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Abstract

Electric vehicles (EVs) are becoming a more popular alternative to internal combustion

engine vehicles, however a concern among EV manufacturers and customers is the longevity

of the EV’s energy source, the battery. The battery is a large contributor to the cost of an

EV and is susceptible to wear due to charge/discharge cycles and heat. This wear is a main

depreciator to the EV’s worth. Batteries are considered a low power density energy storage

device, however a hybrid energy storage system (HESS) can be formed with an improved

power density by interfacing batteries and super-capacitors (SCs). An HESS utilizes the

high energy density of batteries and the high power density of SCs; this lowers the wear of

the batteries by directing high current transients to the capacitors and lowering the heat

generated by the batteries. Proper control is imperative to developing an effective HESS

that will extend the life of the batteries.

This thesis presents a novel control for a typical EV with a battery size of 24kWh coupled

with a minimally sized HESS comprised of a SC bank with a 94.5kJ or 26.3Wh capacity

using a neural network (NN) trained by a genetic algorithm. This method uses a NN to find

patterns in simulated driving profiles to optimize the SCs’ state of charge and SCs’ current

in a way that reduces the RMS current delivered by the batteries by up to 15% and reduces

the peak currents by up to 52.5%. A 15% reduction in battery RMS current correlates to
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Abstract

a 28% reduction the thermal energy produced by the battery due to its internal resistance.

This reduction in heat reduces wear on the battery and simplifies thermal management

strategies for the battery. This thesis will discus the construction of such a control system,

the code of the genetic algorithm, parameter selection, and the effectiveness of this solution

in controlling an HESS for practical use in consumer EVs.
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Lay Summary

Electric vehicles (EVs) offer many benefits over vehicles with internal combustion engines,

however the battery of an EV looses energy capacity over time, resulting in a loss of driving

range. This loss in capacity is due to heat generated by the battery, which degrades the

battery’s internals. A solution to this problem is to supplement the battery with super-

capacitors which generate less heat than batteries when delivering power; combining these

energy sources forms a hybrid energy storage system (HESS). To lower the battery’s heat,

the HESS must be properly controlled. A neural network (NN) is a computer algorithm

which mimics the function of a brain and is an effective tool to recognize patterns in data

that, once trained, provides an appropriate output. This thesis uses a NN trained by a

genetic algorithm to control power flow in an HESS and extend the life of an EVs battery.
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Chapter 1

Introduction

1.1 Motivation

As climate change becomes a more recognized problem, vehicle manufactures are invest-

ing into electric vehicles (EVs) as a clean alternative to vehicles using internal combustion

engines (ICEs). However, EVs are not without their drawbacks, which include charging

rates, vehicle range, battery power density, and battery longevity. The later is of concern as

EVs are gaining popularity among the public; lithium-ion batteries, the prominent battery

used in EVs, are susceptible to heat that is generated by rapid discharging or charging of the

batteries, as is the case when an EV accelerates or decelerates. Heat accelerates the degra-

dation of batteries and as the battery ages in a vehicle, driving range is reduced. A solution

to mitigate this problem is to supplement the battery of an EV with a super-capacitor (SC),

or ultra-capacitor (UC) bank to form a hybrid energy storage system (HESS). The block

diagram describing a SC/battery HESS is shown in figure 1.1, here the SC bank is linked to

the EV’s traditional powertrain components via a bi-directional DC/DC converter. Forming

an HESS by adding a SC pack to a EV’s battery pack can extend the life of a battery by

directing potentially harmful current transients while driving to the SC bank, leaving the

batteries to supply a baseline DC current. The SC pack can also aid the performance of

1



1.2. Control for Active Hybrid Energy Storage Systems

D
C

 bus

DC/AC MotorSC bank BatteryDC/DC

Additional HESS Hardware EV Powertrain Components

Figure 1.1: Block diagram of an active HESS where the SC bank is decoupled from a the EV powertrain
components via a DC/DC converter.

an EV by increasing the available power to the motor(s) of the EV. Proper control of the

DC/DC converter is critical to create an effective HESS. This thesis discusses the use of ma-

chine learning and neural networks (NNs) for control of power flow, reviews previous HESS

control strategies and develops novel control utilizing a NN trained with reinforced learning

by a genetic algorithm.

1.2 Control for Active Hybrid Energy Storage Systems

Each energy source of an HESS has its own advantages and disadvantages, the current

sourced from either energy source must be controlled to fully utilize the advantages offered

by each energy source. Effective control splits a driving current profile into subsequent cur-

rent profiles to direct these profiles to either energy storage component. An ideal HESS

will separate and divert high and low frequency components of the driving power profile to

the energy storage element with a high-power density and the storage with the high energy

density respectively, as shown in figure 1.2. Previous methods are discussed in section 2.4

and include rule-based and optimization-based control. Rule-based control is more com-
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1.3. Operation of an Artificial Neural Network

putationally simple, yet may not offer the same improvements as a more computationally

taxing optimization-based control technique. This thesis will focus on optimization-based

control utilizing a NN to control current flow in the HESS. The NN will solve the problem

of determining when to discharge and charge the SCs and how much current to source from

each energy storage component based on current vehicle and HESS conditions to obtain a

SC current profile and battery current profile like those shown in figure 1.2.
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Figure 1.2: Frequency spectral analysis of an EVs load current. Effective HESS control will split into
high-frequency components from low-frequency components and directed these components to
the SC bank and battery bank respectively.

1.3 Operation of an Artificial Neural Network

NNs are meant to address computing problems not easily solved by conventional control

solutions, such as classifying data or pattern recognition [3]. The concept of an artificial

neural network (ANN), or NN, mimics the progression of a signal through neurons in a

biological neural network like the brain. A biological neural network is a intricate web of
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1.3. Operation of an Artificial Neural Network

interconnections that allows a series of electrical signals to be transmitted and influence

each other to produce an output. In order to construct an ANN, one must understand the

operation of a biological NN. A neuron is comprised of dendrites, which receive an electrical

signal, and an axon, which transmits an output signal based on the inputs the dendrites

receive [3]. The actual operation of the human brain is of course much more complicated

and considers many more elements, but for the sake of analogy, this understanding can

be translated to ANNs. NNs can be referred to as a ”connectionist” computational system,

which follows no linear path when executing a problem. This is contrary to traditional linear

programs which execute one line of code followed by another. Given the unpredictable nature

of vehicle loading when driving, NNs are a good solution to HESS control for electric vehicles

because of their ability to recognize patterns in datasets. A NN operates by modifying a

x1

x2

Neuron
(processor)

y

Figure 1.3: A single neuron of a NN with two inputs (x1 and x2) and one output (y).

signal as it passes through rows of interconnected ”neurons”. Four individual steps are

completed as a signal progresses through each neuron for each time step of an ANN. The

following steps will reference a two input neuron, as shown in figure 1.3. The first step receives

both inputs to the neuron, illustrated as x1 and x2. Each signal input to the neuron has a

weight applied to it referred to as Θ for the second step. The third step sums the weighted

inputs and the fourth step generates an output by passing the summed signal through an
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1.3. Operation of an Artificial Neural Network

activation function. These steps are represented by the function shown in equation 1.1.

y = tanh(Θ1x1 + Θ2x2) (1.1)

Typically an activation function for a discrete NN is the signum function which classifies

the output discretely as either negative, or positive 1 given the inputs, however for the case

of a linear NN, the activation function is the hyperbolic tan function; this allows a linear

representation of the weights but limits the signal to ±1. Mathematically, the inputs (x) are

1

xn

x2

x1

1

a1
(1)

an
(1)

a2
(1) hΘ(x)

Layer 1 Layer 2 Layer 3 Output

a1
(3)

Figure 1.4: Architecture of a 3 layer ANN.

represented as a column vector and the weight function (Θ) of the neurons is represented as

a matrix, shown in equation 1.2; the output of one neuron is the sigmoid (g(z)) function of

the dot product of the inputs and the corresponding row of the weight matrix as shown in

equation 1.3 and figure 1.4. Here a
(m)
n represents the operations of one neuron, m signifies

the layer and n signifies the neuron of that layer. Each arrow represents a scaling factor

applied between an input and a neuron. The product is a column vector that acts as inputs

to the next layer of neurons. In the column vectors, the subscript refers to the number of a

5



1.4. Training a Neural Network

neuron in a layer and the superscript refers to layer number. The column vector result for

the first layer of a network is shown in equation 1.3. Inputs to the NN include driving profile

variables such as speed, acceleration, power, and parameters of energy sources like state of

charge (SoC).

xn×1 =


x1

x2
...
xn

 Θm×n =


Θ1,1 Θ1,2 . . . Θ1,n

Θ2,1 Θ2,2 . . . Θ2,n
...

Θm,1 Θm,2 . . . Θm,n

 (1.2)

a
(2)
1 = g

(
Θ

(1)
10 x0 + Θ

(1)
11 x1 + ...+ Θ

(1)
1nxn

)
a

(2)
2 = g

(
Θ

(1)
20 x0 + Θ

(1)
21 x1 + ...+ Θ

(1)
2nxn

)
...

a(2)
n = g

(
Θ

(1)
n0x0 + Θ

(1)
n1x1 + ...+ Θ(1)

nnxn

)
hΘ(x) = a

(3)
1 = g

(
Θ

(2)
10 a

(2)
0 + Θ

(2)
11 a

(2)
1 + ...+ Θ

(2)
1n a

(2)
3

)
(1.3)

1.4 Training a Neural Network

NNs are traditionally used in conjunction with machine learning to solve classification

problems. Examples of this include determining spam in an email inbox or recognizing

handwriting. The output of an ANN can be made linear instead of discrete to make an

ANN usable as control for an HESS. A step to building an effective NN is training the value

of the weight matrices (Θ). Training a NN means adjusting the values of weights so the

NN provides an effective output. These weights are trained by either supervised learning,

unsupervised learning, or reinforced learning.
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1.4.1 Supervised Learning

Supervised learning is a process where an ideal output for the NN is already known, and

the weights are trained such that the output of the NN matches the ideal output given a

set of inputs. The trained network is then used for control in environments similar to the

training data set. The first step is to randomize the weights of the Θ matrices, then apply

the input signals. The signal propagates through the NN and produces an output and a cost

function evaluates the error of the signal, that is the difference between the desired signal and

the NN’s output, and produces a value. This value is then used to back-propagate through

the NN and adjust the weights of the Θ matrices. This is done repetitively until the cost

function is at the desired level, the trained NN is then tested on other datasets to measure

its effectiveness.

1.4.2 Unsupervised Learning

Unsupervised learning is used in discrete classification NNs to determine like clusters of

data. Here, the number of categories a data set can be categorized into is selected, and the

algorithm groups data that are related into one of these categories. Unsupervised learning

is a technique for discrete NNs is not applicable for linear NNs and HESS applications.

1.4.3 Reinforced Learning

The final learning method for NNs is reinforced learning. The optimal output is not

needed for this technique, instead a genetic algorithm and Darwinian theory is used to

determine weights (in this case referred to as the genes) of a NN. Reinforced learning is
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comprised of three main components: heredity, variation, and selection. NN genes are tested

in generations and the algorithm allows better performing genes to continue to subsequent

generations while eliminating poor performing genes. The genetic algorithm operates over

four main steps; the first step of a genetic algorithm is to generate a randomized population

of genes. Each member of the population is run and the effectiveness of each member is

recorded as a fitness value. The second step is to select members with a high fitness whose

genes will transfer to subsequent generations. A matting pool is created from the population,

where members with a higher fitness occupy a larger portion of the matting pool. Those with

a larger portion of the mating pool have a higher probability of being selected for the next

generation. The third step is reproduction, where a number of members from the mating

pool are selected and their genes are combined to produce a new gene matrix. In the last

step, some of the newly generated members’ genes are selected at random and are given

a new value in a process referred to as mutation; this prevents the algorithm from being

constrained by its initial genes and converging at a local minima. This process is repeated

until the fitness from one generation to the next no longer improves.

1.5 Thesis Organization

This thesis is organized into 5 chapters. Chapter 1 discusses the need for an HESS

in electric vehicles, different methods of developing control for an HESS, the fundamental

operation of a NN, and methods of training a NN. Chapter 2 explores previous strategies of

HESS control and the use of NN for control of power flow. It compares the computational

effort of other methods using the big O notation, a method to compare computational

8



1.5. Thesis Organization

complexity. Chapter 3 presents the design process and structure of the NN developed in

this thesis, discussing the different components of the control and the method of which it

is trained. Chapter 4 presents the results of the genetic algorithm training the NN and the

results of the NN control on the HESS. Chapter 5 presents the conclusions, summarizes the

thesis results and discusses opportunities for future work.

9



Chapter 2

Literature Review

2.1 Overview

This chapter reviews and analyses previous works of HESS construction and control and

compares their benefits and drawbacks. This chapter’s first section 2.2 discusses the purpose

of an HESS as studied by others. Section 2.3 explores how an HESS is implemented with

passive and various active topologies and discusses the advantages and drawbacks of each.

Section 2.4 discusses various methods of control of an HESS and compares the computational

effort of these types of control.

