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Abstract 

Game theory has been gaining popularity as an innovative tool in the coordination of multi-

reservoir systems for the optimal release and market policies through finding equilibrium. An 

equilibrium-based decision-making model (EDM) was developed to coordinate release and 

market decisions to meet demand and trade electricity from the Peace and Columbia systems in 

the US and Alberta Markets. The Williston and Kinbasket Reservoirs were taken as the main two 

agents to represent the Peace and Columbia rivers, respectively. Data on demand, inflows, prices, 

and release limits were provided by BC Hydro; and the Water Value Function for each reservoir 

was obtained from the Energy Studies Peace and Columbia Optimizers for the December 2019 

study. The policies resulting from the game-theoretic model were compared to these of an 

existing iterative simulation and coordination model, the Energy Studies Models. The model 

showed reasonable results for the Peace system with low absolute error and mean absolute 

deviation for the drawdowns from Williston Reservoir, while the drawdowns from Kinbasket 

Reservoir showed larger error as compared to energy studies.  

Three different solution algorithms were investigated: social optimum, Nash Support 

Enumeration, and Mixed Integer Linear Programming. In this case study, the Mixed Integer 

Linear Programming algorithm to find Nash Equilibrium gave the best strategies and rewards. 

However, the Nash Support Enumeration algorithm is more adaptable to situations with more 

than two agents. The results suggest that Game Theory is a promising technique that should be 

further investigated and enhanced to aide Energy Studies in the coordination of reservoir release 

policies. To further develop the model results, inverse reinforcement learning algorithms in 

Stochastic Games were investigated and presented. An effective way to validate and compare 
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this model and the different tools developed by the BC Hydro’s system optimization group is by 

following a model benchmarking framework detailed in this research.  
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Lay Summary 

In British Columbia, over 75% of the installed power generating capacity is at hydroelectric 

generation stations in the Peace and Columbia river basins. The coordination of these plants is a 

mathematically complex task that involves solving problems with multiple-decision makers that 

operate the different generation plants. Game theory has been well-regarded as a tool to solve 

multi-agent, central coordination systems as opposed to conventional, single-objective 

optimization techniques. The goal of this research is to develop and test a multi-agent reservoir 

coordination model based on game-theoretic algorithms to inform operational decisions for the 

Columbia and Peace river systems, on storage operations, and purchases and sales in the 

electricity market. The results from this model were compared with existing models developed 

by BC Hydro. The results indicate that this modelling approach can achieve efficient 

computational results to optimize the operations and planning of hydro systems under uncertain 

water inflows scenarios. 

 



vi 

 

Preface 

The work presented in this research is carried out by the author Farah Rawas under the 

supervision of Dr. Ziad Shawwash in collaboration with the Energy Studies team within BC 

Hydro’s Generation Systems Operations department.  

The author developed and applied the model and both the Social Optimum and the MILP 

algorithms. The input data used in the case study were generated from BC Hydro models. Mr. 

Tim Blair explained the working of the Energy Studies Models and was instrumental in this 

research. Dr. Ziad Shawwash, and Mr. Tim Blair, specialist engineer at BC Hydro, have 

provided several valuable suggestions to improve the modelling framework. 



vii 

 

Table of Contents 

Abstract ......................................................................................................................................... iii 

Lay Summary .................................................................................................................................v 

Preface ........................................................................................................................................... vi 

Table of Contents ........................................................................................................................ vii 

List of Tables ............................................................................................................................... xii 

List of Figures ............................................................................................................................. xiv 

List of Equations ....................................................................................................................... xvii 

List of Abbreviations ............................................................................................................... xviii 

Acknowledgements .................................................................................................................... xix 

Dedication .....................................................................................................................................xx 

Chapter 1: Introduction ................................................................................................................1 

1.1 Research Question and Motivation ................................................................................. 1 

1.2 Challenges Addressed ..................................................................................................... 2 

1.4 Overview of Subsequent Sections .................................................................................. 3 

Chapter 2: Background .................................................................................................................4 

2.1 Game Theory .................................................................................................................. 4 

2.1.1 Classification and elements of game models .............................................................. 6 



viii 

 

2.1.1.1 Normal Games .................................................................................................... 6 

2.1.1.2 Stochastic and Markov Games ............................................................................ 6 

2.1.1.3 Example of Stochastic Repeated Games: OPEC Oil Cartel ............................... 6 

2.1.2 Cooperative vs Non-cooperative Games .................................................................... 9 

2.1.3 Game Equilibrium ..................................................................................................... 10 

2.2 Game Theory in Reservoir Management and Operation Research Literature .............. 10 

2.2.1 Modelling Advancement: Multi-Agent Inverse Reinforcement Learning ................ 21 

2.2.2 Examples of Game Theory and Multi-Agent Reinforcement Learning ................... 22 

2.3 Managing the BC Hydro System .................................................................................. 27 

2.3.1 BC Hydro System Overview .................................................................................... 28 

2.3.1.1 Peace River ....................................................................................................... 28 

2.3.1.2 Columbia River ................................................................................................. 28 

2.3.1.2.1 Columbia River Treaty ................................................................................ 28 

2.3.2 Modelling Framework: Energy Studies .................................................................... 30 

2.3.2.1 Trading Decisions ............................................................................................. 32 

2.3.2.2 Simulation and Optimization Models – SSDP.................................................. 33 

2.4 Uncertainty .................................................................................................................... 34 

2.5 Inflows and Climate Change in BC .............................................................................. 35 



ix 

 

2.6 Summary ....................................................................................................................... 37 

Chapter 3: Methods for Equilibrium-Based Decision-Making Model (EDM) ......................40 

3.1 Modelling Concept and Approach ................................................................................ 40 

3.2 Methods for Finding Equilibrium ................................................................................. 41 

3.2.1 Definition of Nash Equilibrium ................................................................................ 42 

3.2.2 Nash Equilibrium method: Support Enumeration (Nash) ......................................... 43 

3.2.3 Mixed Integer Linear Programming (MILP) ............................................................ 43 

3.3 Reward Calculation ....................................................................................................... 45 

3.4 Final Model Algorithm and Schematic ......................................................................... 46 

3.4.1 Model Inputs ............................................................................................................. 47 

3.4.2 Model Outputs .......................................................................................................... 48 

3.4.3 Game Generation Step .............................................................................................. 49 

3.4.3.1 Optimization of the Columbia River................................................................. 51 

Chapter 4: Case Study and Results ............................................................................................52 

4.1 Case Study: December 2019 Study ............................................................................... 52 

4.1.1 Study Time Frame and Outcomes............................................................................. 52 

4.1.2 Data ........................................................................................................................... 52 

4.1.2.1 Water Years Inflow Scenarios .......................................................................... 52 



x 

 

4.1.2.2 Transition Probabilities ..................................................................................... 53 

4.1.2.3 Market Elasticity Curve .................................................................................... 54 

4.1.2.4 Storage-Elevation Curves ................................................................................. 54 

4.1.3 Constraints ................................................................................................................ 55 

4.1.3.1 Mass Balance: ................................................................................................... 55 

4.1.3.2 Storage Constraints ........................................................................................... 55 

4.1.3.3 Power Generation.............................................................................................. 55 

4.1.3.4 Generation Limit: .............................................................................................. 55 

4.1.3.5 Load-Resource Balance: ................................................................................... 56 

4.1.3.6 Demand ............................................................................................................. 56 

4.1.3.7 Flow Constraints and Peace Ice Cover ............................................................. 56 

4.1.4 Error Calculation ....................................................................................................... 57 

4.2 Results ........................................................................................................................... 57 

4.2.1 Error and Deviation................................................................................................... 57 

4.2.2 Rewards..................................................................................................................... 61 

4.2.3 LLH Discharge Policy .............................................................................................. 62 

4.2.3.1 Dry Year............................................................................................................ 63 

4.2.3.2 Medium Years ................................................................................................... 64 



xi 

 

4.2.3.3 Wet Years.......................................................................................................... 65 

4.2.4 HLH Discharge Policy .............................................................................................. 66 

4.2.4.1 Dry Years .......................................................................................................... 66 

4.2.4.2 Medium Years ................................................................................................... 67 

4.2.4.3 Wet Years.......................................................................................................... 68 

4.2.5 Market Policy ............................................................................................................ 69 

4.2.5.1 Other sources .................................................................................................... 71 

Chapter 5: Discussion ..................................................................................................................72 

5.1.1 Distinguishing Characteristics of the Equilibrium-Based Decision-Making Model 72 

5.1.2 Limitations and simplifications................................................................................. 74 

5.1.3 Functionality as a decision-making tool ................................................................... 75 

Chapter 6: Benchmarking Framework for Stochastic Models................................................76 

6.1 Background ................................................................................................................... 76 

6.1.1 Overview of Widely Used Methods: ........................................................................ 77 

6.1.2 Examples from Literature ......................................................................................... 79 

6.2 Proposed Framework .................................................................................................... 96 

Chapter 7: Conclusions and Recommendations .....................................................................100 

Bibliography ...............................................................................................................................102 



xii 

 

List of Tables 

Table 1: Payoff matrices of two demand scenarios. Adopted from Dutta 1999 ............................. 7 

Table 2: Columbia River Treaty Minimum and Maximum Flow Limits at the Arrow Reservoir 

(Columbia River Treaty Operating Committee 2019) .................................................................. 29 

Table 3: Columbia River Treaty Canadian Storage Accounts (Columbia River Treaty Operating 

Committee 2019) .......................................................................................................................... 30 

Table 4: Linear Programming problem formulation of the Columbia River ................................ 51 

Table 5: Total discharges and standard deviation for the year (Jan 2020- Dec 2020) for the water 

scenarios: 1977, 1983, and 1995 ................................................................................................... 58 

Table 6: Mean absolute deviation (MAD) for monthly release policies from the different 

algorithms, values highlighted as a heat map, with green representing the lower values and red 

representing the higher values ...................................................................................................... 59 

Table 7: Percent error for the total release policies from the different algorithms, values 

highlighted as a heat map, with green representing the lower values and red representing the 

higher values ................................................................................................................................. 59 

Table 8: Phases of the Benchmarking Process, (Rolstadås and International Federation for 

Information Processing 1995) ....................................................................................................... 76 

Table 9: Operational Logistics Matrix (Cunderlik et al 2013) ..................................................... 84 

Table 10: Hydrologic Performance Matrix (Cunderlik et al 2013) .............................................. 85 



xiii 

 

Table 11: Combined Performance Matrix Hydrologic Performance Matrix (Cunderlik et al 2013)

....................................................................................................................................................... 85 

Table 12: Summary of results of Koryakovskiy et al. 2017 benchmark problem ........................ 92 

Table 13: Summary of papers reviewed, in order of publication date .......................................... 93 

Table 14: Benchmarking metrics to measure the performance of stochastic optimization models

....................................................................................................................................................... 98 

 



xiv 

 

List of Figures 

Figure 1: Flowchart of competitive analysis of hydropower and water supplies within an energy–

water nexus (Hu et al 2018) .......................................................................................................... 16 

Figure 2: Hydro-thermal system and game model schematic (Forouzandehmehr et al. 2016) .... 18 

Figure 3: Schematic of the Peace and Columbia River Reservoirs and Generation Stations ....... 28 

Figure 4: Schematic of Energy Studies Modelling ....................................................................... 32 

Figure 5: Modelling Concept for the Coordination for Peace and Columbia Reservoir System. 

Columbia Opt and Peace Opt represent the individual agent’s optimizations that result from the 

Marginal Cost Model. ................................................................................................................... 41 

Figure 6: Formulation of the mixed integer program for finding Nash Equilibrium.................... 44 

Figure 7: Calculating the expected discounted future reward at each time step in the model, 

where w1 represent scenario year 1 for water inflows. ................................................................. 46 

Figure 8: Flowchart of the equilibrium model subroutines .......................................................... 47 

Figure 9: Flowchart of the game generation algorithm at time t. Opt_i = optimal release from 

MCM for agent I, Gen_i = hydro generation for agent I for domestic demand, Sales_i: hydro 

generation for market sales. .......................................................................................................... 50 

Figure 10: Cumulative system inflows (cms) for selected water years ........................................ 53 

Figure 11: Heavy and Light Load hour monthly price duration curve ......................................... 54 

Figure 12: Domestic electricity load on the BCH system, forecasted for May and December 

2020, from the 1977, 1983, and 1995 water years. ....................................................................... 56 



xv 

 

Figure 13: Total year agent and system reward for the scenario years for Kinbasket Reservoir . 61 

Figure 14: Total year agent and system reward for the scenario years for Williston Reservoir ... 61 

Figure 15: Total policy year reward boxplot (MCAD) for Kinbasket Reservoir ......................... 62 

Figure 16:Total policy year reward boxplot (MCAD) for Williston Reservoir ............................ 62 

Figure 17: GMS LLH monthly discharges (cms) of the different algorithms for the dry year 

inflow scenario (1977) .................................................................................................................. 63 

Figure 18: MCA LLH monthly discharges (cms) of the different algorithms for the dry year 

inflow scenario (1977) .................................................................................................................. 63 

Figure 19: GMS LLH monthly discharges (cms) of the different algorithms for the medium 

inflow year  scenario (1983) ......................................................................................................... 64 

Figure 20: MCA LLH monthly discharges (cms) of the different algorithms for the medium 

inflow year  scenario (1983) ......................................................................................................... 64 

Figure 21: GMS LLH monthly discharges (cms) of the different algorithms for the wet year 

inflow scenario (1995) .................................................................................................................. 65 

Figure 22: MCA LLH monthly discharges (cms) of the different algorithms for the wet year 

inflow scenario (1995) .................................................................................................................. 65 

Figure 23: GMS HLH monthly discharges (cms) of the different algorithms for the dry year 

inflow scenario (1977) .................................................................................................................. 66 

Figure 24: MCA HLH monthly discharges (cms) of the different algorithms for the dry year 

inflow scenario (1977) .................................................................................................................. 67 



xvi 

 

Figure 25: GMS HLH monthly discharges (cms) of the different algorithms for the medium 

inflow year  scenario (1983) ......................................................................................................... 67 

Figure 26: MCA HLH monthly discharges (cms) of the different algorithms for the medium 

inflow year  scenario (1983) ......................................................................................................... 68 

Figure 27: GMS HLH monthly discharges (cms) of the different algorithms for the wet year 

inflow scenario (1995) .................................................................................................................. 68 

Figure 28: MCA HLH monthly discharges (cms) of the different algorithms for the wet year 

inflow scenario (1995) .................................................................................................................. 69 

Figure 29: System total LLH purchases for the policy year (Jan 2020 to Dec 2020) ................... 70 

Figure 30: System total HLH purchases for the policy year (Jan 2020 to Dec 2020) .................. 70 

Figure 31: System total LLH sales for the policy year (Jan 2020 to Dec 2020) ........................... 70 

Figure 32: System total HLH sales for the policy year (Jan 2020 to Dec 2020) .......................... 70 

Figure 33: Arrow dam plant monthly discharges (cms) ............................................................... 71 

Figure 34: Results of the benchmarking problem using stochastic performance profiles and 

stochastic performance profiles method ....................................................................................... 86 

Figure 35: Schematic of the benchmarking process ..................................................................... 97 

 



xvii 

 

List of Equations 

Equation 1: Social Reward Equation ............................................................................................ 45 

Equation 2: Competitive Reward Equation .................................................................................. 45 

Equation 3: Expected value of the future reward of each agent, where ∂t  is the discount factor, 

and pi|j is the transition probability from scenario j to i, multiplied by the value function fyi, y is 

the ending elevation and w is the water year . .............................................................................. 46 

Equation 4: Mean absolute deviation formula. ............................................................................. 57 

Equation 5: Mean absolute percent error formula. ....................................................................... 57 

Equation 6: Goodness-of-fit equation ........................................................................................... 78 

 



xviii 

 

List of Abbreviations 

ARD: Arrow Dam 

BC: British Columbia 

BCH: British Columbia Hydro 

cms: Cubic Meter Seconds 

CRT: Columbia River Treaty 

EDM: Equilibrium Based Decision Making Model 

GJ: Giga Joules 

GMS: G. M. Shrum Generation Station 

GT: Game Theory 

KBT: Kinbasket Lake 

kWh: Kilowatt Hour 

LP: Linear Programming 

m: Meter 

MCA: Mica Generation Station 

MILP: Mixed Integer Linear Programming 

MWh: Megawatt Hour 

RL: Reinforcement Learning 

US: United states 

WSR: Williston Reservoir 

 



xix 

 

Acknowledgements 

The UBC Vancouver campus is located on the traditional territory of the 

xʷməθkʷəy̓əm (Musqueam) people. This research project was fully funded by BC Hydro and by 

a Collaborative Research Development  NSERC Grant CRDPJ 543692-19 to Dr. Shawwash. 

I owe a debt of thanks to many people since it is their generous help along that has led me 

here. First and foremost, I present my sincere gratitude to my supervisor, Dr. Ziad Shawwash, for 

providing me with this opportunity, enlarging my vision of operations research and water 

resources engineering, and always encouraging me to seek out learning opportunities. 

