
Robust Estimation and Variable
Selection in High-Dimensional

Linear Regression Models
by

David Kepplinger

B.Sc., Vienna University of Technology, 2012
Dipl.-Ing., Vienna University of Technology, 2015

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Statistics)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)

August 2020

© David Kepplinger, 2020



The following individuals certify that they have read, and recommend to the Faculty of
Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Robust Estimation and Variable Selection in High-Dimensional Linear
Regression Models

submitted by David Kepplinger in partial fulfillment of the requirements for
the degree of Doctor of Philosphy in Statistics.

Examining Committee:

Gabriela V. Cohen Freue, Statistics

Supervisor

Matías Salibián-Barrera, Statistics

Supervisory Committee Member

Alexandre Bouchard-Côté, Statistics

University Examiner

Anne Condon, Bioinformatics

University Examiner

Additional Supervisory Committee Members:

Ruben H. Zamar, Statistics

Supervisory Committee Member

ii



Abstract

Linear regression models are commonly used statistical models for predicting a response
from a set of predictors. Technological advances allow for simultaneous collection of many
predictors, but often only a small number of these is relevant for prediction. Identifying
this set of predictors in high-dimensional linear regression models with emphasis on accurate
prediction is thus a common goal of quantitative data analyses. While a large number of
predictors promises to capture as much information as possible, it bears a risk of containing
contaminated values. If not handled properly, contamination can affect statistical analyses
and lead to spurious scientific discoveries, jeopardizing the generalizability of findings.

In this dissertation I propose robust regularized estimators for sparse linear regression
with reliable prediction and variable selection performance under the presence of contam-
ination in the response and one or more predictors. I present theoretical and extensive
empirical results underscoring that the penalized elastic net S-estimator is robust towards
aberrant contamination and leads to better predictions for heavy tailed error distributions
than competing estimators. Especially in these more challenging scenarios, competing ro-
bust methods reliant on an auxiliary estimate of the residual scale, are more affected by
contamination due to the high finite-sample bias introduced by regularization.

For improved variable selection I propose the adaptive penalized elastic net S-estimator.
I show this estimator identifies the truly irrelevant predictors with high probability as sample
size increases and estimates the parameters of the truly relevant predictors as accurately as
if these relevant predictors were known in advance. For practical applications robustness of
variable selection is essential. This is highlighted by a case study for identifying proteins to
predict stenosis of heart vessels, a sign of complication after cardiac transplantation.

High robustness comes at the price of more taxing computations. I present optimized
algorithms and heuristics for feasible computation of the estimates in a wide range of ap-
plications. With the software made publicly available, the proposed estimators are viable
alternatives to non-robust methods, supporting discovery of generalizable scientific results.
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Lay Summary

This dissertation presents new methods for identifying variables, such as protein levels
extracted from blood samples, relevant for predicting an outcome of interest, for example
severity of a disease. The methods are specifically designed for applications where many
variables are available, and the observed data possibly contains some highly unusual values.
Examples of such unusual values are aberrantly high levels of some proteins in a blood
sample, or an unusually severe disease outcome. These values can lead to biased and
misleading results.

The methods proposed in this dissertation are less affected by unusual values and hence
increase reliability of results. Therefore, results from a small set of observations are more
likely to be generalizable to the broader population. The software is made openly available
and gives researchers a versatile tool to support reliable scientific discoveries.
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Notation

Throughout this dissertation the following notation is consistently maintained. Chapter-
specific notation is omitted here and defined where required.

Boldface characters denote vectors or matrices, whereas non-boldface characters are
scalars. Capital characters in calligraphy typeface are reserved for random variables and
random vectors, whereas observed values of random variables are written in regular typeface.
Sets are denoted by capital characters in script typeface, e.g., Q. The index variable i is
only used to index observations in a sample, while j is reserved for indexing the set of
predictors. Some commonly used symbols are

Y The random response variable in the linear regression model.

X The random vector of predictors in the linear regression model.

U The random error term in the linear regression model.

yi The i-th observed response value.

xi The vector of observed predictor values for the i-th observation.

xij The value of the j-th predictor observed for the i-th observation.

X A matrix of observed predictor values, X = (x⊺
1, . . . ,x

⊺
n)⊺.

Z A sample, i.e., a set of observed values Z = {(y1,x1), . . . , (yn,xn)}.

The boldface Greek letter β and the non-boldface Greek letter µ are reserved for the
slope and intercept parameter, respectively, in the linear regression model. The boldface
Greek letter θ always denotes the concatenated vector of µ and β, θ = (µ,β⊺)⊺. Accents,
subscripts, and superscripts on θ are propagated to µ and β, e.g. θ̂ = (µ̂, β̂

⊺
)⊺. The total

number of predictors in the linear regression model is denoted by p, i.e., the parameter vector
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NOTATION

β has p elements, and the sample size is represented by n. Examples for such parameters
are

β0 The true value of the slope parameter in the linear regression model.

µ0 The true value of the intercept in the linear regression model.

θ̂ Estimate of the intercept and slope parameters in the linear regression model.

βj The j-th element of a vector of slope coefficients.

Additionally, the following miscellaneous symbols and functions are often encountered
in this dissertation:

In The identity matrix with n rows and n columns.

1n A vector of n 1’s.

R The set of real numbers.

Rn The set of real vectors of dimension n.

Rn×p The set of real matrices of dimension n× p.

EF The expected value with respect to distribution F .

‖ · ‖ A vector or operator norm (if applied to a vector or a matrix, respectively).

∇uf(u)|u=ũ
The subgradient of function f with respect to u, evaluated at ũ.

L (y, ŷ) A positive regression loss function taking values in R+, quantifying the dif-
ference between observed values y ∈ Rn and fitted values ŷ ∈ Rn.

Φ(β) A penalty function Rp → R+, measuring the “size” of coefficients β.

O(θ) An objective function mapping regression coefficients in Rp+1 to the set of
positive real numbers.

θ̂n
a.s.−−→ θ The random variable θ̂n converges almost surely to θ as the sample size n

increases, i.e., Pr(limn→∞ θ̂n = θ) = 1.

θ̂n
p−→ θ The random variable θ̂n converges in probability to θ as the sample size n

increases, i.e., limn→∞ Pr(‖θ̂n − θ‖ > ϵ) = 0 for any ϵ > 0.
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Glossary

The following acronyms are commonly used throughout. Each acronym is defined at its
first occurrence in the text.

adaEN Adaptive elastic net

ADMM Alternating direction method of multipliers

CAV Cardiac allograft vasculopathy

CV Cross-validation

DAL Dual augmented Lagrangian

EN Elastic net

FBP Finite-sample breakdown point

LASSO Least absolute shrinkage and selection operator

LARS Least angle regression

LS Least squares

LAD Least absolute deviation

LOO Leave-one-out

MAD Median absolute deviation

MSE Mean-square error

PENSE Penalized elastic net S-estimator

PSC Principal sensitivity component
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GLOSSARY

PVE Percentage of variance explained

PY Peña-Yohai procedure

RCV Refitted cross-validation

RMSPE Root mean-square prediction error

xvi



Acknowledgements

My journey through the PhD program would not have been as successful without the
support of truly remarkable people. I am grateful for the guidance by inspiring mentors,
first and foremost by my supervisor Dr. Gabriela Cohen Freue. Her dedication and support
has helped me to get where I am today, professionally and personally. Giving me autonomy
while ensuring I would not lose sight on what’s important has allowed me to grow as a
scholar and person. Her advice at professional and personal crossroads has been a godsend
and working together for the past five years has been nothing but inspiring. Of course, the
members of my supervisory committee have also been instrumental to this dissertation and
my development at UBC. Thanks to Dr. Matías Salibián-Barrera for his insightful input and
the many stimulating discussions. I also thank Dr. Ruben Zamar for sharing his profound
expertise and providing me with the opportunity to gain research experience in industry.

I count myself very lucky to have been part of the Department of Statistics which has
provided me with a rich learning experience and highly supportive environment. I greatly
appreciate Peggy Ng, Ali Hauschildt and Andrea Sollberger for their lifting spirits even
during stressful times and their grokking of the UBC apparatus. They were never too
busy to ask about my well-being and lending an open ear. Department-organized seminars,
department teas, and grad trips have provided opportunities to foster connections and
friendships. I am grateful to many other members of the department who I have been so
privileged to meet and who have shared their vast experience on numerous occasions, such
as Melissa Lee, Dr. Nancy Heckman, Dr. John Petkau, Dr. Paul Gustafson, and Dr. Will
Welch, among others. Furthermore, volunteer positions made available by the department,
such as graduate student representative and membership on search committees, have given
me valuable leadership skills and insights into academic processes. My studies have only
been made possible by generous funding from UBC through the Four-Year Fellowship and
Faculty of Science Graduate Awards. Dr. Cohen Freue and Dr. Zamar have also graciously
supported my studies through research assistantships. I could not have wished for a better

xvii



ACKNOWLEDGEMENTS

environment to pursue my doctorate.
I would have never made it to this point without the incredible support from my family.

My gratitude for my spouse Alexandra Patzak is immeasurable, for she has been a constant
source of inspiration and energy. I cannot find the words to express how lucky I am to
have her in my life and to have embarked on our PhD journeys together. I will also forever
be thankful to my mother Heidi and sister Sara for inciting and nurturing my curiosity,
teaching me the importance of education and candor, and for staying close to me (at least
virtually) wherever life took me. So did my grandmother Elisabeth, in her joyful way,
although I know she would have preferred me to stay closer to home. Her cryptic recipes
with little instructions have kept me well fed over the years. My uncle Dietmar I thank for
his take on teaching and the side-projects which have been a welcoming contrast to research.
I thank all of them for their efforts to follow my research, despite my struggles explaining
it in an accessible manner.

I will always cherish the memories I have made with the many uniquely wonderful peo-
ple I have come to know during my time at UBC. I will fondly remember the subtle sense
of humor of Eric Fu when he was updating me on everything that was going on in the de-
partment. I have also very much enjoyed my conversations with Creagh Briercliffe, who has
never felt obliged to hide his sarcastic, refreshingly indecorous, wit. Daniel Hadley’s incisive
analyses of society were thought-provoking, yet he managed that we (almost) always ended
up laughing. One of my proudest moments at UBC, thanks to our captain Daniel Dinsdale,
was winning the UBC departmental futsal division alongside fabulous teammates Jonathan
Agyeman, Jonathan Steif, Joe Watson, and Dr. Matías Salibián-Barrera. Although Derek
Cho left for a job in Japan before our victorious campaign, I also credit him for the win,
and thank him for explaining peculiarities of Vancouver’s culture or our conversations about
hockey. I thank Andy Leung for his inspiring integrity, for standing up for his friends and
colleagues, and for introducing me to exciting new flavors of Japanese and Chinese cuisine.
I have met numerous more people who have made my PhD studies unforgettable, such as
Sonja Isberg and Vincenzo Coia, among many others.

All of these people whose paths overlapped with mine over the past five years and more
made a unique impression on my dissertation and shaped me as a person. For this I am
forever grateful. Thank you all.

xviii



xix



Chapter 1

Introduction

The ability to predict a continuous response of interest using a set of predictors is central
to many scientific and industrial applications. Technological advances significantly pushed
the frontiers in science and industry by enabling the collection of immense numbers of
possibly relevant predictors. The scientific goal is two-fold: (a) predicting the response if
only the predictors’ values are available and (b) identifying which predictors are relevant,
particularly for accurate prediction. The relationship at the heart of the problem may be
highly complex, but a crude approximation by a linear relationship using a small set of
the available predictors can nevertheless give valuable insights into the involved processes
and allow for accurate prediction of the response. Approximations by a linear model are
pertinent in applications where the sample size is small, particularly if many predictors are
available. As an example, consider predicting yield of a crop based on numerous predictors
such as a variety’s genotype, nutrition content of the soil, and other environmental factors.
Collecting a large sample is complicated by several obstacles, such as the time required to
fully grow the crop, costs of measuring all possible predictors, but also continued cooperation
of growers who are willing to share their trade secrets.

The scientific goal translates to a statistical goal of estimating the parameters relating
the values of the predictors with the response, with emphasis on identifying which coeffi-
cients are truly non-zero. Assuming that only some of the available predictors are relevant
leads to the linear regression model being sparse in the sense that only these few relevant
predictors have non-zero coefficient. A myriad of methods is available for estimating pa-
rameters and simultaneously identifying relevant predictors in the sparse linear regression
model. These methods are predominantly founded in the assumption that all observations
in the sample at hand are equally trustworthy. The danger of this assumption is that even
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1. INTRODUCTION

a single contaminated observation, for instance an observation with aberrant response value
and/or highly anomalous values in one or more predictors, can jeopardize the reliability of
these methods and, in turn, the generalizability of the estimated predictive model. Contam-
ination can take countless forms, but contaminated observations are generated by unknown
processes different from the linear model underlying the majority of observations. The more
predictors are available, the more questionable the assumption of no contamination in the
sample at hand is, thereby exacerbating the risk of spurious discoveries.

Robust methods for linear regression, in contrast, are devised to cope with potential
presence of contamination. Robust methodology for problems with only a small number
of predictors is well established, but these solutions are challenged by characteristics inher-
ent to high dimensional data and the notion of sparse models. Therefore, robust methods
for simultaneous estimation and variable selection have not seen the same proliferation
as non-robust methods. One of the biggest roadblocks to applying robust methods in high
dimensional problems is computational complexity. Computation of robust estimates is dif-
ficult even in low dimensional settings, but as dimensions grow computational complexity
can become insurmountable. Furthermore, robust methods are devised under the assump-
tion that some of the observations may be contaminated. This inherent “mistrust” leads
in general to less precise parameter estimates compared to non-robust methods in pristine
settings without contamination. To compensate for this loss of efficiency, robust methods
are often two-tiered: first computing a highly robust but potentially imprecise estimate and
then refining this estimate to gain precision. The refinement step, however, is problematic
in high dimensions and can, in worst case scenarios, lead to the loss of robustness and hence
reliability. Last but not least, the interplay of sparsity and possible contamination adds a
layer of difficulty which received little attention in the existing literature.

The first two contributions of this dissertation are the development and study of two
robust estimators for high dimensional sparse linear regression. Both estimators are highly
robust towards possibly large amounts of contamination in the data and perform reliably
even in the most challenging situations where two-tiered robust estimators are at an elevated
risk of being unduly affected by contamination. Understanding the interaction between
sparsity and possible contamination provides important insights into its effect on estimators’
ability to identify these relevant predictors. Particularly in very sparse problems, i.e., where
only a small number of the available predictors are truly relevant for prediction, one of
the proposed robust estimators protects against an inflation of the number of irrelevant
predictors wrongly selected due to contamination.

2



1. INTRODUCTION

This work also sheds light onto the difficulty of performing refinement steps to improve
precision of robust estimators in high dimensional sparse problems. While justified theoreti-
cally for estimators without sparsity constraints, the theoretical foundation of the refinement
step crumbles when sparsity is induced. Furthermore, robustness of the refinement step is
contingent on an accurate estimate of the residual scale but obtaining this estimate in high
dimensions under contamination is difficult. Therefore, applying the refinement step in high
dimensions may jeopardize the reliability of the estimator.

The final main contribution is the adaptation and implementation of algorithms for
computing the proposed robust estimators of linear regression. Robust estimation poses
several computational challenges inherent to taming the influence of potentially contami-
nated observations. These challenges are especially taxing in the high dimensional problems
considered in this work. Analysis and rigorous optimization of the developed algorithms
curtails computational complexity and ensures feasibility of robust estimation in a wide
range of applications. These algorithms are made publicly available through an accessible
software package, paving the way for robust estimation to take a foothold in high dimen-
sional data analysis.

Broadly speaking this dissertation is concerned with robust estimation in high dimen-
sional linear regression models under the assumption that only some of the numerous avail-
able predictors are truly relevant for prediction, also known as the sparsity assumption.
The specific focus is on simultaneous parameter estimation and variable selection through
penalizing the size of non-zero coefficients, known as regularized estimation. Chapter 2
gives a comprehensive summary of the sparse linear regression model, the effects of con-
tamination, and robust estimation in low dimensional settings. The chapter continues by
outlining the benefits of the sparsity assumption in high dimensional linear regression and
how regularization induces sparsity in estimates and concludes with an overview of avenues
for fusing the sparsity assumption and robust estimation.

In Chapters 3 and 4, I present two robust regularized estimators for sparse linear regres-
sion. The estimator presented in Chapter 3, the penalized elastic net S-estimator (PENSE),
combines robust estimation via the S-loss for linear regression (Rousseeuw and Yohai 1984)
with the elastic net penalty (Zou and Hastie 2005) for variable selection. The chapter de-
lineates an elaborate scheme germane to locating global optima of the non-convex PENSE
objective function and establishes theoretical properties pertaining to robustness and asymp-
totic consistency of the estimator, highlighting its reliability even under challenging circum-
stances. Theoretical results, however, lack guidance for selecting hyper-parameters intro-
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duced with the elastic net penalty, governing sparsity and prediction performance of the
ensuing estimate. I discuss strategies for selecting hyper-parameters in practical applica-
tions and ascertain favorable finite-sample performance of PENSE in an extensive simulation
study. While empirical results underline the good prediction performance of PENSE, they
also expose shortcomings in its ability to screen out irrelevant predictors.

To improve upon the high false positive rate of PENSE, Chapter 4 introduces the adap-
tive PENSE estimator, combining the robust S-loss with the adaptive elastic net penalty
(Zou and Zhang 2009). Leveraging a preliminary PENSE estimate to penalize predictors
differently, adaptive PENSE is shown to possess the oracle property even under adverse
conditions. Asymptotically, the adaptive PENSE estimator correctly identifies all truly
irrelevant predictors with high probability and estimates the non-zero coefficients for the
truly relevant predictors as efficient as if they were known in advance. Importantly, vari-
able selection by adaptive PENSE is highly resilient against aberrant values in the truly
irrelevant predictors, whereas PENSE and other robust regularized estimators would falsely
identify the affected predictors as relevant. The improved robustness of variable selection
is important for practical applications. This is demonstrated by applying adaptive PENSE
to biomarker discovery for cardiac allograft vasculopathy, a common complication in heart
transplant recipients.

A common strategy for obtaining more accurate robust estimators is to refine a highly
robust, but possibly imprecise estimate. The strategy is successful in low dimensions but
proves less reliable in higher dimensions. The refinement step hinges on a robust scale of the
residuals from the initial, highly robust, fit. As Chapter 5 outlines, robust estimation of the
residual scale faces several challenges in high dimensions. While PENSE, adaptive PENSE,
and other highly robust regularized estimators perform well for prediction, the empirical
distribution of the residuals and robust estimates of the residual scale are severely biased in
finite samples with many predictors. The inflated bias can hamstring the refinement step
or, worse, make it susceptible to the influence of contamination. I present empirical results
demonstrating that existing remedies developed for de-biasing non-robust residual scale
estimates do not work well for robust estimates. This underlines the practical importance
of robust regularized methods which do not depend on robust estimates of the residual
scale, such as PENSE and adaptive PENSE.

The estimators proposed in this dissertation incur multiples of the computational costs
of comparable non-robust estimators. The algorithms and heuristics detailed in Chapter 6
are therefore paramount for ensuring applicability of the estimators to high dimensional
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problems. I adapt several algorithms for minimizing convex functions such that they can
be utilized to efficiently locate minima of non-convex robust objective functions. With this
variety of algorithms the range of problems amenable to robust regularized estimators is
expanded, enabling the use of (adaptive) PENSE in a wide range of problems. Especially
in conjunction with the need to select appropriate hyper-parameters, computational com-
plexity would balloon without the optimized algorithms developed for PENSE and adaptive
PENSE.
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Chapter 2

Background

In this chapter I formally introduce the linear regression model and outline several methods
to estimate the parameters in this model. I expose how some estimators of linear regression
are affected even by minor contaminations and in Section 2.2 I outline common strategies
to derive estimators that are robust against these contaminations. For applications where it
can be assumed that many of the available predictors are truly unrelated with the response
the methods in Section 2.2 are suboptimal. In Section 2.3 I discuss methods to estimate
the regression parameters while also identifying those “irrelevant” predictors and shed some
light on possible improvements in the presence of contamination.

2.1 The Linear Regression Model

As outlined in Chapter 1, the linear regression model discussed in this work assumes that
the value of a response variable Y (taking values in R) relates to the values of a random
vector of predictors X (taking values in Rp) through a linear function of the form

Y = µ0 +X ⊺β0 + U (2.1)

where µ0 ∈ R and β0 ∈ Rp are the true, unknown regression parameters, and U is a random
error following some distribution F0. To make the arguments in this work more concise,
θ0 ∈ Rp+1 denotes the concatenated parameter vector

(
µ0,β0⊺)⊺.

I assume that the random predictor vectorX is independent of U and follows distribution
H0. Therefore, the joint distribution G0 of (Y,X ) factorizes into the product

G0(y,x) = H0(x)F0(y − µ0 − x⊺β0). (2.2)
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It is important to highlight that so far, the only assumptions on the distributions is that U
is centered at zero and that X and U are independent.

Without any additional assumptions, the linear regression model (2.1) can be used to
relate the conditional expectation of the response to the predictors through a linear function.
Assuming the expected value EF0 [U ] = 0, independence of F0 and H0 leads to an expression
of the conditional expectation of the response in the form of

EF0 [Y|X = x] = µ0 + x⊺β0. (2.3)

If the parameters are known, this expression can be used to predict the value of the response
which can be expected given only observed values of the predictors.

In practice the true parameters are of course unknown. Using (2.3) for predicting the
response based only on observed values of the predictors therefore requires estimates of the
parameters. For estimating these parameters, it is assumed a sample of n > 0 independent
realizations of (Y,X ) is available. The observed sample is written as the vector-matrix
pair (y,X), where y = (y1, . . . , yn)

⊺ and X = (x1, . . . ,xn)
⊺. The observed response values

yi ∈ R and associated observed predictor values xi ∈ Rp, i = 1, . . . , n, are used to compute
estimates of the parameters according to some estimation method. The quality of these
estimates and thus the prediction can be assessed by analyzing the statistical properties of
the estimator, i.e., the random vector arising from applying the estimation method to the
random sample (Yi,X i), i = 1, . . . , n.

An important quality of an estimator is for the estimate to “be close” to the true
parameter value. Ideally, an estimator should be unbiased, EG0 [θ̂] = θ0, and have small
variance, EG0 [‖θ̂− θ0‖22]. Tolerating a small bias in finite-samples, however, can often lead
to an estimator with smaller variance. More important than unbiasedness is that both
bias and variance vanish as the sample size increases. This is the case if the estimator is
consistent for the true parameter, limn→∞ P(‖θ̂ − θ0‖ > ϵ) = 0 for every ϵ > 0, or even
strongly consistent, P(limn→∞ θ̂ = θ0) = 1. A consistent estimator may be biased in finite
samples but its bias and variance tend to 0 as the sample size increases.

Having a consistent estimator θ̂ and being able to derive the asymptotic distribution
of

√
n(θ̂ − θ0) enables statistical inference on the parameters and comparisons between

estimators. Of particular interest are estimators converging to a Normal distribution with
mean 0 and covariance matrix V(θ̂,θ0) which can be factorized into υ(θ̂,θ0)Ṽ(θ0), where
υ(θ̂,θ0) ∈ R. In case two estimators θ̂ and θ̃ converge to such a Normal distribution, they
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can be compared by the ratio of υ(θ̃,θ0) to υ(θ̂,θ0), i.e., the asymptotic relative efficiency
of θ̂. Usually, θ̃ is taken to be an estimator with small variance in a particular setting,
e.g., the maximum likelihood estimator (MLE), if it exists. Asymptotic relative efficiency
is useful for quantifying the costs incurred by an estimator θ̂ which, for example, requires
less stringent assumptions on the model than θ̃.

Asymptotic properties facilitate comparison between estimators but give limited insights
into the estimator’s qualities when the sample size n is small. Finite-sample properties,
on the other hand, are more useful assessments of the performance of an estimator in
practical applications, but at the same time are difficult to derive theoretically, except for
in a few special cases. For many regression estimators and model distributions G0, finite-
sample performance measures are therefore calculated through extensive simulations. With
prediction performance being of primary interest in this work, the mean squared prediction
error (MSPE) is an important measure of performance in finite-samples:

MSPE(θ̂, G0) := EG0

[(
Ỹ −

(
µ̂+ X̃ ⊺

β̂
))2]

= VarG0

[
Ỹ − µ̂− X̃ ⊺

β̂
]
+ EG0

[
Ỹ − µ̂− X̃ ⊺

β̂
]2
.

(2.4)

Here, the expectation is taken over the n observations in the sample used to estimate θ̂

as well as the “new” observation (Ỹ, X̃ ). The mean squared prediction has the intuitive
interpretation of the sum of the variance of the prediction error Ỹ−µ̂−X̃ ⊺

β̂ and its squared
bias. It can therefore be seen as an overall metric of prediction performance.

The MSPE can also be written as

MSPE(θ̂, G0) = EG0

[(
Ỹ −

(
µ̂+ X̃ ⊺

β̂
))2]

= EG0

[(
µ0 + X̃ ⊺

β0 + Ũ − µ̂+ X̃ ⊺
β̂
)2]

= EG0

[
Ũ2
]
+ 2EG0

[
Ũ
]
EG0

[
(µ0 − µ̂) + X̃ ⊺

(β0 − β̂)
]

+ EG0

[(
(µ0 − µ̂) + X̃ ⊺

(β0 − β̂)
)2]

.

The first term in the last line is the variance of the errors and the middle term is 0 because
the errors Ũ are centered and independent of the predictors. The final term is the mean
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squared error (MSE) of the estimator, defined by

MSE(θ̂, G0) := EG0

[
(µ̂− µ0)2

]
+ 2EG0

[
(µ̂− µ0)(β̂ − β0)⊺

]
EH0 [X̃ ]

+ EG0

[
(β̂ − β0)⊺EH0 [X̃ X̃ ⊺

](β̂ − β0)
]
.

(2.5)

This definition of the MSE from a prediction-based perspective (Maronna et al. 2019)
measures the overall estimation accuracy, taking into account the covariance among predic-
tors and their multivariate location. Comparable to the asymptotic relative efficiency, the
finite-sample efficiency of an estimator θ̂, defined as MSE(θ̃, G0)/MSE(θ̂, G0), facilitates
comparison of estimation accuracy between different estimators. Again, the estimator θ̃ is a
“gold standard”, e.g., the maximum likelihood estimator as defined below, and finite-sample
efficiency is desirable to be close to or even larger than 1.

Closely related to the MSE, the L2 estimation error EG0

[
‖θ̂ − θ0‖22

]
provides similar

information about the finite-sample performance of an estimator. The L2 estimation error,
however, ignores the covariance among predictors, i.e., omitting EH0 [X̃ X̃ ⊺

] in (2.5). The
MSE and the L2 estimation error coincide if the predictors are centered and pairwise inde-
pendent with identical variance. In cases where predictors are highly correlated, the MSE
remains small even if the parameter estimates are slightly biased, as long as the combined
effect of the correlated predictors (i.e., the sum of the scaled coefficient values) is close to
the truth. As an example, consider a linear regression model with two centered predictors
which are highly correlated (e.g., CorH0(X1,X2) ≈ 1) and have variance σ21 and σ22, respec-
tively. In this case, the MSE is small as long as β̂1σ1 + β̂2σ2 ≈ β01σ1 + β02σ2. Considering
that both X1 and X2 carry almost the same information, the actual value of the parameters
is irrelevant for explaining the response well, as long as the sum of the scaled coefficients is
close to the truth. For the L2 estimation error to be small, on the other hand, both |β̂1−β01 |
and |β̂2 − β02 | must be small.

Even when restricting attention to estimators that possess several of the above listed
desired properties, there is a plethora of methods available to estimate the regression pa-
rameters in the linear regression model. Which method to use depends on the researcher’s
emphasis as well as additional assumptions that can be imposed. For instance, if the dis-
tribution of the errors is (assumed to be) known to have density function f0, the maximum
likelihood estimator (MLE)

θ̂MLE = argmin
µ,β

n∑
i=1

− log f0 (yi − µ− x⊺
iβ)
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has very appealing properties as the sample size n grows. Under mild regularity conditions
on the distribution F0 and as n → ∞, the MLE is consistent (i.e., converges to the true
parameters in probability) and asymptotically efficient (i.e., no consistent estimator can
have lower variance). However, these optimality properties heavily depend on the validity
of the assumption on G0.

A different approach to estimate the parameters is by trying to fit the observed response
values y well without regard of the actual distribution of the errors. Formally, the approach
is to determine θ̂ such that

θ̂ = argmin
µ,β

L (y, µ+Xβ), (2.6)

where the regression loss function L : Rn × Rn → [0,∞) measures the inaccuracy of the
fitted values, i.e., how far the fitted values ŷ = µ̂+Xβ̂ are from the observed response y.
Therefore, it makes sense to require that L (y, ŷ) = 0 if and only if ŷ = y. Paraphrasing
Lehmann and Casella (2003), the desire is to have an accurate estimate, but since it is
usually unknown what the estimate will be used for once it is made public, the choice of
the measure of accuracy is arbitrary. However, the chosen loss function directly affects the
properties of the estimator and therefore it should be chosen wisely. The most prominent
loss function for linear regression is the sum of square residuals

LLS(y, ŷ) =
1

2n

n∑
i=1

(yi − ŷi)
2

which is mathematically convenient and leads to an accurate and theoretically sensible
estimator in many settings. In the case where F0 is assumed Gaussian, for instance, the
least squares (LS) estimator, θ̂LS coincides with the MLE and thus enjoys all the asymptotic
properties of the MLE. Even more convincing, the Gauss-Markov theorem (and extensions
of it) states that the LS-estimator has uniformly smallest variance among all unbiased
linear estimators if (i) the variance of the error term is finite and (ii) the distribution of
the predictors H0 is unknown, or G0 is multivariate Normal with unknown parameters
(Lehmann and Casella 2003, p. 184f).

Despite these strong arguments for the LS-estimator, there are reasons why the LS-
estimator might not be the best choice. The LS-estimator has smallest variance among
all unbiased and linear estimators (i.e., estimators for which the fitted values are a linear
combination of the observed response values). Consequently, unless F0 is Gaussian, it may
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be possible to find an estimator that is not linear in the observed response values or biased
(but still consistent) and has smaller variance than the LS-estimator.

Especially if it is likely that the error term takes on large values, i.e., F0 has heavy tails,
finite-sample performance of the LS-estimator suffers considerably. Even if the researcher
is willing to assume the error term is Normally distributed, it is most often only a crude
approximation to the truth and large errors may occur more often than expected. Because
of the square function, unusually large residuals contribute substantially to the LS-loss and
force the estimator θ̂LS to adapt to these observations to shrink the discrepancy between
the fitted value and the observed value. If the sample at hand contains a small fraction of
observations with unusually large residuals, they can dominate the LS-loss function and the
estimate could be excessively affected by them.

A maybe even more worrisome property of the LS-loss is revealed when considering its
gradient with respect to the regression parameters, which is given by

∇βLLS(y, µ+Xβ)|
β=β̃

= − 1

n

n∑
i=1

(yi − µ− x⊺
i β̃)xi.

At every minimum of the LS-loss, each element of the gradient needs to be 0. Therefore,
the LS-estimator θ̂LS must satisfy

0p =

n∑
i=1

(yi − µ̂LS − x⊺
i β̂LS)xi,

where 0p is the p-dimensional 0-vector. From this equation it can be clearly seen that
if the value of any predictor of the i-th observation is unusually large, the corresponding
response needs to be fitted very well to keep the residual small and counterbalance the
influence of the predictor on the gradient. Observations with unusually large values in any
of the predictors are called leverage points; unless the true residual of this observation is
very small, the observation can have a devastating effect on the LS-estimator. Huber and
Ronchetti (2009) argue leverage points are usually of no concern in designed experiments
where the researcher has (at least some) control over the values of the predictors. Even with
random predictors, as considered in this work, Huber and Ronchetti suggest that leverage
points are interesting by themselves and should be identified in advance to be analyzed
separately. This approach might work in some settings, but in Section 2.3 I argue why this
is challenging or nearly impossible in the settings considered in this work.

Now that I have outlined some instances where the LS-loss might not be an appropriate
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choice, the question becomes if there are alternatives with similar appealing properties. Of
course, one possibility is to assume a different distribution for the errors, one with heavier
tails, and compute the MLE. However, this approach might lose precision if a large majority
of the observations are well explained by a regression model where F0 has light tails (e.g.,
Gaussian) and only a few observations have gross errors. Additionally, the MLE does not
address the problem of leverage points. In the next section I introduce a strategy from
robust statistics.

2.2 Robust Estimation in the Linear Regression Model

In many practical applications of linear regression, precluding the presence of adverse obser-
vations is almost impossible. The approach taken by robust statistics is to not try to build
a comprehensive model that accounts for these few adverse observations, but rather derive
methods that are stable and give “reasonable” results as long as the number of adverse
observations remains small. Importantly, it is assumed that the parametric model G0 un-
derlies the majority of the observations in the sample. However, to allow for a more realistic
representation of the observed sample, a small proportion of the sample is allowed to come
from an unspecified, possibly degenerate, model Ğ. In the Tukey-Huber contamination
model for linear regression, this can be written as G̃0(y,x) = (1 − ϵ)G0(y,x) + ϵĞ(y,x),
with G0 the parametric model defined in (2.2) and contamination proportion ϵ ∈ [0, 0.5). In
this “casewise” contamination model, the observed sample is generated by a mixture of the
data generating process of interest, G0, and the contamination process Ğ. The goal is still
to estimate the parameters in G0, but it is more difficult because some of the observations
are actually generated by Ğ, and it is not known which observations. An observation is only
useful for estimating the parameters if it is indeed generated by G0 and robust procedures
designed for the Tukey-Huber should filter information from observations generated by Ğ.
To ensure G0 and hence the parameters in the model are identifiable, the contamination
proportion ϵ should be less than 50%, i.e., the majority of the observed sample is generated
from the process of interest.

The casewise contamination model can be compared to the more general independent
contamination model (Alqallaf et al. 2009) where each individual value of the observation is
independently either generated by the assumed model or by the unspecified contamination
process. If thinking of the sample as an n × (p + 1) matrix, with the i-th observation
being recorded in the i-th row and the j-th column corresponding the value of the j-th
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predictor (or the response if j = p + 1), the independent contamination model can be
thought of as “cellwise” contamination. In this framework, each cell is either generated by
the true model, or by the unspecified contamination process. In the casewise contamination
model, on the other hand, each observation with a single contaminated value is considered
to be generated by Ğ. Having a few contaminated cells can lead to a large number of
contaminated cases, especially if p is large. This may be problematic in high-dimensional
datasets as the proportion of contaminated cases could be propelled outside the sustainable
50%. The cellwise contamination model, however, poses great challenges for estimation
procedures which go beyond the scope of this work. Henceforth contamination is always
understood in the sense of the Tukey-Huber contamination model, i.e., an observation is
either considered contaminated or not.

Despite the presence of a small proportion of contamination, the aim is still to estimate
the true regression parameters in G0, θ0 = (µ0,β0). However, in addition to the desired
properties for any estimator discussed in the previous section, robust estimators strive to
limit the effect of adverse observations. Over time, different measures of robustness, and
thereby properties related to these measures, have been developed. A concept that plays
a central role in this work is the notion of the replacement finite-sample breakdown point
(FBP) as defined in Donoho and Huber (1982). The FBP measures how many observations
in any given sample must be replaced by arbitrary values to push the estimate to the
boundary of the parameter space. In the context of regression, this is equivalent to forcing
the norm of the estimated regression parameter to infinity. To define the breakdown point
formally, I introduce the notation θ̂ = θ̂(Z ) for an estimator of the regression parameters
to explicitly show the dependence on the sample Z = (y,X) = {(yi,xi) : i = 1, . . . , n}.
With this notation, an estimate of the regression parameters has FBP ϵ∗(θ̂,Z ) given by

ϵ∗(θ̂,Z ) = max
m=1,...,n

{
m

n
: sup

Z̃ ∈Zm(Z )

‖θ̂(Z̃ )‖ <∞

}
. (2.7)

The set Zm(Z ) denotes all possible samples obtained by replacing at most m observations
from the original sample Z with arbitrary values. Ideally, the FBP does not depend on
the actual sample Z , as long as the sample satisfies some estimator-dependent conditions.
The FBP can be considered as a measure of how much contamination can be tolerated
without suffering the worst-possible consequences. It does not, however, imply that for
less contamination the estimate is anywhere close to the true parameter θ0; this includes
that the estimator does not have to be consistent for θ0 under any positive amount of
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contamination. A related concept is the (asymptotic) breakdown point which, instead of
operating on the sample level, considers the worst effect on the parameter estimate if the
actual distribution G̃0 is within an ϵ neighborhood of the assumed distribution G0 (Davies
and Gather 2005). A driving factor in the development of many robust estimators is the
desire to obtain a “high breakdown point” estimator; i.e., an estimator that achieves a
breakdown point close to 0.5, the maximum for regression-equivariant estimators 1 (Davies
and Gather 2005).

Instead of focusing on the worst-case scenarios, the sensitivity curve measures how much
the parameter estimate changes when adding a single observation to the original sample
(Maronna et al. 2019). The asymptotic version of the sensitivity curve, the influence func-
tion, measures the effect on the estimate when adding infinitesimal point-mass at (ỹ, x̃) to
the assumed distribution G0 (Hampel 1974). In general, it is desired that a robust estimator
has a bounded sensitivity curve and influence function. However, even if an estimator has
a breakdown point greater than 0, neither the sensitivity curve nor the influence function
needs to be bounded.

A more balanced measure is the maximum asymptotic bias (MB) which measures by
how far a consistent estimator misses the target value θ0 if the actual distribution G̃0 is
in an ϵ-neighborhood of the assumed G0 (Maronna et al. 2019). The maximum bias gives
a more refined picture of how badly an estimator can be affected by a certain amount of
contamination and from the definition of the breakdown point it is evident that the MB is
finite for ϵ ≤ ϵ∗(θ̂). A more complete discussion of measures of robustness can be found
in Maronna et al. (2019) and Huber and Ronchetti (2009). To summarize, in this work
the main measure of robustness is the finite-sample breakdown point, while also keeping in
mind the increase in the MSE or estimation error incurred by contamination, especially in
finite-samples.

As has been shown in numerous different settings and applications, the classical LS-
estimator of regression, possesses neither of these desired robustness properties (Maronna
et al. 2019). Its FBP is 1/n and consequently has asymptotic breakdown point of 0; a single
aberrant observation can push the estimated regression parameters to infinity. Similarly, the
SC and IF are unbounded, and the MB is infinity for any amount of contamination. Under
these considerations, a substantial body of research is therefore devoted to find alternatives
to the LS-estimator in various settings.

1an estimator θ̂ is regression-equivariant if it satisfies θ̂(ay+bX,CX) = C−1(aθ̂(y,X)+b) for all a ∈ R,
b ∈ Rp+1, and all non-singular matrices C ∈ Rp+1×p+1
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2.2. ROBUST ESTIMATION IN THE LINEAR REGRESSION MODEL

One prominent approach is to view the LS-loss as the sample variance of the (uncentered)
estimated residuals, s2(r) =

∑n
i=1 r

2
i /n. Therefore, the LS-estimator seeks to minimize the

sample variance of the residuals. In this light, it seems sensible to replace the sample vari-
ance with a robust measure of variability. A measure that is used extensively in univariate
scale estimation problems is the median absolute deviation (MAD). In the linear regression
context, minimizing the MAD of the residuals is equivalent to minimizing the Least Median
Squares (LMS) loss (Hampel 1975; Rousseeuw 1984) given by

LLMS(y, ŷ) = med
i=1,...,n

(yi − ŷi)
2.

The LMS-estimator is consistent for θ0 and can withstand large amounts of contamination
as its finite-sample breakdown point is ϵ∗LMS = ⌊n/2⌋−p+2

n (Rousseeuw 1984). However,
the convergence rate is only of order n−1/3 (Kim and Pollard 1990) which implies that in
the case of no contamination the LMS-estimator is considerably less efficient than the LS-
estimator with a convergence rate of order n−1/2. Maybe more problematic for practical
considerations, however, is the non-smoothness of the loss function which impedes fast
algorithms to compute the estimate.

The issues of the LMS-estimator can be avoided by using a continuous function to define
the scale estimator, instead of the median of squared residuals. One such estimator for the
residual scale is the M-scale estimator, σ̂M (Huber and Ronchetti 2009), defined as

σ̂M :


Rn → R+

r 7→ inf

{
s > 0:

1

n

n∑
i=1

ρ
(ri
s

)
≤ δ

}
. (2.8)

This mapping is continuous if the function ρ : R → [0,∞) satisfies the condition

[R1] ρ(0) = 0 and it is continuous, even, i.e., ρ(−t) = ρ(t), and nondecreasing, i.e., 0 ≤ t ≤
t′ implies ρ(t) ≤ ρ(t′).

Using this M-scale estimate, the corresponding S-estimator (Rousseeuw and Yohai 1984) of
linear regression is defined through the S-loss

LS(y, ŷ) =
1

2
σ̂2M(y − ŷ). (2.9)

As detailed later, the constant δ is essential for the robustness of the S-estimator and needs
to satisfy 0 < δ < limr→∞ ρ(r).
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2.2. ROBUST ESTIMATION IN THE LINEAR REGRESSION MODEL

The definition of the M-scale estimator, and in turn of the S-estimator, may seem
arbitrary, but becomes clearer when considering the equivalent implicit definition

1

n

n∑
i=1

ρ

(
ri

σ̂M(r)

)
= δ,

which holds if ρ satisfies condition [R1] and σ̂M(r) > 0. From the implicit definition and
considering the special case ρ(x) = x2, it is evident that in this case σ̂M(r) = δ

n‖r‖
2
2 and

hence the S-estimator coincides with the LS-estimator.
To understand the robustness properties of the S-estimator, it is necessary to first un-

derstand them for the M-scale estimator. The M-scale estimator is resistant to grossly
aberrant values only if the ρ function is bounded. A bounded ρ function in this work is
assumed to satisfy

[R2] ρ(t) = 1 for all |t| > c with c < ∞ and ρ is strictly increasing on (0, c), i.e., 0 ≤ t <

t′ < c implies ρ(t) < ρ(t′).

