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ABSTRACT  

Transplantation has greatly improved the lives of people with end-stage kidney failure, 

increasing life expectancy by an average of 10 years. However, threats to extended transplant 

survival continue to pose legitimate concern. Furthermore, the demand for healthy viable organs 

greatly exceeds supply and ensuring maximal longevity is of utmost importance. Early allograft 

kidney injury may negatively impact long-term outcomes. Similarly, the emergence of chronic 

rejection presents a major obstacle for prolonged graft survival and signifies a fundamental 

failure to achieve stable immune adaptation.  

Metabolomics focuses on the global measurement of small molecules and is a promising 

tool in the setting of kidney transplantation. Metabolites reflect ongoing bodily changes 

occurring at multiple levels —molecule, cell, tissue, organ— and offer a unique perspective that 

may improve our understanding of the intricate processes involved in graft injury and rejection. 

This thesis examines metabolite concentrations in the serum before transplantation, and how they 

may influence immediate and long-term transplant outcomes.  

To begin, we measured the levels of one individual metabolite (oxythiamine) prior to 

kidney transplant surgery and tested for association with 1) signs of functional thiamine 

deficiency early post-transplant; and 2) level of uremia (dialysis adequacy) pre-transplant. 

Afterwards, we investigated if there are characterizable differences in the pre-transplant serum 

metabolome of kidney transplant recipients, and whether those differences are associated with 

chronic rejection outcomes.  

In the first study, we found that oxythiamine levels are associated with dialysis adequacy 

at transplant. Patients treated with peritoneal dialysis, who have no residual kidney function and 

low dialysis adequacy, are particularly vulnerable to manifesting high oxythiamine levels. This 
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subset of patients may be at an increased risk for developing acute thiamine deficiency in the 

early post-transplant period. In the second study, we were able to demonstrate the presence in 

serum of innate metabolomic differences between patients, which were associated with chronic 

rejection outcomes, suggesting that, even before transplantation, the metabolite environment may 

be an important factor involved in the predisposition of alloimmune differentiation towards a 

rejection response.  
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LAY SUMMARY  

Transplantation is the prevailing treatment for people with end-stage kidney failure. 

However, some people experience adverse reactions immediately after surgery, which can harm 

organ longevity. Furthermore, we know that some people will inevitably develop chronic forms 

of rejection, which also limits kidney transplant survival. Metabolomics is an analytical 

chemistry technique used to test for hundreds of small molecules (called metabolites) in the 

blood. Metabolites reflect ongoing bodily processes and may provide valuable insights about 

which patients are more likely to develop adverse responses. It may also help identify why that 

risk is higher and strategies to reduce that risk.  

In this research project, we investigated 1) whether high levels of one particular 

metabolite are linked to serious deteriorations after kidney transplant surgery that closely 

resembles thiamine deficiency, and 2) whether distinct metabolite patterns are present before 

transplantation that can predict who is more likely to develop chronic rejection years later.   
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PREFACE 

The work comprising this thesis was conducted across three distinct locations: BC 

Children’s Hospital Research Institute (Vancouver, BC, Canada), Vancouver General Hospital 

(Vancouver, BC, Canada), and The Metabolomic Innovation Centre (Edmonton, AB, Canada). 

The study entitled “Investigating oxythiamine levels in children undergoing kidney 

transplantation and the risk of immediate post-operative metabolic and hemodynamic 

decompensation” was approved by the University of British Columbia’s Research Ethics Board 

(H18-02704). Furthermore, the study entitled “Investigating serum immunometabolomic profiles 

associated with kidney transplant alloimmune outcomes” was approved by the University of 

British Columbia’s Research Ethics Board (H19-01908).  

Chapter 2 is a retrospective study which included a clinical chart review and serum 

metabolite analysis. A version of this chapter has been submitted for publication consideration. 

The contributors to this work are Or Golan, Roger Dyer, Dr. Graham Sinclair, and Dr. Tom 

Blydt-Hansen. All authors contributed to the study conception and design. Ethics submission, 

material preparation, data collection, and statistical analysis were performed by Or Golan under 

the supervision of Dr. Blydt-Hansen. Sample analysis was performed by Roger Dyer. The first 

draft of the manuscript was written by Or Golan, and all authors revised subsequent versions of 

the manuscript. All authors read and approved the final manuscript. 

Chapter 3 is a retrospective, nested case-control study which included a clinical chart 

review and serum metabolite analysis. A version of this chapter is currently being prepared for 

manuscript submission. The contributors to this work are Or Golan, Dr. Karen Sherwood, Dr. 

Atul Sharma, Dr. David Wishart, and Dr. Tom Blydt-Hansen. Study conception and design, 

ethics submission, material preparation, data collection, preliminary statistical analysis, and 
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written composition were performed by Or Golan under the supervision of Dr. Blydt-Hansen. 

The principal investigator of this project was Dr. Blydt-Hansen, and he was extensively involved 

in study conception and design. Dr. Karen Sherwood was involved with and supervised serum 

sample collection from the BC Transplant Biolibrary (BCTB). Dr. Atul Sharma was the senior 

statistician and developed the three prediction models. Sample analysis was performed by The 

Metabolomic Innovation Centre (TMIC; Dr. David Wishart). 

My supervisor, Dr. Tom Blydt-Hansen, along with my committee members, Dr. Graham 

Sinclair and Dr. Paul Keown, provided vital feedback on the interpretation of all results and 

throughout this written document.  
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Chapter 1: 

Introduction  

1.1 Chronic Kidney Disease  

As a medical term, chronic kidney disease (CKD) encapsulates disorders which affect 

kidney structure and, consequently, function (1). CKD presentation is varied and dependent on 

disease etiology, pathology, and severity; however, ultimately, all patients experience 

deterioration of renal function. The decline in kidney function can occur rapidly (within months), 

but more often disease progression is prolonged (spanning several years)(2). To be diagnosed 

with CKD, a patient must display signs of kidney damage (i.e., albuminuria) or decreased kidney 

function (i.e., glomerular filtration rate (GFR) <60 mL/min per 1.73 m2) for three or more 

months. CKD is further classified into five stages based on the severity of GFR deterioration (3).  

The gradual decrease of GFR, characteristic of CKD, can result in various complications: 

increased risk of cardiovascular disease, acute kidney injury, infection, cognitive decline, and 

impaired physical function (4-8). Some pharmacological treatments, and even certain lifestyle 

changes, can slow down the deterioration of renal function (9). However, there are no effective 

therapies that target the primary disease process, and, in most cases, progression of CKD is 

irreversible (2).  

The prevalence of CKD increases for older adults, partly due to the increased prevalence 

of other co-existing conditions: diabetes, obesity, hypertension, and cardiovascular disease (10). 

In fact, hypertension and diabetes are the primary causes of CKD, with the latter accounting for 

an estimated 30-50% of all cases (11). Moreover, adults can be diagnosed with CKD after 

infections or exposure to drugs and toxins because such experiences can result in glomerular and 

tubulointerstitial diseases; these etiologies are more prevalent in developing countries (1). For a 
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small portion of the CKD patient population, disease etiology is genetic. Congenital 

abnormalities of the kidney or urinary tract lead to disease diagnosis at birth or in early 

childhood. Other genetic causes, such as autosomal dominant polycystic kidney disease, usually 

manifest in adulthood (12). Familial history of kidney disease and race/ethnicity are additional 

genetic determinants that can contribute to increased disease risk. Epigenetic factors are also 

increasingly recognized as being influential in susceptibility to CKD (13).  

Estimates of CKD incidence are difficult to determine due to the differences among 

countries in the rates of underlying disease and government-sponsored treatment, but yearly 

worldwide CKD incidence may be as high as 200 cases per million people. In the United States, 

the incidence is closer to 400 cases per million people (1). The United States has a proportionally 

higher incidence of disease in racial and ethnic minorities, likely due to a combination of genetic 

and environmental risk factors, social determinants of health, and continued healthcare inequality 

(14). For similar reasons, racial and ethnic minorities in Canada are also at an increased risk for 

both CKD diagnosis and progression (15).   

Determining disease prevalence of early stage CKD is not any easier, as estimates are 

prone to biases caused by the limitations in the methods used to measure GFR and identify 

kidney damage. In fact, prevalence of CKD is highly dependent on which GFR estimation 

equation is used (16). In the United States, disease prevalence is estimated at 1,800 cases per 

million people (1). Between 2013-2016, the percent prevalence in the general adult population 

was 14.8%, but steeply rises to 32.2% in adults over 60 years old (17). Prevalence estimates in 

other countries are subject to slight variation, but the overall trends are similar (16).  

For the pediatric population, disease prevalence in the United States for 2018 was 2.7 

cases per thousand children. Interestingly, CKD shows a bimodal age distribution with young 
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children (aged <4) and adolescents (aged 18-21) more likely to be diagnosed. Like their adult 

counterparts, the pediatric CKD population has an increased presence of concomitant conditions 

(e.g. diabetes, hypertension, and cardiovascular diseases). However, their overall frequencies 

were much lower when compared with the adult CKD population (17).   

Diagnosis with CKD poses a substantial burden, and, for 2012, the WHO estimated that 

the disease accounted for 1.5% of deaths worldwide. Individuals with CKD are at an increased 

risk for morbidity as well as cardiovascular and all-cause mortality. Furthermore, these 

individuals are more likely to die prematurely than to experience kidney failure (11).  

An advanced stage of CKD, known as end-stage renal disease (ESRD), occurs when 

native kidney function can no longer sustain life, i.e., the presence of kidney failure. To be 

diagnosed with kidney failure, a patient must either have a GFR of less than 15 mL/min per 1.73 

m2  or require treatment with dialysis or transplantation. Unfortunately, kidney failure is an 

inevitable outcome of progressive CKD. The only suitable treatment options for a patient with 

ESRD are renal replacement therapy, kidney transplantation, or palliative (non-dialytic) care (1, 

2, 11).  

1.2 End-Stage Renal Disease  

In Canada, the prevalence of ESRD is estimated at 1,200 cases per million people, and, in 

2018, 40,289 Canadians –exclusive of Quebec—were living with kidney failure (18, 19). Most 

of these individuals (approximately 58%) undergo treatment with dialysis, spending an average 

of 3.8 years on renal replacement therapy before kidney transplantation (20). Dialysis patients 

have a five year survival rate that is anywhere from 13% to 60% lower than the general age-

matched population (21). The demand for a new kidney continues to outweigh availability; in 
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2018, 40% of Canadians on the transplant waiting list received a new kidney, and 2% died 

waiting (18, 20).  

An overwhelming majority of patients who receive treatment for ESRD are citizens of 

affluent countries and have access to universal healthcare (22). Because of the substantial costs 

associated with renal replacement therapies, poorer countries cannot accommodate treatment for 

as many people. Developing countries, such as China and India, with an increasingly elderly 

population are projected to have a disproportionate increase in the number of ESRD cases, a 

trend which will augment if the increase in prevalence of hypertension and diabetes continues 

(19).  

The primary etiologies of ESRD differ between adults and children, and, for the former, 

the most frequent cause is diabetic nephropathy. Additionally, ESRD can be attributed to 

hypertension, autosomal dominant polycystic kidney, and chronic glomerulosclerosis. In 

children, common causes of ESRD include focal segmental glomerulosclerosis, renal dysplasia, 

obstructive uropathy, and reflux nephropathy (23).  

Kidney transplantation is the preferred treatment for ESRD, as transplant recipients have 

reduced mortality, cardiovascular events, and better self-reported quality of life when compared 

with dialysis patients (24). However, transplant surgery is limited by the scarcity of donor 

organs.  

1.3 Renal Replacement Therapies 

The primary objective of all renal replacement therapies are to substitute the functions of 

a normal kidney: expulsion of nitrogenous wastes, electrolyte concentration homeostasis, and 

regulation of extracellular volume. There are two general subcategories of renal replacement 

therapy, hemodialysis (HD) and peritoneal dialysis (PD). HD uses an external machine as a 
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semipermeable membrane (the dialyser) to allow ion exchange between the patient’s blood and 

the dialysate. Through diffusion, blood biochemistry can be altered toward that of the dialysate. 

Compared with HD, PD is a much simpler technique that uses the peritoneal membrane as a 

semipermeable membrane and circumvents the need for an external machine (2).  

Both dialysis modalities can be administered as intermittent or continuous therapies. 

Comparisons between intermittent and continuous therapies are made by measuring urea 

clearance, a surrogate marker of the total therapeutic dosage administered, and differs from 

assessment of native renal function, which uses creatinine clearance (25). Clinical decisions 

between the use of peritoneal or hemo-based renal replacement therapy involve several 

considerations: patient-dependent factors, treatment goals, location of treatment, and healthcare 

resources (25). In 2004, more than 1.3 million people worldwide were receiving dialysis 

treatment with 89% using hemo-based modalities (26). Contrastingly, PD appears to be the more 

prevalent treatment type in Asian countries, likely attributable to its relative ease and cost 

efficiency (27-29). Home dialysis therapy, such as PD or home HD, are favourable because these 

treatment options are dramatically less disruptive to patients’ lives and have comparable clinical 

outcomes to in-centre dialysis (30). However, across the world, the majority of ESRD patients 

continue to be treated with in-hospital HD (31).  

The survival rate of dialysis patients in Japan is far superior than other countries. Patients 

who began dialysis treatment between 2004 to 2008 had an unadjusted 5-year survival rate of 

60%, 41%, or 39% in Japan, Europe, and the United States, respectively (17, 32, 33). Across 

Europe and North America, Caucasians have the shortest (adjusted) dialysis survival rate (17, 34, 

35). The international disparities in dialysis survival are not completely understood, but can be 

partially explained by variations in patient characteristics as well as in the national prevalence of 
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cardiovascular and all-cause mortality (36, 37). To some extent, these variations are also 

attributed to modifiable differences in clinical practice (31).  

Chronic HD patients are prone to high mortality rates in the first few months following 

treatment initiation (38-40). Early referral to a specialist is associated with better outcomes in the 

introductory dialysis period, including improved patient preparedness, experience, and survival. 

Starting dialysis earlier, i.e., in patients with better kidney function, has not resulted in 

demonstrable benefits (41-43). When a patient experiences irretrievable and permanent loss of 

renal function, long-term dialysis treatment ensues; this occurrence is referred to as the initiation 

of maintenance dialysis. When clinicians make decisions about the start of maintenance dialysis, 

considering patient preparedness in addition to estimated GFR (eGFR) may reduce needlessly 

early treatment and improve patient outcomes (44). 

For ESRD patients treated with renal replacement therapy, both adequate nutrition and 

sufficient dialysis are needed to reduce morbidity and mortality (2). If residual renal function 

declines to zero, PD inadequacy can become an issue. Inadequacy may also result from long-

term PD treatment because of diminished peritoneal membrane efficiency in transporting waste 

products, fluid, and electrolytes (2). 

Dialysis efficiency is characterized by adequate biochemical change and depends on 

blood flow, dialysate flow, and the dialysis membrane surface area. Contrastingly, dialysis 

efficacy can be evaluated by calculating urea kinetics, which requires measurements of the 

residual renal urea clearance, the rate of increase of urea concentration between dialysis sessions, 

and the reduction in urea concentration during dialysis. Kt/V (where K is the dialyser clearance, t 

is the duration of dialysis in minutes, and V is the urea distribution volume estimated as total 

body water) is a clinical metric used as an assessment tool for dialysis adequacy (2). Clinical 
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guidelines, published by the National Kidney Foundation, recommend a Kt/V of 1.2 per session 

as the minimum threshold required for well-nourished adult patients hemo-dialysed three times 

per week. For peritoneal dialysis in adults, a minimum weekly Kt/V of 1.7 (and 1.8 for children) 

is considered adequate (45). As a tool for quantifying dialysis adequacy, Kt/V is by far the most 

researched, but whether it provides an accurate depiction of dialysis effectiveness remains 

unclear (46, 47). Because of operational differences, the immediate clearance for intermittent 

therapy is much higher than continuous therapy, but the efficacy of continuous therapy tends to 

be superior because of extended treatment duration (25). Improvements in Kt/V can be achieved 

through increases in dialyzer size or flow rate, or by prolonging the dialysis session; however, 

the existence of a dose-response relationship between Kt/V and patient outcomes appears 

unlikely (2, 31, 48).  

In addition to dialysis efficiency, dialysis session duration is also a probable contributor 

to HD outcomes. As an intermittent treatment, HD is not a perfect replacement of innate kidney 

function, and multiple strategies are implemented to prolong treatment either by session duration, 

frequency, or a combination of both. Most clinicians believe longer treatment time provides 

benefits beyond Kt/V, such as improved clearance of so called middle molecules (uremic toxins 

larger than urea) and removal of fluid volume with concurrent reduction in hemodynamic 

instability (31). However, these perceived benefits lack conclusive evidence (49). When 

compared with shorter sessions, prolonged dialysis sessions are correlated with longer patient 

survival and better volume management, blood pressure levels, and phosphorus levels (50-52). 

These trends have led to increased session lengths for patients receiving in-hospital dialysis 

treatment in high income countries (53). Individuals undergoing thrice weekly dialysis are at an 
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increased risk of complications and mortality because of the weekly extended gap (a two-day 

interval) between sessions (54, 55). 

Dialysis is a life-saving treatment for patients with kidney failure, but remains expensive, 

intrusive, and physiologically limited —many uremic toxins are not sufficiently cleared. Clinical 

focus should be aimed toward improvements in experience through increased access to kidney 

transplantation, patient education on dialysis modalities, rehabilitation of malnourished patients, 

and aligning clinical decision making with patient and familial desires (31). 

In contrast, transplantation completely compensates for innate kidney function and is the 

current gold-standard for treatment of kidney failure. Unfortunately, organ availability is 

severely restricted, and, as a result, millions of ESRD patients worldwide must commence with 

dialysis treatment. Although renal replacement therapy can successfully clear the majority of 

solutes, there are several treatment limitations. Dialysis therapy requires a substantial volume of 

fluid to function effectively, which involves tethering to stationary fluid and power sources. 

Renal replacement therapy does not account for the other responsibilities of the kidney, such as 

the intricate modulation of solute concentration as well as metabolic and endocrine functions 

(25). Advancements in artificial kidney research are attempting to address these pressing issues, 

but feasible devices are years away from fruition (56).  

1.4 Renal Transplantation  

1.4.1 General epidemiology 

Ultimately, a kidney transplant is the best treatment option for patients with ESRD. 

Kidney transplantation is the superior type of renal replacement therapy as patients with a 

successful transplant have far better survival than patients undergoing dialysis (57). When 

compared to patients who remained on renal replacement therapies, those transplanted with a 
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deceased donor organ achieved additional survival of between 6 months and more than three 

years, irrespective of the presence of comorbidities at the time of transplantation (58). Another 

large national study, which utilized data from the United States Renal Data System, 

demonstrated that the average increase in life expectancy of transplant recipients was 9.8 years 

when compared to their dialysis equivalents. The magnitude of increased life expectancy 

decreases in older recipients and recipients with preexisting comorbid conditions (59).  

The major caveat of transplantation is that the demand for healthy viable organs greatly 

exceeds the supply. Therefore, transplant research is essential to ensure donor organs are utilized 

as optimally as possible because of their value and scarcity. Kidney transplantation allows 

patients to regain a sense of normalcy as it imposes the fewest restrictions on daily life. 

However, they are still burdened by the effects of being an immunocompromised population and 

the importance of medication adherence (2).  

Access to and treatment with kidney transplantation is highly varied between countries. 

For example, in 2013, transplantation rates in some Asian and Eastern European countries were 

less than 10%, but greater than 50% in Nordic countries. Interestingly, the countries with the 

highest proportion of renal transplants have some of the lowest incidence rates of ESRD, which 

suggests that efforts to abate CKD progression may have additional benefits, i.e., result in a 

higher proportion of patients who receive kidney transplants (31).  

The optimal time for a pre-emptive transplant is a contentious issue, as clinicians must 

contemplate the benefits of dialysis avoidance against the detriments of early exposure to chronic 

immunosuppression. Until recently, studies in the pediatric population have not demonstrated 

substantive benefits of pre-emptive transplantation; nonetheless, a recent nationwide study of 

pediatric patients with ESRD demonstrated that it does appear to confer a survival advantage, 
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especially when compared to children who have been on dialysis for more than one year. 

Children treated with dialysis for more than one year had a 52% higher risk of graft failure in the 

first five years post-transplant than those who underwent transplantation pre-emptively. 

