradeoff between the grid-

energy expenditure and delay of UEs needs to be quantified. When the tradeoff does not

exist, algorithms are required to stabilize queues in the systems. Motivated by these facts,

the investigation of Lyapunov learning with non-independent or non-identically distributed

random sources is another interesting research direction.
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Appendix A

Related Proofs of Chapter 3

A.1 Proof of Lemma 3.1

Based on the strong convexity of 50, we obtain

50(u0) ≥ 50
(
u0,:

)
+

〈
∇ 50

(
u0,:

)
,u0 − u0,:

〉
+ X0

2



u0 − u0,:



2

≥ 50
(
w0,:

)
− !0

2



w0,: − u0,:



2 +
〈
∇ 50

(
u0,:

)
,u0 −w0,:

〉
+ X0

2



u0 − u0,:



2
(A.1a)

= 50
(
w0,:

)
− !0

2U2
0,:



h0,:



2 + X0

2



u0 − u0,:



2 +
〈
h0,: +

#∑
==1

g=,: −
#∑
==1

g=,: ,u0 −w0,:

〉
(A.1b)

≥ 50
(
w0,:

)
+

2U0,: − !0

2U2
0,:



h0,:



2 + X0

2



u0 − u0,:



2

+
〈
h0,: +

#∑
==1

g=,: ,u0 − u0,:

〉
−

〈
#∑
==1

g=,: ,u0 −w0,:

〉
−






 #∑
==1

g=,:









h0,:




U0,:

(A.1c)

where (A.1a) follows the Lipschitz continuous gradient of 50; the RHS (A.1b) uses the defini-

tion (cf. (3.6b)) h0,: := U0,:
(
u0,: −w0,:

)
= ∇ 50

(
u0,:

)
; while the RHS of (A.1c) also relies on

〈∑#
==1 g=,: ,u0,: −w0,:〉 ≥ − 1

U0,:
‖∑#

==1 g=,: ‖‖h0,: ‖. Substituting h0,: into (A.1c) completes the

proof.

A.2 Proof of Lemma 3.2

Using the proximal operator definition, rewrite (3.8b) as

w=,: = arg min
u=

{〈
∇ 5

(
u=,: ; G=,:

)
,u= − u=,:

〉
+
U=,:

2



u= − u=,:

2 + W?=
(
w0,: − u=

)}
. (A.2)

Based on the update in (A.2), W∇w= ?=
(
w0,: −w=,:

)
= −g=,: , and the definition of gradient
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noise ζ=,: in (3.9), we obtain

h=,: = U=,:
(
u=,: −w=,:

)
= ∇ 5

(
u=,: ; G=,:

)
− g=,: (A.3)

∇ 5=
(
w=,:

)
= h=,: + g=,: − ζ=,: . (A.4)

Since 5= is Lipschitz continuous, we deduce that

5=
(
u=,:

)
≥ 5=

(
w=,:

)
−
〈
∇ 5=

(
u=,:

)
,w=,:−u=,:

〉
− !=

2



u=,: −w=,:

2

= 5=
(
w=,:

)
−

〈
∇ 5=

(
u=,:

)
,w=,: − u=,:

〉
− !=

2U2
=,:



h=,:

2
. (A.5)

Based on the strong convexity of 5=, we further obtain

5= (u=) ≥ 5=
(
u=,:

)
+
〈
∇ 5=

(
u=,:

)
,u= − u=,:

〉
+ X=

2



u= − u=,:

2
. (A.6)

Summing (A.5) and (A.6), we arrive at

5= (u=) − 5=
(
w=,:

)
(A.7a)

≥
〈
∇ 5=

(
u=,:

)
,u= −w=,:

〉
− !=

2U2
=,:



h=,:

2 + X=
2



u= − u=,:

2
(A.7b)

≥
〈
h=,: + g=,: − ζ=,: ,u= −w=,:

〉
− !=

2U2
=,:



h=,:

2 + X=
2



u= − u=,:

2
(A.7c)

≥
2U=,: − !=

2U2
=,:



h=,:

2 + X=
2



u= − u=,:

2 −
〈
ζ=,: − g=,: ,u= −w=,:

〉
+

〈
h=,: ,u= − u=,:

〉
(A.7d)

where the RHS of (A.7c) is due to (A.4), and the RHS of (A.7d) follows from (A.3).

Finally, substituting into (A.7d) completes the proof.

A.3 Proof of Lemma 3.3

With h0,: as in (A.1b), construct a strongly convex function with modulus X0 + U0,: V: in slot

:, as

q0,: (u0) :=

〈
h0,: +

#∑
==1

g=,: ,u0 − u0,:

〉
+ X0

2



u0 − u0,:



2 +
U0,: V:

2



u0 − v0,:−1



2
. (A.8)
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According to (3.6c), v:0 is the minimizer of (A.8). Strong convexity implies that q0,:
(
v0,:

)
≤

q0,: (u0) − X0+U0,:V:
2



v0,: − u0



2
. Thus, upon expanding q0,:

(
v0,:

)
and q0,: (u0), we have〈

h0,: +
#∑
==1

g=,: ,u0 − u0,:

〉
+ X0

2



u0 − u0,:



2

≥
〈
h0,: +

#∑
==1

g=,: , v0,: − u0,:

〉
+
U0,: V: + X0

2



u0 − v0,:



2

+
U0,: V:

2



v0,: − v0,:−1



2 −
U0,: V:

2



u0 − v0,:−1



2
.

(A.9)

Similar to (A.9), and with h=,: as in (A.3), we obtain

〈
h=,: ,u= − u=,:

〉
+ X=

2



u= − u=,:

2 ≥
〈
h=,: , v=,: − u=,:

〉
+
U=,: V: + X=

2



u= − v=,:

2
(A.10)

+
U=,: V:

2



v=,: − v=,:−1



2 −
U=,: V:

2



u= − v=,:−1



2
.

Substituting (A.9) and (A.10) into (3.13), we thus find

� (w:) − � (u) ≤





 #∑
==1
g=,:






U0,:



h0,:



 − #R∑
==0

2U=,: − !=
2U2

=,:



h=,:

2 +
#R∑
==0

_1,=,:

V:
(A.11)

+
#R∑
==0

〈
ζ=,: ,u= −w=,:

〉
+

〈
h0,: +

#∑
==1

g=,: ,u0,: − v0,:

〉
+
#R∑
==1

〈
h=,: ,u=,: − v=,:

〉
where _1,=,: is defined as

_1,=,: :=
U=,: V

2
:

2



u= − v=,:−1



2 −
X=V: + U=,: V2

:

2



u= − v=,:

2 −
U=,: V

2
:

2



v=,: − v=,:−1



2
. (A.12)

Setting u = w:−1 in (3.13), and dropping the non-positive terms − X=2 ‖w=,:−1 −w=,: ‖2, we arrive

at

� (w:) − � (w:−1) ≤





 #∑
==1
g=,:






U0,:



h0,:



 − #R∑
==0

2U=,: − !=
2U2

=,:



h=,:

2 +
#R∑
==0

〈
ζ=,: ,w=,:−1 −w=,:

〉
+

〈
h0,: +

#∑
==1

g=,: ,u0,: −w0,:−1

〉
+
#R∑
==1

〈
h=,: ,u=,: −w=,:−1

〉
.

(A.13)

Using (A.11) and (A.13), the convex combination V: (� (w:) − � (u)) + (1 − V:) (� (w:) − � (w:−1))
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is bounded as

� (w:) − � (u) − (1 − V:) (� (w:−1) − � (u))

≤





 #∑
==1
g=,:






U0,:



h0,:



 − #R∑
==0

2U=,: − !=
2U2

=,:



h=,:

2 +
#R∑
==0

_1,=,: +
#R∑
==0

_2,=,: +
#R∑
==0

_3,=,:

(A.14)

where

_2,=,: :=
〈
ζ=,: , V:u= + (1 − V:)w=,:−1 −w=,:

〉
(A.15)

and

_3,=,: :=


〈
h0,: +

#∑
==1
g=,: ,u0,: − V:v0,: − (1 − V:)w0,:−1

〉
, = = 0〈

h=,: ,u=,: − V:v=,: − (1 − V:)w=,:−1

〉
, = = 1, . . . , #R.

(A.16)

Based on (3.8a), we obtain

(1 − V:)w=,: = u=,: − V:v=,: , = = 0, 1, . . . , #R. (A.17)

Substituting (A.17) into (A.15), it holds for = = 0, 1, . . . , #R that

_2,=,: = V:
〈
ζ=,: ,u= − v=,:−1

〉
+

〈
ζ=,: ,u=,: −w=,:

〉
≤ V:

〈
ζ=,: ,u= − v=,:−1

〉
+

√

ζ=,:

2

U=,:



h=,:


(A.18)

where (A.18) follows from Hölder’s inequality [145].

Taking expectation on both sides of (A.18) for terms = = 1, . . . , #R, we obtain

E-=,1: 
[
_2,=,:

]
≤ E-=,1: 

V:
〈
ζ=,:u= − v=,:−1

〉
+

√

ζ=,:

2

U=,:



h=,:

 =
f=

U=,:



h=,:

 (A.19)

where the equality is due to the facts

E-=,1: 

[√

ζ=,:

2
]
≤ E-=,1: −1

√
E-=, 

[

ζ=,:

2
]
= f= (A.20)

126



A.3. Proof of Lemma 3.3

and since Assumption 3.4 dictates E-=, [ζ=,:] = 0, we have

E-=,1: 
[〈
ζ=,: ,u= − v:−1

=

〉]
= E-=,1: −1

〈
E-=, 

[
ζ=,:

]
,u= − v=,:−1

〉
= 0. (A.21)

Based on the Young’s inequality [145], _2,0,: is bounded as

_2,0,: ≤
V:

2n



ζ0,:



2 + n V:
2



u0 − v0,:−1



2 +


ζ0,:




U0,:



h0,:



 (A.22)

with n ∈ (0,∞).

Substituting (A.17) into (A.16), we obtain for = = 1, . . . , # that

_3,=,: = V:
〈
h=,: , v=,:−1 − v=,:

〉
≤ 1

2U=,:



h=,:

2 +
U=,: V

2
:

2



v=,:−1 − v=,:


2

(A.23)

where the inequality is due to Young’s inequality [145].