With a bounded ρ function, the constant δ is in (0, 1) and directly affects the robustness of
the M-scale estimator with FBP given by bnmin(δ, 1−δ)c/n. More specifically, the M-scale
estimator with bounded ρ function can tolerate up to bnδc gross outliers without exploding
to infinity, and up to bn(1− δ)c “inliers” without imploding to 0. Because robustness of the
M-scale estimator hinges on the boundedness of the ρ function, from now on it is implicitly
assumed that the ρ function used for M-scale estimation is bounded.

Independent of the exact choice of the ρ function, as long as it satisfies conditions [R1],
[R2] and is continuously differentiable with bounded derivative, the S-estimator is consistent
for the true parameters under certain conditions on G0 (Davies 1990; Smucler 2019). The
last condition mentioned for consistency is formalized by

[R3] ρ is continuously differentiable with the derivative ρ′(t) and tρ′(t) both bounded.

As with the univariate M-scale estimator, the FBP of the S-estimator is determined by δ
through ϵ∗S = (bnmin(δ, 1− δ)c − p− 1)/n. Hössjer (1992) show that even with an optimal
choice of the ρ function, the efficiency of the S-estimator is inversely proportional to its
resistance to outliers; in other words, it cannot be both highly efficient and highly robust.
A popular choice for the ρ function that satisfies all of the above conditions is Tukey’s
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2.2. ROBUST ESTIMATION IN THE LINEAR REGRESSION MODEL

bisquare family of functions given by

ρ(t; c) = min

(
1, 1−

(
1− t2

c2

)3
)

with c > 0. (2.10)

Tukey’s bisquare ρ function is convenient to handle in computations and yields an S-
estimator which is reasonably close to the S-estimator which uses an “optimal” ρ function
in terms of efficiency under the Normal model (Hössjer 1992). It is easy to show that
with Tukey’s bisquare ρ function, but also many other popular ρ functions, the constant
c is merely a scaling factor and does not affect the estimated regression parameters, i.e.,
LS(y, ŷ; c) = c2LS(y, ŷ; 1). In practice, c is usually chosen to yield a consistent estimate of
the residual scale under the assumed model G0, which amounts to c = 1.5467 in the case
of Gaussian G0 and a breakdown point of δ = 0.5.

Computation of the S-estimator is challenging because of the non-convexity of the loss
function induced by a non-convex ρ function. Consistency and asymptotic Normality of
the S-estimator (Rousseeuw and Yohai 1984; Davies 1990; Smucler 2019) only apply to the
global minimum of the loss function LS, which is in practice difficult to find. Optimization
algorithms for non-convex problems only converge to a local minimum which depends on the
given starting point. Mei et al. (2018) lists several conditions on the ρ function and G0 under
which the loss function has a unique local minimum in an r-ball around the true parameter,
i.e., {θ ∈ Rp+1 : ‖θ − θ0‖2 < r}, with high probability if the sample size n > Cp log(p).
Additionally, this unique local minimum actually corresponds to a global minimum for
which the statistical guarantees hold, and gradient descent algorithms converge to it if the
starting point is within an 2r

3 -ball of the true parameter. It is therefore necessary to choose
the starting points in a strategic way and/or try many different starting points. Although
this increases the chance of finding a point within this neighborhood, it is no guarantee.

A key observation to finding good starting points (and to compute the S-estimator) is
that the S-loss can be written as a weighted LS-loss,

LS(y, ŷ) = LS(y, µ−Xβ) = LLS(Wθy,Wθ(1nµ+Xβ))

with a diagonal matrix Wθ ∈ Rn×n of weights that depend on where the loss is evaluated
and the data itself. Therefore, the S-estimator also minimizes a weighted LS-loss, where
suspicious observations are down-weighted. Because the ρ function is bounded, highly
outlying observations can even get 0 weight, which means they are effectively removed from
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2.2. ROBUST ESTIMATION IN THE LINEAR REGRESSION MODEL

the equation as if they were not part of the sample.
Based on this observation, a strategy using random subsamples from the data is in-

troduced in Rousseeuw and Leroy (1987) for the LMS- and Least Trimmed Squares (LTS)
estimators and optimized for S-estimators in Salibián-Barrera and Yohai (2006) for samples
with n > (p + 1)/δ. It can be thought of randomly generating the weight matrix Wθ̂S

by
assigning a weight of 1 to a random sample of p + 1 observations and a weight of 0 to the
rest. In essence, the idea is based on the observation that there must be at least one sub-
sample of size p+1 which does not contain contaminated observations and the LS-estimator
computed on this subsample is close to a global minimum of the S-estimator computed on
the complete sample. The justification for this specific size of the subsample is that it must
comprise at least p+1 observations to ensure a unique solution for the LS-estimator. On the
other hand, any subsample greater than p+1 is more likely to include contaminated obser-
vations. To ensure high probability of actually finding a subsample without contamination,
many random subsamples need to be considered. As the size of the subsample grows with
the dimensionality, the number of subsamples also needs to increase exponentially with the
number of predictors. This makes the strategy unfeasible when p is of moderate size.

A somewhat different strategy is given in Peña and Yohai (1999), who aim to identify
possibly influential observations and subsequently compute the LS-estimator without these
influential observations. The idea is again that the LS-estimator computed on a “clean”
subsample is close to a global minimum of the S-estimator computed on the full sample.
Because the strategy by Peña and Yohai uses a more guided scheme to find clean subsamples
as compared to random subsampling, the number of subsamples to explore is drastically
reduced and only grows linearly with the number of predictors. Another advantage is that
the strategy is deterministic and therefore always results in the same S-estimator.

It is important to note that the S-loss has potentially multiple global minima. In par-
ticular, the S-loss has a unique global minimum only if every p-dimensional subspace of
(y,X) contains less than bn(1 − δ)c − 1 observations (Rousseeuw and Yohai 1984; Yohai
and Zamar 1988). In other words, if bn(1 − δ)c observations can be fit exactly with θ̃,
the S-loss has a global minimum at θ̃. This is a direct consequence of the smaller effective
sample size induced by the bounded ρ function (up to bnδc observations can have 0 weight).
The S-estimator can therefore be sensibly computed only if p < bn(1 − δ)c − 1, compared
to p < n− 1 for the LS-estimator.

Regardless of the actual distribution G0, the S-estimator is highly robust. This high
robustness, however, comes at the price of low efficiency under the Normal model compared
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to the LS-estimator. Due to this deficiency, the S-estimator is in practice usually only the
first step in the multi-tiered MM-estimator (Yohai 1987). The MM-estimator employs the
M-loss function defined by

LM(y, ŷ; σ̂S) =
1

n

n∑
i=1

ρM

(
yi − ŷi
σ̂S

)
,

which quantifies the size of the residuals through a ρM function satisfying the same condi-
tions as the ρ function for the M-scale, in particular being bounded, and ρM(t) ≤ ρ(t) for
all t. The size of the residuals is taken relative to the scale of the residuals, such that the
boundedness of the ρM function affects only observations with residuals being large rela-
tive to the scale of the residuals. This is where the MM-estimator relies on an S-estimate
of regression. The scale of the residuals can be estimated from the residuals of the fit-
ted S-estimate, σ̂S = σ̂M(y − µ̂S −Xβ̂S). The M-loss with bounded ρM is non-convex and
computing MM-estimators in general therefore entails similar challenges as outlined for
computing S-estimators. If ρM and ρ for the initial S-estimate of regression satisfy condi-
tions [R1] and [R2], Yohai (1987) proves that the MM-estimator inherits the breakdown
point of the initial scale estimator σ̂S, is consistent for θ0 under mild conditions on the
error distribution, and has asymptotic efficiency governed by ρM. It is therefore possible to
increase the efficiency of an MM-estimator without sacrificing robustness.

The bias inflicted by gross errors and efficiency under G0 depends on the shape of the ρM

function, but more importantly on the cutoff c in condition [R2]. Intuitively, if c is chosen
very large, the loss is practically unbounded (and usually behaves like the LS-loss) and gross
errors as well as leverage points can damage the estimate. On the other hand, if c is chosen
too small, the estimator is inefficient under G0. Usually, the cutoff c is therefore chosen to
yield a certain asymptotic efficiency under G0 while also limiting the maximum asymptotic
bias under contamination. Yohai and Zamar (1997) propose an “optimal” ρM function in the
sense that it is minimizing sensitivity towards contamination while simultaneously achieving
a desired asymptotic efficiency.

The MM-estimator is particularly useful in practice because it yields a highly robust and
efficient estimate without significantly increasing computational complexity. Even though
the M-loss in the second step is non-convex, it is not necessary to find the global minimum
of the objective function. Yohai (1987) shows that any local minimum of LM close to θ̂S

has the same asymptotic properties as a global minimum. The practical challenge with
MM-estimators, however, is that ρM needs to be chosen in concordance with ρ and G0. The
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2.2. ROBUST ESTIMATION IN THE LINEAR REGRESSION MODEL

prescribed asymptotic efficiency is achieved by choosing the cutoff c according to the limit
of σ̂S under G0. For these results to be transferable to finite samples, the bias of the M-scale
estimate of the residuals must not be too large.

MM-estimators are not the only strategy to compute M-estimators when the residual
scale is unknown. Several other estimators augment the objective function to allow for joint
estimation of the regression parameters and the residual scale. Options include the con-
comitant scale estimate (Huber and Ronchetti 2009) and constrained M-estimators (Mendes
and Tyler 1996). Usually, these estimators are difficult to compute when using bounded
ρ functions because they require certain constraints on the scale to evade global minima
at a residual scale of 0. The τ -estimator (Yohai and Zamar 1988) uses a similar strategy
through optimization of the τ -loss

Lτ (y, ŷ) = σ̂2M(y − ŷ)
1

n

n∑
i=1

ρτ

(
yi − ŷi

σ̂M(y − ŷ)

)

where ρτ is again a bounded ρ function satisfying conditions [R1] – [R3] as well as 2ρτ (r)−
rρ′τ (r) ≥ 0. The loss function is very similar to the concomitant scale estimate, but instead
of jointly optimizing over the scale and the regression parameters, the scale is given by
the M-scale of the residuals. Like the MM-estimator, the τ -estimator can be tuned for high
breakdown and asymptotic efficiency. Other robustness-properties (e.g., the maximum bias)
are also similar in practice. The main advantage of the MM-estimator over the τ -estimator
is that the MM-estimator is easier to compute. Although both the MM-estimator and the
τ -estimator can be tuned to have high efficiency, higher efficiency also leads to larger bias
under contamination. To keep the bias under contamination reasonably small, a typical
choice for the asymptotic efficiency of MM-estimators is 85% in the Normal model. Several
one-step procedures to improve upon the asymptotic efficiency as well as the finite sample
efficiency of the MM-estimator are discussed in Maronna et al. (2019, Chapter 5.9).

Recently, attention has been directed at circumventing scale estimation for the M-
estimator with Huber’s ρ function, ρ(t; c) = min(t2/2, c(|t| − c/2)) by choosing the cutoff
value c adaptively. It should be noted that Huber’s ρ function is robust towards observations
with contamination in the response, but the convex loss function does not protect against
influence from aberrant values in the predictors. Loh (2018) constructs a grid of candidate
cutoff values {3σmax2

k/2K : k = 1, . . . ,K} and chooses the smallest cutoff value such that
the difference of the estimate to the estimate at the next larger cutoff is below a certain
threshold. Under certain conditions, this procedure leads to consistent parameter estimates
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and small bounds on the estimation error. To handle possible leverage points, Loh (2018)
suggests a weighting function to down-weight observations with large norm of the predictors.
Under the assumption that the error distribution is heavy-tailed (but not contaminated),
Sun et al. (2019) choose the cutoff value for the Huber loss c = k/

√
nlog(n)

∑n
i=1(yi − ȳ)2

and search for an appropriate multiplier k via cross-validation. The influence of possible
leverage points is reduced by univariate winsorizing, i.e., any predictor value larger than a
predetermined threshold is replaced by this threshold value. Univariate winsorizing, how-
ever, does not take into account the multivariate structure of the data; leverage points are
often not overly extreme in a single direction but are extreme when taking into account
the overall structure of the predictors. The merit of these works is that they derive non-
asymptotic bounds for the L1 and L2 estimation error, that hold with high probability
under relatively mild conditions. Due to the handling of leverage points, however, neither
of these adaptive procedures has a high breakdown point.

The finite sample breakdown point of all robust estimators discussed so far have one
key weakness: the breakdown point is lower the closer the number of predictors is to the
number of observations. However, not only the robustness properties suffer as the dimension
increases, but also the finite-sample and asymptotic efficiency gets worse (e.g., Maronna and
Yohai 2010). Albeit much less severe than for robust estimators, the LS-estimator also has
higher variability in high-dimensional settings. In the following section, I discuss ways to
simultaneously (i) reduce the variability of robust estimators by allowing for a larger finite-
sample bias and (ii) make robust estimators applicable to settings where the sample size is
less than the number of predictors.

2.3 Estimation Under the Sparsity Assumption

With the surge of data in the last decade, it is increasingly common that the number of
potential predictors is in the hundreds or even tens-of-thousands. At the same time, the
sample size is only slightly larger than or even smaller than the number of predictors. For
example, proteomic technologies measure the expression of hundreds of proteins, but the
number of patients in a study is often less than a hundred. In these cases, the estimators in-
troduced in the previous two sections are not well defined. However, by imposing additional
restrictions on the true parameter and translating these additional assumptions into con-
straints on the parameter estimates, the (uncountably) infinite set of global minima of the
objective functions for estimators presented in the previous sections can possibly be reduced
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to a finite set. In many applications, for instance, it is reasonable to assume that only a
few of the many available predictors are actually associated with the response; but it is not
known which or exactly how many. In other applications, the number of predictors may not
be extraordinarily large compared to the sample size, but the goals of the researcher include
to identify the predictors that are actually associated with the response. In both of these
scenarios, the assumption can be translated to the linear regression estimation problem by
assuming the number of truly relevant, or active, predictors, A = {j : β0j 6= 0}, is much
smaller than p. Usually, the size of the active set, s = |A |, is not known. This assumption
of sparsity, i.e., only s � p predictors have non-zero coefficient, is central to this section
and the remainder of this work.

Before discussing ways to leverage the sparsity assumption to estimate the regression
parameters in the linear regression model (2.2), I extend the list of desired properties when
the sparsity assumption is imposed. Since it is assumed that p− s predictors actually have
a coefficient value of 0, it is natural to ask if the predictors with zero coefficient can be
recovered with high probability, at least as the sample size increases. This leads to the
notion of variable selection consistency. Whereas consistency of the estimator implies that
the coefficient approaches its true value, variable selection consistency requires that the
probability of all truly inactive coefficients being exactly zero approaches 1, i.e.,

lim
n→∞

P(β̂A c = 0p−s) = 1.

Here and henceforth, a vector ξ indexed by a set S (e.g., β̂A c) denotes the vector of elements
in ξ with index in the set S , i.e., ξS = (ξj)j∈S ∈ R|S |. If an estimator is variable selection
consistent, one can further ask for the limiting distribution of the parameter estimates for
the truly active predictors to be as good as if the true active set would have been known in
advance, i.e.,

√
n(β̂A − β0

A )
d−→ Ns(0s,V(β0

A )), (2.11)

where p, s, and A possibly grow with n. These two properties together are called the
“oracle property” (Fan and Li 2001) as the estimator performs as good as an estimator that
knows the true active set (an oracle). Although the oracle property is desired, it will turn
out that it is not always easy to obtain an estimator that possesses it; usually this requires
several strong conditions on the model and the sample.

The two properties discussed so far in this section are both asymptotic in nature. In
the high-dimensional setting it can be desirable to not only consider what happens when
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the sample size n increases, but also when the dimensionality pn is growing with the sample
size. In the following, I distinguish between results under fixed dimensionality (i.e., pn = p

remains the same for every sample size), and results under growing dimensionality (i.e., pn
grows with n). Results for growing pn usually require a condition that pn does not grow too
fast as n tends to infinity, e.g., log(p)/n→ 0 (Bühlmann and van de Geer 2011). Similarly,
although not covered in this work, the size of the active set could be allowed to grow with
the sample size.

An obvious question is how the LS-estimator performs under the sparsity assumption
when the sample size is larger than the number of predictors, n > p, and, for example,
G0 is multivariate Normal. Although the LS-estimator is consistent for estimating the
parameters, the estimated coefficients of the truly inactive predictors are non-zero with
probability 1; only in the limit they are 0. Therefore the LS-estimator does not lead to any
variable selection and hence does not fulfill the oracle inequality. The same is true for any
of the robust estimators discussed before. It is therefore necessary to look for alternatives
with positive probability of setting coefficients actually to 0.

In an idealized world where the number of truly active predictors s is known, a simple
strategy for computing an estimator defined by a loss function L is to determine the subset
of predictors of size s which minimizes the loss, i.e.,

argmin
µ∈R,β : ∥β∥0=s

L (y, µ+Xβ). (2.12)

This is computationally challenging as the L0 pseudo-norm ‖ · ‖0 : u 7→
∑p

j=1 |uj |0 is non-
convex and not continuous. A naïve way to find the best subset of size s is to try every
single set of s active predictors, which is of course unfeasible unless p and s are small.

If s is unknown, the problem becomes several times more difficult as the minimization
problem (2.12) needs to be performed for several (or all p) choices of 0 ≤ q = ‖β‖0 ≤ p.
Furthermore, the obtained solutions for the different choices of q then must be compared
using a validation metric to identify the overall best solution. The value of the loss function
is an inappropriate metric for comparing the solutions as per definition it decreases for
increasing q. Even with recent advances in mixed integer optimization in Bertsimas et al.
(2016), which allow more efficient optimization of problem (2.12) over β : ‖β‖0 ≤ q, it only
works for moderately sized problems. Greedy searches, on the other hand, can provide
adequate approximations to the best subset regression. Examples include forward stepwise
regression, where the search begins with the empty model, q = 0, and one predictor at a
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time is added such that the loss is minimized among all possible additions. Nevertheless,
it is difficult to provide provable statistical guarantees for best subset regression or greedy
approximations thereof. Furthermore, Hastie et al. (2017) demonstrate that best subset
regression with the LS-loss (and the greedy approximation by forward stepwise regression)
often leads to an estimator with small bias but large variance.

Continuous alternatives to the L0 pseudo-norm are popular tools to improve computa-
tional efficiency and decrease the variability of the estimator, usually at the cost of increased
bias. Theoretically, any “measure of the size of the coefficient vector”, Φ: Rp → [0,∞), can
be used to constrain the minimization problem

argmin
µ∈R,β : Φ(β)≤a

L (y, µ+Xβ)

to reduce the number of global minima to a finite set if n > p. However, a necessary and
sufficient condition on Φ for the minimization problem to lead to sparse solutions is that it
is nondifferentiable at βj = 0, j = 1, . . . , p (Fan and Li 2001). For convenience, I rephrase
the constrained optimization problem in its dual form, which in the context of regression is
often called regularized or penalized regression:

argmin
µ∈R,β∈Rp

L (y, µ+Xβ) + λΦ(β). (2.13)

The hyper-parameter λ is inversely related to the constant a in the constrained optimization
problem. If λ = 0 this is the unregularized minimization problem and identical to (2.6),
while λ → ∞ necessarily leads to β̂ = 0p and thus the estimated active set is empty.
Both, the penalty function Φ and the hyper-parameter λ are unrelated to the model and
the choice cannot be inferred from the model itself but needs to be done based on external
considerations.

Probably the most popular choice for the penalty function for sparse estimation in statis-
tics and beyond is the L1 norm, Φ1(β) = ‖β‖1. The L1 norm is the convex envelope of the
L0 pseudo-norm over a small domain and as such yields the closest approximation to best
subset regression by means of convex penalty functions (Jojic et al. 2011). When combined
with the LS-loss, the L1 penalty leads to the widely known least absolute selection and
shrinkage operator (LASSO) (Tibshirani 1996), henceforth called LS-LASSO to emphasize
the specific combination of the loss and penalty function. The LASSO penalty can be mo-
tivated from many different angles. Numerous results are available which present different
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conditions on the distribution G0 and the sample under which the LS-LASSO is consistent,
variable selection consistent, or possesses the oracle property with growing pn. Typically,
the conditions for the LS-LASSO to have these properties include that the amount of pe-
nalization, reflected in λ, vanishes as the sample size increases. While the rate depends on
the other conditions imposed, it is usually required to be at most of order O(

√
log pn/n).

Vanishing regularization is required to remove the bias introduced by the regularization,
at least asymptotically. From a practical perspective, this is a relatively mild requirement
as with enough data, the LS-estimator will already estimate the coefficients for the truly
inactive predictors close to 0 and only a slight nudge is required to make them exactly zero.
For a comprehensive summary of conditions and the most important results see Bühlmann
and van de Geer (2011).

The elastic net (EN) penalty, proposed by Zou and Hastie (2005) has similar variable
selection properties as the LASSO, but is able to retain groups of highly correlated active
predictors. The EN penalty is given by a linear combination of the L1 and squared L2

penalty,
ΦEN(β;α) = α‖β‖1 +

1− α

2
‖β‖22 with α ∈ [0, 1]. (2.14)

The LASSO is a special case of the EN penalty with α = 1, and as long as α > 0, the
EN penalty has singularities at the origin and therefore also leads to sparse estimates. The
L2 penalty is beneficial in the presence of highly correlated predictors, stabilizing variable
selection (Zou and Hastie 2005).

The LS-LASSO and LS-EN estimators possess the oracle property only under very spe-
cific and impractical conditions, due to the bias introduced by the L1 and the L2 penalty.
To solve this problem, a different penalty would need to be considered; one possibility is the
family of folded-concave penalties introduced by Fan and Li (2001). Folded-concave penal-
ties are singular at the origin (i.e., produce sparse results) and are bounded, i.e., predictors
with coefficients larger than a certain threshold are all penalized equally, regardless of the
actual size of the coefficient. The LS-loss combined with folded-concave penalties yields
an estimator that possesses the oracle property under growing dimension, requiring less
restrictive conditions than the LS-LASSO (Fan and Peng 2004; Zhang and Zhang 2012).

Due to the boundedness of the folded-concave penalties, the objective function (2.13) is
non-convex, even if combined with the LS-loss. This proves problematic because the oracle
properties and other statistical guarantees are only valid for the global minimum. The local
linear approximation (LLA) to folded-concave penalties in combination with the LS-loss is

25



2.3. ESTIMATION UNDER THE SPARSITY ASSUMPTION

shown to yield an estimator that has the same properties as the “good” global minimum if
p < n (Zou and Li 2008) or if the smallest true coefficient value of the active predictors are
large enough and F0 is sub-Gaussian (Fan et al. 2014).

Fan et al. (2018) improve these results for convex loss functions by introducing a
computational framework (I-LAMM) for computing general regularized estimators of the
form (2.13), including folded-concave penalties combined with the LS-loss. They cast the
estimation problem as an iterative algorithm which, after an infinite number of iterations,
coincides with the good global minimum of the LS-loss combined with the folded-concave
penalty. However, they also give a bound for the L2 estimation error that depends on the
number of iterations and the chosen numerical accuracy of the obtained solutions. From
these bounds it can be seen that the L2 estimation error approaches the oracle bound if the
numerical accuracy is chosen small enough and the number of iterations increases.

Interestingly, the computational framework in Fan et al. (2018) also connects the folded-
concave penalties with another important class of penalties: the adaptive LASSO and the
adaptive EN. The adaptive EN penalty function (Zou 2006; Zou and Zhang 2009), penalizes
the coefficients for each predictor differently depending on the corresponding element in a
vector ω of strictly positive penalty loadings:

ΦAN(β;ω, α, ζ) =
1− α

2
‖β‖22 + α

p∑
j=1

ωζ
j |βj | with ζ > 0. (2.15)

With the adaptive EN penalty, predictors with a large penalty loading ωj are more heavily
penalized than predictors with a small penalty loading. The penalty loadings are commonly
set to the reciprocal values of a preliminary estimate of the regression parameter. Intuitively,
if the preliminary estimate is consistent for β0, penalization for truly inactive predictors
tends to infinity for increasing sample size. Therefore, if the hyper-parameter λ scales
appropriately with n, the bias introduced by the penalty becomes negligible and the oracle
property can be obtained.

With a slight modification of the penalty loadings, the adaptive LS-LASSO estimator
(i.e., α = 1) can be obtained after two I-LAMM iterations (Fan et al. 2018). For this
equivalence to hold, the weights ωj must be truncated by max(τ, ωj) using a reasonably
large but finite τ . From this it is easy to obtain bounds for the estimation error of the
(modified) adaptive LS-LASSO.

Unsurprisingly, regularized estimators utilizing the LS-loss suffer the same issues as the
LS-estimator under contamination, albeit often less obvious. Recalling that the breakdown
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point of regression estimators involves the estimated coefficients exploding to infinity, it
seems comforting to know that regularized estimators are by definition bounded away from
the boundary of the parameter space. In the dual formulation of the regularized loss (2.13),
however, the parameter estimate can still diverge to infinity for any fixed λ <∞ as shown
in Alfons et al. (2013). Furthermore, the intercept parameter µ, is not regularized and can
thus also explode under contamination. Even if the model does not include an intercept,
the regularization parameter λ poses problems; although λ is not a model parameter and
as such is not estimated, the selection of a good λ value is affected by contamination. As
shown in Cohen Freue et al. (2019), constraining the slope estimate β̂ to the interior of the
parameter space, λ to would be required to grow indefinitely.

As highlighted by Davies and Gather (2005), the notion of breakdown point is not a
sensible measure of robustness for non-equivariant estimators; regularized estimator are per
definition not (regression) equivariant. Nevertheless, the breakdown point can still give
valuable insights about the robustness properties of an estimator. The maximum MSE
under contamination, on the other hand, can be a useful metric for comparing regular-
ized estimators; this is especially true in the presence of leverage points. In increasingly
high dimensions it is more important to have estimators that are insensitive to leverage
points. Although Huber and Ronchetti (2009) suggest identifying possible leverage points
in advance and analyze them separately, in high dimensional problems this approach is
impractical because leverage points are very difficult to identify. Even if it is possible to
identify leverage points, under the sparsity assumption, it is not sensible to take aside obser-
vations with potential leverage coming from the truly inactive predictors. However, because
it is unknown which predictors are truly active and inactive it is impossible to “screen out”
leverage points for separate analysis prior to computing an estimate.

Just as without the sparsity assumption it is therefore necessary to devise methods which
can achieve low MSE but additionally identify important predictors even under arbitrary
contamination. Because the maximum MSE under contamination is usually impossible to
derive theoretically, it is also still desirable to achieve a high breakdown point, even though
it is not the best measure of robustness for regularized estimators.

2.4 Robust Regularized Estimation

The main culprit in the erratic behavior of regularized estimators under contamination is
still the LS-loss. Drawing from the insights gained in unregularized estimation, it therefore
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seems sensible to replace the LS-loss with a robust surrogate.
Due to its importance for quantile regression, the LAD-LASSO (Wang and Li 2007)

is among the first regularized regression estimators with robustness towards gross errors.
Numerous papers study the behavior of M-loss functions with convex ρ functions (e.g.,
Huber’s ρ) combined with the L1 penalty under different settings. Many of the properties
of the LS-LASSO also hold for convex M-estimators under similar conditions (van de Geer
and Müller 2012). Recently, several strategies to reduce the bias introduced by the convex
M-loss as well as to avoid residual scale estimation have been proposed (Loh 2018; Fan et al.
2016; Fan et al. 2017; Fan et al. 2018; Sun et al. 2019; Yang 2017).

Robust regularized estimation is not the only strategy for robust estimation in the
sparse linear regression model. Khan et al. (2007), for example, propose the Robust Least
Angle Regression (RLARS) estimator to compute robust regression estimates in a step-wise
manner. Following ideas of the LARS estimator (Efron et al. 2004), the steps are taken in
the direction of the predictor with highest correlation with the residuals from the previous
step. RLARS gains robustness towards arbitrary contamination by using robust measures of
location, scale, and correlation for selecting and taking the steps. Empirical results suggest
RLARS is reliable under gross contamination, but the finite-sample bias is often higher than
of other robust methods and the algorithmic definition of RLARS hinders the establishment
of theoretical guarantees.

Given the increased difficulties caused by leverage points, the bounded M-loss is an
indispensable tool in higher dimensions. However, considerably less attention has been
given to LASSO-type M-estimators with non-convex or bounded ρ functions as well as
S-estimators. Smucler and Yohai (2017) proves that the MM-LASSO, the estimator that
minimizes a redescending M-loss combined with the LASSO penalty, is

√
n-consistent for θ0

when the dimension is fixed but otherwise very mild conditions. Importantly, there are no
moment-conditions on F0; the errors only need to have a density that is symmetric around
0 and monotonically decreasing in |u| and strictly decreasing in a neighborhood of 0. An
additional condition is that the second moment of H0 must be finite, and the covariance
matrix of the predictors needs to be non-singular. Therefore, the MM-LASSO is consistent
even under very heavy-tailed distributions F0, such as the Cauchy distribution. Similar
results, albeit under more restrictive assumptions, specifically finite second moment of the
error F0, are obtained in Arslan (2016) and Chang et al. (2018).

Loh (2017) studies the finite-sample bounds of the L1 and L2 estimation errors of re-
descending regularized M-estimators, including those with a LASSO penalty. She shows
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that any minimum of the objective function (not only a global minimum), which lies in an
r-ball around the true parameter, fulfills the oracle inequality for the estimation error. As
can be expected of finite-sample results for complicated non-convex estimation problems,
there are several technical conditions for this result to hold:

1. The regularized objective (2.13) is restricted to anR-box around the origin, {β : ‖β‖1 <
R} which needs to contain the true parameter, i.e., ‖β0‖1 < R, and as such requires
to have a rough idea of the size of the true parameter; the larger R, the weaker the
bound on the estimation error.

2. The sample size needs to be large enough to guarantee that there is at least one
minimum in an r-ball around the true parameter with high probability; the smaller r
the larger a sample size is needed. With an even larger sample size, every minimum
in the R-box around the origin falls within the r-ball around the true parameter with
high probability.

3. The gradient of the M-loss evaluated at the true parameter needs to be bounded with
high probability.

4. Most importantly, the M-loss needs to satisfy the restricted strong convexity (RSC)
condition in an r-ball around the true parameter with high probability. This condition
is essentially bounding the “non-convexity” of the loss function L around the true
parameter; the more non-convex the larger the bound on the estimation error.

Establishing these conditions is difficult in theory for a given G0 and almost impossible
in practice. To overcome these difficulties, Loh (2017) states different sufficient conditions
on G0 under which the above conditions hold with high probability. For example, the
gradient is bounded with high probability if the distribution of the predictors, H0, is sub-
Gaussian, i.e., has lighter tails than a multivariate Normal distribution. Furthermore, under
sub-Gaussian predictors and a specific tail-behavior of the errors F0, the RSC condition also
holds with high probability.

We recently proposed the first S-estimator with an elastic net penalty (Cohen Freue
et al. 2019) called Penalized Elastic Net S-Estimator (PENSE) which shares many of the
properties of the MM-LASSO, without the need for an auxiliary scale estimate. Chapter 3
gives a detailed exposition of the EN penalty, its advantages over the LASSO, and the
theoretical properties and empirical results concerning PENSE. Importantly, PENSE has
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very good robustness properties and is root-n consistent for the true regression parameter
under fixed dimension.

The only other regularized S-estimator proposed so far is the S-Ridge (Maronna 2011).
The S-Ridge combines the S-loss with the Ridge penalty, i.e., the squared L2 norm of the
coefficients (also a special case of PENSE with α = 0). The Ridge penalty does not induce
sparsity, i.e., none of the estimated coefficients will be 0, but it helps in high-dimensional
problems to reduce the variability of the estimate at the cost of increased bias. Smucler
and Yohai (2017) prove that the S-Ridge is a consistent estimator for the true regression
parameter and the residual scale. This allows them to use the S-Ridge estimator to obtain
an auxiliary estimate of the residual scale for their MM-LASSO estimator. Despite the
different penalties involved, the authors also use the S-Ridge estimate as the starting point
for the optimization of the non-convex MM-LASSO objective function. Although there
is no guarantee that this will yield a sensible estimate, the empirical performance of the
MM-LASSO is very competitive.

There also exist results for M-estimators with different penalty functions. The theory
in Loh (2017) for M-estimators covers folded-concave penalties and the results establish
the oracle property for a broad class of loss functions, given that the above-mentioned
conditions (and a stronger RSC condition) hold with high probability. Fan et al. (2018)
establish the error-bounds for estimates computed by the I-LAMM procedure with high
probability for the LS-loss and a sub-Gaussian G0, but their theory also allows for different
convex loss functions. It remains open, however, if the conditions for their results can be
obtained with high probability when using non-convex, redescending M-estimators under
heavy-tailed errors and contamination in the predictors.

In Cohen Freue et al. (2019) we propose a refinement step to PENSE, called PENSEM.
The idea of PENSEM is similar to MM-estimators for low-dimensional regression, improving
efficiency by a subsequent M-step which relies on a scale estimate obtained from the residuals
of the fitted PENSE estimate. This refinement works well in many problems, but, as detailed
in Chapter 5, the residual scale estimate from PENSE and other robust estimators can be
very biased in high-dimensional problems. In finite samples, this bias may impede gains in
efficiency and make the M-step possibly susceptible to contamination.

The adaptive MM-LASSO (Smucler and Yohai 2017; Chang et al. 2018) combines a
bounded M-loss with the adaptive LASSO penalty, and it is shown in Smucler and Yohai
(2017) that this estimator possess the oracle property under the same mild conditions as for
root-n consistency of the MM-LASSO. To avoid the necessity of an initial scale estimate,
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I introduce the adaptive PENSE in Chapter 3. The adaptive PENSE combines the S-loss
with the adaptive EN penalty and uses PENSE as preliminary estimate. I show that the
adaptive PENSE also possess the oracle property under the same conditions as needed for
PENSE to be root-n consistent.
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Chapter 3

Elastic Net S-Estimators

This chapter introduces a novel estimator for the linear regression model under the sparsity
assumption which can tolerate the presence of a large proportion of adverse contamination.
The challenge of obtaining a robust estimate of the residual scale under the sparsity as-
sumption, especially in high dimensional problems, hampers the application of regularized
M-estimators. In Cohen Freue et al. (2019), we therefore propose the penalized elastic-
net S-estimator (PENSE), which combines the robust S-loss function with an elastic net
penalty. PENSE circumvents the need of an auxiliary scale estimate.

3.1 Method

The PENSE estimator is defined by a regularized objective function which combines the
classical S-loss (2.9) and the EN penalty (2.14):

OS(µ,β;λ, α) = LS(y, µ+Xβ) + λΦEN(β;α). (3.1)

Minimizers of this objective function are denoted by θ̃
(λ,α)

= argminµ,β OS(µ,β;λ, α), while
the arguments λ or α are omitted if irrelevant or obvious from the context.

Due to the non-convexity of the S-loss, the PENSE objective function is also non-convex.
Without non-convexity, PENSE would not possess its robustness properties as detailed in
Section 3.4, but it is also the source of computational challenges. The issue is not unique
to PENSE but is shared among all S- and redescending M-estimators with and without
regularization. The robustness properties and statistical guarantees for the non-regularized
S-estimator only pertain to a global minimum (Davies 1990; Smucler 2019) of the S-loss.
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The asymptotic statistical properties of PENSE detailed in Section 3.3 also only pertain
to the global minimum and are contingent on λ decreasing fast enough. In other words, λ
cannot be too large for the global minimum to have good statistical properties. This is in
line with conditions for asymptotic properties of LS-EN and LS-LASSO estimators, albeit
their objective functions are convex and a large regularization parameter merely introduces
too much bias to attain a minimum with provable properties. For PENSE, on the other
hand, too large λ values not only introduce bias but also abets the estimator’s robustness.
For large λ, local minima of the objective function that are close to the origin are more
likely also global minima. Hence, if λ is too large global minima could very well be artifacts
of contamination and not sensible estimates. One such instance is depicted in Figure 3.1
for a simple regression model without intercept and a single predictor. The true regression
coefficient is β0 = 1, but for λ = 1 the objective function exhibits a global minimum around
β = −0.5 due to contamination in the sample. Only as λ gets smaller, the “good” minimum
around β = 1 becomes a global minimum. A sensible PENSE estimate can therefore be
attained only if an appropriate strategy to select the regularization parameter λ is used.

Although only global minima have provable statistical properties, for larger λ values,
local minima not caused by contamination can still be useful to predict the expected value
of the response, given a set of predictor values. Prediction, alongside identifying the predic-
tors important to make good predictions, is a main goal in many applications of regularized
estimators. Therefore, it is important to not only check the global minima for their predic-
tive capability, but also other local minima, even though they might not possess the same
statistical properties as the global minima.

As noted in Chapter 2, the S-loss and therefore the PENSE objective function can be
rewritten as a weighted LS-EN objective function

OS(µ,β;λ, α) =
1

2n

n∑
i=1

w2
i (r)r

2
i + λΦEN(β;α) =: OEN(µ,β;w(r), λ, α) (3.2)

with residuals ri = yi − µ− x⊺
iβ and weights

wi(r) = σ̂M(r)

√√√√√ ρ′
(

ri
σ̂M(r)

)
/ri

1
n

∑n
k=1 ρ

′
(

rk
σ̂M(r)

)
rk
. (3.3)

This representation of the PENSE objective function allows for an intuitive interpretation
of the estimator. The PENSE estimate corresponds to a properly weighted LS-EN estimate,
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Figure 3.1: PENSE objective function (3.1) for a simple linear regression model of the form y = x + u,
evaluated at different values of β and λ on a data set with contamination. The marked dots depict
the locations of the global minima for different λ.

where the weights are chosen to down-weight the contaminated observations and to give
more weight to proper observations.

The challenges in computing and applying the PENSE estimate are (i) to find global
minima of the objective function and (ii) choose a regularization parameter λ such that
the global minima enjoy good statistical properties. Additionally, it is also advisable to
retain other local minima and determine their predictive abilities. Numerical algorithms
to find stationary points of (3.1) require a starting point as input and typically converge
to a stationary point which depends on this starting point. To find global minima of the
objective function, it is therefore necessary to have starting points that are close to global
minima. Local minima are caused by contamination and unusually large error terms, and
hence a sensible strategy to find starting points is to compute a LS-EN estimate on a subset
of the data which does not contain observations exerting high leverage on the estimate.
This direct relationship between the data and the presence/location of local minima is
a clear advantage over non-convexity caused by folded-concave penalties. With folded-
concave penalties, local minima are due to the underlying regression parameters and no
intuitive strategy is available which is known to give starting points close to the desired
optimum. Under a restricted eigenvalue condition, sub-Gaussian errors and large enough
true coefficient values, Fan et al. (2014) show that with high probability the LS-LASSO is
a starting point for their algorithm which leads to the desired local minimum. Although
the intuition behind good starting points for optimizing the PENSE objective function
is simpler and holds without any restrictive conditions, it is nevertheless challenging to
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determine good subsets of the data.

3.2 Initial Estimator

This section discusses different strategies to obtain starting values for locating minima of
the PENSE objective function. As outlined above, the landscape of the objective function
is scattered with local minima and the goal is to find local and global minima that are not
caused by contamination.

3.2.1 Random Subsampling

The most common strategy to determine initial estimates for unregularized S-estimators
as proposed in Rousseeuw and Yohai (1984) and Salibián-Barrera and Yohai (2006) is
to randomly select subsets of the available observations and compute the classical LS-
estimate using only the random subset. The motivation behind the strategy is to get a
crude approximation to the weights (3.3) at a global minimum. In the unregularized case,
to guarantee that the resulting S-estimator has a breakdown point of ϵ with probability at
least ν, the lower bound for the number of subsets N is given by

N ≥ log(1− ν)

log(1− (1− ϵ)p+1)

and thus grows exponentially with p (Salibián-Barrera and Yohai 2006). With N subsets,
the probability that at least one of the subsamples of size p + 1 is “clean”, i.e., does not
contain any contaminated observations is ν. However, even an initial estimator computed on
such a “clean” subsample does not necessarily lead to a global optimum of the S-estimator.
Hence, it is in general not enough to examine a single clean subset, increasing the required
number of subsamples even further. While Salibián-Barrera and Yohai (2006) propose
several computational shortcuts to make random subsampling feasible for the unregularized
S-estimator with up to a moderate number of predictors, in higher dimensional settings the
computational burden of finding a global minimum with high probability is insurmountable.