I would like to acknowledge the vast support of the fellow engineers at BC Hydro. In particular, 

I would like to thank Mr. Tim Blair for his patience and ability to explain complex models in 

simple terms. 

I offer my enduring gratefulness to the faculty, staff, and my fellow students at UBC, who have 

inspired me to continue my work in this field. I owe special thanks to Dr Omar Swei, who taught 

me important lessons in the craft of research. 

This thesis was written, edited, and finalized during a global pandemic. As the universities 

around the world closed their doors, and the world went into a lockdown, I fought through the 

grief and discomfort of the situation to let this work see light.  

 

 

 



xx 

 

Dedication 

This humble work is dedicated to 

 

my wonderful nieces, Celine and Celia Abou Afash, who inspire me to push through the struggles 

and achieve my goals to inspire them to be strong independent women in the field of their 

passion, 

 

my family for supporting me and tolerating the years and tears of distance while I fulfill my 

ambitions abroad, 

 

and to every person who was there for me during difficult times, listening, caring, and sharing 

with me tremendous lessons from their professional and personal experiences. 

 

  



1 

 

Chapter 1: Introduction 

1.1 Research Question and Motivation 

Over 75% of BC Hydro's installed generating capacity is at hydroelectric generation stations in 

the Peace and Columbia river basins. The coordination of these systems is an essential yet 

complex task. It was Ganji et al. (2007) argued that the available techniques commonly used in 

reservoir optimization/operation do not consider interaction, behavior and preferences of water 

users, reservoir operator and their associated modeling procedures, within the stochastic 

modeling framework. To address this issue, competitive and cooperative methods are being used. 

The surveyed literature throughout this thesis demonstrated the use of Game Theory (GT) 

models in several scenarios: operations research, water resources planning, considering short- 

and long-term planning and deterministic and stochastic inputs. Previous work, despite the gaps 

in literature, suggests great utility and opportunity in using both GT and decomposition methods 

for long term hydropower strategies, coordinating multi agent reservoir optimization problems, 

and scheduling of hydrothermal systems to minimize costs and optimize bidding in a competitive 

market. The findings from the literature present an opportunity for research to advance the GT 

approaches to hydropower optimization and scheduling through analyzing methods that can: 

a) account for stochastic inputs to the systems from environmental or economic factors, 

b) use decomposition methods to ensure convergence, 

c) reduce computation time, 

d) coordinate multiple agents in an uncertain environment, and 

e) introduce and model communication among agents. 
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Therefore, the main question that this research will attempt to answer is: can Game Theory help 

in coordinating system operations? 

1.2 Challenges Addressed 

In British Columbia, the coordination of hydropower generation is an essential but complex task 

that involves solving multi-decision-maker problems of multiple generation plants. Competitive 

and cooperative game theory has been increasingly used to solve multi-agent, central 

coordination systems as opposed to conventional, single-objective optimization techniques. 

Usually, those techniques do not account for the much needed “interaction” of the agents and 

only emphasize the common interest of the system and ignore individual interests (Madani 

2010). Optimal coordination of the many facets of reservoir systems requires the assistance of 

computer modeling tools to provide information for rational management and operational 

decisions (Labadie 2004).  We propose and test game-theoretic algorithms to coordinate and 

optimize the multi-reservoir system of BC Hydro under several inflow scenarios. The model can 

be used to inform operational decisions for the Columbia and Peace river systems, on storage 

operations, and purchases and sales in the electricity market. 

1.3 Goals and Objectives 

The work in this thesis fulfills three main objectives: 

1. Inform operational decisions for Columbia and Peace rivers system, on storage 

operations, and purchases and sales of market electricity. 

2. Build a preliminary coordination model for the Columbia and Peace reservoirs based on 

Game Theoretic techniques. 

3. Propose a benchmarking framework to test and compare the full model to other 

optimization and coordination stochastic models. 
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To achieve these goals and objectives, a thorough literature review was conducted on Game 

Theoretic techniques in operation research, multi-agent coordination problems, and hydropower 

management. Modelling application were also surveyed, and three solution algorithms for Game 

Theory were chosen to be used in the models and tested in a case study. Also, practical 

understanding of the current modelling approaches used within the BC Hydro Generation System 

Operations group at BCH Hydro was accomplished through several meetings. These meetings 

also served to discuss the proposed approaches to model the BCH Columbia and Peace rivers 

systems, and test their coordination based on GT techniques. A proof-of-concept model was built 

using a variation of GT solution algorithms. Case study data were acquired from BCH as well as 

results to be tested against the results of the built model. Finally, theory and applications of 

benchmarking of stochastic optimization were investigated, and a benchmarking scheme was 

established. 

1.4 Overview of Subsequent Sections 

The first section of Chapter 2 explains the concept of game theory and presents a literature 

survey that investigates the different applications of those techniques, with a focus on water 

resources management literature. The second section of Chapter 2 provides a background on the 

BC Hydro reservoir system and its management. Chapter 3 explains the research methods, 

modelling approaches, and game-theoretic algorithms. In Chapter 3.5, the case study is defined, 

and the results are presented. Chapter 4 discusses the results of the case study and the 

implications of the model on the operation of the BC Hydro system. In Chapter 5, we present a 

benchmarking framework to compare this model to other stochastic reservoir simulation and 

optimization models. Then follows the conclusion in Chapter 6.  
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Chapter 2: Background 

2.1 Game Theory 

Game theory (GT) is essentially the mathematical study of competition and cooperation. It was 

formally introduced in 1944 with the publication of von Neumann and Morgenstern’s “Theory of 

Games and Economic Behavior” and gained ground with the proposal of Nash’s equilibrium 

solution. Traditional GT is an economic theory that models interactions between rational agents 

as games of two or more players that can choose from a set of strategies and the corresponding 

preferences (Tuyls and Nowé 2005). It is the mathematical study of interactive decision making 

in the sense that the agents involved in the decisions consider their own choices and those of 

others. Choices are determined by stable preferences concerning the outcomes of the agent’s 

possible decisions as well as the relation between their own choices and the decisions of other 

agents. 

In game theory, there are decision makers that play a game to optimize their own objective 

(competitiveness), knowing that other players’ decisions affect their objective value and that 

their decision affects others’ payoffs and decisions (cooperation). Cooperative multitasking is 

also referred to as non-preemption. The payoffs to players determine the decisions made and the 

type of the game being played. The concept of Pareto efficiency or Pareto optimality is a state 

of allocation of resources from which it is impossible to reallocate resources so as to make any 

one individual or preference criterion better off without making at least one individual or 

preference criterion worse off. A Nash Equilibrium (NE) is a state of the game where no player 

prefers a different action if the current actions of the other players are fixed (Nash 1953). In other 

words, if there is a set of strategies for a game with the property that no player can increase its 
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payoff by changing his strategy while the other players keep their strategies unchanged, then that 

set of strategies and the corresponding payoffs constitute a Nash equilibrium. Propensity to 

disrupt is another commonly used quantitative method to evaluate the stability of game theoretic 

allocations with respect to the cooperating agents’ powers in a coalition of agents.  

Stochastic game theory approaches may have multiple NE states with different values, none of 

which are strictly optimal (Bab and Brafman 2008). The list of competitive game theory (CGT) 

solution concepts include: The Core, The Shapley Value; The Nucleolus; The Generalized 

Shapley; Nash/Nash-Harsany; and others (Dutta 1999; Madani 2010).  

Game theoretic approaches to dynamic programming were discussed in (Bertsekas and Tsitsiklis 

1996). In a game between a minimizer and a maximizer, the authors introduce a set of 

randomized strategies for each player. Each player has a probability distribution of selecting their 

strategy. Those probabilities then are added to the probability of the system state transition and 

expected cost. The policy for each player consists of functions that choose at a state the 

probability distribution over a set of strategies. The cost to go function here becomes the 

equilibrium value of the game. Discounted games are analogous to the Bellman equation but for 

two players. Sequential games can be embedded to existing general game framework such that 

each player selects a choice with full knowledge of the preceding, or the following, choice of the 

other player and the state transition resulting from that choice. Sequential stochastic games are 

important since they are the subject of multi-agent inverse reinforcement learning as explained 

later in GT in Multi-Agent Systems and Reinforcement Learning. A Q-learning algorithm, where 

agents learn how to act optimally in controlled Markovian domains (Watkins and Dayan 1992), 
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can be derived for sequential games in which we can obtain a Bellman equation that satisfies the 

Q-factors.  

2.1.1 Classification and elements of game models 

2.1.1.1 Normal Games 

Normal games have three main components: the players, also referred to in this thesis as agents, 

the actions that the players can do, and their payoffs or utility functions. Normal form games list 

players’ payoffs as a function of their actions in a matrix representation. In normal form games, 

the notion of time, or the sequence of the actions of the players is not accounted for. 

2.1.1.2 Stochastic and Markov Games 

A stochastic game is a very broad framework which generalizes both Markov Decision Processes 

and repeated games. A stochastic game is a collection of normal-form games that the agents play 

repeatedly. The game played at any time depends probabilistically on the previous game played 

and the actions of the agents in that game. 

2.1.1.3 Example of Stochastic Repeated Games: OPEC Oil Cartel  

An application for infinitely repeated games is the Organization for Oil Exporting Countries 

(OPEC). The oil cartel OPEC seeks to maintain high prices by restraining its members' 

production levels through explicit quotas. It has had mixed success and the price history of world 

oil has been fluctuating from being low and stable to high and unstable, as it has been in recent 

years. This price history can be rationalized by way of some critical ideas: demand uncertainty, 

international politics, and repeated-game perspective. OPEC exists because its members realize 

that they are in a repeated game; bound by persistence in high demand for oil. Dutta 1999 
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modeled OPEC Oil market as a repeated game with demand uncertainty, where 2 exporters (a 

large exporter country and a small exporter country) have different strategies for how much to 

produce (high or low production) based on the level of the demand (high or low demand). The 

profit is represented in a matrix for good demand and bad demand as price per barrel as 

discussed below. 

Suppose the countries as SA and VA with respective output levels QL and QH for SA and qL and 

qH for VA. The payoffs ($ per barrel) for taking specific decisions (output levels based on 

demand) are presented in the payoff matrix in Table 1. 

Table 1: Payoff matrices of two demand scenarios. Adopted from Dutta 1999 

Good Demand 

SA\ VA qL qH 

QL 160, 100 136, 119 

QH 170, 85 140, 98 

Bad Demand 

SA\ VA qL qH 

QL 88, 55 80, 70 

QH 100, 50 90, 63 

Where, 

SA and VA are the two agents, 

qL, qH represent the low and high output levels of agent VA 

QL , QH represent the low and high output levels of agent SA 
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Here, the game represented in Table 1 is divided into two scenarios representing a good or a bad 

demand year, and the payoffs inside the table (eg. 160, 100) represent the payoffs of agents SA 

and VA respectively (in that order) for taking the decisions qx or Qx under a certain scenario, 

given the other’s decision.  

 In a repeated game, let’s say SA and VA agree to cooperate on a strategy to produce low in a 

good demand year, then with the profit numbers given in Table 1, in a repeated game setting, SA 

would have a profit for sustaining a low output strategy of 160 + 160δ + 160 δ2 + … (where δ is 

the discount factor). Whereas if SA decides to overproduce (QH) then the payoff would be 

penalized by VA’s decision to defect in the following year and SA’s payoff would become: 

170 + 140 δ + 140 δ2 +…  

This assumes that any quota violation is observable to the cartel partners. 

Now let p denote the probability that a demand is robust in any period. With this dimension, a 

modified stage-game payoff matrix can be created where SA and VA each have a set of four 

decisions to make within each stage: QL regardless of demand (in all cases), QH regardless of 

demand (in all cases), QL only if demand is good (QH if demand is bad), and QL only if demand 

is bad (QH if demand is good). 

If SA was to abide by the low-production policy for a good demand year, the stream of future 

profit for SA would like the following: 

[160p + (1- p) 90] δ + [160 p + (1- p) 90] δ2 + … 
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Equating this payoff with the payoff stream of a strategy to defect allows us to calculate the 

discount factor δ condition in terms of p which ensures that a country cooperates.   

In this case, if SA overproduces, it will get a lifetime profit of: 

170 + [140p + (1- p) 90] δ + [140 p + (1- p) 90] δ2 + … 

It is not profitable to overproduce if: 

160 + 
[160𝑝 + (1− 𝑝) 90] δ 

1− δ
 >= 170 + 

[140𝑝 + (1− 𝑝) 90] δ 

1− δ
 

Therefore the condition is: 

δ ≥
1

1 − 2𝑝
 

From this analysis, (Dutta 1999) concludes that in any market it is the smaller producers who 

have the most to gain from cheating on OPEC. Hence, they are the most likely quota violators. In 

real life, determining who has the best incentive to cheat proved to be a much more complex 

topic on which several books were published. A similar analysis can be carried out even if quota 

violations are unobservable. In that case there will be strategic price uncertainty (in addition to 

that caused by demand uncertainty) as OPEC triggers occasional price wars on account of low 

prices. 

2.1.2 Cooperative vs Non-cooperative Games 

Some of the major distinction is between non-cooperative and cooperative game theory is that in 

non-cooperative games (Bauso, 2014): 

i) every player seeks its best response based on the available information and in order to 

maximize its own payoff,  



10 

 

ii) there are no binding agreements on optimal joint actions, 

iii) pre-play communication is possibly allowed. 

In cooperative games:  

i) the players seek optimal joint actions, or reasonable cost/reward sharing rules that 

make the coalitions stable 

ii) pre-play communication is allowed, and  

iii) side payments are also allowed.  

Note that while non-cooperative game theory is by far more widespread than cooperative game 

theory, there is a large consensus on the idea that cooperative game theory has a broader range of 

applications and has become a major design tool in engineered systems such as electrical power 

grid systems and water distribution systems. 

2.1.3 Game Equilibrium 

A Nash Equilibrium (NE) is a state of the game where no player prefers a different action if the 

current actions of the other players are fixed (Nash 1953). In other words, if there is a set of 

strategies for a game with the property that no player can increase its payoff by changing his 

strategy while the other players keep their strategies unchanged, then that set of strategies and the 

corresponding payoffs constitute a Nash equilibrium. What makes the notion of equilibrium 

compelling is that all matrix games have a Nash equilibrium, although there may be more than 

one. 

2.2 Game Theory in Reservoir Management and Operation Research Literature 

In dynamic programming, iterative algorithms are used to help estimate the value function. For 

solving problems with multiple criteria and multiple decision makers, different optimization 

methods can predict different outcomes. Classic reservoir optimization methods are designed to 
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prevail over the high-dimensional, dynamic, nonlinear, and stochastic characteristics of reservoir 

systems; however, there continues to be a gap between theoretical developments and real-world 

implementations (Labadie 2004). Conventional optimization methods usually convert the multi-

decision-maker problems of the whole system into a single-decision-maker problem, with a 

single composite objective (Madani 2010). Consequently, those schemes only emphasize the 

common interest of the whole organization and ignore individual systems’ interests. Real world 

water management cases involve ongoing relationships that are realized through cooperative 

strategies (Ristić and Madani 2019). In a scenario of predominant dependence on hydro 

generation such as in British Columbia, Canada (Shawwash et al. 2000), the coordination of 

hydropower generation is an essential but complex task that involves coordination of plants that 

might not be connected hydraulically or that are owned by different agents (Faria et al. 2018). 

Cooperative game theory has been attracting the attention to solve the multi agent, central 

coordination hydropower and energy production systems. This is due to the nature of the method 

that reflects different behaviors performed by different parties, which are otherwise neglected by 

the other conventional methods (Madani 2010; Parrachino et al. 2006). In what follows is a 

discussion of the algorithms that have been used in solving large scale stochastic problems and a 

survey of the different applications of those techniques in recent literature, with a focus on water 

resources management. 

Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization 

In this paper, (Chi-Keong Goh and Kay Chen Tan 2009) presented a coevolutionary paradigm 

that incorporates the competitive and cooperative mechanisms observed in nature to facilitate 

adaptive problem decomposition in coevolution. Empirical studies were conducted by the author 
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for both dynamic and static environments. The main idea of competitive-cooperative coevolution 

is to allow the decomposition process of the optimization problem to adapt and emerge rather 

than being hand designed and fixed at the start of the evolutionary optimization process. Existing 

coevolutionary techniques can be divided into two main classes: competitive coevolution and 

cooperative coevolution.  

According to the authors, an explicit way of implementing cooperative coevolution in 

optimization techniques is to split a solution vector into different subcomponents and assign 

multiple evolving subpopulations to optimize the individual subcomponents. Here, each species 

subpopulation will compete to represent a particular subcomponent of the multi-objective (MO) 

problem, while the eventual winners will cooperate to evolve for better solutions. Through such 

an iterative process of competition and cooperation, the various subcomponents are optimized by 

different species subpopulations based on the optimization requirements of that particular time 

instant. An early attempt to integrate the cooperative model for MO optimization is to 

decompose the problem along the decision space, and each subpopulation is optimized by the 

MO genetic algorithm. One major issue of these MO coevolutionary algorithms is their 

dependence on appropriate manual decomposition of the problem into various subcomponents. 