2.2 Purpose of a Hybrid Energy Storage System

An HESS is used to combine the benefits of two different energy storage devices. This is a

solution not needed with ICE vehicles, as the energy and power density of fossil fuels sources

is 2 orders of magnitude larger than that of batteries making it unnecessary to supplement

fossil fuel with other energy sources [4]. To make EVs a compelling option compared to

traditional ICE vehicles, EV manufactures are focusing on increasing the performance and

longevity of their vehicles. With the increase of demanded performance comes increased

stress on the batteries of an EV. Batteries produce current from an electrochemical reaction

10



2.2. Purpose of a Hybrid Energy Storage System

which has inherent problems like a slow transient response to current demands and a high

internal resistance as compared to SCs. The heat generated in the lithium-ion cell causes

accelerated wear if not removed or reduced. A study done by [5] shows a lithium-ion battery

will reduce its capacity from 90% to 60% over a period of 5 years if the operating temper-

ature is increased from 15◦C to 55◦C. The battery temperature stress model is shown in

equation 2.1 [5] where KT is the temperature stress coefficient, obtained by experimentally

testing specific cells, Tref is a reference temperature, typically 293K, and T is the operating

temperature. This equation models the temperature dependence of the rate of a chemical

reaction.

ST (T ) = ekT (T−Tref )
Tref
T (2.1)

Figure 2.1 plots the stress factor between 280K and 330K, which is approximately between

15◦C and 55◦C.
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Figure 2.1: Lithium-ion battery stress factor as a function of temperature based on equation 2.1.
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2.2. Purpose of a Hybrid Energy Storage System

To compare parasitic heat loss between lithium-ion batteries and SCs, an RMS current

value of 23.48ARMS, taken from the Federal Test Procedure-72 (FTP-72) driving profile [6]

using an EV with a mass of 912kg to analyse I2R losses. This is based on a battery pack

with an operating voltage of 350V like that of the Nissan Leaf® which has a 24kWh lithium

ion battery pack with 96 cells in series and 2 in parallel [7]. To quantify the heat produced

by a lithium ion cell, the model of a lithium-ion battery bank can be used, shown in figure

2.2 and the formula for impedance of the battery is given by equation 2.2 [8].

+

-

VOC (SOC)

RSeries

RP1

CP1

RP2

CP2 VBatt

+

-

Figure 2.2: Equivalent Thevenin battery cell model.

Z(s)Batt = RSeries +
RP1

1 +RP1CP1s
+

RP2

1 +RP2C2s
(2.2)

Table 2.1: Specification of Li-ion battery cell model components used in equation 2.2 [1].

Parameter RSeries RP1 CP1 RP2 CP2

Value 0.07 Ω 0.05 Ω 703.6 F 0.5 Ω 4475 F

In this configuration of two parallel banks of lithium-ion cells, each cell with an internal

resistance of 0.62Ω [1] will produce an excess of 171W of heat when the battery bank supplies

23.48ARMS of current. For comparison an SC cell with a internal resistance of RUC =

0.0022Ω, such as Maxwell Technologies’® BCAP0310 cell, will generate 1.2W of heat given
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2.2. Purpose of a Hybrid Energy Storage System

the same current demand. A model of such a cell is shown in figure 2.3 with the impedance

represented in equation 2.3 and CUC = 310F .

CUC

RUC

VUC

+

-

Figure 2.3: Equivalent circuit of SC cells.

Z(s)UC = RUC +
1

CUCs
(2.3)

One can see the benefits of using SCs to supply current, however because SCs store their

energy in electrostatic fields they are limited by their relatively low energy density (5Wh/kg)

compared to lithium ion batteries (200− 250Wh/kg) [9]. The relationship of power density

and energy density of different energy storage devices is shown in figure 2.4. The motivation
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Figure 2.4: Ragone plot of different energy storage devices.
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for an HESS is to combine the benefits of two energy storage devices while eliminating their

drawbacks, such as combining SCs and lithium-ion batteries. Proper control ensures that

harmful current transients are diverted away from the batteries to the SCs to maximise

longevity of the batteries. The power density of a SC cell is much higher (5000W/kg) than

that of a lithium-ion battery (400− 500W/kg) [9] and an effective HESS utilizes the power

density of an SC bank. An HESS can also aid the performance of a vehicle by lowering RMS

current demanded from the battery and offering more power when accelerating, making

an EV a more appealing alternative to an ICE vehicle. An HESS provides the ability to

better utilize the advantages available from electric motors in EVs, whose performance has

historically been limited by battery technology.

2.3 Construction of a Hybrid Energy Storage System

The topology of an HESS falls within two main categories: passive and active [10]. Active

HESS topologies include subcategories with different configurations of the DC/AC inverter,

DC/DC converter(s), and energy sources. Figure 2.5 illustrates these various configurations.

Each topology will impact the cost of the HESS, the effectiveness of the HESS, and the

performance of the EV.

2.3.1 Passive Hybrid Energy Storage Systems

The most simple HESS topology is a passive system, which is made by connecting both

energy sources of the HESS to the same DC bus with no use of intermediate DC/DC con-

verters, as represented by figure 2.5(a). This topology removes the need for an intermediate
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Figure 2.5: Different configurations of interfacing the battery and SC bank to the DC bus in a drive train:
(a) Direct connection of battery and SC bank to the DC bus (passive control), (b)
Partially-decoupled configuration, type I, (c) Partially-decoupled configuration, type II, (d)
Fully-decoupled configuration of parallel-connected battery and SC bank, (e) Cascaded
configuration type I, (f) Cascaded configuration, type II, (g) Parallel converter configuration,
and (h) integrated configuration.

converter(s), control software and hardware, and the costs associated with these components.

A passive HESS relies on the inherent impedances of each source to control power flow [10].

In the case of a SC–lithium-ion battery HESS, the relatively higher impedance of the bat-

teries compared to the SCs, as shown in formula 2.2 and 2.3, will direct high frequency

load currents to the SC bank, and low frequency components to the battery. However this
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technique does have drawbacks which make it unideal for use. In this topology the capacity

of the SC bank is not fully utilized because the ∆V of the SC bank is constrained by the

voltage drop of the impedance of the batteries.

2.3.2 Active Hybrid Energy Storage Systems

A more effective HESS system is an active HESS which uses DC/DC converters to direct

power flow. In the case of an active HESS, power flow from each energy source is controlled by

either one or two converters. This allows the SC bank to fully cycle between its minimum and

maximum SoC, fully utilizing the energy available in the SC bank. Active HESS topologies

can be categorized as either partially decoupled, fully decoupled, or integrated.

Partially Decoupled Topologies

A partially decoupled HESS has one energy source connected to the DC bus of the

inverter and one energy source connected to the DC bus via a DC/DC converter. In this

way, power from both energy sources can be controlled independently; the source connected

to the converter is controlled directly and the other energy source is controlled via Kirchhoff’s

current law (KCL), see formula 2.4.

Iload = ISC + Ibat (2.4)

Examples of partially decoupled systems are shown in figure 2.5 (b) and (c). An HESS where

the battery is decoupled from the DC bus will make the battery immune to large fluctuations

in DC bus voltage, however the DC bus voltage must vary to charge and discharge the SC
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bank. This is a disadvantage, as this will vary the available peak voltage that can be

applied to the motor through the inverter, unless a inverter with boost capabilities is used

or the voltage rating of the motor is less than that of the minimum voltage of the SC bank

[10]. If the SCs are decoupled, the SCs can be fully cycled without affecting the inverters

peak voltage, however the batteries are exposed to small voltage fluctuations on the DC

bus. SC decoupled HESSs are a popular topology, and are done by [8, 11–16]. Partially

decoupled systems greatly improve the effectiveness of an HESS however some elements are

not controlled.

Fully Decoupled Topologies

A fully decoupled system separates both energy sources from the DC bus through use of

DC/DC converters. Figure 2.5 (d) shows a fully decoupled HESS topology that provides a DC

bus voltage with no fluctuations, however the battery is exposed to voltage fluctuations of the

SCs. While this provides the advantages of fully decoupling the energy sources, this topology

shares disadvantages of the passive HESS and as such is not a common implementation of

an HESS. Cascaded topologies is another fully decoupled topology option where converters

separate each energy source from the DC bus and each other, represented in figures 2.5

(e) and (f). These topologies offer the ability to directly control current from each source,

however they require control to consider the power flow from each source, and are susceptible

to instabilities “as they can represent a DC/DC converter with a constant power load, thus

requiring significant amount of care” [10]. The voltage of the energy sources must be designed

so that the diodes parallel to each converter are reverse biased; that is, the energy source

furthest removed from the inverter must have a voltage lower than the intermediate energy
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source. Another fully decoupled system connects both energy sources in parallel to the

DC bus, as represented in figure 2.5 (g). In this, the voltage of the battery or SC is not

constrained to any value, however similar to cascaded topologies, control considering current

flow from each energy source must be developed to ensure a stable system. Fully decoupled

topologies are chosen by the authors of the papers: [2, 15].

Integrated Topologies

Battery

To
 m

ot
or

NPCSC bank

CH

CL

Figure 2.6: Schematic representation of an NPC used in an integrated HESS topology.

A different approach to a HESS is to control power flow from each energy source with

the inverter used to supply the EVs drive motor. An example of this is done by [17], where

a neutral point clamped converter is used, and the capacitors are connected to the midpoint

of the converter, as shown in figure 2.6. This configuration allows a wide range of voltages

for the SC, offering the advantages of an active HESS without the need of an additional

converter [17].

A multi-sourced inverter (MSI) topology, demonstrated by [18], controls power flow from
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Figure 2.7: Schematic representation of an MSI used in an integrated HESS topology.

either SCs or a lithium-ion battery. The MSI topology is shown in figure 2.7. In this topology,

the two sources are connected to their own respective high side switches, and both share low

side switches. The MSI powers the induction motor which drives the EV. The motivation

for integrated HESS systems is to reduce cost compared to other active HESS topologies.

2.4 Control of a Hybrid Energy Storage System

Effective control is needed to fully utilize the advantages provided by active HESSs. The

fundamental concept of an HESS is to split the load current profile into high-frequency tran-

sients and a low-frequency baseline power. High-frequency load components will be directed

to the energy source with higher specific power density, and the higher specific energy density

energy source will supply the baseline power. Figure 2.8 describes such an energy split for

an HESS, where the top figure shows the load current over the simulation length in the time

domain, and the bottom figure shows the results of a fast Fourier transform (FFT) done

over the length of the top figure. High-frequency and low-frequency current waveforms are

directed to the SCs and battery respectively through use of an ideal low-pass filter (LPF).
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Figure 2.8: Power split between components of an HESS (top graph: time analysis of load current profile,
lower graph: FFT applied to the top graph with a period of the simulation length). The split
frequencies of the bottom graph represent frequency the sharing plan for LPF control with
high-frequency waveforms directed to the SCs and low-frequency waveforms directed to the
battery.

Control for an HESS can be categorized as rule-based or optimization-based. Rule-based

requires less computational effort than optimization-based at the cost of effectiveness. In
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computer science, computational load of an algorithm is represented in big O notation and is

referred to as complexity. This notation will be used to compare computational requirements

of discussed control solutions; O(1) represents a problem where execution time is constant,

O(n) represents a problem where execution time is linear with input size, O(n log n) rep-

resents a problem where complexity is mostly linear with a logarithmic element, and O(n2)

represents a problem where execution time has a quadratic relationship with input size.

The complexity of the control solutions explored in this chapter can be described by one of

these big O notations, and a figure comparing these notations is shown in figure 2.9, where

complexity is a function of input size for each big O representation.
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Figure 2.9: Semilog plot comparing the computational complexity of O(n), O(n log n), and O(n2) with
input size.
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2.4.1 Rule-Based Control

Rule-based control is one where an algorithm has a specific output for given inputs

and approaches are either “deterministic or fuzzy type” [10]. Rule-based control “offer(s)

feasibility of real-time implementation as well as robustness to the system uncertainties”

[8]. An advantage of this control option is the requirement for little computational effort,

making it an appealing choice for low-cost consumer vehicles. Rule-based control is used

with the NPC converter, as explored by [17] which consisted of three control loops. The

function of the 3 control loops are as follows: the outer most loop controls DC-link energy

used to optimize the energy in the SCs based on the vehicles speed; the middle loop creates

a reference DC-link voltage based on a reference battery current; and the inner loop creates

an optimized DC-link current profile, which indirectly controls the SoC of the SCs. This

provides effective control, however it is unique to the NPC topology used in this instance.

Another method of rule-based control is to maintain a constant battery current and

vary the SCs’ current based on the vehicles needs. This was implemented with a cascaded

converter HESS comprised of SCs and lithium-ion batteries (figure 2.5 (f)), and the parallel

converter with fuel cells (FCs) and SCs (figure 2.5 (g)) [15]. In this configuration a substantial

sized SC pack is needed to compensate for the large amount of energy needed to fully

accelerate or decelerate in order to keep the battery voltage constant.

In another rule-based control strategy, a two part framework is used to control an HESS

comprised of batteries and SCs, developed by [13]. The first part considers load elements

such as vehicle dynamics, motor characteristics, and regenerative braking to generate a SC

SoC reference point. The goal of which is to predict future driving profiles and optimize the
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SC bank to hand future power loads. The second framework optimizes power flow in the

HESS by minimizing the magnitude and variation of battery power and power loss.

Rule-based control is also implemented by authors [11], where control is designed around

a minimally sized SC bank. The control algorithm consists of two separate layers: the

top layer “determines the real-time optimal energy to be shared between the two energy

sources, while maintaining maximum EV battery SoC, and adjust SC SoC to react to future

power requests” [11], the lower layer regulates power between the two energy sources and

the inverter, based on the power flow determined by the upper layer. The author claims a

RMS battery current reduction of 19% and a max peak battery current reduction of 50%

with an SC bank with an energy capacity of 64.7kJ or 18.0Wh.

