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Abstract

In this work, we introduce and study a class of convex functionals on pairs of

probability measures, the linear transfers, which have a structure that com-

monly arises in the dual formulations of many well-studied variational prob-

lems. We show that examples of linear transfers include a large number of

well-known transport problems, including the weak, stochastic, martingale,

and cost-minimising transports. Further examples include the balayage of

measures, and ergodic optimisation of expanding dynamical systems, among

others. We also introduce an extension of the linear transfers, the convex

transfers, and show that they include the relative entropy functional and

p-powers (p ≥ 1) of linear transfers.

We study the properties of linear and convex transfers and show that the

inf-convolution operation preserves their structure. This allows dual formu-

lations of transport-entropy and other related inequalities, to be computed

in a systematic fashion.

Motivated by connections of optimal transport to the theory of Aubry-

Mather and weak KAM for Hamiltonian systems, we develop an analog in

the setting of linear transfers. We prove the existence of an idempotent

operator which maps into the set of weak KAM solutions, an idempotent

linear transfer that plays the role of the Peierls barrier, and we identify

analogous objects in this setting such as the Mather measures and the Aubry

set. We apply this to the framework of ergodic optimisation in the holonomic

case.
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Lay Summary

A probability measure specifies the chance of a particular event occurring.

Many mathematical problems are concerned with computing similarities/d-

ifferences between two probability measures. Among such problems, a large

number of them have a common structure; we isolate and define this com-

mon formalism as a “linear transfer”, and more generally, a “convex trans-

fer”. We demonstrate linear and convex transfers encompass a wide range

of well-known mathematical problems and study their properties.

A Hamiltonian system is a system whose state over time is determined

by a function describing its total energy. In trying to investigate the long-

time dynamics of this system, one is led to the search for functions which

solve certain equations involving certain constants; this is collectively known

as Aubry-Mather/weak KAM theory. We generalise aspects of this theory

to the setting of linear transfers.
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Preface

This thesis is based on [10], which is currently in preparation to be submitted

for publication.

The material presented in Chapters 2 and 3 is based on initial ideas of

Nassif Ghoussoub, which we subsequently developed and expanded jointly.

The material in Chapter 4 is an overview of classical Aubry-Mather theory,

which motivated the present work, and was written by myself. The mate-

rial presented in Chapter 5 is work developed in collaboration with Nassif

Ghoussoub. Section 5.6.1 is based on a key contribution by Dorian Martino,

which I modified and extended.
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Chapter 1

Introduction

This work is devoted to an axiomatic study of certain convex functionals

on pairs of probability measures, whose structure commonly arises in the

dual formulations of many well-studied variational problems. Typical ex-

amples include, the weak, stochastic, martingale, and cost-minimising trans-

port problems, the relative entropy, the balayage of measures, and ergodic

optimisation of expanding dynamical systems, among others.

The overall broad aim is to unify the settings of these various problems

together, with the goal to add clarity and understanding, and to derive non-

trivial extensions, including in this work, an analog of the Aubry-Mather

and weak KAM theory for Lagrangian systems. We begin by introducing in

Chapter 2 the notions of backward/forward linear couplings, as those convex

functionals on pairs of probability measures (µ, ν) which arise as the supre-

mum of linear functionals (µ, ν) 7→
∫
Y gdν −

∫
X fdµ where the supremum is

taken over pairs of continuous functions (g, f) which lie on the graph of an

operator ; either (g, T−g), or (T+f, f) for operators T−, T+. Among these

backward/forward linear couplings, there exists a distinguished subset that

we call linear transfers. These possess an additional structure that arises

as a consequence of being defined on pairs of measures (µ, ν) and there-

fore allow us to consider one-variable convex maps by fixing µ, or fixing ν.

A backward/forward linear transfer is a backward/forward linear coupling

for which, when fixing µ or ν, and considering the resulting convex func-
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tion in ν or µ, its Legendre transform precisely coincides with the function

g 7→
∫
X T

−gdµ or f 7→
∫
Y −T

+(−f)dν. In other words, the operator T− or

T+ completely characterises the Legendre duality. This leads to the study

of such operators T−, T+, which we call backward/forward Kantorovich op-

erators who, conversely, define a linear transfer. The Kantorovich operators

are the main focus for an “Aubry-Mather and weak KAM theory for linear

transfers” later in Chapter 5.

We proceed by exhibiting a number of examples in Section 2.5 which can

be realised as backward/forward linear transfers. These include all convex

energies ν 7→ I(ν) of one variable, and any transfer whose Kantorovich oper-

ator is given by a point transformation σ : X → X on the underlying space

X, or more generally, by a positive bounded linear operator T on continuous

functions; this is connected to ergodic theory for expanding dynamical sys-

tems which we discuss later in Chapter 5. Interesting examples also include

the balayage of measures, which is concerned with pairs of measures (µ, ν)

that are in partial order with respect to convex cones A of continuous func-

tions, of which lies the work of Strassen, the important theory developed

by Choquet for convex functions when A is the cone of convex functions,

and the work of Skorokhod for Brownian motion when the cone is subhar-

monic functions. In Section 2.6, we show that cost-minimising transport is

a linear transfer. This is especially important for us as a connection made

by Bernard-Buffoni between cost-minimising transport, and Aubry-Mather

and weak KAM theory, provides an inspiration for an analog in the setting

of linear transfers in Chapter 5. In Section 2.7, we show that, under certain

assumptions, linear transfers actually coincide with weak transports studied

by Gozlan et. al. and permits us to introduce the notion of a “linear transfer

envelope” in an analogy to classical convex envelopes. In Section 2.8, we in-

troduce further examples of linear transfers, including martingale transport,

the Schrödinger bridge, stochastic transport, and related problems.

We next introduce a natural extension of linear transfers in Section 2.9,

the convex transfers. As with linear couplings and linear transfers, we de-

fine convex couplings as those functionals T (µ, ν) which are supremums of

linear couplings, and convex transfers as the distinguished subset of convex

2



couplings for which, when restricting to the one variable convex function

ν 7→ T (µ, ν) (similarly for µ 7→ T (µ, ν)), their Legendre transform is given

by g 7→ infi∈I
∫
X T

−
i gdµ, an infimum over a family of operators T−i . An im-

portant example of a convex, but not linear, transfer is the relative entropy.

We then introduce operations that preserve linear and convex transfers in

Section 2.10, the most important of which is the notion of inf-convolution

which we shall extensively use in Chapter 5. Finally, considered as one

variable convex functions ν 7→ T (µ, ν) or µ 7→ T (µ, ν), we discuss their

subdifferentials in Section 2.11.

In Chapter 3, we use the structure of linear and convex transfers to

write equivalent statements for “transport-entropy” type inequalities and

various generalisations. A typical transport-entropy inequality is of the

form Tc(ν, µ) ≤ H(µ, ν) where Tc(µ, ν) is an optimal transport for some

chosen cost function c between ν and µ, and H(µ, ν) is the relative en-

tropy of ν with respect to µ. Here µ is a fixed reference measure, and the

inequality should hold for all ν. The inequality is equivalent to the pos-

itivity of infν∈P(Y ){H(µ, ν) − Tc(ν, µ)}. By using the structure of linear

and convex transfers, we can write in a systematic way a dual formula for

infν∈P(Y ){H(µ, ν)− Tc(ν, µ)}, as well as various other types of inequalities,

for which the positivity could be obtained.

Chapter 4 is a preliminary to Chapter 5, which consists of an overview of

the theory of weak KAM developed by Fathi. In Section 4.2, we begin by in-

troducing integrable Hamiltonian systems and the role the Hamilton-Jacobi

equation plays in the search for a change of coordinates that transform a

non-integrable Hamiltonian to an integrable one. We then proceed in Sec-

tion 4.3 to introduce the Peierls barrier from which we may construct the

important Aubry set where viscosity subsolutions of Hamilton-Jacobi are

differentiable, and on which the Mather measures are supported. The Lax-

Oleinik semi-group of operators and weak KAM solutions of Fathi are dis-

cussed in Section 4.4 which connects solutions of Hamilton-Jacobi with the

Aubry set and Mather measures. An important characterisation established

by Bernard-Buffoni is then presented in Section 4.5, where they characterise

the Peierls barrier, Mather measures, Aubry set, and weak KAM solutions,

3



via optimal transport.

In Chapter 5, which consists of the main application in this work, we

are interested in developing an analog of the weak KAM and Aubry-Mather

theory of Chapter 4, for linear transfers. Here the Kantorovich operators

T−, T+, introduced in Chapter 2, play the role of the Lax-Oleinik semi-

group of the Chapter 4 in defining weak KAM solutions for linear transfers.

These are the functions f that satisfy T+f − c = f , or those g satisfying

T−g + c = g for a specific (critical) constant c. Through Theorems 5.4.3,

5.5.3, and 5.6.3, in Sections 5.4, 5.5, and 5.6, we show that for most linear

transfers, there exists an idempotent Kantorovich operator T∞ which maps

into the set of weak KAM solutions.

Theorem 1.0.1 (Theorem 5.4.3). Let T be a weak∗ continuous backward

linear transfer on M(X) ×M(X) with modulus of continuity δ, and with

backward Kantorovich operator T− : C(X)→ C(X). Then c(T ) := infµ T (µ, µ)

is the unique constant for which there exists a backward Kantorovich opera-

tor T−∞ : C(X) → C(X), together with its induced backward linear transfer

T∞, satisfying:

1. T−∞ maps every g ∈ C(X) to a backward weak KAM solution for T−,

i.e.,

T−n ◦ T−∞g + nc(T ) = T−∞g for all g ∈ C(X) and all n ∈ N.

2. T−∞ is idempotent, i.e. T−∞ ◦ T−∞g = T−∞g for all g ∈ C(X).

3. T∞ satisfies,

(Tn−nc(T ))?T∞(µ, ν) = T∞(µ, ν) = T∞?(Tn−nc(T ))(µ, ν) for every n ∈ N.

4. T∞ is idempotent and therefore A-factorisable, i.e. the set A := {σ ∈
P(X); T∞(σ, σ) = 0} is non-empty, and for every µ, ν ∈ P(X), we

have

T∞(µ, ν) = inf{T∞(µ, σ) + T∞(σ, ν), σ ∈ A},

and the infimum on A is attained.

4



5. For every µ, ν ∈ P(X), we have

sup

{∫
T−∞gd(ν − µ) ; g ∈ C(X)

}
≤ T∞(µ, ν) ≤ lim inf

n→∞
(Tn(µ, ν)−nc(T )).

6. If T (µ, µ) = c(T ), then µ ∈ A. Additionally, (µ, µ) ∈ D if and only if

µ ∈ A and T (µ, µ) = c(T ), where

D := {(µ, ν) ∈ P(X)× P(X) : T (µ, ν) + T∞(ν, µ) = c(T )}.

Inspired by the optimal transport analysis provided by Bernard-Buffoni

in the previous chapter, we can identify analogs of the objects from Aubry-

Mather and weak KAM. The Peierls barrier in this setting is the idempotent

linear transfer associated to the Kantorovich operator T−∞. The Mather

measures consist of those minimising transport plans for the weak transport

associated to the linear transfer T , and the Aubry set is the set D.

Moving from weak∗ continuity to weak∗ lower semi-continuity, which is

the natural setting for linear transfers, yields the following.

Theorem 1.0.2 (Theorem 5.5.3). Let T be a backward linear transfer such

that D1(T ) contains the Dirac measures. Assume c(T ) := infµ T (µ, µ) <

+∞, and that inf(µ,ν) T (µ, ν) = infµ T (µ, µ).

Then c(T ) is the unique constant for which there exists an idempotent

Kantorovich operator T−∞ : C(X)→ USC(X) mapping into the set of back-

ward weak KAM solutions, i.e.

T−n ◦ T−∞g + nc(T ) = T−∞g for all g ∈ C(X) and all n ∈ N.

The corresponding backward linear transfer T∞ is idempotent, the set A :=

{σ ∈ P(X); T∞(σ, σ) = 0} is non-empty, and for every (µ, ν), satisfies

T∞(µ, ν) = inf{T∞(µ, σ) + T∞(σ, ν), σ ∈ A},

and the infimum on A is attained.

Finally, the existence of an idempotent Kantorovich operator mapping

5



into the set of backward weak KAM solutions breaks down when we weaken

the hypotheses on the linear transfer.

Theorem 1.0.3 (Theorem 5.6.3). Suppose T is a backward linear transfer

on P(X)× P(X) such that D1(T ) contains all Dirac measures. Assume:

1. c(T ) := infµ T (µ, µ) < +∞,

2. supx∈X infν∈P(X) T (δx, ν) < +∞,

3. there exists K > 0 such that

lim sup
n→∞

{nc(T )− inf
µ,ν∈P(X)

Tn(µ, ν)} ≤ K,

4. there exists g ∈ C(X), such that the function

x 7→ lim inf
n→∞

(T−n g(x) + nc(T ))

belongs to USCb(X).

Then there exists h ∈ USC(X) such that T−h+ c(T ) = h on X.

In the last Section 5.6.1, we apply our results to ergodic optimization,

in particular, to the setting of symbolic dynamics.
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Chapter 2

Linear and convex transfers

2.1 Introduction

Throughout this chapter and entire thesis, X shall denote a compact metric

space, equipped with its Borel σ-algebra. Where necessary, we will write the

metric on X by dX . The collection of Borel signed measures will be denoted

by M(X), which is equipped with the weak∗ topology in duality with the

real-valued continuous functions C(X); the subset of Borel probability mea-

sures on X will be written as P(X). The set of functions f : X → R∪{−∞}
which are upper semi-continuous shall be denoted USC(X); the subset of

bounded functions in USC(X) shall be denoted by USCb(X). The notation

LSC(X) is the set of lower semi-continuous functions, i.e. those functions

f for which −f ∈ USC(X); similarly for LSCb(X). The set of functions

f : X → R ∪ {±∞} which are Borel-measurable will be denoted by B(X);

the subset of B(X) which are bounded above is Bb(X); those which are

bounded below is Bb(X). The same conventions above hold for a second

space Y in place of X.

Throughout, T : P(X)×P(Y )→ R∪{+∞} will denote a proper (i.e. not

identically +∞), bounded below, convex, and weak∗ lower semi-continuous

functional. By convex, we will always intend to mean joint convexity :

7



If µ0, µ1 ∈ P(X), and ν0, ν1 ∈ P(Y ), then

T (µλ, νλ) ≤ (1− λ)T (µ0, ν0) + λT (µ1, ν1), for all λ ∈ [0, 1],

where µλ := (1− λ)µ0 + λµ1 and νλ := (1− λ)ν0 + λν1.

To make precise the weak∗ lower semi-continuity of T , we note that

the weak∗ topology on P(X) is metrizable when X is compact, and the

metric can be taken to be the Wasserstein distance of optimal transport

with distance cost given by the metric dX on X (see e.g. [60], Chapter 7,

and also Section 2.6 of this thesis for more on optimal transport). Therefore,

weak∗ lower semi-continuity is equivalent in this case to sequential weak∗

lower semi-continuity, which we recall is the following property:

If (µn) ⊂ P(X), µ∞ ∈ P(X), such that µn → µ∞ as n → ∞ in the

weak∗ sense (and similarly for a sequence (νn) ⊂ P(Y ), and ν∞ ∈ P(Y )),

then

T (µ∞, ν∞) ≤ lim inf
n→∞

T (µn, νn).

Throughout, T shall also be viewed implicitly as a function on M(X) ×
M(Y ) by defining T ≡ +∞ on M(X) ×M(Y )\P(X) × P(Y ). Its first

partial domain D1(T ) is the set of all µ ∈ P(X) such that T (µ, ν) < +∞
for some ν ∈ P(Y ); similarly its second partial domain is D2(T ) the set of

all ν ∈ P(Y ) such that T (µ, ν) < +∞ for some µ ∈ P(X).

2.2 The Legendre-Fenchel transform and duality
for convex functions

We briefly recall the Legendre-Fenchel transform and the Fenchel-Moreau-

Rockafellar theorem for convex functions (see e.g. [2], Section 9.3).

Definition 2.2.1. Let V be a normed linear space and f : V → R∪ {+∞}
a proper function. The Legendre-Fenchel transform (or conjugate) of

f is the function f∗ : V ∗ → R∪{+∞} defined on the topological dual space

V ∗ via

f∗(v∗) := sup{〈v∗, v〉 − f(v) ; v ∈ V }

The collection of convex functions f on V which are proper and lower

8



semi-continuous are distinguished by the fact that f can be recovered from

f∗; this is the following Fenchel-Moreau theorem.

Theorem 2.2.2. Let V be a normed linear space and V ∗ its topological dual

space, equipped with the weak∗ topology. Then the following hold:

1. If f : V → R ∪ {+∞} is a proper, convex, and lower semi-continuous

function, then

f(v) = sup{〈v∗, v〉 − f∗(v∗) ; v∗ ∈ V ∗}

where f∗(v∗) := sup{〈v∗, v〉 − f(v) ; v ∈ V }.

2. If g : V ∗ → R ∪ {+∞} is a proper, convex, and weak∗ lower semi-

continuous function, then

g(v∗) = sup{〈v∗, v〉 − g∗(v) ; v ∈ V }.

where g∗(v) := sup{〈v∗, v〉 − g(v∗) ; v∗ ∈ V ∗} for v ∈ V .

2.3 Linear transfers

When the normed linear space V of the last section is the space of continuous

functions C(Y ) equipped with the supremum norm, then Riesz’ theorem

says that V ∗ can be identified withM(Y ). Therefore according to Fenchel-

Moreau, any functional F : M(Y ) → R ∪ {+∞} which is proper, convex,

and weak∗ lower semi-continuous, satisfies

F (ν) = sup
g∈C(Y )

{
∫
Y
gdν − F ∗(g)} (2.1)

where F ∗(g) = supν∈M(Y ){
∫
Y gdν − F (ν)}.

For a proper, convex, bounded below, and weak∗ lower semi-continuous

functional T on P(X) × P(Y ), viewed as a function on M(X) × M(Y )

(recall the notation in Section 2.1), we may then consider the partial map,

Tµ : ν 7→ T (µ, ν)

9



for µ ∈ D1(T ). This is a proper, convex, bounded below, and weak∗ lower

semi-continuous function on M(Y ), hence identifying F = Tµ in (2.1)

T (µ, ν) = Tµ(ν) = sup
g∈C(Y )

{
∫
Y
gdν − T ∗µ (g)}, µ ∈ D1(T ), ν ∈ P(Y ). (2.2)

In exactly the same way, the other partial map Tν : µ 7→ T (µ, ν) on M(X)

satisfies

T (µ, ν) = Tν(µ) = sup
f∈C(X)

{
∫
X
fdµ− T ∗ν (f)}, µ ∈ P(X), ν ∈ D2(T ).

(2.3)

The linear transfers are then those T whose partial maps Tµ, Tν have

Legendre-Fenchel transforms which are linear with respect to µ and ν, re-

spectively.

Definition 2.3.1 (Linear transfers). Let T : P(X)×P(Y )→ R∪{+∞} be

a proper, convex, bounded below, and weak∗ lower semi-continuous function.

1. We say that T is a backward linear transfer, if there exists an

operator T− : C(Y ) → F b(X) such that for all µ ∈ D1(T ) and all

g ∈ C(Y ),

T ∗µ (g) =

∫
X
T−gdµ. (2.4)

2. We say T is a forward linear transfer, if there exists an operator

T+ : C(X)→ Fb(Y ), such that for all ν ∈ D2(T ) and all f ∈ C(X),

T ∗ν (f) =

∫
Y
−T+(−f)dν.

Remark 2.3.2. It is important to stress that the operator T− (resp., T+)

is non-linear in general, and not the usual operators from linear functional

analysis; the term ‘linear’ refers to the linearity of the Legendre transform

T ∗µ with respect to µ.

A consequence of the above definition, is that the expression (2.2) for a

10



backward linear transfer then becomes

T (µ, ν) = sup
g∈C(Y )

{
∫
Y
gdν −

∫
X
T−gdµ}, µ ∈ D1(T ), ν ∈ P(Y ),

and (2.3) for a forward linear transfer,

T (µ, ν) = sup
f∈C(X)

{
∫
Y
T+fdν −

∫
X
fdµ}, µ ∈ P(X), ν ∈ D2(T ).

An important observation is that if T is a forward linear transfer, then

T̃ (ν, µ) := T (µ, ν) is a backward linear transfer on P(Y )× P(X), and vice

versa. Indeed, if T is a forward linear transfer, then

T̃ ∗ν (f) =

∫
X
−T+(−f)dν

so if we define T̃−f := −T+(−f), then we conclude T̃ is a backward linear

transfer on P(Y )× P(X).

It therefore suffices to focus either on those T which are backward linear

transfers, or on those T which are forward linear transfers; it will be conve-

nient to focus and state results for the backward linear transfers. However,

occasionally, we shall see that it is sometimes useful to consider T which

is both a forward, and a backward, linear transfer, hence why we introduce

both notions.

We shall often say “T is a backward linear transfer on P(X)×P(Y ) (or

P(X)×P(X), P(Y )×P(X), etc.)” for which we mean that T is a backward

linear transfer with domain P(X)×P(Y ) (or P(X)×P(X), P(Y )×P(X),

etc.).

Remark 2.3.3. If T happens to be both a forward, and backward, linear

transfer on P(X) × P(X), and is symmetric (i.e. T (µ, ν) = T (ν, µ)), then

T+f = −T−(−f). This in particular, the case for optimal transport (see

Section 2.6).

Remark 2.3.4. If T is a backward linear transfer, the definition implies

the existence of an operator T− satisfying T ∗µ (g) =
∫
X T

−gdµ. Regarding
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uniqueness, if there are two such operators T−1 , then
∫
X T

−
1 gdµ =

∫
X T

−
2 gdµ

for all g ∈ C(Y ) and all µ ∈ D1(T ). In particular if {δx ; x ∈ X} ⊂ D1(T )

(i.e. the first partial domain of T contains all the Dirac measures), then in

fact T−1 g(x) = T−2 g(x) for all g and all x. We therefore by abuse of language

shall call in all cases T− the operator associated to T .

2.4 Kantorovich operators

We now focus our attention on the non-linear operators T−. If T is a

backward linear transfer such that D1(T ) contains the Dirac measures, then

its operator T− satisfies (T−g)(x) = T ∗δx(g). Consequently, it inherits certain

properties from the Legendre transform. To this end, we find it convenient

to make the following definition. In the following, USC(X) is the collection

of upper semi-continuous functions f : X → R ∪ {−∞}; similarly LSC(X)

the collection of g : X → R ∪ {+∞} such that −g ∈ USC(X) (the same

notation holds for Y in place of X).

Definition 2.4.1. A backward Kantorovich operator is a map T− :

C(Y ) → USC(X) which is proper (i.e. T−g 6≡ −∞ for every g ∈ C(Y ))

and verifies the following properties:

1. T− is monotone, i.e., if g1 ≤ g2 in C(Y ), then T−g1 ≤ T−g2.

2. T− is affine on the constants, i.e., for any c ∈ R and g ∈ C(Y ),

T−(g + c) = T−g + c.

3. T− is a convex operator, that is for any λ ∈ [0, 1], g1, g2 in C(Y ), we

have

T−(λg1 + (1− λ)g2) ≤ λT−g1 + (1− λ)T−g2.

4. T− is lower semi-continuous in the sense that if gn → g in C(Y ) for

the sup norm, then lim infn→∞ T
−gn ≥ T−g .

For completeness we also define the forward counterpart, although it

can be derived from the backward definition (see the earlier remark on for-
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ward linear transfers). In the following, LSC(Y ) denotes the lower semi-

continuous functions on Y , i.e. g ∈ LSC(Y ) if and only if −g ∈ USC(Y ).

Definition 2.4.2. A forward Kantorovich operator is a map T+ :

C(X)→ LSC(Y ) which is proper and verifies

1. T+ is monotone, i.e., f1 ≤ f2 in C(X), then T+f1 ≤ T+f2.

2. T+ is affine on the constants, i.e., for any c ∈ R and f ∈ C(X),

T+(f + c) = T+f + c.

3. T+ is a concave operator, that is for any λ ∈ [0, 1], f1, f2 in C(X), we

have

T+(λf1 + (1− λ)f2) ≥ λT+f1 + (1− λ)T+f2.

4. T+ is upper semi-continuous, in the sense that if fn → f in C(X) for

the sup norm, then lim supn→∞ T
+fn ≤ T+f .

Remark 2.4.3. We call these operators ‘Kantorovich’ due to their connec-

tion with optimal transport (see Section 2.6). The notion of ‘backward’ is

the interpretation that the operator T− maps a function on Y ‘backward’

to a function on X (similarly for the notion of ‘forward’ and T+). The for-

ward/backward terminology coincides with Hamilton-Jacobi equations that

are solved forward/backward in time (see Example 2.6.6)

We shall see in Section 2.7 that under certain assumptions, backward

linear transfers turn out to be the dual problems of the weak transports

studied by Gozlan et al. [36]; for a precise statement, see Theorem 2.7.2.

We also mention the recent paper by Alibert, Bouchitte, and Champion

[1] which we learned of while preparing [10], in which they study Gozlan’s

weak transport costs and their Legendre transform, that we will see cor-

respond to Kantorovich operators mapping into the set of bounded upper

semi-continuous functions. We also mention the work of Roos [47] where

they introduce the notion of viscosity operators as an axiomatic characteri-

sation for viscosity solutions to the evolutive Hamilton-Jacobi equation.
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We have the following which makes the connection between the backward

linear transfers and backward Kantorovich operators.

Proposition 2.4.4. 1. Suppose T− is a backward Kantorovich operator.

Then the function defined by

T (µ, ν) :=

sup{
∫
Y gdν −

∫
X T

−gdµ ; g ∈ C(Y )} if (µ, ν) ∈ P(X)× P(Y )

+∞ otherwise,

is a backward linear transfer provided the expression on the right-hand

side is finite for at least one (µ, ν) ∈ P(X) × P(Y ). Note that the

Dirac measures may not be in D1(T ).

2. Conversely, suppose T is a backward linear transfer such that the Dirac

measures {δx ; x ∈ X} belong to D1(T ). Then its associated operator

T− in Definition 2.3.1 is a backward Kantorovich operator.

In particular T−g(x) is given by

T−g(x) = sup
ν∈P(Y )

{
∫
Y
gdν − T (δx, ν)},

and if g1, g2 are such that T−g1, T−g2 are bounded, then

‖T−g2 − T−g2‖∞ ≤ ‖g1 − g2‖∞,

where ‖h‖∞ := supx∈X |h(x)|.

Proof. 1. Define for µ ∈ D1(T ), Fµ(g) :=
∫
X T

−gdµ, which is necessar-

ily finite for all g by choice of µ. Since g 7→ T−g is convex and lower

semi-continuous on C(Y ), it is convex and weakly lower semi-continuous;

in particular, this implies Fµ is convex and lower semi-continuous on C(Y ).

Therefore, by Fenchel-Moreau, Fµ(g) = supν∈M(Y ){
∫
Y gdν −F

∗
µ(ν)}, where

F ∗µ(ν) = sup{
∫
Y
gdν −

∫
X
T−gdµ ; g ∈ C(Y )}, ν ∈M(Y ).

We will be done if we can show that F ∗µ(ν) = T (µ, ν) for all ν ∈ P(Y ). The
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equality holds when ν ∈ P(Y ) by definition of T , so suppose ν ∈ M(Y )

with ν(Y ) = λ 6= 1. Taking g(x) ≡ n ∈ Z, we have T−(g) = T−(0 + n) =

n+ T−(0), and we obtain

F ∗µ(ν) ≥ nλ−
∫
X
T−(n)dµ = n(λ− 1)−

∫
X
T−(0)dµ.

With n → ±∞, depending on if λ < 1 or λ > 1, we deduce F ∗µ(ν) = +∞.

Hence F ∗µ(ν) = T (µ, ν) for all ν ∈M(Y ), and it follows that

Fµ(g) = sup
ν∈M(Y )

{
∫
Y
gdν − F ∗µ(ν)} = sup

ν∈M(Y )
{
∫
Y
gdν − T (µ, ν)} = T ∗µ (g).

2. First we note that if {δx ; x ∈ X} ⊂ D1(T ), then in fact T−g ∈
USC(X). Indeed, if xn → x in X, extract a subsequence so that

lim sup
n→∞

T−g(xn) = lim
j→∞

T−g(xnj ).

From the expression

T−g(x) = T ∗δx(g) = sup
ν∈P(Y )

{∫
Y
gdν − T (δx, ν)

}
, (2.5)

let νj achieve the supremum above when x = xnj (the supremum is achieved

by upper semi-continuity of ν 7→
∫
Y gdν − T (δx, ν) on the compact space

P(Y )). By weak∗ compactness of P(Y ), we may extract a further subse-

quence if necessary and assume νj → ν̄ for some ν̄ ∈ P(Y ). It then follows

that by weak∗ lower semi-continuity of T

lim sup
n→∞

T−g(xn) = lim
j→∞

T−g(xnj ) ≤
∫
Y
gdν̄ − T (δx, ν̄)

≤ sup
ν∈P(Y )

{
∫
Y
gdν − T (δx, ν)} = T−g(x).

The remaining properties of monotonicity, convexity, and affine on constants

in Definition 2.3.1 follow immediately from the expression (2.5). For the

lower semi-continuity property, suppose gn → g ∈ C(Y ) for the sup norm.
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Then from (2.5), we have

T−g(x) = sup
σ∈P(Y )

{
∫
Y
gdσ − T (δx, σ)}

≤ sup
σ∈P(Y )

{
∫
Y
gndσ − T (δx, σ)}+ ‖g − gn‖∞

= T−gn(x) + ‖g − gn‖∞,

hence

T−g ≤ lim inf
n→∞

T−gn(x).

Finally, if g1, g2 ∈ C(Y ) are such that T−g1, T−g2 are bounded, then we

can repeat exactly the same estimate as above to have

T−g1(x) ≤ T−g2(x) + ‖g1 − g2‖∞,

which, with the assumption that T−g1 and T−g2 are bounded, means we

may subtract and write

T−g1(x)− T−g2(x) ≤ ‖g1 − g2‖∞.

Interchanging g1 and g2 yields the 1-Lipschitz estimate for T−.

With a further assumption on T , we can ensure that T− maps into

USCb(X) rather than USC(X) (which in particular, implies T−g is bounded).

Proposition 2.4.5. Let T be a backward linear transfer on P(X) × P(Y )

such that D1(T ) contains all the Dirac measures. If

sup
x∈X

inf
ν∈P(Y )

T (δx, ν) < +∞,

then

1. The associated backward Kantorovich operator T− maps C(X) to USCb(X).

2. D1(T ) = P(X).
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Proof. 1. The only thing which we need to show is that T−g is bounded

below, since we already know T−g belongs to USC(X) for all g ∈ C(Y ) by

the above proposition. From Proposition 2.4.4, we have

T−g(x) = sup
ν∈P(Y )

{
∫
Y
gdν − T (δx, ν)}

so that we immediately have

inf
x∈X

T−g(x) = inf
x∈X

sup
ν∈P(Y )

{
∫
Y
gdν − T (δx, ν)}

≥ inf(g)− sup
x∈X

inf
ν∈P(Y )

T (δx, ν) > −∞.

2. If D1(T ) contains the Dirac measures, then for each x ∈ X, there exists

νx ∈ P(Y ), such that T (δx, νx) = infν∈P(Y ) T (δx, ν) by compactness of

Y and weak∗ lower semi-continuity of T . Consequently, since T is jointly

convex then any empirical measure of the form µn := 1
n

∑n
i=1 δxi is in D1(T )

with

T (µn, νn) ≤ 1

n

n∑
i=1

T (δxi , νxi) =
1

n

n∑
i=1

inf
ν∈P(Y )

T (δxi , ν)

≤ sup
x∈X

inf
ν∈P(Y )

T (δx, ν) < +∞,

where νn := 1
n

∑n
i=1 νxi .

Now let µ ∈ P(X). Since the Dirac measures are the extreme points of

P(X), the measure µ is a weak∗ limit of empirical measures µn := 1
n

∑n
i=1 δxi

as n → ∞. The measures µn have associated νn such that T (µn, νn) ≤
supx∈X infν∈P(Y ) T (δx, ν) < +∞ as above. Then by weak∗ compactness of

P(Y ), we may extract a subsequence so that νnj → ν for some ν ∈ P(Y ).

Consequently by weak∗ lower semi-continuity of T , we conclude that

T (µ, ν) ≤ lim inf
j→∞

T (µnj , νnj ) ≤ sup
x∈X

inf
ν∈P(Y )

T (δx, ν) < +∞.
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Proposition 2.4.4 suggests that for an arbitrary map T− from C(Y ) to

Borel-measurable functions on X that does not satisfy the conditions for a

backward Kantorovich operator, the functional

T (µ, ν) = sup
g∈C(Y )

{
∫
Y
gdν −

∫
X
T−gdµ}

may not define a backward linear transfer.

Indeed, consider T−g := eg. Then T (µ, ν) := supg∈C(X){
∫
X gdν −∫

X e
gdµ} can be checked to be proper, and fixing µ ∈ D1(T ), a property of

the Legendre transform, is that T ∗µ (g+c) = T ∗µ (g)+c for any constant c ∈ R
and all g ∈ C(Y ). Therefore the equality T ∗µ (g) =

∫
X e

gdµ cannot hold,

since that would imply (taking g ≡ 0 and c = 1), 1 + T ∗µ (0) = T ∗µ (0 + 1) = e

while at the same time (taking g ≡ 0 and c = 2), it must hold also that

2 + T ∗µ (0) = e2, which is impossible. Therefore, we make the following

definition.

Definition 2.4.6 (Backward linear coupling). T is a backward linear

coupling if there exists a map T− : C(Y )→ Bb(X), such that

T (µ, ν) = sup
g∈C(Y )

{
∫
Y
gdν −

∫
X
T−gdµ}, µ ∈ D1(T ), ν ∈ P(Y ).

Remark 2.4.7. Every backward linear transfer is a backward linear cou-

pling. On the other hand, note that a backward linear coupling T has

T ∗µ (g) ≤
∫
X T

−gdµ for all µ ∈ D1(T ) and g ∈ C(X).

2.5 First examples of linear transfers

So far we have defined the notions of backward (resp., forward) linear trans-

fers, but have not provided any examples to suggest the large variety of

functionals which belong to this class. The aim of this section is to highlight

a few of the basic ones. As usual, we will present examples on P(X)×P(Y ),

with the implicit assumption that they should always be taken identically

+∞ outside P(X)× P(Y ) when viewed as a function on M(X)×M(Y ).
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2.5.1 Convex energies

A class of examples of linear transfers is the convex energies - functionals

whose dependence on the pair (µ, ν) is trivially only through ν.

Let I : P(Y ) → R be a bounded below, convex, weak∗-lower semi-

continuous function on P(Y ). Consider

T (µ, ν) := I(ν) for all (µ, ν) ∈ P(X)× P(Y ). (2.6)

Then T ∗µ (g) = I∗(g) =
∫
Y I
∗(g)dµ, so T is a backward linear transfer with

corresponding backward Kantorovich operator T−g ≡ I∗(g) (a constant

function of x). Some choices of I include the following.

Example 2.5.1 (The null transfer). This is simply the trivial mapping

N (µ, ν) = 0 for all probability measures µ on X and ν on Y , which achieved

by taking I ≡ 0 in (2.6). One can then compute I∗(g) = supy∈Y g(y), and

it is easy to see that it is both a backward and forward linear transfer with

Kantorovich operators,

T−g ≡ sup
y∈Y

g(y) and T+f ≡ inf
x∈X

f(x).

This is also a particular case of a result from optimal mass transport

(which we discuss in Section 2.6) when the cost is identically zero.

Example 2.5.2 (Potential energy). If I is the linear functional I(ν) =∫
Y V (y) dν(y), where V is a bounded below lower semi-continuous potential

on Y , then for every x ∈ X,

T−g ≡ I∗(g) = sup{
∫
Y

(g − V )dν ; ν ∈ P(Y )} = sup
y∈Y
{g(y)− V (y)}.

Example 2.5.3 (Relative entropy). Fix any reference measure ν0 ∈ P(Y ),

and define I as the relative entropy with respect to ν0, that is

Iν0(ν) :=


∫
Y

dν
dν0

log( dνdν0 )dν0 if ν is absolutely continuous with respect to ν0

+∞ otherwise,
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where dν
dν0

is the Lebesgue-Radon-Nikodym derivative of ν with respect to

ν0, i.e. dν = dν
dν0
dν0. Then

T−g ≡ I∗(g) = sup{
∫
Y

[gλ− λ log (λ)] dν0 ; λ ≥ 0,

∫
Y
λdν0 = 1}. (2.7)

We can actually compute exactly the value of the supremum in (2.7), which

we state in the following proposition (the following proof is provided in [35],

Proposition 2.9 for a more general context).

Proposition 2.5.4.

T−g ≡ sup{
∫
Y

[gλ− λ log (λ)] dν0 ; λ ≥ 0,

∫
Y
λdν0 = 1} = log

∫
Y
egdν0

Proof. Consider for fixed s ∈ R, the function t 7→ st − t log(t) for t ≥ 0.

This achieves a maximum supt≥0{st − t log(t)} = es−1. Identify s = g(y)

and t = λ(y), we therefore have

λg − λ log λ ≤ eg−1. (2.8)

Hence using this inequality (2.8) in (2.7), we have T−g(x) ≤
∫
Y e

g−1dν0.

From the fact that T−g = T−(g + t) − t for all t ∈ R, it must be the case

that

T−g ≤ inf
t∈R

∫
Y

(eg−1+t − t)dν0.

We can now compute the infimum in the inequality: Let F (t) :=
∫
Y (eg+t−1−

t)dν0 for t ∈ R. Since F is convex in t, the minimal value occurs exactly

where F ′(t0) = 0, i.e. where
∫
Y e

g+t0−1dν0 = 1, which implies that t0 =

1− log
∫
Y e

gdν0. This means that

T−g ≤ inf
t∈R

F (t) = F (t0) = log

∫
Y
egdν0.

On the other hand, consider the measure ν with density λ = eg∫
Y e

gdν0
with
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respect to ν0. Then one can check for this λ∫
Y

[gλ− λ log (λ)] dν0 = log

∫
Y
egdν0

giving the reverse inequality T−g ≥ log
∫
Y e

gdν0.

Remark 2.5.5. The above shows that the relative entropy functional, de-

fined on P(X)× P(X) via

H(µ, ν) =


∫
Y
dν
dµ log( dνdµ)dµ if ν is absolutely continuous with respect to µ

+∞ otherwise

is not a backward linear transfer, since H∗µ(g) = log
∫
X e

gdµ. This motivates

us to introduce a further extension of linear transfers, convex transfers, which

we will discuss in Section 2.9.

Example 2.5.6 (Variance). For the (negative) of the variance,

I(ν) := −var(ν) :=

∣∣∣∣∫
Y
y dν(y)

∣∣∣∣2 − ∫
Y
|y|2 dν(y),

the associated Kantorovich map is given by

T−g ≡ sup
y∈Y
{ĝ + q(y)− |y|2},

where q is the quadratic function q(x) = 1
2 |x|

2 and ĥ is the concave envelope

of the function h. The details for this example are given in Example 2.8.4

below.

2.5.2 Linear transfers induced from positively homogenous
operators

Let T : C(Y ) → C(X) be a bounded linear positive operator such that

T (1) = 1; we call such an operator a Markov operator. One can associate a

21



backward linear transfer in the following way:

TT (µ, ν) :=

{
0 if ν = T ∗(µ)

+∞ otherwise,
(2.9)

where T ∗ :M(X)→M(Y ) is the adjoint operator. It is immediate to check

that ν 7→ TT (µ, ν) is convex and weak∗ lower semi-continuous, and

(TT )∗µ(g) =

∫
Y
gdT ∗(µ) =

∫
Y
Tgdµ.

Therefore T−g := Tg is the corresponding backward Kantorovich operator.

Defining πx := T ∗(δx), we have that T−f(x) =
∫
Y f(y)d πx(y) and that

TT (µ, ν) = 0 if and only if ν(B) =
∫
X πx(B) dµ(x) for any Borel B ⊂ Y .

Example 2.5.7 (The prescribed push-forward transfer). Let F be a contin-

uous map from X to Y . Given µ ∈ P(X), define the push-forward measure

ν := F#µ ∈ P(Y ) by ν(B) = µ(F−1(B)) for all Borel sets B ⊂ Y .

The operator T−g := g ◦ F is readily seen to be a Markov operator and

T ∗(µ) = F#µ; hence (2.9) becomes in this case

TF (µ, ν) :=

{
0 if ν = F#µ,

+∞ otherwise
(2.10)

and the backward Kantorovich operator is given by T−g = g ◦ F . In the

case when X = Y and F (x) = x, TF is both a forward and backward linear

transfer, with T−f = f = T+f , which we call the identity transfer.

As a natural extension of the previous example, let A ∈ LSC(X), A 6≡
+∞, and consider the Kantorovich operator,

T−g(x) := g ◦ F (x)−A(x).
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Then the induced backward linear transfer is

T (µ, ν) =


∫
X Adµ if ν = F#µ,

∫
X Adµ < +∞,

+∞ otherwise.

We shall see in Section 5.6.1 that this backward linear transfer is related

to ergodic optimisation in the expanding case [25], where it is of interest

to minimise the action µ 7→
∫
X Adµ, for a given potential A, among all

F -invariant measures µ (and other related generalisations).

Example 2.5.8 (The prescribed Skorokhod transfer). Let X = Y be a

smooth compact Riemannian manifold without boundary, and (Bt)t≥0 de-

note Brownian motion on X, and S the corresponding class of (possibly

randomized) stopping times. For a fixed τ ∈ S, define

Tτ (µ, ν) :=

{
0 if B0 ∼ µ and Bτ ∼ ν.

+∞ otherwise,
(2.11)

where Z ∼ ρ if Z is a random variable with distribution ρ. It is easy to

verify ν 7→ Tτ (µ, ν) is convex and weak∗ lower semi-continuous, and we have

(Tτ )∗µ(g) =

∫
Y
gdν = E[g(Bτ )] =

∫
Y
E [g(Bτ )|B0 = x] dµ(x)

so it is in fact a backward linear transfer with backward Kantorovich oper-

ator T−g(x) := E [g(Bτ )|B0 = x].