Substituting (A.17) into _3,0,: , we deduce

_3,0,: =V:

〈
h0,: +

#∑
==1

g=,: , v0,:−1 − v0,:

〉
(A.24)

≤ 1

2U0,:






h0,: +
#∑
==1

g=,:






2

+
U0,: V

2
:

2



v0,:−1 − v0,:



2

≤ 2

3U0,:



h0,:



2 + 2

U0,:






 #∑
==1

g=,:






2

+
U0,: V

2
:

2



v0,:−1 − v0,:



2

where first inequality is due to Young’s inequality [145], and the second inequality is based on the

fact that 




h0,: +
#∑
==1

g=,:






2

≤ 4

3



h0,:



2 + 4






 #∑
==1

g=,:






2

. (A.25)

Substituting (A.12), (A.18) and (A.22)–(A.24) into the RHS of (A.14), we obtain

� (w:) − � (u) − (1 − V:) (� (w:−1) − � (u)) ≤
#R∑
==0

(
_4,=,: + _5,=,:

)
+ 2

U0,:






 #∑
==1

g=,:






2

+ V:
2n



ζ0,:



2

(A.26)
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where

_4,=,: :=






 #∑
==1
g=,:





+‖ζ0,: ‖
U0,:



h0,:



 − 2U0,:−3!0
6U2

0,:



h0,:



2
, = = 0

f=
U=,:



h=,:

 − U=,:−!=
2U2
=,:



h=,:

2
, = = 1, . . . , #

and

_5,=,: :=


n V:+U0,:V2:

2



u0 − v0,:−1



2 − X0V:+U0,:V2:
2



u0 − v0,:



2
, = = 0

U=,:V
2
:

2



u= − v=,:−1



2 − X=V:+U=,:V2:
2



u= − v=,:

2
, = = 1, . . . , #.

(A.27)

Using the inequality −0G2 + 1G ≤ 12

40 and the power of ‖∑#
==1 g=,: ‖ + ‖ζ0,: ‖ in (3.14), we can

bound _4,=,: as

_4,=,: ≤ _6,=,: =


3f2

0

2(2U0,:−3!0) , = = 0

f2
=

2(U=,:−!=) , = = 1, . . . , #.
(A.28)

Substituting (A.28) into (A.26) and setting u = u∗ lead to (3.15).

A.4 Proof of Theorem 3.4

Dividing both sides of (3.15) by V2
:
, we can write

1

V2
:

(� (w:) − � (u∗)) ≤
1 − V:
V2
:

(� (w:−1) − � (u∗)) +
#R∑
==0

_5,=,: + _6,=,:

V2
:

+ 2W2#2�

U0,: V
2
:

+ W
2#2

B�

2n V:
. (A.29)

Setting V: =
2
:+2 , we can readily verify that

1 − V:
V2
:

≤ 1

V2
:−1

. (A.30)

Summing (A.29) over : = 1, . . . ,  , it follows after straightforward manipulations that

1

V2
:

(� (w:) − � (u∗)) ≤� (w0) − � (u∗) +
 ∑
:=1

W2#2
B�

2n V:
+

n
V1
+ U0,1

2



u∗0 − v0,0



2 +
#R∑
==1

U=,1

2



u∗= − v=,0

2

+
 −1∑
:=1

#R∑
==0

_7,=,: +
 ∑
:=1

#R∑
==0

_8,=,: (A.31)
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where

_7,=,: :=


1
2

(
U0,:+1 − U0,: + n

V:+1
− X0
V:

) 

u∗0 − v0,:



2
, = = 0

1
2

(
U=,:+1 − U=,: − X=

V:

) 

u∗= − v=,:

2
, = = 1, . . . , #R

(A.32)

and

_8,=,: :=


8W2# 2�+3f2

0

2(2U0,:−3!0)V2:
, = = 0

f2
=

2(U=,:−!=)V2:
, = = 1, . . . , #R.

(A.33)

To analyze the convergence of FRPG, we introduce the following constraints

X0

V:
− n

V:+1
> 0 (A.34a)

X0

V:
− n

V:+1
≥ U0,:+1 − U0,: (A.34b)

U0,: =
3

2

(
20

V2
:

+ !0

)
(A.34c)

X=

V:
≥ U=,:+1 − U=,: , = = 1, . . . , #R (A.34d)

U=,: =
2=

V2
:

+ !=, = = 1, . . . , #R (A.34e)

where 2= > 0 with = = 0, 1, . . . , #R; and (A.34a) with V: = 2
:+2 imply that n < 3

4X0. Without loss

of generality, we set n = 1
2X0. Based on (A.34b) and (A.34c), we have 20 ≤ 4

21X0. Hence, U0,: is

given by U0,: =
X0
14 (: + 2)2 + 3

2!0. From (A.34d) and (A.34e), we deduce that 2= ≤ 6
7X=, which

implies that U=,: =
3X=
14 (: + 2)2 + != with = = 1, . . . , #. As a result, we find

U=,: =


X0
14 (: + 2)2 + 3

2!0, = = 0

3X=
14 (: + 2)2 + !=, = = 1, . . . , #R.

(A.35)

Based on (A.35) and n = 1
2X0, we simplify

∑ −1
:=1 _7,=,: as

 −1∑
:=1

_7,=,: ≤ _9,= :=


(
3
8X0 + 1

2U0,1
) 

u∗0 − v0,0



2
, = = 0

1
2U=,1



u∗= − v=,0

2
, = = 1, . . . , #R.

(A.36)
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Using (A.35), _8,=,: reduces to

_8,=,: = _10,= :=


7W2# 2�+ 218 f

2
0

X0
, = = 0

7f2
=

12X=
, = = 1, . . . , #R.

(A.37)

Substituting V: = 2
:+2 and (A.35)–(A.37) into (A.31), we establish the convergence rate of

FRPG as

� (w:) − � (u∗) ≤
4

( + 2)2

(
� (w0) − � (u∗) +

#R∑
==0

_9,=

)
+ 4 

( + 2)2
#R∑
==0

_10,= +O
(
W2#2

B�

X0

)
(A.38)

where O (G) represents a polynomial of G.

A.5 Proof of Theorem 3.8

Setting V8 = 2
8+2 so that 1−V [8 ]

V [8 ]2 ≤
1

V [8−1]2 ; summing (3.31) over 8 = 1, . . . , �; and, multiplying by

V[�]2, we obtain

1

)

)∑
:=1

� (w: [�]) − � (u∗)

≤V2 [�]
(

1

)

)∑
:=1

� (w: [0]) − � (u∗)
)
+ V2 [�]

#R∑
==0

�∑
8=1

_14,= [8] + V[�]2
�∑
8=1

W2#2
B�

2n V[8]

+ V2 [�]
(
n + U0 [1]V[1]

2V[1]


u∗0 − v0 [0]



2 + 1

2

�−1∑
8=1

(
U0 [8 + 1] − U0 [8] +

n

V[8 + 1] −
X0

V[8]

) 

u∗0 − v0 [8]


2

)
+ V

2 [�]
)

#R∑
==1

(
U= [8]

2



u∗= − v= [0]

2 + 1

2

�−1∑
8=1

(
U= [8 + 1] − U= [8] −

X=

V[8]

) 

u∗= − v= [8]

2

)
(A.39)

Based on (A.39), we introduce the following constraints in order to guarantee the convergence

of LFRPG

X0

V[8] −
n

V[8 + 1] > 0 (A.40a)

X0

V[8] −
n

V[8 + 1] ≥ U0 [8 + 1] − U0 [8] (A.40b)

X=

V[8] ≥ U= [8 + 1] − U= [8], = = 1, . . . , #R (A.40c)
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U0 [8] =
3

2

(
20

V2 [8] + !0

)
(A.40d)

U= [8] =
2=

V2 [8] + !=, = = 1, . . . , #R. (A.40e)

Eq. (A.40a) implies that n < 3
4X0, based on which we select n = 1

2X0. Using (A.40b) and

(A.40d), we obtain 20 ≤ 4
21X0; and based on (A.40c) and (A.40e), we find 2= ≤ 6

7X=. Thus, we set

the stepsize U8= as

U= [8] =


X0
14 (8 + 2)2 + 3

2!0, = = 0

3X=
14 (8 + 2)2 + !=, = = 1, . . . , #R.

(A.41)

We now can establish convergence of w̄[�] = )−1 ∑)
:=1w: [�] as

� (w̄[�]) − � (u∗) ≤ 1

)

)∑
:=1

� (w: [�]) − � (u∗)

≤ 2_16

) (� + 2)2
+ _17

(� + 2)2
+ �_18

(� + 2)2
+O

(
W2#2

B�

X0

) (A.42)

where _16, _17 and _18 are defined respectively as

_16 :=

#R∑
==1

U= [1]


u∗= − v= [0]

2

(A.43)

_17 :=

(
3

2
X0 + 2U0 [1]

) 

u∗0 − v0 [0]


2 + 4

)

)∑
:=1

� (w: [0]) − 4� (u∗) (A.44)

_18 :=

#R∑
==1

7f2
=

3X=
+

11f2
0 + 28W2#2�

X0
. (A.45)
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Appendix B

Related Proofs of Chapter 4

B.1 Proof of Equivalence Between (4.4) and (4.6)

Before we proceed the proof, we introduce the definition of inner product of two functions. De-

note the any two functions 51(B,a) and 52(B,a), the inner product ot two functions is defined as

〈 51, 52〉- :=
∑
a∈A

∑
B∈S

51(B,a) 52(B,a)cB`Ba?B,B
′

a . (B.1)

Therefore, the --induced norm is denoted by

‖ 51‖- =
√
〈 51, 51〉- . (B.2)

We investigate the equivalence between (4.4) and (4.6) where the projection is with respect

to the induced norm ‖·‖- . The projected Bellman equation in (4.4) is recast as

projQ
{
B

[
&̃(B,a)

]
− &̃(B,a)

}
= 0, B ∈ S and a ∈ A . (B.3)

Based on (B.3) and the definition of projection operator, we obtain

〈
φ3 (B,a),B

[
&̃(B,a)

]
− &̃(B,a)

〉
-
= 0, 3 = 1, . . . , �. (B.4)
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Using (B.1), we obtain the following derivations

〈
φ3(B,a),B

[
&̃(B,a)

]
− &̃(B,a)

〉
-
= 0

⇔
∑
a∈A

∑
B∈S

φ3(B,a)cB`Ba

(
1

#

#∑
==1

A= (B,a) + W
∑
B′∈S

?B,B
′

a max
a′∈A

&̃(B′,a′) − &̃(B,a)
)
= 0

⇔
∑
a∈A

∑
B∈S

∑
B′∈S

cB`Ba?
B,B′
a φ3(B,a)

(
1

#

#∑
==1

A= (B,a) + Wmax
a′∈A

&̃(B′,a′) − &̃(B,a)
)
= 0

⇔E-

[
φ3(B,a)

(
1

#

#∑
==1

A= (B,a) + Wmax
a′∈A

&̃(B′,a′) − &̃(B,a)
)]

= 0

⇔E-

[
φ(B,a)

(
1

#

#∑
==1

A= (B,a) + Wmax
a′∈A

&̃(B′,a′) − &̃(B,a)
)]

= 0

(B.5)

where the expectation is taken over the triple - = (B,a, B′).