Furthermore, patients on dialysis for more than 18 months had an 89% higher risk of death, 

regardless of donor type (60). 

Immunosuppressive medication is compulsory for all transplants to avert graft rejection. 

The only exception are transplants performed with a donor that is a perfect genetic match, i.e., an 

identical twin. Patients must continue with immunosuppressive treatment for as long as the 

allograft remains in place (2). Indeed, short-term graft survival has improved immensely in the 

past 25 years with increasingly sophisticated assessment of donor-recipient compatibility and 

immunosuppressive regimens as well as improvements in surgical techniques; however, long-

term allograft survival has failed to follow suit. The estimated half-life of a kidney graft is 9 

years with a deceased donor, and slightly increases to 12 years with a living donor (61). As 

significant improvements in long-term outcomes remain elusive, new and innovative strategies 

are warranted.  

1.4.2 Factors known to affect transplant success  

Donor-recipient HLA matching 

The Human Leukocyte Antigen (HLA) complex is an important determinant of 

transplantation outcome, specifically the degree of HLA matching between donor and recipient. 

Overall, better HLA matching reduces the risk of rejection thereby improving allograft survival 

(62). The reason being mismatched (foreign) donor HLA antigens elicit an intensive alloimmune 

response, and the epitopes of donor HLA antigens are primary targets.  
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HLA typing for the A, B, and DR loci is widespread as mismatches against these antigens 

have well-known detrimental effects on graft outcome (2). For example, mismatches at the DR 

locus increase the risk of early acute rejection (63). The clinical relevance of the DQ locus has 

gained recent attention (64, 65).  

Sensitive cross-matching techniques are used to screen patients before surgery for the 

existence of donor-specific antibodies (DSA), which can result from previous blood transfusions, 

pregnancy or miscarriage, or previous transplants. Highly sensitized patients can undergo 

antibody removal and immunosuppressive treatment before transplantation; however, this cohort 

has an increased risk of infection and developing chronic antibody-mediated rejection (66).   

Because of the resulting anti-HLA sensitization, HLA mismatches severely hinder the 

success of subsequent transplants. This is of concern, specifically for younger patients, as they 

will almost certainly require re-transplantation during their lifespan; therefore, maximizing 

donor-recipient histocompatibility matching is especially critical for this subset of patients (67).  

Another, more recent strategy, involves assessment of donor-recipient compatibility at 

the structural level using epitope data. Eplets are polymorphic amino acid residues (i.e., 

functional epitopes), and the amount of donor-recipient eplet mismatch can be calculated by 

computer programs. The prevailing thought is that mismatched functional epitopes provide better 

prognostic value for future development of anti-donor HLA antibodies than standard HLA loci 

typing (68). Epitope matching is a more sensitive method of identifying compatible donors for 

sensitized patients (69). Eplet matching for HLA-DR, -DQ, and -DP loci may soon be integrated 

into routine clinical practice with the use of computer programs like HLAMatchmaker. Epitope 

matching is a novel approach that can potentially improve graft outcomes by reducing the 

incidence of de novo DSA (dnDSA) development (70).  
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Donor kidney 

Kidney transplantation can occur with either a cadaveric or living organ donor. In most 

countries, patients who have suffered irreversible brain damaged (deemed as ‘brainstem death’) 

are eligible for organ donation. Organ shortage is a widespread problem worldwide, and the 

number of people requiring new organs continues to rise; therefore, countries are increasingly 

allowing organ retrieval after cardiac death. Donation after cardiac death has comparable results 

to organ donation after brain death (2). Another increasingly accepted practice is donation from 

expanded criteria donors. 

Transplantation with an organ derived from a living donor is highly favourable; it 

minimizes the risk of ischemic injury and often results in better long-term graft outcomes (66). 

Living donation may be feasible if a related or unrelated person volunteers as a donor. Unrelated 

living donors are acceptable providing there is no use of coercion.  

The quality of the donor organ should be taken into account as it affects the ability to 

respond to stressors as well as organ longevity. When the donor receives intensive care, instances 

of acute tubular damage and inflammation can occur, which correlate with detrimental events 

such as ischemic acute renal failure and delayed graft function (68). The latter has been 

implicated as a substantial risk factor for graft loss (71). Niemann and colleagues demonstrated 

that the occurrence of delayed graft function can be diminished by subjecting the deceased donor 

organ targeted mild hypothermia prior to transplantation (72). Peri-transplant stress associated 

with deceased donor organs can be greatly reduced with optimum post-operative care, pulsatile 

ex-vivo machine perfusion, rapid organ transfer, and prompt implantation (66, 73). 

Long-term graft outcomes are unequivocally impacted by the quality of the donor organ, 

primarily donor age. Older donors may have pre-existing kidney lesions, which cannot be 
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reversed and negatively affect the response to stressors (2). Approximately 3% of transplantation 

surgeries result in primary nonfunction (74).   

Immunosuppression  

All transplanted patients, apart from those receiving an organ from an HLA identical 

donor, must undergo treatment with immunosuppression medication to mitigate graft rejection. 

The risk of rejection is highest in the first three months post-surgery (2). The conventional 

immunosuppressive regimen encompasses a calcineurin inhibitor (CNI), an antiproliferative 

agent, and corticosteroids (75). There are two readily used CNIs: tacrolimus and cyclosporine. 

The use of tacrolimus is more extensive, and it’s generally regarded as the superior 

immunosuppressant (75). However, various factors affect CNI selection, and, under certain 

circumstances, the use of cyclosporine is more appropriate. Each CNI is associated with a 

distinct set of side effects and both present efficacy issues —particularly apparent when 

examining the frequency of dnDSA development (68).   

All patients undergo peri-transplant induction immunosuppression therapy (either with an 

interleukin 2 blocker or anti-thymocyte globulin) to prevent early acute rejection (76). Post-

transplantation, immunosuppressive doses are initially high but are eventually tapered to a lower 

maintenance dose, usually within the first year.  

1.4.3 Graft outcomes 

Transplantation triggers a defensive response from the recipient’s immune system in 

reaction to the detection of foreign donor antigens. This alloimmune response is inevitable, and 

remains the primary obstacle for graft survival. If it is left unchecked, the resulting rejection 

leads to graft destruction. However, graft loss can be mediated by both immunological and non-

immunological mechanisms. Rejection can be subcategorized temporally as hyperacute (occurs 
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within minutes), acute (occurs within days to weeks), late acute (occurs after three months), or 

chronic (occurs after months or years) or by pathophysiological criterion such as cellular, 

vascular, or humoral (77). Rejection diagnoses often combine both terminology groupings (e.g. 

chronic antibody-mediated rejection). Rejection can be further classified by additional 

characteristics such as severity (with use of Banff criterion)(78), treatment receptiveness, and the 

presence or absence of symptomatic renal dysfunction (77).   

The donor kidney is exposed to immunological stressors even before transplantation, 

through the systemic effects of donor brain death or perioperative ischemia-reperfusion injury. A 

consequence of ischemia-reperfusion is increased HLA antigen expression in the graft. HLA up-

regulation leads to the release of chemokines, proinflammatory cytokines, and adhesion 

molecules which, in turn, intensify the recipient immune response and cellular graft infiltration, 

increasing the risk of subsequent rejection (79, 80).  

The effect of immune-mediated graft injury can be influenced by multiple factors such as 

severity, timing, persistence, and histologic pathology (66). These variables influence therapeutic 

responses.  

1.4.4 Rejection types 

Acute rejection  

Acute rejection (AR), characterized by a decline in renal function, usually develops in the 

first few months post-transplant in anywhere from 10 to 30 percent of patients (2). AR is 

clinically confirmed with a renal biopsy, as rejection varies in type (cellular, vascular, or 

humoral) and severity (81). Both arms of the immune system (innate and adaptive) are involved 

in early AR. When AR is detected by the presence of histological changes on surveillance 

biopsy, but there are no accompanying clinical signs or symptoms, it is termed subclinical AR. 
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Rejection origin can be defined as either cellular (T-cell mediated) or humoral (antibody-

mediated); however, the cause of AR can be mixed (i.e., both cellular and humoral in origin)(81).  

Because late AR often manifests as a severe rejection episode, it can prove difficult to 

reverse, and leaves the patient at an increased risk of subsequent graft failure. Late AR is 

characterized by active inflammation and tubulointerstitial damage, and may also be 

accompanied by the presence of graft-directed antibodies (82). It can develop as a result of an 

aggressive alloimmune response to the graft, for example, in patients who are not 

immunologically well-matched. Patients with attenuated immunosuppressive regimens (either 

due to cancer, prior severe infection, or non-adherence) are also at risk (77).  

There are several factors associated with AR events that may negatively influence long-

term graft outcomes: more than one rejection episode within the first 3 months after 

transplantation, vascular or humoral rejection, delayed graft function (defined by return to 

dialysis in the first week post-transplant), and failure to return to nadir creatinine levels (<130 

mol/L)(2).   

Chronic rejection  

Chronic rejection (CR) represents a form of unabated immune injury to the graft and is 

likely a result of insufficient immunosuppression, leading to uncontrolled anti-graft lymphocytes 

or antibodies. The characteristic feature of CR is a gradual decline in renal function. It can be 

accompanied by interstitial-infiltrating T cells and macrophages or T cell invasion of the renal 

parenchyma (77). Contrastingly, chronic antibody-mediated rejection is caused by pre-existing 

DSA or newly formed (after transplantation) DSA and is often coincided by characteristic 

deposits on the capillary endothelium (83). 
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T cell-mediated rejection (TCMR)  

The treatment, management, and prevention of T cell-mediated rejection (TCMR) has 

improved tremendously over the past two decades and translated to sustained improvement in 

short-term graft survival. Cellular rejection most commonly manifests as a form of AR. 

Mechanistically, T cell-mediated injury begins when donor antigens appear on antigen 

presenting cells (APCs) and are presented to recipient T lymphocytes (77).  

Donor antigens from immature graft-derived dendritic cells mature into APCs and are 

present within the graft environment, but also home to lymphoid organs where they activate 

recipient T cells (84). Activated T cells then differentiate into distinct subtypes, proceed to the 

allograft, and mediate the destruction of the transplanted organ. T lymphocytes can sense 

alloantigens both directly (via donor APCs) and indirectly (via recipient APCs) (85). Eventually 

donor APCs will disappear, and the indirect pathway becomes the primary source of long-term 

cell-mediated injury to the allograft (86).  

Through the use of adhesion molecules, T cells tether the endothelium and, in a process 

called diapedesis, cross the peritubular capillaries to enter the allograft (79). T cells mediate graft 

injury three-fold: direct contact with tubular epithelial cells, the effects of cytokines released into 

the local milieu, and activation of inflammatory or vascular endothelial cells. Cytotoxic T cells 

release perforin and granzymes (A and B) which mediate apoptosis in targeted graft cells (87). 

Conversely, T helper cells mediate graft injury by secretion of tumor necrosis factor (TNF) α and 

β, causing apoptotic cell death (88). 

When T cells invade renal tubule cells and proliferate within the interstitial space, it 

causes tubulitis —a typical histologic feature of an AR episode. These T lymphocytes secrete 

inflammatory cytokines which elicit chemokine production from tubular epithelial cells. 
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Chemokines then perpetrate a positive feedback loop by attracting more T cells to the allograft 

(89). Injured tubular cells can undergo epithelial-mesenchymal transition and cause interstitial 

fibrosis (90). Tubular epithelial cell death and basement membrane rupture can result in tubular 

atrophy and graft dysfunction (91).  

Corticosteroid administration is the standard initial treatment for an episode of acute 

cellular rejection (81). However, cellular rejection can be recurrent or steroid-resistant. These 

rejection types respond better to treatment with polyclonal or monoclonal anti-T cell antibodies. 

Moreover, increases to immunosuppression dosage after a bout of acute cellular rejection may 

help prevent future rejection episodes (81).   

Antibody-mediated rejection (ABMR) 

Humoral rejection most commonly manifests as a result of antibodies directed against 

HLA molecules. Discovering the destructive potential of anti-HLA alloantibodies and their 

intrinsic link to antibody-mediated rejection (ABMR) has revolutionized the field of transplant 

medicine. The past decade has yielded scientific breakthroughs that have shifted our fundamental 

understanding of chronically failing allografts. Donor-specific anti-HLA antibodies have become 

increasingly accepted as the primary mediators of the chronic deterioration of grafts (92). This 

notion completely opposes the historical dogma that primarily attributed such allograft losses to 

CNI toxicity or chronic allograft nephropathy. In addition, rejection has been traditionally 

considered as a process predominantly mediated by T-cells –a rejection type in which clinical 

treatment and management has improved tremendously. Now, we recognize that current 

immunosuppressive protocols inadequately regulate humoral immunity, resulting in renal 

dysfunction and subsequent graft loss (93-95). 
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The development of ABMR occurs early and continuously, cycling between intervals of 

injury and repair. This process eventually results in the gradual deterioration of renal function 

and leads to graft loss. ABMR is identified by the presence of histological changes caused by 

circulating DSA and diagnosed by renal biopsy (81). DSAs can be found prior to surgery or 

emerge de novo post-transplantation, and not all DSAs are equally pathogenic. For example, 

dnDSA are predominately directed against class II HLA molecules, and class II DSAs are 

regarded as more harmful than class I (96). The incidence of dnDSA has been estimated to range 

anywhere from 10-35% in the renal transplant population (96-99). In a recent clinical trial, just 

under 40% of DSA-positive patients were also diagnosed with biopsy-proven ABMR (97). The 

presence of circulating dnDSA can be detected before full-blown rejection is diagnosed (100-

102). Therefore, some postulate dnDSA represents a mechanism of sustained graft injury (98).  

Circulating DSAs can bind to HLA antigens, or other targets on the graft endothelium, 

and initiate graft injury. The level of DSA pathogenicity may also be influenced by the heavy 

chain isotype. Complement activating DSAs lead to the rapid initiation of the classical pathway, 

and injury resulting from this process usually leads to swift allograft loss (103). Endothelial cell 

binding DSAs induce cell proliferation or antibody-dependent cell-mediated cytotoxicity 

(ADCC), processes which result in chronic graft injury that mechanistically occurs via natural 

killer cells (104, 105). The lesions that result from DSA-activated pathways can cause permanent 

damage that eventually compromises graft function (92).  

ABMR is considered to be a dynamic and continuous process of injury and repair. It 

should be regarded as a term that encompasses a collection of diseases with varying pathologies, 

which are often accompanied by the detection of circulating DSA (92). Peritubular capillary 
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deposition of C4d —an inactive by-product of the classical complement pathway— functions as 

a universal marker of active ABMR (106, 107).  

With the advent of modern therapeutics, there are multiple interventions that can be used 

to successfully reverse episodes of AR. However, none of these address the root cause, and 

antibody-secreting plasma cells can still be found in the spleen and bone marrow of patients, i.e., 

DSAs may remain detectable in circulation (108). These DSAs can lead to a slow-progressing 

form of antibody-mediated injury indicated by signs such as persistent glomerulitis as well as 

peritubular capillary inflammation and C4d deposition. Moreover, individuals who develop 

dnDSAs often have a more indolent form of antibody-mediated graft injury that occurs without 

AR episodes, sometimes termed subclinical or indolent ABMR (109, 110). 

A surveillance biopsy study conducted over the first post-transplantation year revealed  

substantial and multidirectional variations in humoral immunity as evidenced by oscillating 

DSA, Cd4 deposition, and glomerulitis scores (111). The data presented by studies such as this 

one support a continuum-based theory for explaining the natural progression of chronic ABMR 

(112). Therefore, graft injury resulting from a singular episode of ABMR is improbable; instead, 

it appears to manifest in a dynamic manner, most likely in the initial post-transplant period and 

continues at fluctuating intensities thereafter (92). 

The mainstay of ABMR treatment concentrates on reducing antibodies and inhibiting 

complement activation. For antibody reduction, current therapies are plasma exchange with low-

dose IVIG, high-dose IVIG, and rituximab (113). High-dose IVIG is also used in clinical 

practice for complement inhibition (114, 115).  
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Vascular rejection 

Vascular rejection is characterized by the following histological features: vascular 

infiltrating mononuclear cells, endothelial cell apoptosis, and the production of matrix proteins 

and collagens by fibroblasts. Natural killer cells, anti-MHC antibodies, and interferon- are all 

involved in vessel invasion (77). Usually, vascular rejection is T-cell mediated, as macrophages 

and T cells (both CD4 and CD8) invade the endothelium via activated adhesion molecules 

(ICAM-1 and VCAM). Adhesion molecules are activated by chemokine signalling cascades 

(116). However, a distinctive subtype of vascular rejection that is antibody-mediated has also 

been described (117).  

Vascular rejection is often severe and resistant to therapy with glucocorticoids; 

consequently, standard clinical guidelines recommend treatment with potent anti-lymphocyte 

antibody therapy (e.g. antithymocyte globulin)(75, 81).  

1.4.5 Immunosuppression-related 

CNI toxicity  

The invention of CNIs revolutionized the field of transplantation by significantly 

improving one-year graft survival rates. CNIs are now the cornerstone of transplant 

immunosuppression; unfortunately, they are also nephrotoxic (118).  

With continued medical and pharmacological advancement, clinicians are much better at 

identifying and treating rejection earlier. However, long-term graft loss rates have remained 

largely unchanged for the past two decades, and late graft injury as a result of CNI toxicity is one 

suspected culprit. The presence of characteristic toxicity lesions in renal arteries and tubules 

support this notion (119). Along with evidence from CNI avoidance, dose reduction, and 

early/late withdrawal studies which demonstrate improved renal structure and function (120-
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122). Patients treated with CNIs for non-renal solid organ transplant or autoimmune disease also 

experience renal damage and sometimes progress to renal failure (123). 

Patients with deteriorating graft function from suspected CNI nephrotoxicity, who are at 

low immunological risk, are recommended to withdraw treatment with CNIs and continue 

maintenance immunosuppression with an antiproliferative agent (usually mycophenolate mofetil) 

and corticosteroids (124). Approaches like CNI dose reduction or substitution can be 

implemented for high immunological risk patients experiencing signs of CNI toxicity, alongside 

vigilant rejection monitoring (125).   

Non-adherence 

Medication non-compliance represents a major obstacle in transplant medicine as an 

estimated 23-50% of recipients exhibit non-adherent behaviours such as intermittent omission of 

medication (accidental or deliberate), self-induced dose reductions, avoidance of specific 

medication, or total therapeutic termination (126, 127). Poor compliance substantially increases 

the risk of AR and graft loss, with some estimates suggesting it accounts for 36% of all graft loss 

(126). High intraindividual variance in medication trough level, which suggests the presence of 

non-adherent behaviours, reliably predicts the subsequent development of dnDSA and graft loss 

(128). As a patient progresses further from transplantation (i.e., with increasing time post-

transplant), the likelihood of mediation nonadherence increases (129).  

Individualized strategies which focus specifically on attenuating the medication burden 

(i.e., pill volume) and eliciting positive behavioural changes may assist with improvement of 

compliance levels (130). Educational interventions, such as improving patients’ health literacy 

levels or counselling sessions on adherence to immunosuppressive medications, may be 

beneficial (130). Other interventions that could improve adherence rates and, by extension, graft 
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outcomes include psychosocial support, personalized care planning, and self-monitoring tools 

(68).  

1.4.6 Recurrent glomerular disease 

After kidney transplantation, diseases with glomerular pathophysiology (including 

diabetes) can reoccur and result in subsequent graft loss. Diagnostic indicators of disease 

reoccurrence include proteinuria and hematuria. Recurrent glomerular disease has a 10-year 

incidence rate of 8.4%, which represents the third most frequent cause of late graft rejection, 

succeeding CR and death with a functioning graft (131).  

1.4.7 Death with a functioning graft  

Unfortunately, death with a functioning graft is a possible outcome after transplantation 

and the risk increases with transplant duration (132). Mortality amongst kidney recipients is 

usually attributed to cancer or cardiovascular events. The risk of cardiovascular-related mortality 

is highest in the first three months post-transplant surgery and decreases thereafter (133). The 

incidence of cancer is two- to three-fold higher than the general population, and clinical 

outcomes are often worse (134). Cancer diagnosis is intrinsically tied to chronic 

immunosuppression; both the length and strength of immunosuppression increases cancer risk. 

As an immunocompromised population, these patients often succumb to cancers that are 

associated with viral infections (134). 

