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Abstract

This thesis makes contributions to two problems in learning theory: prediction with expert advice and

learning mixtures of Gaussians.

The problem of prediction with expert advice can be cast as a sequential game between an algorithm

and an adversary as follows. At each time step, an algorithm chooses one of n options (or experts) and

the adversary sets a cost for each expert. The algorithm’s goal is to minimize its regret, i.e. its cost

relative to the best expert in hindsight. The celebrated multiplicative weights algorithm is known to

be optimal if the the game is terminated at a fixed, known time and the number of experts is large.

Optimal algorithms are also known when the number of experts is 2, 3, or 4.

If the game does not terminate at a known time or is run indefinitely, the optimal algorithm is not

known for any number of experts. We contribute to this problem by giving the optimal algorithm when

there are 2 experts. Our algorithm is designed by considering a continuous analogue of the problem,

which is solved using ideas from stochastic calculus.

In the second part of the thesis, we look at distribution learning, which is a fundamental task in

statistics that has been studied for over a century. We consider such a problem where the distribution is

a mixture of k Gaussians in d dimensions. The objective is density estimation: given i.i.d. samples from

the unknown distribution, produce a distribution whose total variation from the unknown distribution

is within some desired accuracy. We contribute to this problem by designing an algorithm with near-

optimal sample complexity.
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Lay Summary

Machine learning is now ubiquitous in our daily lives. Despite its success, many basic and fundamental

questions remain unanswered.

One such example is in decision making. Suppose one makes a decision every day, say by deciding

between several choices. Can one make decisions almost as well as if one knows the best choice

beforehand? Perhaps surprisingly, this is achievable and its solution has important applications in

finance, machine learning, and algorithm design. In this thesis, we design an algorithm for making

decisions with strong theoretical guarantees.

The second problem is in statistics: if we want to model some phenomenon, how much data do we

need to collect? For example, this may model how different groups of people react to different vaccines.

Collecting data is often an expensive endeavour. In this thesis, we design an algorithm that optimally

trades off between accuracy and the amount of data collected.
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Preface

The results presented in this thesis are the result of two major research projects in which the author

has had the privilege to partake.

• The material in Chapter 2 is on the classical problem of prediction with expert advice. It is based

on the paper in [85] (which will appear in the 2020 Symposium on Foundations of Computer

Science) and is joint work with my supervisor Nick Harvey, as well as Sikander Randhawa and

Edwin Perkins. In [85], we give a new algorithm when there are two experts and prove that the

algorithm is optimal; this also answers an open question posed by [108] on the minimax strategy

for two experts. The problem was proposed by Nick Harvey. The ideas for the solution as well as

the proofs were contributed by the author, Christopher Liaw, as well as Nick Harvey, Sikander

Randhawa, and Edwin Perkins. Christopher Liaw, Nick Harvey, and Sikander Randhawa were

heavily involved in writing up the results and polishing the proofs.

• Chapter 3 and Chapter 4 focuses on the problem of learning mixtures of Gaussians. Chapter 3

is primarily background material and is written primarily by the author, Christopher Liaw. The

material in Chapter 4 is based on joint work with Hassan Ashtiani, Shai Ben-David, Nick Harvey,

Abbas Mehrabian, and Yaniv Plan which appeared in the 2018 Conference on Neural Information

Processing Systems [15] and will also appear in the Journal of the ACM. In [15], we give a new

algorithm for learning mixtures of Gaussians and show that, up to minor polylogarithmic factors,

the algorithm uses the minimum number of samples. The problem was introduced to the author

by Abbas. The concept of compression was conceived by Hassan, Shai, and Abbas (see also [18,

§7.2]). The author, Christopher Liaw, along with Nick Harvey, Yaniv Plan, Abbas Mehrabian,

and Hassan Ashtiani, contributed to the proof of the lower bound. The author, Christopher

Liaw, was also responsible for designing the compression scheme which is used for the proof of

the upper bound. Nick, Abbas, and Hassan also contributed to ideas to the compression scheme.
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Chapter 1

Introduction

Machine learning has become a ubiquitous tool in many different fields, ranging from medical ap-

plications [43, 100, 142], to playing video games [110, 140], to advertising [23, 118, 126] and much,

much more. The field of learning theory aims to provide a theoretical and mathematical foundation

to machine learning.

In this thesis, we focus on two basic and classical problems in learning theory. The first problem

we study is the problem of prediction with expert advice. This is a fundamental problem whose origin

dates back to the 1950s with the work of Hannan [84]. The second problem that we study is the problem

of learning mixtures of Gaussians which dates back to the late 19th century when Karl Pearson was

developing his mathematical theory of evolution [115].

This thesis makes contributions to both of these problems. For the problem of prediction with

expert advice, we give an optimal algorithm for a special case of the problem. More importantly, we

introduce a new technique, based on Brownian Motion and stochastic analysis, to analyze regret in

online learning. For the problem of learning mixtures of Gaussians, we show how the concept of sample

compression within the context of distribution learning, introduced in Ashtiani’s thesis [18], can be

used to give an algorithm that provably uses the least number of samples.

In the next two sections of this chapter, we give some background and an overview of these two

problems.

1.1 Prediction with expert advice

The problem of prediction with expert advice (also referred to as the experts problem) can be cast

as the following sequential game between an adversary and an algorithm. At each time step t, the

algorithm must pick one of n choices (perhaps randomly). Then an adversary, knowing what the

algorithm’s strategy is but not the outcome of its randomness, assigns a cost (or a loss) to each choice.

The algorithm’s goal is to develop a strategy so that its accumulated cost is almost as good as the best

single choice in hindsight.

As an example of this problem, each of the choices could correspond to a different route that a

person can take to go to work each day. Then the cost of each route corresponds to the time it takes

to get to work. The problem for the commuter is to design a strategy of picking each day’s route to

1



be almost as good as having stuck with the best single route in hindsight.

Although the problem itself appears to be simple, solutions to this problem have been a key

component in a number of different areas. Here, we list a small number of applications. We refer the

reader to the survey of Arora et al. [14] for many more examples.

• It has been used as a core subroutine in designing fast algorithms for approximately solving linear

programs [121, 146]. This, in turn, has made it useful for solving a variety of combinatorial

optimization problems. For example, the greedy algorithm for set cover can be seen as an

instantiation of this approach [146].

• In combinatorial optimization, algorithms for prediction with expert advice have formed an

important component in designing algorithms for a number of problems. Examples include

computing maximum flows in graphs [40], computing multicommodity flows [73], and computing

sparsest cuts [13].

• In learning theory, boosting, where one combines many weak learning algorithms into a very

effective learning algorithm, can also be seen as an application of the learning with experts

paradigm [72].

• In complexity theory, this problem has been used to construct Boolean functions which are

inapproximable by circuits of bounded size [93].

• In systems, different caching algorithms can be thought of as “experts” and so algorithms for

the problem of prediction with expert advice may be used to design adaptive caching policies

[11, 77].

The most well-known algorithm for the experts problem is the celebrated multiplicative weights up-

date algorithm, introduced independently by Littlestone and Warmuth [105] as the weighted majority

algorithm and by Vovk [141] as the aggregating strategies algorithm. Here, we will give the algorithm

but the analysis can be found in a number of different sources including [28, Theorem 2.1],[75, The-

orem 2.1], or [33, Theorem 2.2]. At a high-level, the algorithm maintains the total loss incurred by

each expert. (Initially each expert has incurred total loss of 0). At each time step t, the algorithm

chooses each expert with some probability which depends on all the experts’ total loss thus far; the

more loss an expert has incurred relative to the other experts, the less likely the algorithm will choose

that expert. The pseudocode is given in Algorithm 1. The parameter ηt > 0 is a step-size which is

allowed to depend on all events up to time t− 1.

Algorithm 1 The multiplicative weights update algorithm.

1: Initialize L0 ← (0, . . . , 0).
2: for t = 1, 2, . . . do
3: Set probability vector pt so that pt,i ∝ exp(−ηtLt−1,i), i.e.

pt,i =
exp(−ηtLt−1,i)∑

j∈[n] exp(−ηtLt−1,j)
.

4: Choose expert i ∈ [n] according to pt.
5: Receive cost vector ct, incur cost ct,i and update Lt ← Lt−1 + ct.
6: end for

2



To discuss the merits of Algorithm 1, we will need to formalize one small piece of notation. Fix an

algorithm and let its strategy at time t be pt, where pt is an n-dimensional probability vector and is

allowed to depend on all information up to time t− 1. Let c1, . . . be the sequence of cost vectors. The

expected loss of the algorithm at time T is
∑T

t=1 c
>
t pt. Let LT,i =

∑T
t=1 ct,i be the total cost of expert

i up until time T . The algorithm’s regret is defined as

Regret(T ) :=

T∑
t=1

c>t pt −min
i∈[n]

Lt,i. (1.1)

Eq. (1.1) is exactly the difference between the expected cost of the algorithm and the single best expert

in hindsight, i.e. the algorithm’s regret for not having the foresight to choose expert i.

Theorem 1.1. Fix T > 0 and assume ct ∈ [0, 1] for all t ∈ {1, . . . , T}. Setting ηt = 2
√

2T lnn,

Algorithm 1 guarantees

Regret(T ) ≤
√
T ln(n)/2.

References. [28, Theorem 2.1],[75, Theorem 2.1], or [33, Theorem 2.2]

The theorem asserts that for any sequence of cost vectors c1, . . . , cT , the multiplicative weights

algorithm (with the correct tuning depending only on T ) has regret bounded by
√
T ln(n)/2. It is

important to note the order of quantifiers in the statement of Theorem 1.1. For any time T which is

fixed in advance, Algorithm 1 with the correct tuning, depending on T , achieves a regret of at most√
T ln(n)/2 at time T (and in fact, for all times up to T ). Guarantees of this type are often referred

to as fixed-time guarantees. We also refer to the setting where T is known to the algorithm a priori as

the fixed-time setting.

Theorem 1.1 is known to be tight in the sense that for any algorithm [33, Theorem 3.7]

sup
n,T

Regret(T )√
T ln(n)/2

≥ 1.

This means that for any algorithm, for any ε > 0, there exists n, T and a sequence of cost vectors

c1, . . . , cT ∈ [0, 1]n such that Regret(T ) ≥ (1 − ε)
√
T ln(n)/2. Note that the algorithm is allowed to

know T in advance. It is known that Algorithm 1 is not tight when the number of experts is small.

For n = 2, the optimal algorithm was given by Cover [41]. He used a natural dynamic programming

formulation for the problem to give an algorithm that achieves Regret(T ) ≤
√
T/2π +O(1) for every

sequence of loss vectors. For n = 3, Abbasi-Yadkori et al. [2] showed that one can obtain Regret(T ) ≤√
8T/9π + o(T ) and that this is optimal. For n = 4, Bayraktar et al. [21] showed that the optimal

regret is
√
πT/8. For any fixed n ≥ 5, the optimal algorithm is unknown.

For some applications, the time horizon T may not be known in advance or may be extremely large.

When this is the case, we would much prefer an anytime guarantee, which controls the regret at all

points in time and not just at a fixed time. One possible way to achieve this is via the well-known

“doubling trick” [34, §4.6]. The doubling trick works as follows. Suppose that we had an algorithm

with a fixed-time guarantee (for example, Algorithm 1 tuned appropriately). We then initialize the

algorithm with a time horizon of T0 and run the algorithm for T0 steps. Then, we reset the algorithm

3



by discarding its current state and re-initialize it with a time horizon with 2T0. After running the

algorithm for 2T0 additional time steps, we reset the algorithm again and re-initialize it with a time

horizon 4T0. This process continues indefinitely and every time we reset the algorithm, we double the

time horizon that the algorithm receives as input.

It is a short calculation to show that the doubling trick transforms any algorithm that achieves

a sublinear regret for a fixed time T , say O(Tα) where α ∈ (1/2, 1), into another algorithm which

achieves a regret of O(tα) for all t > 0.1 We note that the constant hidden by the O(·) may be larger

in the latter setting. Although the doubling trick is theoretically simple, it is very wasteful from a

practical point of view as it throws away all progress that the algorithm has made whenever it resets

the algorithm. A much more elegant approach is to use a dynamic step size as shown by the following

algorithm.

Theorem 1.2. Assume ct ∈ [0, 1]n for all t ≥ 1. Setting ηt = 2
√
t lnn, Algorithm 1 guarantees

Regret(t) ≤
√
t ln(n) ∀t ≥ 1.

References. [28, Theorem 2.4] or [75, Proposition 2.1]

Note that the guarantee in Theorem 1.2 holds for any time t. It is unknown whether Theorem 1.2

is tight but by Theorem 1.1, it can by off by at most
√

2. Can we find an algorithm in the anytime

setting that shaves off the
√

2 factor? Alternatively, can we improve the lower bound to show that

MWU is the optimal algorithm?

Even for n = 2, finding the optimal algorithm in the anytime setting is already a challenging

problem (this is in contrast with the fixed time seting, where Cover [41] showed that a natural dynamic

program gives the optimal algorithm). In Chapter 2, we design an algorithm for the anytime setting

with n = 2 experts and show that it is optimal. To state our result, we define the function M(x) :=
√
πx erfi(

√
x) + ex.

Theorem 1.3. Assume ct ∈ [0, 1]2 for all t ≥ 1. There is an algorithm which achieves

Regret(t) ≤ γ

2

√
t ∀t ≥ 1,

where γ ≈ 1.30693 is the unique positive root of M(x2/2). Moreover, the constant γ/2 cannot be

improved.

The function M is an example of a confluent hypergeometric function; this is a broad class of

functions which include many well-known classes of functions, such as Laguerre polynomials and Bessel

functions. Interestingly, the roots of confluent hypergeometric functions have played an important role

in the study of fundamental properties of Brownian Motion and random walks [25, 50, 81, 117]. It

is natural to wonder whether there are connections between regret minimization and probability. In

Chapter 2, we give one example by showing how Theorem 1.3 can be used to recover a probabilistic

1To briefly sketch this, suppose that t = T0 + 2T0 + · · ·+ 2kT0 = Θ(2kT0) for some k ≥ 1 and T0 ≥ 1. If an algorithm can
be tuned to give regret C · Tα (C > 0 is some constant) for all T > 0 then the transformed algorithm would have regret
C · Tα0

∑k
i=0 2αi. The sum itself is O(2αk) so the regret at time t is O(2αkTα0 ) = O(tα).
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statement of random walks due to Davis [50]. Other connections can be found in the work of Rakhlin

and Sridharan [122].

The design of the algorithm which proves Theorem 1.2 has a number of key features which we

point out here. First, we design the algorithm by considering a continuous analogue version of regret.

Next, we use stochastic calculus to find an elegant relationship between (continuous) regret and any

(continuous-time) algorithm. This relationship exposes a partial differential equation which we can

then solve to obtain an optimal continuous-time algorithm.

One question remains: how can we transform the continuous-time algorithm into a discrete-time

algorithm? It turns out that the optimal continuous-time algorithm is actually a derivative of a certain

potential function. To obtain a discrete-time algorithm, we look at the discrete derivative of the same

potential function. We will show that this defines a valid algorithm and that it is optimal.

1.2 Learning mixtures of Gaussians

The problem of distribution learning is a classical and fundamental problem in statistics that dates back

to the work of Karl Pearson in the late 19th century [115]. At the time, Karl Pearson was developing

a mathematical theory of evolution. The problem itself is quite simple: if one has a dataset, can one

understand the underlying distribution from which the data originated? It is typical to make some

assumptions on the underlying distribution; for example, the data coming from a single source may

be coming from a Gaussian (or Normal) distribution. A single dataset may actually consist of data

from multiple sources. In this case, the dataset itself may be comprised of a combination, or mixture,

of Gaussians.

As an example of this, we can consider an experiment that Karl Pearson performed with some crab

data that he received from Prof. Weldon. The dataset that Karl Pearson possessed contained the ratio

between the length of the forehead and the length of the body for some of the crabs in Naples. If the

dataset contained data for a single species of crabs then this ratio ought to form a Normal distribution.

Karl Pearson observed that the dataset did not appear to be symmetric, let alone to follow a Normal

distribution. However, he observed that the dataset was very well approximated as a mixture of two

Gaussian components which provided evidence that the dataset actually contained at least two distinct

species.

The problem of distribution learning and, in particular the problem of learning mixtures of Gaus-

sians, continued to garner a tremendous amount of study over the past century. In modern data

science, practitioners often try to model their data using a Gaussian mixture model and many software

packages have implemented algorithms to perform this task [1, 116]. In contrast to the crab example

above, Gaussian mixture models are often used in settings where the data is very high-dimensional

[80, 119, 128].

The most common heuristic used in practice to fit a Gaussian mixture model to data is the

expectation-maximization (EM) heuristic [52]. However, the EM heuristic for fitting Gaussian mixture

models is not very well understood and it is unknown whether EM (or some variant of it) always

converges to the true Gaussian mixture. Nonetheless, there is a growing body of work which aims to

understand EM in the context of learning Gaussian mixtures [45, 46, 48, 101].
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Figure 1.1: An example of a mixture of two Gaussians in R. The dashed coloured lines corre-
spond to the p.d.f. of individual Gaussian distributions. The black solid line is a weighted
average of the two Gaussians.

The problem of learning mixtures of Gaussians was introduced to the theoretical computer science

community by Dasgupta [44]. Since then, there has been a flurry of work on the subject [8, 9, 16,

36, 47, 60, 70, 74, 87, 88, 91, 92, 94, 104, 111, 124, 132, 135, 137]. Typically one of two models is

considered: the parameter estimation model and the density estimation model. Here, we give a brief,

informal discussion of what mixture of Gaussians are, the parameter estimation model, and the density

estimation model. A more formal background for mixtures of Gaussians and density estimation is given

in Chapter 3.

Mixtures of Gaussians. A Gaussian distribution in Rd is a distribution which is specified by a mean

vector µ ∈ Rd and a covariance matrix Σ ∈ Rd×d. (There are conditions on Σ which are explained

in Chapter 3.) The vector µ determines where the center of Gaussian is and the covariance matrix

Σ determines how skewed and spread out the distribution is along certain directions. We denote a

Gaussian with mean µ and covariance matrix Σ by N (µ,Σ). A mixture of k Gaussians in Rd consists

of k components where each component is itself a Gaussian distribution. Each component i ∈ [k]

has a weight wi ≥ 0 (called the mixing weights) with
∑

i∈[k]wi = 1. To sample from a mixture of k

Gaussians, one first samples a component with respect to the probability w and then samples from

the corresponding Gaussian distribution. We denote a mixture of k Gaussians as
∑k

i=1wiN (µi,Σi).

Figure 1.1 gives an example of a mixture of two Gaussians.

Parameter Estimation. In parameter estimation, the goal is to estimate, for an unknown mixture

of Gaussians, the mixing weights of each of the components, the mean vector of each of the components,

and the covariance matrix of each of the components. More specifically, if we are given samples from

a mixture of Gaussians
∑k

i=1wiN (µi,Σi) then the goal is to return a distribution
∑k

i=1 ŵiN (µ̂i, Σ̂i)

such that, for some permutation π, |ŵπ(i)−wi| is small (say at most ε for some error parameter ε > 0)

and N (µi,Σi) ≈ N (µ̂π(i), Σ̂π(i)).
2 This problem of estimating the parameters of an unknown mixture

of Gaussians was first introduced by Dasgupta [44] and culminated in the work of Moitra and Valiant

[111] who gave algorithms with running time that was polynomial in the number of samples and with

provably minimal assumptions.

2Specifically, we require that the total variation distance between N (µi,Σi) and N (µ̂π(i), Σ̂π(i)) is at most ε for some
error parameter ε > 0; see Definition 3.3 in Chapter 3 for the definition of total variation distance.
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(a) 5 different Gaussian components. (b) A Gaussian and mixture of Gaussians.

Figure 1.2: Figure 1.2a shows five different Gaussian components. We note that the Gaussian
components are reasonably separated. In Figure 1.2b, two distributions are plotted. The
blue curve is a standard Gaussian with mean 0 and variance 1/2 and the orange dashed
curve is a mixture of Gaussians whose components are exactly those in Figure 1.2a. We
note that the mixture of Gaussians is nearly indistinguishable from just a single Gaussian.
This example was taken from [111] and shows that it is very difficult to distinguish between
a single Gaussian and a mixture of Gaussians. In the density estimation model, the problem
is relaxed and we say that an algorithm is successful if it outputs a distribution which is
nearly indistinguishable from the original distribution.

In general, the parameter estimation problem can be quite difficult. Indeed, Moitra and Valiant

[111] showed that, while the running time of their algorithm is polynomial in the number of samples

that the algorithm uses, the sample complexity (i.e. the number of samples that the algorithm uses)

is exponential in the number of components that appear in the mixture, even for d = 1. The issue

lies in the fact that it is possible to construct two different mixtures of Gaussians where all the

components have distinct parameters while the distribution themselves are nearly identical. Figure 1.2

shows an example of the construction in [111] and illustrates how a single Gaussian can be almost

indistinguishable from a mixture of Gaussians.

Density Estimation. In density estimation, the goal is only to return a distribution which is close

(according to some notion of “distance”) to the distribution that we are trying to learn. This alleviates

the issue present in the previous discussion where it is possible to have mixtures of Gaussians with

different parameters whose distributions are nearly identical. Indeed, in the density estimation model,

returning any of these nearly identical distributions would be considered a success. For example, going

back to Figure 1.2, if the true distribution was indeed the mixture of Gaussians, the algorithm would

still be considered correct if it had output a single Gaussian.

It turns out that considering this particular model for learning mixture of Gaussians is sufficient

to circumvent the exponential lower bound of Moitra and Valiant [111]. Indeed, a number of previous

works have shown that, in the density estimation model, there are algorithms which require only a

polynomial number of samples [16, 70, 135]. However, it remained an open problem to determine

exactly how many samples are needed in order to learn a mixture of Gaussian in this model. In

Chapter 4, we design a new algorithm for learning mixtures of Gaussians and prove that the algorithm

provably uses the minimum number of samples, up to logarithmic factors. Informally, we will prove

the following theorem.
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Theorem 1.4 (Informal). There is an algorithm which, given Õ(kd2/ε2) i.i.d. samples from an un-

known mixture of Gaussians in d dimensions with k components, returns a distribution whose density

is “ε-close” to the unknown distribution. Moreover, any such algorithm requires Ω̃(kd2/ε2) samples.

In Theorem 1.4, the Õ and Ω̃ notation suppresses polylog(kd/ε) factors.

The algorithm is based on the idea of sample compression. We show that if one can compress the

identity of the distribution, using samples from that distribution, then there exists a sample-efficient

algorithm for learning the distribution as well. In fact, the reduction transforms the sample compression

scheme into a sample-efficient algorithm.

1.3 Thesis organization

Chapter 2 describes the optimal anytime algorithm for two experts. In Chapter 3, we give some

necessary probability background to understand the work on learning mixtures of Gaussians. A reader

with a basic background on distribution learning is encouraged to skip Chapter 3 and directly read

Chapter 4. We note that Chapter 2 is completely disjoint from Chapter 3 and Chapter 4.
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Chapter 2

Optimal Anytime Regret with Two

Experts

Chapter Summary. In this chapter, we study the problem of prediction with expert advice. We

show that, for two experts and costs in [0, 1], there is an algorithm achieving Regret(t) ≤ γ
2

√
t for all

t > 0, where γ ≈ 1.30693 is the root of a confluent hypergeometric function with certain parameters.

Furthermore, this is optimal, in the sense that the constant γ/2 is best possible. Prior to this work,

there were no known optimal algorithms for any number of experts that controls the regret at all points

in time.

In the design of the optimal algorithm, we work directly with a confluent hypergeometric function.

This function arises naturally as the solution to a continuous version of the regret problem. Further-

more, this function possesses a number of analytic properties which allows for a clean analysis of the

algorithm in the original, discrete setting.

2.1 Introduction

In this chapter, we study the problem of prediction with expert advice, whose origin can be traced

back to the 1950s [84]. The problem is a sequential game between an adversary and an algorithm as

follows. There are n actions, which are called “experts”. At each time step, the algorithm computes a

distribution over the experts, then randomly chooses an expert according to that distribution; concur-

rently, the adversary chooses a cost for each expert, with knowledge of the algorithm’s distribution but

not its random choice. The cost of each expert is then revealed to the algorithm, and the algorithm

incurs the cost that its chosen expert incurred. The goal is to design an algorithm whose expected

regret is small. That is, the goal is to minimize the difference between the algorithm’s expected total

cost and the total cost of the best expert. This problem and its variants have been a key component

in many results in theoretical computer science and machine learning; some examples were discussed

in Chapter 1 and we refer the reader to [14] for more applications.

The most well-known algorithm for the experts problem is the celebrated multiplicative weights

update algorithm (MWU), as discussed in Chapter 1 [105, 141]. In the fixed-time setting (where a
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time horizon T is known in advance), MWU (with the optimal tuning of its step size) suffers a regret

of
√

(T/2) lnn at time T , where n is the number of experts [32, 34]. This bound on the regret of

MWU is known to be tight for any even n [79]. It is also known (e.g. [34], [33, Theorem 3.7]) that√
(T/2) lnn is asymptotically optimal for any algorithm in the following sense. For any algorithm A,

for any ε > 0, there exists a sufficiently large n, a sufficiently large time horizon T , and a sequence of

cost vectors c1, . . . , cT ∈ [0, 1]n such that A incurs regret at least (1 − ε)
√
T ln(n)/2. Hence, MWU

is a minimax optimal algorithm1 when the number of experts of experts is large. Interestingly, MWU

is not optimal for small values of n. For n = 2, Cover [41] observed decades earlier that a natural

dynamic programming formulation of the problem leads to a simple analysis showing that the minimax

optimal regret is
√
T/2π.

For some applications, the time horizon T is not known in advance; examples include any sort

of online tasks (e.g., online learning), or tasks requiring convergence over time (e.g., convergence to

equilibria). An alternative model, more suited to those scenarios, is the anytime setting2, in which

algorithms are not given T but must bound the regret for all T . Yet another model is to assume that

T is random with a known distribution [108]. For example, the geometric horizon setting of Gravin,

Peres, and Sivan [78] assumes that T is a geometric random variable. In this setting, they gave the

optimal algorithm for two and three experts. Moreover, they propose a conjecture on the relationship

between the fixed-time and the geometric horizon settings that could lead to optimal bounds for all n.

Our focus is the anytime setting. One can convert algorithms for the fixed-time setting to the

anytime setting by the well-known “doubling trick” [34, §4.6]. This involves restarting the fixed-time

horizon algorithm every power-of-two steps with new parameters. If the fixed-time algorithm has regret

O(T c) at time T for some c ∈ (0, 1) then the doubling trick yields an algorithm with regret O(tc) at

time t for every t ≥ 1.3 On the one hand, this is a conceptually simple and generic reduction. On the

other hand, restarting the algorithm and discarding its state is clearly wasteful and probably not very

practical.

Instead of using the doubling trick, one can use variants of MWU with a dynamic step size; see,

e.g., [33, §2.3], [114, Theorem 1], [28, §2.5]. This is a much more elegant and practical approach and is

even simpler to implement. However, the analysis is more difficult than for MWU, and is rarely taught.

It is known that, with an appropriate choice of step sizes, MWU can guarantee4 a regret of
√
t lnn

for all t ≥ 1 and all n ≥ 2 (see [28, Theorem 2.4] or [75, Proposition 2.1]). However, it is unknown

whether
√
t lnn is the minimax optimal anytime regret, for any value of n.

