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Abstract

In this thesis, we study a family of smooth varieties, whose members are denoted Br
n(C), that

bears a similar relationship to topological Azumaya algebras as the Grassmannians Grn,r(C)

do to complex vector bundles. Specifically, we will show that the varieties Br
n(C) form

homotopical approximations to the classifying space BPGLn(C). The varieties Br
n(C) are

obtained by first considering the variety of r-tuples of n×n complex matrices that generate

the matrix algebra Matn(C), and then taking the quotient by an evidently free PGLn(C)-

action. The focus of this thesis is a computation of the singular cohomology groups of

Br
n(C) when n = 2. We will show how these cohomological computations have applications

in bounding the minimal number of generating sections of a topological Azumaya algebra

over a paracompact space.
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Lay Summary

The fields of algebra and topology are connected in various ways. Crudely, algebra is the

study of mathematical structures with operations, or ways of combining elements, while

topology is concerned with the shape or spatial arrangement of mathematical structures.

This thesis focuses on one particular connection between algebra and topology; the story is

as follows. One can often translate a given algebraic structure into a topological structure, a

so-called “bundle,” that captures the same data as the original algebraic structure. It turns

out that all bundles are merely shadows of a special bundle, called a “universal bundle.”

Often in mathematics, objects with desirable properties are very hard to understand. The

universal bundle is no exception. As a work-around, one can approximate the universal

bundle by simpler bundles with similar properties. Remarkably, studying the topology of

these approximations can shed light on the original algebraic objects.
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Preface

Chapter 2 is expository. Chapter 3 is work known to B. Williams, Z. Reichstein, and U.

First following a paper in production by these three authors. The material of Chapters 4,

5, and 6 is original, unpublished work by the author, S. Gant.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Some Fibre Bundle Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Connectivity of the Complement of an Algebraic Set . . . . . . . . . . . . . 4

2.3 The Gysin Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Basic Properties of U rn(C) and Br
n(C) . . . . . . . . . . . . . . . . . . . . . . 13

4 The Cohomology of U r2 (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 The Cohomology of Br
2(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Case 1: r odd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Case 2: r even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 The Number of Generators of a Topological Azumaya Algebra . . . . . 39

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



Acknowledgements

I would first like to thank my advisor, Ben Williams, for our conversations on the content

of this thesis and the encouragement through the research and writing processes. I have

learned a tremendous amount from our weekly meetings over the past two years, and outside

of those weekly meetings I could always find their office open.

I am grateful to Zinovy Reichstein for their thoughtful comments on a draft of this

thesis. I would also like to thank Mihai Marian for our friendship, our many conversations

(mathematical and otherwise) over the past two years, and for their notes on a draft of this

thesis.

Lastly, I would like to thank my parents for their support through the emotional roller

coaster that is writing a thesis.

vii



Chapter 1

Introduction

Consider the following construction. For 1 ≤ n ≤ r, one can form the Stiefel variety

Vn,r(C) of n-frames in r-space: the open subvariety of Matn×r(C) ∼= ArnC consisting of full

rank n× r matrices. Put another way, Vn,r(C) is the space of r-tuples of vectors in n-space

that generate Cn as a vector space. The Stiefel variety Vn,r(C) admits a free GLn(C)-action,

and the quotient Vn,r(C)/GLn(C) is isomorphic to the Grassmannian Grn,r(C) of n-planes

in r-space. Moreover, the map Vn,r(C)→ Grn,r(C) is a principal GLn(C)-bundle. One can

show that the homotopy groups πi(Vn,r(C)) are trivial for i ≤ 2(r − n). The effect is that,

as r tends to infinity, the Stiefel varieties form better approximations to an EGLn(C): a

contractible CW complex that is the total space of a universal principal GLn(C)-bundle. As

a result, the infinite Grassmannian Grn,∞(C) = colimr Grn,r(C) is a model for the classifying

space BGLn(C).

In this thesis, we study two families of smooth C-varieties, whose members are denoted

U rn(C) and Br
n(C), that bear a similar relationship to the group PGLn(C) as the vari-

eties Vn,r(C) and Grn,r(C) do to GLn(C). We define U rn(C) to be the open subvariety of

Matrn(C)—the variety of r-tuples of n × n complex matrices—consisting of those r-tuples

that generate Matn(C) as a C-algebra. The variety U rn(C) admits a free PGLn(C)-action by

simultaneous conjugation, and we denote the quotient by Br
n(C). As it happens, the quo-

tient map U rn(C) → Br
n(C) is a principal PGLn(C)-bundle. Similar to the Stiefel varieties,

we will show that the homotopy groups of U rn(C) vanish below a certain degree that depends

linearly on r for fixed n. As a consequence, the varieties Br
n(C) serve as approximations to

the classifying space BPGLn(C).

The Skolem–Noether theorem asserts that every automorphism of Matn(C) as a C-

algebra is given by conjugation. Consequently, the automorphism group of Matn(C) as an

algebra is isomorphic to PGLn(C). One therefore has a correspondence between principal

PGLn(C)-bundles and bundles of matrix algebras (fibre bundles with fibre Matn(C) and
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structure group PGLn(C)). These latter objects are the so-called topological Azumaya

algebras. We will show that Br
n(C) represents the functor defined on topological spaces that

sends X to isomorphism classes of degree-n topological Azumaya algebras over X equipped

with r globally generating sections.

The main goal of this thesis is to compute the singular cohomology groups H∗(Br
2(C);Q)

in the range ∗ ≤ 4r − 7. We do so by way of the Leray–Serre spectral sequence associated

to a particular fibration.

Outline. In Chapter 2, we will lay out the relevant tools that will be used in the succeed-

ing chapters. Chapter 3 covers some of the homotopical properties of U rn(C) and Br
n(C).

We will show that the varieties Br
n(C) approximate the classifying space BPGLn(C) in the

sense that there is a (2(r − 1)(n − 1) − 1)-equivalence Br
n(C) → BPGLn(C). We compute

the singular cohomology groups H∗(U r2 (C);Z) for ∗ ≤ 4r − 7 in Chapter 4. In Chapter 5,

the singular cohomology groups H∗(Br
2(C);Q), for ∗ ≤ 4r − 7, are computed. The primary

motivation for these computations is Chapter 6. Here, we will discuss how these cohomo-

logical computations can be used to give obstructions to the generation by r global sections

of a topological Azumaya algebra over a paracompact space.

Notational Conventions. Many of the topological spaces appearing in this thesis are

subvarieties of ANC , and we will be jumping back and forth between the Euclidean and Zariski

topologies. We therefore make the convention that all references to a topology, including

computations of invariants, will be to the Euclidean topology unless otherwise specified:

the word “Zariski” will be used. An algebra in this thesis will mean an associative and

unital algebra. The term manifold will mean smooth, real manifold without boundary,

and the term manifold with boundary will mean smooth, real manifold with possibly empty

boundary. The complex conjugate of a complex number z will be denoted z∗, and we will

reserve the “bar” notation for vectors, as in “ā = (a1, . . . , ar).” Lastly, dimension will mean

complex dimension unless otherwise specified: the word “real” or the symbol dimR will be

used.
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Chapter 2

Preliminaries

2.1 Some Fibre Bundle Theory

Given a G-space X, it will be important for us to know when the quotient map X → X/G

has the structure of a principal G-bundle. Corollary 2.4 is to this end in the important

case where G is a Lie group, X is a manifold, and the action is smooth. Recall that, for a

G-space X, the action is proper if the map

Θ: G×X → X ×X

(g, x) 7→ (g · x, x)

is a proper map; i.e., the preimage of any compact set is compact.

Theorem 2.1 (Quotient Manifold Theorem [Lee13, Theorem 21.10]). Let G be a Lie group

that acts smoothly, freely, and properly on a manifold M (on the left). Then the orbit space

M/G has a unique smooth structure making it a manifold of (real) dimension dimRM −
dimRG such that the quotient map M →M/G is a smooth submersion.

Remark 2.2. If G is a compact Lie group acting on a manifold M , the action is proper.

Lemma 2.3 ([KMS93, Lemma 10.3]). Let f : M → B be a surjective smooth submersion,

and let G be a Lie group that acts smoothly and freely on M (on the left) such that the

G-orbits are exactly the fibers of f . Then f : M → B is a principal G-bundle.

The quotient manifold theorem and Lemma 2.3 together give the following corollary.

Corollary 2.4. Let G be a Lie group acting smoothly, freely, and properly on a manifold

M (on the left). Then the orbit space M/G has a unique smooth structure making it a

manifold of (real) dimension dimRM − dimRG such that the quotient map M → M/G is

a smooth submersion and a principal G-bundle.
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We will also need the following facts concerning the cohomological Leray–Serre spectral

sequence associated to a fibration.

Proposition 2.5 (Naturality of the Leray–Serre Spectral Sequence). Suppose R is a com-

mutative ring, and

F E B

F ′ E′ B′

i

f

π

e b

i′ π′

is a morphism of fibrations in which B,B′ are path-connected and π1(B), π1(B′) act trivially

on H∗(F ;R),H∗(F ′;R) respectively. Let Ep,qk and E′ p,q
k denote the terms in the Leray–Serre

spectral sequences associated to the top and bottom fibrations respectively. Then

(a) There are induced maps ep,qk : E′ p,q
k → Ep,qk that commute with the differentials. More-

over, ep,qk+1 is the induced map on homology by ep,qk .

(b) The maps ep,q2 : Hp(B′,Hq(F ′;R))→ Hp(B,Hq(F ;R)) coincide with the maps induced

by b and f .

This can be found in Section 23.1 of [FF16].

Remark 2.6. As a special case of (a), when the incoming and outgoing differentials for the

terms Ep,qk , E′ p,q
k are all 0, then ep,qk = ep,qk+1.

Remark 2.7. As a special case of (b), the map e0,q
2 : Hq(F ′;R) → Hq(F ;R) coincides with

f∗. If F and F ′ are connected, the map ep,02 : Hp(B′;R)→ Hp(B;R) coincides with b∗.

2.2 Connectivity of the Complement of an Algebraic Set

We set out to prove Proposition 2.19, which says that, given a closed subvariety Z ↪→ ANC
of codimension d > 0, the complement ANC \Z is (2d−2)-connected. That is, the homotopy

groups πi(ANC \Z) are trivial for i ≤ 2d−2. Though this fact is well known, I have not been

able to find it in the literature outside of the lecture notes [Ful07]. The proof given there is

attributed to David Speyer. Here, we present a proof modeled on that one; it is due to B.

Williams.

The following version of the Whitney Approximation Theorem is [Lee13, Theorem 6.26].

Theorem 2.8 (Whitney Approximation Theorem). Suppose f : N → M is a continuous

map where N is a manifold with boundary and M is a manifold. Suppose A ⊆ N is a

(possibly empty) closed subset such that f |A is smooth. Then f is homotopic relative to A

to a smooth map N →M .
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Definition 2.9. Suppose f, g : N →M are two smooth maps of manifolds with boundary.

A smooth homotopy from f to g is a map H : N × I → M that restricts to f and g at 0

and 1 respectively, and such that H extends to a smooth map on some open neighborhood

of N × I in N × R.