1.5 Metabolomics 

As a discipline, metabolomics focuses on the global measurement of small molecules that 

comprise the metabolome —the collection of metabolites found in a living cell or organism— 

and offers the advantages of utilizing high-throughput techniques. In the past two decades, 

metabolomics has garnered increasing recognition in organ transplantation research for its 
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potential to progress the use of personalized medicine and as an appealingly quick and non-

invasive tool. As another ‘omics tool, it provides information complementary to other systems 

biology techniques such as genomics and proteomics (135).  

With advancements in analytical chemistry techniques, it is now possible to measure 

hundreds or thousands of small-molecule metabolites at once (136, 137). Some of these 

metabolites are already integrated into standard clinical monitoring, but the benefit rests in the 

large amount of lesser-known metabolites that can also be quantified (136, 138). The ability to 

measure many metabolites at once provides a more comprehensive depiction on the state of the 

underlying physiological processes (135). Metabolomics has the potential to detect early changes 

in cellular signaling with a high degree of sensitivity and specificity. It is an attractive tool in 

renal transplantation because new advancements could allow for clinical monitoring of drug 

effects and possible graft perturbations before the presence of histological or pathological 

evidence, and enable individualized immunosuppression therapy (139). However, metabolomics 

has not yet made these aspirations feasible.  

Common analytical chemistry techniques used in metabolomics include GC-MS (gas 

chromatography–mass spectrometry), LC-MS (liquid chromatography–mass spectrometry) or 

NMR spectroscopy, with measurements usually performed on biofluids, as opposed to tissues 

(135). The rationalization being that a biofluid produced by or surrounding an organ will provide 

high-caliber information about its physiological state (135). Cells communicate with biofluid by 

direct and indirect (via extracellular fluid) mechanisms. Cellular products, such as metabolites, 

can enter various biofluids via membrane diffusion or vesicle-mediated transport, and, as a part 

of cell-death processes, cells release their contents into biofluids. Therefore, the justification is 

that, to a certain extent, biofluids can represent the biochemical changes of cells and organs. 
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These changes, if mechanistically sound, may provide prognostic value and become a utilizable 

biomarker (139).   

Blood is a particularly attractive biofluid because metabolite perturbations are easily 

detected; however, these changes are not easily traceable to one specific cause or organ. Blood is 

an ambiguous biofluid and likely more reflective of systemic physiology. Small molecules can 

travel freely via the circulatory system. A continued challenge is the difficulty of rationalizing 

the source and cause of these metabolite signals, and parsing out the consequential from the 

inconsequential changes (135). 

Metabolites reflect changes occurring at multiple levels, molecule, cell, tissue, and organ, 

and are closely intertwined with genomic, proteomic, immune, and environmental systems. 

Therefore, to further advancements on graft injury and rejection, or risk-stratification, the field 

will require multidisciplinary input and cooperation. Nonetheless, metabolomics is an exciting 

and promising tool in renal transplantation. It offers a unique perspective that may improve our 

understanding of the intricate processes involved in allograft injury and rejection (135).  

Graft injury and subsequent rejection is a highly complex and multidimensional process; 

therefore, determining cause-effect associations between chemical markers and disease can be 

difficult. Furthermore, a newly established biomarker can only be of value if it can feasibly 

integrate into clinical practice. Current heavily relied upon clinical markers, such as creatinine, 

are sub-optimal because changes are only detected with advance kidney injury. This is 

problematic as interventions may be less effective or permanent injury may have already taken 

place (140). Molecular signatures confer more information than measurement of a single 

parameter as the latter will never be able to capture the complete intricacies involved in kidney 

function (139).  
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Translational transplant research is predominately focused on the development of new 

strategies that improve long-term allograft survival (66); ‘omics technologies are highly 

attractive and create new opportunities (141). In renal transplantation, research has previously 

focused on metabolomics as a tool for biomarker development as a prognostic indicator of donor 

organ injury, post-transplantation function, renal dysfunction, AR and subclinical rejection (142-

146).  

The development of disease can be categorically separated by genetic predisposition, a 

biochemical stage, and a symptomatic stage (147, 148). Current diagnostic tools used in post-

transplant management include clinical indicators (e.g. creatinine) and histological assessment in 

the form of invasive renal biopsies. Both tools detect disease occurrence in the symptomatic 

stage when the injury is too progressive and no longer fully reversible. Molecular markers 

derived from metabolic patterns can potentially identify changes in the biochemical phase where 

pathological consequences are not yet permanent (147, 148). Therefore, diagnostic strategies 

based on metabolite panels may result in significant advancements in the areas of preventative 

and personalized transplant medicine.  

‘Omics technologies can accommodate both non-targeted and targeted analyses. A non-

targeted approach can be advantageous because it captures unfiltered and nonbiased data; 

however, the specific chemical compounds that constitute the recorded signal are often unknown 

(139). Contrastingly, a targeted approach incorporates multi-analyte assays that measure known 

compounds, and is advantageous because the results can be better interpreted (139). However, 

this approach may be inherently biased because only select compounds are measured.  

There are various other known factors that can introduce bias into metabolomic studies: 

timing of sample collection, sample collection procedure, sample processing, stability and 
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storage, extraction procedures, dilution of sample, analytical method used (LC-MS versus GC-

MS), assay sensitivity, reliable range of response, etc. (149). One common consideration in 

metabolomics is how to address the variable to observation ratio, often the number of 

metabolites greatly exceeds observations. A substantial portion of the data generated does not 

directly relate to the disease process and will not convey valuable information. The large 

variation in the informativeness of each metabolite tends to make metabolomic data quite noisy 

(139). In general, metabolites tend to be more complex and heterogeneous than genes and 

proteins. As a result, classical statistical approaches are insufficient. The statistical methods in 

metabolomic studies usually utilize algorithms developed for data reduction and filtering, 

controlling false discovery rate, and high-dimensional modelling (150, 151).   

Metabolomic studies frequently use multivariate classifiers to explore the likelihood of 

differentiating disease states by their metabolite profiles. Data collected for such studies are highly 

dimensional and correlated, making traditional sample size calculations difficult to perform. Ideally, 

pilot data are generated to provide conclusive sample size calculations. Specifically, the data are subject 

to the same analysis plan proposed for the formal study, but supplemented with bootstrapping methods. 

Nevertheless, preliminary data are often unavailable. 

Recently, a simulation study with targeted false discovery rates (FDR) has proposed estimates 

for adequate sample sizes in metabolomics: if the FDR=0.05 and 300 metabolites are analyzed with the 

assumption that 20% of analytes will differ (p <0.05) between groups, a study will require a minimum of 

15 samples per group (152). However, it is important to consider this caveat: the suggestion was 

developed under a specific analysis model, probabilistic principal component analysis (PPCA). As a 

general guideline, experienced investigators often cite that 25-30 samples are required in each 

phenotypic class to develop a robust multivariate classifier. 
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Historically, and in the context of renal transplantation research, metabolomics has not 

received as much attention as genomics or proteomics, which might be attributed to the 

complexity of metabolomic assays (139). The metabolome includes molecules with a wide range 

of physicochemical profiles; analyte analysis often requires the combination of multiple assays 

(149, 153). For successful implementation into routine clinical care multiple criteria must be 

considered: realistic sample collection and handling procedures, practical and validated 

bioanalytical methods, and general health economics (154).  

Single-compound surrogate markers are unable to sufficiently monitor a complex organ 

such as the kidney. However, non-targeted profiling cannot be feasibly translated into the clinic 

because of the requirement for complex analyses and software tools (139). Ideally, combinatorial 

biomarker patterns, consisting of 5-15 individual parameters, will provide more comprehensive 

information, and be superior both in specificity and sensitivity.  

1.6 Hypothesis and Objectives  

In both studies, we utilize metabolomic techniques to investigate the viability of 

identifying patients pre-transplant who may be at a higher risk of later experiencing adverse 

graft-related events. 

In Chapter 2, the oxythiamine study, we hypothesized that surgical stress and ischemia-

reperfusion injury may precipitate functional thiamine deficiency with oxythiamine toxicity post-

operatively in children. 

Aim 1: Determine the levels of serum oxythiamine and thiamine in pediatric patients with pre-

kidney transplant samples and the association with clinical signs of functional thiamine 

deficiency immediately post-transplant. 
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Aim 2: Test the association of oxythiamine levels with dialysis adequacy or kidney function in 

the same patients pre-transplant. 

In Chapter 3, the adult metabolomics study, we hypothesized that differences in the host 

metabolome at transplantation directly influence early alloimmune differentiation and are 

associated with post-transplant alloimmune outcomes in transplant recipients. 

Aim: To determine whether we can characterize differences in the pre-transplant serum 

metabolome (metabotypes) of transplant recipients associated with chronic rejection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

Chapter 2: 

Investigating oxythiamine levels in children undergoing kidney transplantation and the risk of 

immediate post-operative metabolic and hemodynamic decompensation 

2.1 Introduction  

In CKD, waste products of metabolism accumulate as renal clearance declines. When 

waste products reach harmful concentrations with progression to end-stage kidney failure, they 

are considered as uremic toxins. Uremic toxins are defined by their ability to negatively interfere 

with biological functions, a common example being antimetabolites. Antimetabolites are 

molecules that interfere with normal cellular metabolic processes, usually by binding to 

metabolic enzymes (155).  

Oxythiamine is one such antimetabolite that antagonizes the coenzyme thiamine (156). 

Thiamine is a water-soluble B vitamin important in normal cellular metabolism. Usually, 

thiamine is pyrophosphorylated into thiamine pyrophosphate (TPP) for use at many points in 

intermediary metabolism, including the pentose phosphate pathway, branched chain amino acid 

metabolism, glycolysis, and the citric acid cycle (157, 158). In uremia, oxythiamine binds to 

TPP-dependent enzymes in its pyrophosphorylated form as oxythiamine pyrophosphate (OTPP) 

(156, 159). Oxythiamine decreases the retention of thiamine in tissues and the activity of TPP-

dependent enzymes, along with increasing the rate of TPP dephosphorylation (159-165). 

Coupled with evidence that CKD is associated with a multi-organ decrease in thiamine 

transporters, the pre-transplant metabolic environment may predispose a patient to functional 

thiamine deficiency (165-168). When precipitated by an acute metabolic stress, functional 

thiamine deficiency can manifest clinically as Beriberi syndrome, a state of cardiovascular 
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collapse and metabolic acidosis (169). The negative effects of oxythiamine accumulation can be 

reversed in the short term by administration of high-dose thiamine to outcompete OTPP (159). 

Thiamine is essential for cellular regeneration of not only ATP, but also glutathione 

(GSH), the latter functioning as a necessary anti-oxidant. A compulsory aspect of transplantation 

is reperfusion, which allows for tissue reoxygenation and return to aerobic respiration. A 

consequence of reperfusion is the rapid generation of reactive oxygen species (ROS) in ischemic 

tissues. Under normal conditions, mitochondria produce superoxide as a by-product of oxidative 

phosphorylation, which will eventually be reduced to water and simultaneously oxidizes GSH to 

glutathione disulfide (GSSG). Requirements for regeneration of ATP and GSH from ADP and 

GSSG respectively are particularly important during reperfusion to protect against harmful 

events, such as acute cell swelling and production of ROS (170). 

Thiamine deficiency can lead to two different clinical syndromes: beriberi and Wernicke- 

Korsakoff. Beriberi can be further classified into either “dry” or “wet”, which are distinguished 

by neurologic (dry beriberi) or cardiac (wet beriberi) symptoms. Additionally, there is a rapidly 

progressing form of cardiac beriberi termed Shoshin beriberi (169). High cardiac output failure, 

oliguria, edema, hyperglycemia, and lactic acidosis are the standard characterizations of thiamine 

deficiency. These clinical manifestations are mainly the result of an inability to utilize the Krebs 

cycle (171).  

Our group previously reported a case of Shoshin Beriberi syndrome, with onset in the 

immediate post-transplant period and presenting with severe lactic acidosis, hyperglycemia, and 

cardiovascular instability typical of thiamine deficiency. It was rapidly reversed after a single 

pharmacologic dose of intravenous thiamine (172). Similar episodes have been reported in adult 

transplant recipients (173, 174). Kidney transplant surgery and ischemia-reperfusion injury are 



 31 

major stressors that may be expected to trigger Beriberi syndrome in susceptible patients. Uremic 

oxythiamine toxicity was suspected, but to date has never been confirmed in such cases. 

Oxythiamine levels are further expected to vary with the severity of uremia. Understanding the 

risk factors for elevated oxythiamine levels pre-transplant could permit anticipation of risk for 

Beriberi syndrome and the opportunity for early intervention with thiamine. 

 Therefore, we hypothesized that surgical stress and ischemia/reperfusion injury may 

precipitate functional thiamine deficiency with oxythiamine toxicity post-operatively. The aims 

of the study were as follows: (1) To determine the levels of serum oxythiamine and thiamine in 

patients with pre-kidney transplant samples and the association with clinical signs of functional 

thiamine deficiency immediately post-transplant; (2) Test the association of oxythiamine levels 

with dialysis adequacy or kidney function in the same patients pre-transplant. 

2.2 Methods  

2.2.1 Patient Population  

All pediatric patients who underwent kidney transplantation at a single tertiary pediatric 

transplant center between January 2013–September 2018 were eligible for inclusion. These 

patients also received chronic kidney disease care pre-transplant at the same institution. Patients 

were excluded if they did not have pre-transplant serum samples available for testing or peri-

operative laboratory and clinical data available for analysis. The study was approved by the 

institutional review board at the University of British Columbia (H18-02704; H16-01140).  

2.2.2 Serum Samples 

Serum samples are routinely collected each month while on the transplant waiting list. In 

cases where residual sample exceeded what was clinically required for future testing, the 

Immunology Laboratory provided a serum aliquot for metabolite analysis. For each patient, the 
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sample closest to the time of transplant was selected for testing. In a subset of patients who had 

available post-surgery samples (between 1–12 months), a follow-up sample was retrieved to 

determine post-transplant oxythiamine and thiamine concentrations, following the normalization 

of kidney function.  

2.2.3 High-performance Liquid Chromatography Tandem Mass Spectrometry (HPLC-MS)  

The ACQUITY UPLC H-Class System and Xevo TQ-S (Waters, Mississauga, ON, 

Canada) instruments were used for all HPLC-MS analyses with a hydrophilic interaction 

chromatography (HILIC) approach operating in a positive-ion, multiple-reaction monitoring 

mode (MRM). The analytical column was a 1.7m particle size, 2.1mm x 50 mm BEH HILIC 

with guard column (Waters, Mississauga, ON, Canada) and the following mobile phases: (A) 

96% acetonitrile (EMD/Millipore, Burlington, MA, USA)/4% H2O with a final concentration of 

10mM ammonium formate, and (B) 10 mM ammonium formate in deionized water (Thermo 

Fisher Scientific, Burnaby, BC, Canada). Both A and B contained 0.05% formic acid (Millipore 

Sigma, Oakville, ON, Canada). All solvents were LC/MS grade. Gradient chromatography was 

employed at a flow rate of 0.3ml/min with initial conditions of 85% A and 15% B held for two 

minutes after injection followed by a gradient to 75% A and 25% B over two minutes and held 

for two minutes, before returning to starting conditions for column stabilization. Column 

temperature was maintained at 30C throughout. Detection was normalized to a 13C-thiamine 

internal standard (Millipore Sigma, Oakville, ON, Canada). To deduce analyte amounts, a linear 

standard curve was constructed (from 0.05 nmol/L to 50 nmol/L ) with a 0.05 nmol/L limit of 

quantitation. Serum samples, previously stored at -80C, were thawed on ice and a 20 l aliquot 

was combined with 10 l of internal standard and 120 l of acetonitrile. The solution was 

vortexed and then centrifuged at 14,000 RCF for ten minutes, the resulting supernatant was 
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injected into the column. The retention times for thiamine and oxythiamine were 4.6 minutes and 

4.0 minutes, respectively, with complete baseline separation between the two compounds. 

Conditions for each compound’s MRM are listed in Table 1.  

2.2.4 Data Collection  

The kidney transplant charts and laboratory record of included patients were reviewed 

retrospectively to extract pertinent information (demographic, clinical, and laboratory data). Data 

sources included documents available in the multi-organ transplant patient charts and clinical 

databases: the solid organ transplant clinical database (REDCap), the Provincial Renal Agency’s 

information system (Patient Records and Outcome Management Information System; PROMIS), 

and BC Children’s Hospital clinical health information system (PowerChart). Twenty-four-hour 

lactate and glucose levels is a time-averaged mean value based on the repeated measurements of 

each substance collected over the first day after transplantation. The effectiveness of dialysis was 

quantified using Kt/V (where K is the dialyzer clearance, t is the duration of dialysis, and V is 

the urea distribution volume), which is a metric commonly used to measure the adequacy of both 

hemodialysis and peritoneal dialysis treatment (45).  

2.2.5 Statistical Analysis  

All statistical analyses were completed in R and results with a p < 0.05 were considered 

statistically significant. Parametric variables are presented as mean (standard deviation (SD)) and 

nonparametric variables are presented as median (interquartile range (IQR)). Descriptive 

statistics were used to describe oxythiamine and thiamine levels. A Wilcox signed rank test was 

conducted to confirm the return of oxythiamine to normal levels post-transplant. Oxythiamine 

levels were tested separately for association with severity of lactic acidosis and hyperglycemia in 

the first 24 hours post-transplant using the Pearson correlation coefficient. The Kolmogorov-
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Smirnov test was performed to assess the normality of the sample distribution. A Kruskal-Wallis 

one-way analysis of variance was performed to compare oxythiamine levels partitioned by 

different dialysis modalities (HD, PD, and no dialysis (CKD)), followed by a post-hoc analysis 

using Dunn’s test with p-values adjusted using the Benjamini-Hochberg method. Patients with a 

weekly Kt/V of < 2 were classified as being poorly dialyzed (45). A Mann-Whitney U test was 

used to compare oxythiamine levels partitioned by dialysis adequacy (Kt/V ≥ 2 or < 2). A 

sensitivity analysis was performed, excluding two high oxythiamine outliers.  

2.3 Results  

A total of 48 patients were eligible for study inclusion. One patient was excluded from 

the analysis for being an extreme outlier. Their post-transplant oxythiamine was 25 nM, over a 

12-fold increase from pre-transplant levels, giving indication of a possible sample or instrument 

error. Of the remaining 47 patients, 43 had pre-transplant serum samples and 37 had follow-up 

post-transplant serum samples available for testing. Relevant baseline cohort characteristics are 

reported in Table 2. The majority of patients were male (68%) with ages ranging from 1 to 19 

years (mean 11.5 years). Most patients were on dialysis at the time of transplant (66%), with 

about twice as many patients on PD than HD. Donor type was approximately equally distributed 

across our study cohort.   

2.3.1 Thiamine and oxythiamine levels before and after transplantation 

Serum oxythiamine levels were not normally distributed amongst our patient cohort (p < 

0.001, Kolmogorov-Smirnov normality test). For the 37 patients who had both pre- and post-

transplant serum samples available for testing, there was a 60% reduction in median oxythiamine 

levels from 0.35 nM (IQR 0.24, 0.58) to 0.14 nM (IQR 0.06, 0.24) pre- and post-transplant, 

respectively (p < 0.001, CI 0.11–0.36, Wilcoxon Signed Rank Test) (Figure 1).  
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2.3.2 Oxythiamine and relation to key symptoms of functional thiamine deficiency  

There was a strong positive association between 24-hour glucose and 24-hour lactate 

levels (Pearson’s r = 0.70, p <0.001). Serum oxythiamine was associated with 24-hour lactate 

levels (Pearson’s r = 0.38, p = 0.02), but not as closely associated with 24-hour glucose levels 

(Pearson’s r = 0.30, p > 0.05) (Figure 2). There were two distinct outliers with high pre-

transplant serum oxythiamine levels (2.03 nM and 2.24 nM), one of which presented post-

transplant with clinically manifest Shoshin beriberi syndrome (2.03 nM). The other did not 

manifest any clinical adverse effect. A sensitivity analysis excluding the two high oxythiamine 

levels indicates that the association with both 24-hour lactate and 24-glucose is driven 

principally by these outliers (Pearson’s r = - 0.13, p = 0.4 and Pearson’s r = 0.09, p = 0.5; 24-

hour lactate and 24-hour glucose, respectively). 