Results and techniques. This work considers the anytime setting with n = 2 experts. We show

that the optimal regret is γ
2

√
t, where γ ≈ 1.30693 is a fundamental constant that arises in the study

of Brownian motion [117]. (Note that γ/2 ≈ 0.653 < 0.833 ≈
√

ln 2.) It is not a priori obvious why

this fundamental constant should play a role in both Brownian motion and regret. Nevertheless, some

1This means that the algorithm minimizes the maximum, over all adversaries, of the regret.
2Other authors have referred to this setting as an “unknown time horizon” or “bounds that hold uniformly over time”.
3Note that the constant hidden inside the O(·) for the anytime setting is larger than the constant hidden inside the O(·)
for the fixed time setting.

4It can be shown, by modifying arguments of [79], that this is the optimal anytime analysis for MWU with step sizes
c/
√
t.

10



connections are known. For example, in the fixed-time setting, the optimal algorithms for n ∈ {2, 3, 4}
(see [78]) and the optimal lower bound for n → ∞ all involve properties of random walks. Since

Brownian motion is a continuous limit of random walks, a connection between anytime regret and

Brownian motion is plausible.

Our techniques to analyze the optimal anytime regret are a significant departure from previous work

on regret minimization. First, we define a continuous-time analogue of the problem which expresses

the regret as a stochastic integral. This allows us to utilize tools from stochastic calculus to arrive at

a potential function whose derivative gives the optimal continuous-time algorithm. Remarkably, the

optimal discrete-time algorithm is the discrete derivative of the same potential function.

The potential function that we derive involves a “confluent hypergeometric function”. Such func-

tions often arise in solutions to differential equations, and are useful in discrete mathematics [76,

§5.5].

Application. An intriguing application of our results is to a problem in probability theory that

does not involve regret at all. Let (Xt)t≥0 be a standard random walk. Then E [|Xτ |] ≤ γE [
√
τ ] for

every stopping time τ ; moreover, the constant γ cannot be improved.5 This result is originally due to

Davis [50, Eq. (3.8)], who proved it first for Brownian motion and later derived the result for random

walks (via the Skorokhod embedding). We give a new derivation of Davis’ result from our results in

Subsection 2.2.4.

Related work. The minimax regret for the experts problem has been well-studied in the fixed-time

horizon setting. For two experts the minimax regret was shown to be
√
T/2π by Cover in 1965 [41]. It

has been known for twenty years that
√
T ln(n)/2 is the minimax regret as n→∞ [32, 34]. Building

on the work of Gravin et al. [78], it has recently been shown that the minimax regret is
√

8T/9π for

three experts [2] and
√
πT/8 for four experts [21]. The anytime setting is not as well understood.

In the two-experts setting, Luo and Schapire [108] demonstrate that, if the time horizon T is chosen

by an adversary and unknown to the algorithm then the algorithm may be forced to incur regret at

least
√
T/π. This exceeds the minimax regret of

√
T/2π if T is known to the algorithm a priori,

which indicates that the adversary has more power to force regret when it is allowed to select the time

horizon.

Recently, interactions between algorithms in discrete and continuous time have been fruitful in other

lines of work, e.g., [3, 29–31, 38, 63, 68, 96, 103, 143]. There is also a line of work that makes connections

between the experts problem (in the finite-time horizon and geometric-time horizon setting) and PDEs

[20, 21, 65, 66, 98, 99]. There is also work connecting regret minimization to option pricing [51] and to

the Black-Scholes formula [4], which is based on Brownian motion and stochastic calculus. Intuitively,

stochastic calculus is a crucial tool to optimally hedge against future costs, which we exploit too.

Our work crucially uses stopping times for Brownian motion hitting a time-dependent boundary.

Such techniques have also been used for non-adversarial bandits to approximate Gittins indices (see,

5At first glance, the inequality may seem to contradict the Law of the Iterated Logarithm. However, we remark that if
τ := inf{t > 0 : |Xt| ≥ c

√
t ln ln t} for some c ∈ (0,

√
2) then E [

√
τ ] =∞ (despite τ being a.s. finite) and the inequality

is trivial.
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e.g., [27]).

2.2 Discussion of results and techniques

2.2.1 Formal problem statement

The problem may be stated formally as follows. Let n denote the number of experts. There is a

deterministic algorithm A, and a deterministic adversary B that knows A. For each integer t ≥ 1,

there is a prediction task that is said to occur at time t. In this task, A picks a probability distribution

xt ∈ [0, 1]n, and B picks a cost vector `t ∈ [0, 1]n. The coordinate `t,j denotes the cost of the jth expert

at time t.6

After xt is chosen the vector `t is revealed, so xt depends on `1, . . . , `t−1 (and implicitly x1, . . . , xt−1).

The vector `t depends on A and on `1, . . . , `t−1 (and implicitly x1, . . . , xt, since A is deterministic and

known to B). The game can end whenever B wishes, or continue forever. Since A is deterministic and

known to B, the entire sequence of interactions, including the ending time, can be predetermined by

B.

The cost incurred by the algorithm at time t is the inner product 〈xt, `t〉. This may be thought of

as the “expected cost” of the algorithm, although the algorithm is actually deterministic. The total

cost of the algorithm up to time t is
∑t

i=1〈xi, `i〉. For j ∈ [n], the total cost of the jth expert up to

time t is Lt,j =
∑t

i=1 `i,j . The regret at time t of algorithm A against adversary B is the difference

between the algorithm’s total expected cost and the total cost of the best expert, i.e.,

Regret(n, t,A,B) =
t∑
i=1

〈xi, `i〉 − min
j∈[n]

Lt,j .

The summary of the interaction between the algorithm and the adversary is given in Algorithm 2.

Algorithm 2 The experts problem.

Input: Number of experts n.

1: for t = 1, 2, . . . do
2: Algorithm A chooses a probability vector xt ∈ [0, 1]n (A is given `1, . . . , `t−1 and x1, . . . , xt−1).
3: Adversary B chooses a loss vector `t ∈ [0, 1]n (B is given `1, . . . , `t−1 and x1, . . . , xt).
4: Algorithm A incurs cost x>t `t and `t is revealed to A.
5: end for

Anytime setting. This work focuses on the anytime setting. In this setting, one may view the

algorithm as running forever, with the goal of minimizing, for all t, the regret normalized by
√
t.

Alternatively, one may view the game as ending at a time chosen by the adversary, and the algorithm

must minimize the regret at that ending time. (It does not matter whether the adversary chooses

6Alternatively, we may view A is a randomized algorithm which picks expert i with probability xt,i. In this setting, xt is
known to the adversary but the realization of which expert is chosen is only revealed at the end of the round. We note
that the vector xt is still deterministic even if we consider the A to be a randomized algorithm.
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the ending time in advance or dynamically, since A and B are deterministic so all interactions are

predetermined.) These two views are equivalent because the algorithm cannot distinguish between

them.

Formally, we will design an algorithm which achieves the infimum in the following expression.

AnytimeNormRegret(n) := inf
A

sup
B

sup
t≥1

Regret(n, t,A,B)√
t

. (2.1)

The minimax anytime regret is unknown even in the case of n = 2. The best known bounds at present

are

0.564 ≈
√

1/π ≤ AnytimeNormRegret(2) ≤
√

ln 2 ≈ 0.833. (2.2)

The lower bound, due to [108], demonstrates a gap between the anytime setting and the fixed-time

setting, where the optimal normalized regret is
√

1/2π [41]. Our main result in this chapter is that

AnytimeNormRegret(2) = γ/2 ≈ 0.653 and consequently neither inequality in Eq. (2.2) is tight.

2.2.2 Statement of results

To state our results, we require two definitions.

erfi(x) =
2√
π

∫ x

0
ez

2
dz

M0(x) = ex −
√
πx erfi(

√
x)

(2.3)

The first is the imaginary error function, a well-known special function that relates to the Gaussian

error function. The second is an example of a confluent hypergeometric function, a very broad class of

special functions that includes, e.g., Bessel functions and Laguerre polynomials. (See Subsection 2.2.6

for formal definitions.) Our analysis makes use of a few elementary properties of these functions. A

key constant used in this chapter is γ, which is defined to be the smallest7 positive root8 of M0(x2/2),

i.e.,

γ := min
{
x > 0 : M0(x2/2) = 0

}
≈ 1.3069... (2.4)

Theorem 2.1 (Main result). In the anytime setting with two experts, the minimax optimal normalized

regret (over deterministic algorithms A and adversaries B) is

AnytimeNormRegret(2) = inf
A

sup
B

sup
t≥1

Regret(2, t,A,B)√
t

=
γ

2
. (2.5)

The proof of this theorem has two parts: an upper bound, in Section 2.3, which exhibits an optimal

algorithm, and a lower bound, in Section 2.4, which exhibits an optimal randomized adversary. The

algorithm is very short, and it appears below in Algorithm 3.

One might imagine that some form of duality theory is involved in our matching upper and lower

bounds. Indeed, if the costs are in {0, 1} one may write AnytimeNormRegret(2) as the value of an

7In fact, γ is the unique positive root. See Fact 2.11.
8The roots of certain confluent hypergeometric functions have appeared in studying some natural phenomena of Brownian
motion; for some examples see [25, 50, 81, 117].
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infinite-dimensional linear program. In this case, our algorithm can be seen as a feasible solution to

the primal linear program with value γ/2 and our random walk construction can be seen as a feasible

solution to the dual linear program with value γ/2 − ε for any ε > 0. In this chapter, we do not

explicitly adopt this viewpoint. Instead, γ arises in our lower bound as the maximizer in Eq. (2.24),

whereas γ arises in our upper bound as the minimizer in Eq. (2.48). We are not aware of any direct

relationship between those two equations.

Comparison to existing techniques. A duality viewpoint is adopted by Gravin et al. [78] in the

fixed-time and geometric horizon settings using von Neumann’s minimax theorem. Their dual problem

is characterized by properties of random walks, which allows one to determine the optimal dual value

directly without reference to the primal. It is conceivable that some form of von Neumann’s minimax

theorem can be applied for the anytime setting, although it is unclear due to the appearance of the

supremum and 1/
√
t in (2.5). Our results of Section 2.4 may be viewed as using random walks to

construct feasible dual solutions of value γ/2 − ε ∀ε > 0, but it is not obvious that these solutions

converge to the optimal dual value.

The only way we know of to prove optimality of those dual solutions is to construct an algorithm

whose regret is γ
√
t/2. This is the more challenging part of this chapter, which we discuss in Sections 2.3

and 2.5. Interestingly, unlike some previous work, we explicitly obtain an optimal algorithm for costs

in [0, 1], not just for costs in {0, 1}.

Remark 2.2. Our lower bound can be strengthened to show that, for any algorithm A,

sup
B

lim sup
t≥1

Regret(2, t,A,B)√
t

≥ γ

2
.

In particular, even if A is granted a “warm-up” period during which its regret is ignored, an adversary

can still force it to incur large regret afterwards.

The algorithm’s description and analysis relies heavily on a function R : R≥0 × R→ R defined by

R(t, g) =


0 (t = 0)

g
2 + κ

√
t ·M0 (g2/2t) (t > 0 and g ≤ γ

√
t)

γ
√
t

2 (t > 0 and g ≥ γ
√
t)

where κ =
1√

2π erfi(γ/
√

2)
(2.6)

and M0 as defined in (2.3). The function R may seem mysterious at first, but in fact arises naturally

from the solution to a stochastic calculus problem9 in Section 2.5. In our usage of this function, t will

correspond to the time and g will correspond to the gap between (i.e., absolute difference of) the total

loss for the two experts. One may verify that R is continuous on R>0×R because the second and third

cases agree on the curve
{

(t, γ
√
t) : t > 0

}
since γ satisfies M0(γ2/2) = 0. We next define a function

p to be

p(t, g) = 1
2

(
R(t, g + 1)−R(t, g − 1)

)
. (2.7)

9As we describe below, the regret against a random adversary is a stochastic integral. Viewing this problem in continuous
time, then designing a function to minimize the integral leads to a PDE which R solves.
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This is the discrete derivative of R at time t and gap g. The algorithm constructs its distribution xt so

that p(t, g) is the probability mass assigned to the expert with the greatest accumulated loss so far. It

is shown later that p(t, g) ∈ [0, 1/2] whenever t ≥ 1 and g ≥ 0 so that p is indeed a probability and the

algorithm is well defined. We remark that p(t, 0) = 1/2 (Lemma 2.17) for all t ≥ 1 so the algorithm

places equal mass on both experts when their cumulative losses are equal. The functions p and R have

also been plotted in Figure 2.1.

Algorithm 3 The algorithm achieving the minimax anytime regret for two experts. At each time
step, each expert incurs a cost in the interval [0, 1], so the cost vector `t lies in [0, 1]2.

1: Initialize L0 ← [ 0
0 ].

2: for t = 1, 2, . . . do
3: If necessary, swap indices so that Lt−1,1 ≥ Lt−1,2.
4: The current gap is gt−1 ← Lt−1,1 − Lt−1,2.
5: Set xt ←

[
p(t, gt−1), 1−p(t, gt−1)

]
, where p is the function defined by (2.7).

. Observe cost vector `t and incur cost 〈xt, `t〉.
6: Lt ← Lt−1 + `t
7: end for

2.2.3 Techniques

Lower Bound. A common approach to prove lower bounds in the experts problem is to consider a

random adversary. With two experts, this adversary changes the gap by ±1 at each step. In the fixed-

time setting, the adversary has no control over the time horizon; it is known to both the adversary and

the algorithm beforehand. The adversary in the anytime setting has the additional power to choose

the time horizon, without informing the algorithm, and therefore it may not be terribly surprising that

an adversary using a fixed time horizon does not provide a good anytime lower bound.

To proceed with the discussion, it is convenient to view the regret as a discrete stochastic process.

To analyze this stochastic process, we use an elementary identity known as Tanaka’s Formula for

random walks, which allows us to write the regret process as Regret(t) = Zt + gt/2 where Zt is a

martingale with Z0 = 0 and gt is the current gap at time t. When τ is a sufficiently “nice” stopping

time10, the Optional Stopping Theorem (OST) yields E [Zτ ] = Z0 = 0. (This step is trivial in the

fixed-time and geometric horizon settings since they involve stopping times that are always nice.) To

use the OST, we restrict ourselves to consider adversaries which select the time horizon to be a nice

stopping time.

In particular, we consider adversaries that select τ as the first time that the gap gt exceeds some

time dependent boundary f(t)11. This approach follows an established doctrine that connects optimal

stopping and stochastic control problems to free-boundary problems [39, 120]. Applying the OST,

one might expect that E [Regret(τ)] = E [gτ ] /2 ≥ E [f(τ)] /2. Unfortunately, such an argument must

involve additional assumptions; otherwise the adversary could just select the boundary f(t) to be

10Intuitively, a stopping time must make the decision that now is the time to stop without knowledge of future random
bits.

11Note that τ = min { t ≥ 0 : gt ≥ f(t) } is a stopping time.
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(a) A plot of p(t, x
√
t) for t = 1, 10, 100. We remind the reader that the function p is

defined as the discrete derivative of a certain function R. The dashed line is ∂xR(1, x); in
Section 2.5 we will see that ∂xR is the continuous-time analogue of p. As t→∞, p(t, x

√
t)

converges to ∂xR(1, x) pointwise. Finally, we remark that the smallest zero of ∂xR(1, x)
occurs at precisely γ ≈ 1.30693.

(b) A plot of R(1, x). We note that R(t, x
√
t) =

√
tR(1, x). In addition, we note that

the maximum value of R(1, x) is exactly γ/2 ≈ 0.653 and that the function becomes flat at
precisely x = γ ≈ 1.30693.

Figure 2.1: Plots of p(t, g) and R(t, g).
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arbitrarily large, and the resulting regret lower bound would violate known upper bounds.

The issue lies in the fact that the OST requires certain conditions on the martingale and stopping

time. For example, it is not sufficient for the stopping time to be almost surely finite. (Otherwise,

one could use a boundary f(t) = Θ(
√
t ln ln t) and the Law of the Iterated Logarithm [67] to prove

lower bounds that contradict the O(
√
t) upper bound of Cover or MWU.) A stronger and sufficient

condition would be that E [τ ] < ∞. It is known [25, 133] that if f(t) = (1 + ε)
√
t for any ε > 0 then

E [τ ] = ∞. On the other hand, for any c < 1, if we choose the boundary f(t) = c
√
t then E [τ ] < ∞.

Unfortunately this would yield a regret lower bound of
√
t/2, which is trivial since the algorithm can

be forced to have regret 1/2 at time t = 1.

Fortunately there is a variant of the O.S.T. with a different hypothesis which does not seem to

be widely known amongst theoretical computer scientists. We will use this variant of the O.S.T. to

prove the optimal lower bound in our setting. This O.S.T. states: if Zt is a martingale with bounded

increments (i.e. supt≥0 |Zt+1−Zt| ≤ K for some K > 0) and τ is a stopping time satisfying E
[√

τ
]
<∞,

then E [Zτ ] = 0. The crucial detail is to bound the expected square root of τ . This result is stated

formally in Theorem 2.29. It remains to choose as large a boundary as possible such that the associated

stopping time of hitting the boundary satisfies E [
√
τ ] <∞. Using classical results of Breiman [25] and

Greenwood and Perkins [81], we show that the optimal choice of c is γ.

Upper Bound. Our analysis of Algorithm 3, to prove the upper bound in Theorem 2.1, uses a

deceptively simple argument where R defined in Eq. (2.6) acts as a potential function. Specifically,

we show that the change in regret from time t − 1 with gap gt−1 to time t with gap gt is at most

R(t, gt) − R(t − 1, gt−1). This implies that maxg R(t, g) is an upper bound on the regret at time t.

The analysis has a number of key features. First, note that the potential function R is bivariate; it

depends on both the time t as well as the state gt. To deal with this bivariate potential, we use a

tool known as the discrete Itô formula. This formula allows us to relate the regret to the potential

R, while elegantly handling changes to both time and state. In fact, the potential R turns out to be

an extremely tight approximation to the actual regret. Previously, there have been several works that

make use of bivariate potentials (e.g. [37, 109]). However, to the best of our knowledge, our work is

the first to use the discrete Itô formula in the setting of regret minimization.

The function R and the use of discrete Itô do not come “out of thin air”; they come from considering

a continuous-time analogue of the problem. This continuous viewpoint brings a wealth of analytical

tools that do not exist (or are more cumbersome) in the discrete setting. As discussed in the lower bound

section above, in discrete-time it is natural to assume the gap process evolves as a reflected random

walk. In order to formulate the continuous-time problem, we assume that the continuous adversary

evolves the gap between the best and worst expert as a reflected Brownian motion (the continuous-time

analogue of a random walk). Using this adversary, the continuous-time regret becomes a stochastic

integral.

The most natural way to analyze an integral is to use the fundamental theorem of calculus (FTC).

However, the continuous-time regret is defined by a stochastic integral so the FTC cannot be applied12.

12The integrator is reflected Brownian motion, which is almost surely not of bounded variation.
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However there is a stochastic analog of the FTC, namely the (continuous) Itô formula, which we state

in Theorem 2.40. We use it to provide an insightful decomposition of the continuous-time regret. In

particular, this decomposition suggests that the algorithm should satisfy an analytic condition known

as the backwards heat equation. A key resulting idea is: if the algorithm satisfies the backward heat

equation, then there is a natural potential function that upper bounds the regret of the algorithm.

This enables a systematic approach to obtain an explicit continuous-time algorithm and a potential

function that bounds the continuous algorithm’s regret. To go back to the discrete setting, using

the same potential function, we replace applications of Itô’s formula with the discrete Itô formula.

Remarkably, this leads to exactly the same regret bound as the continuous setting.

2.2.4 An application to random walks

As mentioned in Section 2.1, the following theorem of Davis can be proven as a corollary of our

techniques. Intriguingly, the proof involves regret, despite the fact that regret does not appear in the

theorem statement.

Theorem 2.3 (Davis [50]). Let (Xt)t≥0 be a standard random walk. Then E [|Xτ |] ≤ γE [
√
τ ] for every

stopping time τ ; moreover, the constant γ cannot be improved.

Proof. We begin by proving the first assertion. Suppose that Regret(T ) is the regret process when

Algorithm 3 is used against a random adversary. As discussed in Subsection 2.2.3 and Eq. (2.23), we

can write the regret process as Regret(T ) = ZT + gT /2 where ZT is a martingale and gT evolves as a

reflected random walk. Moreover, if τ is a stopping time satisfying E [
√
τ ] < ∞, then E [Zτ ] = 0 (see

Theorem 2.29).

The upper bound in Theorem 2.1 asserts that γ
√
T/2 ≥ Regret(T ) = ZT + gT /2 for all T ≥ 0.

Hence, γE [
√
τ ] /2 ≥ E [gτ ] /2. Replacing gτ with |Xτ | (since both gt and |Xt| are reflected random

walks), the proof of the first assertion is complete.

The fact that no constant smaller than γ is possible is a direct consequence of the results of

Breiman [25] and Greenwood and Perkins [81] as mentioned in Subsection 2.2.3 (see also Section 2.4

or [50]).

Remark 2.4. Davis [50] proved Theorem 2.3 for both random walks and Brownian motion. We

are also able to recover the result for Brownian motion as a corollary of our continuous-time result

(Theorem 2.38). The proof is very similar to that above.

2.2.5 An expression for the regret involving the gap

In our two-expert prediction problem, the most important scenario restricts each cost vector `t to be

either [ 1
0 ] or [ 0

1 ]. That is, at each time step, some expert incurs cost 1 and the other expert incurs

no cost. This restricted scenario is equivalent to the condition gt − gt−1 ∈ {±1} ∀t ≥ 1, where

gt := |Lt,1 − Lt,2| is the gap at time t. To prove the optimal lower bound it suffices to consider this

restricted scenario. The optimal upper bound is first proven in the restricted scenario, then extended

to general cost vectors in Subsection 2.3.3. With the sole exception of Subsection 2.3.3, we assume the

restricted scenario.
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We now present an expression, valid for any algorithm, that emphasizes how the regret depends

on the change in the gap. This expression will be useful in proving both the upper and lower bounds.

Henceforth we write Regret(t) := Regret(2, t,A,B) whereA and B are usually implicit from the context.

Proposition 2.5. Assume the restricted setting in which gt − gt−1 ∈ {±1} for every t ≥ 1. When

gt−1 6= 0, let pt denote the probability mass assigned by the algorithm to the “worst expert”, i.e., if

Lt−1,1 ≥ Lt−1,2 then pt = xt,1 and otherwise pt = xt,2. The quantity pt may depend arbitrarily on

`1, . . . , `t−1. Then

Regret(T ) =

T∑
t=1

pt · (gt − gt−1) · I[gt−1 6= 0] +

T∑
t=1

〈xt, `t〉 · I[gt−1 = 0]. (2.8)

Furthermore, assume that if gt−1 = 0, then pt = xt,1 = xt,2 = 1/2. In this case

Regret(T ) =
T∑
t=1

pt · (gt − gt−1). (2.9)

Remark 2.6. Observe that (2.9) is a discrete analog of a Riemann-Stieltjes integral of p with respect to

g. If (gt)t≥0 is a random process, then (2.9) is called a discrete stochastic integral. In the specific case

that (gt)t≥0 is a reflected random walk (the absolute value of a standard random walk), then Eq. (2.8)

is the Doob decomposition [97, Theorem 10.1] of the regret process
(
Regret(t)

)
t≥0

, i.e., the first sum

is a martingale and the second sum is an increasing predictable process.

Proof. Define ∆R(t) = Regret(t) − Regret(t − 1). The total cost of the best expert at time t is

L∗t := min {Lt,1, Lt,2}. The change in regret at time t is the cost incurred by the algorithm minus the

change in the total cost of the best expert, so ∆R(t) = 〈xt, `t〉 − (L∗t − L∗t−1).

Case 1: gt−1 6= 0. In this case, the best expert at time t− 1 remains a best expert at time t. (Note

that this uses the assumption that gt − gt−1 ∈ {−1, 1} so gt−1 ≥ 1.) If the worst expert incurs cost 1,

then the algorithm incurs cost pt and the best expert incurs cost 0, so ∆R(t) = pt and gt − gt−1 = 1.

Otherwise, the best expert incurs cost 1 and the algorithm incurs cost 1 − pt, so ∆R(t) = −pt and

gt − gt−1 = −1. For either choice of cost, we have ∆R(t) = pt · (gt − gt−1).

Case 2: gt−1 = 0. Both experts are best, but one incurs no cost, so L∗t = L∗t−1 and ∆R(t) = 〈xt, `t〉.

The above two cases prove Eq. (2.8). For the last assertion, we have that 〈xt, `t〉 = 1/2 = pt · (gt −
gt−1) whenever gt−1 = 0. Hence, we can collapse the two sums in Eq. (2.8) into one to get Eq. (2.9).

2.2.6 Background and basic facts on confluent hypergeometric functions

In this subsection, we collect some basic facts about confluent hypergeometric functions which will be

useful in the proof of Theorem 2.1 (for both the upper bound and the lower bound).
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For any a, b ∈ R with b 6∈ Z≤0, the confluent hypergeometric function of the first kind is defined as

M(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!
, (2.10)

where (x)n :=
∏n−1
i=0 (x + i) is the Pochhammer symbol. See, e.g., Abramowitz and Stegun [5,

Eq. (13.1.2)].

For notational convenience, for i ∈ {0, 1, 2, . . . , }, we write

Mi(x) = M(i− 1/2, i+ 1/2, x). (2.11)

We remark that M0(x) was previously defined in Eq. (2.3) but the two definitions are consistent by

identity (1) in Fact 2.8.

Fact 2.7 ([5, Eq. (13.4.9)]). If b /∈ Z≤0 then d
dxM(a, b, x) = a

b ·M(a+ 1, b+ 1, x). Consequently,

(1) M ′0(x) = −M1(x); and

(2) M ′1(x) = 1
3 ·M2(x).

Recall the definition of erfi from Eq. (2.3).

Fact 2.8. The following identities hold:

(1) M0(x) = −
√
πx erfi(

√
x) + ex.

(2) M1(x) =
√
π erfi(

√
x)

2
√
x

.

(3) M2(x) = 3(2ex
√
x−
√
π erfi(

√
x))

4x3/2 .

(4) 2
3 ·M2(x) · x+M1(x) = ex.

Proof.

(2): See [5], equations (7.1.21) or (13.6.19), and use that erfi(x) = −i erf(ix), where i =
√
−1.

(1): Differentiating the right-hand side (using the definition of erfi in (2.3)) yields −
√
π erfi(

√
x)

2
√
x

. So

the right-hand side is an anti-derivative of −M1(x), by part (2). Thus, the identity (1) follows from

Fact 2.7(1) and the initial condition M0(0) = 1.

(3): This follows directly by differentiating (2) and Fact 2.7(2).

(4): Immediate from (2) and (3).

Fact 2.9. The function M0(x) is decreasing and concave on [0,∞).

Remark 2.10. In fact, M0(x) is decreasing and concave on R but we do not require this fact.

Proof. By Fact 2.7, we have M ′0(x) = −M1(x) and M ′′0 (x) = −1
3 ·M2(x). Note that the coefficients of

M1(x),M2(x) in their Taylor series are all non-negative. As x ≥ 0, we have that M ′0(x),M ′′0 (x) ≤ 0 as

desired.

In Eq. (2.4) we defined γ as the smallest positive root of M0(x2/2). We now justify this definition

by showing that it indeed has a positive root. Moreover, we show that it has a unique positive root.
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Fact 2.11. The function x 7→ M0(x2/2) has a unique positive root, which we denote by γ. Moreover

M0(x2/2) > 0 for x ∈ (0, γ) and M0(x2/2) < 0 for x ∈ (γ,∞).