Lemma 6.28 in [Lee13] guarantees that smooth homotopy is an equivalence relation on

smooth maps N →M . The following is [Lee13, Lemma 6.29].

Lemma 2.10. Suppose f, g : N → M are two smooth maps that are homotopic relative to

some (possibly empty) closed set A ⊆ N . Then f and g are smoothly homotopic relative to

A.

Corollary 2.11 (Extension Lemma [Lee13, Corollary 6.27]). Suppose N is a manifold with

boundary and M is a manifold. Suppose A ⊆ N is a closed subset and f : N → M is

a smooth map. Then f has a smooth extension to N if and only if f has a continuous

extension to N .

Definition 2.12. Let M be a manifold with boundary and m0 ∈ M a basepoint. For

an integer n ≥ 0, let πsm
k (M,m0) denote the set of smooth homotopy classes of basepoint

preserving maps Sk →M .

Remark 2.13. There is a natural transformation πsm
k → πk. By Theorem 2.8, the map

πsm
k (M,m0)→ πk(M,m0) is surjective, and by Lemma 2.10, this map is injective. We can

therefore identify πsm
k (M,m0) with πk(M,m0).

Definition 2.14. Suppose N is a manifold with boundary, and M is a manifold. Suppose

f : N →M is a smooth map, A ⊆M is a submanifold, and C ⊆ N is a subset. The map f

is transverse to A on C if, for every x ∈ f−1A ∩ C,

Tf(x)A+ dfx(TxN) = Tf(x)M.

We say a f is transverse to A if f is transverse to A on N .

Lemma 2.15. Suppose N is a manifold with boundary of (real) dimension n, that M is

a manifold of (real) dimension m, and A ⊆ M is a submanifold of (real) dimension a.

Suppose f : N →M is a smooth map that is transverse to A. If m > n+a, then f−1A = ∅.

Proof. Suppose x ∈ f−1A. The vector space dfx(Tx(N)) has (real) dimension no larger

than n. So

m = dimR(Tf(x)Z + dfx(Tx(N)) ≤ a+ n < m,

a contradiction.
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We will also need the “Extension Theorem” in [GP74, p. 72].

Theorem 2.16 (Extension Theorem). Let N be a manifold with boundary and M be a

manifold, and suppose A ⊆ M is a closed submanifold. Suppose f : N → M is a smooth

map and C ⊆ N is a closed subset such that f is transverse to A on C and f |∂N is transverse

to A on C ∩ ∂N . Then there exists a smooth map g : N →M , homotopic to f , such that g

is transverse to A, g|∂N is transverse to A, and g agrees with f on a neighborhood of C.

Definition 2.17. A map f : (X,x0) → (Y, y0) of pointed spaces is an n-equivalence if the

induced map

f∗ : πk(X,x0)→ πk(Y, y0)

is an isomorphism for k < n and is surjective for k = n. A pointed space (X,x0) is

n-connected if πk(X,x0) is trivial for k ≤ n.

Proposition 2.18. Let M be a manifold of dimension m and A ⊆M a submanifold of real

codimension d > 1. Let m0 ∈ M \ A be a basepoint. Then the inclusion i : M \ A → M is

a (d− 1)-equivalence.

Proof. Following Remark 2.13, we may compute πk(M \Z,m0) and πk(M,m0) using smooth

basepoint preserving maps modulo smooth homotopy.

Suppose k ≤ d−1. Let [f ] ∈ πk(M,m0) be a class represented by a smooth map f : Sk →
M . Using Theorem 2.16, with C the basepoint of Sk, we may assume f is transverse to A.

By Lemma 2.15, we have f(Sk) ∩ A = ∅ so that f factors as Sk
f̄−→ M \ A i−→ M . Then

[f̄ ] ∈ πk(M \A,m0) is a class mapping to [f ] under i∗. This shows that i∗ is surjective.

Suppose 0 < k < d−1. Let [f ] ∈ πk(M \Z,m0) be a class represented by a smooth map

f : Sk →M \ Z such that i∗[f ] is trivial. We show that [f ] is trivial. Since [i ◦ f ] is trivial,

there is a map F : Dk+1 → M restricting to i ◦ f on Sk = ∂Dk+1. By way of the Whitney

Approximation Theorem, we may replace F by a smooth map F ′ such that F ′ also restricts

to i ◦ f on Sk. Then, using Theorem 2.16 with N = Dk+1 and C = Sk, we may replace F ′

by a smooth map F ′′ : Dk+1 → M such that F ′′|Sk = i ◦ f and F ′′ is transverse to A. By

Lemma 2.15 again, it follows that F ′′(Dk+1)∩A = ∅. The existence of such an F ′′ implies

that f is homotopic to the constant map at m0 relative to m0.

We have left to show π0(M \Z,m0)→ π0(M,m0) is injective. Suppose x, y ∈M \Z are

two points in the same component of M . Then there is a path γ : I →M from x to y. Using

the Whitney Approximation Theorem, replace γ by a smooth path γ′ from x to y. Then

using Theorem 2.16 with N = I and C = ∂I, we may replace γ′ by a smooth path γ′′ that

is transverse to A. Since d > 1, the image of γ and Z do not intersect by Lemma 2.15.

Proposition 2.19. Let Z ↪→ ANC be a closed subvariety of codimension d > 0. Then the

inclusion ANC \Z → ANC is a (2d−1)-equivalence. In particular, ANC \Z is (2d−2)-connected.

6



Proof. There exists a stratification of Z with smooth strata of weakly increasing dimension

[Whi65]. By induction on the stratification index, it suffices to treat the case Z ↪→ M is

a smooth, closed subvariety of codimension d. That is, Z ↪→ M is a real codimension 2d

submanifold of the manifold M . This case is handled by Proposition 2.18.

2.3 The Gysin Sequence

We refer to the long exact sequence of Theorem 2.26 as the Gysin sequence. The word “the”

here is maybe misleading, as various other long exact sequences in cohomology go under

the same name in the literature. In this thesis, the Gysin sequence refers to a long exact

sequence in cohomology associated to a closed inclusion N → M of manifolds that relates

the cohomology of N , M , and M \N . We present a slightly different construction from that

of [Dol80, Proposition 12.1], which constructs the sequence for topological manifolds. The

Gysin sequence here is constructed in the smooth setting, which has the added bonus of

making the naturality statement, Proposition 2.29, more apparent as one can make sense of

transverse intersections. The analogous sequence for various oriented motivic cohomology

theories is known as the localization sequence, where questions of naturality are perhaps

better understood (or at least better referenced. See, for instance, [Pan09]).

In this section, all cohomology groups are computed with coefficients in an arbitrary

commutative ring R; we suppress coefficients. For a pair (X,X−Y ), we denote the relative

cohomology group Hn(X,X − Y ) by Hn(X|Y ).

Let M be a manifold. For a submanifold A ⊆M , define the normal bundle NA/M → A

to be the unique vector bundle up to isomorphism fitting into the short exact sequence

0→ TA→ TM |A → NA/M → 0

of vector bundles over A.

Definition 2.20. A tubular neighborhood of a submanifold A ⊆ M is a pair (φ, V ) where

φ : NA/M → M is a smooth embedding such that V = φ(NA/M ) is an open neighborhood

of A and

NA/M M

A

φ

i0

commutes, where i0 is the zero section.

Note that V inherits a vector bundle structure V → A via the diffeomorphism φ : NA/M →
V with zero section the inclusion A ↪→ V . The Tubular Neighborhood Theorem [Hir76,

Theorem 5.2] guarantees the existence of a tubular neighborhood for A ⊆M .

7



Notation 2.21. For a given tubular neighborhood (φ, V ), we will sometimes refer to the

open neighborhood V of A as a “tubular neighborhood.”

Definition 2.22. Suppose E → A and E′ → A′ are vector bundles and f : A′ → A is a

smooth map of manifolds. A map f̃ : E′ → E is a map of vector bundles over f if

E′ E

A′ A

f̃

f

commutes and the restriction f̃p : E′p → Ef(p) to the fibre over p is linear for each p ∈ A′.
We say that f̃ is a fibrewise isomorphism of vector bundles over f if f̃ restricts to a linear

isomorphism on the fibers.

Remark 2.23. A word of warning: in [Hir76], a fibrewise isomorphism over a map f is

referred to as a “vector bundle map over f .”

We will also need the following version of the Thom Isomorphism Theorem.

Theorem 2.24 (The Thom Isomorphism Theorem [MS16, Theorem 10.4]). Suppose π : E →
B is an oriented rank-d vector bundle. Identifying B with the image of the zero section,

there is a unique class τ ∈ Hd(E|B) such that:

(a) τ restricts to the orientation generator in Hd(Ep|p) for each p ∈ B
(b) The map α 7→ α ^ τ yields an isomorphism Hk(E) → Hk+d(E|B) for each k, where

^ is the relative cup product Hk(E)×Hl(E|B)→ Hk+l(E|B).

Notation 2.25. The retraction π induces an isomorphism π∗ : Hn(B) → Hn(E) for each

n. In what follows, we will refer to the isomorphism (− ^ τ)π∗ : Hn(B) → Hn+d(E|B) as

the Thom Isomorphism and denote it ΦE .

Theorem 2.26 (The Gysin Sequence). Suppose A is a closed, oriented submanifold of the

oriented manifold M . There is a long exact sequence

· · · Hk−d(A) Hk(M) Hk(M −A) Hk+1−d(A) · · ·

where d is the real codimension of A in M .

Proof. Choose a tubular neighborhood (φ, V ) of A ⊆ M . Following the convention in

[BT82, p.66], the orientations on A and M induce an orientation on the normal bundle

NA/M → A. The diffeomorphism φ : NA/M → V then induces an orientation on the vector

bundle V → A, so we have a specified Thom isomorphism ΦV : Hk(A) → Hk+d(V |A). In

8



the long exact sequence in cohomology for the pair (M,M−A), replace the terms Hk(M |A)

by Hk(V |A) via excision. We obtain the long exact sequence

· · · Hk(V |A) Hk(M) Hk(M −A) Hk+1(V |A) · · · .

Replacing the terms Hk(V |A) with Hk−d(A) via the Thom isomorphism ΦV , we have the

desired long exact sequence.

We now turn to showing that, at least in a special case, the Gysin sequence is natural

with respect to transverse intersections. To this end, we will need the technical Lemma 2.27.

For a given orthogonal structure on NA/M , one can construct a closed disk subbundle

of radius ε:

Dε(NA/M ) = {(a, v) ∈ NA/M : |v| ≤ ε}.

If (φ, V ) is a tubular neighborhood of A, we define a closed disk subbundle of V → A to be

φ(Dε(NA/M )) for some ε > 0. Note that an orthogonal structure on NA/M always exists.

The following is Theorem 4.6.7 in [Hir76].

Lemma 2.27. Let f : N → M be a smooth map of manifolds, and A ↪→ M a closed,

embedded submanifold. Assume f is transverse to A. Given tubular neighborhoods U of

A′ = f−1A and V of A, and a closed disk subbundle D ⊆ U such that f(D) ⊆ V , there

exists a homotopy ht from f to h such that:

(a) h|D is the restriction of a fibrewise isomorphism of vector bundles U → V over f |A′.
(b) ht = f on A′ ∪ (N − U) for each t ∈ I.