Another example of rule-based control is done by [19], where an algorithm is developed

around a flow chart considering power required by the electric motor, voltage of the SCs,

and power available from the SCs. The output is one of four scenarios which either charge

the SCs, discharge the SCs with assistance from the battery, use the SCs to fully supply the

DC motors current needs, or disconnect the SCs from the DC bus. This HESS uses a large

SC bank with a capacity of 176kJ or 48.9Wh which reduces battery current by 56.25%.

Authors [20] develop a fully decoupled HESS for use in trains with FCs, batteries, and

SCs and use simple feedback loops to determine the power flow from each component. The

feedback loop uses PI controllers to manage power flow, which is determined from a operation

mode controller. This controller operates in three modes including discharge mode, charge

mode, and fast charge mode. Since FCs have a very slow response, the battery and SCs

absorb driving transients.

Rule-based control is effective control for an HESS using low computational power; typi-
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2.4. Control of a Hybrid Energy Storage System

cally rule-based control requires comparisons or subtractions to determine error and progress

through an algorithm. The complexity for a subtraction operations is linear or O(n). Rule-

based control is simple to implement and execute but may not produce the best outcome due

to unpredictable nature of a vehicles driving profile and limitations in algorithm flexibility

as compared to optimization-based control.

2.4.2 Optimization-Based Control

Optimization-based control is typically more computational taxing than rule-based con-

trol. Previously, optimization-based control may not have been feasible, but as computa-

tional hardware has grown more powerful and cheaper, optimization-based control is becom-

ing more researched. Optimization systems are constructed by developing control around a

known drive cycle and developing or optimising the control for the given set of data. The

driving cycle is chosen such that it will represent the expected range of environments a ve-

hicle is subject too. A number of various control strategies for optimization-based control

have been explored, one example is the wavelet-fuzzy power allocation strategy to control

an HESS, implemented by [21]. This control consists of two parts; the first part, wavelet,

refers to wavelet transform which is a relatively new tool in signal processing and the novel

idea presented by the authors. Wavelet transform is the sum of signals that are scaled and

shifted versions of the mother wavelet over time, this paper uses a method known as dis-

crete wavelet transform and the Mallat algorithm to split the load power between SCs and

batteries. Secondary control is a rule-based fuzzy logic controller. The authors claim that

this control is not as computationally heavy as previous optimization control strategies due

to the use of the Mallat algorithm.
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Another optimization-based control method is a passivity-based controller (PBC). A PBC

controller is a state space controller that achieves closed loop stability “with respect to the

storage function which has a minimum at the desired equilibrium point” [22]. While this

method has been implemented in the past, the authors use a Kalman filter to reduce the

number of required sensors, simplifying the system.

Chaos-synchronization is a more elaborate method of optimization-based control, em-

ployed by [23]. The control is developed by modelling the SC, battery, and converter as

a state space system, then a robust adaptive controller is developed which automatically

regulates and synchronizes the chaotic systems. The systems are referred to as chaotic due

to the fact that future driving patterns are not cyclic and follow no predictive behaviour.

The above optimization-based methods use state space systems to provide control. Big

O notation can be used to estimate the computational effort of these systems: complexity of

matrix multiplication between matrices of size n×m and n×p is O(nmp) and the complexity

of matrix addition is O(n) where n is the number of elements in the matrices. So for a state

space system such as:

ẋ(t)n×1 = An×nx(t)n×1 +Bn×mu(t)m×1

y(t)p×1 = Cp×nx(t)n×1 +Dp×mu(t)m×1

(2.5)

where n is the number of states, m is the number of inputs, and p is the number of outputs,
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2.4. Control of a Hybrid Energy Storage System

the complexity is represented as:

O(n2) +O(n) +O(nm) +O(pn) +O(p) +O(pm)

=O(n2 + n+ nm+ pn+ p+ pm)

=O(n2 + nm+ pn+ pm)

≈O(4n2)

=O(n2)

(2.6)

Here computation time is dominated by matrix multiplication, and because big O notation is

upper-bound, matrix addition can be neglected. Similarly, additional quadratic terms (nm,

pn, and pm) can be dropped as they are all of the same power as n2. A state space controller

like the one used by [23] will then have a complexity of O(n2).

A common implementation of optimization-based control is to use a LPF to separate

power components of an HESS. Figure 2.8 shows an optimal outcome of LPF based control

like that shown in figure 2.10, where a filter is used to generate current profiles for the high

(SC) and low (battery) power dense components of the HESS, and outer-loop control is

used to ensure SoC and currents of each source stay within their limits. Examples of LPF

control for a HESS are demonstrated by [2, 8, 14–16]. The corner frequency of the LPF may

be fixed or made variable to increase effectiveness. The authors of [16] and [2] determine

two corner frequencies for either urban or highway driving, and select either based on the

vehicle’s speed. A fully variable corner frequency is done by [14] where the authors develop

an algorithm to determine the optimal corner frequency based on driving conditions of a

vehicle. The control diagram for LPF control similar to that used by [2] is shown in figure
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2.10. This control is for a fully-decoupled system; the top control elements include the LPF

Battery current 
charge loop

Low pass
�lter

Isc

IBattery

ILoad

Battery SOC

-
+

+
+

-
+

Corner
Frequency
Algorithm

Figure 2.10: Control diagram of HESS control using an LPF with a variable corner frequency to directed
load current frequency components to the batteries or SCs. Battery and SC current signals
are further modified by the battery current charge loop control to consider hardware
constraints (cited from [2]).

which splits the current reference between the two sources and the bottom control adjusts

the reference to ensure that both currents are within their limits. The corner frequency of

the LPF can be optimized for a given driving profile or based on the impedances of the SC

bank, converter, and battery. Authors [8, 13] developed mathematical models of the lithium-

ion battery banks, SCs, and DC/DC converter and analysing their respective impedances

and determine the optimal corner frequency for LPF control. The transfer function for the

battery and SC bank is shown previously in equations 2.2 and 2.3. The final component to

model is the DC/DC converter that links the SCs to the DC bus. These converters operate in

two different modes, buck or boost, depending on the direction of power flow in the HESS,

as such two different models are required as shown in figures 2.11 and 2.12. The input

impedance of these two models is represented by the equations 2.7 and 2.8 [8].

Zboost
in (s) =

CCSCLs
2 + (RSC + r1)CCSCs+ [CSC(1−D)2 + C]

CCSCs
(2.7)

Zbuck
in (s) =

CSCLs
2 + (RSC+r1)CSCs+ 1

CCSCLs3 + (RSC + r1)CSCCs2 + (CSCD2 + C)s
(2.8)
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Figure 2.11: Average model of a boost converter.
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Figure 2.12: Average model of a buck converter.

The above mathematical models can then be used with the previous transfer functions

represented by equations 2.2 and 2.3 to analyse the frequency response of the batteries and

the SC bank/DC/DC converter pair. Once the bode plots are generated, an optimal corner

frequency for the LPF can be selected for the control. LPFs can be categorized as either

digital or analog, and digital filters are either finite impulse response (FIR) or infinite impulse

response (IIR) filters. IIR filters offer flexibility in design with the presence of both poles and

zeros in the mathematical formulation. Filters can be tested in simulation or with prototypes

to determine their effectiveness and stability. Most filters are based on the FFT operation,

which has a complexity of O(n log n).
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2.4.3 Neural Network Control

Another form of optimization-based control is the NN. In recent years NNs have made a

larger presence in control. As discussed in section 1.3, NN control algorithm loosely mimics

neurons in the brain, where a signal is taken from inputs and propagates through one or

more layers of neurons before generating an output signal. A NN developed by [18] where

the current is controlled by a multi source inverter, similar to the integrated HESS topology

demonstrated by [17]. The NN is trained with supervised learning and optimal duty cycles

for a given driving profile are obtained by a ”dynamic programming algorithm” [18]. The

structure of the NN used has 7 inputs, 1 output, and two hidden layers, the first with 10

neurons and the second with 5. The optimization problem is discovered with the formulae

2.9 - 2.11.

f1(k) = (i2bat(k)Rbat + i2UC(k)RUC)/Pmax (2.9)

f2(k) = i2bat/i
2
bat,max (2.10)

f3(k) = (ibat(k)− ibat(k − 1))2/(∆i2bat,max) (2.11)

Here RUC is the internal resistance of the UCs, Rbat is the internal resistance of the battery,

iUC is the UC’s current, and ibat is the batteries’ current. A weighted sum of equations 2.9

- 2.11 is applied to the optimization problem, where the weights were chosen so that the

batteries current magnitude and fluctuations will have the biggest influence. The resulting

equation is 2.12.
N∑
k=1

Af1(k) +Bf2(k) + Cf3(k) (2.12)
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Using the optimal driving profile generated, the NN weights are then trained using the scaled

gradient method and the performance is measured by the mean squared error. The algorithm

is left to run until the error is within specified acceptable margins, then the NN weights are

saved to by used by the NN in practice. The authors claim a RMS battery current reduction

of 50% with a SC bank having an energy capacity of 1440kJ or 400Wh.

Authors [24] develop NN control using a Hammerstein-type neural-network (HNN). This

is implemented to control power flow in a large scale electrical grid HESS rather than a EV.

A Hammerstein-type neural-network is a network “which formulates the Hammerstein model

with a non-linear static gain in cascade with a linear dynamic block” [24]. This paper uses

FCs and SCs to increase stability with load frequency control for a multi-area interconnected

power system. The block diagram of a Hammerstein-type NN is shown in figure 2.13. This

•1

•n

•3

•2

u(k)

γ1

γn

γ3

γ2

∑
x(k)

z-1 z-1z-1

ß0 ßnß2ß1

∑

z-1z-1z-1

an a1a2

y(k)

Figure 2.13: Structure of the Hammerstein-type neural network.

structure is ”composed of a single dynamic node with two tapped delay lines, and these delay

lines form the non-linear static element and linear dynamic element” [24]. In this scenario,

the weights are trained online through reinforced learning based on a sample power profile
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provided by the controller. The output of the HNN can be represented by the formula 2.13,

ŷ(k) =− α̂1(̂y)(k − 1)− α̂2ŷ(k − 2)− ...− α̂nα ŷ(k − nα)

+ β0x̂(k) + β̂1x̂(k − 1) + ...+ β̂nβ x̂(k − nβ)

=−
nα∑
i=1

α̂iŷ(k − i) +

nβ∑
j=0

β̂jx̂(k − j)

(2.13)

Where the hidden layer is represented by the equation 2.14 [24].

x̂(k) =

nγ∑
l=1

γ̂lu
l(k) (2.14)

The negative gradient method is applied for adjusting the HNN weights. This example

demonstrates the improvements available from a NN over traditional PID control. This NN

differs from [18] in that no optimal duty cycle is needed to achieve the proper output, instead

the NN continually improves with use. This makes the control easier to implement, and more

adaptable to various scenarios.

NNs are a compelling solution to HESS control because of their ability to generate non-

linear outputs. This makes them ideal to find a solution to the abstract inputs a driving

profile has. The big O notation can be used to determine the complexity of a NN by knowing

the number of layers and their sizes. A 3 layer NN with n inputs, m neurons in the first

layer, o neurons in the second layer, and p outputs can be represented as follows:

y(t)p×1 = Θ3(p×o)
(
Θ2(o×m)

(
Θ1(m×n+1)xn+1×1

)
+ 10,0

)
+ 10,0 (2.15)
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where +10,0 represents an inserted bias unit. The complexity of this NN is then:

O(m(n+ 1) +O(o(m+ 1)) +O(p(o+ 1))

=O(m(n+ 1) + o(m+ 1) + p(o+ 1))

≈O(3n2)

=O(n2)

(2.16)

Similar to state-space controllers, the complexity of a NN is O(n2).

2.5 Summary

This chapter reviewed the work of other researchers’ HESS topologies and control tech-

niques and discussed their respective advantages and disadvantages, including computational

effort. Each work offers effective control of an HESS, however some are more suited to larger,

more robust systems and some smaller, more practical systems. This thesis aims to explore

the potential of a low cost HESS for use in consumer vehicles. The system most suited for

this situation is that of an active, partially decouple topology, where the battery is directly

connected to the DC bus of the vehicle, and the capacitor’s power contribution is controlled

via a bi-directional DC/DC converter. Having a larger capacitor bank adds weight and cost

to a vehicle, so it is more practical to design a smaller SC bank and develop effective con-

trol to utilize the bank. Optimization-based control using a NN offers effective control and

allows the opportunity to be trained on unique driving profiles. This combination of HESS

topology and control lowers battery stress and extends the battery life of an EV, ultimately

increasing its value.

32



Chapter 3

Neural Network Control and Genetic
Algorithm

3.1 Overview

This section discusses the control developed for an active partially-decoupled HESS.

Section 3.1 presents the parameters of the vehicle and elements of the HESS of which the

NN will be developed around. Section 3.3 discusses the inputs to the NN, the number

of layers and the number of neurons per layer (known as hyper-parameters) of the NN,

and the construction of the NN. Section 3.4 discusses the control that considers SC and

converter limits and conditions the signal produced by the NN. Section 3.5 discusses the

genetic algorithm used to train the NN and the effect various parameters of the genetic

algorithm have on the learning rate.

3.2 Modelled Hybrid Energy Storage System Parameters

The modelled HESS is based off a typical small economic 4 seat EV. The parameters

of the vehicle are listed in table 3.1. The HESS topology is a partially decoupled, where

the SC bank is connected to the DC bus via a bi-directional boost converter. The SC

Bank is assembled from 100 series connected, 310F SCs like that of Maxwell’s® BCAP0310

P270 T10. The result is an SC bank capacity of 3.1F and a total weight of 6kg. The
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3.2. Modelled Hybrid Energy Storage System Parameters

Table 3.1: Parameters of the EV and modelled HESS.