Proof. This follows from Fact 2.9 and the fact that M0(0) = 1.

Claim 2.12. For any ε > 0, there exists aε ∈ (−1,−1/2) such that the smallest13 positive root cε of

z 7→M(aε, 1/2, z
2/2) satisfies cε ≥ γ − ε.

Proof. Following Perkins’ notation [117], for c > 0 let λ0(−c, c) be such that c is the smallest positive

root of x 7→ M(−λ0(−c, c), 1/2, x2/2). By [117, Proposition 1], the map c 7→ λ0(−c, c) is strictly

decreasing and continuous on R>0, so it has a continuous inverse α. From (2.4) and Fact 2.8(1), we

see that λ0(−γ, γ) = 1/2, hence α(1/2) = γ. By continuity, for all ε > 0, there exists δ ∈ (0, 1/2) such

that α(1/2 + δ) > γ − ε. Then we may take aε = −(1/2 + δ) and cε = α(1/2 + δ).

2.3 Upper bound

In this section, we prove the upper bound in Theorem 2.1 via a sequence of simple steps. We remind the

reader that for simplicity, we will assume that the gap changes by ±1 at each step, which corresponds

to each loss vector `t being either [ 1
0 ] or [ 0

1 ]. The analysis can be extended to general loss vectors in

[0, 1]2 through the use of concavity arguments. The details can be found in Subsection 2.3.3.

The proof in this section uses the potential function R which, as explained in Subsection 2.2.3, is

defined via continuous-time arguments in Section 2.5. Moreover, the structure of the proof is heavily

inspired by the proof in the continuous setting. Finally, we remark that the analysis of this section uses

the potential function in a modular way by relating the potential function to the algorithm’s regret

via an elementary identity (Eq. (2.13)).14 This approach could conceivably be used to analyze other

algorithms (e.g., MWU).

Moving forward, we will need a few observations about the functions R and p, which were defined

in equations (2.6) and (2.7).

Lemma 2.13. For any t > 0, R(t, g) is concave and non-decreasing in g.

The proof of Lemma 2.13 can be verified by “inspecting the curve” and is nothing more than a

calculus exercise. First, we have the following two calculations. Assume t > 0

Lemma 2.14. Consider the function R̃(t, g) = g
2 +κ

√
tM0

(
g2

2t

)
. Then ∂

∂g R̃(t, g) = 1
2

(
1− erfi(g/

√
2t)

erfi(γ/
√

2)

)
.

Lemma 2.15. ∂
∂gR(t, g) = 1

2

(
1− erfi(g/

√
2t)

erfi(γ/
√

2)

)
+

.

The previous two lemmata are essentially special cases of Lemma 2.46; the first lemma is by the

first part of Lemma 2.46 and the second lemma deals with the fact that R(t, g) is truncated at g = γ
√
t

(see Eq. (2.6)).

13In fact, there is a unique positive root.
14Our analysis may also be viewed as an amortized analysis. With this viewpoint, the algorithm incurs amortized regret

at most γ
2

(
√
t−
√
t− 1) ≈ γ/4

√
t at each time step t.
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Proof of Lemma 2.13. The fact that R(t, g) is non-decreasing in g follows from Lemma 2.15 because

its derivative in g is non-negative. The concavity of R(t, g) (in g) follows from the fact that erfi is

non-decreasing, so ∂
∂gR(t, g) is non-increasing in g.

As a consequence of Lemma 2.13, we can easily obtain the maximum value of R(t, g) for any t.

Lemma 2.16. For any t > 0, we have R(t, g) ≤ γ
√
t/2.

Proof. Lemma 2.13 shows that R(t, g) is non-decreasing in g. By definition, R(t, g) is constant for

g ≥ γ
√
t. It follows that maxg R(t, g) ≤ R(t, γ

√
t) = γ

√
t/2.

In the definition of the prediction task, the algorithm must produce a probability vector xt. Re-

calling the definition of xt in Algorithm 3, it is not a priori clear whether xt is indeed a probability

vector. We now verify that it is, since Lemma 2.17 implies that p(t, g) ∈ [0, 1/2] for all t, g.

Lemma 2.17. Fix t ≥ 1. Then

(1) p(t, 0) = 1/2;

(2) p(t, g) is non-increasing in g; and

(3) p(t, g) ≥ 0.

Proof. For the first assertion, we have

p(t, 0) =
1

2
(R(t, 1)−R(t,−1)) =

1

2

(
1

2
+ κ
√
tM0(1/2t) +

1

2
− κ
√
tM0(1/2t)

)
=

1

2
.

For the second equality, we used that 1 ≤ γ ≤ γ
√
t for all t ≥ 1. The second assertion follows

from concavity of R, which was shown in Lemma 2.13, and an elementary property of concave func-

tions (Fact A.1). The final assertion holds because R is non-decreasing in g, which is also shown in

Lemma 2.13.

2.3.1 Analysis when gap increments are ±1

In this subsection we prove the upper bound of Theorem 2.1 for a restricted class of adversaries

(that nevertheless capture the core of the problem). The analysis is extended to all adversaries in

Subsection 2.3.3.

Theorem 2.18. Let A be the algorithm described in Algorithm 3. For any adversary B such that each

cost vector `t is either [ 1
0 ] or [ 0

1 ], we have

sup
t≥1

Regret(2, t,A,B)√
t

≤ γ

2
.

Our analysis will rely on an identity known as the discrete Itô formula, which is the discrete analogue

of Itô’s formula from stochastic analysis (see Theorem 2.40). To make this connection (in addition to

future connections) more apparent, we define the discrete derivatives of a function f to be

fg(t, g) =
f(t, g + 1)− f(t, g − 1)

2
,
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ft(t, g) = f(t, g)− f(t− 1, g),

fgg(t, g) =
(
f(t, g + 1) + f(t, g − 1)

)
− 2f(t, g).

It was remarked earlier that p(t, g) (see Eq. (2.7)) is the discrete derivative of R, and this is because

p(t, g) = Rg(t, g). (2.12)

Lemma 2.19 (Discrete Itô formula). Let g0, g1, . . . be any sequence of real numbers (not necessarily

random) satisfying |gt − gt−1| = 1. Then for any function f and any fixed time T ≥ 1, we have

f(T, gT )− f(0, g0) =

T∑
t=1

fg(t, gt−1) · (gt − gt−1) +

T∑
t=1

(
1

2
fgg(t, gt−1) + ft(t, gt−1)

)
. (2.13)

This lemma is a small generalization of [97, Example 10.9] to accommodate a bivariate function f

that depends on t. The proof is essentially identical and is provided here for completeness.

Proof. By telescoping, f(T, gT ) − f(0, g0) =
∑T

t=1

(
f(t, gt) − f(t − 1, gt−1)

)
. Consider a fixed t ∈ [T ].

We can write

f(t, gt)− f(t− 1, gt−1) =

(
f(t, gt)−

f(t, gt−1 + 1) + f(t, gt−1 − 1)

2

)
+

(
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
− f(t− 1, gt−1)

)
.

(2.14)

For the first bracketed term, by considering the cases gt = gt−1 + 1 and gt = gt−1 − 1, we have

f(t, gt)−
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
=
f(t, gt−1 + 1)− f(t, gt−1 − 1)

2
· (gt − gt−1)

= fg(t, gt−1) · (gt − gt−1).

(2.15)

The above step is the only place where the assumption that |gt − gt−1| = 1 is used. For the second

bracketed term, we have

f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
− f(t− 1, gt−1) =

f(t, gt−1 + 1) + f(t, gt−1 − 1)− 2f(t, gt−1)

2

+ (f(t, gt−1)− f(t− 1, gt−1))

=
1

2
fgg(t, gt−1) + ft(t, gt−1).

This gives the desired formula.

Now we show that the regret involves a discrete integral of the same form as (2.13). Recall that

Lemma 2.17(1) guarantees p(t, 0) = 1/2, i.e., xt = [1/2, 1/2]. Hence, (2.9) gives

Regret(T ) =
T∑
t=1

p(t, gt−1) · (gt − gt−1) (2.16)
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where g0 = 0 and gt ≥ 0 for all t ≥ 1.

Key technical step. The following is the most non-obvious step of the proof. We will apply the

discrete Itô formula to Eq. (2.16), taking f = R. Since p = Rg = fg, observe that the main difference

between Eq. (2.13) and Eq. (2.16) is the absence of 1
2fgg(t, gt−1) + ft(t, gt−1) in Eq. (2.16). In the

continuous setting, we will see that a key idea is to try to obtain a solution satisfying (1
2∂gg +∂t)f = 0;

this is the well-known backwards heat equation. In the discrete setting, by a remarkable stroke of luck,

we have the following analogous property.

Lemma 2.20 (Discrete backwards heat inequality). 1
2Rgg(t, g) +Rt(t, g) ≥ 0 for all t ≥ 1 and g ≥ 0.

This lemma is the most technical part of the discrete analysis and we dedicate Subsection 2.3.2 to

its proof. We now have all the ingredients needed to prove our main theorem (in the present special

case).

Proof of Theorem 2.18. Apply Lemma 2.19 to the function R and the sequence g0, g1, . . . of (integer)

gaps produced by the adversary B. Then, for any time T ≥ 0,

R(T, gT )−R(0, g0)

=
T∑
t=1

Rg(t, gt−1) · (gt − gt−1) +
T∑
t=1

(1

2
Rgg(t, gt−1) +Rt(t, gt−1)

)
(by Lemma 2.19)

≥
T∑
t=1

p(t, gt−1) · (gt − gt−1) (by (2.12) and Lemma 2.20)

= Regret(T ) (by (2.16)).

Since g0 = 0 and R(0, 0) = 0, applying Lemma 2.16 shows that Regret(T ) ≤ R(T, gT ) ≤ γ
√
T/2.

The reader at this point may be wondering why γ is the right constant to appear in the analysis. In

Section 2.5, we define the function R specifically to obtain γ in the preceding analysis. In Section 2.4,

our matching lower bound will prove that γ is indeed the right constant.

2.3.2 Proof of Lemma 2.20

In this subsection, we prove the discrete backwards heat inequality (Lemma 2.20). We begin with a

few calculations involving M0.

Lemma 2.21. For all u ∈ [0, 1/2], we have M0(u) ≥
√

1− 2u.

Proof. The Taylor expansion of M0(u) around u = 0 is given by

M0(u) = 1−
∞∑
k=1

1

(2k − 1)k!
uk.

This follows from the definition of M0 as defined in Eq. (2.6). For details of the calculation, see the

start of the proof of Fact 2.11.
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Note that dk

dxk

√
1− 2x = − (2k−3)!!

(1−2x)(2k−1)/2 , where (n)!! denotes the double factorial (note that (−1)!! =

1).15 Hence, the Taylor series of
√

1− 2u around u = 0 is

√
1− 2u = 1−

∞∑
k=1

(2k − 3)!!

k!
uk.

Clearly (2k − 3)!! ≥ 1 ≥ 1
2k−1 for k ≥ 1 so this implies that M0(u) ≥

√
1− 2u for all u ∈ [0, 1/2].

Lemma 2.22. For all z ∈ [0, 1) and x ∈ R, we have

M0

(
(x+ z)2

2

)
+M0

(
(x− z)2

2

)
≥ 2
√

1− z2M0

(
x2

2(1− z2)

)
.

Proof. Fix z ∈ [0, 1) and consider the function

hz(x) = M0

(
(x+ z)2

2

)
+M0

(
(x− z)2

2

)
− 2
√

1− z2M0

(
x2

2(1− z2)

)
.

Note that hz(0) ≥ 0 by applying Lemma 2.21 with u = z2/2. We will show that x = 0 is the minimizer

of hz which implies the lemma.

Indeed, computing derivatives and using the first statement in Fact 2.7, we have

h′z(x) = −M1

(
(x+ z)2

2

)
· (x+ z)−M1

(
(x− z)2

2

)
· (x− z) + 2M1

(
x2

2(1− z2)

)
· x√

1− z2
.

As h′z(0) = 0, x = 0 is a critical point of hz. We will now show that hz is convex which certifies that

x = 0 is indeed a minimizer.

To obtain h′′z , we differentiate term-by-term. Let u = (x+z)2

2 . Then

d

dx
M1

(
(x+ z)2

2

)
· (x+ z) =

M2

(
(x+z)2

2

)
· (x+ z)2

3
+M1

(
(x+ z)2

2

)
=

2M2(u) · u
3

+M1(u)

=
2u(2eu

√
u−
√
π erfi(

√
u))

4u3/2
+

√
π erfi(

√
u)

2
√
u

= eu = exp

(
(x+ z)2

2

)
.

The first equality is by Fact 2.7 and the third equality is by identities (2) and (3) in Fact 2.8. We can

similarly show that
d

dx
M1

(
(x− z)2

2

)
· (x− z) = exp

(
(x− z)2

2

)
.

15If n ∈ Z≥0, we define (n)!! =
∏dn/2e−1
k=0 (n− 2k). If n ∈ Z<0, we define (n)!! via the recursive relation (n)!! = (n+2)!!

n+2
so

that (−1)!! = (1)!!
1

= 1.
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Finally, for the last term, we have

d

dx
M1

(
x2

2(1− z2)

)
· x√

1− z2
=

1

3
M2

(
x2

2(1− z2)

)
· x2

(1− z2)3/2
+M1

(
x2

2(1− z2)

)
· 1√

1− z2

=
1√

1− z2

(
2

3
M2

(
x2

2(1− z2)

)
· x2

2(1− z2)
+M1

(
x2

2(1− z2)

))

=
exp

(
x2

2(1−z2)

)
√

1− z2
,

where the first equality uses Fact 2.7 and the last equality is by identity (4) in Fact 2.8.

Hence, we have

h′′z(x) =
2ex

2/2(1−z2) − (e(x+z)2/2 + e(x−z)2/2)
√

1− z2

√
1− z2

.

So to check that h′′z(x) ≥ 0 for all x ∈ R, it suffices to check that

(e(x+z)2/2 + e(x−z)2/2)
√

1− z2

2
≤ ex2/2(1−z2).

Indeed, we have

(e(x+z)2/2 + e(x−z)2/2)
√

1− z2

2
≤ (e(x+z)2/2 + e(x−z)2/2)e−z

2/2

2

= ex
2/2 (exz + e−xz)

2

≤ ex2/2ex
2z2/2

= ex
2(1+z2)/2

≤ ex2/2(1−z2),

where the first inequality is because 1 − a ≤ e−a for all a ∈ R, the second inequality is because

(ea + e−a)/2 = cosh(a) ≤ ea2/2 for all a ∈ R, and the last inequality is because 1 + a ≤ 1/(1− a) for all

a < 1. This proves that hz is convex which concludes the proof that x = 0 is a minimizer for hz and

hence, completes the proof of the lemma.

We are now ready to prove the discrete backwards heat inequality. It essentially follows from

Lemma 2.22 but there are a few cases due to the piecewise definition of R(t, g).

Proof of Lemma 2.20. The inequality Rt(t, g) + 1
2Rgg(t, g) ≥ 0 is equivalent to

R(t, g + 1) +R(t, g − 1) ≥ 2R(t− 1, g). (2.17)

We first prove the claim for t = 1. In this case, the RHS of Eq. (2.17) is identically 0. On the other

hand, the LHS of Eq. (2.17) is non-decreasing in g by Lemma 2.13. Hence, it suffices to prove the
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inequality for g = 0. With t = 1 and g = 0, we have

R(1, 1) +R(1,−1) = 2κM0(1/2).

As M0 is decreasing (Fact 2.9) and 1/2 ≤ γ2/2, we have M0(1/2) ≥M0(γ2/2) = 0. So Eq. (2.17) holds

for t = 1 and g ≥ 0.

For the remainder of the proof, we assume that t > 1. We will consider a few cases depending on

the value of g and t.

Case 1: g ≤ min{γ
√
t − 1, γ

√
t− 1}. In this case, g + 1 ≤ γ

√
t, g ≤ γ

√
t− 1, and g − 1 ≤ γ

√
t.

Hence,

R(t, g + 1) =
g + 1

2
+ κ
√
t ·M0

(
(g + 1)2

2t

)
R(t, g − 1) =

g − 1

2
+ κ
√
t ·M0

(
(g − 1)2

2t

)
R(t− 1, g) =

g

2
+ κ
√
t ·M0

(
g2

2(t− 1)

)
.

So Eq. (2.17) is equivalent to

√
t ·M0

(
(g + 1)2

2t

)
+
√
t ·M0

(
(g − 1)2

2t

)
≥ 2
√
t− 1 ·M0

(
g2

2(t− 1)

)
, (2.18)

or rearranging, is equivalent to

M0

(
(g + 1)2

2t

)
+M0

(
(g − 1)2

2t

)
≥ 2
√

1− 1/t ·M0

(
g2

2(t− 1)

)
.

The latter inequality is true by Lemma 2.22 using x = g/
√
t and z = 1/

√
t ∈ (0, 1).

Case 2: γ
√
t−1 ≤ g ≤ γ

√
t− 1. Let R̃ be the function defined in Lemma 2.14. In this case, we have

R(t, g + 1) = γ
√
t = R̃(t, γ

√
t) ≥ R̃(t, g + 1) =

g + 1

2
+ κ
√
t ·M0

(
(g + 1)2

2t

)
.

The inequality is by Lemma 2.14 which implies that R̃(t, g+ 1) is non-increasing for g ∈ (γ
√
t− 1,∞).

Using the lower bound on R(t, g + 1), Eq. (2.17) is again implied by Eq. (2.18) and we have already

verified that Eq. (2.18) is true.

Case 3: γ
√
t− 1 ≤ g ≤ γ

√
t− 1. In this case

R(t, g + 1) =
g + 1

2
+ κ
√
t ·M0

(
(g + 1)2

2t

)
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R(t, g − 1) =
g − 1

2
+ κ
√
t ·M0

(
(g − 1)2

2t

)
R(t− 1, g) =

γ

2

√
t− 1.

As g ≤ γ
√
t− 1, we have M0

(
(g−1)2

2t

)
≥ M0

(
(g+1)2

2t

)
≥ M0

(
γ2

2

)
= 0. Here, the first two inequalities

are because M0 is decreasing (Fact 2.9). Hence,

R(t, g + 1) +R(t, g − 1) ≥ g ≥ γ
√
t− 1 = 2R(t− 1, g),

which is precisely Eq. (2.17).

Case 4: max{γ
√
t− 1, γ

√
t− 1} ≤ g. In this case, R(t− 1, g) and R(t, g + 1) are constant in g but

R(t, g− 1) is non-decreasing in g. Hence, it suffices to check Eq. (2.17) for g = max{γ
√
t− 1, γ

√
t− 1}

which holds by either case 2 (if γ
√
t− 1 ≤ γ

√
t− 1) or case 3 (if γ

√
t− 1 ≤ γ

√
t− 1).

2.3.3 Analysis of Algorithm 3 for general cost vectors

In this section, we prove the upper bound of Theorem 2.1 in full generality.

Theorem 2.23. Let A be the algorithm described in Algorithm 3. For any adversary B (allowing any

cost vectors `t ∈ [0, 1]2), we have

sup
t≥1

Regret(2, t,A,B)√
t

≤ γ

2
.

In Subsection 2.3.1, since the gap was integer-valued, the identity of the best expert could only

change when the gap is exactly 0 (at which time there are two best experts). In general, the gap can

be real-valued, so the best expert can switch abruptly, which affects our formula for the regret. We will

need to generalize Proposition 2.5 to deal with this possibility. Let ∆R(t) = Regret(t)−Regret(t− 1),

as in the proof of Proposition 2.5.

Proposition 2.24. Recall that gt is the gap at time t and p(t, gt−1) is the probability mass assigned to

the worst expert at time t. Suppose that p(t, 0) = 1/2 for all t ≥ 1.

1. If a best expert at time t− 1 remains a best expert at time t then

∆R(t) = (gt − gt−1)p(t, gt−1).

2. If a best expert at time t− 1 is no longer a best expert at time t then

∆R(t) = gt − (gt + gt−1)p(t, gt−1).

Moreover, gt + gt−1 ≤ 1.

The proof of this is very similar to that of Proposition 2.5
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Remark 2.25. Note that, at any specific time, the set of best experts may have size either one or

two so the choice of the best expert in Proposition 2.24 may be ambiguous. However, note that if

gt−1 = 0 (i.e., there are two best experts at time t − 1) then p(t, gt−1) = 1/2 so both formulas give

∆R(t) = 1
2gt. On the other hand, if gt = 0 (i.e., there are two best experts at time t) then both formulas

give ∆R(t) = −gt−1p(t, gt−1). Hence there is no issue with the ambiguity.

Proof of Proposition 2.24. Fix t and for notational convenience, let p = p(t, gt−1) throughout the proof.

In addition, throughout the proof, we use expert 1 to refer to the worst expert at time t − 1 (chosen

arbitrarily if the choice of worst expert is not unique) and use expert 2 to refer to the other expert.

Let `t,1, `t,2 ∈ [0, 1] be the respective losses at time t and Lt,1, Lt,2 be the respective cumulative losses

up to time t. Note that gt−1 = Lt−1,1 − Lt−1,2. Finally, we set L∗t = mini∈{1,2} Lt,i. By assumption,

L∗t−1 = Lt−1,2.

For the first assertion we have L∗t = Lt,2 (because a best expert remains a best expert). Note that

`t,1 − `t,2 = (Lt,1 − Lt,2)− (Lt−1,1 − Lt−1,2) = gt − gt−1. So the chance in the cost of the algorithm at

time t can be can be written as

p`t,1 + (1− p)`t,2 = p(`t,1 − `t,2) + `t,2 = p(gt − gt−1) + `t,2.

On the other hand, the change in the cost of the best expert is L∗t − L∗t−1 = Lt,2 − Lt−1,2 = `t,2.

Subtracting this from the above equation gives ∆R(t) = (gt − gt−1)p.

In the second assertion, we have L∗t = Lt,1 so gt = Lt,2 − Lt,1. Again, the algorithm incurs cost

p`t,1 + (1− p)`t,2. This time, note that `t,1 − `t,2 = (Lt,1 − Lt,2) − (Lt−1,1 − Lt−1,2) = −gt − gt−1. So

the algorithm incurs cost p(`t,1 − `t,2) + `t,2 = −p(gt + gt−1) + `t,2. On the other hand, the change in

the cost of the best expert iss

L∗t − L∗t−1 = Lt,1 − Lt−1,2 = Lt,1 − Lt−1,1 + Lt−1,1 − Lt−1,2 = `t,1 + gt−1 = `t,2 − gt,

where the last equality uses the identity `t,1 − `t,2 = −gt − gt. Subtracting this last quantity with the

change in the algorithm’s cost gives ∆R(t) = gt − p(gt + gt−1).

To complete the proof for the second assertion, it remains to check that gt+ gt−1 ≤ 1. From above,

we have the identity, gt + gt−1 = `t,2 − `t,1 ≤ `t,2 ≤ 1, as desired.

We will need the following identity which is essentially the same as Lemma 2.19 but without

specializing to the case where |gt − gt−1| = 1.

Lemma 2.26. Let g0, g1, . . . be a sequence of real numbers. Then for any function f and any fixed

time T ≥ 1, we have

f(T, gT )− f(0, g0) =

T∑
t=1

f(t, gt)−
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2

+

T∑
t=1

(
1

2
fgg(t, gt−1) + ft(t, gt−1)

)
.

(2.19)
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Proof. The proof is identical to the proof of Lemma 2.19 except that we do not perform the simplifi-

cation in Eq. (2.15).

When we assumed the gaps were integer-valued, we had

∆R(t) = R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

because both sides were equal to Rg(t, gt−1) · (gt − gt−1); see Eq. (2.9) and Eq. (2.15). This does not

hold in the general setting, but we will be able to prove the following inequality.

Lemma 2.27. For all t ≥ 1,

∆R(t) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
.

The proof of Lemma 2.27 appears in Subsection 2.3.4. Given Lemma 2.27, we can now prove our

upper bound in general.

Proof of Theorem 2.23. Fix any T ≥ 1. Then

R(T, gT )−R(0, g0)

=

T∑
t=1

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

+

T∑
t=1

(
1

2
Rgg(t, gt−1) +Rt(t, gt−1)

)
(Lemma 2.26)

≥
T∑
t=1

∆R(t) (Lemma 2.27 and Lemma 2.20)

= Regret(T ).

As g0 = 0 and R(0, 0) = 0, we have Regret(T ) ≤ R(T, gT ) ≤ γ
√
T/2, where the last inequality is by

Lemma 2.16.

2.3.4 Proof of Lemma 2.27

Proof of Lemma 2.27. Fix t ≥ 1. We will consider the two cases corresponding to the two cases in

Proposition 2.24.

Case 1: A best expert at time t− 1 remains a best expert at time t. In this case, ∆R(t) =

(gt − gt−1)p(t, gt−1), so it suffices to check that

p(t, gt−1) · (gt − gt−1) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
. (2.20)

30



Rearranging, the above inequality is equivalent to

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
− p(t, gt−1) · (gt − gt−1) ≥ 0.

If gt−1 is fixed then notice that the LHS of the above expression is concave in gt. To see this, Lemma 2.13

implies that R(t, gt) is concave in gt, the second term is constant in gt, and the last term is linear in

gt. Hence, it suffices to verify the inequality when gt = gt−1 ± 1 (Fact A.2). Indeed, if |gt − gt−1| = 1

then, as in Eq. (2.15)

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
=
R(t, gt−1 + 1)−R(t, gt−1 − 1)

2
· (gt − gt−1)

= p(t, gt−1) · (gt − gt−1),

where the second equality used the definition of p.

Case 2: A best expert at time t− 1 is no longer a best expert at time t. This case is nearly

identical to the previous case but in this case ∆R(t) = gt − (gt + gt−1)p(t, gt−1) with the promise that

gt + gt−1 ≤ 1. Hence, the inequality we need to verify is that

gt − (gt + gt−1)p(t, gt−1) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
. (2.21)

Once again, we do this via a concavity argument. Fix gt−1 ∈ [0, 1]. Since gt + gt−1 ≤ 1, we have

gt ∈ [0, 1 − gt−1]. Notice that the LHS of Eq. (2.21) is linear in gt and the RHS of Eq. (2.21) is

concave in gt (by Lemma 2.13). Hence, again by Fact A.2, it suffices to check the inequality assuming

gt ∈ {0, 1 − gt−1}. Note that the case gt = 0 is handled by case 1 since the LHS of Eq. (2.20) and

Eq. (2.21) are identical (see also Remark 2.25).

Now assume that gt = 1− gt−1. Then Eq. (2.21) becomes

1− gt−1 − p(t, gt−1) ≤ R(t, 1− gt−1)− R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

Recall that p(t, g) = R(t,g+1)−R(t,g−1)
2 so that the above inequality is equivalent to

1− gt−1 −
R(t, gt−1 + 1)−R(t, gt−1 − 1)

2
≤ R(t, 1− gt−1)− R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
.

Rearranging the inequality becomes

1 ≤ gt−1 +R(t, 1− gt−1)−R(t, gt−1 − 1).

Note that gt−1 ≤ 1 ≤ γ
√
t (since t ≥ 1 and γ ≥ 1). Hence, by definition of R, the RHS of the above

inequality is

gt−1 +R(t, 1− gt−1)−R(t, gt−1 − 1) = gt−1 +
1− gt−1

2
+ κ
√
tM0

(
(1− gt−1)2

2

)
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− gt−1 − 1

2
− κ
√
tM0

(
(gt−1 − 1)2

2

)
= 1.

This proves that the desired inequality holds with equality.

We have now completed the proof that the algorithm achieves regret at most γ
√
t/2 for all t > 0

against any adversary. In the next section, we show that the bound cannot be improved.