Example 2.5.9 (Prescribed marginals). Let π be a probability measure

on X × Y , and denote π1 := projX#π and π2 := projY #π as its marginal

on X (resp., on Y ). Here we are using the push-forward measure notation

of Example 2.5.7, which in this context, means π1(A) := π(proj−1
X (A)) =

π(A× Y ) (similarly for projY #π). Define

Tπ(µ, ν) =

{
0 if µ = π1 and ν = π2.

+∞ otherwise,
(2.12)
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In this case, π1 is the only member of D1(Tπ), and

(Tπ)∗π1(g) =

∫
Y
gdπ2 =

∫
X×Y

gdπ =

∫
X

[∫
Y
g(y)dπx(y)

]
dπ1(x)

where (πx)x is the disintegration of π with respect to π1. A similar expression

holds for (Tπ)∗π2(f). Therefore

T−g(x) :=

∫
Y
g(y)d πx(y) and T+f(y) =

∫
X f(x)d πy(x).

Note in this example that T−g is merely a (bounded above and below)

Borel measurable function.

2.5.3 Balayage of measures

Given a closed convex cone A ⊂ C(X) that contains the non-negative con-

stant functions and is closed under maxima, define a partial order relation

between probability measures µ, ν, which we call an A-order, via

µ ≺A ν if and only if
∫
X ϕdµ ≤

∫
X ϕdν for all ϕ in A.

Define the balayage of measures B on P(X)× P(X) via

B(µ, ν) =

{
0 if µ ≺A ν
+∞ otherwise.

(2.13)

It is easy to see that ν 7→ B(µ, ν) is convex and weak∗ lower semi-continuous,

and that

B∗µ(g) = sup

{∫
X
gdν ; ν ∈ P(X), µ ≺A ν

}
.

Proposition 2.5.10. We have

sup

{∫
X
gdν ; ν ∈ P(X), µ ≺A ν

}
=

∫
X

[
sup
δx≺Aσ

∫
X
g(y)dσ(y)

]
dµ(x)

and hence B is a backward linear transfer.
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For the proof, we state the following result that has previously been

established in [17] and based on the classical results of Strassen [56]. We

call a Markov kernel a real-valued function P : P(X) ×X → R, such that

P (·, x) belongs to P(X), and x 7→ P (A, x) is Borel-measurable for any Borel

set A ⊂ X.

Theorem 2.5.11 ([17], Theorem 2). Let A be a closed convex cone in

C(X) which contains the non-negative constant functions and is closed un-

der maxima. If µ ≺A ν, then there exists a Markov kernel P , such that

ν(A) =
∫
X P (A, x)dµ(x) for all Borel A ⊂ X, and δx ≺A P (·, x) for all

x ∈ X.

In addition, the set of extreme points of {(µ, ν) ; µ ≺A ν} is contained

in the set of measures (δx, σ), where δx ≺A σ.

We also state the following measurable selection theorem, which shall be

of use here, and also in later sections.

Proposition 2.5.12 ([7], Proposition 7.3.3). Let X be a metrizable space,

Y a compact metrizable space, D ⊂ X × Y a closed subset, and f : D →
R ∪ {±∞} lower semi-continuous. Let f∗ : projX(D) → R ∪ {±∞}, where

projX(D) := {x ∈ X ; (x, y) ∈ D for some y ∈ Y }, be defined by

f∗(x) = inf
y∈Dx

f(x, y)

where Dx := {y ∈ Y ; (x, y) ∈ D}. The f∗ is lower semi-continuous,

and there exists a Borel-measurable function ϕ : ProjX(D) → Y such that

Graph(ϕ) ⊂ D and f(x, ϕ(x)) = f∗(x) for all x ∈ ProjX(D).

The above results readily leads to the proof of Proposition 2.5.10.

Proof. Of Proposition 2.5.10. By Theorem 2.5.11, we conclude that when-

ever µ ≺A ν, we have a Markov kernel P with the specified properties, so
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that ∫
X
g(y)dν(y) =

∫
X

[∫
X
g(y)P (dy, x)

]
dµ(x)

≤
∫
X

(
sup
δx≺Aσ

∫
X
g(y)dσ(y)

)
dµ(x).

On the other hand, let σx achieve the supremum for each x ∈ X (the supre-

mum is achieved since the set of δx ≺A σ is weak∗ closed in P(X) and

therefore weak∗ compact). Then by the measurable selection Proposition

2.5.12, P (A, x) := σx(A) is a Markov kernel, and ν(A) :=
∫
X P (A, x)dµ(x)

satisfies µ ≺A ν.

Defining T−g(x) := supδx≺Aσ
∫
X g(y)dσ(y), we conclude that B is a back-

ward linear transfer. We have the following representation for T−:

Proposition 2.5.13.

T−g(x) = ĝ(x) := inf{h(x) ; h ∈ −A, h ≥ g on X}.

Proof. For any admissible h, we have
∫
X gdσ ≤

∫
X hdσ, hence

T−g(x) = sup
δx≺Aσ

∫
X
g(y)dσ(y) ≤ sup

δx≺Aσ

∫
X
h(y)dσ(y) ≤ h(x),

the last inequality following since h ∈ −A. Hence T−g(x) ≤ ĝ(x).

Conversely, let ε > 0, and for each x ∈ X, choose hε,x ∈ −A, hε,x ≥ g,

such that hε,x(x) ≤ g(x)+ ε
2 . By continuity, there exists an open neighbour-

hood Brx(x) ⊂ X such that hε,x(x′) ≤ g(x′) + ε for all x′ ∈ Brx(x). The

collection {Brx(x)}x∈X is an open cover of X, hence by compactness, there

exists a finite subcover {Brxi (xi)}
n
i=1. Define

hε(x) := min{hε,x1(x), . . . , hε,xn(x)}

since A is closed under maxima, it follows that hε ∈ −A. Moreover, each
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x ∈ X belongs to Brxi (xi) for some i ∈ {1, . . . , n}, hence

g(x) ≤ hε(x) ≤ g(x) + ε for all x ∈ X.

Now for any σ such that δx ≺A σ, we have

ε+

∫
X
gdσ ≥

∫
X
hεdσ ≥ hε(x) since hε ∈ −A,

and since hε(x) ≥ ĝ(x), we conclude,

ε+ T−g(x) ≥ ε+

∫
X
g(y)dσ(y) ≥ ĝ(x).

As ε is arbitrary, we obtain the reverse inequality, which concludes the proof.

By a similar argument to that given above, one can show that B is also

a forward linear transfer with a forward Kantorovich operator T+f := f̌ ,

where

f̌(x) = inf{
∫
X
fdσ; δx ≺A σ} = sup{h(x) ; h ∈ A, h ≤ f on X}.

We now discuss particular choices of A.

Example 2.5.14 (Convex order). If X is a convex compact space in a

locally convex topological vector space, then A can be taken to be the cone

of continuous convex functions. In this case, T−g = ĝ is the concave envelope

of g (i.e. the smallest concave function above g), since an infimum of concave

functions is concave. This is a classical result of Choquet (see e.g. [16]

Proposition 26.13).

Example 2.5.15 (Subharmonic order). Consider now when X ⊂ Rn and A
is the cone of Lipschitz subharmonic functions on some open set O contain-

ing X. In this case, we can identify B in another way using the following

characterisation of Skorokhod.

Proposition 2.5.16 (Skorokhod, e.g. [30]). Let A be the cone of Lips-
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chitz subharmonic functions on a domain X in Rn. Then, the following are

equivalent for two probability measures µ and ν on X.

1. µ ≺A ν.

2. There exists a stopping time τ ∈ S with E[τ ] < ∞ such that B0 ∼ µ

and Bτ ∼ ν, where S denote the collection of (random) Brownian

stopping times with finite expectation.

Therefore,

B(µ, ν) =

0 if B0 ∼ µ and Bτ ∼ ν for some τ ∈ S,

+∞ otherwise.

This identification of B provides various ways to write T− in this case:

1. T−g = ĝ is the smallest Lipschitz superharmonic function above g.

2. T−g = sup
τ∈S

E [g(Bτ )|B0 = x].

3. T−g = Jg, where Jg(x) is a viscosity solution for the heat variational

inequality max {g(x)− J(x),∆J(x)} = 0.

Note also that B(µ, ν) = inf
τ∈S
Tτ (µ, ν) where Tτ is the “prescribed Skorokhod

transfer” of Example 2.5.8.

2.6 Linear transfers and optimal mass
transportation

In the Monge-Kantorovich theory of optimal transport (see e.g. [59, 60], or

[48]), given a lower semi-continuous cost function c : X × Y → R ∪ {+∞}
one associates a map Tc on P(X)×P(Y ) to be the optimal total transport

cost between µ ∈ P(X) and ν ∈ P(Y ), via

Tc(µ, ν) := inf
π∈K(µ,ν)

∫
X×Y

c(x, y) dπ(x, y), (2.14)
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where K(µ, ν) is the set of probability measures π on X×Y whose marginal

projX]π on X is µ, and marginal projY ]π on Y is ν, (recall projX is the

projection (x, y) 7→ x onto X; similarly for Y ). Also recall the push-forward

of a measure by a map φ is the measure (φ#)µ(A) := µ(φ−1(A)).

The measures π ∈ K(µ, ν) are interpreted as transport plans, with dπ(x, y)

representing the amount of mass which is sent from x to y, and costing

c(x, y)dπ(x, y) to do so.

The optimal transport problem (2.14) is an infinite dimensional linear

programming problem; as in the classical finite dimensional theory, it has a

dual formulation first studied by Kantorovich (see e.g. [59], Theorem 1.3,

and references therein).

Theorem 2.6.1 (Kantorovich duality [59]). Let c : X × Y → R∪ {+∞} be

a lower semi-continuous function. Then

inf
π∈K(µ,ν)

∫
X×Y

c(x, y) dπ(x, y) = sup{
∫
Y
gdν −

∫
X
T−gdµ ; g ∈ C(Y )}

= sup{
∫
Y
T+fdν −

∫
X
fdµ ; f ∈ C(X)}

where

T−g(x) := sup
y∈Y
{g(y)− c(x, y)} and T+f(y) := inf

x∈X
{c(x, y) + f(x)}.

Remark 2.6.2. If X and Y are not compact, then c should also be assumed

to be bounded below; this additional hypothesis is not necessary whenX and

Y are compact as c is automatically bounded from below by the assumption

of lower semi-continuity.

Proof. Note first that ν 7→ Tc(µ, ν) is convex and weak∗ lower semi-continuous.

Indeed, for ν1, ν2 ∈ P(Y ), and fixed µ ∈ P(X), the infimum is achieved

for Tc(µ, νi) at some πi ∈ K(µ, νi), i = 1, 2. It immediately follows that

πλ := (1− λ)π1 + λπ2 is admissible for Tc(µ, (1− λ)ν1 + λν2). In addition,

if νn → ν, then for any πn ∈ K(µ, νn), one may extract a subsequence con-

verging to π ∈ P(X×Y ) by weak∗ compactness of P(X×Y ), and moreover,
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π ∈ K(µ, ν). The lower semi-continuity then follows. Finally,

(Tc)∗µ(g) = sup
ν∈P(Y )

{
∫
Y
gdν − inf

π∈K(µ,ν)

∫
X×Y

c(x, y) dπ(x, y)}

= sup
ν∈P(Y )

sup
π∈K(µ,ν)

{
∫
X×Y

(g(y)− c(x, y))dπ(x, y)}

= sup
π∈K(µ,·)

{
∫
X×Y

(g(y)− c(x, y))dπ(x, y)}.

It is clear that the supremum is achieved by a π whose disintegration with

respect to µ is given by dπ(x, y) = dµ(x)δyx(y) where yx is a value of y

achieving supy∈Y {g(y)− c(x, y)}. A similar argument holds for showing Tc
is a forward linear transfer.

Remark 2.6.3. In fact one can refine the duality further and show that

inf
π∈K(µ,ν)

∫
X×Y

c(x, y) dπ(x, y) = sup{
∫
Y
φ1dν −

∫
X
φ0dµ}

where the supremum is over all pairs (φ0, φ1) such that φ1 = T−φ0 and φ0 =

T+φ1. This will be relevant for Bernard-Buffoni’s work [5, 6] discussed in

Chapter 4 on optimal transport and Aubry-Mather and weak KAM theory.

In the following examples, we highlight the backward/forward Kan-

torovich operators for a few special cases for the cost function.

Example 2.6.4 (The trivial Kantorovich transfer). Let c1 ∈ USCb(X),

c2 ∈ LSC(Y ), and define c(x, y) := c2(y) − c1(x). Then c is lower semi-

continuous, and

Tc(µ, ν) =

∫
Y
c2 dν −

∫
X
c1 dµ.

The Kantorovich operators are T+f = c2 +infx∈X{f(x)−c1(x)} and T−g =

c1 + supy∈Y {g(y)− c2(y)}.

Example 2.6.5 (The Kantorovich-Rubinstein transport). For the cost c(x, y) =

dX(x, y) (recall dX is the metric on X), the Kantorovich operators are given
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by

T+f(y) = inf
x∈X
{f(x)+dX(x, y)} and T−g(x) = sup

y∈X
{g(y)−dX(x, y); y ∈ X}.

A computation shows that T− ◦ T+ = T+ and T+ ◦ T− = T−. Hence by

taking f = T−h for h ∈ C(X), we have

Tc(µ, ν) = sup
f∈C(X)

{
∫
X
T+fdν −

∫
X
fdµ} ≥ sup

h∈C(X)
{
∫
X
T−h d(ν − µ)}

while at the same time, from g ≤ T−g we have

Tc(µ, ν) = sup
g∈C(X)

{
∫
X
gdν −

∫
X
T−gdµ} ≤ sup

g∈C(X)
{
∫
X
T−g d(ν − µ)}.

Hence, Tc(µ, ν) = supg∈C(X){
∫
X T

−g d(ν − µ)}. It is readily checked that

T−g is 1-Lipschitz for any g ∈ C(X), and moreover, every g which is λ-

Lipschitz, λ ≤ 1, satisfies T−g = g. Therefore,

T (µ, ν) = sup

{∫
X
g d(ν − µ); g ∈ C(X), ‖g‖Lip ≤ 1

}
where ‖g‖Lip := supx 6=y

|g(y)−g(x)|
dX(x,y) . (The above discussion holds also for any

other lower semi-continuous metric d, not necessarily the one defining the

topology.)

Example 2.6.6 (Lagrangian cost [5]). This example links the Kantorovich

backward and forward operators with the respective backward and forward

Hopf-Lax operators that solve first order Hamilton-Jacobi equations, which

we will see is intimately connected to weak KAM theory (see Chapter 4).

On a given smooth compact Riemannian manifold M without boundary

(take e.g. M = Tn the flat torus), with tangent bundle TM , let L : TM →
R ∪ {+∞} be a given Tonelli Lagrangian (see Chapter 4 for a definition),

and consider the cost

cL(y, x) := inf{
∫ 1

0
L(γ(t), γ̇(t)) dt; γ ∈ C1([0, 1],M); γ(0) = y, γ(1) = x}.
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For µ and ν two probability measures on M , consider the optimal transport

with cost cL.

Then, T+f(x) = Vf (1, x), where Vf (t, x) is the “value functional”

Vf (t, x) := inf

{
f(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds; γ ∈ C1([0, 1],M), γ(t) = x

}
.

Vf is in fact a viscosity solution for the Hamilton-Jacobi equation{
∂tV +H(x,∇xV ) = 0 on (0,+∞)×M,

V (0, x) = f(x).

(see e.g. [20], Theorem 7.2.8) where H is the Hamiltonian (see Chapter

4). Similarly, the backward Kantorovich operator is given by T−g(y) =

Wg(0, y), where Wg(t, y) is the value functional

Wg(t, y) := sup
{
g(γ(1))−

∫ 1

t
L(γ(s), γ̇(s)) ds; γ ∈ C1([0, 1),M); γ(t) = y

}
,

which is a viscosity solution for the backward Hamilton-Jacobi equation{
∂tW +H(x,∇xW ) = 0 on [0, 1)×M,

W (1, y) = g(y).

Example 2.6.7 (The Brenier-Wasserstein distance [12]). We mention this

important example even though it is not in a compact setting. If c(x, y) =

〈x, y〉 on Rd×Rd, and µ, ν are two probability measures of compact support

on Rd, then

T (µ, ν) = inf
{∫

Rd×Rd
〈x, y〉 dπ;π ∈ K(µ, ν)

}
.

Here, the Kantorovich operators are

T+f(x) = −f∗(−x) and T−g(y) = (−g)∗(−y),

where f∗ is the convex Legendre transform of f .
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2.7 Representation and envelopes of linear
transfers

2.7.1 Linear transfers and optimal weak transports

A natural generalisation of optimal transport is optimal weak transport, in-

troduced by Gozlan et. al. [36]. Weak transport is concerned with cost

functions c(x, σ) between points x and distributions σ ∈ P(Y ), and thus is

a generalisation of the cost-minimizing optimal transport of the last section

which concerns cost functions between points x and y.

Definition 2.7.1. Let c : X × P(Y ) → R ∪ {+∞} be a bounded below,

lower semi-continuous function with σ 7→ c(x, σ) convex. The optimal

weak transport problem with cost c from µ ∈ P(X) to ν ∈ P(Y ) is

V (µ, ν) := inf
π
{
∫
X
c(x, πx) dµ(x);π ∈ K(µ, ν)} (2.15)

where (πx)x is the disintegration of π with respect to µ.

This problem has been the study of several recent papers [1], [3], and

[36], where existence, duality, and certain properties of optimisers of (2.15)

have been established. In the next theorem we show that weak transports

are backward linear transfers, and, conversely, appropriate backward linear

transfers can be represented as weak transports. The implication of this is

that, roughly speaking, backward linear transfers are the dual formulation

of weak transports.

Theorem 2.7.2. 1. Any optimal weak transport cost c(x, σ) satisfying

the properties in Definition 2.7.1 defines a backward linear transfer

via

T (µ, ν) :=

inf{
∫
X c(x, πx) dµ(x);π ∈ K(µ, ν)}, if (µ, ν) ∈ P(X)× P(Y ),

+∞ otherwise,

and T−g(x) := sup{
∫
Y gdσ − c(x, σ) ; σ ∈ P(Y )}.
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2. Conversely, if T is a backward linear transfer such that {δx;x ∈ X} ⊂
D1(T ), then T is an optimal weak transport with cost function c(x, σ) :=

T (δx, σ).

In order to prove that a weak transport V (µ, ν) is a backward linear

transfer, we wish to show convexity and weak∗ lower semi-continuity for ν 7→
V (µ, ν). It turns out that the weak∗ lower semi-continuity is more delicate

to establish than standard optimal transport due to the disintegration πx of

π with respect to its first marginal; two recent papers, [1] (see also [3]) have

closed this gap.

Theorem 2.7.3 ([1], Theorem 2.9, Lemma 3.5). Let c satisfy the conditions

given in Definition 2.7.1. Then the map π 7→ I(π) :=
∫
X c(x, πx)dµ(x) is

weak∗ lower semi-continuous, where µ := ProjX#π is the first marginal of

π. Consequently, the problem (2.15) admits a minimiser.

With these properties, we give the rest of the details for the proof of

Theorem 2.7.2.

Proof. (Of Theorem 2.7.2)

1. We show that ν 7→ T (µ, ν) is convex. This is essentially a consequence

of the assumption that σ 7→ c(x, σ) is convex. Indeed, fix ν1, ν2 ∈
P(Y ), and find for a fixed ε > 0, π1 ∈ K(µ, ν1) and π2 ∈ K(µ, ν2) such

that ∫
X
c(x, πix) dµ(x) ≤ Tc(µ, νi) + ε for i = 1, 2.

Consider π ∈ P(X × Y ) which is defined via

dπ(x, y) := (λdπ1
x(y) + (1− λ)dπ2

x(y))dµ(x).

With νλ := λν1 + (1 − λ)ν2, we have π ∈ K(µ, νλ), and therefore, by

convexity of c in the second variable, we have

Tc(µ, νλ) ≤
∫
X
c(x, πx) dµ(x) ≤

∫
X
λc(x, πix) dµ(x) +

∫
X

(1− λ)c(x, πix) dµ(x)

≤ λTc(µ, ν1) + (1− λ)Tc(µ, ν2) + ε,
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which implies convexity of ν 7→ Tc(µ, ν).

We now show that ν 7→ T (µ, ν) is weak∗ lower semi-continuous. This

is almost immediate from Theorem 2.7.3. Indeed, let νn → ν and

select a subsequence so that limj→∞ T (µ, νnj ) = lim infn→∞ T (µ, νn).

For notational ease, relabel the subsequence to νn. For each n, let

πn ∈ K(µ, νn) be optimal for the weak transport T (µ, νn), which we

know exists by Theorem 2.7.3. By compactness of P(X × Y ), there is

a further subsequence (which we again relabel to n) so that πn → π

for some π ∈ K(µ, ν). This π is admissible for T (µ, ν) so

T (µ, ν) ≤
∫
X
c(x, πx) dµ(x)

while at the same time by Theorem 2.7.3, we have∫
X
c(x, πx) dµ(x) ≤ lim inf

n→∞

∫
X
c(x, πnx) dµ(x) = lim inf

n→∞
T (µ, νn)

which concludes the proof of lower semi-continuity. Finally, we com-

pute the Legendre transform,

T ∗µ (g) = sup
ν∈P(Y )

{
∫
Y
g dν − T (µ, ν)}

= sup
ν∈P(Y )

sup
π∈K(µ,ν)

{
∫
Y
g(y) dν(y)−

∫
X
c(x, πx) dµ(x)}

= sup
π∈K(µ,·)

{
∫
X

[∫
Y
g(y)dπx(y)− c(x, πx)

]
dµ(x)} (2.16)

≤
∫
X

sup
σ∈P(Y )

{
∫
Y
gdσ − c(x, σ)}dµ(x) (2.17)

=

∫
X
T−gdµ.

On the other hand, by compactness of P(Y ) and lower semi-continuity

of c, for each x the supremum in (2.17) is achieved by some σx in a

measurable way (see the measurable selection proposition 2.5.12) so
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that

T−g(x) =

∫
Y
g(y)dσx(y)− c(x, σx) for every x ∈ X.

Define π ∈ P(X × Y ) via dπ(x, y) := dσx(y)dµ(x). Denoting ν :=

ProjY #π, we have π ∈ K(µ, ν). Hence, this π is admissible in the

supremum (2.16), so that

T ∗µ (g) ≥
∫
Y

[∫
X
g(y)dσx(y) dµ(x)−

∫
X
c(x, σx)

]
dµ(x)

=

∫
X
T−g(x)dµ(x),

hence T ∗µ (g) =
∫
X T

−g(x)dµ(x).

2. Let T be a backward linear transfer with backward Kantorovich oper-

ator T−. Define c(x, σ) := T (δx, σ). Then c is bounded below, proper,

lower semi-continuous, and σ 7→ c(x, σ) is convex, so we may define

the weak transport

T̃ (µ, ν) := inf
π∈K(µ,ν)

∫
X
c(x, πx) dµ(x)

for µ ∈ P(X) and ν ∈ P(Y ) (and +∞ otherwise on M(X)×M(Y )).

In an identical way to the proof of item 1, we have for any µ,

T̃ ∗µ (g) =

∫
X
T̃−gdµ

where T̃−g(x) := supσ∈P(Y ){
∫
Y gdσ − c(x, σ)}. On the other hand,

since c(x, σ) = T (δx, σ) and {δx ; x ∈ X} ⊂ D1(T ), we also have that

T̃−g(x) = T ∗δx(g) = T−g(x) for all x ∈ X. Hence T̃ ∗µ (g) =
∫
X T

−gdµ =

T ∗µ (g) for all µ ∈ P(X) and consequently, T (µ, ν) = T̃ (µ, ν).
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2.7.2 Linear transfer envelopes

Suppose T is merely a proper, convex, bounded below, weak∗ lower semi-

continuous functional, but is not a backward linear transfer, or even a back-

ward linear coupling. Is there a “canonical” backward linear transfer associ-

ated to T ? We therefore consider in the following linear transfer “envelopes”,

in an analogy to the convex/concave envelopes of functions.

Proposition 2.7.4. Let T : P(X) × P(Y ) → R ∪ {+∞} be a proper,

convex, bounded below, weak∗ lower semi-continuous functional such that

{δx ; x ∈ X} ⊂ D1(T ). Denote T to be the weak transport defined by (2.15)

associated to the weak transport cost c(x, σ) := T (δx, σ), and let

T̃ (µ, ν) :=

∫
X
c(x, ν)dµ(x).

Then, T ≤ T ≤ T̃ , and T is the only weak transport between T and T̃ .

In particular, the following holds: For any backward linear transfer S
with {δx ; x ∈ X} ⊂ D1(S),

1. If T ≤ S, then T ≤ S.

2. If S ≤ T̃ , then S ≤ T .

Proof. Note that by the first part of Theorem 2.7.2, T is a backward linear

transfer with backward Kantorovich operator

T−g(x) = sup
σ∈P(Y )

{
∫
Y
g dσ − c(x, σ)}.

Moreover, as T is a weak transport, an admissible π ∈ K(µ, ν) is the product

measure µ⊗ ν. Hence

T (µ, ν) ≤
∫
X
c(x, ν)dµ(x) = T̃ (µ, ν).

To show that T ≤ T , note that since T is jointly convex and lower semi-
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continuous, then for each g ∈ C(Y ), the functional

µ→ (Tµ)∗(g) = sup
σ∈P(Y )

{
∫
Y
gdσ − T (µ, σ)}

is upper semi-continuous and concave. It follows from Jensen’s inequality

that

(Tµ)∗(g) ≥
∫
X

(Tδx)∗(g)dµ(x) =

∫
X
T−g(x)dµ(x),

hence

T (µ, ν) = (Tµ)∗∗(ν) ≤ sup
g∈C(Y )

{∫
Y
gdν −

∫
X
T−gdµ

}
= T (µ, ν).

To see that T is the smallest backward linear transfer greater than T ,

note that if S is a backward linear transfer and T ≤ S, then T ≤ S, and

S = S by the previous Theorem 2.7.2.

To see T is the greatest backward linear transfer smaller than T̃ , sup-

pose S is a backward linear transfer with S ≤ T̃ and S− is its backward

Kantorovich operator. Note that T (δx, ν) = T̃ (δx, ν). Therefore

S−g(x) = S∗δx(g) ≥ T̃ ∗δx(g) = T ∗δx(g) = T−g(x),

and therefore S ≤ T .

Remark 2.7.5. Suppose T is any convex, bounded below, and weak∗ lower

semi-continuous functional on P(X)×P(Y ) that is finite on the set of Dirac

measures {(δx, δy) ; x ∈ X, y ∈ Y }. One can then define a cost function

c(x, y) = T (δx, δy), and the associated optimal transport Tc(µ, ν). To com-

pare T with Tc, note that

T ∗δx(g) = sup{
∫
Y
gdν − T (δx, ν); ν ∈ P(Y )}

≥ sup{g(y)− c(x, y); y ∈ Y } = T−c g(x)
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and so

T (µ, ν) ≤ T (µ, ν) ≤ Tc(µ, ν).

In many cases, it is not possible to define a proper cost c(x, y) = T (δx, δy),

i.e. c is identically +∞. This is the case for many stochastic transport

problems where transport via Brownian motion makes it impossible for a

Dirac measure to be transported to another Dirac measure; see in particular

the stochastic mass transport of Example 2.8.7.

In the next proposition, we describe dually a “Kantorovich operator

envelope” for operators T : C(Y ) → USC(X). It will be necessary first

(and later in this thesis) to state a classical minimax theorem that will

allow us to interchange sup and inf in appropriate cases.

Theorem 2.7.6 (Sion’s minimax theorem [52], Theorem 3.4). Let V be a

compact convex subset of a topological vector space, and W a convex set in

a (possibly different) topological vector space. Let f : V ×W → R be such

that

1. For all w ∈ W , v 7→ f(v, w) is: (i) lower semi-continuous on V and

(ii) quasiconvex on V , i.e. {v ∈ V ; f(v, w) ≤ λ} is convex or empty

for all λ ∈ R,

2. For all v ∈ V , w 7→ f(v, w) is: (i) upper semi-continuous on W and

(ii) quasiconcave on W , i.e. {w ∈ W ; f(v, w) ≥ λ} is convex or

empty for all λ ∈ R,

Then infv∈V supw∈W f(v, w) = supw∈W infv∈V f(v, w).

Proposition 2.7.7. Let T : C(Y ) → USCb(X) be any map such that for

every x ∈ X,

sup
x∈X

inf
ν∈P(Y )

sup
g∈C(Y )

{∫
Y
g dν − Tg(x)

}
< +∞. (2.18)

Then the operator defined by

T
−
g(x) := sup

σ∈P(Y )
inf

h∈C(Y )
{
∫
Y

(g − h) dσ + Th(x)}
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is the backward Kantorovich operator of the weak transport T̄ associated to

T of Proposition 2.7.4 and maps C(Y ) to USCb(X). It satisfies T
− ≤ T ,

with the property that for any other backward Kantorovich operator S− :

C(Y )→ USCb(X) such that S− ≤ T , then S− ≤ T
−

. Consequently if T is

itself a backward Kantorovich operator, then T
−

= T .

Proof. Consider the backward linear coupling on M(X)×M(Y ) given by

T (µ, ν) =

{
supg∈C(Y )

{ ∫
Y g dν −

∫
X Tg dµ

}
if µ, ν ∈ P(X)× P(Y ),

+∞ otherwise.

Note that T is a bounded below, convex, lower semi-continuous functional

and the assumption (2.18) means that {δx ; x ∈ X} ⊂ D1(T ). Hence Propo-

sition 2.7.4 applies to yield a weak transport T with a corresponding back-

ward Kantorovich operator defined as

T
−
g(x) = sup

σ∈P(Y )
{
∫
Y
gdσ − T (δx, σ)}.

We can then provide an upper estimate for T
−
g(x) by substituting the

expression for T (δx, σ):

T
−
g(x) = sup

σ∈P(Y )
{
∫
Y
gdσ − T (δx, σ)}

= sup
σ∈P(Y )

inf
h∈C(Y )

{
∫
Y
gdσ −

∫
Y
hdσ + Th(x)}

≤ inf
h∈C(Y )

sup
σ∈P(Y )

{
∫
gdσ −

∫
hdσ + Th(x)}

= inf
h∈C(Y )

{sup(g − h) + Th(x)}

≤ Tg(x).
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If S is a backward Kantorovich operator such that S ≤ T , then

T
−
g(x) = sup

σ∈P(Y )
inf

h∈C(Y )
{
∫
Y
gdσ −

∫
Y
hdσ + Th(x)}

≥ sup
σ∈P(Y )

inf
h∈C(Y )

{
∫
gdσ −

∫
hdσ + Sh(x)}

= inf
h∈C(Y )

sup
σ∈P(Y )

{
∫
gdσ −

∫
hdσ + Sh(x)}

= inf
h
{sup(g − h) + Sh(x)}

= inf
h
{S[sup(g − h) + h](x)}

≥ Sg(x).

where the last two steps used the fact that S is a Kantorovich operator.

2.7.3 Recessions of linear transfers

We recall in classical convex analysis, a direction of recession for a convex

set C ⊂ X is a direction d such that x+λd ∈ C for all x ∈ C and all λ ≥ 0.

The recession cone is the collection of all such d. The recession cone for a

convex function f is the intersection of all recession cones for its sublevel

sets. One can introduce the recession function of f as

rf (d) := lim
λ→+∞

f(x+ λd)− f(x)

λ

which characterises the recession cone for f as the collection d where rf (d) ≤
0.

In an analogy, we have the following recession operator for linear trans-

fers, which was introduced in [1].

Proposition 2.7.8. Let T be a backward linear transfer such that {δx;x ∈
X} ⊂ D1(T ), with backward Kantorovich operator T−. Then, the functional

Tfinite(µ, ν) =

{
0 if T (µ, ν) < +∞
+∞ otherwise,
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is a backward linear transfer with Kantorovich operator

T−r g(x) := lim
λ→+∞

T−(λg)(x)

λ

= sup{
∫
Y
gdν ; ν ∈ P(Y ), T (δx, ν) < +∞}. (2.19)

Proof. Without loss of generality, we may assume T ≥ 0 (otherwise consider

T −C where C ∈ R is a lower bound for T ). It is immediate that Tfinite is a

proper, bounded below, convex, and weak∗ lower semi-continuous function

with D1(Tfinite) = D1(T ). We have for µ ∈ D1(Tfinite),

(Tfinite)
∗
µ(g) = sup{

∫
Y
gdν ; ν ∈ P(Y ), T (µ, ν) < +∞}. (2.20)

At the same time, we know by Proposition 2.4.4 that T− is given by

T−g(x) = sup
σ∈P(Y )

{
∫
Y
g dσ − T (δx, σ)},

so for λ > 0, we have

T−(λg)(x)

λ
= sup

σ∈P(Y )
{
∫
Y
g dσ − 1

λ
T (δx, σ)}.

We then have lim infλ→+∞
T−(λg)(x)

λ ≥ sup{
∫
Y gdσ ; T (δx, σ) < +∞}. On

the other hand, since T is non-negative, we have

T−(λg)(x)

λ
≤ sup{

∫
Y
g dσ ; σ ∈ P(Y ), T (δx, σ) < +∞}

and we conclude that

lim
λ→+∞

T−(λg)(x)

λ
= sup{

∫
Y
g dσ ; σ ∈ P(Y ), T (δx, σ) < +∞}. (2.21)

Exactly the same argument also shows that for any µ ∈ D1(T ),

lim
λ→+∞

∫
X

T−(λg)

λ
dµ = sup{

∫
Y
gdν ; ν ∈ P(Y ), T (µ, ν) < +∞}. (2.22)
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To conclude that Tfinite is a backward linear transfer, it remains then to

justify limλ→+∞
∫
X

T−(λg)
λ dµ =

∫
X limλ→+∞

T−(λg)
λ dµ. This is simply by

monotone convergence. Indeed, as T is non-negative, then T−(λg)(x)
λ is mono-

tone increasing in λ; if λ2 ≥ λ1,

T−(λ2g)(x)

λ2
= sup

ν∈P(Y )
{
∫
Y
gdν − 1

λ2
T (δx, ν)}

≥ sup
ν∈P(Y )

{
∫
Y
gdν − 1

λ1
T (δx, ν)} =

T−(λ1g)(x)

λ1
.

We therefore conclude by (2.20), (2.21), and (2.22), that

(Tfinite)
∗
µ(g) =

∫
X
T−r g dµ

where T−r g(x) is given by (2.19).

Remark 2.7.9. Note that the above implies

T (µ, ν) < +∞ if and only if
∫
X T

−
r gdµ ≥

∫
Y gdν for every g ∈ C(Y ).

The latter condition can be seen as a generalized order condition between

µ and ν. For example, if T is the balayage transfer of Section 2.5.3 on

P(X) × P(X) with A = C the cone of convex functions, then T−r g = ĝ,

the concave envelope of g. In this case, if T (µ, ν) = 0, then µ �C ν, i.e.∫
X ϕdµ ≤

∫
X ϕdν for all convex functions ϕ. Hence for all g ∈ C(X),∫

X
gdν ≤

∫
X
ĝdν ≤

∫
X
ĝdµ =

∫
X
T−r gdµ.

On the other hand, if
∫
X ĝdµ =

∫
X T

−
r gdµ ≥

∫
X gdν for every g ∈ C(X),

the inequality holds for all concave η, and in this case η̂ = η. This implies

µ �C ν and consequently T (µ, ν) = 0.
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2.8 Linear transfers which are not mass
transports

We now give examples of linear transfers, which do not fit in the framework

of Monge-Kantorovich theory of Section 2.6.

2.8.1 Linear transfers associated to weak mass transports

Example 2.8.1 (Marton transports [41, 42] are backward linear transfers).

Consider the weak cost

c(x, σ) := γ

(∫
Y
d(x, y)dσ(y)

)
where γ is a convex function on R+ and d : X × Y → R is a lower semi-

continuous function. The associated weak transport is a backward linear

transfer with Kantorovich operator

T−g(x) = sup
σ∈P(Y )

{∫
Y
gdσ − γ

(∫
Y
d(x, y) dσ(y)

)}
.

Proposition 2.8.2. Let T be a backward linear transfer on P(X)×P(Y ),

where Y is convex and compact. Suppose for some lower semi-continuous

functional c : X × Y → R, we have

T (δx, σ) = c(x,

∫
Y
y dσ(y)) for all x ∈ X and σ ∈ P(Y ),

where
∫
Y y dσ(y) denotes the barycentre of σ. Then, for every g ∈ C(Y ),

T−g(x) = sup
y∈Y
{ĝ(y)− c(x, y)},

where ĝ is the concave envelope of g (see Example 2.5.14).

Proof. Note that z is the barycenter of a probability measure σ if and only
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if δz ≺C σ where C is the cone of convex functions. Write now

T−g(x) = sup
σ∈P(Y )

{
∫
Y
g dσ − c(x,

∫
Y
y dσ(y))}

= sup
z∈Y

{
sup{

∫
g dσ;σ ∈ P(Y ), δz ≺C σ} − c(x, z)

}
= sup

z∈Y
{ĝ(z)− c(x, z)}

where the last equality we have used Proposition 2.5.13.

Example 2.8.3 (A barycentric cost function (Gozlan et al. [36])). Consider

the weak transport

T (µ, ν) = inf

{∫
X
‖x−

∫
Y
ydπx(y)‖ dµ(x);π ∈ K(µ, ν)

}
where ‖ · ‖ is the norm on X induced from dX . This is a backward linear

transfer, with Kantorovich operator given by

T−gf(x) = sup{ĝ(y)− ‖y − x‖; y ∈ Y },

where ĝ is the concave envelope of g.

Example 2.8.4 (The variance functional). Consider the variance functional

T (µ, ν) := |
∫
Y
y dν|2 −

∫
Y
|y|2 dν(y).

Denoting q(y) = |y|2 as the quadratic function, we have

T−f(x) = sup{
∫
Y
f dσ − |

∫
Y
y dσ|2 +

∫
Y
|y|2 dσ(y);σ ∈ P(Y )}

= sup{
∫
Y

(f + q) dσ − |
∫
Y
y dσ|2;σ ∈ P(Y )}

=S−(f + q)(x),

where S− is the Kantorovich operator associated to the transfer S(µ, ν) :=

|
∫
Y y dσ|2, which only depends on the barycenter and therefore S−g =
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sup{ĝ(z)− |z|2; z ∈ Y }. It follows that

T−f = sup{f̂ + q(z)− |z|2; z ∈ Y }.

Cost minimizing mass transport with additional constraints give exam-

ples of one-directional (backward) linear transfers.

Example 2.8.5 (Martingale transport). Let c : X×X → R be a continuous

cost function and C the cone of convex functions. Martingale transport (see

e.g. [29], [37]) is defined by

T (µ, ν) =

inf{
∫
X×X c(x, y)dπ(x, y) ; π ∈M(µ, ν)} if µ ≺C ν

+∞ otherwise,

where M(µ, ν) consists of all transport plans π ∈ K(µ, ν) such that their

disintegration πx with respect to µ, dπ(x, y) = dµ(x)dπx(y), has barycentre

x.

Note that πx has barycentre x, if and only if, δx ≺C πx. Therefore,

defining the weak cost

c̃(x, σ) =

{ ∫
X c(x, y) dσ(y) if δx ≺C σ,

+∞ if not,

martingale transport can be written as

T (µ, ν) =

infπ∈K(µ,ν){
∫
X×X c̃(x, πx) d µ} if µ ≺C ν,

+∞ otherwise.

Since it is a weak transport, we know from Section 2.7 that it is a backward
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linear transfer with

T−g(x) = sup
σ∈P(X)

{
∫
X
gdσ − c̃(x, σ)}

= sup{
∫
Y

(g(y)− c(x, y))dσ(y) ; σ ∈ P(Y ), δx �C σ}

= ĝc,x(x),

where ĝc,x is the concave envelope of the function y 7→ g(y) − c(x, y). The

last equality follows from Proposition 2.5.13.

Example 2.8.6 (Schrödinger bridge (Gentil-Leonard-Ripani [27])). This

example is in Rd, but we include it even though we have not formally defined

linear transfers on non-compact spaces. Fix some reference non-negative

measure R on path space Ω = C([0, 1],Rd). Let X = (Xt)t be a random

process on M whose law is R, i.e. R = (ΦX)#(P), where (ΦX(ω))(t) :=

Xt(ω). Denote by R01 the joint law of the initial position X0 and the final

position X1. For example (see [27]), assume R is the reversible Kolmogorov

continuous Markov process associated with the generator 1
2(∆ − ∇V · ∇)

and the initial measure m = e−V (x)dx for some function V .

For probability measures µ and ν on M , define

TR01(µ, ν) := inf{
∫
Rd
H(rx1 , πx)dµ(x) ; π ∈ K(µ, ν), dπ(x, y) = dµ(x)dπx(y)}

where dR01(x, y) = dm(x)drx1 (y) is the disintegration of R01 with respect to

its initial measure m. We see that TR01 is a weak transport corresponding

to the weak cost c(x, p) = H(rx1 , p) and hence, by an appropriate extension

of Theorem 2.7.2 to non-compact spaces, it is a backward linear transfer.

Its backward Kantorovich operator is given by

T−f(x) = logERxe
f(X1) = logS1(ef )(x),

where (St) is the semi-group associated to R.

The transfer (2.8.6) is associated to the maximum entropy formulation

of the Schrödinger bridge problem in the following way: Define the entropic
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transportation cost between µ and ν via the formula

SR(µ, ν) = inf{
∫
Rd×Rd

log(
dπ

dR01
) dπ;π ∈ K(µ, ν)}.

Then, under appropriate conditions on V (e.g., if V is uniformly convex),

then

TR01(µ, ν) = SR(µ, ν)−
∫
M

log(
dµ

dm
) dµ.

Note that when V = 0, the process is Brownian motion with Lebesgue mea-

sure as its initial reversing measure, while when V (x) = |x|2
2 , R is the path

measure associated with the Ornstein-Uhlenbeck process with the Gaussian

as its initial reversing measure.