The game-theoretic approach of modeling cooperation attempts to alleviate the issue of 

parameter dependencies by decomposing the optimization problem into only two subpopulations. 

Cooperative game theory and last addition method in the allocation of firm energy rights 

(Faria et al. 2018) integrates the concepts of cooperative game theory (CGT) and last addition 

(LA) allocation method to compute the firm energy rights of each hydro plant in the Brazilian 

hydropower system. Their model uses deterministic parameters. The last addition allocation 
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method is widely used to allocate energy between hydro plants proportionally to the incremental 

benefit that exists when the system is simulated with and without this plant. A firm energy 

allocation satisfies the conditions of fairness of a cooperative game if none of the agents have 

interest in leaving the coalition, where the sum of firm energy allocated to any agent should be 

greater than or equal to the energy amount that an agent could generate when operating alone, 

i.e. maximizing only its own energy. The GT-LA algorithm starts by searching for allocations 

close to optimal non-cooperative allocations, iteratively, that satisfy a set of constraints. Then, it 

computes the squared sum of the percentage difference between the new and first allocation. The 

algorithm stops when the maximum violation found by the cooperative game model is less than 

an error epsilon. Their decision variables include individual firm energy of each hydro plant, 

firm energy of a subset of hydro plants, average power generated, turbine outflow, water 

spillage, available water volume stored at each plant. This paper also investigated the 

performance of the Benders algorithm and the mixed integer linear programming when dealing 

with the firm energy allocation problem to compute cooperative game constraints and concluded 

that there is no significant advantage in solving the problem via Benders decomposition. 

However, the authors conclude that methods that aim to reduce computational time in computing 

the cooperative game constraints should be analyzed. 

Bayesian and Robust Nash Equilibrium in Hydro-Dominated Systems Under Uncertainty 

In this paper (Moiseeva and Hesamzadeh 2018) use modified Benders decomposition algorithm 

(MBDA) to solve equilibrium problems with equilibrium constraints (EPEC), reformulated as a 

stochastic mixed-integer linear programming (MILP) model, which is solved for a global 

optimum. The model uncertainty comes from wind power production, demand levels, inflow 



14 

 

uncertainty. The authors model the interactions of price-making hydropower producers: profit-

maximizing hydropower producers compete in electricity market by submitting strategic bids. 

The bids are received by the system operator, which orders them and determines the system 

price. Two main aspects that differentiate hydropower producers from thermal generators are the 

water value, accounting for future opportunities for the water in the reservoirs and the waterway 

coupling of the reservoirs in a congested network. 

Solving the EPEC resulted in finding a Nash equilibrium: a stable set of strategies, from which 

no generator wants to deviate unilaterally, given that the strategies of the competitors are held 

fixed. EPEC was solved using primal and dual variables and upper level problem. MBDA was 

applied to the EPEC formulation to decompose the initial MILP into a small coordinating master 

problem and an LP subproblem, which is easier to solve. The application of the solution 

algorithm – MBDA – to EPEC problem reformulated as a MILP did not require the optimal 

tuning of the disjunctive parameter. 

Simulation-Optimization Model to Derive Operation Rules of Multiple Cascaded Reservoirs 

for Nash Equilibrium 

(Wu et al. 2019) proposed a game model for hydropower operation to obtain operation rules 

according to Nash equilibrium. The model assumes that each agent controls one cascaded 

hydropower reservoir in which the objective of each is to maximize its total profit over all 

simulation periods. The operation rule makes decision of total cascade power generation 

according to energy storage, and decides the power allocation among reservoirs. The novelty of 

the proposed model is that the analysis combines reservoir simulation-optimization and power 

market games. The operation of multiple cascaded hydropower reservoir system can be 
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formulated as an N-player noncooperative game model, in which each player’s action is defined 

by an operation rule and payoff function. When a cascade player believes that the other players 

will use certain rules, it can get an optimal rule for its own, and the changes of its rule may cause 

a profit loss for the others. Then other cascades then need to re-optimize their rules. The process 

can be repeated for several rounds until no agent can improve its operation rule while the other’s 

is fixed. The Nash equilibrium is obtained for the rule sets of cascades and evaluated by 

simulation horizon profits. The authors use successive low dimensional local search to obtain 

near optimal solution, in which new values of only one variable are tested to find a better one at 

one step. A case study of three cascade hydropower systems located in China was used with a 

hypothetical market. The game model was solved using linear, quadratic, and cubic rule curves. 

Results showed the effect of different kinds of models on rule curves and the potential impact of 

market reformation to the operation of the cascaded hydropower reservoirs. For the studied 

cascaded reservoirs, the profit increasing percentages can be 2.6%–3.9% with 0.5%–2.0% energy 

loss, comparing the game model to the energy maximization model. 

Noncooperative Game Theory Framework for Risk-Based Optimization for River Levee 

System 

Game theory is also applied within risk-based optimization frameworks. For example, (Hui et al. 

2016) used risk-based optimization for levee planning to minimize the expected annual total 

costs of annual damage cost (EAD) and annualized construction cost (ACC) for two arbitrary 

landholders in the Cosumnes River in California. Acting independently, each self-interested 

landholder would optimally determine the height of its own levee with the same risk-aversion. 

The system was solved in five different cases using iterative multiple-shot noncooperative 
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planning and modeled different scenarios of reversible decisions, irreversible decisions, identical 

riverside conditions, and different riversides conditions.  

Stochastic competitive analysis of hydropower and water supplies within an energy–water 

nexus 

Hu et al (2018) used strategic competitive behaviors regarding energy-water linkage, with 

stochastic market scenarios to provide guidance for water-energy nexus policy.  

 

 

Figure 1: Flowchart of competitive analysis of hydropower and water supplies within an energy–water nexus 

(Hu et al 2018) 

The authors built competitive Nash–Cournot models simulating interactive behaviors among 

participants in energy and water systems (Figure 1) (Hu et al. 2018). In the model, the profit-

maximizing n-problem of hydropower generation and water supply is formulated. Next, the 

optimization problems of coal-fired and gas-fired power companies are established. The Karash–

Kuhn–Tucker (KKT) optimality conditions are then derived for the Nash–Cournot competition 

models in energy and water systems. The results established a relationship between hydropower 
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generation and carbon dioxide emissions and showed that a decrease in hydropower generation 

raises carbon dioxide emissions by approximately 6–10% for an 80% hydropower scenario, and 

by 12–19% for a 60% hydropower scenario in Tai-Chung and Chang- Hwa reservoir systems on 

the Dajia River in Taiwan. 

The profit-maximizing problems in energy and water resource management assume a sequential 

reservoirs system, including at least one upstream and one downstream reservoir. The reservoir 

system generates hydropower and supplies water demand. Total power is sold by the reservoir 

system and other thermal power companies. Based on the inverse demand curve for the 

electricity market and the total power production, the equilibrium price and revenue in the 

market are obtained.  

Stochastic Dynamic Game between Hydropower Plant and Thermal Power Plant in Smart 

Grid Networks 

(Forouzandehmehr et al. 2016) considered a theoretical smart grid network with one pumped-

storage hydropower plant and one thermal power plant as two price makers. They studied the 

competitive interactions between an autonomous pumped-storage hydropower plant and a 

thermal power plant in order to optimize power generation and storage. A stochastic dynamic 

game is formulated to characterize this competition and the instantaneous market price is 

modeled as a Cournot duopoly game. The solutions are derived using the stochastic Hamilton-

Jacobi-Bellman1 (HJB) equations but also show that the proposed game can converge to a 

 

1 HJB is the partial differential equation solved by the value function in continuous time; the 

corresponding discrete-time equation is usually referred to as the Bellman equation. 
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feedback Nash equilibrium. The proposed framework and games can reduce the peak-to-average 

ratio and total energy generation for the thermal plant, which helps power plant operation and 

reduces CO2 emission. The system and game model are defined in Figure 2 below: 

 

Figure 2: Hydro-thermal system and game model schematic (Forouzandehmehr et al. 2016) 

 

The problem is decomposed into a thermal sub problem and a hydro sub problem that are solved 

in parallel through a constraint-relaxed iterative algorithm. In their proposed method, the optimal 

scheduling of the thermal and pumped-storage power plants constitutes a game because the 

output of each power plant affects the price, and therefore, affects both the payoffs of power 

plants.  In order to reach an NE, each power plant chooses its output to maximize its payoff 

given the output (strategy) of other power plant (player). The instantaneous market price is 

considered as a Cournot model. In the proposed stochastic differential game, the dynamics come 

from the water volume in the reservoir, where the stochastic variable captures the natural inflow 

and natural loss (leakage) to the reservoir. The hydro plant decides how much power to produce, 
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and the thermal plant decides how much to sell to the market or sell to the hydro plant for the 

pumped- storage plant. Here, the dynamics comes from the varying water volume in the 

reservoir, and the stochastic aspect captures the uncertain natural inflow to and losses from the 

reservoir. The solutions are derived using the stochastic Hamilton–Jacobi–Bellman equations.   

The reservoir dynamic model was formulated as a linear differential equation of the reservoir 

volume as a function of discharge rates, stored thermal power, turbine and generator efficiencies, 

acceleration of gravity, water discharge rates, and leakage rates. The market prices were modeled 

as a spot price which is a function of the operating costs to meet the residual demand. Then, the 

hydro plant revenue is modeled and used in the stochastic game objective of the pumped-storage 

hydro to maximize the utility over a time interval by controlling the discharged water. Similarly, 

the stochastic game of the thermal plant player is to control the selling and storing of power to 

maximize its utility. In summary, the model has two value functions (hydro and thermal) that are 

in the linear quadratic forms of the controls (water discharge, thermal power sales). 

Simulation results: they investigated the performance of the proposed game numerically. The 

simulations were performed for each hour in one-day duration, using different values of the 

constant K, which is the constant price for thermal player to sell to hydro. The amounts of 

generation and storages of both hydro and thermal followed the fluctuation of the demand 

function throughout the day. The payoff functions variations were correlated to the changes in 

plant output and market values, as well as a function of K.     

Competitive multi-agent scheduling with an iterative selection rule 

(Nicosia et al. 2018) studied a theoretical multi-agent (k agents) scheduling problem where the 

operator of a single machine iteratively selects the next task to be processed from a set of tasks 
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submitted by the agents. The problem is a minimization problem of task completion time that 

makes use of central coordination mechanism that regulates access of agents’ tasks to the 

machine by employing a decision rule, iteratively. In this paper, the goal is to design system-

wide rules which, given the selfish decisions of the users, maximize the total social welfare. Each 

agent pursues the minimization of a given objective function, such as makespan, sum of 

completion times or sum of weighted completion times. Additionally, an external coordination 

mechanism, aiming at reaching a high throughput, or number of processed tasks per time unit, 

regulates access of agents’ tasks to the machine. An independent coordinator employs a decision 

rule to manage the usage of the resource and thus determines the respective schedules on the 

shared system. Often, such a situation follows a global objective function which a central 

authority explicitly pursues, as far as possible under the actions of the agents.   

However, in (Nicosia et al. 2018), no global objective function is manifestly taken into account. 

In the algorithm, each agent i wants to optimize its own objective function (sum of weighted 

completion times), which only depends on the completion times of its tasks. They say that an 

agent or task wins a round, if it is selected to be scheduled on the machine, otherwise it loses. 

Their results proved that the algorithm basically assigns blocks of tasks for agents as late as 

possible and then inserts the tasks of the last agent in shortest processing time (SPT) (first order, 

moving the reserved blocks to an earlier starting time if non-preemption would cause idle times.  

The situation described in this paper could also be viewed in a game-theoretic setting, in which 

the algorithms induce strategies for the agents and each solution of the problem determines the 

corresponding agents’ payoffs. Thus, they could also apply the concepts of extensive games with 

a decision tree. In this framework, determining an optimal strategy of a single agent, assuming 
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that also the other agents may follow a selfish optimal strategy, can be done by backward 

induction, but it requires exponential time in general. (Nicosia et al. 2018) noted that when 

dealing with k-agent scheduling, it would be interesting to identify polynomially solvable special 

cases, either by restricting the scheduling environment or the agents’ strategies. 

2.2.1 Modelling Advancement: Multi-Agent Inverse Reinforcement Learning 

Game theoretic algorithms can perform better results in the reservoir coordination problem when 

the utility function representing the agent’s stochastic payoffs is enhanced. In this case, a utility 

function can be learnt from previous policies. Inverse Reinforcement Learning (IRL) is a widely 

cited machine learning algorithm, with application in planning and operations. Inverse 

reinforcement learning (IRL) aims to determine the  underlying reward function from an expert 

(or optimal agent) from its behavior data and its environment dynamics (Abbeel and Ng 2004; 

Ng and Russell 2000). As in (Bertsekas & Tsitsiklis, 1996), the goal of standard reinforcement 

learning is to find a policy such that the associated value function is maximized (reward 

function), for all states. IRL addresses the fundamental problem of finding the reward function in 

building a computational model for sequential decision making (Choi and Kim 2015; Lin et al. 

2018). In IRL, it is generally assumed that the expert acts in an environment modeled as a 

Markov decision process (MDP). Under the MDP formalism, the IRL problem is defined as 

finding the reward function that the expert is optimizing given the behavior data of state-action 

histories and the environment model of state transition probabilities. 

Since the publication of Ng and Russell on IRL, the framework has been extended to multi-agent 

setting in multi-agent inverse reinforcement learning (MIRL) (Dimitrakakis and Rothkopf 2012; 

Goldman and Zilberstein 2003; Lin et al. 2018; Reddy et al. 2012). For example, (Reddy et al. 
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2012) addressed the issue of using inverse reinforcement learning to learn the reward function in 

a multi agent general sum stochastic game setting, where the agents can either cooperate or be 

strictly non-cooperative. They derived the necessary conditions for the estimated reward to 

guarantee the optimality of the agents’ policies and an iterative algorithm for estimating the 

agents reward function using IRL. The application of IRL in game-theoretic reservoir 

coordination problem is considered a novel approach.  

2.2.2 Examples of Game Theory and Multi-Agent Reinforcement Learning 

Due to the stochastic nature of inflows, there is a pressing need for a model that is adaptive to 

stochastic fluctuations in seasonal or daily inflows and does not make over-simplifying 

assumptions in hydropower planning. In Multi-Agent Reinforcement Learning (MARL), the 

game theory model of a Stochastic Game (SG) is adapted to model the multi-agent-environment 

(Bab and Brafman 2008). MARL deals with the problem of learning to behave well through trial 

and error interaction within a multi-agent dynamics environment when the environmental 

dynamic and the algorithms employed by the other agents are initially unknown. Evolutionary 

game theory (EGT) assumes that the game is played repeatedly by players randomly drawn from 

large populations, uninformed of the preferences of the opponent players (Tuyls and Nowé 

2005). The basic properties of a Multiagent System corresponds exactly with that of EGT (Tuyls 

and Nowé 2005), this is why GT meets the concept of reinforcement learning (RL) in EGT. 

A stochastic game can be a repeated game that consists of a set of agents, a set of states, a set of 

available actions, a function of transition probabilities and a function for reward (Figure 1).  
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In EGT, the question becomes not what strategy to adopt, but how a player can learn to optimize 

its behavior and maximize its return. It describes how agents can make decisions in complex 

environments where they interact with other agents. In such complex environments, software 

agents must be able to learn from their environment and adapt to its non-stationarity (Tuyls and 

Nowé 2005) 

For multi agent reinforcement learning, several solution algorithms exist; however, the challenge 

remains in finding solutions suited for multi-stage cases. This is especially relevant for multi-

agent reservoir systems with coordination mechanism to satisfy system level constraints, or the 

cooperation of different users and different water utilizations in a same river basin. For multi-

agent systems characterized by distributed decision processes at the agent level with a 

coordination mechanism organizing the interactions among individual decision processes at the 

system level, (Yang et al. 2009) presented a decentralized (distributed) optimization method 

known as constraint-based reasoning, which allows individual agents in a multiagent system to 

optimize their behaviors over various alternatives. The method achieves optimization among 

agents with a bargaining scheme, in which the ith agent optimizes its objective with a selected 

priority for collaboration and sends the solution back to all other agents with which it interacts. 

The method also uses a “central” processor which makes available to all agents in the next round 

of bargaining information on system cost and degree of constraint violation. (Giuliani and 

Castelletti 2013) proposed novel decision-analytic framework based on multi-agent systems to 

model and analyze different levels of cooperation and information exchange among multiple 

decision makers. The multi-agent operation models focused on multi-agent reservoir systems 
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with coordination mechanism to satisfy system level constraints, or the cooperation of different 

users and different water utilizations in a same river basin. 