2.4 Lower bound

The main result of this section is the following theorem, which implies the lower bound in Theorem 2.1.

Theorem 2.28. For any algorithm A and any ε > 0, there exists an adversary Bε such that

sup
t≥1

Regret(2, t,A,Bε)√
t

≥ γ − ε
2

. (2.22)

The statement of Theorem 2.28 can be strengthened by replacing the sup with a lim sup; see Subsec-

tion 2.4.1. This means that for any algorithm A, there is an adversary Bε such that Regret(2, t,A,Bε) ≥
γ−ε

2

√
t for infinitely many times t.

It is common in the literature for regret lower bounds to be proven by random adversaries; see, e.g.,

[33, Theorem 3.7]. We will also consider a random adversary, but the novelty is the use of a non-trivial

stopping time at which it can be shown that the regret is large.

A random adversary. Suppose an adversary produces a sequence of cost vectors `1, `2, . . . ∈ {0, 1}2

as follows. For all t ≥ 1,

• If gt−1 > 0 then `t is randomly chosen to be one of the vectors [ 1
0 ] or [ 0

1 ], uniformly and

independent of `1, . . . , `t−1. Thus gt − gt−1 is uniform in {±1}.

• If gt−1 = 0 then `t = [ 1
0 ] if xt,1 ≥ 1/2, and `t = [ 0

1 ] if xt,2 > 1/2. In both cases gt = 1.

As remarked above, the process (gt)t≥0 has the same distribution as the absolute value of a standard

random walk (which is also known as a reflected random walk).

We now obtain from (2.8) a lower bound on the regret of any algorithm against this adversary. The

adversary’s behavior when gt−1 = 0 ensures that 〈xt, `t〉 ≥ 1/2, showing that

Regret(T ) ≥
T∑
t=1

pt (gt − gt−1) · I[gt−1 6= 0]︸ ︷︷ ︸
martingale

+
1

2

T∑
t=1

I[gt−1 = 0]︸ ︷︷ ︸
local time

∀T ∈ N.

(Equality holds if the algorithm sets xt = [1/2, 1/2] whenever gt−1 = 0.) The first sum is a martingale

indexed by T . (This holds because gt − gt−1 has conditional expectation 0 when gt−1 6= 0, and

I[gt−1 6= 0] = 0 when gt−1 = 0.) The second sum is called the local time of the random walk. Using

Tanaka’s formula [97, Ex. 10.8], the local time can be written as
∑T

t=1 I[gt−1 = 0] = gt−Z ′t where Z ′t is
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a martingale with uniformly bounded increments and Z ′0 = 0. Thus, combining the two martingales,

we have

Regret(t) ≥ Zt +
gt
2

∀t ∈ Z≥0, (2.23)

where Zt is a martingale with uniformly bounded increments and Z0 = 0. Once again, we remark that

equality holds in Eq. (2.23) if the algorithm sets xt = [1/2, 1/2] whenever gt−1 = 0.

Intuition for a stopping time. Optional stopping theorems assert that, under some hypotheses,

the expected value of a martingale at a stopping time equals the value at the start. Using such a

theorem, at a stopping time τ it would hold that E [Regret(τ)] ≥ E [gτ ] /2 (under some hypotheses

on τ and Z). Thus it is natural to design a stopping time τ that maximizes E [gτ ] and satisfies the

hypotheses. We know from (2.2) that the optimal anytime regret at time t is Θ(
√
t), so one reasonable

stopping time would be

τ(c) := min
{
t > 0 : gt ≥ c

√
t
}

for some constant c yet to be determined. If τ(c) and Z satisfy the hypotheses of the optional stopping

theorem, then it will hold that E [Regret(τ(c))] ≥ c
2 E[

√
τ(c) ]. From this, it follows, fairly easily, that

AnytimeNormRegret(2) ≥ c/2; this will be argued more carefully later.

An optional stopping theorem. The optional stopping theorems appearing in standard references

require one of the following hypotheses: (i) τ is almost surely bounded, or (ii) E [τ ] is bounded and the

martingale has bounded increments, or (iii) the martingale is almost surely bounded and τ is almost

surely finite. See, e.g., [26, Theorem 5.33], [67, Theorem 4.8.5], [97, Theorem 10.11], [82, Theorem

12.5.1], [129, Theorem II.57.4], or [145, Theorem 10.10]. These will not suffice for our purposes.

For example, condition (ii) is the only useful hypothesis for our setting. It is known [25, 133] that

E [τ(c)] < ∞, with τ(c) as above, if and only if c < 1; this yields a weak lower bound on the regret.

Instead, we will require the following theorem, which has a weaker hypothesis (due to the square root).

We are unable to find a reference for this theorem, although it is presumably folklore, so we provide a

proof of this result below.

Theorem 2.29. Let Zt be a martingale and K > 0 a constant such that |Zt−Zt−1| ≤ K almost surely

for all t. Let τ be a stopping time. If E
[√

τ
]
<∞ then E [Zτ ] = E [Z0].

Before we prove Theorem 2.29, some preliminary definitions are required. For a martingale

(Xt)t∈N, define its maximum process X∗t = max0≤s≤t |Xs| and its quadratic variation process [X]t =∑
1≤s≤t(Xs −Xs−1)2.

Theorem 2.30 (Davis [49]). There exists a constant C such that for any martingale (Xt)t∈N with

X0 = 0, E [X∗∞] ≤ CE
[
[X]

1/2
∞
]
.

Proof of Theorem 2.29. Define the stopped process Zt∧τ , which is also a martingale [97, Theorem

10.15]. Since E [
√
τ ] <∞ we have P [τ <∞] = 1. On the event {τ <∞}, (Zt∧τ )t≥0 has a well-defined

limit, which is used as the almost sure definition of Zτ .
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We claim that Zt∧τ
L1−→ Zτ ∈ L1 from which the theorem concludes as follows. By optional stopping

[97, Lemma 10.10], since τ ∧ t ≤ t, E [Zt∧τ ] = E [Z0]. This last equality holds for any fixed t ≥ 0.

Hence, E [Zτ ] = limt→∞ E [Zt∧τ ] = E [Z0].

It remains to show that Zτ∧t
L1−→ Zτ ∈ L1. The L1 convergence is proven using the dominated

convergence theorem [97, Corollary 6.26], which requires exhibiting a random variable that bounds

|Zt∧τ | for all t and has finite expectation. For notational convenience, let Xt = Zt∧τ . Clearly |Xt| ≤
X∗t ≤ X∗∞, so it remains to show that E [X∗∞] < ∞. Using Theorem 2.30 and that Z has increments

bounded by K,

E [X∗∞] ≤ CE
[
[X]1/2∞

]
= CE

( ∑
1≤s≤τ

(Zs − Zs−1)2
)1/2

 ≤ CKE
[
τ1/2

]
< ∞.

The dominated convergence theorem states that Zt∧τ
L1−→ Zτ ∈ L1, as required.

Optimizing the stopping time. Since the martingale Zt defined above has bounded increments,

Theorem 2.29 may be applied so long as E[
√
τ(c) ] < ∞, in which case the preceding discussion

yields AnytimeNormRegret(2) ≥ c/2. We reiterate that the condition E[
√
τ(c) ] < ∞ is a stronger

assumption than τ(c) being almost surely finite. So it remains to determine

sup{ c ≥ 0 : E[
√
τ(c) ] <∞ }, (2.24)

where τ(c) is the first time at which a standard random walk crosses the two-sided boundary ±c
√
t.

We will use the following result, in which M is the confluent hypergeometric function defined in

Subsection 2.2.6.

Theorem 2.31 ([25, Theorem 2], [81, Theorem 5]). Let c > 1 and a < 0 be such that c is the

smallest positive root of the function x 7→ M(a, 1/2, x2/2). Then P [τ(c) > u] = uaπ(u), where π is a

slowly-varying function, i.e. limx→∞ π(ax)π(x)−1 for all a > 0.

Fact 2.32 ([71, Lemma VIII.8.2]). Let π be a slowly-varying function. Then for all ε > 0 there exists

Mε such that π(x) ≤ xε for all x ≥Mε.

By combining Theorem 2.31 and Fact 2.32, we see that if c is the smallest positive root of the

function x 7→ M(a, 1/2, x2/2) then for any δ > 0, there exists a constant Cδ such that P [τ(c) > u] ≤
Cεu

a+ε.

Recall the definition of γ in (2.4). For intuition, let us apply Theorem 2.31 with c = γ, which is

defined so that it is the root for a = −1/2 (see Eq. (2.11) and Fact 2.8). It then follows that (ignoring

the slowly varying function for now),

E
[√

τ(γ)
]

=

∫ ∞
0

P
[√

τ(γ) > s
]

ds =

∫ ∞
0

P
[
τ(γ) > s2

]
ds ∼ K

∫ ∞
0

s−1ds,

by Theorem 2.31. This integral is infinite, so Theorem 2.29 cannot be applied to τ(γ). However, the

integral is on the cusp of being finite. By slightly decreasing a below −1/2, and slightly modifying c
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to be the new root, we should obtain a finite integral, showing that E[
√
τ(c) ] is finite. The following

proof uses analytic properties of M to show that this is possible.

Proof of Theorem 2.28. Fix any ε > 0 that is sufficiently small. Consider the random adversary and

the stopping times τ(c) described above. By Claim 2.12, there exists aε ∈ (−1,−1/2) and cε ≥ γ − ε
such that cε is the unique positive root of z 7→ M(aε, 1/2, z

2/2). Let δ > 0 be a constant such that

aε + δ < −1/2. Then for some constant Cδ,

E
[√

τ(cε)
]

=

∫ ∞
0

P
[
τ(cε) > s2

]
ds ≤ Cδ

∫ ∞
0

s2(aε+δ)ds < ∞, (2.25)

since aε + δ < −1/2. It follows that τ(cε) is almost surely finite, and therefore Regret(τ(cε)) and gτ(cε)

are almost surely well defined. Applying Theorem 2.29 to the martingale Zt appearing in Eq. (2.23),

we obtain that

E [Regret(τ(cε))] ≥ E
[
Zτ(cε) +

gτ(cε)

2

]
= E [Z0] +

1

2
E
[
gτ(cε)

]
=

1

2
E
[
gτ(cε)

]
=

1

2
E
[
cε
√
τ(cε)

]
,

where the second equality is because Z0 = 0 deterministically. By the probabilistic method, there

exists a finite sequence of cost vectors `1, . . . , `t (depending on A and ε) for which the regret of A at

time t is at least cε
√
t/2. The adversary Bε (which knows A) provides this sequence of cost vectors to

algorithm A, thereby proving (2.22).

2.4.1 Large regret infinitely often

In this subsection, we sketch the following theorem.

Theorem 2.33. For any algorithm A and any ε > 0, there exists an adversary Bε such that

lim sup
t≥1

Regret(2, t,A,Bε)√
t

≥ γ − ε
2

. (2.26)

The basic idea of the proof of Theorem 2.33 is quite simple. Initially, we run a reflected random

walk starting at the origin and wait until it crosses the (γ − ε)
√
t boundary. By the arguments in

Theorem 2.28, we know that, in expectation, the regret is large at the first instant when the random

walk crosses the boundary. We then “restart” the random walk except now the starting position is the

current position of the random walk instead of the origin. The key observation is that Theorem 2.31 is

only sensitive to the asymptotics of the boundary and not the starting position. Thus, essentially the

same arguments in Theorem 2.28 can be used to show that (i) the random walk crosses the (γ − ε)
√
t

boundary a second time and (ii) the regret is large at the time when the random walk crosses the

boundary for the second time.

To formally prove Theorem 2.33, we need a more general version of Theorem 2.29. Let F be a

σ-algebra and let (Ft)t∈Z≥0
be a filtration (i.e. F0 ⊆ F1 ⊆ . . . and Ft ⊆ F for all t ≥ 0). For a stopping

time τ , the stopped σ-algebra is defined as Fτ := {A ∈ F : A∩ {τ ≤ t} ∈ Ft ∀t ∈ Z≥0} [97, Definition

9.19]. Finally, let G ⊆ F be a sub σ-algebra. For a random variable X, the conditional expectation of
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X given G, denoted E [X | G], is a random variable Y satisfying E [Y IA] = E [XIA] for all A ∈ G [97,

Definition 8.11]. Here, IA is the indicator of the event A.

Theorem 2.34. Let (Zt)t∈Z≥0
be a martingale with respect to a filtration {Ft} and K > 0 a constant

such that |Zt − Zt−1| ≤ K almost surely for all t. Let σ ≤ τ be stopping times and suppose that

E [
√
τ ] <∞. Then the random variables Zσ, Zτ are almost surely well-defined and E [Zτ | Fσ] = Zσ.

Proof. Define the stopped process Zt∧τ , which is also a martingale [97, Theorem 10.15]. Since E [
√
τ ] <

∞ we have P [τ <∞] = 1. On the event {τ <∞}, (Zt∧τ )t≥0 has a well-defined limit, which is used

as the almost sure definition of Zτ . As {τ <∞} ⊆ {σ <∞}, the same argument shows that (Zt∧σ)≥0

has a well-defined limit, and we use this as the almost sure definition of Zσ.

The arguments in the proof of Theorem 2.29 show that Zt∧τ
L1−→ Zτ ∈ L1 and Zt∧σ

L1−→ Zσ ∈ L1.

By the definition of conditional expectation, we need to check that E [Zτ IA] = E [ZσIA] for all A ∈ Fσ.

To that end, fix A ∈ Fσ and note that A∩ {σ ≤ t} ∈ Fσ∧t. For any fixed t, t∧ σ ≤ t and τ ≤ t, so the

optional sampling theorem [97, Theorem 10.11] applied to the stopped process yields E [Zt∧τ | Ft∧σ] =

Zt∧σ. Hence,

E
[
Zτ∧tIAI{σ≤t}

]
= E

[
Zσ∧tIAI{σ≤t}

]
. (2.27)

Since Zτ∧t
L1−→ Zτ ∈ L1, it follows that Zτ∧tIAI{σ≤t}

L1−→ Zτ IAI{σ<∞}. This is because

E
[
|Zτ∧tIAIσ≤t − Zτ IAIσ<∞|

]
≤ E [|Zτ∧tIAIσ≤t − Zτ IAIσ≤t|] + E [|Zτ IAIσ<∞ − Zτ IAIσ≤t|]

≤ E [|Zt∧τ − Zτ |] + E [|Zτ | It<σ<∞] .

The quantity E [|Zt∧τ − Zτ |] → 0 because Zt∧τ
L1−→ Zτ . Next, Zτ ∈ L1 and It<σ<∞ → 0 a.s. so

E [|Zτ | It<σ<∞]→ 0 by dominated convergence. Finally, note that Zτ IAIσ<∞ = Zτ IA as Iσ<∞ = 1 a.s.

Hence,

E
[
Zτ∧tIAI{σ≤t}

] t→∞−−−→ E [Zτ IA] . (2.28)

Similarly,

E
[
Zσ∧tIAI{σ≤t}

] t→∞−−−→ E [ZσIA] . (2.29)

Combining Eq. (2.27), Eq. (2.28), and Eq. (2.29) gives E [Zτ IA] = E [ZσIA] as desired.

The proof of Theorem 2.33 will make use of the following result which is a generalization of The-

orem 2.31 to the setting where the boundary is asymptotically a square root curve. This will allow

us to consider a random walk hitting a square root boundary but where both the boundary and the

starting position of the particle may not be at the origin.

Theorem 2.35 (Greenwood and Perkins [81, Theorem 5]). Let c > 1 and a < 0 be such that c

is the smallest positive root of the function x 7→ M(a, 1/2, x2/2). Let f(t) be a function such that

limt→∞ f(t)t−1/2 = c. Let τ = inf { t > 0 : gt ≥ f(t) }. Then P [τ > u] = uaπ(u), where π is a

slowly-varying function, i.e. limx→∞ π(ax)π(x)−1 for all a > 0.
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Proof of Theorem 2.33. We use the same adversary as in Theorem 2.28 so that

Regret(t) ≥ Zt +
gt
2
,

where Zt is a martingale with Z0 = 0 and gt evolves as a reflected random walk. Let Ft := σ(g0, . . . , gt)

be the natural filtration. Finally, let cε ≥ γ − ε and aε be as in the proof of Theorem 2.28.

Define the stopping times τ0 := 0 and τi := inf
{
t > τi−1 : gt ≥ cε

√
t
}

for i ≥ 1. Note that, by the

strong Markov property, for each i ≥ 1, the process {gτi−1+t}t≥0 is a reflected random walk started at

position gτi−1 > 0. Moreover, observe that τi is similar to the stopping time used in Theorem 2.28 in

that the asymptotics of the boundary are the same but the starting point is perturbed by a (random)

additive constant.

Let us assume that E
[√
τi−1

]
< ∞ and we now show that E

[√
τi
]
< ∞. Let δ > 0 be a constant

such that aε+ δ < −1/2. On the event that {τi−1 <∞}, Theorem 2.35 and Fact 2.32 imply that there

is a (random) constant Cδ, which may depend on τi−1 and gτi−1 (which are both Fτi−1-measurable),

such that P
[
τi − τi−1 > u | Fτi−1

]
≤ Cδuaε+δ. Hence, following the proof of Theorem 2.28, this implies

that E
[√
τi − τi−1 | Fτi−1

]
< ∞. Since E

[√
τi−1

]
< ∞, this implies that E

[√
τi
]
< ∞. Hence, we

can apply Theorem 2.34 to obtain that E
[
Zτi | Fτi−1

]
= Zτi−1 for all i ≥ 1.

We will now inductively construct a sequence of events which satisfy the conclusions of the theorem.

To that end, define the events

Ai = {τi <∞, Zτi ≥ . . . ≥ Zτ1 ≥ 0} .

For the base case, we have A1 = {τ1 <∞, Zτ1 ≥ 0}. In the proof of Theorem 2.28, we have already

verified that P [A1] > 0 (this also follows from the previous paragraph). For the inductive step, suppose

that P [Ai−1] > 0. The condition that E
[
Zτi | Fτi−1

]
= Zτi−1 implies that, for any B ∈ Fτi−1 with

P [B] > 0, the event B ∩
{
τi <∞, Zτi ≥ Zτi−1

}
has positive probability. Taking B = Ai−1 implies that

P [Ai] > 0.

To conclude, for any n ≥ 1, the event An has positive probability. Hence, there exists a sequence

of times T1, . . . , Tn <∞ and loss vectors up to time Tn that guarantee gTi ≥ cε
√
Ti for all i ∈ [n] and

ZTn ≥ . . . ≥ ZT1 ≥ 0. In particular, for all i ∈ [n],

Regret(Ti) ≥ ZTi +
gTi
2
≥ cε

2

√
Ti.

As n ≥ 1 was arbitrary, the theorem follows.

2.5 Derivation of a continuous-time analogue of Algorithm 3

The purpose of this section is to show how the potential function R defined in Eq. (2.6) arises naturally

as the solution of a stochastic calculus problem. The derivation of that function is accomplished by

defining, then solving, an analogue of the regret minimization problem in continuous time. The main

advantage of considering this continuous setting is the wealth of analytic methods available, such as

stochastic calculus.
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Appendix A.2 provides a brief background on stochastic calculus. Nonetheless, this chapter is fairly

self-contained.

2.5.1 Defining the continuous regret problem

Continuous time regret problem. The continuous regret problem is inspired by Eq. (2.9). Notice

that, when the adversary chooses cost vectors in {[ 1
0 ] , [ 0

1 ]}, the sequence of gaps g0, g1, g2, . . . live in the

support of a reflected random walk. The goal in the discrete case is to find an algorithm p that bounds

the regret over all possible sample paths of a reflected random walk. In continuous time it is natural

to consider a stochastic integral with respect to reflected Brownian motion, denoted |Bt|, instead. Our

goal now is to find a continuous-time algorithm whose regret is small for almost all reflected Brownian

motion paths.

Definition 2.36 (Continuous Regret). Let p : R>0 × R≥0 → [0, 1] be a continuous function that

satisfies p(t, 0) = 1/2 for every t > 0. Let Bt be a standard one-dimensional Brownian motion. Then,

the continuous regret of p with respect to B is the stochastic integral

ContRegret(T, p,B) =

∫ T

0
p(t, |Bt|) d |Bt| . (2.30)

Remark 2.37. The condition p(t, 0) = 1/2 is due to Eq. (2.30) being inspired by Eq. (2.9), which

requires this condition.

In this definition we may think of p as a continuous-time algorithm and B as a continuous-time

adversary. The goal for the remainder of this section is to prove the following result.

Theorem 2.38. There exists a continuous-time algorithm p∗ such that

ContRegret(T, p∗, B) ≤ γ
√
T

2
∀T ∈ R≥0, almost surely. (2.31)

Remark 2.39. A natural question arises upon reviewing the definition of continuous regret: What role

does Brownian motion play in Definition 2.36 and is it the “correct” stochastic process to consider in

order to uncover the optimal algorithm? In the analysis that follows, the only properties of reflected

Brownian motion that we use are its non-negativity and that its quadratic variation is t. It turns out

that one can generalize Theorem 2.38 by allowing any non-negative, continuous semi-martingale X

to control the gap process, and by letting time grow at the rate of the quadratic variation of X. See

Subsection 2.5.4 for more details.

2.5.2 Connections to stochastic calculus and the backward heat equation

Since ContRegret(T ) evolves as a stochastic integral with respect to a semi-martingale16 (namely re-

flected Brownian motion), Itô’s formula provides an insightful decomposition. The following statement

16A semi-martingale is a stochastic process that can written as the sum of a martingale and a process of finite variation.
Moreover, the process |Bt| is a semi-martingale (see [113, Theorem 7.33]).
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of Itô’s formula is a specialization of [127, Theorem IV.3.3] for the special case of reflected Brownian

motion.17

Notation. Up to now, we have used the symbol g as the second parameter to the bivariate functions

p and R. Henceforth, it will be more consistent with the usual notation in the literature to use x

to denote g. We will also use the notation C1,2 to denote the class of bivariate functions that are

continuously differentiable in their first argument and twice continuously differentiable in their second

argument.

Theorem 2.40 (Itô’s formula). Let f : R≥0 × R→ R be C1,2. Then, almost surely,

f(T, |BT |)− f(0, |B0|) =

∫ T

0
∂xf(t, |Bt|) d |Bt|+

∫ T

0

[
∂tf(t, |Bt|) + 1

2∂xxf(t, |Bt|)︸ ︷︷ ︸
=:
∗
∆f(t,|Bt|)

]
dt. (2.32)

The integrand of the second integral is an important quantity arising in PDEs and stochastic

processes (see, e.g., [64, pp. 263]). We will denote it by
∗
∆f(t, x) := ∂tf(t, x) + 1

2∂xxf(t, x). Some

discussion about the statement of Theorem 2.40 appears in Appendix A.2.1.

Applying Itô’s formula to the continuous regret. The continuous regret is defined by a stochas-

tic integral. In standard calculus, when presented with an integral to evaluate, we usually turn to the

Fundamental Theorem of Calculus (FTC) for intuition and insight. The analogue of the FTC for

stochastic calculus is Itô’s formula. In order to apply Itô’s formula to the continuous regret, we pat-

tern match Eq. (2.30) and Eq. (2.32). Comparing these equations, it is natural to assume that p = ∂xf

for a function f that is C1,2 with f(0, 0) = 0, ∂xf ∈ [0, 1], and ∂xf(t, 0) = 1/2; the latter two conditions

are needed for Definition 2.36 to be applicable. Itô’s formula then yields

ContRegret(T, p = ∂xf,B) =

∫ T

0
∂xf(t, |Bt|) d |Bt| = f(T, |BT |)−

∫ T

0

∗
∆f(t, |Bt|) dt. (2.33)

Path independence and the backward heat equation. At this point a useful idea arises: as

a thought experiment, suppose that
∗
∆f = 0. Then the second integral would vanish, and we would

have the appealing expression ContRegret(T, p,B) = f(T, |BT |). Moreover, since f is a deterministic

function, the right-hand side depends only on |BT | rather than the entire Brownian path B|[0,T ]. Thus,

the same must be true of the left-hand side: at time T , the continuous regret of the algorithm p

depends only on T and |BT | (the gap). We say that say that such an algorithm has path independent

regret. Our supposition that led to these attractive consequences was only that
∗
∆f = 0, which turns

out to be a well studied condition.

Definition 2.41. Let f : R>0×R→ R be a C1,2 function. If
∗
∆f(t, x) = 0 for all (t, x) ∈ R>0×R then

we say that f satisfies the backward heat equation. A synonymous statement is that f is space-time

17Specifically, we are using the statement of Itô’s formula that appears in Remark 1 after Theorem IV.3.3 in [127] with
Xt = |Bt| and At = t. Note that y in their notation is t in ours and 〈|B|, |B|〉t = t.
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harmonic.

We may summarize the preceding discussion with the following proposition.

Proposition 2.42. Let f : R>0 × R → R be a C1,2 function that satisfies
∗
∆f = 0 everywhere with

f(0, 0) = 0. Let p = ∂xf . Then, ∫ T

0
p(t, |Bt|) d |Bt| = f(T, |BT |). (2.34)

Suppose that a function f satisfies the hypothesis of Proposition 2.42 and in addition p = ∂xf ∈
[0, 1] with p(t, 0) = 1/2. Then, we would have

ContRegret(T, p,B) = f(T, |BT |). (2.35)

We are unable to derive a function that satisfies the properties required for Eq. (2.35) to hold along

with maxx≥0 f(T, x) ≤ γ
√
T/2. Instead, we will begin by relaxing the constraint that p(t, x) ∈ [0, 1]

and allow p(t, x) ∈ (−∞, 1]. We will overload the notation ContRegret(·) to include such functions.

In the next section, we will derive a family of such functions that all achieve ContRegret(T, p, |BT |) =

f(T, |BT |) = O(
√
T ). This is done by setting up and solving the backwards heat equation. We

then truncate p by replacing it with max{0, p}; this results in f having a piecewise definition and

is precisely why the potential function in Eq. (2.6) has a piecewise definition. We observe that f

is no longer smooth after this truncation procedure so Itô’s formula cannot be applied. To fix this,

we use a “smoothing” argument where we approximate f by a sequence of smooth truncations fn

for which Itô’s formula does apply. This would then give a family of continuous algorithms that all

achieve ContRegret(T, p, |BT |) = O(
√
T ), and that do satisfy p(t, x) ∈ [0, 1]. Finally, we will optimize

ContRegret(T, ·, |BT |) over this family of functions to prove Theorem 2.38. The constant γ will appear

as a consequnce of this optimization problem.

Satisfying the backward heat equation

The main result of this section is the derivation of a family of functions p̃ : R>0 × R→ R that satisfy

p̃(t, x) ≤ 1, p̃(t, 0) = 1/2 and

ContRegret(T, p̃, B) = f(T, |BT |) = O(
√
T ), (2.36)

but do not necessarily satisfy p̃(t, x) ≥ 0.

The first step is to find a function f which satisfies the partial differential equation
∗
∆f = 0. Since

the boundary condition p̃(t, 0) = 1/2 is a condition on p̃ = ∂xf , not on f itself, it will be convenient

to solve a PDE for p̃ instead, and then to derive f by integrating. However, some care is needed since

not all antiderivates of p̃ (in x) will satisfy the backwards heat equation. Fortunately, we have a useful

lemma showing that if p̃ satisfies the backward heat equation, then we can construct an f that also

does.
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Lemma 2.43. Suppose that h : R>0 × R→ R is a C1,2 function. Define

f(t, x) :=

∫ x

0
h(t, y) dy − 1

2

∫ t

0
∂xh(s, 0) ds.