2.8.2 One-sided transfers associated to stochastic mass
transport

Let M = Tn be the flat torus, and consider a Lagrangian on phase space L :

TM → [0,∞). Let (Ω,F , (Ft)t,P) be a complete filtered probability space

and define A[0,1] to be the set of continuous semi-martingales X : Ω×[0, 1]→
M such that there exists a Borel measurable drift βX : [0, 1]×C([0, 1])→ Rd

for which

1. ω 7→ βX(t, ω) is B(C([0, t]))+-measurable for all t ∈ [0, 1], where

B(C([0, t])) is the Borel σ-algebra of C[0, t].

2. WX(t) := X(t) − X(0) −
∫ t

0 βX(s,X)ds is a σ(X(t) ; 0 ≤ t ≤ 1) M -

valued Brownian motion.

Example 2.8.7 (Stochastic mass transport between two probability mea-

sures). Consider the functional T : P(M) × P(M) → R ∪ {+∞} defined

by

T (µ0, µ1) := inf

{
E
∫ 1

0
L(X(s), βX(s,X))ds ; X(0) ∼ µ0, X(1) ∼ µ1, X ∈ A[0,1]

}
,

where we use the notation Z ∼ σ to denote that the random variable Z has

distribution σ.
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This stochastic transport does not fit in the standard optimal mass trans-

port theory since it does not originate in the optimization according to a

cost between two deterministic states. However, it still enjoys a dual formu-

lation (first proven by Mikami-Thieullin [45] for the space Rn) that permits

it to be realised as a backward linear transfer. An adaptation of the proofs

of Mikami-Thieullin to M = Tn (see [45] Lemma 3.1, 3.2, and 3.3, and

Theorem 2.2), yield the following.

Proposition 2.8.8. Under suitable conditions on L (for example, if L(x, β) =
1
2 |β|

2; see in [45] the assumptions (A1), (A2), (A3)(i - v), and (A4)),

ν 7→ T (µ, ν) is convex and weak∗ lower semi-continuous, and

T (µ, ν) = sup
g∈C(M)

{
∫
M
g(x)dν(x)−

∫
M
ug(0, x)dµ(x)}

where ug : [0, 1]×M → R is a viscosity solution of

∂u

∂t
(t, x) +

1

2
∆xu(t, x) +H(x,∇xu(t, x)) = 0, (t, x) ∈ [0, 1)×M

with u(1, x) = g(x). In addition T−g(x) := ug(0, x) can be written as

T−g(x) = sup
X∈A[0,1]

{
E [g(X(1))|X(0) = x]− E

[∫ 1

0
L(X(s), βX(s,X))ds|X(0) = x

]}
.

From this expression, we can readily check that T− is a backward Kan-

torovich operator (and consequently, T is a backward linear transfer).

2.8.3 Transfers associated to optimally stopped stochastic
transports

In dimensions greater than one, there are many different types of martin-

gales. If one chooses those that essentially follow a Brownian path, then we

have the following examples of linear transfers.

Example 2.8.9 (Optimal subharmonic martingale transfers (Ghoussoub-Kim–

Palmer [31]) ). Let O be a convex bounded domain in Rd. If (µ, ν) are in
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subharmonic order, i.e. µ ≺SH ν, where SH is the cone of subharmonic

functions on O, we set,

Pc(µ, ν) = inf
π∈BM(µ,ν)

∫
O×O

c(x, y)π(dx, dy),

where each π ∈ BM(µ, ν) is a probability measure on O×O with marginals

µ and ν, satisfying δx ≺SH πx for µ−a.e. x, where πx is the disintegration

of dπ(x, y) = dπx(y)dµ(x). Otherwise, set Pc(µ, ν) = +∞.
By a theorem of Skorokhod [53], such transport plans π can be seen as

joint distributions of (B0, Bτ ) ∼ π, where B0 ∼ µ, Bτ ∼ ν and τ is a possibly

randomized stopping time for the Brownian filtration. See for example [30].

The above problem associated to a cost c can then be formulated as

Pc(µ, ν) = inf
τ

{
E
[
c(B0, Bτ )

]
; B0 ∼ µ, Bτ ∼ ν

}
,

where (Bt)t is Brownian motion starting with distribution µ and ending at

a stopping time τ such that Bτ realises the distribution ν.

In [31] it is shown that Pc is a backward linear transfer with a backward

Kantorovich operator given by T−g(x) = Jg(x, x), where

Jg(x, y) = sup
τ≤τO

E
[
g(By

τ )− c(x,By
τ )
]
,

and τO is the first exit time of the set O. Under some regularity assumptions

on g and c, and for each fixed x ∈ O, the function y 7→ Jg(x, y) is the unique

viscosity solution to the obstacle problem for u ∈ C(O):

u(y) ≥ g(y)− c(x, y), for y ∈ O,

u(y) = g(y)− c(x, y) for y ∈ ∂O,

∆u(y) ≤ 0 for y ∈ O,

∆u(y) = 0 whenever u(y) > g(y)− c(x, y),
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as well as the unique minimiser of the variational problem

inf
{∫

O

∣∣∇u∣∣2dy; u ≥ g − c(x, ·), u ∈ H1(O)}.

Example 2.8.10 (Optimally stopped stochastic transport [28, 31]). Given

a Lagrangian L : [0, 1]×Rd×Rd → R, consider the optimal stopping problem

TL(µ, ν) = inf

{
E
[∫ τ

0
L(t,X(t), βX(t,X(t))) dt

]
;X(0) ∼ µ, τ ∈ S,Xτ ∼ ν,X(·) ∈ A

}
,

where S is the set of possibly randomized stopping times, and A is the class

of processes defined in Section 2.8.2. In this case, TL is a backward linear

transfer with Kantorovich operator given by T−L f = V̂f (0, ·), where

V̂f (t, x) = sup
X∈A

sup
T∈S

{
E
[
f(X(T ))−

∫ T

t
L(s,X(s), βX(s,X)) ds

∣∣∣∣X(t) = x

]}
,

which is, at least formally, a solution V̂f (t, x) of the quasi-variational Hamilton-

Jacobi-Bellman inequality,

min
{
Vf (t, x)− f(x),−∂tVf (t, x)−H

(
t, x,∇Vf (t, x)

)
− 1

2∆Vf (t, x)
}

= 0.

2.9 Convex transfers

We saw in Example 2.5.3 that the relative entropy functional H(µ, ν) on

P(X)× P(X), which we recall is defined via

H(µ, ν) :=


∫
X

dν
dµ log( dνdµ)dµ if ν � µ,

+∞ otherwise,

satisfies H∗µ(g) = log
∫
X e

gdµ and thus is not a linear transfer. We saw in

Proposition 2.5.4 that we can also express it as

H∗µ(g) = inf
t∈R

∫
X
Tt(g)dµ, Ttg := eg+t−1 − t. (2.23)
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This means that

H(µ, ν) = sup
g∈C(X)

sup
t∈R
{
∫
X
gdν −

∫
X
Ttgdµ}

= sup
t∈R

sup
g∈C(X)

{
∫
X
gdν −

∫
X
Ttgdµ}

= sup
t∈R
Tt(µ, ν) (2.24)

where Tt(µ, ν) := supg∈C(X){
∫
X gdν −

∫
X Ttgdµ} is a backward linear cou-

pling, but not a backward linear transfer. The expression (2.24) motivates

the following definition.

Definition 2.9.1 (Convex coupling). Let T : P(X)×P(Y )→ R∪{+∞} be

a proper, bounded below, weak∗ lower semi-continuous, and jointly convex

functional. We say T is a backward convex coupling provided it is the

supremum of a family of backward linear couplings,

T (µ, ν) = sup
i∈I
Ti(µ, ν)

where I is some index set and for each i, Ti(µ, ν) := supg∈C(Y ){
∫
Y gdν −∫

X T
−
i gdµ} is a backward linear coupling.

In the same way as for forward linear couplings, we shall define T as

a forward convex coupling if T̃ (ν, µ) := T (µ, ν) is a backward convex

coupling on P(Y )× P(X).

We shall refer to {T−i }i∈I as the family of operators associated to T .

Note they are not in general Kantorovich operators as per Definition 2.4.1.

Recalling from Remark (2.4.7) that a backward linear coupling T has

T ∗µ (g) ≤
∫
X T

−gdµ, the backward linear transfers were defined as those

linear couplings where we have equality. In an analogous way, we see that

in general, a convex coupling T satisfies T ∗µ (g) ≤ infi∈I
∫
X T

−
i gdµ. This

motivates the next definition.

Definition 2.9.2 (Convex transfer). Let T be a backward convex coupling.

We say T is a backward convex transfer if for all µ ∈ D1(T ), for all
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g ∈ C(Y ), it holds that

T ∗µ (g) = inf
i∈I

∫
X
T−i gdµ.

Note that when I is a singleton, then T is a backward linear transfer,

so all linear transfers are convex transfers. A first example of a backward

convex transfer is of course the relative entropy via (2.23).

Also note that if {δx ; x ∈ X} ⊂ D1(T ), then T ∗δx(g) = infi∈I T
−
i g(x),

which implies that g 7→ infi∈I T
−
i g is a backward Kantorovich operator.

More generally, for backward convex couplings, there is the inequality

T ∗µ (g) ≤
∫
X

inf
i∈I

T−i gdµ,

thus T (µ, ν) is bounded above by the backward linear coupling

sup
g∈C(Y )

{
∫
Y
gdν −

∫
X

inf
i∈I

T−i gdµ}. (2.25)

If it happens that g 7→ infi∈I T
−
i g is a backward Kantorovich operator (which

in general it is not, but guaranteed if D1(T ) contains the Dirac masses), then

this linear coupling (2.25) should in fact be the linear transfer envelope T of

T provided by Proposition 2.7.4. The next proposition provides the details

for this.

Proposition 2.9.3. Let T be a convex coupling on P(X) × P(Y ) of the

form

T (µ, ν) := sup
i∈I
Ti(µ, ν)

where for each i ∈ I,

Ti(µ, ν) = sup
g∈C(Y )

{
∫
Y
fdν −

∫
X
T−i gdµ}

for some map T−i : C(Y ) → USCb(X). Assume {δx;x ∈ X} ⊂ D1(T ) and

supx∈X infν∈P(Y ) T (δx, ν) < +∞. Consider the weak transport (or “trans-

fer envelope”) T of T provided by Proposition 2.7.4 and the corresponding
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Kantorovich operator T
−

. Then,

1. T
−

is given by the formula

T
−
g(x) = sup

σ∈P(Y )
inf

h∈C(Y )
{
∫
Y

(g − h) dσ + inf
i
T−i h(x)}.

and therefore satisfies T
−
g ≤ infi T

−
i g on C(Y ).

2. If in addition each T−i is a backward Kantorovich operator, then T
−
g =

infi∈I T
−
i g if and only if g 7→ inf

i∈I
T−i g(x) is convex and lower semi-

continuous.

Proof. 1. We show that the hypotheses of Proposition 2.7.7 are satisfied.

We have that the map g 7→ Tg := infi∈I T
−
i g takes C(Y ) to USCb(X), and,

sup
x∈X

inf
ν∈P(Y )

sup
g∈C(Y )

{
∫
Y
gdν − Tg(x)} = sup

x∈X
inf

ν∈P(Y )
T (δx, ν) < +∞

by assumption. Therefore the map Tg = infi∈I T
−
i g satisfies the hypotheses

of Proposition 2.7.7, and we conclude that the operator defined by

T
−
g(x) = sup

σ∈P(Y )
inf

h∈C(Y )
{
∫
Y

(g − h)dσ + inf
i∈I

T−i g(x)}

is the Kantorovich operator of the weak transport T associated to T , and

satisfies T
−
g ≤ infi∈I T

−
i g.

2. Suppose each T−i is a backward Kantorovich operator. If g →
inf
i∈I

T−i g(x) is convex and lower semi-continuous for any x ∈ X, then it is it-

self a backward Kantorovich operator. Therefore the additional consequence

of Proposition 2.7.7 implies inf
i∈I

T−i g = T
−
g.

Example 2.9.4 (Linear transfer envelope of relative entropy). Recall from

the beginning of this section or Example 2.5.3, thatH∗µ(g) = inft∈R
∫
X Tt(g)dµ,

where Ttg := eg+t−1 − t. It is easy to compute that

inf
t∈R
{eg(x)+t−1 − t} = g(x)
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and consequently T
−
g = g is the Kantorovich operator for the linear transfer

envelope. Therefore T is nothing but the trivial linear backward transfer of

Example 2.5.7

T (µ, ν) =

0 if µ = ν,

+∞ otherwise.

A natural question to investigate is whether convex functions of back-

ward linear transfers, are backward convex transfers. The next proposition

says this is indeed the case.

Proposition 2.9.5. Let α : [0,∞)→ R be a convex increasing function, and

T a backward linear transfer with corresponding operator T−. Then α(T ) is

a backward convex transfer, and its envelope α(T ) as given in Proposition

2.7.4 has Kantorovich operator given by

T
−
α g = inf

s>0
{sT−(

g

s
) + α⊕(s)}, (2.26)

where α⊕(t) := sup{ts−α(s); s ≥ 0} corresponds to the Legendre transform

of the extended real-valued function α̃(t) :=

α(t) t ≥ 0,

+∞ otherwise.

Proof. Note that α̃ is convex and lower semi-continuous, hence α̃∗∗(t) = α̃(t)

and so α(t) = sup{ts− α⊕(s); s ≥ 0}. Therefore,

α(T (µ, ν)) = sup
s≥0
{sT (µ, ν)− α⊕(s)}

= sup
s≥0

sup
g∈C(Y )

{
∫
Y
gdν −

∫
X

(sT−(
g

s
) + α⊕(s))dµ}

so we see that α(T ) is a backward convex coupling.

To show that α(T ) is a backward convex transfer, we have that ν 7→
α(T (µ, ν)) is convex and weak∗ lower semi-continuous, thus we just need to
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compute the Legendre transform for µ ∈ D1(T ),

α(T )∗µ(g) = sup
ν∈P(Y )

{
∫
Y
gdν − α(T (µ, ν))},

where we recall the notation α(T )∗µ is the Legendre transform of ν 7→
α(T (µ, ν)). Substituting α(t) = sup{ts−α⊕(s); s ≥ 0} for α(T (µ, ν)) in the

above expression, we obtain

α(T )∗µ(g) = sup
ν∈P(Y )

inf
s≥0
{
∫
Y
gdν − sT (µ, ν) + α⊕(s)}

= sup
ν: T (µ,ν)<+∞

inf
s≥0
{
∫
Y
gdν − sT (µ, ν) + α⊕(s)}

Notice now that ν 7→ f(ν, s) :=
∫
Y gdν − sT (µ, ν) + α⊕(s), as a function

on the convex and weak∗ closed subset V := {ν ∈ P(Y ) ; T (µ, ν) < +∞},
is weak∗ upper semi-continuous, and also quasi-concave: {ν ; f(ν, s) ≥ λ} is

convex or empty for λ ∈ R. At the same time, s 7→ f(ν, s) on W := [0,∞)

is lower semi-continuous on W and also quasi-convex: {s ; f(ν, s) ≤ λ} is

convex or empty for λ ∈ R. Then by Sion’s minimax theorem (Theorem

2.7.6), we may interchange sup and inf to obtain

α(T )∗µ(g) = inf
s≥0

sup
ν∈P(Y )

{
∫
Y
gdν − sT (µ, ν) + α⊕(s)}

= inf
s≥0

∫
Y

[sT−(
g

s
) + α⊕(s)]dµ.

where we have used the fact that sT is a backward linear transfer with

operator g 7→ sT−(gs ) (see Section 2.10).

Regarding the envelope α(T ) we note that for each s > 0, T−s g :=

sT−(gs ) + α⊕(s) is a backward Kantorovich operator, and, moreover, the

function (s, g) 7→ sT−(gs ) + α⊕(s) is jointly convex on R+ × C(Y ). Hence,

the infimum in s is convex, and therefore g 7→ infs≥0{sT−(gs ) + α⊕(s)} is

convex. We conclude by Proposition 2.9.3.

Example 2.9.6 (Generalised entropy functional). Consider for a strictly
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convex function α : [0,∞) → R, the generalised entropy functional on

P(X)× P(X), given by,

Tα(µ, ν) =


∫
X α

(
dν
dµ

)
dµ if ν � µ,

+∞ otherwise.

By a similar argument as given in Example 2.5.3 (see [35], Proposition 2.9),

we have

(Tα)∗µ(g) = inf
t∈R

∫
X

[α⊕(t+ g(x))− t]dµ(x)

where α⊕ is as in Proposition 2.9.5, so that Tα is a backward convex transfer.

Example 2.9.7 (A backward convex coupling which is not a convex trans-

fer). Let Ω ⊂ Rd be compact with 1 < |Ω| <∞, λ := 1
|Ω| , and define for any

two given probability measures µ, ν on Ω,

Tλ(µ, ν) =

0 if λ dνdµ ≤ 1µ-a.e.

+∞ otherwise,

Note that when µ = λdx|Ω (the uniform measure on Ω),

Tλ(λdx|Ω, ν) =

0 if dν
dx ≤ 1 Lebesgue-a.e.

+∞ otherwise.

We claim that Tλ is a backward convex coupling but not a convex transfer.

Indeed, for the first claim, consider αm,λ(t) := (λt)m log(λt) for m ≥ 1 and

t ≥ 0, and define

Tm,λ(µ, ν) :=


∫

Ω αm,λ

(
dν
dµ

)
dµ, if ν << µ,

+∞ otherwise.

By Proposition 2.9.5, Tm,λ is a backward convex transfer and for g ∈ C(Ω),

(Tm,λ)∗µ(g) = inf{
∫

Ω
[α⊕m,λ(g(x) + t)− t]dµ(x) ; t ∈ R}
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where we recall (Tm,λ)∗µ is the Legendre transform of the map ν 7→ Tm,λ(µ, ν).

The function α⊕m,λ can be explicitly computed as

α⊕m,λ(t) =

e
−1+ 1

m−1
W (βmt)

[
βmt+ 1

me
W (βmt)

]
if t ≥ − λ

m−1e
−1,

0 if t < − λ
m−1e

−1.

where βm := m−1
λm e

m−1
m , and W is the Lambert-W function (the multi-valued

inverse of w 7→ wew). It is easy to see that Tλ(µ, ν) = supm Tm,λ(µ, ν);

hence it is a backward convex coupling (as a supremum of backward convex

transfers).

However, Tλ is not a backward convex transfer itself, since

(Tλ)∗µ(g) = (sup
m
Tm,λ)∗µ(g) ≤ inf

m
(Tm,λ)∗µ(g) =

∫
Ω

g

λ
dµ,

with the inequality being in general strict.

One well-studied problem for which this is relevant is the quadratic

Wasserstein projection. Denoting W 2
2 (µ, ν) as the optimal transport with

cost function c(x, y) = |x − y|2, the quadratic Wasserstein projection of a

measure ν onto the set of Lebesgue densities bounded above by 1, is the

minimiser of the following variational problem,

inf{W 2
2 (σ, ν) ; σ ∈ P(Ω),

dσ

dx
≤ 1}.

This problem has received a lot of attention in the context of congested

crowd motion (see, e.g. [49]). By writing

inf{W 2
2 (σ, ν);

dσ

dx
≤ 1} = inf{Tλ(λdx|Ω, σ) +W 2

2 (σ, ν) ; σ ∈ P(Ω)}

we see that it consists of an inf-convolution of the backward convex cou-

pling Tλ with the backward linear transfer W 2
2 . Therefore we cannot take

advantage of the inf-convolution property for backward convex transfers and

backward linear transfers (see Section 2.10.2) to write a dual formulation.
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2.9.1 Backward entropic transfers

We saw previously that the relative entropy functional was a backward

convex transfer. However, there is further structure: not only H∗µ(g) =

inft∈R
∫
Y T

−
t gdµ (see (2.23)), but in fact H∗µ(g) = log

(∫
Y e

gdµ
)
. We thus

isolate a special subclass of backward convex transfers.

Definition 2.9.8. Let β : R → R be concave and increasing, and let T :

P(X) × P(Y ) → R ∪ {+∞} be a bounded below, proper, weak∗ lower

semi-continuous and convex functional. We say that T is a backward

β-entropic transfer if there exists a map T− : C(Y ) → USC(X) such

that for every µ ∈ D1(T ),

T ∗µ (g) = β

(∫
X
T−gdµ

)
, for any g ∈ C(Y ).

We note from the definition that a backward β-entropic transfer is a

backward convex transfer. This follows from the concavity of β, so that

β(t) = infs∈R{−st + (−β)∗(s)} where (−β)∗ is the Legendre transform of

−β.

2.10 Operations on convex and linear transfers

In this section, we highlight a few basic operations on convex transfers. In

particular, the notion of inf-convolution (see below in Section 2.10.2) will

be, in subsequent chapters, the operation which is of most interest.

2.10.1 Linear transfers are a convex cone

In this section, we highlight some basic operations for convex and lin-

ear transfers, the most important for our purposes in Chapter 5, is inf-

convolution.

Proposition 2.10.1. 1. (Scalar multiplication for convex trans-

fers) If a ∈ R+ \ {0} and T is a backward convex transfer, then (aT )

given by
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(aT )(µ, ν) := aT (µ, ν)

is also a backward convex transfer with

(aT )∗µ(g) = inf
i∈I

∫
X
aT−i (

g

a
)dµ. (2.27)

2. (Addition for linear transfers) If T1 and T2 are backward linear

transfers on X × Y such that {δx ; x ∈ X} ⊂ D(T1) ∩ D(T2) with

Kantorovich operator T−1 , T−2 respectively, then the sum defined as

(T1 ⊕ T2)(µ, ν) := inf{
∫
X

{
T1(x, πx) + T2(x, πx)

}
dµ(x);π ∈ K(µ, ν)}

is a backward linear transfer on X × Y , with Kantorovich operator

given on C(Y ) by

T−g(x) = sup
σ∈P(Y )

{
∫
Y
g dσ − T1(δx, σ)− T2(δx, σ)}

= inf
h∈C(Y )

{T−1 h(x) + T−2 (g − h)(x)}.

2.10.2 Inf-convolution

An important operation from the perspective of ergodic theory, is the notion

of inf-convolution. We will see shortly that this will allow us to iterate

a linear transfer which we shall investigate and go into greater detail in

Chapter 5.

Definition 2.10.2 (Inf-convolution). Let X1, X2, X3 be 3 compact, com-

plete, and separable metric spaces, and suppose T1 (resp., T2) are functionals

on P(X1)×P(X2) (resp., P(X2)×P(X3)). The inf-convolution of T1 and

T2 is the functional on P(X1)× P(X3) given by

T (µ, ν) := T1 ? T2 = inf{T1(µ, σ) + T2(σ, ν); σ ∈ P(X2)}.
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By induction, one can then consider inf-convolution of n functionals in

the obvious way. Note that inf-convolution preserves convexity and weak∗

lower semi-continuity. This leads to the following important stability prop-

erty.

Proposition 2.10.3. If T is a backward linear transfer on P(Y ) × P(Z)

with Kantorovich operator T− : C(Z)→ C(Y ), and F is a backward convex

transfer on P(X) × P(Y ), then F ? T is a backward convex transfer on

P(X)× P(Z), with

(F ? T )∗µ(h) = inf
i∈I

∫
X
F−i ◦ T

−h dµ.

Proof. We calculate the Legendre dual of (F ? T )µ at g ∈ C(Z) and obtain,

(F ? T )∗µ(g) = sup
ν∈P(Z)

sup
σ∈P(Y )

{∫
Z
g dν −F(µ, σ)− T (σ, ν)

}
= sup

σ∈P(Y )
{T ∗σ (g)−F(µ, σ)}

= sup
σ∈P(Y )

{∫
Y
T−g dσ −F(µ, σ)

}
= (F)∗µ(T−(g))

= inf
i∈I

∫
X
F−i ◦ T

−g(x)) dµ(x).

Corollary 2.10.4. If T1 (resp., T2) is a backward linear transfer on P(X1)×
P(X2) (resp., on P(X2)×P(X3)) with Kantorovich operator T−1 : C(X2)→
USC(X1) (resp., T−2 : C(X3) → C(X2)), then T1 ? T2 is also a backward

linear transfer on P(X1)× P(X3) with Kantorovich operator equal to T−1 ◦
T−2 .

Remark 2.10.5. The assumption that T−2 maps continuous functions to

continuous functions is too restrictive; the appropriate setting is for upper

semi-continuous functions, but strictly speaking in that case T−1 ◦ T
−
2 g is

not defined. This is a non-issue, but requires us to spend some words in
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Chapter 5 on extension of the operators to upper semi-continuous functions,

in which case the above proposition still holds in the more general case when

T−2 : C(X3)→ USC(X2)

By induction on the convolution property enjoyed by linear transfers,

one can immediately show the following.

Corollary 2.10.6. Let X0, X1, ...., Xn be (n+ 1) compact spaces, and sup-

pose for each i = 1, ..., n, we have functionals Ti on P(Xi−1)× P(Xi). For

any probability measures µ on X0 and ν on Xn, define

T (µ, ν) := T1 ? T2 ? . . . ? Tn(µ, ν)

= inf{T1(µ, ν1) + T2(ν1, ν2)...+ Tn(νn−1, ν); νi ∈ P(Xi), i = 1, ..., n− 1}.

If each Ti is a backward (resp., forward) linear transfer with a correspond-

ing Kantorovich operator T−i : C(Xi) → C(Xi−1) (resp., T+
i : C(Xi) →

C(Xi+1)), then T is a backward (resp., forward) linear transfer with a Kan-

torovich operator given by

T− = T−1 ◦ T
−
2 ◦ ... ◦ T

−
n (resp., T+ = T+

n ◦ T+
n−1 ◦ ... ◦ T

+
1 )

In other words, the following duality formula holds:

T (µ, ν) = sup
{∫

Xn

g dν −
∫
X0

T−1 ◦ T
−
2 ◦ ... ◦ T

−
n gdµ; g ∈ C(Xn)

}
.

respectively,

T (µ, ν) = sup
{∫

Xn

T+
n ◦ T+

n−1 ◦ ...T
+
1 f dν −

∫
X0

f dµ; f ∈ C(X0)
}

We will study in Chapter 5, iterates of a single linear transfer T ? T ?
. . . ? T .

2.10.3 Tensor products and dual sums of linear transfers

We highlight other operations for linear transfers.

62



Definition 2.10.7. 1. (Tensor product) If T1 (resp., T2) are functionals

on P(X1)×P(Y1) (resp., P(X2)×P(Y2)) such that {δx1 ; x1 ∈ X1} ⊂
D(T1) and {δx2 ; x2 ∈ X2} ⊂ D(T2), then the tensor product of T1

and T2 is the functional on P(X1 ×X2)× P(Y1 × Y2) defined by:

T1 ⊗ T2(µ, ν) := inf

{∫
X1×X2

(
T1(δx1 , π

1
x1,x2) + T2(δx2 , π

2
x1,x2)

)
dµ(x1, x2);π ∈ K(µ, ν)

}
where dπ(x1, x2, y1, y2) = dπx1x2(y1, y2)dµ(x1, x2), and πix1x2 = ProjYi#πx1x2

is the projection of πx1x2 onto Yi, i = 1, 2.

2. (Dual sum) If T1 and T2 are backward linear transfers on P(X)×P(Y )

such that {δx ; x ∈ X} ⊂ D1(T1)∩D1(T2), with Kantorovich operator

T−1 , T−2 respectively, then the dual sum, T1�T2, is defined as the

transfer whose Kantorovich operator is T−1 + T−2 , that is

T1�T2(µ, ν) := sup{
∫
Y
gdν −

∫
X

(T−1 g + T−2 g)dµ; g ∈ C(Y )}

The definition of tensorization is via a weak transport, so it is not sur-

prising that we have the following stability property.

Proposition 2.10.8. If T1 (resp., T2) is a backward linear transfer on

P(X1) × P(Y1) (resp., P(X2) × P(Y2)) such that {δx ; x ∈ X1} ⊂ D1(T1)

and {δx ; x ∈ X2} ⊂ D1(T2), then T1 ⊗ T2 is a backward linear transfer on

P(X1 ×X2)× P(Y1 × Y2), with Kantorovich operator given by

T−g(x1, x2) = sup
σ∈K(σ1,σ2)

{
∫
Y1×Y2

gdσ − T1(δx1 , σ1)− T2(δx2 , σ2)}. (2.28)

Moreover,

T1 ⊗ T2(µ, ν1 ⊗ ν2) ≤ T1(µ1, ν1) +

∫
X2

T2(δx2 , ν2) dµ2(x2), (2.29)

where µ2 = ProjX2#
µ.

Proof. The tensor product as defined above is a weak transport, where the
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cost on X1 ×X2 × P(Y1 × Y2) is simply,

c((x1, x2), σ) := T1(δx1 , σ1) + T2(δx2 , σ2),

where σi = projYi#σ, i = 1, 2, are the marginals of σ on Y1 and Y2 re-

spectively. The cost c is bounded below, lower semi-contiuous, and σ 7→
c((x1, x2), σ) is convex. Therefore by Theorem 2.7.2, T1 ⊗ T2 is a backward

linear transfer with

T−g(x1, x2) := sup
σ∈P(Y1×Y2)

{
∫
Y1×Y2

gdσ − c((x1, x2), σ)}.

For the upper bound (2.29) for T1⊗T2, since π = µ⊗ (ν1⊗ ν2) is admissible

in the infimum, we have

T1 ⊗ T2(µ, ν1 ⊗ ν2) ≤ T1(µ1, ν1) +

∫
X1×X2

T2(δx2 , ν2) dµ(x1, x2)

2.10.4 Projections and Hopf-Lax formulae

We now investigate linear transfers which arise via inf-convolution.

Example 2.10.9 (Projection onto the set of balayées of a given measure).

Let T be a backward linear transfer on P(X) × P(Y ) and consider the

following “projection” problem

S(µ, ν) := inf{T (µ, σ);σ ∈ Kν}, (2.30)

where Kν is a closed convex subset of P(Y ) that depends on ν. Define on

P(Y )× P(Y ),

I(σ, ν) :=

0 if σ ∈ Kν

+∞ otherwise.
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so that we may write S as

S(µ, ν) = T ? I(µ, ν) = inf
σ∈P(Y )

{T (µ, σ) + I(σ, ν)}.

In general, S will not be a backward linear transfer. However, consider the

case when Kν = {σ ; σ �A ν} is the set of probability measures in A-order

with ν, for a convex cone A of continuous functions (see Section 2.5.3).

Then I = B where B is the balayage of measures from Section 2.5.3, and

the inf-convolution property of Section 2.10.2 implies that S is a backward

linear transfer with backward Kantorovich operator

S−g(x) := T−(ĝ)(x),

where we recall, again from Section 2.5.3, that

ĝ(x) = inf{h(x) ; h ∈ −A, h ≥ g}.

A particular setting that has been studied in, e.g. [33], [22], is when T is

the optimal transport with quadratic cost c(x, y) = |x − y|2 and A is the

collection of convex functions on some compact subset of Rn. In that case,

we have seen from Section 2.5.3 that ĝ is the concave envelope of g, hence

we obtain the duality

inf{T (µ, σ);σ �A ν} = sup
g∈C(X)

{
∫
X
ĝdν −

∫
X
T−gdµ}

where T−g(x) = supy∈X{g(y) − |x − y|2} is the Kantorovich operator of

optimal transport (see Section 2.6). By noting ĝ ≥ g, it follows that T−(ĝ) ≥
T−(g), so it actually suffices to restrict the supremum to g which are concave,

in which case ĝ = g. The conclusion is

inf{T (µ, σ);σ �A ν} = sup
g concave

{
∫
X
gdν −

∫
X
T−gdµ}

which is the duality obtained by Gozlan et. al. (see [36], Theorem 2.11 (3)).
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It is easy to see that the convolution of two optimal mass transports

with costs c1 and c2 respectively, is also a mass transport corresponding to

a cost functional given by the convolution c1?c2. We use the inf-convolution

property of linear transfers to establish this easy result.

Proposition 2.10.10 (Lifting convolutions to Wasserstein space). Let Xi,

i = 0, 1, 2, be compact spaces, and, ci : Xi × Xi+1 → R ∪ {+∞}, i =

0, 1, lower semi-continuous cost functions. Define the corresponding optimal

mass transports

Tci(µ, ν) = inf
π∈K(µ,ν)

{
∫
Xi×Xi+1

ci(x, y) dπ(x, y)},

with corresponding forward and backward Kantorovich operators T+
ci and

T−ci as in Section 2.6. Consider the cost function on X0 ×X2 which is the

convolution of the two cost functions,

c(x, x′) := c1 ? c2(x, x′) = inf
{
c1(x, x1) + c2(x1, x

′); xi ∈ Xi

}
.

Then

Tc(µ, ν) = Tc1 ? Tc2(µ, ν)

= sup
f∈C(X0)

{∫
X2

T+
c1 ◦ T

+
c2f dν −

∫
X0

f dµ

}
= sup

g∈C(X2)

{∫
X2

g dν −
∫
X0

T−c1 ◦ T
−
c2gdµ

}
.

Proof. By the inf-convolution property of Section 2.10.2, Tc1?c2 has backward
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Kantorovich operator equal to

T−c1 ◦ T
−
c2g(x) = sup

x1∈X1

{T−c2g(x1)− c1(x, x1)}

= sup
x1∈X1,x2∈X2

{g(x2)− c2(x1, x2)− c1(x, x1)}

= sup
x2∈X2

{g(x2)− c(x, x2)}

= T−c g(x).

The next two problems are technically defined on Rd and not on a com-

pact space, so strictly speaking, they do not fit into our compact framework.

One then needs to change to the spaceM1(Rd) of finite Borel measures with

finite first moments, in duality with Lip(M) the bounded uniformly Lips-

chitz functions on M .

Example 2.10.11 (The ballistic transfer (Barton-Ghoussoub [4])). Let L

be a Tonelli Lagrangian, which we do not make precise here but instead

define later in Chapter 4, which satisfies appropriate assumptions (see [4],

(A0)). For M = Rd = M∗ (M∗ the dual space), the deterministic ballistic

mass transport is defined as

B(µ, ν) := inf{
∫
M∗×M

b(v, x)dπ(v, x) ; π ∈ K(µ, ν)},

where

b(v, x) := inf{〈v, γ(0)〉+

∫ 1

0
L(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, 1),M), γ(1) = x}.

Note that we can write b in the form

b(v, x) = inf{〈v, y〉+ cL(y, x); y ∈M},

where the cost cL is given by the generating function associated to L in

Example 2.6.6, which means that b is the convolution of the Brenier cost of
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Example 2.6.7 with the cost induced by the Lagrangian L.

By the inf-convolution property 2.10.3, it is both a forward, and back-

ward, linear transfer. In particular, its backward Kantorovich operator is

then the composition of the two corresponding backward Kantorovich oper-

ators, and we conclude

B(µ, ν) = sup{
∫
M
g(x)dν(x)−

∫
M∗

(−Wg(0, ·))∗(−v)dν(v) ; g ∈ Lip(M)}

whereWg solves the Hamilton-Jacobi equation of Example 2.6.6 withWg(1, x) =

g(x), and where h∗(v) := supx∈M{〈v, x〉 − h(x)} is the Legendre transform

of a function h on M (see Theorem 2 in [4]).

Example 2.10.12 (Stochastic ballistic transfer (Barton-Ghoussoub [4])).

For the stochastic ballistic transport problem,

Bs(µ, ν) := inf

{
E
[
〈V,X(0)〉+

∫ 1

0
L(t,X, βX(t,X)) dt

]
; V ∼ µ, X(·) ∈ A[0,1], X(1) ∼ ν

}
,

where we are using the same notation for the stochastic processes as in

Section 2.8.2, this is a convolution of the Brenier-Wasserstein transfer of

Example 2.6.7 with now the stochastic transport of Example 2.8.7. Under

suitable conditions on L (see [4], (A1), (A2), (A3)), we have, similarly to

the deterministic version,

Bs(µ, ν) = sup

{∫
M
g(x) dν(x)−

∫
M∗

(−ψg(0, ·))∗(−v) dµ(v); g ∈ Lip(M)

}
,

only now ψg is the solution to the Hamilton-Jacobi-Bellman equation

∂ψ

∂t
+

1

2
∆ψ(t, x) +H(t, x,∇ψ) = 0, ψ(1, x) = g(x).

In other words, Bs is a backward linear transform with Kantorovich operator

T−g(v) = (−ψg(0, ·))∗(−v).
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2.11 Subdifferentials of convex transfers

If T is a backward linear transfer, then ν 7→ T (µ, ν) =: Tµ(ν) is convex

and weak∗ lower semi-continuous. Therefore one can consider its (weak∗)

subdifferential ∂Tµ given by

g ∈ ∂Tµ(ν) if and only if T (µ, ν ′) ≥ T (µ, ν) +
∫
Y gd(ν ′ − ν) for any ν ′ ∈ P(Y ).

In other words, g ∈ ∂Tµ(ν) if and only if Tµ(ν) + T ∗µ (g) = 〈g, ν〉. Since

Tµ(ν) = T (µ, ν) and T ∗µ (g) =
∫
T−gdµ, we then obtain the following charac-

terization of the subdifferentials, which says that the subdifferential ∂Tµ(ν)

is simply all those g for which dual attainment holds for T (µ, ν).

Proposition 2.11.1. Let T be a backward linear transfer. For any µ ∈
D1(T ), the subdifferential of Tµ : P(Y ) → R ∪ {+∞} at ν ∈ P(Y ) is given

by

∂Tµ(ν) =

{
g ∈ C(Y ) :

∫
Y
g(y)dν(y)−

∫
X
T−g(x)dµ(x) = T (µ, ν)

}
It is easy to see that the same expressions hold (with the necessary

modifications) for backward convex transfers.

In the following, we observe some elementary consequences for elements

in the subdifferential.

Proposition 2.11.2. Suppose T is a linear backward transfer such that

{δx ; x ∈ X} ⊂ D1(T ). Fix µ ∈ P(X) and ν ∈ P(Y ) such that T (µ, ν) <

+∞. Then, there exists π̄ ∈ K(µ, ν) such that for each ḡ ∈ ∂Tµ(ν), we have

T−ḡ(x) =

∫
Y
ḡ(y)dπ̄x(y)− T (δx, π̄x), for µ-a.e. x ∈ X,

where π̄x is a disintegration of π̄ with w.r.t. µ.

Conversely, if ν 7→ T (µ, ν) is strictly convex and ḡ ∈ ∂Tµ(ν) for some

ν ∈ P(Y ). If x→ σx is any Borel-measurable selection such that

T−ḡ(x) = sup
σ

{∫
ḡdσ − T (δx, σ)

}
=

∫
Y
ḡdσx − T (δx, σx),
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then T (µ, ν) is attained by the measure π̄ defined via dπ̄(x, y) = dσx(y)dµ(x).

Proof. By a recent result [3], there exists π̄ ∈ K(µ, ν) such that

T (µ, ν) =

∫
X
T (δx, π̄x)dµ(x).

If f̄ ∈ ∂Tµ(ν), then by definition∫
Y
f̄(y)dν(y)−

∫
X
T−f̄(x)dµ(x) = T (µ, ν) =

∫
X
T (x, π̄x)dµ(x),

that is
∫
X

[
T−f̄(x)−

∫
Y f̄(y)dπ̄x(y) + T (x, π̄x)

]
dµ = 0. Since T−f̄(x) =

supσ
{∫

f̄dσ − T (x, σ)
}

, the quantity in the brackets is non-negative and

we get our claim.

Conversely, If f̄ ∈ ∂Tµ(ν) is non-empty for some ν ∈ P(Y ), then
∫
f̄dν−∫

T−f̄dµ = T (µ, ν). From the expression T−f̄(x) = supσ
{∫

Y f̄dσ − T (δx, σ)
}

,

we know the supremum will be achieved by some σx. Defining π̃ by dπ̃(x, y) =

dµ(x)dσx(y), and the right marginal of π̃ by ν̃, we integrate against µ to

achieve ∫
T−f̄dµ =

∫
f̄dν̃ −

∫
T (δx, σx)dµ.

This shows that T (µ, ν̃) = infπ∈K(µ,ν̃)

∫
T (δx, πx)dµ =

∫
T (δx, σx)dµ, and

consequently, f̄ ∈ ∂Tµ(ν̃). But by strict convexity, this can only be true if

ν̃ = ν.

Note that while we can use general existence results such as the Brondsted-

Rockafellar theorem [46], to state that ∂Tµ(ν) exists for a weak∗-dense set of

ν ∈ P(Y ) (and therefore the dual problem is “generically” attained for this

weak∗-dense set), proving attainment in the dual problem is, in general, a

difficult problem.

Corollary 2.11.3. Suppose T is a backward linear transfer on P(X)×P(Y )

such that the Dirac masses are in D1(T ), and fix µ ∈ P(X). Then for every

ν ∈ P(Y ) and every ε > 0, there exists νε ∈ P(Y ) such that W2(ν, νε) < ε

and the dual problem for T (µ, νε) is attained.
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We briefly mention the following Euler-Lagrange equation for variational

problems on spaces of measures, which follows closely [24] (see in particular

Theorem 2.2 there).

Proposition 2.11.4. Let Tα(µ, ν) :=
∫
X α

(
dν
dµ

)
dµ be the generalised en-

tropy functional considered in Example 2.9.6, where α : [0,∞) → R is in

C1([0,∞)), strictly convex, and superlinear. Let T be any backward linear

transfer. For a fixed µ, consider the functional Iµ(ν) := Tα(µ, ν)− T (µ, ν),

and assume ν̄ realises infν∈P(X) Iµ(ν). Then, there exists f̄ ∈ ∂Tµ(ν̄) such

that the following Euler-Lagrange equation holds for ν̄−a.e. x ∈ X,

α′
(
dν̄

dµ

)
= f̄ + C,

where C is a constant.

Proof. Recall from Example 2.9.6 that Tα is a backward convex transfer

with

T ∗µ (g) = inf
t∈R

{∫
X

[α⊕(g(x) + t)− t]dµ(x)

}
,

where α⊕(t) := sups≥0{st− α(t)}. It follows that

α′
(
dν

dµ

)
∈ ∂Tµ(ν).

We can see this either directly from the subdifferential definition, or from

observing

α⊕
(
α′
(
dν

dµ

))
=
dν

dµ
α′
(
dν

dµ

)
− α

(
dν

dµ

)
.

In particular,

T ∗µ
(
α′
(
dν

dµ

))
=

∫
X
α⊕
(
α′
(
dν

dµ

))
dµ.