Component Value

Vehicle Weight 912kg
Li-ion Battery Pack Capacity 24kWh
Li-ion Battery Pack Nominal Voltage 350V
SC Bank Capacitance 3.1F
SC Bank Weight 6kg
SC Bank Rated Voltage 270V
SC Bank Voltage Operating Range 50V − 250V
SC Bank Energy Capacity 94.5kJ or 26.3Wh
SC Bank Equivalent DC Series Resistance 220mΩ
Converter Efficiency 95%
Converter Limit 15kW or 60A at 250V

diagram of the HESS is shown in figure 3.1. Load current is determined by demands from

the motor and inverter, the battery supplies the majority of the load current with the SC

bank supplementing current via the converter. The control developed in this thesis aims

DC/DC
Converter

C
+

-

Battery MotorInverter

DC-Bus

Iref (x)

IC Iref

Ibat

Iload

Figure 3.1: Block diagram of the modelled HESS used to develop NN based control

to minimize the RMS current of the batteries and is optimized around the FTP-72 driving

profile, also called the urban dynamometer driving schedule (UDDS) profile, like that of

[6]. The control must also ensure that the components of the HESS operate within their

respective power limits. This includes preventing over or under charging the SCs, and
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3.2. Modelled Hybrid Energy Storage System Parameters

ensuring the current through the bi-directional converter does not exceed its 60A limit. The

current limit for the converter is determined by two methods, the first is by determining the

time taken to fully charge or discharge the SC bank. The intention is that the SC bank and

converter be sized such that SC bank will be fully discharged when accelerating the vehicle

from 0kph to 100kph in a reasonable time. The formula is shown below which calculates

the total available charge of the SC bank and determines the time required to discharge or

charge the bank based on the maximum available current:

t =
CSC bank ·∆VSC bank

Ilimit
(3.1)

The results are shown in figure 3.2 The other method is to train the NN on the UDDS

profile with various converter limits and observe the point at which increasing the converter

limit offers a diminishing increases in HESS effectiveness. The results of this method are

shown in figure 3.3. Figure 3.3 shows that increasing the converter limit past approximately

40A offers little improvement in performance when trained on the FTP-72 driving profile,

however 40A offers a discharge cycle time of 15.5s. A converter limit of 60A was chosen which

offers a discharge cycle time of 10.3s; this is a more reasonable 0kph to 100kph time for a

practical vehicle. The parameters for the vehicle and HESS system listed in table 3.1 are

used to develop the NN control in the following sections. The HESS system and control are

modelled in Simulink, a block diagram of the average model of the converter that considers

efficiency losses is shown in figure 3.4. This control circuit models losses in the converter by

limiting output current to 95% depending on the direction of current flow.
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Figure 3.2: Time taken of a 3.1F SC bank to discharge from 250V to 50V based on converter limit.

3.3 Neural Network Parameters

3.3.1 Inputs to the Neural Network

The driving current profile of an EV is determined by unrelated external conditions such

as traffic speed, road incline, wind speed, and vehicle weight; and the control for a HESS

system used by an EV must consider the influences of all these conditions. As previously

discussed, a trained NN offers the ability to find patterns in the inputs to optimize the

reference current for future inputs. If the full driving profile is known, the current profiles

of the EV’s battery and SC bank can be optimized by a dynamic programming algorithm

knowing future demands and the NN trained by supervised learning, like that done by [18].

Another option is to use reinforced learning and allow a genetic algorithm to optimize the

weights of a NN. Reinforced learning introduces the opportunity to find an optimal solution
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Figure 3.3: Percent reduction in RMS battery current of a trained NN controlling a converter of ranging
current limits.

that may not be apparent when designing a current profile for the HESS externally.

The NN used in the HESS control takes eight inputs to produce a reference signal. The

UDDS driving profile is used to train and test the NN control for the HESS. The National

Renewable Energy Laboratory’s advanced vehicle simulator (ADVISOR) uses the UDDS

driving profile, along with the vehicle parameters listed in table 3.1 to generate the input

profiles used by the NN. ADVISOR generates three separate profiles: load current, vehicle

speed, and motor torque. Other NN inputs are generated in Simulink from the ADVISOR

profiles, these inputs include vehicle acceleration, a moving average of speed, and local

maximum of speed. The NN also monitors the voltage of the capacitor bank and the final

input is a bias unit with a constant value of one. The goal of the inputs, apart from the

bias unit, is to provide as much information of the vehicles current situation that would
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Figure 3.4: Block diagram of the modelled converter which considers operating efficiency.

affect or be affected by the current demanded by the motor and the SoC of the capacitors,

whether that be an urban environment or a highway. The NN can recognize patterns in

driving profiles from these inputs and adjust the reference HESS current appropriately. The

torque, and acceleration profiles are shown in figure 3.6, and the load current profile and

the resulting capacitor voltage profiles from a trained NN are shown in figure 3.7. The

speed, moving average of speed, and local max of speed profiles are shown in figure 3.5.

The block diagram of the control used to generate the moving average and local max are

shown in figure 3.8. The window length for the moving average was chosen to be 1200s
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by analysing the speed profile and adjusting so that the moving average profile depicts the

driving circumstances the vehicle is currently in, such as highway driving or city traffic. The

goal is to provide a fast enough response to adjust for a current driving environment, yet

with enough memory to provide a useful input of the vehicles current driving environment.

The local max is generated by analysing the acceleration of the vehicle and storing the

maximum speed when acceleration changes from positive to negative. The objective for a

local maximum input is that in urban, stop and go driving environments, the vehicle’s top

speed will remain relatively the same, as the speed limit of a section of road will likely be

consistent. The effectiveness of each input can be analysed after the NN weights have
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Figure 3.5: UDDS profiles for speed, moving average, and local max, used as inputs to the NN.

been trained by the genetic algorithm. This is done by evaluating the RMS value of the first

layer weights corresponding to each input. Consider figure 1.4, to evaluate the effectiveness

of input x1, the RMS value of all the weights represented by all the arrows exiting x1 would
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Figure 3.6: UDDS profiles for torque and acceleration, used as inputs to the NN.
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Figure 3.7: UDDS profiles for motor current and capacitor voltage, used as inputs to the NN.

be evaluated. Figure 3.9 shows RMS value of the layer 1 weights of a NN trained on the

UDDS profile. The effectiveness of each input can be compared to one another to determine
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Figure 3.8: Control diagram which produces the local max and average profiles used as inputs to the NN.

which inputs provide more influence on the performance of the NN compared to others.
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Figure 3.9: RMS value of the first layer weight vectors applied to the input signals of the NN, used to
evaluate the effectiveness of a particular input against other inputs.

3.3.2 Number of Layers and Neurons of Neural Network

To develop a NN, the number of layers and number of neurons (known as hyper-parameters)

are chosen such that an effective output will be produced yet not over designed such that
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the NN will not require an unnecessary amount of computational hardware. Before pro-

ceeding with development of NN control for an HESS, it was necessary to prove that a NN

could provide effective control for an HESS. To prove the functionality of NN control for an

HESS, a network saturated with neurons was built; this was an over designed solution that

required more computational power than necessary, however it would be a starting point to

later optimize the NN for HESS control. Initially a four layer network was chosen, with 50

neurons per each of the three hidden layers. The genetic algorithm was allowed to train the

network with the results shown in figure 3.10 and a minimum battery RMS current value of

19.82A. Firstly the number of layers were reduced to observe an impact on HESS perfor-
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Figure 3.10: Genetic algorithm progression of a 4 layer network with hidden layers consisting of 50 neurons
per layer.

mance. A layer was removed from the four layer NN and the genetic algorithm was again

allowed to train the NN. The trained network offered a battery RMS current of 19.01A and

the progression of the algorithm is shown in 3.11. This was repeated again with two layers,
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Figure 3.11: Genetic algorithm progression of a 3 layer network with hidden layers consisting of 50 neurons
per layer.

with the results shown in figure 3.12 and a minimum battery RMS current value of 19.80A.

From this, it is determined that a three layer network had enough layers to provide optimal

control for the HESS. To further optimize the NN the number of neurons needed for each

layer is minimized. To determine this, the genetic algorithm repetitively trained the NN for

various values of neurons for the first and second hidden layers. The value for the number

of neurons is listed in table 3.2 and the parameters of the genetic algorithm are the same as

that listed in table 3.3 with the exception of the simulation time step, which was changed

to 1s in the interest of achieving quicker simulations. The genetic algorithm trained every

Table 3.2: Neuron combinations of the hidden layers of a 3 layer NN.

layer 2 neurons: 4 5 6 7 8 9 10 12 15 20 25 30
layer 3 neurons: 4 5 6 7 8 9 10 12 15 20 25 30

combination of neurons shown in table 3.2 and the results of the minimum battery RMS
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Figure 3.12: Genetic algorithm progression of a 2 layer network with hidden layers consisting of 50 neurons
per layer.

current are shown in figure 3.13. The RMS current data represented in figure 3.13 has a
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Figure 3.13: Battery RMS current of a trained NN with various combinations of hidden layer neurons
based on table 3.2.
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3.3. Neural Network Parameters

minima when the number of neurons in the first layer is 12 and the number of neurons in the

second layer is 9. The combination was chosen such that the number of neurons per layer is

the lowest without effecting the RMS current reduction of the trained network.

3.3.3 Construction of Neural Network
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Figure 3.14: NN simulated using Simulink and used as control. (a) Architecture of the NN constructed in
Simulink with 12 neurons in the first hidden layer and 9 in the second. (b) The block diagram
of the same NN implemented in Simulink.
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The NN and control for the HESS is developed in Simulink. Figure 3.14 shows the

structure of the NN. Each signal input to the NN has varying magnitude and DC bias, to

ensure that the NN is not dominated by a single input, the inputs are normalized by a

control circuit like that shown in figure 3.15. Signals from all the inputs pass through the

NN as described in section 1.3. The inputs are normalized then made into a vector using

a multiplexor, then multiplied by the matrix of layer 1 weights. The output is a column

vector which is conditioned by the hyperbolic tan block. A bias unit is added to the vector

and the process repeats for the remaining layers. The output of the NN is not conditioned

by a hyperbolic tan block, but rather limited by a saturation block. The NN generates an

unconditioned reference current signal for the converter of the HESS which is later modified

by control as described in section 3.4.

-
+x(z)

xstandard deviation

xmean

x(z)

Figure 3.15: Control diagram used to normalize an input signal to the NN.

3.4 External Control

The NN of provides the optimal reference current for the converter to source from the

SCs, however the NN does not consider the limits of the hardware of the HESS. To ensure

the converter is not damaged due to over power and the SCs are not damaged due to over

voltage situations, additional control is needed to condition the current reference signal
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Figure 3.16: Diagrams of control used to ensure the SC bank does not exceed its voltage operation limits
(top) and diagram of control used to ensure that the converter does not exceed its current
operation limits (bottom).

provided from the NN to the converter. The reference current generated by the NN is the

current requested from the converter on the side that is connected to the batteries which is

the high voltage side of the converter. This is necessary so that the NN’s generated reference

signal is directly controlling the current that supplements the batteries, if the reference were
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3.4. External Control

applied to the low side, the current injected into the DC bus of the HESS would be scaled

based on the voltage of the SCs and the battery. The converter is rated at a current of 60A,

however this is from the low side of the converter, this means the available current to the

motor of the vehicle depends on the SoC of the SCs and is determined by formula 3.2.

Ihigh side =

(
Vbatt

VSC bank

)
Ilow side (3.2)

The first consideration of the external control is to ensure that the converter operates within

its current limits, which are ±60A on the low side. Controlling the current is not as simple as

adding a saturation block to the output of the NN, because with a fixed current limit on the

low side of the converter, the current limit of the high side of the converter changes through

the operating range of the SC bank. Instead the limits must change as the SC bank’s SoC

changes. The DC/DC converter current limit control of figure 3.16 shows the control for the

converter current limits. The minimum converter current is determined in formula 3.3 and

the maximum converter current is determined by the formula 3.4.

Imin =

(
Vbatt

VSC bank

)
Iconverter limit (3.3)

Imax = −
(

Vbatt
VSC bank

)
Iconverter limit (3.4)

While the HESS is operating, the reference signal will be the minimum of either equation 3.3

or the NN’s reference current, or the maximum of either equation 3.4 or the NN’s reference

current. This ensures the current from the low side of the converter does not exceed ±60A.

To ensure that the SCs operate within their limits, SC voltage limit control block shown
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3.4. External Control

in figure 3.16 is implemented. This is a proportional control meant to counter the reference

generated from the NN. When the voltage of the SCs reach within 10V of their specified limit,

the control is active, and a buffer signal whose polarity is opposite the current reference signal

is added to the NN’s signal to negate it and prevent further current transfer in a direction

that would damage the SCs. The formula showing this control when the SCs approach their

minimum voltage is shown in equation 3.5 and the formula showing the control when the

SCs approach their maximum voltage is shown in equation 3.6. Here, Vmax and Vmin are the

specified limits of the SC bank, Vbuffer is the 10V buffer where the control becomes active,

and Vgain is the gain applied to the signal so that it will match the maximum of the current

reference signal when the SC bank’s voltage reaches its limit.