2.3.3 Serum oxythiamine differs by dialysis modality  

Median oxythiamine levels differed by modality, measuring 0.67 nM (IQR 0.31, 0.74), 

0.34 nM (IQR 0.28, 0.56), and 0.25 nM (IQR 0.17, 0.38) for PD, HD and CKD, respectively (p = 

0.05, Kruskal-Wallis Rank Sum Test). Following a post-hoc test, a difference was identified in 

pre-transplant serum oxythiamine levels between the PD and CKD groups (p < 0.05, Dunn’s 

Test for Multiple Comparisons) (Figure 4).  

2.3.4 Serum oxythiamine is associated with dialysis adequacy  

The effectiveness of dialysis was quantified using Kt/V. Patients with a Kt/V < 2 were 

considered poorly dialyzed (45). Serum oxythiamine levels were negatively associated with 

dialysis adequacy (Pearson’s r = -0.44, p = 0.02). Median oxythiamine levels were higher in 

patients with poor dialysis adequacy (0.92 nM (IQR 0.51, 1.01) vs. 0.40 nM (IQR 0.24, 0.51) 

with Kt/V ≥ 2; p <0.01, Mann-Whitney U test) (Figure 4). A sensitivity analysis excluding the 
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two high outliers remained significant for dialysis adequacy (p = 0.03, Mann-Whitney U test). 

Nine of the ten patients with poor dialysis adequacy were on PD, including both outliers. 

2.4 Discussion 

In this study, we were able to confirm that the patient in our pediatric cohort who 

developed Shoshin beriberi syndrome post-surgery had markedly high serum oxythiamine —a 5-

fold increase in comparison to median oxythiamine levels— in the immediate pre-transplant 

period (172). Serum oxythiamine levels were correlated with patients’ lactate levels 24 hours 

after transplant, but patients with more modest elevation did not manifest overt clinical signs of 

functional thiamine deficiency. Patients on peritoneal dialysis were at an increased risk of having 

higher oxythiamine levels, as were patients who had low dialysis adequacy. High oxythiamine 

levels appear, therefore, to be more prevalent in patients where uremic toxins are not being 

cleared as effectively. In our cohort, those were predominately patients on peritoneal dialysis.   

All patients undergoing renal transplantation are supplemented with a multivitamin that 

includes 5 mg of thiamine, suggesting the patient who developed Shoshin beriberi syndrome had 

functional thiamine deficiency with oxythiamine toxicity. To the best of our knowledge, this is 

the first report to confirm oxythiamine toxicity in a child. Similar episodes of presumed 

functional thiamine deficiency have been reported in adult transplant recipients (173, 174). 

Functional thiamine deficiency has been well-documented in ESRD patients and occurs 

mechanistically through the inhibition of transketolase activity by uremic toxins (167, 175). 

Zhang et al. have demonstrated that oxythiamine is directly responsible for transketolase activity 

inhibition (159). Oxythiamine is thought to be primarily of dietary origin, resulting from acidic 

thiamine-rich foodstuffs cooked at high temperature; however, an altered gut microbiome in 

ESRD patients may also be associated with abnormal oxythiamine production (165).  
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Of the two patients with markedly high oxythiamine levels, only one of them manifested 

clinical thiamine deficiency; therefore, high oxythiamine levels alone may not be sufficient to 

precipitate functional thiamine deficiency. After excluding these two cases, we were not able to 

identify a “forme frutste” of oxythiamine toxicity at lower levels of oxythiamine elevation. That 

included identifying milder fluctuations in lactic acidosis and hyperglycemia in the immediate 

peri-operative period that were not strongly associated with the level of oxythiamine pre-

transplant. Thiamine transporters may be downregulated in CKD, which has been previously 

demonstrated in animal models (167). This downregulation would result in impaired vitamin 

absorption and, theoretically, would subject this population to an increased susceptibility for 

oxythiamine toxicity. However, if thiamine absorption is indeed diminished, there would likely 

be interindividual variability and patients may display vastly different levels of impaired 

thiamine absorption. If sufficient levels of the vitamin are still present, thiamine may be able to 

outcompete OTPP and prevent the manifestation of functional thiamine deficiency. In addition, 

the level of surgical stress a patient endures may differ and also impact bodily thiamine supply. 

Critically ill patients who underwent substantial physical stress, such as a major operation, were 

found to have depleted thiamine levels, but the crude difference in B vitamin levels pre- and 

post-surgery varied widely between individuals (176). Interestingly, apart from thiamine, body 

composition may also be an important predictor of post-operative lactate levels (177).  

We identified dialysis adequacy as being strongly associated with oxythiamine levels, 

which aligns with the premise that some ESRD patients are at higher risk for oxythiamine 

toxicity related to the level of  dialysis clearance. Patients on PD were more likely to have low 

adequacy, which included both patients with the highest serum oxythiamine levels. This raises 

the concern that children on PD may be more at risk for oxythiamine toxicity. These findings are 
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in contrast to adult dialysis studies, which identified 15-fold increased oxythiamine levels in 

adult HD patients compared with normal, and 4-fold in adult PD patients (159). These 

differences may be related to the choice of modalities for PD delivery in children compared to 

adults, with use of continuous cycler for PD and more frequent and longer runs for hemodialysis. 

The smaller number of cases with each modality precludes a more in-depth analysis of this 

finding.  

Early allograft kidney injury and hemodynamic instability imperil patient safety, extends 

hospitalization and need for critical care resources, and may negatively impact long-term 

allograft outcome (178-180). Functional thiamine deficiency associated with oxythiamine 

toxicity has only been recently recognized, but is readily amendable to treatment. High-risk 

patients may be identified by the risk factors outlined: those with malnutrition, sub-optimal 

dialysis adequacy, and children who are undergoing peritoneal dialysis. Clinical decompensation 

from functional thiamine deficiency should be considered preventable, since thiamine is a water-

soluble vitamin and generally safe to administer. Patients at high risk could be safely treated with 

high-dose thiamine prior to surgery to prevent serious morbidity post-transplant (172, 173).  

We recognize some limitations posed by this study. Serum samples were used, based on 

their availability retrospectively for analysis, whereas prior analysis in an adult cohort of ESRD 

patients uses plasma samples (159). Internal validity of these measurements was confirmed, 

however, by demonstrating significant decline in serum oxythiamine post-operatively in our 

cohort. Ideally, we would have measured thiamine levels in tandem with oxythiamine. However, 

thiamine is measured by its active form thiamine diphosphate and extracted from erythrocytes, 

requiring whole blood samples that were not available for analysis. Unfortunately, this limited 

our ability to determine on the role of thiamine supplementation in our pediatric cohort. Lastly, it 
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is important to acknowledge that our sample size was limited and presenting with Shoshin 

beriberi syndrome following transplant surgery is a rare phenomenon (169, 172-174). 

Nonetheless, this case series is the first to examine in depth the link between oxythiamine 

toxicity and perioperative risk in pediatric transplant recipients and its relationship with dialysis 

adequacy. 

Thiamine sufficiency is difficult to determine, and clinical testing is not currently a part 

of standard care. However, as previously mentioned, thiamine supplementation is already 

integrated into standard care for kidney transplant patients. Oxythiamine is not a clinically 

available test. Although this study is the biggest to date in children, it does not provide 

conclusive results. A future multi-centre study which identifies patients with high oxythiamine 

levels and randomizes them to treatment with thiamine at the time of transplantation is required. 

In the interim, clinicians should consider pre-emptive treatment for patients who begin to 

manifest early signs of toxicity post-transplant or prophylactic treatment for patients who, as 

identified by this study, could be at higher risk.  

In conclusion, we found that oxythiamine levels are associated with dialysis adequacy at 

transplant. Pediatric patients on PD with no residual kidney function and low dialysis adequacy 

are particularly vulnerable to manifesting high oxythiamine levels. These patients may be at an 

increased risk for developing acute Shoshin beriberi syndrome in the early post-transplant 

period. High dose thiamine supplementation is deserving of consideration as a preventative 

measure for functional thiamine deficiency with oxythiamine toxicity, which may be precipitated 

by the stress endured during transplant surgery and subsequent ischemia-reperfusion injury.  
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2.5 Tables & Figures 

Table 1. MRM conditions by analyte 

Analyte  MRM (m/z) Product Ion (m/z) Cone Voltage (V)  Collision Energy 

(V) 

13C-thiamine 267.9 121.8 25 16 

thiamine 264.9  

 

121.9 25 16 

oxythiamine 266 122.9 32 19 

 

 

Table 2. Baseline characteristics of pediatric cohort at 

transplantation (n=47) 

 

Sex  

Male 32 (68) 

Age at transplant (years)  

Mean (SD) 11.5  5.75 

Etiology  

Non-glomerular disease  32 (68) 

Donor Type    

Living donor 24 (51) 

Modality Type  

Hemodialysis  10 (21) 

Peritoneal Dialysis 21 (45) 

No Dialysis  16 (34) 

Dialysis Length (days)  

Mean (SD) 689  417 

First transplant  44 (94) 

Cold-ischemia time (minutes)  

Mean (SD) 300   258 

Warm-ischemia time (minutes)  

Mean (SD) 29  13 

Variables are expressed as crude numbers (percentages), unless otherwise noted. BMI, body 

mass index 
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Figure. 1 Comparison of serum oxythiamine levels in patients pre- and post-transplant. A total 

of 37 patients had both samples available for testing. There was a 60% reduction in median 

oxythiamine levels from 0.35 nM (IQR 0.24, 0.58) to 0.14 nM (IQR 0.06, 0.24) pre- and post-

transplant, respectively (p < 0.001, CI 0.11–0.36, Wilcoxon Signed Rank Test).  

 

 

 
Figure. 2 Correlation analysis with clinical indicators of functional thiamine deficiency (lactic 

acidosis and hyperglycemia) in pediatric kidney transplant patients. (a) Twenty-four-hour lactate 

and glucose levels were strongly associated (Pearson’s r = 0.70, p <0.001); (b) Serum 

oxythiamine was associated with 24-hour lactate levels (Pearson’s r = 0.38, p = 0.02); (c) 

Oxythiamine levels were not as closely associated with 24-hour glucose levels (Pearson’s r = 

0.30, p = 0.05). 
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Figure. 3 Levels of pre-transplant serum oxythiamine differed when partitioned by dialysis 

modality. Median oxythiamine levels measured 0.67nM (IQR 0.31, 0.74), 0.34nM (IQR 0.28, 

0.56), and 0.25nM (IQR 0.17, 0.38) for PD, HD, and no dialysis, respectively (Kruskal-Wallis 

Rank Sum Test, p < 0.05). Following a post-hoc Dunn’s Test for Multiple Comparisons, a 

difference (p < 0.05) was found between the PD group and the group that did not undergo 

dialysis treatment. 

 
Figure. 4 Levels of pre-transplant serum oxythiamine differed by dialysis adequacy. Adequacy 

was measured using Kt/V. Patients with a Kt/V of below 2 were considered to have poor dialysis 

adequacy. (a) Serum oxythiamine was negatively associated with dialysis adequacy (Pearson’s r 

= -0.44, p = 0.02); (b) Median oxythiamine levels were higher in patients with poor dialysis 

adequacy (0.92nM (IQR 0.51, 1.01) vs. 0.40nM (IQR 0.24, 0.51) with Kt/V ≥ 2 ; Mann-Whitney 

U Test, p < 0.001). 
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Chapter 3: 

Investigating serum immunometabolomic profiles associated with kidney transplant alloimmune 

outcomes 

3.1 Introduction  

Kidney transplantation is the most effective treatment for people with end-stage kidney 

disease. After transplant, the overriding preoccupation of transplant recipients and their 

caregivers is the risk of rejection and subsequent graft failure. Survival of the new organ hinges 

on achieving a state of adapted alloimmune quiescence with strict adherence to a lifelong 

immunosuppressive regimen. A careful balance must be achieved between preventing rejection 

and avoiding adverse consequences of excess immunosuppression, including the risk of 

infection, malignancy, and drug-specific toxicities (181). Despite immunosuppression, the 

emergence of CR in some cases represents fundamentally a failure to achieve stable immune 

adaptation and is heralded by the development of de novo donor-specific HLA antibodies (182). 

The extent of HLA mismatching, instability of immunosuppression exposure and early rejection 

are known to play critical roles, but we lack a clear understanding of the different individual 

patient factors that predisposes some but not others to CR. The challenge is that currently, we 

lack a reliable method to predict individual rejection risk, and to permit patient-specific tailoring 

of immune suppression or rejection monitoring for to those at highest risk. 

We hypothesized that differences in the host metabolic environment (also known as the 

metabolome) at transplantation directly influence early alloimmune differentiation and are 

associated with post-transplant alloimmune outcomes in kidney transplant recipients. The aim of 

this study was to determine whether we can characterize differences in the pre-transplant serum 

metabolome (metabotypes) of transplant recipients associated with CR. 
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What is well known, but poorly understood, is that factors related to host metabolism at the 

time of transplant play a critical role to influence allograft outcome. This includes the 

associations of both prolonged uremia (183, 184) and malnutrition (185) to adversely affect graft 

survival. While uremia and malnutrition result in many diverse derangements of host 

metabolism, very specific changes may also be important. This includes higher levels of free 

fatty acids pre-transplant (186) and non-esterified fatty acids early post-transplant (187) that have 

been associated with substantially improved graft survival. From a genetic and developmental 

perspective, children are at higher risk for developing dnDSA than adults (182, 188), as are 

females (189), which suggests innate differences in alloimmune responsiveness. These many 

gross and subtle differences in metabolism highlight the pivotal role of the host environment at 

the time of kidney engraftment in predisposing the early alloimmune response and T cell 

differentiation toward either adaptation or inflammation. 

Optimal host alloimmune adaptation requires both suppression of effector responses and 

induction of regulatory immune cell phenotypes that together maintain alloimmune quiescence. 

The latter is a dynamic process that is heralded by the expansion of regulatory T cells (Tregs) 

(190, 191). Tregs are important in the resolution of immune activation, and are a suppressive 

subset of CD4+ T cells with characteristic expression of interleukin 2, receptor alpha chain 

CD25, and transcription factor forkhead box protein 3 (FOXP3) (192). The relative balance 

between regulatory and effector T cell responses within the allograft is implicated as a marker of 

graft outcome (193-195). Increased Tregs in circulation (196, 197) and the persistence of 

allograft-infiltrating peripheral Tregs (198) are associated with better long-term graft outcomes.  

The ways in which the host metabolic environment influences early T cell differentiation 

is now better understood. Tregs become functionally specialized in relation to their environment 
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and the local milieu of metabolites is an important modulator of their phenotype and function 

(199, 200). Tregs preferentially utilize fatty acid oxidation (201), in contrast to effector T cells 

(e.g. Th17), which rely heavily on glycolysis (202, 203). While glycolysis inhibition favours 

Treg differentiation (204), lipid metabolism and substrate availability are considered important 

factors regulating T cell fate decisions (186, 187, 201, 203-205). Vitamin A and D levels 

influence the differentiation of peripheral Tregs (206, 207) (208, 209) and Treg stabilization 

during inflammation (202). Dietary metabolites that activate the aryl hydrocarbon receptor 

(AHR) can tilt T cells to either Th17 or Treg differentiation in a ligand-dependent manner (210-

212). Metabolites such as kynurenine, indole-3-carbanole and 3,3’-diindolylmethane (via AHR) 

promote production of Tregs and inhibition of Th17 development (213, 214). The impact of the 

host metabolome on graft outcome are therefore likely mediated via their influences on early 

alloantigen-specific T cell differentiation events, predisposing the outcome toward either Treg or 

effector responses. 

The field of metabolomics seeks to understand how patterns of metabolite levels relative 

to one another (known as metabotypes) can provide a complete phenotypic representation of 

different states of health or disease (215, 216). The metabotype effectively summarizes the 

integration of genetic, epigenetic and environmental influences on physiological processes, in a 

given tissue. Metabolite measurements can be incorporated within existing clinical assays and 

therefore have great potential as a tool for patient risk-stratification and monitoring of 

therapeutic responses. Metabolomic methods have long been used for diagnosing inborn errors 

of metabolism (IEM) using samples derived from biospecimens such as urine, blood, or 

cerebrospinal fluid (217). These techniques have also been applied to diagnosis of heart failure 

(218), staging of CKD (219, 220) and detection of AR (221, 222). Immunometabolomics is an 
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emerging field focused more specifically on understanding metabotypes associated with immune 

cell differentiation and responses. In the setting of transplantation, as with other immune 

processes, it is expected that the host metabolome will influence the early alloimmune response 

after transplantation. This information is expected to provide robust risk prediction for early and 

late alloimmune risk, but has not yet been studied comprehensively.  

Herein, we applied targeted metabolomic techniques to develop a comprehensive 

characterization of the serum metabolome of kidney transplant recipients, and elucidate patterns 

of change associated with risk of CR.  

3.2 Methods  

Our study cohort comprised of adult patients who underwent kidney transplantation 

surgery at a single tertiary transplant centre between January 2008–March 2012. We used a 

nested case-control study design with samples sourced retrospectively from the British Columbia 

Transplant Biolibrary (BCTB). The purpose of the study was to use metabolomic techniques to 

analyze baseline serum samples from these patients and to assess the predictive value for 

subsequent graft loss.  

Study subjects had pre-transplant serum samples collected as part of the BCTB: a 

transplant biobank program at the clinical immunology lab in Vancouver General Hospital. The 

BCTB, established in 2008 as part of a national Genome Canada study, contains sequential 

serum samples from more than 600 renal transplant recipients, the majority of which have stored 

pre-transplant (i.e., baseline) serum samples available. Complete electronic medical records were 

accessible through PROMIS —a centralized provincial-wide registry and clinical information 

system regulated by the British Columbia Renal Agency. Individuals were invited to participate 

in the biobank because they were preparing to or had already received a kidney transplant. Each 
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patient was asked to provide approximately 4 extra tubes of venous blood (i.e., 15 ml or 3 

teaspoons). Research samples (for biobanking) were collected simultaneous to blood samples 

required for mandatory clinical testing. Samples were collected either prior to the time of 

transplantation or when the patient was seen in-hospital for a post-transplant clinic visit. 

Individuals included in the biobank were over the age of 18, receiving a kidney transplant from a 

living or deceased donor, and able to provide informed consent.  

Our study was approved by the institutional review board at the University of British 

Columbia (H19-01908). The study was classified as minimal risk because samples were 

retrospectively derived from the BCTB, and, at the time of initial sample retrieval, all biobank 

participants provided informed consent, which encompassed the use of their biological samples 

for future transplant-related research.  

3.2.1 Sample Selection  

Patients were excluded from study inclusion if they lacked a baseline sample, were HLA 

identical, or had less than one year of allograft survival. Cases were defined as graft loss 

attributable to CR, including active cellular, antibody, or mixed types of rejection. Controls were 

defined as patients free from CR and with stable allograft function (inclusive of those who died 

with a functioning graft). Stable allograft function was identified by either a minimum graft 

survival of eight years or stable post-transplant eGFR, i.e., a near-constant (1 > x > -1) eGFR 

slope. Samples were matched 2:1 (control: case) under the following hierarchy: follow-up time, 

immunosuppression regimen, induction immunosuppression, age, donor type, and sex. 

3.2.2 Direct Flow Injection and Liquid Chromatography Tandem Mass Spectrometry  

All samples were sent to The Metabolomics Innovation Centre (TMIC) for targeted 

quantitative metabolomics testing. Serum samples were analyzed using a combination of direct 
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injection mass spectrometry (MxP500 Kit) and reverse phase liquid chromatography tandem 

mass spectrometry (LC/MS-MS). The MxP500 Kit is a commercially available assay, purchased 

from BIOCRATES Life Sciences AG (Austria). When combined with the ABI 5500 Q-Trap 

(Applied Biosystems/MDS Sciex) mass spectrometer, the MxP500 Kit can be used for the 

targeted identification and quantification of 630 distinct endogenous metabolites: amino acids, 

acylcarnitines, biogenic amines, bile acids, organic acids, steroids, diglycerides (DGs), 

triglycerides (TGs), phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), 

sphingomyelins (SMs), ceramides (Cers), cholesteryl esters (CEs), and sugars. The method used 

combines the derivatization and extraction of analytes with selective mass-spectrometric 

detection using MRM. Isotope-labeled internal standards were used for metabolite quantification. 

The kit included a 96 deep-well plate with a filter plate attached, sealing tape, and the reagents as 

well as the solvents required for assay preparation. The first 14 wells were loaded as follows: one 

blank, three zero samples, seven standards, and three quality control samples (provided with each 

Kit). Serum samples were analyzed with adherence to the protocol outlined in the user manual. 