Then,

(1) f ∈ C1,2,

(2) If
∗
∆h = 0 over R>0 × R then

∗
∆f = 0 over R>0 × R,

(3) h = ∂xf .

Proof. First, we check that f ∈ C1,2. Let (t, x) ∈ R>0×R. It is easy to check via standard applications

of the Dominated Convergence Theorem (DCT) and the Fundamental Theorem of Calculus (FTC)

that

(1) ∂tf(t, x) =
∫ x

0 ∂th(t, y) dy − 1
2∂xh(t, 0),

(2) ∂xf(t, x) = h(t, x), and

(3) ∂xxf(t, x) = ∂xh(t, x).

All of the above partial derivatives are clearly continuous since h is C1,2.

Next, we show that if
∗
∆h(t, x) = 0 for all (t, x) ∈ R>0 × R, then

∗
∆f(t, x) = 0 for all R>0 × R.

Indeed,

∗
∆f(t, x) =

(
∂t +

1

2
∂xx

)
f(t, x)

=

∫ x

0
∂th(t, y) dy − 1

2
∂xh(t, 0) +

1

2
∂xh(t, x) (by (1) and (3))

=

∫ x

0

(
∂th(t, y) +

1

2
∂xxh(t, y)

)
︸ ︷︷ ︸

=0

dy (by FTC)

= 0,

as claimed.

Defining boundary conditions for p. Obtaining a particular solution to the backward heat equa-

tion requires sufficient boundary conditions in order to uniquely identify p̃. The boundary condition

mentioned above is that p̃(t, 0) = 1/2 for all t. This condition together with the backward heat equa-

tion clearly do not suffice to uniquely determine p̃. Therefore, we impose some reasonable boundary

conditions on p̃.

What should the value be at the boundary? Intuitively, x 7→ p̃(t, x) should be a decreasing function

because p̃ represents the weight placed on the worst expert as a function of the gap. Therefore, it is

natural to consider an “upper boundary” which specifies the point at which the difference in experts’

total costs is so great that the algorithm places zero weight on the worst expert. The upper boundary

can be specified by a curve, { (t, φ(t)) : t > 0 } for some continuous function φ : R>0 → R>0. We will

incorporate this idea by requiring p̃(t, φ(t)) = 0 for all t > 0.
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Where should the boundary be? One reasonable choice for the boundary is to use φα(t) = α
√
t for

some constant α > 0, as this is similar to the boundary used by the random adversary in the lower

bound of Section 2.4. For now we leave α as an unknown parameters, whose value is optimized later.

These conditions are combined into the following partial differential equation:

(backward heat equation) ∂tu(t, x) + 1
2∂xxu(t, x) = 0 for all (t, x) ∈ R>0 × R (2.37)

(upper boundary) u(t, α
√
t) = 0 for all t > 0 (2.38)

(lower boundary) u(t, 0) = 1
2 for all t > 0. (2.39)

Next we show that the following function solves this PDE. Define p̃α : R>0 × R→ R by

p̃α(t, x) :=
1

2

(
1− erfi (x/

√
2t)

erfi (α/
√

2)

)
. (2.40)

Lemma 2.44. p̃α satisfies the following properties:

(1) p̃α is C1,2 over R>0 × R,

(2) p̃α satisfies the constraints in Eq. (2.37), Eq. (2.38) and Eq. (2.39), and

(3) For all t > 0 and all x ≥ 0, p̃α(t, x) ≤ 1/2.

Proof. Let us assume that we can write u(t, x) = v(x/
√
t).18 Then, we have ∂tu(t, x) = − x

2t3/2
v′(x/

√
t),

and 1
2∂xxu(t, x) = 1

2tv
′′
(x/
√
t). The backward heat equation enforces that v′′(x/

√
t) = x√

t
v′(x/

√
t). By

a change of variables (z = x/
√
t), we obtain the following ordinary differential equation

v′′(z) = z · v′(z). (2.41)

Hence, v′(z) = C ·e
z2

2 for some constant C. We can then integrate to obtain v(z) =
∫ z

0 Ce
y2/2 dy+D =∫ z/√2

0

√
2Cer

2
dr + D, for some constant D. For the last equality, we made the change of variables

r = y/
√

2 in the integral. Therefore, by the definition of erfi (recall Eq. (2.3)), we have (for a different

constant C) v(z) = C erfi(z/
√

2) +D. Hence, for some constants C,D ∈ R, we have

u(t, x) = C erfi(x/
√

2t) +D.

Plugging in the boundary condition at x = 0 and recalling that erfi(0) = 0 we see that D = 1/2.

Plugging in the boundary condition that u(t, α
√
t) = 0 and using that D = 1/2 we see that C =

− 1
2 erfi(α/

√
2)
. Therefore, we have that the following function

u(t, x) =
1

2

(
1−

erfi
(
x/
√

2t
)

erfi
(
α/
√

2
) )

satisfies the backwards heat equation and the boundary conditions. Moreover, u ∈ C1,2 on R>0×R.

18Recall that Brownian Motion is scale invariant in the sense that 1√
t
Bt and B1 are equal in distribution. Thus, one

might expect that the optimal strategy against a Brownian Motion adversary should also be scale invariant. This would
correspond to having u(t, x) = u(1, x/

√
t) for all x ≥ 0 and t > 0.
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Lemma 2.44 shows that p̃α(t, x) nearly defines a valid continuous time algorithm, in that it satisfies

the conditions of Definition 2.36 except for non-negativity. Next, we will integrate p̃α as described in

Lemma 2.43. Define the function R̃α : R>0 × R→ R as

R̃α(t, x) =
x

2
+ κα

√
t ·M0

(
x2

2t

)
where κα =

1√
2π erfi(α/

√
2)
. (2.42)

Lemma 2.45. R̃α(t, x) =
∫ x

0 p̃α(t, y) dy − 1
2

∫ t
0 ∂xp̃α(s, 0) ds.

First we need to compute some derivatives.

Lemma 2.46. The following identities hold for every α > 0.

1. ∂xR̃α(t, x) = p̃α(t, x) = 1
2

(
1− erfi(x/

√
2t)

erfi(α/
√

2t)

)
.

2. ∂xxR̃α(t, x) = ∂xp̃α(t, x) = −κα · exp(x2/2t)√
t

.

Proof. The proof is a straightforward calculation. We have

∂xR̃α(t, x) =
1

2
− κα

x√
t
·M1

(
x2

2t

)
=

1

2
− 1√

2π erfi(α/
√

2)
· x√

t
·
√
π erfi(x/

√
2t)

2 · x/
√

2t

=
1

2

(
1− erfi(x/

√
2t)

erfi(α/
√

2)

)
,

where the first equality uses Fact 2.7 and the second equality uses the identity (2) in Fact 2.8. This

proves the first identity.

For the second identity, using the definition of erfi(·), we have

∂xxR̃α = ∂xp̃α(t, x) = − exp(x2/2t)√
2π erfi(α/

√
2)
√
t

= −κα ·
exp(x2/2t)√

t
.

Proof of Lemma 2.45. By the first identity in Lemma 2.46, we have∫ x

0
p̃α(t, y) dy = R̃α(t, x)− R̃α(t, 0) (2.43)

Note that R̃α(t, 0) = κα
√
t. Next, the second identity of Lemma 2.46 implies that −∂xp̃α(s, 0) = κα√

s
.

Hence,

− 1

2

∫ t

0
∂xp̃α(s, 0) ds = κα

√
t = R̃α(t, 0). (2.44)

Summing Eq. (2.43) and Eq. (2.44) gives∫ x

0
p̃α(t, y) dy − 1

2

∫ t

0
∂xp̃α(s, 0) ds = R̃α(t, x)− R̃α(t, 0) + R̃α(t, 0) = R̃α(t, x).
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By Lemma 2.44, the function p̃α satisfies the hypothesis of the function h in Lemma 2.43. Hence,

we can apply Lemma 2.43 with h = p̃α and f = R̃α to assert the following properties on R̃α.

Lemma 2.47. R̃α satisfies the following properties:

(1) R̃α is C1,2,

(2) R̃α satisfies
∗
∆R̃α = 0 over R>0 × R,

(3) ∂xR̃α(t, x) = p̃α(t, x).

Lemma 2.47 shows that R̃α satisfies the hypotheses of Proposition 2.42. Hence, we have

ContRegret(T, p̃α, B) = R̃α(T, |BT |).

Since erfi(·) is a strictly increasing function with erfi(0) = 0, observe that ∂xR̃α = p̃α has exactly one

root at α
√
t. In particular, for any fixed T > 0, the function R̃α(T, x) is maximized at x = α

√
T .

Therefore, for every T we have

R̃α(T, |BT |) ≤ max
x≥0

R̃α(T, x) ≤ R̃α(T, α
√
T ) =

(
α

2
+ καM0

(
α2

2

))√
T ,

where the equality is by definition of R̃α in Eq. (2.42). To summarize, we have shown that

ContRegret(T, p̃α, B) ≤
(
α

2
+ καM0

(
α2

2

))√
T . (2.45)

This establishes (2.36), as desired.

Resolving the non-negativity issue

The only remaining step is to modify p̃α so that it lies in the interval [0, 1/2]. We will modify p̃α in

the most natural way: by modifying all negative values to be zero. Specifically, we set

pα(t, x) :=

0 (t = 0)

(p̃α(t, x))+ (t > 0)
=

0 (t = 0)

1
2

(
1− erfi(x/

√
2t)

erfi(α/
√

2)

)
+

(t > 0)
. (2.46)

Here, we use the notation (x)+ = max{0, x}. Note that pα(t, 0) = 1/2 for all t > 0 and pα(t, x) ∈ [0, 1/2]

for all t, x ≥ 0. So pα defines a valid continuous-time algorithm. From Eq. (2.46), we obtain a truncated

version of R̃α as

Rα(t, x) :=


0 (t = 0)

R̃α(t, x) (t > 0 ∧ x ≤ α
√
t)

R̃α(t, α
√
t) (t > 0 ∧ x ≥ α

√
t)

. (2.47)

It is straightforward to verify that ∂xRα = pα. This is because for x ≤ α
√
t, pα(t, x) = p̃α(t, x)

and Rα(t, x) = R̃α(t, x) (we have computed the derivatives in Lemma 2.47). In addition, Rα(t, x) is

constant (in x) for x ≥ α
√
t so its derivative (in x) is 0.

If Rα were sufficiently smooth then we could immediately apply Itô’s formula (Theorem 2.40) to get
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Rα(T, |BT |) =
∫ T

0 pα(t, |Bt|) d|Bt|+
∫ T

0

∗
∆Rα(t, |Bt|) dt. Observe that for x < α

√
t, we have

∗
∆Rα(t, x) =

0 by Lemma 2.47 and for x > α
√
t, it is a straightforward calculation to check that

∗
∆Rα(t, x) >

0.19 Recalling the definition of ContRegret(T, pα, B), this would suggest that ContRegret(T, pα, B) ≤
Rα(T, |BT |). This turns out to be true but there is a flaw with the above argument which is that ∂xxRα

is not well-defined on the curve
{

(t, α
√
t) : t > 0

}
. In particular, Rα is not in C1,2 and Theorem 2.40

cannot be applied directly. The reader who believes that this issue is unlikely to be problematic may

wish to take Lemma 2.48 on faith and skip ahead to Subsection 2.5.3.

Lemma 2.48. Fix α > 0. Then, almost surely, for all T ≥ 0, ContRegret(T, pα, B) ≤ Rα(T, |BT |).

Figure 2.2: The relationships between p̃α, R̃α, Rα,n, pα, and Rα. Since Rα is not sufficiently
smooth, Itô’s formula (Theorem 2.40) cannot be applied. Instead, we show that Rα is the
limit of Rα,n which are smooth truncations of R̃α. Since each R̃α,n is smooth, Itô’s formula
can be applied to each of them.

Here, we will present a high-level overview of the proof of this lemma (which is illustrated in

Figure 2.2); the details can be found in Appendix A.3. Let φ(x) be a smooth function satisfying

φ(x) = 1 for x ≤ 0 and φ(x) = 0 for x ≥ 1. For n ∈ N, define φn(x) = φ(nx) and the approximations

Rα,n(t, x) := R̃α(t, x)φn(x− α
√
t) + R̃α(t, α

√
t)(1− φn(x− α

√
t)).

It is relatively straightforward to check that Rα,n(t, x)
n→∞−−−→ Rα(t, x) pointwise and similarly for

the derivatives. The important property is that Rα,n is smooth so Itô’s formula may be applied.

Lemma 2.48 is then proved by taking limits and controlling the error terms in the approximation.

The remainder of this section proves Theorem 2.38 by setting p∗ = pα for the optimal α.

2.5.3 Optimizing the boundary to minimize the continuous regret

By Lemma 2.48, ContRegret(T, ∂xRα, B) ≤ Rα(T, |BT |) ≤ Rα(T, α
√
T ), where the last inequality is

because ∂xRα(t, x) = pα(t, x) is positive for x ∈ [0, α
√
t) and 0 for x ≥ α

√
t. As observed in Eq. (2.45),

19One way to verify this is to note that α
2

+ καM0

(
α2

2

)
− καM0(0) = 1

2

∫ α
0

(
1− erfi(x/

√
2)

erfi(α/
√

2)

)
dx. The integrand is non-

negative and M0(0) ≥ 0, so α
2

+ καM0

(
α2

2

)
≥ 0. Alternatively, the non-negativity also follows from the calculations

used to prove Lemma 2.49.
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we have the formula Rα(T, α
√
T ) = (α/2 + καM0(α2/2))

√
T . Thus, to minimize Rα(T, α

√
T ), it is

convenient to define

h(α) := Rα(1, α) =
α

2
+ καM0(α2/2).

The only remaining task is now to solve the following optimization problem.

min
α>0

h(α) = min
α>0

{
α

2
+ κα ·M0

(
α2

2

)}
(2.48)

The following lemma verifies that there exists some α for which ContRegret(T, ∂xRα, B) ≤ γ
√
T

2 ,

completing the proof of Theorem 2.38

Lemma 2.49. The function h(α) is minimized at α = γ and h(γ) = γ/2. Consequently, for any fixed

T > 0, minαRα(T, α
√
T ) = Rγ(T, γ

√
T ) = γ

√
T

2 .

Lemma 2.49 follows easily from the following claim

Claim 2.50. h′(α) = − exp(α2/2)

π erfi(α/
√

2)
·M0(α2/2). In particular, h′(α) < 0 for α ∈ (0, γ), h′(γ) = 0, and

h′(α) > 0 for α ∈ (γ,∞).

Proof. Recall that h(α) = α
2 + M0(α2/2)√

2π erfi(α/
√

2)
and that d

dx erfi(x/
√

2) =
√

2
πe

x2/2. Hence,

h′(α) =
1

2
− α ·M1(α2/2)√

2π erfi(α/
√

2)
− exp(α2/2) ·M0(α2/2)

π erfi(α/
√

2)2
(by Fact 2.7)

= −exp(α2/2) ·M0(α2/2)

π erfi(α/
√

2)2
(by Fact 2.8(2)).

This proves the first assertion.

Next, observe that exp(α2/2)

erfi(α/
√

2)2 is positive for all α ∈ R. Hence, by Fact 2.11, we have that h′(α) < 0

for α ∈ (0, γ), h′(γ) = 0, and h′(α) > 0 for α ∈ (γ,∞).

Proof of Lemma 2.49. Claim 2.50 implies that γ is the global minimizer for h(α). Since γ is a root of

M0(α2/2), it follows that h(γ) = γ/2. This proves the first assertion. Next, for every α > 0, we have

Rα(T, α
√
T ) =

√
T · h(α) ≥

√
T · h(γ) = γ

√
T/2, which proves the second assertion.

2.5.4 Continuous regret against any continuous semi-martingale

Recall that the continuous regret upper bound (Theorem 2.38) involved the adversary evolving the

gap process as a reflected Brownian motion, which is a continuous semi-martingale. In this section,

we generalize the definition of continuous regret to allow arbitrary, non-negative, continuous semi-

martingales to control the gap process, and derive an analogue of Theorem 2.38 in this generalized

setting. We use the notation [X]t to denote the quadratic variation process of X (see Appendix A.2

for definitions).

We begin with a generalized definition of continuous regret.
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Definition 2.51 (Continuous Regret). Let p : R>0 × R≥0 → [0, 1] be a continuous function that

satisfies p(t, 0) = 1/2 for every t > 0. Let Xt be a continuous, non-negative, semi-martingale. Then,

the continuous regret of p with respect to X is the stochastic integral

ContRegret(T, p,X) =

∫ T

0
p(t,Xt)dXt. (2.49)

The main result for this generalized setting is as follows.

Theorem 2.52. There exists a continuous-time algorithm p∗ such that for any continuous, non-

negative, semi-martingale X,

ContRegret(T, p∗, X) ≤ γ

2

√
[X]T ∀T ∈ R≥0, almost surely. (2.50)

We provide an overview of the proof of this result below. For the sake of exposition, we sketch the

proof of Theorem 2.52 in the setting where we allow p∗ to take values in (−∞, 1]. Truncating p∗ as

was done in Subsection 2.5.2 yields Theorem 2.52 as stated.

Sketch. Let p∗(t, x) := p̃γ([X]t, x) and R(t, x) := R̃γ(t, x). (See Eq. (2.40) and Eq. (2.42) for definitions

of p̃γ and R̃γ). Recall the following three important properties of R from Lemma 2.47:

(1) R is C1,2,

(2) R satisfies
∗
∆R = 0 over R>0 × R,

(3) ∂xR(t, x) = p̃γ(t, x).

Since R is C1,2, we may apply Itô’s formula (specifically Eq. (A.1) with At = [X]t, which is a finite

variation process since it is increasing) to obtain

R([X]T , XT ) =

∫ T

0
∂xR([X]t, Xt)dXt +

∫ T

0

(
∂tR([X]t, Xt) +

1

2
∂xxR([X]t, Xt)

)
d[X]t

=

∫ T

0
p∗(t,Xt)dXt +

∫ T

0

(
∂tR([X]t, Xt) +

1

2
∂xxR([X]t, Xt)︸ ︷︷ ︸

=
∗
∆R([X]t,Xt)

)
d[X]t (∂xR = p̃γ)

=

∫ T

0
p∗(t,Xt)dXt (

∗
∆R = 0)

= ContRegret(T, p∗, X).

Next, recall the upper bound on R from Eq. (2.45):

R(t, x) = R̃γ(t, x) ≤
(
γ

2
+ κγM0

(
γ2

2

))√
t =

γ

2

√
t,

where the final equality is because γ is a root of M0

(
x2

2

)
. Putting everything together, we have

ContRegret(T, p∗, X) = R([X]T , XT ) ≤ γ

2

√
[X]T ,

as desired.
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Chapter 3

Background on Mixtures of Gaussians

In this chapter, we provide some background on the problem of learning mixtures of Gaussians in the

density estimation framework.

3.1 Notation and definitions

We use R to denote the set of real numbers and R≥0 to denote the set of non-negative real numbers.

For an integer n, we write [n] = {1, . . . , n}.
A d × d matrix A is said to be positive semidefinite, denoted A � 0, if A is symmetric and all its

eigenvalues are non-negative. An alternative definition is that A is symmetric and v>Av ≥ 0 for all

v ∈ Rd. For two d× d matrices A,B, we write A � B if A−B � 0.

Definition 3.1 (Gaussian distribution). A d-dimensional Gaussian is a distribution which is specified

by a mean µ ∈ Rd and a covariance matrix Σ ∈ Rd×d. Here, Σ must be a positive semidefinite matrix.

The probability density function (p.d.f.) is given by

N (µ,Σ)(x) =
1√

(2π)d det(Σ)
· exp

(
−1

2
(x− µ)>Σ(x− µ)

)
(3.1)

We will often denote a Gaussian with mean µ and covariance matrix Σ by N (µ,Σ).

Let ∆k = {w ∈ Rk : wi ≥ 0,
∑

i∈[k]wi = 1} denote the k-dimensional probability simplex.

Definition 3.2 (Mixture distributions). Let F be a class of distributions. The class of k-mixtures of

F , denoted by k-mix(F) is defined as

k-mix(F) :=

{
k∑
i=1

wifi : (w1, . . . , wk) ∈ ∆k, fi ∈ F

}
. (3.2)

In this thesis, the most important special case of this definition is when F is the class of Gaussian

distributions. In this case, a mixture of k Gaussians is a distribution specified by k mean vectors

µ1, . . . , µk ∈ Rd, k covariance matrices Σ1, . . . ,Σk ∈ Rd×d, and a probability vector w ∈ ∆k. The

p.d.f. is then given by
∑k

i=1wiN (µi,Σi). One way to sample from this distribution is to first sample

a coordinate i according to the vector w then to sample a point from N (µi,Σi).
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3.2 Probability background

In Chapter 4, we will deal exclusively with continuous distributions so all results stated in this chapter

will assume continuous distributions. Nonetheless, all the preliminary probability background pre-

sented here hold for discrete distributions as well.

In this section, let f, g denote probability density functions (p.d.f.) on Rd. We will abuse notation

and often refer to a distribution via its p.d.f. In this section, B denotes the Borel σ-algebra on Rd. For

an event A ∈ B and a distribution f , we write Pf [A] =
∫
A f(x) dx as the probability that the event A

happens under f .

Definition 3.3 (Total Variation Distance). The total variation distance between f, g, which we denote

by dTV(f, g) is defined as

dTV(f, g) = sup
A∈B

∫
A
f(x)− g(x) dx = sup

A∈B
{Pf [A]− Pg[A]}

If X ∼ f and Y ∼ g, we may abuse notation and write dTV(X,Y ) = dTV(f, g).

Fact 3.4. Let A+ = {x ∈ Ω : f(x) > g(x)} and A− = {x : f(x) ≤ g(x)}. Then

dTV(f, g) = Pf [A+]− Pg[A+] = Pg[A−]− Pf [A+] =
1

2
‖f − g‖1 .

Here, ‖f‖1 =
∫
Rd f dx.

Remark 3.5. Fact 3.4 implies that dTV is a metric.

Proof. We first show that Pf [A+]−Pg[A+] = Pg[A−]−Pf [A+]. To see this, observe that A+∪A− = Rd

and that the union is disjoint. Hence, Pf [A+] +Pf [A−] = 1 = Pg[A+] +Pg[A−]. Rearranging gives the

claim.

Next we show that Pf [A+]− Pg[A+] = 1
2 ‖f − g‖1. Indeed, by definition of A+, A−,

‖f − g‖1 =

∫
A+

f(x)− g(x) dx+

∫
A−

g(x)− f(x) dx

= (Pf [A+]− Pg[A+]) + (Pg[A−]− Pf [A−])

2(Pf [A+]− Pg[A+]),

so Pf [A+]− Pg[A+] = 1
2 ‖f − g‖1.

It remains to show that dTV(f, g) = Pf [A+] − Pg[A+]. Clearly, dTV(f, g) ≥ Pf [A+] − Pg[A+] by

definition of total variation distance. We now prove the reverse inequality. Let A ∈ B be an arbitrary

event. Then

Pf [A]− Pg[A] = (Pf [A ∩A+]− Pg[A ∩A+]) + (Pf [A ∩A−]− Pg[A ∩A−])

≤ Pf [A ∩A+]− Pg[A ∩A+]

≤ Pf [A+]− Pg[A+]

Taking the supremum over all events A gives that dTV(f, g) ≤ Pf [A+]− Pg[A+] as desired.
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Fact 3.6. Let X and Y be arbitrary random variables. For any function F , we have

dTV (F (X), F (Y )) ≤ dTV (X,Y ) .

Proof. This follows from the observation that

P [F (X) ∈ A]− P [F (Y ) ∈ A] = P
[
X ∈ F−1(A)

]
− P

[
Y ∈ F−1(A)

]
≤ dTV (X,Y ) ,

so taking supremum of the left-hand side gives the result.

Definition 3.7 (KL Divergence). Let f, g be distributions. The Kullback-Leibler divergence (or KL

divergence) between f and g, denoted DKL(f ‖ g), is defined as

DKL(f ‖ g) =

∫
Rd
f(x) ln

(
f(x)

g(x)

)
dx.

It is important to note that, in general, the KL divergence is not symmetric, i.e. it is not necessarily

true that DKL(f ‖ g) = DKL(g ‖ f). In particular, the KL divergence is not a metric.

Fact 3.8 ([136, p. 85]). DKL(f ‖ g) ≥ 0.

There is an important relationship between the total variation distance and the KL divergence;

this is given by the Pinsker’s Inequality.

Lemma 3.9 (Pinsker’s Inequality [136, Lemma 2.5]). 2dTV(f, g)2 ≤ DKL(f ‖ g).

3.3 Density estimation

As usual, we let F denote a class of distributions. At a high-level, a density estimation algorithm is

an algorithm that takes in i.i.d. samples from some unknown f ∈ F and outputs a distribution g ∈ F
such that dTV(f, g) is small. Of course, this may not always be possible. For example, if f is just a

single Gaussian then, with very small probability, all the samples could come from its tails. For this

reason, we will be happy if the algorithm returns a distribution g ∈ F for which dTV(f, g) is small

most of the time.

Let us now define the problem more formally. We begin by defining the notion of probably approx-

imately correct (PAC) learning of distributions.

Definition 3.10 (PAC learning of distributions, realizable case). Let F be a class of densities. We

say that F is PAC-learnable with sample complexity m : (0, 1)× (0, 1)→ N if there exists an algorithm

A such that for all f ∈ F the following holds: given ε, δ > 0 and m(ε, δ) i.i.d. samples from f as input

to A, with probability 1− δ (over the samples), A outputs a density ĝ ∈ F such that dTV(f, ĝ) ≤ ε.

Remark 3.11. Usually, if one requires ĝ ∈ F then we say that F is properly PAC-learnable. If

one does not require ĝ ∈ F the we say that F is improperly PAC-learnable. In this thesis, we deal

exclusively with proper PAC-learning so we omit the adjective proper.
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As an example of Definition 3.10, let F denote the class of Gaussian distributions, i.e. distributions

of the form N (µ,Σ) where µ,Σ are unknown. An intuitive algorithm for learning this distribution is to

obtain a collection of m i.i.d. samples from N (µ,Σ), compute its empirical mean, µ̂, and its empirical

covariance matrix, Σ̂. We then output the distribution N (µ̂, Σ̂). We will be able to show that if

m = O
(
d2

ε2
· log(1/δ)

)
then, with probability 1 − δ over the samples, dTV(N (µ,Σ),N (µ̂, Σ̂)) ≤ ε. As

the argument does require some work, the details are relegated to Subsection 3.3.3. This shows that

Gaussian distributions are PAC-learnable with sample complexity O
(
d2

ε2
· log(1/δ)

)
.

Definition 3.10 assumes that the true distribution is itself a member of F . We can further generalize

the definition to assume that the true distribution is not a member of F .

Definition 3.12 (PAC learning of distributions, agnostic case). Let F be a class of densities. We say

that F is C-agnostic PAC-learnable with sample complexity m : (0, 1) × (0, 1) → N if there exists an

algorithm A such that for all distributions f (not necessarily in F) the following holds: given ε, δ > 0

and m(ε, δ) i.i.d. samples from f as input to A, with probability 1− δ (over the samples), A outputs

a density ĝ such that

dTV(f, ĝ) ≤ C · inf
g∈F

dTV(f, g) + ε.

We can understand this definition as follows. Suppose that f is the true distribution and that it

is close (but not exactly equal to) a member in F . Then an algorithm is an agnostic PAC-learner if

it outputs a distribution in F which approximates f only slightly worse than the best member in F
would approximate f .