F (z)max = (Vmin + VBuffer − V (z)SC)Vgain

Vgain =

(
VSC max

Vbatt

)(
Ilimit
Vbuffer

) (3.5)

F (z)min = (V (z)SC + VBuffer − Vmax)Vgain

Vgain =

(
VSC min

Vbatt

)(
Ilimit
Vbuffer

) (3.6)

The gain values differ because, similar to the current limit control, the current reference

signal changes as the SoC of the SC bank changes. The current and voltage control ensure

that the HESS operates within its limits, and no damage occurs to the hardware of the

HESS. The NN is then allowed to learn and generate a signal without a need to consider

these constraints.
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3.5. Genetic Algorithm

3.5 Genetic Algorithm

For the NN to have an effective output for the HESS, it must first be trained. Training is

the process of determining a weighting value, referred to as Θ, to each input of each neuron

as discussed in section 1.4. The process used to train the NN used in the control for this

HESS is reinforced learning which makes use of a genetic algorithm. A previous NN control

uses supervised learning, where an optimal SC current profile must first be generated by a

”dynamic programming algorithm” [18] and the NN is trained so that it’s output matches

that of this algorithm’s. In this scenario, the effectiveness of the NN is limited by that of

the algorithm, and care must be made to ensure the algorithm produces a SC profile that

is most effective at reducing the battery RMS current. Alternatively, reinforced learning

does not require a predetermined SC current waveform for the NN to learn from. Instead a

genetic algorithm will continue to adjust the weights of the NN to produce an SC current

profile that reduces the batteries’ delivered RMS current. This presents the opportunity for

the NN to find solutions that may not be generated by an external algorithm. While the

system model and control is constructed in Simulink, Matlab code is used to implement the

genetic algorithm. The code used for this thesis is shown in appendix section B and the

parameters initialized by the genetic algorithm are listed in table 3.3.

3.5.1 Genetic Algorithm Parameters

The rate at which a NN is trained depends on the parameters of the genetic algorithm and

the properties of the NN. The input layer size is determined by the number of inputs to the

NN, as discussed in section 3.3.1. The hidden layer sizes are the size of the hidden layers of the
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3.5. Genetic Algorithm

Table 3.3: Parameters initialized at the beginning of the genetic algorithm.

Parameter Parameter Name Value

Input Layer Size input layer size 7
Hidden Layer 1 Size hidden layer 1 size 12
Hidden Layer 2 Size hidden layer 2 size 9
Output Layer Size output layer size 1
Population Size population size 20
Simulation Time Step T step 0.1s
Converter Limit converter limit 60A
Converter Efficiency converter efficiency 95%
Number of Parents number of parents 2
Mutation Rate mutation rate 0.3%
Randomization Factor epsilon ini 0.15

NN, and the size of these layers are discussed in section 3.3.2. The output layer size for this

NN is 1, and is the reference current to be used by the converter. This output signal is later

conditioned by additional control to ensure that the capacitor and converter do not exceed

their respective operation parameters as discussed in section 3.4. Population size refers to

the number of vectors of NN weights that are to be run for each generation (one weight vector

includes all the genes necessary for the NN to operate). This value needs to be large enough

to allow sufficient variation among members of the population, however not to large as to

unnecessarily slow the progression of the genetic algorithm. Figure 3.17 shows the difference

a population size will make on the learning rate of the genetic algorithm. Simulation time

step is the incremental step made by Simulink when the simulation is running. A time step

of 0.1 second is used for the genetic algorithm which translates to a simulation sampling

frequency of 10Hz. According to the Nyquist Sampling Theorem, if a sampling rate of 10Hz

is used, a signal below 5Hz can be accurately interpreted without loss of information. Figure

3.18 shows an RMS frequency analysis of the input signals generated from ADVISOR, above

a frequency 1Hz the RMS value of the signals are near zero and contain no useful information.
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Figure 3.17: The effect of various population sizes on the progression of a genetic algorithm.

This justifies a time step of 0.1Hz as more than sufficient when running the simulation as
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Figure 3.18: An RMS frequency spectrum analysis of the NN input signals generated in ADVISOR.
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decreasing the time step does not provide any improvements in simulation quality. The

converter limit is the hardware constraints of the converter, this value is discussed in section

3.1. The converter efficiency is the model’s losses in the converter, this value is chosen to

be 95% which is the typical efficiency of a conventional buck/boost converter [13]. The

number of parents refer to the number of members of a population that will contribute genes

to a new member. A value of 2 is chosen as higher values limit progression of the genetic

algorithm. If more parents are used to reproduce NN genes, poorly performing members

will influence subsequent generations and inhibit improvements of the genetic algorithm.

The mutation rate is the probability that a gene is mutated and the randomization factor

is range that the new value can fall between. A higher mutation rate will allow the genetic

algorithm to train the NN more quickly, however the outcome of the genetic algorithm has

relatively high fluctuations from one generation to the next. A lower mutation rate results

in a slower progression of the genetic algorithm, but lower fluctuations in the result as the

genetic algorithm progresses. Figure 3.19 compares the progression of a genetic algorithm

with only the mutation rate changed. A mutation rate to low slows or even stops genetic

algorithm progression, while a mutation rate too high results highly varying generation

progression. The randomization factor is the range of values which new and mutated genes

will fall between. The inputs to the NN are normalized so the mean of each input is 0 and

the standard deviation is 1, and the output is scaled by 200. A randomization factor of 0.15

allows a single input to the NN to saturate the output, if the weights associated with that
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Figure 3.19: The effect of various mutation rates on the progression of a genetic algorithm.

input are all approximately 0.15, as shown in equation 3.7.

a
(2)
1 = g

(
Θ

(1)
10 x0 + Θ

(1)
11 x1 + ...+ Θ

(1)
17 x7

)
a

(2)
1 = g (0.15× 1.0 + 0.15× 1.0 + ...+ 0.15× 1.0)

a
(2)
1 = 1.05

(3.7)

It is important that a poorly performing NN results in an undesirable output, this ensures a

poor fitness is assigned to that member, and the member’s genes have a low chance of being

selected for subsequent generations.

3.5.2 Genetic Algorithm Operation

This section describes the operation of the genetic algorithm. When training a NN’s

weights, the genetic algorithm first loads the driving profiles created by the ADVISOR
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3.5. Genetic Algorithm

program. Next the parameters of the NN, simulation, and genetic algorithm are initialized;

these parameters are listed in table 3.3.

The program either loads parameters from a previous run to continue to develop, or uses a

function to randomize the parameters of the NN based on the mutation rate specified shown

in equation 3.8, where rand is a randomized matrix whose size is the size of the input layer by

the size of the output layer plus 1, and εinit is the randomization factor. The program uses

these matrices to build a population to run for the first generation of the genetic algorithm.

Θn = 2Random(Lout×lin+1)εinitial − εinitial (3.8)

The total parameters are deconstructed to form column vectors and are combined to form a

matrix, where each column is a member of the total population for that generation. When

one member of the population is to be simulated, the parameters are organized into Θ arrays

for each layer of the NN and the simulation is run. Information of each run is stored including:

battery current, capacitor current, simulation time, the RMS value of battery current, and

the NN parameters of each layer. After each member of the population is run, a function uses

the battery RMS results to determine the fitness of each population member. The operation

of the function is described by equation 3.9, where ÎRMS is a matrix of the normalized RMS

battery currents, iRMS min is the minimum RMS value of the current generation, iRMS max

is the maximum RMS value of the current generation, and Ifitness is a scaled and inverted

ÎRMS matrix. This equation produces a higher fitness value from a lower RMS current value.

ÎRMS =
IRMS − iRMS min

iRMS max − iRMS min

(3.9)
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Ifitness = (1− ÎRMS)100 (3.10)

After the fitness of each population member has been determined, a function uses the fitness

values to create a matting pool where population members with a higher fitness occupy a

larger portion of the mating pool. The mating pool is a matrix where columns are occupied

by the NN parameters, the number of columns occupied be each population member is the

fitness value of that member determined by the previous generation, shown in equation 3.11.

Here Θmating pool notates the mating pool and Θn
(m×fitness) is a matrix comprised of identical

columns which are the NN parameters of length m of a specific member and the number of

columns is the fitness value of that member.

Θmating pool = Θ1
(m×fitness) + Θ2

(m×fitness) + ...+ Θn
(m×fitness) (3.11)

Next, a function produces members for the next generation by selecting members of the

mating pool determined by the number of parents specified. Random genes of the NN

parameters are combined to create a new population member for the next generation. This

is described by equation 3.12 which shows the next generation of NN parameters, labelled

Θ2, whose elements are comprised of elements of 3 parents, Θ1
a, Θ1

b , and Θ1
c . The Θ columns

multiply with columns containing 1s and 0s, which signify the random selection of genes to

produce the next generation’s weight matrix.
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(3.12)

The final step is to mutate the new population members by changing random genes based

on the mutation rate and the randomization factor. The output of this function is similar to

that of equation 3.8, however a percentage of random genes are changed which is dictated

by the specified mutation rate. At this point, a new generation has been created and the

next generation is ready to be run. The simulation is re-run repeatedly until the RMS value

of battery current no longer improves. The NN parameters are then saved to be used in the

NN control.

3.6 Summary

This chapter discusses the Simulink model of the HESS and how it is controlled by the

NN and the external control. Once trained, the NN generates the fundamental current

reference for the converter to supplement battery current and lower the overall RMS current

supplied by the battery. The external control is meant to adjust the reference current

signal to ensure that the converter and capacitor bank do not exceed their respective rated

operational limits. This chapter then discussed the process in which parameters for the NN

and genetic algorithm are selected and compares the effect that various parameters have on

the learning rate and the operation of the NN.
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Chapter 4

Simulation Results

4.1 Overview

This chapter will cover the results of the genetic algorithm used to train a NN used in

a HESS, and the effect of a NN controlled HESS on battery current. Section 4.2 covers

in detail the advancements in the HESS’s effectiveness as the NN is trained on a standard

driving profile. Section 4.3 shows the battery and load current waveforms and discusses the

effectiveness of the HESS in reducing the battery’s RMS current. Section 4.4 compares the

effectiveness of the NN control with other works discussed in section 2.

4.2 Progression of Genetic Algorithm

As the genetic algorithm runs, the genes of the NN are adjusted to continually improve

the performance of the HESS, as described in section 3.5. The progression of the genetic

algorithm is shown in figure 4.1, where the battery RMS current of best performing member

of a population for each generation is recorded and plotted with its generation number.

Initially, substantial improvements are made to the battery RMS current genes randomly

find their way to positions providing great improvements. With a mutation rate of 0.01%,

the majority of change within the NN comes from rearranging existing genes, which show

58



4.3. Results of Neural Network Control for Hybrid Energy Storage System

the biggest improvements at the beginning of the simulation. Values of genes which aid the

performance of the NN are likely to propagate into subsequent generations, and genes that

do not aid performance occupy a much smaller section of the mating pool. Later genes are

mutated which provide slight improvements until the genes are optimized around the given

profile.
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Figure 4.1: Progression of the genetic algorithm initialized with the parameters of table 3.3 used to train a
3 layer NN with 8 inputs, 12 neurons in the second layer, 9 neurons in the 3rd layer, and 1
output.

4.3 Results of Neural Network Control for Hybrid Energy Storage
System

The objective of the trained NN and external control is to reduce the RMS current

that the battery bank must source to the load. Lowering the RMS current of the battery

reduces the thermal stress of the battery and prolongs the battery’s life. Training the NN
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4.3. Results of Neural Network Control for Hybrid Energy Storage System

conditions the NN to provide a reference signal based on patterns found in the input signals,

these patterns may not be easily discovered by manually creating an HESS control. The

NN aims to optimize the SC bank’s voltage to prepare for unforeseen driving circumstances

and source the appropriate amount of current from the converter. The results of the HESS

controlled by the NN trained on the UDDS driving profile are shown in figure 4.2. The

NN is effective at lowering battery current, shown in green, throughout the simulation with

the exception of when the vehicle accelerates to highway speeds (approximately 27m/s or

100km/h) between 200s and 300s. Figure A.1 in the appendix shows the speed of the vehicle

throughout the UDDS profile. A figure showing the results of an urban driving scenario
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Figure 4.2: Graph showing the reduction a trained NN controlled HESS will have on an EVs load current.
The load current represents the battery current of an EV with no added HESS, the battery
current represents the reduction in battery current an HESS can offer, and the converter
current is the difference of the two currents that is directed to the SC bank.

between 600s and 1000s is show in figure 4.3, where the speed of the vehicle does not exceed

15m/s or approximately 50km/h, as would be the case of a central urban environment. The
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Figure 4.3: An urban driving section of the currents shown in figure 4.2.

other objective of the control is to ensure that the SC bank does not exceed its safe working

voltage parameters and the converter does not exceed its safe working current parameters.

These current and voltage values are shown in figure 4.4 which plots the SC bank’s voltage

and current values throughout the simulation. It is noted that the NN fully utilized the

current and voltage limits of the converter and SC bank without exceeding these limits. The

use of this HESS control reduces the battery RMS current value from 23.48A to 19.92A on

the UDDS driving profile, this is a reduction of 15.15%. This reduces the heat produced by

a battery cell from 171W to 123W based on equation 2.2 and battery values of table 2.1 like

that of [1]. This is a 28.1% reduction in heat energy. The addition of an HESS also reduces

peak current draw from the battery, as would be the case when the vehicle is accelerating.