The rest is a straightforward adaptation of Theorem 2.2 in [24].

.
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Chapter 3

Dualities for transfer

inequalities

3.1 Introduction

Let Tc be an optimal transport associated to a cost function c on X × X,

and let J be a functional on P(X) × P(X). A family of inequalities, the

transport inequalities, compare the cost Tc(µ, ν) of transporting a measure

ν ∈ P(X) to a fixed “reference measure” µ ∈ P(X), in the form (see, e.g.

the survey article [34])

α(Tc(ν, µ)) ≤ J(µ, ν) or α(Tc(µ, ν)) ≤ J(µ, ν),

where α : [0,∞) → [0,∞) is a given increasing function with α(0) = 0. A

classical choice for J is the relative entropy functional

H(µ, ν) =
∫
X log( dνdµ) dν if ν � µ and +∞ otherwise,

in which case they are known as the transport-entropy inequalities, including

Talagrand’s transport inequality for the Gaussian measure [57]. One interest

of transport-entropy inequalities is that they imply concentration of measure

phenomena (see e.g. Theorem 1.7 in [34] originally due to Marton [41, 42],
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or the survey [38]).

In order to prove a transport-entropy inequality, one can take advantage

of the fact that both Tc and H have dualities, which in the present context,

is to exploit the fact that Tc is a linear transfer, and H is a convex transfer.

As was originally proved by Bobkov and Götze [8], one can show (see [34])

the following equivalence.

Theorem 3.1.1 ([34], Theorem 3.2, Corollary 3.3). Let c be a lower semi-

continuous cost function, α : [0,∞)→ [0,∞) convex, increasing, and α(0) =

0, and fix a reference measure µ ∈ P(X). Then the following are equivalent:

1. α(Tc(ν, µ)) ≤ H(µ, ν) for all ν ∈ P(X),

2. For all g ∈ C(X),∫
X
e−sT

−
c gdµ ≤

∫
X
e−sgdµ+α⊕(s), s ≥ 0

where we recall that α⊕(s) := supt≥0{st−α(t)} for s ≥ 0, and T−c g(x) =

supy∈X{g(y)− c(x, y)}.

Proof. The proof is illustrative so we shall provide it here: We have as a

backward linear transfer,

Tc(ν, µ) = sup
g∈C(X)

{
∫
X
gdµ−

∫
X
T−c gdν}

as well as α(t) = sups≥0{st−α⊕(s)} (this follows by extending α to +∞ for

t < 0 (denoting this by α̃) and noting α is convex and lower semi-continuous

so α(t) = sups∈R{st− α̃∗(s)} = sups≥0{st−α⊕(s)}). Then for all g ∈ C(X)

and all s ≥ 0, it follows that

α(Tc(ν, µ)) = sup
s≥0

sup
g∈C(X)

{
∫
X
sgdµ−

∫
X
sT−c gdν − α⊕(s)}.

Then we write

α(Tc(ν, µ)) ≤ H(µ, ν) for all ν ∈ P(X)⇐⇒ 0 ≤ inf
ν∈P(X)

{H(µ, ν)− α(Tc(ν, µ))}.
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Substituting directly the above expression for α(Tc(ν, µ)) yields

0 ≤ inf
ν∈P(X)

inf
g∈C(X)

inf
s≥0
{H(µ, ν)−

∫
X
sgdµ+

∫
X
sT−c gdν + α⊕(s)}

= inf
g∈C(X)

inf
s≥0

{∫
X

(−sg + α⊕(s))dµ− sup
ν∈P(X)

{
∫
X

(−T−c g)dν −H(µ, ν)}

}

= inf
g∈C(X)

inf
s≥0
{
∫
X

(−sg + α⊕(s))dµ−H∗µ(−sT−c g)}

= inf
g∈C(X)

inf
s≥0
{
∫
X

(−sg + α⊕(s))dµ− log

∫
X
e−sT

−
c gdµ}.

Hence by rearranging and taking the exponential, we obtain∫
X
e−sT

−
c gdµ ≤ e

∫
X −sgdµ+α⊕(s) for all g ∈ C(X) and all s ≥ 0.

The goal now is to deduce analogous duality statements when α(Tc) is

replaced by T which is a linear or convex coupling, and when the relative

entropy H is replaced by a entropic, or more generally, a convex transfer

(recall Definition 2.9.8). The main interest for computing the dualities is

that they transform inequalities between measures, to inequalities on func-

tions. Therefore if one wishes to prove that a particular transfer inequality

holds, they can instead prove the equivalent functional inequality, for which

one may hope to take advantage of the extensive literature that has been

developed for functional inequalities. As an example, see [8].

We shall assume throughout that the operators associated to the cou-

plings/transfers discussed in this chapter, map continuous functions into at

least the space of upper semi-continuous functions. In that case, we use,

in advance, the inf-convolution property Corollary 5.1.5 to justify certain

Legendre transform computations, which is the statement of Proposition

2.10.3 and Corollary 2.10.4 extended to upper semi-continuous functions

(note Chapter 5 does not depend on Chapter 3).
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3.2 Backward convex coupling and backward
linear transfer

Fix µ ∈ P(X). As a generalization of the transport-entropy inequality of

type

α(Tc(σ, µ)) ≤ H(µ, σ) for all σ,

we would like to prove inequalities such as,

F2(σ, µ) ≤ F1(µ, σ) for all σ ∈ P(X),

where F1 is a backward convex transfer and F2 is a backward convex cou-

pling. In this section, we provide the dual characterization for such an in-

equality, and refine it further to the special case when F1 = λE ? T . To find

the dual characterization, we compute the duality for the infσ{F1(µ, σ) −
F2(σ, ν)} where µ and ν are some fixed probability measures.

Proposition 3.2.1. Let F1 be a backward convex transfer on P(X1)×P(Y1)

with operators (F−1,i)i∈I , and F2 a backward convex coupling on P(Y1) ×
P(X2) with operators (F−2,j)j∈J . Then for fixed µ ∈ P(X1) and ν ∈ P(X2),

we have

inf
σ∈P(Y1)

{F1(µ, σ)−F2(σ, ν)} = inf
g∈C(X2)

inf
j∈J

{
− inf
i∈I

∫
X1

F−1,i(−F
−
2,jg)dµ−

∫
X2

gdν

}
.

Proof. As F2 is a backward convex coupling, we may write F2(σ, ν) =

supg∈C(X2) supj∈J{
∫
X2
gdν−

∫
Y1
F−2,jgdσ}. We may then substitute this into

the expression

inf
σ∈P(Y1)

{F1(µ, σ)−F2(σ, ν)} = inf
σ∈P(Y1)

inf
g∈C(X2)

inf
j∈J

{
F1(µ, σ)−

∫
X2

gdν +

∫
Y1

F−2,jgdσ

}
= inf

g∈C(X2)
inf
j∈J

{
− sup
σ∈P(Y1)

{
∫
Y1

(−F−2,jg)dσ −F1(µ, σ)} −
∫
X2

gdν

}

= inf
g∈C(X2)

inf
j∈J

{
− inf
i∈I

∫
X1

F−1,i(−F
−
2,jg)dµ−

∫
X2

gdν

}
where the last equality follows since F1 is a backward convex transfer and
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thus has the specified Legendre transform.

Corollary 3.2.2. Under the same hypotheses as the above Proposition 3.2.1,

the following are equivalent:

1. For all σ ∈ P(Y1), we have

F2(σ, ν) ≤ F1(µ, σ).

2. For all g ∈ C(X2), it holds

sup
j∈J

inf
i∈I

∫
X1

F−1,i(−F
−
2,j(g))dµ+

∫
X2

gdν ≤ 0.

Proof. By Proposition 3.2.1 it follows immediately that

0 ≤ inf
σ∈P(Y1)

{F1(µ, σ)−F2(σ, ν)} if and only if 0 ≤ inf
g∈C(X2)

inf
j∈J

{
− inf
i∈I

∫
X1

F−1,i(−F
−
2,jg)dµ−

∫
X2

gdν

}
.

This equivalence is easily seen by rearrangement to be the statement of

equivalence between Item 1 and 2 in the above statement.

Corollary 3.2.3. Specializing Corollary 3.2.2 to the case where F1 := λE?T
(and relabeling F2 to F) for E a backward β-entropic transfer on P(X1) ×
P(Y1) with operator E−, T a backward linear transfer on P(Y1) × P(Y2)

with Kantorovich operator T−, and λ > 0, the following are equivalent:

1. For all σ ∈ P(Y2), we have

F(σ, ν) ≤ λ E ? T (µ, σ).

2. For all g ∈ C(X2),

sup
j∈J

β

(∫
X1

E− ◦ T−
(
−F−j (λg)

λ

)
dµ

)
+

∫
X2

g dν ≤ 0.

Proof. Note that the inf-convolution λE ? T is a backward (λβ)-entropic

transfer (in particular, a backward convex transfer) with operator g 7→
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E− ◦T−( gλ), therefore the above proposition applies and we obtain the dual

inequality

sup
j∈J

λβ

(∫
X1

E− ◦ T−
(
−F−j (g)

λ

)
dµ

)
+

∫
X2

g dν ≤ 0 for all g ∈ C(X2).

Dividing by λ and relabeling h := g
λ , the inequality has to hold for all

h ∈ C(X2), which completes the equivalence.

Corollary 3.2.4. Under the same setting as the above Corollary ??, but

with E = H the relative entropy, the following are equivalent.

1. For all σ ∈ P(Y2), we have F(σ, ν) ≤ λH ? T (µ, σ).

2. For all g ∈ C(X2),

sup
j∈J

∫
X1

e
T−

(
−F−

j
(λg)

λ

)
dµ ≤ e−

∫
X2

g dν
.

In particular, if T is the identity transfer and F is a backward linear transfer,

then the following are equivalent:

1. For all σ ∈ P(Y2), we have F(σ, ν) ≤ λH (µ, σ)

2. For all g ∈ C(X2), we have
∫
X1
e−

F−(λg)
λ dµ ≤ e−

∫
X2

g dν
.

Proof. Taking in the above Corollary E = H the relative entropy, then

β(t) = log(t) and E−g = eg, and we deduce that for all g ∈ C(X2 and all

j ∈ J ,

log

∫
X1

e
T−

(
−F−

j
(λg)

λ

)
dµ+

∫
X2

g dν ≤ 0,

which gives the asserted equivalence. If further T is the identity transfer

(i.e. T (µ, ν) = 0 if µ = ν, +∞ otherwise), then T−g = g.
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3.3 Forward convex coupling and backward
linear transfer

We are now interested in inequalities such as

F2(ν, σ) ≤ F1(µ, σ) for all σ ∈ P(X), (3.1)

where F1 is a backward convex transfer and F2 is a backward convex

coupling (which, if we define F̃2(σ, ν) := F2(ν, σ), we can view as an in-

equality between a forward convex coupling and backward linear transfer,

hence the name of the section). As in the previous section, to compute the

dual inequality to (3.1), we find the dual expression for the inf-convolution

infσ∈P(X){F1(µ, σ)−F2(ν, σ)}.

Proposition 3.3.1. Let F1 be a backward convex transfer on P(X1) ×
P(Y1) with operators (F−1,i)i∈I , and let F2 be a backward convex coupling

on P(X2)× P(Y1) with operators (F−2,j)j∈J . Then

inf
σ∈P(Y1)

{F1(µ, σ)−F2(ν, σ)} = inf
g∈C(X2)

{
− inf
i∈I

∫
X1

F−1,igdµ+ inf
j∈J

∫
X2

F−2,jgdν

}
Proof. We have from the expression for F2 as a backward convex coupling,

inf
σ∈P(Y1)

{F1(µ, σ)−F2(ν, σ)} = inf
σ∈P(Y1)

inf
g∈C(X2)

inf
j∈J

{
F1(µ, σ)−

∫
Y1

gdσ +

∫
X2

F−2,jgdν

}
= inf

g∈C(X2)

{
− sup
σ∈P(Y1)

{
∫
Y1

gdσ −F1(µ, σ)}+ inf
j∈J

∫
X2

F−2,jgdν

}

= inf
g∈C(X2)

{
− inf
i∈I

∫
X1

F−1,igdµ+ inf
j∈J

∫
X2

F−2,jgdν

}
where the last equality follows since F1 is a backward convex transfer.

Corollary 3.3.2. Let F1 be a backward convex transfer on P(X1)× P(Y1)

with operators (F−1,i)i∈I , and let F2 be a backward convex coupling on P(X2)×
P(Y1) with operators (F−2,j)j∈J .

Then the following are equivalent.
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1. For all σ ∈ P(Y1), we have F2(ν, σ) ≤ F1(µ, σ).

2. For all g ∈ C(Y1), we have infi∈I
∫
X1
F−1,i(g)dµ ≤ infj∈J

∫
X2
F−2,j(g)dν.

Proof. From Proposition 3.3.1, we have

0 ≤ inf
σ∈P(Y1)

{F1(µ, σ)−F2(ν, σ)}

if and only if

0 ≤ inf
g∈C(X2)

{
− inf
i∈I

∫
X1

F−1,igdµ+ inf
j∈J

∫
X2

F−2,jgdν

}
.

This equivalence then reduces to the equivalence between 1. and 2.

Corollary 3.3.3. Specializing Corollary 3.3.2 to the case where F1 = λE ?T
(and relabeling F2 to F), for E a backward β-entropic transfer on P(X1)×
P(Y1) with operator E−, T a backward linear transfer on P(Y1) × P(Y2)

with operator T−, and λ > 0, then, for any fixed pair of probability measures

µ ∈ P(X1) and ν ∈ P(X2), the following are equivalent:

1. For all σ ∈ P(Y2), we have F(ν, σ) ≤ λ E ? T (µ, σ).

2. For all g ∈ C(X2), we have β
( ∫

X1
E−◦T−g dµ

)
≤ inf

i∈I
1
λ

∫
X2
F−i (λg)dν.

Proof. Note that the inf-convolution λE ? T is a backward (λβ)-entropic

transfer (in particular, a backward convex transfer) with operator g 7→ E− ◦
T−( gλ), therefore the above Corollary 3.3.2 applies and we obtain the dual

inequality

λβ

(∫
X1

E− ◦ T−
( g
λ

)
dµ

)
≤ inf

i∈I

∫
X2

F−i (g)dν for all g ∈ C(X2).

Dividing by λ and relabeling h := g
λ , the inequality has to hold for all

h ∈ C(X2), which completes the equivalence.

We now apply the above to the case where E is the relative entropy H,

in which case β(t) = log(t) and E−g = eg.
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Corollary 3.3.4. In the setting of the above corollary, if we take E = H the

relative entropy, then, for any fixed pair of probability measures µ ∈ P(X1)

and ν ∈ P(X2), the following are equivalent:

1. For all σ ∈ P(Y2), we have F(ν, σ) ≤ λH ? T (µ, σ)

2. For all g ∈ C(X2), we have log
( ∫

X1
eT
−g dµ

)
≤ inf

i∈I
1
λ

∫
X2
F−i (λg)dν.

Corollary 3.3.5. In the setting of Corollary 3.3.3, taking F = E2 to be

a backward β2-entropic transfer on P(X2) × P(Y2) with operator E−2 , the

following are equivalent:

1. For all σ ∈ P(Y2), we have E2(ν, σ) ≤ λ E1 ? T (µ, σ).

2. For all g ∈ C(X2),

β1

( ∫
X1

E−1 ◦ T
−g dµ

)
≤ 1

λ
β2(

∫
X2

E−2 (λg)dν).

3.3.1 Moment measures

The equivalences stated in Proposition 3.3.2 and following corollaries, was

the writing of the duality for infσ∈P(Y1){F1(µ, σ) − F2(ν, σ)}. It turns out

that for a particular choice of F1 and F2, this duality is related to the study

of moment measures, which we briefly highlight here.

Given a convex function u : Rd → R ∪ {+∞} with
∫
Rd e

−u(x)dx < +∞,

its moment measure is defined as the measure µ := (∇u)#ρ, where dρ(x) =

e−u(x)dx. Conversely, we say µ is a moment measure if there exists a convex

function u such that µ = (∇u)#ρ. In [18], the authors provide sufficient and

necessary conditions for a probability measure µ to be the moment measure

of some convex function.

To prove the existence of a convex function u whose moment measure

is the given measure µ, one can introduce, as was done by Santambrogio, a

variational problem involving quadratic optimal transport and relative en-

tropy. Indeed, the connection to quadratic optimal transport is via Brenier’s

theorem, namely that µ = (∇u)#ρ implies ∇u is the optimal transport map
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for the transport of ρ to µ with quadratic cost c(x, y) = |x − y|2. At the

same time, in light of the exponential form of the density dρ = e−u(x)dx,

one is also not surprised that the logarithmic entropy also plays a role.

To be precise, let H(dx, ν) :=
∫
Rd log(dνdx)dν if ν ∈ P(Rd) is absolutely

continuous with respect to Lebesgue measure, and +∞ otherwise. Recalling

from Example 2.6.7, the Brenier transfer

T (µ, ν) := inf
π∈K(µ,ν)

∫
Rd×Rd

−〈x, y〉dπ(x, y),

consider the problem

inf
σ∈P1(Rd)

{H(dx, σ)− T (σ, µ)}.

If we allow ourselves the non-compact setting of Rd, an immediate applica-

tion of (4) in Proposition ?? is the following result in [18]

inf
σ∈P(Rd)

{H(dx, σ)−W2(σ, µ̄)} = inf
f∈C(Rd)

{− log

∫
e−f

∗
dx+

∫
f dµ},

where C(Rd) is the cone of convex functions on Rd, W2(σ, µ̄) is the Brenier

transfer of Example 2.6.7, and µ̄ is defined as
∫
Rd f(x)dµ̄(x) =

∫
Rd f(−x)dµ(x).

Note that in this case, T+f(x) = −f∗(−x), E−f = ef and β(t) = log t, and

since g∗∗ ≤ g,

inf
σ∈P(Rd)

{H(dx, σ)−W2(σ, µ̄)} = H ? (−W2)(dx, µ̄)

= inf{− log

∫
e−g dx+

∫
g∗(x) dµ; g ∈ C(Rd)}

= inf{− log

∫
e−f

∗
dx+

∫
f dµ; f ∈ C(Rd)}.

We remark that a particular interest is the characterization of those mea-

sures µ (the moment measures) for which there is attainment in both min-

imisation problems (see Cordero-Erausquin and Klartag [18]).
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3.4 Maurey-type inequalities

Proposition 3.4.1. Let F1 be a backward convex transfer on P(X1)×P(Y1)

with operators (F−1,i)i∈I , F2 a backward convex transfer on P(X2) × P(Y2)

with operators (F−2,j)j∈J , and F3 a backward convex coupling on P(Y1) ×
P(Y2) with operators (F−3,k)k∈K . Then for fixed µ ∈ P(X1) and ν ∈ P(X2),

the following holds:

inf
σ1∈P(Y1),σ2∈P(Y2)

{F1(µ, σ1)−F3(σ1, σ2) + F2(ν, σ2)}

= inf
g∈C(X2)

{− sup
k∈K

inf
i∈I

∫
X1

F−1,i(−F
−
3,k(g)) dµ− inf

j∈J

∫
X2

F−2,j(g) dν}.

Proof. Since as a convex coupling,

F3(σ,σ2) = sup
g∈C(Y2)

{
∫
Y2

gdσ2 − inf
k∈K

∫
Y1

F−3,kgdσ1,

we can substitute this expression into the following inf-convolution,

inf
σ1∈P(Y1),σ2∈P(Y2)

{F1(µ, σ1)−F3(σ1, σ2) + F2(ν, σ2)}

= inf
σ1∈P(Y1),σ2∈P(Y2)

inf
g∈C(Y2)

{
F1(µ, σ1)−

∫
Y2

gdσ2 + inf
k∈K

∫
Y1

F−3,kgdσ1 + F2(ν, σ2)

}
= inf

g∈C(Y2)

{
− sup
k∈K

sup
σ1∈P(Y1)

{
∫
Y1

(−F−3,kg)dσ1 −F1(µ, σ1)} − sup
σ∈P(Y2)

{
∫
Y2

gdσ2 −F2(ν, σ2)}

}

= inf
g∈C(Y2)

{
− sup
k∈K

inf
i∈I

∫
X1

F−1,i(−F
−
3,kg)dν − inf

j∈J

∫
X2

F−2,j(g)dν

}

Corollary 3.4.2. Let F1 be a backward convex transfer on P(X1)× P(Y1)

with operators (F−1,i)i∈I , F2 a backward convex transfer on P(X2) × P(Y2)

with operators (F−2,j)j∈J , and F3 a backward convex coupling on P(Y1) ×
P(Y2) with operators (F−3,k)k∈K . Then for fixed µ ∈ P(X1) and ν ∈ P(X2),

the following are equivalent:
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1. For all σ1 ∈ P(Y1), σ2 ∈ P(Y2), we have

F3(σ1, σ2) ≤ F1(µ, σ1) + F2(ν, σ2).

2. For all g ∈ C(Y2)

sup
k∈K

inf
i∈I

∫
X1

F−1,i(−F
−
3,k(g)) dµ+ inf

j∈J

∫
X2

F−2,j(g) dν ≤ 0.

Proof. By the previous Proposition 3.4.1, we have

0 ≤ inf
σ1∈P(Y1),σ2∈P(Y2)

{F1(µ, σ1)−F3(σ1, σ2) + F2(ν, σ2)}

if and only if

0 ≤ inf
g∈C(X2)

{− sup
k∈K

inf
i∈I

∫
X1

F−1,i(−F
−
3,k(g)) dµ− inf

j∈J

∫
X2

F−2,j(g) dν}.

Corollary 3.4.3. Specializing Corollary 3.4.2 to the case where F1 = E1?T1

and F2 = E2 ? T2 (and relabeling F3 to F), where

• E1 is a backward β1-entropic transfer on P(X1)×P(Z1) with operator

E−1 ,

• E2 is a backward β2-entropic transfer on P(X2)×P(Z2) with operator

E−2 ,

• T1 is a backward linear transfer on P(Z1) × P(Y1) with operator T−1 ,

and

• T2 is a backward linear transfer on P(Z2)× P(Y2) with operator T−2 ,

then, for any given λ1, λ2 ∈ R+ and (µ, ν) ∈ P(X1)× P(X2), the following

are equivalent:

1. For all σ1 ∈ P(Y1), σ2 ∈ P(Y2), we have

F(σ1, σ2) ≤ λ1E1 ? T1(µ, σ1) + λ2E2 ? T2(ν, σ2).
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2. For all g ∈ C(Y2), we have

λ1 sup
k∈K

β1

(∫
X1

E−1 ◦ T
−
1 ◦ (− 1

λ1
F−k g) dµ

)
+λ2β2

(∫
X2

E−2 ◦ T
−
2 (

1

λ2
g) dν

)
≤ 0.

By applying the above to Ei = H the logarithmic entropy (i.e. where

βi(t) = log(t) and operator E−i f = ef ), we get the following extension of a

celebrated result of Maurey [44].

Corollary 3.4.4. Let E1 and E2 in the above Corollary 3.4.3 be equal to the

logarithmic entropy H. Then the following are equivalent:

1. For all σ1 ∈ P(X1), σ2 ∈ P(X2), we have

F(σ1, σ2) ≤ λ1H ? T1(µ, σ1) + λ2H ? T2(ν, σ2).

2. For all g ∈ C(Y2), we have

sup
k∈K

(∫
X1

e
T−1 (− 1

λ1
F−k g) dµ

)λ1 (∫
X2

e
T−2 ( 1

λ2
g)
dν

)λ2
≤ 1.

If T1 = T2 are the identity transfer, then item 1 in the above is equivalent to

saying that for all g ∈ C(Y2), we have

sup
k∈K

(∫
X1

e
− 1
λ1
F−k g dµ

)λ1 (∫
X2

e
1
λ2
g
dν

)λ2
≤ 1.
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Chapter 4

Hamiltonian/Lagrangian

dynamics: Weak KAM,

Aubry-Mather, and optimal

transport

4.1 Introduction

In this chapter, we provide an overview of weak KAM theory and Aubry-

Mather theory for a Hamiltonian/Lagrangian system, drawing from [15, 19–

21, 23, 32, 54, 55]. We shall see that the work of Bernard-Buffoni [5, 6]

demonstrates that in fact much of the analysis can be obtained by studying

an optimal transport problem with the cost function of Example 2.6.6,

cL(x, y) = inf{
∫ 1

0
L(γ(t), γ̇(t))dt ; γ ∈ C1([0, 1];M), γ(0) = x, γ(1) = y}.

Inspired by the theory presented in this chapter, we shall then endeavour

in the next chapter to develop a “weak KAM/Aubry-Mather” theory for

general linear transfers. Thus, the main purpose here is to describe the

connections with the aim of generalising them. For brevity, we shall not
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attempt to provide complete proofs of results from the literature, and for

pedagogical reasons, describe the results for the flat n-dimensional torus

Tn, although a smooth compact connected Riemannian manifold without

boundary would suffice (with the appropriate changes).

4.2 Hamiltonian systems

Consider a dynamical system on Tn := Rn/Zn, the n-dimensional flat torus,

whose energy is described by a Hamiltonian function H : Tn × Rn → R,

(x, p) 7→ H(x, p), where Rn is Euclidean space. The dynamics of the system

are obtained by solving Hamilton’s system of equations; a coupled, non-

linear, system of ODE’s, given (at least in local coordinates) byẋ = ∂H
∂p (x, p)

ṗ = −∂H
∂x (x, p),

(4.1)

together with some initial conditions x(0) = x0 and p(0) = p0.

Solving (4.1) explicitly is not, in general, possible, except in certain

special cases. One such case, the case of an integrable system, occurs if,

in the coordinates (x, p), the Hamiltonian H does not depend on x, i.e.

H = H(p). Then the system reduces toẋ = ∂H
∂p (p)

ṗ = 0,
(4.2)

which is easily solved and the dynamics is completely known: it corresponds

to a uniform rotation on Tn given by

x(t) = (x0 + ρ(p0)t) (mod Zn),

with rotation vector ρ(p0) := ∂H
∂p (p0). In particular, the phase space Tn×Rn

is foliated by invariant tori Tn × {p0} which describe stable motions of the

system, i.e. trajectories starting in an invariant tori will remain there for all

time. Different initial conditions of (4.2) will therefore trace out different
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invariant tori in phase space. In addition, if the rotation vector ρ(p0) has

irrational coordinates (resp., rational), then the trajectory t 7→ x(t) on Tn

is quasi-periodic (resp., periodic).

It is then natural to ask about the dynamics of an integrable system if

it is slightly perturbed. What happens to the invariant tori and the stable

motions? Are they destroyed, or might some still persist?

These questions are related to the search for a smooth and invertible

change of coordinates Φ : (X,P ) 7→ (x, p) so that the Hamiltonian system

(4.1) reduces to an integrable system in the new coordinates (X,P ):Ẋ = ∂H̄
∂P (P )

Ṗ = 0,
(4.3)

where the effective Hamiltonian H̄(P ) := H ◦ Φ(X,P ) depends only on P .

In general, of course, such a coordinate change does not exist, for the fol-

lowing reason: By comparing (4.1) and (4.3), a necessary condition relating

the coordinates, is

∂X

∂x
=

∂p

∂P
.

The above condition is satisfied if there exists a generating function u so that

X = ∂u
∂p (x, P ) and p = ∂u

∂x(x, P ). The relation H̄(P ) = H(x, p) then yields

an equation for this function u, the (stationary) Hamilton-Jacobi equation,

H(x,∇xu(x, P )) = H̄(P ). (4.4)

Thus the strategy becomes: Given P ∈ Rn, find a constant H̄(P ) and a

function u(·, P ) which satisfies (4.4), and define a change of coordinates

(x, p)→ (X,P ) to satisfy

X = ∇Pu(x, P )

p = ∇xu(x, P ). (4.5)

There are two main issues which prevent this procedure from being carried
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out in general: The first is that the Hamilton-Jacobi equation (4.4) may not

admit any smooth solutions u, and second, even if it does, it may not be

possible to invert (4.5) globally to solve for P (and X) in terms of x and p.

In the nearly integrable case, that is, whenH is “close” to some integrable

H0, the theory contributed by Kolmogorov, Arnold, and Moser, collectively

known as KAM theory (see e.g. [58], [61], and references therein) provides

results which say that such a coordinate change does in fact exist. Some

of the invariant tori of the unperturbed system are “deformed” and survive

the perturbation, while others are destroyed. The surviving tori are those

of the unperturbed system which satisfy a “non-resonance condition”, made

precise in the following (pseudo-) theorem.

Theorem 4.2.1 (KAM theorem, [58], Theorem 2.1). Let H(x, p, ε) :=

H0(p) + εH1(x, p, ε) be a real-analytic Hamiltonian, where (x, p) ∈ Tn × Rn

and ε ∈ R. Suppose that the unperturbed system H0 has invertible Hes-

sian at a point p0, where p0 is such that its corresponding rotation vec-

tor ρ(p0) = ∂H0
∂p (p0) is diophantine, i.e. there exist c, γ > 0 such that

|〈k, ρ(p0)〉| ≥ 1
c|k|γ for all non-zero k ∈ Zn.

Then for small ε the torus Tn ×{p0} of the unperturbed system survives

and is slightly deformed by the perturbation. It carries trajectories with

rotation vector ρ(p0).

For more general H which are “far” from being integrable, one can-

not hope to obtain similar results in this non-perturbative setting; in other

words, the Hamiltonian dynamics are not conjugate to a rigid rotation and

there may not exist any quasi-periodic solutions. However, although there

may not exist classical C1 solutions to the stationary Hamilton-Jacobi (4.4),

Lions, Papanicolaou, and Varadhan [39], have shown the existence of viscos-

ity solutions to an equivalent formulation (sometimes called the cell prob-

lem),

H(x, P +∇xw(x, P )) = H̄(P ). (4.6)

The equivalence of (4.6) and (4.4) is via u(x, P ) = x · P + w(x, P ).

Theorem 4.2.2 ([39], Theorem 1). Suppose H is superlinear, i.e. lim|p|→∞H(x, p) =
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+∞, uniformly in x. Then for each P ∈ Rn, there exists a unique H̄(P ) for

which there exists a viscosity solution w of (4.6). In addition, P 7→ H̄(P )

is continuous.

It is often sufficient to consider in the next sections only the case P =

0, the general case for any P obtained by replacing H with HP (x, p) :=

H(x, P + p).

Let us recall here the definition of a viscosity solution in this context.

Definition 4.2.3 (Viscosity solution). Let k ∈ R.

1. u ∈ C(Tn) is a viscosity subsolution of H(x,∇u(x)) = k iff for

every ϕ ∈ C1(Tn) such that ϕ ≥ u and every x0 ∈ Tn such that

ϕ(x0) = u(x0), it holds that

H(x0,∇ϕ(x0)) ≤ k.

2. u ∈ C(Tn) is a viscosity supersolution of H(x,∇u(x)) = k iff for

every ϕ ∈ C1(Tn) such that ϕ ≤ u and every x0 ∈ Tn such that

ϕ(x0) = u(x0), it holds that

H(x0,∇ϕ(x0)) ≥ k.

3. u ∈ C(Tn) is a viscosity solution iff u is both a visocity subsolution,

and a viscosity supersolution.

How is the effective Hamiltonian H̄(P ) related to the original system

(4.1) when there exist only viscosity solutions? This is the weak KAM theory

of Fathi [20] that we discuss in the next section. It connects H̄(P ) and the

associated viscosity solutions, to the theory of invariant sets of Aubry-Mather

from dynamical systems.

Indeed, the lack of smooth solutions to Hamilton-Jacobi, implies non-

existence of invariant tori. But we shall see in the next section that one can

still speak of more general sets which are invariant under the Hamiltonian
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flow; this is Aubry-Mather theory. On the other hand, a result of Hamilton-

Jacobi implies that solutions to the Hamilton-Jacobi equation give invariant

sets.

Theorem 4.2.4 (Hamilton-Jacobi). Let u : Tn → R be C2. Then for every

P ∈ Rn, Graph(P + ∇u) is invariant under the Hamiltonian flow, if and

only if H(x, P +∇u(x)) = c for a constant c independent of x.

The basic premise of weak KAM theory is therefore to build the Aubry-

Mather sets from viscosity solutions to the Hamilton-Jacobi equation.

In the sections that follow the appropriate Hamiltonians are the Tonelli

Hamiltonians; that is, those H : Tn × Rn → R satisfying

1. (x, p) 7→ H(x, p) is Ck smooth for some k ≥ 2,

2. (Strict Convexity) p 7→ H(x, p) is strictly convex for every fixed x,

3. (Superlinearity) lim|p|→+∞
H(x,p)
|p| = +∞ uniformly in x.

A Tonelli Hamiltonian defines, dually, a Tonelli Lagrangian L : Tn×Rn → R
via the Fenchel-Legendre transform of H:

L(x, v) := sup
p∈Rn
{〈p, v〉 −H(x, p)}. (4.7)

The Lagrangian L and Hamiltonian H are completely equivalent in the sense

that H can be recovered from L via

H(x, p) = sup
v∈Rn

{〈p, v〉 − L(x, v)} ,

and the statements “H is Tonelli”, and “L is Tonelli”, are equivalent, where

a Tonelli Lagrangian is a function L : Tn × Rn → R satisfying

1. (x, v) 7→ L(x, v) is Ck smooth for some k ≥ 2,

2. (Strict Convexity) v 7→ L(x, v) is strictly convex for every fixed x,

3. (Superlinearity) lim|v|→+∞
L(x,v)
|v| = +∞ uniformly in x.
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The transformation L(x, v) := (x, ∂L∂v (x, v)) is a global Ck−1 diffeomorphism

between the Lagrangian coordinates (x, v) and the Hamiltonian coordinates

(x, p), so that

H ◦ L(x, v) = 〈∂L
∂v

(x, v), v〉 − L(x, v),

with inverse given by L−1(x, p) = (x, ∂H∂p (x, p)). The Hamiltonian system

(4.1), yields in Lagrangian coordinates, the Euler-Lagrange equations,ẋ = v,

d
dt

(
∂L
∂v (x, v)

)
= ∂L

∂x (x, v).
(4.8)

The Hamiltonian flow φHt associated to the Hamiltonian system (4.1) is

conjugated to the Lagrangian flow φLt , via φHt = L ◦ φLt ◦ L−1.

4.3 Aubry-Mather theory

4.3.1 Mañé critical value

Definition 4.3.1. The Mañé critical value, denoted by c, is the infimum

of all k ∈ R such that there exists a continuous function u : Tn → R which

is a viscosity subsolution to H(x,∇u(x)) = k.

Note that c ∈ R, since by superlinearity, there exists K > 0 and C > 0,

such that L(x, v) ≥ K|v| − C, in which case

H(x, 0) = sup
v∈Rn
{−L(x, v)} ≤ sup

v∈Rn
{−K|v|+ C} = C

hence u ≡ 0 is a viscosity subsolution for any k ≤ C. At the same time

c > −∞ since for any u ∈ C1(Tn),

H(x,∇u(x)) = sup
v∈Rn
{〈∇u(x), v〉−L(x, v)} ≥ −L(x, 0) ≥ − sup

x∈Tn
L(x, 0) > −∞,

thus there exists no viscosity subsolution of H(x,∇u(x)) = k, for k <

− supx∈Tn L(x, 0). We shall see that in fact c = H̄(0), so the Mañé crit-

ical value is exactly the effective Hamiltonian (recall it suffices to consider
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P = 0). The Legendre transform yields an important variational character-

isation of viscosity subsolutions to the Hamilton-Jacobi equation which is

recorded in the following proposition.

Proposition 4.3.2. u ∈ C(Tn) is a viscosity subsolution to H(x,∇u(x)) =

c if and only if for any a < b ∈ R and every Lipschitz curve γ : [a, b]→ Tn,

it holds that

u(γ(b))− u(γ(a)) ≤
∫ b

a
L(γ, γ̇)ds+ c(b− a). (4.9)

Note in particular that this implies every viscosity subsolution is Lips-

chitz by taking a curve γ with constant speed. The next proposition shows

that in fact if there is a γ for which there is equality in (4.9), then u is

actually a viscosity solution and not just a subsolution.

Proposition 4.3.3. If u is a viscosity subsolution to H(x,∇u(x)) = c, and

for every x ∈ Tn, there exists a Lipschitz curve γ : (−∞, 0] → Tn, with

γ(0) = x, satisfying

u(γ(b))− u(γ(a)) =

∫ b

a
L(γ, γ̇)ds+ c(b− a)

for all a < b ≤ 0, then u is a viscosity solution to H(x,∇u(x)) = c (and

consequently, c = H̄(0) is the unique constant for which this is true).

The previous two propositions suggest the introduction of the Lax-Oleinik

semi-group

S−t u(x) := inf
γ
{u(γ(−t)) +

∫ 0

−t
L(γ, γ̇)ds}, t > 0, (4.10)

where the infimum is over all Lipschitz curves γ such that γ(0) = x, and

consider those functions u for which

S−t u(x) + ct = u(x).
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Definition 4.3.4. A function u ∈ C(Tn) is a negative weak KAM so-

lution if S−t u(x) + ct = u(x) for all x ∈ Tn and all t > 0.

The term “negative” refers to the fact that the Lipschitz curve in Propo-

sition 4.3.3 is defined for all negative time. In view of Proposition 4.3.3,

negative weak KAM solutions are in fact exactly the viscosity solutions for

the Hamilton-Jacobi equation.

Proposition 4.3.5. u ∈ C(Tn) is a negative weak KAM solution if and

only if it is a viscosity solution to H(x,∇u(x)) = c.

Remark 4.3.6. In a similar way to above, we may introduce another Lax-

Oleinik semi-group (see (4.9) above),

S+
t u(x) := sup

γ
{u(γ(t))−

∫ t

0
L(γ, γ̇)ds}, t > 0,

where the supremum is over all Lipschitz curves γ : [0, t] → R such that

γ(0) = x, and define the positive weak KAM solutions as those u satisfying

S+
t u(x)− ct = u(x) for all x ∈ Tn and all t > 0.

The positive weak KAM solutions are also viscosity solutions toH(x,∇u(x)) =

c. We shall see the connection between positive/negative weak KAM solu-

tions in the next sections.

4.3.2 Peierls Barrier and the Aubry set

In this section, we will construct an invariant set under the Hamiltonian

flow, the Aubry set, via the Peierls Barrier.

Related to the Lax-Oleinik semi-group (see (4.10)),

consider the minimal action,

ht(x, y) := inf
γ

{∫ t

0
L(γ, γ̇)ds ; γ(0) = x, γ(t) = y

}
(4.11)

where the infimum is over all Lipschitz curves γ : [0, t] → Tn with the

specified end values. It is known that a minimiser of (4.11) exists, and
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that it is as regular as L itself; this is Tonelli’s theorem. Moreover, by the

Calculus of Variations, a minimiser of (4.11) satisfies the Euler-Lagrange

equation (4.8), which is nothing but the first variation of the action (4.11).

Definition 4.3.7. The Peierls Barrier h∞(x, y) is defined via

h∞(x, y) = lim inf
t→+∞

(ht(x, y) + ct),

where c = H̄(0) is Mañé’s constant of the previous section.

Proposition 4.3.8. The Peierls Barrier is finite for all x, y ∈ Tn, Lipschitz,

and satisfies the following properties:

1. Every viscosity subsolution u satisfies u(x)− u(y) ≤ h∞(x, y),

2. h∞(x, z) ≤ h∞(x, y) + h∞(y, z),

3. h∞(x, y) + h∞(y, x) ≥ 0.

The Peierls Barrier is important for a number of reasons, the first being

that it provides negative weak KAM solutions.

Proposition 4.3.9. For every fixed x ∈ Tn, the map y 7→ h∞(x, y) is a

negative weak KAM solution.

The collection of points where the Peierls Barrier vanishes is particularly

important as we will see next.

Definition 4.3.10. The projected Aubry set is defined as the collection

of points where the Peierls barrier vanishes:

A := {x ∈ Tn ; h∞(x, x) = 0}.

Proposition 4.3.11. The projected Aubry set A is compact and non-empty.

Proposition 4.3.12. The projected Aubry set satisfies

A =
⋂
u

(u− S−1 u)−1(c)

where the intersection is over all viscosity subsolutions u to H(x,∇u(x)) = c.
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The projected Aubry set is distinguished for a number of reasons. The

first we shall note is that it a set of “uniqueness” for weak KAM solutions.

Proposition 4.3.13. 1. If u is a negative weak KAM solution, then

there exists a unique positive weak KAM solution v such that u = v

on A.

2. If u is a viscosity subsolution of H(x,∇u(x)) = c, then there exists a

negative weak KAM solution v such that u = v on A.

3. If u1, u2 are negative weak KAM solutions, and u1 ≤ u2 on A, then

u1 ≤ u2 everywhere.

The second we shall observe is that it is exactly the differentiability set

for viscosity subsolutions of the Hamilton-Jacobi equation.

Proposition 4.3.14. For any x ∈ A, there exists a C2 curve γx : R → A
with γx(0) = x, that solves the Euler-Lagrange equation,

d

dt

(
∂L

∂v
(γx, γ̇x)

)
=
∂L

∂x
(γx, γ̇x), for all t ∈ R

for which any viscosity subsolution u satisfies

u(γx(b))− u(γx(a)) =

∫ b

a
L(γx, γ̇x)ds+ c(b− a), a < b ∈ R. (4.12)

In addition, u is differentiable at x with ∇u(x) = ∂L
∂v (x, γ̇x(0)) and satisfies

H(x,∇u(x)) = c at that point.

The curve γ is unique in the sense that if γ̃x : [a, b] → Tn is defined on

an interval [a, b] containing 0, satisfies γ̃x(0) = x and (4.12), then γx = γ̃x

on [a, b].

The above proposition implies that the map x 7→ ∂L
∂v (x, γ̇x(0)) is well-

defined on A. We define the graph of this function over A to be the Aubry

set.
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Definition 4.3.15. The Aubry set Ã is the subset of Tn×Rn defined via

Ã := {(x, ∂L
∂v

(x, γ̇x(0))) ; x ∈ A}

where γ is as in Proposition 4.3.14.

Proposition 4.3.16. The Aubry set is non-empty, compact, and invariant

under the Hamiltonian flow. It is a Lipschitz graph over the projected Aubry

set.