(c) h−1
t (M −A) = N −A′ for each t ∈ I.

Remark 2.28. In [Hir76], it is assumed that the submanifold A is compact, but that as-

sumption is not used in the proof.

Proposition 2.29 (Naturality of the Gysin Sequence). Let A,N be orientable, closed,

embedded submanifolds of the orientable manifold M intersecting transversely in a point

p. Let i : N ↪→ M be the inclusion. Then there is an induced map of Gysin sequences: a

commutative diagram

· · · Hk−d(p) Hk(N) Hk(N − p) Hk+1−d(p) · · ·

· · · Hk−d(A) Hk(M) Hk(M −A) Hk+1−d(A) · · ·

i∗ i∗ i∗ i∗

where d is the real codimension of A in M (and p in N) and the vertical maps are all

induced by i.

9



Proof. The crux of the proof is showing that there exist tubular neighborhoods V of A and

U of p so that the composite

Hk−d(A) Hk(V |A) Hk(U |p) Hk−d(p)
ΦV i|∗U Φ−1

U

coincides with i|∗p for each k. The only difficulty here is when k = d.

Choose a tubular neighborhood (φ,NA/M ) of A, with V = φ(NA/M ), sufficiently small

so that U = i−1(V ) is a tubular neighborhood of p in N , an open ball about p. This is

possible since the intersection of N and A is transverse. Pick an orthogonal structure on

the vector bundle U → p to construct a disk subbundle D ⊆ U . Lemma 2.27 asserts that

there is some h, homotopic to i, satisfying (a)–(c) with respect to the disk bundle D. In

particular, h|D is the restriction of a fibrewise isomorphism ı̃ : U → V over i|p. The map ı̃

induces a vector bundle isomorphism

U i∗V = Vp

p

≈

over p. Since A and M are orientable, so is the normal bundle NA/M → A. Pick an

orientation on NA/M → A. The diffeomorphism φ : NA/M → V induces an orientation on

the vector bundle V → A, so we have a distinguished orientation generator up ∈ Hd(Vp|p).
Give U → p an orientation so that ı̃∗ : Hd(Vp|p) → Hd(U |p) sends up to the orientation

generator of Hd(U |p). Let τUp and τVA denote the Thom classes of the oriented vector

bundles U → p and V → A respectively. Then τUp ∈ Hd(U |p) is the orientation generator,

so that Hd(Vp|p)
ı̃∗−→ Hd(U |p) sends up to τUp .

Claim: i|∗U (τVA ) = τUp By the property (c) in Lemma 2.27, ht|D provides a homotopy

from i|D to h|D as maps of pairs (D,D − p) → (V, V − A). From the commuting diagram

of pairs

(U,U − p) (Vp, Vp − p)

(D,D − p) (V, V −A),

ı̃

'
h|D

we have

Hd(U |p) Hd(Vp|p)

Hd(D|p) Hd(V |A).

∼=

ı̃∗

h|∗D=i|∗D

The map Hd(V |A)→ Hd(Vp|p) sends τVA to the orientation generator up by part (a) of the
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Thom Isomorphism Theorem. Then ı̃∗(up) = τUp is sent to a generator α ∈ Hd(D|p) via the

leftmost map. So we have i|∗D(τVA ) = α. From the commutative diagram

Hd(U |p) Hd(V |A)

Hd(D|p)

∼=

i|∗U

i|∗D

it follows that i|∗U (τVA ) = τUp . This proves the claim.

The map of pairs (N,N−p) i−→ (M,M−A) induces a long exact sequence in cohomology:

· · · Hk(N |p) Hk(N) Hk(N − p) Hk+1(N |p) · · ·

· · · Hk(M |A) Hk(M) Hk(M −A) Hk+1(M |A) · · ·

i∗ i∗ i∗ i∗

(2.1)

The commuting square

(U,U − p) (V, V −A)

(N,N − p) (M,M −A)

i|U

i

induces a square in cohomology

Hk(U |p) Hk(V |A)

Hk(N |p) Hk(M |A)

i|∗U

∼= ∼=

i∗

(2.2)

where the vertical maps are isomorphisms by excision. Via the commuting square (2.2),

replace the maps Hk(M |A)
i∗−→ Hk(N |p) in (2.1) by Hk(V |A)

i∗−→ Hk(U |p).
The above claim shows that

H0(p) H0(A)

Hd(U |p) Hd(V |A)

ΦU

i∗

ΦV

i|∗U

commutes where the vertical maps are the respective Thom isomorphisms. For each k, the
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square

Hk(p) Hk(A)

Hk+d(U |p) Hk+d(V |A)

ΦU

i∗

ΦV

i|∗U

commutes. Replacing Hk+d(V |A)
i|∗U−−→ Hk+d(U |p) in the long exact sequence by Hk(A)

i∗−→
Hk(p) via this commuting square, we obtain the desired diagram.
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Chapter 3

Basic Properties of Ur
n(C) and Br

n(C)

Let k be a field. We say that a set S ⊆ Matn(k) generates a subalgebra A ⊆ Matn(k), or

simply S generates A , if A is the smallest k-subalgebra of Matn(k) containing S.

Notation 3.1. Let U rn(C) denote the set

{(A1, . . . , Ar) ∈ Matrn(C) : {A1, . . . , Ar} generates Matn(C)}

and let Zrn(C) = Matrn(C) \ U rn(C).

If n > 1 and r > 1, then U rn(C) is nonempty since Matn(C) can be generated by two

elements; take the matrices

A =


0

...

0

1

· · ·

0

0

. . .

· · ·

0

...

0
 , B =


0

...

0

1

0

0

1

0

0

· · ·

. . .

· · ·

1

0

0

...

0

1


.

Any matrix with a 1 in some entry and 0s elsewhere is of the form BkABl, and such matrices

taken together generate Matn(C). However, if n > 1 and r = 1, then U rn(C) is empty

since the algebra that a single element generates is commutative—a proper subalgebra of

Matn(C). And if n = 1, any element of Matrn(C) generates Matn(C). To avoid these

pathologies, we will assume r > 1 and n > 1 in what follows.

For an arbitrary field k, note that after choosing the standard basis of kn, the algebra

Matn(k) can be identified with the algebra of linear endomorphisms of kn.

Notation 3.2. Let S ⊆ Matn(k) be a subset. We will say that the matrices A ∈ S have a

common invariant subspace if there is a proper, nontrivial linear subspace invariant under
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each A ∈ S. That is, there is a linear subspace L ⊆ kn of dimension m, with 1 ≤ m ≤ n−1,

such that

AL ⊆ L

for each A ∈ S. If the matrices in S have a common invariant subspace, we will also

occasionally say the set S has an invariant subspace.

We will make repeated use of the following classical theorem due to Burnside. An

elementary proof can be found in [LR04].

Theorem 3.3 (Burnside’s Theorem). Let k be an algebraically closed field and n > 1. A

set S ⊆ Matn(k) generates the matrix algebra Matn(k) if and only if the matrices in S do

not have a common invariant subspace.

Remark 3.4. The assumption that k is algebraically closed is necessary. For instance, let

S = {A1, A2} where A1, A2 are two rotation matrices in R2. These two matrices have no

common 1-dimensional eigenspaces, and the algebra they generate is commutative.

Proposition 3.5. The subspace Zrn(C) ↪→ Matrn(C) is Zariski closed.

Proof. This proof is due to Z. Reichstein. There are countably many monomials {pi}∞i=1 in

r non-commuting variables. An r-tuple Ā = (A1, . . . , Ar) ∈ Matrn(C) does not generate the

matrix algebra Matn(C) if and only if the matrices pi(A1, . . . , Ar) do not span Matn(C) as

a vector space. That is,

dim(span(p1(Ā), p2(Ā), . . . , pm(Ā))) ≤ n2 − 1 (3.1)

for every m ≥ 1. This is a Zariski closed condition in Matrn(C) for each m. Indeed, (3.1) is

equivalent to the n2 ×m matrix (
p1(Ā) · · · pm(Ā)

)
having rank ≤ n2 − 1, which is a Zariski closed condition in Matn2×m(C), and the map

Matrn(C)→ Matn2×m(C)

Ā 7→
(
p1(Ā) · · · pm(Ā)

)
is clearly regular. If Zm denotes the set of Ā ∈ Matrn(C) satisfying (3.1), then

Zrn(C) =
∞⋂
m=1

Zm .
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As a consequence of Proposition 3.5, the subspace U rn(C) is an open subvariety of

Matrn(C) and is, in particular, smooth. Our next aim is to show that the variety U rn(C) is

highly-connected (in a sense made precise by Corollary 3.9). The proof is just an application

of Proposition 2.19, so we need to compute the dimension of Zrn(C).

Lemma 3.6. The subspace

Σm = {(A1, . . . , Ar, L) ∈ Matrn(C)×Grm,n(C) : AiL ⊆ L for each i}

is Zariski closed in Matrn(C)×Grm,n(C) for m = 1, . . . , n− 1.

Proof. Let S → Grm,n(C) be the tautological bundle over the Grassmannian of m-planes in

Cn (with the Zariski topology) and T ′ → Grm,n(C) be the trivial bundle of complex rank n.

Consider the short exact sequence 0→ S → T ′ → Q→ 0 of vector bundles over Grm,n(C).

If T is the trivial complex rank-n bundle over Matrn(C) × Grm,n(C), then for each

i = 1, . . . , r we have a vector bundle map

ψi : T → T

((A1, . . . , Ar), L, v) 7→ ((A1, . . . , Ar), L,Aiv).

Let π2 : Matrn(C) × Grm,n(C) → Grm,n(C) be the projection onto the second factor, and

consider the sequence of vector bundle maps

Ψ: (π∗2S)⊕r T⊕r T⊕r (π∗2Q)⊕r
(ψ1,...,ψr)

over Matrn(C) × Grm,n(C). Note that T ∼= π∗2T
′ as vector bundles; the first and last maps

of the composite Ψ are induced by pullback. Then (Ā, L) ∈ Σm if and only if Ψ(Ā,L),

the restriction of Ψ to the fibre above (Ā, L), is a rank-0 linear map. Since the map

rankΨ : Matrn(C) × Grm,n(C) → Z given by (Ā, L) 7→ rank Ψ(Ā,L) is lower semicontinuous

and Matrn(C)×Grm,n(C) is endowed with the Zariski topology, the subspace Σm is Zariski

closed in Matrn(C)×Grm,n(C).

Lemma 3.7. The variety Σm is irreducible

Proof. Let π1 and π2 denote the restrictions of π1 : Matrn(C) × Grm,n(C) → Matrn(C) and

π2 : Matrn(C)×Grm,n(C)→ Grm,n(C) to Σm respectively. LetXm = π1(Σm): the subvariety

of Zrn(C) consisting of those r-tuples that have an invariant m-dimensional linear subspace.
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We have a commuting diagram

Σm

Matrn(C)×Grm,n(C) Grm,n(C)

Xm

Matrn(C)

π1

π2

π2

π1

The group PGLn(C) acts on Matn(C) (on the left) by conjugation, say g · A = gAg−1

for definiteness, and on Grm,n(C) in the usual way. Endow Matrn(C) × Grm,n(C) with the

diagonal action. The variety Σm is invariant under this action: if a linear subspace L

is invariant under a matrix A, then gL is invariant under gAg−1 for any g ∈ PGLn(C).