Random subsampling is similarly used for robust regularized estimation, where the
penalty term could potentially reduce computational challenges, even in high dimensions.
Due to regularization, the size of the subset can be much smaller than the number of pre-
dictors. Alfons et al. (2013), for example, use random subsets of size 3 to obtain initial
estimates for their SparseLTS estimator. By decoupling the size of the subset from the
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number of predictors, the number of subsets required to get at least one clean subsam-
ple with high probability only increases exponentially with the chosen size of the subset.
Although this implies that only a few subsets are required, subsamples of very small size
(e.g., 3 as for SparseLTS) correspond to an approximation of the weights (3.3) at a global
minimum of the PENSE objective function by a vector with only 3 non-zero entries, which
is likely inaccurate considering that the vector of weights at a global minimum has at least
b(1 − δ)nc non-zero entries. Therefore, to maintain a high likelihood of locating a global
minimum (or a good local minimum) it is still necessary to consider a very large number
of random subsamples; either because clean subsamples of small size are likely not a good
initial estimate, or because a large subsample likely contains contamination. This is a ma-
jor obstacle for using random subsampling to initialize PENSE or other robust regularized
estimators.

3.2.2 Elastic Net Peña-Yohai Procedure

The problem with random subsampling, i.e., the large number of subsets required to increase
the chance of finding a good local optimum, stems from the fact that the subsets are chosen
without considering the data itself. The following strategy, proposed by Peña and Yohai
(1999) as outlier detection method and standalone estimator for linear regression, on the
other hand, aims at identifying and omitting contaminated observations. The Peña-Yohai
(PY) procedure builds several subsets of the data, each of which omits observations with
possibly large influence on the LS-estimate, computes the LS-estimate for each of these
subsets, and finally chooses the estimate whose residuals have the smallest M-scale. The PY
procedure mainly screens out observations with high leverage, while retaining observations
with small leverage but large residuals. To remove the influence of these observations as
well, the PY procedure is iterated several times by removing the observations with large
residuals in the fit with the smallest M-scale of the residuals. Although Peña and Yohai
(1999) propose their procedure for the unpenalized S-estimator, Maronna (2011) successfully
adapts the PY procedure to find initial estimates for the S-Ridge estimator. In Cohen Freue
et al. (2019), we adapt the PY procedure for general, non-linear, regularized estimators
such as PENSE, by employing regularized LS-estimators throughout the procedure. The
PY procedure adapted for regularized estimation using the EN penalty (EN-PY) is outlined
in Algorithm 1 for fixed penalty parameters λ and α.

The central piece in the EN-PY procedure is the set of possibly clean subsets, line 5 in
Algorithm 1. Peña and Yohai (1999) derive this set using the principal sensitivity compo-
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Algorithm 1 EN-PY Procedure
Input: Fixed penalty parameters λ and α, the proportion of observations in each clean

subset, κ, 0 < κ < 1, a cutoff value C > 0 for “large” residuals, and the maximum
number of PY iterations I.

1: Initialize the set of indices with the full data set, I (0) = {1, . . . , n}.
2: Set ι = 0.
3: repeat
4: Compute the LS-EN estimate for fixed λ, α with all observations in the current

index set I (ι), θ̃(0).
5: Obtain a set of possibly clean subsets of I (ι), {S1, . . . ,SK}, each of size bκ|I (ι)|c

and Sk ⊂ I (ι).
6: for k = 1, . . . ,K do
7: Compute the LS-EN estimate for fixed λ, α on the subset Sk, θ̃

(k).
8: end for
9: Choose the LS-EN estimate that results in the smallest M-scale of all n residuals,

θ̂
(ι)

= θ̃
(k′) with k′ = argmin

k=0,...,K
σ̂M(y − µ(k) −Xβ̃

(k)
).

10: Update the index set to include only observations with small standardized residuals,

I (ι+1) =
{
i = 1, . . . , n :

∣∣∣yi − µ̂(ι) − x⊺
i β̂

(ι)
∣∣∣ < Cσ̂M(y − µ(ι) −Xβ̃

(ι)
)
}
.

11: Increment ι, ι = ι+ 1.
12: until ι = I or the index set did not change, I (ι) = I (ι−1)

13: return all K + 1 estimates
{
θ̃
(k)

: k = 0, . . . ,K
}
from the last EN-PY iteration, ι− 1.

nents (PSCs); a set of directions in which points of high leverage should appear as large
values. For EN-PY, the principal sensitivity components are obtained from the n× n ma-
trix of leave-one-out (LOO) residuals, R; the k-th column of R is the vector of differences
between the observed y and the values fitted by an LS-EN-estimate computed from all but
the k-th observation (line 2 in Algorithm 2). The PSCs are defined as the projections of
matrix R on its eigenvectors. It can be shown (Peña and Yohai 1999) that observations with
very high leverage have an extreme value (positive or negative) in at least one PSC. From
each PSC, three subsets of size m are obtained from: (a) the m observations with smallest
values in this direction (i.e., filter extremely positive values), (b) the m observations with
largest values (i.e., filter extremely small values), and (c) the m observations with smallest
absolute values (i.e., filter extremely positive or negative values). The detailed procedure
to derive subsets from the PSCs for PENSE is given in Algorithm 2.

The Peña-Yohai procedure for regularized estimators as detailed in Algorithms 1 and 2
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Algorithm 2 Subsets derived from the Principal Sensitivity Components
Input: Fixed penalty parameters λ and α, an index set I of cardinality ñ and the desired

proportion of indices in each subset, κ < 1.
1: Define the desired size of the subsets as m = bκñc.
2: Compute the ñ× ñ sensitivity matrix R. The entries of R are given by

Ri,k = yi − µ̂(−k) − x⊺
i β̂(−k) i, k = 1, . . . , ñ,

where θ̂(−k) is the LS-EN estimate computed for fixed λ, α, from the observations in
the index set I with the k-th entry omitted, i.e., the leave-one-out LS-EN estimate.

3: Determine Q, the number of non-zero eigenvalues of the matrix R⊺R.
4: for q = 1, . . . , Q do
5: Compute the q-th PSC, z(q) = Rv(q), where v(q) is the q-th eigenvector of R⊺R.
6: Define the subset with the m observations with smallest values in z(q), i.e.,

Sq = {i = 1, . . . ñ : z
(q)
i < Zs} with Zs = inf

{
Z : m ≤

ñ∑
i=1

I
{
z
(q)
i < Z

}}

7: Define the subset with the m observations with largest values in z(q), i.e.,

SQ+q = {i = 1, . . . ñ : z
(q)
i > Zl} with Zl = sup

{
Z : m ≤

ñ∑
i=1

I
{
z
(q)
i > Z

}}

8: Define the subset with the m observations with smallest absolute values in z(q), i.e.,

S2Q+q = {i = 1, . . . ñ : |z(q)i | < Za} with Za = inf

{
Z : m ≤

ñ∑
i=1

I
{
|z(q)i | < Z

}}

9: end for
10: return the set {S1, . . . ,S3Q}.

generates a total of 3Q+1 initial estimates for computing the PENSE estimate. The major
benefit of EN-PY over random subsampling is that Q ≤ max(p, n), and hence the number
of initial estimates from the EN-PY procedure only grows linearly with the number of
observations and the number of predictors, as opposed to the exponential growth required
for random subsampling. Therefore, by choosing the subsets in a more guided fashion, the
computation can be greatly reduced compared to naïve subsampling.

For the case of unpenalized regression, Peña and Yohai (1999) present several mathe-
matical shortcuts to efficiently derive the PSCs. These shortcuts are based on the closed
form solution for LOO residuals in the case of linear estimators and thus cover the ordinary
LS-estimator as well as the LS-Ridge estimator. Unfortunately, there is no counterpart of
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these closed form solutions for regularized estimators with non-smooth penalty function.
Therefore, the bottleneck of the EN-PY procedure is the cumbersome computation of the
LOO residuals. For a fixed value of λ and α, the EN-PY procedure requires the computa-
tion of at most n(4 + 4I + Iκ) + I + 1 LS-EN estimates, where I and κ as in Algorithm 1.
Nevertheless, the actual number of LS-EN estimates that need to be computed is usually
much smaller than this upper bound since the residual-filtered index set most often remains
constant after a few iterations. Hence, even without mathematical shortcuts to compute
the PSCs, the EN-PY procedure is still significantly faster than random subsampling for
obtaining initial estimates for PENSE.

In addition to the PY procedure, Peña and Yohai (1999) propose an estimate for linear
regression based on a one-step re-weighting of the S-estimate obtained from the “best” es-
timate (in terms of minimal M-scale of the residuals of all observations) computed through
the PY procedure. Their estimate is a weighted LS estimate, where hard-rejection weights
(0/1) are derived from the residuals of this aforementioned S-estimate. The weights, how-
ever, are derived from the “hat” matrix of their linear estimator and the idea is therefore
not transferable to regularized estimates.

3.2.3 Empirical Comparisons

The main selling point for the EN-PY procedure is the decreased computational burden by
selecting the subsets in a way that excludes potentially contaminated observations. With
the same number of initial estimates, the chance that the EN-PY procedure gives at least
one good initial estimate should be higher than with random subsampling. Peña and Yohai
(1999) show that high leverage points are detectible in at least on PSC direction. The
authors claim that due to this property the PY procedure can efficiently clean the data of
gross contamination. Although the theory presented in the paper does not cover moderate
leverage points, the results of simulation studies further underline the benefits of the PY
procedure.

To ascertain that the advantages of the PY procedure translate to similar properties of
the EN-PY procedure for sparse linear regression, I compare EN-PY and random subsam-
pling empirically. For this experiment, data sets with n = 100 observations and p = 16

predictors are randomly generated according to 42 scenarios following scheme VS1-LT* (see
Appendix A.1.1). In this lower-dimensional problem the likelihood of uncovering at least
one clean subset with a computationally feasible number of random subsamples is still high.
The scenarios are divided into two groups: two scenarios where no contamination is intro-
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duced and 40 scenarios where 25% of the observations are contaminated. In scenarios with
contamination, the placement of contaminated observations is controlled by the leverage of
contaminated observations as well as the regression parameter in the linear model gener-
ating these contaminated observations. The variance of the error term is chosen such that
the percentage of variance explained (PVE) by the true regression model is either 25% or
50% (this amounts to a signal-to-noise ratio of 1/3 and 1, respectively, and follows the sug-
gestions in Hastie et al. (2017)). Appendix A.2 gives the complete details of the scenarios
considered in this numerical experiment.

For each generated data set, initial estimates are obtained at 10 different penalization
levels using random subsampling and the EN-PY procedure. All initial estimates from
different penalization levels are merged into two sets: TRS comprising initial estimates from
random subsampling and TEN-PY for initial estimates from the EN-PY procedure. The
PENSE estimate is then computed for 50 different values of the penalization level. At every
penalization level, the PENSE estimate is computed once from initial estimates TRS and
once from initial estimates TEN-PY, recording the difference in the attained value of the
objective function.

The main results of this experiment are depicted in Figure 3.2. The left plot shows the
number of settings (i.e., combinations of data sets and penalization levels) where a difference
between the EN-PY and random subsampling procedures is detected. For the vast majority
of settings, both procedures lead to the same minimum being uncovered, but more severe
leverage points lead to more differences between the two procedures. This can be expected
because the PENSE objective function usually exhibits more local optima the more severe
leverage points are present. Of those replications where EN-PY and random subsampling
lead to different local optima, the local optimum uncovered by EN-PY is most often better
than the local optimum found via random subsampling. Interestingly, the differences are
more plentiful when the variance of the error term is small (PVE of 50%).

For those replications where there is a difference between the two procedures, the right
plot (Figure 3.2(b)) shows the magnitude of these differences, relative to the true variance
of the error term. Although EN-PY does not always lead to better optima, if there is a
difference, the local optimum uncovered by EN-PY initial estimates are sometimes substan-
tially better than the local optimum obtained from random subsampling. Relative to the
true variance of the error, EN-PY sometimes leads to a local optimum more than 20% bet-
ter than the local optimum attained from starting at initial estimates obtained by random
subsampling.

40



3.2. INITIAL ESTIMATOR

P
V

E
: 25%

P
V

E
: 50%

0% 2% 4% 6%

Extreme

High

Moderate

Low

No Cont.

Extreme

High

Moderate

Low

No Cont.

Nr. of settings with different estimates

C
on

ta
m

in
at

io
n 

le
ve

ra
ge

Random subsampling
leads to better estimate

EN−PY leads to
better estimate

(a) Number of estimates with different objective
value.

P
V

E
: 25%

P
V

E
: 50%

−20% −10% 0% 10% 20%

Extreme

High

Moderate

Low

No Cont.

Extreme

High

Moderate

Low

No Cont.

Rel. difference in objective function

C
on

ta
m

in
at

io
n 

le
ve

ra
ge

Random Subsampling EN−PY

(b) Magnitude of differences.

Figure 3.2: Comparison of the PENSE objective function at the best minimum uncovered by the EN-PY
initial estimates and random subsampling initial estimates. Plot (a) shows the number of settings
(relative to the total number of combinations of data sets and penalization levels considered in each
scenario) where either EN-PY or random subsampling resulted in a lower value of the objective
function. Plot (b) shows the actual difference (relative to the true variance of the errors) between
the local optima obtained through EN-PY initial estimates and random subsampling. Positive values
indicate the EN-PY initial estimate resulted in a smaller value of the PENSE objective function.

Overall, there seem to be only small differences between initial estimates obtained
through random subsampling and EN-PY. These small differences, however, suggest fa-
voring EN-PY for many configurations of the data. To compare computational complexity
of the two procedures in this experiment, the number of initial estimates obtained via ran-
dom subsampling is set to the number of LS-EN estimates computed for EN-PY. While
the number of LS-EN problems is the same, the similarity of LS-EN problems involved in
the EN-PY procedure makes it on average 2.9 times as fast as random subsampling for
computing the initial estimates alone. Even more importantly, EN-PY leads to a much
smaller number of initial estimates that have to be considered when computing the PENSE
estimate. Given that the computation of the PENSE estimate for each initial estimate
is computationally challenging even when using optimizations, the savings in computation
time when using EN-PY are substantial. In this experiment, it takes on average 8.7 times
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longer to compute PENSE estimates using initial estimates from random subsamples then
when using initial estimates from EN-PY. The quality of local minima uncovered by EN-PY
is better than those uncovered by random subsampling, yet computing PENSE estimates
using EN-PY is several times faster, suggesting EN-PY initial estimates are highly prefer-
able.

3.2.4 Initial Estimates for a Set of Penalization Levels

Random subsampling and the EN-PY procedure produce initial estimates for a fixed pe-
nalization level. In practice, however, a good penalization level is unknown in advance and
PENSE must be computed for an entire set of penalization levels. The number of selected
variables and prediction performance of the estimate vary greatly among different penaliza-
tion levels; hence a fine grid of many penalty levels is preferred. Computing initial estimates
for every value in this large set of penalty levels, Q, is infeasible. The fine granularity of
Q, on the other hand, allows for an efficient strategy of “warm-starts” as devised in Cohen
Freue et al. (2019).

Consider a grid Q containing Q > 1 penalization levels in descending order, i.e., Q =

{λ1, . . . , λQ} such that λq−1 > λq for q = 2, . . . , Q. Further, denote by θ̂
(q−1) a local

minimum of the PENSE objective function at λq−1. Since the grid is fine-grained, λq−1

and λq are not too far apart, suggesting a local minimum of the objective function at λq
is likely close to θ̂

(q−1). If more than one local minimum at λq−1 is uncovered, each of
these minima can be used as initial estimate at λq. These warm-starts are repeated at each
λ ∈ Q, thereby “following” local minima over different penalization levels. As depicted in
Figure 3.1, this strategy can greatly increase chances of uncovering global minima as a local
minimum may transmute to a global minimum as the level of penalization changes.

The warm-starts of course depend on local minima uncovered at the preceding penal-
ization level. Therefore, at some point, a different approach for computing initial estimates
is necessary. The simplest form is the “0-based” regularization path. For a large enough
penalization level, the 0-vector, β = 0p is a local minimum of the PENSE objective function
and thus can be traced throughout the penalization grid. This particular form of warm-
starts is predominantly used in iterative algorithms for computing LS-EN estimates because
it can drastically improve computation speed (e.g., Friedman et al. 2010). With the convex
LS-EN objective function, the uncovered minima are actually global minima. In the context
of robust estimators with non-convex objective function, the “0-based” regularization path
is still usable but the uncovered minima, one per penalization level, are not necessarily
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global minima. It is therefore necessary to also consider other initial estimates along the
grid, such as initial estimates from random subsampling or the EN-PY procedure.

In Cohen Freue et al. (2019) we combine initial estimates from the EN-PY procedure
with the idea of warm-starts. We take a small number, say QI � Q, of penalization
levels from the large set Q, denoted by QI ⊂ Q. Only at these few levels of penalization
initial estimates are computed with the EN-PY procedure. When traversing the fine grid
to compute local minima of the PENSE objective function, warm-starts at λq ∈ Q are
combined with initial estimates from the EN-PY procedure if λq is also in QI. Further
increasing the probability of uncovering global minima, the grid Q is traversed in both
directions. In the second pass in reverse direction, local minima at λq are used to initialize
the PENSE estimate at λq−1. This combined strategy of bidirectional warm-starts and
EN-PY effectively reduces computation while maintaining high quality of the uncovered
minima.

Absent from the discussion so far, but critical for computing initial estimates, is the
issue of translating a specific level of penalization of PENSE to comparable penalization of
the initial estimates. Both procedures for computing initial estimates presented here use
LS-EN estimates, computed on a subset of the data, to locate PENSE estimates nearby.
For this to be successful, the amount of penalization induced by the penalty level λI on
a LS-EN estimate compute on a (small) subset of the data, must approximately match
the effect of the desired penalization level λS on the PENSE estimate computed on the
full data. Because of the differences in loss function and data used for computation, using
the same penalization level does not work well in general. Particularly the very different
loss functions can lead to the empty model from the LS-EN estimate for any subset of the
data for a certain λ, while a global optimum of the PENSE objective function at this λ
corresponds to all predictors having non-zero coefficient estimate.

For the S-Ridge estimator, Maronna (2011) matches the regularization parameters be-
tween LS-Ridge and S-Ridge via a multiplicative adjustment of λI to get λS. The author
derives these adjustment factors from the ratio of the squared M-scale estimate to the vari-
ance estimate of a Normal random variable in two extreme cases: (i) the mean of the Normal
distribution is 0 and (ii) the variance of the Normal distribution is 0. For a given value of
δ in the definition of the S-loss (2.8) these two ratios can be computed exactly, and the
author takes the geometric mean of these two numbers as a crude approximation to the
expected ratio of the S-loss to the LS-loss at their respective optima. The adjustment is
easy to compute, but empirical observations suggest the quality of the match is suboptimal.
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The combined strategy of warm-starts and EN-PY initial estimates in Cohen Freue et al.
(2019) also suffers from an imperfect match of penalization levels. The effects, however, are
less detrimental because local minima are followed across penalization levels. For compu-
tational reasons, however, not every local minimum is traced throughout the entire path,
only the most promising minima. If the penalization introduced in the initial estimate is
vastly different from the penalization of the PENSE estimate, this filter may drop minima
prematurely. This problem can be avoided by merging all EN-PY initial estimates from
each penalization level in QI into one large set of initial estimates, T . Each of these initial
estimates is used for computing PENSE at every λS ∈ Q. Instead of relying on an approx-
imate matching between λS for PENSE and the regularization parameter λI used for the
initial estimate, the idea is that for each λS ∈ Q, there should be at least one λI ∈ QI which
gives roughly the same penalization of the initial estimate as λS provides for the PENSE
estimate. Although the match will in general not be perfect, the chance that some of the
initial estimates will be close to a global optimum are much higher if trying several differ-
ent regularization parameters for the initial estimates. The chances can be increased even
further by combining the set of initial estimates T with the idea of warm-starts. Empiri-
cally, this simplified scheme leads to slightly better optima than bidirectional warm-starts
proposed in Cohen Freue et al. (2019). The computational burden of using this excessively
large number of initial estimates can be contained by fully iterating only “promising” initial
estimates. Because the simplified scheme is more amenable to algorithmic optimizations,
computational complexity is very similar to bidirectional warm-starts. Further details about
these optimizations to improve computational performance are given in Chapter 6.

3.3 Theoretical Properties

None of the discussed strategies for initial estimates can guarantee that a global optimum
of the PENSE objective function is attained, but the chances are good if using EN-PY and,
if enough computing resources are available, can be increased by adding initial estimates
obtained from a large number of random subsamples. The global optimum, however, is
desirable due to its provable statistical properties. In the following, the PENSE estimator
θ̃ for θ0 ∈ Rp+1 is defined as the global minimum of the PENSE objective function

θ̃ = argmin
µ,β

OS(µ,β;λS,n, αS) (3.4)
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where αS and λS,n are independent of the given data, but λS,n can depend on the number
of observations n.

As detailed in the previous chapter, it is desired for the estimator to be consistent for
the true regression parameters. To derive consistency of the PENSE estimator, several
assumptions are imposed on the linear regression model (2.2):

[A1] P(X ⊺θ = 0) < 1− δ for all non-zero θ ∈ Rp and δ as defined in (2.8).

[A2] The distribution F0 of the residuals U has an even density f0(u) which is monotone
decreasing in |u| and strictly decreasing in a neighborhood of 0.

[A3] The second moment of G0 is finite and EG0 [XX ⊺] is non-singular.

Assumption [A1] ensures that the probability that observations are perfectly aligned on a
hyperplane is not too large. It is noteworthy that the assumption on the residuals [A2] does
not impose any moment conditions on the distribution, which makes the following results
applicable to extremely heavy tailed errors. Furthermore, unlike many results concerning
regularized M-estimators, PENSE only requires finite second moment of the predictors.

The proofs of the following properties also require the ρ function to satisfy the condition
that

[R4] tρ′(t), is unimodal in |t|. In other words, there exists a c′ with 0 < c′ < c, where c is
the threshold defined in [R2], such that tρ′(t) is strictly increasing for 0 < t < c′ and
strictly decreasing for c′ < t < c.

Although this assumption is a slight variation of more common assumptions on the map-
ping t 7→ tρ′(t), it is nevertheless satisfied by most bounded ρ functions used for robust
estimation, including Tukey’s bisquare function.

The results in Smucler and Yohai (2017) about the consistency of the S-Ridge can be
applied directly to the PENSE estimator.

Proposition 1. Let (yi,x⊺
i ), i = 1, . . . , n, be i.i.d observations with distribution G0 which

satisfies (2.2). Under assumptions [A1] and [A2] and if λS,n → 0, the PENSE estimator θ̃

as defined in (3.4), is a strongly consistent estimator of the true regression parameter θ0:
θ̃

a.s.−−→ θ0.

Although the penalty functions used for the S-Ridge and PENSE are different, the
growth condition on λS,n has the same effect on PENSE as on the S-Ridge; making the
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penalty term negligible for large enough n. The proof of Proposition (1) is therefore identical
to the proof of Proposition 1.i in Smucler and Yohai (2017).

The next step is to quantify the speed of convergence in Proposition (1). The following
theorem states that the PENSE estimate exhibits a n1/2 converges to the true parameter.

Theorem 1. Let (yi,x
⊺
i ), i = 1, . . . , n, be i.i.d observations with distribution G0 which

satisfies (2.2). Under regularity conditions [A1]–[A3] and if λS,n = O(1/
√
n), the PENSE

estimator θ̃ as defined in (3.4), is a root-n consistent estimator of the true parameter vector
θ0: ‖θ̃ − θ0‖ = Op(1/

√
n).

The proof of this theorem is given in Appendix B.2.2 for a more general penalty function,
of which the EN penalty is a special case. The proof is based on first-order Taylor expansions
of the objective function around the true parameter θ0 and the true residuals ui.

Consistency and root-n consistency of PENSE both hold even under very heavy tailed
error distributions F0 and only require a finite second moment of the predictors. Impor-
tantly, the estimator is consistent for the true parameters without any prior knowledge
about H0; it is irrelevant whether the M-scale of the residuals is tuned to be a consistent
estimator of the true scale of the error or not. Although the main focus of regularized
estimators are applications with many predictors and a comparably small sample size, the
asymptotic results in this section provide assurance that PENSE is sensible for estimat-
ing parameters in the linear regression model. Furthermore, the asymptotic guarantees for
PENSE are necessary for developing theoretical results in the following chapter which allow
for informative comparisons with other methods. The theory presented so far, however,
does not specify how arbitrary contamination may affect the estimator.

3.4 Robustness

An overarching goal of this work is to devise estimators which can tolerate a considerable
amount of contamination without giving aberrant results. Despite its shortcomings when it
comes to regularized estimators as mentioned in Section 2.2, the finite-sample breakdown
point is an important measure of robustness; it measures how much contamination can be
introduced such that the maximum bias under contamination remains bounded.

An appealing property of the FBP is that it can usually be proven theoretically without
resorting to numerical experiments. For PENSE, the breakdown point is close to δ as shown
in the following theorem.
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Theorem 2. For a sample Z = {(yi,xi) : i = 0, . . . , n} of size n, let m(δ) ∈ N be the
largest integer strictly smaller than nmin(δ, 1 − δ), where δ is as defined in (2.8). Then,
for a fixed λS,n > 0 and α ∈ [0, 1], the breakdown point (2.7) of the PENSE estimator θ̃ as
defined in (3.4), ϵ∗

(
θ̃;Z

)
, satisfies the following inequalities:

m(δ)

n
≤ ϵ∗

(
θ̃;Z

)
≤ δ .

The proof of this theorem can be found in the Appendix B.1.
The finite-sample breakdown point does not reveal the actual magnitude of the bias,

MSE, or prediction error under contamination; it only states that these measures are finite
for a contamination proportion less than δ. For applications, however, it is important to
have a better understanding of an estimator’s behavior under contamination. Numerical
experiments, detailed in Section 3.6, shed light on the behavior of the PENSE estimator
under contamination.

3.5 Hyper-Parameter Selection

The asymptotic properties of PENSE depend on an appropriate choice of the hyper-parameter
λS,n. More specifically, the estimator is consistent only if λS,n only if λS,n → 0. In practice
this growth rate is difficult to ascertain. Furthermore, while the theoretical properties do
not depend on a certain choice of α, it nevertheless impacts the performance of the esti-
mator. For the remainder of this section the subscripts of λS,n are being dropped as only
PENSE for a fixed sample size n is being considered.

3.5.1 Restricting the Search Space

Before discussion strategies for choosing the hyper-parameters, the search space needs to
be restricted, in particular the range of values considered for the penalization level λ. For
convex objective function, e.g., the LS-EN objective function, it is straightforward to deter-
mine the largest penalization level such that β = 0p is a global minimum. It is unnecessary
to consider penalization levels beyond this largest level, as the global minimum will be the
same for all of them.

This upper bound cannot easily determined for the PENSE objective function due to
the non-convexity of the problem. It is, however, possible to determine λ̃S, the smallest
penalization level such that β = 0p is a local minimum, using the generalized gradient
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as defined in Clarke (1990). First it is important to note that because the unpenalized
S-loss is continuously differentiable and the EN penalty is locally Lipschitz, the PENSE
objective function is also locally Lipschitz. Therefore, the generalized gradient of the PENSE
objective function is the subgradient of the EN penalty plus the derivative of the S-loss.
The subgradient of a convex function g : Rp → R at u0 is defined by Clarke (1990) as the
set

∇ug(u)|u=u0

= {v : v⊺(ũ− u0) ≤ g(ũ)− g(u0) ∀ũ ∈ Rp} .

Since the generalized gradient evaluated at any local minimum must contain 0p+1, it is suf-
ficient to determine the smallest penalty level such that the subgradient of the EN penalty,
evaluated at β = 0p, contains the gradient of the S-loss evaluated at β = 0p, i.e.,

λ̃S = inf

{
λ > 0: ∇βOS(y, µ+Xβ)|

β=0p

∈ λ∇βΦEN(β;α)|
β=0p

}
.

The subgradient of the EN penalty and the gradient of the S-loss are given by

∇βΦEN(β;α)|
β=β̃

=

(1− α)β̃j + α sgn(β̃j) β̃j 6= 0

[−α;α] β̃j = 0

p

j=1

∇βOS(y, µ+Xβ)|
β=β̃

= − 1

n

n∑
i=1

w2
i (y − µ−Xβ̃)

(
yi − µ− x⊺

i β̃
)
xi,

with weights wi(y − µ−Xβ̃) as defined in (3.3). Evaluated at β = 0p, the subgradient of
the EN penalty is the set {b : |bj | ≤ α, j = 1, . . . , p}. Combined with the gradient of the
S-loss at β = 0p, λ̃S is therefore

λ̃S =
1

nα
max

j=1,...,p

∣∣∣∣∣
n∑

i=1

w2
i (y − µ̂y)(yi − µ̂y)xij

∣∣∣∣∣ , (3.5)

where µ̂y is the estimated intercept in the empty model, µ̂y = argminµ σ̂M(y − µ). If
λ̃S > 0, the 0-vector is a local minimum of OS(µ,β;λ, α) for all λ > λ̃S. On the other hand,
if λ̃S = 0, the 0-vector is a local maximum for all λ smaller than a certain value L and a
local minimum for λ > L. In this border case, no simple expression exists to determine L
and a trial and error search for λ̃S is the only other option.

With the approximate upper bound λ̃S, the search for an optimal penalization level can
be concentrated on the range (0, λ̃S). The prevalent strategy is to tune the hyper-parameters
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to optimize some performance metric of interest, such as metrics pertaining to the quality of
the fit or the prediction performance. Robust fit-based metrics, for example robust versions
of popular information criteria AIC (Akaike 1974) or BIC (Schwarz 1978), rely on a robust
estimate of the residual scale. In high-dimensional settings, however, estimating the residual
scale is a difficult task by itself. Especially robust estimation is challenging, because robust
scale estimates themselves require tuning parameters. Changing these tuning parameters
is effectively changing the information criterion itself; if the distribution of the error term
is unknown, there is no general way to choose these tuning parameters.

More importantly, applications motivating this work demand estimators with strong
prediction performance. For these applications, fit-based metrics are not useful because they
only give limited insight into how well the fitted model generalizes beyond the sample at
hand. Due to this shortcoming, prediction performance is usually evaluated using measures
of the prediction error. The prediction error, however, cannot be sensibly estimated on
the same data as used to fit the model, i.e., the data used in the computation of PENSE.
Strategies to estimate the prediction error are most often based on withholding some of the
available observations (i.e., the “test” set) and computing optima of the PENSE objective
function on the remaining observations (i.e., the “training” set). The prediction error is then
estimated as the error arising by predicting the responses of the withheld observations.

3.5.2 Cross Validation

The arguably most prevalent strategy for estimating prediction performance is K-fold cross
validation (CV). In K-fold CV, the n observations in the sample at hand are split into
K disjoint sets of roughly equal size, called folds. In cross-validation, every observation is
used exactly once for prediction and K − 1 times for training, i.e., computing of a global
optimum of the objective function.

To outline the procedure, the index set of a single fold is denoted by Sk ⊂ {1, . . . , n},
k = 1, . . . ,K. These sets are such that they are disjoint, roughly the same size, and⋃K

k=1 Sk = {1, . . . , n}. For each k ∈ {1, . . . ,K}, a global optimum of the objective function
using the observations in

⋃K
k′=1,k′ ̸=k Sk′ is computed and denoted by θ̂

(λ,α)
k . These k optima

are used to predict the observed responses in the k-th fold by

ŷ
(λ,α)
i = x⊺

i β̂
(λ,α)
k + µ̂

(λ,α)
k for all i ∈ Sk. (3.6)

No observation affects the optimum used to predict its value and hence these n predicted
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values can be used to adequately estimate the prediction error of the method with hyper-
parameters (λ, α).

A popular metric for the prediction performance an estimator θ̂ is its root mean squared
prediction error (RMSPE), defined as

RMSPE
(
θ̂
)
=

√
E
[
(Y −X ⊺β̂ − µ̂)2

]
. (3.7)

Using cross-validation, the RMSPE can be estimated by

R̂MSPE(λ, α) =

√√√√ 1

n

n∑
i=1

(
ŷ
(λ,α)
i − yi

)2
.

If the error distribution is heavy-tailed the RMSPE might not be well defined. More
importantly, under the presence of contamination in the sample the estimated RMSPE is
badly affected and does not adequately reflect the estimate’s prediction performance. Since
the RMSPE is essentially a measure of the expected absolute size of the prediction error, it
is more sensible to use a robust measure of scale for quantifying the prediction performance.
A common choice to robustly measure the prediction performance of an estimator θ̂ is the
uncentered τ -scale (Maronna and Zamar 2002) of the prediction errors, given by

τP

(
θ̂
)
=

√√√√√√E

max

cτ ,
∣∣∣Y −X ⊺β̂ − µ̂

∣∣∣
Median

∣∣∣Y −X ⊺β̂ − µ̂
∣∣∣
2
, (3.8)

which can be estimated via CV by

τ̂P(λ, α) =

√√√√√√ 1

n

n∑
i=1

max

cτ ,
∣∣∣yi − ŷ

(λ,α)
i

∣∣∣
Median
i′=1,...,n

∣∣∣yi − ŷ
(λ,α)
i

∣∣∣


2

.

The parameter cτ > 0 controls the tradeoff between efficiency and robustness of the τ -size
by defining what constitutes outlying values in terms of multiples of the median absolute
deviation. In this work, the τ -size is always reported for cτ = 3.

Once the set of hyper-parameters resulting in the best prediction performance is de-
termined, a global optimum at these chosen hyper-parameters is computed using all n
observations. Cross-validation is shown to work very well for regularized estimators using
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convex objective functions (Hirose et al. 2013; Homrighausen and McDonald 2016; Hom-
righausen and McDonald 2018). Cross-validation performs well when a global optimum
computed using all n observations, θ̂(λ,α), is “reasonably close” to global optima computed
on the subsets of observations, θ̂(λ,α)

k , k = 1, . . . ,K. This is usually the case if the amount
of penalization induced by the hyper-parameters (λ, α) is comparable between the subsam-
ples and the objective function only exhibits a single optimum. With non-convex objective
functions, however, it is possible that a local optimum of the objective function evaluated
on the full data is a global optimum when evaluated on a subset of the data. An example of
this behavior is given in Figure 3.3 for data generated by a simple linear regression model
with true parameter value β0 = 1 and 30% of the observations contaminated. While the
global minimum of the PENSE objective function evaluated on all observations is around
0.9, the global minimum of the objective function evaluated on three of the five subsets
is close to −1. The subsets in this example satisfy the conditions for cross-validation and
contamination never exceeds the desired breakdown point of 50%, but it is obvious that
the predictions from three of the five estimates are likely far off. For this particular set of
hyper-parameters the estimated prediction performance is therefore not representative of
the prediction performance of the global minimum on the full data. Although this exam-
ple shows an extreme scenario, it highlights that cross-validation may give very different
estimates of the prediction performance for different splits of the data. This issue is not
unique to PENSE, but any estimator defined via non-convex objective functions because of
the disconnect between the minima uncovered in the CV folds and the estimate from the
full data.

3.5.3 Train/Test Split

The challenges of cross-validation exposed in the previous section can be traced back to
two issues: (i) estimating the prediction performance by combining the prediction errors
from different optima (computed on different subsets of the data) which may not be com-
parable and (ii) trusting that this estimated prediction performance is representative of
the prediction performance of the optimum computed on the full data set for the selected
hyper-parameters.

These challenges could be surmounted by gauging the prediction performance of every
possible estimate directly. For train/test splitting, PENSE estimates are computed on a
random subset of the data (i.e., the training set) and the estimates’ prediction performance
is evaluated on the left-out observations (i.e., the test set). In contrast to cross-validation,
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Figure 3.3: PENSE objective function (3.1) for a simple linear regression model of the form y = x + u,
evaluated at different values of β on the full data set with 100 observations (solid blue line) and
subsets of size 80 (dashed light blue lines). The points on each curve mark the global minimum of
the objective function evaluated on the particular subset.

the PENSE estimates are not computed on the full data set but only on the training set,
avoiding the issues highlighted before.

Simple train/test splitting, however, suffers from different issues, especially in the pres-
ence of contamination. If there is a large number of contaminated observations in the test
set, it is not possible to accurately estimate the prediction performance of the PENSE es-
timates. Estimates which are affected by contamination in the training set may appear to
have good prediction performance. On the other hand, “good” PENSE estimates will not
appear as such since contaminated observations in the test set will not be predicted well.
A single train/test split is therefore not sufficient.

It is more appropriate to equally divide the observations into K disjoint folds, sim-
ilar to cross-validation. Each fold is used as test set exactly once, with the remaining
K − 1 folds being used for training. This leads to K PENSE estimates for every hyper-
parameter-configuration, with each estimate being evaluated on a different test set. If the
total contamination in the data is ϵn, there is at least one test set with less than ϵnK/(K−1)

contaminated observations. Nevertheless, an estimate affected by contamination can still
appear to outperform the other estimates.

A more resilient procedure can be constructed when averaging comparable information
from all K folds. As outlined above PENSE estimates computed with the same λ, but on
different subsets of the data, might not be comparable. The effect of α, on the other hand,
is more stable across subsets of the data. The following two-stage procedure therefore leads
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to a more stable hyper-parameter selection than simple train/test splitting. For each α

in a grid of values, A = {α1, . . . , αA}, and for every fold k = 1, . . . ,K, select the PENSE
estimate with hyper-parameter λk which minimizes the scale of the prediction error in the k-
th fold. Thus, each of theK folds yields A PENSE estimates, one for every α ∈ A . Test sets
with a large proportion of contamination can occasionally lead to a highly underestimated
scale of the prediction error. If the breakdown point of the estimator, however, is large
enough, it is unlikely that this phenomenon occurs for every α in the grid. The prediction
performance in each of the K folds can be summarized by taking the median scale of the
prediction error of all A estimates in the k-th fold. The final PENSE estimate is then chosen
as the estimate with minimum scale of the prediction error in the fold with smallest median
scale of the prediction error.

The major drawback of train/test splitting is that some observations are forfeited for use
as test set. While this can improve estimation of the prediction performance, it can directly
lower the prediction performance of the PENSE estimate, because it does not have access to
all observations. The numerical experiments conducted in the following section also expose
this weakness of train/test splitting. Although CV is sometimes much more affected by
contamination, in the majority of cases estimates computed by train/test splitting seem to
be slightly worse.

3.6 Numerical Experiments

The theoretical properties in Section 3.3 give an indication about the qualities of the PENSE
estimator, but it is difficult to translate these asymptotic properties into tangible metrics on
finite samples. The growth condition on the penalty parameter λS,n, for example, requires
a procedure independent of the data to select the penalty parameter; there are no theoret-
ical guarantees regarding the data-driven hyper-parameter selection procedures outlined in
Section 3.5. Similarly, the breakdown point of PENSE only guarantees that the parameter
estimates remain bounded, but it is unknown how contamination affects the estimates. Nu-
merical experiments are a useful tool to gauge the effectiveness of different hyper-parameter
selection strategies and the practical performance and robustness of PENSE and competing
estimators.
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3.6.1 Estimators

In the following experiments, PENSE is computed with a breakdown point of 33%, i.e.,
δ in the S-loss (2.9) is set to 0.33. The grid of α values is A = {0.5, 0.66, 0.83, 1} and
the grid for λ comprises 50 values equidistant on the log-scale with the upper endpoint
λ̃S (derived in Section 3.5.1) and the lower endpoint set to 0.001αλ̃S. Initial estimates
for PENSE are computed according to the 0-based regularization path and the simplified
scheme described in Section 3.2.4, for a total of 10 penalization levels. As justified by the
results in the beginning of Section 3.6.3, the hyper-parameters α and λ are selected by 5-
fold cross-validation as discussed in Section 3.5. Prediction performance is measured by the
τ -scale of the prediction errors. A detailed description of the algorithms used to compute
the PENSE estimate is given in Chapter 6.

PENSE is compared to several other robust and non-robust estimators. The most similar
robust estimator to PENSE is MMLASSO, with the initial S-Ridge estimate computed for
10 different penalization levels and the penalization level for MMLASSO selected by 5-
fold CV. In low- to moderate-dimensional settings only (p < (1 − δ)n − 1), the robust
unregularized S- and MM-estimators (denoted by S and MM, respectively) are computed
as provided in the R-package RobStatTM (Yohai et al. 2019), with breakdown point set to
33%. For hypothetical comparisons, the oracle S- and MM-estimates are computed using
only the truly active predictors. All robust estimates employ Tukey’s bisquare ρ function,
with cutoff set to 2.37 which yields a consistent scale estimate in case of Normal errors and
δ = 0.33.

The LS-EN estimate is computed using the glmnet (Simon et al. 2011) R package.
Hyper-parameters are selected by 5-fold CV on the same grid of α values as used for PENSE
and the penalty parameter λLS is chosen from a set of 50 values generated by glmnet.
Prediction performance for cross-validation is measured by the mean absolute prediction
error.

3.6.2 Scenarios

Robust estimators should perform well under any conceivable contamination. While it is
infeasible to cover every possible contamination, the objective function of PENSE suggests
the kind of contamination with most severe effect on the estimate. As for other S-estimators
of linear regression (e.g., Maronna 2011), a strong linear relationship between the contami-
nated responses and predictors combined with high leverage potentially leads to a large bias
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in the PENSE estimate. The numerical experiments in this section therefore cover a range
of contamination scenarios where the contaminated observations follow a linear relationship
different from the majority of the data.

The majority of the n observations follows the linear model

yi = xi1 + · · ·+ xis + ui i = bϵnc+ 1, . . . , n

where xi is the vector of p predictors following a multivariate t-distribution with 4 degrees
of freedom and s < p is the number of predictors with non-zero coefficient. The error terms
ui are i.i.d. following a stable distribution with varying tail parameter. The empirical scale
of the error term, σ̂u, is chosen to control for the proportion of variance explained by the
model (PVE), ν:

ν = 1− σ̂2u
σ̂2y
.

Following the argument in Hastie et al. (2017) on realistic values of explained variation, ν
is fixed at 0.25.