In short, samples were thawed on ice, vortexed, and then centrifuged at 13,000 g. For each 

sample, 10 µL was loaded onto the centre of the filter paper on the upper 96-well plate and dried 

with a stream of nitrogen. As a derivatization step, 20 µL of a 5% solution of phenyl-

isothiocyanate was added and samples were subsequently incubated. With the use of an 

evaporator, filter spots were dried once more. Then, 300 µL of methanol containing 5 mM 

ammonium acetate was added to extract the metabolites. Metabolite extracts were collected by 

centrifugation into the lower 96-well plate and diluted with Kit MS running solvent. Mass 

spectrometric analysis was performed on a API5500 Qtrap® tandem mass spectrometry 

instrument (Applied Biosystems/MDS Analytical Technologies, Foster City, CA) equipped with 
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a solvent delivery system. The mass spectrometer received the samples via liquid 

chromatography followed by direct injection. The Agilent 1290 UHPLC and AB SCIEX QTrap 

5500 instruments were used for all HPLC-MS analyses. The analytical column was provided 

with the purchased MxP500 Kit. The mobile phases were as follows: (A) 2,000 mL water and 4 

mL formic acid and (B) 2,000 mL acetonitrile and 4 mL formic acid. All solvents were LC/MS 

grade. Gradient chromatography was employed at a flow rate of 0.8ml/min with initial 

conditions of 100% solvent A held for 15 seconds. Further details on the elution gradients are 

provided in Table 1. Column oven temperature was maintained at 50C throughout. A System 

Suitability Test was completed to check the UHPLC-MS system performance before Kit 

preparation. The Biocrates MetIQ software regulated the entire assay workflow inclusive of 

sample registration, automated calculation of metabolite concentrations, and data export into 

other analysis programs. A targeted profiling scheme was used to quantitatively screen for 

known small molecule metabolites using MRM, neutral loss, and precursor ion scans. 

3.2.3 Volcano Plot 

Metabolite concentrations derived from LC-MS were visualised using a volcano plot to 

explore the relationship between cases and controls. To deal with measurements below the limit 

of detection (LOD), they were replaced by LOD/(2) using Microsoft Excel. The LOD was 

defined as three times the background within the zero samples (phosphate-buffered saline). Data 

were assigned to a sample type (“case” or “control”). The resulting data were imported into the R 

software environment for statistical computing. Data columns with near-constant metabolite 

concentrations (coefficient of variation (CoV) < 0.46) were excluded from further analysis. Data 

were log2 transformed and a volcano plot was constructed as an initial exploratory analysis to 

screen for candidate metabolites in subsequent classifier development. Student’s t-test was used 
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to test for statistical significance. Metabolites with an absolute fold-change >1 and p-value 

<0.05, without Bonferroni adjustment, were labeled to identify potential high-impact 

metabolites: metabolites with fold-change >1 marked by orange and metabolites with p-value 

<0.05 marked by red.  

3.2.4 Analysis 1 – Developing a Classifier Using All Measured Metabolites   

The objective of the analysis was to fit principal components analysis (PCA) and partial 

least squares (PLS) models to baseline blood metabolomic data and assess the predictive value 

for subsequent graft loss.  

PCA is a data reduction tool commonly used for exploratory data analysis. PCA uses an 

unsupervised learning approach for prediction models. Dimension reduction with PCA can be 

used to parse out pertinent information (summarized by a handful of components) from noise. 

However, due to its unsupervised nature, it does not use information from the dependent variable 

(y) to compute PCA loadings or scores, i.e., PCA identifies patterns based on maximizing 

variation without considering pre-determined phenotypic differences among samples (223, 224). 

Therefore, it may be more difficult to identify important patterns using this approach. However, 

if an association is found, PCA results are less prone to over-fitting.  

Principal component regression (PCR) is a combination of PCA and multiple linear 

regression. The linear combinations used in PCR are the principal component scores of the x-

variables; however, the number of latent variables are optimized to maximize the capacity to 

predict the y-variable (224).  

Similar to PCR, PLS combines data reduction with multiple linear regression; however, it 

uses a supervised learning approach in defining loadings on latent factors. That is, in PLS, latent 

variables are identified by having maximum covariance between scores in x-space and the 
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outcome of interest. Therefore, PLS components account for relation to the y-variable, and the 

resulting model predicts a property, y, using information from both the dependent and 

independent variables (224).   

A classifier is developed by using information from x-variables with known phenotypic 

differences (grouping characteristics). The ultimate goal is to use the classifier as a method to 

reliably predict these grouping characteristics in new observations (samples). There are several 

different approaches to classifier development, including various linear regression methods, 

linear discriminant analysis (LDA), and logistic regression (LR), all of which focus on 

maximizing the separability among known categories. For high-dimensional datasets, data 

reduction techniques, such as PCA or PLS, can summarize information contained in the x-

variables by intermediate latent variables, which are subsequently used in regression, LDA, or 

LR (224).   

A model’s ability to fit the given data is directly dependent on complexity. A highly 

complicated model can fit almost any data; however, an overfitted model lacks generalizability, 

and its ability to accurately predict new cases is diminished. For regression models, higher 

complexity can result from increasing either the number of variables or the number of 

components. In the context of PCA or PLS, there are multiple methods to estimate optimal 

model complexity (i.e., number of components): cross-validated area under the curve (AUC), Q2 

statistic (essentially the cross-validated R2), root mean square error prediction (RMSEP)(224). 

Although, PCR and PLS can handle several hundred regressor variables, there are 

arguments against using all available variables, mainly because a larger number can lead to 

problems with overfitting, predictive performance, and interpretation (225, 226). There are 

multiple strategies for variable selection. For all, one applies algorithms for variable selection to 
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identify the subset of candidates potentially worthy of further evaluation. An additional strategy 

for choosing potential regressor variables is to identify candidates which have a univariate 

association with the y-variable (“bivariate screening”). However, variables with a weak 

correlation may still be important if they can describe the variation of y not captured by other 

regressor variables. With no general rule for the best method of variable selection, selection 

needs to be an iterative process (224).  

Here, we start by developing PCR and PLS models using all measured metabolites, i.e., 

using all possible x-variables. Hereafter, this approach will be referred to as the all metabolite 

model.  

In each serum sample, 630 distinct metabolite concentrations were measured. Data 

columns with near-constant metabolite concentrations (CoV < 0.46) were excluded from further 

analysis. Metabolite data were log10 transformed to account for a right-skewed distribution 

commonly seen with laboratory measurements, which typically have a floor or minimum value. 

Samples were randomly split into separate training and test datasets with a distribution of 75% 

training set to 25% test set. Stratified random sampling was employed to ensure equal 

distribution of cases and controls among each group. Receiver Operator Characteristic (ROC) 

plots were used to illustrate test characteristics. The AUC was calculated and reported with the 

corresponding 95% confidence intervals (CI). All PCR/PLS analyses were conducted in the R 

software environment for statistical computing using the pls package (227). 

Developing the Predictive Model Using Principle Component Regression (PCR) and Projection 

on Latent Structure Discriminant Analysis (PLS-DA) 

Best practice is to use different samples for calibration (training) and test (prediction) 

because, even with the use of statistical tools to avoid overfitting (e.g. Q2 statistic), the model 
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prediction performance may be too optimistic. Results from the external validation (either by a 

test set or leave-one-out cross validation (LOOCV)) are what indicate the discrimination 

performance of the model (classifier) on data that were explicitly excluded from the training 

procedure. Two methods were used to develop the model (224):  

Training/test Split 

The data was split into training and test sets to obtain an estimation of the predictive 

performance for new cases. This method hinges on having enough samples (of both cases and 

controls) to provide adequate statistical power in each group, and therefore is more reliable with 

larger sample sizes. As a general rule of thumb, to develop a robust multivariate classifier, ~25-

30 samples are required in each phenotypic class. First, the optimum complexity of the model 

was estimated, i.e., the optimal number of PCR or PLS components was identified through cross 

validation (vide infra). Then, the model was constructed from the training dataset using the 

predetermined number of optimal components, and the fitted model was applied to the test set. 

Discriminant scores were calculated for each sample, and then a ROC curve was used to 

illustrate the overall sensitivity and specificity. 

Leave-one-out-cross-validation (LOOCV) 

LOOCV provides a reasonable initial estimate of model performance on test data, and 

this validation strategy can be used to create models from a relatively small number of samples. 

LOOCV was used to split the data into training and validation sets where observations are 

withheld one-at-a-time to test the classifier trained on the remaining observations. First, the 

optimum complexity of the model was estimated, i.e., the optimal number of PCR or PLS 

components. For PCR, the optimal number of components was determined using the Q2 statistic, 

which measures the goodness of fit for predicting case vs. control status on a 0-1 scale. For PLS, 
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the optimal number of latent variables was determined using the cross-validated AUC and 

further confirmed with the Q2 statistic and RMSEP. Then, the model was constructed from the 

training set using the predetermined number of optimal components, and the fitted model was 

applied to the corresponding validation set. Using either regression in PCR or discriminant 

analysis in PLS-DA, a single discriminant score was calculated for each sample, and then a ROC 

curve was used to summarize overall sensitivity and specificity. 

3.2.5 Analysis 2 – Logistic Regression Model with Candidate Predictors  

The objective of the analysis was to identify candidate predictors (from the metabolite 

data) based on univariate AUC criteria, develop a LR model using the these candidate predictors, 

and assess the predictive value of the model for subsequent graft loss.  

Predictive Modelling with Logistic Regression  

Inclusion of too many variables can compromise the performance of a regression model 

(228). Nevertheless, for this analysis, the goal was prediction accuracy. In a predictive model, 

accuracy supersedes parsimony as long as problems with collinearity and overfitting are avoided 

(228). Potential collinearity issues can be identified through variance inflation factors (VIFs). 

Generally, VIFs with an upper bound of 5-10 are acceptable (228). Overfitting can also 

compromise the generalizability of the predictive model, but can be averted by validation on 

external data either through cross-validation or withheld test data. 

There are many procedures available to identify candidate predictors: backward selection, 

forward selection, stepwise selection, best subsets, and bivariate screening. Bivariate screening 

evaluates individual candidate predictors in single-predictor models, and candidates that meet 

predetermined criteria are identified for subsequent inclusion in regression models (229). Here, 
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we use bivariate screening to identify candidate predictors for a LR model and include all 

predictors that meet selection criterion in the final model.  

Training/test Split 

There was a concern that the total number samples may not be enough to provide 

adequate statistical power for a training/test split; therefore, the subsequent classifier training and 

test performance was performed as a proof of concept. 

Samples were randomly split into separate training and test datasets for independent 

calibration and validation of the LR model. The sample distribution was 65% training set to 35% 

test set. Stratified random sampling was employed to ensure equal distribution of cases and 

controls among each group. As a first step, ROC curves were used to examine the relationship 

between individual metabolite concentration and sample phenotypes (case vs. control). The ROC 

curve plots sensitivity (true positive rate) versus 1-specificity (false positive rate) as the threshold 

is varied across the range of sample concentrations. In this analysis, the AUC served as a 

measure of overall discrimination, where the diagonal line with AUC = 0.5 represents chance 

agreement. As a result, failure of the 95% confidence interval to cross 0.5 represents statistical 

significance at p = 0.05. For this reason, candidate predictors were identified through bivariate 

screening, and metabolites with a lower AUC 95% CI > 0.51 were included in the LR model. 

Beta coefficients and odds ratios (eb) were calculated for each regressor variable. The severity of 

multicollinearity was quantified by calculating the VIF of each predictor. The fitted model was 

then applied to training and test data, and ROC plots used to illustrate test characteristics for 

model predictions. 
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Fitting the Full Dataset 

The model was also trained on the full dataset. As a first step, ROC curves were used to 

examine the relationship between individual metabolite concentration and sample phenotypes 

(case vs. control). As discussed above, the AUC served as a measure of overall discrimination 

for this analysis. Candidate predictors were identified through bivariate screening, and 

metabolites with a lower AUC 95% CI > 0.5 were included in the LR model. Beta coefficients 

and odds ratios (eb) were calculated for each regressor variable. The severity of multicollinearity 

was quantified by calculating the VIF of each predictor. ROC plots were used to illustrate test 

characteristics for model predictions, and LOOCV was performed to assess the external validity 

of the fitted model. 

3.2.6 Analysis 3 – Developing a Classifier Using the Top 60 Metabolites  

The objective of the analysis was to fit PCA and PLS models to baseline blood metabolomic data 

and assess the predictive value for subsequent graft loss.  

Here, we revisit PCR and PLS strategies and develop a model using the top 60 measured 

metabolites (ranked by univariate AUCs). Somewhere between the top 75-90 metabolites, the 

predicative signal was lost, as evidenced by a loss of significance in the cross-validation step. 

Therefore, the number 60 represents the top 10% of all measured metabolites, whilst remaining 

below the threshold where the signal dissipates. Hereafter, this approach will be referred to as the 

top 60 metabolite model.  

First, metabolite data were log10 transformed to account for a right-skewed distribution 

and scaled by SD to ensure inter-comparability. Two approaches were used to develop the 

model: training/test split and full dataset/LOOCV. Both methods were previously described in 
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detail in the ‘all metabolite model’ section. All PCR/PLS analyses were conducted in the R 

software environment for statistical computing using the pls package (227). 

Developing the Predictive Model Using Principle Component Regression (PCR) and Projection 

on Latent Structure Discriminant Analysis (PLS-DA) 

Training/test Split 

Samples were randomly split into separate training and test datasets for independent 

calibration and validation of the model. The sample distribution was 65% training set to 35% test 

set. Stratified random sampling was employed to ensure equal distribution of cases and controls 

among each group. As a first step, ROC curves were used to examine the relationship between 

individual metabolite concentration and sample phenotypes (case vs. control) in the training 

dataset. The AUC served as a measure of overall discrimination and candidate selection. In this 

analysis, the metabolites of the top 60 –representing 10% of total measured metabolites – 

univariate AUCs were identified and selected as variables in the subsequent PLS model. After 

the PLS model was created, it was validated in the independent test dataset.  

Variable importance scores (VIP) were calculated as the weighted sum of absolute 

regression coefficients and quantifies the contribution of individual metabolites to the reduction 

in overall sum of squares in the optimal model. VIPs were then compared with the ones derived 

from the model trained on the  full dataset. 

Full dataset/LOOCV 

The model was also trained on the full dataset. As a first step, ROC curves were used to 

examine the relationship between individual metabolite concentration and sample phenotypes 

(case vs. control), and the AUC served as a measure of overall discrimination and candidate 

selection. In this analysis, the metabolites of the top 60 –representing 10% of total measured 
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metabolites – univariate AUCs were identified and selected as predictors in the subsequent 

PCR/PLS models. After the PCR and PLS models were created, they were validated by LOOCV. 

The VIPs were calculated, and the correlation between VIPs and univariate AUCs was measured 

using Spearman’s rank correlation rho and Kendall’s rank correlation tau. 

Moreover, the feasibility of a minimalist model was explored to determine which 

metabolites were essential to capture the differences between cases and controls. Initially, a 

minimalist VIP model was developed using the top 15 metabolites. However, to parse the signal 

further, the process was repeated with the top 13 metabolites and top 10 metabolites. 

3.3 Results 

3.3.1 Sample Selection  

Forty-two patients with graft loss were identified. Thirty-seven individuals met case 

criteria and were included in the final study population: three patients experienced premature 

graft failure due to primary non-function (n=1) or recurrent disease (n=2), and two patients were 

not found in PROMIS.  

Three hundred and sixty-five patients with ongoing graft survival were identified. Eighty-

three individuals were included as controls in the final study population. Controls required a 

follow-up time equivalent to or longer than the corresponding case. As a result, patients with less 

than 922 days of follow-up (lowest follow-up time amongst cases) were excluded (n=6). Then, 

controls were matched by immunosuppression exposure at four weeks post-transplant. Three 

distinct immunosuppression groups were identified: (1) mycophenolate mofetil (MMF) and 

tacrolimus (TAC); (2) MMF, TAC, and prednisone; (3) cyclosporine A (CSA). Next, controls 

were matched by induction immunosuppression (basiliximab or antithymocyte globulin). Once 

controls had equivalent (or more) follow-up time and identical immunosuppression exposure to 
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their respective case, they were matched as closely as possible by the remaining criteria with the 

following priority rank: age ( ten years), donor type (living versus deceased), sex. If no suitable 

control met the ten year age criteria, the suitable control closest in age was chosen.  

After controls were matched 2:1 based on the procedure described above (n=74), an 

additional nine controls with the longest follow-up time (three from each immunosuppression 

regimen group) were chosen. All ‘additional controls’ with a follow-up time of less than eight 

years had eGFR stability assessed to ensure stable graft function, as defined above (Figure 1).  

Therefore, 120 patients were included in the total study population. Relevant baseline and 

demographic characteristics for the cohort are reported in Table 2. Overall, patients were more 

likely to be male (63%), and age at transplant ranged from 22 to 72 years. Most individuals were 

on dialysis at the time of transplant (84%), with the majority receiving hemodialysis treatment 

(73%). The average follow-up duration for the study population was 8.7 years. Baseline 

characteristics were approximately equally distributed across case and control groups.  

3.3.2 Volcano Plot 

A total of 630 metabolites were measured in the serum. Three hundred and seventy-two 

metabolites were retained after filtering and omitting columns with negligible variance (CoV 

<0.46). Variation in each metabolite was identified by fold-change of all the cases with respect to 

all the controls. No metabolites had an absolute fold-change >1. Six metabolites were 

significantly different (p <0.05, Student’s t-test) between the case and control groups; cases had 

an increased concentration of p-Cresol-SO4 and a decreased concentration of the other five 

significant metabolites (alpha-AAA (amino adipic acid), diacylglycerol (16:0_16:1), 

glucosylceramide (d18:1/18:0), triacylglycerol (17:1_38.6), and triacylglycerol 

(18:3_38:5)(Figure 2). 
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3.3.3 Analysis 1 – Developing a Classifier Using All Measured Metabolites   

In total, there were 120 serum samples included in the analysis. Of the 630 metabolites 

measured, 372 metabolites met the CoV criteria and were included in the subsequent analysis. 

The training data included 54 controls and 24 cases, and the test data included 29 controls and 13 

cases. The training/test split suffers from small case numbers in both subsets, and there was a 

particular concern that the test dataset may be too small to assess out-of-sample (external) 

performance of the classifier.  

Principle Component Regression (PCR) 

For PCR using the full dataset (n=120), there was no evidence of phenotype separation in 

three dimensions (Figure 3a). A single component model was identified as the optimal number 

of latent variables. There was no difference between the mean discriminant scores in the case 

versus control groups (Welch’s t-test, p=0.5). The corresponding ROC curve had a non-

significant AUC of 0.54 (95% CI 0.43-0.65)(Figure 3b).  

Projection on Latent Structure Discriminant Analysis (PLS-DA) 

Training/test Split 

In the training dataset (n=78), the optimal PLS model had one latent factor. There was a 

difference between the mean discriminant scores in the case versus control groups (Welch’s t-

test, p=0.03) on training data. The corresponding ROC curve had an AUC of 0.66 (95% CI 0.52-

0.79)(Figure 4a). For external validation, the model was tested in an independent test set (n=42). 

There was no difference between the mean discriminant scores in the case versus control groups 

(Welch’s t-test, p=0.9), and the ROC plot had a non-significant AUC of 0.52 (95% CI 0.31-0.73) 

(Figure 4b). 
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Fitting the Full Dataset (validation with LOOCV) 

For PLS using the full dataset (n=120), there appeared to be some evidence of separation 

in three dimensions (Figure 5a), and the cross-validated AUC indicated the optimal model had 

three latent factors. However, the Q2 statistic indicated the optimal model complexity had one 

latent variable. Ultimately, to avoid overfitting, the model was developed in accordance with the 

Q2 statistic (optimal complexity = 1 latent factor). There was again a difference between the 

mean discriminant scores in the case versus control groups (Welch’s t-test, p=0.01). The 

corresponding ROC curve had an AUC of 0.64 (95% CI 0.54-0.75)(Figure 5b). For validation 

purposes, LOOCV was performed and demonstrated no difference between the mean 

discriminant scores in the case versus control groups (Welch’s t-test, p=1). The corresponding 

ROC plot had a non-significant AUC of 0.51 (95% CI 0.39-0.62)(Figure 5c).  