4.3.3 Mather measures

Recall the minimal action,

ht(x, y) := inf
γ
{
∫ t

0
L(γ, γ̇)ds}

where the infimum is over Lipschitz curves γ : [0, t]→ Tn with γ(0) = x and

γ(t) = y.

In the previous section, the Peierls Barrier was defined as a long-time

limit of the minimal action, and the Aubry set was constructed. However,

one alternative to studying minimising trajectories of (4.11), is instead look

at the average action of a “collection of orbits”, in the sense of a Lagrangian

action of a flow-invariant probability distribution:

AL[µ] :=

∫
Tn×Rn

L(x, v)dµ(x, v),

and introduce the analogous minimisation problem,

inf {AL[µ] ; µ ∈ D} ,

where D :=
{
µ ∈ P(Tn × Rn) ; (φLt )#µ = µ

}
is the set of probability mea-

sures invariant under the Euler-Lagrange flow determined by L.

Since the constraint set D depends on L itself, Mañé introduced a larger

set of probability measures, the so-called set of holonomic measures F , which
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contains D, and is defined by

F :=

{
µ ∈ P(Tn × Rn) ;

∫
Tn×Rn

v · ∇ϕ(x)dµ(x, v) = 0, ∀ϕ ∈ C1(Tn)

}
.

The corresponding minimisation problem,

inf {AL[µ] ; µ ∈ F} (4.13)

is a relaxation of (4.11).

How do minimisers of (4.13) relate to trajectories of (4.1)? Consider the

integrable Hamiltonian system (4.2). In this case, L(x, v) = L(v), and by

Fenchel-Legendre (4.7), we have for any p0 ∈ Rn,

L(v) ≥ 〈p0, v〉 −H(p0)

with equality when v = ∂H
∂p (p0) = ρ(p0). Integrating with respect to µ ∈ F ,

we obtain∫
Tn×Rn

L(v)dµ(x, v) ≥ 〈p0,

∫
Tn×Rn

vdµ(x, v)〉 −H(p0) (4.14)

which can be rearranged to yield the inequality∫
Tn×Rn

[L(v)− 〈p0, v〉]dµ(x, v) ≥ −H(p0). (4.15)

This linear shift of the Lagrangian, Lp0(v) := L(v)−〈p0, v〉, is again a Tonelli

Lagrangian with the same Euler-Lagrange equation as L.

We recall the invariant tori Tn×{p0} for the integrable Hamiltonian sys-

tem. These translate via the Fenchel-Legendre transform (4.7) into invariant

tori Tn × {ρ(p0)} for the corresponding Euler-Lagrange flow. If µ ∈ F is

now supported on Tn × {ρ(p0)}, then the left-hand side of (4.15) becomes∫
Tn×Rn

[L(ρ(p0))− 〈p0, ρ(p0)〉]dµ(x, v) = −H(p0).

The conclusion is the following: Any invariant measure µ ∈ F supported on

97



Tn ×{ρ(p0)} minimises the Lagrangian Lp0 among all measures µ ∈ F , i.e.,

inf{ALp0 [µ] ; µ ∈ F} = −H(p0), (4.16)

and, in addition,

Tn × {ρ(p0)} =
⋃

{µ∈F ;µ minimises ALp0
}

spt(µ) (4.17)

The action-minimising measures µ thus provide a characterisation for the

invariant tori in the case of an integrable system.

Still considering for the moment the case of an integrable system, define

an average rotation vector for µ, by ρ(µ) :=
∫
Tn×Rn vdµ(x, v) ∈ Rn, which

can be interpreted as a kind of average over the rotation vectors of a collec-

tion of orbits. From (4.14), we have for measures µ ∈ F with ρ(µ) = ρ(p0),∫
Tn×Rn

L(v)dµ(x, v) ≥ 〈p0, ρ(p0)〉 −H(p0)

= L(ρ(p0)),

with equality if µ is supported in Tn × {ρ(p0)}. Therefore,

inf{AL[µ] ; µ ∈ F , ρ(µ) = ρ(p0)} = L(ρ(p0)), (4.18)

and moreover,

Tn × {ρ(p0)} =
⋃

{µ∈F ;µ minimises AL and ρ(µ)=ρ(p0)}

spt(µ). (4.19)

Motivated by the integrable case (4.16), for general Hamiltonian systems

the so-called Mather’s α-function is then defined via

α(c) := − inf{ALc [µ] ; µ ∈ F}, c ∈ Rn, (4.20)

where we recall that Lc(x, v) := L(x, v)−〈v, c〉. In the case of an integrable

system, Mather’s α-function is exactly the Hamiltonian (4.16); hence α is

98



also known as the effective Hamiltonian in the general case. In fact, we shall

see in Section 4.4 that a result of weak KAM says in fact that α(P ) = H̄(P )

where we recall H̄(P ) is the effective Hamiltonian of Lions, Papanicolaou,

and Varadhan.

Let Mc denote the measures µ ∈ F whose action ALc [µ] realise the

minimal value −α(c). As motivated by (4.17), define the Mather set M̃c

corresponding to c as the union of the support of all measures in Mc:

M̃c :=
⋃

µ∈Mc

spt (µ) ⊂ Tn × Rn (4.21)

and the projected Mather set Mc as the projection of M̃c onto the base Tn:

Mc := π(M̃c) ⊂ Tn.

Theorem 4.3.17 (Mather). M̃c is a compact, non-empty, and invariant set

under the Euler-Lagrange flow. Moreover, it is a graph over Mc.

Analogous to Mather’s α-function, and again motivated by the integrable

case (4.18), Mather’s β-function is defined via,

β(h) := inf{AL[µ] ; µ ∈ F , ρ(µ) = h}, h ∈ Rn, (4.22)

where ρ(µ) is the rotation vector of µ. Since β coincides with the Lagrangian

when the system is integrable, it is also termed the effective Lagrangian. The

terminology is suggestive that β should be the Fenchel-Legendre transform

of the effective Hamiltonian, i.e., that β = α∗ (see Theorem 4.3.18 below).

Similarly to Mather’s α-function, let Mh denote the measures µ ∈ F
whose rotation vector ρ(µ) is equal to h, and whose action AL[µ] realises

the minimum β(h) in (4.22). Define the Mather set M̃h as the union of the

support of all measures in Mh:

M̃h :=
⋃

µ∈Mh

spt (µ) ⊂ Tn × Rn,
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and its projection Mh as the projection of M̃h onto the base Tn:

Mh := π(M̃h) ⊂ Tn.

Mather again proved that M̃h is a compact, non-empty, and invariant set

under the Euler-Lagrange flow. Moreover, it is a graph over Mh.

Theorem 4.3.18. Mather’s functions α and β are convex conjugates of

each other, i.e. α = β∗ and β∗ = α.

In addition, if µ ∈ F is an invariant probability measure, then

β(ρ(µ)) = AL[µ] ⇐⇒ there exists c ∈ Rn such that −α(c) = ALc [µ].

Furthermore, if β(ρ(µ)) = AL[µ], then

−α(c) = ALc [µ] ⇐⇒ c ∈ ∂β(ρ(µ)).

These results imply that the two collections of minimising measures are

the same, ⋃
c∈Rn

Mc =
⋃
h∈Rn

Mh,

and moreover, the Mather sets are related via

M̃c =
⋃

h∈∂α(c)

M̃h.

Proposition 4.3.19. The Mather set is contained in the Aubry set, i.e.,

M̃0 ⊂ Ã, where M̃0 is given by (4.21).

Proposition 4.3.20. A probability measure µ belongs to M0 if and only if

its support is contained in the Aubry set Ã.

4.4 Weak KAM theory

As mentioned in the introduction, the goal of weak KAM theory is to connect

viscosity solutions of the stationary Hamilton-Jacobi equation to Aubry-

Mather; specifically the Mather measures, Mather set, and Aubry set.
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The Aubry set was defined above via the Peierls Barrier. Here we show

that the Aubry set can in fact be constructed from the negative weak KAM

solutions.

First, we have the following connection between the various functions.

Proposition 4.4.1. Mather’s α-function, the effective Hamiltonian H̄ of

Lions, Papanicolaou, and Varadhan, and Mañé’s critical constant c, are the

same, i.e. α(0) = H̄(0) = c.

Proposition 4.4.2. For every negative weak KAM solution u, the set

Graph(∇u) := {(x,∇u(x)) ; ∇u(x) exists },

under backwards Hamiltonian flow satisfies,

φH−t(Graph(∇u)) ⊂ Graph(∇u) for all t ≥ 0,

and therefore

Ĩ(u) :=
⋂
t≥0

φH−t(Graph(∇u))

is invariant under the Hamiltonian flow. It is non-empty and compact, and

known as the Aubry set associated to u.

Proposition 4.4.3. The Aubry set Ã as defined in Section 4.3.2 is equal

to the intersection over all Ĩ(u) for all negative weak KAM solutions u,

Ã =
⋂
u

Ĩ(u).

4.5 Connections of weak KAM and
Aubry-Mather to optimal transport

Recall the minimal action ht(x, y) between two points x and y defined in

Section 4.3.2,

ht(x, y) := inf
γ

{∫ t

0
L(γ, γ̇)ds ; γ(0) = x, γ(t) = y

}
(4.23)
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where the infimum is over Lipschitz curves γ : [0, t] → Tn. Bernard and

Buffoni [5, 6] noted that a lot of the analysis in the previous sections does

not really depend on the explicit form of ht(x, y).

To emphasise this, they develop an abstract theory based on a continuous

function A : X ×X → R on a compact connected metric space X, of which

ht for t = 1 in (4.23) is an example. They build an analogue of the Peierls

Barrier h∞ of the previous sections via inf-convolution of A with itself:

An(x, y) = A ? A ? . . . ? A(x, y)

= inf{A(x, x1) +A(x2, x3) + . . .+A(xn−1, y) ; xi ∈ X}.

The cost An(x, y) between two points x and y, does not deviate too far from

the long time average cost

c := lim
n→∞

inf{An(x, y) ; x, y ∈ X}
n

= lim
n→∞

sup{An(x, y) ; x, y ∈ X}
n

(4.24)

in a uniform way, in the sense that |An(x, y) − nc| ≤ C for a constant C

independent of x,y, and n.

Lemma 4.5.1 ([6], Lemma 9). The functions An are equi-continuous, and

there exists a constant C > 0, such that

|An(x, y)− nc| ≤ C for all x, y ∈ X, and n ∈ N.

Similar to Section 4.3.2, one can define a notion of the Peierls Barrier in

this setting.

Definition 4.5.2. The Peierls Barrier is the function

A∞(x, y) := lim inf
n→∞

(An(x, y)− nc).

The function A∞ is continuous and real-valued as the family (An)n∈N

is equi-continuous and An − cn is uniformly bounded in x, y, and n. The

Peierls Barrier A∞ has the same properties as h∞ (cf. Proposition 4.3.8),
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which are recorded in the following.

Proposition 4.5.3 ([6], Lemma 11). The function A∞ satisfies

A∞(x, z) ≤ A∞(x, y) +A∞(y, z) for all x, y, z ∈ X,

and

A∞(x, z) = inf
y∈A
{A∞(x, y) +A∞(y, z)}

where A := {x ; A∞(x, x) = 0} is non-empty.

Definition 4.5.4. The projected Aubry set is the setA = {x ; A∞(x, x) =

0}.

Recall from Proposition 4.3.8 that for any viscosity subsolution u, it

held that u(y) − u(x) ≤ h∞(x, y), i.e., u is h∞-Lipschitz. In the abstract

setting for A∞, functions u which are A∞-Lipschitz are exactly the admissi-

ble functions for the Kantorovich dual problem corresponding to an optimal

transport with cost A∞ (see Section 2.6).

Definition 4.5.5. Let φ0, φ1 ∈ C(X). We say (φ0, φ1) is a conjugate pair

(for A∞) if

φ1(y) = T−A∞φ0(y) and φ0(x) = T+
A∞

φ1(x)

where

T−A∞φ0(x) := sup
y∈X
{φ0(y)−A∞(x, y)} and T+

A∞
φ1(y) := inf

x∈X
{φ1(x)+A∞(x, y)}.

We have the following proposition.

Proposition 4.5.6 ([6], Proposition 8). If (φ0, φ1) are a conjugate pair for

A∞, then there exists a A∞-Lipschitz function φ : A → R such that

φ0 = φ1 = φ on A,
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and φ0, φ1 can recovered from φ via

φ1(y) = inf
x∈A
{φ(x) +A∞(x, y)} and φ0(x) = sup

y∈A
{φ(y)−A∞(x, y)}.

(4.25)

Conversely, for every A∞-Lipschitz function ϕ on A, the functions φ0, φ1

defined by (4.25) are a conjugate pair for A∞.

Remark 4.5.7. The above proposition is stated for A∞, but in fact it is

true for any c ∈ C(X×X) which satisfies the properties listed in Proposition

4.5.3.

As was the case in the previous sections, the projected Aubry set is

particularly important.

Theorem 4.5.8 ([6], Theorem 12). (φ0, φ1) are a conjugate pair for A∞ if

and only if, T−A φ0 + c = φ0, T+
A φ1 − c = φ1, and φ0 = φ1 on A, where

T−A φ0(x) := sup
y∈X
{φ0(y)−A(x, y)} and T+

A φ1(y) := inf
x∈X
{φ1(x) +A(x, y)}

and c is defined as in (4.24).

Remark 4.5.9. This theorem is the abstract analogue of Proposition 4.3.13,

item 1.

Recall from Section 2.6 that conjugate pairs are connected to an optimal

transport via

inf
π∈K(µ,ν)

∫
X×Y

A∞(x, y) dπ(x, y) = sup{
∫
Y
φ1dν −

∫
X
φ0dµ}

where the supremum is over (φ0, φ1) which are are conjugate pairs for A∞.

Therefore the interpretation of this theorem is that taking the Peierls Barrier

A∞ as the cost function for an optimal transport, the admissible pairs for the

Kantorovich duality are exactly the negative/positive weak KAM solutions

which agree on the projected Aubry set. Indeed, those functions which
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satisfy

T−A φ0 + c = φ0 and T+
A φ1 − c = φ1

are the analogues of Fathi’s positive (resp., negative) weak KAM solutions in

this abstract setting (note here that one should think of T−A as corresponding

to S+
1 , while T+

A as corresponding to S−1 , where S±1 are the Lax-Oleinik

operators of the previous section; the apparent discrepancy in +, −, notation

is chosen to be consistent with backward/forward Kantorovich operators for

the next chapter) since the above relations imply

T−A,nφ0 + nc = φ0 and T+
A,nφ1 − nc = φ1, for all n ∈ N

where T±A,n denotes the n-fold composition of T±A . The main distinction is

that the “time” index here is integer-valued (compare with Definition 4.3.4).

Finally the Mather measures are interpreted in this setting.

Theorem 4.5.10 ([6], Theorem 13). Denote the optimal transport with cost

function A by

TA(µ, ν) := inf
π∈K(µ,ν)

∫
X×X

A(x, y)dπ(x, y).

Then

c = inf
µ∈P(X)

TA(µ, µ),

and a measure π ∈ P(X ×X) satisfies
∫
X×X A(x, y)dπ(x, y) = TA(µ, µ) = c

if and only if π is supported on the set

D := {(x, y) ; A(x, y) +A∞(y, x) = c}.

Remark 4.5.11. In the setting of the previous sections when X = Tn,

there is a bijection between the Mather measures M0 and the measures π,

which is given by the mapping (projTn , projTn ◦ ϕL1 )#, where projTn is the

projection Tn × Rn → Tn, and ϕL1 is the time 1 Lagrangian flow.
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Chapter 5

Weak KAM and

Aubry-Mather for linear

transfers

In this chapter, our aim is the development of a “weak-KAM/Aubry-Mather”

theory for a linear transfer in an analogy to the previous chapter. In par-

ticular, for a backward linear transfer T : P(X)×P(X)→ R ∪ {+∞} with

backward Kantorovich operator T− : C(X) → USC(X), it is natural in

view of the last chapter to define backward weak KAM solutions as those

functions g ∈ USC(X) satisfying T−g(x)+c = g(x) for a particular constant

c (essentially the fixed points for T− up to an additive constant). An imme-

diate technical issue is that T−g is not strictly defined when g ∈ USC(X);

we therefore discuss its extension from C(X) in the next section, Section

5.1. The backward weak KAM solutions can be viewed as a generalisa-

tion of Fathi’s weak KAM solutions from the previous chapter, and indeed

reduce to them when the linear transfer T is optimal transport generated

from a Lagrangian. If T is also a forward linear transfer with forward

Kantorovich operator T+, one can speak of forward weak KAM solutions

T+f(x) − c = f(x), but since a backward linear transfer is not, in general,

also a forward linear transfer, we shall focus mainly on backward weak KAM

solutions.
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We shall see that for many backward linear transfers, we can construct

an idempotent backward Kantorovich operator T−∞, which maps C(X) into

the set of backward weak KAM solutions for T−. We can also associate to

T−∞ an idempotent backward linear transfer T∞, which in the case of optimal

transport generated from a Lagrangian, is related to the Peierls barrier from

the previous chapter.

5.1 Extension of Kantorovich operators from
C(Y ) to USCσ(Y )

We recall that USC(X) is the set of all extended real-valued upper semi-

continuous functions f : X → R ∪ {−∞}, and USCσ(X) the closure of

USC(X) with respect to monotone increasing limits (i.e. f ∈ USCσ(X)

if and only if there exists a monotone increasing sequence fn ∈ USC(X)

with f(x) = limn→∞ fn(x) for all x ∈ X). We also denote USCb(X) as

those USC(X) functions which are bounded below (and therefore bounded

above and below by compactness of X). We shall also denote by USCσ,b(X)

those functions in USCσ(X) which are bounded above and below. The same

conventions also hold for the space Y in place of X.

As mentioned in the introduction of this chapter, we wish to find back-

ward weak KAM solutions that are achieved by iterating T− with itself n

times in the limit as n → ∞. Thus it is necessary to extend the domain of

the Kantorovich operator T−, which as defined is only on C(X), to these

larger classes of functions. We note that the extension of T− to USCb(X)

coincides with the discussion of Section 4.2 in the independent work [1].

Lemma 5.1.1. Let T be a backward linear transfer such that {δx;x ∈ X} ⊂
D1(T ), and let T− : C(Y ) → USC(X) be the associated backward Kan-

torovich operator.

1. For g ∈ USC(Y ), define

T−g(x) := inf{T−h(x) ; h ∈ C(Y ), h ≥ g}.
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Then T− maps USC(Y ) into USC(X), and has representation

T−g(x) = sup{
∫
Y
gdν − T (δx, ν); ν ∈ P(Y )}. (5.1)

Moreover, T− maps USCb(Y ) into USCb(X) if and only if

sup
x∈X

inf
ν∈P(Y )

T (δx, ν) < +∞.

2. For g ∈ USCσ(Y ), define

T−g(x) := sup{T−h(x) ; h ∈ USC(Y ) , h ≤ g},

where T−h is defined as in 1. Then T− maps USCσ(Y ) to USCσ(X).

If, in addition, g ∈ USCσ(Y ) is bounded above, then (5.1) also holds.

T− therefore extends to an operator from USCσ(Y ) → USCσ(X) satisfy-

ing the monotonicity, convexity, and affine constant properties of Definition

2.4.1, only on USCσ(Y ) rather than C(Y ).

Proof. 1. The fact that T−g belongs to USC(X) follows from the fact that

an infimum of a family of upper semi-continuous functions, is also upper

semi-continuous.

Suppose now that g ∈ USC(Y ). Let hn ↘ g be a decreasing sequence

of continuous functions converging to g. Then,

T−g(x) ≤ T−hn(x) = sup
σ∈P(Y )

{
∫
Y
hndσ − T (δx, σ)} =

∫
Y
hndσn − T (δx, σn),

where the supremum is achieved for some probability measure σn because

σ 7→
∫
Y hndσ−T (δx, σ) is weak∗ upper semi-continuous and bounded above

on the compact set P(Y ).

By weak∗ compactness of P(Y ), extract an increasing subsequence nk

so that σnk → σ. Then for any j ≤ k, T−g(x) ≤
∫
Y hnjdσnk − T (δx, σnk)

where we have used the fact that hnk ≤ hnj whenever j ≤ k. For this fixed

j, we have that hnj ∈ C(Y ) and so
∫
hnjdσnk →

∫
hnjdσ as k →∞. Hence
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we obtain

T−g(x) ≤ lim
k→∞

∫
Y
hnjdσnk − lim inf

k→∞
T (δx, σnk) ≤

∫
Y
hnjdσ − T (δx, σ).

Finally
∫
Y hnjdσ →

∫
Y gdσ by monotone convergence, and we obtain

T−g(x) ≤ sup
σ∈P(Y )

{
∫
Y
gdσ − T (δx, σ)}.

On the other hand, for any h ∈ C(Y ), h ≥ g,

sup
σ∈P(Y )

{
∫
Y
gdσ − T (δx, σ)} ≤ sup

σ∈P(Y )
{
∫
Y
hdσ − T (δx, σ)} = T−h(x).

Therefore we obtain the reverse inequality

sup
σ∈P(Y )

{
∫
Y
gdσ − T (δx, σ)} ≤ inf{T−h(x) ; h ∈ C(Y ), h ≥ g} = T−g(x).

Suppose now that T−g ∈ USCb(X). Then using (5.1), we have

−∞ < inf
x∈X

T−g(x) = inf
x∈X

sup
ν∈P(Y )

{
∫
Y
gdν − T (δx, ν)}

≤ sup
y∈Y

g(y)− sup
x∈X

inf
ν∈P(Y )

T (δx, ν)

which implies supx∈X infν∈P(Y ) T (δx, ν) < +∞.

On the other hand, if supx∈X infν∈P(Y ) T (δx, ν) < +∞, then we easily

see using (5.1) again that

inf
x∈X

T−g(x) ≥ inf
y∈Y

g(y)− sup
x∈X

inf
ν∈P(Y )

T (δx, ν) > −∞

from which we deduce that T−g ∈ USCb(X).

Note that T−g is bounded above since T−g(x) ≤ supy∈Y g(y) − mT ,

where mT is a lower bound for T .

2. For g ∈ USCσ(Y ), we have T−g ∈ USCσ(X) as it is by definition the

supremum of a family of upper semi-continuous functions. Now suppose g
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is, in addition, bounded above. Then the expression∫
Y
gdσ − T (δx, σ)

is well-defined for all σ ∈ P(Y ) and takes values in R∪{−∞}. Use now the

first part to write for any h ∈ USC(Y ), h ≤ g,

sup
σ∈P(Y )

{
∫
Y
gdσ − T (δx, σ)} ≥ sup

σ∈P(Y )
{
∫
Y
hdσ − T (δx, σ)} = T−h(x)

which implies by definition of T−g that

sup
σ∈P(Y )

{
∫
Y
gdσ − T (δx, σ)} ≥ T−g(x). (5.2)

On the other hand, for an increasing hn ↗ g, hn ∈ USC(Y ),

T−g(x) ≥ T−hn(x) ≥
∫
Y
hndσ − T (δx, σ), for any σ ∈ P(Y ).

By the monotone convergence of hn to g, we may take the limit as n→∞
in the above inequality, and conclude

T−g(x) ≥
∫
gdσ − T (δx, σ) for any σ ∈ P(Y ),

whereby taking the supremum in σ yields the reverse inequality of (5.2) and

gives the desired equality 5.1.

Remark 5.1.2. Note that even though for g ∈ USCσ(Y ) which is bounded

above, we have the expression T−g(x) = supσ∈P(Y ){
∫
Y gdσ − T (δx, σ)},

it does not necessarily imply that T−g ∈ USC(X). Indeed, the map

σ 7→
∫
Y gdσ has no weak∗ semi-continuity property in general when g ∈

USCσ(Y ), so the supremum above may not be achieved.

Also note that it may happen that both terms in the expression
∫
Y gdσ−

T (δx, σ) are simultaneously +∞ for a given σ when g ∈ USCσ(Y ).
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Lemma 5.1.3 (Monotone limits). Let T be a backward linear transfer as

in Lemma 5.1.1, and let T− denote its corresponding Kantorovich operator,

extended to USCσ(Y ).

1. If gn, g ∈ USC(Y ) and gn ↘ g, then T−gn ↘ T−g.

2. If gn, g ∈ USCσ(Y ) are bounded above with gn ↗ g, then T−gn ↗
T−g.

Proof. 1) We have by the monotonicity property of T−, that T−g(x) ≤
lim infn T

−gn(x). If for some n, T−gn(x) = −∞, then T−g(x) = −∞ and

there is nothing to prove. Otherwise, T−gn(x) > −∞ for all n, in which

case the expression (5.1) is finite. The map

σ 7→
∫
Y
gndσ − T (δx, σ)

is weak∗ upper semi-continuous (since σ 7→
∫
Y hdσ is weak∗ upper semi-

continuous for any h ∈ USC(Y )) , so it achieves its supremum at some σn,

i.e.,

T−gn(x) =

∫
gndσn − T (δx, σn).

Extract an increasing subsequence nk so that lim supn T
−gn(x) = limk T

−gnk(x)

and σnk → σ̄. Similarly to the proof of Lemma 5.1.1, by monotonicity of

gn, we have

T−gnk(x) ≤
∫
gnjdσnk − T (δx, σnk) for fixed j ≤ k. (5.3)

As gnj ∈ USC(Y ) and σnk → σ̄, it follows that lim supk→∞
∫
gnjdσnk ≤∫

gnjdσ̄. Hence upon taking lim supk→∞ in (5.3), we conclude

lim sup
n

T−gn(x) ≤
∫
gnjdσ̄ − T (δx, σ̄).

Then we let j →∞ and use monotone convergence to conclude that

lim sup
n

T−gn(x) ≤ sup
σ∈P(Y )

{
∫
gdσ − T (δx, σ)} = T−g(x).
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2) Again, by the monotoncity property for T−, T−g ≥ lim supn T
−gn(x).

On the other hand, we know by Lemma 5.1.1 that

T−gn(x) = sup
σ∈P(Y )

{
∫
Y
gndσ − T (δx, σ)} ≥

∫
gndσ − T (δx, σ) for all σ.

Hence by monotone convergence, lim infn T
−gn(x) ≥

∫
gdσ−T (δx, σ) for all

σ. Taking the supremum over σ yields lim infn T
−gn(x) ≥ supσ∈P(Y ){

∫
Y gdσ−

T (δx, σ)} = T−g(x).

Remark 5.1.4. We note that the given proof of item (1) of the above

lemma fails if we allow sequences gn ∈ USCσ(Y ). This is because there is

no weak∗ semi-continuity property for ν 7→
∫
Y gdν when g merely belongs

to USCσ(Y ) and not USC(Y ).

Corollary 5.1.5. Let T : P(X)×P(Y )→ R ∪ {+∞} be a backward linear

transfer such that {δx ; x ∈ X} ⊂ D1(T ). Then,

1. For any (µ, ν) ∈ P(X)× P(Y ), we have

T (µ, ν) = sup
{∫

Y
g dν −

∫
X
T−g dµ; g ∈ USCb(Y )

}
= sup

{∫
Y
g dν −

∫
X
T−g dµ; g ∈ USCσ,b(Y )

}
.

2. The Legendre transform formula (2.4) for Tµ, which holds for C(Y ),

extends to USC(Y ); that is, for µ ∈ P(X) and all g ∈ USC(Y ), we

define

T ∗µ (g) := sup{
∫
Y
gdσ − T (µ, σ);σ ∈ P(Y )}

and then we have

T ∗µ (g) =

∫
X
T−g dµ. (5.4)

Proof. 1. For g ∈ USCb(Y ), take a monotone decreasing sequence gn ∈
C(Y ) with gn → g. By Lemma 5.1.3, and monotone convergence, we infer

that

lim
n→∞

(∫
Y
gndν −

∫
X
T−gndµ

)
=

∫
Y
gdν −

∫
X
T−gdµ,
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from which we conclude

T (µ, ν) ≥ sup

{∫
Y
g dν −

∫
X
T−g dµ; g ∈ USCb(Y )

}
.

The reverse inequality is immediate because C(Y ) ⊂ USCb(Y ).

2. Let g ∈ USC(Y ) and take gn ↘ g with gn ∈ C(Y ). We have∫
Y
gndσ − T (µ, σ) ≤ sup{

∫
Y
gndσ − T (µ, σ);σ ∈ P(Y )} =

∫
X
T−gn dµ

so that by Lemma 5.1.3 upon taking n→∞, we obtain∫
Y
gdσ − T (µ, σ) ≤

∫
X
T−g dµ

and consequently

sup{
∫
Y
gdσ − T (µ, σ);σ ∈ P(Y )} ≤

∫
X
T−g dµ. (5.5)

On the other hand, by monotonicity, T−g ≤ T−gn, so∫
X
T−g dµ ≤

∫
X
T−gn dµ ≤ sup{

∫
Y
gndσ − T (µ, σ);σ ∈ P(Y )}.

Since µ ∈ D1(T ), the supremum on the right-hand side is achieved by some

σn. Extract an increasing subsequence nj so that σnj → σ for some σ ∈
P(Y ). Then if i ≤ j, we have gnj ≤ gni , so that∫

X
T−g dµ ≤

∫
Y
gnidσnj − T (µ, σnj ) for i ≤ j

where upon sending j →∞ yields∫
X
T−g dµ ≤

∫
Y
gnidσ − T (µ, σ)

and finally i→∞ by monotone convergence yields the reverse inequality of

(5.5).
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Remark 5.1.6. For similar reasons as noted in a previous remark, the proof

of item 1 in the above corollary fails if USCb(Y ) is replaced with USC(Y ),

(similarly item 2 to USCσ(Y )), since it may happen that both
∫
Y gdν = −∞

and
∫
X T

−gdµ = −∞ simultaneously.

The following is the extension of the inf-convolution stability of Corollary

2.10.4 as mentioned in Remark 2.10.5.

Corollary 5.1.7. Let T be a backward linear transfer on P(X)×P(X) with

{δx ; x ∈ X} ⊂ D1(T ) and D1(T ) ∩D2(T ) 6= ∅. Then T ? T is a backward

linear transfer with backward Kantorovich operator T− ◦ T−.

Proof. The key point here is that T−g ∈ USC(X), so by Corollary 5.1.5 (in

particular, (5.4); replace g there by T−g for g ∈ C(X)), we conclude that

when µ ∈ D1(T ? T ),

(T ? T )∗µ(g) = sup
ν∈P(X)

{
∫
X
gdν − T ? T (µ, ν)}

= sup
σ∈P(X)

{
∫
X
T−gdσ − T (µ, σ)}

=

∫
X
T− ◦ T−gdµ, for all g ∈ C(X).

5.1.1 Conjugate functions for forward and backward linear
transfers

We have the following notion motivated by the theory of mass transport (see

Section 2.6 and also 4.5).

Definition 5.1.8. Let T be both a backward and forward transfer with

Kantorovich operators T− and T+. A pair (f, g) ∈ USCσ(X) × USCσ(Y )

are a conjugate pair if

T−g = f and T+f = g.
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The following proposition shows in particular that for any function g ∈
C(Y ), the couple (T−g, T+ ◦ T−g) form a conjugate pair.

Proposition 5.1.9. Suppose T : P(X) × P(Y ) → R ∪ {+∞} is both a

forward and backward linear transfer, and that {(δx, δy) ; (x, y) ∈ X × Y } ⊂
D(T ) such that T+ : C(X)→ C(Y ) and T− : C(Y )→ C(X). Then for any

g ∈ C(Y ) , (resp.,f ∈ C(X))

T+ ◦ T−g ≥ g T− ◦ T+f ≤ f ,

and

T− ◦ T+ ◦ T−g = T−g and T+ ◦ T− ◦ T+f = T+f.

In particular,

T (µ, ν) = sup
{∫

Y
T+ ◦ T−g(y) dν(y)−

∫
X
T−g dµ(x); g ∈ C(Y )

}
= sup

{∫
Y
T+f(y) dν(y)−

∫
X
T− ◦ T+f dµ(x); f ∈ C(X)

}
.

Proof. We can write for any g ∈ C(Y ),

T−g(x) = sup
σ∈P(Y )

{
∫
Y
gdσ − T (δx, σ)}

Since by assumption T+f ∈ C(Y ), we have with g = T+f ,

T− ◦ T+f(x) = sup
σ∈P(Y )

{
∫
Y
T+fdσ − T (δx, σ)}.

At the same time, we have
∫
Y T

+fdσ = infµ∈P(X){
∫
X fdµ+ T (µ, σ)} since

T is a forward linear transfer. Substituting into the above yields

T− ◦ T+f(x) = sup
σ∈P(Y )

inf
µ∈P(X)

{
∫
X
fdµ+ T (µ, σ)− T (δx, σ)}

≤ f(x).

By a similar argument, we also deduce that T+ ◦ T−g(y) ≥ g(y) for all
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g ∈ C(Y ).

By replacing f ∈ C(X) in the inequality T− ◦T+f(x) ≤ f(x) with T−g,

we obtain, T− ◦ T+ ◦ T−g ≤ T−g. At the same time applying T− to the

inequality T+ ◦ T−g ≥ g, implies T− ◦ T+ ◦ T−g ≥ T−g. Therefore we have

equality: T− ◦ T+ ◦ T−g = T−g. Similarly, we have T+ ◦ T− ◦ T+f = T+f .

Finally, since T (µ, ν) = supg∈C(Y ){
∫
Y gdν −

∫
X T

−gdµ}, we can replace

g with T+ ◦ T−g ∈ C(Y ) in the supremum since T+ ◦ T−g ≥ g.

5.2 Mañé constant and weak KAM solutions for
backward linear transfers

In this section, we introduce the analogous notions of subsolutions, the Maǹé

constant, and weak KAM solutions of Section 4.3.1. Throughout this sec-

tion, let T : P(X)×P(X)→ R∪ {+∞} be a backward linear transfer such

that {δx ; x ∈ X} ⊂ D1(T ) and assume c(T ) := infµ∈P(X) T (µ, µ) < +∞.

Note that c(T ) > −∞ by the standing assumption that T is bounded be-

low (recall this is part of the definition of a backward linear transfer). It

is always possible to assume without loss of generality that c(T ) = 0 by

simply considering the transfer T − c(T ); however we prefer to explicitly

write the constant in the following. In addition, by compactness and lower

semi-continuity, there always exists at least one minimizer µ ∈ P(X) so that

T (µ, µ) = c(T ).

We first begin by showing that c(T ) can be expressed in alternative ways.

Proposition 5.2.1. Let T : P(X) × P(X) → R ∪ {+∞} be a backward

linear transfer such that c(T ) := infµ∈P(X) T (µ, µ) < +∞. Then

c(T ) = lim
n→∞

inf(µ,ν) Tn(µ, ν)

n
.

Proof. First note that

inf
(µ,ν)
Tn(µ, ν) ≤ Tn(µ, µ) ≤ nT (µ, µ)
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hence

lim sup
n→∞

inf(µ,ν) Tn(µ, ν)

n
≤ inf

µ
T (µ, µ) = c(T ).

On the other hand, let µn1 , µ
n
n+1 be such that

inf
(µ,ν)
Tn(µ, ν) = Tn(µn1 , µ

n
n+1). (5.6)

By definition of Tn as an inf-convolution of T with itself n-times, we may

write

Tn(µn1 , µ
n
n+1) =

n∑
j=1

T (µnj , µ
n
j+1)

for some µnj ∈ P(X), j = 1, . . . , n + 1 (the infimum is achieved by weak∗

lower semi-continuity). Hence by joint convexity,

1

n
Tn(µn1 , µ

n
n+1) =

1

n

n∑
j=1

T (µnj , µ
n
j+1) ≥ T (

1

n

n∑
j=1

µnj ,
1

n

n∑
j=1

µnj+1). (5.7)

Define νn := 1
n

∑n
j=1 µ

n
j . Then

T (
1

n

n∑
j=1

µnj ,
1

n

n∑
j=1

µnj+1) = T (νn, νn +
1

n
(µnn+1 − µn1 )) (5.8)

Now let nk be a subsequence such that

lim inf
n→∞

inf(µ,ν) Tn(µ, ν)

n
= lim

k→∞

inf(µ,ν) Tnk(µ, ν)

nk
.

Up to extracting a further subsequence, we may assume that νnk → ν̄ for

some ν̄ ∈ P(X). It then follows from (5.6), (5.7), and (5.8), together with

weak∗ lower semi-continuity of T , that

lim inf
n→∞

1

n
inf

(µ,ν)
Tn(µ, ν) ≥ T (ν̄, ν̄) ≥ c(T ),

which concludes the proof.

Proposition 5.2.2. If T is a backward linear transfer on P(X) × P(X)

117



such that supx∈X infν∈P(X) T (δx, ν) < +∞, then

c(T ) = sup
g∈C(X)

inf
x∈X
{g(x)− T−g(x)}.

Proof. If supx∈X infν∈P(X) T (δx, ν) < +∞, then by Lemma 5.1.1, T−g ∈
USCb(X) for all g ∈ C(X). Consider now the function

f : P(X)× C(X)→ R, f(µ, g) :=

∫
X

(g − T−g)dµ.

Note that f is real-valued since T−g ∈ USCb(X). We have that g 7→ f(µ, g)

is upper semi-continuous on C(X) since T− is convex and weakly lower

semi-continuous on C(X), and µ 7→ f(µ, g) is lower semi-continuous on

P(X) since T−g ∈ USCb(X). Moreover, µ 7→ f(µ, g) is quasi-convex, i.e.

{µ ∈ P(X) ; f(µ, g) ≤ λ} is convex or empty for λ ∈ R, and g 7→ f(µ, g) is

quasi-concave, i.e. {g ∈ C(X) ; f(µ, g) ≥ λ} is convex or empty for λ ∈ R.

Therefore by Sion’s minimax theorem (see Theorem 2.7.6), we have

inf
µ∈P(X)

sup
g∈C(X)

f(µ, g) = sup
g∈C(X)

inf
µ∈P(X)

f(µ, g).

Therefore we have

c(T ) = inf
µ∈P(X)

T (µ, µ) = sup
g∈C(X)

{
∫
X

(g − T−g)dµ}

= inf
µ∈P(X)

sup
g∈C(X)

f(µ, g)

= sup
g∈C(X)

inf
µ∈P(X)

f(µ, g)

= sup
g∈C(X)

inf
µ∈P(X)

{
∫
X

(g − T−g)dµ}.

Since g−T−g is a lower semi-continuous function bounded below, it achieves

a minimum on the compact space X, so that infµ∈P(X){
∫
X(g − T−g)dµ} =
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minx∈X{g(x)− T−g(x)}. Consequently,

c(T ) = sup
g∈C(X)

inf
x∈X
{g(x)− T−g(x)}.

Definition 5.2.3. Let k ∈ R. A function g ∈ USC(X) is a subsolution

for T− at level k iff

1. T−g(x) + k ≤ g(x) for all x ∈ X, and

2.
∫
X gdµ > −∞ for some µ ∈ P(X) which achieves the minimum

T (µ, µ) = c(T ).

Regarding the role of item 2 in the definition of a subsolution, we wish

to be able to compare the constant k with c(T ) (see below in this section);

note that by definition of c(T ), we have
∫
X gdµ ≤

∫
X T

−gdµ + c(T ). The

condition is essentially telling us that a subsolution must be proper in a

particular way: that it is finite on the support of some minimising measure

µ.

Lemma 5.2.4. For every k < supg∈C(X) infx∈X{g(x)−T−g(x)}, there exists

a subsolution g ∈ C(X).

Proof. This is immediate, since by definition, there exists a sequence (gj) ⊂
C(X) such that

inf
x∈X
{gj(x)− T−gj(x)} ↗ sup

g∈C(X)
inf
x∈X
{g(x)− T−g(x)}.

Definition 5.2.5. The Mañé constant c0 is the supremum over all k ∈ R
such that there exists a subsolution g for T− at level k.

Lemma 5.2.6. The Mañé constant c0 satisfies

sup
g∈C(X)

inf
x∈X
{g(x)− T−g(x)} ≤ c0 ≤ c(T ).
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In particular, if supx∈X infν∈P(X) T (δx, ν) < +∞, then c0 = c(T ).

Proof. It is immediate from the previous lemma that

c0 ≥ sup
g∈C(X)

inf
x∈X
{g(x)− T−g(x)}

since there is a subsolution at every level k strictly below this value. On

the other hand, take µ ∈ P(X) for which c(T ) = T (µ, µ). Then from

T (µ, µ) = suph∈C(X){
∫
X hdµ−

∫
X T

−hdµ}, we have for any h ∈ C(X),∫
X

(h− T−h)dµ ≤ c(T ).

For any g ∈ USC(X), take a decreasing sequence (hj) ⊂ C(X) with hj ↘ g.

Then by Lemma 5.1.3, we have T−hj ↘ T−g, so by monotone convergence∫
X
gdµ ≤

∫
X
T−gdµ+ c(T ).

Therefore for any level k for which there exists g ∈ USC(X) which is a

subsolution, we have∫
X
gdµ ≤

∫
X
T−gdµ+ c(T ) ≤

∫
X
gdµ+ c(T )− k

hence since
∫
X gdµ > −∞, we may subtract from both sides and deduce

k ≤ c(T ). Consequently c0 ≤ c(T ).

Definition 5.2.7. A function g ∈ USC(X) is a backward weak KAM

solution at level k for T if

1. T−g(x) + k = g(x) for all x ∈ X, and

2.
∫
X gdµ > −∞ for some µ such that T (µ, µ) = c(T ).

Proposition 5.2.8. If g ∈ USC(X) is a backward weak KAM solution at

level k, then necessarily, k = c(T ).
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Proof. Clearly, if g is a backward weak KAM solution at level k, then it

is a subsolution, so k ≤ c0 ≤ c(T ). On the other hand, g also satisfies

T−n g + nk = g, where T−n is the n-fold composition of T− with itself. This

means that∫
X
gdµ−nk =

∫
X
T−n gdµ = sup

ν∈P(X)
{
∫
X
gdν−Tn(µ, ν)} ≤ sup

x∈X
g(x)− inf

(µ,ν)
Tn(µ, ν)

where for the second equality in the above, we have used Corollary 5.1.7.

Dividing by n and letting n→∞, we have

− k ≤ − lim
n→∞

inf(µ,ν) Tn(µ, ν)

n
= −c(T ) (5.9)

where the latter equality is by Proposition 5.2.1. The above inequality (5.9)

then implies c(T ) ≤ k, which concludes the proof.