Contaminated observations, on the other hand, follow the linear model

yi = kvx̃
⊺
iπ + u′i i = 1, . . . , bϵnc

with parameter kv controlling the “outlyingness” of the contaminated observations and
perturbation u′i following a centered Normal distribution scaled such that the model ex-
plains 91% of the variation in the contaminated observations. On the one hand, large
values of |kv| lead to farther outlying observations and hence have more potential of biasing
estimates. On the other hand, robust estimators can better identify highly outlying ob-
servations as contaminated and assign low weights in the estimation to these observations.
Additionally, the regularizing term steers the estimate towards the model favoring the non-
contaminated observations if |kv| is very large. Therefore, it is difficult to predict which
values of kv lead to higher bias of PENSE estimates. To get an overall assessment of the
bias incurred by contamination, five different contamination parameters kv are considered,
kv = {−2,−1, 0, 3, 7}.

The vector π is randomly generated to have exactly s 1’s and p − s 0’s, determining
which predictors are included in the linear relationship of the contaminated observations.
Leverage of the contaminated observations is increased by scaling the values of the predictors
included in the linear model for the contaminated observations. The magnitude of scaling is
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determined by contamination parameter kl > 1. Larger values of the scaling factor kl lead
to higher leverage of the contaminated observations and thus to larger bias of estimates, but
the effect on robust estimates levels off. Therefore the value is fixed for all contamination
scenarios at kl = 8. The detailed scaling mechanism is explained in Appendix A.3.

Scenarios without contamination (“no contamination”) are replicated 100 times, while
contaminated scenarios are replicated 50 times. A detailed description of the simulation
scenarios and data generation schemes is given in Appendix A.3.

3.6.3 Results

Before comparing PENSE to other regularized estimators, the strategy for hyper-parameter
selection is to be determined. Figure 3.4 shows the relative scale of the prediction error
for PENSE estimates obtain from different hyper-parameter selection strategies in all con-
sidered scenarios. To compare results across error distributions, sample sizes, and sparsity
settings, the scale of the prediction error is standardized by the scale of the prediction error
of the PENSE estimate obtained from hyper-parameters selected to minimize the prediction
error on a large independent validation set. This validation set is in practice unavailable
but is the gold-standard to compare the different hyper-parameter selection strategies.

The strategies compared in Figure 3.4 are cross-validation (Section 3.5.2) and train/test
splitting as outlined in Section 3.5.3. The strategy Train/Test (min) uses the estimate
resulting in the smallest estimated prediction error, while Train/Test (avg) averages infor-
mation from all K folds, as detailed at the end of Section 3.5.3. Figure 3.4 highlights that
CV is preferable to train/test splitting in the vast majority of cases. Especially for scenarios
without contamination, the PENSE objective function is in general well-behaved and local
minima do not cause problems, while train/test splitting clearly suffers from a reduced sam-
ple size. Under contamination, CV still tends to perform better than train/test splitting,
albeit the difference is in general negligible. The numerical experiment also underlines that,
in isolated cases, CV does suffer from the issues outlined in Section 3.5.2. Overall, however,
the benefits of cross-validation and using the full sample to compute the estimates dominate
train/test splitting strategies.

Summarizing results under contamination

Scenarios with 25% contamination may be grouped into groups of five scenarios by ignoring
the value of the contamination parameter, kv. In each of these 5 scenarios, the uncontam-
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Figure 3.4: Prediction performance of PENSE estimates with hyper-parameters chosen according to 5-fold
CV or different versions of 5-fold train/test split. The scale of the prediction error on the vertical
axis is shown relative to the prediction error of the PENSE estimate with hyper-parameters obtained
by using an independent validation set of 1000 observations. The boxplots include results from all
considered scenarios.

inated observations are identical and the same as in the corresponding scenario without
contamination. Figure 3.5 shows the τ -size of the prediction error estimated on an inde-
pendent validation set relative to the true scale of the residuals for LS-EN, MMLASSO,
and PENSE, under the different outlier positions. In this plot, an outlier position of kv = 1

corresponds to the scenario without contamination. For the non-robust LS-EN estima-
tor, prediction performance decreases sharply with increasing severity of the outliers, i.e.,
|kv − 1|, but the effects are much more pronounced in the very sparse scenario VS1-MH(kv,
8) shown in the left panel. The robust estimators MMLASSO and PENSE show similar
performance across different outlier positions, but MMLASSO seems to be more affected
by some of the outlier positions than PENSE. Both robust estimators are most affected by
moderate severity of the outliers, i.e., contamination which is not easily detectable as such,
but neither exhibits a severe loss of prediction performance.

Contamination in sparse scenarios (i.e., 24 predictors out of 64 are active) appears to
be less problematic than in very sparse scenarios (6 predictors are active). The reason for
this phenomenon is that in sparse scenarios the true scale of the residuals is much greater
than in very sparse scenarios as the proportion of variance explained is kept constant at
ν = 0.25. The increased true error scale results in the residuals of the contaminated
observations (with regards to the true model) being much less extreme as for similar very
sparse scenarios. Therefore, neither robust nor non-robust estimators are highly affected by
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Figure 3.5: Prediction performance of regularized estimators under scenarios VS1-MH(kv, 8) (left) and
MS1-MH(kv, 8) (right) with n = 100 and p = 64. The horizontal axis shows the different outlier po-
sitions, kv, where kv = 1 corresponds to the “no contamination” scenario. The scale of the prediction
error on the vertical axis is shown relative to true scale of the residuals. The error bars depict the
range of the inner 50% (inner quartile range) of relative prediction errors from 50 replications.

the contamination in sparse scenarios. The trend of the LS-EN estimator, however, strongly
indicates that for larger values of kv the estimator will lead to nonsensical predictions.

For an overall assessment of performance of the estimators under contamination, the
metrics reported below are summarizing the scenarios by ignoring the value of the contam-
ination parameter kv. In other words, the different outlier positions are treated equally
when assessing performance. Scenarios with contamination are replicated 50 times, and
hence the reported values summarize 5×50 = 250 values. This leads to simpler comparison
of different methods across different scenarios based on their “average performance under
contamination”.

Prediction performance

Prediction performance is measured either by the root mean square prediction error (RM-
SPE) as defined in (3.7) or by the τ -size of the prediction errors, defined in (3.8). The
RMSPE is standardized by the empirical standard deviation of the true errors σ̂u and re-
ported only for Normal errors. The τ -size, standardized by the empirical τ -scale of the true
errors, τ̂u, is reported for all other error distributions without finite variance. Both measures
of prediction performance are estimated on an independent test set of 1000 observations
without contamination. A relative scale of the prediction error of 1 says the prediction error
is of the same magnitude as the random error and indicates good prediction performance,
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while larger values mean worse prediction performance.
Figure 3.6 shows boxplots of prediction performance for the LS-EN estimator, MM-

LASSO, and PENSE under Normal and Cauchy errors and increasing number of predictors
p. In all of these scenarios, the number of observations is fixed at n = 100 and the true
model explains 25% of the variance in the observed response.

With more predictors available, the problem becomes more challenging and the predic-
tion performance decreases accordingly. Even for low-dimensional problems, the prediction
performance of the non-robust LS-EN estimator deteriorates drastically under the presence
of contamination or heavy-tailed errors. Of the two robust estimators shown, MMLASSO
leads to better prediction performance than PENSE for Normal errors and without contam-
ination present, regardless of the number of truly active predictors. This can be expected
since the scale estimate used for MMLASSO is tuned for consistency under Normal errors,
leading to improved efficiency. For more heavy-tailed errors, however, the advantage of
the M-step dissipates and the prediction performance of PENSE estimates is as good as or
slightly better than MMLASSO estimates. While PENSE is outperformed by MMLASSO
in some scenarios with Normal errors, MMLASSO seems more affected than PENSE by
heavy-tailed errors and under the presence of grossly contaminated observations.

A comprehensive summary of the prediction performance in all scenarios, including ad-
ditional error distributions and sample sizes, is given in Appendix C.1.1. It should be noted
that in these visualizations LS-EN seems only slightly affected by contamination in sparse
settings. As explained above, this is an artifact of the contamination being overshadowed by
the large variability of the error term. Overall PENSE is the most stable of the considered
estimator, leading to more robust estimates with highly competitive prediction performance.

Variable selection performance

The stated goal of PENSE is to achieve good prediction performance while at the same time
identify relevant variables. For variable selection two measures are of interest: the relative
number of correctly identified active predictors (sensitivity, SE) and the relative number of
correctly identified inactive predictors (specificity, SP). These two measures are defined as

SE(β̂) = TP(β̂)
TP(β̂) + FN(β̂)

, SP(β̂) = TN(β̂)

TN(β̂) + FP(β̂)
(3.9)
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(b) Sparse scenarios MS1-LT* and MS1-HT*.

Figure 3.6: Prediction performance of regression estimates in different scenarios with a sample size of
n = 100. The horizontal axis in each panel shows the total number of predictors, while the vertical
axis in each panel shows the root mean square prediction error (for Normal errors) or the τ scale of
the prediction errors (for Cauchy errors).

where

TP(β̂) =
∣∣∣{j : β̂j 6= 0 ∧ β0j 6= 0}

∣∣∣ FP(β̂) =
∣∣∣{j : β̂j 6= 0 ∧ β0j = 0}

∣∣∣
TN(β̂) =

∣∣∣{j : β̂j = 0 ∧ β0j = 0}
∣∣∣ FN(β̂) =

∣∣∣{j : β̂j = 0 ∧ β0j 6= 0}
∣∣∣

are the number of true positives, false positives, true negatives, and false negatives, respec-
tively. Perfect variable selection is achieved if both measures are 1, i.e., all active predictors
have non-zero coefficient and all inactive coefficients have a coefficient value of 0.

Figure 3.7 shows the sensitivity and specificity under very sparse and sparse scenarios
for a sample size of n = 100. As for prediction performance, variable selection is more
challenging when more predictors are available and the more predictors are truly active.
Variable selection of the non-robust LS-EN estimator is much more affected by heavy-tailed
error distributions than by gross contamination. Particularly sensitivity drops to almost 0%
for the LS-EN estimator if the errors are Cauchy distributed, even under no contamination;
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the LS-EN estimate almost always selects the empty model in these scenarios. Interestingly,
contamination by leverage points appears to help LS-EN identify some relevant predictors
even for Cauchy errors. The reason is that some of the truly active predictors are con-
taminated by high-leverage values, which are immediately selected by LS-EN, alongside the
other contaminated predictors. This highlights the hypersensitivity of LS-EN estimates to
leverage point contamination; any predictor with leverage points will be selected by LS-EN
with near certainty.

The robust estimators, on the other hand, perform very similarly for light- and heavy-
tailed errors as well as under contamination. Sensitivity of both PENSE and MMLASSO
estimates is almost unaffected by gross contamination under Normal errors and decreases
only slightly if errors are Cauchy distributed. Specificity decreases more under contamina-
tion and it seems even robust estimators tend to wrongly select inactive predictors if they
are contaminated with leverage points.

In sparse scenarios (right plot 3.7(b)), variable selection is apparently more challenging
than in very sparse scenarios. The greater flexibility of the EN penalty used by PENSE
seems to be an advantage in these sparse scenarios. While MMLASSO has comparable
sensitivity to PENSE in very sparse scenarios, the L1 penalty can be too restrictive for sce-
narios where many predictors are truly active. In these scenarios PENSE has substantially
higher sensitivity than MMLASSO.

Across all scenarios, PENSE has the highest sensitivity and selects more of the truly
active predictors than the other estimators. Even under no contamination and Normal
errors, PENSE is as good as LS-EN in detecting truly active predictors. Unsurprisingly,
MMLASSO tends to have lower sensitivity than PENSE because of the restrictions imposed
by the L1 penalty. On the other hand, PENSE usually selects many more irrelevant variables
than MMLASSO. Overall, PENSE has high sensitivity but only moderate specificity, a
shortcoming addressed in the following Chapter 4.

These conclusions also extend to the other error distributions and sample sizes, as vi-
sualized in Appendix C.1.2. Variability of the variable selection performance of PENSE
estimates decreases substantially with larger sample size, and sensitivity improves notice-
able. Specificity, on the other hand, increases only moderately with a larger sample size.
Importantly, variable selection properties of LS-EN deteriorate quickly even for a moderate-
light-tailed error distribution.

It is important to note that none of the estimators shown here possess any theoretical
guarantees of uncovering the true active set with high probability in the scenarios considered.
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Figure 3.7: Variable selection performance of regularized regression estimates in different scenarios with a
sample size of n = 100. The horizontal axis in each panel shows the total number of predictors. The
vertical axis in each panel is split in two halves: sensitivity (i.e., the number of correctly identified
active predictors) is shown on the top half, and specificity (i.e., the number of correctly identified
inactive predictors) is shown downwards with perfect specificity (100%) on the bottom. Solid vertical
lines show the range of the inner 50%, while the dashed lines extend from the 5% to the 95% quantile.

Regularized robust estimators with better variable selection performance are discussed in
the following Chapter 4.

3.7 Conclusions

The elastic net S-estimator, PENSE, proposed in Cohen Freue et al. (2019) and explained in
detail in this chapter, is a highly robust method for linear regression problems with favorable
prediction performance and good variable selection properties. Compared to competing
methods, PENSE does not require an auxiliary scale estimate and theoretical guarantees
do not depend on moment conditions on the error term. This make PENSE a very versatile
method applicable to problems with high noise and possible contamination in the response
and the predictors.

PENSE gains its robustness towards contamination and heavy-tailed error distribu-
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tions by regularizing the robust, non-convex S-loss with the EN penalty. Locating a good
minimum of this non-convex objective function with limited computing resources requires
carefully chosen initial estimates. Using ideas from the Peña-Yohai estimator (Peña and
Yohai 1999), we devised the EN-PY procedure in Cohen Freue et al. (2019) for PENSE to
compute initial regularized estimates based on subsets of the data which likely exclude ob-
servations with high leverage. In practice, the EN-PY procedure, outlined in Section 3.2.2,
often leads to better local optima than other strategies to obtain initial estimates while
being computationally much more efficient.

Despite the complications introduced by the non-convex objective function, I establish
the root-n consistency of the PENSE estimator in Section 3.3 for a fixed number of predictors
but otherwise very mild assumptions. These asymptotic results, however, require penalty
parameters chosen independently of the available sample according to the necessary growth
conditions. In practice, this is infeasible. Section 3.5 therefore discusses different data-driven
strategies to select hyper-parameters based on the prediction performance of the resulting
estimate. All of these heuristics are prone to high variability in the estimated prediction
performance due to the potential presence of contaminated observations combined with the
non-convex objective function. The numerical experiments suggest that hyper-parameters
selected via cross-validation lead to better estimates than hyper-parameters selected by
other data-driven methods in the vast majority of cases. While in rare cases CV seems to
be more affected by contamination than train/test splitting, the overall performance of CV
justifies its use in practice. This underlines that hyper-parameter selection is challenging for
estimators defined through non-convex objective functions and becomes more challenging
the more severe the non-convexity caused by contaminated observations.

The numerical experiments also demonstrate that PENSE leads to better prediction
performance than other estimators with provable theoretical guarantees in problems with
high noise in the response and/or contaminated observations. Besides the numerical ex-
periments conducted and explained herein, empirical results in Cohen Freue et al. (2019)
for different data generation schemes underscore the versatility of PENSE, especially in
problems where some predictors are highly correlated. From these empirical results and
from the theoretical results presented and developed in this chapter, it can be concluded
that PENSE has strong prediction performance and estimation accuracy even under very
challenging circumstances. None of the competing methods is able to cope with high noise
levels and contamination both in the response and the predictors as good as PENSE.

With respect to variable selection, the simulation study shows that PENSE has very
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high sensitivity in almost all scenarios. This high sensitivity, however, comes at the price
of a large number of falsely selected predictors. In many applications, a large number
of false positives is undesirable. In biomarker discovery studies, for instance, too many
potential biomarkers lead to prohibitively expensive follow-up validation studies or render
the biomarkers infeasible for clinical use. It is therefore of practical importance to develop a
robust estimator with better variable selection performance, particularly higher specificity,
without sacrificing sensitivity or prediction performance.
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Chapter 4

Variable Selection Consistent
S-Estimators

The penalized elastic-net S-estimator (PENSE), as detailed in the previous chapter, achieves
highly robust estimation and prediction performance. Theoretical results and numerical
experiments demonstrate that PENSE estimates yield competitive prediction performance
outperforming other estimators in challenging problems with heavy-tailed errors and adverse
contamination. Albeit PENSE uncovers most of the truly active predictors, the estimate
often selects many truly inactive predictors. The issue arises from the elastic net (EN)
regularization term in the PENSE objective function, which introduces non-negligible bias
and hence cannot lead to a variable selection consistent estimator. Therefore, I propose to
replace the elastic net penalty by the adaptive EN penalty which has been shown to lead
to variable selection consistent estimators when combined with the LS-loss.

The adaptive EN, as defined in (2.15), combines the advantages of the adaptive LASSO
penalty (Zou 2006) and the elastic net penalty (Zou and Zhang 2009). The adaptive LASSO
leverages information from a preliminary regression estimate, β̃, to penalize predictors
with initially “small” coefficient values more heavily than predictors with initially “large”
coefficients. This has two major advantages over the non-adaptive EN penalty: (i) the
bias for large coefficients is reduced and (ii) variable selection is improved by reducing the
number of false positives. Compared to adaptive LASSO, the L2 term in the adaptive EN
improves stability of the estimator in presence of highly correlated predictors (Zou and
Zhang 2009).

In this chapter I introduce adaptive PENSE by combining the robust S-loss and the
adaptive EN penalty. I state its theoretical properties and show that the adaptive EN
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penalty leads to more reliable variable selection than what can be achieved by PENSE. Fur-
thermore, numerical experiments showcase the improved variable selection performance over
PENSE while retaining similar predictive power and demonstrates that adaptive PENSE
performs better than other variable selection consistent estimators under contamination.
The improved variable selection is an important feature for practical applications. I revisit
a biomarker discovery study from Cohen Freue et al. (2019) to highlight the utility of the
adaptive PENSE estimator.

4.1 Method

The adaptive PENSE estimator is defined by a regularized objective function which com-
bines the robust S-loss and the adaptive EN penalty. The adaptive EN penalty (2.15) is
similar to the EN penalty except that the L1 penalty applied to parameter βj is scaled
by penalty loading ωj , raised to the power of ζ > 0. For adaptive PENSE, these loadings
are set to the reciprocal values of an initial PENSE slope estimate, β̃(λS,αS). The objective
function for adaptive PENSE is given by

OAS(µ,β;λAS, αAS, ζ,ω) = LS(y, µ+Xβ) + λASΦAN(β;ω, αAS, ζ) (4.1)

with ωj = 1/β̃
(λS,αS)
j , j = 1, . . . , p. Minimizers of the adaptive PENSE objective function

are denoted by θ̂
(λAS,αAS,ζ,ω)

= argminµ,β OAS(µ,β;λAS, αAS, ζ,ω). The hyper-parameters
are omitted if not pertinent to the argument or obvious from the context.

The interpretations of hyper-parameters λAS and αAS are identical to interpretations
of hyper-parameters λS and αS for PENSE, i.e., they control the amount of penalization
and the balance between the L1/L2 penalties, respectively. The exponent in the predictor-
specific regularization, hyper-parameter ζ, is less intuitive. In general, a larger ζ leads
to more reliance on the initial estimate β̃

(λS,αS) for variable selection. A small preliminary
coefficient estimate |β̃j | leads to a larger penalty loading ωj . With ζ large, this large penalty
loading is further amplified, heavily penalizing predictor j which is in turn likely omitted
from the active set. Therefore, if ζ is large, only predictors with the very large preliminary
coefficient estimates are likely to be selected.

Predictors with a preliminary coefficient estimate of 0 remain inactive after adaptive
PENSE. In the formulation of the adaptive EN penalty, these predictors have infinite pe-
nalization because αASλAS > 0 is required. Therefore, these coefficients necessarily stay 0.
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When computing the adaptive PENSE estimate according to (4.1), only predictors in the
preliminary active set A (β̃

(λS,αS)
) =

{
j : β̃

(λS,αS)
j 6= 0

}
are considered. While irrelevant for

theoretical properties of variable selection performance of adaptive PENSE, the absorbing
state at 0 can in practice deteriorate variable selection performance, but at the same time
improve computational speed by reducing the complexity of the problem. As an alternative
Zou and Hastie (2005) suggest replacing zero coefficients with a very small value ϵ by adjust-
ing the penalty loadings to ωj = 1/max(ϵ, |β̃(λS,αS)

j |). Another way of evading the absorbing
state is to use a preliminary estimate with almost surely non-zero coefficients, for example
the PENSE-Ridge (i.e., αS = 0). For adaptive PENSE, empirical results suggest that an
initial PENSE-Ridge estimate leads to good results and has computational advantages over
PENSE estimates with αS > 0.

Finding minima of adaptive PENSE’s non-convex objective function is as difficult as
for PENSE. The challenge, however, is further elevated by the larger number of hyper-
parameters needed for the adaptive PENSE.

4.1.1 Hyper-Parameter Selection

Computing an adaptive PENSE estimate for given values of the hyper-parameters involves
two expensive non-convex optimizations: first compute the PENSE estimate θ̃

(λS,αS), then
the adaptive PENSE estimate θ̂

(λAS,αAS,ζ,ω). An exhaustive hyper-parameter search for
adaptive PENSE would in the first stage compute PENSE on a 2-dimensional grid of values
for λS and αS. In the second stage, adaptive PENSE is computed on a 3-dimensional grid
of values for λAS, αAS, and ζ, trying every PENSE estimate computed in the first stage.
Performing an exhaustive search in this large space is obviously infeasible in practice.

There are several ways to restrict this extensive search. Instead of using every PENSE
estimate from the first stage, the search space can be reduced by only considering the “best”
PENSE estimate among all PENSE estimates with αS = αAS. A further simplification is
to fix the preliminary estimate at the best overall PENSE estimate while still performing
a full hyper-parameter search for the adaptive PENSE estimate. For the adaptive LS-EN
estimator, Zou and Zhang (2009) propose an even more restricted search. The authors
suggest to first select hyper-parameters for the preliminary LS-EN estimate, denoted by α∗

and λ∗. For the adaptive LS-EN estimate the authors then only search over the restricted
set {(α, λ) : λ1−α

2 = λ∗ 1−α∗

2 }, fixing the L2 penalization in the adaptive EN penalty to the
same level as selected for the preliminary LS-EN estimate. This could be translated to the
adaptive PENSE estimator by fixing αAS in the second stage to the same value as αS in the
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best overall PENSE estimate.
A different approach to constrain the computational burden of the hyper-parameter

search is to compute only the PENSE-Ridge (i.e., αS = 0) in the first stage. This has
two advantages: (i) reducing the risk of false negatives in the model selected by adaptive
PENSE because the preliminary active set contains all predictors, and (ii) the PENSE-
Ridge estimate is faster to compute than PENSE estimates with αS > 0. Although this
decreases the computational burden of the first stage considerably, the search in the second
stage cannot be restricted and a full 3-dimensional hyper-parameter search is necessary.
Empirical results in Section 4.4.1 favor the use of PENSE-Ridge in most applications.

4.2 Statistical Theory

In this section I establish theoretical properties of the adaptive PENSE estimator θ̂ for
θ0 ∈ Rp+1, defined as the global minimum of the adaptive PENSE objective function

θ̂ = argmin
µ,β

OAS(µ,β;λAS,n, αAS, ζ,ω) (4.2)

where ωj = 1/β̃
(λS,αS)
j , j = 1, . . . , p is determined from an initial PENSE estimate. All

hyper-parameters λAS,n, αAS, ζ, αS, λS,n are chosen independently of the sample, but λAS,n

and λS,n need to decrease according to the number of observations n.
The following asymptotic properties hold under the same general conditions [A1] –[A3]

as given for PENSE in Section 3.3. To ease notation and without loss of generality, I assume
that the first s components of β0 are non-zero (i.e., A (β0) = {1, . . . , s}). The leading non-
zero components of the true coefficient vector are denoted by β0

I while the trailing p − s

components are denoted by β0
II with β0

II = 0p−s.

Proposition 2. Let (yi,x⊺
i ), i = 1, . . . , n, be i.i.d. observations with distribution G0 which

satisfies (2.2). Under assumptions [A1] and [A2] and if λS,n → 0 as well as λAS,n → 0, the
adaptive PENSE estimator θ̂ as defined in (4.2), is a strongly consistent estimator of the
true regression parameter θ0: θ̂

a.s.−−→ θ0.

Noting that the level of L2 penalization given by λAS,n
1−αAS

2 converges deterministically
to 0 due to the condition that λAS,n → 0, the proof of strong consistency of adaptive PENSE
is otherwise identical to the proof of strong consistency of adaptive MM-LASSO given in
Smucler and Yohai (2017) and hence omitted. An important result for the following variable
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selection properties is the speed of convergence of the adaptive PENSE estimator, proven
in Appendix B.2.2.

Theorem 3. Let (yi,x
⊺
i ), i = 1, . . . , n, be i.i.d. observations with distribution G0 which

satisfies (2.2). Under regularity conditions [A1]–[A3] and if λS,n → 0 and λAS,n = O(1/
√
n),

the adaptive PENSE estimator θ̂ as defined in (4.2), is a root-n consistent estimator of the
true parameter vector θ0: ‖θ̂ − θ0‖ = Op(1/

√
n).

The results so far show that adaptive PENSE theoretically performs as well as PENSE.
The adaptive penalty, however, gives rise to an important additional property of adaptive
PENSE: variable selection consistency. The following theorem which is proven in Ap-
pendix B.2.3 shows that under conditions [A1]–[A3], adaptive PENSE is able to recover the
truly active predictors with high probability.

Theorem 4. Let (yi,x⊺
i ), i = 1, . . . , n, be i.i.d. observations with distribution G0 which sat-

isfies (2.2). Under regularity conditions [A1]–[A3], and if (1) λS,n = O(1/
√
n), (2) λAS,n =

O(1/
√
n), (3) αASλAS,nn

ζ/2 → ∞, the adaptive PENSE estimator, θ̂ = (µ̂, β̂) as defined
in (4.2), is variable selection consistent:

P
(
β̂II = 0p−s

)
→ 1 for n→ ∞.

It should be noted that conditions (2) and (3) in the theorem imply that αAS and ζ must
be greater than 0. Furthermore, condition (3) is guaranteed to be satisfied for ζ > 1. Using
variable selection consistency of adaptive PENSE, it is possible to determine the asymptotic
distribution of the estimator of the truly active parameters.

Theorem 5. Under the same conditions as for Theorem 4 as well as
√
nλAS,n → 0 the

asymptotic distribution of the truly active coefficients of the adaptive PENSE estimator, β̂I,
is

√
n
(
β̂I − β0

I

)
d−→ Ns

(
0s, σ

2
M(U)

a(ρ, F0)

b(ρ, F0)2
Σ−1

I

)
for n→ ∞.

Here, σM(U) is the population M-scale of the true residuals,

σM(U) = inf {s > 0: EF0 [ρ(U/s)] ≤ δ} ,

a(ρ, F0) = EF0

[
ρ′ (U/σM(U))2

]
, b(ρ, F0) = EF0 [ρ

′′ (U/σM(U))], and ΣI is the covariance
matrix of the truly active predictors, X I.
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Together, Theorems 4 and 5 imply that the adaptive PENSE estimator has the same
asymptotic properties as if the true model would be known in advance, under fairly mild
conditions on the distribution of the predictors and the error term. By the asymptotic
nature of these results, they are not immediately transferable to finite samples, especially
if the number of predictors is large and the sample size comparatively small. These results
are nevertheless useful because they underscore that a large number of irrelevant predictors
does not have an undue effect on the accuracy of the estimates; the decisive factor is the
number of truly relevant predictors. For practice even more important, these asymptotic
results allow for simple comparison of the properties of adaptive PENSE to other competing
methods and to understand under what circumstances adaptive PENSE may be preferable.
For example, similar results as for adaptive PENSE are obtained for adaptive MM-LASSO in
Smucler and Yohai (2017), but their results are contingent on a good estimate of the residual
scale. Distinguishing the results in Theorems 4 and 5 from previous work is that the oracle
property for the adaptive PENSE estimate can be obtained without prior knowledge of the
residual scale, even under very heavy tailed errors.

The scaling factor σ2M(U)
a(ρ,F0)
b(ρ,F0)2

in the covariance matrix of the asymptotic Normal
distribution of the adaptive PENSE estimator is evidence the adaptive PENSE estima-
tor cannot simultaneously achieve high robustness and high efficiency; the larger δ in the
definition of the S-loss, the lower the asymptotic efficiency. The heavier the tail of the
error distribution, however, the less severe the loss of efficiency compared to the adaptive
MM-LASSO or the adaptive LS-EN. For central stable distributions (Mandelbrot 1960)
with stability parameter less than 1.5, for example, the efficiency of adaptive PENSE with
δ ≤ 1/3, relative to adaptive MM-LASSO, is at least 88%. For adaptive MM-LASSO to
achieve higher efficiency than adaptive PENSE the M-loss must be tuned for the specific
error distribution. More importantly, however, for the tuning to improve efficiency in finite
samples, the residual scale estimate must be close to σM(U) which is very difficult to achieve
in finite samples. Chapter 5 discusses these difficulties in more detail.

The growth rates of λS,n and λAS,n are important to achieve consistency in parameter
estimation and variable selection. In practice, however, the hyper-parameters are usually
chosen in a data-driven way and hence these growth conditions are almost impossible to en-
force or check. The empirical results in Section 4.4 underline that perfect variable selection
is very difficult to achieve in finite samples with data-driven hyper-parameter search. Never-
theless, adaptive PENSE shows better variable selection performance than other estimators
in challenging problems.
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4.3 Robustness Properties

Adaptive PENSE enjoys similar robustness properties as PENSE. The finite-sample break-
down point (FBP) of adaptive PENSE is at least as large as the FBP of the preliminary
PENSE estimate. Theorem 2 establishes the breakdown point of the preliminary PENSE
estimate is close to δ, where δ is as defined in (2.8) for the S-loss of the preliminary PENSE
estimate. If the same δ is used for the adaptive PENSE estimator, it also achieves a break-
down point close to δ, as per the following theorem.

Theorem 6. For a sample Z = {(yi,xi) : i = 0, . . . , n} of size n, let m(δ) ∈ N be the largest
integer strictly smaller than nmin(δ, 1− δ), where δ is as defined in (2.8) for the S-loss of
the preliminary PENSE estimate and the S-loss of the adaptive PENSE estimator. Then,
for a fixed hyper-parameters λS > 0, λAS > 0 and αS, αAS ∈ [0, 1], the breakdown point (2.7)
of the adaptive PENSE estimator, ϵ∗

(
θ̂;Z

)
, satisfies the following inequalities:

m(δ)

n
≤ ϵ∗

(
θ̂;Z

)
≤ δ .

Noting that the preliminary estimate θ̃ remains bounded by Theorem 2 and hence every
coefficient is penalized, the proof is identical to the proof of the FBP of PENSE which is
given in Appendix B.1.

4.3.1 Robustness of Variable Selection

In the presence of certain contamination in the predictors, the adaptive EN penalty brings
an important advantage over non-adaptive penalties. For PENSE, the smallest penalization
level such that β = 0p is a local optimum, as given in (3.5), reveals that a single very large
value in a predictor, paired with a non-outlying residual, leads to the explosion of λ̃AS.
Consider the case where predictor j is truly inactive and observation i has an unusually
large value for predictor j, i.e., xij is contaminated. Since predictor j is truly inactive,
the response yi is unaffected by this contamination. From the subgradient of the PENSE
objective function at β = 0p,

∇βOS(µ,β;αS, λS)|
β=0p

= − 1

n

n∑
i=1

w2
i (y − µ) (yi − µ)xi + λS[−αS;αS],

it can be seen that direction j will dominate the gradient, as long as the response yi is not
otherwise contaminated (or exactly fitted by the intercept-only model). Hence, this single
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aberrant value in irrelevant predictor j leads to this predictor being the first to enter the
model, wrongly suggesting that this predictor is likely relevant.

Standardizing the data beforehand to transform all predictors to the same scale does not
mitigate the problem as robust scale estimates would be unaffected by this single contam-
inated value. A non-robust scale estimate would help to alleviate effects of this particular
contamination but would make the regression estimate susceptible to most other forms of
contamination. For this reason the classical LS-EN estimator is unaffected by these leverage
points when standardizing the predictors by their sample standard deviation.

Inspecting the effects of these leverage points in inactive predictors on PENSE also high-
lights that the estimated coefficients remain small. Similar to non-regularized estimators,
as long as the linear model holds, extremely large values in the predictors actually aid the
estimation. These “good” leverage points are highly informative about the true model and
force the coefficient value to be close to the true value. In the case where the predictor with
these extreme values is truly inactive, the coefficient estimate is forced towards 0. In fact,
as xij → ∞ the estimated coefficient value approaches the true value β̃j → β̃0j = 0, but it
will never be exactly 0 because the predictor eludes the grips of the EN penalty.

Leveraging a preliminary PENSE estimate gives a distinct advantage to adaptive PENSE.
Given that the coefficient estimate for the affected predictor is likely small, the penalty load-
ing in adaptive PENSE is very large. This leads to adaptive PENSE most probably screening
out these spuriously included predictors, as also showcased in the numerical experiments in
Section 4.4.2 Therefore, adaptive PENSE overall has not only theoretically better variable
selection properties, but variable selection is also more robust.

4.4 Numerical Experiments

Adaptive PENSE enjoys many important theoretical properties as the sample size increases
and hyper-parameter λAS decreases accordingly. How these properties translate to finite
samples and different contamination is not answered by the theory. As with PENSE, the
effects of contamination are bounded by theoretical results, but the magnitude is unknown
in practice. Continuing the experiments in Section 3.6, the numerical studies presented in
this section showcase the benefits of adaptive PENSE in practice.

Additionally to the estimators considered in Section 3.6, adaptive PENSE is compared to
several other estimators possessing the oracle property in one or more scenarios considered.
Under the same conditions as adaptive PENSE, adaptive MM-LASSO can recover the true
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model with high probability even in scenarios where the error distribution has infinite
variance, making it a suitable method in the scenarios considered here. Adaptive PENSE
and the preliminary PENSE estimate are both tuned to a breakdown point of 33%, while
adaptive MM-LASSO chooses the breakdown point automatically between 25–50% based
on the degrees of freedom estimated by the S-Ridge (Smucler and Yohai 2017). Hyper-
parameters for adaptive PENSE and adaptive MM-LASSO are selected via cross-validation
to minimize the estimated τ -size of the prediction error as defined in (3.8). The hyper-
parameter ζ for adaptive PENSE is chosen via CV from ζ ∈ {1, 2}. The grid for αAS and
λAS is chosen as in Section 3.6.

The highly robust adaptive PENSE and adaptive MM-LASSO are compared to two other
estimators which possess the oracle property, at least for Normal errors. I-LAMM (Fan et
al. 2018) with Huber’s loss function is also designed for error distributions more heavy-
tailed than the Normal, with strong theoretical guarantees even for finite samples, but does
require the variance to be finite. For the numerical experiments here, I-LAMM is computed
with the methods available in the R package from https://github.com/XiaoouPan/ILAMM
using the L1 penalty and default settings. Hyper-parameters are selected via 5-fold cross-
validation by the procedure cvNcvxHuberReg, with the modification of using the mean
absolute prediction error (MAPE) as scale metric to improve performance under heavy
tailed error distributions. Adaptive LS-EN, using LS-Ridge as preliminary estimate, is
computed by the glmnet package in R, with 5-fold CV to select the hyper-parameters
minimizing the MAPE.

4.4.1 Preliminary Estimate for Adaptive PENSE

Adaptive PENSE relies on a preliminary PENSE estimate, but theoretical results do not
provide guidance on which hyper-parameters are appropriate to compute the preliminary
estimate. As outlined in Section 4.1.1, a comprehensive search for all five hyper-parameters
is infeasible.

The main goal of adaptive PENSE is to improve variable selection over PENSE while re-
taining good prediction performance. Figure 4.1 compares two different preliminary PENSE
estimates: (i) PENSE (Ridge) computed for αS = 0 with λS selected via 5-fold CV and
(ii) PENSE (CV) with αS and λS selected via 5-fold CV (this is the PENSE estimate shown
in Section 3.6). The plots show the change in sensitivity and specificity of adaptive PENSE
compared to the PENSE estimate in percentage points, with the dots representing the
median and the error bars extending from the 25% to the 75% quantile.
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As expected, specificity of adaptive PENSE is higher than that of PENSE, regardless of
the preliminary estimate. In particular when using PENSE (CV) as preliminary estimate,
specificity must be at least as high as for PENSE as any predictor excluded by PENSE will
necessarily also be excluded by adaptive PENSE. Therefore, leveraging the PENSE (CV)
estimate leads to slightly higher specificity than if using PENSE (Ridge). At the same
time, adaptive PENSE derived from PENSE (CV) identifies fewer truly relevant predic-
tors because it can only select from those predictors previously selected by PENSE. Using
PENSE (Ridge), on the other hand, all predictors are considered when computing adaptive
PENSE, and hence the drop in sensitivity from PENSE is more moderate and in many
scenarios sensitivity of adaptive PENSE is even higher than sensitivity of PENSE.

It appears as if the benefits of adaptive PENSE decrease as more predictors are available,
but it needs to be noted that specificity of PENSE is already quite high in these settings,
leaving less room for improvements. In these higher-dimensional problems, PENSE and
other regularized estimators have more difficulty identifying the relevant predictors. While
adaptive PENSE in general reduces sensitivity even further, leveraging PENSE (Ridge)
often leads to an estimate with higher sensitivity in high-dimensional settings.

In terms of prediction performance, adaptive PENSE leads to similar performance as
PENSE, albeit slightly reduced. Basing adaptive PENSE on PENSE (CV) tends to de-
crease prediction performance in the majority of situations as shown in Figure C.7 in the
appendix. Prediction performance of adaptive PENSE with PENSE (Ridge) as the prelim-
inary estimate, on the other hand, is not substantially different from PENSE.

Overall, adaptive PENSE based on the PENSE (Ridge) preliminary estimate improves
specificity without sacrificing as much sensitivity as if using PENSE (CV). Leveraging
PENSE (Ridge) can even be beneficial for sensitivity in high dimensions and does not
impede prediction performance of the estimate. In applications where the costs associated
with including irrelevant predictors is prohibitive, PENSE (CV) may be the more appro-
priate preliminary estimate for adaptive PENSE. In general, however, adaptive PENSE
based on PENSE (Ridge) leads to an overall more substantial improvement of variable se-
lection properties with similar prediction performance as PENSE. In subsequent numerical
experiments, adaptive PENSE is therefore reported with PENSE (Ridge) as preliminary
estimate.
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Figure 4.1: Comparison of variable selection performance of adaptive PENSE using different preliminary
estimates. Data is simulated according to schemes VS1-* in panels on the left and MS1-* in panels on
the right, with n = 100 and 25% variance explained by the true model. Results for “no contamination”
(top) show the median and inter-quartile range over 100 replications, while results on the bottom
summarize 50 replications for each of 6 scenarios with different contamination settings.

4.4.2 Effects of Good Leverage Points

Combining the robust S-loss with the adaptive EN penalty promises more robust variable
selection in the presence of good leverage points as detailed in Section 4.3.1. To support
this statement with empirical results, data is generated according to scheme MS1-MH(–, kl)
with p = 32 predictors and n = 100 observations with adapted contamination model. All
100 response values are generated according to the true model, but in 10% of observations,
some predictor values are contaminated by

x̃i,15+i = xi,15+ikl

max
i′=1,...,n

d2i

d215+i

for i = 1, . . . , 10 (4.3)

with d2i the squared Mahalanobis distance of observation i, relative to the 10 contaminated
predictors, as in (A.3). In other words, each of the first 10 observations has a single predictor
with unusually large value, with the severity of leverage controlled by parameter kl. The
first 17 predictors are truly active; hence this contamination model introduces leverage
points in 2 truly active predictors and 8 truly inactive predictors.
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Results are shown in Figure 4.2, underlining that PENSE estimates are considerably
affected by these “good” leverage points. Sensitivity and specificity are calculated separately
for contaminated (top) and uncontaminated predictors (bottom). All estimates select the
truly active predictors with contamination in the vast majority of replications, regardless
of the severity of leverage introduced. As predicted, PENSE almost always selects all
truly irrelevant predictors with contamination. Adaptive PENSE using PENSE with α =

0 as preliminary estimate, on the other hand, shows highly consistent variable selection
performance over all leverage parameters, kl. Adaptive PENSE is able to identify most truly
active predictors (contaminated or not), while also screening out large parts of the truly
inactive predictors. Sensitivity of I-LAMM estimates drops drastically as the severity of the
leverage points increases, with specificity increasing in tandem. Therefore, in the presence of
very severe leverage points, I-LAMM selects only the contaminated truly active predictors,
everything else is excluded from the model. Non-robust (adaptive) LS-EN show fairly
good variable selection with high specificity for both contaminated and uncontaminated
predictors, but the trajectory of sensitivity follows a similar trajectory as I-LAMM, albeit
the decrease is more gradual.

Good leverage points seem to be more helpful for non-robust estimates, up to the point
where the leverage becomes too severe and overshadows the other truly active predictors.
Adaptive PENSE maintains a high level of sensitivity and specificity for any severity of good
leverage points, but compared to non-robust estimators, these variable selection properties
also persist in the presence of other contamination.

4.4.3 Overall Effect of Contamination

Adaptive PENSE performs reliably under the presence of good leverage points. Assessing
the impact of a greater variety of contamination, adaptive PENSE and other variable selec-
tion consistent estimators are computed in the same scenarios as considered in Section 3.6.