Other measures of the HESS effectiveness are: maximum peak battery current reduction,

where the maximum reduction of the batteries’ peak current is used to evaluate the control,
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Figure 4.4: Graph showing the voltages and current sourced from the SC bank of the HESS controlled by a
NN trained on the UDDS profile.

and peak to average power ratio (PAPR) over peak to average velocity ratio (PAVR). The

later method is done by [14], where the performance of an HESS is evaluated by calculating

PAPR and normalizing it with respect to velocity by dividing the PAPR by PAVR, as shown

in formula 4.1.

PAPR/PAV R %reduction =

(
Ppeak/Pmean
vpeak/vmean

)
100 (4.1)

An effective HESS will decrease peaks in current. The reduction in RMS current and the

reduction of PAPR/PAV R ratios is used to determine the effectiveness of a NN that is

trained on the UDDS profile and simulated over the UDDS profile. Three other driving

profiles like those used by [14] are used to test the effectiveness of the NN trained on the

UDDS profile. The other profiles include US06, a high speed driving profile, LA92, another

low speed urban driving profile, and the new European driving cycle (NEDC), a standardized

driving test to test emissions of passenger vehicles at a variety of fixed speeds. The speed, load
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current, and torque waveforms of each profile are shown in appendix section A. Battery RMS

reduction, max peak battery current reduction, and PAPR/PAV R reduction evaluate the

effectiveness of the HESS in various ways. Measuring battery RMS current reduction does not

reflect the impact peak current draws will have on the HESS, because when optimizing the

NN weights, the genetic algorithm favours a reduction in battery RMS over the whole driving

cycle. PAPR/PAV R reduction and maximum peak battery current reduction however

reflects a reduction of peak battery currents and is less influenced by a reduction in battery

RMS current over a driving profile. Maximum peak battery current reduction is a value of

the largest reduction between a peak in battery current before the addition of an HESS,

and the battery current after the addition of an HESS. The PAPR/PAV R will be largely

influenced by one large peak power value, regardless of the length of the simulation. The

results of the HESS over these driving profiles are listed in table 4.1. These results show

Table 4.1: Percent RMS current reduction, percent max peak current reduction, and percent
PAV R/PAPR reduction of a NN controlled HESS trained the UDDS profile.

Driving Profile
RMS Current (A) RMS Current

Reduction (%)
Peak Battery Current (A) Max Peak Battery

Current Reduction (%)Before After Before After

UDDS 23.48 19.92 15.15 36.89 17.52 52.51
US06 62.55 59.68 4.59 100.67 75.84 24.68
LA92 30.68 27.62 9.99 43.74 20.34 53.50

NEDC 22.07 21.24 3.78 33.43 20.50 38.68

Driving Profile
Peak Power (kW) Average Power (kW) PAPR

PAVR
PAPR/PAVR PAPR/PAVR

Reduction (%)Before After Before After Before After Before After

UDDS 42.93 41.85 5.91 6.01 7.26 6.96 2.90 2.51 2.40 4.15
US06 106.10 106.09 17.76 17.82 5.97 5.95 1.68 3.56 3.54 0.32
LA92 47.40 43.72 7.52 7.61 6.31 5.75 2.70 2.34 2.13 8.86

NEDC 42.53 42.53 5.26 5.32 8.08 8.00 3.61 2.34 2.21 1.03

a NN that is most effective at lowering both RMS currents and PAPR/PAV R ratios in

the low speed urban profiles UDDS and LA92 where the voltage range of the SC bank is

effectively used. The control offers a reduction in the high-speed US06 profile and NEDC
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4.3. Results of Neural Network Control for Hybrid Energy Storage System

profile, however it does not fully optimize capacitor voltages and depletes the energy available

from the SC bank before reaching the maximum speed, shown in figure 4.5. The same results
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Figure 4.5: Graph showing the voltages and current sourced from the SC bank of the HESS controlled by a
NN trained on the US06 profile.

are collected and compared with a NN trained on the US06 profile. When the NN is trained

Table 4.2: Percent RMS current reduction, percent max peak current reduction, and percent
PAV R/PAPR reduction of a NN controlled HESS trained the US06 profile.

Driving Profile
RMS Current (A) RMS Current

Reduction (%)
Peak Battery Current (A) Max Peak Battery

Current Reduction (%)Before After Before After

UDDS 23.48 22.69 3.39 33.52 16.97 49.38
US06 62.55 57.75 7.67 100.67 75.57 24.94
LA92 30.68 29.43 4.11 37.73 25.62 32.10

NEDC 22.07 21.77 1.36 110.62 98.90 10.60

Driving Profile
Peak Power (kW) Average Power (kW) PAPR

PAVR
PAPR/PAVR PAPR/PAVR

Reduction (%)Before After Before After Before After Before After

UDDS 42.93 34.31 5.91 5.96 7.26 5.75 2.90 2.51 1.99 20.87
US06 106.10 95.25 17.76 17.91 5.97 5.32 1.68 3.56 3.17 11.03
LA92 47.42 43.66 7.51 7.58 6.31 5.76 2.70 2.34 2.13 8.77

NEDC 42.56 38.05 5.26 5.28 8.09 7.21 3.61 2.24 1.99 10.92

on a high speed profile, the US06 profile shows an improvement in battery RMS current

reduction and PAPR/PAVR reduction, however all other profiles have lower improvements
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than when compared to the NN trained on the more urban UDDS profile. NN control can

offer an effective solution provided it is supplied enough inputs to effectively determine the

vehicle’s condition.

4.4 Results Compared to Other Control Strategies

HESS control strategies are typically designed to either reduce battery RMS current and

reduce battery peak current, or prolong the driving range of the vehicle. If the later is the

control objective, the SC bank is much larger than the SC bank used in this thesis and is

a larger energy contributor to the vehicle. The HESS in this thesis and similar HESSs use

a relatively smaller SC bank which has negligible impact on additional energy available to

the vehicle after charging. The results from the NN control developed in this thesis are

compared against control strategies that lower battery peak and RMS currents developed

by authors [11, 14, 18, 19] in table 4.3. The energy capacity of the SC banks used in this

Table 4.3: Results of the proposed control compared with HESSs designed with the similar function of
reducing battery RMS and peak currents and reducing PAPR/PAVR ratios.

System Driving Profile
SC Bank Energy
Capacity (Wh)

Normalized SC Bank
Energy Capacity

Proposed HESS and NN Control UDDS 26.3 1
HESS and Rule-Based Control From [19] ”typical urban drive cycle” [19] 48.9 1.86
HESS and Rule-Based Control From [11] UDDS 18.0 0.68

HESS and NN Control From [18] NYC Drive Cycle 400 15.2
HESS and LPF Control From [14] UDDS ∼55.6 2.12

System Complexity
Battery RMS

Current Reduction (%)
Max Peak Battery

Current Reduction (%)
PAPR/PAVR
Reduction (%)

Proposed HESS and NN Control O(n2) 15 52.5 4.15
HESS and Rule-Based Control From [19] O(n) NA 56.25 NA
HESS and Rule-Based Control From [11] O(n) 19 50 NA

HESS and NN Control From [18] O(n2) 50 NA NA

HESS and LPF Control From [14] O(n log n) NA NA
11.3 acceleration
6.0 deceleration

control range from 18Wh to 400Wh, while a relatively small EV will have a battery with a
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capacity of 24kWh like the one mentioned in section 2.2. It is worth noting the difficulty

in comparing results between control solutions as vehicle, HESS, and simulation parameters

differ greatly from one experiment to the next. Additionally the same driving profile can

result in various load current waveforms depending on conditions such as vehicle weight and

battery capabilities. For example, reducing the vehicle weight from 906kg to 770kg will

reduce the load current RMS from 23.72A to 16.46A; a reduction such as this will have a

drastic impact on the performance of the HESS.

4.5 Summary

This chapter presented the progression of the genetic algorithm training the NN weights

used in the control. This chapter also presented the results that the trained NN had on

a vehicle’s battery current, capacitor current, and capacitor voltage; where a trained NN

offered a 15.15% reduction in battery RMS current, a 52.5% maximum reduction in peak

battery current, and a 4.15% PAPR/PAVR reduction coupled with a 94.5kJ SC bank. The

effectiveness of the NN trained on various profiles had over different driving profile simu-

lations was evaluated and compared. It was found that a NN trained on a urban driving

profile offered a better reduction in overall RMS currents, even if major spikes in current in

highway scenarios where not mitigated. This HESS and control developed in this thesis was

then compared to other works using both rule-based and optimization-based control for their

developed HESSs. However, direct comparison is difficult due to varying vehicle, simulation,

and HESS parameters.
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Chapter 5

Conclusion

5.1 Overview

This chapter covers the work done in this thesis and present the final thoughts and find-

ings of this thesis. Section 5.2 will discuss the results of the NN control and its effectiveness.

Section 5.3 will suggest opportunity for future work and improvements to be made to this

control to allow continual development of this control.

5.2 Summary

Chapter 1 discussed current stress problems associated with electric vehicle batteries

and introduced the HESS as a solution to reduce these stresses. The chapter discusses the

need for control of active HESS topologies and a brief explanation on the principals of NNs

was given, including the theory of their operation and the mathematics on how a signal

progressed through a NN. The chapter then explained various strategies to assign values to

the weights of a NN, known as training the NN.

Chapter 2 presented the contributions of other researchers on HESS and the control for

their respective HESS. This included work on various topologies used on vehicles of various

sizes, or on HESSs used for power distribution. It discussed the advantages and drawbacks
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of various controls and computational effort of each type of control strategy.

Chapter 3 presented the HESS for which control would be developed in this thesis. This

chapter then described the NN that would be used to control the HESS. It discussed the

inputs to the NN, the size of the NN, the effect various sizes had on the final result of control,

and the method in which the NN was implemented in the model. The chapter then explained

the external control used to protect elements of the HESS. Finally the genetic algorithm used

to train the NN was introduced. The effect of varied parameters of the genetic algorithm

were compared, and the operation of the genetic algorithm was covered.

Chapter 4 presented the progression of a NN as it was trained by a genetic algorithm

and the results that the NN control had on the HESS when trained and tested on various

driving profiles. Three methods to evaluate the effectiveness of control were presented and

compared over various scenarios, these methods were: RMS current reduction, maximum

peak battery current reduction, and PAPR/PAV R reduction. The effect of the NN control

over multiple aspects of the HESS was shown in various figures and the effectiveness over

mixed driving profiles was compared.

5.3 Future Work

The NN control developed in this thesis provided effective control, yet there is opportunity

for further improvement. When designing the NN, the optimal hyper-parameters of the NN

were chosen through a repetitive process of training the NN with each combination of neurons

and evaluating its performance. This method is time consuming and lacks mathematical

validation. An improvement could be to derive a mathematical model to calculate the
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effectiveness of a set of hyper parameters.

The trained network will function best in settings similar to the profile which it is trained.

If a NN is trained in an urban environment for example, the HESS will correctly utilize the

capacitor banks energy until the setting changes and the vehicle’s speed increases. Adding

an input to better indicate what driving situation the vehicle is in would allow the NN to

train with this input and adjust the reference converter current accordingly. Future work

could involve determining the correct input to achieve this adding inputs to the NN that

were not available from the ADVISOR simulator could aid in NN performance.

Another potential for future improvement is providing better evaluation of a population

member’s effectiveness in the genetic algorithm. Currently the genetic algorithm considers

the total battery RMS current value of a simulation run to determine effectiveness. Adding

other evaluation factors could train a NN to perform better across various scenarios.

Driving profiles to test on were limited by what was available on ADVISOR. Generating

new driving profiles with more parameters on the vehicle and its environment could aid in

NN training. Implementing this solution would be desirable to allow the NN to train on the

scenario an individual vehicle is placed. If this solution is to be implemented into commercial

vehicles, a method of continually adjusting NN weights while the vehicle is in operation could

be developed.
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Appendix A

Driving Profile Waveforms
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Figure A.1: Speed input of UDDS driving profile.
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Figure A.2: Load current and torque inputs of UDDS driving profile.
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Figure A.3: Speed input of US06 driving profile.
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Figure A.4: Load current and torque inputs of US06 driving profile.
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Figure A.5: Speed input of LA92 driving profile.
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Figure A.6: Load current and torque inputs of LA92 driving profile.
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Figure A.7: Speed input of NEDC driving profile.
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Figure A.8: Load current and torque inputs of NEDC driving profile.
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Appendix B

Matlab Code

B.1 Main code for training a NN

%% MainDirectNN4L
% This code t r a i n s a NN through use o f a g e n e t i c g lgor i thm .

Requires
% ConverterDirectNN4L . s l x S imlu l ink model to run .
c l c ; c l e a r a l l ; c l o s e a l l ;

%% Load d r i v i n g p r o f i l e parameters or generate them from adv i so r .

prompt = ’ Spec i f y input paremters to load , o the rw i s e h i t ente r to
run advisor , then r e s t a r t main . [ input parameters XXXXX . mat ] :
’ ;

s t r = input ( prompt , ’ s ’ ) ;

i f isempty ( s t r )
run ( adv i so r )
l o a d c u r r e n t = [ t , e s s c u r r e n t ] ; % Save load cur rent

p r o f i l e
speed = [ t , veh spd a ] ; % Sace speed p r o f i l e
torque = [ t , mc trq out a ] ; % Save torque p r o f i l e

% Save p r o f i l e s under s p e c i f i e d save name
save ( ’ input parameters NEDC ’ , ’ l oad cur r ent ’ , ’ speed ’ , ’ t ’ , ’

torque ’ )
e l s e

save name = [ ’ input parameters ’ , s t r ] ;
load ( save name ) ; % Load parameters from e x i s t i n g

save f i l e
end

%% Setup Parameters
% I n i t i a l i z e the nea ra l network and g e n e t i c a lgor i thm parameters

i n p u t l a y e r s i z e = 7 ;
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h i d d e n l a y e r 1 s i z e = 12 ;
h i d d e n l a y e r 2 s i z e = 9 ;
o u t p u t l a y e r s i z e = 1 ;

p o p u l a t i o n s i z e = 20 ;
T step = 0 . 1 ;
c o n v e r t e r l i m i t = 60 ; % Limit in amperes
c o n v e r t e r e f f i c i e n c y = 0 . 9 5 ;
g e n e r a t i o n l i m i t = 200 ; % Number o f g ene ra t i on s to run

number of parents = 2 ;
mutat ion rate = 0 . 0 1 ;
e p s i l o n i n i t = 0 . 1 5 ; % I n i t i a l randomizat ion f a c t o r

% Number o f t o t a l neurons f o r the NN
param size = ( i n p u t l a y e r s i z e + 1) * h i d d e n l a y e r 1 s i z e + . . .