Observe that the map π2 is PGLn(C)-equivariant with respect to these actions.

Now, consider the space of n × n matrices that have L0 = 〈e1, . . . , em〉 as an invariant

linear subspace. Thus is readily seen to be isomorphic to An
2−m(n−m)

C . Hence the fibre

F = π−1
2 (L0) is isomorphic to Ar(n

2−m(n−m))
C . Since the action is transitive on Grm,n(C),

the map π2 is surjective and the fibres are all isomorphic. Moreover, the restriction of the

action map F ×PGLn(C)→ Σm is surjective. Since the source of this map is an irreducible

variety, Σm is irreducible.

Proposition 3.8. The dimension of Zrn(C) is rn2 − (r − 1)(n− 1).

Proof. First we compute the dimension of Σm. There is a Zariski dense open U ⊆ Grm,n(C)

over which π2 is flat. Hence the dimension of π−1
2 U is

dimF + dim Grm,n(C) = r(n2 −m(n−m)) +m(n−m)

= rn2 −m(r − 1)(n−m).

Since Σm is irreducible, the Zariski closure of π−1
2 U is Σm so that

dim Σm = rn2 −m(r − 1)(n−m).

Next we compute the dimension of the irreducible component Xm = π1(Σm) of Zrn(C).

To see thatXm is in fact closed in Zrn(C), note that since Grm,n(C) is compact, the projection
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π1 is a closed map. We also have

Zrn(C) =
n−1⋃
m=1

Xm

as a consequence of Burnside’s theorem (this is another proof that Zrn(C) ↪→ Matrn(C) is

Zariski closed).

Let V1 ⊆ Matrn(C) be the Zariski open subset consisting of r-tuples (A1, . . . , Ar) such

that the matrix A1 has distinct eigenvalues. Note that V1 is in fact Zariski open since

an r-tuple is in V1 if and only if the discriminant of the characteristic polynomial of A1

is nonzero. The variety V1 meets Xm: any r-tuple of diagonal matrices such that the

first matrix has distinct eigenvalues has an invariant m-dimensional linear subspace. So

Xm ∩ V1 is Zariski dense in Xm. Since a matrix with distinct eigenvalues has finitely many

invariant linear subspaces, the restriction of π1 to π−1
1 (Xm ∩ V1) has finite fibres. It follows

from Grothendieck’s version of Zariski’s Main Theorem [Mum88, p. 289] that the varieties

π−1
1 (Xm ∩V1) and Xm ∩V1 have the same dimension. These two varieties are Zariski dense

and open in Σm and Xm respectively, so Σm and Xm have the same dimension. We see

that the largest-dimensional irreducible components of Zrn(C) are X1 and Xn−1, each of

dimension rn2 − (r − 1)(n− 1).

Corollary 3.9. The variety U rn(C) is (2(r − 1)(n− 1)− 2)-connected.

Proof. Apply Proposition 2.19 to the codimension-(r − 1)(n− 1) inclusion

Zrn(C) ↪→ Matrn(C) ∼= Arn
2

C .

We see in particular that the connectedness of U rn(C) increases with r. As previously

mentioned, the group PGLn(C) acts on Matrn(C) by simultaneous conjugation:

g · (A1, . . . , Ar) = (gA1g
−1, . . . , gArg

−1).

The open subvariety U rn(C) ↪→ Matrn(C) is invariant under this action. This follows from

the observation that if an r-tuple of linear endomorphisms has no invariant subspace in

the standard basis, then that r-tuple has no invariant subspace in any basis representa-

tion. Moreover, the PGLn(C)-action on U rn(C) is free. Indeed, if g ∈ PGLn(C) fixes some

(A1, . . . , Ar) ∈ U rn(C), then conjugation by g fixes any polynomial in the Ais. Since the Ais

are generating, g must be the identity element.
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Let Br
n(C) denote the orbit space U rn(C)/PGLn(C) endowed with the quotient topology.

We wish to show that the quotient map U rn(C) → Br
n(C) is a principal PGLn(C)-bundle.

In light of Corollary 2.4, all we have left to show is that the action is proper.

Proposition 3.10. The action of PGLn(C) on U rn(C) is proper.

Proof. It suffices to show that, for any compact K ⊆ U rn(C), the set

PGLn(C)K = {g ∈ PGLn(C) : K ∩ g ·K 6= ∅}

is compact [Lee13, Proposition 21.5].

Claim: PGLn(C)K ⊆ PGLn(C) is closed. Let (gm) be a sequence in PGLn(C)K con-

verging to g′ ∈ PGLn(C). For each m, there is some xm ∈ K such that gm · xm ∈ K. Since

K is compact, some subsequence (xmh) converges to x′ ∈ K. Consider the (continuous)

map

Θ: PGLn(C)× U rn(C)→ U rn(C)× U rn(C)

(g, x) 7→ (g · x, x)

The sequence (gmh , xmh) converges to (g′, x′) while the sequence Θ(gmh , xmh) = (gmh ·
xmh , xmh) is in the compact set K ×K and converges to Θ(g′, x′) = (g′ · x′, x′) ∈ K ×K.

In particular, g′ · x′ ∈ K ∩ g′ ·K. This proves the claim.

For each Ā = (A1, . . . , Ar) ∈ K, we construct a function fĀ as follows. Let Eij be the

n× n matrix with 1 in the (i, j)th entry and 0 elsewhere. Since Ā is generating, there are

polynomials pĀij such that Eij = pĀij(A1, . . . , Ar). Put

fĀ = (pĀ11, p
Ā
12, . . . , p

Ā
nn) : U rn(C)→ Matn(C)n

2 ≈ Matn2(C).

The identification Matn(C)n
2 ≈ Matn2(C) here is such that the ith coordinate of Matn(C)n

2

corresponds to the ith column of the matrices in Matn2(C). If Vn2,n2(C) denotes the

Stiefel manifold of n2-frames in Cn2
(this is simply GLn2(C)), then fĀ(Ā) ∈ Vn2,n2(C),

as the matrices Eij form a basis for the vector space Matn(C). Since fĀ is continu-

ous and Vn2,n2(C) ⊆ Matn(C)n
2

is open, there is a neighborhood WĀ of Ā such that

fĀ(WĀ) ⊆ Vn2,n2(C). Finitely many open sets WĀ1
, . . . ,WĀl

cover K. Write Wi = WĀi

and fi = fĀi .

Consider the function

f = (f1, . . . , fl) : U rn(C)→ Matn2(C)l ≈ Matn2×ln2(C).

For every Ā ∈ K, there is some i ∈ {1, . . . , l} such that fi(Ā) ∈ Vn2,n2(C). Hence f(Ā) is
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full-rank. This is to say that the image of K under f lies in the Stiefel manifold Vn2,ln2(C).

Note that the group GL(Matn(C)) ∼= GLn2(C) acts on Vn2,ln2(C) properly, the quotient

being the Grassmannian Grn2,ln2(C).

It is not difficult to see that the set of invertible linear maps T : Matn(C)→ Matn(C) sat-

isfying T (AB) = T (A)T (B) for every A,B ∈ Matn(C) is closed in GL(Matn(C)). Phrased

differently, this says that the action of PGLn(C) on Matn(C) by conjugation gives rise to a

closed embedding ρ : PGLn(C) ↪→ GL(Matn(C)).

Next, consider the sets

PGLn(C)f(K) = {g ∈ PGLn(C) : f(K) ∩ ρ(g) · f(K) 6= ∅},

GL(Matn(C))f(K) = {g ∈ GL(Matn(C)) : f(K) ∩ g · f(K) 6= ∅}.

One can check that

f(g · Ā) = ρ(g) · f(Ā)

for any Ā ∈ K and g ∈ PGLn(C). This follows from the fact that the polynomials pĀiij that

make up the components of f satisfy a similar equation. The inclusion

PGLn(C)K ⊆ PGLn(C)f(K)

follows. We also have

PGLn(C)f(K) = GL(Matn(C))f(K) ∩ PGLn(C).

From the claim and the fact that PGLn(C) ⊆ GL(Matn(C)) is closed, the subset

PGLn(C)K ⊆ GL(Matn(C))f(K)

is closed. Since the action of GL(Matn(C)) on Vn2,ln2(C) is proper, the set GL(Matn(C))f(K)

is compact.

Corollary 3.11. The map U rn(C)→ Br
n(C) is a principal PGLn(C)-bundle, and Br

n(C) is

a manifold of real dimension 2n2(r − 1) + 2.

Proof. Apply Corollary 2.4.

Proposition 3.12. There is a (2(r − 1)(n− 1)− 1)-equivalence Br
n(C)→ BPGLn(C).

Proof. Consider the long exact sequence in homotopy groups associated to the delooping

U rn(C) → Br
n(C) → BPGLn(C). Note that each of the spaces appearing in this sequence
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are path-connected (r > 1 and n > 1). Since πi(U
r
n(C)) = 0 for i ≤ 2(r− 1)(n− 1)− 2, the

result follows.
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Chapter 4

The Cohomology of Ur
2 (C)

The goal of this chapter is to compute the singular cohomology groups H∗(U r2 (C);Z) in the

range ∗ ≤ 4r − 7. The computation uses many of the tools discussed in Chapter 2.

Notation 4.1. Let U(r) = U r2 (C) and Z(r) = Zr2(C) = Matr2(C) \ U r2 (C).

We begin with a few definitions:

• T (r)—the set of r-tuples (A1, . . . , Ar) ∈ Matr2(C) such that the Ais pairwise commute:

[Ai, Aj ] = 0 for each i, j ∈ {1, . . . , r}.
• Mo(r) = Matr2(C) \ T (r).

• W (r) = Z(r)\T (r), those r-tuples (A1, . . . , Ar) ∈ Z(r) that do not pairwise commute:

there are some i, j ∈ {1, . . . , r} such that [Ai, Aj ] 6= 0.

• K(r)—the set of r-tuples (A1, . . . , Ar) ∈ Matr2(C) such that
⋂r
i=1 kerAi is 1-dimen-

sional.

Recall that Z(r) is a closed subvariety of Matr2(C). We have T (r) ⊆ Z(r) since the algebra

generated by a pairwise-commuting r-tuple is commutative, a proper subalgebra of Mat2(C).

Also, T (r) is a closed subvariety of Matr2(C); the condition that the matrices in an r-tuple

commute is Zariski closed. Then W (r) is also a variety since it is (Zariski) locally closed in

Matr2(C).

There is another characterization of W (r). An r-tuple (A1, . . . , Ar) lies in W (r) if

and only if the Ais share a unique common 1-dimensional eigenspace and do not pairwise

commute. To see this, note that any r-tuple in W (r) must have a common eigenvector

as a consequence of Burnside’s Theorem. If an r-tuple has two common 1-dimensional

eigenspaces, then the matrices are simultaneously diagonalizable, and so the r-tuple lies in

T (r).