Figure 4.3 summarizes the prediction performance for scenarios with n = 100 observa-
tions. I-LAMM, with Huber’s loss and LASSO penalty is not robust towards high leverage
points in the predictors but outperforms robust estimators for Normal errors and no con-
tamination. When the error distribution is heavy-tailed or when gross contamination is
introduced, predictions from I-LAMM estimates tend to give higher errors than predictions
from PENSE or adaptive PENSE. Across all scenarios, adaptive PENSE estimates have
very similar predictive power as PENSE estimates, as evident from the results reported
in Appendix C.2.1. Adaptive MM-LASSO performs as good as adaptive PENSE in very
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Figure 4.2: Effect of high-leverage points on the sensitivity and specificity of variable selection. Median
values over 50 replications of these measures are reported separately for predictors containing con-
taminated values and predictors free from any contamination. Data is generated according to scheme
MS1-MH* with p = 32, n = 100, 75% variance explained by the true model and 10% contamination
introduced according to (4.3).

sparse scenarios, but more active predictors are better handled by adaptive PENSE. Con-
clusions for the estimation accuracy reported in Appendix C.2.3 coincide with prediction
performance.

Variable selection performance of adaptive PENSE, shown in Figure 4.4, underscores
the conclusions from previous experiments. Adaptive PENSE is performing similar to I-
LAMM in very sparse scenarios with no contamination, but adaptive PENSE is more robust
towards heavy tailed errors and leverage points. Compared to PENSE, adaptive PENSE es-
timates screen out more truly irrelevant predictors, at the cost of missing some truly relevant
ones. Noting that in very sparse scenarios (Figure 4.3(a)), the introduced outliers are more
extreme than in sparse scenarios (Figure 4.3(b)), adaptive PENSE has almost the same sen-
sitivity as PENSE under the presence of severe leverage points combined with gross outliers,
but adaptive PENSE excludes many more irrelevant predictors. Adaptive MM-LASSO, as
shown in Appendix C.2.2, has substantially lower sensitivity than adaptive PENSE in the
vast majority of scenarios. Compared to other variable selection consistent estimators, adap-
tive PENSE tends to retain more truly active predictors while still screening out most of the
irrelevant predictors. Variable selection properties of adaptive PENSE are less affected by
outliers and heavy-tailed errors than I-LAMM estimates or MM-LASSO estimates. Adap-
tive PENSE strikes a balance between high specificity achieved by LASSO-type estimators
and high sensitivity of PENSE estimates. This is especially useful in applications where a
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Figure 4.3: Prediction performance of regression estimates in different scenarios with a sample size of
n = 100. The horizontal axis in each panel shows the total number of predictors, while the vertical
axis in each panel shows the root mean square prediction error (for Normal errors) or the τ scale of
the prediction errors.

small number of false negatives can be tolerated at the benefit of substantially reducing the
number of true negatives.

4.5 Biomarkers for Cardiac Allograft Vasculopathy

In Cohen Freue et al. (2019) we demonstrate the usefulness of PENSE in clinical biomarker
discovery studies. In this application, the overarching goal is to identify a small set of
proteins which help to detect whether a patient suffers from cardiac allograft vasculopathy
(CAV). CAV is a common complication in patients who received a cardiac transplant. Al-
most 50% of recipients develop CAV in the years following transplantation (Cohen Freue
et al. 2019), accounting for almost 15% of deaths in heart transplant recipients who sur-
vived the first year after transplantation (Lin et al. 2013). In clinical practice, transplant
recipients are monitored at least annually for the onset of CAV. Diagnostics typically rely
on coronary angiography, measuring the narrowing of arteries supplying oxygenated blood
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Figure 4.4: Sensitivity and specificity of regression estimates in different scenarios with a sample size of
n = 100. The horizontal axis in each panel shows the total number of predictors. The vertical axis in
each panel is split in two halves: sensitivity (i.e., the number of correctly identified active predictors)
is shown on the top half, and specificity (i.e., the number of correctly identified inactive predictors) is
shown downwards with perfect specificity (100%) on the bottom. Solid vertical lines show the range
of the inner 50%, while the dashed lines extend from the 5% to the 95% quantile.

to the heart (Schmauss and Weis 2008). Coronary angiography is an invasive procedure
prone to complications (Lin et al. 2013). A simple blood test targeting specific proteins in
the plasma could potentially reduce the risks to patients substantially and improve health
outcomes of heart transplant recipients.

The data used here was first analyzed in Lin et al. (2013) and later in Cohen Freue
et al. (2019), comprising information on 37 cardiac transplant recipients. All 37 patients
were assessed for CAV by measuring the maximum percentage of diameter stenosis (Max
%DS) in the left anterior descending (LAD) artery (Lin et al. 2013). The original proteomic
data consists of measurements of hundreds of proteins detected in blood plasma samples
from the 37 recipients. Following the analysis in Cohen Freue et al. (2019), I utilizes only
the 81 proteins reliably detected across all plasma samples.

The statistical goal is to predict the Max %DS in the LAD through a linear model of
the measured protein levels such that only some of the proteins are included in the linear
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Figure 4.5: Univariate regression estimates for regressing the maximum percentage of diameter stenosis
(Max %DS) in the LAD artery on the level of proteins ECM1 and LUM in the CAV case study.

relationship. Limiting the number of relevant proteins is important for a viable blood test,
as the costs of a test targeting many proteins would prohibit a wide-spread use.

Exploratory analysis of the data suggests that the measurement of Max %DS in the
LAD but also some protein levels contain possibly contaminated values. Figure 4.5, for
instance, shows the results of univariate regressions of the response variable on the measured
levels of proteins ECM1 and LUM. The robust univariate MM-estimate detects a negative
relationship between the protein levels and Max %DS in the LAD vessel in the sample at
hand. The classical least squares estimate (LS), on the other hand, estimates a positive
relationship between ECM1 and the response variable and a substantially smaller effect
of LUM. For both proteins, a few patients with unusually severe narrowing of the LAD
combined with a comparatively high abundance of proteins ECM1 and LUM in their blood
plasma excessively affect the LS estimate. Several similar instances of contamination in the
sample cast doubt on the appropriateness of non-robust methods for identifying relevant
proteins and quantifying their effect.

Comparison of the prediction performance of several estimates in the CAV study is
done by nested cross-validation. Specifically, the sample of 37 observations is split into 7
CV folds (the “outer” folds). Within each outer fold, an “inner” 7-fold CV is used to select
hyper-parameters individually for each estimator. To counter the inherent variability in
cross-validation for robust estimators, the inner CV for all estimators is repeated 50 times
(see also Chapter 6 for details on repeated CV for PENSE and adaptive PENSE). As in
the numerical experiments, (adaptive) PENSE choose hyper-parameters to minimize the
τ -size of the prediction error, while other methods minimize the mean absolute prediction
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error. With these selected hyper-parameters, the left-out observations from the outer fold
are predicted and the scale of the prediction error recorded. The outer CV is replicated
100 times to assess overall prediction performance of the considered estimators in the CAV
study.

Results of nested CV are shown in Figure 4.6(a). The difference in prediction perfor-
mance between the estimates is not very pronounced, but nevertheless noticeable. This is in
line with the prediction performances reported in Cohen Freue et al. (2019), albeit results
reported here suggest slightly better performance for all estimators because repeating the
inner CV leads to more stable hyper-parameter selection. Adaptive PENSE leads on aver-
age to better prediction performance than the other methods considered. Adaptive LS-EN
performs poorly in the CAV study, much like in the numerical experiments under the pres-
ence of contamination. The initial LS-Ridge estimate is likely affected by contamination,
and hence “leveraging” this estimate amplifies the effect of contamination. The number of
relevant predictors selected varies between CV splits, but in general adaptive PENSE and
I-LAMM select far fewer proteins than the other methods.

Each method is also applied to the full sample, again using repeated 7-fold CV to select
hyper-parameters. For all but LS-EN, the hyper-parameters are not selected to achieve min-
imum scale of the prediction error, but rather to lead to the most parsimonious model with
a scale of the prediction error not substantially worse than the minimum (within 1/2 the
standard error of the minimum). For LS-EN, this “half standard error rule” always leads
to the empty model, a typical observation with LS-EN under high noise in the response
variable. Prediction performance may be similar, but the proteins selected by the different
estimates vary substantially. Non-robust LS-EN and adaptive LS-EN select 21 and 20 pro-
teins, respectively, with adaptive LS-EN dropping only a single protein. Similarly, PENSE
detects 20 relevant proteins, 13 overlapping with (adaptive) LS-EN. Adaptive PENSE and
I-LAMM select the smallest number of proteins among the considered estimators, 14 and 12,
respectively, but based on the prediction performance estimated before, the panel identified
by adaptive PENSE, listed in Table 4.1, is likely more relevant for predicting CAV. Half
of the proteins identified by adaptive PENSE overlap with proteins selected by non-robust
methods, but adaptive PENSE detects several novel proteins.

In Cohen Freue et al. (2019), we improve upon the model fitted by PENSE via a subse-
quent M-step (PENSEM), selecting a total of 15 proteins. The proteins selected by adaptive
PENSE, PENSEM, and Lin et al. (2013) are listed in Table 4.1. Three proteins are selected
by all three methods, while adaptive PENSE and PENSEM overlap in four additional pro-
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teins. Interestingly, adaptive PENSE selects the extracellular matrix proteins ECM1 and
LUM, which have been linked to coronary artery disease (Zhao et al. 2016) and formation
of new blood vessels (Neve et al. 2014). Lumican (LUM) is also determined relevant in
Lin et al. (2013), but ECM1 is selected only by robust estimators, potentially because of
contamination highlighted in Figure 4.5 transmogrifies the predominantly negative effect
of ECM1 on the response into a positive effect. Adaptive PENSE also detects some novel
proteins not previously associated with CAV, most notably Hemopexin (HPX). Hemopexin
has been targeted to improve cardiovascular function (Vinchi et al. 2013) and is associated
with several inflammatory diseases (Mehta and Reddy 2015).

We show that the PENSEM estimator can lead to improved prediction performance over
PENSE and other robust estimators (Cohen Freue et al. 2019). The M-step is supposed to
increase efficiency of the initial S-estimator, similar to the idea of MM-LASSO and classical
MM-estimators. However, just like MM-LASSO, the M-step for PENSEM hinges on the
accuracy of the residual scale estimated by the initial S-estimator. Especially in higher
dimensions or if the true error distribution is heavy tailed, however, the scale estimate
derived from PENSE or S-Ridge may not be relied upon. This can lead to severe problems
for PENSEM and MM-LASSO, as highlighted in the numerical experiments in this and the
previous chapter.

Compared to the model fitted by PENSEM, adaptive PENSE detects a stronger signal
for fitting and predicting CAV using a smaller panel of proteins. With adaptive PENSE,
the maximum percentage diameter stenosis in the LAD vessel can be fitted well as shown in
Figure 4.6(b). Additionally, the robust nature of the estimate allows identification of several
patients with unusual stenosis. Patients with residuals located in the shaded regions of
Figure 4.6(b) are more than two standard errors (estimated by the M-scale of the residuals)
away from the diagonal and can be considered outliers. The adaptive PENSE estimate
suggests that in six patients the measured Max %DS is suspiciously different from what
could be expected based on their proteomic profile. Most of these patients are also flagged
by PENSEM as having unusual response values, but more severe and mild stenosis is fitted
substantially better by adaptive PENSE than PENSEM. A follow-up measurement using
more accurate intravascular ultrasound revealed three patients with initially no stenosis
detected, B-584, B-527 and B-561 (initially measured in weeks 51 or 52 after transplant),
have indeed developed mild stenosis of the LAD artery of about 16 Max %DS, very close
to the values fitted by adaptive PENSE. Adaptive PENSE identifies a small set of proteins
leading to superior prediction performance and a better fit to the data than other methods.
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Figure 4.6: Results of the CAV study: (a) the scale of the prediction error of the maximum percentage
of diameter stenosis (Max %DS) for several estimators in the CAV study and (b) observed values
versus values fitted by adaptive PENSE. Prediction errors in (a) are estimated via nested 7-fold
cross-validation, repeated 100 times. The shaded regions in (b) depict residuals farther than twice
the standard error away from the fitted value, indicating unusually large residuals. Hyper-parameters
for the adaptive PENSE fit in (b) are selected by 7-fold CV, repeated 100 times.

With the demonstrated robustness of variable selection, adaptive PENSE is an important
addition to the toolbox for biomarker discovery.

4.6 Conclusions

The elastic net S-estimator, PENSE, introduced in Chapter 3 has highly competitive predic-
tion performance even under the presence of adverse contamination. Furthermore, PENSE
is demonstrated to identify the vast majority of truly relevant predictors, but PENSE es-
timates often wrongly include a very high number of irrelevant predictors. The adaptive
elastic net S-estimator, adaptive PENSE, is devised out of the need of controlling the ex-
cessive rate of false discoveries made by PENSE estimates.

Adaptive PENSE is shown to possess two important asymptotic properties missing from
PENSE: variable selection consistency and the oracle property. In Section 4.2 it is proved
that adaptive PENSE estimators are variable selection consistent even in settings where
the error distribution does not have finite variance. Variable selection consistency is the
key ingredient for showing that adaptive PENSE estimates of the coefficients of truly active

83



4.6. CONCLUSIONS

Table 4.1: Proteins identified by adaptive PENSE to predict Max %DS in the LAD artery, compared to
proteins selected by other methods.

Gene symbol Protein name Adaptive
PENSE

PENSEM Lin et al.
(2013)

AMBP Protein AMBP ✓ ✓ ✓
APOE Apolipoprotein E ✓ ✓ ✓
C4B;C4A Complement C4-B/C4-A ✓ ✓ ✓
ECM1 Extracellular matrix protein 1 ✓ ✓
F2 Prothrombin (Fragment) ✓ ✓
HBA2;HBA1 Hemoglobin alpha-2 ✓ ✓
HBD Hemoglobin subunit delta ✓ ✓
C7 Complement component C7 ✓ ✓
LUM Lumican ✓ ✓
C1R Complement C1r subcomponent ✓
HABP2 Hyaluronan-binding protein 2 ✓
HPX Hemopexin ✓
SERPINA3 Alpha-1-antichymotrypsin ✓
SERPINC1 Antithrombin-III ✓

predictors as precise as if the truly active predictors were known in advance. Therefore,
even in problems with many available predictors, coefficients of the active predictors are
accurately estimated.

The adaptive elastic net penalty also improves robustness of variable selection as out-
lined in Section 4.3.1 and demonstrated numerically in Section 4.4.2. Contamination of
inactive predictors in observations which follow the true linear model causes PENSE es-
timates to wrongly include these predictors in the model. This leads to a breakdown of
variable selection of PENSE, where contamination with leverage points severely degrades
specificity. The robustness of the S-loss, however, ensures that the coefficient estimates
for truly inactive predictors with excessive leverage remain small. By leveraging a robust
PENSE estimate, adaptive PENSE is able to screen out many of these spuriously selected
predictors. Empirical observations suggest PENSE with the Ridge penalty (αS = 0) is the
appropriate preliminary estimate in most applications. With the Ridge penalty, PENSE
can be computed more efficiently than with a non-smooth penalty (αS > 0) and hyper-
parameter selection is substantially less demanding. Furthermore, sensitivity decreases
only moderately compared to the best PENSE estimate while specificity increases.

Adaptive PENSE’s increased robustness towards leverage points is an important prop-
erty for real-world applications. Section 4.5 revisits a biomarker discovery study with the
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goal of identifying proteins in the human blood plasma which help to predict cardiac allo-
graft vasculopathy, a major complication after heart transplantations. In Cohen Freue et al.
(2019) we use PENSE and a subsequent M-step to determine a panel of 15 possibly relevant
proteins. The M-step proves to be challenging in this application due to the difficulty of
estimating the scale of the residuals accurately. When applying adaptive PENSE to the
same data set, a slightly different panel of 13 possible relevant proteins is uncovered. The
adaptive PENSE estimate leads to superior prediction performance in the study and at the
same time fits the data better than competing robust and non-robust methods.

Theoretical results expose the major drawback of regularized S-estimators: substantially
lower asymptotic efficiency than regularized M-estimators for light- and moderate-light-
tailed error distributions. Empirical results are in line with this observation, although the
differences between regularized M- and S-estimators in finite-samples are far less pronounced
than suggested by the theory. The following chapter discusses challenges of robustly esti-
mating the residual scale and thereby sheds light on reasons why regularized M-estimators
may not provide the gains in efficiency in finite-samples as promised by the theory.
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Chapter 5

Residual Scale Estimation

S-estimators of regression are highly robust to aberrant contamination in the data and
heavy tailed error distributions. In Chapters 3 and 4 I show that this also holds for PENSE
and adaptive PENSE, even in high dimensions. The apparent downside of S-estimators,
already discussed in Section 2.2, are their low efficiency under the Normal model. An iconic
idea in robust statistics is to follow the S-estimator by an additional M-step (Yohai 1987).
The resulting MM-estimator of linear regression inherits the robustness properties from the
initial estimator but can be tuned to achieve high efficiency arbitrarily close to the LS-
estimator. In their most basic form, MM-estimators are defined by the following sequence
of steps:

Step 1 Compute a highly robust and strongly consistent estimate of regression, e.g., the
PENSE estimate θ̂S.

Step 2 Compute the M-scale of the residuals from the estimate fitted in step 1, σ̂S =

σ̂M(y − µ̂S −Xβ̂S).

Step 3 Using the S-estimate θ̂S as initial estimate, find a local minimum θ̂MM of

LM(y,Xβ + µ; σ̂S) =
1

n

n∑
i=1

ρM

(
yi − µ− x⊺

iβ

σ̂S

)

which improves upon the initial estimate, i.e., LM(y,Xβ̂MM + µ̂MM) ≤ LM(y,Xβ̂S + µ̂S).
Here, ρM is a bounded ρ function according to [R1]–[R3] which is dominated by the ρ
function used to compute the M-scale (2.8), i.e., ρM(t) ≤ ρ(t) for all t.

Evidently, the M-step is computationally cheap, given that only a single starting point
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needs to be considered and the objective function is separable over the observations. In
Cohen Freue et al. (2019) we adopt this idea to improve upon the PENSE estimate by a
subsequent M-step, called PENSEM. Smucler and Yohai (2017) base their MM-LASSO on
the same principle, but the execution is slightly different than what is done for PENSEM.
These differences highlight some of the challenges translating the idea of MM-estimators to
a high dimensional setting using robust regularized estimators.

None of the three steps for computing MM-estimates can be applied to regularized
estimators without modification. In step 1, the question is what hyper-parameters should
be selected for a robust regularized estimate of regression. For MM-LASSO, the choice is
to compute the S-Ridge estimate, i.e., using αS = 0, optimizing the penalization level for
prediction performance. PENSEM, on the other hand, uses the PENSE estimate with both
αS and λS optimized for prediction performance. Others propose to not use a regularized
estimate in step 1 but an unregularized MM-estimate (Arslan 2016), which is only possible
for low-dimensional problems.

Step 3 raises similar questions as step 1 about an appropriate choice of hyper-parameters
and whether a local minimum close to the estimate from step 1 is a sensible choice. Due to
vastly different scales of the loss functions in the two steps, the penalization level selected
in step 1 is in general not a reasonable choice for the M-step. Both MM-LASSO and
PENSEM carry out a separate hyper-parameter search for the M-step; MM-LASSO for the
penalization level, PENSEM for α and λ. The theoretical results in Yohai (1987) justify
using only the consistent and robust estimate from step 1 as starting point for computing the
MM-estimate, as the local minimum uncovered has the same asymptotic properties as the
global minimum. No such results are available for the regularized M-step, but MM-LASSO
and PENSEM nevertheless follow the same principle and do not perform an exhaustive
search for good initial estimates to restrain the computational overhead. Despite this leap
of faith, both MM-LASSO and PENSEM show an improved efficiency over the initial S-
estimate, but not in every setting. Most concerning is the observation that MM-LASSO
and PENSEM seem to be much more affected by contamination in some situations.

The main problem why regularized M-steps do not always improve efficiency, and some-
times seemingly break down, is the difficulty posed by step 2. For the M-step to perform
as expected under the assumed model, the ρM function, more specifically the cutoff value,
is chosen based on the probabilistic limit of σ̂S. This of course requires the assumed model
to hold for the majority of observations, but the greater challenge in practical applications
is the bias of the estimate σ̂S. Even if σ̂S converges almost surely to a fixed limit, the finite-
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sample bias may be arbitrarily large. If the bias in finite samples is too large, the chosen
ρM may not deliver the promised gains in efficiency. Especially in higher dimensions, the
bias in the residual scale estimate can be unacceptably large.

5.1 The Problem in High Dimensions

Estimating the scale of the residuals in high dimensional linear models is known to be
difficult and prone to bias. Already Mammen (1996) paints a bleak picture, showing how
fast the bias of the empirical distribution of the residuals in a p-dimensional linear regression
model increases with p. The bias in the empirical residuals, if not corrected, translates to
a biased scale estimator. The problem is even amplified by the use of regularized and/or
robust estimators, but it has only recently been attracting attention (e.g., Fan et al. 2012;
Dicker 2014; Chatterjee and Jafarov 2015; Reid et al. 2016; Chen et al. 2018; Tibshirani
and Rosset 2019).

Regularized estimators have been studied extensively, but attention was mostly directed
at prediction and variable selection performance of these estimators. Perhaps pushing the
issue to the sidelines even more, theoretical properties of regularized estimators do not
depend on an estimate of the residual scale. With emergence of more literature on post-
selection inference, however, residual scale estimation has become more closely investigated.

The review paper by Reid et al. (2016), and the recent proposals by Yu and Bien
(2019) and Chen et al. (2018) highlight the numerous challenges in estimating the residual
variance using regularized estimators. As already outlined in Fan et al. (2012), residual scale
estimation with regularized estimators is impeded by the inherent bias of the estimates. The
main sources of the bias are the penalization of the coefficients and data-driven selection
of the hyper-parameters with a goal of good prediction. Unfortunately, these two sources
of bias work in tandem, accentuating their effect on the residual scale estimate. In high
dimensions, predictors spuriously correlated with the response add to the problem. The
larger the number of irrelevant predictors, the greater the chances of spurious correlation
and hence overfitting the response.

The problem is not restricted to classical, least-squares-based estimators, but affects
robust estimators even more. For non-regularized MM-estimators, Maronna and Yohai
(2010) show how serious underestimation of the error scale by the M-scale from the residuals
of the S-estimate can be. Even in a setting considered low dimensional in this work (n = 50

and p = 15) the estimate of the error scale is below half of the true error scale almost 50%
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of times. These results are for non-regularized MM-estimators and do not account for the
impact of regularization.

The down-stream effect of a poor scale estimate on the M-step can be devastating.
The M-loss function depends on the boundedness of the ρM function to protect against
gross outliers, while at the same time behaving similarly to the LS-loss for small residuals
to ensure efficiency. Considering a severe underestimation of the error scale, σ̂S � σU , the
scaled residuals yi−x⊺

i β
σ̂S

are artificially inflated. This “pushes” many scaled residuals into the
bounded region of the ρM function, treating them as outlying. Therefore, the M-step does
not improve efficiency because a large proportion of actually uncontaminated observations
are incorrectly down-weighted. Severe overestimation of the error scale, on the other hand,
shrinks the scaled residuals towards 0, neutralizing the boundedness of ρM. In this case,
outlying observations are not detected as such and can grossly affect the M-estimate. An
inaccurate estimation of the error scale can thus either lead to a decrease in efficiency
compared to the initial S-estimator, or even jeopardize the robustness of the M-estimator.

Estimating the residual scale with PENSE suffers from the bias inflicted by the M-scale
in addition to the bias introduced by the penalty function and data-driven hyper-parameter
selection. As depicted in Figure 5.1 for simulated data, the effects of a poor scale estimate
on the subsequent M-step, PENSEM, are worrisome. Firstly, the plots clearly show the
prevalence of severe underestimation and overestimation. Underestimation is commonly
observed even without contamination, but the scale is often severely overestimated in the
presence of contamination, especially when combined with heavy-tailed errors. It is evident
that gross under- or overestimation of the residuals scale leads to a degradation of prediction
performance of PENSEM, with distressing effects under the presence of contamination. The
conclusions are the same for any regularized M-estimator relying on an initial scale estimate
in high dimensions: in the majority of cases the M-step improves efficiency and leads to
better estimation and prediction, but in an unsettling large number of instances the M-
estimator is either less efficient than the initial S-estimator, or worse, seriously affected by
contamination.

Without an improved residual scale estimate in high dimensional problems, results from
PENSEM or other regularized redescending M-estimators may be unreliable. As an ad-hoc
solution for unpenalized MM-estimators, Maronna and Yohai (2010) suggest a multiplicative
correction to increase the residual scale estimated from the S-estimate. Smucler and Yohai
(2017) use this correction for the MM-LASSO estimator, but empirical results presented
here suggest the adjustment does not work well for regularized estimators. The residual
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Figure 5.1: Prediction performance of the PENSEM estimate as a function of the residual scale estimated
by PENSE. Hyper-parameters are selected via 5-fold CV. The residual scale estimate on the horizontal
axis and the scale of the prediction error are reported relative to the true M-scale of the residuals.
Data is generated according to scheme VS1-LT* (top) and VS1-HT* (bottom) for n = 100 and
p ∈ {50, 100}. The true model explains 83% of the variation and results under contamination (right)
consider scenarios with 10 different vertical outlier positions and kl = 6.

scale estimate is often overestimating the true scale as suggested by the simulation results
reported before; further inflating the scale estimate in these situations exacerbates the
problem. For non-robust estimators, several strategies for correcting the bias in the scale
estimate have been proposed in the literature. The majority of these proposals is based on
the idea of splitting the data into non-overlapping chunks.

5.2 Data-Splitting Strategies

One of the driving forces behind the bias in regularized estimators is data-driven hyper-
parameter selection. With penalization leading to an underestimation of the coefficients,
cross-validation or similar strategies to give good prediction performance compensate for
the biased coefficients by selecting a penalization level which is too small to screen out
spuriously correlated predictors. The regularized estimate computed on the entire data set
with this small penalization level will typically include some of these irrelevant predictors.
Just by chance of observing these spuriously correlated predictors, the fitted model explains
more variation in the response than the true model, leading to an underestimation of the
residual scale.

Fan et al. (2012) therefore proposes refitted cross-validation (RCV), based on the as-
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sumption if a data set is split into multiple chunks, the chance for the same predictor to
be spuriously correlated with the response in each chunk is minuscule. Following the idea
of cross-validation, variables are selected based on all but one part the data (e.g., using a
regularized regression estimator or any other model selection procedure), while the coeffi-
cients of the selected predictors are then re-fitted on the left-out part (e.g., using ordinary
least squares or a regularized method). To ensure there are enough observations in each
part for efficient re-estimation of the coefficients, the data is usually split only into two
parts for RCV: (y(1),X(1)) and (y(2),X(2)). Each of the two parts is used once for model
selection, yielding two estimated sets of active predictors, Â(1) and Â(2). The coefficients
are then re-estimated in the other half of the data, restricted to the model selected in the
first step. More specifically, the estimate θ̂

(1) is computed using the response vector y(1)

and the subset of the design matrix X
(1)

Â(2)
, while θ̂(2) is computed from X

(2)

Â(1)
and y(2). The

RCV estimate of the residual variance is then the pooled variance estimate

s2RCV =

∥∥∥y(1) − µ̂(1) −X
(1)

Â(2)
β̂
(1)
∥∥∥2
2
+
∥∥∥y(2) − µ̂(2) −X

(2)

Â(1)
β̂
(2)
∥∥∥2
2

n− |Â(1)| − |Â(2)|
.

Refitted cross-validation remedies the negative effects of spurious correlation in high
dimensions, but the estimation bias introduced by the penalty function is not removed. The
effects of data-driven hyper-parameter selection are slightly reduced by decoupling variable
selection from coefficient estimation, but they are still noticeable in RCV. Reid et al. (2016)
compare RCV for LS-LASSO to other data-splitting methods as well as estimators with
folded-concave penalty or other de-biased versions of the LS-LASSO, in a wide range of
scenarios. They conclude that estimating the error variance as

s2CV =
1

n− |Â|

∥∥∥y − µ̂−Xβ̂
∥∥∥2
2
, (5.1)

where θ̂ is computed on the full data using a penalization level chosen via standard cross-
validation, performs best overall. Theoretical results in Chatterjee and Jafarov (2015)
support this conclusion, albeit with a non-adjusted scaling factor 1/n, which tends to bias
the scale estimate downwards. As pointed out in Yu and Bien (2019), the adjustment 1

n−|Â|
is also problematic as it hinges on an accurately recovered model to avoid overestimation
of the residuals scale.

Especially when the sparsity of the true signal decreases while the variance explained
by the true model remains fixed, Reid et al. (2016) show that RCV and other corrective
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measures stop working reliably. With the variance explained by the true model fixed, a
less sparse signal also entails decreasing magnitude of each coefficient. Theoretical results
for the RCV estimator suggest the magnitude of each truly non-zero coefficient needs to be
large enough for the estimator to be consistent and efficient, explaining the results seen by
Reid et al. (2016). Surprisingly, Reid et al. (2016) also find that for less sparse models with
larger signal strength per coefficient, the RCV estimator is substantially upwards biased
in finite samples. Therefore, it appears that correction strategies such as RCV only work
well for very sparse problems where the true coefficient values are large enough, which may
jeopardize their applicability in practice.

The question is if these empirical results are transferable to PENSE or other robust
regularized S-estimators, which bring additional biases. The data-splitting methods can
be readily adapted for robust estimation by replacing the regression estimator with, for
example, PENSE and the empirical standard deviation by the M-scale of the residuals. The
cross-validation based estimator for the residual scale (5.1) may be defined using a PENSE
estimate θ̃ with hyper-parameters selected via cross-validation, and the robust M-scale of
the residuals:

σ̂CV = σ̂M(y − µ̃−Xβ̃).

The refitted cross-validation estimator using PENSE for model selection and re-estimation
can similarly be defined as

σ̂RCV =

√
1

2

(
σ̂2M(y

(1) − µ̃(1) −X
(1)

Â(2)
β̃
(1)

) + σ̂2M(y
(2) − µ̃(2) −X

(2)

Â(1)
β̃
(2)

)
)
.

Determining an appropriate number of splits for RCV is difficult when using robust esti-
mators. Bisecting the data set leaves enough observations for re-estimating the coefficients
but cuts the attainable breakdown point in half. Due to the additional K-fold CV for
hyper-parameter selection inside each RCV fold, the maximum attainable breakdown point
is n(K−1)

2K .
Downward bias of the residual scale can also be exacerbated by overfitting the data.

To avoid possible overfitting, the scale of the prediction error could serve as a surrogate
estimator for the scale of the residuals:

σ̂PR = σ̂M(y − ŷ(λS,αS))

with ŷ(λS,αS) the predicted values in the CV folds as defined in (3.6) and λS, αS selected by
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the same cross-validation. While the scale of the prediction error may reduce the problem
of overfitting, in empirical studies it often overestimates the error scale. An ad hoc way
balancing downward bias of σ̂CV and upward bias of σ̂PR is averaging them:

σ̂AVG =

√
σ̂2CV + σ̂2PR

2
.

Despite the lack of theoretical underpinnings, the empirical results presented below indicate
that this average estimate performs better than the individual estimates.

It is important to note that here the M-scale estimate

σ̂M(r) = inf

{
s :

1

n

n∑
i=1

ρ(ri/s) < δ

}

is not corrected for the effective degrees of freedom of the estimated model as sometimes
done to decrease finite-sample bias of the estimator (e.g., in Maronna 2011). The correction
effectively reduces the breakdown point of the M-scale estimate, without adjusting the
breakdown point of the robust estimate of regression accordingly. Consider a robust estimate
computed with 25% breakdown point, tolerating up to 25% of arbitrarily large residuals.
Adjusting the breakdown point of the M-scale estimator, e.g., to 15%, opens the floodgates
to some of these possibly extreme residuals affecting the scale estimate and in turn breaking
the M-step. As seen before, overestimation of the scale can be even more detrimental to
the reliability of the M-estimator than underestimation and should be avoided.

Figure 5.2 summarizes the results of a numerical study of data-splitting methods in
conjunction with PENSE. The reported scale estimate is relative to the true scale of the
residuals and it is evident that the CV-based estimate, σ̂CV, severely underestimates the
error scale, especially as more predictors are available. Under contamination, on the other
hand, the M-scale of the residuals estimated by PENSE is inflated and shows large variation.
At the same time, the estimate based on the prediction error, σ̂PR, is badly biased upwards.
Under no contamination, under- and overestimation of the CV-based and prediction-based
estimates seem to cancel out reasonably well and the average estimate, σ̂AVG, performs much
better than the individual estimates. In the presence of contaminated observations, however,
high variability and upward bias of both σ̂CV and σ̂PR carry over to the average estimate.
Refitted cross-validation with PENSE is outperformed by the simple average estimate if
no contamination is present but shows slightly better performance under contamination.
With RCV, however, the maximum breakdown point is substantially reduced which would
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Figure 5.2: Estimated residual scale using PENSE in conjunction with different data-splitting strategies.
The reported residual scale estimates are relative to the true scale of the residuals. The n = 100
observations are generated according to scheme VS3-LT* with the true model explaining 50% (top)
and 83% (bottom) of the variance. Results under contamination (right) consider scenarios with 10
different vertical outlier positions and moderate leverage, kl = 2.

lead to problems in situations with more than 15% contamination. Concurrent with the
findings in Reid et al. (2016), the RCV estimate tends to do worse if the signal strength is
larger. The PENSE estimate is perhaps not efficient enough to give reliable estimates for
a sample half the size of the original data. In particular due to the stark reduction in the
possible breakdown point, RCV is not well suited to be combined with robust estimators.
Using adaptive PENSE as the initial high-breakdown estimator instead of PENSE improves
results only marginally in these empirical studies and does not warrant the slightly increased
computational complexity. The results reported here suggest none of the considered data-
splitting strategies works well across all considered scenarios.

5.3 Discussion

The problem of residual scale estimation in moderate- to high-dimensional linear regression
models is an actively evolving area. In the context of non-robust regularized estimators,
the increased demand for post-selection inference has recently shifted attention to the issue
of error variance estimation. Many proposals focus on different data-splitting strategies to
get an accurate estimate of the error variance. Others adapt the LS-LASSO for improved
residual scale estimation (e.g., Yu and Bien 2019; Sun and Zhang 2012; Belloni et al. 2011),
but they explicitly target Normal errors.
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For robust estimators, the residual scale estimate has another important role: improving
the efficiency of a highly robust but inefficient estimator via a subsequent M-step. This M-
step requires an accurate and robust scale estimate to achieve the promised gain in efficiency.
As demonstrated empirically in Section 5.1, finite-sample bias in the error scale estimate can
render the M-step unreliable. Particularly overestimation of the residual scale exposes the
M-estimate to the influence of outliers and hence risks a breakdown under contamination.

Methods for improved scale estimation in the non-robust realm are not transferable
to robust regularized estimators due to the effects of possible contamination. Refitted
cross-validation and other data-splitting methods for variance estimation suffer from the
low efficiency of regularized S-estimators and lead to a severe reduction of the maximum
breakdown point. Data-splitting methods for estimating the error variance suffer from the
same issues as hyper-parameter search via cross-validation under contamination, discussed
in Section 3.5.2.

An interesting direction is presented in Loh (2018) for the L1 regularized Huber loss,
a convex amalgam between the LS- and LAD loss. Up to a fixed threshold, Huber’s loss
is the square function, which transitions to the absolute value for values greater than the
threshold. While not robust towards leverage points in the predictors, it protects against
outliers in the response. Choosing the threshold involves the same complications as choosing
the cutoff value for the M-step: requiring an estimate of the residual scale. Loh (2018)
sidesteps scale estimation and instead proposes to use several candidate values for the scale
and adaptively choose a good value based on Lepski’s method. The author proves that the
resulting estimator performs as well as the estimator obtained by knowing the true error
scale. Extensions of this method to regularized M-estimators with redescending ρM function
are of potential interest.

This chapter highlights that estimation of the residual scale in high-dimensions by ro-
bust means is very difficult. Methods relying on the accuracy and robustness of a residual
scale estimate are susceptible to be severely damaged by contamination. With data-driven
hyper-parameter selection, consistency of the scale estimate is not guaranteed, and em-
pirical results suggest the estimates are highly biased. While in pristine settings without
any contamination an M-step can indeed improve efficiency and lead to better prediction
performance than PENSE or adaptive PENSE, the M-estimator may not be reliable under
contamination or heavy-tailed error distributions, overshadowing any potential gain in effi-
ciency. As long as the issue of residual scale estimation in high dimensions is not adequately
solved, PENSE and adaptive PENSE are the safer choices over regularized M-estimators.
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Chapter 6

Software

As hinted several times in the previous chapters, computing PENSE estimates is a chal-
lenging endeavor. For adaptive PENSE, the computational challenges are the same but in
general more daunting as adaptive PENSE depends on more hyper-parameters.

To facilitate the application of PENSE (Chapter 3) and adaptive PENSE (Chapter 4),
a software package for the language and environment for statistical computing R (R Core
Team 2020) is made available at https://cran.r-project.org/package=pense. This
chapter details the computational solutions developed for PENSE and adaptive PENSE as
available in the pense R package. Computation is agnostic to the hyper-parameter ζ, hence
it is absorbed by the penalty loadings ω = (ωζ

1 , . . . , ω
ζ
p)⊺ and dropped from the notation

below. Computation of PENSE is a special case of adaptive PENSE with penalty loadings
fixed at ω = 1p. The following exposition therefore considers only the more general case of
adaptive PENSE.

Computing solutions to weighted least-squares adaptive elastic net (LS-adaEN) prob-
lems is an essential component for computing adaptive PENSE estimates. As detailed in
Chapters 3 and 4, finding a set of initial estimates for PENSE and adaptive PENSE in-
volves a large number of weighted LS-EN and weighted LS-adaEN problems, respectively.
Moreover, the adaptive PENSE objective function is equivalent to a weighted LS-adaEN ob-
jective function, with weights depending on where the objective function is evaluated. This
equivalence is the foundation for computing local minima of the adaptive PENSE objective
function. Computation of adaptive PENSE therefore relies heavily on efficient algorithms
for solving weighted LS-adaEN problems.
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6.1 Algorithms for Weighted LS Adaptive EN

Computational performance of finding local minima of the adaptive PENSE objective func-
tion and computing initial estimates depends on the performance of the algorithm for solving
weighted LS-adaEN problems of the form

OWLS(µ,β,W) = LLS (Wy,W(Xβ − µ)) + λΦAN(β;ω, α), (6.1)

with diagonal weighting matrix W ∈ Rn×n. Throughout this section the matrix W̃ =√
1/w2W denotes the normalized weight matrix, where w2 = 1

n

∑n
i=1W

2
ii is the average

squared weight. Furthermore, the squared matrices W2 and W̃
2
denote the diagonal matrix

of squared weights and squared normalized weights, respectively.
Many of the weighted LS-adaEN problems arising during the computation of adaptive

PENSE estimates are “close”, in the sense that only the weight matrix W or the set of ob-
servations change marginally between subsequent minimizations. While these “proximal”
problems are important for adaptive PENSE, computational optimizations for these special
use-cases are missing from the literature. Most of the attention in the literature on com-
puting weighted LS-adaEN estimates focuses on computational shortcuts when minimizing
the objective function for a decreasing sequence of the penalty parameter (e.g., Friedman
et al. 2010; Tibshirani et al. 2012).

In the following, special attention is therefore given to optimizing the weighted LS-
adaEN objective function when only the weights or only the data change between subsequent
minimizations. Ideally, algorithms for weighted LS-adaEN problems should incur little over-
head when changing only weights, data, or the penalty level. The pense package implements
several algorithms for optimizing the weighted LS-adaEN objective function (6.1), each with
its own use-cases, advantages and disadvantages.

6.1.1 Augmented Ridge

The augmented ridge algorithm is specialized for weighted LS-Ridge problems (i.e., α = 0

in (6.1)). The weighted LS-Ridge problem can be solved exactly by noting that the weighted
LS-adaEN objective function in the case of α = 0 and without intercept term simplifies to

1

2n
‖W (y −Xβ)‖22 +

1

2n
nλ‖β‖22 =

1

2n

∥∥∥ỹ − X̃β
∥∥∥2
2

(6.2)

97



6.1. ALGORITHMS FOR WEIGHTED LS ADAPTIVE EN

where

ỹ =

(
Wy

0p

)
and X̃ =

(
WX

√
nλIp×p

)
.

Due to the equivalence in 6.2, the closed-form solution for the Ridge estimate β̂ is

β̂ =
(
X⊺W2X+ nλIp×p

)−1
X⊺W2y.

An intercept term can be accommodated by making the predictor matrix orthogonal
to the centered response. More specifically, the weighted and centered response is y∗ =

Wy − 1
n1

⊺
nWy. Similarly, the orthogonalized predictor matrix X∗ is given by

X∗ = X̃− 1

n
W1n×nWX̃ (6.3)

where X̃ = W(X− 1px̄) is the centered and weighted predictor matrix and x̄ = 1
nX

⊺1n is
the mean vector of all predictors. The slope parameter and intercept are then computed by

β̂ = (X∗⊺X∗ + nλIp×p)
−1X∗⊺y∗

µ̂ =
1

n
1⊺nW

2
(
y −Xβ̂

)
.