(Tuyls and Nowé 2005) discussed the mathematical connection of evolutionary game theory with 

multi-agent reinforcement learning; a relationship that has been attracting attention of 

researchers from different fields such as economics, computer science, and artificial intelligence.  

Optimizing Information Exchange in Cooperative Multi-Agent Systems 

Cooperative agents are able to share information at the offline planning stage as if they were 

centrally controlled (Goldman and Zilberstein 2003). Decentralized cooperative MAS is the 

approach introduced by (Goldman and Zilberstein 2003) to solve the problem of information 

sharing in MAS such as computational processes distributed in an information space. Their paper 

focuses on agents that may need some of this information to get synchronized from time to time, 

but they cannot assume that communication is free and information can be exchanged at each 

moment. In their theoretical framework, they focus on a decentralized partially-observable 

Markov Decision Process with communication. Here, the two-agent MDP is defined with sets 

for: states, control actions, functions for reward, observation, transition probability, as well as the 

alphabet of messages and the cost of transmitting atomic message.  In their model, 

“observability” or “joint synchronization” is only achieved by communication. They describe the 

interaction among the agents as a process in which agents perform an action, observe their 

environment, and then send a message that is instantaneously received by the other agent. In this 

framework, there exists a local policy for each agent to map the histories of observations and 

histories of messages received since the last synchronization and the last action. The resulting 

joint policy is defined to be a pair of local policies, one for each agent.  
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In this paper, the authors use a two-way communication with ∑ as the communication language 

(noting that the choice is up to the agent designer) and focus on informative messages. Other 

types of messages can define: commitments, reward/punishment, and world information. They 

experimented with their approach in a problem of two agents that have to meet at some location 

as early as possible, in a 2D grid environment. The case where agents can communicate their 

observations (i.e., their actual locations), incurring a cost , and compared the utility attained by 

both agents in the following four different scenarios: optimizing with no communication, ideal 

communication, sub-goal communication (a heuristic solution which assumes that the agents 

have a notion of sub-goals), and a greedy approach where agents optimize myopically at each 

communication. The greedy meta-level approach was able to produce near-optimal solutions in 

their example. In this approach, for each possible distance between the agents, a policy of 

communication is computed such that it stipulates when it is the best time to send that message. 

By iterating on this policy agents are able to communicate more than once and thus approximate 

the optimal solution to the decentralized control with communication problem. 

A game theory–reinforcement learning (GT–RL) method to develop optimal operation policies 

for multi-operator reservoir systems 

In this paper, (Madani and Hooshyar 2014) presented a numerical example of 3 single purpose 

reservoir systems in a cooperative game theory allocation paradigm and uses reinforcement 

learning (RL) algorithm. In simple reservoir operations, the RL agent can be considered as the 

operator who makes release decisions; the set of discrete reservoir storage levels can be 

considered as the environment. The objective of learning in this case would be finding the best 

release strategy for a given level of storage with respect to the operation objective(s) (e.g., 
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maximizing the hydropower generation profits, minimizing expected flood costs, minimizing 

water shortage costs, maximizing recreational benefits) and constraints (e.g., upper and lower 

storage/release levels, maximum ramping rate, maximum temperature). 

The Madani and Hooshyar 2014 GT-RL method has three major steps. First, the obtained 

benefits are extensively determined under each possible partial coalition and total (grand) 

coalitions. Here, the conventional social planner approach (grand coalition) using RL was used 

where they calculated immediate rewards, then updated RL- Q factors, and updated the policy in 

a 12 month, 100 years, 100 episodes loop. Then, they evaluated policy performance and plotted 

the number of learning episodes versus the average annual revenue (learning curve). For the 

partial coalitions obtainable benefits, only 1 coalition at a time is possible (2 and 1) when solved 

in multi-agent mode (an agent for the coalition and an agent for the single reservoir). The second 

step is to apply different cooperative game theory solution methods (Nash-Harsanyi, Shapley, 

and Nucleolus) to find fair and efficient allocations of the incremental benefits of cooperation 

among the agents based on different defined notions of fairness. Finally, the stability of each 

cooperative allocation solution is examined to find the allocation solution with the highest 

acceptance potential.  

The GT approach to reservoir management in this case demonstrated that the social-planner 

approach, or the grand coalition, were the operator maximizes the total benefit of the system, is 

not a stable one. This is because the individual payoffs of the reservoirs can be maximized in 

other ways, such as partial coalitions, or by non-cooperative behavior, and would be higher that 

there individual benefit in the coalition, bearing in mind that this comes at the expense of other 

agents’ benefit. Therefore, in a scenario like that, individual hydropower agents do not have an 
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economic incentive to partake and stay in a grand coalition. The authors concluded that Nash-

Harsanyi is most suitable solution method for the allocation in their game.  

Another observation that was not mentioned in the paper, was that the non-cooperative behavior 

of a single reservoir, sometimes, but not all the times, grants the agent better benefits than the 

grand coalition or partial coalition. The framework presented in this paper was applied to 

reservoirs with identical objectives and deterministic inflows. It would be interesting to see how 

adding stochasticity to this framework changes the outcomes.   

2.3  Managing the BC Hydro System 

 

Figure 3: Schematic of the Peace and Columbia River Reservoirs and Generation Stations 
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2.3.1 BC Hydro System Overview 

BC Hydro generate over 43,000 gigawatt hours of electricity annually, through 100+ generating 

units, to supply more than 1.9 million residential, commercial and industrial customers. Over 

75% of BC Hydro's installed generating capacity is at hydroelectric generation stations in the 

Peace and Columbia river basins (“Energy in BC” 2020). This research is concerned with 

modelling these two systems. 

2.3.1.1 Peace River 

The Peace system on the Peace River in northeastern B.C. The biggest facility is the GM Shrum 

at the Williston Reservoir, with a capacity of 2,730 MW. The other facilities on the Peace system 

are Peace Canyon at the Dinosaur Reservoir, and Site C Dam, which is still under construction. 

2.3.1.2 Columbia River 

The total capacity of the Columbia system is 58% of BC Hydro's total capacity. Mica Generation 

Station at the Kinbasket Reservoir alone, has a capacity of 2,746 MW. Revelstoke Generation 

Station and Hugh Keenleyside Dam at the Arrow lake are also part of the Columbia system. 

These reservoir release policies need to comply with the Columbia River Treaty (CRT) and 

subsequent agreements. 

2.3.1.2.1 Columbia River Treaty 

The Columbia river treaty is an international treaty between the United States (US) and Canada 

with the explicit intent to coordinate flood control and optimize power generation within the 

Columbia basin, which spans both countries. The treaty subsequent agreements manages 

environmental concerns such as desirable river flows and fish migration. 
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Objectives for Supplemental Operating Agreements (SOAs) 

Power objectives include minimizing spill and optimizing energy production and power value in 

Canada and the US. 

Operations for power objectives may be combined with non-power objectives (Columbia River 

Treaty Operating Committee 2019). When appropriate, the Operating Committee will make 

suitable arrangements for delivery of power relating to sharing of benefits from operational 

agreements. 

Table 2: Columbia River Treaty Minimum and Maximum Flow Limits at the Arrow Reservoir (Columbia 

River Treaty Operating Committee 2019) 

 

Minimum Outflow in 
cfs 

Min outflow in 
cms 

Max outflow Limit in 
cfs 

Max outflow in 
cms 

January 10000 283.16847 70000 1982.17929 

Feb 10000 283.16847 60000 1699.01082 

March 10000 283.16847 - - 

15-Apr 10000 283.16847 - - 

30-Apr 10000 283.16847 - - 

May 5000 141.584235 - - 

Jun 5000 141.584235 - - 

July 10000 283.16847 - - 

Aug 15- 
Dec 10000 283.16847   
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Table 3: Columbia River Treaty Canadian Storage Accounts (Columbia River Treaty Operating Committee 

2019) 

Canadian Storage 
Accounts 

Million Acre 
Feet 

Million Cubic 
Meter 

Duncan Reservoir 1.4 1726.9 

Arrow Reservoir 7.1 8757.7 

Mica Reservoir 7 8634.4 

Total 15.5 19118.9 

 

2.3.2 Modelling Framework: Energy Studies 

In operations planning, BC Hydro makes a decision regarding reservoir releases to (1) meet 

forecasted domestic electricity demand; and (2) maximize total benefits from energy trade in 

electricity markets and the value of water stored in reservoirs for a multiyear planning horizon. 

Reservoir release policies need to hedge against stochastic inflows in a snowmelt-dominated 

environment to achieve the best benefit, in particular, reducing spill in wet years and saving 

water for power generation in dry years (Guan et al. 2018).  

BC Hydro uses an Energy Study to optimize the dispatch of BC Hydro’s resources. It also 

identifies water inflows, market prices and loads as the primary variable inputs to the Energy 

Study influencing the Cost of Energy (BC Hydro Rate Application 2016). The Energy Study 

models (ESM) are used by BC Hydro to inform operational decisions on system storage 

operations, thermal dispatch, and purchases and sales of market electricity. The same models are 

used for BC Hydro’s ongoing financial forecasting of the Cost of Energy. 
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Peace and Columbia River systems are each optimized using scenario SDP where historic inflow 

ensembles are used and reservoir levels are discretized into stages to find optimal decisions. The 

optimization model is called the Marginal Cost Model. The planning period for Williston goes 

from the beginning of every month in the current calendar year and 4 years into the future, while 

the planning period for Columbia system has additional months and goes to an extra year due to 

treaty considerations.  

The system simulator for ESM currently plays the role of coordinating between the optimizations 

of Peace and Columbia. This happens through a series of iterations where in each iteration, the 

optimizer for each system at once fulfills the demand to its capacity based on the release 

decisions (R*) and marginal price, then results in a residual load (Figure 4). The residual load is 

then fulfilled by the optimization model of the other system through the same process and 

outputs. To reconcile the difference in planning period months between the two systems, the 

simulator only run until December 2024. The system simulator double checks the outputs of the 

optimizers and using the load-resource balance equation, calculates the breakdown between 

system generation and market net purchases. Subsequently, the system simulator determines the 

net revenue of operations (NRO). It is important to note that the Bellman equation that is being 

solved is bound by the gas state variable that controls the market price for electricity (in GJ). The 

prices derived from the gas price-duration curves (that are load-based) inform the decisions to 

buy (when prices are low) and sell (when prices are high). This process is also built into each 

system optimizer to maximize the revenue while serving load. The optimizers work at a monthly 

time-step and provide an optimal “average” value in cubic meters per second (cms). The 

simulator takes average monthly discharge and adjusts for daily decisions and market activity. 
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The model converges at a tolerance value (difference between iterations) of almost 3 million 

CAD.   

In summary, the system simulator uses an 

“optimal policy approach” where at a given 

elevation, the optimal policy is obtained from 

the optimizers, then, the energy generation is 

calculated, then the residual load, then 

decision about market prices are made (buy, 

sell, do nothing). A second approach 

“marginal cost approach” is being 

contemplated by the ESM team where at a 

given elevation, the marginal price is derived 

from the value function, then market activity 

is decided, then the necessary reservoir 

generation for the residual load is calculated, 

leading to the final reservoir operations 

forecast (GSO, 2020). 

Figure 4: Schematic of Energy Studies Modelling 

2.3.2.1 Trading Decisions 

Today, a large share of electricity is sold in wholesale in electricity markets. Like generating 

companies with pumped hydro storage capacities, BC Hydro use their reservoir storage capacity 

and market trade to buy electricity at the market when the price is low and sell electricity when 
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the price is high, while trying to mitigate the risk of positive and negative imbalances (Löhndorf 

et al. 2013). 

Hydro storage plants face some challenges associated with trading due to: 

• Day ahead-prices uncertainty and the uncertainty of the development of electricity prices 

over time, and uncertainty of water inflow into the reservoir 

• A system of hydro storage plants with multiple reservoirs requires a coordinated water 

release policy, since upstream releases influence reservoir levels. In addition to the day 

ahead bidding decisions, a generating company must decide about water releases from 

multiple reservoirs at a time. In the decision-making process, they consider future 

decisions and states of the system as well as their probabilities. 

Those challenges to hydro generating companies in general, and BC Hydro in particular, 

present a need to solve a multi-stage stochastic programming problem to optimize the market 

bidding and storage decisions with multiple storage units and several price scenarios.  

2.3.2.2 Simulation and Optimization Models – SSDP 

BC Hydro strives to develop tools using stochastic optimization techniques to generate reservoir 

release policies that take into account stochastic inflows, prices, and load with proper modeling 

of the CRT and subsequent agreements for operations planning. The models in current use are 

either deterministic, e.g., the hydro simulation model (HYSIM), generalized optimization model 

(GOM) (Fane 2003), CRT optimization model (CRTOM), and short-term optimization model 

(STOM) (Shawwash et al. 2000) or they are stochastic only for the GMS facilities, e.g., models 

that evolved from the stochastic dynamic programming (SDP) model by Druce (1990). More 
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research work on applying stochastic optimization techniques to BC Hydro’s system includes 

studies by Abdalla (2007), who used reinforcement learning (RL) (Barto and Sutton 1998); 

Shabani (2009), who used RL; Guan et al. (2013), who used stochastic dual dynamic 

programming (SDDP) (Pereira and Pinto 1991; Goor et al. 2011; Poorsepahy-Samian et al. 

2016); and Mamun et al. (2015), who used goal programming (Charnes et al. 1955).  

 

2.4 Uncertainty 

Uncertainty in simulating water resource systems makes it difficult to assess how effective 

different water management decisions will be (Dobson et al. 2019). Different types of 

uncertainties can undermine the credibility of simulation and optimization models of reservoir 

operations.   

A common conceptual classification of uncertainties affecting simulation models distinguishes 

between aleatory and epistemic uncertainty (Beven et al. 2015).  One of the most read Water 

Research papers to date is (Cosgrove and Loucks 2015), which discussed non-stationarity in 

water supply and demand. Practically unavoidable in WRS is the variability in hydrological 

forcing, such as inflows into reservoirs. A common practice in the field is to assume that inflows 

are aleatory and stationary processes (Dobson et al. 2019), although the validity of the 

stationarity assumption is highly debated. Reservoir operation is then stochastically optimized 

under this statistical model, for example, via Stochastic Dynamic Programming. Similar 

considerations apply to other system variables that can be regarded as aleatory uncertainties, 

such as water demand and evaporation from reservoir surfaces, which are often modeled using 

similar statistical models to inflows. According to (Cosgrove and Loucks 2015), evidence to date 
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suggests we will be observing more variability, resulting in more frequent floods and droughts of 

greater intensity and duration. At the same time, demand for water for agriculture and energy 

production in particular will be influenced by climate change, technological development and 

urbanization and human responses.  

Another source of epistemic uncertainty is the choice and formulation of model outcomes such 

as, in the case of WRS optimization, the metrics of system performance (or objectives hereafter). 

For example, for the inflow, demand, evaporation, and fisheries releases, the binary choice is 

between a more sophisticated or less sophisticated representation of the process. Another 

important modeling choice is how to represent cooperation between the two companies when 

making release or pumping decisions. Previous literature demonstrated that model assumptions 

about coordination between connected reservoirs can dramatically impact the performance of 

optimized reservoir operations (Giuliani and Castelletti 2013; Tilmant and Kinzelbach 2012; Wu 

et al. 2019). In (Dobson et al. 2019), it was found that the assumption about the level of 

cooperation between water agents has a greater impact on estimating objective values than any 

other modeling choice. 

2.5 Inflows and Climate Change in BC 

Water inflows are very important inputs to the optimization problem and drivers of uncertainty in 

the model. Several studies have been concerned with analyzing trends and studying the 

variations in streamflow for the Pacific Northwest, in which changes in annual total, and summer 

mean stream flows were attributed to changing climate and variability.  

(Barnett et al. 2005) predicted that by 2050, the Columbia River system would not be able to 

sustain historical levels of both spring and autumn water releases for hydropower generation and 
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releases for spring and summer salmon runs. (Forbes et al. 2019) conducted trend, detection, and 

attribution analyses using naturalized streamflow observations and routed land surface model 

runoff for 10 sub-basins in the Columbia River Basin (CRB) during water years 1951–2008. In 

their study, all sub-basins showed significant declines in the observed amount of annual total 

streamflow, except for the Middle and Upper Snake and Upper Columbia Sub-basins.  

Furthermore, when analyzing the distribution of the monthly flows at The Dalles, (Forbes et al. 

2019) found that even though June had the greatest median flow at The Dalles, it had the greatest 

significant decreasing trend for the period and was the start of significant decreases for the entire 

June–October season. Previous studies have also analyzed the trends in streamflow for the 

Pacific Northwest including the CRB. (Luce and Holden 2009) showed decreases in annual mean 

flow over the period 1948–2006 and (Stewart et al. 2005) showed similar changes in the fraction 

of annual total flow and consistent decline in the fraction of annual total flow in June. On 

average, the annual total streamflow for the CRB decreased by approximately 15% between 

1951 and 2008 (i.e., the percentage of change in volume over time). Of that 15%, roughly 77% 

was during the June–October months with 40% solely in June (peak flow) and 31% in July–

September (summer mean). More specifically, flow in June has declined by 28% on average. 