We shall therefore say g is a backward weak KAM solution if and only if

g is a backward weak KAM solution at level c(T ).

Corollary 5.2.9. If there exists a backward weak KAM solution g, then the

Mañé constant c0 is equal to c(T ).

5.3 Idempotent linear transfers

We will in subsequent sections construct an idempotent backward Kan-

torovich operator that maps into the set of backward weak KAM solutions;

its induced backward linear transfer will be idempotent. Therefore in this

section, we study idempotent backward linear transfers.

Definition 5.3.1. Let T : P(X)×P(X)→ R∪{+∞} be a given functional.

1. We say T is idempotent if

T (µ, ν) = T ? T (µ, ν) for all µ, ν ∈ P(X)

where

T ? T (µ, ν) := inf{T (µ, σ) + T (σ, ν) ; σ ∈ P(X)}.
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2. DefineA := {µ ∈ P(X) ; T (µ, µ) = 0}. We say that T isA-factorisable,

if A 6= ∅, and T satisfies

T (µ, ν) = inf{T (µ, σ) + T (σ, ν) ; σ ∈ A} for all µ, ν ∈ P(X).

3. T is distance-like, if it satisfies

T (µ, ν) ≤ T (µ, σ) + T (σ, ν), for all µ, σ, ν ∈ P(X).

The following lemma and proposition is based on ([6], Lemma 11) where

we weaken the continuity hypothesis to lower semi-continuity.

Lemma 5.3.2. Let T : P(X) × P(X) → R ∪ {+∞} be weak∗ lower semi-

continuous and idempotent. Fix µ, ν ∈ P(X). Let σ1, σ2 be such that

T (µ, ν) = T (µ, σ1) + T (σ1, ν) and T (σ1, ν) = T (σ1, σ2) + T (σ2, ν).

Then T (µ, σ1) + T (σ1, σ2) = T (µ, σ2).

Proof. This simply a consequence of T being idempotent. Indeed

T (µ, ν) = T (µ, σ1) + T (σ1, σ2) + T (σ2, ν)

≥ T ? T (µ, σ2) + T (σ2, ν)

= T (µ, σ2) + T (σ2, ν)

≥ T ? T (µ, ν)

= T (µ, ν)

so all the inequalities are in fact equalities. This means in particular com-

paring the first and third line that T (µ, σ1) + T (σ1, σ2) = T (µ, σ2).

Proposition 5.3.3. Let T : P(X)×P(X)→ R∪{+∞} be weak∗ lower semi-

continuous and idempotent. Then T is distance-like and A-factorisable.

Proof. It is immediate that T is distance-like if it is idempotent; indeed,
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this is from

T (µ, ν) = T ? T (µ, ν) = inf
σ∈P(X)

{T (µ, σ) + T (σ, ν)}

≤ T (µ, σ) + T (σ, ν) for all µ, ν, σ.

Fix now µ, ν ∈ P(X). From T = T ? T , there exists σ1 ∈ P(X) such that

T (µ, ν) = T (µ, σ1) + T (σ1, ν); (5.10)

similarly, there exists a σ2 such that

T (σ1, ν) = T (σ1, σ2) + T (σ2, ν). (5.11)

We conclude from Lemma 5.3.2 that

T (µ, σ1) + T (σ1, σ2) = T (µ, σ2). (5.12)

In addition, we if we add (5.10) and (5.11), we have

T (µ, ν) = T (µ, σ1) + T (σ1, σ2) + T (σ2, ν). (5.13)

We therefore have (σ1, σ2) such that (5.10), (5.11), and (5.12) (and,

consequently, (5.13)) hold.

Continue this process with T (σ2, ν), to find a σ3 satisfying T (σ2, ν) =

T (σ2, σ3) + T (σ3, ν). In this way we inductively create a sequence (σk)k∈N

with the property that for (σ1, σ2, . . . , σk), we have

T (µ, ν) = T (µ, σ1) +

k−1∑
i=1

T (σi, σi+1) + T (σk, ν) (5.14)

and also

T (µ, σ1) + T (σ1, σ2) = T (µ, σ2) (5.15)

T (σk−1, σk) + T (σk, ν) = T (σk−1, ν), (5.16)
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as well as
m∑
i=`

T (σi, σi+1) = T (σ`, σm+1) (5.17)

whenever 1 ≤ ` < m ≤ k − 1.

In particular, the same properties (5.14), (5.15), (5.16), (5.17) above hold

if we take instead m+1 terms (σk1 , . . . , σkm+1) of any increasing subsequence

kj of k. In particular, this means

T (µ, σk1) +

m∑
j=1

T (σkj , σkj+1
) + T (σkm+1 , ν) = T (µ, ν). (5.18)

We take now a subsequence σkj of σk converging to some σ ∈ P(X). By

weak∗ lower semi-continuity of T , we have

lim inf
j→∞

T (σkj , σkj+1
) ≥ T (σ, σ)

lim inf
j→∞

T (µ, σkj ) ≥ T (µ, σ)

lim inf
j→∞

T (σkj , ν) ≥ T (σ, ν).

In particular, given ε > 0, for all but finitely many j, it must hold that

T (σkj , σkj+1
) ≥ T (σ, σ)− ε (5.19)

T (µ, σkj ) ≥ T (µ, σ)− ε (5.20)

T (σkj , ν) ≥ T (σ, ν)− ε (5.21)

so up to removing the first N terms for a finite N = Nε, we may assume we

have a subsequence σkj satisfying (5.19), (5.20), and (5.21) for all j, as well

as (5.18) .

Applying the inequalities of (5.19), (5.20), and (5.21), to (5.18), we ob-

tain

T (µ, ν) ≥ T (µ, σ) +mT (σ, σ) + T (σ, ν)− (m+ 2)ε

for m ≥ 1. From the fact that T = T ? T , we have T (µ, σ) + T (σ, ν) ≥
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T ? T (µ, ν) = T (µ, ν), so the above inequality implies

T (σ, σ) ≤ m+ 2

m
ε ≤ 2ε.

As ε > 0 is arbitrary, we obtain T (σ, σ) ≤ 0, and consequently T (σ, σ) = 0

(the reverse inequality following from T = T ? T ).

Finally, we note that T (µ, ν) = T (µ, σkj ) + T (σkj , ν) for all j, so at the

lim inf, we find

T (µ, ν) ≥ T (µ, σ) + T (σ, ν).

The reverse inequality is immediate from T = T ? T .

Definition 5.3.4. Suppose T− : USC(X) → USC(X) is some given map.

We say that T− is idempotent if T− ◦ T−g = T−g for all g ∈ C(X).

Remark 5.3.5. We observe that if T− : USC(X)→ USC(X) is an idem-

potent backward Kantorovich operator, then the induced backward linear

transfer T (µ, ν) := supg∈C(X){
∫
X gdν−

∫
X T

−gdµ} is idempotent thanks to

Corollary 5.1.7.

5.3.1 Examples of idempotent linear transfers

We present some examples of idempotent linear transfers.

Example 5.3.6 (Convex energy). Recall the convex energy example of

Section 2.5.1. If I is any bounded below, convex, and weak∗ lower semi-

continuous functional, and m := inf{I(σ);σ ∈ P(Y )}, then T (µ, ν) :=

I(ν) − m is an idempotent backward linear transfer with an idempotent

Kantorovich map T−g := I∗(g) +m. Indeed, note that

T− ◦ T−g = I∗(T−g) +m = sup
ν∈P(Y )

{
∫
Y
T−gdν − I(ν)}+m

= sup
ν∈P(Y )

{
∫
Y

(I∗(g) +m)dν − I(ν)}+m

= I∗(g) + 2m− inf
ν∈P(Y )

I(ν)

= I∗(g) +m = T−g.
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(See also Example 5.5.5 later in Section 5.5.3.)

Example 5.3.7 (Markov operator). Any transfer induced by a bounded

positive linear operator T with T 2 = T and T1 = 1, and in particular, any

point transformation σ such that σ2 = σ as in Example 2.5.7.

Example 5.3.8 (Balayage transfer). The balayage transfer B of Example

2.5.3 is idempotent since its Kantorovich map is T−g = ĝ, where, for exam-

ple, in the case of balayage with convex functions, ĝ is the concave envelope

of g.

Example 5.3.9 (Optimal Mass Transport). If Tc is an optimal mass trans-

port associated to a bounded below lower semi-continuous cost function

c : X×X → R∪{+∞}, then Tc is idempotent if c(x, x) = 0 for every x ∈ X
and c satisfies the triangular inequality

c(x, z) ≤ c(x, y) + c(y, z) for all x, y, z in X. (5.22)

In particular, this implies

Tc(µ, ν) = sup{
∫
X
T−c g d(ν − µ); g ∈ C(X)}. (5.23)

For example, if c(x, y) = dX(x, y)p for 0 < p ≤ 1, then the corresponding

optimal mass transport is idempotent since c satisfies the reverse triangle

inequality, and therefore c ? c(x, y) = infz∈X{c(x, z) + c(z, y)} = c(x, y).

Example 5.3.10 ( An idempotent optimal Skorohod embedding). The fol-

lowing transfer was considered in Ghoussoub-Kim-Palmer [31].

T (µ, ν) := inf
{
E
[ ∫ τ

0
L(t, Bt)dt

]
; τ ∈ S(µ, ν)

}
, (5.24)

where S(µ, ν) denotes the set of (possibly randomized) stopping times with

finite expectation such that ν is realized by the distribution of Bτ (i.e.,

Bτ ∼ ν in our notation), where Bt is Brownian motion starting with µ as

a source distribution, i.e., B0 ∼ µ. Note that T (µ, ν) = +∞ if S(µ, ν) = ∅,
which is the case if and only if µ and ν are not in subharmonic order. In this
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case, it has been proved in [31] that under suitable conditions, the backward

linear transfer is given by T−g = Jg(0, ·), where Jg : R+×Rd → R is defined

via the dynamic programming principle

Jg(t, x) := sup
τ∈Rt,x

{
Et,x

[
g(Bτ )−

∫ τ

t
L(s,Bs)ds

]}
, (5.25)

where the expectation superscripted with t, x is with respect to the Brow-

nian motions satisfying Bt = x, and the minimization is over all finite-

expectation stopping timesRt,x on this restricted probability space such that

τ ≥ t. Jg(t, x) is actually a “variational solution” for the quasi-variational

Hamilton-Jacobi-Bellman equation:

min

{
J(t, x)− ψ(x)

− ∂
∂tJ(t, x)− 1

2∆J(t, x) + L(t, x)

}
= 0. (5.26)

Note that Jg(t, x) ≥ g(x), that is T−g ≥ g for every g, hence (T−)2g ≥ T−g.

Assume now t → L(t, x) is decreasing, which yields that t → J(t, x) is

increasing (see [31]). Given ε > 0, fix τε such that

(T−)2g(x) = JT−g(0, x) ≤ Et,x
[
T−g(Bτε)−

∫ τε

t
L(s,Bs)ds

]
+ ε,

hence since T−g(Bτε) = Jg(0, Bτε) ≤ Jg(t, Bτε),

(T−)2g(x) ≤ Et,x
[
Jg(0, Bτε)−

∫ τ

t
L(s,Bs)ds

]
+ ε

≤ Et,x
[
Jg(t, Bτε)−

∫ τε

t
L(s,Bs)ds

]
+ ε

≤ Jg(0, x) + ε = T−g(x) + ε,

where the last inequality uses the supermartingale property of the process

t→ Jg(t, Bτε)−
∫ τε
t L(s,Bs)ds. It follows that we obtain the reverse inequal-

ity (T−)2g ≤ T−g, and T− is therefore idempotent.
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5.3.2 T -Lipschitz functionals

Proposition 5.3.11. Suppose T : P(X) × P(X) → R ∪ {+∞} is a weak∗

lower semi-continuous, bounded below, jointly convex functional such that T
is A-factorisable. Then the following hold:

1. For any bounded functional Φ : A → R that is T -Lipschitz, that is, for

any Φ satisfying

Φ(ν)− Φ(µ) ≤ T (µ, ν), for all µ, ν ∈ A,

there exists f ∈ C(X) such that

Φ(µ) =

∫
X
fdµ for all µ ∈ A.

2. If T is, in addition, a backward linear transfer, and

sup
ν∈P(X)

inf
µ∈A
T (µ, ν) < +∞,

then

Φ(µ) =

∫
X
T−fdµ =

∫
X
fdµ for every µ ∈ A. (5.27)

3. If T is, in addition, both a forward and backward linear transfer, then

Φ(µ) =

∫
X
fdµ =

∫
X
T−fdµ =

∫
X
T+ ◦ T−fdµ for every µ ∈ A.

Moreover, the functions ψ0 := T−f and ψ1 := T+ ◦T−f are conjugate

in the sense that ψ0 = T−ψ1 and ψ1 = T+ψ0.

4. Moreover, if g is a function in C(X) such that
∫
X gdµ = Φ(µ) for all

µ ∈ A, then

ψ0 ≤ T−g and ψ1 ≥ T+g. (5.28)
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Proof. 1. Let Φ be such that µ→ Φ(µ) is T -Lipschitz on A and define

Φ0(µ) := sup
σ∈A
{Φ(σ)− T (µ, σ)} and Φ1(ν) := inf

σ∈A
{Φ(σ) + T (σ, ν)}.

Note that Φ0 and Φ1 are both finite on A, but in general Φ0 may be −∞
(resp., Φ1 may be +∞) on certain subsets of P(X), depending on the effec-

tive domain of T .

We now show that Φ0 ≤ Φ1 on P(X). This is trivally true if one of Φ0,

Φ1 is not finite, so assume µ ∈ P(X) is such that Φ0(µ),Φ1(µ) ∈ R. Then,

by definition of Φ0, Φ1, and the fact that Φ is T -Lipschitz on A, and T is

A-factorisable, we may write

Φ0(µ)− Φ1(µ) = sup
σ,τ∈A

{Φ(σ)− T (µ, σ)− Φ(τ)− T (τ, µ)}

≤ sup
σ,τ∈A

{Φ(σ)− Φ(τ)− T (τ, σ)}

≤ 0.

Note now that Φ0 is concave and weak∗ upper semi-continuous, while Φ1 is

convex and weak∗ lower semi-continuous, on the convex subset P(X) of the

real vector spaceM(X). Thus by Hahn-Banach (see, e.g. [50] p.319), there

exists f̄ ∈ C(X) such that µ 7→
∫
X fdµ on P(X) lies between Φ0 and Φ1:

Φ0(µ) ≤
∫
X
fdµ ≤ Φ1(µ) for all µ ∈ P(X). (5.29)

On the other hand, it also holds by the definition of Φ0 and Φ1, that

Φ1(µ) ≤ Φ(µ) ≤ Φ0(µ) for all µ ∈ A (5.30)

so that (5.29) and (5.30) together shows

Φ(µ) = Φ1(µ) = Φ0(µ) =

∫
X
fdµ for all µ ∈ A.

2. Suppose now T is additionally a backward linear transfer with T− as
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its Kantorovich operator. If µ ∈ A,∫
X
T−fdµ = sup

ν∈P(X)
{
∫
X
fdν − T (µ, ν)} ≥

∫
X
fdµ− T (µ, µ) =

∫
X
fdµ.

Assume now that supν∈P(X) infµ∈A T (µ, ν) < +∞. It can be checked that

this implies Φ0, Φ1 are bounded. Then it holds that

sup
ν∈P(X)

{Φ1(ν)− T (µ, ν)} ≤ sup
ν∈P(X)

Φ1(ν)− C < +∞

where C is a lower bound for T . This means that for any µ ∈ A, by (5.29),

we can write

−∞ <

∫
X
T−fdµ = sup

ν∈P(X)
{
∫
X
fdν−T (µ, ν)} ≤ sup

ν∈P(X)
{Φ1(ν)−T (µ, ν)}.

(5.31)

In view of item 1, we will be done if we show that we have the conjugate

formula,

sup
σ∈P(X)

{Φ1(σ)− T (µ, σ)} = Φ0(µ). (5.32)

To this end, for every µ ∈ P(X), we have

Φ0(µ) = sup
σ∈A
{Φ(σ)− T (µ, σ)} = sup

σ∈A
{Φ1(σ)− T (µ, σ)} ≤ sup

σ∈P(X)
{Φ1(σ)− T (µ, σ)}.

On the other hand, for any ν, µ ∈ P(X), we have

Φ1(ν)− Φ0(µ) = inf
σ,τ∈A

{Φ(σ) + T (σ, ν)− Φ(τ) + T (µ, τ)}

≤ inf
σ,τ∈A

{T (σ, ν) + T (τ, σ) + T (µ, τ)}

≤ inf
σ∈A
{T (σ, ν) + T (µ, σ)}

= T (µ, ν).

This shows (5.32).

3. Suppose in addition that T is a forward linear transfer with T+ as a
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Kantorovich operator. Recalling the property T+ ◦ T−f ≥ f , we have∫
X
T+ ◦ T−fdµ ≥

∫
X
fdµ ≥ Φ0(µ).

On the other hand, by (5.31) and (5.32),∫
X
T+ ◦T−fdµ = inf

σ∈P(X)
{
∫
X
T−fdσ+T (σ, µ)} ≤ inf

σ∈P(X)
{Φ0(σ)+T (σ, µ)}.

In other words, T−f and T+ ◦ T−f are two conjugate functions verifying∫
X
T+ ◦ T−fdµ =

∫
X
T−fdµ = Φ(µ) for all µ ∈ A.

4) To prove (5.28), first note that∫
X
T−fdµ ≤ Φ0(µ) = sup{Φ(σ)− T (µ, σ);σ ∈ A}

≤ sup{
∫
X
gdσ − T (µ, σ);σ ∈ P(X)}

=

∫
X
T−gdµ.

On the other hand,∫
X
T+ ◦ T−fdµ = inf{

∫
X
T−fdσ + T (σ, µ);σ ∈ P(X)}

= inf{
∫
X
T−fdσ + T (σ, λ) + T (λ, µ);λ ∈ A, σ ∈ P(X)}

= inf{
∫
X
T+ ◦ T−fdλ+ T (λ, µ);λ ∈ A}

= inf{
∫
X
gdλ+ T (λ, µ);λ ∈ A}

≥ inf{
∫
X
gdλ+ T (λ, µ);λ ∈ P(X)}

=

∫
X
T+gdµ,

which completes the proof.
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Corollary 5.3.12. For every idempotent backward linear transfer T such

that {δx ; x ∈ X} ⊂ A and supν∈P(X) infµ∈A T (µ, ν) < +∞, there is a

function f ∈ C(X) which is fixed by T−, i.e. T−f(x) = f(x).

5.4 Ergodic properties of equicontinuous
semigroups of transfers

We now proceed to the construction of the backward weak KAM solutions

first introduced in Section 5.2. Given a backward linear transfer T with

backward Kantorovich operator T−, we shall construct a backward Kan-

torovich operator T−∞ which maps C(X) into the set of backward weak

KAM solutions for T−. This operator will be idempotent, and its induced

backward linear transfer T∞ is the analog of the Peierls barrier of standard

Aubry-Mather theory in Chapter 4.

We begin by assuming T is weak∗ continuous on P(X) × P(X). We

use the notation Tn to denote, for each n ∈ N, the inf-convolution Tn =

T ? T ? .... ? T n-times, and T−n the n-fold composition of T− with itself.

Recall that the quadratic Wasserstein distance, denoted by W2(µ, ν) :=√
T2(µ, ν) where T2 is optimal transport with quadratic cost c(x, x′) :=

dX(x, x′)2, metrizes the topology of weak∗ convergence on P(X) when X

is compact. Therefore, if T is weak∗ continuous on P(X) × P(X), then

it is weak∗ uniformly continuous since P(X) × P(X) is weak∗ compact.

Therefore, there exists a modulus of continuity δ : [0,∞)→ [0,∞), δ(0) = 0,

such that

|T (µ, ν)− T (µ′, ν ′)| ≤ δ(W2(µ, µ′) +W2(ν, ν ′)) for all µ, µ′, ν, ν ′ ∈ P(X).

We start with the following lemma which can be found in Bernard-

Buffoni [6] and adapted to our setting at hand.

Lemma 5.4.1 (Bernard-Buffoni [6], Lemma 9). Let T : P(X)×P(X)→ R
be a weak∗ continuous functional with a modulus of continuity δ. Then the

family {Tn}n∈N are equicontinuous with the same modulus of continuity δ,

and there exists a positive constant C > 0 such that
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|Tn(µ, ν)− nc(T )| ≤ C, for every n ≥ 1 and all µ, ν ∈ P(X),

where we recall from Section 5.2 that

c(T ) = inf
µ
T (µ, µ) = lim

n→∞

inf{Tn(µ, ν) ; µ, ν ∈ P(X)}
n

.

Proof. Define Mn := maxµ,ν Tn(µ, ν) and M := infn≥1{Mn
n } > −∞. The

sequence {Mn}n≥1 is subadditive, that isMn+m ≤Mn+Mm, hence {Mn
n }n≥1

decreases to its infimum M as n→∞. Indeed (see e.g. [9] Lemma 1.18), fix

n > 0 and write for any m, the decomposition m = nq+r, where 0 ≤ r < n.

The subadditivity of Mn implies

Mm

m
=
Mnq+r

nq + r
≤ Mnq

nq
+
Mr

nq
≤ Mn

n
+
Mr

nq
.

We therefore obtain lim supm→∞
Mm
m ≤ Mn

n . On the other hand, infn≥1
Mn
n ≤

lim infn→∞
Mn
n . Therefore, Mn

n converges to M as n→∞.

In addition, if mn := minµ,ν Tn(µ, ν), then the above applied to −mn yields

that limn→∞
mn
n = m, where m := supn

mn
n .

We now show that m = M . Note that the family Tn all have the same

modulus of continuity; this follows exactly because (µ, ν) 7→ T (µ, σ1) +

T (σ1, σ2) + . . . + T (σn, ν) has modulus of continuity δ for each choice of

(σ1, . . . , σn) ∈ P(X)× . . .×P(X), so the infimum (i.e. the function Tn) also

has modulus of continuity δ. The uniform modulus of continuity δ implies

the existence of a constant C > 0, such that Mn −mn ≤ C for every n ≥ 1.

Then, we obtain the string of inequalities

nM − C ≤Mn − C ≤ mn ≤ Tn(µ, ν) ≤Mn ≤ mn + C ≤ nm+ C.

The left-most and right-most inequalities imply M ≤ m upon sending n→
∞, hence m = M .

Lemma 5.4.2. 1. For any g ∈ C(X), there is a constant C > 0 such
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that

|T−n g(x) + nc(T )− sup
X
g| ≤ C for all n ∈ N and all x ∈ X.

2. The semi-group of operators {T−n }n≥1 has the same modulus of conti-

nuity as T .

3. The constant c(T ) is critical in the sense that T−n g + kn → ±∞ as

n → ∞ if k 6= c(T ), depending on if k < c(T ) or k > c(T ), for any

g ∈ C(X).

Proof. 1) By Lemma 5.4.1 and since T−n g(x) + nc(T ) = supσ{
∫
gdσ −

(Tn(δx, σ)− nc(T ))}, we have supX(g)−C ≤ T−n g(x)+nc(T ) ≤ supX(g)+C.

For 2) we note that

T−n g(x) = sup
σ
{
∫
gdσ − Tn(δx, σ)}

≤ sup
σ
{
∫
gdσ − Tn(δy, σ)}+ sup

σ
{Tn(δy, σ)− Tn(δx, σ)}

= T−n g(y) + δ(d(x, y)).

We now interchange x and y to obtain the reverse inequality.

3) follows from 1) since

sup
X

(g)− C + (k − c)n ≤ T−n g(x) + kn ≤ sup
X

(g) + C + (k − c)n.

We shall prove the following, which is an analogue of Bernard-Buffoni

[5, 6].

Theorem 5.4.3 (Ergodic properties of weak∗ continuous linear transfers).

Let T be a weak∗ continuous backward linear transfer on M(X) ×M(X)

with modulus of continuity δ, and with backward Kantorovich operator T− :

C(X) → C(X). Then, there exists a backward Kantorovich operator T−∞ :
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C(X)→ C(X), which may be taken to be

T−∞g(x) := lim
n→∞

(T−n ◦ T
−
g(x) + nc(T ))

where T
−
g(x) := lim supn→∞(T−n g(x) + nc(T )). Together with its corre-

sponding backward linear transfer T∞, they satisfy:

1. T−∞ maps every g ∈ C(X) to a backward weak KAM solution for T−,

i.e.,

T−n ◦ T−∞g + nc(T ) = T−∞g and T−∞ ◦ T−n g + nc(T ) = T−∞g

for all n ∈ N, where c(T ) = infµ T (µ, µ) = limn→∞
inf{Tn(µ,ν) ;µ,ν∈P(X)}

n .

2. T−∞ is idempotent, i.e. T−∞ ◦ T−∞g = T−∞g for all g ∈ C(X).

3. T∞ satisfies,

(Tn−nc(T ))?T∞(µ, ν) = T∞(µ, ν) = T∞?(Tn−nc(T ))(µ, ν) for every n ∈ N.

4. T∞ is idempotent and therefore A-factorisable, i.e. the set A := {σ ∈
P(X); T∞(σ, σ) = 0} is non-empty, and for every µ, ν ∈ P(X), we

have

T∞(µ, ν) = inf{T∞(µ, σ) + T∞(σ, ν), σ ∈ A},

and the infimum on A is attained.

5. For every µ, ν ∈ P(X), we have

sup

{∫
T−∞gd(ν − µ) ; g ∈ C(X)

}
≤ T∞(µ, ν) ≤ lim inf

n→∞
(Tn(µ, ν)−nc(T )).

6. If T (µ, µ) = c(T ), then µ ∈ A. Additionally, (µ, µ) ∈ D if and only if

µ ∈ A and T (µ, µ) = c(T ), where

D := {(µ, ν) ∈ P(X)× P(X) : T (µ, ν) + T∞(ν, µ) = c(T )}.
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Remark 5.4.4. The backward linear transfer T∞ is an analog of the Peierls

barrier.

Proof. 1) Given g ∈ C(X), define

T
−
g(x) := lim sup

n→∞
(T−n g(x) + nc(T )).

The first observation we make is that T
−

is a backward Kantorovich oper-

ator. Indeed, note that the monotonicity, convexity, and affine with respect

to constants, properties of T− are inherited by T
−

. The remaining property

to check is the lower semi-continuity. For this, suppose gk → g in C(X) for

the sup norm. We have by Proposition 2.4.4 that

T−n g(x) ≤ T−n gk(x) + ‖g − gk‖∞,

so that

T
−
g(x) ≤ T−gk(x) + ‖g − gk‖∞

where k →∞ then yields T
−
g(x) ≤ lim infk→∞ T

−
gk(x). By Lemma 5.4.2,

T
−
g is continuous and has a modulus of continuity δ, and ‖T−g‖∞ ≤

supX(g) + C.

Now the sequence supm≥n{T−mg + mc(T )} is a sequence of continuous

functions that decrease monotonically to T
−
g pointwise as n→∞, we may

apply Lemma 5.1.3 to deduce,

T− ◦ T−g(x) = lim
n→∞

T− ◦
[

sup
m≥n
{T−mg + c(T )m}

]
(x)

≥ lim
n→∞

sup
m≥n
{T−m+1g(x) + c(T )m}

= lim
n→∞

sup
m≥n
{T−m+1g(x) + (m+ 1)c(T )} − c(T )

= T
−
g(x)− c(T ).

Therefore, T− ◦ T−g(x) + c(T ) ≥ T−g(x). By monotonicity of the operator
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T−, this inequality implies

T−n ◦ T
−
g(x) + nc(T ) ≥ T−m ◦ T

−
g(x) +mc(T )

whenever n ≥ m, i.e. {T−n ◦ T
−
g + nc(T )}n≥1 is a monotone increasing

sequence of continuous functions, with

|T−n ◦ T
−
g(x)− T−n ◦ T

−
g(x′)| ≤ δ(dX(x, x′)).

In addition, we have from Lemma 5.4.2 the uniform in n bound

‖T−n ◦ T
−
g(x) + nc(T )‖∞ ≤ ‖T

−
g‖∞ + C ≤ ‖g‖∞ + 2C.

We therefore have a monotone increasing sequence of equicontinuous func-

tions {T−n ◦ T
−
g + nc(T )}n∈N bounded above uniformly in n and x. It

therefore converges pointwise to a continuous function, and we can define

the pointwise limit via the operator T−∞ : C(X) → C(X) defined via the

formula,

T−∞g(x) := lim
n→∞

T−n ◦ T
−
g(x) + nc(T ).

We now claim that T−∞ is a backward Kantorovich operator. Indeed, since

T−n and T
−

are backward Kantorovich operators, the monotonicity, convex-

ity, and affine on constants properties hold in the pointwise limit n → ∞,

and therefore hold for T−∞. Regarding lower semi-continuity, note that we

can repeat a similar argument as was given for T
−

to deduce that

T−n ◦ T
−
g(x) ≤ T−n ◦ T

−
gk + ‖g − gk‖∞. (5.33)

which gives

T−∞g(x) ≤ lim inf
k→∞

T−∞gk(x).

Since the convergence is monotone (even uniform, by Dini’s theorem) we
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can apply Lemma 5.1.3 to deduce that

T− ◦ T−∞g(x) + c(T ) = lim
m→∞

T− ◦
[
T−m ◦ T

−
g(x) +mc(T )

]
+ c(T )

= lim
m→∞

{
T−m+1 ◦ T

−
g(x) + (m+ 1)c(T )

}
= T−∞g(x)

so repeated application of T− yields T−n ◦ T−∞g(x) + nc(T ) = T−∞g(x).

We can also consider the composition

T−∞ ◦ T−g(x) = lim
n→∞

(T−n ◦ T
− ◦ T−g(x) + nc(T )) (5.34)

and we have

T
−
T−g(x) = lim sup

n→∞
(T−n T

−g(x) + nc(T ))

= lim sup
n→∞

(T−n+1g(x) + (n+ 1)c(T ))− c(T )

= T
−
g(x)− c(T )

which means from (5.34) that

T−∞ ◦ T−g(x) + c(T ) = T−∞g(x).

2) From T−n ◦ T−∞g(x) + nc(T ) = T−∞g(x), we obtain T
− ◦ T−∞g(x) =

T−∞g(x) Consequently by definition of T−∞, this further implies that T−∞ ◦
T−∞g(x) = T−∞g(x) so T−∞ is idempotent.

3) T−∞ is a Kantorovich operator, thus we may define

T∞(µ, ν) := sup
g∈C(X)

{∫
X
gdν −

∫
X
T−∞gdµ

}

and it is a backward linear transfer; from T−n ◦ T−∞g + nc(T ) = T−∞g and

T−∞ ◦ T−n g + nc(T ) = T−∞g, it therefore satisfies

T∞(µ, ν) = (Tn−nc(T ))?T∞(µ, ν) = T∞?(Tn−nc(T ))(µ, ν), for all n ≥ 1.
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4) From T−∞ ◦ T−∞g(x) = T−∞g(x), it satisfies

T∞(µ, ν) = T∞ ? T∞(µ, ν), for all µ, ν

so T∞ is idempotent. Therefore by Proposition 5.3.3, T∞ is A-factorisable.

5) Note from 1) that T−∞g(x) ≥ lim supn→∞(T−n g(x) + nc(T )), so∫
X
T−∞gdµ ≥

∫
X

lim sup
n→∞

(T−n g(x) + nc(T ))dµ

≥ lim sup
n→∞

∫
X

(T−n g(x) + nc(T ))dµ.

Hence

T∞(µ, ν) ≤ sup lim inf
n→∞

{∫
X
gdν −

∫
X
T−n gdµ− nc(T ) ; g ∈ C(X)

}
≤ lim inf

n→∞
sup

{∫
X
gdν −

∫
X
T−n gdµ− nc(T ) ; g ∈ C(X)

}
= lim inf

n→∞
(Tn(µ, ν)− nc(T )).

On the other hand, from T−∞ ◦ T−∞g = T−∞g,

T∞(µ, ν) = sup

{∫
X
gdν −

∫
X
T−∞gdµ ; g ∈ C(X)

}
≥ sup

{∫
X
T−∞gd(ν − µ) ; g ∈ C(X)

}
.

6) Suppose µ is a measure which realises c(T ) = T (µ, µ). Then by 6),

we have

0 ≤ T∞(µ, µ) ≤ lim inf
n→∞

(Tn(µ, µ)− nc(T ))

≤ lim inf
n→∞

(nT (µ, µ)− nc(T )) = 0,

so µ ∈ A. If (µ, µ) ∈ D, then we immediately see µ ∈ A and T (µ, µ) = c(T );

the converse is also immediate.
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Remark 5.4.5. The above theorem also holds when we have an appropriate

semi-group of backward linear transfers (Tt)t>0. In this case, we do not build

a discrete-time semi-group (Tn)n∈N from one linear transfer T , but instead

already have in hand an appropriate semi-group (Tt).
In particular, if {Tt}t≥0 is a family of backward linear transfers on

P(X) × P(X) with associated Kantorovich operators {Tt}t≥0, where T0 is

the identity transfer,

T0(µ, ν) =

0 if µ = ν ∈ P(X)

+∞ otherwise.

then under the following assumptions

(H0) The family {Tt}t≥0 is a semi-group under inf-convolution: Tt+s = Tt?Ts
for all s, t ≥ 0.

(H1) For every t > 0, the transfer Tt is weak∗-continuous, and the Dirac

measures are contained in D1(Tt).

(H2) For any ε > 0, {Tt}t≥ε has common modulus of continuity δ (possibly

depending on ε).

the results of Theorem 5.4.3 and their proofs hold (with appropriate changes

from n to t). For clarity we decided to present Theorem 5.4.3 for the discrete-

time case.

5.4.1 The case of optimal transport for continuous cost
functions

We now identify T−∞ and T∞ associated to a semi-group of linear transfers

which are given by mass transports.

Proposition 5.4.6. Suppose ct(x, y) is a semi-group of equicontinuous cost

functions on X ×X, that is

ct+s(x, y) = ct ? cs(x, y) := inf{ct(x, z) + cs(z, y); z ∈ X},
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and suppose inf(x,y) ct(x, y) = infx ct(x, x). Without loss of generality, as-

sume infx ct(x, x) = 0, and consider the associated optimal mass transports

Tt(µ, ν) = inf{
∫
X×X

ct(x, y)dπ(x, y) ; π ∈ K(µ, ν)}.

1. The family (Tt)t then forms a semi-group of linear transfers for the

convolution operation i.e., Tt+s = Tt ? Ts for any s, t ≥ 0 that is

equicontinuous on P(X)×P(X), hence one can associate an idempo-

tent Kantorovich operator T−∞ and associated backward linear transfer

T∞.

2. The following holds for the constant c := limt→∞
infµ,ν∈P(X) Tt(µ,µ)

t :

c = min{
∫
X×X

c1(x, y)dπ;π ∈ P(X ×X), π1 = π2} (5.35)

3. Letting c∞(x, y) := lim inft→∞(ct(x, y)− ct), then c∞ is continuous on

P(X)× P(X), and:

T∞(µ, ν) = Tc∞(µ, ν) := inf{
∫
X×X

c∞(x, y)dπ(x, y) ; π ∈ K(µ, ν)},

T−∞f(x) = sup{f(y)−c∞(x, y) ; y ∈ X} and T+
∞f(y) = inf{f(x)+c∞(x, y) ; x ∈ X}

4. The set A := {σ ∈ P(X); T∞(σ, σ) = 0} consists of those σ ∈ P(X)

supported on the set A = {x ∈ X; c∞(x, x) = 0}.

5. The minimizing measures in (5.35) are all supported on the set

D := {(x, y) ∈ X ×X ; c1(x, y) + c∞(y, x) = c}.

Proof. We apply Theorem 5.4.3 in this context: The Kantorovich operator

for Tt is given by T−t g(x) = sup{g(y) − ct(x, y) ; y ∈ X} and as shown

in Proposition 2.10.10, we have Ts+t = Tct?cs = Tct ? Tcs = Tt ? Ts, and

T−t+s = T−t ◦T−s for every s, t. For the idempotent Kantorovich operator T−∞

associated to (Tt)t, we recall that in the proof of Theorem 5.4.3 we had the
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operator

T
−
g(x) := lim sup

t→∞
(T−t g(x) + ct).

We claim that T
−
g(x) = T−c∞g(x) where T−c∞g(x) := supy∈X{g(y)−c∞(x, y)}

is the backward Kantorovich operator for the optimal transport with cost

c∞, so that in fact T−∞ = T−c∞ . Indeed, first note that

lim sup
t

(T−t g(x) + ct) ≥ sup
y∈X
{g(y)− c∞(x, y)} = T−c∞g(x). (5.36)

On the other hand, let yn achieve the supremum for T−n g(x) = sup{g(y) −
cn(x, y) ; y ∈ X}, and let (nj)j be a subsequence such that limj→∞(T−njg(x)+

cnj) = lim supn(Tnf(x)+ cn). By refining to a further subsequence, we may

assume by compactness of X, that ynj → ȳ as j → ∞. Then by equi-

continuity of the cn’s, we deduce that

lim sup
n

(T−n g(x)+cn) = lim
j→∞

(T−njg(x)+cnj) = g(ȳ)− lim inf
j

(cnj (x, ȳ)−cnj).

(5.37)

As lim infj(cnj (x, ȳ)− cnj) ≥ lim infn(cn(x, ȳ)− cn) = c∞(x, ȳ), we obtain

lim sup
n

(T−n g(x) + nc) ≤ g(ȳ)− c∞(x, ȳ) ≤ sup
y
{g(y)− c∞(x, y)} = T−c∞g(x).

(5.38)

The inequality (5.38) is true for every sequence (nk)k going to ∞, so we

deduce that lim supt(T
−
t g(x) + ct) ≤ T−c∞g(x), and hence combining this

with (5.36) gives equality: lim supt(T
−
t g(x) + ct) = T−c∞g(x).

Finally, we note that T−s (lim supt(T
−
t g+ct))(x)+cs = T−s T

−
c∞g(x)+cs =

T−c∞g(x) thanks to the fact that cs?c∞ = c∞. This implies from the definition

of T−∞ as the limit as s→∞ (see Theorem 5.4.3) that T−∞g(x) = T−c∞g(x).

Properties (1), (2) and (3) follow then immediately. Properties (4) and

(5) now follow since ct(x, y) is minimised (by assumption) on the diagonal

ct(x, x), so that T∞(µ, µ) = 0 = Tc∞(µ, µ) implies µ is supported on set

where c∞(x, x) = 0.

Example 5.4.7 (Iterates of power costs). Let X ⊂ Rn be compact and
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convex, and c(x, y) := |x − y|p for p > 0 and x, y ∈ X. Let Tc denote the

optimal transport with cost c, with corresponding backward Kantorovich

operator T−c g(x) = supy∈X{g(y)− c(x, y)}.
If 0 < p ≤ 1, then c satisfies the reverse triangle inequality c(x, z) +

c(z, y) ≥ c(x, y), hence c ? c(x, y) = inf{|x− z|p + |z− y|p ; z ∈ X} = c(x, y).

Therefore T−∞g(x) = T−c g(x) (i.e. T−c is itself idempotent).

If p > 1, then c ? c(x, y) = inf{|x − z|p + |z − y|p ; z ∈ X} is minimised

at some point z = (1 − λ)x + λy on the line between x and y, so that

cp ? cp(x, y) = (λp + (1− λ)p) |x− y|p. The optimal λ is 1
2 . Hence,

(T−c )ng(x) = sup
y∈X
{g(y)− 1

np−1
|x− y|p}.

Therefore, when n → ∞, (T−c )ng(x) → supx∈X g(x), and it follows that

T−∞g(x) := supx∈X g(x), with the corresponding backward linear transfer

T∞ being the null transfer of Example 2.5.1.

5.4.2 Aubry-Mather theory and weak KAM theory for
Lagrangian systems

In this section, we briefly mention how, when the cost semi-group of the

previous section is generated from a Lagrangian, how Theorem 5.4.3 and

Proposition 5.4.6 fits in the context of the Aubry-Mather theory, weak KAM,

and Bernard-Buffoni connection to optimal transport discussed in Chapter

4.

Let L be a time-independent Tonelli Lagrangian on M = Tn the flat

torus, and consider Tt to be the cost minimizing transport

Tt(µ, ν) = inf{
∫
M×M

ct(x, y)dπ(x, y) ; π ∈ K(µ, ν)},

where

ct(x, y) := inf{
∫ t

0
L(γ(s), γ̇(s))ds ; γ ∈ C1([0, t];M); γ(0) = x, γ(t) = y}.

Recall from Chapter 4 (see Section 4.3), the Lax-Oleinik semi-group S−t ,
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t > 0 defined by the formula

S−t u(x) := inf{u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s))ds ; γ ∈ C1([0, t];M), γ(t) = x},

as well as the semi-group

S+
t u(x) := sup{u(γ(t))−

∫ t

0
L(γ(s), γ̇(s))ds ; γ ∈ C1([0, t];M), γ(0) = x}.

Theorem 5.4.8. There exists a unique constant c ∈ R such that the follow-

ing hold:

1. (Fathi [20]) There exists a function u− : M → R (resp. u+) such that

S−t u− − ct = u− (resp. S+
t u− + ct = u−) for each t ≥ 0.

2. (Bernard-Buffoni [5]) Let c∞(x, y) := lim inft→∞ ct(x, y) denote the

Peierls barrier function. The following duality then holds:

inf{
∫
M×M

c∞(x, y)dπ(x, y) ; π ∈ K(µ, ν)} = sup
u+,u−

{
∫
M
u+dν−

∫
M
u−dµ},

where the supremum ranges over all u+, u− ∈ C(M) such that u+

(resp. u−) is a positive (resp. negative) weak KAM solution, and such

that u+ = u− on the set A := {x ∈ M ; c∞(x, x) = 0}. Moreover,

c∞(x, y) = minz∈A{c∞(x, z) + c∞(z, y)}.

3. (Bernard-Buffoni [6]) The constant c satisfies

c = min
π

∫
M×M

c1(x, y)dπ(x, y),

where the minimum is taken over all π ∈ P(M ×M) with equal first

and second marginals. The minimizing measures are all supported on

D := {(x, y) ∈M ×M ; c1(x, y) + c∞(y, x) = c}.