Since each agent = maintains a local estimation of Q-function as &̃(B,a) = φ>(B,a)w=, we

obtain (4.6) by substituting the approximate Q-function into the last equation in (B.5).

B.2 Proof of Lemma 4.1

Let w and w′ be two vectors in R#3. Recalling (4.12) and -: = ((: , �: , (:+1), we obtain

f (w; -:) − f (w′; -:) as

f (w; -:) − f (w′; -:) =


...

Wφ:

(〈
φ̂=,: ,w=

〉
−

〈
φ̌=,: ,w

′
=

〉)
...


−


...

φ:
〈
φ: ,w= −w′=

〉
...


(B.6)

where φ̂=,: = arg maxa′∈A φ
>((:+1,a′)F= and φ̌=,: = arg maxa′∈A φ

>((:+1,a′)F′=.

Based on (B.6), we obtain

‖f (w; -:) − f (w′; -:)‖ ≤














...

Wφ:

(〈
φ̂=,: ,w=

〉
−

〈
φ̌=,: ,w

′
=

〉)
...













 +













...

φ:
〈
φ: ,w= −w′=

〉
...













 (B.7)

Recalling φ̂=,: = arg maxa′∈A 〈φ((:+1,a′),w=〉 and φ̌=,: = arg maxa′′∈A
〈
φ((:+1,a′′),w′=

〉
, the
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upper and lower bounds of the term
〈
φ̂=,: ,w=

〉
−

〈
φ̌=,: ,w

′
=

〉
are derived as

max
a′∈A
〈φ((:+1,a′),w=〉 −max

a′′∈A

〈
φ((:+1,a′′),w′=

〉
≤

〈
φ((:+1,a′),w= −w′=

〉
,a′ ∈ A (B.8)

and

max
a′∈A
〈φ((:+1,a′),w=〉 −max

a′′∈A

〈
φ((:+1,a′′),w′=

〉
≥

〈
φ((:+1,a′′),w= −w′=

〉
,a′′ ∈ A . (B.9)

Based on (B.8), (B.9) and Cauchy-Schwarz inequality, we obtain����max
a′∈A
〈φ((:+1,a′),w=〉 −max

a′′∈A

〈
φ((:+1,a′′),w′=

〉����2 ≤ 

w= −w′=

2
. (B.10)

The power of the first term in (B.7) is upper-bounded as












...

Wφ:

(〈
φ̂=,: ,w=

〉
−

〈
φ̌=,: ,w

′
=

〉)
...














2

= W2
#∑
==1




φ: (〈φ̂=,: ,w=〉 − 〈
φ̌=,: ,w

′
=

〉)


2
(B.11a)

≤ W2
#∑
==1

���〈φ̂=,: ,w=〉 − 〈
φ̌=,: ,w

′
=

〉���2 (B.11b)

≤ W2
#∑
==1



w= −w′=

2
:= W2 ‖w −w′‖2 (B.11c)

where inequality (B.11b) follows from ‖φ(B=, 0=)‖ ≤ 1, and inequality (B.11c) follows from (B.10).

Following similar arguments in (B.11), the power of the second term in (B.7)












...

φ:
〈
φ: ,w= −w′=

〉
...














2

≤ ‖w −w′‖2 . (B.12)

Based on (B.11c) and (B.12), we conclude

‖f (w; -:) − f (w′; -:)‖ ≤ (1 + W) ‖w −w′‖ := ! ‖w −w′‖ . (B.13)
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where ! = 1 + W.

Using (B.13), we obtain

‖f (w; -:)‖ = ‖f (w; -:) − f (w∗; -:) + f (w∗; -:)‖ ≤ ! ‖w −w∗‖ + !� (B.14)

where � is the upper bound of ‖f (w; -:)‖ /!.

We obtain the upper bound of ‖f (w; -:)‖ as

‖f (w; -:)‖ =














...

φ:

(
A=,: + W

〈
φ̂=,: ,w

∗
=

〉
−

〈
φ: ,w

∗
=

〉)
...













 (B.15a)

≤














...

φ:A=,:
...













+













...

φ:

(
W

〈
φ̂=,: ,w

∗
=

〉
−

〈
φ: ,w

∗
=

〉)
...













 (B.15b)

≤
√
#Amax + (1 + W) ‖w∗‖ (B.15c)

where the inequality (B.15b) follows from the triangle inequality, and inequality (B.15c) follows

the fact that A= ((: , �:) ≤ Amax, ‖φ: ‖ ≤ 1, and ‖φ̂=,: ‖ ≤ 1, = = 1, . . . , #. Therefore, we conclude

that � ≤
√
# (‖w∗‖ + Amax/!).

Following similar procedures and the fact E-
[
f̄ (w∗; -)

]
= 0, we have



E- [
f̄ (w∗; -)

]
− E-

[
f̄ (w∗; -)

]

 ≤ ! ‖w −w∗‖ (B.16)

and 

f̄ (w∗; -)

 ≤ ! ‖w −w∗‖ + !�. (B.17)
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B.3 Proof of Lemma 4.2

Recalling the vector f̄ (w) = E- [f̄ (w; -)] is obtained as

f̄ (w) = E-


...

φ(B,a)g(w=; -)
...


. (B.18)

Then, we have

(w −w′)>
(
f̄ (w) − f̄ (w′)

)
=

#∑
==1

(
w= −w′=

)> (
E- [φ(B,a)g(w=; -)] − E-

[
φ(B,a)g(w′=; -)

] )
.

(B.19)

Therefore, we obtain the =th term on the right-hand side of (B.19) as

(
w= −w′=

)> (
E- [φ(B,a)g(w=; -)] − E-

[
φ(B,a)g(w′=; -)

] )
(B.20)

=
(
w= −w′=

)>
E-

[
Wφ(B,a)

(
max
a′∈A

φ>(B′,a′)w= −max
0′′∈A

φ>(B′,a′′)w′=
)
− φ>(B, 0)

(
w= −w′=

) ]
= WE-

[ (
w= −w′=

)>
φ(B,a)

(
max
a′∈A

φ>(B′,a′)w= −max
a′′∈A

φ>(B′,a′′)w′=
)]
−E-

[
φ>(B,a)

(
w= − F′=

) ]2

≤ W
√
E- [φ>(B,a) (w= −w′=)]2

√
E-

[
max
a′∈A

φ>(B′,a′)w=−max
a′′∈A

φ>(B′,a′′)w′=
]2

− E-
[
φ>(B,a)

(
w= −w′=

) ]2

≤ W
√
E- [φ>(B,a) (w= −w′=)]2

√
E-

[
max
a′∈A

φ>(B′,a′) (w= −w′=)
]2
− E-

[
φ>(B,a)

(
w= −w′=

) ]2

≤
√
E- [φ>(B,a) (w= −w′=)]2

WE-

[
max
a′∈A

φ>(B′,a′)
(
w= −w′=

) ]2
− E-

[
φ>(B,a)

(
w= −w′=

) ]2

W

√
E-

[
max
0′∈A

φ>(B,a) (w= −w′=)
]2
+

√
E- [φ>(B,a) (w= −w′=)]2

≤
W2E-

[
max
a′∈A

φ>(B′,a′)
(
w= −w′=

) ]2
− E-

[
φ>(B,a)

(
w= −w′=

) ]2

W
√
E-[maxa′∈A φ

> (B′,a′) (w=−w′=) ]2√
E-[φ> (B,a) (F=−F′=) ]2

+ 1

≤ − 20

2 − 20



w= −w′=

2
:= −!X



w= −w′=

2

where X = 20
(2−20)! .
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Stacking the # terms on the RHS of (B.20), we obtain

(w −w′)>
(
f̄ (w) − f̄ (w′)

)
≤ −!X ‖w −w′‖2 . (B.21)

B.4 Proof of Lemma 4.3

To analyze the properties of accumulated gradient noise ζ)(w: ; -:::+) −1), we introduce an

auxiliary function ζ̂)(w:) such that

w̄:+) = w̄: + �
) +:∑
C=:

UCf (w: ; -C ) + ζ̂)(w: ; -:::+) −1). (B.22)

Based on (4.14) and (B.22), we obtain the relation between ζ)(w: ; -:::+) −1) and ζ̂)(w: ; -:::+) −1)

as

ζ)(w: ; -:::+) −1) = ζ̂)(w: ; -:::+) −1) + �
) +:∑
C=:

UC
[
f (w: ; -C ) − f̄ (w:)

]
(B.23)

Taking expectation of (B.23) over the sample trajectory -:::+) −1 conditioning on w: , we have

E[ζ)(w: ; -:::+) −1)] = E
[
�
) +:∑
C=:

UC
[
f (w: ; -C ) − f̄ (w:)

] ]
+ E

[
ζ̂)(w: ; -:::+) −1)

]
(B.24)

Based on the triangle inequality, we have

‖E[ζ)(w: ; -:::+) −1)]‖ ≤





E

[
�
) +:−1∑
C=:

UC
[
f (w: ; -C ) − f̄ (w:)

] ]




+


E[
ζ̂)(w: ; -:::+) −1)

]


. (B.25)

B.4.1 The Upper Bound of the First Term of (B.25)