Definition 3.12 is also a bit more useful than Definition 3.10 in practice. For example, it is common

to assume that F is a mixture of high-dimensional Gaussians with a moderate number of components.

On the other hand, it is unlikely that the real data is a exactly a mixture of Gaussians, in which

case Definition 3.10 would not be applicable. However, it is likely that the real data is very well-

approximated by a mixture of Gaussians with not too many components in which case Definition 3.12

would be useful.

3.3.1 Learning finite hypothesis classes

Suppose that F is a finite hypothesis class. Consider the following problem. We are given i.i.d. access

to an unknown distribution f and our goal is to output a distribution g ∈ F such that dTV(f, g) is

small.

Theorem 3.13 ([55, Theorem 6.3]). Let F be a finite class of distributions and M = log |F|. There

is an algorithm A such that for any distribution f , if A is given O(log(M/δ)/ε2) i.i.d. samples from

f then with probability at least 1− δ (over the samples), A outputs a distribution ĝ ∈ F satisfying

dTV(f, ĝ) ≤ 3 ·min
g∈F

dTV(f, g) + ε.

Remark 3.14. Bousquet et al. [24] showed that the constant 3 is tight if ĝ ∈ F . However, if one

removes the restriction that ĝ ∈ F then Bousquet et al. [24] showed that the constant 3 can be improved

to 2. For example, it is sufficient to allow ĝ to be a mixture of densities in F .
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The idea is as follows. Recall from Fact 3.4 that if we define the event Eg,g′ = {g > g′} then

dTV(g, g′) = Pg[Eg,g′ ] − Pg′ [Eg,g′ ]. Let E = {Eg,g′ : g, g′ ∈ F , g 6= g′} be a set of “candidate events”.

For each g, we define ∆g = maxE∈E |Pg[E]− Pf [E]|. We can understand ∆g as a proxy for dTV(g, f).

The algorithm then returns arg ming∈F ∆g, i.e. the distribution g which has the smallest estimate for

the total variation distance. Of course, one cannot compute ∆g because one cannot compute Pf [E].

However, one can obtain a very good estimate of Pf [E] by sampling from f . The formal algorithm is

given in Algorithm 4.

Algorithm 4 An algorithm for learning with respect to a finite class of distributions

Input: Sample access to unknown distribution f , finite family F of distributions, and number of
samples n.
Output: A distribution ĝ ∈ F .

1: Let E = {Eg,g′ : g ∈ F} where Eg,g′ = {g > g′}.
2: Draw n samples from f , call these X1, . . . , Xn.
3: For each E ∈ E , compute pE = 1

n

∑
i∈[n] I[Xi ∈ E].

4: For each g ∈ F , compute its discrepancy ∆g = supE∈E |Pg[E]− pE |.
5: Return ĝ ∈ arg ming∈F ∆g.

Proof of Theorem 3.13. Fix an event E ∈ E . Then X1, . . . , Xn are i.i.d. random variables and Pf [E] =

E[I[Xi ∈ E]]. Hence, by Hoeffding’s Inequality, we have

P

[∣∣∣∣∣ 1n
n∑
i=1

I[Xi ∈ E]− Pf [E]

∣∣∣∣∣ ≥ ε/2
]
≤ 2 exp

(
−nε2/2

)
Choosing n ≥ 2 log (2M2/δ) /ε2, we have that for the fixed event E,∣∣∣∣∣ 1n

n∑
i=1

I[Xi ∈ E]− Pf [E]

∣∣∣∣∣ ≤ ε/2 (3.3)

with probability at least 1− δ/M2. Since |E| ≤ M2, we can take a union bound to get that Eq. (3.3)

holds for all E ∈ E with probabiltiy at least 1 − δ. For the remainder of the proof, we condition on

this event and we write pE = 1
n

∑
i∈[n] I[Xi ∈ E].

Let ĝ be the output of the algorithm and let g∗ ∈ arg ming∈E dTV(f, g). By the triangle inequality,

we have dTV(f, ĝ) ≤ dTV(ĝ, g∗) + dTV(f, g∗). We now bound dTV(ĝ, g∗). Writing E∗ = Eĝ,g∗ , we have

dTV(ĝ, g∗) = |Pĝ[E∗]− Pg∗ [E∗]|

≤ |Pĝ[E∗]− Pf [E∗]|+ |Pf [E∗]− Pg∗ [E∗]| (triangle inequality)

≤ |Pĝ[E∗]− Pf [E∗]|+ dTV(f, g∗) (definition of dTV(f, g∗))

≤ |Pĝ[E∗]− pE∗ |+ |pE∗ − Pf [E∗]|+ dTV(f, g∗) (triangle inequality)

≤ |Pĝ[E∗]− pE∗ |+ ε/2 + dTV(f, g∗) (Eq. (3.3) holds)

≤ ∆ĝ + ε/2 + dTV(f, g∗) (definition of ∆ĝ)

≤ ∆g∗ + ε/2 + dTV(f, g∗) (Line 5)
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≤ max
E∈E
|Pg∗ [E]− pE |+ ε/2 + dTV(f, g∗) (definition of ∆g∗)

≤ max
E∈E
|Pg∗ [E]− Pf [E]|+ |Pf [E]− pE |+ ε/2 + dTV(f, g∗) (triangle inequality)

≤ max
E∈E
|Pg∗ [E]− Pf [E]|+ ε+ dTV(f, g∗) (Eq. (3.3) holds)

≤ dTV(f, g∗) + ε+ dTV(f, g∗) (definition of dTV(f, g∗)).

We conclude that dTV(f, ĝ) ≤ 3dTV(f, g∗) + ε.

3.3.2 Covering arguments

Now suppose that F is an infinite hypothesis class. It turns out that the results in the last section can

be used to obtain an algorithm for this setting as long as F is somewhat structured.

Definition 3.15 (ε-cover). A hypothesis class F̂ is an ε-cover of F if for every f ∈ F , there exists

f̂ ∈ F̂ such that dTV(f, f̂) ≤ ε.

Note that in the definition of ε-cover, we did not require that F̂ ⊆ F .

Corollary 3.16. Let F be a hypothesis class (possibly infinite) and f be an arbitrary distribution. Let F̂
be an ε1-cover for F and set M = log |F̂ |. There is an algorithm, which given F̂ , and n ≥ log (2M2/δ) /ε2

2

i.i.d. samples from f , with probability at least 1− δ (over the samples) outputs ĝ ∈ F̂ satisfying

dTV(f, ĝ) ≤ 3 · inf
g∈F

dTV(f, g) + 3ε1 + ε2

Proof. We use Algorithm 4 with F̂ as the input hypothesis set. In this case, Theorem 3.13 guarantees

that with probability 1− δ, the output will be a distribution ĝ ∈ F̂ satisfying

dTV(f, ĝ) ≤ 3 ·min
g∈F̂

dTV(f, g) + ε2.

Now let g ∈ F be arbitrary and let g′ ∈ F̂ be such that dTV(g, g′) ≤ ε2. In this case, we have

dTV(f, ĝ) ≤ 3dTV(f, g′) + ε ≤ 3dTV(f, g) + 3ε1 + ε2.

Taking the infimum over all g ∈ F on the RHS gives the claim.

Covering arguments are not always useful. In particular, if F̂ is an infinite-sized ε-cover for F then

Corollary 3.16 only gives a vacuous statement. For example, if F is the class of Gaussian distributions

on R with unit variance, it is impossible to find a finite ε-cover for any value of ε ∈ (0, 1). The issue

lies in the fact that an ε-cover is constructed before seeing any samples from f . In Chapter 4, we will

introduce the compression framework which allows us to construct a “data-dependent ε-cover”.
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3.3.3 An algorithm for learning a single Gaussian

Theorem 3.17 ([16, Theorem 13]). Let F be the class of Gaussian distributions in Rd. Then F is

PAC-learnable with sample complexity O
(
d2+d log(1/δ)

ε2

)
.

This bound is nearly optimal. As shown in Theorem 4.30, Ω(d2/ε2 log(1/ε)) samples are necessary

for any algorithm to learn the class of Gaussian distributions in Rd. As shown in [16], it is possible to

slightly improve the bound by replacing d log(1/δ) with log(1/δ).

The theorem and its proof below is presumably folklore and follows from standard concentration

inequalities, a standard formula for the KL divergence between two Gaussians, and Pinsker’s Inequality.

However, we are unable to find a reference for the proof prior to [17].

To prove this theorem, we need to show that there is an algorithm A with the following property:

if it takes as input an accuracy parameter ε > 0 and a confidence parameter δ > 0, then it requires

only O
(
d2

ε2
· log(1/δ)

)
samples from an unknown Gaussian distribution to produce an ε-approximation

of it (in total variation distance).

The algorithm A is as simple as it can get. Suppose the unknown Gaussian is N (µ,Σ). First,

the algorithm draws 2m samples from N (µ,Σ) where m = O
(
d2

ε2
· log(1/δ)

)
. Let us call these samples

X1, . . . , X2m. The algorithm then computes the empirical mean µ̂ = 1
m

∑m
i=1Xi and the empirical

covariance matrix Σ̂ = 1
2m

∑m
i=1(X2i−X2i−1)(X2i−X2i−1)>. The output is the distribution N (µ̂, Σ̂).

We now analyze this algorithm. From Lemma B.5 in Appendix B.1, we have that

2dTV(N (µ,Σ),N (µ̂, Σ̂))2 ≤ 1

2

(
LD
(

Σ̂,Σ
)

+ (µ̂− µ)>Σ−1(µ̂− µ)
)
,

where LD (A,B) := Tr(B−1A − I) − log det(B−1A) is the log-det divergence between PSD matrices

A,B (see Definition B.1 in Appendix B.1). Hence, it suffices to show that, with the above algorithm,

we have

LD
(

Σ̂,Σ
)
≤ O(ε2) and (µ̂− µ)>Σ−1(µ̂− µ) ≤ O(ε2)

with probability at least 1− δ. This will follow from the following two claims.

Claim 3.18. Suppose m ≥ d+2
√
d log(1/δ)+2 log(1/δ)

ε2
and let µ̂ = 1

m

∑m
i=1Xi where Xi are drawn inde-

pendently from N (µ,Σ). Then

P
[
(µ̂− µ)>Σ−1(µ̂− µ) ≥ ε2

]
≤ δ

It is not difficult to show that Claim 3.18 is tight in that one requires m ≥ Ω
(
d+log(1/δ)

ε2

)
for the

conclusion to hold. This can be proved using a lower bound on the tails of the χ2-distribution (see [89,

Lemma 1]).

Proof. Note that Σ−1/2 · (Xi − µ) ∼ N(0, I) and so 1
m

∑m
i=1 Σ−1/2(Xi − µ) ∼ N(0, 1

mI). Let g =
1√
m

∑m
i=1 Σ−1/2(Xi − µ) ∼ N(0, 1) so that (µ̂− µ)>Σ−1(µ̂− µ) = 1

mg
>g. The claim is thus equivalent

to proving that

P
[
‖g‖22 ≥ mε

2
]
≤ δ. (3.4)
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Note that ‖g‖22 has a chi-squared distribution with parameter d since ‖g‖22 =
∑d

j=1 g
2
j where gj ∼

N(0, 1). By Lemma B.13, we have, for any t > 0,

P
[
‖g‖22 ≥ d+ 2

√
dt+ 2t

]
≤ exp(−t) (3.5)

Choosing t = log(1/δ) gives that Eq. (3.5) is at most δ. By our choice of m, we have that mε2 ≥
d+ 2

√
d log(1/δ) + 2 log(1/δ) so Eq. (3.4) holds.

Claim 3.19. If m ≥ C(d2 + d log(1/δ))/ε2 for some sufficiently large constant C > 0 then with

probability at least 1− δ,
(1− ε/

√
d)Σ � Σ̂ � (1 + ε/

√
d)Σ.

Proof. Set α = ε/
√
d. First observe that X2i−X2i−1√

2
∼ N (0,Σ). Let gi = Σ−1/2X2i−X2i−1√

2
∼ N (0, Id).

Thus, we have Σ̂ = 1
mΣ1/2

(∑m
i=1 gig

>
i

)
Σ1/2. By Fact 3.20, it suffices to show that

(1− α)Id �
1

m

m∑
i=1

gig
>
i � (1 + α)Id. (3.6)

Applying Lemma B.14 with t =
√

1 + log(1/δ)/d gives that, as long as m ≥ C(d + log(1/δ))/α2 =

C(d2 + d log(1/δ))/ε2 then Eq. (3.6) holds with probability at least 1− δ.

Fact 3.20. Let A,B be n × n PSD matrices and suppose that A � B. Let X be any k × n matrix.

Then XAX> � XBX>.
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Chapter 4

Near-Optimal Sample Complexity

Bounds for Learning Mixtures of

Gaussians

Chapter Summary. In this chapter, we give an algorithm for learning mixtures of k Gaussians in

Rd with sample complexity Õ(kd2/ε2).1 We will also show a matching lower bound and show that any

algorithm for learning mixtures of k Gaussians in Rd requires Ω̃(kd2/ε2) samples.

4.1 Introduction

Estimating distributions from observed data is a fundamental task in statistics that has been studied

for over a century. This task frequently arises in applied machine learning where it is commonly

assumed that the distribution can be modeled approximately with a mixture of Gaussians. There are

many popular software packages which have implemented heuristics for learning mixtures of Gaussians;

the most common heuristic is the expectation maximization (EM) algorithm. The theoretical machine

learning community also has a lengthy history on distribution learning; we refer the reader to [58] for

a survey on learning structured distributions.

The purpose of this chapter is to develop a general and generic technique for distribution learning.

We will then apply this technique to the fundamental setting of learning mixtures of Gaussians. The

learning model we adapt is density estimation, which is described in detail in Section 3.3. To summarize,

in this model, we are given i.i.d. samples from the unknown target distribution and our goal is to find

a distribution that is close to the target in total variation (TV) distance. This chapter will focus on

sample complexity, i.e. the number of samples for which it is sufficient for some algorithm to obtain a

close estimate.

The technique for proving upper bounds on the sample complexity utilizes a notion of sample

compression (see also [18, §7]). More specifically, we show that if it is possible to “encode” members

1We write Õ(f(n)) to mean O(f(n) polylog(f(n))). So Õ(kd2/ε2) means O(kd2/ε2 · polylog(kd/ε)). Similarly, Ω̃(f(n))
means Ω(f(n)/ polylog(f(n))). So Ω̃(kd2/ε2) means Ω(kd2/ε2 polylog(kd/ε)).
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of a class of distributions with a carefully chosen subset of samples drawn from the distribution then

this yields an upper bound on the sample complexity for learning with respect to that class. In fact,

given an efficient sample compression scheme, we will show how to transform it into a sample-efficient

learning algorithm. Hence, by constructing sample compression schemes for mixtures of Gaussians, we

will obtain new upper bounds on the sample complexity of learning with respect to these classes.

4.1.1 Main results for mixtures of Gaussians

In this section, we go over our main results for learning mixtures of multivariate Gaussians. Let k

denote the number of mixture components and d denote the dimension. Henceforth, the notations

Õ(·) and Ω̃(·) suppress polylog(kd/εδ) factors. We stress that the results that we present here do not

have any dependencies on any other parameters (such as the condition number or the minimum mixing

weight).

Theorem 4.1. The class of k-mixtures of d-dimensional Gaussians can be learned in the realizable

setting, and can be 12-learned in the agnostic setting, using Õ(kd2/ε2) samples.

Prior to this result, the best known upper bounds on the sample complexity of this problem were

Õ(kd2/ε4), due to [16], and O(k4d4/ε2), based on a VC-dimension bound. For the case of a single

Gaussian (i.e., k = 1), a sample complexity bound of O(d2/ε2) is known as we described in Section 3.3.3.

Our second main result is a lower bound matching Theorem 4.1 up to logarithmic factors.

Theorem 4.2. Any method for learning the class of k-mixtures of d-dimensional Gaussians in the

realizable setting has sample complexity Ω̃(kd2/ε2).

Note that this is a worst-case (i.e., minimax) lower bound: for any learning algorithm, there always

exists at least one distribution that requires that many samples. Previously, the best known lower

bound on the sample complexity was Ω̃(kd/ε2) [135]. Even for a single Gaussian (i.e., k = 1), an

Ω̃(d2/ε2) lower bound was not known prior to this work.

Our third main result is an upper bound for learning mixtures of axis-aligned Gaussians, i.e.,

Gaussians with diagonal covariance matrices. This bound is also near-optimal as it matches the

Ω(kd/ε2) bound found in [135].

Theorem 4.3. The class of k-mixtures of axis-aligned d-dimensional Gaussians can be learned in the

realizable setting, and can be 12-learned in the agnostic setting, using Õ(kd/ε2) samples.

Theorem 4.3 also appears in Ashtiani’s thesis [18, §7.6]. His proof is also via compression schemes;

however the compression scheme we present here differs significantly from the one found in [18].

Our techniques. The upper bounds are proved using a novel compression framework. In particular,

we show that distributions which can be “compressed” by representing it using a small number of its

own samples then it can also be learned with a small number of samples. In fact, given any compression

scheme, there is a black-box reduction which transforms the compression scheme into a sample-efficient

algorithm. We then show that mixtures of Gaussians have an efficient compression scheme.
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Next we discuss the main ideas used in the proof of our lower bound, Theorem 4.2. In order to

prove our lower bound for mixtures of Gaussians, we first prove a lower bound of Ω̃(d2/ε2) for learning

a single Gaussian. Although the approach is quite intuitive, the details are intricate and much care

is required to make a formal proof. The main step is to construct a large family (of size 2Ω(d2)) of

covariance matrices such that the associated Gaussian distributions are well-separated in terms of

their total variation distance, while simultaneously ensuring that their Kullback-Leibler divergences

are small. Once this is established, we can then apply a generalized version of Fano’s inequality to

complete the proof.

To construct this family of covariance matrices, we sample 2Ω(d2) matrices from the following

probabilistic process: start with an identity covariance matrix; then choose a random subspace of

dimension d/9 and slightly increase the eigenvalues corresponding to this eigenspace. It is easy to

bound the KL divergences between the constructed Gaussians. To lower bound the TV distance,

we show that for every pair of these distributions, there is some subspace for which a vector drawn

from one Gaussian will have slightly larger projection than a vector drawn from the other Gaussian.

Quantifying this gap will then give us the desired lower bound on the total variation distance.

Computational efficiency. Although our approach for proving sample complexity upper bounds is

algorithmic, our focus is not on computational efficiency. The resulting algorithms have nearly optimal

sample complexities, but their running times are exponential in the dimension d and the number

of mixture components k. More precisely, the running time is 2kd
2 polylog(d,k,1/ε,1/δ) for mixtures of

general Gaussians, and 2kdpolylog(d,k,1/ε,1/δ) for mixtures of axis-aligned Gaussians. The existence of an

algorithm for density estimation that runs in time poly(k, d) is unknown even for the class of mixtures

of axis-aligned Gaussians, see [61, Question 1.1].

Chapter outline. Next, we review some related work. In Section 4.2, we provide justification for

our learning model. In Section 4.3, we formally define compression schemes for distributions, prove

their closure properties, and show their connection with density estimation. Theorems 4.1 and 4.3 are

proved in Section 4.4. Theorem 4.2 is proven in Section 4.5. A collection of standard facts can be

found in the appendices.

4.1.2 Related work

Distribution learning is a vast topic and many approaches have been considered in the literature. This

section reviews the approaches that are particularly relevant to our work.

For parametric families of distributions, a common approach is to use the samples to estimate

the parameters of the distribution, possibly in a maximum likelihood sense, or possibly aiming to

approximate the true parameters. For the specific case of mixtures of Gaussians, there is a substantial

theoretical literature on algorithms that approximate the mixing weights, means and covariances (e.g.,

[12, 22, 44, 112]); see [90] for a survey. The strictness of this objective cuts both ways. On the one

hand, a successful learner uncovers substantial structure of the target distribution. On the other hand,

this objective is impossible when the means and covariances are extremely close. Thus, algorithms
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for parameter estimation of mixtures necessarily require some separation assumptions on the target

parameters.

Density estimation has a long history in the statistics literature, where the focus is on the sample

complexity question; see [53, 54, 134] for general background. It was first studied in the computational

learning theory community under the name PAC learning of distributions by [95], whose focus is on

the computational complexity of the learning problem.

Various measures of dissimilarity between distributions have been considered in existing density

estimation schemes. For example, one natural measure is the TV distance [54, Chapter 5]; this has been

used by several existing algorithms for mixtures of Gaussians [16, 35, 47]. Another natural measure is

the Kullback-Leibler (KL) divergence, which has also been used for mixtures of Gaussians [69]. Yet

another natural measure is the Lp distance for p > 1; for example, some prior work has used the

L2 distance for density estimation [7, 59]. (The Lp distance between densities f and g is defined as

‖f−g‖p :=
(∫

Rd |f(x)− g(x)|p dx
)1/p

.) This chapter focuses on the TV distance (i.e., the L1 distance),

and we provide justification for this choice in Section 4.2.

The minimum distance estimate [54, Section 6.8] is one possible approach for deriving sample

complexity upper bounds for distribution learning. This approach is based on uniform convergence

theory. In particular, an upper bound for any class of distributions can be achieved by bounding

the VC-dimension of an associated set system, called the Yatracos class (see [54, page 58] for the

definition). For example, [62] used this approach to bound the sample complexity of learning high-

dimensional log-concave distributions. For the class of single Gaussians in d dimensions, this approach

leads to the optimal sample complexity upper bound of O(d2/ε2). However, for mixtures of Gaussians

and axis-aligned Gaussians in Rd, the best known VC-dimension bounds (see [54, Section 8.5] and [10,

Theorem 8.14]) result in loose upper bounds of O(k4d4/ε2) and O((k4d2 + k3d3)/ε2), respectively.

Another approach is to first approximate the mixture class using a more manageable class such as

piecewise polynomials, and then study the associated Yatracos class; see, e.g., [35]. However, piecewise

polynomials do a poor job in approximating d-dimensional Gaussians, resulting in an exponential

dependence on d.

For density estimation of mixtures of Gaussians using the TV distance, the best known sample

complexity upper bounds (in terms of k and d) are Õ(kd2/ε4) for general Gaussians and Õ(kd/ε4)

for axis-aligned Gaussians, both due to [16]. For the general Gaussian case, their method takes an

i.i.d. sample of size Õ(kd2/ε2) and partitions this sample in every possible way into k subsets. Based

on those partitions, kÕ(kd2/ε2) “candidate distributions” are generated. The problem is then reduced

to learning with respect to this finite class of candidates. Their sample complexity has a suboptimal

factor of 1/ε4, of which 1/ε2 arises in their approach for choosing the best candidate, and another

factor 1/ε2 is due to the exponent in the number of candidates.

Our approach via compression schemes also ultimately reduces the problem to learning with respect

to finite classes, although yielding a more refined bound than previous work. In the case of mixtures

of Gaussians, one factor of 1/ε2 is again incurred due to learning with respect to finite classes. The

key is that the number of compressed samples is only Õd(1), so the overall sample complexity bound

has only an Õ(1/ε2) dependence on ε.
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Number of Gaussians Dimension Axis-aligned Sample complexity Reference

u
p

p
er

b
o
u

n
d

s
1 d no O(d2/ε2) standard

1 d yes O(d/ε2) standard

k 1 n/a Õ(k/ε2) [35]

k d no Õ(kd2/ε2) this chapter

k d yes Õ(kd/ε2) this chapter

lo
w

er
b

o
u

n
d

s

1 d no Ω̃(d2/ε2) this chapter

1 d yes Ω̃(d/ε2) [135]

k 1 n/a Ω̃(k/ε2) [135]

k d no Ω̃(kd2/ε2) this chapter

k d yes Ω̃(kd/ε2) [135]

Table 4.1: Bounds on the sample complexities of learning Gaussian mixtures and their subclasses.
The lower bounds are minimax (i.e., worst-case). The bounds in the first two rows are well
known; proofs can be found in [16].

As for lower bounds on the sample complexity for learning mixtures of Gaussians under the TV

distance, much fewer results are known. The only lower bound prior to this work is due to [135], which

shows a bound of Ω̃(kd/ε2) for learning mixtures of axis-aligned Gaussians (and hence for general

Gaussians as well). This bound is tight for the axis-aligned case, as we show in Theorem 4.3, but loose

in the general case, as we show in Theorem 4.2. We note that an alternative construction was provided

in [56] giving the same lower bound as ours using a deterministic construction.

A summary of bounds on the sample complexity for learning Gaussian mixtures and their subclasses

is presented in Table 4.1.

4.2 Justification of our model

Several of the existing models for learning mixtures of Gaussians need some structural assumption on

the distribution. For example, learning under the parameter estimation model requires that the means

are sufficiently separated and that the mixing weights are not too small, see the discussion after [90,

Definition 1].

A key motivation for our work is to study a model for learning mixtures of Gaussians that requires

no structural assumptions at all. Specifically, we would like to identify a model in which Gaussians

can be learned up to error ε with sample complexity depending only on k, d and ε, then derive optimal

sample complexity bounds in that model. Density estimation under the TV distance is one such model:

Ashtiani et al. [16, Theorem 14] and Theorem 4.1 in this paper show that mixtures of Gaussians can

be learned up to error ε with sample complexity depending on k, d, and ε only. In this section we

provide further justification for using this particular model.

In Section 4.2.1 we argue that the TV distance is not an arbitrary choice. If instead we had used
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the KL divergence or any Lp distance, with p > 1, then the sample complexity must necessarily depend

on the structural properties of the distribution. Thus, TV distance is a natural choice.

4.2.1 Comparison to KL divergence and Lp distances

In this section we consider the problem of density estimation for a mixture of Gaussians, using a

distance measure that is either the KL divergence2 or an Lp distance with p > 1. Under these distance

measures, we show that the sample complexity of this problem must necessarily depend on structural

properties of the distribution — that is, it cannot be bounded purely as a function of k, d and ε.

First we consider using the KL divergence. We show that no algorithm can guarantee that the

KL divergence between the true distribution and the output distribution is smaller than any finite

number with a uniformly bounded number of samples. In fact, this even holds for mixtures of two

one-dimensional Gaussians with unit variances.

Theorem 4.4. Let F be the class of mixtures of two Gaussians in R, both of which have unit variance.

Let A be any algorithm (possibly randomized) whose input is a finite-length sequence of real numbers

and whose output is a (Lebesgue) measurable density function. Then for every m ∈ N and every τ > 0,

there exists a density f ∈ F such that if X ′1, . . . , X
′
m ∼ f then DKL(f ‖ A(X ′1, . . . , X

′
m)) ≥ τ with

probability at least 0.98.

Remark 4.5. We note that Feldman et al. [70] consider learning mixtures of axis-aligned Gaussians

under KL divergence. However, Theorem 4.4 does not contradict the results in [70] because they assume

that the means and variances are bounded.

The intuition behind the theorem is as follows. Let a ∈ N and consider the set of distributions

(1 − δ) · N (0, 1) + δ · N (a, 1) where δ � 1/m. Any algorithm that draws m samples from such a

distribution will likely have all of its samples come from N (0, 1). However, the only way for the KL

divergence to be small is if the distribution returned by A has non-negligible mass near the N (a, 1)

distribution, which is impossible since the samples provide no information about a.

Let ν be the Lebesgue measure on R. We begin with a simple calculation that will be useful later.

Claim 4.6. Suppose I ⊆ R satisfies ν(I) ≥ γ. Moreover, let f, h : R → R≥0 be measurable density

functions such that f(x) ≥ β, h(x) ≤ α for all x ∈ I and f(x) > 0 for all x ∈ R. Then DKL(f ‖ h) ≥
γβ log(β/α)− 1/e.