(6.4)

Computing the optimum for any penalty level incurs O(np+p3) floating-point operations
(flops) to solve the system of p linear equations in (6.4). Changing the data or weights
requires recomputing the orthogonalized predictor matrix X∗ and its Gram matrix X∗⊺X∗.
These changes therefore incur an additional computational complexity of O(n2p + np2)

flops. Solving the linear equations in (6.4) can be a computational bottleneck for very
large p. However, if the p × p matrix fits into memory and λ > 0, the augmented Ridge
algorithm is highly competitive as the solution can be computed to high precision in a single
step without potential convergence issues. This stability argument often outweighs limited
scalability as computing local minima of the adaptive PENSE objective function involves a
large number of weighted LS-adaEN problems and convergence issues in a single weighted
LS-adaEN problem lead to more serious convergence issues down the road.

6.1.2 Augmented LARS

The Least Angle Regression (Efron et al. 2004) algorithm (LARS) can be used to compute
solutions of the LS-LASSO objective function exactly. Starting from the empty model, i.e.,
all coefficients equal 0, the LARS algorithm translates a LS-LASSO problem into a sequence
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of ordinary least-squares (OLS) problems, one for each penalty level where covariates “enter”
or “leave” the model. For a fixed penalty level λ, the LARS algorithm solves K ≥ 0 OLS
problems at λ̃0 > λ̃1 > . . . > λ̃K , where λ̃K−1 < λ ≤ λ̃K . The LS-LASSO at penalty level
λ can then be recovered exactly by linear interpolation between the coefficients computed
at λ̃K−1 and λ̃K :

β̂(λ) =
λ̃K − λ

λ̃K − λ̃K−1

β̂(λ̃K−1) +
λ− λ̃K−1

λ̃K − λ̃K−1

β̂(λ̃K).

Penalty loadings ω are incorporated into the LARS algorithm by scaling the predictor
matrix with the inverse penalty loadings XΩ−1, where Ω−1 = diag(1/ω1, 1/ω2, . . . , 1/ωp).
The elastic net penalty can be accommodated by changing the penalty level for the LARS
algorithm to αλ and using equivalence (6.2) to handle the L2 penalization with

√
nλIp×p

replaced by matrix
√
n1−α

2 λΩ−1 The LARS algorithm therefore solves the weighted LS-
adaEN problem by computing the LS-LASSO solution on the weighted, centered response
and orthogonalized predictors given in (6.3), and X replaced by XΩ−1.

At every step k, k = 0, . . . ,K, of the augmented LARS algorithm a system of linear
equations must be solved. However, the sequence of the OLS problems allows for solving
these systems of linear equations more efficiently by sequentially updating a “running”
Cholesky decomposition (Efron et al. 2004; Watkins 2002). Consider the symmetric p × p

matrix A = X∗⊺X∗ +
√
n1−α

2 λΩ−1. In the following, A(k) denotes the symmetric matrix
comprising only the rows and columns of A for predictors included in the model at the
k-th step. Instead of calculating A(k) for every k, the augmented LARS algorithm only
needs the (upper-triangular) Cholesky decomposition U(k) of A(k), A(k) = U(k)⊺U(k). This
Cholesky decomposition can be computed efficiently from the Cholesky decomposition at
the previous step, U(k−1). Consider predictor j is added in the k-th step. The updated
Cholesky decomposition is given by

U(k) =

(
U(k−1) U(k−1)−1

v

0⊺ Ajj − v⊺v

)
, v =

(
Ajj′

)
j′∈A (k−1) (6.5)

where A (k−1) is the set of active predictors in the previous step. The system U(k−1)−1
v can

be solved efficiently using back substitution because U(k−1) is an upper-triangular matrix
(Watkins 2002). This requires only O(p̃2) operations, where p̃ ≤ p is the dimension of
U(k−1). Performing updates in this way leads to a different order of the predictors in the

99



6.1. ALGORITHMS FOR WEIGHTED LS ADAPTIVE EN

Cholesky decomposition than in X. Therefore, it is necessary to keep track of the order the
predictors are added to reconstruct the original order of the coefficients. The performance
gain, however, outweighs the overhead of rearranging the coefficients only once.

Dropping a predictor is also a simple update of the Cholesky decomposition. Consider
predictor j is dropped in the k-th step, and v = (v⊺

1, v2)
⊺ corresponds to the upper-diagonal

elements of the column in U(k−1) corresponding to the dropped predictor,

U(k−1) =


U

(k−1)
11 v1 U

(k−1)
13

0 v2 U
(k−1)
23

0 0 U
(k−1)
33

 .

The updated Cholesky decomposition U(k) is then given by

U(k) =

(
U

(k−1)
11 U

(k−1)
13

0 U
(k)
33

)

where U
(k)
33 is the Cholesky decomposition of a rank-one update U

(k−1)
33

⊺
U

(k−1)
33 + v1v

⊺
1,

which can be computed efficiently (Gill et al. 1974).
Updating the running Cholesky decomposition involves growing and shrinking of the

decomposition at every single step. Conventionally, the p̃2 elements of the decomposition
U ∈ Rp̃×p̃ are stored in a contiguous array (Anderson et al. 1999):
u11 u12 · · · u1p̃

u21 u22 · · · u2p̃
...

... . . . ...
up̃1 up̃2 · · · up̃p̃

 stored as−−−−−→ [u11, u21, . . . , up̃1︸ ︷︷ ︸
column 1

, u12, u22, . . . , up̃2︸ ︷︷ ︸
column 2

, . . . , u1p̃, u2p̃, . . . , up̃p̃︸ ︷︷ ︸
column p̃

].

This storage schema is not ideal for the running Cholesky decomposition for two reasons.
First, the decomposition is an upper-triangular matrix with all entries below the diagonal
being 0 and never referenced. Therefore, the conventional storage scheme requires almost
twice as much memory as necessary. Secondly, appending or removing a column and row
to/from a conventionally stored matrix requires moving almost every element in memory,
which is an expensive operation. Considering that any row appended to the Cholesky
decomposition contains only 0’s, except for the diagonal entry, this is a superfluous and
prodigal operation.
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Figure 6.1: Comparison of computation time for the weighted LS-adaEN minimizer using the augmented
LARS algorithm with the Cholesky decomposition stored in conventional scheme (dashed light-blue
line) or column-packed scheme (solid blue line). The vertical axis is on the square-root-scale. Timings
are taken for simulated data sets (one per (n, p) combination) and averaged over 100 runs on a system
with Intel® Xeon® E5-1650 v2 @ 3.50GHz processors.

To improve performance of the running Cholesky decomposition used for the augmented
LARS algorithm, the implementation in the pense package stores the decomposition a in
column-packed scheme (Anderson et al. 1999). Only the (p̃2 + p̃)/2 non-zero elements of
the upper-triangular Cholesky decomposition U ∈ Rp̃×p̃ are stored in memory as

u11 u12 · · · u1p̃

0 u22 · · · u2p̃
...

... . . . ...
0 0 · · · up̃p̃

 stored as−−−−−→ [ u11︸︷︷︸
column 1

, u12, u22︸ ︷︷ ︸
column 2

, . . . , u1p̃, u2p̃, . . . , up̃p̃︸ ︷︷ ︸
column p̃

].

Appending a row and column to the matrix U only requires appending p̃ + 1 elements in
memory, without moving any of the other elements. Removing a row and column from
matrix U still requires moving elements in memory, but it is less expensive than for con-
ventional storage as only non-zero elements must be moved. Considering that appending
is a much more frequent operation than removing for the running Cholesky decomposition
(Efron et al. 2004), the performance gains of using column-packed storage are substantial.
This is evident in Figure 6.1, where the computation times for two implementations of
the augmented LARS algorithm are compared: an implementation using the conventional
storage scheme for the Cholesky decomposition (denoted by “conventional” in the graph)
and an improved implementation using column-packed storage for the Cholesky decomposi-
tion (denoted by “column-packed”). For most problem sizes, the “column-packed” storage
scheme leads to substantial improvements in computational speed.
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Augmented LARS solves the optimization of the weighted LS-adaEN objective function
exactly using a sequence of OLS problems and is therefore numerically very stable. Unless
α = 1, changing the penalty parameters requires recomputing the entire sequence of OLS
problems. Each update of the running Cholesky decomposition requires O(p̃2) flops, where
p̃ ≤ p is the number of active predictors in the step. Therefore, computational complexity
for solving the sequence of K OLS problems is O(Kp2), where K is typically ≲ max(n, p)

unless predictors are highly correlated. Furthermore, if the penalty level is large and hence
the solution has a small number of non-zero coefficients, the augmented LARS algorithm
involves only a few low-dimensional OLS problems and is computationally very efficient.
As for augmented Ridge, updating the weights or data requires recomputing the weighted,
orthogonal predictor matrix X∗ adding O(n2p+ np2) flops. Quadratic computational com-
plexity can also be seen in Figure 6.1. On the square-root scaling of the vertical axis in
these plots the computation time increases linearly with the number of observations n, for
any p.

Closed form solutions for the intermediate OLS problems avoid convergence issues for
augmented LARS. Accurate results, high stability and computational efficiency for sparse
solutions (i.e., large penalty levels) are clear advantages of the augmented LARS algorithm.
A main drawback, however, is the need to store a p×p matrix and, for small penalty levels,
O(p2) flops per step. Furthermore, the algorithm cannot leverage solutions to “proximal”
problems (e.g., after a small change to the penalty level) to speed up computation, a key
advantage of iterative algorithms.

6.1.3 Alternating Direction Method of Multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) algorithm leverages the fact that
the objective function of weighted LS-adaEN (6.1) is compound of the convex weighted LS
loss and the non-smooth (but convex) adaptive EN penalty. For ADMM, the minimization
problem is written in consensus form (Deng and Yin 2016)

argmin
µ,β

OWLS(µ,β) = argmin
θ∈Rp+1,ŷ∈Rn

f(ŷ) + g(θ)

subject to ŷ − X̃θ = 0

(6.6)

with f(ŷ) = 1
2‖W̃(y−ŷ)‖22 the (scaled) weighted LS loss function, X̃ = (1n,X) the predictor

matrix with a column of 1’s for the intercept term, and g(θ) the scaled adaptive EN penalty
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function
g(θ) = g((µ,β⊺)⊺) =

n

w̄
λΦAN(β;ω, α).

The consensus form splits the optimization problem for ŷ and θ in two independent parts
and one equality constraint. The constrained optimization problem in (6.6) can be cast into
an unconstrained augmented Lagrangian problem

Lτ (θ, ŷ, z) = f(ŷ) + g(θ) + z⊺(ŷ − X̃θ) +
τ

2
‖ŷ − X̃θ‖22

with step size τ > 0 and dual variable z ∈ Rn for the consensus constraint (Bertsekas 1982;
Deng and Yin 2016).

In the augmented Lagrangian formulation of the minimization problem, parameters ŷ

and θ are separable up to a quadratic term. The augmented Lagrangian problem is solved
iteratively by

θ(k+1) = argmin
θ

Lτ (ŷ
(k),θ, z(k)) (6.7)

ŷ(k+1) = argmin
ŷ

Lτ (ŷ,θ
(k+1), z(k)) (6.8)

z(k+1) = z(k) − τ
(
ŷ(k+1) − X̃θ(k+1)

)
(6.9)

where k > 0 is the iteration counter.
The challenge computing the first step (6.7) in the ADMM iterations stems from of the

product X̃θ in the quadratic penalty term. To simplify the step, it can be approximated
by linearizing the quadratic term τ

2‖ŷ
(k) − X̃θ‖22 by a first-degree Taylor expansion around

θ(k):

τ

2
‖ŷ(k) − X̃θ‖22 ∝ τ(ŷ(k) − X̃θ(k))⊺X̃θ + τ‖X̃(θ − θ(k))‖22

< τ

(
(ŷ − X̃θ(k))⊺X̃θ +

1

2τ ′
‖θ − θ(k)‖22

)

with 0 < τ ′ < 1/‖X̃‖2 (He and Yuan 2015). Instead of (6.7), this “linearized” ADMM
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solves the minimization problem

θ(k+1) = argmin
θ

Lτ (ŷ
(k),θ, z(k))

= argmin
θ

g(θ) + τ

((
θ − θ(k)

)⊺
X̃

⊺
(
X̃θ(k) − ŷ(k) +

1

τ
z(k)

)
+

1

2τ ′
‖θ − θ(k)‖22

)
= argmin

µ,β
g((0,β⊺)⊺)

+ τ

(
β⊺X⊺

(
Xβ(k) − ŷ(k) +

1

τ
z(k)

)
nµ(k)β⊺x̄+

1

2τ ′
‖β − β(k)‖22

)
+ µτ

(
nµ(k) + nx̄⊺β(k) +

n∑
i=1

(
1

τ
z
(k)
i − ŷ

(k)
i )

)
+

τ

2τ ′

(
µ− µ(k)

)2
where x̄ ∈ Rp is the vector of column means of the predictor matrix X. This minimization
problem can be solved separately for the intercept and slope. The updated intercept using
the linear approximation is

µ(k+1) = µ(k) − τ

(
nµ(k) + nx̄⊺β(k) +

n∑
i=1

(
1

τ
z
(k)
i − ŷ

(k)
i )

)
. (6.10)

The updated slope can be represented by the proximal operator of the adaptive EN penalty:

β(k+1) = prox τ ′nλ
τw̄

ΦAN

(
β(k) − τX⊺

(
Xβ(k) − ŷ(k) +

1

τ
z(k)

)
− nτµ(k)x̄

)
. (6.11)

Following Parikh and Boyd (2014), the proximal operator proxηf : Rq → Rq of a closed
proper convex function f : Rq → R, scaled by positive scalar η ∈ R+, is defined as

proxηf (u) = argmin
v∈Rq

{
f(v) +

1

2η
‖u− v‖22

}
.

The proximal operator of the EN penalty is thus the scaled, coordinate-wise, soft-thresholding
operator (Parikh and Boyd 2014):

proxηΦAN(u) =

(
sgn(uj)max(0, |uj | − ηαωj)

1 + η(1− α)

)p

j=1

. (6.12)

Once the first step in the ADMM iterations is computed, the second step (6.8), can be
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easily solved by

ŷ(k+1) = argmin
ŷ

Lτ (ŷ,θ
(k+1), z(k)) =

(
In×n +

1

τ
W̃

2
)−1(

X̃θ(k+1) +
1

τ

(
W̃

2
y + z(k)

))

and involves only the inverse of a diagonal matrix. The final step (6.9) is a simple vector
update and does not incur substantial computations.

A single iteration for linearized ADMM can be computed very efficiently, requiring only
O(pn) flops. The convergence rate and hence the number of iterations of the linearized
ADMM algorithm depends on the rank of the predictor matrix X as well as the elastic net
parameter α. Deng and Yin (2016) show that if either X has full column rank or α < 1

(i.e., the EN penalty is strongly convex), θ(k) converges “Q-linearly” to a global minimum
θ∗, meaning there exists a c ∈ (0, 1) such that

‖θ(k+1) − θ∗‖2
‖θ(k) − θ∗‖2

≤ c.

In the case where α = 1 (i.e., adaptive LASSO) and X does not have full column rank, the
convergence rate of linearized ADMM is only sub-linear (Davis and Yin 2017), in the sense
that the value of the objective function converges sub-linearly to the value of the objective
function at a global minimum,

(f(ŷ(k)) + g(θk))− (f(X̃θ∗) + g(θ∗)) = O(1/k).

Theoretically, linearized ADMM converges for any choice of the step size parameter
τ . The actual speed of convergence of linearized ADMM, however, depends heavily on
the value chosen for τ . If τ is too small or too large, the algorithm may not converge
within a reasonable number of iterations or even diverge due to numerical instability. The
convergence rates in Deng and Yin (2016) can be used to determine an “optimal” step size if
X̃ is of full column rank or α < 1. In the case where both conditions are satisfied, the optimal
step size is the product of the minimum and maximum weights, τ = mini W̃ii×maxi W̃ii. In
case neither condition is satisfied, the step size is more difficult to tune, and no theoretical
guidance is available.

Steps 6.10, 6.11, 6.8, and 6.9 are iterated until the gap between iterations is sufficiently
small, i.e.,

‖ŷ(k+1) − ŷ(k)‖22 + ‖z(k+1) − z(k)‖22 < ϵ
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for a small convergence threshold ϵ > 0, or until the algorithm exceeds the prespecified
maximum number of iterations.

Overall, linearized ADMM can be very efficient, but a change to the data requires
computing the “linearization” step size τ ′, incurring an additional O(p2n) flops. The main
advantage of linearized ADMM is that a single iteration is very efficient and that it can
leverage solutions to “proximal” problems. However, convergence can be very slow if the
step size is not chosen properly.

6.1.4 Dual Augmented Lagrangian (DAL)

The DAL algorithm as proposed in Tomioka et al. (2011) is an iterative algorithm which
can be adapted to computing the weighted LS-adaEN estimate. Using the same functions
f and g as defined for the ADMM algorithm (6.6), DAL uses Fenchel’s duality theorem
(Rockafellar 1970, Theorem 31.1) to cast the weighted LS-adaEN objective

argmin
µ,β

OWLS(µ,β) = argmin
µ∈R,β∈Rp

f(Xβ + µ1n) + g(β)

into its corresponding dual form

argmax
α∈Rn,v∈Rp

− f∗(−α)− g∗(v)

subject to v = X⊺α and 1⊺nα = 0

where the second equality constraint encodes the intercept. The functions f∗ and g∗ are
the convex conjugates of f and g, respectively, and defined as

f∗(v) = sup
u∈Rn

(v⊺u− f(u)) , g∗(v) = sup
u∈Rp

(v⊺u− g(u)).

As the name suggests, Dual Augmented Lagrangian iteratively minimizes the augmented
Lagrangian of this dual problem, given by

Lτ (α,v,β) = −f∗(α)− g∗(v) + β⊺(v −X⊺α− 1⊺nα)− τ

2
‖v −X⊺α‖22.

In Fenchel’s dual formulation the Lagrangian multiplier, β, corresponds to the primal so-
lution to the weighted LS-adaEN problem (for the slope), and the intercept can be easily
recovered by µ = τ1⊺nα.
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Algorithm 3 Dual augmented Lagrangian algorithm for the weighted LS-adaEN problem.
Input: Initial step size multiplier η > 0, initial solution β(0), µ(0).

1: τ (0)1 = τ
(0)
2 = ηw2/(nλ)

2: α(0) = y −Xβ(0)

3: repeat
4: β(k+1) = prox n

τ
(k)
1 w̄

λΦAN

(
β(k) + τ

(k)
1 Xα(k)

)
5: µ(k+1) = µ(k) + τ

(k)
2 1⊺nα

(k)

6: τ
(k+1)
1 = 2τ

(k)
1

7: if k > 1 and |1⊺nα(k+1)| > ϵ and |1⊺nα(k+1)| > |1⊺nα(k)|/2 then
8: τ

(k+1)
2 = 10τ

(k)
2

9: else
10: τ

(k+1)
2 = 2τ

(k)
2

11: end if
12: α(k+1) = argminα∈Rn φk+1(α), where

φk+1(α) = f∗(−α) +
1

2τ
(k+1)
1

∥∥∥∥∥prox n

τ
(k+1)
1 w̄

λΦAN

(
β(k+1) + τ

(k+1)
1 Xα

)∥∥∥∥∥
2

2

+
1

2τ
(k+1)
2

(
µ(k+1) + τ

(k+1)
2 1⊺nα

)2
13: k = k + 1
14: until RDG(k) < ϵ (as defined in (6.13))

Tomioka et al. (2011) propose to solve this dual augmented Lagrangian problem by the
iterative procedure given in Algorithm 3. In the first step on lines 4 and 5, β(k+1) and
µ(k+1) are updated from the previous solution using the dual vector α(k). The slope β(k+1)

is updated through the proximal operator of the adaptive EN penalty as given in (6.12)
and together with the update to the intercept term can be done in O(pn) flops. The
second step updates the step sizes τ1 and τ2 for the slope and intercept, respectively. The
last step, updating the dual vector α(k+1), is more involved; the strongly convex function
φk+1 can only be minimized approximately using numerical methods. The DAL algorithm
implemented in the pense package uses Newton’s method with backtracking line search
(Boyd et al. 2004, pp. 464ff) for computing an approximate solution α(k+1). Newton’s
method for minimizing φk+1 requires inverting the n×n Hessian of φk+1 and hence a total
of O(n3 + n2p) flops. This can be somewhat improved by noting that the Hessian of φk+1

changes only marginally between iterations and the inversion can be accelerated by using
the previous inverse as a pre-conditioner in the conjugate gradient method (Gentle 2007,
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Algorithm 6.2).
To get exponential convergence of the DAL algorithm the step size needs to increase

at every iteration. Furthermore, to alleviate convergence issues due to the unpenalized
intercept, Algorithm 3 implements the suggestion in Tomioka et al. (2011) to use separate
step sizes for the slope coefficients (τ (k)1 ) and the intercept coefficient (τ (k)2 ). If the intercept
coefficient does not change substantially between iterations, the step size for the intercept
is increased aggressively to speed up convergence.

The DAL algorithm is stopped when the relative duality gap, RDG(k) is less than the
prescribed numerical tolerance ϵ > 0. The relative duality gap is defined as

RDG(k) =
f(Xβ(k) + µ(k)1n) + g(β(k))− f∗(−α̃(k))− g∗(X⊺α̃(k))

f(Xβ(k) + µ(k)1n) + g(β(k))
(6.13)

with candidate dual vector α̃(k) = α(k) − 1
n1n1

⊺
nα(k).

Tomioka et al. (2011) establish strong convergence results for the DAL algorithm, even
when solving for α(k+1) only approximately. The DAL algorithm converges super-linearly
to a global optimum, θ∗, of the weighted LS-adaEN objective, i.e.,

‖θ(k+1) − θ∗‖2
‖θ(k) − θ∗‖2

≤ 1√
1 + 2cτ

(k)
1

,

for some constant c > 0. It can be seen that convergence is faster the larger the initial
step size τ (0)1 , but a larger step size makes the optimization of φk+1 more difficult as the
strong convexity constant of φk+1 is inversely related to τ (k+1)

1 . The default setting in the
pense package is to double the step size in each iteration, as shown in Algorithm 3. The
initial step size is derived from the level of penalization and the scale of the loss function
multiplied by parameter η > 0, using a conservative multiplier of η = 0.01 by default.
Compared to ADMM, DAL is designed to converge in much fewer iterations, but each
iteration carries a substantially higher computational burden. The advantages of DAL are
threefold: (i) DAL performs noticeably better for (severely) ill-conditioned problems than
other iterative algorithms (Tomioka et al. 2011), (ii) DAL is well suited when the number
of predictors p is much larger than the number of observations n and (iii) sparsity in the
primal solution vector β can be harnessed to substantially reduce the memory footprint
and computational complexity.

The faster convergence of DAL is clearly visible Figure 6.2 for two simulated data
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Figure 6.2: Distance between the true global minimum, θ∗, and the solution in the k-th iteration, θ(k)

versus iteration counter k for linearized ADMM and DAL for weighted LS-adaEN on two data sets
simulated according to scheme MS1-MH(-2, 8). Observation weights, wi (i = 1, . . . , n) are random
draws from a uniform distribution on [0, 4] and the penalty loadings ωj (j = 1, . . . , p) are from a
uniform distribution on [0, 1].

sets with randomly generated observation weights and penalty loadings. The exact global
minima for these two data sets are computed using the augmented LARS algorithm up
to floating-point precision. The hyper-parameters of the adaptive EN penalty are fixed
at α = 0.5 and λ = λ̄WLS/2, where λ̄WLS is the smallest penalty level such that β =

0p minimizes the weighted LS-adaEN objective function. As summarized in Table 6.1,
linearized ADMM exhibits linear convergence for α < 1, which is supported by the linear
trend under logarithmic scaling of the distance between the iterates θ(k) and the true global
minimum θ∗. DAL, on the other hand, converges super-linearly and requires far fewer
iterations than ADMM to get within a distance of 10−6 of the true global minimum. In
terms of computational speed, however, DAL only outperforms ADMM if the number of
observations is small and the number of predictors is very large.

Table 6.1 summarizes computational complexity of the algorithms implemented in the
pense package. They are optimized to perform well in the use-cases required for comput-
ing adaptive PENSE estimates. Particular attention is devoted to reducing the overhead
incurred by small changes to the data, for example changing weights between successive
minimizations. These three algorithms for weighted LS-adaEN cover a wide range of prob-
lem sizes and ensure computing adaptive PENSE estimates is feasible in applications with
large and demanding data sets.
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Augmented LARS Linearized ADMM DAL
Complexity O(n2p+ np2 +Kp2) O(Kpn) O(K(n3 + n2p))

Data-change overhead – O(p2n) –
# of iterations, K ≲ max(n, p) O(e−k) or O(1/k) o(e−k)

Table 6.1: Comparison of computational complexity of algorithms to minimize the weighted LS-adaEN
objective function (6.1) measured in floating-point operations. For augmented LARS, the number of
steps required K is usually the number of non-zero coefficient values in the result, but in the presence
of highly correlated predictors the number of iterations may be slightly larger. Linearized ADMM
converges linearly, in O(e−k) iterations, if the penalty function is strictly convex (i.e., α < 1) or if
X⊺X is positive definite.

6.2 Initial Estimates

The non-convex objective function of adaptive PENSE bears the need for an elaborate
scheme to find good starting points. These starting points, or “initial estimates”, are a
crucial component of computing regularized S-estimates. Numerical methods for finding
local minima of the non-convex objective function 4.1 converge to different local station-
ary points depending on the chosen starting point. Different strategies are explored in
Section 3.2, while the most reliable strategy for regularized S-estimates is the EN-PY pro-
cedure detailed in algorithms 1 and 2.

The computational burden of EN-PY is substantial due to the computation of leave-one-
out (LOO) residuals required to compute the sensitivity matrix R (line 2 in Algorithm 2)
and because LS-adaEN estimates need to be computed for each potentially clean subset of
the data (line 7 in Algorithm 1). As detailed in Section 3.2.4, it is difficult to match the
level of penalization desired for adaptive PENSE with an appropriate level of penalization
for the EN-PY procedure. Therefore, EN-PY initial estimates are usually computed for a
fixed α but a set of Q penalty levels QI .

In case of multiple penalty levels, line 4 of Algorithm 1 can be improved upon in the
first iteration (ι = 0) because the index set I (0) is the same for all penalty levels. Itera-
tive algorithms for optimizing the LS-adaEN objective function, such as ADMM and DAL
discussed in Section 6.1, at penalty level λq, 1 < q < Q, converge faster if the minimum of
the LS-adaEN objective function at penalty level λq−1 is leveraged. A similar improvement
in the first iteration can be implemented for computing LOO LS-adaEN estimates needed
for the sensitivity matrix R. For subsequent iterations such optimizations are not possible
because the index set I (ι) is most likely different for different penalty levels. However, the
iterations can be done in parallel for different penalty levels, leveraging multiple cores with
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Figure 6.3: Comparison of the average time to compute the EN-PY initial estimates using 1 to 8 threads.
Computation time is relative to the average computation time required using 1 thread. Timings are
taken for data simulated according to scheme MS1-MH(-2, 8) and averaged over 100 runs on a system
with Intel® Xeon® E3-12XX @ 2.70GHz processors (each CPU comprises 4 cores). Augmented LARS
is used to compute LS-adaEN solutions and penalty parameters are fixed at αAS = 0.5, ω = 1p. The
set QI = {5× 10−4λ̃AS, . . . , λ̃AS} contains 12 penalty levels, equally spaced on the logarithmic scale,
with λ̃AS given in (6.21).

negligible overhead because these computations are completely independent.
Figure 6.3 shows the speed gains of using 1 – 8 CPU cores simultaneously via threads

for computing the EN-PY initial estimates over a grid of 12 penalization levels, starting
at the smallest penalty level such that 0p is a local optimum, as given in (6.21). For
each combination of n and p, a single data set is randomly generated according to data
generation scheme MS1-MH(-2, 8) and computation is replicated 100 times. The system
has 9 processors with 4 cores each, i.e., sharing data between 4 threads incurs little overhead,
while moving beyond 4 threads involves increased memory management. This is also visible
in Figure 6.3, where performance does not improve noticeably when using more than 4
threads, even for large problems. For all problem sizes, two threads can reduce computation
time almost by half, while for small problems the overhead of more threads can devour the
gains of parallelizing. In general, the more challenging the problem, the more gains from
multithreading. If possible, using as many threads as cores per processor leads to fastest
computation without degrading performance.

Iterations of the EN-PY procedure must be done sequentially, but some steps within
a single iteration allow for efficient parallelization to multiple cores. Computing the LS-
adaEN estimates on the potentially clean subsets (line 7 in Algorithm 1) can be performed
in parallel without the need to share data between cores. Similarly, the LOO estimates used
for the sensitivity matrix R can be computed simultaneously on multiple cores.

In case of the Ridge penalty (α = 0), EN-PY initial estimates can be computed much
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faster by exploiting the linearity of the LS-Ridge estimator. Instead of computing LOO
residuals manually, the elements of the sensitivity matrix R can be computed efficiently by
Rij = y⊺Hi· −Hijej/(1−Hjj) where

H = X (X⊺X+ (n− 1)λI)−1X⊺ and e = y −Hy.

The closed-form solution for the sensitivity matrix considerably improves computational
speed for EN-PY in case of the Ridge penalty. However, the Ridge penalty does not lead
to any coefficient value being exactly 0. Therefore, all eigenvalues of R⊺R are non-zero
(Q = ñ, the number of observation in the EN-PY iteration), leading to a large number
of potentially clean subsets and hence the need to compute many LS-adaEN estimates in
line 7 of Algorithm 1.

The EN-PY procedure given in Algorithm 1 returns only the estimates from the last
iteration. The risk of missing potentially good initial estimates can be reduced by tweaking
the algorithm to additionally retain all estimates “close” to the best initial estimate, θ̂(ι),
from the final iteration (in terms of their M-scale of the residuals). The EN-PY procedure
implemented in the pense package retains estimates from all previous iterations which have
less than twice the M-scale of the residuals from the best initial estimate. The threshold can
be changed to retain more or less estimates from previous iterations. Retaining estimates
from previous iterations increases the computational burden but boosts the chances of
finding global optima.

The main computational challenge for EN-PY is solving a large number of LS-adaEN
subproblems. Furthermore, numerical instability or convergence issues of algorithms are
difficult to correct automatically but can have a detrimental effect on EN-PY. It is therefore
important to employ efficient and stable numerical algorithms, chosen according to the
dimension of the sample. Section 6.1 details the algorithms available in the pense package.
Computation can be accelerated by leveraging “proximity” of LS-adaEN problems arising
in the EN-PY procedure. When computing LOO estimates, for example, the estimates are
unlikely to differ drastically from each other. Therefore, the computational burden can be
substantially decreased by leveraging the LOO estimate θ̂(−(i−1)) when computing the LOO
estimate θ̂(−i), i = 2, . . . , ñ in line 2 of Algorithm 2.

The algorithm for solving the LS-adaEN subproblems needs to be chosen in accordance
with the dimensions of the problem. Figure 6.4 shows computation time for EN-PY initial
estimates using different algorithms to solve the LS-adaEN subproblems for several com-
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Figure 6.4: Comparison of the median time (on log-scale) for computing EN-PY initial estimates using
different algorithms to the solve LS-adaEN subproblems. The shaded areas depict the inter-quartile
range over 50 replications on a system running on Intel® Xeon® CPU E3-12XX @ 2.70GHz processors.
Data is simulated according to scheme MS1-MH(-2, 8) with varying number of observations (n)
and predictors (p). Penalty parameters are fixed at αAS = 0.5, ω = 1p, and the set QI(α) =

{5× 10−4λ̃AS, . . . , λ̃AS} contains 12 penalty levels, equally spaced on the logarithmic scale, with λ̃AS

given in (6.21).

binations of the number of observations, n, and number of predictors p. As suggested by
the computational complexity of the different algorithms in Table 6.1, the DAL algorithm
outperforms others if the number of observations is reasonably small but the number of pa-
rameters is large. The DAL algorithm leverages proximal solutions particularly well, often
requiring only one or two iterations when computing LOO estimates, making it particularly
well suited for the EN-PY procedure as long as n is not too large. The LARS algorithm,
on the other hand, does not benefit from proximal solutions but giving its efficient imple-
mentation it is usually the fastest option if the number of predictors is small to moderate.
Computational complexity of linearized ADMM is linear in both n and p, but because
changing the data incurs additional O(p2n) flops, ADMM is recommended for EN-PY only
if both n and p are large.

For each λ in the set of penalty levels, QI , the EN-PY procedure yields a set of initial
estimates T (λ). Due to the difficulty of matching the penalty level between the EN-PY
procedure and adaptive PENSE, the implementation in the pense package combines all
initial estimates into one large set of initial estimates T =

⋃
λ∈QI

T (λ). Each of these
initial estimates is subsequently used to find local minima of the adaptive PENSE objective
function.

113



6.3. COMPUTING LOCAL MINIMA

6.3 Computing Local Minima

Once a set of reliable starting points, T , is obtained the task is to locate local minima of
the adaptive PENSE objective function (4.1) close to these starting points. The adaptive
PENSE objective function is not continuously differentiable everywhere, making gradient-
based methods or Newton’s method unusable (Parikh and Boyd 2014). Subgradient-based
methods are a generalization of gradient-based methods for non-smooth functions (Shor
1985). Subgradient-based methods are conceptually simple, but convergence to local sta-
tionary points is generally slow and not ascertained for the non-convex adaptive PENSE
objective function (Bagirov et al. 2013). While some adaptations of subgradient-based
methods improve convergence for non-convex problems (e.g., Bagirov et al. 2013), they
are in practice unstable for large-scale problems. For adaptive PENSE, the most stable
and efficient numerical algorithms are based on the Minimization by Majorization (MM)
principle.

MM algorithms are a broad class of algorithms with many applications. Lange (2016)
provides an extensive overview of the theory and applications of MM algorithms. The
general idea of MM algorithms is very versatile yet simple. For adaptive PENSE, for
instance, the goal is to find a local minimum of the objective function OAS(θ) over θ ∈ Rp+1,
starting from an initial guess θ(0). Key to MM algorithms is finding a “surrogate” function
with majorizes the true objective function at anchor point θ∗. A function g(θ|θ∗) is said to
majorize the objective function OAS(θ) at θ∗ if

g(θ∗|θ∗) = OAS(θ
∗) and g(θ|θ∗) ≥ OAS(θ) for all θ ∈ θ ∈ Rp+1. (6.14)

In other words the majorizing surrogate function g(θ|θ∗) equals the true objective function
at θ∗ and is greater than the true objective function everywhere else. An MM algorithm
sequentially minimizes surrogate functions until a fixed point of the true objective function
is reached. Starting from the initial guess θ(0), the sequence of steps is given by

θ(k+1) = argmin
θ∈Rp+1

g(θ|θ(k)) (6.15)

for k = 0, 1, . . . until d
(
θ(k+1),θ(k)

)
< ϵ where d : Rp+1 × Rp+1 → [0,∞) is a distance

metric and ϵ > 0 a numerical tolerance level. Iterations of MM algorithms are guaranteed
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to produce a sequence of estimates with non-increasing value of the objective function:

OAS(θ
(k+1)) ≤ g(θ(k+1)|θ(k)) ≤ g(θ(k)|θ(k)) = OAS(θ

(k)). (6.16)

The first inequality and last equality are due to g being a majorizing function and the
middle inequality holds because θ(k+1) minimizes g(θ|θ(k)). For a suitably chosen surrogate
function, the iterates (6.15) converge at least sub-linearly to a stationary point of the true
objective function close to the initial guess θ(0) (Lange 2016). This stationary point does
not have to be a local minimum, but because the adaptive PENSE objective is optimized
for a multitude of starting points, saddle points and local maxima are very likely screened
out at the end.

The idea is that a difficult problem (i.e., finding local minima of the true objective
function) is replaced by a sequence of simpler problems (i.e., finding minima of surrogate
functions). This implies that the surrogate function g(θ|θ∗) must be reasonably simple and
easy to minimize for MM algorithms to be of use. For adaptive PENSE, it suffices to find a
surrogate function for the S-loss, as the adaptive EN penalty is already convex. From 6.14 it
is evident that combining a majorizer of the S-loss with the adaptive EN penalty majorizes
the entire adaptive PENSE objective function.

The local representation of the objective function as a weighted adaptive LS-EN problem,
introduced first in Section 3.1, proves important for deriving a surrogate function of the
adaptive PENSE objective function. Let X̃ = (1n,X) ∈ Rn×(p+1) be the predictor matrix
augmented by a column of 1’s for the intercept term. For any anchor point θ∗ ∈ Rp+1,
consider the local surrogate function

gS(θ|θ∗) =
1

2n

∥∥∥Wθ∗

(
y − X̃θ

)∥∥∥2
2
+ λASΦAN(β;ω, αAS)

= OWLS(θ,Wθ∗).

(6.17)

with diagonal weight matrix Wθ∗ ∈ Rn×n having diagonal elements

wi =

√
ρ′(r̃i)/r̃i

1
n

∑n
k=1 ρ

′(r̃k)r̃k
where r̃i =

yi − x̃⊺
i θ

∗

σ̂M(θ
∗)

, i = 1, . . . , n.

It is easy to verify that gS(θ|θ∗) coincides with the adaptive PENSE objective function
at θ∗, but this surrogate function is not ascertained to majorize the objective function
everywhere. Following Fan et al. (2018), it is not necessary for the surrogate to majorize
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the true objective function everywhere for the MM algorithm to produce a converging
sequence of iterates. The sequence converges as long as the surrogate majorizes the true
objective function locally, i.e., satisfies the local property

OAS(θ
(k+1)) ≤ g(θ(k+1)|θ(k)). (6.18)

The MM algorithm implemented in the pense package utilizes the weighted LS-adaEN
surrogate function as defined in (6.17) despite the lack of proof that the local property (6.18)
holds. If at any iteration property (6.18) is violated, the iteration can be repeated using a
shifted and scaled weighted LS-adaEN surrogate function until the local property is satisfied.
In practice an instance where the local property is violated by the surrogate (6.17) has
yet to emerge, suggesting that the surrogate does indeed satisfy the local property. Local
minima of the adaptive PENSE can therefore be computed efficiently by sequentially solving
weighted LS-adaEN problems.

Numerical tolerance for solving LS-adaEN problems

These weighted LS-adaEN problems are simpler than the non-convex adaptive PENSE
objective function, but they are not solvable exactly either. Many numerical algorithms to
solve weighted LS-adaEN problems do so up to a prescribed numerical tolerance. From the
non-increasing sequence in 6.16 it can be seen that the surrogate functions do not have to be
minimized exactly as long as iterates θ(k+1) reduce (or at least not increase) the surrogate
objective function.

This observation opens avenues for improving performance of MM algorithms. Consid-
ering a desired numerical tolerance for local optima of ϵ as defined below (6.15), only the
last MM iteration must solve the surrogate problem with numerical tolerance less than ϵ,
preceding iterations can solve the surrogate problems with less accuracy. The idea is in
the same spirit as the continuous analogue of the MM principle discussed in Lange (2016,
p. 110), without requiring a strictly convex or smooth surrogate function. To improve nu-
merical stability, the surrogate problem must be solved with higher accuracy than ϵ in the
final iterations. The implementation in the pense package solves the surrogate problems in
the final iteration with a more stringent numerical tolerance of ϵ̃ = ϵ/10. Using less accurate
iterations generally increases the number of MM iterations required to find local optima,
but at the same times decreases the computational burden of minimizing the surrogate
function. The actual speed improvement depends on the strategy to choose the accuracy
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for MM iterates and on the computational complexity of initializing the algorithm for the
surrogate problem with “reweighted” data and savings from weaker demands on accuracy.

The pense package implements two “tightening” strategies to reduce computation time:
exponential and adaptive. Exponential tightening sets the initial numerical tolerance level
to ϵ(0) =

√
ϵ̃. If the surrogate objective decreases in the k-th MM iteration, in other words,

g(θ(k+1)|θ(k)) < g(θ(k)|θ(k)), the numerical tolerance is adjusted to

ϵ(k+1) = max
(
ϵ,min

(
d(θ(k+1),θ(k)), ϵ(k)ϵ̃2/K

))
,

whereK is the maximum number of MM iterations. If the surrogate objective function is not
decreased, the iteration is repeated with a smaller numerical tolerance, i.e., ϵ(k) = ϵ(k)ϵ̃1/10.

Adaptive tightening, on the other hand, decreases the numerical tolerance for the sub-
problems only if the parameter does not change meaningfully. As for exponential tightening,
the initial numerical tolerance level is ϵ(0) =

√
ϵ̃. The “aggressiveness” of adaptive tighten-

ing, and what is considered a meaningful change in the parameters, is controlled through
the maximum number of adjustments S, with a default value of S = 1. If the surrogate
objective decreases in the k-th MM iteration but the parameter values do not change sub-
stantially, the numerical tolerance remains constant, i.e., ϵ(k+1) = ϵ(k). Adaptive tightening
takes action if the surrogate objective decreases in the k-th MM iteration and the change in
parameter values, d(θ(k+1),θ(k)) < ϵ(k), adjusting the tolerance to ϵ(k+1) = ϵ(k)ϵ̃1/S . In case
the surrogate objective function does not decrease, the iteration is repeated with a tighter
numerical tolerance ϵ(k) = ϵ(k)ϵ̃1/(2S).