Proposition 4.2. The space K(r) is a quasi-affine C-variety.
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Proof. Let U = Matr2(C) \ {0̄}. Consider the incidence variety

Σ = {((A1, . . . , Ar), L) ∈ U × P1
C : AiL = 0 for each i}.

As one can check, the condition AiL = 0 is Zariski closed, so Σ is a closed subvariety of

U × P1
C. Since P1

C is compact, the projection U × P1
C → U is a closed map of varieties. The

image of Σ under this projection is K(r). Hence K(r) is Zariski closed in U .

Proposition 4.3. There is a regular map p : W (r)→ P1
C which sends an r-tuple (A1, . . . , Ar)

to its unique invariant line.

Proof. We exhibit p as the composition of two regular maps W (r)
f−→ K(

(
r
2

)
)
g−→ P1

C. First,

consider the map f : W (r)→ Mat
(r2)
n (C) given by

(A1, . . . , Ar) 7→ ([A1, A2], [A1, A3], . . . , [Ar−1, Ar]).

We claim that f factors as W (r)→ K(
(
r
2

)
) ↪→ Mat

(r2)
n (C). If (A1, . . . , Ar) ∈W (r) and L is

the common 1-dimensional eigenspace to the Ais, then L ⊆ ker[Ai, Aj ] for each i < j. And

for some i < j, the commutator [Ai, Aj ] is nonzero, so ker[Ai, Aj ] is 1-dimensional. Hence,

L =
⋂
i<j

ker[Ai, Aj ].

The map f is clearly regular.

Next, consider the map g : K(r) → P1
C which sends an r-tuple (B1, . . . , Br) to the line⋂r

i=1 kerBi. We need to show that g is regular. Let Ui = {[z0 : z1] ∈ P1
C : zi = 1} be the

standard open cover of P1
C, and suppose coordinates for K(r) are given by(

a1 b1

c1 d1

)
, . . . ,

(
ar br

cr dr

)
.

An r-tuple B̄ = (B1, . . . , Br) lies in g−1U0 if and only if e2 /∈
⋂r
i=1 kerBi, which is to say

that bi 6= 0 for some i or di 6= 0 for some i. Note that g−1U0 is Zariski open. On the set

D(bi) = {B̄ ∈ K(r) : bi 6= 0}, define p by B̄ 7→ [1 : −ai/bi], and on D(di), define p by

B̄ 7→ [1 : −ci/di]. On D(bi), the matrix Bi is nonzero, and [1 : −ai/bi] is the unique line in

kerBi. Similarly for D(di). So the maps are well defined and agree on intersections since

they each pick out the unique line
⋂r
i=1 kerBi. This defines g as a regular map on g−1U0.

Similarly, define g on D(ai) by B̄ 7→ [−bi/ai : 1], and on D(ci) by B̄ 7→ [−di/ci : 1]. This

defines g as a regular map on g−1U1, and these definitions agree on g−1U0 ∩ g−1U1.

Proposition 4.4. There is a fibre bundle F → W (r)
p−→ P1

C in the category of C-varieties,
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where F is isomorphic to the variety of upper triangular matrices that do not pairwise

commute.

Proof. The map p is PGL2(C)-equivariant, where PGL2(C) acts on P1
C in the usual way.

Since the action is transitive on P1
C, the fibres are all isomorphic to the fibre F = p−1([1 : 0]):

those r-tuples (A1, . . . , Ar) ∈W (r) where each Ai is upper triangular. Note that F is Zariski

open in the variety of r-tuples of upper triangular matrices.

We construct an isomorphism of varieties p−1U0 → F × U0 over U0. There is a map of

varieties h : U0 → PGL2(C) given by

[1 : x] 7→

[
1 0

−x 1

]
.

Let φ be the composition

p−1U0 p−1U0 × U0 p−1U0 × PGL2(C) F
id×p id×h a

where a is the action map ((A1, . . . , Ar), g) 7→ (gA1g
−1, . . . , gArg

−1). One can check that

an r-tuple in the image of φ has e1 as an eigenvector. Then

φ× p : p−1U0 → F × U0

gives the desired isomorphism. If h′ = ih, where i : PGL2(C) → PGL2(C) is the inversion

map, then

F × U0 F × PGL2(C) p−1U0
id×h′ a

provides an inverse for φ× p. The proof that p−1U1
≈−→ F × U1 over U1 is similar.

Proposition 4.5. The variety W (r) is smooth.

Proof. The fibre F is smooth since it is an open subvariety of the variety of r-tuples of

upper triangular matrices, which is isomorphic to A3r
C . The fibre bundle constructed above

shows that W (r) admits an open covering by two smooth varieties: p−1U0 and p−1U1, each

isomorphic to F × A1
C.

An outline of the computation of H∗(U(r);Z) in the range ∗ ≤ 4r−7 is as follows. After

discarding the high-codimension locus T (r) from Matr2(C), we are left with the highly-

connected variety Mo(r). By means of the Leray–Serre spectral sequence associated to the

fibre bundle F → W (r)→ CP 1, we compute H∗(W (r);Z) in a range. The Gysin sequence

associated to the inclusion W (r) ↪→ Mo(r) then relates the cohomology of W (r), Mo(r),

and Mo(r) \W (r) = U(r).
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Lemma 4.6. The dimension of T (r) is 2r + 2.

Proof. Let Yi be the open subvariety of T (r) consisting of r-tuples (A1, . . . , Ar) ∈ T (r) such

that the minimal and characteristic polynomials of Ai coincide; i.e., Ai is nonscalar. We

claim that if (A1, . . . , Ar) ∈ Yi, then Aj commutes with Ai if and only if Aj can be written

as a polynomial in Ai of degree at most 1. To see this, consider the ring R = C[t]/mAi(t)

where mAi(t) is the (degree 2) minimal polynomial of Ai. The vector space C2 has R-module

structure, where p(t) ∈ R acts by v 7→ p(Ai)v. Since Aj commutes with Ai, the matrix

Aj defines an R-module endomorphism of C2. And since the minimal polynomial and the

characteristic polynomial of Ai coincide, C2 is a cyclic R-module. Hence any R-module

endomorphism of C2 is given by multiplication by some r ∈ R, which is to say that Aj is a

polynomial in Ai of degree at most 1.

Let S ⊆ Mat2(C) be the closed subvariety of scalar matrices. There is a map of varieties

(Mat2(C) \ S)× (A2
C)r−1 → Yi given by

(Ai, (a1, b1), . . . , (̂ai, bi), . . . , (ar, br)) 7→ (a1Ai + b1I2, . . . , Ai, . . . , arAi + brI2)

where the “hat” indicates an omitted entry and I2 is the identity matrix. The discussion

in the previous paragraph makes it clear that this map is a bijection. The source of this

map, being an open subvariety of affine space, is irreducible, so Yi is also irreducible. As a

consequence of generic flatness, we have

dimYi = dim(Mat2(C) \ S)× (A2
C)r−1 = 4 + 2(r − 1) = 2r + 2.

Hence the Zariski closure Y i ⊆ T (r) has dimension 2r + 2. The complement of
⋃r
i=1 Yi in

T (r) is the irreducible component of T (r) consisting of r-tuples of scalar matrices. This

component has dimension r. We have exhausted the irreducible components of T (r); the

result follows.

Lemma 4.7. The variety Mo(r) is (4r − 6)-connected.

Proof. Apply Proposition 2.19 to the inclusion T (r) ↪→ Matr2(C).

Proposition 4.8. For r ≥ 3, the cohomology groups Hi(W (r);Z), in the range i ≤ 2r − 4,

are given by

Hi(W (r);Z) ∼=

Z i = 0, 2

0 otherwise (with i ≤ 2r − 4) .

Proof. Identify the variety of upper triangular matrices with A3r
C . By a similar argument

as in the proof of Lemma 4.6, the dimension of A3r
C \ F is 3 + 2(r − 1) = 2r + 1. By

Proposition 2.19, the variety F is (2r − 4)-connected so that H̃ i(F ;Z) = 0 for i ≤ 2r − 4.
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A portion of the E2 page of the Leray–Serre spectral sequence associated to the fibration

F →W (r)→ CP 1 is

2r − 4 0 0 0 0 · · ·
...

...
...

...
...

1 0 0 0 0 · · ·

0 Z 0 Z 0 · · ·

0 1 2 3 · · ·

(here we are using the r ≥ 3 assumption). The differentials dk on succeeding pages with

source or target in the range p+ q ≤ 2r − 4 are all zero, so Ep,q2
∼= Ep,q∞ in this range. This

yields the result.

Proposition 4.9. For r ≥ 3, the cohomology groups Hi(U(r);Z), in the range i ≤ 4r − 7,

are given by

Hi(U(r);Z) ∼=

Z i = 0, 2r − 3, 2r − 1

0 otherwise (with i ≤ 4r − 7) .

Proof. As a consequence of Lemma 4.7, H̃ i(Mo(r);Z) = 0 for i ≤ 4r − 6. Note also

that Mo(r), being an open subvariety of Matr2(C), is smooth and has dimension 4r. The

variety F is an open subvariety of A3r
C and so has dimension 3r. From the fibre bundle

F → W (r) → P1
C, we see that the dimension of W (r) is 3r + 1. Hence W (r) has real

codimension 2r − 2 in Mo(r). Since W (r) ↪→ Mo(r) is a closed inclusion of smooth C-

varieties, there is a Gysin sequence

· · · Hk−(2r−2)(W (r)) Hk(Mo(r)) Hk(Mo(r) \W (r))

Hk+1−(2r−2)(W (r)) Hk+1(Mo(r)) · · ·

Noting that Mo(r) \W (r) = U(r), the result follows.
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Chapter 5

The Cohomology of Br
2(C)

For r ≥ 3, we compute the singular cohomology groups Hi(Br
2(C);Q) in the range i ≤ 4r−7

via the Leray–Serre spectral sequence associated to a fibration. The fibration in question

is U r2 (C) → Br
2(C) → BPGL2(C), which is obtained by delooping the principal PGL2(C)-

bundle PGL2(C)→ U r2 (C)→ Br
2(C).

Notation 5.1. We let B(r) denote Br
2(C). Throughout this chapter, all cohomology groups

are taken with rational coefficients, and we suppress coefficients.

The computation breaks into two parts. Section 5.1 is concerned with the case when r

is odd and Section 5.2 the case when r is even.

To begin, the inclusion SO(3) ≈ PU2 ↪→ PGL2(C) is a homotopy equivalence, so the

induced map BSO(3) = BPU2 → BPGL2(C) is a homotopy equivalence. Also,

H∗(BSO(3)) ∼= Q[p1]

where |p1| = 4. This follows from a result in [Bro82], where the cohomology groups

of BSO(3) are computed with integer coefficients. Note also that BPGL2(C) is simply-

connected since PGL2(C) is path-connected, so the system of local coefficients on BPGL2(C)

is simple. For the purpose of these computations, we will restrict our attention to terms

Ep,qk with p+ q ≤ 4r − 7.
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5.1 Case 1: r odd

Theorem 5.2. When r is odd,

Hi(B(r)) ∼=


Q i ≤ 2r − 6 and i ≡ 0 (mod 4)

Q 2r − 1 ≤ i ≤ 4r − 7 and i ≡ 1 (mod 4)

0 otherwise with i ≤ 4r − 7 .