4. (Mather [43]) The constant c = infm
∫
TM L(x, v)dm(x, v) where the

infimum is taken over all measures m ∈ P(TM) which are invariant

under the Euler-Lagrange flow (generated by L).
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5. (Fathi [20]) A continuous function u : M → R is a viscosity solution

of H(x,∇u(x)) = −c if and only if it is Lipschitz and u is a negative

weak KAM solution (i.e. S−t u− ct = u). In particular, the statement

is false if c is replaced with any other constant.

In the language of transfers, the cost-minimizing transport is both a

forward and backward linear transfer, with forward (resp. backward) Kan-

torovich operators given by T+
t f(x) = Vf (t, x) and T−t g(y) = W t

g(0, y),

where

Vf (t′, x) = inf{f(γ(0)) +

∫ t′

0
L(γ(s), γ̇(s))ds ; γ ∈ C1([0, t′),M), γ(t′) = x}

and W t
g(t
′, y) the value functional

W t
g(t
′, y) = sup{g(γ(t′))−

∫ t

t′
L(γ(s), γ̇(s))ds ; γ ∈ C1([0, t′),M), γ(0) = x}.

Observe that Vf (t, x) = S−f(x), while W t
g(0, y) = S+g(y). Hence (with

unfortunate signs), T+
t f = S−t f(x), while T−t f(x) = S+

t f(x). Note also the

translation of terminology in this setting: Our backward weak KAM solu-

tions are Fathi’s positive weak KAM solutions, while the analogous forward

weak KAM solutions are Fathi’s negative weak KAM solutions.

As mentioned in Section 5.4.1 above, the negative (resp. positive) weak

KAM solutions are the image of the Kantorovich operators T+
∞ (resp. T−∞),

and are given by

T−∞f(x) = sup{f(y)−c∞(x, y) ; y ∈M} and T+
∞f(y) = inf{f(x)+c∞(x, y) ; x ∈M}

where c∞(x, y) := lim inft→∞(ct(x, y)−ct), with c = limt→∞
infµ,ν∈P(M) Tt(µ,ν)

t .

The cost-minimizing transport Tc∞ with cost c∞, is then the idempotent

backward (and forward) linear transfer associated to T−∞ (or T+
∞) which by

duality we can write as

inf{
∫
M×M

c∞(x, y)dπ(x, y) ; π ∈ K(µ, ν)} = sup{
∫
M
T+
∞gdν−

∫
M
T−∞◦T+

∞gdµ ; g ∈ C(M)}.
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It can be checked this is exactly statement 2 in Theorem 5.4.8 above. In

particular, Theorem 5.4.3 provides us with statements 1,2, and 3, in the

above theorem.

5.4.3 The Schrödinger semigroup

Recall the Schrödinger bridge of Example 2.8.6. Let M be a compact Rie-

mannian manifold and fix some reference non-negative measure R on path

space Ω = C([0,∞],M). Let (Xt)t be a random process on M whose law

is R, and denote by R0t the joint law of the initial position X0 and the

position Xt at time t, that is R0t = (X0, Xt)#R. Assume R is the re-

versible Kolmogorov continuous Markov process associated with the gener-

ator 1
2(∆ − ∇V · ∇) and the initial probability measure m = e−V (x)dx for

some function V .

For probability measures µ and ν on M , define

Tt(µ, ν) := inf{
∫
M
H(rxt , πx)dµ(x) ; π ∈ K(µ, ν), dπ(x, y) = dµ(x)dπx(y)}

(5.39)

where dR0t(x, y) = dm(x)drxt (y) is the disintegration of R0t with respect to

its initial measure m.

Proposition 5.4.9. The collection {Tt}t≥0 is a semigroup of backward lin-

ear transfers with Kantorovich operators Ttf(x) := logSte
f (x) where (St)t

is the semi-group associated to R; in particular,

Tt(µ, ν) = sup

{∫
M
fdν −

∫
M

logSte
fdµ ; f ∈ C(M)

}
. (5.40)

The corresponding idempotent backward linear transfer is T∞(µ, ν) = H(m, ν),

and its effective Kantorovich map is T∞f(x) := logS∞e
f , where S∞g :=∫

gdm.

Proof. It is easy to see that for each t, Tt is monotone, 1-Lipschitz and

convex, and also satisfies Tt(f + c) = Ttf + c for any constant c. It follows

that T ∗t,µ(f) =
∫
M Ttf dµ for each t by Proposition 2.4.4. The semigroup

property then follows from the semigroup (St)t and the property that Tt ?
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Ts is a backward linear transfer with Kantorovich operator Tt ◦ Tsf(x) =

logStSse
f (x) = logSs+te

f (x) = Tt+sf(x) by Corollary 5.1.5.

Now we remark that it is a standard property of the semigroup (St)t

on a compact Riemannian manifold, that under suitable conditions on V ,

Ste
f → S∞e

f , uniformly on M , as t → ∞, for any f ∈ C(M). This

immediately implies by definition of Tt, that Ttf → T∞f uniformly as t→∞
for any f ∈ C(M). We then deduce from the 1-Lipschitz property, that

Tt ◦ T∞f(x) = T∞f(x). We conclude that T∞ is a Kantorovich operator

from Theorem 5.4.3. Finally we see that T∞(µ, ν) is

T∞(µ, ν) := sup{
∫
fdν −

∫
T∞fdµ ; f ∈ C(M)}

= sup{
∫
fdν − log

∫
efdm ; f ∈ C(M)}

= H(m, ν).

5.5 Regularization and ergodic properties of
non-continuous linear transfers

The assumption of weak∗ continuity in the last section was important for

taking limits of the iterates T−n g + nc. When T is not necessarily weak∗-

continuous on M(X) and may even have infinite values for some (µ, ν) ∈
P(X)×P(X), we can no longer guarantee that taking limits of iterates will

yield a proper function (i.e. one that is real-valued at least somewhere).

Thus we turn to alternative strategies. The first and most natural one is to

reduce the situation to the bounded and continuous case via a regularization

procedure.

5.5.1 Regularization

Lemma 5.5.1 (Regularisation of a backward linear transfer). Let W1(µ, ν)

be the cost minimising optimal transport associated to the cost dX(x, y). For

a given backward linear transfer T : P(X)×P(X)→ R∪ {+∞}, define for
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ε > 0,

Tε(µ, ν) :=

(
1

ε
W1

)
? T ?

(
1

ε
W1

)
= inf{1

ε
W1(µ, σ1) + T (σ1, σ2) +

1

ε
W1(σ2, ν) ; σ1, σ2 ∈ P(X)}.

Then, Tε has the following properties:

1. Tε is a weak∗ continuous backward linear transfer.

2. inf{Tε(µ, ν) ; µ, ν ∈ P(X)} = inf{T (µ, ν) ; µ, ν ∈ P(X)}.

3. Tε(µ, ν) ≤ T (µ, ν) and Tε(µ, ν)↗ T (µ, ν) as ε↘ 0.

4. Tε Γ-converges to T as ε↘ 0.

5. If {δx ; x ∈ X} ⊂ D1(T ), and T−ε , T−, denote the backward Kan-

torovich operators associated to Tε, T , respectively, then for any g ∈
USC(X), T−ε g(x)↘ Tg(x) as ε↘ 0 .

Proof. First note that since dX is continuous, the linear transfer W1 is weak-

∗ continuous on P(X) (see e.g., [48], Theorem 1.51, p.40).

1. We know that for each fixed ε > 0, Tε is a weak∗ lower semi-continuous

linear backward transfer. To prove that it is continuous, assume µn → µ and

νn → ν. By the lower semi-continuity, we have lim infn Tε(µn, νn) ≥ Tε(µ, ν).

On the other hand, from the fact that lim supn infσ1,σ2 ≤ infσ1,σ2 lim supn,

we have

lim sup
n
Tε(µn, νn) ≤ inf

σ1,σ2∈P(X)

{
lim sup

n

1

ε
W1(µn, σ1) + T (σ1, σ2) + lim sup

n

1

ε
W1(σ2, νn)

}
= inf

σ1,σ2∈P(X)

{
1

ε
W1(µ, σ1) + T (σ1, σ2) +

1

ε
W1(σ2, ν)

}
= Tε(µ, ν),

which shows that Tε(µn, νn)→ Tε(µ, ν) as n→∞.

2. Observe from the definition of Tε, that

inf
µ,ν
{Tε(µ, ν)} = inf

σ,σ′,µ,ν
{1

ε
W1(µ, σ) + T (σ, σ′) +

1

ε
W1(σ′, ν)}.
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Since W1 ≥ 0, it follows that for fixed σ, σ′, the minimal value when min-

imising over all µ, ν is to take µ = σ, and ν = σ′, in which case the transport

cost vanishes W1(µ, σ) = 0 = W1(σ′, ν).

3. The inequality Tε(µ, ν) ≤ T (µ, ν) holds by selecting σ1 = µ and

σ2 = ν and noting that W1(σ, σ) = 0 for every σ ∈ P(X). The monotone

property of ε 7→ Tε(µ, ν) is immediate by definition. Let now σε1, σε2 realise

the infimum

Tε(µ, ν) =
1

ε
W1(µ, σ1

ε ) + T (σ1
ε , σ

2
ε ) +

1

ε
W1(σ2

ε , ν). (5.41)

By selecting a further subsequence if necessary, we may assume that σ1
ε → σ1

and σ2
ε → σ2 as ε→ 0. Suppose now lim infε→0 Tε(µ, ν) <∞. Then it must

be the case that W1(µ, σ1
ε ) → 0 and W1(σ2

ε , ν) → 0 as ε → 0. This implies

σ1 = µ and σ2 = ν since W1 is a metric on P(X). Then (5.41) and weak∗

lower semi-continuity of T implies

T (µ, ν) ≥ lim inf
ε→0

Tε(µ, ν) ≥ lim inf
ε→0

T (σ1
ε , σ

2
ε ) ≥ T (µ, ν).

If lim infε→0 Tε(µ, ν) = ∞, then necessarily T (µ, ν) = +∞ since T (µ, ν) ≥
Tε(µ, ν) for all ε. In either case, we deduce that limε→0 Tε(µ, ν) = T (µ, ν).

4. First recall that for Γ-convergence, one needs to prove

(i) the Γ-lim inf inequality: For every sequence (µε, νε)→ (µ, ν), it holds

that lim infε→0 Tε(µε, νε) ≥ T (µ, ν), and

(ii) the Γ-lim sup inequality: There exists a sequence (µε, νε) → (µ, ν)

such that lim supε→0 Tε(µε, νε) ≤ T (µ, ν).

The Γ-lim sup inequality is immediate: Take (µε, νε) = (µ, ν), and the

inequality follows from Tε ≤ T . For the Γ-lim inf inequality, we have by

monotonicity that Tε(µε, νε) ≥ Tε′(µε, νε) for ε ≤ ε′. The weak∗ lower semi-

continuity of Tε′ therefore implies

lim inf
ε→0

Tε(µε, νε) ≥ lim inf
ε→0

Tε′(µε, νε) ≥ Tε′(µ, ν).

By 3) and letting ε′ → 0, we obtain lim infε→0 Tε(µε, νε) ≥ T (µ, ν).

5. First note that the monotonicity of T−ε g(x) is immediate from the
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expression

T−ε g(x) = sup
σ∈P(X)

{∫
X
gdσ − Tε(δx, σ)

}
,

together with the monotonicity of Tε. From

lim sup
ε→0

sup
σ∈P(X)

{∫
X
gdσ − Tε(δx, σ)

}
≥ sup

σ∈P(X)

{∫
X
gdσ − lim inf

ε→0
Tε(δx, σ)

}
= sup

σ∈P(X)

{∫
X
gdσ − T (δx, σ)

}

we immediately have lim infε→0 T
−
ε g(x) ≥ T−g(x). On the other hand, let

εj be a sequence such that T−εj g(x)→ lim supε→0 T
−
ε g(x). Then there is σεj

such that

T−εj g(x) = sup
σ∈P(X)

{∫
X
gdσ − Tε(δx, σ)

}
=

∫
X
gdσεj − Tεj (δx, σεj ).

By selecting a further subsequence if necessary, we may assume σεj → σ∗.

Then we obtain with j →∞,

lim sup
ε→0

T−ε g(x) = lim
j→∞

T−εj g(x) ≤
∫
X
gdσ∗ − lim inf

j→∞
Tεj (δx, σεj )

≤
∫
X
gdσ∗ − T (δx, σ

∗)

≤ sup
σ∈P(X)

{∫
X
gdσ − T (δx, σ)

}
= T−g(x),

where the second inequality was obtained from the Γ-convergence.

Lemma 5.5.2. Let T be a backward linear transfer such that D1(T ) contains

all the Dirac measures. Assume c(T ) := infµ T (µ, µ) < +∞ . and let Tε
be the regularisation of T according to Lemma 5.5.1. Then, the following

properties hold:

1. c(Tε) := infµ,µ Tε(µ, µ) = limn→∞
infµ,ν∈P(X) Tε(µ,ν)

n is the unique con-

stant such that |(Tε)n(µ, ν)− nc(Tε)| ≤ Cε, for all n and all µ, ν.

2. c(Tε)↗ c(T ) as ε↘ 0.
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Proof. Use Lemma 5.5.1 to regularise T to Tε. Then item 1 is simply

Lemma 5.4.1 for Tε. For 2), note that since Tε(µ, µ) ≤ T (µ, µ), then

lim supε→0 c(Tε) ≤ c(T ). On the other hand, let

c(Tε) = inf{Tε(µ, µ);µ ∈ P(X)} = Tε(µε, µε)

for some µε. If µ̄ is a cluster point for (µε) as ε → 0, the Γ-convergence of

Tε to T implies

lim inf
ε→0

c(Tε) = lim inf
ε→0

Tε(µε, µε) ≥ T (µ̄, µ̄) ≥ c(T )

which concludes the proof.

5.5.2 Ergodic properties for non-continuous linear transfers
via regularisation

We now present some results for backward linear transfers which are only

weak∗ lower semi-continuous.

Theorem 5.5.3 (Ergodic properties for non-continuous linear transfers).

Let T : P(X)×P(X)→ R ∪ {+∞} be a backward linear transfer such that

D1(T ) contains all the Dirac measures. Assume c(T ) := infµ∈P(X) T (µ, µ) <

+∞, and that for some ε′ > 0 (and thus for all 0 < ε ≤ ε′), we have

c(Tε) = c(T ), (5.42)

where Tε is the regularisation of T according to Lemma 5.5.1.

Then, there exists an idempotent backward Kantorovich operator T−∞ :

C(X) → USC(X) such that T− ◦ T−∞g + c(T ) = T−∞g for all g ∈ C(X).

Consequently, its associated backward linear transfer T∞ is idempotent and

therefore A-factorisable.

Proof. Consider the regularisation Tε of T . By Theorem 5.4.3, there exists a

Kantorovich operator T−∞,ε : C(X)→ C(X), such that T−ε ◦ T−∞,εg+ c(Tε) =

T−∞,εg for all g ∈ C(X), and an idempotent transfer T∞,ε. In fact, from

Theorem 5.4.3 we may take T−∞,εg = limn→∞[(T−ε )n ◦ T̄−ε g + nc(Tε)], where
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T̄−ε g(x) := lim supn[(T−ε )ng(x)+nc(Tε)]. Under the assumption that c(Tε) =

c(T ), the monotonicity in ε for T−ε (see Lemma 5.5.1) actually extends to

monotonicity for T−∞,ε, in the following sense,

T−∞,εg ≤ T−∞,ε′g for all g, whenever ε < ε′.

Define now

T−∞g(x) := inf
ε>0

T−∞,εg(x) = lim
ε→0

T−∞,εg(x).

As an infimum of continuous functions, T−∞g is upper semi-continuous, but

we have to check that it is proper (i.e. not identically −∞).

To see this, recall the monotonicity Tε′(µ, µ) ≤ Tε(µ, µ) ≤ T (µ, µ) for

ε ≤ ε′, for all µ. When ε′ is small enough, the hypothesis implies c(Tε′) =

c(Tε) = c(T ).

Let now µ̄ε achieve c(Tε) = c(T ). From the monotonicity,

c(T ) = c(Tε′) ≤ Tε′(µ̄ε, µ̄ε)

≤ Tε(µ̄ε, µ̄ε) = c(Tε) = c(T ),

hence Tε′(µ̄ε, µ̄ε) = c(T ). By Theorem 5.4.3, we have T∞,ε′(µ̄ε, µ̄ε) = 0,

which implies ∫
X
gdµ̄ε ≤

∫
X
T−∞,ε′gdµ̄ε. (5.43)

Extract a subsequence εj of the µ̄ε so that µ̄εj → µ̄. We know by Γ-

convergence that T (µ̄, µ̄) = c(T ), and (5.43) implies that∫
X
gdµ̄ ≤

∫
X
T−∞,ε′gdµ̄.

Now let ε′ → 0 to obtain by monotone convergence∫
X
gdµ̄ ≤

∫
X
T−∞gdµ̄. (5.44)

In particular, we deduce that T−∞g is finite for µ̄-a.e. x, so T−∞g ∈ USC(X)
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for every g ∈ C(X).

Regarding the claim that T−∞ is a backward Kantorovich operator, we

have from Theorem 5.4.3 that T−∞,ε is a backward Kantorovich operator for

every ε > 0. Therefore, the monotonicity, convexity, and affine on con-

stants, properties hold in the monotone limit as ε → 0. For the lower

semi-continuity, we can return to the proof of Theorem 5.4.3 and write an

equivalent inequality as was given in 5.33,

T−∞,εg(x) ≤ T−∞,εgk(x) + ‖g − gk‖∞.

Now let ε→ 0 to obtain

T−∞g(x) ≤ T−∞gk(x) + ‖g − gk‖∞

which gives the desired lower semi-continuity property for T−∞ and shows

that T−∞ is a backward Kantorovich operator.

Regarding the idempotent property for T−∞, we can exploit the mono-

tonicity and idempotent properties for the Kantorovich operator T−∞,ε. This

yields

T−∞,εg = T−∞,ε ◦ T−∞,εg ≥ T−∞ ◦ T−∞g

so that with ε→ 0 we obtain T−∞g ≥ T−∞ ◦ T−∞g. For the reverse inequality,

we again use montonicity in ε to have for ε ≤ ε′,

T−∞,εg = T−∞,ε ◦ T−∞,εg ≤ T−∞,ε′ ◦ T
−
∞,εg

We let ε → 0 and use the monotone convergence Lemma 5.1.3 applied to

T∞ε′ , and then let ε′ → 0 to achieve

T−∞g ≤ T−∞ ◦ T−∞g

so that T−∞g = T−∞ ◦ T−∞g.

Define

T∞(µ, ν) := sup{
∫
X
gdν −

∫
X
T−∞gdµ ; g ∈ C(X)}
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as the induced linear transfer from T−∞. Note that T∞(µ̄, µ̄) = 0 by (5.44), so

T∞ is proper, and µ̄ ∈ A. In addition, T∞ is idempotent. By the monotone

convergence Lemma 5.1.3, and the monotonicity T−h ≤ T−ε h, we have

T− ◦ T−∞g(x) + c(T ) = lim
ε→0

T− ◦ T−∞,εg(x) + c(T )

≤ lim
ε→0

T−ε ◦ T−∞,εg(x) + c(Tε) = lim
ε→0

T−∞,εg(x) = T−∞f(x).

On the other hand, the monotonicity again T−ε ≤ T−ε′ for ε < ε′ gives

T−∞,εg = T−ε ◦ T−∞,εg + c(Tε) ≤ T−ε′ ◦ T
−
∞,εg + c(T )

By Lemma 5.1.3 applied to T−ε′ and the sequence T−∞,εg, we can pass the

limit in ε through T ′−ε to obtain

T−∞g(x) = lim
ε→0

T−∞,εg(x) ≤ lim
ε→0

T−ε′ ◦ T
−
∞,εg(x) + c(T ) = T−ε′ ◦ T

−
∞g(x) + c(T ).

Now we let ε′ → 0 and use Property 5 of Lemma 5.5.1 to obtain T−∞g(x) ≤
T− ◦ T−∞g(x) + c(T ), and thus obtaining equality.

The hypothesis c(Tε) = c(T ) in Theorem 5.5.3 seems possibly difficult

to check. In the next proposition we give more easily checkable sufficient

conditions (see in particular item 1 below) for when this equality holds.

Proposition 5.5.4. Let T be a backward linear transfer on P(X)×P(X).

In any of the following cases,

1. inf{T (µ, ν);µ, ν ∈ P(X)} = inf{T (µ, µ) ; µ ∈ P(X)},

2. If T is both a backward and forward linear transfer, is symmetric, and

the operator T− associated to T maps every continuous function to a

L-Lipschitz function (L > 0),

we have c(Tε) = c(T ) for all ε > 0 small enough; in particular, the equality

holds for all ε > 0 in the first case, and for all 1
L > ε > 0 in the second.
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Proof. 1) Note that property 2 of Lemma 5.5.1 says

inf{T (µ, ν);µ, ν ∈ P(X)} = inf{Tε(µ, ν);µ, ν ∈ P(X)}.

At the same time, since c(Tε) ≤ c(T ) (see property 3 of Lemma 5.5.2),

together with the assumption inf{T (µ, ν);µ, ν ∈ P(X)} = inf{T (µ, µ) ; µ ∈
P(X)}, we get

inf
µ∈P(X)

Tε(µ, µ) = c(Tε) ≤ c(T ) = inf
µ∈P(X)

T (µ, µ) = inf
µ,ν∈P(X)

T (µ, ν)

= inf
µ,ν∈P(X)

Tε(µ, ν)

≤ inf
µ∈P(X)

Tε(µ, µ)

so all the inequalities are in fact equalities, and therefore c(Tε) = c(T ).

2) Write

Tε(µ, µ) = inf
σ1,σ2
{1

ε
W1(µ, σ1) + T (σ1, σ2) +

1

ε
W1(σ2, µ)}

≥ inf
σ1,σ2
{1

ε
W1(µ, σ1)− T (σ1, σ1) + T (σ1, σ2) +

1

ε
W1(σ2, µ)}+ inf

σ1
{T (σ1, σ1)}

≥ inf
σ1,σ2,σ3

{1

ε
W1(µ, σ1)− T (σ1, σ3) + T (σ3, σ2) +

1

ε
W1(σ2, µ)}+ inf

σ1
{T (σ1, σ1)}

= (
1

ε
W1) ? (−T ) ? T ? (

1

ε
W1)(µ, µ) + c(T ).

It suffices to show that infµ(1
εW1) ? (−T ) ? T ? (1

εW1)(µ, µ) ≥ 0, since that

would imply based on the above inequalities, that c(Tε) ≥ c(T ) (the reverse

inequality we already have by Lemma 5.5.2). To this end, first we can write

(−T ) ? T (µ, ν) = inf
σ∈P(X)

{−T (µ, σ) + T (σ, ν)}

= inf
g∈C(X)

inf
σ∈P(X)

{
∫
X
T−gdµ−

∫
X
gdσ + T (σ, ν)}

= inf
g∈C(X)

{
∫
X
T−gdµ+

∫
X
T+(−g)dν},

where we have used infσ∈P(X){
∫
X(−g)dσ + T (σ, ν)} =

∫
X T

+(−g)dν since
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T is a forward linear transfer. Then with the notation that S−ε g(x) :=

supy∈X{g(y) − 1
εdX(x, y)} is the backward Kantorovich operator for 1

εW ,

we arrive at

(
1

ε
W ) ? (−T ) ? T ?(1

ε
W )(µ, µ)

= inf
σ1,σ2
{1

ε
W (µ, σ1) + (−T ) ? T (σ1, σ2) +

1

ε
W (σ2, µ)}

= inf
g

inf
σ1,σ2
{1

ε
W (µ, σ1) +

∫
X
T−gdσ1 +

∫
X
T+(−g)dσ2 +

1

ε
W (σ2, µ)}

= inf
g
{−
∫
X
S−ε (−T−g)dµ−

∫
X
S−ε (−T+(−g))dµ}

= inf
g
{−
∫
X
S−ε (−T−g)dµ−

∫
X
S−ε (T−g)dµ} (5.45)

where we have used the fact that T−g = −T+(−g) since T is symmetric.

Finally, we make use of the following property: if h ∈ C(X) is L-Lipschitz

for L < 1
ε , then S−ε (h) = h. Indeed, to see this, write

S−ε h(x) = sup
y∈X
{h(y)− 1

ε
dX(x, y)}

= sup
y∈X
{h(y)− h(x)− 1

ε
dX(x, y)}+ h(x)

≤ sup
y∈X
{(L− 1

ε
)dX(x, y)}+ h(x) = h(x)

the reverse inequality following similarly. Hence continuing from 5.45, we

have

(
1

ε
W ) ? (−T ) ? T ? (

1

ε
W )(µ, µ) = inf

g
{−
∫
X

(−T−g)dµ−
∫
X
T−gdµ}

= 0,
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5.5.3 Examples

The assumption inf{T (µ, ν);µ, ν ∈ P(X)} = inf{T (µ, µ) ; µ ∈ P(X)} is

satisfied by a number of examples of which we present a few in this section.

Example 5.5.5. Let T be the backward linear transfer associated to the

convex energy I(ν), that is T (µ, ν) := I(ν) and T−g(x) = I∗(g) (see Sec-

tion 2.5.1). It is immediate that infµ,ν T (µ, ν) = infµ T (µ, µ) since T only

depends on ν, so T satisfies the conditions of Theorem 5.5.3.

We have c(T ) = infµ T (µ, µ) = infν I(ν). The operator T−∞g(x) :=

I∗(g) + c(T ), where I∗ is the Legendre transform of I, is an idempotent

backward linear transfer that maps into the backward weak KAM solutions

for T . Indeed, we can verify

T− ◦ T−∞g(x) + c(T ) = I∗(T−∞g) + c(T )

= sup
ν∈P(X)

{
∫
X
T−∞gdν − I(ν)}+ c(T )

= T−∞g − inf
ν∈P(X)

I(ν) + c(T ) (since T−∞g is a constant in x)

= T−∞g.

We can also observe that T−∞ is idempotent since T−∞ ◦ T−∞g = I∗(T−∞g) +

c(T ) = T−∞g exactly as the computation above.

The associated idempotent backward linear transfer is T∞(µ, ν) = I(ν)−
c(T ), with A = {σ ; I(σ) = infν I(ν)}.

Example 5.5.6. Consider the continuous point transformation of Example

2.5.7, i.e.,

T (µ, ν) =

0 if ν = F#µ,

+∞ otherwise,

with T−g(x) = g(F (x)) for a continuous map F : X → X. The Krylov–Bogolyubov

theorem (see e.g. [51], Theorem 1.1) then says that there exists a measure

µ ∈ P(X) such that F#µ = µ; therefore the hypotheses for Theorem 5.5.3

are readily checked to be satisfied.

157



Suppose for simplicity that X ⊂ R. We then claim that

T−∞g(x) = ĝ ◦ F∞(x)

is an idempotent backward Kantorovich operator mapping into the set of

backward weak KAM solutions, where ĝ ◦ F∞ is the upper semi-continuous

envelope of g ◦ F∞, and

F∞(x) := lim sup
m→∞

Fm(x)

where Fm denotes composition of F m-times. Indeed we have

T− ◦ T−∞g(x) = ĝ ◦ F∞(F (x))

= inf{h(F (x)) ; h ∈ USC(X), h ≥ g ◦ F∞}

= inf{h(x) ; h ∈ USC(X), h ≥ g ◦ F∞}

= ĝ ◦ F∞(x) = T−∞g(x)

where we have used the fact that if h ∈ USC(X) with h ≥ g ◦ F∞, then

h◦F ∈ USC(X) with h◦F ≥ g◦F∞ (here we use the fact that F∞◦F = F∞).

The upper semi-continuous envelope is in general necessary; consider for

example X = [0, 1] and F (x) = x2, then

g 7→ g ◦ F∞(x) =

g(0) if x ∈ [0, 1)

g(1) if x = 1,

although idempotent and satisfying T− ◦ (g ◦ F∞) = g ◦ F∞, does not in

general belong to USC(X), unless g(0) ≤ g(1).

Another idempotent operator mapping into backward weak KAM solu-

tions when Fm(x) has more than one subsequential limit, is

g 7→ g(lim inf
m→∞

Fm(x)) =: g(F∞(x)).

For example, on X = [0, 1] if F (x) = 1 − x, then F∞(x) = max{x, 1 − x},
while F∞(x) = min{x, 1− x}.
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Example 5.5.7. Recall Example 2.5.7: With X = Y , for any lower semi-

continuous A : X → R, consider T−g(x) = g(x)−A(x) and the correspond-

ing

T (µ, ν) =


∫
X Adµ if ν = µ and

∫
X Adµ < +∞,

+∞ otherwise.

We have infµ,ν∈P(X) T (µ, ν) = infµ∈P(X) T (µ, µ), so T satisfies the hypothe-

ses of Theorem 5.5.3. Then

c(T ) = inf
µ∈P(X)

T (µ, µ) = inf
x∈X

A(x)

and

T−∞g(x) =

g(x) if A(x) = c(T )

−∞ otherwise.

We know that T−∞g is proper since A achieves its infimum. To see that

T−∞g ∈ USC(X), note that if xk → x, then T−∞g(xk) is either −∞ or g(xk).

In either case, we have lim supk→∞ T
−
∞g(xk) ≤ g(x) by continuity of g. For

the lower semi-continuity property of T−∞, suppose gk → g in C(X) for the

sup norm. If A(x) = c(T ), then lim infk→∞ T
−
∞gk(x) = lim infk→∞ gk(x) =

g(x) = T−∞g(x); otherwise both T−∞gk(x) and T−∞g(x) are −∞; in either case

lim infk→∞ T
−
∞gk(x) ≥ T−∞g(x).

We can check the backward weak KAM solution,

T− ◦ T−∞g(x) + c(T ) = T−∞g(x)−A(x) + c(T )

=

g(x)−A(x) + c(T ) if A(x) = c(T )

−∞ otherwise.

=

g(x) if A(x) = c(T )

−∞ otherwise.

= T−∞g(x).
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For the idempotent property, note that

T−∞ ◦ T−∞g(x) =

T−∞g(x) if A(x) = c(T )

−∞ otherwise.
=

g(x) if A(x) = c(T )

−∞ otherwise.
= T−∞g(x).

The corresponding backward linear transfer T∞ is

T∞(µ, ν) =

0 if µ = ν is supported on the set {x ∈ X ; A(x) = c(T )}

+∞ otherwise

and A = {µ ∈ P(X) ; spt(µ) ⊂ {x ; A(x) = c(T )}}.
Note that if T−g(x) = g ◦ F (x) − A(x) for a continuous A, then the

resulting linear transfer

T (µ, ν) =


∫
X Adµ if ν = F#µ,

+∞ otherwise,

in general fails the assumption inf(µ,ν) T (µ, ν) = infµ T (µ, µ). The latter

minimisation, infµ T (µ, µ), is of interest in ergodic optimisation for expand-

ing dynamical systems. We discuss more on this problem in Section 5.6.1.

Example 5.5.8. Recall the Skorokhod transfer of Example 2.5.8 but now

we let the stopping time τ be deterministic, and define, for measures µ, ν,

on a compact Riemannian manifold X, the linear transfer,

T (µ, ν) =

0 if B0 ∼ µ and B1 ∼ ν

+∞ otherwise.

Then T−g(x) = E [g(B1)|B0 = x] = P1g(x), where {Pt}t>0 is the heat semi-

group. Note that infµ,ν T (µ, ν) = infµ T (µ, µ) < +∞ since the volume

measure λX (i.e., the uniform probability measure on X), is invariant, so

T (λX , λX) = 0 (and in particular c(T ) = 0). Therefore the conditions of

Theorem 5.5.3 are satisfied.

A corresponding idempotent backward Kantorovich operator is given by
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T−∞g(x) =
∫
X gdλX . Indeed, we can check that

T− ◦ T−∞g(x) + c(T ) = P1(T−∞g) = T−∞g

since T−∞g is constant.

The idempotent backward linear transfer is given by

T∞(µ, ν) =

0 if ν = λX

+∞ otherwise

and A = {µ ; T∞(µ, µ) = 0} = {λX}.

5.5.4 Interpolation and ergodic properties

We saw in the previous sections that the condition infµ,ν T (µ, ν) = infµ T (µ, µ) <

+∞ is sufficient to apply Theorem 5.5.3. In this section, we apply a trans-

formation to T to achieve another backward linear transfer T̃ , that has the

property, infµ,ν T̃ (µ, ν) = infµ T̃ (µ, µ) < +∞.

Lemma 5.5.9. Let S : C(X)→ C(X) be a Markov operator (i.e., a bounded

linear positive operator such that S1 = 1) and let S∗ :M(X)→M(X) be its

adjoint. Given a backward linear transfer T on P(X)×P(X) and λ ∈ (0, 1),

define

T̃ (µ, ν) := T (µ, λS∗µ+ (1− λ)ν).

Then, T̃ is a backward linear transfer with Kantorovich operator

T̃−g(x) := T−
(

1

1− λ
g

)
(x)− λ

1− λ
Sg(x)

Proof. We first note that ν 7→ T̃ (µ, ν) is convex, weak∗ lower semi-continuous,

and bounded below. In particular, to verify convexity, we write for β ∈ [0, 1]
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and ν1, ν2 ∈ P(X),

T̃ (µ, (1− β)ν1 + βν2) = T (µ, λS∗µ+ (1− λ)((1− β)ν1 + βν2))

= T (µ, (1− β)[λS∗µ+ (1− λ)ν1] + β[λS∗µ+ (1− λ)ν2])

≤ (1− β)T (µ, λS∗µ+ (1− λ)ν1) + βT (µ, λS∗µ+ (1− λ)ν2).

Now we compute,

(T̃µ)∗(g) = sup
σ∈P(X)

{
∫
X
gdσ − T̃ (µ, σ)}

= sup
σ∈P(X)

{
∫
X
gdσ − T (µ, λS∗µ+ (1− λ)σ)}.

Let now ν := λS∗µ+ (1− λ)σ; we obtain σ = 1
1−λν −

λ
1−λS

∗µ. Hence after

substitution we obtain

(T̃µ)∗(g) = sup
ν∈P(X)

{
∫
X

1

1− λ
gdν − T (µ, ν)} − λ

1− λ

∫
Y
Sgdµ

=

∫
X

[
T−
(

1

1− λ
g

)
− λ

1− λ
Sg

]
dµ.

Theorem 5.5.10. Let T be a backward linear transfer on P(X) × P(X)

where X ⊂ Rn is compact, and suppose (µ0, ν0) is such that T (µ0, ν0) =

inf(µ,ν) T (µ, ν) and µ0 has density with respect to Lebesgue. Then, for every

λ ∈ (0, 1), there exists a convex function φλ such that the backward linear

transfer given by

T̃ (µ, ν) := T (µ, λ(∇φλ)#µ+ (1− λ)ν) (5.46)

is such that

inf
µ,ν∈P(X)

T̃ (µ, ν) = inf
µ∈P(X)

T̃ (µ, µ).

In particular, the conclusion of Theorem 5.5.3 holds for T̃ , and there exists

162



a backward Kantorvich operator T−∞ : C(X)→ USC(X) such that

T− ◦ T−∞g + T (µ0, ν0) = λ (T−∞g) ◦ ∇φλ + (1− λ)T−∞g for all g ∈ C(X).

Proof. The fact that T̃ is a backward linear transfer follows by Lemma 5.5.9.

By assumption there is µ0, ν0 ∈ P(X) such that T (µ0, ν0) = infµ,ν T (µ, ν)

and µ0 has density with respect to Lebesgue. Therefore, by Brenier’s the-

orem (see e.g. [59], Corollary 2.30) there exists a convex function φλ such

that ∇φλ#µ0 = (1− 1
λ)µ0 + 1

λν0.

Consider now the backward linear transfer

T̃ (µ, ν) := T (µ, λ∇φλ#µ+ (1− λ)ν).

Since λ∇φλ#µ0 + (1 − λ)µ0 = λ(1 − 1
λ)µ0 + ν0 + (1 − λ)µ0 = ν0, we have

T̃ (µ0, µ0) = T (µ0, ν0) < +∞, and therefore

inf
µ
T̃ (µ, µ) ≥ inf

µ,ν
T̃ (µ, ν) ≥ inf

µ,ν
T (µ, ν) = T (µ0, ν0) = T̃ (µ0, µ0) ≥ inf

µ
T̃ (µ, µ),

hence infµ,ν T̃ (µ, ν) = infµ T̃ (µ, µ) = T (µ0, ν0).. The backward linear trans-

fer T̃ therefore satisfies the hypotheses of Theorem 5.5.3, so there exists an

idempotent backward Kantorovich operator T̃−∞ such

T̃− ◦ T̃−∞g + c(T̃ ) = T̃−∞g.

By Lemma 5.5.9, T̃−g = T−( 1
1−λg)− λ

1−λg ◦ ∇φλ, so that

T−(
1

1− λ
T̃−∞g)− λ

1− λ
(T̃−∞g) ◦ ∇φλ + c(T̃ ) = T̃−∞g.

In other words, by setting T−∞g := 1
1−λ T̃

−
∞g, we have

T− ◦ T−∞g + c(T̃ ) = λ (T−∞g) ◦ ∇φλ + (1− λ)T−∞g.
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5.6 Ergodic properties for non-continuous linear
transfers with control on convergence to c(T )

We saw in Section 5.5, that under the hypothesis c(Tε) = c(T ) for small

enough ε > 0, we obtained certain ergodic properties described in Theorem

5.5.3. We are interested in this section in obtaining results for backward

linear transfers that do not satisfy this hypothesis. In particular, we shall

focus on the existence of functions h, possibly in USCσ(X), that satisfy

T−h+ c(T ) = h (we shall not be concerned with trying to find a backward

Kantorovich operator T−∞ as in the previous sections).

A preliminary idea for constructing such a function h is very simple:

For a backward Kantorovich operator T−, consider ϕ := lim supn→∞(T−n g+

nc(T )). Then supm≥n(T−n g+ nc(T )) is a monotone decreasing sequence, so

T−ϕ+ c(T ) ≥ ϕ, and thus T−n ϕ+nc(T ) is a monotone increasing sequence,

so we can define h := limn→∞(T−n ϕ+nc(T )), and we have T−h+ c(T ) = h.

One can also sketch a similar construction using the liminf instead of the

limsup.

The issue with this construction concerns two things: (i) lim supn→∞(T−n g+

nc(T )) (or lim infn→∞(T−n g+nc(T ))) may not be proper, and (ii) these func-

tions are usually not in a “good enough space” (usually only in USCσ(X))

to pass the monotone limit through T− (see Lemma 5.1.3). This section

therefore is concerned with finding some additional assumptions for which

to deal with (i) and (ii).

We begin with a technical lemma concerning mainly with some prelimi-

nary estimates which will help us to deal with issue (i) later in this section.

Recall that the constant c(T ) := infµ T (µ, µ) = supn∈N
inf(µ,ν) Tn(µ,ν)

n < +∞.

Lemma 5.6.1. Let T : P(X) × P(X) → R ∪ {+∞} be a backward linear

transfer such that D1(T ) contains the Dirac measures. Assume that c(T ) =

infµ∈P(X) T (µ, µ) < +∞. Then, the following properties hold:
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1. For each g ∈ C(X) and µ ∈ P(X), we have

−T (µ, µ) ≤ lim inf
n→∞

1

n

∫
X
T−n g dµ

≤ lim sup
n→∞

1

n

∫
X
T−n gdµ ≤ −c(T ).

Consequently if T (µ̄, µ̄) = c(T ), then for each g ∈ C(X),

lim
n→∞

1

n

∫
X
T−n g dµ̄ = c(T ).

2. For every n ∈ N and g ∈ USCb(X), we have

sup
x∈X

(T−n g(x) + nc(T )) ≥ inf
y∈X

g(y). (5.47)

3. Suppose there exists K > 0 such that

lim sup
n→∞

{nc(T )− inf
µ,ν∈P(X)

Tn(µ, ν)} ≤ K. (5.48)

Then for all g ∈ C(X),

sup
x∈X

lim sup
n→∞

(
T−n g(x) + nc(T )

)
≤ sup

y∈X
g(y) +K. (5.49)

Proof. 1)Write for the upper bound,∫
X
T−n gdµ = sup{

∫
X
g dν − Tn(µ, ν) ; ν ∈ P(X)}

≤ sup(g)− inf
(µ,ν)
Tn(µ, ν).

Dividing by n and recalling that c(T ) = limn→∞
inf(µ,ν) Tn(µ,ν)

n we deduce

the stated upper bound for lim supn→∞
1
n

∫
X T

−
n gdµ. For the lower bound,
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write ∫
X
T−n gdµ = sup{

∫
X
g dσ − Tn(µ, σ) ; σ ∈ P(X)}

≥
∫
X
g dµ− Tn(µ, µ)

≥
∫
X
g dµ− nT (µ, µ).

2) Write

sup
x∈X

(T−n g(x) + nc(T )) = sup
µ∈P(X)

∫
X

(T−n g(x) + nc(T )) dµ

= sup
µ∈P(X)

sup
σ∈P(X)

{
∫
X
gdσ − Tn(µ, σ) + nc(T )}

≥ inf
X
g − inf

σ,µ
Tn(µ, σ) + nc(T )

≥ inf
X
g.

The latter inequality follows from infµ,σ Tn(µ, σ) ≤ nc(T ) (see Proposition

5.2.1).

3) Write

sup
x∈X

lim sup
n→∞

(T−n g(x) + nc(T )) ≤ lim sup
n

sup
x∈X

T−n g(x) + nc(T )

= lim sup
n

sup
x∈X

sup
σ∈P(X)

{
∫
X
gdσ − Tn(δx, σ) + nc(T )}

≤ sup(g) + lim sup
n
{nc(T )− inf

x∈X
inf

σ∈P(X)
Tn(δx, σ)}

≤ sup(g) + lim sup
n
{nc(T )− inf

(µ,ν)
Tn(µ, ν)}

≤ sup(g) +K.

The following lemma is perhaps not surprising; the key point is that a

monotone decreasing sequence is guaranteed to be proper.
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Lemma 5.6.2. Suppose T is a backward linear transfer on P(X) × P(X)

such that c(T ) = infµ∈P(X) T (µ, µ) < +∞ and supx∈X infν∈P(X) T (δx, ν) <

+∞. If g ∈ USCb(X) is such that {T−n g + nc(T )}n∈N is a decreasing se-

quence in n, then h(x) := limn→∞(T−n g(x)+nc(T )) belongs to USC(X) (in

particular, it is proper), and T−h+ c(T ) = h.