Recalling Markov chain {(: }: is irreducible and aperiodic. Based on [87, Lemma 3.11]

and [86, eqs. (58) and (59)], we conclude that {-: }: is an irreducible and aperiodic Markov

chain. Using the irreducible and aperiodic properties and taking expectation over -:::+) −1, we

have the following derivations




E
[
�
) +:−1∑
C=:

UC
[
f (w: ; -C ) − f̄ (w:)

] ]




 (B.26a)
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=






) +:−1∑
C=:

UC
(
E[�f (w: ; -C )] − E-C

[
�f̄ (w: ; -C )

] )




 (B.26b)

=






) +:−1∑
C=:

UC

∑
-

(
%(-C = - |w: ) − cB`Ba?B,B

′
a

)
�f̄ (w: ; -)






 (B.26c)

≤
) +:−1∑
C=:

UC

∑
-

���%(-C = - |w: ) − cB`Ba?B,B′a

��� 

�f̄ (w: ; -)

 (B.26d)

≤ ! [‖w: −w∗‖ + �]
) +:−1∑
C=:

UC

∑
-

���%(-C = - |w:) − cB`Ba?B,B′a

��� (B.26e)

≤ U:!)_1(), :) [‖w: −w∗‖ + �] (B.26f)

where (B.26c) follows that the random variable - is independent of w: and the fact �f (w: ; -) =

�f (w: ; -), the inequality (B.26d) follows the facts ‖0w + 1w′‖ ≤ |0 | ‖w‖ + |1 | ‖w′‖ and ‖�‖ = 1,

the inequality (B.26e) follows (B.17) and ‖�‖ = 1, and (B.26f) follows from the decaying stepsize

and Theorem 4.9 in [127]. Moreover, _1(), :) is defined as

1

)

) +:−1∑
C=:

221d
C ≤ 221d

:

) (1 − d) := _1(), :) (B.27)

where 21 > 0 and d ∈ (0, 1).

B.4.2 The Upper Bound of the Second Term of (B.25)

Setting ) ← ) + 1 in (B.22), we have that

w̄:+) +1 = w̄: + �
:+)∑
C=:

UCf (w: ; -C ) + ζ̂) +1(w: ; -:::+) ). (B.28)

Subtracting (B.22) from (B.28), we obtain

w̄:+) +1 − w̄:+) = U:+)�f (w: ; -:+) ) + ζ̂) +1(w: ; -:::+) ) − ζ̂)(w: ; -:::+) −1) (B.29)

Substituting the iteration (4.12) into (B.29) and performing several algebraic manipulations,

we obtain

ζ̂) +1(w: ; -:::+) ) = ζ̂)(w: ; -:::+) −1) + U:+)�[f (w:+) ; -:+) ) − f (w: ; -:+) )] . (B.30)
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Based on the triangle inequality and the fact ‖�‖ = 1, we have




ζ̂) +1(w: ; -:::+) )



 (B.31a)

≤



ζ̂)(w: ; -:::+) −1)




 + U:+) ‖f (w:+) ; -:+) ) − f (w: ; -:+) )‖ (B.31b)

≤



ζ̂)(w: ; -:::+) −1)




 + U:+) ! ‖w:+) −w: ‖ (B.31c)

=




ζ̂)(w: ; -:::+) −1)



 + U:+) ! 




� ) +:−1∑

C=:

UCf (w: ; -C ) + ζ̂)(w: ; -:::+) −1)





 (B.31d)

≤ (1 + U:+) !)



ζ̂)(w: ; -:::+) −1)




 + U:+) ! ) +:−1∑
C=:

UC ‖f (w: ; -C )‖ (B.31e)

≤ (1 + U:+) !)



ζ̂)(w: ; -:::+) −1)




 + U2
:!

2) [‖w: −w∗‖ + �] (B.31f)

≤ U2
:!

2)2_2()) [‖w: −w∗‖ + �] (B.31g)

where the inequality (B.31g) follows from the facts ζ̂1(w: ; -:) = 0 and decaying stepsize U: with

_2() + 1) := )−2 ∑)
C=1 C (1 + U1!)) −C .

Therefore, the second term of (B.25) is upper-bounded by




ζ̂)(w: ; -:::+) −1)



 ≤ U2

:!
2)2_2()) [‖w: −w∗‖ + �] . (B.32)

Substituting (B.26f) and (B.32) into (B.25), we have

‖Eζ)(w: ; -:::+) −1)‖ ≤ U:!) [_1(), :)+U:!)_2())] [‖w: −w∗‖ + �] . (B.33)

We obtain the power of ζ)(w: ; -:::+) −1) as

‖ζ)(w: ; -:::+) −1)‖2 (B.34a)

=






ζ̂)(w: ; -:::+) −1) + �
) +:−1∑
C=:

UC
[
f (w: ; -C ) − f̄ (w:)

]




2

(B.34b)

≤ 3



ζ̂)(w: ; -:::+) −1)




2
+ 3






) +:−1∑
C=:

UCf (w: ; -C )





2

+ 3U2
:!

2)2‖w: −w∗‖2 (B.34c)

≤ 3



ζ̂)(w: ; -:::+) −1)




2
+ 3U2

:!
2)2 [‖w: −w∗‖ + �]2 + 3U2

:!
2)2‖w: −w∗‖2 (B.34d)

≤ 3U2
:!

2)2
[
3 + 2U2

:!
2)2_2

2())
]
‖w: −w∗‖2 + 6U2

:!
2)2�2

[
1 + U2

:!
2)2_2

2())
]

(B.34e)
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where the inequality (B.34c) follows the facts (B.16), decaying stepsize U: and (0 + 1 + 2)2 ≤

302 + 312 + 322, the inequality (B.34d) follows from (B.17), and the inequality (B.34e) is obtained

by substituting (B.32) into (B.34d) and performing several algebraic manipulations.

B.5 Proof of Lemma 4.4

We recast the iteration (4.12) as

w̄:+1 = w̄: + U:�∇f (w: ; -:) = w̄: + U:∇f (w̄: ; -:) + U:�∇f (w: ; -:) − U:∇f (w̄: ; -:) . (B.35)

We derive the upper bound of the term �∇f (w: ; -:) − ∇f (w̄: ; -:) as

‖�∇f (w: ; -:) − ∇f (w̄: ; -:)‖ (B.36a)

≤ ‖�∇f (w: ; -:) − �∇f (w̄: ; -:)‖ + ‖�∇f (w̄: ; -:) − ∇f (w̄: ; -:)‖ (B.36b)

≤ ! ‖w: − w̄: ‖ + ‖�∇f (w̄: ; -:) − ∇f (w̄: ; -:)‖ (B.36c)

≤ ! ‖w: − w̄: ‖ +
√
#Amax (B.36d)

= ! ‖�w: ‖ +
√
#Amax (B.36e)

where (B.36b) is based on triangle inequality, (B.36c) is based on Lemma 4.1, and (B.36d) follows

from the following facts

�∇f (w̄: ; -:) − ∇f (w̄: ; -:) (B.37)

=



...

φ=,:

[
1
#

#∑
==1

A=,: +
(
Wφ̂=,: − φ=,:

)>
F̄=,:

]
...


−



...

φ=,:

[
A=,: +

(
Wφ̂=,: − φ=,:

)>
w̄=,:

]
...


=



...

φ=,:

[
1
#

#∑
==1

A=,: − A=,:
]

...


(B.38)

with


 1
#

∑#
==1 A=,: − A=,:



 ≤ Amax and


φ=,:

 ≤ 1.
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Subtracting (B.35) from (4.13), we obtain

�w:+1 = (B ⊗ �3) �w: + U: [∇f (w: ; -:) − ∇f (w̄: ; -:)] − U: [�∇f (w: ; -:) − ∇f (w̄: ; -:)] (B.39)

B.5.1 Decaying Stepsize

Denote the second-largest singular value of B by 22. Based on ‖(B ⊗ �3) �w: ‖ ≤ 22 ‖�w: ‖,

(B.39) and Lemma 4.1, we have

‖�w:+1‖ ≤ (22 + 2U:!) ‖�w: ‖ + U:
√
#Amax ≤ (22 + 2U1!) ‖�w: ‖ + U:

√
#Amax (B.40)

where U1 ≥ U: .

Telescoping the series in (B.40), we have

‖�w: ‖ ≤ (22 + 2U1!): ‖�w1‖ +
√
#Amax

:−1∑
C=1

UC (22 + 2U1!):−C−1 (B.41a)

≤ (22 + 2U1!): ‖�w1‖ + 2̄3

√
#Amax4: (B.41b)

where (B.41b) follows Theorem 2.8 in [146] with 4: = max{U: , ((1 + 22 + 2U1!)/2): } and positive

constant 2̄3.

When the decaying stepsize U: = Ū!
−1/: is used, we have (1 + 22 + 2U1!)/2 ≤ (1+22+2Ū)/2. We

set 22 + 2Ū < 1 such that the consensus error converges. To simplify (B.41b), we introduce the

following lemma.

Lemma B.1. There always exists a positive constant such that 2′d: ≤ 2′′/: where d ∈ (0, 1).

Proof Define a function 5 (:) = log( 2′′
2′ ) − log(:) − : log(d). Setting the first-order derivative

of 5 (:) equal to zero, namely m: 5 (:) = − 1
:
− log(d) = 0. We have : = 1

− log(d) . Substituting

: = 1
− log(d) into 5 (:), we obtain the minimum value of 5 (:) as 5min = log( exp(1)2′′

2′ log( 1
d
)). When

2′′ ≥ 2′

exp(1) log( 1
d
) and d ∈ (0, 1), we have 5 (:) ≥ 5min ≥ 0 and 2′d: ≤ 2′′

:
.

Based on Lemma B.1, there exists

23 ≥ 2̄3 max

{
1

!
,

1

2 exp(1) log( 2
1+22+2Ū )

}
(B.42)
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such that 2̄34: ≤ U:!23.

Based on (B.42), we obtain

‖�w: ‖ ≤ (22 + 2U1!): ‖�w1‖ + U:!
√
#Amax23 ≤ (22 + 2Ū): ‖�w1‖ + U:!