( h i d d e n l a y e r 1 s i z e + 1) * h i d d e n l a y e r 2 s i z e + . . .
( h i d d e n l a y e r 2 s i z e + 1) * o u t p u t l a y e r s i z e ;

s im length = length ( t ) ; %length o f Simulink s imu la t i on

%% I n i t i a l i z a t i o n
% Populates the neuron vec to r with weights , e i t h e r random or

loaded from a
% prev ious run

prompt = ’ Randomize i n i t a l theta ? Y/N [Y ] : ’ ;
s t r = input ( prompt , ’ s ’ ) ;
i f isempty ( s t r )

s t r = ’Y’ ;
end

nn params = ze ro s ( param size , p o p u l a t i o n s i z e ) ;
% For loop c r e a t e s weight matr ixes f o r each l a y e r o f each

populat ion member
i f ( ( s t r == ’Y’ ) | | ( s t r == ’y ’ ) )

f o r i = 1 : p o p u l a t i o n s i z e
i n i t i a l T h e t a 1 = r a n d I n i t i a l i z e W e i g h t s ( i n p u t l a y e r s i z e ,

h i d d e n l a y e r 1 s i z e , e p s i l o n i n i t ) ;
i n i t i a l T h e t a 2 = r a n d I n i t i a l i z e W e i g h t s ( h i d d e n l a y e r 1 s i z e

, h i d d e n l a y e r 2 s i z e , e p s i l o n i n i t ) ;
i n i t i a l T h e t a 3 = r a n d I n i t i a l i z e W e i g h t s ( h i d d e n l a y e r 2 s i z e

, o u t p u t l a y e r s i z e , e p s i l o n i n i t ) ;
nn params ( : , i ) = [ i n i t i a l T h e t a 1 ( : ) ; i n i t i a l T h e t a 2 ( : ) ;

i n i t i a l T h e t a 3 ( : ) ] ;
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B.1. Main code for training a NN

end
e l s e

% Otherwise weight matr ixes are loaded from a prev ious
gene ra t i on

prompt = ’Which gene ra t i on number to load ? : ’ ;
l oad gen = input ( prompt ) ;
load ( [ ’ generat ionsDi rec t4L ’ , num2str ( load gen ) , ’ . mat ’ ] )
f p r i n t f ( ’ Loaded f i l e : g ene ra t i onsDi r ec t4L%d . mat \n ’ , l oad gen )
f o r i = 1 : p o p u l a t i o n s i z e

i n i t i a l T h e t a 1 = Data . gene ra t i on ( end ) . Theta1 ;
i n i t i a l T h e t a 2 = Data . gene ra t i on ( end ) . Theta2 ;
i n i t i a l T h e t a 3 = Data . gene ra t i on ( end ) . Theta3 ;
nn params ( : , i ) = [ i n i t i a l T h e t a 1 ( : ) ; i n i t i a l T h e t a 2 ( : ) ;

i n i t i a l T h e t a 3 ( : ) ; ] ;
end
load mut rate = 0 . 0 1 ;
% Neurons are mutated to cont inue a lgor i thm p r o g r e s s i o n from

l a s t
% gene ra t i on
nn params = mutate ( nn params , load mut rate , e p s i l o n i n i t ) ;

end
generation num = 1 ;

%% Run Simulat ion

ButtonHandle = u i c o n t r o l ( ’ Sty le ’ , ’ PushButton ’ , . . .
’ Str ing ’ , ’ F in i sh sim ’ , . . .
’ Callback ’ , ’ d e l e t e ( gcbf ) ’ ) ;

whi l e ( generation num <= g e n e r a t i o n l i m i t )
f p r i n t f ( ’ Generation : %d\n ’ , generation num )
f i t n e s s b a t = ze ro s ( p o p u l a t i o n s i z e , 1) ; %c r e a t e f i t n e s s

array

% Create gene ve c t o r s from nn param array
f o r i = 1 : p o p u l a t i o n s i z e

Theta1 = reshape ( nn params ( 1 : h i d d e n l a y e r 1 s i z e * (
i n p u t l a y e r s i z e + 1) , i ) , . . .

h i d d e n l a y e r 1 s i z e , ( i n p u t l a y e r s i z e + 1) ) ;
Theta2 = reshape ( nn params ( (1 + ( h i d d e n l a y e r 1 s i z e * (

i n p u t l a y e r s i z e + 1) ) ) : . . .
( ( h i d d e n l a y e r 1 s i z e * ( i n p u t l a y e r s i z e + 1) ) ) + (

h i d d e n l a y e r 2 s i z e * ( h i d d e n l a y e r 1 s i z e + 1) ) , i )
, . . .

h i d d e n l a y e r 2 s i z e , ( h i d d e n l a y e r 1 s i z e + 1) ) ;
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Theta3 = reshape ( nn params ( ( ( 1 + h i d d e n l a y e r 1 s i z e * (
i n p u t l a y e r s i z e + 1) ) ) + ( h i d d e n l a y e r 2 s i z e * (
h i d d e n l a y e r 1 s i z e + 1) ) : . . .

end , i ) , o u t p u t l a y e r s i z e , ( h i d d e n l a y e r 2 s i z e + 1) )
;

% Run the s imu la t i on with s imul ink
sim ( ’ ConverterDirectNN4L ’ )

f p r i n t f ( ’ The RMS current o f member %d i s : %5.2fA .\n ’ , i ,
RMS current bat . data ( end ) )

%Save va lue s from t h i s populat ion member
cu r r en t s . i t t e r a t i o n ( i ) . ba t cu r r en t = C u r r e n t P r o f i l e s .

s i g n a l s (1 ) . va lue s ; % batte ry cu r r en t s
cu r r en t s . i t t e r a t i o n ( i ) . cap cur r ent = C u r r e n t P r o f i l e s .

s i g n a l s (2 ) . va lue s ; % c a p a c i t o r cu r r en t s
cu r r en t s . i t t e r a t i o n ( i ) . time = C u r r e n t P r o f i l e s . time ; %

s imu la t i on time
cu r r en t s . i t t e r a t i o n ( i ) . f i t n e s s = RMS current bat . data ( end )

; %f i t n e s s o f each i t t e r a t i o n
cu r r en t s . i t t e r a t i o n ( i ) . Theta1 = Theta1 ; %neura l network

parameters o f each i t t e r a t i o n
cu r r en t s . i t t e r a t i o n ( i ) . Theta2 = Theta2 ; %neura l network

parameters o f each i t t e r a t i o n
cu r r en t s . i t t e r a t i o n ( i ) . Theta3 = Theta3 ; %neura l network

parameters o f each i t t e r a t i o n

f i t n e s s b a t ( i ) = RMS current bat . data ( end ) ; % save batte ry
RMS cur rent to be used as f i t n e s s

end

index = f i n d ( f i t n e s s b a t == min( f i t n e s s b a t ) ) ;
index = index (1 ) ;
b e s t o f . g ene ra t i on ( generation num ) = cur r en t s . i t t e r a t i o n ( index

) ;

%p lo t RMS value vs gene ra t i on number
RMS current = ze ro s ( s i z e ( b e s t o f . g ene ra t i on ) ) ;
f o r i = 1 : l ength ( b e s t o f . g ene ra t i on )

RMS current ( i ) = b e s t o f . g ene ra t i on ( i ) . f i t n e s s ;
end
f i g u r e (1 )
p l o t ( [ 1 : l ength ( b e s t o f . g ene ra t i on ) ] , RMS current ) ;
t i t l e ( ’ 4 Layer Direct ’ )
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B.1. Main code for training a NN

% map the f i t n e s s between 0 and 100
no rm f i tn e s s = mapFitness ( f i t n e s s b a t ) ;
f p r i n t f ( ’ Normalized f i t n e s s from RMS va lues . \n ’ )

%c r e a t e mating pool
mat ing pool = createMatingPool ( norm f i tne s s , nn params ) ;
f p r i n t f ( ’ Created mating pool . \n ’ )

%c r e a t e next gene ra t i on
new gen = produceOf f spr ing ( number of parents , mating pool ,

p o p u l a t i o n s i z e ) ;
f p r i n t f ( ’ Created next gene ra t i on . \n ’ )

%mutate new genera t i on
nn params = mutate ( new gen , mutat ion rate , e p s i l o n i n i t ) ;
f p r i n t f ( ’ Mutated new genera t i on and updated nn parameters . \n

’ )

f p r i n t f ( ’ Generation completed . \n ’ )

generation num = generation num + 1 ; %prog r e s s g e n e t i c
a lgor i thm

% Exit loop on keypres s
i f ˜ i shand l e ( ButtonHandle )

d i sp ( ’ Loop stopped by user ’ ) ;
break ;

end
pause ( 0 . 0 1 ) ; % A NEW LINE

end

% Save a l l data from e n t i r e g e n e t i c a lgor i thm run
b e s t o f . metadata . i n p u t l a y e r s i z e = i n p u t l a y e r s i z e ;
b e s t o f . metadata . h i d d e n l a y e r 1 s i z e = h i d d e n l a y e r 1 s i z e ;
b e s t o f . metadata . h i d d e n l a y e r 2 s i z e = h i d d e n l a y e r 2 s i z e ;
b e s t o f . metadata . o u t p u t l a y e r s i z e = o u t p u t l a y e r s i z e ;
b e s t o f . metadata . p o p u l a t i o n s i z e = p o p u l a t i o n s i z e ;
b e s t o f . metadata . T step = T step ;
b e s t o f . metadata . c o n v e r t e r l i m i t = c o n v e r t e r l i m i t ;
b e s t o f . metadata . number of parents = number of parents ;
b e s t o f . metadata . mutat ion rate = mutat ion rate ;
b e s t o f . metadata . e p s i l o n i n i t = e p s i l o n i n i t ;
b e s t o f . metadata . save name = save name ;

save num = SaveWithNumber ( ’ generat ionsDi rec t4L ’ , b e s t o f ) ;
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B.1. Main code for training a NN

f p r i n t f ( ’ Generat ions saved to f i l e : g ene ra t i onsDi r e c t4L%d . mat \n ’ ,
save num )

%% Find Best Generation
% c l e a r unneeded v a r i a b l e s

c l e a r v a r s =except save num T step save name c o n v e r t e r l i m i t
s im length c o n v e r t e r e f f i c i e n c y ; c l o s e a l l ;

load ( save name )

% Rerun best gene ra t i on
prompt = ’Run cur rent gene ra t i on ? Y/N [Y ] : ’ ;
s t r = input ( prompt , ’ s ’ ) ;
i f ( ( s t r == ’n ’ ) | | ( s t r == ’N’ ) )

prompt = ’Which gene ra t i on to load ? ’ ;
save num = input ( prompt ) ;

end

load ( [ ’ generat ionsDi rec t4L ’ , num2str ( save num ) , ’ . mat ’ ] )
RMS current = ze ro s ( s i z e ( Data . gene ra t i on ) ) ;

f o r i = 1 : l ength ( Data . gene ra t i on )
RMS current ( i ) = Data . gene ra t i on ( i ) . f i t n e s s ;

end

c l o s e a l l
p l o t ( [ 1 : l ength ( Data . gene ra t i on ) ] , RMS current ) ;
t i t l e ( ’ Genetic Algorithm Progress ion ’ )
x l a b e l ( ’ Generation Number ’ )
y l a b e l ( ’ Battery RMS Current ’ )

[ best RMS , index ] = min ( RMS current ) ;

f p r i n t f ( ’ The lowest RMS bat cur r ent i s %5.2fA at gene ra t i on number
%3. f .\n ’ , best RMS , index )

Theta1 = Data . gene ra t i on ( index ) . Theta1 ;
Theta2 = Data . gene ra t i on ( index ) . Theta2 ;
Theta3 = Data . gene ra t i on ( index ) . Theta3 ;
c o n v e r t e r l i m i t = Data . metadata . c o n v e r t e r l i m i t ;

f p r i n t f ( ’ S imulat ion running . \n ’ )
sim ( ’ ConverterDirectNN4L ’ )
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B.2. Randomization function.

l a y e r 1 w e i g h t s = Weight Evaluator ( Theta1 ) ;
f p r i n t f ( ’ Layer one weights : %d \n ’ , l a y e r 1 w e i g h t s )

f p r i n t f ( ’ S imulat ion f i n i s h e d .\n ’ )

B.2 Randomization function.

f unc t i on W = r a n d I n i t i a l i z e W e i g h t s ( L in , L out , e p s i l o n i n i t )
%Randomly i n i t i a l i z e the weights o f a l a y e r with L in
%incoming connec t i ons and L out outgoing connec t ions