The fact that these declines are in five consecutive months during the year is particularly 

worrisome for all the inhabitants and the natural ecosystem of this region. On average, these five 

months provided 49% of the annual total flow with June providing 22% itself.  

Reservoir release policies need to hedge against stochastic inflows in a snowmelt-dominated 

environment to achieve the best benefit, in particular, reducing spill in wet years and saving 

water for power generation in dry years. Inflows come mainly from snowmelt during the freshet 
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period extending from mid-April to mid-August, with very large variations, and the inflow 

volume is the primary contributor to the annual inflow volume (Guan et al. 2018). The forecast 

of this inflow volume (seasonal volume forecast) is heavily used in operations planning. 

Therefore, the treatment of inflows variation in short- and long-term optimization and planning 

can be very critical to the model performance.  

2.6 Summary 

In the literature review, we have seen models that cover topics related to: 

• incorporating the competitive and cooperative mechanisms in theoretical optimization 

problems through iteration (Chi-Keong Goh and Kay Chen Tan 2009) 

• using modified benders decomposition algorithm (MBDA) to solve equilibrium problems 

with equilibrium constraints in hydro-dominated systems (Moiseeva and Hesamzadeh 

2018) 

• theoretical competitive multi-agent scheduling through the minimization problem of task 

completion time by a central coordination mechanism (Nicosia et al. 2018)  

• game theory–reinforcement learning (GT–RL) methods to develop optimal operation 

policies for multi-operator reservoir systems but with deterministic inflows (Madani and 

Hooshyar 2014)  

However, as explained earlier, in a scenario of predominant dependence on hydro generation 

such as in British Columbia, Canada, the coordination of hydropower generation involves the 

coordination of plants that might not be connected hydraulically or that are owned by different 

agents (Faria et al. 2018).  
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Managing the hydro dominated system in BC requires coordinating the operations of the Peace 

and Columbia systems that represent 29% and 58% of BC Hydro’s total capacity respectively. 

This is not only the case in British Columbia, in other regions with hydro-dominated systems of 

energy it is common to face the issue of coordinating multiple systems of hydraulically 

independent reservoirs. For example, Hydro-Québec Production owns and operates 61 

generations plants over 26 major reservoirs, located on 13 watersheds (Hydro-Québec (Montréal) 

2009). Norway has 1660 hydropower plants with the 30 largest reservoirs providing about half 

the storage capacity. This allows for the split of electricity production into two categories, 

flexible and intermittent. Flexible hydropower plants can produce electricity even in periods 

when there is little precipitation and inflow is low while the large available reservoir storage 

capacity makes it possible to even out production over the years, seasons, weeks and days, within 

the constraints set by the license and the watercourse itself ( Energifakta Norge, 2015). 

In BC, the coordination of the multi-agent system of reservoirs operations informs the operations 

decisions for each system on: reservoir releases, electricity generation, spills, and storage levels, 

while taking into account the operations decisions for the other system simultaneously. In other 

words, it is solving the Bellman equation for both systems simultaneously, finding the optimal 

releases for both systems while taking into account the releases of the other. At BC Hydro, the 

coordination process at the planning stage happens through simulating the systems while 

assuming a specific capacity of the other the system and iterating to convergence. However, this 

process is time-consuming and can be improved for better results.  

The literature shows a promising role for Game Theory to help coordinate systems where 

cooperation and competition are happening among its agents. However, in the literature, there 
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are no practical and realistic applications that use game theory to develop optimal operation 

policies for multi-operator reservoir systems but with stochastic inflows and market prices. To 

the understanding of the author, up to the publication of this thesis, there were no models that 

test the effectiveness of GT algorithms in solving multi-agent reservoir problems.  

Therefore, this thesis addresses the gaps of: 

A. Coordinating multi-agent reservoir systems with stochastic inflows in a Game 

environment 

B. Verification and testing of Game-Theoretic algorithms in finding equilibrium 

The work in this thesis fulfills three main objectives: 

a. Inform operational decisions for Columbia and Peace rivers system, on 

storage operations, and purchases and sales of market electricity. 

b. Build a preliminary coordination model for the Columbia and Peace reservoirs 

based on Game Theoretic techniques. 

c. Propose a benchmarking framework to test and compare the full model to 

other optimization and coordination stochastic models.  
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Chapter 3: Methods for Equilibrium-Based Decision-Making Model (EDM) 

3.1 Modelling Concept and Approach 

Multi-agent systems, such as BC Hydro’s reservoir system, are conventionally optimized for the 

maximization to the entire system’s benefit. This is referred to as “social planning”. Game-

theoretic allocations, on the other hand, can help us find alternative solutions to maximize 

individual agent’s (river systems or hydro generation stations) in more realistic scenarios 

accounting for market and demand variables, or maintenance periods. In the literature review in 

Chapter 2, models such as (Madani and Hooshyar 2014) demonstrated the optimization of a 

multi-agent system in several ways: cooperation, partial cooperation, and non-cooperation. A 

typical game model can span various solution strategies, such as to cooperate or be greedy. 

Different strategies define different objective functions formulations, because each strategy 

defines a different class of games and solution.  

This section explains the methods used in a novel model to coordinate the decisions for a multi-

agent hydropower system using Game Theory. The Equilibrium-based Decision-Making Model 

(EDM), uses a modified General Sum Stochastic Game approach that shifts modeling from a 

single agent simulation-optimization to two-agent system characterized by a co-dependent 

decision process at the agent level with a coordination mechanism organizing the interactions 

among the individual decision processes at the system level. Figure 5 shows the overarching 

modelling concept that guided the design of the model. The model (EDM) acts as a coordination 

step after the optimal releases and value functions for each agent are determined by the Marginal 

Cost Model. 
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Figure 5: Modelling Concept for the Coordination for Peace and Columbia Reservoir System. Columbia Opt 

and Peace Opt represent the individual agent’s optimizations that result from the Marginal Cost Model. 

 

3.2 Methods for Finding Equilibrium 

Nash equilibrium (Nash 1950) is the most central solution concept for games. It defines how 

rational agents should act in settings where an agent’s best strategy may depend on what another 

agent does, and vice versa. For the concept to be operational, it needs to be accompanied by an 
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algorithm for finding an equilibrium (Sandholm et al. 2005). There are many computational 

complexities associated with computing a Nash equilibrium; these complexities and a handful of 

algorithms to overcome them are widely cited in the computer science literature. In this model, 

the game equilibrium is found by a social optimum method, and a Nash equilibrium method. The 

social optimum (SO) equilibrium is obtained by maximizing the rewards for the system through 

a single reward function. The Nash equilibrium solution is found by two algorithms: support 

enumeration algorithm (Avis et al. 2010; Roughgarden 2010) and a mixed-integer linear 

programming algorithm (Sandholm et al. 2005), these algorithms were chosen based on a ease of 

application, accessible solvers, and speed benchmarks cited in the literature.  

3.2.1 Definition of Nash Equilibrium 

A Multi-Reservoir General-sum discounted stochastic game (GSSG) is defined as a 

tuple ⟨S,N,A,P,R,γ⟩, where: 

▪ N is a finite set of n agents (reservoirs). 

▪ S is a finite set of M states (elevations) 

▪ Ai is a set of actions (generation, buying, selling) available to agent i, and a 

vector (a1,a2,…,an)
T ∈ ×i Ai represents the joint action of all the agents. 

▪ P: S×A×S′→R is the state transition probability function. P(s′|s,a) denotes the probability 

of transitioning from state s to state s′ by taking joint action a. 

▪ R= r1,…., rn where ri: S×A→R is the reward function or payoff value for agent i for 

taking a specific action.  

▪ γ ∈[0,1] is the discount factor. 

In this definition, iand Ai are assumed to be finite. A policy is defined as π: S×A→R, where A is 

the joint action set of all agents. In GSSGs the agents have full observability of the state of the 
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world. In game theory, a strategy is generally defined as the action that an agent takes in a given 

state. In case of a pure strategy, there is one action ai that the agent always prefers taking in a 

state s, but, in the case of a mixed strategy an agent has a probability distribution over the set of 

actions he can take in a given state.  

A strategy profile ST=(ST1,…,STn) is a Nash equilibrium if, for all agents i, STi  is a best response 

to ST−i, where, ST−i are the strategies of all agents not including i. 

3.2.2 Nash Equilibrium method: Support Enumeration (Nash) 

The packages QuantEcon.jl and Games.jl (Sargent and Stachurski 2019)were used to compute all 

mixed Nash equilibria of a 2-player (non-degenerate) normal form game using a brute force 

support enumeration algorithm. The algorithm checks all the equal-size support pairs; if the 

players have the same number n of actions, there are 2n choose n-1 such pairs. This should only 

be used for small games. 

3.2.3 Mixed Integer Linear Programming (MILP) 

The mixed integer program formulation from (Sandholm et al. 2005) was used as another way to 

find the Nash equilibrium of the game at each time step. The formulation is said to outperform 

both the Lemke-Howson and the Support Enumeration algorithm in solving complex games.  

A mixed integer program is a linear program in which some of the variables are constrained to be 

integers. This algorithm is based on penalizing regret, which is defined as follows:  

The regret of pure strategy si is the difference in utility for player i between playing an optimal 

strategy (given the other player’s mixed strategy) and playing si.  
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For every pure strategy si, there is a binary variable bsi. If this variable is set to 1, the probability 

placed on the strategy must be 0. If it is set to 0, the strategy is allowed to be in the support, but 

the regret of the strategy must be 0. The formulation has the following variables other than the 

bsi. For each player, there is a variable ui indicating the highest possible expected utility that that 

player can obtain given the other player’s mixed strategy. For every pure strategy si, there is a 

variable psi indicating the probability placed on that strategy, a variable usi indicating the 

expected utility of playing that strategy (given the other player’s mixed strategy), and a variable 

rsi indicating the regret of playing s=. The constant Ui indicates the maximum difference 

between two utilities in the game for player i. The formulation follows below: 

 

Figure 6: Formulation of the mixed integer program for finding Nash Equilibrium 

 

The first four constraints ensure that the psi values constitute a valid probability distribution and 

define the regret of a strategy. Constraint (5) ensures that bsi can be set to 1 only when no 

probability is placed on si. On the other hand, Constraint 6 ensures that the regret of a strategy 
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equals 0, unless bsi = 1, in which case the constraint is vacuous because the regret can never 

exceed Ui. Technically, Constraint 3 is redundant as it follows from Constraint 4 and rsi  ̧0. 

This algorithm was formulated in Julia using the optimization package JuMP, and Cbc solver, all 

of which are open-source software.  

3.3 Reward Calculation 

A key step in the model algorithm is creating payoff tables that define the payoffs (or payoff 

functions) for strategy pairs of the two agents, that lead to the determination of a Nash 

Equilibrium. In this model, two reward equations were formed to capture the costs and benefits 

of a strategy, with respect to the other agent’s strategy. For the social optimum (SO) algorithm, 

the reward is calculated using one equation for the entire system (Equation 1). For the Nash 

equilibrium (Nash and MILP), the reward was calculated separately for each agent, given the 

other agent’s policy (Equation 2).  

Equation 1: Social Reward Equation 

∑(−𝑽𝒂𝒍(𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏𝒕+𝟏)𝒊 + 𝑴𝒂𝒓𝒌𝒆𝒕 𝑷𝒓𝒊𝒄𝒆𝒕 ∗ (𝑺𝒂𝒍𝒆𝒔 − 𝑷𝒖𝒓𝒄𝒉𝒂𝒔𝒆𝒔)𝒊,𝒕 − 𝑷𝒓𝒊𝒄𝒆 ∗ (𝒐𝒕𝒉𝒆𝒓 𝒔𝒐𝒖𝒓𝒄𝒆𝒔)) + 𝑭𝑹 

Equation 2: Competitive Reward Equation 

−𝑽𝒂𝒍(𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏𝒕+𝟏)𝒊 + 𝑴𝒂𝒓𝒌𝒆𝒕 𝑷𝒓𝒊𝒄𝒆𝒕 ∗ (𝑺𝒂𝒍𝒆𝒔 − 𝑷𝒖𝒓𝒄𝒉𝒂𝒔𝒆𝒔)𝒊,𝒕 − 𝑷𝒓𝒊𝒄𝒆 ∗ (𝒐𝒕𝒉𝒆𝒓 𝒔𝒐𝒖𝒓𝒄𝒆𝒔) + 𝑭𝑹 

 

The term Val in each equation represents the value of storage reached by each policy for each 

agent, based on the inflows on the scenario year in consideration. The value function is obtained 

from the Marginal Cost Model. The term FR represents the future rewards, which is the model’s 
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way of incorporating the occurrence of all other water inflow scenarios when calculating the 

discounted expected future reward (Equation 3).  

Equation 3: Expected value of the future reward of each agent, where 𝝏𝒕  is the discount factor, and 𝒑
𝒊|𝒋

 is the 

transition probability from scenario j to i, multiplied by the value function 𝒇𝒚𝒊, y is the ending elevation and w 

is the water year . 

𝜕𝑡 ∗ ∑ 𝑝𝑖|𝑗 ∗  𝑓𝑦𝑖 

𝑗=𝑊

𝑗=1

 

The calculation of the future reward is represented in the schematic of Figure 7. The value of the 

reward is maximized at each time step independent of the following time steps, but the 

possibilities of occurring weather scenarios for step t+1 are captured through the future reward 

function. 

 

Figure 7: Calculating the expected discounted future reward at each time step in the model, where w1 

represent scenario year 1 for water inflows. 

3.4 Final Model Algorithm and Schematic 

The model, with its three solution branches (S.O, Nash, and MILP), is divided into three main 

subroutines. The first subroutine generates the game environment based on the given market 
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state and constraints. The game environment allocates each agent’s policies. Then, the reward 

matrix is generated through the reward calculation subroutine. Lastly, the Nash equilibrium is 

determined, using the appropriate reward functions, and the optimal policy pair is obtained. The 

model uses a sequential decision making structure of the reservoir system optimization problem 

by decomposing the original problem into subproblems that are solved sequentially over each 

stage (i.e time period). 

 

Figure 8: Flowchart of the equilibrium model subroutines 

3.4.1 Model Inputs 

The model input constitutes of the preferences and data, the preferences are as follows: 

• Game size: length of policy vectors for each agent 

• Exploration bounds around the optimal release strategy 
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• Market price upper and lower threshold 

The model input data are as follows: 

• Discount factor 

• Domestic demand 

• Inflows 

• Mid C electricity prices 

• Market price elasticity curve 

• Output of the MCM: Value function and optimal or target releases for discretized 

elevation levels. 

• Transition probabilities for each agent 

• Upper and lower bounds on elevations and releases for each agent 

• Storage to elevation curves 

• Releases of dependent agents (such as Arrow for Columbia System) 

3.4.2 Model Outputs 

After the simulation of the entire planning period is done, and equilibrium at each step is 

determined, the model outputs the following: 

• Agent’s policy for domestic generation at each time step 

• Agent’s policy for market sales and purchases at each time step 

• Agent’s elevation at each time step 

• Agent’s rewards 

• Other sources used to meet the demand 
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3.4.3 Game Generation Step 

The game generation step or subroutine of the model utilizes logical decision-making for trading 

that was decided on with the BC Hydro energy Studies group. The model starts by comparing the 

market price to a given threshold, if the market price is above the threshold, then the model 

constructs the agent’s policies to generate hydropower to meet the demand and sell to the 

electricity market. If the market price is below the threshold, then the model constructs the 

agent’s policies to purchase electricity from the market to meet domestic demand. If the market 

price is between these thresholds, then the model does not construct any buying or selling 

policies.  
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Figure 9: Flowchart of the game generation algorithm at time t. Opt_i = optimal release from MCM for agent I, Gen_i = hydro generation for agent I for 

domestic demand, Sales_i: hydro generation for market sales. 
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3.4.3.1 Optimization of the Columbia River  

The optimal releases from the Kinbasket reservoir in the game generation step are obtained 

through a linear program step where the constraints on the Arrow reservoir are applied in order 

to not violate the Columbia River Treaty.  

Table 4: Linear Programming problem formulation of the Columbia River 

Objective Function  maximize z= c1x1 + c2x2 

Subject to aL< x1 <aU 

bL< x2 <bU 

dL < s1 – x1+ I <dU 

FL < s1 + x1+ I – x2 <FU 

Where,  

z: value to be maximized 

x1, x2: decision variables representing the releases from Mica and 

Arrow 

c1, c2: coefficients for the decision variables 

aL, aU: lower and upper bounds on Mica releases 

bL, bU: lower and upper bounds on Arrow releases 

dL, dU: lower and upper bounds on Mica Storage 

FL, FU: lower and upper bound on Arrow storage 

I: local inflows 
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Chapter 4:  Case Study and Results 

4.1 Case Study: December 2019 Study 

4.1.1 Study Time Frame and Outcomes 

The model was used to conduct a study based on data from the December 2019 Energy Study for 

the Peace and Columbia systems. The EDM model was run on a monthly time step from January 

2020 to December 2020, where each month was divided into 5 blocks (3 light load hour blocks 

and 2 heavy load hour blocks), coordinating the discharges, generation, and market activity for 

the Kinbasket (KBT) and Williston (WSR) reservoirs and taking into account the predetermined 

discharges of the Arrow reservoir at every time step. The results were then compared to the 

policy derived from the Energy Study of December 2019 for the period of January to December 

2020. 