√
#Amax23. (B.43)

B.5.2 Constant Stepsize

When the decaying stepsize U: = Ū!
−1 is used with Ū < (1− 22)/4, we obtain the convergence

rate of consensus error from (B.41a) as



�w:


 ≤ (22 + 2Ū):



�w1


 + 2Ū

√
#Amax

! (1 − 22)
. (B.44)

B.6 Proof of Lemma 4.5

To perform the finite-sample analysis, we define a )-step Lyapunov function as

C) ,: =
1

2

) +:−1∑
C=:

‖w̄C −w∗‖2 . (B.45)

Therefore, the drift of )-step Lyapunov function is obtained as

C) ,:+1 − C) ,: =
1

2

) +:−1∑
C=:

‖w̄C −w∗‖2 −
1

2

) +:−1∑
C=:

‖w̄C −w∗‖2 (B.46a)

=
1

2
‖w̄:+) −w∗‖2 −

1

2
‖w̄: −w∗‖2 (B.46b)

=
1

2
‖w̄:+) − w̄: ‖2 + (w̄: −w∗)>(w̄:+) − w̄:) (B.46c)

=
1

2






� ) +:−1∑
C=:

UC∇f̄ (w:) + ζ)(w: ; -:::+) −1)





2

+
〈
w̄: −w∗,�

) +:−1∑
C=:

UC f̄ (w:) + ζ)(w: ; -:::+) −1)
〉

(B.46d)

= U2
:)

2


∇f̄ (w:)

2+‖ζ)(w: ; -:::+) −1)‖2

+ 〈w̄: −w∗, ζ)(w: ; -:::+) −1)〉 +
) +:−1∑
C=:

UC
〈
w̄: −w∗,∇f̄ (w:)

〉
(B.46e)

where the equality (B.46d) follows from (4.14), and (B.46e) follows from the facts 〈�, w̄: −w∗〉 =
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w̄: −w∗, (0 + 1)2 ≤ 202 + 212 and decaying stepsize.

Based on (B.16), the first term of (B.46e) is upper-bounded by

U2
:)

2


∇f̄ (w:)

2 ≤ U2

:!
2)2 ‖w̄: −w∗‖2 . (B.47)

Givenw: , we observe that the third term in (B.46e) is a function of joint observation trajectory

-:::+) −1. Taking expectation over -:::+) −1 conditioning on w: , the conditional expectation of

the third term in (B.46e) is upper-bounded by

E[(w̄: −w∗)>ζ)(w: ; -:::+) −1)] (B.48a)

= (w̄: −w∗)>E[ζ)(w: ; -:::+) −1)] (B.48b)

≤ ‖w̄: −w∗‖ ‖E[ζ)(w: ; -:::+) −1)] ‖ (B.48c)

≤ U:!) [_1(), :) + U:!)_2())] ‖w̄: −w∗‖ (‖w: −w∗‖ + �) (B.48d)

= U:!) [_1(), :) + U:!)_2())] ‖w̄: −w∗‖ (‖w̄: −w∗‖ + �)

+ U:!) [_1(), :) + U:!)_2())] ‖w̄: −w∗‖ ‖�w: ‖ (B.48e)

≤ U:!) [2U:!) + 2_1(), :) + 2U:!)_2())] ‖w̄: −w∗‖2 +
_2

1(), :) + U2
:
!2)2_2

2())
4)2

‖�w: ‖2

+ U:!)�2 [2_1(), :) + 2U:!)_2())] (B.48f)

where the inequality (B.48b) follows the Cauchy-Schwarz inequality for dot product, (B.48c) is

based on (B.33), and (B.48f) follows from the elementary inequality 01 ≤ 02 + 124 .

Based on Lemma 4.2 and the fact ∇f̄ (w∗) = E-
[
∇f̄ (w∗; -)

]
= 0, we obtain the upper bound

of the fourth term in (B.46e) as

) +:−1∑
C=:

UC (w̄: −w∗)>∇f̄ (w:) (B.49a)

=

) +:−1∑
C=:

UC (w̄: −w∗)>
[
∇f̄ (w:) − ∇f̄ (w̄:) + ∇f̄ (w̄:) − ∇f̄ (w∗)

]
(B.49b)

≤ U:!) ‖w̄: −w∗‖ ‖�w: ‖ +
) +:−1∑
C=:

UC (w̄: −w∗)>
[
∇f̄ (w̄:) − ∇f̄ (w∗)

]
(B.49c)

≤ U:!) ‖w̄: −w∗‖ ‖�w: ‖ −
) +:−1∑
C=:

UC!X ‖w̄: −w∗‖2 (B.49d)
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≤ U2
:!

2)2 ‖w̄: −w∗‖2 +
1

4)2
‖�w: ‖2 −

) +:−1∑
C=:

UC!X ‖w̄: −w∗‖2 (B.49e)

where (B.49c) follows from the Cauchy-Schwarz inequality, (B.49d) follows from Lemma 4.2, and

(B.49e) follows from the elementary inequality 01 ≤ 02 + 124 .

B.6.1 Decaying Stepsize

Using Riemann sum and the decaying stepsize U: = 2!−1/:, we obtain the lower bound of∑:+) −1
C=: UC as

:+) −1∑
C=:

UC

U:
≥

∫ )

0

:

: + C 3C = : log

(
: + )
:

)
≥ log(1 + )). (B.50)

Substituting (B.50) into (B.49e), we obtain

) +:−1∑
C=:

UC (w̄: −w∗)>∇f̄ (w:) ≤ U2
:!

2)2 ‖w̄: −w∗‖2 +
1

4)2
‖�w: ‖2 − U:!X log(1 + )) ‖w̄: −w∗‖2 .

(B.51)

Combining (B.34e), (B.47), (B.48), and (B.51) and taking expectation conditioning on w: ,

we obtain

E[C)n ,:+1 − C)n ,:] ≤ U:!)_6(), U:) ‖w̄: −w∗‖2 + _3(), U:) ‖�w: ‖2 + 2U:!)�
2_4(), U:) (B.52)

where _3(), U:), _4(), U:), and _6(), U:) are respectively defined as

_3(), U:) = 18U2
:!

2)2 + 12U4
:!

4)4_2
2()) +

1

4)2

[
1 + _2

1(), :) + U2
:!

2)2_2
2())

]
(B.53)

_4(), U:) = _1(), :) + 3U:!) + U:!)_2()) + 3U3
:!

3)3_2
2()) (B.54)

and

_6(), U:) = 2_1(), :) − X
log(1 + ))

)
+ 2U:!)

[
11 + _2()) + 6U2

:!
2)2_2

2())
]
. (B.55)

Based on (B.27), we have 2_1(), :)−X)−1 log(1+)) = )−1 [421d
: (1−d)−1−X log(1+))]. Moreover,

(B.27) is a monotonically increasing term of :. Therefore, there exist n > 0 and )n such that

2_1()n , 1) − X
log(1 + )n )

)n
≤ −2n . (B.56)
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Given )n , the third term of _6()n , U:) is a monotonically increasing function of U: . Hence,

there exists an Un > 0 such that

2U:!)n
[
11 + _2()n ) + 6U2

:!
2)2
n _

2
2()n )

]
≤ n (B.57)

where U: ≤ Un .

Combining the facts (B.56) and (B.57), we conclude _6()n , U:) ≤ −n . As a result, we obtain

E[C)n ,:+1 − C)n ,:] ≤ −nU:!)n ‖w̄: −w∗‖
2 + _3()n , U:)



�w:


2 + 2U:!)n�

2_4()n , U:). (B.58)

Taking iterated expectation over w: , we have

E
[
C)n ,:+1 − C)n ,:

]
≤ −nU:!)nE

[
‖w̄: −w∗‖2

]
+ _3()n , U:)E

[
‖�w: ‖2

]
+ 2U:!)n�

2_4()n , U:).

(B.59)

B.6.2 Constant Stepsize

Using the constant stepsize U: = Ū!−1, we obtain the upper bound of the fourth term in

(B.46e) as

) +:−1∑
C=:

UC (w̄: −w∗)>∇f̄ (w:) ≤ U2
:!

2)2 ‖w̄: −w∗‖2 +
1

4)2
‖�w: ‖2 − U:!)X ‖w̄: −w∗‖2 . (B.60)

Combining (B.34e), (B.47), (B.48), and (B.60) and taking expectation conditioning on w: ,

we obtain

E[C)n ,:+1 − C)n ,:] ≤ U:!)_̄6(), :) ‖w̄: −w∗‖2 + _3(), U:) ‖�w: ‖2 + 2U:!)�
2_4(), U:) (B.61)

where _̄6(), :) is obtained as

_̄6(), :) = 2_1(), :) − X + 2Ū)
[
11 + _2()) + 6Ū2)2_2

2())
]
. (B.62)

Based on (B.27), there exist n , )n and Ū ≤ Un ! such that 2_1()n , 1) − X ≤ −2n and 2Ū)n [11 +

_2()n ) + 6Ū2)2_2
2()n )] ≤ n . Moreover, (B.27) is a monotonically increasing term of :. Therefore,
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we obtain

E
[
C)n ,:+1 − C)n ,:

]
≤ −nU:!)nE

[
‖w̄: −w∗‖2

]
+ _3()n , U:)E

[
‖gw: ‖2

]
+ 2U:!)n�

2_4()n , U:).

(B.63)

B.7 Proof of Theorem 4.6

Based on the iteration (4.14), we obtain the relation between ‖w̄:+) −w∗‖ and ‖w̄: −w∗‖ as

‖w̄:+) −w∗‖ ≤ (1 + U:+) −1!) ‖w̄:+) −1 −w∗‖ + U:+) −1!� (B.64a)

≤ (1 + U:!) ‖w̄:+) −1 −w∗‖ + U:!� (B.64b)

≤ (1 + U:!)) ‖w̄: −w∗‖ + U:!�
) −1∑
g=0

(1 + U:!)g (B.64c)

where the inequality (B.64b) follows from U:+) −1 ≤ U: , and the inequality (B.64c) is obtained by

telescoping the iterates in (B.64b).

Based on the elementary inequality (0 + 1)2 ≤ 202 + 212, we have

‖w̄:+) −w∗‖2 ≤ 2(1 + U:!)2) ‖w̄: −w∗‖2 + 2U2
:!