The terms on the second page of the Leray–Serre spectral sequence associated to U(r)→
B(r)→ BPGL2(C) are given by

Ep,q2 = Hp(BPGL2(C))⊗Q Hq(U(r)).

A portion of the E2-page is thus

4r − 7

...

2r − 1 Q Q · · · Q Q

2r − 2

2r − 3 Q Q · · · Q Q · · ·
...

0 Q Q · · · Q Q

0 4 · · · 2r − 2 2r + 2

d2r−2

where the empty entries are 0. The first differentials with nontrivial source and target in

the range p + q ≤ 4r − 7 occur on the E2r−2-page, so Ep,q2 = Ep,q2r−2 in this range. We

compute the differential d2r−2 : E0,2r−3
2r−2 → E2r−2,0

2r−2 .

The First Comparison. Embed S1 ↪→ C as complex numbers of modulus 1. There is a

closed inclusion of Lie groups ρ : S1 ↪→ PGL2(C) given by z 7→
[
1 0

0 z

]
. This yields a free

action of S1 on U(r), where z ∈ S1 acts by((
a1 b1

c1 d1

)
, . . . ,

(
ar br

cr dr

))
7→

((
a1 z∗b1

zc1 d1

)
, . . . ,

(
ar z∗br

zcr dr

))
. (5.1)

By Corollary 2.4, S1 → U(r) → U(r)/S1 is a principal S1-bundle. The morphism of
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fibrations
PGL2(C) U(r) B(r)

S1 U(r) U(r)/S1

ρ

induces a morphism of deloopings

U(r) B(r) BPGL2(C)

U(r) U(r)/S1 BS1.

Bρ

The Second Comparison. Let M be the subset of Matr2(C) consisting of r-tuples where

the last matrix is

(
1 0

0 −1

)
. Suppose

Ā =

((
a1 b1

c1 d1

)
, . . . ,

(
ar−1 br−1

cr−1 dr−1

)
,

(
1 0

0 −1

))

is an r-tuple in M . The only possible 1-dimensional eigenspaces common to each of the

matrices are 〈e1〉 and 〈e2〉, as these are the eigenspaces of the last matrix. Hence, Ā ∈
U(r) ∩M if and only if c̄ = (c1, . . . , cr−1) ∈ Cr−1 \ {0̄} and b̄ = (b1, . . . , br−1) ∈ Cr−1 \ {0̄}.
From (5.1), it is clear that U(r) ∩M is invariant under the S1-action. Moreover, as an

open subset of M ≈ C4r−4, the space U(r)∩M is a manifold. From Corollary 2.4 it follows

that S1 → U(r) ∩M → (U(r) ∩M)/S1 is a principal S1-bundle. We obtain a fibration

U(r) ∩M → (U(r) ∩M)/S1 → BS1 such that, if i : U(r) ∩M → U(r) is the inclusion, the

diagram

U(r) U(r)/S1 BS1

U(r) ∩M (U(r) ∩M)/S1 BS1

i

commutes.

The Final Comparison. There is a deformation retraction from U(r)∩M onto a subspace

homeomorphic to S2r−3 × S2r−3 given by((
a1 b1

c1 d1

)
, . . . ,

(
ar−1 br−1

cr−1 dr−1

)
,

(
1 0

0 −1

))
7→((

(1− t)a1
b1

1+t(|b|−1)
c1

1+t(|c̄|−1) (1− t)d1

)
, . . . ,

(
(1− t)ar−1

br−1

1+t(|b|−1)
cr−1

1+t(|c̄|−1) (1− t)dr−1

)
,

(
1 0

0 −1

))
.
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Let f : U(r) ∩M → S2r−3 × S2r−3 be the retract at t = 1. The product S2r−3 × S2r−3

carries an S1-action given by z · (b̄, c̄) = (zb̄, z∗c̄). Evidently, f is equivariant with respect

to this action. Let π1, π2 be the two (equivariant) projection maps S2r−3 × S2r−3 → S2r−3

onto the first and second factors respectively. The quotient of the action of S1 on S2r−3 in

either case is CP r−2, and the S1-equivariant map π1f induces a morphism of fibrations

U(r) ∩M (U(r) ∩M)/S1 BS1

S2r−3 CP r−2 BS1.

π1f
(5.2)

With all of our comparisons in hand, we now work backwards to compute d2r−2. Let

EM p,q
k , dM

k denote the terms and differentials in the spectral sequence associated to the

top fibration, and let ES p,q
k , dS k denote the terms and differentials in the spectral sequence

associated to the bottom fibration in (5.2). The EM
2-page is given by

4r − 6 Q Q · · · Q
...

2r − 3 Q⊕Q Q⊕Q · · · Q · · ·
...

0 Q Q · · · Q

0 1 2 · · · 2r − 2

dM
2r−2

We see that the first possibly nontrivial differential is on the EM
2r−2-page. Identify

EM 0,2r−3
2r−2 = H2r−3(U(r)∩M) with H2r−3(S2r−3)⊕H2r−3(S2r−3) via the Künneth formula.

Lemma 5.3. The differential dM
2r−2 : EM 0,2r−3

2r−2 → EM 0,2r−2
2r−2 sends (β, γ) to a generator

provided β 6= −γ.

Proof. First we show that dM
2r−2 is nonzero. Let eS,M p,q

k : ES p,q
k → EM p,q

k be the map of

spectral sequences induced by (5.2). We have that eS,M 0,2r−3
2 = (π1f)∗, and eS,M 2r−2,0

2 =

idH2r−2(BS1) by Proposition 2.5. Portions of the E2 (and E2r−2) pages of the two spectral
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sequences, with the maps eS,M 0,2r−3
2 and eS,M 2r−2,0

2 indicated, are given by

4r − 6 Q Q · · · Q
...

2r − 3 Q⊕Q Q⊕Q · · · Q⊕Q
...

0 Q Q · · · Q

0 1 2 · · · 2r − 2

2r − 3 Q Q · · · Q
...

0 Q Q · · · Q

0 1 2 · · · 2r − 2

H∗(S2r−3)

H∗(BS1)

H∗(U(r) ∩M)

H∗(BS1)
(π1f)∗

id

dM
2r−2

dS 2r−2

Note that eS,M 0,2r−3
2r−2 = eS,M 0,2r−3

2 = (π1f)∗ and eS,M 2r−2,0
2r−2 = eS,M 2r−2,0

2 = idH2r−2(BS1) by

Remark 2.6. Up to homotopy, the map π1f is the projection S2r−3 × S2r−3 → S2r−3 onto

the first factor. If α is a generator of H2r−3(S2r−3), the induced map on cohomology sends

α to (α, 0). The spectral sequence for the lower fibration converges to H∗(CP r−2), which

is trivial in degrees ∗ ≥ 2r − 3, so dS 2r−2 : ES 0,2r−3
2r−2 → ES 2r−2,0

2r−2 is an isomorphism. We see

that dM
2r−2 sends (α, 0) to a generator of EM 2r−2,0

2r−2 .

Since the kernel of dM
2r−2 is 1-dimensional, to prove the lemma it is enough to show

that dM
2r−2(β, γ) = dM

2r−2(γ, β) for any β, γ ∈ H2r−3(S2r−3), as this would imply that

ker dM
2r−2 = 〈(α,−α)〉. Let σ : U(r) ∩M → U(r) ∩M be the map

((
a1 b1

c1 d1

)
, . . . ,

(
ar−1 br−1

cr−1 dr−1

)
,

(
1 0

0 −1

))
7→((
a1 c∗1
b∗1 d1

)
, . . . ,

(
ar−1 c∗r−1

b∗r−1 dr−1

)
,

(
1 0

0 −1

))
.

It is a simple check that σ is S1-equivariant, so we have a commuting diagram

U(r) ∩M (U(r) ∩M)/S1 BS1

U(r) ∩M (U(r) ∩M)/S1 BS1.

σ
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There is an induced self-map of the spectral sequence EM ; in particular, the square

EM 0,2r−3
2r−2 EM 2r−2,0

2r−2

EM 0,2r−3
2r−2 EM 2r−2,0

2r−2

σ∗

dM
2r−2

id

dM
2r−2

(5.3)

commutes. The map S2r−3 → S2r−3 given by (a1, . . . , ar−1) 7→ (a∗1, . . . , a
∗
r−1) induces the

trivial map on cohomology since it is the composition of an even number of reflections. So

σ induces the same map on cohomology as the map S2r−3 × S2r−3 → S2r−3 × S2r−3 that

interchanges factors. That is, σ∗ : H2r−3(U(r) ∩M)→ H2r−3(U(r) ∩M) also interchanges

factors. From the commutativity of (5.3), we have dM
2r−2(β, γ) = dM

2r−2(γ, β).

Denote the terms and differentials for the spectral sequence associated to U(r) →
U(r)/S1 → BS1 by EU p,q

k and dU k respectively.

Lemma 5.4. The differential dU 2r−2 : EU 0,2r−3
2r−2

∼= Q→ Q ∼= EU 2r−2,0
2r−2 is an isomorphism.

Proof. We have EU p,q
2 = Hp(BS1)⊗Q Hq(U(r)), so a portion of the EU 2-page is

4r − 7

...

2r − 1 Q Q Q · · · Q

2r − 2

2r − 3 Q Q Q · · · Q · · ·
...

0 Q Q Q · · · Q

0 1 2 3 4 · · · 2r − 2

dU 2r−2

We see that the first possibly nontrivial differential in the range p + q ≤ 4r − 7 is on the

EU 2r−2-page.
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The second comparison

U(r) U(r)/S1 BS1

U(r) ∩M U(r) ∩M/S1 BS1

i (5.4)

gives rise to a morphism of spectral sequences eU,M p,q
k : EU p,q

k → EM p,q
k . By naturality,

eU,M 0,2r−3
2r−2 = i∗ : H2r−3(U(r))→ H2r−3(U(r)∩M), and eU,M 2r−2,0

2r−2 = idH2r−2(BS1). We have

a commuting diagram

EU 0,2r−3
2r−2

∼= Q Q ∼= EU 2r−2,0
2r−2

EM 0,2r−3
2r−2

∼= Q⊕Q Q ∼= EM 2r−2,0
2r−2 .

i∗

dU 2r−2

∼=
dM

2r−2

Thus dU 2r−2 is an isomorphism provided the image of a generator δ under i∗ is not of the

form (β,−β) for some β ∈ H2r−3(S2r−3). This is accomplished by the following lemma.

Lemma 5.5. The map i∗ : H2r−3(U(r))→ H2r−3(U(r)∩M) sends a generator δ to (β, γ),

where γ 6= −β.

Proof. First we show that i∗ is nonzero by exploiting naturality of the Gysin sequence.