4.1.2 Data  

4.1.2.1 Water Years Inflow Scenarios 

The availability of water has a major influence on BC Hydro’s import or export decisions with 

Alberta and the US. Local inflows for the Kinbasket, Williston, Revelstoke, and Arrow 

reservoirs were obtained from historical streamflow data. There are 46 ensembles, referred to as 

“water years”, derived from the inflows of the years 1973 to 2018. The cumulative annual 

inflows, shown for illustrative purposes, are shown in  below. As shown, 1973 is a dry year, 

1995 is a wet year and 1984 is a relatively average year. Climate change could potentially impact 
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the viability of these inflows to be representative of future conditions; however, that is beyond 

the scope of this research. 

 

Figure 10: Cumulative system inflows (cms) for selected water years 

4.1.2.2 Transition Probabilities 

The transition probabilities represent the conditional probability of occurrence of a scenario of 

inflow in the next month, given the inflow scenario at the month we are in. They are calculated 

based on the history of inflow and forecasted inflow and are used to calculate the expected value 

of being at a specific storage state in the reservoir game. The transition probabilities used in this 

case study are considered to be Markovian and were determined by the BC Hydro Energy 

Studies group.  
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4.1.2.3 Market Elasticity Curve 

In the BCH ESM, the forecasted market prices derived from the gas price-duration curves (that 

are load-based) inform the decisions to buy (when prices are low) and sell (when prices are 

high). This is done by including the gas state variable that controls the market price for 

electricity (in GJ) in the Bellman equation being solved to maximize the revenue while serving 

load. In the EDM model, price duration curves () were used to represent the price paid per MWh 

for the electricity sold or purchased. The price duration curves were developed by the BCH 

Generation System Operations group as part of the Water Value Project (Guan et al., 2018). 

 

Figure 11: Heavy and Light Load hour monthly price duration curve 

4.1.2.4 Storage-Elevation Curves 

A relationship between the amount of water in storage and the vertical level of water in the 

reservoir had to be assumed for Kinbasket, Arrow, and Williston Reservoirs. 
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4.1.3 Constraints 

4.1.3.1 Mass Balance: 

The reservoir storage at any time step is the sum of the storage at the previous time step, current 

period inflows, and releases through turbines and spillways.  

4.1.3.2 Storage Constraints 

Reservoir storage must be operated within the storage limits which are equivalent to the 

minimum and maximum physical storage requirements for the reservoir.  

For the Peace system, the storage is bound by the requirements for the Williston Reservoir, while 

for the Columbia system, the Kinbasket reservoir in addition to non-treaty storage is taken into 

consideration. Treaty storage was not taken into account. In a separate linear program, the upper 

and lower bounds on the Kinbasket reservoir storage and releases are considered as constraints, 

as well as the associated upper and lower bounds on the downstream, Arrow reservoir storage.  

4.1.3.3 Power Generation 

Power generation in a reservoir is a function of the reservoir’s elevation. Typically, a coefficient 

describing the average power generated per unit release at each starting storage state is 

calculated. The HK values for Mica generation station (Kinbasket Reservoir) and the GMS 

generation station (Williston Reservoir) vary with elevation level, and range between 1.17 to 1.5.  

4.1.3.4 Generation Limit:  

Generation for each reservoir in each time step must be within the maximum and minimum 

generation limits.  
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4.1.3.5 Load-Resource Balance: 

The system load must be equal to the sum of energy generated or traded to outside markets. 

Energy can be bought or sold during each time step at current market prices.  

4.1.3.6 Demand 

In ESM, demand is a discrete variable that must be met from generation or market purchases. 

Forecasted monthly demand for each water year ensemble was used in the model and divided to 

represent the 5 load blocks.  

 

Figure 12: Domestic electricity load on the BCH system, forecasted for May and December 2020, from the 

1977, 1983, and 1995 water years.  

4.1.3.7 Flow Constraints and Peace Ice Cover 

River ice is managed in North America by maintaining high minimum flows in low-temperature 

months and draw down this level gradually, in order to prevent the melting ice from causing 
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floods. The Peace Canyon flows, downstream of G.M.S were taken as constraints for the Peace 

River system. 

4.1.4 Error Calculation 

The error in the policy, with respect to the policy determine by ES, was determined in two ways: 

mean absolute deviation (MAD), as in , and mean absolute percent error (MAPE), as in . 

Equation 4: Mean absolute deviation formula. 

𝑀𝐴𝐷 =  
∑ |𝑥𝑖 − 𝑥|̅

𝑛
 

Equation 5: Mean absolute percent error formula. 

𝑀𝑃𝐸 =  
1

𝑛
∑

|𝑥𝑡 − 𝐴𝑡|

𝐴𝑡

𝑛

𝑡=1

 

4.2 Results  

4.2.1 Error and Deviation 

The output of the three runs of the game model with the three different algorithms (S.O = social 

Optimum, Nash = support Enumeration Nash Equilibrium, and MILP = Mixed Integer LP Nash 

Equilibrium) was compared to the monthly input of the Energy Studies (ES) for the period 

January 2020 to December 2020. The output was consolidated into one light Load Hour (LLH) 

block and one Heavy Load Hour (HLH) block for each month to match the output of the ES.  

The total discharge policies can be seen plotted side-to-side in Figures 18-29 for the scenario 

years 1977, 1983, 1995. Although the values differ, there is consistency among the three 
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algorithms when it comes to the monthly total discharge model policy deviation from the Energy 

Studies policy (Table 6). When the game model recommends a higher or lower discharge than 

the Energy Studies, it is usually all three algorithms agreeing on the direction of the deviation.  

Table 5: Total discharges and standard deviation for the year (Jan 2020- Dec 2020) for the water scenarios: 

1977, 1983, and 1995 

 

The error, summarized in Table 6 represents the mean absolute deviation (MAD ) for the 

model’s different algorithms monthly release policy, values highlighted as a heat map, with 

green representing the lower values and red representing the higher values. The lowest deviation 

ranged from 218 cms to 350 cms, with the highest deviation being 514 cms. The MCA LLH 

policy had larger deviation and error than the GMS LLH and HLH policy.  The MCA release 

policies are governed by both the Mica and Arrow stations. Any deviations in the existing Arrow 

release, will increase the deviation of the releases of Mica. However, GMS releases do not 

depend on the PCN downstream releases in this model, and is not subject to further deviation. 

 

 

1977 1983 1995 1977 1983 1995 1977 1983 1995 1977 1983 1995

E.S 6617 5135 5997 8247 6626 8606 9197 11260 13114 12846 14426 15123

MILP 6912 7390 6044 6978 7390 6676 12520 13674 15117 10830 13370 11568

Nash 6912 7390 6044 9294 9657 9247 12955 14080 15403 12654 13337 15502

S.O 3871 7390 6044 6978 7390 6676 12955 14080 15403 12654 13337 15502

E.S 528 513 460 461 470 440 599 480 426 566 565 450

MILP 353 396 362 344 396 327 522 426 616 342 478 284

Nash 353 396 362 260 278 162 512 435 591 413 431 580

S.O 279 396 362 344 396 327 512 435 591 413 431 580

GMS HLHGMS LLHMCA LLH MCA HLH

Total Year 

Discharge

St Dev
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Table 6: Mean absolute deviation (MAD) for monthly release policies from the different algorithms, values 

highlighted as a heat map, with green representing the lower values and red representing the higher values 

   MCA LLH MCA HLH GMS HLH GMS LLH 

   1977 1983 1995 1977 1983 1995 1977 1983 1995 1977 1983 1995 

Mean 

Absolute 

Deviation 

(cms) 

Nash 614.8 577.7 624.4 546.5 521.8 481.2 349.2 442.8 444.2 413.9 345.7 535.5 

S.O 614.8 577.7 624.4 543.3 517.7 395.8 218.8 274.9 454.1 455.4 385.9 562.2 

MILP 420.1 577.7 624.4 546.5 521.8 481.2 218.8 274.9 454.1 455.4 385.9 562.2 

 

The error in Table 7 represents the percent error in the total discharge policy for that year. The 

total discharge error trends are similar to the mean monthly policy deviation trends in which the 

MCA LLH policy had the larger deviation. The magnitude of the error did not differ between the 

wet, dry, or medium year. The three algorithms performed equally well in the three scenario 

years. 

Table 7: Percent error for the total release policies from the different algorithms, values highlighted as a heat 

map, with green representing the lower values and red representing the higher values 

  MCA LLH MCA HLH GMS LLH GMS HLH 

  1977 1983 1995 1977 1983 1995 1977 1983 1995 1977 1983 1995 

Mean 

Percent 

Error 

MILP 4.5 43.9 0.8 15.4 11.5 22.4 2.5 5.2 0.0 17.8 18.7 11.8 

Nash 4.5 43.9 0.8 12.7 45.8 7.4 0.8 2.4 1.9 37.6 18.4 18.2 

S.O 41.5 43.9 0.8 15.4 11.5 22.4 0.8 2.4 1.9 37.6 18.4 18.2 

 

Looking at the two error calculations, the 1977, 1983, and 1995 MAD performance was fairly 

consistent, but the MAPE is clearly much higher in 1983. Since the MAD was calculated for the 

monthly releases, while the MAPE was calculated for the total releases of the policy year, it is 

expected that the year-to-year differences in MAPE be higher than those of MAD, which is 
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average over the months. In other words, the month to month differences of the error in release 

policy between the wet, dry, and medium year, hence the MAD for MCA LLH is consistently 

high among 1977, 1983, and 1995, and consistently moderate for GMs LLH for example. 

However, the cumulative releases for a policy year is impacted greatly by the wetness or dryness 

of the year, hence, the MAPE for MCA LLH and HLL was higher in 1983 than 1977 and 1995. 

Although errors exists, the discharge plots (figures 18 to 29) show that the constraints for upper 

and lower discharge were met by the model for the exception of GMS LLH and HLH of May 

1995 and July 1983 for the MILP algorithm for GMS HLH. This suggests that a possible model 

adjustment is needed for WSR reservoir to an LP formulation sub-step, similar to the way that 

KBT reservoir is modeled (Columbia LP step). The use of the Columbia LP step reduced the 

variation between the results of the three game algorithms but did not help mitigate the error in 

the policy. 

The market policy for the years were chosen because the model prioritizes fulfilling the demand 

from the reservoirs and does not consider the rest of the BC Hydro system as resources.  

The model can perform 5520 LPs in under 4 minutes, more will be discussed in the 

benchmarking section in Chapter 5. In the discussion, it can be argued that the results of these 

models prove that the concept of game theory valid for multi-0-reservoir modelling, despite the 

magnitude of the error. By considering the results valid, and looking at the optimized reward, 

one can deduce that the game model, or the equilibrium-based model that takes each agent’s 

benefits into consideration simultaneously, can achieve better rewards when optimizing the 

multi-agent hydro system, and therefore, this method is worth investigating further. Section 5.5 

in Chapter 5 presents possible model advancement using AI techniques.  
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4.2.2 Rewards 

The reward for these years can be seen in Figure 13 and Figure 14. The reward from the ES 

results was recalculated according to equations 1 and 2. It can be seen that the game equilibrium 

algorithm yielded higher rewards for both agents and the system.  This result was also consistent 

when comparing the  policy rewards for all 46  inflow scenarios testes, represented in Figure 15 

and Figure 16. 

 

Figure 13: Total year agent and system reward for the scenario years for Kinbasket Reservoir 

 

 

Figure 14: Total year agent and system reward for the scenario years for Williston Reservoir 

-3000000

-2500000

-2000000

-1500000

-1000000

-500000

0

1977 1983 1995

M
C

A
D

MCA/KBT Rewards

System - S.O MILP - MICA Nash- MICA Energy Studies System-ES

-3.00E+06

-2.50E+06

-2.00E+06

-1.50E+06

-1.00E+06

-5.00E+05

0.00E+00

1977 1983 1995

M
C

A
D

GMS/WSR Rewards

System - S.O MILP - GMS Nash - GMS Energy Studies System-ES



62 

 

 

 

Figure 15: Total policy year reward boxplot (MCAD) 

for Kinbasket Reservoir 

 

Figure 16:Total policy year reward boxplot (MCAD) 

for Williston Reservoir 

4.2.3 LLH Discharge Policy 

The Light Load Hour total discharge policies can be seen plotted side-to-side in figures 18-23 for 

the scenario years 1977, 1983, 1995. The figures show the instances when any of the game 

model algorithms recommends a higher or lower discharge than the Energy Studies and by how 

much. It can be seen that, usually, all three algorithms agree on the direction of the deviation. 

However, not all three algorithms perform similarly all the time. While the MAD and MAPE can 

show us that the MILP performs slightly better than the other algorithms, the bars in the figures 

below confirm this observation. The dotted lines show the lower and upper bounds on releases, 

which also an important factor in determining the model fidelity to realizing these constraints. It 

was only in three instances where the upper limit on releases was exceeded (Figures 22, 26, and 

28). In the three instances it was for the GMS station, which is expected since these bounds were 

not applied to GMS as hard constraints.  
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4.2.3.1 Dry Year 

 

Figure 17: GMS LLH monthly discharges (cms) of the different algorithms for the dry year inflow scenario 

(1977) 

 

Figure 18: MCA LLH monthly discharges (cms) of the different algorithms for the dry year inflow scenario 

(1977) 
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4.2.3.2 Medium Years 

 

Figure 19: GMS LLH monthly discharges (cms) of the different algorithms for the medium inflow year  

scenario (1983) 

 

Figure 20: MCA LLH monthly discharges (cms) of the different algorithms for the medium inflow year  

scenario (1983) 
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4.2.3.3 Wet Years 

 

Figure 21: GMS LLH monthly discharges (cms) of the different algorithms for the wet year inflow scenario 

(1995) 

 

Figure 22: MCA LLH monthly discharges (cms) of the different algorithms for the wet year inflow scenario 

(1995) 
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4.2.4 HLH Discharge Policy 

The Heavy Load Hour total discharge policies can be seen plotted side-to-side in figures 24-29 

for the scenario years 1977, 1983, 1995.  

4.2.4.1 Dry Years 

 

Figure 23: GMS HLH monthly discharges (cms) of the different algorithms for the dry year inflow scenario 

(1977) 
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Figure 24: MCA HLH monthly discharges (cms) of the different algorithms for the dry year inflow scenario 

(1977) 

4.2.4.2 Medium Years 

 

Figure 25: GMS HLH monthly discharges (cms) of the different algorithms for the medium inflow year  

scenario (1983) 
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Figure 26: MCA HLH monthly discharges (cms) of the different algorithms for the medium inflow year  

scenario (1983) 

4.2.4.3 Wet Years 

 

Figure 27: GMS HLH monthly discharges (cms) of the different algorithms for the wet year inflow scenario 

(1995) 
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Figure 28: MCA HLH monthly discharges (cms) of the different algorithms for the wet year inflow scenario 

(1995) 
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For LLH and HLH purchases, the Nash algorithm recommended significantly higher GWh per 
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Figure 29: System total LLH purchases for the 

policy year (Jan 2020 to Dec 2020) 

 

Figure 30: System total HLH purchases for the 

policy year (Jan 2020 to Dec 2020) 

 

Figure 31: System total LLH sales for the policy year (Jan 2020 to Dec 2020) 

 

Figure 32: System total HLH sales for the policy year (Jan 2020 to Dec 2020) 
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4.2.5.1 Other sources 

 

Figure 33: Arrow dam plant monthly discharges (cms)
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Chapter 5: Discussion 

5.1.1 Distinguishing Characteristics of the Equilibrium-Based Decision-Making Model 

In multi objective optimization problems (MOOP), the decision for each of the objectives is 

assumed to be made by the same agent. If a MOOP problem contains individual rational agents 

(or groups of agents) for each objective function, then it is a game problem, not a MOOP 

problem. What distinguishes Game Theory (GT) from MOOP is the capacity of GT to analyze 

situations where we have interdependence among the players. In an equilibrium case, the 

individual rational agents are assumed to act in their own self-interest, while taking into account 

the other agent’s possible policies. Equilibrium is reached when no agent can improve on their 

reward anymore. In a pareto optimal case, the agents can improve on their own rewards, as 

demonstrated by the results of the case study, where the social reward for the system shared by 

the agent was less than the reward achieved competitively by each agent. Pareto optimality 

ensures the agents are rewarded for the system’s best interest and the overall objective, such as 

meeting the demand, while the cost of getting to equilibrium is shared by the agents or tackled by 

the system. Nash equilibrium may not always be Pareto optimal, hence the rewards are achieved. 