2�2

(
) −1∑
g=0

(1 + U:!)g
)2

. (B.65)

Taking summation of (B.65) over ) = 0, . . . , )n − 1 and dividing both sides by two, we have

C)n ,: ≤ ‖w̄: −w∗‖
2
)n −1∑
g=0

(1 + U:!)2g + U2
:!

2�2
)n −1∑
9=1

(
9−1∑
g=0

(1 + U:!)g
)2

(B.66a)

≤ ‖w̄: −w∗‖2
)n −1∑
g=0

(1 + U:!)2g + U2
:!

2�2
)n −1∑
9=0

(
)n −1∑
g=0

(1 + U:!)g
)2

(B.66b)

where the inequality (B.66b) follows from 9 ≤ )n .

Recalling the fact w̄: = �w: and ‖�w: −w∗‖2 ≤ ‖w: −w∗‖, inequality (B.66b) also verifies

the boundedness condition of E[C)n ,1] as long as the term ‖w1 −w∗‖2 is bounded.
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Based on (B.66b), we have

E
[
C)n ,:

]∑)n −1
g=0 (1 + U1!)2g

≤
E

[
C)n ,:

]∑)n −1
g=0 (1 + U:!)

2g
(B.67a)

≤ E
[
‖w̄: −w∗‖2

]
+ U2

:!
2�2

∑)n −1
9=0

(∑)n −1
g=0 (1 + U:!)

g
)2∑)n −1

g=0 (1 + U:!)
2g

(B.67b)

≤ E
[
‖w̄: −w∗‖2

]
+ U2

:!
2�2)2

n (B.67c)

where the inequality (B.67c) follows from the elementary inequality (∑)n −1
g=0 Gg)2 ≤ )n

∑)n −1
g=0 G2

g .

Based on the fact 1 + G ≤ exp(G), we have

)n −1∑
g=0

(1 + U1!)2g ≤
(1 + U1!)2)n

U1!
≤ exp(2U1!)n )

U1!
. (B.68)

Substituting (B.68) into (B.67c), we have

U1!

exp(2U1!)n )
E

[
C)n ,:

]
≤ E

[
‖w̄: −w∗‖2

]
+ U2

:!
2)2
n�

2. (B.69)

Substituting (B.69) into (B.59), we obtain

E
[
C)n ,:+1

]
≤

[
1 − nU1U:!

2)n

exp(2U1!)n )

]
E

[
C)n ,:

]
+_3()n , U:)E

[
‖�w: ‖2

]
+nU3

:!
3)3
n�

2+2U:!)n�2_4()n , U:).

(B.70)

Based on Lemma 4.4, we have

E
[
‖�w: ‖2

]
≤ 2(22 + 22)2:E

[
‖�w1‖2

]
+ 2#22

3A
2
maxU

2
:!

2 (B.71a)

≤ 2U2
:!

2
(
22

9E
[
‖�w1‖2

]
+ #22

3A
2
max

)
(B.71b)

where the inequality (B.71b) follows from Lemma B.1 with 29 ≥ Ū−1 exp(−1) log−1( 1
22+2Ū ).

Recalling the definitions of _1()n , :) in (B.27) and _4()n , U:) in (B.53). Using Lemma B.1, we

have

2U:!)n�
2_4()n , U:) ≤ 2U:!)n�

2
[
U:!210 + 3U:!)n + U:!)n _2()n ) + 3U3

:!
3)3
n _

2
2()n )

]
(B.72)
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where 210 is obtained as

210 ≥ Ū−1 exp(−1) log−1

(
)n (1 − d)

221

)
. (B.73)

Based on (B.71b) and (B.72), we obtain the upper bound of the last three terms on the

right-hand side of (B.70) as

_3()n , U:)E
[
‖�w: ‖2

]
+ nU3

:!
3)3
n�

2 + 2U:!)n�
2_4()n , U:) (B.74a)

≤ 2U2
:!

2
(
22

9E
[
‖�w1‖2

]
+ #22

3A
2
max

)
+ nU3

:!
3)3
n�

2 (B.74b)

+ 2U:!)n�
2
[
U:!210 + 3U:!)n + U:!)n _2()n ) + 3U3

:!
3)3
n _

2
2()n )

]
(B.74c)

≤ U2
:!

2
[
222

9E
[
‖�w1‖2

]
+ 2#22

3A
2
max + nU:!)3

n�
2 + 2210)n�

2 + 6)n + 2)n _2()n ) + 6U:!)
3
n _

2
2()n )

]
(B.74d)

≤ U2
:!

224 (B.74e)

where 24 is obtained as

24 = 222
9E

[
‖�w1‖2

]
+ 2#22

3A
2
max + nŪ)3

n�
2 + 2210)n�

2 + 6)n + 2)n _2()n ) + 6Ū)3
n _

2
2()n ). (B.75)

Substituting (B.74e) into (B.70) and setting U: = Ū!
−1/:, we obtain

E
[
C)n ,:+1

]
≤

[
1 − nŪ2)n

exp(2Ū)n ):

]
E

[
C)n ,:

]
+ 24

:2
. (B.76)

Recalling the facts Ū < min{!Un , 1−22
2 } and n is a small positive constant, we have n Ū2)n

exp(2Ū)n ) ≤

1. Based on Lemma 2.3 in [146], we conclude that

E
[
‖w̄: −w∗‖2

]
≤ 2E

[
C:)n

]
≤ 225

:
(B.77)

where 25 is obtained as

25 = max

{
E

[
C)n ,1

]
,
exp(2Ū)n )24

nŪ2)n

}
. (B.78)
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B.8 Proof of Theorem 4.8

Based on (B.44), constant stepsize U: ≡ Ū!−1 and Ū < (1 − 22)/4, we obtain

E
[
‖�w: ‖2

]
≤ 2(22 + 2Ū)2:E

[
‖�w1‖2

]
+ 8#Ū2A2

max

!2(1 − 22)
(B.79)

Following similar arguments in Appendix B.7, there exist n and )n satisfying 2_1()n , :) − X ≤

−2n such that

E
[
C)n ,:+1

]
≤ 26E

[
C)n ,:

]
+ _3

(
)n ,

Ū

!

)
E

[
‖�w: ‖2

]
+ nŪ3)3

n�
2 + 22)n�

2_4

(
)n ,

Ū

!

)
(B.80)

where 26 is obtained as

26 = 1 − nŪ)n∑)n −1
g=0 (1 + Ū)2g

. (B.81)

Substituting (B.79) into (B.80) and performing several algebraic manipulations, we have

E
[
C)n ,:+1

]
≤ 26E

[
C)n ,:

]
+ 2_3

(
)n ,

Ū

!

)
E

[
‖�w1‖2

]
(22 + 2Ū)2: + 4Ū21�

2

1 − d d: + Ū2#27 (B.82)

where 27 is obtained as

27 =
8A2

max

!2(1 − 22)
_3

(
)n ,

Ū

!

)
+ )

2
n�

2

#

[
6 + 2_2()n ) + nŪ)n + 62)n _

2
2()n )

]
. (B.83)

Using (B.82), we obtain the upper bound of )n -step Lyapunov function as

E
[
C)n ,:+1

]
≤ 2:6E

[
C)n ,1

]
+ 2

:∑
C=1

2:−C6 (22 + 2Ū)2(C−1)_3

(
)n ,

Ū

!

)
E

[
‖�w1‖2

]
+

:∑
C=1

2:−C6 dC−1 4Ū21�
2

1 − d + Ū
2#27

:∑
C=1

2:−C6

≤ 2:6E
[
C)n ,1

]
+

∑)n −1
g=0 (1 + Ū)

2g

n)n
Ū#27 +

2:6 − (22 + 2Ū)2:

26 − (22 + 2Ū)2
2_3

(
)n ,

Ū

!

)
E

[
‖�w1‖2

]
+
2:6 − d:

26 − d
4Ū21�

2

1 − d

≤ 2:6E
[
C1
)n

]
+ #

2
_5(:) +

Ū#

n)n

)n −1∑
g=0

(1 + Ū)2g27

(B.84)
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where _5(:) is obtained as

_5(:) =
4_3

(
)n ,

Ū
!

)
E

[
‖�w1‖2

] [
2:6 − (22 + 2Ū)2:

]
#

[
26 − (22 + 2Ū)2

] +
8Ū21�

2
(
2:6 − d:

)
# (26 − d) (1 − d)

. (B.85)

Since 1
2E[‖w̄: −w

∗‖2] ≤ E[C)n ,:], we have

1

#
E

[
‖w̄: −w∗‖2

]
≤

2E
[
C)n ,1

]
#

2:−1
6 + _5(: − 1) + Ū#

n)n

)n −1∑
g=0

(1 + Ū)2g27. (B.86)
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Appendix C

Related Proofs of Chapter 5

C.1 Upper Bound of Lyapunov Drift-Plus-Penalty Function

Substituting (5.9) into (5.15), we have

�
(
qA

:

)
=

1

2
E ]1,:

[

qA

:+1


2 −



qA

:



2 |qA

:

]
(C.1a)

≤1

2

#∑
==1

E ]1,:
[
a2
=,: + A

2
=,: |q

A

:

]
+ 1

2

#∑
==1

@A

=,:E ]1,:
[
a=,: − A=,: |qA

:

]
(C.1b)

≤# + 1

2

#∑
==1

@A

=,:E ]1,:
[
a=,: − A=,: |qA

:

]
(C.1c)

where (C.1b) follows from the fact ( [0 − 1]+ + 2)2 ≤ 02 + 12 + 22 + 20(2 − 1) with 0, 1, 2 ≥ 0, and

(C.1c) follows from the facts (5.8) and a=,: ∈ (0, 1).