Interpretation  

There was no evidence of signal in the unsupervised PCR model or in the supervised PLS 

model. For PLS, the model created using the training dataset failed validation in the external test 

dataset. Additionally, the weak signal in the full dataset was spurious (could not be confirmed by 

LOOCV) and appeared attributable to overfitting.  

3.3.4 Analysis 2 – Logistic Regression Model with Candidate Predictors  

Training/test Split 

The training data included 54 controls and 24 cases, and the test data included 29 controls 

and 13 cases. 

In the univariate ROC analysis, which examined the relationship between individual 

metabolite concentration and sample phenotype, eight metabolites met the screening criterion 

(lower AUC 95% CI > 0.51)(Table 3). Then, these eight metabolites were used as the candidate 
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predictors for the LR model, and each variable had a VIF of less than four (Table 3). The 

corresponding AUC for the model was 0.81 (95% CI 0.71-0.91)(Figure 6a). The external 

validation in the test dataset had a significant AUC of 0.68 (95% CI 0.50-0.86)(Figure 6b). 

Fitting the Full Dataset 

There were 120 serum samples included in the analysis. In the univariate ROC analysis, 

which examined the relationship between metabolite concentration and sample phenotype, six 

metabolites were identified as having statistically significant AUCs (lower AUC 95% CI > 0.5) 

(Table 4). Then, these six metabolites were used as candidate predictors for the LR model, and 

each variable had a VIF of less than three (Table 5). The corresponding AUC for the model was 

0.73 (95% CI 0.63-0.83)(Figure 7a), and validation with LOOCV resulted in a significant AUC 

of 0.69 (95% CI 0.58-0.79)(Figure 7b). 

Interpretation 

The targeted candidate LR model was based on univariate AUCs and was confirmed in 

the training/test split. When the model was developed and applied to the full dataset, it was 

successfully cross validated with LOOCV. Additionally, the model was more robust when 

applied to the full dataset, which was anticipated due to the small sample size in the training/test 

split.  

3.3.5 Analysis 3 – Developing a Classifier Using the Top 60 Metabolites  

Principle Component Regression (PCR) 

The top 60 metabolites were identified in the full dataset (n=120) and used to train the 

PCR model (Table 6). There appeared to be some evidence of phenotype separation in three 

dimensions (Figure 8a). A three component model was identified as the optimal model 

complexity. There was a difference between the mean discriminant scores in the case versus 
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control groups (Welch’s t-test, p=0.002). The corresponding ROC curve had a significant AUC 

of 0.69 (95% CI 0.58-0.79)(Figure 8b). The model was validated with LOOCV, and there was 

no difference between the mean discriminant scores in the case versus control groups (Welch’s t-

test, p=0.06). However, the corresponding ROC plot had a significant AUC of 0.63 (95% CI 

0.52-0.74)(Figure 8c). 

Projection on Latent Structure Discriminant Analysis (PLS-DA) 

Training/test Split 

Usually 25-30 cases are required to develop a robust multivariate classifier; thus, there 

was a concern that the subsequent training/test split may be underpowered. The training data 

included 50 controls and 22 cases, and the test data included 33 controls and 15 cases. 

The top 60 metabolites were identified from the training dataset (n=72) and used to train 

the PLS model (Table 7). There was evidence of phenotype separation in three dimensions 

(Figure 9a). The optimal model complexity included five latent factors. There was a difference 

between the mean discriminant scores in the case versus control groups (Welch’s t-test, p 

<0.001), and the ROC curve had an AUC of 0.98 (95% CI 0.96-1)(Figure 9b). The model was 

externally validated in the independent test set (n=48), and there was a difference between the 

mean discriminant scores in the case versus control groups (Welch’s t-test, p=0.02). The 

corresponding ROC plot had a significant AUC of 0.70 (95% CI 0.54-0.86) (Figure 9c). The top 

20 VIPs from the training dataset are presented in Table 8.  

Fitting the Full Dataset 

The top 60 metabolites were identified in the full dataset (n=120) and used to train the 

PLS model (Table 9). Although the order in which AUCs were ranked differed slightly, the top 

60 AUCs in the training dataset and full dataset were identical, i.e., the same univariate 
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associations were identified. There was again evidence of phenotype separation in three 

dimensions (Figure 10a); however, the optimal model complexity had four latent variables. For 

the optimal model, there was a difference between the mean discriminant scores in the case 

versus control groups (Welch’s t-test, p <0.001). The corresponding ROC curve had an AUC of 

0.95 (95% CI 0.92-0.99) (Figure 10b). The model was validated with LOOCV, and there was 

difference between the mean discriminant scores in the case versus control groups (Welch’s t-

test, p <0.001). The ROC curve had a significant AUC of 0.75 (95% CI 0.65-0.84)(Figure 10c).  

The correlation between VIPs and univariate AUCs was weak (Spearman’s rho= 0.24, 

p=0.07; Kendall’s tau=0.15, p=0.1)(Figure 11). The top 20 VIPs from the full dataset are 

presented in Table 10. Of the top 20 VIPs, eight metabolites were also found in the top 20 

univariate AUCs. In contrast, 15 of the top 20 VIPs were also included in the top 20 VIPs from 

the training dataset. 

Next, to assess the effectiveness of a minimalist VIP model, the optimal model was re-

fitted with the top 15 metabolites ranked by VIP (Table 10). There was a difference between the 

mean discriminant scores in the cases versus control groups (Welch’s t-test, p <0.001), and the 

ROC curve had an AUC of 0.90 (95% CI= 0.84-0.96). The model was validated with LOOCV, 

and there was a difference between the mean discriminant scores in the case versus control 

groups (Welch’s t-test, p <0.001). The corresponding ROC curve had a significant AUC of 0.82 

(95% CI 0.74-0.90). The discriminant scores in the top 15 metabolite model were highly 

correlated with the full (60 metabolite) model (Pearson’s r=0.87, p <0.001). 

To determine the minimum number of metabolites required to capture the signal of 

interest, the optimal model was once again re-fitted, using exclusively the top 13 metabolites 

ranked by VIP. There was a difference between the mean discriminant scores in the cases versus 
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control groups (Welch’s t-test, p <0.001), and the ROC curve had an AUC of 0.88 (95% CI= 

0.82-0.95). The model was validated with LOOCV, and there was difference between the mean 

discriminant scores in the case versus control groups (Welch’s t-test, p <0.001). The 

corresponding ROC curve had a significant AUC of 0.80 (95% CI 0.71-0.88). The analysis was 

repeated once more for the top 10 metabolites ranked by VIP, and the results of all minimalist 

models are summarized in Table 11.  

The average measurement of each metabolite in the top 20 VIP ranking for both case and 

control groups are summarized in Table 12. 

Interpretation 

There was evidence of a signal in both the unsupervised PCR model and the supervised 

PLS model. The PCR model was validated by LOOCV and, because the outcome was not used 

to train the classifier, bolstered the results of the subsequent PLS analysis. Despite overfitting in 

the training dataset, the PLS model was validated in the independent test dataset, providing 

further confirmation for the presence of a signal. Furthermore, when the model was fitted to the 

full dataset, there was once again evidence of a clear signal, confirmed by LOOCV. The 15 

metabolite “minimalist” model, which was determined by VIPs, sufficiently reproduced the full 

signal. In the top 13 and top 10 metabolite minimalist models, there was also evidence of a 

signal, albeit progressively weaker. Therefore, it appears that the majority of the signal was 

contained in the top 15 metabolites. 

3.4 Discussion  

In this study, we were able to demonstrate the presence in serum of innate metabolomic 

differences between patients, which were associated with CR outcomes. These findings suggest 
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that, even before transplantation, the metabolite environment may be an important factor 

involved in the predisposition of alloimmune differentiation towards a rejection response.  

In the first analysis, PCR and PLS methods were used to develop the ‘all metabolite’ 

model. All measured metabolites with substantial variance (372 metabolites) were used as 

variables. There was no evidence of signal in the unsupervised PCR model or in the supervised 

PLS model. The inability to ascertain any meaningful signal when incorporating all 372 eligible 

variables is likely reflective of random noise. Noise can result from two main sources: error 

attributed to measurement tools and random error attributed to data collection/preparation 

processes.  

In the second analysis, LR was used to develop a predictive model. The most impactful 

candidate predictors were identified with bivariate screening of univariate AUCs. The two 

models we developed included either 6 or 8 of the most impactful metabolites as variables. There 

was evidence of a predictive signal in the model created with the training data as well as the full 

dataset, and both models were successfully validated. A drawback of LR is the need to restrict 

the number of variables included in the model. Therefore, although the analysis yielded 

conclusive results, it only incorporated information from a handful of metabolites.  

In the third analysis, PCR and PLS methods were used once more to develop the 

predictive model. However, only the top 60 metabolites (determined by univariate AUCs) were 

included as variables. There was evidence of a signal in both the unsupervised PCR model and 

the supervised PLS model, and both statistical modelling methods were successfully validated. In 

particular, the PLS analysis in the full dataset provided the most robust results because the model 

was trained on all available samples (n=120) with a statistical method that also considers pre-

determined phenotypic differences among samples. The majority of the signal was determined to 
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originate from the top 15 metabolites, identified by VIP. The analysis yielded more conclusive 

results than the LR because it incorporated more information from the metabolite data. Thus, this 

final analysis will be the focus of the following discussion.  

Historically, metabolomics has not received as much consideration in kidney 

transplantation research as other fields in ‘omics research: existing transplant research networks 

investigate genetic, epigenetic, and proteomic determinants of rejection phenotypes (230-233). 

The metabolome is arguably more complex than both the genome and the proteome because it 

reflects an open environment constantly in flux and can be altered by the microbiome (139). 

Lipids were consistently identified as important contributors to the predictive model. In 

fact, over half of the top 20 VIP metabolites were lipid-related molecules, originating from one 

of the glycerolipids, glycerophospholipids, or sphingolipids classes; however, there were no 

appreciable trends within lipid classes (234). Of the 630 total metabolites measured, 523 were 

lipid-related. Therefore, the VIP metabolite trend may reflect an over representation of lipids 

tested in the original metabolite kit. Furthermore, as demonstrated in the volcano plot analysis, 

none of the metabolites had an absolute fold change greater than two –indicative of either a 

doubling or halving in concentration. Thus, the metabolite changes described between the two 

groups reflect subtle concentration differences.  

Lipid metabolites are well recognized as immunomodulating molecules (235). For 

example, dietary lipids may have regulatory effects on lymphocyte proliferation, cytokine 

production, and natural killer cell activity (236-239). These lipids are suspected to exert their 

immunomodulatory effects predominantly by altering plasma membrane composition (240, 241).  

Glycerolipids comprise a large proportion of total plasma lipids, and the predominant 

molecules we identified were triglycerides and diglycerides. Dyslipidemia is a known risk factor 
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of chronic graft rejection, and evidence suggests that dyslipidemia can reduced the availability of 

cyclosporine, diminishing the drug’s immunosuppressive effect (242). No studies have 

investigated the validity of this claim in tacrolimus, another, more widespread, 

immunosuppressive medication. However, given that both drugs are CNIs, have similar 

mechanisms of action, and are lipophilic, an equivalent interaction between lipid levels and 

reduced tacrolimus efficacy warrants legitimate scientific plausibility. In addition, increased fat 

consumption, and presumably the subsequent increased lipid level in the bloodstream, decreases 

tacrolimus bioavailability (243). Future studies are required to further elucidate the impact of 

dyslipidemia on the immunosuppressive action of tacrolimus.  

Free fatty acids and their eicosanoid counterparts are known modulators of inflammation 

and the immune response (244). In transplantation, these metabolites have been implicated in AR 

(245-247). Baker and colleagues demonstrated that the pre-transplant level of arachidonic acid 

was an independent marker of long-term graft survival (186). However, our study was unable to 

corroborate these findings; neither arachidonic acid nor measured eicosanoids were predictive of 

long-term graft outcomes. Transplantation era is a distinguishable, and potentially meaningful, 

difference between the two studies. In Baker et al. patients were transplanted between 1991-1997 

and treated with cyclosporine. Contrastingly, in our study, patients were transplanted between 

2008-2012 and predominantly treated with tacrolimus (a more effective CNI).  

In the plasma membrane, local signaling and trafficking is regulated by the dynamic 

interplay between proteins, glycerophospholipids, sphingolipids, and sterol lipids —structural 

components of the lipid raft. The lipid variation, structure, and composition of the raft appear to 

be influential in its overall function (248). Lipid rafts have gained increasing recognition as 

modulators of T cell receptor (TCR) signaling activity through their influence on the 
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composition of the immunological synapse. The immunological synapse refers to the membrane 

structure formed in the gap between T cells and APCs; it facilitates numerous events which 

proceed to prime the immune response (249). Lipid raft composition, specifically the level of 

glycosphingolipids, is correlated with the activation of T cells. Accumulating evidence suggests 

that alterations to the contents of the lipid raft can modulate TCR activity and affect Th17 

differentiation whereby lower levels of glycosphingolipids attenuate Th17 differentiation and 

cytokine production (250, 251). The overall trend in our data supported these results, as two of 

the three identified sphingolipids in the top 20 VIP metabolites were decreased in the control 

group. Novel immunotherapies which alter the lipid composition of the plasma membrane by 

targeting lipid metabolism continue to garner scientific attention (252).  

Emerging evidence suggests the presence of innate differences in immune cell 

composition between transplant recipients before individuals receive their new organ (253-258). 

Of particular interest are the differences in T cell subpopulations. Two subtypes of T cells with 

important clinical significance in transplantation are T helper cells and Tregs. T helper cells (Th1, 

Th2, Th17) are a subtype of CD4 T cells responsible for releasing pro-inflammatory cytokines 

into the cellular environment, which ultimately serves to amplify inflammation. Elevated levels 

of pro-inflammatory cytokines are a hallmark of rejection (259, 260). Contrastingly, Tregs 

function to supress the inflammatory response, predominately through the release of pro-

regulatory cytokines. Treg levels, as well as other characteristic markers, correlate with graft 

function; patients with graft stability have a more robust pro-regulatory response (261-264). 

Despite exerting opposite effects, Tregs and Th17 cells derive from the same precursor. The 

balance between these two opposing cell types has become a recent focus of investigation, as the 

outcome of this competitive antagonism may influence graft survival (265-268). The propensity 
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for different immunological phenotypes could be a consequence of differences observed in lipid 

membrane composition, primarily in the context of Th17 differentiation, and merit further 

exploration.   

Differences in the level of circulating plasma membrane lipids have already been 

demonstrated in patients with CKD, and the composition of the blood lipidome was correlated 

with adverse outcomes (disease progression or death) (269, 270). The altered plasma lipidome 

may be attributable to inflammatory processes, and LPCs have been negatively associated with 

C-reactive protein —a common marker of inflammation (269, 271, 272). Patients with CKD 

have increased systemic inflammation resulting from the uremic state. The degree of 

inflammation varies depending on the underlying disease state (e.g. autoimmune) and the quality 

of dialysis (273). However, in our study, the one LPC identified in the top 20 VIP metabolites 

demonstrated the opposite trend. Nonetheless, other lipid species may also be altered by 

inflammation.  

Because individuals with CKD exhibit differences in circulating plasma membrane 

proteins, it is not unreasonable to postulate the existence of innate variability in the plasma 

membrane composition of T cells as well. Variability may partially help explain the clear 

presence of intrinsic differences between patients and their predisposition toward a robust 

immune response. However, characterizing the complex relationship between membrane lipids 

and T cells as well as the corresponding functional significance is still very much in its infancy. 

Further research is required to elucidate the underlying mechanisms and fully illustrate any 

potential implications.  

In conclusion, the metabolomic environment surrounding T cell activation is increasingly 

recognized as an element which influences T cell differentiation and subsequent immune 
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response in a highly intricate and sophisticated manner. To our knowledge, this is the first ever 

comprehensive characterization of the serum metabolome pre-kidney transplantation used to 

create a predictive algorithm that estimates risk for developing chronic rejection. Our study 

provides evidence of the informative value of the pre-transplant metabolome in the clinical 

setting. Research which validates the predictive model in other adult kidney transplant recipient 

populations and assesses the interventional potential is needed.  
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3.5 Tables & Figures  

Table 1. UHPLC Gradient Part 1& 2 

Part 1 

Time (min) Flow 

(mL/min) 

A (%) B (%) 

0.00 0.8 100 0 

0.25 0.8 100 0 

1.50 0.8 88 12 

2.70 0.8 82.5 17.5 

4.00 0.8 50 50 

4.50 0.8 0 100 

4.70 1.0 0 100 

5.00 1.0 0 100 

5.10 1.0 100 0 

5.80 0.8 100 0 

Part 2 

Time (min) Flow 

(mL/min) 

A (%) B (%) 

0.00 0.8 100 0 

0.25 0.8 100 0 

1.50 0.8 75 25 

2.70 0.8 50 50 

4.00 0.8 25 75 

4.50 0.8 0 100 

4.70 1.0 0 100 

5.00 1.0 0 100 

5.10 1.0 100 0 

5.80 0.8 100 0 

UHPLC, ultra-high-performance liquid chromatography  
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Table 2. Baseline characteristics of adult cohort at transplantation 

           Study Cohort 

                                                                      (n=120) 

Cases 

(n=37) 

Control 

(n=83) 

Male sex 75 (63) 23 (62) 52 (63) 

Age at transplant (years) 49  13 47  14 49  13 

Etiology    

  Congenital/hereditary renal disease   14 (12) 5 (13) 9 (11) 

  Renal vascular disease  13 (11) 4 (11) 9 (11) 

  Glomerulonephritis 53 (44) 18 (49) 35 (42) 

  Diabetes 20 (17) 6 (16) 14 (17) 

  Nephropathy, drug induced 3 (2) 1 (3) 2 (2) 

  Other 5 (4) 0 5 (6) 

  Unknown etiology 12 (10) 3 (8) 9 (11) 

Race    

  Indigenous  10 (8) 2 (5) 8 (10) 

  Asian  9 (8) 1 (3) 8 (10) 

  Black 3 (2) 2 (5) 1 (1) 

  White  79 (66) 29 (78) 50 (60) 

  Indian sub-continent 11 (9) 1 (3) 10 (12) 

  Pacific Islander 6 (5) 1 (3) 5 (6) 

  Other/Multiracial  2 (1) 1(3) 1 (1) 

Living donor 51 (43) 18 (49) 33 (40) 

Modality type    

  Hemodialysis  73 (61) 25 (68) 48 (59) 

  Peritoneal dialysis 27 (23) 7 (19) 20 (24) 

  No dialysis (pre-emptive) 19 (16) 5 (14) 14 (17) 

  Unknown  1 0 1  

Dialysis length (days; n=100) 1461  928 1337  909 1518  938 

First transplant  116 (97) 36 (97) 80 (96) 

Cold-ischemia time (minutes) 456  300 473  328 449  289 

Warm-ischemia time (minutes) 30  18 30  24 30  15 

Follow-up duration (days) 3163  608 2913  738 3274  506 

 Values are expressed as n (%) or mean  SD.  

 

 
 



 74 

Figure 1. Sample selection and classification  
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Figure 2. Volcano plot of measured metabolites. The horizontal access represents fold-change 

(case:control) of the log2 transformed metabolite data. The vertical access represents the -log10 

transformed p-value, calculated using Student’s t-Test. Red dots represent metabolites with p-

value <0.05. Black dots represent metabolites without significant differences. No metabolites had 

an absolute fold-change >1.   
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Figure 3. The PCR model trained on the full dataset (n=120): (a) three dimensional score plot;  

(b) the optimal model had a non-significant AUC of 0.54 (95% CI 0.43-0.65). 