Following the notation of Chapter 4, there is an inclusion ̃ : Cr−1 → Mo(r) → Matr2(C)

given by

(b1, . . . , br−1) 7→

((
0 b1

1 0

)
,

(
0 b2

0 0

)
, . . . ,

(
0 br−1

0 0

)
,

(
1 0

0 −1

))
.

Indeed for an r-tuple in im ̃ , the first and last matrices do not commute, so im ̃ ⊆Mo(r).

Recall that W (r) ↪→Mo(r) is a closed inclusion of smooth C-varieties. We claim there is a

pullback square

{0̄} W (r)

Cr−1 Mo(r).

y

̃

For any b̄ ∈ Cr−1 \ {0̄}, we have ̃ (b̄) ∈ U(r) = Mo(r) \W (r); as long as one of the bis is

nonzero, the matrices in ̃ (b̄) do not share an eigenvector. Also, the matrices in the r-tuple

̃ (0̄) share the eigenvector e2 (and do not pairwise commute), so ̃ (0̄) ∈ W (r). Hence,

̃−1W (r) = {0̄}.
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Next we need to verify that the map ̃ is transverse to W (r). Let g : (−ε, ε)→W (r) be

a smooth path such that g(0) = ̃ (0̄). Write g as

t 7→

((
a1(t) b1(t)

1 + c1(t) d1(t)

)(
a2(t) b2(t)

c2(t) d2(t)

)
, . . . ,

(
ar−1(t) br−1(t)

cr−1(t) dr−1(t)

)
,

(
1 + ar(t) br(t)

cr(t) dr(t)− 1

))

for some smooth functions ai, bi, ci, di : (−ε, ε) → R2 ≈ C that all evaluate to 0 at t = 0.

The map ̃ is transverse to W (r) if, for all such paths, b′i(0) = 0 for i ∈ {1, . . . , r − 1}.
Recall from Chapter 4 that there is a smooth map p : W (r) → CP 1 that sends an r-tuple

to its unique invariant 1-dimensional eigenspace. We may assume that the image of g lies

in p−1U1, where U1 = {[z0 : 1] ∈ CP 1} ≈ C. The composition p ◦ g is a smooth path, given

explicitly by t 7→ [µ(t) : 1] for some smooth path µ in C such that µ(0) = 0. Requiring that

the first matrix in g(t) has [µ(t) : 1] as an eigenvector is equivalent to

a1µ+ b1 = (1 + c1)µ2 + d1µ,

where we have dropped the variable t. After taking a derivative and evaluating at t = 0, we

find that b′1(0) = 0. Similarly, requiring that the ith matrix in g(t), for i ∈ {2, . . . , r − 1},
has [µ(t) : 1] as an eigenvector is equivalent to

aiµ+ bi = ciµ
2 + diµ.

Again we find that b′i(0) = 0 after taking a derivative and evaluating at t = 0.

The inclusions {0̄} ↪→ Cr−1 and W (r) ↪→ Mo(r) are both closed, codimension-(r − 1)

inclusions of smooth C-varieties. Let j denote the restriction of ̃ to Cr−1 \ {0̄}. A portion

of the induced map on Gysin sequences (Proposition 2.29) is

0 H2r−3(Cr−1 \ {0̄}) H0(pt) 0

H2r−3(Mo(r)) H2r−3(U(r)) H0(W (r)) H2r−2(Mo(r)).

∼=

̃ ∗ j∗2r−3
̃ |∗{0̄} ∼= ̃ ∗

Recall that Mo(r) is (4r − 6)-connected and W (r) is connected (Lemma 4.7 and Proposi-

tion 4.8 respectively). So the map H2r−3(U(r)) ∼= Q → Q ∼= H0(W ) is an isomorphism. It

follows that j∗2r−3 is an isomorphism. Since j factors as Cr−1 \ {0̄} → U(r) ∩M i−→ U(r),

the map i∗2r−3 is nonzero.

Let δ be a generator of H2r−3(U(r)), and put i∗(δ) = (β, γ). We show that β = γ.

Consider the map η : U(r)→ U(r) given by conjugation by the matrix

[
0 1

−1 0

]
. Let −η be
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the composition of η with the antipodal map U(r)→ U(r). Explicitly, −η is the map((
a1 b1

c1 d1

)
, . . .

(
ar br

cr dr

))
7→

((
−d1 c1

b1 −a1

)
, . . . ,

(
−dr cr

br −ar

))
.

Observe that U(r) ∩M is invariant under −η. The two maps i ◦ −η|U(r)∩M and −η ◦ i
obviously coincide. Up to homotopy, −η|U(r)∩M is the map S2r−3 × S2r−3 → S2r−3 ×
S2r−3 that interchanges factors. Thus, in degree 2r − 3, the induced map −η|∗U(r)∩M also

interchanges factors. We have

(i ◦ −η|U(r)∩M )∗(δ) = −η|∗U(r)∩M (β, γ) = (γ, β).

On the other hand, since PGL2(C) is path-connected, the map η is homotopic to idU(r) (the

identity map can be thought of as conjugation by the identity matrix). In a similar vain,

the path-connected group C× acts on U(r) by scaling, so the antipodal map is homotopic

to idU(r). It follows that −η ' idU(r), so that

(−ηi)∗(δ) = i∗(δ) = (β, γ).

Recall that the terms and differentials for our original fibration U(r) → B(r) →
BPGLn(C) are denoted by Ep,qk and dk respectively.

Lemma 5.6. The differential d2r−2 : E0,2r−3
2r−2 → E2r−2,0

2r−2 is an isomorphism.

Proof. From the first comparison

U(r) B(r) BPGL2(C)

U(r) U(r)/S1 BS1

Bρ

we have a commuting square

E0,2r−3
2r−2 E2r−2,0

2r−2

EU 0,2r−3
2r−2 EU 2r−2,0

2r−2

d2r−2

∼= Bρ∗

dU 2r−2

where all objects are isomorphic to Q. The differential dU 2r−2 is an isomorphism by

Lemma 5.4, so d2r−2 is an isomorphism.
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Suppose α is a generator of E0,2r−3
2r−2 . The class pk1 is a generator of E4k,0

2r−2, so αpk1 is

a generator of E4k,2r−3
2r−2 as a consequence of the multiplicative structure on the spectral

sequence. Then

d2r−2(αpk1) = d2r−2(α)pk1 + (−1)2r−3αd2r−2(pk1) = d2r−2(α)pk1

is a generator of E4k+2r−2,0
2r−2 since d2r−2(α) is a generator of E2r−2,0

2r−2 . In other words, the

differential d2r−2 : E4k,2r−3
2r−2 → E4k+2r−2,0

2r−2 is an isomorphism for every k ≥ 0. The relevant

portion of the E2r−1-page is thus

4r − 7

...

2r − 1 Q Q · · · Q Q Q · · ·

2r − 2

2r − 3 0 0 · · · 0 0 0 · · ·
...

0 Q Q · · · Q 0 0 · · ·

0 4 · · · 2r − 6 2r − 2 2r + 2

p+ q ≤ 4r − 7

(5.5)

where some zeros are added for clarity. For any of the nonzero terms under the dashed

line, all outgoing differentials on succeeding pages have trivial target, and all incoming

differentials on succeeding pages have trivial source. So Ep,q2r−1 = Ep,q∞ in the range p+ q ≤
4r − 7. We can now read off the terms Hi(B(r)) =

⊕
p+q=iE

p,q
∞ , for i ≤ 4r − 7, from (5.5).

5.2 Case 2: r even

Theorem 5.7. When r is even,

Hi(B(r)) ∼=


Q i ≤ 2r − 4 and i ≡ 0 (mod 4)

Q 2r − 3 ≤ i ≤ 4r − 7 and i ≡ 1 (mod 4)

0 otherwise with i ≤ 4r − 7 .

The E2-page of the Leray–Serre spectral sequence associated to the fibration U(r) →
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B(r)→ BPGL2(C) is

4r − 7

...

2r − 1 Q Q · · · Q Q

2r − 2

2r − 3 Q Q · · · Q Q · · ·
...

0 Q Q · · · Q Q

0 4 · · · 2r 2r + 4

d2r

Note that the differentials d2r−2 : E4i,2r−3
2r−2 → E4i+2r−2,0

2r−2 have target 0 since 2r − 2 ≡
2 (mod 4). The first differentials with nontrivial source and target in the relevant range

occur on the E2r-page. We compute d2r : E0,2r−1
2r → E2r,0

2r .

There is an inclusion ir : U(r)→ U(r + 1) given by setting the last matrix equal to the

0 matrix. This map ir is clearly PGL2(C)-equivariant, so there is an induced morphism of

fibrations
U(r) B(r) BPGL2(C)

U(r + 1) B(r + 1) BPGL2(C).

ir

Denote the terms and differentials for the spectral sequence associated to the lower fibration

by E′ p,q
k and d′ k respectively. We have an induced map of spectral sequences E′ → E. In
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particular, the square in

4r − 7

...

2r − 1 Q Q · · · Q

2r − 3 Q Q · · · Q
...

0 Q Q · · · Q

0 4 · · · 2r

2r − 1 Q Q · · · Q

...

0 Q Q · · · Q

0 4 · · · 2r

H∗(U(r + 1))

H∗(BPGL2(C))

H∗(U(r))

H∗(BPGL2(C))

ir∗

id
d′ 2r

d2r

commutes. The differential d′ 2r is an isomorphism by Lemma 5.6, so both ir∗ and d2r are

isomorphisms. As before, this implies that the differentials d2r : E4i,2r−1
2r → E4i+2r,0

2r are

isomorphisms for every i ≥ 0. The E2r+1-page is thus

4r − 7

...

2r − 1 0 0 · · · 0 0 0 · · ·

2r − 2

2r − 3 Q Q · · · Q Q Q · · ·
...

0 Q Q · · · Q 0 0 · · ·

0 4 · · · 2r − 4 2r 2r + 4

p+ q ≤ 4r − 7

(5.6)

Again, for terms below the dashed line, all the incoming and outgoing differentials on

37



successive pages are trivial. So Ep,q2r+1 = Ep,q∞ for p+ q ≤ 4r − 7. The result follows.
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Chapter 6

The Number of Generators of a

Topological Azumaya Algebra

As mentioned in the introduction, the isomorphism

AutC-alg(Matn(C)) ∼= PGLn(C)

is a direct consequence of the Skolem–Noether theorem. With this isomorphism in mind,

we make the following definition.

Definition 6.1. Let X be a topological space. A topological Azumaya algebra of degree-n

over X is a fibre bundle A → X with structure group PGLn(C) and fibre Matn(C).

In other words, a topological Azumaya algebra is a (locally trivial) bundle of matrix

algebras over X.

Definition 6.2. A morphism of degree-n topological Azumaya algebras (f, f̃) from p : A →
X to p′ : A′ → Y is morphism of fibre bundles with fibre Matn(C) and structure group

PGLn(C). That is,

(i) The diagram

A A′

X Y

f̃

f

commutes.