On the other hand, there are similarities in the overall approach of optimization problems and 

equilibrium problems. Optimization problems are often approached using mathematical 

programming techniques. These problems are generally approached in the following sequence 

(Fourer et al. 2003): 

1) Formulating a model by identifying the variables, objectives and constraints that 

represent the problem at hand 
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2) Collecting data defining a problem instance 

3) Generating a specific objective function and constraint equations from the model and data 

4) Solving the problem using a solver that applies an optimization algorithm to find the 

optimal values of the variables 

5) Analyzing the results 

In this thesis, it was demonstrated by the methods investigated that these five steps were 

preserved. 

1) The variables were identified, and the system objectives and constraints were identified 

2) Data was collected on the inflows, agents constraints, and properties such as HK values 

3) The objective was substituted by the agent’s utility functions, and the constraints were coded 

into the game generation step 

4) Game solution algorithms were used to solve for equilibrium 

5) Results were analyzed 

According to (Labadie 2004), optimal coordination of the many facets of reservoir systems 

requires the assistance of computer modeling tools to provide information for rational 

management and operational decisions. This GT-based model developed in this thesis, with the 

aide of the Julia programming language, was able to achieve computationally promising results 

by cutting the time required to solve the problems by half.  
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5.1.2 Limitations and simplifications 

There are several simplifications that prevent the model from generating a policy similar to the 

ES model. The first and most pronounce simplification was not accounting for daily variations. 

ES model is optimized using a daily and hourly time step which helps account for the demand 

and price variations of these hours. This model, instead, lumps these variations into monthly 

LLH and HLH blocks. This might have resulted in variation of input data used, such as monthly 

demand, which was adapted to fit into the 5-block scheme. 

Market prices were also a differentiating factor in this model and ES. While in ES, market prices 

are generated via a stochastic model, the prices used here were applied deterministically, not 

accounting for future variability in circumstances or inflow conditions. The discount factor also 

did not change with time. When modelling the market decisions, there was no separation of the 

Alberta and US trades, which could have impacted the value of buying and selling through the 

transmission cost difference.   

Finally, the BC Hydro system is a large one, consisting of 31 generating stations sending 

electricity along 75,000 kilometres of power lines, is not limited by the Columbia and Peace 

rivers. The vast resources were simply modeled in this thesis as an emergency reserve by 

imposing a “penalty” value on their use by the modelled agents. This way, the agents in the game 

were driven to complementary strategies to fully meet the demand. A true game of the BC Hydro 

would have thousands of strategies to meet the demand and achieve market gain. Previous 

applications show that it is best to use a variant of SDP (such as SDDP) to obtain the optimal 

allocations of the resources for the game model. 
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5.1.3 Functionality as a decision-making tool 

BC Hydro strives to develop tools using stochastic optimization techniques to generate reservoir 

release policies that consider stochastic inflows, prices, and load with proper modeling of the 

CRT and subsequent agreements for operations planning. Results from the case study show that 

the game theoretic approach presents a promising tool for BC Hydro for solving multi-objective 

problems, since it produces policies that fall within the set constraints and maximize the reward. 

If the errors in the results and the deviation from the ES policy were correctly attributed to the 

model’s simplified representation of other system variables, then the development and 

enhancement of the model which are beyond the scope of this research can lead to a product 

better suited for energy studies. The expansion of the model to a daily time step should be 

considered as a first step in the model enhancement. Also, several variants of multi agent 

solution concepts can be investigated to maximize the total payoff of the game involving multi-

agent reservoir systems with a coordination mechanism to satisfy system level constraints. After 

enhancements to the existing formulations have been implemented, advanced solution methods 

should be investigated and used in the model. In the following sections, I highlight some findings 

from literature on Multi-Agent Inverse Reinforcement Learning. 
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Chapter 6: Benchmarking Framework for Stochastic Models 

6.1 Background 

Benchmarking has been used widely to compare models in the fields of hydrology, water 

resources management, operations research, and optimization. The goal from conducting model 

benchmarking is to compare and to provide insight into the performance of a variety of models 

used in stochastic optimization and optimal control. Statistical methods are widely used to asses 

model performances; however, as argued by (Seibert 2001), it is important to compare the model 

results with results obtained in some other way, which highlights the importance of choosing 

appropriate benchmark problems.  

Benchmarking is performed in several different ways based on the discipline, problems 

addressed, and the techniques that are being used in the comparison. Principles of benchmarking 

have been borrowed from economics and especially from the manufacturing industry as they 

were used as tools to enhance performance. As outlined in the book Benchmarking Theory and 

Practice (Rolstadås and International Federation for Information Processing 1995), there are four 

phases to the benchmarking process are as follows. 

Table 8: Phases of the Benchmarking Process, (Rolstadås and International Federation for Information 

Processing 1995) 

First Phase Preparation for Benchmarking: This phase addresses the questions of “what is 

the subject to be benchmarked and who are the best “competitors”, and what 

is the best data collection method? 

Second Phase identifying the strengths of each competitor or model 

Third Phase defining functional goals and action plans for the analysis 

Fourth Phase planning and implementation 
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While the management of water reservoirs has been a popular area of research in the stochastic 

programming literature (Salas and Powell 2018), there is a paucity in examples on benchmarking 

stochastic optimization models in this field. Therefore, in this Chapter, we review the different 

benchmarking methods that have been used in peer reviewed literature, highlighting novel 

methods in stochastic algorithms optimization from operation research, and conclude with 

recommendations for benchmarking plan for iterative models of SDDP and existing Energy 

Study Models. 

6.1.1 Overview of Widely Used Methods: 

Statistical Significance Tests: a nonparametric, complete-block, two-way layout Friedman test is 

commonly used to detect if there was a difference between the algorithms (nuisance factor). 

Convergence Speed: in an operational context, such as continuous reservoir management for 

hydropower production, calibration speed is of the essence. In this respect, the convergence 

speed of each algorithm can be tracked and compared to the overall best objective function 

value. This is done to prevent an algorithm that converges fast to a poor optimum to be ranked 

higher than it should. 

Dispersion: the dispersion metric of Lunacek and Whitley (2006) was computed to further 

investigate the causes of algorithm performance or lack thereof. It uses iterative random 

sampling of the search space to measure the average pair-wise Euclidian distance between m-

best parameter sets from a population of n parameter sets, where the size of m is fixed and n is 

variable. A decrease in the average Euclidian distance when n is increased means that the fitness 
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landscape has a converging global structure. Further information on the dispersion metric is 

available in Lunacek and Whitley (2006). 

Benchmark Series: Used in hydrology, benchmark series are used to compute the goodness-of-

fit of a model with respect to the benchmark using Equation 6. 

Equation 6: Goodness-of-fit equation 

 

Performance Profiles: The performance profile for an algorithm is the (cumulative) distribution 

function for a performance metric. For example, the ratio of the computing time of a solver 

versus the best time of all of the solvers can be used as the performance metric. Performance 

ratio is the computing time required to solve problem p by solver s divided by the minimum time 

of all the solvers to solve the same benchmark problem. 

Then define the function ps as the cumulative distribution function for the performance ratio, 

such that ps (T) is the probability of solver s that a performance ratio rp,s, is within a factor T of 

the best possible ratio. Then plot P[0,1] against different values of T. (1-ps(T)) is the fraction of 

problems that the solver cannot solve within a factor τ of the best solver, including problems for 

which the solver in question fails. 
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6.1.2 Examples from Literature 

Comparison of Stochastic Optimization Algorithms for Hydropower Reservoir Operation with 

Ensemble Streamflow Prediction 

Ensemble streamflow prediction (ESP) is meant to produce multiple and reliable scenarios of 

possible river flows to represent forecast uncertainty. (Côté and Leconte 2016) present a 

comparison between four optimization algorithms in a test bed in which ensemble streamflow 

predictions (ESPs) are updated each time a decision is taken, which is an operating procedure 

that is closer to real world practice. The comparison was performed on the Rio Tinto Alcan 

(RTA) hydropower system in Québec, Canada, which consists of six generating stations in series 

and three major reservoirs. The tested optimization algorithms are the deterministic optimization 

approach (DA) currently used by RTA and three explicit stochastic optimization approaches, i.e., 

stochastic dynamic programming (SDP), sampling stochastic dynamic programming (SSDP), 

and a scenario tree approach. The objective of the problem is to maximize, on a weekly time step 

(T = 52), the function describing the expected value of the energy export and imports under 

several constraints (water value function). The first algorithm deterministically solves the 

objective function as the sum of payoffs for each ESP scenario independently. The second 

algorithm (SDP) decomposes the problem into small optimizations in a backward recursive 

equation starting from the end of the planning horizon to the first period. The third algorithm 

(SSDP) uses the transition probabilities of streamflow scenarios  

The fourth approach models the stochastic process by a scenario tree, in which each node has 

one predecessor. In this approach, an original set of scenarios is transformed into a tree-node 



 

80 

 

structure. The tree is then reduced by successively removing nodes while preserving the 

probabilities associated with the original inflow sequences. 

They computed the average time required for one release decision (or one period) in the test bed 

for each method, with the number of scenarios, points for state variables, and number of decision 

variables and constraints where applicable. The SSDP turned out to be the slowest algorithms 

since the water value function has to be evaluated over each scenario. They then compared the 

water storage in target reservoirs and the water spillage in system for the planning horizon based 

on different operating policies given by the different algorithms. The authors also compare the 

effect of dispersion in the ESP scenarios and historical sequences on the different methods. As 

expected, all the stochastic methods outperformed the deterministic approach. Also, it was 

concluded that scenario based methods are superior to probability distribution methods, while 

noting that the SDP probability distribution method has several advantages in computation time 

and discretization points. The study employed an empirical approach to artificially increase flow 

volumes in order to account for the impact of climate change on watersheds in northern 

environments. Since in a climate change context, it is likely that dispersion in the historical data 

will not be representative of future dispersion. The authors propose that using stochastic 

optimization approaches as a decision-making tool to properly manage hydropower systems and 

generate maximum gains will be even more important for hydrological regimes characterized by 

increased variability, such as that caused by climate change. A similar approach was 

implemented by (Cote et al. 2011) to compare the stochastic optimization of Hyro-Quebec 

hydropower installations by SDP and SSDP.  
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Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration 

(Arsenault et al. 2014) benchmarked ten stochastic optimization methods that were used to 

calibrate parameter sets for three hydrological models on 10 different basins. Optimization 

algorithm performance was compared for each of the available basin-model combinations. The 

10 optimization methods were then programmed for each of the model-basin pairs using their 

default parameter values. Each optimization algorithm was used to complete 40 different model 

calibrations, with each optimization run being limited to 25,000 evaluations. The objective 

function value was saved for every model evaluation, thereby generating a trace for each 

calibration run.  

The aim of this study was to try and find the best optimization algorithm for a given hydrologic 

model calibration problem based on the problem characteristics. Therefore, the authors 

conducted an overall comparison based on several parameters of interest: convergence speed and 

ability of attain low objective function values. A general performance assessment is made first. 

Then, method performance with respect to model complexity, basin type, convergence speed, 

and computing power were addressed.  

Integrating Logistical and Technical Criteria into a Multi-team, Competitive Watershed Model 

Ranking Procedure 

This study investigated hydrological model comparison techniques and illustrated a systematic 

watershed model comparison and selection process, integrating a full range of relevant criteria. 

The process by (Cunderlik et al. 2013) is believed by the authors to be broadly useful. It consists 

of: 
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• Screening for a set of candidate models on the basis of prerequisite model attributes; 

assessing hydrologic simulation performance using various conventional statistical 

metrics 

• Assessing operational logistics performance, reflecting somewhat subjective but centrally 

important issues around relative feasibility and suitability of candidate models in the 

intended context of use  

• Integrating the hydrologic and operational performance results, which are evaluated using 

a weighted-matrix approach, into a single coherent and comprehensive ranking system.  

The process was applied to evaluation of watershed models for operational hydroelectric inflow 

forecasting in British Columbia, Canada. An important feature of the study was its horse-race 

project management approach, involving a supervised competition between expert teams using 

different models but the same data sets. The horse-race format involved a direct competition 

between the four candidate models with the winner declared on the basis of both hydrologic 

simulation success and a variety of practical criteria. The compared models that passed the 

screening were:  

• UBCE Watershed Model  (UBCWM),  

• the Environment Canada modification of the Hydrologiska Byråns 

Vattenbalansavdelning model (HBV-EC),  

• the National Weather Service River Forecasting System (NWSRFS), and  

• the University of Waterloo WATFLOOD.  
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The models were evaluated for operational logistics to reflect the practical issues associated with 

the forecasting operations. In this part of the process, the following features and sub-features 

were compared: 

1. Modeling time, with subfeatures of calibration time/effort required, central processing 

unit (CPU) time for model execution, and data pre/post-processing time/effort 

intrinsically required by the model 

2. Sensitivity to input data availability, with sub-features of meteorological data 

requirements, and other data requirements 

3. Model robustness and diagnostics, with sub-features of code stability, diagnostic 

capabilities, and code stewardship 

4. Ease/speed of state- and driving-variable adjustment and updating, with sub-features of 

ease with which input meteorological data may be manually altered, and ease with which 

internal states may be adjusted or updated. 

For the hydrologic model performance, ?? study watersheds from British Columbia were used to 

represent 3 different hydroclimatic and physiographic settings: Alouette, Finlay, and Mica. A 

wide variety of statistical performance measures were reviewed to determine a set of measures 

suitable for the evaluation of the watershed models. Ultimately, the main objectives of the 

calibration in all study watersheds were to (1) maximize the Nash–Sutcliffe coefficient of 

efficiency of daily flows (CE), (2) maximize the coefficient of variation (R2) of annual flow 

volumes, (3) minimize bias in monthly flow volumes, (4) minimize bias in annual flow volumes, 

and (5) minimize bias in March 1, April 1, and May 1 snow water equivalent (SWE).  
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With the availability of different metrics to measure the performance, the authors were presented 

with an interesting challenge to rank the models. The decision was made to rely upon weighting 

matrices, wherein individual scores were assigned within a potential range of 0–1, to provide 

relative scorings for each of the models. This, of-course, could be used to have a bias towards 

one of the models. Two different matrices were employed (Table 9, Table 10), one with respect 

to the operational logistics as applied to BC Hydro’s routine forecasting needs, and the other one 

with respect to hydrologic performance of the individual models. The two matrices were 

combined into an overall model suitability matrix Table 11. 

Table 9: Operational Logistics Matrix (Cunderlik et al 2013) 
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Table 10: Hydrologic Performance Matrix (Cunderlik et al 2013) 

 

Table 11: Combined Performance Matrix Hydrologic Performance Matrix (Cunderlik et al 2013) 

 
 

Using Confidence Intervals for benchmarking stochastic models: 

(Liu et al. 2017) proposed a way to add confidence intervals (CI) to the performance profile 

method (PPM) and data profiles method (DPM) benchmarking methods to make it a framework 

for benchmarking stochastic methods. In benchmarking stochastic optimization models, it is 

important to have a unique and similar starting search point among all considered models. 

Numerical example, models were required to complete at least 10,000 evaluations as termination 

criteria. 

Steps of the algorithm of the benchmarking: 

1. Generate matrices for sample mean, and confidence bounds 

2. Compare sample mean, determine the winner (the one with the higher profile) 
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3. Compare the bound for the “worse” performance, if the winner is still a winner it wins 

(one with higher profile still is higher), if it loses, there is no difference between the two 

models. 

 

Figure 34: Results of the benchmarking problem using stochastic performance profiles and stochastic 

performance profiles method 

 

The numerical example compared genetic algorithms (GA), differential evolution (DE), and 

stochastic particle swarm optimization (SPSO). They benchmarked DE8, GA, and SPSO using 

PPM. In this step, SPSO performed better than DE8 and GA, while GA performed worst 

amongst the three. They conduct another PPM comparison for the upper bound CI matrix of 

SPSO together with the lower bound CI matrices of DE8 and SPSO. Figure 34 is an example of 

comparing two stochastic optimization algorithms with PPM. The results, shown in Figure 34, 

show that algorithm A2 performs much better than A1 (right side). However, when the sample 

variances are taken into account (left side), the confidence upper bound for A2 and confidence 

lower bound for A1 are displayed, and it is clear that A2 performs significantly better than A1. 
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A comparison of approximate dynamic programming techniques on benchmark energy 

storage problems: Does anything work?  

(Jiang et al. 2014) investigated the effectiveness of several techniques that fall under the realm of 

approximate dynamic programming (ADP) on a simple energy storage and allocation problem. 