The effect of these different tightening strategies is shown in Figure 6.5 for a single sim-
ulated data set with desired convergence tolerance ϵ = 10−6. The plot on the left shows the
relative difference in the value of the adaptive PENSE objective function between consecu-
tive iterations as well as the convergence tolerance for the surrogate problem, ϵ(k). Without
tightening strategy (solid black line), the convergence tolerance for the surrogate problem
remains fixed at ϵ̃ = 10−7, in which case the MM algorithm converges after 7 iterations.
With adaptive tightening (dashed light-blue line), the number of MM iterations increases
to 10, and for exponential tightening (dotted blue line) 26 MM iterations are required.
While the tightening schemes lead to more MM iterations, the total number of iterations
performed by ADMM are 1851, 617, and 583 for no tightening, adaptive tightening, and
exponential tightening, respectively. The plot on the right highlights that tightening strate-
gies reduce the number of ADMM iterations especially for the first few MM iterations. At
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Figure 6.5: Convergence path of different tightening strategies for the MM algorithm for adaptive PENSE.
The weighted LS-adaEN solutions are computed using linearized ADMM. Data is generated according
to scheme MS1-MH(-2, 8) with 100 observations and 400 predictors. The gray lines in plot (a) depict
the numerical tolerance to solve the surrogate problems for the different tightening strategies at each
iteration. Penalty parameters are fixed at αAS = 0.5, ω = 1p, and λAS = λ̃AS/2, with λ̃AS given
in (6.21). The MM algorithm is started at 0p+1 and the convergence tolerance is ϵ = 10−6.

these initial iterations, the MM iterates change considerably and it is not necessary to solve
the surrogate function precisely. Once the MM iterations approach the local minimum of
the adaptive PENSE objective function, however, more precise solutions are necessary to
avoid “zigzagging” around the local minimum.

Figure 6.5(b) also shows the numerical tolerance level at each MM-iteration, ϵ(k), visu-
alizing how tightening strategies work. As described above, adaptive tightening reduces the
numerical tolerance of the surrogate problem once the relative change between iterates is
smaller than ϵ(k). After one adjustment, adaptive tightening uses the maximum accuracy of
ϵ̃ = 10−7. From the right plot it can further be seen that as soon as the numerical tolerance
is lowered, ADMM requires substantially more iterations. With exponential tightening,
on the other hand, the numerical tolerance changes more gradually and ADMM needs in
general less iterations to converge in the individual MM iterations. At the very end the
numerical tolerance is reduced to the desired accuracy of ϵ̃ = 10−7, leading to slightly more
ADMM iterations.

The smoother adjustment of the numerical tolerance for exponential tightening leads in
general to a lower number of ADMM iterations. This trend is also visible in Figure 6.6(a),
where the total number of ADMM iterations required per adaptive PENSE minimization
(relative to the number of ADMM iterations required if no tightening strategy is used) are
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Figure 6.6: Performance of the MM algorithm (using the linearized ADMM algorithm to minimize the
surrogate functions) for computing local minima of the adaptive PENSE objective function, using
different tightening strategies. Figure (a): Number of ADMM iterations required to compute a local
minimum of the adaptive PENSE objective function for different tightening strategies, relative to the
number of ADMM iterations required with no tightening strategy. Figure (b): Median runtime of
the MM algorithm with different tightening strategies to compute a local minimum of the adaptive
PENSE objective function. The vertical axis is on the log-scale. The shaded area around the median
depicts the inter-quartile range from 50 replications measured on a system with Intel® Xeon® E3-
12XX processors clocked at 2.70GHz. Data is generated according to scheme MS1-MH(-2, 8) and
penalty parameters are fixed at αAS = 0.5, ω = 1p, and λAS = λ̃AS/2, with λ̃AS given in (6.21). The
MM algorithm is started at 0p+1 and the convergence tolerance is set to 10−6.

compared for exponential and adaptive tightening. Both tightening strategies lead to a
substantial decrease in the total number of ADMM iterations required, with exponential
tightening leading to a slightly greater reduction. This translates to decreased computation
time as evident in Figure 6.6(b), where the time required to compute a minimum of the
adaptive PENSE objective function is shown for different problem sizes. Albeit the overall
reduction in computation time is not as pronounced as the reduction in ADMM iterations,
tightening saves computing resources especially for large problems.

Tightening works well with linearized ADMM, but less so with DAL. Adaptive tightening
slightly reduces the number of DAL iterations required, but exponential tightening increases
the number of DAL iterations substantially, almost tripling the number of DAL iterations
in the numerical experiments for Figure 6.6. The reason for this inflation of DAL iterations
is that the convergence criterion employed by DAL (the relative duality gap) is not linearly
related to the relative change in the coefficient values as used by the MM algorithm to
determine convergence. Furthermore, if the weights change, the inner minimization carried
out for DAL (step 12 of Algorithm 3) cannot re-use the Hessian from the previous iteration,
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Figure 6.7: Median time for computing local minima of the adaptive PENSE objective function (4.1)
by the MM algorithm using different algorithms to solve the weighted LS-adaEN subproblems. The
MM algorithm uses adaptive tightening for ADMM, while no tightening is used for DAL and LARS
algorithms. The vertical axis is on the log-scale and the shaded area around the median depicts the
inter-quartile range from 50 replications measured on a system with Intel® Xeon® E3-12XX processors
clocked at 2.70GHz. Data is generated according to scheme MS1-MH(-2, 8) and penalty parameters
are fixed at αAS = 0.5, ω = 1p, and λAS = λ̃AS/2, with λ̃AS given in (6.21). The MM algorithm is
started at 0p+1 with convergence tolerance set to 10−6.

leading to overhead in the computations which cannot be compensated by a moderate
reduction in the number of DAL iterations through tightening.

Performance of the MM algorithm with each of the three algorithms for weighted LS-
adaEN described in Section 6.1 is shown in Figure 6.7. It is noticeable that the augmented
LARS algorithm outperforms the other algorithms for small p or large n. As expected,
the DAL algorithm is competitive for a small number of observations and when the num-
ber of predictors is large. However, as already noted above, changing weights causes the
DAL algorithm to recompute the Hessian required for the inner minimization from scratch.
Therefore, DAL is better suited for use in the EN-PY procedure where changes to the data
are more gradual than in the MM algorithm, except for scenarios with many predictors and
few observations. Linearized ADMM, on the other hand, strikes a balance between aug-
mented LARS and DAL and is suggested for situations where both n and p are moderate
to large. An important property of the augmented LARS algorithm which is not visible
in these plots is its accuracy. While augmented LARS is often outperformed by iterative
algorithms, iterative algorithms are more prone to convergence issues, leading in turn to
convergence problems for the MM algorithm.

The MM algorithm developed for adaptive PENSE delivers reliable and scalable perfor-
mance. Allowing the use of any algorithm for solving weighted LS-adaEN subproblems, the
MM algorithm is adaptable to many problems. Tightening strategies further reduce com-
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putational complexity of solving a large number of subproblems with iterative algorithms.
These optimizations become even more important when the MM algorithm is run nu-

merous times. The algorithm described in this chapter locates a local minimum for fixed
hyper-parameters and a single starting point. In practice, a large set of different starting
points needs to be explored to increase chances of finding a global optimum of the objec-
tive function. Furthermore, good values for the hyper-parameters are unknown in advance
and need to be selected in a data-driven fashion, involving multitudinous minimizations.
The solutions developed for the MM algorithm and weighted LS-adaEN algorithms are cru-
cial to make large-scale explorations possible, but there is room for even more aggressive
optimizations.

6.4 Computing Adaptive PENSE for Many Hyper-Parameters

As detailed in previous chapters, good values for the hyper-parameters of PENSE and
adaptive PENSE are in practice unknown and need to be selected based on the available
data. Sections 3.5 and 4.1.1 outline the benefits and shortcomings of using K-fold cross-
validation for hyper-parameter selection. The computational burden makes K-fold CV
challenging in larger problems. The pense package combines several heuristics, as outlined
below, to make cross-validation a feasible strategy for hyper-parameter selection for adaptive
PENSE.

Throughout this section it is assumed that the penalty loadings ω ∈ Rp
+ are fixed. For

adaptive PENSE, this means that both the initial estimate β̃ and the exponent ζ are fixed.
If ζ is to be chosen based on the available data as well, the steps detailed below can be
repeated for different penalty loadings.

Hyper-parameter selection via K-fold CV relies on suitably standardized data to ensure
comparability of penalization levels across CV folds. To simplify standardization within
each individual CV fold, the entire data set (y,X) is standardized as well. The goal of
standardization is to make penalization levels more comparable between individual CV
folds and the full data set, requiring the S-loss function, LS, to be on a standardized scale.
Every predictor is centered and scaled by its univariate location and scale estimated as

µ̂j = argmin
µ

σ̂M(x·j − µ) and σ̂j = σ̂M(x·j − µ̂j) for j = 1, . . . , p.

Similarly, the S-estimate of location of the observed responses µ̂y = argminµ σ̂M(y − µ)
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is used to center the response. With these estimates of location and scale the data is
standardized by

ỹ = y − µ̂y and X̃ =

(
x·1 − µ̂1
σ̂1

, . . . ,
x·p − µ̂p
σ̂p

)
. (6.19)

An estimate θ̃ computed on the standardized data can be un-standardized according to

β̂ = diag (1/σ̂1, . . . , 1/σ̂p) β̃ and µ̂ = µ̃− µ̂y + (µ̂1, . . . , µ̂p) β̂. (6.20)

To avoid introducing distracting notation the subsequent steps assume that the data set
(y,X) is standardized.

For given penalty loadings ω, the goal is to select a tuple (α∗, λ∗) of hyper-parameters
leading to good prediction performance of the estimate. As long as 0 < α < 1, the effect of
the α parameter on the estimate and hence the prediction performance is small compared
to the effect of the penalization level λ. Furthermore, α, the balance between the L1 and L2

penalties, can be more intuitively interpreted. Therefore, it is usually sufficient to consider
only a small number of different values for α. In the following, the set of values considered
for the parameter α is denoted by A , which typically consists of only a few values, e.g.,
A = {1/3, 2/3, 1}. Since variable selection is of primary concern, A usually does not
contain 0. While the adaptive PENSE objective function is smooth in α, the coarse grid
A does not emit any gains in computational performance when sharing information across
values in A . Therefore, prediction performance of adaptive PENSE at different hyper-
parameter settings is estimated independently for each value of α in A according to the
following steps.

Step 1 (defining a grid of penalization levels): The penalization level λ has a much
more pronounced yet subtle effect on the adaptive PENSE estimates than the hyper-
parameter α. It is therefore important to cover a wide range of penalization levels over
a fine-grained grid. Going beyond a penalization level where all coefficient estimates are
necessarily 0 is pointless but determining this penalization level is difficult due to the non-
convex objective function as discussed in Section 3.5.1. The results in Section 3.5.1 can be
extended to show that for given α and penalty loadings ω, the smallest penalization level
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for which 0p is a stationary point of the adaptive PENSE objective function is given by

λ̃AS =
1

nωjα
max

j=1,...,p

∣∣∣∣∣
n∑

i=1

w2
i (y − µ̂y)(yi − µ̂)xij

∣∣∣∣∣ . (6.21)

with µ̂y = argminµ σ̂M(y − µ) and weights wi(y− µ̂y) as defined in (3.3). For standardized
data, µ̂y = 0.

It is typically not necessary to consider penalization levels greater than λ̃AS. The pense
package spans a logarithmically-spaced grid of Q penalization levels from λ̃AS to 10−3αλ̃AS,
denoted by Q = {λ1, . . . , λQ}. It is important to note that the penalization levels are in
decreasing order, i.e., λq > λq+1, for all q = 1, . . . , Q− 1.

Step 2 (defining CV folds): With α and Q fixed, the n observations are randomly split
into K cross-validation folds. The K CV folds are defined through randomly generated
“folds”, i.e., disjoint index sets S (k) ⊂ {1, . . . , n}, k = 1, . . . ,K of roughly equal size which
include all observations, i.e.

⋃K
k=1 S (k) = {1, . . . , n}.

Step 3 (cross-validation): For every single fold S (k), the training data is defined by

y(k) =
(
yi : i /∈ S (k)

)
X(k) =

(
xi : i /∈ S (k)

)⊺
and contains n− |S (k)| observations.

With the reduced number of observations in the training data, the robustness param-
eter δ needs to be adjusted. Given δ fixed beforehand, at most bnδc observations may be
contaminated. Since the training data is a random subset of the entire data set, all con-
taminated observations may be contained in this particular subset. To guard against this
potentially increased proportion of contamination, the parameter needs to be adjusted to
δ(k) = bnδc/(n−|S (k)|). In other words, cross-validation effectively decreases the maximum
breakdown point attainable by robust estimators to δ ≤ 0.5(n−maxk=1,...,K |S (k)|).

Step 3.1 (standardizing training data): The training data is standardized according
to (6.19), with the location and scale estimates σ̂j , µ̂j , and µ̂y estimated on the training
data. The fixed penalization levels Q have approximately the same effect on the adaptive
PENSE estimate computed on the standardized training data as if computed on the entire
standardized data set.

Step 3.2 (computing the regularization path): The grid of penalization levels typi-
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cally contains many different values and computing adaptive PENSE solutions for each of
these levels is computationally the most demanding step. To ensure K-fold CV is feasible
even for larger data sets, the pense package optimizes computing all estimates along this
“regularization path”, i.e., for all λ ∈ Q where α and ω are fixed, as detailed in Algorithm 4.

Before the regularization path can be computed, initial estimates T are obtained ac-
cording to Section 6.2. It is both unfeasible and unnecessary to compute initial estimates
for every penalty level in Q. By default, the pense package computes initial estimates for
every fifth penalization level, QI = {λ1, λ6, λ11, . . . }. Many initial estimates do not lead to
a good local optimum or lead to the same optimum found with a different starting point.
To avoid squandering computational resources on initial estimates without merit, the pense
package employs a two-stage strategy for computing the regularization path.

For every penalty level λq, the algorithm is separated into two stages: exploration and
improvement. In the exploration stage, approximate solutions are computed by the MM
algorithm with relaxed numerical tolerance (ϵexp = 0.1 by default) and no tightening. To
increase chances of finding good local optima, the MM algorithm in the exploration stage
is started from every solution found for the previous penalty level λq−1 as well as all initial
estimates in T . Using a looser numerical tolerance in the exploration stage, the MM
algorithm runs for only a few iterations, reducing the computational burden of exploring
all possible starting points.

In the second stage, the MM algorithm is started from each of the M best approximate
solutions. In this improvement stage, the MM algorithm runs until convergence to the
desired numerical tolerance (by default 10−6) and the best solution is retained for each
λ ∈ Q. In both the exploration and improvement stage, solutions are judged by their
associated value of the adaptive PENSE objective function. This two-stage approach strikes
a balance between vast exploration and feasible computation and is successfully applied for
many other robust estimators as well (e.g., Salibián-Barrera and Yohai 2006; Rousseeuw
and Van Driessen 2006; Alfons et al. 2013). Empirical results suggest that “good” solutions
can be differentiated from “bad” solutions after only a few iterations of the MM algorithm.

The inner loops of Algorithm 4 (on lines 4 and 13) can be efficiently distributed among
multiple cores, significantly accelerating computation. The outer loop, however, must be
done sequentially as sharing information between subsequent penalization levels improves
the likelihood of uncovering good local optima.

Step 3.3 (predicting values): Prediction performance of the coefficient estimates along
the regularization path is estimated through the prediction error on the test set in the CV
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fold. The coefficient estimates must be un-standardized using (6.20) with location and
scale estimates obtained for the training data in step 3.1. The prediction errors from un-
standardized estimates {θ̂(1)

, . . . , θ̂
(Q)} are then given by

ei,q = yi − µ̂(q) − x⊺
i β̂

(q) for all i ∈ S (k), q = 1, . . . , Q.

Step 4 (computing estimate of prediction performance): After step 3, each obser-
vation i = 1, . . . , n has Q associated prediction errors; one for every considered penalty
level. Prediction performance of adaptive PENSE estimates at each penalization level is
estimated by the τ -scale of the prediction errors

τ̂α,λq =

√√√√√ 1

n

n∑
i=1

max

cτ , |ei,q|
Median
i′=1,...,n

∣∣ei′,q∣∣
2

α ∈ A , q = 1, . . . , Q, (6.22)

where efficiency constant cτ = 3 by default in pense.

Step 5 (repeating CV with different splits): The non-convexity of the objective func-
tion leads to difficulties for cross-validation, as detailed in Section 3.5. This is underlined
by empirical results showing that the CV curve of the prediction performance is typically
very rough and unstable; varying whimsically between different cross-validation splits. This
is clearly visible in the left panel of Figure 6.8, showing the cross-validated prediction per-
formance of adaptive PENSE using two different CV splits on simulated data alongside
prediction performance as estimated on an independent validation set. The individual CV
curve roughly match the prediction performance from the validation set, but the curves
are capricious. Considering only a single CV curve to determine good hyper-parameters
is therefore suboptimal as the location of the minimum is most likely not corresponding
to a level of penalization leading to the best prediction performance. When averaging the
prediction performance estimated over several replications (i.e., cross-validation splits), the
CV curve exhibits a smoother surface as shown in the right panel of Figure 6.8. Therefore,
the implementation in the pense package repeats steps 2 to 4 R times and averages the
prediction performance at every λq over these R replications:

τ̄α,λq =
1

R

R∑
r=1

τ̂
(r)
α,λq

α ∈ A , q = 1, . . . , Q.

Averaging multiple CV replications leads to a smoother CV curve and furthermore allows
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for accurate estimation of the variability of the estimated prediction performance at any
considered penalty level. This enables a more sensible selection of the hyper-parameters for
adaptive PENSE. For a fixed α a commonly employed strategy is to not choose λq at which
the average prediction performance is minimized, but to rather choose a larger penalization
level (i.e., a sparser solution) at which the average prediction performance is statistically
“indistinguishable” from the smallest average prediction performance. The pense package
implements this strategy by allowing the user to specify the multiple of the standard er-
ror of the smallest average prediction performance considered “indistinguishable”, i.e., a
generalization of the “one-standard-error” rule (Hastie et al. 2009). In Figure 6.8(b), for
example, the error bars depict one half standard error and the average best prediction per-
formance is achieved with λ ≈ 8.8 (21 non-zero coefficients). Using a sparser coefficient
vector estimated at λ ≈ 13.2 (15 non-zero coefficients), leads to very similar prediction
performance with fewer selected predictors and lower false-positive rate (the true model in
this simulation has 16 non-zero coefficients).

Steps 1 to 5 are performed independently for every α ∈ A . With multiple replications
of CV for each α, selecting good hyper-parameters for PENSE and adaptive PENSE is
computationally very taxing. While many steps can be efficiently parallelized onto multiple
cores or compute nodes, the two-stage approach for computing the regularization path with
Algorithm 4 is important to ensure scalability. Without the optimized algorithms described
in this chapter, computation would not be feasible for realistic problem sizes.

6.5 Summary

Computation of adaptive PENSE estimates is challenging yet crucial for successful appli-
cation. Easing the use of adaptive PENSE and making it available to a large audience, the
R package pense is published on CRAN, the central system for packages extending R. The
design goal of the pense package is to make adaptive PENSE a versatile tool and applicable
to a wide range of problems.

Non-convexity of the objective function combined with necessary selection of hyper-
parameters and possible contamination require several novel or adapted computational op-
timizations to make adaptive PENSE a method of choice. It turns out that all computations
can be decomposed into a series of weighted least-squared adaptive elastic net problems.
Each of these subproblems is convex and solvable efficiently. However, because of their sheer
number, even these supposedly banausic subproblems require diligent optimizations using
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Algorithm 4 Regularization path of adaptive PENSE
Input: Set of penalty levels Q = {λ1, . . . , λQ} in decreasing order, set of initial estimates

T , maximum number of estimates to improve, M > 0, coarse convergence tolerance for
exploration ϵexp > 0.

1: Define θ̂
(0)

= 0p+1.
2: for q = 1, . . . , Q do
3: Initialize an empty set of approximate solutions B(q) = {}.
4: for θ̃ ∈

{
θ̂
(q−1)

}
∪ T do

5: Starting the MM algorithm from θ̃, compute an approximate solution θ̂ using a
convergence tolerance of ϵexp.

6: if Set of approximate solutions is not full, i.e., |B(q)| < M then
7: Add θ̂ to the set of approximate solutions, B(q).
8: else if O(θ̂;λq) < max{O(θ;λq) : θ ∈ B(q)} then
9: Replace the worst approximate solution in B(q) by θ̂.

10: end if
11: end for
12: Initialize best optimum as θ̂(q)

= 0p+1.
13: for θ̃ ∈ B(q) do
14: Starting the MM algorithm from θ̃, compute a local minimum of the adaptive

PENSE objective function, denoted by θ̂.
15: if O(θ̂;λq) < L(θ̂

(q)
;λq) then

16: Update the best optimum to θ̂
(q)

= θ̂.
17: end if
18: end for
19: end for
20: Return the set of all solutions, {θ̂(1)

, . . . , θ̂
(Q)}.

the specific characteristics of the sequence of problems. The pense offers three algorithms
for weighted LS-adaEN with optimizations to efficiently handle small changes in the data
matrix or in the weights. Each of these three algorithms has certain features making them
applicable to specific problem sizes and configurations, covering a wide range of problems.

Numerically locating optima of the non-convexity adaptive PENSE objective function
necessitates a careful selection of starting points using the EN-PY procedure. Computing
EN-PY initial estimates simultaneously for several penalty parameters allows for compu-
tational shortcuts. Once these starting points are computed, local optima of the adaptive
PENSE objective function can be computed using a minimization-by-majorization (MM)
algorithm. I show that the weighted LS-adaEN objective function with properly chosen
weights is a useful surrogate function for the adaptive PENSE objective function. Solving
a sequence of these weighted LS-adaEN problems leads to a local minimum of the adaptive
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Figure 6.8: Prediction performance of adaptive PENSE (α = 0.5) estimated by 100 replications of 7-fold
cross-validation on data simulated according to scheme MS1-MH(-5, 2) with n = 100 and p = 32. The
black dashed line in both plots shows the prediction error as estimated on an independent validation
set. The error bars in the right plot depict half the standard error.

PENSE objective function. Computing a large number of these local minima using differ-
ent starting points improves the likelihood of finding a global minimum, or at least a local
minimum close to the global minimum, unaffected by contamination.

A good choice of the hyper-parameters governing the penalization of the estimates is
unknown in practice. Selecting these hyper-parameters therefore usually involves comput-
ing adaptive PENSE estimates for many different combinations of the hyper-parameters.
As with initial estimates, several computational shortcuts are possible when computing
adaptive PENSE for a sequence of hyper-parameters. These optimizations are essential to
making computation of adaptive PENSE feasible for realistic problem sizes. Especially be-
cause hyper-parameter selection for adaptive PENSE using cross-validation inherently leads
to high variance of the estimated prediction performance, requiring several replications of
CV, escalating the computational burden. The algorithms and methods implemented in
the pense package incorporate many optimizations exploiting the characteristics of the
adaptive PENSE objective function. These optimizations ensure that adaptive PENSE is
computable using reasonable resources for many problems and thus a feasible alternative in
most applications.

128



Chapter 7

Conclusions

This dissertation highlights the inherent challenges arising when considering the possibility
of contamination in a sample with many potential predictors but only a limited number
of observations. These challenges motivate the development of novel estimators for high
dimensional, sparse linear regression models under the presence of contamination with the
goal of accurate prediction of the response for a new set of observations and simultaneous
identification of a small number of predictors relevant for prediction.

Combining ideas for robust estimation in low-dimensional linear regression models with
regularization for variable selection, Chapter 3 proposes the penalized elastic net S-estimator.
For robustness of the estimator entails a non-convex objective function, considerable efforts
are devoted to guide exploration of the objective function in the quest to locate global min-
ima. The EN-PY procedure is shown to outperform other methods both in terms of quality
of the uncovered minima and computational costs. The asymptotic guarantees established
for the estimator underline its appropriateness for challenging problems with heavy tailed
error distributions and potential contamination in the observed response or predictor val-
ues. Data-driven hyper-parameter search is vulnerable to high variance of the performance
estimate which is inflated by the presence of contamination and the non-convexity of the
objective function. Nevertheless, empirically cross-validation leads to good prediction per-
formance of PENSE, from chimerical scenarios without contamination and well-behaved
error terms, to the most challenging situations with heavy-tailed errors and gross contami-
nation.

The PENSE estimator reliably identifies relevant predictors from the large set of avail-
able predictors, but theoretical and empirical results expose one shortcoming of the PENSE
estimator: insufficient filtering of truly irrelevant predictors. In Chapter 4 I therefore pro-
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pose the adaptive PENSE estimator which leverages the PENSE estimator to substantially
decrease the number of falsely selected predictors while at the same time retaining the
predictive capabilities. Asymptotically, the adaptive PENSE estimator is proven to filter
out all irrelevant predictors with high probability, while simultaneously estimating the pa-
rameters of the truly relevant predictors with the same efficiency as if the truly relevant
predictors were known in advance. This oracle property of the adaptive PENSE estimator,
combined with the empirically demonstrated performance even in very challenging scenar-
ios, ascertains reliability and practical advantages of adaptive PENSE.

Analysis of the interplay between sparsity of the true model and contamination of the
predictors accentuates the effects of two forms of contamination in the predictors not prop-
agated to the response value: (i) extreme values in predictors with truly non-zero coefficient
and (ii) extreme values in truly irrelevant predictors. Prediction performance and variable
selection of PENSE is unscathed by contamination (i), while variable selection of non-robust
estimators is erratic. Under contamination (ii), on the other hand, it is shown the PENSE
estimate is inherently unable to filter out the irrelevant predictors with contaminated val-
ues, whereas non-robust methods are more resilient to the effects of these “good” leverage
points. Adaptive PENSE combines the best of both worlds, with prediction performance
and variable selection unscathed by either form of contamination. Anecdotally, contam-
ination (ii) is very common in practical applications, as the sheer number of irrelevant
predictors creates more space for this form of contamination.

Adaptive PENSE’s robustness of variable selection and its good prediction performance
are germane to meaningful and generalizable scientific results. The utility of adaptive
PENSE is demonstrated in a biomarker discovery study with the goal of identifying proteins
relevant for predicting cardiac allograft vasculopathy. Adaptive PENSE is estimated to give
more accurate predictions using a smaller panel of proteins than other robust or non-robust
estimators.

Chapter 5 outlines the problem of residual scale estimation in sparse high-dimensional
linear regression models under the presence of contamination. Many proposals for robust
regularized regression estimators depend on the availability of an accurate and robust esti-
mate of the residual scale for efficient estimation but also to retain robustness. Theoretical
results in low dimensional settings justifying computational shortcuts without sacrificing ef-
ficiency are not applicable to regularized M-estimators, entailing a substantial leap of faith
when computing M-estimates on possibly contaminated finite samples. I highlight preva-
lence of severe under- and overestimation of the residual scale in high-dimensional linear
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regression, leading to degraded performance of M-estimators. The bias in the scale estimate
proves difficult to remove in finite-samples, and strategies for de-biasing proposed for non-
robust methods seem unfit for the use with robust estimators. Despite the arguably better
performance of regularized M-estimators in less challenging scenarios, the elevated risk of
being subjected to the undue influence of contamination, signify more robust alternatives
PENSE and adaptive PENSE are to be preferred in practice.

For PENSE and adaptive PENSE to be viable methods for high dimensional data anal-
ysis, they need to be readily available in the form of software capable of computing the
estimates in a wide range of scenarios. Chapter 6 details adaptations and optimizations of
numerical algorithms for use as building blocks in the algorithm devised for computing local
minima of the (adaptive) PENSE objective function. Together with an efficient implementa-
tion of the EN-PY procedure to guide the search for global minima, (adaptive) PENSE can
be efficiently computed for a host of problem sizes. Repeated cross-validation can effectively
reduce the high variability of the hyper-parameter search and further improve prediction
performance, variable selection, and reliability of the (adaptive) PENSE estimate. With the
optimizations developed in Chapter 6, computation of (adaptive) PENSE estimates remains
feasible even in high-dimensional settings.

The methods developed in this dissertation gain robustness by down-weighting poten-
tially contaminated observations. An observation is considered contaminated if either the
residual or any of it’s predictor values is contaminated, following the “casewise” contamina-
tion model. With a large number of predictors available in high-dimensional datasets, this
approach may lead to problems as even a small number of contaminated values can trans-
late to a large proportion of contaminated observations. Robust methods for the “cellwise”
contamination model (Alqallaf et al. 2009), on the other hand, aim at identifying individual
values (i.e., cells in the data matrix) with potential contamination and gain robustness by
reducing the influence of these cells on the estimation procedure. This strategy is better
equipped for high-dimensional datasets, as contamination is not “propagated” from a single
value to the entire observation. Methods for the cellwise contamination model, however, are
computationally substantially more challenging than PENSE or adaptive PENSE. Impor-
tantly, the sparsity assumption imposed in this dissertation alleviates the propagation effect
to a certain degree, as aberrant values in the many irrelevant predictors do not pose the
same challenges as aberrant values in relevant predictors. In particular adaptive PENSE
shows very reliable prediction and variable selection properties in the presence of these
forms of contamination, without the need to down-weight affected observations. It would
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be nevertheless interesting to investigate a possible combination of techniques used in the
cellwise contamination model with adaptive PENSE in future research.

The statistical theory developed for PENSE and adaptive PENSE sheds light on their
robustness and asymptotic properties under a general linear regression model. While the
considered model covers a wide range of situations, some limitations cannot be ignored. The
asymptotic properties of the estimators, for example, are derived under the assumption of
i.i.d. errors, which in particular implies that the errors are independent of the predictors and
homoscedastic (if F0 has finite variance). This assumption is sometimes violated in practi-
cal applications. Consistency of unregularized S-estimators holds even if these assumptions
are violated (Maronna et al. 2019), suggesting that similar extensions may be possible for
PENSE and adaptive PENSE. Furthermore, the high breakdown point of the estimators
requires a fixed set of hyper-parameters and does not account for any effects of choosing the
hyper-parameters based on the potentially contaminated sample. To mitigate the effects
of contamination, Chapters 3 and 4 stress the importance of using a robust measure of
prediction performance. While empirical results demonstrate the proposed cross-validation
scheme selects hyper-parameters which lead to reliable estimates, further analysis of the
breakdown point under this scheme would give a more practical assessment of the proce-
dures’ robustness towards contamination.

The many facets of contamination in high-dimensional data paired with variable selec-
tion and regularized estimation outlined in this dissertation point to several other challenges
left for future research. Foremost, low efficiency of the proposed S-estimators in some sce-
narios suggests room for improvement. Regularized M-estimators are fettered by the high
bias in robust estimates of the residual scale as currently available. Building upon the initial
study of the problem in this work, grokking the sources of bias in finite samples is crucial to
eventual development of appropriate countermeasures and hence more reliable regularized
M-estimators. Loh (2018), Fan et al. (2018), and other proposed methods, circumvent the
problem of scale estimation altogether by choosing the scaling of the residuals for convex
M-estimators from a grid of candidate values, but the theory currently does not adequately
support robust estimation under the presence of contamination in the predictors. A poten-
tial avenue for future advances is combining the ideas of an adaptive search for appropriate
scaling with highly robust regularized estimators. It is of particular interest whether an
adaptive search is feasible and reliable under the presence of contaminated predictors. Sim-
ilarly, other proposals for highly robust estimators for low-dimensional linear regression
models can serve as blueprints for robust regularized estimators with higher efficiency than
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S-estimators. As the distinct computational advantage of MM-estimators over other highly
robust and efficient estimators vanishes in higher dimensions and in presence of a penalty
term, alternatives such as the τ estimator (Yohai and Zamar 1988), may be more practica-
ble. It remains for future research to see whether these approaches can be adapted to the
sparse linear regression model while retaining efficiency and robustness.

With the proliferation of data seen in recent history, sparse linear regression models
are ubiquitous in many areas. The demonstrated reliability of the proposed estimators
combined with an efficient implementation for the software environment R, available from
https://cran.r-project.org/package=pense, will improve generalizability of predictive
models and aid future scientific discoveries.
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Appendix A

Simulation Settings

A.1 Data-Generation Schemes

The p-dimensional predictors, xi, i = 1, . . . , n are independent realizations of a p-dimensional
random variable X from a multivariate t distribution with 4 degrees of freedom. The cor-
relation structure among the predictors can be one of the following.

Correlation structure 1 [AR(1)]: Exponential decay of the correlation between predic-
tors according to their “distance”, Cor(Xj ,Xj′) = ρ|j−j′|, for j, j′ = 1, . . . , p. The parameter
0 ≤ ρ ≤ 1 determines the general strength of the correlation.

Correlation structure 2 [equal correlation]: All predictors are equally correlated,
Cor(Xj ,Xj′) = ρ for all j, j′ = 1, . . . , p, j 6= j′.

The response values yi, i = 1, . . . , n are generated by a linear combination of the first s
predictors:

yi = ui +
s∑

j=1

xij , i = 1, . . . , n. (A.1)

The residuals ui are scaled versions of raw residuals ũi. These unscaled ũi are independent
realizations of a random variable U following a central stable distribution (Mandelbrot 1960)
with varying stability parameter α:

LT light-tailed stable distribution with tail parameter α = 2, i.e., a Standard Normal
distribution,

ML moderate- to light-tailed table distribution with stability parameter α = 1.66,
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MH moderate to heavy-tailed stable distribution with stability parameter α = 1.33,

HT heavy-tailed stable distribution with stability parameter α = 1, i.e., a Cauchy distri-
bution.

The raw residuals ũi are scaled to attain a certain proportion of variance explained
(PVE) by the true linear regression model (A.1):

ui =

√
1− ν

ν

ũiσ̂0
τ̂ũ

where

τ̂ũ =

√√√√√ 1

n

n∑
i=1

max

3,
|ũi|

Median
i′=1,...,n

|ũi|

2

σ̂0 =

√√√√√ 1

n− 1

n∑
i=1

 s∑
j=1

xij −
1

n

n∑
i′=1

s∑
j′=1

xi′j′

2

.

(A.2)

This definition of PVE uses a robust measure of spread of the error terms because of the
considered error distributions, only the light-tailed Normal distribution has finite variance.
Unless otherwise specified, data is generated with ν = 0.25, i.e., the true model explains
about 25% of the observed variance in yi.

Contamination is artificially introduced in 0 ≤ nc < n observations. Contaminated
observations are generated by a different linear model with strong signal and have high
leverage by replacing some predictor values with more extreme values. Usually nc = bn/4c,
i.e., 25% contamination, unless otherwise specified.

Leverage points are introduced by contaminating q = log2(p) predictors. The indices of
contaminated predictors are sampled non-uniformly without replacement from {1, . . . , p} to
increase the chances of active predictors being contaminated. This is done by first sampling
qA from a discrete uniform distribution over {max(0, q + s − p), . . . ,min(q, s)}. Then, qA
indices are sampled uniformly without replacement from {1, . . . , s} and q− qA are sampled
uniformly without replacement from {s+1, . . . , p}, denoting the sampled indices by JA and
JAC , respectively. The values of these contaminated predictors are replaced by

xij = xij

√√√√
kl

max
i′=1,...,p

d2i′

d2i
i = 1, . . . , nc, j ∈ JA ∪ JAC (A.3)
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where d2i is the squared Mahalanobis distance of the i-th observation, relative to the em-
pirical covariance matrix of the predictors JA ∪ JAC , estimated over the uncontaminated
observations. The placement of the leverage points and thus the severity of leverage is con-
trolled by the parameter kl which can take values kl ∈ {2, 4, 8, 16}, corresponding to low,
moderate, high, and extreme leverage, respectively.

The response values of the nc contaminated observations are determined by the q con-
taminated predictors

yi = ui +
∑

j∈JA∪JAC

kvxij i = 1, . . . , nc, (A.4)

where kv determines the magnitude of the residuals, relative to the true model, and takes
values in {−2,−1, 0, 3, 7}. The larger the difference |kv − 1|, the more extreme the contam-
ination. In case of contamination, the scale estimates in (A.2) are computed only from the
n− nc uncontaminated observations.

A.1.1 Short-Hand Notation

Data generation schemes are referenced throughout the text according to a short-hand no-
tation as explained in Figure A.1. The short-hand notation consists of four parts. The first
two letters specify the sparsity of the true model, i.e., the number of truly active predictors
as a function of p, followed by a number identifying the correlation structure among the p
predictors. The third part consists of one to two characters denoting the error distribution
in terms of the weight of tails. The last part specifies the parameters for contamination. If
“(—)”, the generated data does not contain contaminated observations, while two numbers
in parentheses specify kv, the parameter for contaminating the model according to (A.4),
and kl, the parameter for contaminating the predictors according to (A.3), in that order.
The last part can also be “*”, meaning that several combinations of contamination param-
eters are considered.

The short-hand notation does not specify the dimensions of the generated data, n and
p. If not specified otherwise, the data is generated such that the true model explains 25%
of the observed in yi, i.e., ν = 0.25. If the last part of the notation is given, 25% of the
observations are contaminated, unless otherwise given in the text.
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Figure A.1: Short-hand notation for data generation schemes.

A.2 Comparison of Initial Estimates

To compare the performance of initial estimates in Section 3.2.3, data sets of size n =

100 and p = 16 are generated according scheme VS1-LT*. The proportion of variance
explained is 25% or 50%. For contamination, all combinations of kl ∈ {1, 2, 4, 8} and
kv ∈ {−2,−1, 0, 3, 7} are considered. Combined with the scenarios of no contamination,
this leads to a total of 42 scenarios.

For each of the two scenarios without contamination, 250 data sets are generated, while
for scenarios with contamination 50 data sets each are generated. On each of the 2500 data
sets, the PENSE estimate is computed over a grid Q comprising 50 log-spaced penalization
levels. At 10 log-spaced penalization levels, QI (spanning the same range as Q), the EN-PY
estimates are computed. All of these estimates are used to initialize the PENSE algorithm
for each of the 50 values in Q to find the best local minimum.

In the process of computing the EN-PY estimates, a total of K LS-EN estimates are
computed. To make the computational demand for the EN-PY estimator and the random
subsampling strategy comparable, a total of dK/10e random subsamples are taken for the
random subsampling strategy. For each of these random subsamples, the LS-EN estimates
are computed over the same grid QI as used for EN-PY. All of the K initial estimates are
then used to initialize the PENSE algorithm, similar to the EN-PY initial estimates.
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A.3 Numerical Experiments for PENSE and Adaptive PENSE

Numerical experiments comparing PENSE and adaptive PENSE to competing methods in
Sections 3.6 and 4.4 a consider a large number of scenarios following the data generation
detailed in Section A.1. Specifically, data is generated according to data generation schemes
VS1-* and MS1-*, with ν = 0.25 and varying number of observations and predictors. For
n = 100 observations p ∈ {16, 32, 64, 128}, while for n = 400, the number of predictors is
either p = 32 or p = 64. In scenarios with contamination, 25% of observations are affected
with leverage parameter kl fixed at 8 and vertical outlier positions kv ∈ {−2,−1, 0, 3, 7}.

PENSE and adaptive PENSE estimates are computed using the pense R package avail-
able from CRAN and detailed in Chapter 6. MM-LASSO is computed using the code from
https://github.com/esmucler/mmlasso, implementing the originally algorithm proposed
in Smucler and Yohai (2017). Cross-validation for (adaptive) PENSE, in particular stan-
dardizing the data and adjusting the robustness parameter δ in the CV folds, is done
according to Section 6.4. To ensure computational feasibility in this large-scale simulation
study, cross-validation for hyper-parameter selection is performed only a single time for all
considered estimates. The reported performance metrics are therefore likely underestimat-
ing the true performance of the estimators, albeit all methods should be equally affected.
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Appendix B

Proofs

B.1 Breakdown Point of PENSE

Recall that the PENSE estimate, θ̃, computed from the sample Z = (y,X) = {(yi,xi) : i =

0, . . . , n} is given by

θ̃ = argmin
µ,β

OS(µ,β;λ, α,Z ) = argmin
µ,β

LS(y, µ+Xβ) + λΦEN(β;α).

In the following, contaminated samples derived from Z , where m < n out of the n obser-
vations are replaced by arbitrary values are denoted by Z̃m = (ỹm, X̃m).

To prove the finite-sample breakdown point of PENSE, the following lemma from
Maronna et al. (2019, p. 184) is essential.

Lemma 1. Consider any sequence of samples
(
Z̃

(k)
m

)
k∈N

with individual observation pairs

(ỹ
(k)
i , x̃

(k)
i ) and corresponding residuals r̃(k)i = ỹ

(k)
i − µ(k) −

(
x̃
(k)
i

)⊺
β(k) for any sequence of

estimates (µ(k),β(k)).

(i) Let C =
{
i : |r̃(k)i | → ∞

}
. If #(C) > nδ, then σ̂M(r̃

(k)) → ∞ for k → ∞.

(ii) Let D =
{
i : |r̃(k)i | is bounded

}
. If #(D) > n− nδ, then σ̂M(r̃

(k)) is bounded.

With Lemma 1 in place, the proof of the upper and lower bounds in Theorem 2 is done
separately. The following proof of the FBP of PENSE first appeared in Cohen Freue et al.
(2019) with slightly different notation.