C.2 Proof of Theorem 5.2

The major steps follow the proof of [30, Theorem 4.2], and we will only sketch the proof for our

formulated optimization problem. The optimization problem (5.17) is non-convex; therefore, we

are motivated to seek a suboptimal solution to problem (5.17) within the feasible region. Recalling

Lemma 5.1, we have the following inequality

�
(
qA

:

)
++E ]1,:

[
� (%BST

: ) |q
A

:

]
≤ # ++E ]1,:

[
� (%BST

: ) |q
A

:

]
+

#∑
==1

@A

=,:E ]1,:
[
a=,: − A=,: |qA

:

]
. (C.2)

Note that qA

:
is independent of the random sources in ]1,: , we can simplify (C.2) as

�
(
qA

:

)
++E ]1,:

[
� (%BST

: )
]
≤ # ++E ]1,:

[
� (%BST

: )
]
+

#∑
==1

@A

=,:E ]1,:
[
a=,: − A=,:

]
(C.3)
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When the traffic arrival rate vector [ā1, . . . , ā# ] is in the stable region of system, and the

random sources in ]1,: = {h=,: , �HAV

:
, a=,: }#==1 is independent and identically distributed over

slots, we have

E ]1,:
[
� (%BST

: )
]
≤�SOPT + n (C.4a)

E ]1,:
[
A=,:

]
≥ā= + n (C.4b)

where �SOPT is the maximum suboptimal value of (5.17), and n can be chosen arbitrarily close to

zero [30, Appendix 4.A].

Due to the minimum requirement of SINR, the expected GEE is lower-bounded as

E
[
� (%BST

: )
]
≥ �min. (C.5)

Substituting (C.4) into (C.3) and setting n0 → 0, we obtain

�
(
qA

:

)
++E ]1,:

[
� (%BST

: )
]
≤ # ++�SOPT − n

#∑
==1

@A

=,: . (C.6)

In order to prove the first part of Theorem 5.2, we first take the iterated expectation over

endogenous (i.e., qA

:
) and exogenous (i.e., ]1,:) random sources and perform some algebraic ma-

nipulations of (C.6) as

E
[
�
(
qA

:

) ]
≤ # ++

(
�SOPT − E

[
� (%BST

: )
] )
− n

#∑
==1

E
[
@A

=,:

]
. (C.7a)

Recalling the definition of drift function in (5.15), we have

1

2
E

[

qA

:+1


2

]
− 1

2
E

[

qA

:



2
]
≤# ++

(
�SOPT − E

[
� (%BST

: )
] )
− n

#∑
==1

E
[
@A

=,:

]
(C.8a)

≤# ++
(
�SOPT − �min

)
− n

#∑
==1

E
[
@A

=,:

]
(C.8b)

where (C.8b) follows from (C.5).

Taking telescope summing of (C.8b) over : = 0, . . . ,  − 1 and dropping the nonnegative term
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C.3. Proof of Theorem 5.3

@A

=,:
, = = 1, . . . , #, we have

E
[

qA

 



2
]
≤ 2 

[
# ++

(
�SOPT − �min

)]
+ E

[

qA

0



2
]

(C.9)

Since E[‖qA

 
‖2] − E2 [‖qA

 
‖] ≥ 0 and @A

=, 
≤ ‖qA

 
‖, we have

E
[
@A

<,:

]
≤ E

[
‖qA

 ‖
]
≤

√
2 

[
# ++

(
�SOPT − �min

) ]
+ E

[

qA

0



2
]
. (C.10)

Based on (C.10), we observe that the backlog of each access queue increase at a rate of O (
√
 ). There-

fore, we conclude that access queues are mean rate stable.

Taking telescope summing of (C.8a) over : = 0, . . . ,  − 1 and perform several algebraic

manipulations, we have

+

 −1∑
:=0

E
[
� (%BST

: )
]
≤  # +  +�SOPT + 1

2
E

[
‖qA

0 ‖2
]
. (C.11)

Dividing both side of (C.11) by  + and setting  →∞, we obtain (5.18).

Taking telescope summing of (C.8b) over : = 0, . . . ,  − 1, we obtain

n

 −1∑
:=0

#∑
==1

E
[
@A

=,:

]
≤ # +  +

(
�SOPT − �min

)
+ 1

2
E

[
‖qA

0 ‖2
]
− 1

2
E

[
‖qA

 ‖2
]

≤ # +  +
(
�SOPT − �min

)
+ 1

2
E

[
‖qA

0 ‖2
]
.

(C.12)

Dividing both side of (C.12) by n and setting  →∞, we obtain (5.19).

C.3 Proof of Theorem 5.3

Introducing a set of auxiliary variables 23,=,: > 0, we obtain an equivalent form of the opti-

mization problem (5.21) as

min
{w=,: ,_1,=,: ,23,=,: }#==1

+� (%BST

: ) −
#∑
==1

@A

=,:23,=,: (C.13a)

s.t. SINR=,: ≥ _1,=,: , = = 1, . . . , # (C.13b)

SINR=,: ≥ WREQ
= , = = 1, . . . , # (C.13c)
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#∑
==1



w=,:

2 ≤ %max (C.13d)

23,=,:

[
1 + exp(−21,= [10 log10(SINR=,:) − 22,=])

]
≤ 1, = = 1, . . . , #. (C.13e)

The KKT conditions related to the proof are listed as

24,=,:
(
23,=,:

[
1 + exp(−21,= [10 log10(SINR=,:) − 22,=])

]
− 1

)
= 0, = = 1, . . . , # (C.14a)

24,=,:

[
1 + exp(−21,= [10 log10(SINR=,:) − 22,=])

]
− @A

=,: = 0, = = 1, . . . , # (C.14b)

24,=,: ≥ 0, = = 1, . . . , #. (C.14c)

Based on (C.14b), we obtain the expression for 24,=,: as

24,=,: =
@A

=,:

1 + exp(−21,= [10 log10(SINR=,:) − 22,=])
> 0. (C.15)

Hence, we can obtain the expression of W= from (C.14a) as

23,=,: =
1

1 + exp(−21,= [10 log10(SINR=,:) − 22,=])
. (C.16)

Using (C.15) and (C.16), we obtain the following optimization problem

min
{w=,: ,_1,=,: }#==1

#∑
==1

24,=,:
(
23,=,:

[
1 + exp(−21,= [10 log10(SINR=,:) − 22,=])

]
− 1

)
++� (%BST

: ) (C.17a)

s.t. SINR=,: ≥ _1,=,: , = = 1, . . . , # (C.17b)

SINR=,: ≥ WREQ
= , = = 1, . . . , # (C.17c)

#∑
==1



w=,:

2 ≤ %max. (C.17d)

Together with (C.15) and (C.16), the optimization problem (C.17) shares the same KKT

conditions with the optimization problem (5.21).
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C.4 Activeness of Constraints in (5.26)

Recalling the fact in (5.22), we only need to discuss the relation between (5.26d) and (5.26e). Let

{w∗
=,:
, _∗1,=,: , _

∗
2,=,: }

#
==1 be the set of optimal solution. Suppose that some of the constraints in

(5.26e) are inactive, and denote the set of indices of inactive constraints by

I D X =

=
��√√√f2

= +
#∑
;≠=

���hH

=,:
w∗
;,:

���2 < _∗2,=,: , = = 1, . . . , #

 . (C.18)

Then, there is a positive constant 25,=,: > 1 such that

√
f2
= +

∑#
;≠=

���hH

=,:
w∗
;,:

���2 = _∗2,=,:/25,=,: ,

= ∈ I D X . To keep corresponding constraints in (5.26d) unchanged, we set _∗1,=,: ← 22
5,=,:_

∗
1,=,: . Re-

calling the fact 25,=,: > 1, 22
5,=,:_

∗
1,=,: > _∗1,=,: . Then, the term 22

5,=,:_
∗
1,=,: achieves a smaller

objective value of (5.26a), which contradicts optimality of _∗1,=,: . Hence, we conclude that the

constraints in (5.26e) are active.

C.5 Convergence Property of SABF Algorithm

The successive approximation procedures are used in Algorithm 6. Let F g and OB J g respec-

tively denote the approximate feasible region and optimal objective value of problem (5.30) in each

iteration g. Based on lines 6–8, the solution {wg−1
=,:

, _g−1
1,=,: , 2

g−1
3,=,: , 2

g−1
4,=,: }

#
==1 is in the feasible region

of next iteration g, namely F g . Since the solution {wg
=,:
, _g1,=,: , 2

g
3,=,: , 2

g
4,=,: }

#
==1 is a minimizer to

problem (5.30) in the feasible region F g , we obtain

OB J g ≤ OB J g−1. (C.19)

Since the maximum transmission power of BST is %max, the objective value of (5.30) is lower-

bounded. Thus, Algorithm 6 generates a set of solution {wg
=,:
, _g1,=,: , 2

g
3,=,: , 2

g
4,=,: }

#
==1 that con-

verges as g goes to infinity. Since the objection function of (5.30) is convex, we obtain that the

convergent solution {w∞
=,:
, _∞1,=,: , 2

∞
3,=,: , 2

∞
4,=,: }

#
==1 is a KKT point of the problem (5.30) via sim-

ilar arguments in [24, Proposition 3.2]. Based on Theorem 5.3, we conclude that the solution

{w∞
=,:
, _∞1,=,: }

#
==1 is a KKT point of the problem (5.21).

155



Appendix D

Related Proofs of Chapter 6

D.1 Upper Bound of Two Time-Scale Lyapunov

Drift-Plus-Penalty Function

Taking the telescoping summation over : = 1, . . . , ) for the (<, =)th access queue in (6.9), we

obtain the one-frame dynamic equation of the (<, =)th access queue as

@A

<,=,1 [8 + 1] = @A

<,=,1 [8] +
)∑
:=1

a<,=,: [8] −
)∑
:=1

A<,=,: [8] . (D.1)

Based on (D.1), the one-frame drift of the (<, =)th access queue is upper-bounded as

1

2

[(
@A

<,=,1 [8 + 1]
)2
−

(
@A

<,=,1 [8]
)2

]
≤ (a

max)2 + (Amax)2

2
) + @A

<,=,1 [8]
)∑
:=1

[
a<,=,: [8] − A<,=,: [8]

]
(D.2)

where the inequality holds due to the facts in (6.11).

Following a similar argument, we obtain the upper-bound of the one-frame drift of the (<, =)th

processing queue as

1

2

[(
@U

<,=,1 [8 + 1]
)2
−

(
@U

<,=,1 [8]
)2

]
≤ (B

max)2 + (Amax)2

2
) + @U

<,=,1 [8]
)∑
:=1

[
A<,=,: [8] − B<,=,: [8]

]
(D.3)

where the inequality holds due to the facts in (6.11).