(ii) For any trivializations (V, φ) and (V ′, φ′) of A → X and A′ → Y respectively such

that x ∈ V and f(x) ∈ V ′, the composite

{x} ×Matn(C) p−1(x) p′−1(f(x)) {f(x)} ×Matn(C)
φ−1 f̃ φ′
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is given by the action of some θφφ′(x) ∈ PGLn(C). Moreover, the assignment x 7→
θφφ′(x) defines a continuous map V ∩ f−1V ′ → PGLn(C).

Remark 6.3. As defined, a morphism of topological Azumaya algebras is a C-algebra isomor-

phism on the fibres. This definition is nonstandard. One might instead define a morphism

of topological Azumaya algebras to be a C-algebra endomorphism on the fibres. But since

Matn(C) is a simple ring, any map of C-algebras Matn(C)→ Matn(C) is an isomorphism.

Remark 6.4. A morphism of topological Azumaya algebras over the identity map is an

isomorphism of topological Azumaya algebras. This follows from the observations that such

a morphism of topological Azumaya algebras is, in particular, a map of rank-n2 complex

vector bundles which is a linear isomorphism on the fibres. And such a map of vector

bundles is a vector bundle isomorphism. It is not hard to see that the inverse map is not

only a vector bundle map, but a morphism of topological Azumaya algebras.

Let Azn(X) denote the set of isomorphism classes of degree-n topological Azumaya

algebras over X. There is a natural correspondence between Azn(X) and isomorphism

classes of principal PGLn(C)-bundles over X. If we suppose further that X is paracompact,

we are led to the natural correspondence

Azn(X) ∼= [X,BPGLn(C)].

For each r there is a map gr : Br
n(C) → BPGLn(C), well-defined up to homotopy, that

classifies the principal PGLn(C)-bundle U rn(C)→ Br
n(C). The motivating question in what

follows is: given a degree-n topological Azumaya algebra A → X classified by a map

X → BPGLn(C), what does it mean for that map to factor, up to homotopy, as X →
Br
n(C)

gr−→ BPGLn(C) for some r? Before addressing this question, we need a couple of

definitions.

Let p : A → X be a degree-n topological Azumaya algebra and suppose s1, . . . , sr are

(ordered) sections of p. We say that s1, . . . , sr are generating if, for any x ∈ X, the r-tuple

(s1(x), . . . , sr(x)) generates the fibre as a C-algebra. Precisely, the sections are generating

if, given any x ∈ X and any trivialization (V, φ) with x ∈ V :

p−1(V ) V ×Matn(C)

V

φ

≈

p π1

,

one has (φs1(x), . . . , φsr(x)) ∈ {x} × U rn(C) ≈ U rn(C). In this case, we will call the data of

(A → X, {si}ri=1) a topological Azumaya algebra over X with r generating sections. Two
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topological Azumaya algebras with r generating sections (A → X, {si}ri=1) and (A′ →
X, {s′i}ri=1) are isomorphic if there is an isomorphism of topological Azumaya algebras

A A′

X

h

such that

hsi = s′i

for each i.

Notation 6.5. We denote the set of isomorphism classes of degree-n topological Azumaya

algebras over X with r generating sections by Azrn(X). For topological spaces Y and Z, let

C (Y,Z) denote the set of continuous maps from Y to Z.

Proposition 6.6. Let X be a topological space. There is a natural bijective correspondence

C (X,Br
n(C)) ∼= Azrn(X).

Proof. First, we construct a function Φ: Azrn(X) → C (X,Br
n(C)). Let A → X be a topo-

logical Azumaya algebra equipped with r generating sections s1, . . . , sr. For each trivializing

neighborhood (Vj , φj), define a map fj : Vj → U rn(C) by x 7→ (φjs1(x), . . . , φjsr(x)). The

maps fj may not agree on intersections of trivializing neighborhoods, but they only dif-

fer by an element of the structure group PGLn(C). After composing with the projection

q : U rn(C) → Br
n(C), the maps agree on intersections of trivializing neighborhoods. Let

Φ(A → X, {si}ri=1) be the unique map X → Br
n(C) obtained from gluing the maps qfj .

Define Ψ: C (X,Br
n(C))→ Azrn(X) as follows. Let E = U rn(C)×PGLn(C) Matn(C) be the

quotient of U rn(C)×Matn(C) by the diagonal action, and let p : E → Br
n(C) be the topological

Azumaya algebra associated to the principal PGLn(C)-bundle q : U rn(C) → Br
n(C). The

map s̃i : U
r
n(C) → U rn(C) × Matn(C) given by Ā = (A1, . . . , Ar) 7→ (Ā, Ai) is PGLn(C)-

equivariant, so there is an induced map si on quotients. It is clear that the sections s1, . . . , sr

of p : E → Br
n(C) are generating. Given f : X → Br

n(C), let Ψ(f) be the pullback bundle

f∗E → X equipped with the sections f∗s1, . . . , f
∗sr. If we identify f∗E with a subspace of

X × E in the usual way, then f∗si is given by x 7→ (x, sif(x)). It is clear that that these

sections are also generating.

Φ ◦ Ψ = id. Given f : X → Br
n(C), we want to show that Φ(f∗E → X, {f∗si}ri=1)

coincides with the map f . Let x ∈ X, and set f(x) = [Ā] where Ā = (A1, . . . , Ar). Then

f∗si(x) = (x, sif(x)) = (x, [Ā, Ai]). Suppose (V, φ) is a trivializing neighborhood of x for
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the pullback bundle f∗E → X. Then, tracing through some definitions,

φ ◦ f∗si(x) = φ(x, [Ā, Ai]) = (x, g ·Ai)

for some g ∈ PGLn(C) that depends only on x. Hence, (φf∗s1(x), . . . , φf∗sr(x)) = (x, g ·Ā),

so Φ ◦Ψ(f) sends x to the class [g · Ā] = f(x).

Ψ ◦ Φ = id. Let p′ : A → X be a topological Azumaya algebra with r generating

sections t1, . . . , tr. Using the function Φ, construct the map f : X → Br
n(C). We want to

show that (A → X, {ti}ri=1) is isomorphic to (f∗E → X, {f∗si}ri=1) as topological Azumaya

algebras with r generating sections. Define a map f̃ : A → E on generators of the fibres by

ti(x) 7→ sif(x). We need to verify that this defines a map of topological Azumaya algebras

over f . Choose trivializations (φj , Vj) and (φ, V ) of A → X and E → X respectively.

The trivialization (φ, V ) is associated to a trivialization (φa, V ) for the principal PGLn(C)-

bundle q : U rn(C)→ Br
n(C):

q−1V V × PGLn(C)

V

q

φa

π1

.

For Ā ∈ q−1V , write φa(Ā) = ([Ā], gĀ). Then, by definition of the associated bundle,

φ : p−1V → V ×Matn(C) is the map [Ā, B] 7→ ([Ā], gĀ
−1.B).

First we verify (ii) of Definition 6.2. Suppose x ∈ Vj and f(x) ∈ V . Note that f(x) =

[fj(x)] = [(φjt1(x), . . . , φjtr(x))]. The composite

{x} ×Matn(C) p′−1(x) p−1(f(x)) {f(x)} ×Matn(C)
φ−1
j f̃ φ

is given by (x,B) 7→ (f(x), gfj(x)
−1.B). The map θφjφ : Vj ∩f−1V → PGLn(C) which sends

x to gfj(x)
−1 is continuous since it is the composite

Vj ∩ f−1V q−1V V × PGLn(C) PGLn(C) PGLn(C)
fj φa π2 i

where i is the inversion map.

To see (i) of Definition 6.2, observe that f̃ is given locally as the product of

fπ1 : Vj ∩ f−1V ×Matn(C)→ V
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with the function

Vj ∩ f−1V ×Matn(C) PGLn(C)×Matn(C) Matn(C),
θφjφ×id a

so f̃ is continuous.

The morphism of topological Azumaya algebras

A E

X Br
n(C)

f̃

f

induces a map h : A → f∗E which is an isomorphism of topological Azumaya algebras over

X by Remark 6.4. Moreover, f∗si(x) = (x, sif(x)) = (x, f̃ ti(x)) = hti(x). Naturality of Ψ

follows from naturality of the pullback construction (with sections).

Proposition 6.6 can be used to give obstructions to the generation of a topological Azu-

maya algebra by r sections in the following way. Suppose X is paracompact and A → X is

a topological Azumaya algebra classified by a map f : X → BPGLn(C). Suppose also that,

for some i, the induced map f∗ : Hi(BPGLn(C);R)→ Hi(X;R) is injective while the map

g∗r : Hi(BPGLn(C);R) → Hi(Br
n(C);R) is not injective (recall gr : Br

n(C) → BPGLn(C)

classifies the principal PGLn(C)-bundle U rn(C) → Br
n(C)). In light of Proposition 6.6, the

topological Azumaya algebra A → X can be generated by r global sections if and only if

the homotopy class of f factors through Br
n(C). We would then have a factorization of f∗

through a non-injective map, which is impossible.
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Chapter 7

Conclusion

After introducing the varieties U rn(C) and Br
n(C), we were able to show in Proposition 3.12

that the spaces Br
n(C) form homotopical approximations to the classifying space BPGLn(C).

Moreover, the quotient map U rn(C) → Br
n(C) is a principal PGLn(C)-bundle. Using the

techniques discussed in Chapter 2, we arrived at the computation

Hi(U r2 (C);Z) ∼=

Z i = 0, 2r − 3, 2r − 1

0 otherwise (with i ≤ 4r − 7) .

Then, assembling this data into the Leray–Serre spectral sequence associated to the fibration

U r2 (C)→ Br
2(C)→ BPGL2(C), we found that

Hi(Br
2(C);Q) ∼=


Q i ≤ 2r − 6 and i ≡ 0 (mod 4)

Q 2r − 1 ≤ i ≤ 4r − 7 and i ≡ 1 (mod 4)

0 otherwise with i ≤ 4r − 7

when r is odd. And when r is even,

Hi(Br
2(C);Q) ∼=


Q i ≤ 2r − 4 and i ≡ 0 (mod 4)

Q 2r − 3 ≤ i ≤ 4r − 7 and i ≡ 1 (mod 4)

0 otherwise with i ≤ 4r − 7 .

These latter two computations being the main technical results of this paper. The purpose of

these computations is twofold. On the one hand, the computations give an indication of how

well the spaces Br
2(C) approximate the classifying space BPGL2(C). Secondly, and perhaps

more importantly, by measuring non-injectivity of the map H∗(BPGLn(C))→ H∗(Br
n(C)),

one can give obstructions to the generation by r global sections of a topological Azumaya
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algebra over a paracompact space, as discussed in Chapter 6.

There is considerable literature devoted to bounding the minimal number of generators

of an algebra. This thesis fits in this context; the techniques of Chapter 6 can be carried out

in the algebraic setting to give bounds on the minimal number of generators of an Azumaya

algebra over a commutative ring in the sense of [AG60]. This is discussed in an upcoming

paper of B. Williams, U. First, and Z. Reichstein, where cohomological computations of the

varieties Br
n are considered for n ≥ 3. For more on this topic, see for instance [SW20] for

the case of étale algebras and [FR17] for techniques that apply to more general kinds of

algebras.
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