 

 

 

 
Figure 4. The PLS model for the training/test split: (a) the optimal model fit to the training 

dataset (n=78, 1 latent factor), had a significant AUC of 0.66 (95% CI 0.52-0.79), (b) but failed 

external validation in the test dataset (n=42).  
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Figure 5. The PLS model trained on the full dataset (n=120): (a) three dimensional score plot; 

(b) the model had a significant AUC of 0.64 (95% CI 0.54-0.75), (c) but failed validation by 

LOOCV.  
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Table 3. Top 20 AUCs for univariate regression using the training data set 

Metabolite AUC 95% CI 

  Lower limit Upper limit 

C5.DC..C6.OH 0.682 0.549 0.816 

PAG 0.660 0.519 0.800 

His 0.659 0.534 0.785 

TG.18.3_35.2 0.657 0.523 0.790 

TMAO 0.656 0.529 0.783 

PC.ae.C42.3 0.656 0.533 0.780 

Creatinine 0.654 0.522 0.787 

Putrescine 0.652 0.509 0.796 

PC.ae.C40.2 0.647 0.505 0.788 

Anserine 0.646 0.501 0.790 

Asn 0.642 0.508 0.776 

CE.20.1 0.640 0.511 0.768 

C18.2 0.639 0.489 0.789 

Cit 0.638 0.507 0.769 

PC.ae.C42.2 0.637 0.504 0.771 

HexCer.d18.1.18.0 0.630 0.493 0.766 

PC.aa.C32.3 0.627 0.495 0.760 

SM.C18.1 0.627 0.489 0.766 

TG.17.0_34.3 0.627 0.495 0.760 

SDMA 0.625 0.494 0.755 

Metabolites with a lower limit CI > 0.51 where included as candidate predictors in the logistic regression 

model. AUC, area under the curve; CI, confidence interval 
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Table 4. Logistic regression analysis for the training/test split 

Predictor VIF  SE  Z value  P-value 

 

C5.DC..C6.OH 1.903 0.8202 4.0633 0.20 0.840 

PAG 2.208 1.9816 1.2680 1.56 0.118 

His 1.152 7.9666 3.7625 2.12 0.034 

TG.18.3_35.2 1.111 -1.0306 0.7391 -1.39 0.163 

TMAO 1.895 0.0309 1.1291 0.03 0.978 

PC.ae.C42.3 1.059 -3.1554 3.3214 -0.95 0.342 

Creatinine  3.200 -0.0214 2.6682 -0.01 0.994 

CE.20.1 1.203 -1.5859 0.8837 -1.79 0.073 

VIF, variable inflation factor; SE, standard error 
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Table 5. Top 20 AUCs for univariate regression using the full dataset 

Metabolite AUC 95% CI 

  Lower limit Upper limit 

TMAO 0.627 0.523 0.730 

p.Cresol.SO4 0.626 0.519 0.733 

C18.2 0.623 0.510 0.737 

PC.aa.C38.1 0.619 0.507 0.731 

HexCer.d18.1.18.0 0.618 0.510 0.727 

C5.DC..C6.OH 0.610 0.499 0.721 

BABA 0.609 0.496 0.722 

TG.17.0_34.3 0.608 0.501 0.716 

TG.18.3_38.5 0.603 0.496 0.709 

Putrescine 0.601 0.487 0.715 

lysoPC.a.C20.3 0.599 0.486 0.712 

alpha.AAA 0.595 0.489 0.700 

Hex2Cer.d18.1.22.0 0.589 0.480 0.697 

Asn 0.588 0.476 0.700 

DG.18.2_20.4 0.583 0.483 0.684 

TG.16.0_38.1 0.583 0.476 0.691 

TG.18.3_35.2 0.583 0.471 0.694 

TG.17.1_36.3 0.579 0.460 0.699 

C8 0.577 0.452 0.702 

DG.18.0_20.0 0.577 0.472 0.683 

Metabolites with a lower limit CI > 0.50 where included as candidate predictors in the logistic regression 

model. AUC, area under the curve; CI, confidence interval 

 

Table 6. Logistic regression analysis for the full dataset 

Predictor VIF  SE  Z value  P-value 

 

TMAO 1.203 -0.00204 0.00350 -0.58 0.559 

p.Cresol.SO4 1.201 0.00527 0.00281 1.87 0.061 

C18.2 1.059 32.55358 13.90817 2.34 0.019 

PC.aa.C38.1 1.159 -1.62842 0.81143 -2.01 0.045 

HexCer.d18.1.18.0 1.059 -5.33897 3.50335 -1.52 0.128 

TG.17.0_34.3 1.083 -1.20798 0.69484 -1.74 0.082 

VIF, variable inflation factor; SE, standard error 
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Figure 6. ROC curves for the logistic regression model in the training/test split: (a) the model in 

the training dataset (n= 78) had a significant AUC of 0.81 (95% CI 0.71-0.91); (b) the model was 

confirmed in the test dataset (n=42) with a significant AUC of 0.68 (95% CI 0.50-0.86).  

 

 
Figure 7. ROC curves for the logistic regression model fitted to the full dataset (n=120): (a) the 

model had a significant AUC of 0.73 (95% CI 0.63-0.83); (b) model confirmation with LOOCV 

had an AUC of 0.69 (95% CI 0.58-0.79). 
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Table 7. Top 60 AUCs in the full dataset 

Metabolite AUC 95% CI 

  Lower limit Upper limit 

TMAO 0.627 0.523 0.73 

p.Cresol.SO4 0.626 0.519 0.733 

C18.2 0.623 0.51 0.737 

PC.aa.C38.1 0.619 0.507 0.731 

HexCer.d18.1.18.0. 0.618 0.51 0.727 

C5.DC..C6.OH. 0.610 0.499 0.721 

BABA 0.609 0.496 0.722 

TG.17.0_34.3. 0.608 0.501 0.716 

TG.18.3_38.5. 0.603 0.496 0.709 

Putrescine 0.601 0.487 0.715 

lysoPC.a.C20.3 0.599 0.486 0.712 

alpha.AAA 0.595 0.489 0.7 

Hex2Cer.d18.1.22.0. 0.589 0.48 0.697 

Asn 0.588 0.476 0.7 

DG.18.2_20.4. 0.583 0.483 0.684 

TG.16.0_38.1. 0.583 0.476 0.691 

TG.18.3_35.2. 0.583 0.471 0.694 

TG.17.1_36.3. 0.579 0.46 0.699 

C8 0.577 0.452 0.702 

DG.18.0_20.0. 0.577 0.472 0.683 

C16.2 0.576 0.475 0.677 

Trp 0.576 0.465 0.686 

GCDCA 0.576 0.463 0.689 

CE.20.3. 0.576 0.464 0.688 

PC.ae.C44.3 0.576 0.459 0.694 

TG.18.0_34.3. 0.575 0.465 0.684 

DG.16.0_16.1. 0.574 0.473 0.676 

DG.18.1_18.3. 0.573 0.457 0.689 

TG.17.1_34.1. 0.573 0.46 0.686 

Spermidine 0.572 0.477 0.666 

lysoPC.a.C20.4 0.572 0.457 0.686 
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Metabolite AUC 95% CI 

  Lower limit Upper limit 

SM.C24.0 0.572 0.463 0.682 

TG.16.0_36.6. 0.572 0.463 0.682 

TG.17.0_34.2. 0.572 0.463 0.682 

C3.DC..C4.OH. 0.571 0.473 0.668 

Orn 0.571 0.463 0.678 

HipAcid 0.571 0.456 0.686 

TG.16.1_34.3. 0.57 0.45 0.691 

Hex2Cer.d18.1.24.0. 0.569 0.461 0.677 

TG.16.0_35.2. 0.569 0.456 0.681 

TG.16.0_33.2. 0.568 0.458 0.678 

TG.16.0_35.3. 0.568 0.452 0.685 

TG.22.6_34.3. 0.568 0.455 0.68 

Cer.d18.2.23.0. 0.567 0.458 0.675 

TG.17.1_32.1. 0.567 0.457 0.676 

TG.18.2_35.3. 0.567 0.453 0.681 

TG.20.4_34.2. 0.567 0.453 0.682 

lysoPC.a.C16.0 0.566 0.452 0.68 

PC.ae.C38.2 0.566 0.457 0.676 

TG.18.1_35.2. 0.566 0.451 0.682 

GLCAS 0.565 0.452 0.678 

TCDCA 0.565 0.452 0.678 

Cer.d18.2.16.0. 0.565 0.451 0.679 

DHA 0.565 0.448 0.682 

lysoPC.a.C18.1 0.565 0.453 0.677 

PC.ae.C40.2 0.565 0.448 0.682 

TG.17.0_34.1. 0.565 0.456 0.673 

TG.20.5_34.1. 0.565 0.458 0.673 

PC.aa.C28.1 0.564 0.452 0.677 

PC.ae.C36.1 0.564 0.45 0.678 

AUC, area under the curve; CI, confidence interval 
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Table 8. Top 60 AUCs in the training dataset 

Metabolite AUC 95% CI 

  Lower limit Upper limit 

BABA 0.704 0.564 0.845 

C3.DC..C4.OH. 0.67 0.543 0.796 

C18.2 0.66 0.52 0.8 

Putrescine 0.653 0.512 0.795 

C16.2 0.642 0.508 0.777 

Hex2Cer.d18.1.24.0. 0.64 0.501 0.778 

TG.18.3_38.5. 0.605 0.463 0.747 

C5.DC..C6.OH. 0.597 0.451 0.744 

Trp 0.597 0.46 0.734 

PC.ae.C44.3 0.593 0.428 0.759 

TG.17.1_32.1. 0.593 0.448 0.738 

PC.ae.C38.2 0.592 0.447 0.736 

alpha.AAA 0.591 0.452 0.731 

SM.C24.0 0.59 0.444 0.735 

HipAcid 0.589 0.434 0.743 

PC.ae.C40.2 0.582 0.434 0.729 

Cer.d18.2.16.0. 0.58 0.435 0.726 

GCDCA 0.574 0.424 0.723 

TG.16.0_38.1. 0.567 0.427 0.708 

TMAO 0.566 0.43 0.702 

Cer.d18.2.23.0. 0.565 0.422 0.709 

DG.18.2_20.4. 0.564 0.432 0.696 

GLCAS 0.562 0.409 0.714 

C8 0.559 0.39 0.727 

Hex2Cer.d18.1.22.0. 0.558 0.418 0.698 

TG.17.0_34.3. 0.557 0.412 0.701 

TG.20.5_34.1. 0.556 0.413 0.7 

PC.ae.C36.1 0.555 0.408 0.702 

TG.17.1_34.1. 0.555 0.408 0.703 

TCDCA 0.553 0.407 0.698 

DG.16.0_16.1. 0.552 0.417 0.687 
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Metabolite AUC 95% CI 

  Lower limit Upper limit 

lysoPC.a.C20.3 0.55 0.406 0.694 

TG.17.0_34.1. 0.549 0.403 0.694 

TG.18.3_35.2. 0.547 0.393 0.7 

TG.16.0_35.2. 0.546 0.397 0.696 

Asn 0.545 0.394 0.695 

TG.16.0_33.2. 0.541 0.392 0.69 

TG.18.1_35.2. 0.541 0.384 0.698 

PC.aa.C28.1 0.539 0.386 0.691 

PC.aa.C38.1 0.539 0.38 0.698 

TG.20.4_34.2. 0.537 0.383 0.69 

lysoPC.a.C16.0 0.535 0.386 0.684 

Spermidine 0.533 0.411 0.654 

lysoPC.a.C20.4 0.533 0.386 0.68 

TG.17.1_36.3. 0.533 0.373 0.693 

TG.18.0_34.3. 0.531 0.386 0.677 

CE.20.3. 0.53 0.385 0.676 

p.Cresol.SO4 0.526 0.383 0.67 

TG.18.2_35.3. 0.524 0.37 0.678 

TG.17.0_34.2. 0.523 0.374 0.671 

TG.16.0_36.6. 0.522 0.372 0.672 

DG.18.1_18.3. 0.515 0.357 0.673 

lysoPC.a.C18.1 0.509 0.369 0.649 

HexCer.d18.1.18.0. 0.505 0.359 0.652 

TG.16.1_34.3. 0.504 0.344 0.664 

TG.22.6_34.3. 0.504 0.348 0.659 

DHA 0.498 0.349 0.648 

Orn 0.495 0.357 0.634 

TG.16.0_35.3. 0.482 0.324 0.641 

DG.18.0_20.0. 0.474 0.331 0.616 

AUC, area under the curve; CI, confidence interval 
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Table 9. The top 20 metabolites ranked by VIPs from the training dataset 

Metabolite  Ordered Scores Scaled Scores 

C3.DC..C4.OH. 0.0385 100.0 

BABA 0.0297 77.1 

C16.2 0.0274 71.1 

C18.2 0.0231 60.1 

TG.18.3_38.5. 0.0222 57.8 

PC.ae.C38.2 0.0219 56.9 

DG.18.2_20.4. 0.0217 56.4 

C8 0.0215 55.9 

Hex2Cer.d18.1.24.0. 0.0208 54.1 

PC.ae.C40.2 0.0207 53.8 

Hex2Cer.d18.1.22.0. 0.0175 45.6 

Putrescine 0.0167 43.4 

alpha.AAA 0.0167 43.3 

DG.16.0_16.1. 0.0166 43.1 

HipAcid 0.0157 40.8 

SM.C24.0 0.0150 39.1 

Spermidine 0.0144 37.4 

Cer.d18.2.16.0. 0.0142 36.8 

PC.aa.C28.1 0.0140 36.5 

PC.ae.C44.3 0.0133 34.4 

VIP, variable importance score 
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Table 10. The top 20 metabolites ranked by VIPs from the full dataset 

Metabolite Ordered Scores Scaled Scores 

DG.18.2_20.4 0.0276 100.0 

HexCer.d18.1.18.0. 0.0258 93.5 

C18.2 0.0244 88.7 

PC.aa.C38.1 0.0242 87.8 

Hex2Cer.d18.1.22.0 0.0227 82.4 

C8 0.0215 78.2 

PC.aa.C28.1 0.0200 72.8 

CE.20.3. 0.0192 69.8 

Hex2Cer.d18.1.24.0. 0.0185 67.3 

Spermidine 0.0181 65.8 

PC.ae.C38.2 0.0180 65.4 

C16.2 0.0177 64.2 

TG.18.3_38.5. 0.0176 63.8 

C3.DC..C4.OH. 0.0171 62.1 

PC.ae.C40.2 0.0164 59.4 

p.Cresol.SO4 0.0157 57.1 

BABA 0.0156 56.5 

DG.16.0_16.1 0.0156 56.4 

HipAcid 0.0153 55.6 

lysoPC.a.C18.1 0.0149 54.2 

VIP, variable importance score 

 
Table 11. Minimalist VIP models 

Minimalist Models Training AUC (95% CI) LOOCV AUC (95% CI) 

Top 15 VIPs 0.90 (0.84-0.96) 0.82 (0.74-0.90) 

Top 13 VIPs 0.88 (0.82-0.95) 0.80 (0.71-0.88) 

Top 10 VIPs 0.82 (0.73-0.90) 0.70 (0.60-0.80) 

AUC, area under the curve; CI, confidence interval; LOOCV, leave-one-out cross validation 
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Table 12. Top 20 VIP metabolite measurements stratified by group  

Metabolites Class Controls  Cases 

C3-DC (C4-OH) Acylcarnitines 0.093  0.034 0.113  0.073 

C8 Acylcarnitines 0.288  0.078 0.278  0.104 

C16:2 Acylcarnitines 0.028  0.004 0.029  0.007 

C18:2 Acylcarnitines 0.050  0.014 0.058  0.020 

BABA Amino acid-related 0.167  0.103 0.199  0.113 

Spermidine Biogenic Amines 0.196  0.048 0.214  0.117 

HipAcid Carboxylic Acids 203.993  197.804 243.901  189.295 

CE(20:3) Cholesterol Esters 23.912  9.274 26.495  11.303 

p-Cresol-SO4 Cresols 135.743  86.297 168.873  79.991 

DG(16:0_16:1) Diacylglycerols 0.574  0.313 0.484  0.185 

DG(18:2_20:4) Diacylglycerols 0.290  0.224 0.359  0.283 

lysoPC a C18:1 Glycerophospholipids 18.915  6.093 20.379  6.712 

PC aa C28:1 Glycerophospholipids 2.727  0.854 2.962  0.957 

PC aa C38:1 Glycerophospholipids 0.724  0.334 0.610  0.303 

PC ae C38:2 Glycerophospholipids 1.598  0.446 1.511  0.351 

PC ae C40:2 Glycerophospholipids 1.580  0.396 1.518  0.444 

Hex2Cer(d18:1/22:0) Glycosylceramides 

(Glycosphingolipid) 
0.132  0.078 0.160  0.072 

Hex2Cer(d18:1/24:0) Glycosylceramides 

(Glycosphingolipid) 
0.120  0.068 0.137  0.059 

HexCer(d18:1/18:0) Glycosylceramides 

(Glycosphingolipid) 
0.100  0.063 0.073  0.064 

TG(18:3_38:5) Triacylglycerols 0.588  0.393 0.442  0.291 

Values are expressed as mean  SD 
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Figure 8. The PCR model trained on the full dataset (n=120): (a) three dimensional score plot;  

(b) the optimal model (3 components) had a significant AUC of 0.69 (95% CI 0.58-0.79), (c) and 

was confirmed by LOOCV, which had an AUC of 0.63 (95% CI 0.52-0.74) 
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Figure 9. The PLS model for the training/test split: (a) three dimensional score plot; (b) the 

optimal model fit to the training dataset (n=72, 5 latent factors) had a significant AUC of 0.98 

(95% CI 0.96-1); (c) the model was externally validated in the test dataset (n=48), which had an 

AUC of 0.70 (95% CI 0.54-0.86) 
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Figure 10. The PLS model trained on the full dataset (n=120): (a) three dimensional score plot; 

(b) the model had a significant AUC of 0.95 (95% CI 0.92-0.99), (c) and was confirmed with 

LOOCV, which had an AUC of 0.75 (95% CI 0.65-0.84) 

 

 
Figure 11. In the PLS model fitted to the full dataset, the correlation between top 20 VIPs and 

top 20 univariate AUCs was weak: Spearman’s rho= 0.24, p=0.07; Kendall’s tau=0.15, p=0. 
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Chapter 4: 

Conclusion  

4.1 Summary 

In the oxythiamine study, the patient who developed Shoshin beriberi syndrome after 

transplant surgery had serum oxythiamine that was 5-fold higher than median levels. 

Oxythiamine levels were moderately correlated with patients’ lactate in the 24 hours after 

surgery; however, those with more subtle lactic acidosis did not present signs of functional 

thiamine deficiency. Patients treated with PD prior to transplantation were at an increased risk to 

have elevated oxythiamine levels, in addition to patients with poor dialysis adequacy. We 

concluded that patients may be more susceptible to elevated serum oxythiamine when renal 

clearance is poor and uremic toxins are more likely to persist. Increased serum oxythiamine may 

contribute to the formation of a metabolic environment where functional thiamine deficiency is 

more likely to occur. In our study cohort, PD patients were at highest risk.  

In the adult metabolomics study, we confirmed the presence of innate metabolomic 

differences between kidney recipients, even before transplantation, which correlate with the 

development of CR. A novel finding that suggests the metabolome provides valuable 

information about the differences that predispose patients toward a detrimental alloimmune 

response which results in subsequent graft rejection. We concluded that these differences are 

present before surgery, and may be useful in risk-stratification and as a method for personalized 

immune monitoring.  

4.2 Future directions  

We have demonstrated that immunometabolomic profiling can offer important insights 

into the role that host metabolism plays in predisposing the risk for CR.  
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Clinical variables, such as the level of HLA-mismatch and donor-specific data (e.g. age 

and race), can also influence transplant outcomes. The above variables were not control-matched 

in our study. Therefore, to develop a robust prediction algorithm for allograft survival-risk, an 

important next step is the integration of these clinical features with the metabolomic profiling. 

Equally important is to characterize the pre-transplant metabolome in the pediatric population, 

determine if it correlates with long-term rejection outcomes as well, and compare/contrast to the 

metabolome we have described in the adult population. We must also improve our understanding 

on how these metabolomic profiles relate to the alloimmune response. For example, whether the 

metabotype is associated with established urinary chemokine biomarkers, such as CXCL10, or 

directly relates to tolerance-promoting Treg responses, are questions that mandate a more 

detailed exploration.  

As extensions of the adult metabolomics study, these additional investigations will 

provide foundational preliminary data to design and power a definitive analysis to understand 

how pre-transplant differences in metabolism may prime alloimmune responses post-transplant. 

This approach is highly complementary to ongoing efforts to develop risk-stratification based on 

extent of HLA epitope mismatch, by elaborating on host metabolic factors that predispose 

toward more adapted immune responses. We expect to generate important hypotheses regarding 

metabolic influence on activated T cell differentiation that will be foundational for future 

research into mechanism and intervention. 