Based on (D.2) and (D.3), we obtain the upper-bound of one-frame Lyapunov drift-plus-

penalty function conditioning on qA [8] and qU [8] in (6.19).
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D.2 Proof of Theorem 6.1

Let {w∗
<,=,:

[8], 0∗<,= [8], s∗<→;,: [8]}<,;,=,:,8 denote minimizer to RHS of (6.19) under the con-

straints in (6.6) and (6.12)–(6.14). Let {w̃<,=,: [8], 0̃<,= [8], s̃<→;,: [8]}<,;,=,:,8 denote the set of

feasible resource allocation variables such that ν̄ + n1 ≤ E ]2,: [8 ] [r: [8]] ≤ s̄ − n1.

Substituting the minimizer {w∗
<,=,:

[8], 0∗<,= [8], s∗<→;,: [8]}<,;,=,:,8 into the RHS of (6.19), we

obtain

�
(
qA [8], qU [8]

)
++

"∑
<=1

)∑
:=1

E ]2,: [8 ]
[
� (%BST

<,: [8]) |q
A [8], qU [8]

]
(D.4)

≤)21 ++
"∑
<=1

)∑
:=1

E ]2,: [8 ]
[
� (%BST

<,: [8]) |q
A [8], qU [8]

]
+

)∑
:=1

E>
]2,: [8 ]

[
ν: [8] − r: [8] |qA [8]

]
qA [8] +

)∑
:=1

E>
]2,: [8 ]

[
r: [8] − s: [8] |qU [8]

]
qU [8] (D.5)

≤)21 ++
"∑
<=1

)∑
:=1

E ]2,: [8 ]
[
� (%BST

<,: [8]) |q
A [8], qU [8]

]
− n)1>"#×1

[
qA [:] + qU [:]

]
(D.6)

where the inequality (D.6) follows the fact that {w∗
<,=,:

[8], 0∗<,= [8], s∗<→;,: [8]}<,;,=,:,8 is a feasible

solution under the constraints in (6.6) and (6.12)–(6.14).

Note the endogenous (i.e., qA [8] and qU [8]) and exogenous (i.e., ]2,: [8]) random sources are

independent. Rearranging (D.6) and taking iterated expectation over all random sources, we

obtain an upper bound of the one-frame Lyapunov drift function as

E
[
�
(
qA [8], qU [8]

) ]
≤ )21 + 2)+� − n)1>"#×1E

[
qA [8] + qU [8]

]
(D.7)

based on the bounded GEE (6.20).

Taking telescoping summation over 8 = 0, 1, . . . , �−1 for (D.7) and performing several algebraic

manipulations, we obtain the upper bound of queue backlogs as

n)

�∑
8=1

1>E
[
qA [8] + qU [8]

]
(D.8a)

≤1

2
E

[
‖qA [0] ‖2 − ‖qA [�] ‖2 + ‖qU [0] ‖2 − ‖qU [�] ‖2

]
+ �)21 + 2�)+� (D.8b)

≤1

2
E

[
‖qA [0] ‖2 + ‖qU [0] ‖2

]
+ �)21 + 2�)+� (D.8c)
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where (D.8c) is due to the nonnegative term ‖qA [�] ‖2 + ‖qU [�] ‖2.

Dividing both sides of (D.8c) by n �) , we obtain

1

�

�∑
8=1

1>E
[
qA [8] + qU [8]

]
≤ 21 + 2+�

n
+ 1

2n �)
E

[
‖qA [0] ‖2 + ‖qU [0] ‖2

]
. (D.9)

Note that the initial queue backlogs qA [0] and qU [0] are fixed. Setting � →∞, we obtain

lim sup
�→∞

1

�

�∑
8=1

1>E
[
qA [8] + qU [8]

]
≤ 21 + 2+�

n
< ∞. (D.10)

The backlogs of access queues and processing queues are nonnegative due to the constraints in

(6.12) and queue dynamic functions in (6.9) and (6.10). Based on the nonnegative queue backlogs

and (D.10), we conclude that

lim sup
�→∞

1

�

�∑
8=1

E
[
@A

<,=,1 [8] + @U

<,=,1 [8]
]
≤ 21 + 2+�

n
< ∞ (D.11)

such that the constraints in (6.15) are satisfied.

Now, we prove the inequalities in (6.22). Based on (D.10), we obtain that the nonnegative

queue backlogs of access queues and processing queues satisfy

lim sup
�→∞

1

�

�∑
8=1

1>"#×1E
[
qA [8]

]
≤ 21 + 2+�

n
< ∞ (D.12)

and

lim sup
�→∞

1

�

�∑
8=1

1>"#×1E
[
qU [8]

]
≤ 21 + 2+�

n
< ∞. (D.13)

Based on (D.12), (D.13), and Theorem 2.8 in [30], we conclude that the access queues and

processing queues are mean-rate stable. Furthermore, the necessary conditions for mean-rate

stable access queues and processing queues are obtained as [30, Theorem 2.5]

ā<,= ≤ lim sup
�→∞

1

�)

�∑
8=1

)∑
:=1

E
[
A<,=,: [8]

]
≤ B̄<,=. (D.14)
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Hence, we obtain a relaxed time-average GEE (R-TAGEE) minimization problem as

�∗ = min
{w<,=,: [8 ],0<,= [8 ],s<→;,: [8 ] }<,;,=,:,8

lim
�→∞

1

�)

�∑
8=1

)∑
:=1

"∑
<=1

E
[
� (%BST

<,: [8])
]

(D.15a)

s.t. (6.6), (6.12) − (6.14) and (D.14) (D.15b)

where �∗ is the optimal value of the R-TAGEE minimization problem.

Since the constraints in (6.16b) are a subset of the constraints in (D.15b), the optimal value

of TAGEE minimization problem (6.16) is lower-bounded by the optimal value of R-TAGEE

minimization problem (D.15) as

�∗ ≤ lim
�→∞

1

�)

�∑
8=1

)∑
:=1

"∑
<=1

E
[
� (%BST

<,: [8])
]
. (D.16)

Therefore, we establish the first inequality in (6.22).

Based on the arguments in [30], when the random sources in ]2,: [8] are independent and identi-

cally distributed over different slots, there is an optimal solution {w̃∗
<,=,:

[8], 0̃∗<,= [8], s̃∗<→;,: [8]} to

R-TAGEE minimization problem (D.15) that almost-surely satisfies {w̃∗
<,=,:

[8], 0̃∗<,= [8], s̃∗<→;,: [8]}

is a function of current random sources ]2,: [8] and {w̃∗
<,=,:

[8], 0̃∗<,= [8], s̃∗<→;,: [8]}<,;,=,:,8 guaran-

tees that ā<,= ≤ E ]2,: [8 ]
[
A<,=,: [8]

]
≤ B̄<,= and �∗ =

∑"
<=1E

[
� (%BST

<,:
[8])

]
.

Note that {w̃∗
<,=,:

[8], 0̃∗<,= [8], s̃∗<→;,: [8]}<,;,=,:,8 is not a minimizer to the RHS of (D.5). Substi-

tuting {w̃∗
<,=,:

[8], 0̃∗<,= [8], s̃∗<→;,: [8]}<,;,=,:,8 into (D.5) and taking iterated expectation, we obtain

E
[
�
(
qA [8], qU [8]

) ]
++

"∑
<=1

)∑
:=1

E
[
� (%BST

<,: [8])
]

(D.17a)

≤)21 ++
)∑
:=1

E[ν: [8] − r: [8]] +
)∑
:=1

E[r: [8] − s: [8]] (D.17b)

≤)21 + )+�∗ (D.17c)

where the value of left-hand side (D.17b) is obtained by {w∗
<,=,:

[8], 0∗<,= [8], s∗<→;,: [8]}<,;,=,:,8;

and the inequality (D.17c) is based on the two facts: 1) {w̃∗
<,=,:

[8], 0̃∗<,= [8], s̃∗<→;,: [8]}<,;,=,:,8 is a

function of current random sources ]2,: [8]; and 2) {w̃∗
<,=,:

[8], 0̃∗<,= [8], s̃∗<→;,: [8]}<,;,=,:,8 guarantees
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that ā<,= ≤ E ]2,: [8 ]
[
A<,=,: [8]

]
≤ B̄<,= and �∗ =

∑"
<=1E

[
� (%BST

<,:
[8])

]
.

Taking telescoping summation over 8 = 0, 1, . . . , � − 1 over (D.17c) and dividing both sides by

�)+ , we obtain

1

�)

�∑
8=1

)∑
:=1

"∑
<=1

E
[
� (%BST

<,: [8])
]
− 1

2�)+



qA [0]


2 − 1

2�)+



qU [0]


2 ≤ �∗ + 21

+
. (D.18)

Letting � →∞, we obtain the second inequality of (6.22) due to the fixed backlogs qA [0] and

qU [0].

D.3 Proof of the Activeness of Constraints in (6.32c)

Let {w∗
<,=,:

[8], s∗
<→;,: [8]} denote the set of optimal beamforming vectors and exchanged NRE

variables given \: [8]. Suppose that the (<, =)th constraint in (6.32c) is inactive, i.e.,

hH

<,=,:
[8]w∗

<,=,:
[8]√

exp(@A

<,=,:
[8]\: [8]) − 1

>

√
� INTRA

<,=,:
[8] + � INTER

<,=, [8] + f2
<,=. (D.19)

Hence, we introduce an auxiliary variable 26,<,= such that

W<,=
hH

<,=,:
[8]w∗

<,=,:
[8]√

exp(@A

<,=,:
[8]\: [8]) − 1

=

√
� INTRA

<,=,:
[8] + � INTER

<,=, [8] + f2
<,=. (D.20)

Based on (D.19) and (D.20), we obtain 26,<,= < 1. Setting a new solution {w̃∗
<,=,:

[8], s̃∗
<→;,: [8]}

such that w̃<,=,: [8] = 26,<,=w
∗
<,=,:

[8] and s̃∗
<→;,: [8] = s∗

<→;,: [8]. The new solution satisfies all

the constraints in (6.32b)–(6.32e). Moreover, the new solution {w̃∗
<,=,:

[8], s̃∗
<→;,: [8]} obtains a

smaller objective value than that of {w∗
<,=,:

[8], s∗
<→;,: [8]} since 26,<,= < 1. This observation

contradicts with the assumption. Hence, we conclude that the constraints in (6.32c) are active.
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