Proof. The assumption supx∈X infν∈P(X) T (δx, ν) < +∞ implies that T−

maps USCb(X) to USCb(X) (see Lemma 5.1.1). Therefore T−n g + nc(T ) is

a decreasing sequence in USCb(X), hence converges to its infimum h, which

is therefore upper semi-continuous. To see that h is proper, suppose for every

x, it holds that T−n g(x)+nc(T ) decreases to −∞. Then for each x0, there is

n0 ∈ N such that T−n0
g(x0) + n0c(T ) ≤ infy∈X g(y)− 1. Since T−n0

g + nc(T )

is upper semi-continuous, the inequality for T−n0
g(x0) +n0c(T ) must hold in

a neighbourhood of x0. Since X is compact and T−n g+nc(T ) is decreasing,

it follows that there is M ∈ N such that T−Mg(x) +Mc(T ) ≤ infy∈X g(y)− 1

for all x ∈ X. But from Lemma 5.6.1, we also conclude that

sup
x∈X

T−Mg(x) +Mc(T ) ≥ inf
x∈X

g(x)

and the two inequalities together imply

inf
x∈X

g(x) ≤ inf
x∈X

g(x)− 1,

an impossibility since infx∈X g(x) > −∞ as g ∈ USCb(X). Therefore we

conclude that h is proper and therefore belongs to USC(X). Then by the

monotonicity convergence Lemma 5.1.3, we conclude that

T−h+c(T ) = lim
n→∞

T−(T−n g+nc(T ))+c(T ) = lim
n→∞

(T−n+1g+(n+1)c(T )) = h.

The following theorem is then concerned with finding conditions which

guarantee the existence of such a g ∈ USCb(X) as in Lemma 5.6.2.

Theorem 5.6.3. Suppose T is a backward linear transfer on P(X)×P(X)

such that D1(T ) contains all Dirac measures. Assume:
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1. c(T ) := infµ T (µ, µ) < +∞,

2. supx∈X infν∈P(X) T (δx, ν) < +∞,

3. there exists K > 0 such that

lim sup
n→∞

{nc(T )− inf
µ,ν∈P(X)

Tn(µ, ν)} ≤ K,

4. there exists g ∈ C(X), such that the function

x 7→ lim inf
n→∞

(T−n g(x) + nc(T ))

belongs to USCb(X).

Then there exists h ∈ USC(X) such that T−h+ c(T ) = h on X.

Proof. Note that the second hypothesis implies that T−n g ∈ USCb(X) for

all n ∈ N and all g ∈ USCb(X) (see Lemma 5.1.1).

We distinguish two cases:

Case 1: There is g ∈ C(X) so that ∀x ∈ X, there exists n ∈ N with

T−n g(x) + nc(T ) < g(x).

Since T−n g is in USCb(X), it follows that T−n g + nc(T ) < g on an open

neighborhood Bx ⊂ X of x. Indeed, otherwise if there was a sequence xk →
x with T−n g(xk)+nc(T ) ≥ g(xk), then T−n g(x)+nc(T ) ≥ lim supk T

−
n g(xk)+

nc(T ) ≥ g(x), a contradiction.

Since X is compact, there exists a finite number {x1, . . . , xk} ⊂ X such

that {Bxj}1≤j≤k cover X. Set N := max{nx1 , . . . , nxk} and define ϕN (x) :=

inf1≤n≤N (T−n g(x) + nc(T )). We have ϕN ∈ USCb(X), and moreover note

by construction that for any x ∈ X, ϕN (x) ≤ g(x). By the monotonicity

property of T−, we have

T−ϕN+c(T ) ≤ T−g+c(T ) and T−ϕN+c(T ) ≤ inf
2≤n≤N+1

{T−n g+nc(T )}.
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Therefore, combining the two we deduce that

T−ϕN + c(T ) ≤ inf
1≤n≤N

{T−n g + nc(T )} = ϕN .

It follows that the sequence {T−n ϕN + nc(T )}n is decreasing and ϕN ∈
USCb(X). Hence by Lemma 5.6.2, we conclude the existence of h ∈ USC(X),

such that T−h+ c(T ) = h.

Case 2: We now assume that for any g ∈ C(X), there exists x ∈ X such

that

T−n g(x) + nc(T ) ≥ g(x) for all n ∈ N. (5.50)

By assumption, there exists g ∈ C(X) such that g̃ := lim infn→∞(T−n g +

nc(T )) belongs to USCb(X). Then (5.50) implies there exists x ∈ X such

that g̃(x) ≥ g(x) > −∞, and by Lemma 5.6.1, supx∈X g̃(x) ≤ supx∈X g(x)+

K.

Since infm≥n{T−mg +mc(T )} is increasing to g̃ and g̃ is bounded above,

we have by Lemma 5.1.3, that

T−g̃ + c(T ) = lim
n→∞

T−( inf
m≥n
{T−mg +mc(T )}) + c(T )

≤ lim inf
n→∞

(T−n+1g + (n+ 1)c(T ))

= g̃.

It follows that the sequence {T−n g̃ + nc(T )}n∈N ⊂ USCb(X) is decreasing

and g̃ ∈ USCb(X). Consequently, we may apply Lemma 5.6.2 to conclude

that there exists a function h ∈ USC(X) such that T−h+ c(T ) = h.

The following provides a sufficient condition for lim supn→∞{nc(T ) −
infµ,ν∈P(X) Tn(µ, ν)} ≤ K of the previous theorem.

Proposition 5.6.4. Let T be a backward linear transfer on P(X)× P(X)

such that c(T ) = infµ∈P(X) T (µ, µ) < +∞. If T is bounded above on P(X)×
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P(X), then

Tn(µ, ν)

n
→ c(T ) uniformly on P(X)× P(X). (5.51)

In particular, we have lim supn→∞{nc(T ) − infµ,ν∈P(X) Tn(µ, ν)} ≤ K for

some constant K > 0.

Proof. Note that { supµ,ν Tn(µ,ν)

n }n∈N is a sub-additive sequence that satisfies,

supµ,ν Tn(µ, ν)

n
≥ inf

µ,ν
T (µ, ν) > −∞

hence converges to its infimum (see e.g. [9] Lemma 1.18). Since

c(T ) = lim
n→∞

infµ,ν Tn(µ, ν)

n
and

infµ,ν Tn(µ, ν)

n
≤

supµ,ν Tn(µ, ν)

n

we conclude that

c(T ) ≤ inf
n∈N

supµ,ν Tn(µ, ν)

n
.

Therefore, for all n ∈ N, it holds that

inf
µ,ν
Tn(µ, ν) ≤ nc(T ) ≤ sup

µ,ν
Tn(µ, ν),

so

|Tn(µ, ν)− nc(T )| ≤ sup
µ,ν
Tn(µ, ν)− inf

µ,ν
Tn(µ, ν). (5.52)

At the same time, we have for any µ, ν ∈ P(X) (writing inf
P×P
Tn for infµ,ν∈P(X) Tn(µ, ν)

for brevity),

inf
P×P
Tn−2 + 2 inf

P×P
T ≤ Tn(µ, ν) ≤ 2 sup

P×P
T + inf

P×P
Tn−2,
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from which follows that

sup
P×P
Tn − inf

P×P
Tn ≤ 2 sup

P×P
T + inf

P×P
Tn−2 − inf

P×P
Tn−2 − 2 inf

P×P
T

= 2 sup
P×P
T − 2 inf

P×P
T

=: K <∞. (5.53)

Combining (5.52) and (5.53), we conclude that

|Tn(µ, ν)− nc(T )| ≤ K for all µ, ν ∈ P(X) and all n ∈ N,

which implies Tn(µ,ν)
n → c(T ) uniformly on P(X)× P(X).

Here is another situation where we can obtain weak KAM solutions.

Proposition 5.6.5. Suppose T is a backward linear transfer on P(X) ×
P(X) such that c(T ) = infµ∈P(X) T (µ, µ) < +∞, and supx∈X infν∈P(X) T (δx, ν) <

+∞. If there exists u, v ∈ USCb(X) such that

T−n u+ nv = u for all n ∈ N, (5.54)

then there exists h ∈ USC(X) such that T−h + c(T ) = h on X, where T−

is the backward Kantorovich operator associated to T .

Proof. By (5.54) and Lemma 5.6.1, we have −v(x) = lim supn
T−n u
n ≤ −c(T ).

Therefore,

T−n u+ nc(T ) ≤ u for all n ∈ N.

Applying T−m and using the linearity of T−m with respect to constants, we

find T−m+nu+ nc(T ) ≤ T−mu, and hence

T−m+nu+ (m+ n)c(T ) ≤ T−mu+mc(T ).

So n 7→ T−n u + nc(T ) is decreasing, and u ∈ USCb(X). Consequently by

Lemma 5.6.2, there exists h ∈ USC(X) such that T−h+ c(T ) = h.
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5.6.1 Linear transfers and ergodic optimization

This section was developed jointly with Dorian Martino [40]. We shall con-

sider here linear transfers where the associated Kantorovich maps are affine

operators that is of the form T−f(x) = Tf(x)−A(x), where T is a Markov

operator and A is a given function (observable). In this section, we shall see

that the presence of A allows the theory of transfers to incorporate ergodic

optimization for expanding dynamical systems (see, for instance, [25]). For

simplicity, we shall focus here on the case where the linear Markov operator

is given by a point transformation σ.

We will in this section make use of the Fenchel-Rockafellar duality, and

thus for convenience we record the statement of this theorem here.

Theorem 5.6.6 (Fenchel-Rockafellar duality (see e.g. [59] Theorem 1.9)).

Let E be a normed vector space, E∗ its topological dual space, and h1, h2 :

E → R∪{+∞} two convex functions on E. If there exists z0 ∈ E such that

h1(z0) < +∞, h2(z0) < +∞, and h1 is continuous at z0,

then

inf
z∈E
{h1(z) + h2(z)} = sup

z∗∈E∗
{−h∗1(−z∗)− h2(z∗)}

where h∗1, h∗2, is the Fenchel-Legendre transform of h1, h2, respectively,

h∗1(z∗) := sup
z∈E
{〈z∗, z〉 − h1(z)}.

Proposition 5.6.7. Let σ : X → X be continuous and surjective, and

assume there is a (sequentially) compact space Y such that for each y ∈ Y ,

there exists a compact subset Xy of X, and a continuous map τy : Xy → X,

such that σ ◦ τy(x) = x for all x ∈ Xy.

Define Yx := {y ∈ Y ; y ∈ Xy}, and assume the following continuity

properties: If xk is a sequence in X (resp. yk a sequence in Y ) with yk ∈ Yxk ,

then if xk → x and yk → y, we have y ∈ Yx, and τyk(xk)→ τy(x). Moreover,
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assume that the maps τy are unique, in the sense that if τy(x) = τy′(x) for

all x, then y′ = y.

Let A ∈ C(Y×X) be a continuous function and consider the cost function

c : X ×X → R ∪ {+∞} defined by

c(z, x) :=

inf{A(y, x) ; y ∈ Yx, τy(x) = z} if σ(z) = x

+∞ otherwise.

Then, c is lower semi-continuous, and the optimal mass transport T asso-

ciated to the cost c is simply the backward, and forward, linear transfer

T (µ, ν) =


∫
X Ādµ if ν = σ#µ

+∞ otherwise,

which has backward (resp. forward) Kantorovich operator given by

T−g(x) = g(σ(x))− Ā(x), (resp., T+f(x) = inf
y∈Yx
{f(τy(x)) +A(y, x)}).

where Ā(x) := c(x, σ(x)).

Proof. To see that c is lower semi-continuous, suppose xk → x and zk → z.

If for all but finitely many (zk, xk) we have c(zk, xk) = +∞, then there is

nothing to prove. Therefore assume σ(zk) = xk, and hence

c(zk, xk) = inf{A(y, xk) ; y ∈ Yxk , τy(xk) = zk}

Since A is continuous and {y ∈ Yxk ; τy(xk) = zk} is a closed subset of the

compact set Yxk , the infimum is achieved by some yk, i.e.

c(zk, xk) = A(yk, xk)

The sequence {yk} ⊂ Y and Y is sequentially compact, so we may select a

convergent subsequence (that we relabel back to yk). This y has the property
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that y ∈ Yx and τy(x) = z by assumption. Consequently,

lim inf
k→∞

c(zk, xk) = A(y, x) ≥ inf{A(y, x) ; y ∈ Yx, τy(x) = z} = c(z, x).

We now compute the optimal transport

T (µ, ν) = inf
π∈K(µ,ν)

∫
X×X

c(z, x)dπ(z, x).

If ν 6= σ#µ, then π ∈ K(µ, ν) will give non-zero mass to a region {(z, x)}
where σ(z) 6= x. Since c(z, x) = +∞ there, we deduce that T (µ, ν) = +∞
in this case. Otherwise assume ν = σ#µ. Then π ∈ K(µ, ν) is supported on

{(z, σ(z)) ; z ∈ X}, so

T (µ, ν) = inf
π∈K(µ,ν)

{
∫
X×X

c(z, σ(z))dπ(z, x)}

=

∫
X
c(z, σ(z))dµ

=

∫
X
Ādµ.

We know from Section 2.6 that the backward (resp. forward) Kantorovich

operator is given by

T−g(z) = sup
x∈X
{g(x)− c(z, x)} = g(σ(z))− c(z, σ(z)) = g ◦ σ(z)− Ā(z).

and

T+f(x) = inf
z∈X
{f(z) + c(z, x)} = inf

y∈Yx
{f(τy(x)) + c(τy(x), x)}.

The final observation to make for T+ is that

c(τy(x), x) = inf{A(y′, x) ; y′ ∈ Yx τy′(x) = τy(x)}

hence by assumption y′ = y, so that c(τy(x), x) = A(y, x).

Theorem 5.6.8. In the set-up described in the previous Proposition 5.6.7,
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let Pσ(X) denote the subset of probability measures in P(X) which are in-

variant under σ. Let X̂ denote the subset of Y × X consisting of points

(y, x) such that x ∈ Xy, and define M0(X̂) as the subset of “holonomic”

probability measures µ̂ ∈ P(X̂) satisfying
∫
X̂ [f(τy(x))− f(x)]dµ̂ = 0.

Then, the following duality formulae holds:

c(T ) := inf
µ∈P(X)

T (µ, µ) = inf{
∫
X
Ā(x) dµ(x);µ ∈ Pσ(X)}

= inf{
∫
X̂
A(y, x)dµ̂(y, x) ; µ̂ ∈M0(X̂)}

= sup
f∈C(X)

inf
x∈X
{f(x)− f(σ(x)) + Ā(x)}

= sup
f∈C(X)

inf
x∈X

inf
y∈Yx
{f(τy(x))− f(x) +A(y, x)}.

Remark 5.6.9. The equality of the second and fourth lines has already

been established in [26] for the setting of symbolic dynamics (see the next

section).

Proof. Let us first demonstrate the equality

inf{
∫
X
Ā(x) dµ(x);µ ∈ Pσ(X)} = sup

f∈C(X)
inf
x∈X
{f(x)− f(σ(x)) + Ā(x)}

= sup
f∈C(X)

inf
x∈X
{f(x)− T−f(x)}. (5.55)

We can write using the duality of optimal transport,

inf{
∫
X
Ā(x) dµ(x);µ ∈ Pσ(X)} = inf

µ∈P(X)
inf

π∈K(µ,µ)

∫
X×X

c(x, y)dπ(x, y)

= inf
µ∈P(X)

sup
f∈C(X)

{
∫
X

(f − T−f)dµ} (5.56)

Comparing (5.55) and (5.56), it suffices to show that

sup
f∈C(X)

inf
x∈X
{f(x)− T−f(x)} = inf

µ∈P(X)
sup

f∈C(X)
{
∫
X

(f − T−f)dµ}.

We would therefore like to apply Sion’s minimax theorem (Theorem 2.7.6)
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to the function F : P(X) × C(X) defined by F (µ, f) :=
∫
X(f − T−f)dµ,

which is real-valued for all f ∈ C(X) and all µ ∈ P(X).

First, µ 7→ F (µ, f) is weak∗ lower semi-continuous since f − T−f =

f−f◦σ+Ā is a lower semi-continuous function for each f ∈ C(X). Moreover

µ 7→ F (µ, f) is quasi-convex on P(X), i.e. {µ ∈ P(X) ; F (µ, f) ≤ λ} is

convex or empty for all λ ∈ R.

On the other hand, f 7→ F (µ, f) is upper semi-continuous, since if fk → f

in C(X), then

lim sup
k→∞

∫
X

(fk − T−fk)dµ ≤
∫
X

(f − lim inf
k→∞

T−fk)dµ

≤
∫
X

(f − T−f)dµ.

Moreover, f 7→ F (µ, f) is quasi-concave on C(X), i.e. {f ∈ C(X) ; F (µ, f) ≥
λ} is convex or empty for all λ ∈ R.

We may therefore apply Sion’s minimax theorem (Theorem (2.7.6)) to

conclude that

inf
µ∈P(X)

sup
f∈C(X)

∫
X

(f − T−f)dµ = sup
f∈C(X)

inf
µ∈P(X)

∫
X

(f − T−f)dµ

= sup
f∈C(X)

inf
x∈X

∫
X

(f − T−f)dµ.

Next let us demonstrate the equality,

inf{
∫
X̂
A(y, x)dµ̂(y, x) ; µ̂ ∈M0(X̂)} = sup

f∈C(X)
inf
x∈X

inf
y∈Yx
{f(τy(x))− f(x) +A(y, x)}

As mentioned, this has already been established in [26] for the setting of

symbolic dynamics (see Theorem 1 there). For this, we shall use Fenchel-

Rockafellar duality. Recall X̂ := {(y, x) ; x ∈ X, y ∈ Xy}, and define h1, h2 :

C(X̂)→ R ∪ {+∞} be defined by

h1(φ) := sup
(y,x)∈X̂

{−φ(y, x) +A(y, x)},
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and

h2(φ) =

0 if φ is in the closure of {g ∈ C(X̂) ; g(y, x) = f(x)− f ◦ τy(x) for some f ∈ C(X)}

+∞ otherwise.

Note that h1(φ) − h1(φ̃) ≤ ‖φ − φ̃‖∞, so h1 is continuous on C(X̂). To

compute their respective Legendre transforms, we have

h∗1(µ̂) = sup
φ∈C(X̂)

{
∫
X̂
φdµ̂− h1(φ)}.

If µ̂(X̂) 6= −1, then

h∗1(µ̂) ≥ sup
λ∈R
{λ(µ̂(X̂) + 1) + inf

(y,x)∈X̂
A(y, x)}

and the supremum is +∞. Suppose now that µ̂(X̂) = −1, but −µ̂ /∈ P(X̂).

Then there exists a sequence of functions φn ∈ C(X̂) such that φn ≤ 0 and

limn→∞
∫
X̂ φndµ̂ = +∞. Then we have

h∗1(µ̂) ≥
∫
X̂
φndµ̂− h1(φn)

≥
∫
X̂
φndµ̂− sup

(y,x)∈X̂
A(y, x)

hence h∗1(µ̂) = +∞. Finally suppose −µ̂ ∈ P(X̂). Then

h∗1(µ̂) ≥
∫
X̂
Adµ̂− h1(A)

=

∫
X̂
Adµ̂,

while also since φ + h1(φ) ≥ A, then
∫
X̂(φ + h1(φ))dµ̂ ≤

∫
X̂ Adµ̂ (recall
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µ̂(X̂) = −1), so we have

h∗1(µ̂) = sup
φ∈C(X̂)

{
∫
X̂

(φ(y, x) + h1(φ))dµ̂}

≤
∫
X̂
Adµ̂.

Therefore,

h∗1(µ̂) =


∫
X̂ Adµ̂ if − µ̂ ∈ P(X̂)

+∞ otherwise.

We also have

h∗2(µ̂) = sup
φ∈C(X̂)

{
∫
X̂
φdµ̂− h2(φ)}

= sup
f∈C(X)

{
∫
X̂

(f − f ◦ τy)dµ̂}.

If
∫
X̂(f − f ◦ τy)dµ̂ 6= 0 for some f , then substituting f with λf , λ ∈ R,

implies this supremum will be +∞. Let S0 := {µ̂ ∈ M(X̂) ;
∫
X̂(f ◦ τy(x)−

f(x))dµ̂(y, x) = 0 for all f ∈ C(X)}. Then,

h∗2(µ̂) =

0 if µ̂ ∈ S0

+∞ otherwise.

It now suffices to apply Fenchel-Rockafellar:

inf
φ∈C(X̂)

{h1(φ) + h2(φ)} = sup
µ̂∈M(X̂)

{−h∗1(−µ̂)− h2(µ̂)}.

Finally, to complete the string of equalities stated in the theorem, the

equality c(T ) = infµ∈P(X) T (µ, µ) = inf{
∫
X Ā(x) dµ(x);µ ∈ Pσ(X)} is im-

mediate from Proposition 5.6.7. In addition, we observe by definition of
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Ā(x) = c(x, σ(x) that for any f ∈ C(X),

inf
x∈X
{f(x)− f(σ(x)) + Ā(x)} = inf

x∈X
inf

y∈Yσ(x),τy(σ(x))=x
{f(x)− f(σ(x)) +A(y, σ(x))}

= inf
z∈X

inf
y∈Yz
{f(τy(z))− f(z) +A(y, z)},

where the last equality holds by making the change of variable z := σ(x),

along with the fact that σ is assumed to be surjective. It therefore follows

that

sup
f∈C(X)

inf
x∈X
{f(x)− f(σ(x)) + Ā(x)} = sup

f∈C(X)
inf
x∈X

inf
y∈Yx
{f(τy(x))− f(x) +A(y, x)}

which concludes the demonstration of the equalities stated in the theorem.

Theorem 5.6.10. Suppose that

x 7→ lim inf
n→∞

n−1∑
k=0

inf
µ∈Pσ(X)

∫
X
Ādµ− Ā(σk(x))

belongs to C(X). Then there exists h ∈ USC(X) such that

h(σ(x))− Ā(x) + c(T ) = h(x) for all x ∈ X, (5.57)

equivalently,

inf
y∈Yx
{h(τy(x)) +A(y, x)} − c(T ) = h(x) for all x ∈ X. (5.58)

That is, h satisfies T−h+ c(T ) = h, and T+h− c(T ) = h.

Proof. To establish the existence of a function satisfying (5.57), note that

this is equivalent to having a function h such that T−h(x) + c(T ) = h(x),

hence it suffices to show that the assumptions of Theorem 5.6.3 are satisfied.

For that, first note that by a theorem of Bogolyubov and Krylov ([51],

Theorem 1.1), σ has an invariant measure, hence c(T ) = infµ T (µ, µ) < +∞.
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In addition, we have for each x ∈ X,

sup
x∈X

inf
ν∈P(X)

T (δx, ν) ≤ sup
x∈X

Ā(x) < +∞.

In order to show the condition (5.48), we let for each n ∈ N, µn ∈
P(X) be such that Tn(µn, (σ

n)]µn) = infµ,ν Tn(µ, ν). Select a subsequence

(which we relabel back to n) so that νn := (σn)]µn converges to some µ̄ ∈
P(X). Then the Césaro average 1

n

∑n
k=1 νk converges to µ̄. Moreover, µ̄ is

σ-invariant. Indeed,

σ]µ̄ = lim
n→∞

1

n

n∑
k=1

(σk)]µn = lim
n→∞

(
1

n

n−1∑
k=0

(σk)]µn +
1

n
((σn)]µn − µn)

)
= µ̄.

Recall that Ā(x) = c(x, σ(x)) is lower semi-continuous, so

lim sup
n→∞

∫
X
Ādµ̄− 1

n

n−1∑
k=0

∫
X
Ād((σk)]µn) ≤ 0.

Therefore, by selecting a further subsequence (which again we may relabel

back to n), we may assume that this subsequence has the property that

there exists K > 0 such that∫
X
Ādµ̄− 1

n

n−1∑
k=0

∫
X
Ād((σk)]µn) ≤ K

n
, n ∈ N.
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We then obtain the desired estimate,

lim sup
n→∞

(
nc(T )− inf

µ,ν∈P(X)
Tn(µ, ν)

)
≤ lim sup

n→∞
(nT (µ̄, µ̄)− Tn(µn, (σ

n)]µn))

= lim sup
n→∞

(
nT (µ̄, µ̄)−

n−1∑
k=0

T ((σk)]µn, (σ
k+1)]µn)

)

= lim sup
n→∞

(
n

∫
X
Ādµ̄−

n−1∑
k=0

∫
X
Ād((σk)]µn)

)
≤ K.

Finally note that for g ≡ 0,

T−n (0) + nc(T ) =

n−1∑
k=0

( inf
µ∈Pσ(X)

∫
X
Ādµ− Ā ◦ σk).

Since by assumption,

x 7→ lim inf
n→∞

n−1∑
k=0

( inf
µ∈Pσ(X)

∫
X
Ādµ− Ā ◦ σk(x))

belongs to C(X), it follows that lim infn→∞ T
−
n (0)+nc(T ) belongs to C(X).

Hence all the hypotheses for application of Theorem 5.6.3 hold, and we

deduce that there exists h ∈ USC(X) such that

T−h+ c(T ) = h.

Remark 5.6.11. A conjecture is that the assumption

x 7→ lim inf
n→∞

n−1∑
k=0

(
inf

µ∈Pσ(X)

∫
X
Ādµ− Ā(σk(x))

)

belongs to C(X), holds when A is Hölder continuous. This matches exactly
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the condition on A required by Garibaldi and Lopes ([26], Theorem 4) - see

the next section.

5.6.2 Ergodic optimization in the deterministic holonomic
setting

We now apply the result of the previous section to the setting of symbolic

dynamics. Fix r ∈ N, and let M be an r×r transition matrix, whose entries

are either 0 or 1, specifying the allowable transitions. Denote by

Σ = {x ∈ {1, ..., r}N ; ∀i ≥ 0, M(xi, xi+1) = 1}

the set of admissible words, its dual

Σ∗ = {y ∈ {1, ..., r}N ; ∀i ≥ 0, M(yi+1, yi) = 1},

and consider the space

Σ̂ = {(y, x) ∈ Σ∗ × Σ ; M(y0, x0) = 1}.

For each x ∈ Σ, we let Σ∗x = {y ∈ Σ∗ ; (y, x) ∈ Σ̂} and assume that

∀x, Σ∗x 6= ∅. We will denote the words of Σ with their starting letters, i.e.,

(x0, x1, ...) while the words in Σ∗ will be identified with their ending letters,

i.e., (..., y1, y0). We consider Σ and Σ∗ as metric spaces with the distance

d(x, x̄) = 2−min{j∈N ; xj 6=x̄j}. In particular, all these sets are compact.

Consider now the two continuous maps σ : Σ→ Σ and τ : Σ̂→ Σ defined as

σ(x0, x1, ...) = (x1, x2, ...) and τ(y, x) = (y0, x0, x1, ...). (5.59)

The map σ can be considered as the time-evolution operator. We will denote

τ(y, x) by τy(x) and consider the set of holonomic probability measures

M0(Σ̂) :=

{
µ ∈ P(Σ̂) ;

∫
Σ̂
f(τy(x))− f(x) dµ(y, x) = 0

}
.
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E. Garibaldi and A. O. Lopes studied an Aubry-Mather theory for symbolic

dynamics [26]; in particular, they prove the following results.

Theorem 5.6.12 (Garibali and Lopes [26], Theorem 1, Theorem 4). Under

the set-up described above, given A ∈ C(Σ̂), define βA := maxµ̂∈M0(Σ̂)

∫
Σ̂A(y, x)dµ̂(y, x).

Then

βA = inf
f∈C(Σ)

max
(y,x)∈Σ̂

{A(y, x) + f(x)− f(τy(x))}.

If A ∈ C0,θ(Σ̂) is θ-Hölder continuous, then there exists a function u ∈
C0,θ(Σ) such that

u(x) = min
u∈Σ∗x
{u(τy(x))−A(y, x) + βA}.

By applying our results of the previous Section 5.6.1 in this symbolic

dynamics setting, we obtain the following, using the notation βA of Theorem

5.6.12.

Proposition 5.6.13. Under the set-up described at the beginning of this

section, given A ∈ C(Σ̂), then the following hold:

βA = sup
µ∈Pσ(Σ)

{
∫

Σ
Ādµ} (5.60)

= inf
f∈C(Σ)

sup
x∈Σ
{f(σ(x))− f(x) + Ā(x)} (5.61)

= inf
f∈C(Σ)

sup
(y,x)∈Σ̂

{f(x)− f(τy(x)) +A(y, x)}, (5.62)

where Ā(x) := sup{A(y, x) ; y ∈ Σ∗x, τy(σ(x)) = x}.
Moreover, there exists h ∈ USC(Σ) such that

inf
y∈Σ∗x
{h(τy(x))−A(y, x) + β(A)} = h(x) ∀x ∈ Σ. (5.63)

Proof. We will apply Proposition 5.6.7, Theorem 5.6.8, and Theorem 5.6.10,

with −A instead of A, and with the following identifications:

X := Σ, Y := Σ∗, Yx := Σ∗x, X̂ := Σ̂,
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and σ, τy, as in (5.59).

5.6.3 Ergodic optimization in the stochastic holonomic
setting

We now propose the following model:

Construct inductively, the following sequence: Let X0 ∈ Σ be a random

word, B0 ∈ Σ∗X0 a random “noise”, and let X̄0 := τB0(X0). We then let

Y 0 ∈ Σ∗
X̄0 be a random “control”, and consider X1 := τY 0(X̄0). We then

choose B1 ∈ Σ∗X1 and let Y 1 ∈ Σ∗
X̄1 .

Iterating this process, an entire random past trajectory of X0 is repre-

sented via the random family (Xn)n ∈ ΣN. The goal is to minimise the long

time average cost,

lim
n→∞

1

n
E[
n−1∑
i=0

A(Y i, X̄i)]

among all possible such choices.

We assume that B0, Y 0, satisfy the following “martingale-type” prop-

erty:

E[f(Y 0, τB0(X0))|X0 = σ(x)] = E[f(Y 0, x)] for any f ∈ C(Σ̂). (5.64)

For each such trajectory, consider for each n ∈ N, the measure µn ∈ P(Σ̂)

defined via ∫
Σ̂
φdµn :=

1

n

n−1∑
i=0

E[φ(Y i, X̄i)], φ ∈ C(Σ̂).

From (µn)n, one can extract a subsequence converging to some measure

µ(Xi)i by compactness of P(Σ̂). We denote

M0 = {µ(Xi)i} ⊂ M(Σ̂),

as the closure of all such µ(Xi)i . For f ∈ C(Σ) and (y, x) ∈ Σ̂, denote

1

2
Dyf(x) := f(τy(x))−f(x)−f(τy(x))− 2f(x) + f(σ(x))

2
=
f(τy(x))− f(σ(x))

2
.
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Note that the assumption made on the random noise B0 yields an Itô-type

formula: For all f ∈ C(Σ), x ∈ Σ, with B0 ∈ Σ∗σ(x) Y
0 ∈ Σ∗τB0 (x),

E[f(τY 0(τB0(σ(x))))− f(σ(x))] = E[DY 0
f(x)].

Let also

N0 = {µ ∈M(Σ̂) | ∀f ∈ C(Σ),

∫
Σ̂
Dyf(x)dµ(y, x) = 0},

which is closed in M(Σ̂) as a kernel of a continuous linear map.

Lemma 5.6.14. We have M0 ⊂ N0.

Proof. Each measure µ(Xi)i ∈M0,

∫
Σ̂
Dyf(x)dµn(y, x) =

1

n
E

[
n−1∑
i=0

f(Xi+1)− f(Xi)

]

=
1

n
E
[
f(Xn)− f(X0)

]
which tends to zero as n→∞ since f is bounded.

Theorem 5.6.15. With the above notation, we have the following

inf
µ∈N0∩P(Σ̂)

∫
Σ̂
Adµ̂ = sup

f∈C(Σ)
inf

(y,x)∈Σ̂
Dyf(x) +A(y, x). (5.65)

If

x 7→ lim inf
n→∞

(
n inf
µ̂∈M0∩P(Σ̂)

∫
Σ̂
Adµ̂− inf{

n−1∑
k=0

E[A(Y k, τBk(Ȳ k)] ; Y k ∈ Σ∗τ
Bk

(Ȳ k)}

)

belongs to C(Σ), where Ȳ k is defined recursively via Ȳ 0 = x, Ȳ k = τY k−1(τBk−1(Ȳ k−1)),

k ≥ 1, then there exists an g ∈ USC(Σ) such that h := −g satisfies

inf
µ∈N0∩P(Σ̂)

∫
Σ̂
Adµ̂ = inf

y∈Σ∗x
{Dyh(x) +A(y, x)}. (5.66)
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Proof. The last equality in (5.65), i.e., is again an application of the Fenchel-

Rockafellar duality, similar to the previous section. Indeed, consider the

functions h1, h2 : C(Σ̂)→ R ∪ {+∞} defined by

h1(φ) := sup
(y,x)∈Σ̂

{−φ(y, x) +A(y, x)}

and

h2(φ) :=

0 if φ ∈ {g ∈ C(Σ̂) ; g(y, x) = Dyf(x) for some f ∈ C(Σ)}

+∞ otherwise.

Note that h1 and h2 are convex, with |h1(φ) − h1(φ̃)| ≤ ‖φ − φ̃‖∞. To

compute their Legendre transform, we have

h∗1(µ̂) = sup
φ∈C(Σ̂)

{
∫

Σ̂
φdµ̂− h1(φ)}.

We have

h∗1(µ̂) ≥ sup
λ∈R
{(λ+ 1)µ̂(Σ̂) + inf

(y,x)∈Σ̂
{A(y, x)}

and therefore if µ̂(Σ̂) 6= −1, the supremum is +∞. Suppose now that

µ̂(Σ̂) = −1, but −µ̂ /∈ P(Σ̂). Then there exists a sequence of functions

φn ∈ C(Σ̂) such that φn ≤ 0 and limn→∞
∫

Σ̂ φndµ̂ = +∞. Then

h∗1(µ̂) ≥
∫

Σ̂
φndµ̂− h1(φn)

≥
∫

Σ̂
φndµ̂− sup

(y,x)∈Σ̂

A(y, x)

hence h∗1(µ̂) = +∞. Finally suppose −µ̂ ∈ P(Σ̂). Then we have

h∗1(φ) ≥
∫

Σ̂
Adµ̂− h1(A) =

∫
Σ̂
Adµ̂

while on the other hand from φ + h1(φ) ≥ A, we have
∫

Σ̂(φ − h1(φ))dµ̂ ≤
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∫
Σ̂Adµ̂ (recall µ̂(Σ̂) = −1), so that

h∗1(φ) = sup
φ∈C(Σ̂)

{
∫

Σ̂
(φ− h1(φ))dµ̂}

≤ sup
φ∈C(Σ̂)

{
∫

Σ̂
(φ− φ−A)dµ̂} =

∫
Σ̂
Adµ̂.

Consequently,

h∗1(µ̂) =


∫

Σ̂Adµ̂ if µ̂ ∈ P(Σ̂),

+∞ otherwise.

Similarly, we have

h∗2(µ̂) =

0 if µ̂ ∈ N0

+∞ otherwise.

Indeed, if µ̂ /∈ N0, there exists f̄ ∈ C(Σ) such that
∫

Σ̂D
yf̄(x)dµ̂(y, x) 6= 0.

Hence, we replacing f̄ with λf̄ , λ ∈ R, we see that

h∗2(µ̂) = sup
f∈C(Σ)

∫
Σ̂
Dyf(x)dµ̂(y, x) = +∞.

If µ̂ ∈ N0, by definition, h∗2(µ̂) = 0.

Fenchel-Rockafellar then says that

inf
φ∈C(Σ̂)

{h1(φ) + h2(φ)} = sup
µ̂∈M(Σ̂)

{−h∗1(−µ̂)− h∗2(µ̂)},

which completes the proof of (5.65).

We now provide the proof of (5.66): Consider the functional T : P(Σ)×
P(Σ)→ R ∪ {+∞} defined via

T (µ, ν) := inf

E[A(Y 0, X̄0)]

∣∣∣∣∣∣∣
X0 ∼ ν
X̄0 = τB0(X0) B0 ∈ Σ∗X0

X1 = τY 0(X̄0) ∼ µ Y 0 ∈ Σ∗
X̄0
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We claim that T is a forward linear coupling with

T+f(x) := inf{E[f(τY 0(τB0(x)) +A(Y 0, τB0(x))] ; Y 0 ∈ Σ∗τB0 (x)}.

Indeed, we have∫
Σ
T+fdν =

∫
Σ

(
inf{E[f(τY 0(τB0(x)) +A(Y 0, τB0(x))] ; Y 0 ∈ Σ∗τB0 (x)}

)
dν

= inf{E[f(τY 0(τB0(X0)) +A(Y 0, τB0(X0))] ; Y 0 ∈ Σ∗τB0 (X0), X
0 ∼ ν}.

Note then that supf∈C(Σ){
∫

Σ T
+fdν−

∫
Σ fdµ} will be +∞, unless τY 0(τB0(X0)) ∼

µ, in which case the terms in f cancel, leaving

sup
f∈C(Σ)

{
∫

Σ
T+fdν −

∫
Σ
fdµ} = inf{E[A(Y 0, τB0(X0))] ; Y 0 ∈ Σ∗τB0 (X0), X

0 ∼ ν, τY 0(τB0(X0)) ∼ µ}

= T (µ, ν).

We now show that the hypotheses for application of Theorem 5.6.3 to

the (backward) linear coupling T̃ (µ, ν) := T (ν, µ), are satisfied.

First, it is easy to see that supx∈Σ infν∈P(Σ) T̃ (δx, ν) < +∞. Indeed,

for a fixed x ∈ Σ, take any random noise B0 ∈ Σ∗x and random strategy

Y 0 ∈ Σ∗τB0 (x), and denote the law of τY 0(τB0(x)) by ν̄x. Then

sup
x∈Σ

inf
ν∈P(Σ)

T̃ (δx, ν) ≤ sup
x∈Σ
T (ν̄x, δx) ≤ sup

x∈Σ
E[A(Y 0, τB0(x))] ≤ sup

Σ̂

A < +∞.

For the hypothesis, T̃ (µ, µ) < +∞, and the condition 5.48, they follow

similarly as in the proof of Theorem 5.6.10. We finally need, in order to

satisfy the hypotheses of Theorem 5.6.3, the existence of a function g ∈ C(Σ)

such that lim infn→∞(T̃−n g + nc(T )) belongs to USCb(Σ), where we recall

that T̃− is given by

T̃−g(x) = −T+(−g)(x) = sup{E[g(τY 0(τB0(x)))−A(Y 0, τB0(x))] ; Y 0 ∈ Σ∗τB0 (x)}
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Again, similar to the deterministic case, we can take g ≡ 0. Then

T̃−n (0)(x) = − inf{
n−1∑
k=0

E[A(Y k, τBk(Ȳ k)] ; Y k ∈ Σ∗τ
Bk

(Ȳ k)}

where Ȳ k is defined recursively via Ȳ 0 = x, Ȳ k = τY k−1(τBk−1(Ȳ k−1)),

k ≥ 1. At the same time,

c(T ) = inf
µ
T (µ, µ) = lim

n→∞

1

n
inf
µ,ν
Tn(µ, ν)

= lim
n→∞

inf
µ,ν

1

n

n−1∑
i=0

inf{E[A(Y i, X̄i)]}

= lim
n→∞

inf
µ,ν

inf
X0∼µ,X1∼ν

∫
Σ̂
Adµ(Y i)i

n

= inf
µ̂∈M0∩P(Σ̂)

∫
Σ̂
Adµ̂.

Hence

T̃−n (0)(x)+nc(T ) = n inf
µ̂∈M0∩P(Σ̂)

∫
Σ̂
Adµ̂−inf{

n−1∑
k=0

E[A(Y k, τBk(Ȳ k)] ; Y k ∈ Σ∗τ
Bk

(Ȳ k)}.

The hypothesis of the theorem ensures that at the liminf as n→∞, we get a

continuous function. Therefore we have satisfied the hypotheses of Theorem

5.6.3, and conclude the existence of a h ∈ USC(Σ) such that

T̃−h(x) + c(T̃ ) = h(x), ∀x ∈ Σ,

which since T̃−h = −T+(−h) and c(T̃ ) = c(T ), implies

T+(−h)− c(T ) = −h,

or with g := −h,

T+g(x)− c(T ) = g(x). (5.67)
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Replacing x with σ(x) for x ∈ Σ in equation (5.67), we have

(T+g)(σ(x))− g(σ(x)) = c(T )

Recalling the definition of T+ and the martingale assumption (5.64), we can

write

c(T ) = (T+g)(σ(x))− g(σ(x)) = inf
Y 0
{E[g(τY 0(τB0(σ(x))) +A(Y 0, τB0(σ(x)))]} − g(σ(x))

= inf
Y 0
{E[g(τY 0(x)) +A(Y 0, x)]} − g(σ(x))

= inf
y∈Σ∗x
{g(τy(x))− g(σ(x)) +A(y, x)}

= inf
y∈Σ∗x
{Dyg(x) +A(y, x)} (5.68)

Finally, the corresponding Mañé constant is given by

c(T ) = inf
µ
T (µ, µ) = lim

n→∞

1

n
inf
µ,ν
Tn(µ, ν)

= lim
n→∞

inf
µ,ν

1

n

n−1∑
i=0

inf{E[A(Y i, X̄i)]}

= lim
n→∞

inf
µ,ν

inf
X0∼µ,X1∼ν

∫
Σ̂
Adµ(Y i)i

n

= inf
µ̂∈M0∩P(Σ̂)

∫
Σ̂
Adµ̂.

Since M0 ⊂ N0, it follows that c(T ) ≥ inf µ̂∈N0∩P(Σ)

∫
Σ̂Adµ̂. In view of

the duality (5.65) together with (5.68), this implies that this inequality is

actually an equality, hence (5.66) holds and concludes the proof.

Remark 5.6.16. Similar to the deterministic case, our conjecture is that

when A is Hölder continuous, the hypothesis of Theorem 5.6.15 holds.
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[27] I. Gentil, C. Léonard, and L. Ripani. About the analogy between
optimal transport and minimal entropy. Annales de la Faculté des
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