Baseline metabolic states may promote preferential tolerogenic alloimmune responses, 

providing a potential marker to identify individuals at risk, and are also attractive targets for 

interventions aimed at reducing rejection rates. A better understanding of the metabolome will 

enable tailoring of immune suppression and monitoring to the patient’s individual risk of 
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rejection. This will provide the basis for further scientific investigation and development of 

clinical applications to improve long-term outcomes after kidney transplantation. 
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Appendix  

List of Metabolites: MxP Quant 500 Kit  

Alkaloids (1) 

Trigonelline Trigonelline   

 

Amine Oxides (1) 

TMAO Trimethylamine N-oxide   

 

Amino Acids (20) 

Ala Alanine Leu Leucine 

Arg Arginine Lys Lysine 

Asn Asparagine Met Methionine 

Asp Aspartate Phe Phenylalanine 

Cys Cysteine Pro Proline 

Glu Glutamate Ser Serine 

Gln Glutamine Thr Threonine 

Gly Glycine Trp Tryptophan 

His Histidine Tyr Tyrosine 

Ile Isoleucine Val Valine 

 

Amino Acid Related (30) 

alpha-AAA alpha-Aminoadipic acid c4-OH-Pro cis-4-Hydroxyproline 

AABA alpha-Aminobutyric acid t4-OH-Pro trans-4-Hydroxyproline 

Ac-Orn Acetylornithine Kynurenine Kynurenine 

ADMA Asymmetric dimethylarginine Met-SO Methionine sulfoxide 

Anserine Anserine 1-Met-His 1-Methylhistidine 

5-AVA 5-Aminovaleric acid 3-Met-His 3-Methylhistidine 

BABA beta-Aminobutyric acid Nitro-Tyr Nitrotyrosine 

Betaine Betaine Orn Ornithine 

Carnosine Carnosine PAG Phenylacetylglycine 

Cit Citrulline PheAlaBetaine Phenylalanine betaine 

Creatinine Creatinine ProBetaine Proline betaine 

Cystine Cystine Sarcosine Sarcosine 

DOPA Dihydroxyphenylalanine SDMA Symmetric dimethylarginine 

HArg Homoarginine Taurine Taurine 

HCys Homocysteine TrpBetaine Tryptophan betaine 
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Bile Acids (14) 

CA Cholic acid GLCAS Glycolithocholic acid sulfate 

CDCA Chenodeoxycholic acid GUDCA Glycoursodeoxycholic acid 

DCA Deoxycholic acid TCA Taurocholic acid 

GCA Glycocholic acid TCDCA Taurochenodeoxycholic acid 

GDCA Glycodeoxycholic acid TDCA Taurodeoxycholic acid 

GCDCA Glycochenodeoxycholic acid TLCA Taurolithocholic acid 

GLCA Glycolithocholic acid TMCA Tauromurocholic acid 

 

Biogenic Amines (9) 

beta-Ala beta-Alanine Putrescine Putrescine 

GABA gamma-Aminobutyric acid Serotonin Serotonin 

Dopamine Dopamine Spermidine Spermidine 

Histamine Histamine Spermine Spermine 

PEA Phenylethylamine   

 

Carbohydrates and Related (1) 

H1 Hexoses (including glucose)   

 

Carboxylic Acids (7) 

AconAcid Aconitic acid OH-GlutAcid 3-Hydroxyglutaric acid 

DiCA(12:0) Dodecanedioic acid Lac Lactic acid 

DiCA(14:0) Tetradecanedioic acid Suc Succinic acid 

HipAcid Hippuric acid   

 

Cresols (1) 

p-Cresol-SO4 p-Cresol sulfate   

 

Fatty Acids (12) 

AA Arachidonic acid FA(18:0) Stearic acid 

DHA Docosahexaenoid acid FA(18:1) Octadecenoic acid 

EPA Eicosapentaenoic acid FA(18:2) Octadecadienoic acid 

FA(12:0) Lauric acid FA(20:1) Eicosenoic acid 

FA(14:0) Myristic acid FA(20:2) Eicosadienoic acid 

FA(16:0) Palmitic acid FA(20:3) Eicosatrienoic acid 

 

Hormones and Related (4) 

AbsAcid Abscisic Acid Cortisone Cortisone 

Cortisol Cortisol DHEAS Dehydroepiandrosterone sulfate 

 

Indoles and Derivatives (4) 

Indole Indole 3-IPA 3-Indolepropionic acid 

3-IAA 3-Indoleacetic acid Ind-SO4 Indoxyl sulfate 
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Nucleobases and Related (2) 

Hypoxanthine Hypoxanthine Xanthine Xanthine 

 

Vitamins and Cofactors (1) 

Choline Choline   

 

Acylcarnitines (40) 

C0 Carnitine C10:1 Decenoylcarnitine 

C2 Acetylcarnitine C10:2 Decadienoylcarnitine 

C3 Propionoylcarnitine C12 Dodecanoylcarnitine 

C3-DC 
(C4-OH) 

Malonylcarnitine 
(Hydroxybutyrylcarnitine) 

C12-DC Dodecanedioylcarnitine 

C3-OH Hydroxypropionylcarnitine C12:1 Dodecenoylcarnitine 

C3:1 Propenoylcarnitine C14 Tetradecanoylcarnitine 

C4 Butyrylcarnitine C14:1 Tetradecenoylcarnitine 

C4:1 Butenylcarnitine C14:1-OH Hydroxytetradecenoylcarnitine 

C5 Valerylcarnitine C14:2 Tetradecadienoylcarnitine 

C5-DC 
(C6-OH) 

Glutarylcarnitine 
(Hydroxyhexanoylcarnitine) 

C14:2-OH Hydroxytetradecadienoylcarnitine 

C5-M-DC Methylglutarylcarnitine C16 Hexadecanoylcarnitine 

C5-OH 
(C3-DC-M) 

Hydroxyvalerylcarnitine 
(Methylmalonylcarnitine) 

C16-OH Hydroxyhexadecanoylcarnitine 

C5:1 Tiglylcarnitine C16:1 Hexadecenoylcarnitine 

C5:1-DC Glutaconylcarnitine C16:1-OH Hydroxyhexadecenoylcarnitine 

C6 (C4:1-DC) Hexanoylcarnitine (Fumarylcarnitine) C16:2 Hexadecadienoylcarnitine 

C6:1 Hexenoylcarnitine C16:2-OH Hydroxyhexadecadienoylcarnitine 

C7-DC Pimeloylcarnitine C18 Octadecanoylcarnitine 

C8 Octanoylcarnitine C18:1 Octadecenoylcarnitine 

C9 Nonaylcarnitine C18:1-OH Hydroxyoctadecenoylcarnitine 

C10 Decanoylcarnitine C18:2 Octadecadienylcarnitine 

 

Lysophosphatidylcholines (14) 

lysoPC a C14:0 lysoPC a C18:0 lysoPC a C20:4 lysoPC a C28:0 

lysoPC a C16:0 lysoPC a C18:1 lysoPC a C24:0 lysoPC a C28:1 

lysoPC a C16:1 lysoPC a C18:2 lysoPC a C26:0  

lysoPC a C17:0 lysoPC a C20:3 lysoPC a C26:1  
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Phosphatidylcholines (76) 

PC aa C24:0 PC aa C36:3 PC aa C42:0 PC ae C36:1 

PC aa C26:0 PC aa C36:4 PC aa C42:1 PC ae C36:2 

PC aa C28:1 PC aa C36:5 PC aa C42:2 PC ae C36:3 

PC aa C30:0 PC aa C36:6 PC aa C42:4 PC ae C36:4 

PC aa C30:2 PC aa C38:0 PC aa C42:5 PC ae C36:5 

PC aa C32:0 PC aa C38:1 PC aa C42:6 PC ae C38:0 

PC aa C32:1 PC aa C38:3 PC ae C30:0 PC ae C38:1 

PC aa C32:2 PC aa C38:4 PC ae C30:1 PC ae C38:2 

PC aa C32:3 PC aa C38:5 PC ae C30:2 PC ae C38:3 

PC aa C34:1 PC aa C38:6 PC ae C32:1 PC ae C38:4 

PC aa C34:2 PC aa C40:1 PC ae C32:2 PC ae C38:5 

PC aa C34:3 PC aa C40:2 PC ae C34:0 PC ae C38:6 

PC aa C34:4 PC aa C40:3 PC ae C34:1 PC ae C40:1 

PC aa C36:0 PC aa C40:4 PC ae C34:2 PC ae C40:2 

PC aa C36:1 PC aa C40:5 PC ae C34:3 PC ae C40:3 

PC aa C36:2 PC aa C40:6 PC ae C36:0 PC ae C40:4 

PC ae C40:5 PC ae C42:1 PC ae C42:4 PC ae C44:4 

PC ae C40:6 PC ae C42:2 PC ae C42:5 PC ae C44:5 

PC ae C42:0 PC ae C42:3 PC ae C44:3 PC ae C44:6 

 

Sphingomyelins (15) 

SM (OH) C14:1 SM C18:0 SM (OH) C22:2 SM (OH) C24:1 

SM C16:0 SM C18:1 SM C22:3 SM C26:0 

SM C16:1 SM C20:2 SM C24:0 SM C26:1 

SM (OH) C16:1 SM (OH) C22:1 SM C24:1  

 

Ceramides (28) 

Cer(d16:1/18:0) Cer(d18:1/18:0(OH)) Cer(d18:1/24:0) Cer(d18:2/18:0) 

Cer(d16:1/20:0) Cer(d18:1/18:0) Cer(d18:1/24:1) Cer(d18:2/18:1) 

Cer(d16:1/22:0) Cer(d18:1/18:1) Cer(d18:1/25:0) Cer(d18:2/20:0) 

Cer(d16:1/23:0) Cer(d18:1/20:0(OH)) Cer(d18:1/26:0) Cer(d18:2/22:0) 

Cer(d16:1/24:0) Cer(d18:1/20:0) Cer(d18:1/26:1) Cer(d18:2/23:0) 

Cer(d18:1/14:0) Cer(d18:1/22:0) Cer(d18:2/14:0) Cer(d18:2/24:0) 

Cer(d18:1/16:0) Cer(d18:1/23:0) Cer(d18:2/16:0) Cer(d18:2/24:1) 

 

Dihydroceramides (8) 

Cer(d18:0/18:0(OH)) Cer(d18:0/20:0) Cer(d18:0/24:0) Cer(d18:0/26:1(OH)) 

Cer(d18:0/18:0) Cer(d18:0/22:0) Cer(d18:0/24:1) Cer(d18:0/26:1) 
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Hexosylceramides (19) 

HexCer(d16:1/22:0) HexCer(d18:1/18:1) HexCer(d18:1/24:1) HexCer(d18:2/20:0) 

HexCer(d16:1/24:0) HexCer(d18:1/20:0) HexCer(d18:1/26:0) HexCer(d18:2/22:0) 

HexCer(d18:1/14:0) HexCer(d18:1/22:0) HexCer(d18:1/26:1) HexCer(d18:2/23:0) 

HexCer(d18:1/16:0) HexCer(d18:1/23:0) HexCer(d18:2/16:0) HexCer(d18:2/24:0) 

HexCer(d18:1/18:0) HexCer(d18:1/24:0) HexCer(d18:2/18:0)  

 

Dihexosylceramides (9) 

Hex2Cer(d18:1/14:0) Hex2Cer(d18:1/20:0) Hex2Cer(d18:1/24:1)  

Hex2Cer(d18:1/16:0) Hex2Cer(d18:1/22:0) Hex2Cer(d18:1/26:0)  

Hex2Cer(d18:1/18:0) Hex2Cer(d18:1/24:0) Hex2Cer(d18:1/26:1)  

 

Trihexosylceramides (6) 

Hex3Cer(d18:1/16:0) Hex3Cer(d18:1/24:1) Hex3Cer(d18:1_20:0)  

Hex3Cer(d18:1/18:0) Hex3Cer(d18:1/26:1) Hex3Cer(d18:1_22:0)  

 

Cholesteryl Esters (22) 

CE(14:0) CE(17:0) CE(20:0) CE(22:1) 

CE(14:1) CE(17:1) CE(20:1) CE(22:2) 

CE(15:0) CE(18:0) CE(20:3) CE(22:5) 

CE(15:1) CE(18:1) CE(20:4) CE(22:6) 

CE(16:0) CE(18:2) CE(20:5)  

CE(16:1) CE(18:3) CE(22:0)  

 

Diglycerides (44) 

DG(14:0_14:0) DG(16:0_20:3) DG(18:1_18:2) DG(18:2_18:3) 

DG(14:0_18:1) DG(16:0_20:4) DG(18:1_18:3) DG(18:2_18:4) 

DG(14:0_18:2) DG(16:1_18:0) DG(18:1_18:4) DG(18:2_20:0) 

DG(14:0_20:0) DG(16:1_18:1) DG(18:1_20:0) DG(18:2_20:4) 

DG(14:1_18:1) DG(16:1_18:2) DG(18:1_20:1) DG(18:3_18:3) 

DG(14:1_20:2) DG(16:1_20:0) DG(18:1_20:2) DG(18:3_20:2) 

DG(16:0_16:0) DG(17:0_17:1) DG(18:1_20:3) DG(21:0_22:6) 

DG(16:0_16:1) DG(17:0_18:1) DG(18:1_20:4) DG(22:1_22:2) 

DG(16:0_18:1) DG(18:0_20:0) DG(18:1_22:5) DG-O(14:0_18:2) 

DG(16:0_18:2) DG(18:0_20:4) DG(18:1_22:6) DG-O(16:0_18:1) 

DG(16:0_20:0) DG(18:1_18:1) DG(18:2_18:2) DG-O(16:0_20:4) 
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Triglycerides (242) 
TG(14:0_32:2) TG(16:0_36:3) TG(16:1_38:5) TG(18:0_36:1) 

TG(14:0_34:0) TG(16:0_36:4) TG(17:0_32:1) TG(18:0_36:2) 

TG(14:0_34:1) TG(16:0_36:5) TG(17:0_34:1) TG(18:0_36:3) 

TG(14:0_34:2) TG(16:0_36:6) TG(17:0_34:2) TG(18:0_36:4) 

TG(14:0_34:3) TG(16:0_37:3) TG(17:0_34:3) TG(18:0_36:5) 

TG(14:0_35:1) TG(16:0_38:1) TG(17:0_36:3) TG(18:0_38:6) 

TG(14:0_35:2) TG(16:0_38:2) TG(17:0_36:4) TG(18:0_38:7) 

TG(14:0_36:1) TG(16:0_38:3) TG(17:1_32:1) TG(18:1_26:0) 

TG(14:0_36:2) TG(16:0_38:4) TG(17:1_34:1) TG(18:1_28:1) 

TG(14:0_36:3) TG(16:0_38:5) TG(17:1_34:2) TG(18:1_30:0) 

TG(14:0_36:4) TG(16:0_38:6) TG(17:1_34:3) TG(18:1_30:1) 

TG(14:0_38:4) TG(16:0_38:7) TG(17:1_36:3) TG(18:1_30:2) 

TG(14:0_38:5) TG(16:0_40:6) TG(17:1_36:4) TG(18:1_31:0) 

TG(14:0_39:3) TG(16:0_40:7) TG(17:1_36:5) TG(18:1_32:0) 

TG(16:0_28:1) TG(16:0_40:8) TG(17:1_38:5) TG(18:1_32:1) 

TG(16:0_28:2) TG(16:1_28:0) TG(17:1_38:6) TG(18:1_32:2) 

TG(16:0_30:2) TG(16:1_30:1) TG(17:1_38:7) TG(18:1_32:3) 

TG(16:0_32:0) TG(16:1_32:0) TG(17:2_34:2) TG(18:1_33:0) 

TG(16:0_32:1) TG(16:1_32:1) TG(17:2_34:3) TG(18:1_33:1) 

TG(16:0_32:2) TG(16:1_32:2) TG(17:2_36:2) TG(18:1_33:2) 

TG(16:0_32:3) TG(16:1_33:1) TG(17:2_36:3) TG(18:1_33:3) 

TG(16:0_33:1) TG(16:1_34:0) TG(17:2_36:4) TG(18:1_34:1) 

TG(16:0_33:2) TG(16:1_34:1) TG(17:2_38:5) TG(18:1_34:2) 

TG(16:0_34:0) TG(16:1_34:2) TG(17:2_38:6) TG(18:1_34:3) 

TG(16:0_34:1) TG(16:1_34:3) TG(17:2_38:7) TG(18:1_34:4) 

TG(16:0_34:2) TG(16:1_36:1) TG(18:0_30:0) TG(18:1_35:2) 

TG(16:0_34:3) TG(16:1_36:2) TG(18:0_30:1) TG(18:1_35:3) 

TG(16:0_34:4) TG(16:1_36:3) TG(18:0_32:0) TG(18:1_36:0) 

TG(16:0_35:1) TG(16:1_36:4) TG(18:0_32:1) TG(18:1_36:1) 

TG(16:0_35:2) TG(16:1_36:5) TG(18:0_32:2) TG(18:1_36:2) 

TG(16:0_35:3) TG(16:1_38:3) TG(18:0_34:2) TG(18:1_36:3) 

TG(16:0_36:2) TG(16:1_38:4) TG(18:0_34:3) TG(18:1_36:4) 

Tri 
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Triglycerides (242) 
TG(18:1_36:5) TG(18:2_38:4) TG(20:1_34:1) TG(20:4_35:3) 

TG(18:1_36:6) TG(18:2_38:5) TG(20:1_34:2) TG(20:4_36:2) 

TG(18:1_38:5) TG(18:2_38:6) TG(20:1_34:3) TG(20:4_36:3) 

TG(18:1_38:6) TG(18:3_30:0) TG(20:2_32:0) TG(20:4_36:4) 

TG(18:1_38:7) TG(18:3_32:0) TG(20:2_32:1) TG(20:4_36:5) 

TG(18:2_28:0) TG(18:3_32:1) TG(20:2_34:1) TG(20:5_34:0) 

TG(18:2_30:0) TG(18:3_33:2) TG(20:2_34:2) TG(20:5_34:1) 

TG(18:2_30:1) TG(18:3_34:0) TG(20:2_34:3) TG(20:5_34:2) 

TG(18:2_31:0) TG(18:3_34:1) TG(20:2_34:4) TG(20:5_36:2) 

TG(18:2_32:0) TG(18:3_34:2) TG(20:2_36:5) TG(20:5_36:3) 

TG(18:2_32:1) TG(18:3_34:3) TG(20:3_32:0) TG(22:0_32:4) 

TG(18:2_32:2) TG(18:3_35:2) TG(20:3_32:1) TG(22:1_32:5) 

TG(18:2_33:0) TG(18:3_36:1) TG(20:3_32:2) TG(22:2_32:4) 

TG(18:2_33:1) TG(18:3_36:2) TG(20:3_34:0) TG(22:3_30:2) 

TG(18:2_33:2) TG(18:3_36:3) TG(20:3_34:1) TG(22:4_32:0) 

TG(18:2_34:0) TG(18:3_36:4) TG(20:3_34:2) TG(22:4_32:2) 

TG(18:2_34:1) TG(18:3_38:5) TG(20:3_34:3) TG(22:4_34:2) 

TG(18:2_34:2) TG(18:3_38:6) TG(20:3_36:3) TG(22:5_32:0) 

TG(18:2_34:3) TG(20:0_32:3) TG(20:3_36:4) TG(22:5_32:1) 

TG(18:2_34:4) TG(20:0_32:4) TG(20:3_36:5) TG(22:5_34:1) 

TG(18:2_35:1) TG(20:0_34:1) TG(20:4_30:0) TG(22:5_34:2) 

TG(18:2_35:2) TG(20:1_24:3) TG(20:4_32:0) TG(22:5_34:3) 

TG(18:2_35:3) TG(20:1_26:1) TG(20:4_32:1) TG(22:6_32:0) 

TG(18:2_36:0) TG(20:1_30:1) TG(20:4_32:2) TG(22:6_32:1) 

TG(18:2_36:1) TG(20:1_31:0) TG(20:4_33:2) TG(22:6_34:1) 

TG(18:2_36:2) TG(20:1_32:1) TG(20:4_34:0) TG(22:6_34:2) 

TG(18:2_36:3) TG(20:1_32:2) TG(20:4_34:1) TG(22:6_34:3) 

TG(18:2_36:4) TG(20:1_32:3) TG(20:4_34:2)  

TG(18:2_36:5) TG(20:1_34:0) TG(20:4_34:3)  

 

 