Proof. First, let us write

DKL(f ‖ h) =

∫
I
f(x) log

f(x)

h(x)
dx+

∫
Ic
f(x) log

f(x)

h(x)
dx.

For the first integral, we have∫
I
f(x) log

f(x)

h(x)
dx ≥

∫
I
β log

β

α
dx ≥ γβ log(β/α).

2Recall that KL divergence is not symmetric; we only consider using KL divergence in one direction.
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Next, we bound the second integral and show that it has value at least −1/e which completes the

proof. Let F =
∫
Ic f(x) dx and H =

∫
Ic h(x) dx. Note that F > 0 as f(x) > 0 for all x ∈ R. If H = 0

then h(x) = 0 almost everywhere on Ic so the second integral is +∞.

So assume that H > 0. Then f/F and h/H are densities on Ic. Hence, we have∫
Ic
f(x) log

f(x)

h(x)
dx = F

∫
Ic

f(x)

F
log

f(x)/F

h(x)/H
dx︸ ︷︷ ︸

≥0

+F

∫
Ic

f(x)

F
log

F

H
dx ≥ F log(F/H),

where the inequality is because the KL divergence of two densities is always non-negative. Since H ≤ 1,

we have − log(H) ≥ 0 so F log(F/H) = F logF − F logH ≥ F logF ≥ −1/e.

Combining the two bounds gives the claim.

Proof of Theorem 4.4. We allow the algorithm A to be randomized. Denote by A(X1, . . . , Xm, R)

the output of A given input X1, . . . , Xm (the sampled data from the “true” distribution) and an

independent source of randomness R. We will first analyze the behavior of the algorithm when the

true distribution isN (0, 1) and show that there exists some a′ ∈ R for which the algorithm’s output puts

almost no probability mass on around a′. We then show that if the true distribution is a carefully chosen

mixture of N (0, 1) and N (a′, 1), then the algorithm’s output does not change with high probability, so

it still puts almost no mass on N (a′, 1); hence the KL divergence of the output and the true distribution

is large.

Define the parameters δ = 0.01
m , β = δ√

2π
exp(−1/32), and α = β exp

(
−4τ−4/e

β

)
.

Let X1, . . . , Xm ∼ N (0, 1) and set h = A(X1, . . . , Xm, R). Note that h is random. Define the

(random) set H = { x ∈ R : h(x) ≥ α }. Then ν(H) ≤ 1/α. For a ∈ Z, define Ia = [a − 1/4, a +

1/4]. Note that the Ia are disjoint intervals. Hence
∑

a∈Z ν(Ia ∩ H) ≤ 1/α deterministically so

E
[∑

a∈Z ν(Ia ∩H)
]
≤ 1/α. Note that the left hand side of the inequality is an infinite sum while

the right hand side is a finite number. Since expectation is linear, we can find a′ ∈ Z such that

E [ν(Ia′ ∩H)] ≤ 1/400. By Markov’s Inequality, ν(Ia′ ∩H) ≤ 1/4 with probability at least 0.99. We

condition on this event.

Define f = (1−δ)N (0, 1)+δ·N (a′, 1) and note that for all x ∈ Ia′ we have f(x) ≥ δ√
2π

exp(−1/32) =

β, and f is positive everywhere. Let Ja′ = Ia′ \H. Then ν(Ja′) ≥ ν(Ia′) − ν(Ia′ ∩H) ≥ 1/4, and for

all x ∈ Ja′ we have f(x) ≥ β and h(x) < α. So

DKL(f ‖ h) ≥ β log(β/α)/4− 1/e = τ,

where the inequality is by Claim 4.6 and the equality is by definition of α. Hence, DKL(f ‖ h) ≥ τ

with probability at least 0.99.

Note that dTV (f,N (0, 1)) ≤ δ. If S = (X1, . . . , Xm) and S′ = (X ′1, . . . , X
′
m) where Xi ∼ N (0, 1)

and X ′i ∼ f then dTV (S, S′) ≤ mδ = 0.01. Hence, if h = A(S,R) and h′ = A(S′, R) then dTV (h, h′) ≤
0.01 so P[DKL(f ‖ h′) ≥ τ ] ≥ P[DKL(f ‖ h) ≥ τ ]− 0.01 ≥ 0.98, completing the proof.

Next we consider Lp distances, and prove a result analogous to Theorem 4.4. The main difference is

that the argument uses Gaussians with non-unit variance, which can strongly influence the Lp distance.
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Theorem 4.7. Let F be the class of mixtures of two Gaussians in R. Let A be any algorithm (possibly

randomized) whose input is a finite-length sequence of real numbers and whose output is a (Lebesgue)

measurable density function. Then for every p > 1, every m ∈ N, and every τ > 0, there exists a

density f ∈ F such that if X ′1, . . . , X
′
m ∼ f then ‖f −A(X ′1, . . . , X

′
m)‖p ≥ τ with probability at least

0.98.

Proof of Theorem 4.7. First, define the parameters δ = 0.01
m , σp−1 = δp

τp6p

√
ln(9/2π), and M =

4σ
√

ln(9/2π).

Let X1, . . . , Xm ∼ N (0, 1) and set h = A(X1, . . . , Xm, R), where, as in the proof of Theo-

rem 4.4, R is the algorithm’s independent source of randomness. Note that h is random. De-

fine H = { x ∈ R : h(x) ≥ δ/6σ }. Then ν(H) ≤ 6σ/δ. For a ∈ Z, define the intervals Ia =

[aM − M/4, aM + M/4] and note that Ia are disjoint intervals. Hence,
∑

a∈Z ν(Ia ∩ H) ≤ 6σ/δ

deterministically so E
[∑

a∈Z ν(Ia ∩H)
]
≤ 6σ/δ. Note that the left hand side of the inequality is an

infinite sum while the right hand side of the inequality is a finite number. Since expectation is linear,

we can find a′ ∈ Z such that E [ν(Ia′ ∩H)] ≤M/400. By Markov’s Inequality, ν(Ia′ ∩H) ≤M/4 with

probability at least 0.99. We condition on this event.

Define f = (1− δ)N (0, 1) + δ · N (a′, σ2). Now, note that for x ∈ Ia′ , we have

f(x) ≥ δ 1√
2πσ

exp(−(M/4)2/2σ2) = δ/3σ.

Let Ja′ = Ia′ \ H. Then ν(Ja′) ≥ M/2 −M/4 = M/4 = σ
√

ln(9/2π) and for all x ∈ Ja′ , we have

f(x) ≥ δ/3σ and h(x) ≤ δ/6σ. So

‖f − h‖pp ≥
∫
Ja

|f(x)− h(x)|p dx ≥ δp

(6σ)p
σ
√

ln(9/2π) =
δp

6pσp−1
σ
√

ln(9/2π) = τp,

where the last equality is by definition of σ. Hence, ‖f − h‖p ≥ τ with probability at least 0.99.

Note that dTV (f,N (0, 1)) ≤ δ. If S = (X1, . . . , Xm) and S′ = (X ′1, . . . , X
′
m) where Xi ∼ N (0, 1)

and X ′i ∼ f then dTV (S, S′) ≤ mδ = 0.01. Hence, if h = A(S,R) and h′ = A(S′, R) then dTV (h, h′) ≤
0.01 so P[‖f − h′‖p ≥ c] ≥ P[‖f − h‖p ≥ c]− 0.01 ≥ 0.98.

4.3 Compression

In this section, we will precisely define a notion of sample compression and show how it can be used for

distribution learning. Much of the material presented in this section can also be found in Ashtiani’s

thesis [18, §7.2].

4.3.1 Definition of compression

Let F be a distribution over a domain Z. A compression scheme for F involves two parties: an encoder

and a decoder. Intuitively, one can think of the encoder and decoder as follows.

• The encoder knows a distribution g ∈ F . Its goal is to communicate this to the decoder.

However, the encoder must do this as follows. First, the encoder draws m i.i.d. samples from g.
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Having drawn these m samples, the encoder selects a list of length τ from the set of samples.

Furthermore, the encoder may construct a bit sequence of length t. The encoder then sends

a message consisting of the list of samples and the bit sequence. Ideally, m, τ, t should all be

relatively small.

• The decoder receives the message from the encoder consisting of the list of samples and the bit

sequence. Using this, it then outputs a distribution ĝ. The decoder is successful if ĝ is close to

g (in total variation distance).

Let us make two remarks at this point. First, it could be possible that the samples that the encoder

draws is not at all representative of g at all. For example, if g is a single Gaussian distribution, with

very small probability, all its samples could come from one of its tails. Thus, we will only ensure that

the compression scheme is successful with some constant probability, say 2/3.

Second, requiring that g ∈ F is a condition which will only be useful for the realizable setting. To

handle the agnostic setting, we will modify the encoder where it knows a distribution g ∈ F but it is

only allowed to draw samples from a different distribution q (not necessarily in F).

Third, the covering arguments that we described in Subsection 3.3.2 is actually a special case of

compression by setting m = τ = 0. In this case, the encoder only sends bits to the decoder and the

bit sequence that it sends would correspond to an element in the cover.

Formal definitions. We now make the above definitions of compression schemes more precise.

Definition 4.8. A decoder for a distribution class F on a domain Z is a deterministic function

J : ∪∞n=0 Z
n × ∪∞n=0{0, 1}n → F . In other words, J takes as input a finite sequence of elements from

Z and a finite bit-string and outputs an element in F .

Definition 4.9 (robust compression schemes). Let τ, t,m : (0, 1)→ Z be decreasing functions and let

r ∈ [0, 2]. We say F admits (τ, t,m) r-robust compression if there exists a decoder J for F such that

for any distribution g ∈ F , and for any distribution q on Z with ‖g − q‖1 ≤ r, the following holds.

For any ε ∈ (0, 1), if a set of m(ε) samples S is drawn from qm(ε) then with probability

2/3 (over the samples), there exists a sequence L of at most τ(ε) elements of S, and a

bit-sequence B of length at most t(ε), such that ‖J (L,B)− g‖1 ≤ ε.

We note here that L is an ordered sequence and is allowed to contain duplicates. Thus, it is

conceivable that the order of the sequence may be used by the decoder.

Remark 4.10. In the special case where r = 0, we will refer to the compression scheme as being

a non-robust compression scheme. In the non-robust case, the samples come from the distribution g

itself. However, in the robust case, the samples come from a distribution q which is only close to g (in

total variation distance).

Remark 4.11. In Definition 4.9, we required that L and B exist with probability 2/3. If one wishes

to boost this probability, one could draw k sets of samples S1, . . . , Sk where each Si ∼ qm(ε). For each

Si, a suitable L and B will fail to exist with probability at most 1/3, so the probability that a suitable

L and B do not exist in S1, . . . , Sk is at most 3−k. Thus to get a compression scheme with success

probability 1− δ we can set k = dlog3(1/δ)e. We will often make use of this calculation in our proofs.
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4.3.2 Connection between compression and learning

We now show that if a class of distributions has a robust compression scheme then it can be learned in

the agnostic density estimation model. In fact, our proof will show how to utilize a robust compression

scheme as a blackbox to obtain a sample-efficient algorithm for density estimation.

The main idea is as follows. Note that the encoder cannot be implemented in the density estimation

model because the encoder requires prior knowledge of the distribution g. However, the interaction

between the encoder and decoder is only via a short message. Thus, we make a collection of all

possible messages that may have been sent from the encoder to the decoder. The assertion that a

sample compression scheme exists implies that for at least one of these messages, the output of the

decoder will be a distribution which is close to g.

At this point, the only remaining task is to select a distribution, from the finite collection that we

constructed, that is close to g. In Subsection 3.3.1, we described an algorithm that does precisely this

and we will now use the algorithm as a blackbox. For convenience, we restate the theorem here.

Theorem 3.13 ([55, Theorem 6.3]). Let F be a finite class of distributions and M = log |F|. There

is an algorithm A such that for any distribution f , if A is given O(log(M/δ)/ε2) i.i.d. samples from

f then with probability at least 1− δ (over the samples), A outputs a distribution ĝ ∈ F satisfying

dTV(f, ĝ) ≤ 3 ·min
g∈F

dTV(f, g) + ε.

Our approach for relating compression schemes and density estimation, described informally above,

is made formal by the following theorem. It uses Theorem 3.13 to select a good distribution that the

decoder can output. Note that we assume the learner knows all the problem parameters, such as

k, d, ε, δ, τ, t,m, and r, but is oblivious to the target distribution.

We will begin with the realizable setting.

Theorem 4.12 (compression implies learning, realizable setting). Suppose F admits (τ, t,m) com-

pression. Let τ ′(ε) := τ(ε) + t(ε). Then F can be PAC-learned with sample complexity

O

(
m(ε/4) log(1/δ) +

τ ′(ε/4) log(m(ε/4) log(1/δ)) + log(1/δ)

ε2

)
= Õ

(
m
(ε

4

)
+
τ ′(ε/4)

ε2

)
.

In other words, there is an algorithm which receives the above number of samples from an unknown

distribution g ∈ F and outputs ĝ such that ‖g − ĝ‖1 ≤ ε.

Proof. Let J be the decoder which guarantees the existence of a (τ, t,m) compression scheme for F .

Let g ∈ F denote the unknown distribution.

By assumption, with probability 2/3, if S is a set of m(ε) i.i.d. samples from g then there exists a

sequence L of at most τ(ε) elements from S and a bit-sequence B of length at most t(ε) such that

‖J (L,B)− g‖1 ≤ ε. (4.1)

As in Remark 4.11, we can boost the success probability that there exists L and B satisfying Eq. (4.1)

from 2/3 to 1−δ by drawing dlog3(1/δ)e sets of m(ε) i.i.d. samples from g. For the rest of the argument,
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we condition on the event that we have already drawn N = m(ε)dlog3(1/δ)e samples and that there

exists L and B satisfying Eq. (4.1).

Of course, the learner is unaware of L and B but it can generate all possible sequences of length

τ(ε) and all possible bit-sequences of length t(ε). For each of these inputs, it obtains a distribution

from J and at least one of these sequences will satisfy Eq. (4.1).

The total number of sequences of length at most τ(ε) is bounded above by (N+1)τ(ε) (the additional

+1 is to account for the fact that the sequence L may be less than τ(ε)). Similarly, the number of bit

sequences of length at most t(ε) is bounded above by 2t(ε)+1. Hence, the learner can generate a finite

hypothesis class of size

M ≤ (N + 1)τ(ε) · 2t(ε)+1 ≤ (N + 1)τ
′(ε)+1

with the guarantee that at least one hypothesis is within total variation distance ε of g.

We can now appeal to Theorem 3.13 which asserts that there is an algorithm such that, given

O(log(M/δ)/ε2) i.i.d. samples from g, outputs ĝ with ‖g − ĝ‖1 ≤ 4ε with probability at least 1− δ.
In total, the algorithm has drawn at most

O

(
m(ε) log(1/δ) +

τ ′(ε) log(m(ε) log(1/δ)) + log(1/δ)

ε2

)
samples from g and its success probability is at least 1 − 2δ (because the compression scheme has

probability at most δ of failure and the algorithm of Theorem 3.13 has probability at most δ of

failure). Replacing δ with δ/2 and ε with ε/4 proves the theorem.

The following theorem relates robust compression to agnostic learning. Its proof is a slightly more

technical version of the proof of Theorem 4.12.

Theorem 4.13 (compression implies learning, agnostic setting). Suppose F admits (τ, t,m) r-robust

compression. Let τ ′(ε) := τ(ε) + t(ε). Then F can be max{3, 2/r}-learned in the agnostic setting using

O

(
m
(ε

6

)
log
(1

δ

)
+
τ ′(ε/6) log(m( ε6) log3(1/δ)) + log(1/δ)

ε2

)
= Õ

(
m
(ε

6

)
+
τ ′(ε/6)

ε2

)
samples.

In other words, there is an algorithm which receives the above number of samples from an unknown

distribution q and outputs ĝ such that

‖ĝ − q‖1 ≤ max{3, 2/r} · inf
f∈F
‖f − q‖1 + ε.

Proof. The proof of this theorem is similar to that of Theorem 4.12 but some care is needed to deal

with the possibility that the unknown distribution q may not be in F .

Let α = inff∈F ‖f − q‖1 be the approximation error of q with respect to F . The goal of the learner

is to find a distribution ĥ such that ‖ĥ− q‖1 ≤ max{3, 2/r} · α+ ε.

First, consider the case α ≤ r. In this case, we develop a learner that finds a distribution ĥ such
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that ‖ĥ− q‖1 ≤ 3α+ ε. Let g ∈ F be a distribution such that

‖g − q‖1 ≤ α+
ε

12
. (4.2)

Such a g exists by the definition of α. By assumption, F admits (τ, t,m) compression. Let J denote

the corresponding decoder. Given ε, the learner first asks for an i.i.d. sample S ∼ qm(ε/6)·log3(2/δ).

Recall the definition of robust compression and Remark 4.11, which allows us to amplify the success

probability of the decoder. Then, with probability at least 1 − δ/2, there exist L ∈ Sτ(ε/6) and

B ∈ {0, 1}t(ε/6) satisfying the following guarantee: letting h∗ := J (L,B), we have

‖h∗ − g‖1 ≤
ε

6
. (4.3)

The learner is of course unaware of L and B. However, given the sample S, it can try all of the

possibilities for L and B and create a candidate set of distributions. More concretely, let

H = { J (L,B) : L ∈ Sτ(ε/6), B ∈ {0, 1}t(ε/6) }.

Note that

|H| ≤
(
m(ε/6) log3(2/δ)

)τ(ε/6)
2t(ε/6) ≤

(
m(ε/6) log3(2/δ)

)τ ′(ε/6)
.

Since H is finite, we can use the algorithm of Theorem 3.13 to find a good candidate ĥ from H. In

particular, we set the accuracy parameter in Theorem 3.13 to be ε/16 and the confidence parameter

to be δ/2. In this case, Theorem 3.13 requires

log(6|H|2/δ)
2(ε/16)2

= O

(
τ ′(ε/6) log(m( ε6) log3(1

δ )) + log(1
δ )

ε2

)
= Õ(τ ′(ε/6)/ε2)

additional samples, and its output ĥ satisfies the following guarantee:

‖ĥ− q‖1 ≤ 3‖h∗ − q‖1 + 4
ε

16
(by Theorem 3.13)

≤ 3(‖h∗ − g‖1 + ‖g − q‖1) +
ε

4

≤ 3

(
ε

6
+
(
α+

ε

12

))
+
ε

4
(by (4.2) and (4.3))

= 3α+ ε.

Note that the above procedure uses Õ
(
m(ε/6) + τ ′(ε/6)/ε2

)
samples, and the probability of failure is

at most δ. That is, the probability of either H not containing a good h∗, or the failure of Theorem 3.13

in choosing a good candidate among H, is bounded by δ/2 + δ/2 = δ.

The other case, α > r, is trivial: the learner outputs some distribution ĥ. Since ĥ and q are density

functions, we have ‖ĥ− q‖1 ≤ 2 < 2
r · α < max{3, 2/r} · α+ ε.

67



4.3.3 Combining compression schemes

To conclude this section, we state a few results showing that compression schemes can be combined

in useful ways. These results concern product distributions (which will be useful for axis-aligned

Gaussians) and mixture distributions (which will be useful for mixtures of Gaussians).

First, Lemma 4.14 below states that if a class F of distributions can be robustly compressed, then

the class of distributions that are formed by taking products of members of F can also be robustly

compressed. If p1, . . . , pd are distributions over domains Z1, . . . , Zd, then
∏d
i=1 pi denotes the standard

product distribution over
∏d
i=1 Zi. For a class F of distributions, define

Fd :=

{
d∏
i=1

pi : p1, . . . , pd ∈ F

}
.

Lemma 4.14 (compressing product distributions). For any τ, t,m, r, d,

if F admits
(

τ(ε), t(ε), m(ε)
)
r-robust compression,

then Fd admits
(
d · τ(ε/d), d · t(ε/d), log3(3d) ·m(ε/d)

)
r-robust compression.

The proof of Lemma 4.14 is fairly intuitive: if one has a compression scheme for F , one can imagine

running d copies of the compression scheme, one for each coordinate.

For the proof of Lemma 4.14, we need the following standard proposition which can be proved,

e.g., using the coupling characterization of the total variation distance.

Proposition 4.15 (Lemma 3.3.7 in [125]). For i ∈ [d], let pi and qi be probability distributions over

the same domain Z. Then ‖Πd
i=1pi −Πd

i=1qi‖1 ≤
∑d

i=1 ‖pi − qi‖1.

Proof of Lemma 4.14. Let G = Πd
i=1gi be an arbitrary element of Fd, with all gi ∈ F . Let Q be an

arbitrary distribution over Zd, subject to ‖G −Q‖1 ≤ r. Let q1, . . . , qd be the marginal distributions

of Q on the d components. Observe that ‖qj − gj‖1 ≤ r for each j ∈ [d], since Fact 3.6 implies that

projection onto a coordinate cannot increase the total variation distance.

The lemma’s hypothesis is that F admits (τ, t,m) r-robust compression. Let J denote the corre-

sponding decoder, let m0 := m(ε/d) log3(3d), and S ∼ Qm0 . To prove the lemma we must encode an

ε-approximation of G using d · τ(ε/d) elements of S and d · t(ε/d) bits.

Since S contains m0 samples, each of which is a d-dimensional vector, we may think of S as a

d×m0 matrix over Z. Let Si denote the ith row of this matrix. That is, for i ∈ [d], let Si ∈ Zm0 be

the vector of the ith components of all elements of S. By definition of qi, we have Si ∼ qm0
i for each i.

As observed above, we have ‖qi − gi‖ ≤ r.
Apply Remark 4.11 with parameters ε/d and δ = 1/3d for each i ∈ [d]. Then, for each i, the

following statement holds with probability at least 1−1/3d: there exists a sequence Li of at most τ(ε/d)

elements of Si, and a sequence Bi of at most t(ε/d) bits, such that ‖J (Li, Bi)−gi‖1 ≤ ε/d. By the union

bound, this statement holds simultaneously for all i ∈ [d] with probability at least 2/3. We may encode

these L1, . . . , Ld, B1, . . . , Bd using d ·τ(ε/d) samples from S and d ·t(ε/d) bits. Our decoder for Fd then
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extracts L1, . . . , Ld, B1, . . . , Bd from these samples and bits, and then outputs
∏d
i=1 J (Li, Bi) ∈ Fd.

Finally, Proposition 4.15 gives ‖Πd
i=1J (Li, Bi)−G‖1 ≤

∑d
i=1 ‖J (Li, Bi)−gi‖1 ≤ d·ε/d ≤ ε, completing

the proof.

Our next lemma states that if a class F of distributions can be compressed, then the class of

distributions that are formed by taking mixtures of members of F can also be compressed.

Lemma 4.16 (compressing mixtures, non-robustly). For any τ, t,m, r, d, suppose

If F admits
(

τ(ε), t(ε), m(ε)
)

(non-robust) compression

then k-mix(F) admits
(
kτ(ε/3), kt(ε/3) + k log2(3k/ε), 48k log(6k)

ε m(ε/3)
)

(non-robust) compression.

We begin with a high-level overview of the proof and the proof itself will make this discussion

formal. Suppose first, for the sake of simplicity, that one had a uniform mixture, i.e. all the mixing

weights are equal to 1/k. In this case, if one had a compression scheme for F , one could imagine

running k copies of the compression scheme for each of the different components in the mixture.

Now, what if the mixing weights were not all equal? In this case, one could still a compression

scheme similar to that above but the encoder will tell the decoder what the mixing weights are (up to

a very small discretization error).

Finally, what if a component has an extremely small mixing weight? In this case, it suffices to not

bother to encode it at all since it has a negligible impact on the total variation distance.

Proof of Lemma 4.16. Consider any g ∈ k-mix(F), so g =
∑

i∈[k]wifi for some distributions f1, . . . , fk ∈
F and mixing weights w1, . . . , wk. Define m0 := 48m(ε/3)k log(6k)/ε, and draw S ∼ gm0 . Then S has

the same distribution as the process that performs m0 independent trials as follows: select a component

i according to the weights w, then draw a sample from fi. In the latter process, we may define Si to

be the sequence of samples that were generated using fi. Our encoder for g will discretize the mixing

weights, then use the compression scheme for F to separately encode each Si.

Encoding the mixing weights. We encode w1, . . . , wk using bits as follows. Consider an (ε/3k)-net

in `∞ for ∆k of size (3k/ε)k (see Lemma B.17). Let (ŵ1, . . . , ŵk) be an element in the net that has

‖(ŵ1, . . . , ŵk)− (w1, . . . , wk)‖∞ ≤ ε/3k. (4.4)

Encoding the element (ŵ1, . . . , ŵk) from the net requires only k log2(3k/ε) bits.

Encoding Si. For any i ∈ [k], we say that index i is negligible if wi ≤ ε/(6k). For any negligible

index we will approximate fi by an arbitrary distribution f̂i. For any non-negligible index we will

likely have enough samples from fi to use the compression scheme for F to encode a distribution f̂i

that approximates fi.
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Define m1 = m(ε/3) log(6k). For each non-negligible index i, a standard Chernoff bound shows

that, with probability at least 1 − 1/6k, we have |Si| ≥ m1. By a union bound, this statement holds

simultaneously for all non-negligible i ∈ [k] with probability at least 5/6.

Apply Remark 4.11 with parameters ε/3 and δ = 1/6k for each non-negligible index i. Then, for

each such i, the following statement holds with probability at least 1−1/6k: there exist τ(ε/3) samples

from Si and t(ε/3) bits from which the decoder can construct a distribution f̂i with

‖fi − f̂i‖1 ≤ ε/3. (4.5)

By the union bound, this statement holds simultaneously for all non-negligible indices with probability

at least 5/6. The encoding consists of these samples and bits for each non-negligible i, whereas for

negligible i we use the same number of samples and bits, chosen arbitrarily.

By a union bound, the failure probability of the encoding is at most 2 · (1− 5/6) = 1/3.

Complexity of the encoding. The discretized weights require k log2(3k/ε) bits. For each index

i ∈ [k], we use at most τ(ε/3) samples and t(ε/3) bits. Thus, the total number of bits is k · t(ε/3) +

k log2(3k/ε), and the total number of samples is k · τ(ε/3).

Decoding. The decoder for k-mix(F) is explicitly given the discretized weights ŵ1, . . . , ŵk. It is also

given, for each index i, τ(ε/3) samples and t(ε/3) bits, which it provides to the decoder for F , yielding

the distribution f̂i. (Recall that, for a negligible index i, the distribution f̂i can be arbitrary.) The

decoder outputs the distribution
∑

i ŵif̂i.

To complete the proof of the lemma, we will show that ‖
∑

iwifi −
∑

i ŵif̂i‖1 ≤ ε with probability

at least 2/3. Let N ⊆ [k] denote the set of negligible components. Recall that the encoder succeeds

with probability at least 2/3, in which case the decoded distributions f̂i will satisfy (4.5) for each

i 6∈ N . We then have∥∥∥∥∥∥
∑
i∈[k]

(ŵif̂i − wifi)

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑
i∈[k]

wi(f̂i − fi)

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
i∈[k]

(ŵi − wi)f̂i

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i∈N

wi(f̂i − fi)

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i/∈N

wi(f̂i − fi)

∥∥∥∥∥
1

+
∑
i∈[k]

|ŵi − wi| ·
∥∥∥f̂i∥∥∥

1

≤
∑
i∈N

wi · 2 +
∑
i/∈N

wi ·
ε

3
+

∑
i∈[k]

ε

3k
· 1 (by (4.4) and (4.5))

≤ k · ε
6k
· 2 +

ε

3
+

ε

3
= ε (by definition of N).