The problem seeks to optimally control (through profit maximization) a storage device that 

interacts with both the grid and an uncertain energy supply. The energy storage and allocation 

problem is formulated as a Markov decision process. In their benchmark, they consider a 

stochastic wind supply, stochastic electricity prices, and a deterministic demand. They consider 

two algorithms that are based on value function approximation (cost-to-go function): 

approximate policy iteration and approximate value iteration. Several parameters where chosen 

to represent a common set of problems resulting in 17 stochastic benchmark problem 

formulations. Five popular algorithms were then tested on the 17 problems, and the percent 

optimality for each algorithm determined to be the value of the approximate policy divided by 

the value of the optimal (backward dynamic programming) policy. In their comparison, they 

compare the performance of each algorithm based on the set of problem architecture they solve, 

but since none of the algorithms consistently performed better, they concluded that none of the 

current techniques work reliably in a way that can scale up to more complex problems. 

 

Benchmarking a Scalable Approximate Dynamic Programming Algorithm for Stochastic 

Control of Grid-Level Energy Storage 

(Salas and Powell 2018) enhanced the approach used in (Jiang et al. 2014) of designing test 

problems to benchmark an approximate dynamic programming algorithm for a portfolio of 
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heterogeneous storage devices in a time-dependent environment, where wind supply, demand, 

and electricity prices may evolve stochastically. They assessed the optimality of the back-

propagation (BPTT) algorithm by comparing the performance of the resulting approximate 

policy to optimal for time-dependent deterministic problems with 2000 time periods, and optimal 

policies for a variety of stochastic problems. The deterministic comparison was done against 

benchmark problems that can be solved exactly using the LP formulation. The stochastic 

benchmarks consist of discretized problems for which the exact solution can be found. First, they 

benchmark BPTT on deterministic solutions, then, they benchmark on stochastic problems and 

compare the numerical performance of BPTT against approximate value iteration. It is important 

to mention that to conduct the benchmarking; they had to tune the process of state aggregation 

and choice of step size algorithm for smoothing new estimates into. To compare the value of the 

approximate policy generated by these two algorithms over iterations, they define a metric Fn 

which is the objective value given after n iterations, divided by the true optimal value, and a 

corresponding standard error. They found that the model they benchmarked was able to design 

time-dependent control policies that are within 0.08% of the optimal deterministic problems and 

within 1.34% of the stochastic ones.  

Assisted History Matching Benchmarking in Petroleum Reservoir Engineering 

In petroleum engineering, history matching involves the conditioning of numerical reservoir flow 

models to field performance through the quantitative integration of historical dynamic data 

(Bhark and Dehghani 2017). A study has been done to benchmark four techniques for assisted 

history matching that have been applied in the oil and gas industry for asset management 

applications. The techniques benchmarked were: Design of Experiments (DoE), genetic 
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algorithm (GA), Ensemble Kalman Filter and Ensemble Kalman Smoother (EnKF/ES), and 

streamline-based generalized travel time inversion (GTTI).  

The foundational capabilities of the techniques that this industry is interested in are as follows: 

1. To parameterize and calibrate any reservoir model attribute 

2. To integrate with any type of numerical simulation method and grid structure, for any 

time duration 

3. To quantify data misfit 

4. To output an ensemble of historically matched and calibrated flow models (posterior 

probability distributions) suitable for both deterministic analysis (conservative, best 

technical estimate) and probabilistic analysis (uncertainty range) 

This study focuses primarily on the method of DoE. DoE workflows involve parameter 

identification for reservoir simulation, application of parameter samples in simulation of 

historical period, construction of proxy models for individual history matching errors, and 

exhaustive Monte Carlo sampling of input parameter combinations that lead to discrete model 

selection.  

 

The benchmarking analysis relied on two methods. The first one is a common one-variable-at-a-

time OVAT 2 point sensitivity analysis, and the other is a Standardized Pareto Analysis method 

t-test to represent the dependencies of parameters. The OVAT method involves perturbing a 

parameter at its high and low extreme values and recording its response behavior. This tool is 

useful for broad understanding of the positive or negative change in a modeled response due to 
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the positive or negative change in a parameter. The authors claim that this is useful for the initial 

quality control of the simulation workflow definition. 

A standardized Pareto analysis uses t-test for statistical significance of parameter impact on 

history matching error. It captures the main effects of single parameter and first order interaction 

effects of two parameters, and whether the magnitude of this effect is statistically significant. 

The t-test computes the error at min and max values of individual parameters as a ratio of the 

difference in the mean relative to the variance of several experiments. The calculations are 

repeated at different random selections of the remaining parameters to distribute potential 

influence of all other controlled effects on current experiment.  

 

Benchmarking model-free and model-based optimal control 

In this paper, (Koryakovskiy et al. 2017) apply benchmarking problem to optimal control 

Reinforcement Learning (RL) model and Model Predictive Control (NMPC) in robotics subject 

to uncertainties. Based on the quantitative comparison, they are able to identify the strong and 

weak points of both algorithms, and explore potential benefits of their combination. The study 

conducted in this article is set up as follows: 

• In the first step (I), they establish optimal control (“OC”) solutions for the ideal 

benchmark problem. Then they consider the NMPC formulation and derive the 

corresponding RL formulation from it. They highlight the changes introduced in both 

formulations and discuss their effects. Subsequently, they address the strengths and 

weaknesses of NMPC and RL in terms of their ability to adapt 

to structural and parametric uncertainties. 
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• In the second step (II), they investigate NMPC and RL methods that are explicitly 

unable to adapt to uncertainties. They introduce the term frozen to refer to this inability.  

• In the third step (III), the effect of uncertainties and the ability to adapt to them is 

analyzed for NMPC methods that have explicitly been equipped with the knowledge 

about the uncertainties and for RL that is allowed to interact with the real system for an 

additional 5% of the learning time. They introduce the term adaptive to distinguish these 

from the frozen methods. 

The two-dimensional benchmark example studied in this article is a pendulum attached to a cart 

in its center of mass through a massless rod. In an ideal scenario, both the cart and the pendulum 

can move without friction along their respective degrees of freedom (x axis for the cart and 

rotary motion of the pendulum). In a second scenario, uncertainty is employed in the form of 

viscous friction at the rotary joint, producing an internal torque. Depending on whether or not 

this friction is included in the model, uncertainty in friction can be considered as a parametric or 

as a structural uncertainty. This problem was used to investigate control scenarios for swing-up 

motions of the cart-pendulum system from a given initial state. To make the two algorithms 

comparable, a discount rate, which is inevitable for solving a continuing task in RL, was applied 

to the objective function of NMPC.  

For experimental measures of the “frozen” methods, they employ the R2 coefficient of 

determination as a similarity measure of trajectories. It quantifies the deviation of the trajectory 

obtained by the algorithms from an optimal trajectory. Second, they employ regret as a measure 

to evaluate the performance of the methods against uncertainty. Regret, which is commonly used 

in RL, quantifies the amount of additional cost which is incurred due to suboptimal actions taken 
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by a controller with respect to the optimal control actions.  Lower values of regret indicate a 

controller, whose behavior is closer to the optimal one. Due to the stochastic nature of RL, they 

plot a mean value of the regret averaged over 50 runs. They summarize the results of the 

pendulum-cart problem in the following table. 

 

Table 12: Summary of results of Koryakovskiy et al. 2017 benchmark problem 

 

 

 

In benchmarking different stochastic optimization methods, it is important to test for the 

algorithm strength and vulnerabilities (ex. Computation time) as well as the algorithm’s policy 

decision outcomes (ex. Storage at target reservoirs). Table 13 represents all the techniques found 

to benchmark models. The first step in any benchmarking exercise is to identify the key features 

that the models are expected to perform, usually referred to as benchmarking standards. The 

second step is to identify key performance statistics. The last step is to identify a fair problem of 

interest to challenge the different mod
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Table 13: Summary of papers reviewed, in order of publication date 

Paper Title Reference Number of 

Models 

Benchmarked 

Type of Models Methods used for Benchmarking 

Intercomparison of lumped versus 

distributed hydrologic model ensemble 

simulations on operational forecast 

scales 

Carpenter and 

Georgakakos 2004 

2 Specially distributed and 

specially lumped streamflow 

forecast models.  

KS- test statistics 

Stochastic optimisation of Hydro-

Quebec hydropower installations: a 

statistical comparison between SDP 

and SSDP methods 

Cote et al. 2011 2 SDP and SSDP Statistical analysis with synthetic 

flow scenarios, comparing storage 

and spill policy decisions 

Optimizing Trading Decisions for 

Hydro Storage Systems Using 

Approximate Dual Dynamic 

Programming 

Löhndorf et al. 2013 2 SDDP integrated with ADP 

and a deterministic LP 

counterpart 

Case study analysis, convergence 

behavior 

Integrating Logistical and Technical 

Criteria into a Multiteam, Competitive 

Watershed Model Ranking Procedure 

Cunderlik et al. 2013 2013 
UBC Watershed Model, HBV-

EC, NWSRFS, WATFLOOD 

Horse-race competition, application 

to case study. Comparison of 

operational logistics, comparison of 

hydrologic performance, and 

combined performance, decision 

matrices 
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Comparison of Stochastic Optimization 

Algorithms in Hydrological Model 

Calibration 

Arsenault et al. 2014 10 ASA, CMAES, CS, DDS, PS, 

HS, PSO, DE, GA, SCE-UA 

Statistical significance, convergence 

speed, dispersion 

 

  

A comparison of approximate dynamic 

programming techniques on benchmark 

energy storage problems: Does 

anything work?  

Jiang et al. 2014 5 Support vector regression 

(SVR), Gaussian process 

regression (GPR), local 

parametric methods (LPR), 

clustering method called 

Dirichlet cloud with radial 

basis functions (DCR). And 

Monotone-ADP 

Percent optimality of benchmark 

problem 

Comparison of Stochastic Optimization 

Algorithms for Hydropower Reservoir 

Operation with Ensemble Streamflow 

Prediction 

Cote and Leconte 

2015 

4 Deterministic optimization, 

SDP, SSDP, scenario tree 

approach 

Test bed, algorithm speed, policy 

comparison for storage and spillage, 

Assisted History Matching 

Benchmarking in Petroleum Reservoir 

Engineering 

Bhark and Dehghani 

2017 

4 Design of Experiments (DoE), 

genetic algorithm (GA), 

Ensemble Kalman Filter and 

Ensemble Kalman Smoother 

(EnKF/ES), and streamline-

based generalized travel time 

inversion (GTTI) 

One-variable-at-a-time OVAT and t-

test standardized Pareto Analysis 
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Benchmarking model-free and model-

based optimal control 

Koryakovskiy et al. 

2017 

3 Reinforcement Learning (RL) 

model and Model Predictive 

Control (NMPC)  

R2 coefficient of determination and 

Measure of Regret 

Using Confidence Intervals for 

benchmarking stochastic models 

Liu et al. 2017 3 GA, DE, and SPSO Confidence Intervals and 

Performance Profiles 

Benchmarking a Scalable Approximate 

Dynamic Programming Algorithm for 

Stochastic Control of Grid-Level 

Energy Storage 

Salas and Powell 

2018 

2 Back-propagation (BPTT) 

algorithm and LP 

Comparison of value for 

approximate policy generated and 

percent-difference from optimal 

deterministic problem 
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6.2 Proposed Framework 

The schematic below illustrates the steps that are proposed to test and compare the stochastic 

models of the BC Hydro Generation System Operations (GSO). The following table 

recommends the benchmarking metrics to measure the performance of stochastic optimization 

models. 
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Figure 35: Schematic of the benchmarking process 

Step 1 

Identify the objectives of the benchmarking: 

• Comparison of performance of each model with respect to different 
functionalities 

• Identification and documentation of best practices for the model 
• Identification of improvement areas for each model 

Step 2 

Literature review 
on benchmarking best practices for stochastic optimization – conducted 

between 1/2019 and 5/2019 

Step 3 

Collect Data: 

• Documentation of each model and functional goals 
o Water Value Models (SSDP, SDDP, RL) 
o Energy study Models (SSDP MUERO + COSTA, MCM) 

• Historical operations for back testing 
• Resources needed for implementation: Input data, IT, and personnel 

requirement 

Step 4 

 

Identify benchmarking metrics  
(summarized in Table 1) 

• Specify weights of metrics 

• Define metrics measure range and utility over range  

Conduct Benchmarking 

Step 5 

Step 6 

• Review benchmarking outcome and recommendations 
• Calibrate the models and benchmarking process according to 

recommendations 
• Periodically track the performance of each model under the benchmark 

metrics 
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Table 14: Benchmarking metrics to measure the performance of stochastic optimization models 

Description of 

Performance Measure

  

Rationale/ BM Activity Measurement 

1. Model efficiency, 

user friendliness, 

and resource 

cost/requirements. 

• To evaluate the indirect cost 

that each model has on the time 

of GSO engineers and IT 

resources such as personnel 

training time, manual labor 

time, and time required to run 

the models. 

Rationale/ BM Activity 

1-a) Surveying GSO models end-

users and collecting data on the 

full time required to complete a 

study, the fraction of time for 

manual labor vs. automated 

process. 

 

1-b) Comparing the models for 

sample mean of performance 

profiles by diving the time by the 

minimum achieved time required 

to finish a study. Separate data 

collection survey for model 

maintenance and training costs 

should be conducted. 

 

2. Model forecast 

performance  

• To back-test and identify 

vulnerabilities in the models 

and determine the methods that 

best represent real conditions. 

• To assess the impact of 

different transition 

probabilities calculation 

method on the accuracy of 

water values. 

2-a) Simulating a historical period 

using observed inputs (i.e 

temperature, inflows, loads, 

external market prices) and the 

forecasts that was available at each 

point in time, and comparing each 

model’s outputs with observed 

values. 

2-b) Using statistical metrics such 

as Mean absolute percentage error 

(MAPE) to compare predicted 

with actual state variables, and the 

Goodness-of fit measure to 

compare the observed and 

simulated variables. 

3. Model outcome 

for expected profit 

and operation rules 

 

• To evaluate the model 

alignment with BC Hydro’s 

objective to maximize risk 

3-a) Measured by running each of 

the models using a unified inflow 

scenario tree and comparing the 

resultant policies with operations 

for a chosen period of time.  
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neutral long-term net revenue 

from operations. 

• To back-test against short term 

historical operations, and 

identify models’ vulnerabilities 

and shortfalls.  

• To identify the approaches that 

best support operations and 

planning needs. 

• Measuring the water value 

sensitivity to extreme weather 

(prolonged wet or dry 

sequences). 

 

3-b) Comparing the resultant net 

profit of operations for operating 

under the policies of benchmark 

models, and comparing to actual 

historical data. 

4. CRT- Evaluation 

of the Columbia 

River Treaty 

constraints 

modelling method 

• The treaty coordinates flood 

risk management across the 

Columbia Basin. This impacts 

the Arrow reservoir by 

providing a maximum storage 

that is based on the forecast of 

the seasonal inflow volume the 

The Dalles dam. 

4-a) Measured by tracking storage 

at Arrow reservoir resulting from 

the optimization under each 

method, from the runs 

implemented in performance 

measure n. 3-a.  
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Chapter 7: Conclusions and Recommendations 

Game theory has been proven in literature and the models developed in this research to be a 

helpful tool in the coordination of multiple reservoirs for the optimal release and market policy. 

An equilibrium-based decision-making model (EDM) was developed to coordinate release and 

market decisions to meet demand and trade electricity from the Peace and Columbia systems in 

BC. The policies resulting from the game-theoretic model were compared to these of an existing 

iterative coordination model, Energy Studies Model. The model showed reasonable results for 

the Peace system with drawdowns from WSR with low MSE, while the drawdowns from KBT 

had larger error as compared to ES. This was explained by the over-simplification of the 

constraints at the KBT, REV, and ARW reservoirs and Columbia River Treaty. The results also 

demonstrated that the Nash equilibrium may not always be Pareto optimal, hence the rewards 

achieved by the system (Social Optimum) were less than the reward achieved competitively by 

each agent. 

Game theory has four key components that need to be enhanced and adapted to help solve this 

problem: players, strategies, payoffs, and equilibrium. In this work, the best representations for 

the agents, their actions, and payoffs where modeled, and several algorithms for equilibrium 

were explored. It was found that the Mixed Integer Linear Programming algorithm to find Nash 

Equilibrium gave the best strategies. However, the support enumeration Nash algorithm is more 

adaptable to situations with more than two agents. Other key game components can be addressed 

to better represent the BC Hydro reservoir systems. For example, using inverse reinforcement 

techniques, the agent’s utility function can be learnt from previous policies. 
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Although the errors do not validate the equilibrium-based decision-making model as a functional 

tool for modelling the BC Hydro system, the results suggest that Game Theory is a promising 

technique that should be further investigated to aide Energy Studies in the coordination of 

reservoir release policies. An effective way to validate and compare this technique and the 

different tools developed by the BC Hydro’s system optimization group is by following a model 

benchmarking framework.  

It is therefore recommended to further develop the proposed equilibrium-based decision-making 

model to incorporate the Inverse Reinforcement Learning tools presented in section 1.1. It is also 

recommended to follow the proposed benchmarking framework to comprehensively investigate 

and verify the effectiveness of game theory algorithms as tools in the multi-agent coordination of 

reservoir systems, compare the results with other models, and identify the gaps in each model. 
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