Proof of Theorem 2, bounded from below. Consider an arbitrary sequence of contaminated
samples

(
Z̃

(k)
m

)
k∈N

with m ≤ m(δ). The goal is to show that the corresponding sequence of
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PENSE estimates,
(
θ̃
(k)
)
k∈N

, remains bounded. The sequence of residuals of these PENSE

estimates is denoted by r̃(k) = ỹ(k) − µ̃(k) − (x̃
(k)
i )⊺β̃

(k).
First, let θ∗ fixed for all k such that |µ∗| < ∞ and ‖β∗‖1 = K1 < ∞, which implies

also finite L2 norm of the slope ‖β∗‖22 = K2 < ∞. For those uncontaminated observations
(yi,x

⊺
i ) which are also in the contaminated sample Z̃

(k)
m , the triangle inequality says that

the residuals r∗i (k) = yi − µ∗ − x⊺
iβ

∗ are bounded, |r∗i (k)| < ∞. Therefore, the number
of bounded residuals #(D) ≥ n −m ≥ n − nδ and hence part (ii) of Lemma 1 says that
σ̂M(r

∗(k)) is bounded:
sup
k∈N

σ̂M(r
∗(k)) <∞. (B.1)

Now suppose that the sequence of slope estimates from PENSE,
(
‖β̃(k)‖1

)
k∈N

is un-
bounded. It is important to note that the the sequence estimated intercepts may be bounded
or unbounded. The boundedness of the M-scale estimate in B.1 implies there exists a k0 ∈ N
such that ‖β̃(k0)‖1 > K1 +

1
αλ supk∈N σ̂

2
M(r

∗(k)) and ‖β̃(k0)‖22 > K2. Thus, for every k′ ≥ k0,

OS(µ̃
(k′), β̃

(k′)
;λ, α, Z̃ (k)

m ) > σ̂2M(r
∗(k′)) + λ

(
1− α

2
K2 + αK1

)
+ sup

k∈N
σ̂2M(r

∗(k))

≥ OS(µ
∗,β∗;λ, α, Z̃ (k)

m ),

(B.2)

contradicting the assumption that θ̃
(k) minimizes the PENSE objective function. This

proves that β̃
(k) is bounded for m ≤ m(δ) regardless of µ̃(k) being bounded or not. It

remains to show that the intercept is bounded as well.
Since

(
‖β̃(k)‖1

)
k∈N

is bounded, |yi − x⊺
i β̃

(k)| is bounded for the n−m uncontaminated

observations (yi,xi) in the contaminated sample Z̃
(k)
m . Assume now that |µ̃(k)| → ∞. Then

the residuals of the uncontaminated observations also tend to infinity and hence #(C) > nδ.
According to part (i) of Lemma 1 this implies that σ̂M(r̃

(k)) → ∞. Therefore, there exists an
integer k1 ∈ N such that σ̂2M(r̃(k1)) > supk∈N σ̂

2
M(r

∗(k))+λ
(
1−α
2 K2 + αK1

)
. Similar to (B.2),

this shows that for all k′ ≥ k1,

OS(µ̃
(k′), β̃

(k′)
;λ, α, Z̃ (k)

m ) ≥ OS(µ
∗,β∗;λ, α, Z̃ (k)

m ),

and hence θ̃
(k) must be bounded for m ≤ m(δ). □

Proof of Theorem 2, bounded from above. Taking m > nδ it can be shown that the PENSE
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estimate breaks down. Without loss of generality, assume that the first m observations
in the contaminated samples Z̃

(k)
m are different from the original sample Z . Choosing an

arbitrary x0 with ‖x0‖2 = 1 and 0 < ν ≤ 1, it can be shown that for the sequence of
contaminated samples

(
Z̃

(k)
m

)
k∈N

,

(ỹ
(k)
i , x̃

(k)
i ) =

(kν+1, kx0) i ∈ C

(yi,xi) i /∈ C
,

the corresponding sequence of estimates
(
θ̃
(k)
)
k∈N

can not be bounded.

Assume here that θ̃
(k) is bounded in norm. As in the proof above the residuals of the

uncontaminated observations |r̃(k)i | < ∞ for i = m + 1, . . . , n and all k ∈ N. Residuals for
contaminated samples, on the other hand, are bounded below by

|r̃(k)i | ≥ k
∣∣∣kν − ‖x0‖1‖β̃

(k)‖1
∣∣∣− |µ̃(k)| i = 1, . . . n.

The norms of µ̂(k) and β̃
(k) are bounded, and hence the right-hand side goes to infinity, as

do the residuals for i ∈ C. According to part (i) of Lemma 1, this implies the scale σ̂M(r̃
(k))

tends to infinity as well. The M-estimation equation in the definition of the S-loss can be
decomposed to

m∑
i=1

ρ

(
r̃
(k)
i

σ̂M(r̃
(k))

)
+

n∑
i=m+1

ρ

(
r̃
(k)
i

σ̂M(r̃
(k))

)
= nδ.

Taking the limit for k → ∞, the argument in the ρ function of the second sum tends to zero
because the residuals of uncontaminated observations remain bounded, which in turn leads
to the second sum converging to 0. The summands in the first term, on the other hand, are
all identical and the limit must be

lim
k→∞

ρ

(
1− µ̃(k)/kν+1 − x⊺

0β̃
(k)
/kν

σ̂M(r̃
(k))/kν+1

)
=
nδ

m
. (B.3)

From assumptions [R1] and [R2] the function ρ(t) is continuous and increasing for t > 0

such that ρ(t) < 1 = ρ(∞). Because nδ/m < 1 = ρ(∞) there exists a unique value γ such
that

ρ

(
1

γ

)
=
nδ

m
. (B.4)

The numerator in the argument in (B.3) tends to 1 and due to (B.4) any converging
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subsequence of σ̂M(β̃
(k)

)/kν+1 must have limit γ. Therefore, the boundedness of θ̃(k) implies

lim
k→∞

1

k2ν+2
OS(µ̃

(k), β̃
(k)

;λ, α, Z̃ (k)
m ) = γ2. (B.5)

Next define an unbounded sequence of parameters as µ(k) = 0 and β(k) = kν

2 x0. For
this sequence of parameters the residuals are

r
(k)
i =


kν+1

2 i = 1, . . . ,m

yi − kν

2 x⊺
0xi i = m+ 1, . . . , n

,

which all tend to infinity for k → ∞, implying that σ̂M(r
(k)) → ∞. The decomposition of

the M-estimation equation yields

m∑
i=1

ρ

(
kν+1/2

σ̂M(r(k))

)
+

n∑
i=m+1

ρ

(
yi − kν

2 x⊺
0xi

σ̂M(r(k))

)
= nδ.

Taking the limit for k → ∞ in all terms, the second sum tends to 0 and, following the same
argument as before, the limit of the first sum

lim
k→∞

1

k2ν+2
OS(µ

(k),β(k);λ, α, Z̃ (k)
m ) =

γ2

4
. (B.6)

because the L1 norm of x0 is finite.
From the limits (B.5) and (B.6) it follows that there exists a k0 such that for all k > k0

1

k2ν+2
OS(µ

(k),β(k);λ, α, Z̃ (k)
m ) <

1

k2ν+2
OS(µ̃

(k), β̃
(k)

;λ, α, Z̃ (k)
m ),

showing that a bounded θ̃
(k) can not be a global minimum of the PENSE objective function

for the contaminated samples.
□

B.2 Asymptotic Properties of Adaptive PENSE

Below are the proofs of asymptotic properties of adaptive PENSE as presented in Section 4.2.
For notational simplicity, I drop the intercept term from the model, i.e., the linear model 2.1
is simplified to

Y = X ⊺β0 + U
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and the joint distribution G0 of (Y,X ) is written in terms of the error

G0(u,x) := G0(y,x) = G0(x)F0(y − x⊺β0).

All the proofs also hold for the model with an intercept term included. Another notational
shortcut in the following proofs is to write the M-scale of the residuals in terms of the
regression coefficients, i.e.,

σ̂M(β) = σ̂M(y −Xβ)

and accordingly the population version, σM(β). For all proofs below, I define ψ(t) = ρ′(t)

to denote the first derivative of the ρ function in the definition of the M-scale estimate and
hence of the S-loss, as well as the mapping φ : R → [0; c] as

φ(t) := ψ(t)t.

B.2.1 Preliminary Results Concerning the M-Scale Estimator

Before proving asymptotic properties of the adaptive PENSE estimator, several intermediate
results concerning the M-scale estimator are required.

Lemma 2. Let (yi,x
⊺
i ), i = 1, . . . , n, be i.i.d. observations with distribution G0 which

satisfies (2.2) and ui = yi − x⊺
iβ

0. If v ∈ Rp and s ∈ (0,∞) positive, then the empirical
processes (Pnηv,s)v,s with

ηv,s(u,x) := φ

(
u+ x⊺v

s

)
converge uniformly almost sure:

lim
n→∞

sup
v∈Rp

s∈(0,∞)

∣∣∣∣∣ 1n
n∑

i=1

ηv,s(ui,xi)− EG0 [ηv,s(U ,X )]

∣∣∣∣∣ = 0 a.s. (B.7)

Proof of Lemma 2. I will show step by step that the space F = {ηv,s : v ∈ Rp, s ∈ (0,∞)}
is a bounded Vapnik–Chervonenkis (VC) class of functions and hence Glivenko-Cantelli.
The space F is bounded because φ(t) is bounded by assumptions on ρ. Define the mapping

gv,s :=


Rp+1 → R(
u

x

)
7→ (u− x⊺v)s−1

.
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The corresponding function space G = {gv,s : v ∈ Rp, s ∈ (0,∞)} is a subset of a finite-
dimensional vector space with dimension dim(G ) = p + 1. Therefore, G is VC with VC
index V (G ) ≤ p+ 3 according to Lemma 2.6.15 in van der Vaart and Wellner (1996). Due
to the assumptions on ρ, the function φ(t) can be decomposed into

φ(t) = max{min{φ1(t), φ2(t)},min{φ1(−t), φ2(−t)}}

with φ1,2 monotone functions. Thus, Φ1,2 = {φ1,2(g(·)) : g ∈ G } and Φ
(−)
1,2 = {φ1,2(−g(·)) :

g ∈ G } are also VC due to Lemma 2.6.18 (iv) and (viii) in van der Vaart and Wellner (1996).
Using Lemma 2.6.18 (i) in van der Vaart and Wellner (1996) then leads to Φ = Φ1∧Φ2 and
Φ(−) = Φ

(−)
1 ∧Φ(−)

2 also being VC. Finally, F = Φ∨Φ(−) is VC because of Lemma 2.6.18 (ii).
Since F is bounded, Theorem 2.4.3 in van der Vaart and Wellner (1996) concludes the
proof. □

Lemma 3. Let (yi,x
⊺
i ), i = 1, . . . , n, be i.i.d. observations with distribution G0 which

satisfies (2.2) and ui = yi − x⊺
iβ

0. Under assumptions [A1], [A2] and if β∗
n = β0 + vn with

limn→∞ ‖vn‖ = 0 a.s., then we have

(a) almost sure convergence of the estimated M-scale to the population M-scale of the error
distribution

lim
n→∞

σ̂M(β
∗
n)

a.s.−−→ σM(β
0)

(b) and almost sure convergence of

lim
n→∞

1

n

n∑
i=1

φ

(
ui − x⊺

i vn

σ̂M(β
∗
n)

)
= EF0

[
φ

(
U

σM(β
0)

)]
a.s.

Proof of Lemma 3. The first result (a) is a direct consequence of the conditions of the lemma
(u− x⊺vn → u a.s.) and Theorem 3.1 in Yohai (1987).

For part (b), it is know from Lemma 2 the empirical process converges uniformly almost
sure. Since σM(β

0) > 0, the continuous mapping theorem gives ui−x⊺
i vn

σ̂M(β∗
n)

→ U
σM(β0)

almost
surely. Finally, due to the continuity and boundedness of φ:

EG0

[
φ

(
U −X ⊺vn

σ̂M(β
∗
n)

)]
a.s.−−−→

n→∞
EF0

[
φ

(
U

σM(β
0)

)]
(B.8)

which concludes the proof. □
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Lemma 4. Let (yi,x
⊺
i ), i = 1, . . . , n, be i.i.d. observations with distribution G0 which

satisfies (2.2) and ui = yi−x⊺
iβ

0. Under regularity conditions [A1]–[A3] and if v ∈ K ⊂ Rp

with K compact and β∗
n = β0 + v/

√
n, then

(a) the M-scale estimate converges uniformly almost sure

sup
v∈K

∣∣σ̂M(β
∗
n)− σM(β

0)
∣∣ a.s.−−→ 0, (B.9)

(b) for every ϵ > 0 with ϵ < EF0

[
φ
(

U
σM(β0)

)]
the uniform bound over v ∈ K

sup
v∈K

∣∣∣∣∣∣ σ̂M(β
∗
n)

1
n

∑n
i=1 φ

(
ui−x⊺

i v/
√
n

σ̂M(β∗
n)

)
∣∣∣∣∣∣ < ϵ+ σM(β

0)

EF0

[
φ
(

U
σM(β0)

)]
− ϵ

(B.10)

holds with arbitrarily high probability if n is sufficiently large.

Proof of Lemma 4. The proof for (B.9) relies on Lemma 4.5 from Yohai and Zamar (1986)
which states that under the same conditions as for this lemma, the following holds:

sup
v∈K

|σ̂M(β
∗
n)− σM(β

∗
n)|

a.s.−−→ 0.

Therefore, the missing step is to show that supv∈K |σM(β
∗
n)−σM(β

0)| → 0 almost surely as
n→ ∞. This is done by contradiction.

Assume there exists a subsequence (nk)k>0 such that for all k, supv∈K |σM(β
∗
n) −

σM(β
0)| > ϵ > 0. Since v ∈ K with K a compact set, for every sequence vn there ex-

ists a subsequence (vnk
)k such that |σM(β

0 + vnk
/
√
nk) − σM(β

0)| > ϵ for all nk > Nϵ.
Therefore, either one of the following holds: (i) σM(β

0 + vnk
/
√
nk) > σM(β

0) + ϵ or
(ii) σM(β

0 + vnk
/
√
nk) < σM(β

0)− ϵ. In the first case (i) it is know that

ρ

(
U −X ⊺vnk

/
√
n

σM(β
0 + vnk

/
√
nk)

)
< ρ

(
U −X ⊺vnk

/
√
n

σM(β
0) + ϵ

)
→ ρ

(
U

σM(β
0) + ϵ

)
.

Due to the boundedness of ρ, the dominated convergence theorem gives

EG0

[
ρ

(
U −X ⊺vnk

/
√
n

σM(β
0 + vnk

/
√
nk)

)]
< EG0

[
ρ

(
U −X ⊺vnk

/
√
n

σM(β
0) + ϵ

)]
→ EG0

[
ρ

(
U

σM(β
0) + ϵ

)]
< δ
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which contradicts the definition of σM(β
0 + vnk

/
√
nk). In case (ii) similar steps yield

EG0

[
ρ

(
U −X ⊺vnk

/
√
n

σM(β
0 + vnk

/
√
nk)

)]
> δ

for all nk > N with N large enough. Therefore, the assumption supv∈K |σM(β
∗
n)−σM(β

0)| >
ϵ > 0 can not be valid and hence supv∈K |σM(β

∗
n)− σM(β

0)| → 0. This concludes the proof
of (B.9).

Before proving (B.10), note that ϵ is well defined because EF0

[
φ
(

U
σM(β0)

)]
> 0 as per

Lemma 6 in Smucler (2019). To prove (B.10), I first bound the denominator uniformly
over v ∈ K. From Lemma 2 it is known that the empirical processes converge almost
surely, uniformly over v ∈ K and s > 0. As a next step, I show the deterministic uniform
convergence of

sup
v∈K

s∈[σM(β0)−ϵ1,σM(β0)+ϵ1]

∣∣∣∣EG0 [fn(U ,X ,v, s)]− EG0

[
φ

(
U
s

)]∣∣∣∣→ 0, (B.11)

where fn(U ,X ,v, s) is defined as

fn(U ,X ,v, s) := φ

(
U −X ⊺v/

√
n

s

)
.

The functions fn(U ,X ,v, s) are bounded and converge pointwise to φ
(U
s

)
, entailing point-

wise convergence of EG0 [fn(U ,X ,v, s)] → EF0

[
φ
(U
s

)]
as n→ ∞ by the dominated conver-

gence theorem. Because ρ has bounded second derivative, the derivative of fn(U ,X ,v, s)

with respect to v ∈ K and s ∈ [σM(β
0) − ϵ1, σM(β

0) + ϵ1] is also bounded, meaning
fn(U ,X ,v, s) is equicontinuous on this domain. Pointwise convergence together with the
equicontinuity make the Arzelà-Ascoli theorem applicable and hence conclude that (B.11)
holds.

From (B.9) it follows that for any δ2 > 0 there is a Nδ2 such that for all v ∈ K and all
n > Nδ2 , P

(
|σ̂M(β

∗
n)− σM(β

0)| ≤ ϵ1
)
> 1 − δ2. Combined with (B.11) this yields that for

every δ2 > 0 and ϵ2 > 0 there is an Nδ2,ϵ2 such that for all n > Nδ2,ϵ2 and every v ∈ K∣∣∣∣EG0 [fn(U ,X ,v, σ̂M(β
∗
n))]− EF0

[
φ

(
U

σ̂M(β
∗
n)

)]∣∣∣∣ < ϵ2

with probability greater than 1− δ2. Since both expected values are positive this can also
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be written as
EG0 [fn(U ,X ,v, σ̂M(β

∗
n))] > EF0

[
φ

(
u

σ̂M(β
∗
n)

)]
− ϵ2. (B.12)

The final piece for the denominator to be bounded is to show that

sup
v∈K

∣∣∣∣EG0

[
φ

(
U

σ̂M(β
∗
n)

)]
− EF0

[
φ

(
U

σM(β
0)

)]∣∣∣∣ a.s.−−−→
n→∞

0. (B.13)

Set Ω1 = {ω : σ̂M(β
∗
n;ω) → σM(β

0)} which has P(Ω1) = 1 due to the first part of this
lemma. Similarly, set Ω2 = {ω : equation (B.13) holds}. Assume now that P(Ω1∩Ωc

2) > 0.
This assumption entails that there exists an ω′ ∈ Ω1 ∩ Ωc

2, an ϵ3 > 0 and a subsequence
(nk)k>0 such that

lim
k→∞

∣∣∣∣∣EG0

[
φ

(
U

σ̂M(β
0 +

vnk√
nk
;ω′)

)]
− EF0

[
φ

(
U

σM(β
0)

)]∣∣∣∣∣ > ϵ3. (B.14)

However, since vnk
is in the compact set K, the sequence β0+vnk

/
√
nk converges to β0 as

n→ ∞. Additionally, φ is bounded and together with the dominated convergence theorem
this leads to

lim
k→∞

EG0

[
φ

(
U

σ̂M(β
0 + vnk

/
√
nk;ω′)

)]
= EF0

[
φ

(
U

σM(β
0)

)]

and in turn to

lim
k→∞

∣∣∣∣∣EG0

[
φ

(
U

σ̂M(β
0 + vnk

/
√
nk;ω′)

)]
− EF0

[
φ

(
U

σM(β
0)

)]∣∣∣∣∣ = 0

contradicting the claim in (B.14). Therefore, P(Ω1 ∩ Ωc
2) = 0, proving (B.13). Combining

(B.12) and (B.13) leads to the conclusion that with arbitrarily high probability for large
enough n ∣∣∣∣EG0

[
φ

(
U −X ⊺v/

√
n

σ̂M(β
∗
n)

)]∣∣∣∣ > −ϵ4 + EF0

[
φ

(
U

σM(β
0)

)]
(B.15)

for every v ∈ K.
From the first part of this lemma, σ̂M(β

∗
n)

a.s.−−→ σM(β
0), and due to (B.15), for every

δ > 0 and every 0 < ϵ < EF0

[
φ
(

U
σM(β0)

)]
there exists an Nδ,ϵ such that for all v ∈ K and

n ≥ Nδ,ϵ equation (B.10) holds. □
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B.2.2 Root-n Consistency

Proof of Theorem 3. To ease the notation for the proof, the hyper-parameters are dropped
from the objective function LAS and the adaptive elastic net penalty is simply denoted by
Φ(β) = ΦAN(β;λAS, αAS, ζ,ω). Also, γ(t) := β0 + t(β̂ − β0) denotes the convex combi-
nation of the true parameter β0 and the adaptive PENSE estimator β̂. It is important
to remember the penalty loadings are derived from a preliminary PENSE estimator, β̃,
ω = (1/β̃1, . . . , 1/β̃p)

⊺.
The first step in the proof is a Taylor expansion of the objective function around the

true parameter β0:

σ̂2M(β̂) + Φ(β̂) =σ̂2M(β
0) + Φ(β0) + (Φ(β̂)− Φ(β0))

− 2
1

1
n

∑n
i=1 φ

(
ui−x⊺

i vn

σ̂M(β∗
n)

)
︸ ︷︷ ︸

=:An

σ̂M(β
∗
n)

n

n∑
i=1

ψ

(
ui − x⊺

i vn

σ̂M(β
∗
n)

)
x⊺
i vn︸ ︷︷ ︸

=:Zn

where vn = τ(β̂−β0) and β∗
n = β0 + vn for a 0 < τ < 1. Due to the strong consistency of

β̂ from Proposition 2, vn → 0 a.s. and hence from Lemma 3 and the continuous mapping
theorem it is know that An

a.s.−−→ 1

EF0

[
φ

(
U

σM(β0)

)] =: A > 0 as well as σ̂M(β
∗
n)

a.s.−−→ σM(β
0).

The term Zn is handled by a Taylor expansion of ψ
(
ui−x⊺

i vn

σ̂M(β∗
n)

)
around ui to get

Zn = σ̂M(β
∗
n)

(
1

n

n∑
i=1

ψ

(
ui

σ̂M(β
∗
n)

)
x⊺
i vn − 1

σ̂M(β
∗
n)n

n∑
i=1

ψ

(
ui − x⊺

i v
∗
n

σ̂M(β
∗
n)

)
x⊺
i vnx

⊺
i vn

)

=
(β̂ − β0)⊺√

n

[
τ σ̂M(β

∗
n)

1√
n

n∑
i=1

ψ

(
ui

σ̂M(β
∗
n)

)
xi

]

− τ2(β̂ − β0)⊺
[
1

n

n∑
i=1

ψ′
(
ui − x⊺

i v
∗
n

σ̂M(β
∗
n)

)
xix

⊺
i

]
(β̂ − β0)

for some v∗
n = τ∗vn with τ∗ ∈ (0, 1).

The rest of the proof follows closely the proof of Proposition 2 in Smucler and Yohai
(2017). More specifically, noting that σ̂M(β

∗
n)

a.s.−−→ σM(β
0), the results in Smucler and Yohai

(2017) (which are derived from results in Yohai (1985)) state that

Bn := ‖ξn‖ = Op(1) with ξn = τ σ̂M(β
∗
n)

1√
n

n∑
i=1

ψ

(
ui

σ̂M(β
∗
n)

)
xi
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and hence with arbitrarily high probability for n sufficiently large there is a B such that

(β̂ − β0)⊺√
n

ξn ≤ 1√
n
‖β̂ − β0‖‖ξn‖ ≤ B√

n
‖β̂ − β0‖. (B.16)

Similarly, the results in Smucler and Yohai (2017) can be used to show

Cn := τ2(β̂ − β0)⊺
[
1

n

n∑
i=1

ψ′
(
ui − x⊺

i v
∗
n

σ̂M(β
∗
n)

)
xix

⊺
i

]
(β̂ − β0) ≥ C̃n‖β̂ − β0‖2 (B.17)

with C̃n
a.s.−−→ C > 0.

Next is the difference in the penalty terms Dn := Φ(β̂)− Φ(β0), which can be reduced
to the truly non-zero coefficients:

Dn =λAS,n

p∑
j=1

(
1− α

2

(
(β̂j)

2 − (β0j )
2
)
+ α

|β̂j | − |β0j |
|β̃j |ζ

)

≥λAS,n

s∑
j=1

(
1− α

2

(
(β̂j)

2 − (β0j )
2
)
+ α

|β̂j | − |β0j |
|β̃j |ζ

)
.

Observing that β̂ is a strongly consistent estimator, |β̂j −β0j | < ϵj < |β0j | for all j = 1, . . . , s

and any ϵj ∈ (0, |β0j |) with arbitrarily high probability for sufficiently large n. This entails
that, for all 0 ≤ t ≤ 1 and j = 1, . . . , s, the sign of the convex combination sgn(γj(t)) =

sgn(β0j ) 6= 0 and thus |γj(t)| is differentiable. This allows application of the mean value
theorem on the quadratic and the absolute term in Dn to yield

Dn ≥λAS,n

s∑
j=1

(
1− α

4
γj(τj) + α

sgn(β0j )

|β̃j |ζ

)
(β̂j − β0j )

for some τj ∈ (0, 1), j = 1, . . . , s, with arbitrarily high probability for large enough n.
Because both β̃ and β̂ are strongly consistent for β0 and λAS,n = O(1/

√
n), there exists a

constant D such that with arbitrarily high probability

Dn ≥ − D√
n
‖β̂ − β0‖ (B.18)

for sufficiently large n.
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Since β̂ minimizes the adaptive PENSE objective function LAS,

0 ≥LAS(β̂)− LAS(β
0) = σ̂2M(β̂) + Φ(β̂)− σ̂2M(β

0)− Φ(β0) = Dn − 2AnZn.

With the bounds derived in (B.16), (B.17), and (B.18) this in turn yields

0 ≥Dn − 2AnZn = Dn − 2AnBn + 2AnCn

≥− D√
n
‖β̂ − β0‖ − 2A

B√
n
‖β̂ − β0‖+ 2AC‖β̂ − β0‖2

=
1√
n
‖β̂ − β0‖

(
−D − 2AB + 2AC

√
n‖β̂ − β0‖

)
with arbitrarily high probability for large enough n. Rearranging the terms leads to the
inequality

√
n‖β̂ − β0‖ ≤ 2AB +D

2AC
.

□

B.2.3 Variable Selection Consistency

Proof of Theorem 4. To ease notation in the following, I denote the coordinate-wise adap-
tive EN penalty function by

ϕ(β;λAS,n, αAS, ζ, ω) = λAS,n

(
1− αAS

2
β2 + αAS|β||ω|ζ

)
such that λAS,nΦAN(β;αAS, ζ,ω) =

∑p
j=1 ϕ(βj ;λAS,n, αAS, ζ, ωj). I follow the proof in Smu-

cler and Yohai (2017) and define the function

Vn(v1,v2) :=σ̂
2
M(β

0
I + v1/

√
n,β0

II + v2/
√
n)+

s∑
j=1

ϕ(β0j + v1,j/
√
n;λAS,n, αAS, ζ, ωj)+

p∑
j=s+1

ϕ(β0j + v2,j−s/
√
n;λAS,n, αAS, ζ, ωj).

From Theorem 3 follows with arbitrarily high probability, ‖β̂−β0‖ ≤ C/
√
n for sufficiently

large n. Therefore, with arbitrarily high probability Vn(v1,v2) attains its minimum on
the compact set

{
(v1,v2) : ‖v1‖2 + ‖v2‖2 ≤ C2

}
at β̂. The goal is to show that for any
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‖v1‖2 + ‖v2‖2 ≤ C2 with ‖v2‖ > 0 and with arbitrarily high probability, Vn(v1,v2) −
Vn(v1,0p−s) > 0 for sufficiently large n.

Taking the difference while observing that β0
II = 0p−s gives

Vn(v1,v2)− Vn(v1,0p−s) =
(
σ̂2M(β

0
I + v1/

√
n,v2/

√
n)− σ̂2M(β

0
I + v1/

√
n,0p−s)

)
+

p∑
j=s+1

ϕ(v2,j−s/
√
n;λAS,n, αAS, ζ, ωj).

The first term can be bounded by defining vn(t) := (v⊺
1, tv

⊺
2)

⊺/
√
n and applying the mean

value theorem gives some τ ∈ (0, 1) such that

σ̂2M(β
0 + vn(1))− σ̂2M(β

0 + vn(0)) =

2√
n
σ̂M(β

0 + vn(τ))(0
⊺
s ,v

⊺
2)∇βσ̂M(β)|

β0+vn(τ)
=

− 2√
n

σ̂M(β
0 + vn(τ))

1
n

∑n
i=1 φ

(
ui−x⊺

i vn(τ)

σ̂M(β0+vn(τ))

)
︸ ︷︷ ︸

=:An

(0⊺s ,v
⊺
2)

1

n

n∑
i=1

ψ

(
ui − x⊺

i vn(τ)

σ̂M(β
0 + vn(τ))

)
xi︸ ︷︷ ︸

=:Bn

.

By Lemma 4 the term An is uniformly bounded in probability, hence |An| < A with ar-
bitrarily high probability for large enough n. Furthermore, |Bn| ≤ ‖ψ‖∞‖v2‖

∥∥ 1
n

∑n
i=1 xi

∥∥
and due to the law of large numbers there is a constant B such that the upper bound for
|Bn| is

|Bn| ≤ ‖ψ‖∞‖v2‖(‖EH0 [X ] ‖+ ϵ) < ‖v2‖B

with arbitrarily high probability for sufficiently large n. Together, the bounds for An and
Bn give

σ̂2M(β
0 + vn(1))− σ̂2M(β

0 + vn(0)) ≥ −‖v2‖√
n

2AB. (B.19)

The next step is to ensure that the penalty term grows large enough to make the
difference Vn(v1,v2) − Vn(v1,0p−s) positive. Indeed, the assumption αAS > 0 and using a
PENSE estimator for the penalty loadings, ωj = 1/|β̃j | leads to

p∑
j=s+1

ϕ(v2,j−s/
√
n;λAS,n, αAS, ζ, ωj) ≥αASλAS,n

p∑
j=s+1

|v2,j−s|√
n|β̃j |ζ

=αASλAS,nn
(ζ−1)/2

p∑
j=s+1

|v2,j−s|
|
√
nβ̃j |ζ

.
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The root-n consistency of β̃ established in Theorem 1 gives |
√
nβ̃j | < M with arbitrarily

high probability for large enough n. Therefore,

αASλAS,nn
(ζ−1)/2n(ζ−1)/2

p∑
j=s+1

|v2,j−s|
|
√
nβ̃j |ζ

> αASλAS,nn
(ζ−1)/2n(ζ−1)/2

p∑
j=s+1

|v2,j−s|
M ζ

= αASλAS,nn
(ζ−1)/2n(ζ−1)/2 ‖v2‖1

M ζ

≥ ‖v2‖√
nM ζ

αASλAS,nn
(ζ−1)/2nζ/2.

(B.20)

Combining (B.19) and (B.20) yields

Vn(v1,v2)− Vn(v1,0p−s) >
‖v2‖√
n

(
−2AB +

αASλAS,nn
ζ/2

M ζ

)
(B.21)

uniformly over v1 and v2 with arbitrarily high probability for sufficiently large n. By
assumption αASλAS,nn

ζ/2 → ∞ and hence the right-hand side in (B.21) will eventually be
positive, concluding the proof. □

B.2.4 Asymptotic Normal Distribution

Proof of Theorem 5. For this proof I denote the values of the active predictors and the
active predictors in the i-th observation by XI and xi,I, respectively. Because β̂ is strongly
consistent for β0, the coefficient values for the truly active predictors are almost surely
bounded away from zero if n is large enough. This entails that the partial derivatives of the
penalty function exist for the truly active predictors and the gradient at the estimate β̂ is

0s =∇βI
LAS(β̂) = −2

σ̂M(β̂)

An

1

n

n∑
i=1

ψ

(
yi − x⊺

i β̂

σ̂M(β̂)

)
xi,I+∇βI

ΦAN(β̂;λAS,n, αAS, ζ,ω) (B.22)

with An = 1
n

∑n
i=1 φ

(
yi−x⊺

i β̂

σ̂M(β̂)

)
. The truly active coefficients can be separated from the

truly inactive coefficients by noting that ψ
(
yi−x⊺

i β̂

σ̂M(β̂)

)
= ψ

(
yi−x⊺

i,Iβ̂I

σ̂M(β̂)

)
+ oi for some oi which

vanishes in probability, P(oi = 0) → 1, because of Theorem 4 and because ψ is continuous.
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B.2. ASYMPTOTIC PROPERTIES OF ADAPTIVE PENSE

Equation (B.22) can now be written as

0s =− 2
σ̂M(β̂)

An

1√
n

n∑
i=1

ψ

(
yi − x⊺

i,Iβ̂I

σ̂M(β̂)

)
xi,I

− 2
σ̂M(β̂)

An

1√
n

n∑
i=1

oixi,I

+
√
n∇βI

ΦAN(β̂;λAS,n, αAS, ζ,ω)

and using the mean value theorem there are τi ∈ [0, 1] and hence a matrix

Wn =
1

n

n∑
i=1

ψ′

ui − τix
⊺
i,I

(
β̂I − β0

I

)
σ̂M(β̂)

xi,Ix
⊺
i,I

such that the equation can be further rewritten to

0s = −2
σ̂M(β̂)

An

1√
n

n∑
i=1

ψ

(
yi − x⊺

i,Iβ
0
I

σ̂M(β̂)

)
xi,I

+ 2
1

An
Wn

√
n
(
β̂I − β0

I

)
− 2

σ̂M(β̂)

An

1√
n

n∑
i=1

oixi,I

+
√
nλAS,n∇βI

ΦAN(β̂;αAS, ζ,ω).

Separating the term
√
n
(
β̂
∗
I − β0

I

)
then gives

√
n
(
β̂
∗
I − β0

I

)
= σ̂M(β̂)W

−1
n

1√
n

n∑
i=1

ψ

(
yi − x⊺

i,Iβ
0
I

σ̂M(β̂)

)
xi,I

+ σ̂M(β̂)W
−1
n

1√
n

n∑
i=1

oixi,I

+
√
nλAS,nσ̂M(β̂)AnW

−1
n ∇βI

ΦAN(β̂;αAS, ζ,ω).

(B.23)

The strong consistency of β̂ for β0 and Lemma 3 lead to σ̂M(β̂)
a.s.−−→ σM(β

0) and
An

a.s.−−→ EF0

[
φ
(

U
σM(β0)

)]
< ∞. Also, because of σ̂M(β̂)

a.s.−−→ σM(β
0), Lemma 4.2 in Yohai

(1985), and the law of large numbers

Wn
a.s.−−→ b(ρ, F0)ΣI.
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Combined with the assumption that
√
nλAS,n → 0 this leads to the last two lines in (B.23)

converging to 0s in probability. Finally by Lemma 5.1 in Yohai (1985) and the CLT

1√
n

n∑
i=1

ψ

(
yi − x⊺

i,Iβ
0
I

σ̂M(β̂)

)
xi,I

d−−→ Ns (0s, a(ρ, F0)ΣI)

which, after applying Slutsky’s Theorem, completes the proof. □
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Appendix C

Additional Results from Numerical
Experiments

C.1 Elastic Net S-Estimators

Below are complete results from the numerical experiments detailed in Section 3.6 including
additional estimators, error distributions, and sample sizes. Unregularized MM- and S-
estimates are computed only for scenarios where p < b(1− δ)nc − 1. The breakdown point
of all robust estimators is set to δ = 0.33. Oracle MM- and S-estimators are computed
using only the truly active predictors.

C.1.1 Prediction Performance

Prediction performance is measured in terms of the relative scale of the prediction error,
as detailed in Section 3.6.3. Figures C.1 and C.2 show results for very sparse scenarios
(s = log2(p)) and sparse scenarios (s = 3

√
p).

C.1.2 Variable Selection Performance

Variable selection performance is summarized by the sensitivity (i.e., the proportion of truly
active predictors detected as such) and specificity (i.e., the proportion of truly inactive
predictors detected as such). The summary figures show sensitivity and specificity in a
single plot for regularized estimators only. Sensitivity extends upwards, specificity extends
downwards. Methods perform well in terms of variable selection if the two points are at the
top and bottom ends of the plot. Figures C.3 and C.4 show results for very sparse scenarios
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C.1. ELASTIC NET S-ESTIMATORS

(s = log2(p)) and sparse scenarios (s = 3
√
p).

C.1.3 Estimation Accuracy

The focus of this work is on prediction performance and variable selection of estimators in
the linear regression model. To underline consistency of the estimator, however, estimation
accuracy is also of interest. Estimation accuracy is assessed by the L2 estimation error,

RMSE(β̂) =
√∥∥∥β̂ − β0

∥∥∥2
2
+ (µ̂− µ0)2.

As detailed in Section 2.1, the L2 estimation error is similar to the RMSPE, but possible
dependence between predictors is ignored. The L2 estimation error captures both the bias
and variance of the estimator. The smaller the L2 estimation error, the more accurate the
estimation. Figures C.5 and C.6 show results for very sparse scenarios (s = log2(p)) and
sparse scenarios (s = 3

√
p).
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Figure C.1: Prediction performance of estimates under data generation scheme VS1-*. In scenarios without contamination (left), plots show summaries
of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show summaries of 250 values from 50 replications
of 5 different outlier positions. The dots show the median value, while solid lines show the range of the inner 50% and the dashed whiskers extend
from the 5% to the 95% quantile.
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Figure C.2: Prediction performance of estimates under data generation scheme SP1-*. In scenarios without contamination (left), plots show summaries
of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show summaries of 250 values from 50 replications
of 5 different outlier positions. The dots show the median value, while solid lines show the range of the inner 50% and the dashed whiskers extend
from the 5% to the 95% quantile.
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Figure C.3: Sensitivity (upwards) and specificity (downwards) of regularized estimates under data generation scheme VS1-*. In scenarios without
contamination (left), plots show summaries of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show
summaries of 250 values from 50 replications of 5 different outlier positions. The dots show the median value, while solid lines show the range of
the inner 50% and the dashed whiskers extend from the 5% to the 95% quantile.
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Figure C.4: Sensitivity (upwards) and specificity (downwards) of regularized estimates under data generation scheme SP1-*. In scenarios without
contamination (left), plots show summaries of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show
summaries of 250 values from 50 replications of 5 different outlier positions. The dots show the median value, while solid lines show the range of
the inner 50% and the dashed whiskers extend from the 5% to the 95% quantile.
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Figure C.5: Estimation accuracy in terms of the L2 estimation error of several estimates under data generation scheme VS1-*. In scenarios without
contamination (left), plots show summaries of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show
summaries of 250 values from 50 replications of 5 different outlier positions. The dots show the median value, while solid lines show the range of
the inner 50% and the dashed whiskers extend from the 5% to the 95% quantile.
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Figure C.6: Estimation accuracy in terms of the L2 estimation error of several estimates under data generation scheme SP1-*. In scenarios without
contamination (left), plots show summaries of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show
summaries of 250 values from 50 replications of 5 different outlier positions. The dots show the median value, while solid lines show the range of
the inner 50% and the dashed whiskers extend from the 5% to the 95% quantile.
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C.2. ADAPTIVE ELASTIC NET S-ESTIMATORS

C.2 Adaptive Elastic Net S-Estimators

Extending the numerical experiments from Section 3.6, below are detailed results for es-
timators discussed in Section 4.4 with the addition of other variable selection consistent
estimators.

C.2.1 Prediction Performance

Prediction performance is measured in terms of the relative scale of the prediction error,
as detailed in Section 3.6.3. Figures C.8 and C.9 show results for very sparse scenarios
(s = log2(p)) and sparse scenarios (s = 3

√
p).

C.2.2 Variable Selection Performance

Variable selection performance is summarized by the sensitivity (i.e., the proportion of truly
active predictors detected as such) and specificity (i.e., the proportion of truly inactive
predictors detected as such). The summary figures show sensitivity and specificity in a
single plot for regularized estimators only. Sensitivity extends upwards, specificity extends
downwards. Methods perform well in terms of variable selection if the two points are at
the top and bottom ends of the plot. Figures C.10 and C.11 show results for very sparse
scenarios (s = log2(p)) and sparse scenarios (s = 3

√
p).

C.2.3 Estimation Accuracy

Estimation accuracy is assessed by the L2 estimation error,

RMSE(β̂) =
√∥∥∥β̂ − β0

∥∥∥2
2
+ (µ̂− µ0)2.

The smaller the L2 estimation error, the more accurate the estimation. Figures C.12
and C.13 show results for very sparse scenarios (s = log2(p)) and sparse scenarios (s = 3

√
p).
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Figure C.8: Prediction performance of estimates under data generation scheme VS1-*. In scenarios without contamination (left), plots show summaries
of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show summaries of 250 values from 50 replications
of 5 different outlier positions. The dots show the median value, while solid lines show the range of the inner 50% and the dashed whiskers extend
from the 5% to the 95% quantile.
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Figure C.9: Prediction performance of estimates under data generation scheme SP1-*. In scenarios without contamination (left), plots show summaries
of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show summaries of 250 values from 50 replications
of 5 different outlier positions. The dots show the median value, while solid lines show the range of the inner 50% and the dashed whiskers extend
from the 5% to the 95% quantile.
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Figure C.10: Sensitivity (upwards) and specificity (downwards) of regularized estimates under data generation scheme VS1-*. In scenarios without
contamination (left), plots show summaries of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show
summaries of 250 values from 50 replications of 5 different outlier positions. The dots show the median value, while solid lines show the range of
the inner 50% and the dashed whiskers extend from the 5% to the 95% quantile.
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Figure C.11: Sensitivity (upwards) and specificity (downwards) of regularized estimates under data generation scheme SP1-*. In scenarios without
contamination (left), plots show summaries of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show
summaries of 250 values from 50 replications of 5 different outlier positions. The dots show the median value, while solid lines show the range of
the inner 50% and the dashed whiskers extend from the 5% to the 95% quantile.
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Figure C.12: Estimation accuracy in terms of the L2 estimation error of several estimates under data generation scheme VS1-*. In scenarios without
contamination (left), plots show summaries of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show
summaries of 250 values from 50 replications of 5 different outlier positions. The dots show the median value, while solid lines show the range of
the inner 50% and the dashed whiskers extend from the 5% to the 95% quantile.
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Figure C.13: Estimation accuracy in terms of the L2 estimation error of several estimates under data generation scheme SP1-*. In scenarios without
contamination (left), plots show summaries of the metric over 100 replications. In scenarios introducing 25% contamination (right), plots show
summaries of 250 values from 50 replications of 5 different outlier positions. The dots show the median value, while solid lines show the range of
the inner 50% and the dashed whiskers extend from the 5% to the 95% quantile.
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