W = ze ro s ( L out , 1 + L in ) ;

W = rand ( L out , 1 + L in ) * 2 * e p s i l o n i n i t = e p s i l o n i n i t ;
end

B.3 Mutate function.

f unc t i on nn params = mutate ( new gen , mutat ion rate , e p s i l o n i n i t )
% mutate a s p e c i f i c gene o f the nuera l network parameters i f a

random value
% i s l e s s than the mutation ra t e .

nn params = ze ro s ( s i z e ( new gen ) ) ;
f o r i = 1 : s i z e ( new gen , 2)

th r e sho ld = rand ( s i z e ( new gen , 1) , 1) ;

f o r j = 1 : s i z e ( new gen , 1)
i f ( th r e sho ld ( j ) < mutat ion rate )

nn params ( j , i ) = rand ( ) * 2 * e p s i l o n i n i t =

e p s i l o n i n i t ;
e l s e

nn params ( j , i ) = new gen ( j , i ) ;
end

end
end

B.4 Map fitness function.

f unc t i on normal ized = mapFitness ( f i t n e s s b a t )
% Maps f i t n e s s va lue s between 1 and 100

max bat = max( f i t n e s s b a t ) ;
min bat = min ( f i t n e s s b a t ) ;
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B.5. Mating pool function.

norm bat = ( f i t n e s s b a t = min bat ) . / ( max bat = min bat ) ;

normal ized = 100*(1 = norm bat ) ;
end

B.5 Mating pool function.

f unc t i on mating pool = createMatingPool ( norm f i tne s s , nn params )
% Creates l a r g e array from neura l network parameters based on

f i t n e s s .
% Higher f i t n e s s parameters w i l l occupy a l a r g e r por t i on o f the

array

mating pool = ze ro s ( s i z e ( nn params , 1) , 1) ;
f o r i = 1 : s i z e ( norm f i tne s s , 1 )

f o r j = 1 : no rm f i tn e s s ( i )
mat ing pool = [ mating pool , nn params ( : , i ) ] ;

end
end
mating pool = mating pool ( : , 2 : end ) ;
end

B.6 Offspring function.

f unc t i on new gen = produceOf f spr ing ( num parents , mating pool ,
p o p u l a t i o n s i z e )

% Creates new gen o f populat ion s i z e based on a s p e c i f i e n d number
o f

% parents f o r each c h i l d

parent = ze ro s ( num parents , 1 ) ;
new gen = ze ro s ( s i z e ( mating pool , 1) , p o p u l a t i o n s i z e ) ;

f o r i = 1 : p o p u l a t i o n s i z e
% determing three random parents from mating pool
f o r k = 1 : num parents

parent ( k ) = f l o o r ( s i z e ( mating pool , 2) * rand ( ) + 1) ;
end

% c r e a t e c h i l d from parents , l oop ing through a l l i n d i c e s o f nn
parameters

f o r j = 1 : s i z e ( mating pool , 1)
new gen ( j , i ) = mating pool ( j , parent ( f l o o r ( num parents* rand

( ) + 1) ) ) ;
end
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B.7. Save function.

end

B.7 Save function.

f unc t i on save num = SaveWithNumber ( FileName , Data )
% Function saves the gene ra t i on run o f the g e n e t i c a lgor i thm

[ fPath , fName , fExt ] = f i l e p a r t s ( FileName ) ;
i f isempty ( fExt ) % No ’ . mat ’ in FileName

fExt = ’ . mat ’ ;
FileName = f u l l f i l e ( fPath , [ fName , fExt ] ) ;

end
save num = 1 ;
i f e x i s t ( [ fName , num2str ( save num ) , fExt ] , ’ f i l e ’ )

% Increment f i l e s t a r t i n g from base name .
fD i r = d i r ( f u l l f i l e ( fPath , [ fName , num2str ( save num ) , fExt ] )

) ;
whi l e (˜ isempty ( fD i r ) )

save num = save num + 1 ;
fD i r = d i r ( f u l l f i l e ( fPath , [ fName , num2str ( save num ) ,

fExt ] ) ) ;
end

end
save ( [ fName , num2str ( save num ) , fExt ] , ’ Data ’ ) ;
end

B.8 Weight evaluator function.

f unc t i on input we ight s = Weight Evaluator ( Theta1 )
% Find RMS value o f weight vec to r f o r each input

input we ight s = rms ( Theta1 , 1 ) ;
end

B.9 Generation progression and NN weight analyser code.

%% Generation p r o g r e s s i o n
% This program loads NNs t ra ined on MainDirectNN4L .m and gene ra t e s

f i g u r e s
% to ana lyse the e f f e c t i v e n e s s . I t a l s o gene ra t e s PAPR/PAVR and

RMS cur rent
% reduct ion va lue s .

c l e a r a l l ; c l c ;
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B.9. Generation progression and NN weight analyser code.

prompt = ’Which p r o f i l e to load ? ’ ;
save name = input ( prompt , ’ s ’ ) ;
prompt = ’Which gene ra t i on to load ? ’ ;
save num = input ( prompt ) ;

load ( [ ’ input parameters ’ , save name , ’ . mat ’ ] )
load ( [ ’ generat ionsDi rec t4L ’ , num2str ( save num ) , ’ . mat ’ ] )
RMS current = ze ro s ( s i z e ( Data . gene ra t i on ) ) ;

f o r i = 1 : l ength ( Data . gene ra t i on )
RMS current ( i ) = Data . gene ra t i on ( i ) . f i t n e s s ;

end
c l o s e a l l
p l o t ( [ 1 : l ength ( Data . gene ra t i on ) ] , RMS current ) ;
t i t l e ( ’ Genetic Algorithm Progress ion ’ )
x l a b e l ( ’ Generation Number ’ )
y l a b e l ( ’ Battery RMS Current (A) ’ )

[ best RMS , index ] = min ( RMS current ) ;

f p r i n t f ( ’ The lowest RMS bat cur r ent i s %5.2fA at gene ra t i on number
%3. f .\n ’ , best RMS , index )

Theta1 = Data . gene ra t i on ( index ) . Theta1 ;
Theta2 = Data . gene ra t i on ( index ) . Theta2 ;
Theta3 = Data . gene ra t i on ( index ) . Theta3 ;
c o n v e r t e r l i m i t = Data . metadata . c o n v e r t e r l i m i t ;
T step = Data . metadata . T step ;
c o n v e r t e r e f f i c i e n c y = 0 . 9 5 ;

s im length = length ( t ) ;

f p r i n t f ( ’ S imulat ion running . \n ’ )
sim ( ’ ConverterDirectNN4L ’ )
f p r i n t f ( ’ S imulat ion f i n i s h e d . \n ’ )

l a y e r 1 w e i g h t s = Weight Evaluator ( Theta1 ) ;
f p r i n t f ( ’ Layer one weights : %d \n ’ , l a y e r 1 w e i g h t s )

I l o a d = C u r r e n t P r o f i l e s . s i g n a l s (1 ) . va lue s ;
I c o n v e r t e r = C u r r e n t P r o f i l e s . s i g n a l s (2 ) . va lue s ;
I ba t = C u r r e n t P r o f i l e s . s i g n a l s (3 ) . va lue s ;
time = C u r r e n t P r o f i l e s . time ;

%%
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B.9. Generation progression and NN weight analyser code.

%Plot cur r ent p r o f i l e s
p l o t ( time , I l oad , time , I c onve r t e r , time , I bat , ’ g ’ , ’ l inewidth ’ , 1 . 5 ) ;
l egend ( ’ Load Current ’ , ’ Capacitor Current ’ , ’ Battery Current ’ )
x l a b e l ( ’ S imulat ion Time ( s ) ’ )
y l a b e l ( ’ Current (A) ’ )
g r i d on

V caps = CapacitorValues . s i g n a l s (1 ) . va lue s ;
I c a p s = CapacitorValues . s i g n a l s (2 ) . va lue s ;
time = CapacitorValues . time ;

% Plot SC bank cur rent and vo l tage
f i g u r e (2 )
yyax i s l e f t
p l o t ( time , I caps , ’ l inewidth ’ , 1 . 5 ) ;
y l a b e l ( ’ Current (A) ’ )
ylim ( [ =80 ,80 ] )
yyax i s r i g h t
p l o t ( time , V caps , ’ l inewidth ’ , 1 . 5 ) ;
y l a b e l ( ’ Voltage (V) ’ )
x l a b e l ( ’ S imulat ion Time ( s ) ’ )
l egend ( ’ Capacitor Current ’ , ’ Capacitor Voltage ’ )
xlim ( [ 0 , 600 ] )

Speed = NNinputs . s i g n a l s (3 ) . va lue s ;
loca l max = NNinputs . s i g n a l s (7 ) . va lue s ;
moving avg = ze ro s ( s i z e ( Speed ) ) ;
f o r i = 1 : l ength ( Speed )

moving avg ( i ) = NNinputs . s i g n a l s (6 ) . va lue s (1 , 1 , i ) ;
end

%Plot speed p r o f i l e s
f i g u r e (3 )
p l o t ( time , Speed , time , local max , time , moving avg , ’ g ’ , ’ l inewidth

’ , 1 . 5 )
legend ( ’ Veh ic l e Speed ’ , ’ Local Max o f Speed ’ , ’ Moving Average o f

Speed ’ )
y l a b e l ( ’ Speed (m/ s ) ’ )
x l a b e l ( ’ S imulat ion Time ( s ) ’ )
ylim ( [ 0 , 3 0 ] )

torque nn = NNinputs . s i g n a l s (5 ) . va lue s ;
a c c e l e r a t i o n = NNinputs . s i g n a l s (4 ) . va lue s ;
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B.9. Generation progression and NN weight analyser code.

%Plot Torque and Acce l e r a t i on
f i g u r e (4 )
yyax i s r i g h t
p l o t ( time , torque nn , ’ l inewidth ’ , 1 . 5 ) ;
y l a b e l ( ’ Torque (N/m) ’ )
ylim ( [ =100 ,100 ] )
yyax i s l e f t
p l o t ( time , a c c e l e r a t i o n , ’ l inewidth ’ , 1 . 5 ) ;
y l a b e l ( ’ Acc e l e r a t i on (m/ s ˆ2) ’ )
ylim ( [ =2 ,2 ] )
x l a b e l ( ’ S imulat ion Time ( s ) ’ )
l egend ( ’ Torque ’ , ’ Acce l e ra t i on ’ )

I l o a d = NNinputs . s i g n a l s (1 ) . va lue s ;

% Plot load cur rent and c a p a c i t o r vo l tage
f i g u r e (5 )
yyax i s l e f t
p l o t ( time , I l oad , ’ l inewidth ’ , 1 . 5 ) ;
y l a b e l ( ’ Current (A) ’ )
yyax i s r i g h t
p l o t ( time , V caps , ’ l inewidth ’ , 1 . 5 ) ;
y l a b e l ( ’ Voltage (V) ’ )
x l a b e l ( ’ S imulat ion Time ( s ) ’ )
l egend ( ’ Load Current ’ , ’ Capacitor Voltage ’ )

% Plot load cur rent and torque
f i g u r e (6 )
yyax i s l e f t
p l o t ( time , I l oad , ’ l inewidth ’ , 1 . 5 )
y l a b e l ( ’ Current (A) ’ )
yyax i s r i g h t
p l o t ( time , torque nn , ’ l inewidth ’ , 1 . 5 ) ;
y l a b e l ( ’ Torque (Nm) ’ )
x l a b e l ( ’ S imulat ion Time ( s ) ’ )
l egend ( ’ Load Current ’ , ’ Torque ’ )

% Plot speed
f i g u r e (7 )
p l o t ( time , Speed , ’ l inewidth ’ , 1 . 5 )
y l a b e l ( ’ Speed (m/ s ) ’ )
x l a b e l ( ’ S imulat ion Time ( s ) ’ )

%% Determine PAPR/PAVR and RMS reduct ion
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B.9. Generation progression and NN weight analyser code.

RMS current before = RMS current load . data ( end )
RMS current after = RMS current bat . data ( end )
c u r r e n t p e r r e d u c t i o n = ( RMS current load . data ( end ) =

RMS current bat . data ( end ) ) / RMS current load . data ( end ) *100

peak PWR before = max( load PWR) /1000
peak PWR after = max( battery PWR ) /1000

peak speed = max( Speed ) ;
avg PWR before = mean( load PWR) /1000
avg PWR after = mean( battery PWR ) /1000

avg speed = mean( Speed ) ;

PAPR before = peak PWR before/avg PWR before
PAPR after = peak PWR after/avg PWR after
PAVR = peak speed / avg speed
PAPR PAVR before = PAPR before/PAVR
PAPR PAVR after = PAPR after/PAVR
PAPR PAVR per reduction = (PAPR PAVR before = PAPR PAVR after ) /

PAPR PAVR before*100
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Appendix C

Simulink Model

Figure C.1: Main Simulink model (HESS Layout with converter subsystem).
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Appendix C. Simulink Model

Figure C.2: Main Simulink model (inputs from Matlab workspace and Neural Network and Control
subsystems.)
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Appendix C. Simulink Model

Figure C.3: Main Simulink model (output signals to workspace).
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Appendix C. Simulink Model

Figure C.4: Converter subsystem.
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Appendix C. Simulink Model

Figure C.5: Neural network subsystem input normalizing and first layer bus.
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Appendix C. Simulink Model

Figure C.6: Neural network subsystem internal layers, output, and local max generator control.
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Appendix C. Simulink Model

Figure C.7: SC voltage and converter current control subsystem.
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