This completes the analysis of the compression scheme for k-mix(F).

Lemma 4.16 shows that non-robust compression of F implies non-robust compression of k-mix(F).

We do not know whether an analogous statement holds for robust compression. That is, does robust

compression of F imply robust compression of k-mix(F), for a general class F? Nevertheless, in the
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next lemma we show that if F can be robustly compressed, then k-mix(F) can be learned in the

agnostic setting.

Lemma 4.17 (learning mixtures, robustly). Suppose F admits (τ(ε), t(ε),m(ε)) r-robust compression,

and let τ ′(ε) := τ(ε) + t(ε). Then k-mix(F) admits 3(1 + 2/r)-agnostic learning with sample complexity

Õ

(
km(ε/10)

ε
+
kτ ′(ε/10) logm(ε/10)

ε2

)
.

The proof of Lemma 4.17 is quite technical and we relegate it to Appendix B.4.

4.4 Upper bound: learning mixtures of Gaussians by compression
schemes

The main positive results of this paper are sample complexity bounds for learning mixtures of Gaussians

(Theorems 4.1 and 4.3). In this section we prove these results by describing compression schemes

for a single Gaussian, then applying the techniques of the previous section. To begin, we illustrate

the techniques by considering the simple setting of non-robust compression for a single-dimensional

Gaussian.

4.4.1 A simple example: mixtures of axis-aligned Gaussians, non-robustly

In this short section, we give an illustrative use of our compression framework to prove an upper bound

of Õ(kd/ε2) for the sample complexity of learning mixtures of k axis-aligned Gaussians in the realizable

setting. The next section gives a much more general argument that works for general Gaussians in the

agnostic setting.

Lemma 4.18. The class of single-dimensional Gaussians admits a (3, O(log(1/ε)), 3) non-robust com-

pression scheme.

Before we prove Lemma 4.18, let us give a high-level intuition about the compression scheme. By

Lemma 4.14 and Lemma 4.16, it suffices to find a compression scheme for a single, one-dimensional

Gaussian. Indeed, Lemma 4.16 asserts that finding a compression scheme for a mixture of axis-aligned

Gaussians reduces to finding a compression scheme for a single axis-aligned Gaussian. Next, note that

an axis-aligned Gaussian is just a vector of independent one-dimensional Gaussians. So, Lemma 4.14

asserts that it suffices to compress a single one-dimensional Gaussian.

How can we compress a single one-dimensional Gaussian? Here is the idea for first encoding

σ: imagine that we drew two samples g1, g2 ∼ N (µ, σ2) where µ, σ2 are unknown. Note that g =
1√
2
(g1 − g2) ∼ N (0, σ2). Now, with a fairly large constant probability, |g| ∈ [0.01σ, 100σ]. So λ|g| = σ

for some λ ∈ [0.01, 100]. In other words, there is some scaling of g that recovers σ (up to a sign).

Moreover, the scaling is in some bounded interval so we can discretize it and the encoder will sending

the scaling as well as g1, g2 to the decoder. This allows us to encode σ.

What about encoding µ? Note that if g ∈ N (µ, σ2) then g is usually within, say 100 standard

deviations away from µ, i.e. |g − µ| ≤ 100σ. So given g, we will discretize an interval of length 100σ

around g, and at least one of this points will be sufficiently close to µ.
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Remark 4.19. It is also possible to encode a Gaussian as follows. Suppose that we draw O(1/ε)

samples from N (µ, σ2). Then with good probability, there exists samples X1 ≈ µ + σ and another

sample X2 ≈ µ − σ. In this case X1+X2
2 ≈ µ and X1−X2

2 ≈ σ. This idea is carried out formally by

Ashtiani [18, §7.6].

Proof. Let c < 1 < C be such that PX∼N (0,1)[c < |X| < C] ≥ 0.99. Let N (µ, σ2) be the target

distribution. We first show how to encode σ. Let g1, g2 ∼ N (µ, σ2). Then g = 1√
2
(g1− g2) ∼ N (0, σ2).

So with probability at least 0.99, we have σc < |g| < σC. Conditioned on this event, we have

λ := σ/g ∈ [−1/c, 1/c]. We now choose λ̂ ∈ {0,±ε/2C2,±2ε/2C2,±3ε/2C2 . . . ,±1/c} satisfying

|λ̂ − λ| ≤ ε/(4C2), and encode the standard deviation by (g1, g2, λ̂). The decoder then estimates

σ̂ := λ̂(g1 − g2)/
√

2. Note that |σ̂ − σ| ≤ |λ̂ − λ||g| ≤ σε/(4C) and that the encoding requires two

sample points and O(log(C2/cε)) = O(log(1/ε)) bits (for encoding λ̂).

Now we turn to encoding µ. Let g3 ∼ N (µ, σ2). Then |g3−µ| ≤ Cσ with probability at least 0.99.

We will condition on this event, which implies existence of some η ∈ [−C,C] such that g3 +ση = µ. We

choose η̂ ∈ {0,±ε/2,±2ε/2,±3ε/2 . . . ,±C} such that |η̂ − η| ≤ ε/4, and encode the mean by (g3, η̂).

The decoder estimates µ̂ := g3+σ̂η̂. Again, note that |µ̂−µ| = |ση−σ̂η̂| ≤ |ση−ση̂|+|ση̂−σ̂η̂| ≤ σε/2.

Moreover, encoding the mean requires one sample point and O(log(1/ε)) bits.

To summarize, the decoder has |µ̂ − µ| ≤ σε/2 and |σ̂ − σ| ≤ σε/2. Plugging these bounds into

Lemma B.6 gives ‖N (µ, σ2)−N (µ̂, σ̂2)‖1 ≤ ε, as required.

Remark 4.20. Note that in the above result, the samples are not “compressed” in the usual sense of

this verb. Nevertheless, our formal definition of compression, Definition 4.9, allows m = τ .

To complete the proof of Theorem 4.3 in the realizable setting, we note that Lemma 4.18 combined

with Lemma 4.14 implies that the class of axis-aligned Gaussians in Rd admits an

(
O(d), O(d log(d/ε)), O(log(3d))

)
non-robust compression scheme. (Note that any axis-aligned Gaussian is a product of one-dimensional

Gaussians.) Then, by Lemma 4.16, the class of mixtures of k axis-aligned Gaussians admits an

(
O(kd), O(kd log(d/ε) + k log(k/ε)), O(k log(k) log(d)/ε)

)
non-robust compression scheme. Theorem 4.13 now implies that the class of k-mixtures of axis-aligned

Gaussians in Rd can be learned using Õ(kd/ε2) samples in the realizable setting.

4.4.2 Learning axis-aligned and general Gaussians in the agnostic setting

We now turn to the general case and prove an upper bound of Õ(kd2/ε2) for the sample complexity

of learning mixtures of k Gaussians in d dimensions, and an upper bound of Õ(kd/ε2) for the sample

complexity of learning mixtures of k axis-aligned Gaussians, both in the agnostic sense. The heart of

the proof is to show that Gaussians have robust compression schemes in any dimension.
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Lemma 4.21. For any positive integer d, the class Gd of d-dimensional Gaussians admits an

(
O(d log(2d)), O(d2 log(2d) log(d/ε)), O(d log(2d))

)
2/3-robust compression scheme.

Remark 4.22. The proof of Lemma 4.21 can be amended to give an r-robust compression schemes for

any r < 1, which will change the constant 12 in the agnostic results of Theorem 4.1 and Theorem 4.3

to any constant larger than 9, at the expense of worse constants for τ , t and m. This is straightforward

but creates additional cumbersome notation, hence we omit the details.

Before proving Lemma 4.21, we show how can it be combined with the previous lemmata to prove

our main upper bounds.

Proof of Theorem 4.1. Combining Lemma 4.21 with Lemma 4.17 shows that the class of k-mixtures

of d-dimensional Gaussians is 12-agnostically learnable with sample complexity Õ(kd2/ε2).

Proof of Theorem 4.3. Recall that Gd denote the class of d-dimensional Gaussian distributions. Ap-

plying Lemma 4.21 with d = 1, Lemma 4.14 shows that Gd admits
(
O(d), O(d log(d/ε)), O(log(3d))

)
2/3-robust compression. Lemma 4.17 then implies that the class k-mix(Gd) is 12-agnostically learnable

with sample complexity Õ(kd/ε2), completing the proof.

4.4.3 Proof of Lemma 4.21

We first provide a high-level overview of the proof. For simplicity, let us assume that we would like

to encode the distribution N (0,Σ), where Σ ∈ Rd×d has rank d. Let v1, . . . , vd be an orthogonal set

of vectors which satisfy Σ =
∑d

i=1 viv
>
i (note that the vectors vi are not normalized to have norm

1). Now let g1, . . . , gd be a collection of d samples from N (0,Σ). As span{g1, . . . , gd} = Rd with

probability 1, a natural idea is the following: for each i, find real coefficients λi,1, . . . , λi,d such that

vi =
∑d

j=1 λi,jgj . We could then have the encoder send g1, . . . , gd and (a discretization of) the set

{λi,j}i,j∈[d]; the decoder would then be able to recover an approximation of Σ. If the discretization of

each λi,j can be accomplished with at most b bits each, then this would give a compression scheme

where the encoder draws d points and sends d points along with d2b bits to the decoder.

However, there is a difficulty: we must control the bit complexity of a suitable discretization

of λi,j—to achieve the optimal sample complexity bound, the bit complexity must be bounded by

polylog(d, 1/ε). The key to achieving a suitable discretization is the following fact from geometric

functional analysis (Lemma 4.23, cf. [107, Corollary 4.1]): given a set T = {g1, . . . , gm} of m = O(d)

i.i.d. samples from N (0,Σ), we have 1
20 · E ⊆ conv(T ), where E is the ellipsoid whose principle axes are

v1, . . . , vd. This enables us to express each vi as
∑m

j=1 λi,jgj , where each λi,j is guaranteed to lie in a

bounded interval; we can then discretize by building an ε-net of size poly(d, 1/ε) on this interval. The

bit complexity would then be polylog(d, 1/ε), as desired.

Now suppose we would like to encode the distribution N (µ,Σ) (again, assuming Σ has full-rank).

Note that if g1, g2 ∼ N (µ,Σ) then g1−g2√
2
∼ N (0,Σ), and thus we can reduce to the compression scheme
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idea discussed above. To encode µ, the idea is that a single sample g ∼ N (0,Σ) is unlikely to be too

far from µ. More specifically, if E is the ellipsoid defined by Σ centered at 0, then, with very high

probability, µ ∈ g + O(
√
d) · E . Thus, we can essentially build an ε-net of the set g + O(

√
d) · E and

the encoder can send g as well as the identity of the point in the ε-net closest to µ.

We now proceed to the formal proof. The goal is to obtain a 2/3-robust compression scheme for

Gd. Accordingly, we consider any target distribution Q for which there exists a Gaussian N (µ,Σ)

satisfying ‖Q−N (µ,Σ)‖1 ≤ 2/3. Recall, from Fact 3.4, that this implies that dTV (Q,N (µ,Σ)) ≤ 1/3.

We may assume that Σ has full rank, since there is a reduction from the case of rank-deficient Σ.

If the rank of Σ is ρ < d, then any X ∼ N (µ,Σ) lies in some affine subspace S of dimension ρ. Thus,

by Fact 3.4, any X ∼ Q lies in S with probability at least 2/3. With high probability, after seeing

10d samples from Q, at least ρ+ 1 points from S will appear in the sample. We encode S using these

samples, and for the rest of the process we work in this affine subspace, and discard outside points.

Definition of v1, . . . , vd,Ψ. Since Σ has full rank, we may find an orthogonal set of vectors v1, . . . , vd

satisfying Σ =
∑d

i=1 viv
>
i . For convenience, let Ψ = Σ1/2 be the unique positive definite square root

of Σ. Observe that

Ψ =
d∑
i=1

viv
>
i

‖vi‖
, Σ−1 =

d∑
i=1

viv
>
i

‖vi‖4
, and Ψ−1 =

d∑
i=1

viv
>
i

‖vi‖3
. (4.6)

We first prove a lemma that is similar to known results in random matrix theory [106, Corollary 4.1],

but is tailored for our purposes. The notation a · Bd
2 denotes

{
y ∈ Rd : ‖y‖ ≤ a

}
. The convex hull

of a set T is denoted by conv(T ).

Lemma 4.23. Let q1, . . . , qm ∈ Rd be i.i.d. samples from a distribution Q where dTV (Q,N (0, Id)) ≤
2/3. Let

T := { ±qi : ‖qi‖ ≤ 4
√
d }.

Then for a large enough absolute constant C, if m ≥ Cd(1 + log d) then

P
[

1

20
Bd

2 6⊆ conv(T )

]
≤ 1/6.

Remark 4.24. It is also possible to prove Lemma 4.23 using a VC-dimension argument; in fact, this

argument would remove the log d on the number of samples required. The details of this can be found

in [17].

Proof. Let Sd−1 :=
{
y ∈ Rd : ‖y‖ = 1

}
. Consider the following statement:

max
q∈T
|〈y, q〉| ≥ 1

20
∀y ∈ Sd−1. (4.7)

We first show that (4.7) implies that 1
20B

d
2 ⊆ conv(T ), which is the event that we wish to analyze.

Let P := conv(T ). Its polar is P ◦ =
{
y ∈ Rd : |〈y, q〉| ≤ 1 ∀q ∈ T

}
. So (4.7) implies P ◦ ⊆ 20Bd

2 . As

polarity reverses containment and the polar of Bd
2 is itself, we obtain P ⊇ (20Bd

2)◦ = ( 1
20)Bd

2 .
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We now bound the probability that (4.7) fails using an ε-net argument. For this, fix some y ∈ Sd−1

and let g ∼ N (0, Id) and let Xy := 〈y, g〉. Notice that Xy ∼ N (0, 1). Since the pdf of Xy is bounded

above by 1√
2π

< 1, we have P
[
|Xy| ≤ 1

10

]
≤ 1/5. Moreover, by Lemma B.13, P

[
‖g‖2 > 4

√
d
]
≤

exp(−3). Hence by the union bound,

P
[
|Xy| ≤

1

10
∨ ‖g‖2 > 4

√
d

]
≤ 1/5 + exp(−3) < 0.25.

Now, let

Yy,i := 〈y, qi〉 ∀y ∈ Sd−1, i ∈ [m],

and let Ey,i be the event {|Yy,i| ≤ 1
10 ∨ ‖qi‖ > 4

√
d}. As dTV (Q,N (0, Id)) ≤ 2/3, we have P [[]Ey,i] ≤

0.25 + 2/3 < 0.92. Thus

P

 ∧
i∈[m]

Ey,i

 < (0.92)m.

Let N be an (1/80
√
d)-net of Sd−1 in `2 with |N | ≤ (240

√
d)d (see Lemma B.16). By the union bound,

since m ≥ Cd(1 + log d) for C large enough, with probability at least 1− (240
√
d)d(0.92)m ≥ 5/6, for

all y ∈ N there exists i ∈ [m] such that |Yy,i| ≥ 1
10 and ‖qi‖ ≤ 4

√
d.

To complete the proof, we suppose that this event holds, and show that (4.7) also holds. Consider

any y ∈ Sd−1, and let y′ ∈ N satisfy ‖y − y′‖2 ≤ 1/80
√
d. Let qi be such that ‖qi‖ ≤ 4

√
d and

|Yy′,i| ≥ 1
10 . These imply that ±qi ∈ T and that

|Yy,i| ≥
∣∣Yy′,i∣∣− |qi|

80
√
d
≥ 1

10
− 1

20
=

1

20
.

Thus |〈y, qi〉| ≥ 1/20, as required.

We next show how to encode the mean and the eigenvectors.

Lemma 4.25. Let C be a sufficiently large absolute constant. Suppose that S contains 2m = 2Cd(1 +

log d) samples drawn from Q, where dTV (Q,N (µ,Σ)) ≤ 1/3. Then, with probability at least 2/3, one

can encode vectors v̂, . . . , v̂d, µ̂ ∈ Rd satisfying

‖Ψ−1(v̂j − vj)‖ ≤ ε/24d2 ∀j ∈ [d], (4.8)

‖Ψ−1(µ̂− µ)‖ ≤ ε/2, (4.9)

using O(d2 log(2d) log(2d/ε)) bits and the points in S.

Proof. The samples in S will be denoted X1, . . . , X2m.

Encoding v̂j. We define “normalized” samples

Yi :=
1√
2

Ψ−1(X2i −X2i−1) ∀i ∈ [m].

If we were in the non-robust case, then X2i and X2i−1 would both have distribution N (µ,Σ), so Yi
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would have distribution N (0, I). Instead, both X2i and X2i−1 have TV distance at most 1/3 from

N (µ,Σ). It follows that Yi has TV distance at most 2/3 from N (0, I). (This may be seen, for example,

by the coupling definition of TV distance; see [97, Eq. (18.10)].) Define the event

E :=

{
1

C
Bd

2 ⊆ conv{±Yi : i ∈ I}
}

where I := {i ∈ [m] : ‖Yi‖ ≤ 4
√
d}.

Since C is large, and in particular C ≥ 20, by Lemma 4.23 we have P [E ] ≥ 5/6. Our encoding will

assume that the event E occurs.

Fix some j ∈ [d]. Referring to (4.6), we see that Ψ−1vj = vj/‖vj‖ has unit norm. Since E occurs,

we can write
Ψ−1vj
C

=
∑
i∈[m]

θj,iYi

for some vector θj ∈ [−1, 1]m supported on I. Applying Ψ to both sides, we obtain

vj =
C√

2

∑
i∈I

θj,i(X2i −X2i−1).

Consider the natural (ε/96Cmd3)-net for [−1, 1]m in the `∞ norm, formed by the Cartesian product

of 1-dimensional nets (see Lemma B.17). This net has size at most (96Cmd3/ε)m. Recalling that

m = O(d(1 + log d)), it follows that any element of the net can be described using O(m log(2d/ε)) bits.

Let θ̂j be an element in the net that is closest to θj . Since each θj is supported on I, and the net has

the Cartesian product structure, we may choose θ̂j also to be supported on I. Define

v̂j :=
C√

2

∑
i∈I

θ̂j,i(X2i −X2i−1).

The error of this encoding is

∥∥Ψ−1(v̂j − vj)
∥∥ =

C√
2

∥∥∥∥∥∑
i∈I

(θj,i − θ̂j,i)Ψ−1(X2i −X2i−1)

∥∥∥∥∥
≤ C√

2
|I|
(

max
i∈I
|θj,i − θ̂j,i|

)(
max
i∈I

√
2‖Yi‖

)
By definition of θ̂j , we have

∥∥∥θ̂j − θj∥∥∥
∞
≤ ε/96Cmd3. By definition of I, we have ‖Yi‖ ≤ 4

√
d, leading

to the bound

∥∥Ψ−1(v̂j − vj)
∥∥ ≤ C√

2
m
( ε

96Cmd3

)(
4
√

2
√
d
)
≤ ε

24d2
, (4.10)

establishing (4.8). The vectors v̂1, . . . , v̂d are encoded simply using θ̂1, . . . , θ̂d. Each θ̂i requires

O(m log(2d/ε)) bits. Recall that m = O(d log(2d)). Hence, the total number of bits required is

O(d2 log(2d) log(2d/ε)).
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Encoding µ̂. Let Zi := Ψ−1(Xi − µ) and observe that Zi has a distribution with TV distance at

most 1/3 to N (0, I). Define the event

E ′ := {min{‖Z1‖, ‖Z2‖} ≤ 4
√
d }.

Lemma B.13 implies that

P[‖Zi‖ ≥ 4
√
d] ≤ exp(−3) + 1/3 <

√
1/6.

Thus P [E ′] ≥ 5/6. Our encoding will assume that the event E ′ occurs.

By symmetry assume ‖Z1‖ ≤ 4
√
d, and suppose Z1 =

∑
j∈[d] λjvj/ ‖vj‖. Thus

∑
λ2
j ≤ 16d2.

Furthermore, from the definitions of Z1 and Ψ we have

µ = X1 −ΨZ1 = X1 −
∑
j∈[d]

λjvj .

Consider an (ε/3d)-net for 4
√
dBd

2 of size O(d1.5/ε)d (see Lemma B.16). Observe that λ ∈ 4
√
dBd

2 ,

and let λ̂ be the closest element to λ in this net. The encoding is

µ̂ := X1 −
∑
j∈[d]

λ̂j v̂j .

The error of this encoding is

∥∥Ψ−1(µ− µ̂)
∥∥ =

∥∥∥∥∥∥
∑
j∈[d]

Ψ−1(λjvj − λ̂j v̂j)

∥∥∥∥∥∥
≤

∑
j∈[d]

∥∥∥λ̂j(Ψ−1vj −Ψ−1v̂j) + (λj − λ̂j)Ψ−1vj

∥∥∥
≤ d ·max

j∈[d]

{∣∣∣λ̂j∣∣∣ · ∥∥Ψ−1vj −Ψ−1v̂j
∥∥+

∣∣∣λj − λ̂j∣∣∣ · ∥∥Ψ−1vj
∥∥} .

By definition of λ̂, we have
∥∥∥λ̂∥∥∥

∞
≤ 4
√
d and

∥∥∥λ− λ̂∥∥∥
∞
≤ ε/3d. From (4.6) we have

∥∥Ψ−1vj
∥∥ ≤ 1.

Lastly, using (4.10) we have
∥∥Ψ−1(v̂j − vj)

∥∥ ≤ ε/24d2, leading to the bound

∥∥Ψ−1(µ− µ̂)
∥∥ ≤ d ·

(
4
√
d · ε

24d2
+

ε

3d
· 1
)
≤ ε/2,

establishing (4.9). The encoding for µ̂ consists only of λ̂. Since λ̂ comes from a net of size O(d1.5/ε)d,

the number of bits required for the encoding is O(d log(d/ε)).

All encodings will succeed so long as both E and E ′ occur, which happens with probability at least

2/3.

Lemma 4.21 now follows immediately from the following lemma.
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Lemma 4.26. Suppose that the vectors v̂1, . . . , v̂d, µ̂ ∈ Rd satisfy

‖Ψ−1(v̂j − vj)‖ ≤ ρ ≤ 1/6d ∀j ∈ [d] (4.11)

‖Ψ−1(µ̂− µ)‖ ≤ ζ. (4.12)

Then

dTV

N (µ,∑
i∈[d]

viv
>
i

)
, N

(
µ̂,
∑
i∈[d]

v̂iv̂
>
i

)  ≤
√

9d3ρ2 + ζ2

2
.

Proof. In this proof, we will use the log-det divergence, which is defined in Definition B.1. Define

Σ̂ :=
∑

i v̂iv̂
>
i . We will show that

LD
(

Σ̂,Σ
)
≤ 9d3ρ2. (4.13)

If this is true, then Lemma B.5 and (4.12) yield

dTV

(
N (µ,Σ),N (µ̂, Σ̂)

)2
≤ 1

4

(
LD
(

Σ̂,Σ
)

+ (µ− µ̂)>Σ−1(µ− µ̂)
)
≤ 1

4
(9d3ρ2 + ζ2),

which completes the proof of the lemma.

Thus, we focus on (4.13). Recalling from (4.6) that Ψ = Σ1/2, from Claim B.2 we have

LD
(

Σ̂,Σ
)

= LD
(

Ψ−1Σ̂Ψ−1,Ψ−1ΣΨ−1
)

= LD (B, I)

where B :=
d∑
i=1

Ψ−1v̂iv̂
>
i Ψ−1.

We will show that ‖B− I‖ ≤ 3dρ, or equivalently −3dρI 4 B− I 4 3dρI. Then Lemma B.4 will imply

that LD
(

Σ̂,Σ
)

= LD (B, I) ≤ 9d3ρ2, which establishes (4.13).

To complete the proof, we have

‖B − I‖ =

∥∥∥∥∥
d∑
i=1

(Ψ−1v̂iv̂
>
i Ψ−1 −Ψ−1viv

>
i Ψ−1)

∥∥∥∥∥
≤

d∑
i=1

∥∥∥Ψ−1v̂iv̂
>
i Ψ−1 −Ψ−1viv

>
i Ψ−1

∥∥∥
=

d∑
i=1

‖xix>i − yiy>i ‖,

with xi := Ψ−1v̂i and yi := Ψ−1vi. Referring to (4.6) we see that ‖yi‖ = ‖Ψ−1vi‖ = 1. By the lemma’s

hypothesis, ‖xi − yi‖ ≤ ρ. By applying the following simple lemma, we conclude that ‖B − I‖ ≤
3dρ.

Lemma 4.27. Suppose x, y satisfy ‖y‖ = 1 and ‖x− y‖ ≤ ε ≤ 1. Then we have ‖xx> − yy>‖ ≤ 3ε.
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Proof. Suppose x = y + z with ‖z‖ ≤ ε. Then,

‖xx> − yy>‖ = ‖yz> + zy> + zz>‖ ≤ ‖yz>‖+ ‖zy>‖+ ‖zz>‖ ≤ ε+ ε+ ε2 ≤ 3ε,

where we have used the facts that ‖AB‖ ≤ ‖A‖ · ‖B‖ for any two size-compatible matrices A and

B, and that for any column or row vector v, the operator norm of v as a matrix coincides with its

Euclidean norm as a vector.

4.5 The lower bound for Gaussians and their mixtures

In this section, we establish a lower bound of Ω̃(d2/ε2) for learning a single Gaussian, and then lift it

to obtain a lower bound of Ω̃(kd2/ε2) for learning mixtures of k Gaussians in d dimensions. The lower

bound holds for the realizable setting, and therefore also holds in the agnostic setting.

The high-level strategy for our lower bound follows a strategy adopted in earlier work for mixtures

of spherical Gaussians [135]. The idea is to create a large number of distributions that are pairwise

close in KL divergence (roughly ε2) but pairwise far in TV distance (roughly ε). An application of the

following lemma will then yield the desired sample complexity bound.

Lemma 4.28. Let κ : R→ R be a function and let F be a class of distributions such that, for all small

enough ε > 0, there exist distributions f1, . . . , fM ∈ F with

DKL(fi ‖ fj) ≤ κ(ε) and dTV (fi, fj) > 2ε ∀i 6= j ∈ [M ].

Then any method that learns F to within total variation distance ε with success probability at least 2/3

has sample complexity Ω
(

logM
κ(ε) log(1/ε)

)
.

The preceding lemma is a straightforward consequence of the following result, which is a generalized

form of Fano’s inequality. It may be found in [147, Lemma 3].

Lemma 4.29 (Generalized Fano inequality). Let the distributions f1, . . . , fM satisfy

DKL(fi ‖ fj) ≤ β and ‖fi − fj‖1 > α ∀i 6= j ∈ [M ].

Consider any density estimation method that has an explicit description of f1, . . . , fM , receives n

i.i.d. samples from some fi without knowing i, then outputs an estimate f̂ for fi. For each i, define

ei := E‖fi − f̂‖1 for the case in which the method receives samples from fi. Then

max
i
ei ≥ α

logM − nβ + log 2

2 logM
.

Proof of Lemma 4.28. Consider a distribution learning method for learning F with sample complexity

m(ε), and consider M distributions f1, . . . , fM satisfying the hypotheses. The method will receive

samples from fj , where j ∈ [M ] is unknown. We will amplify its success probability by running it k

times, then apply the generalized Fano inequality.
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Perform a sequence of k trials as follows. In each trial, the method receives m(ε) samples from (the

same) fj . The trial is a success if the method outputs some density g whose TV distance from fj is at

most ε. Since the method’s sample complexity is m(ε), each trial is a success with probability at least

2/3. After performing the k trials, there have been k densities g1, . . . , gk produced as output. If some

fi is within TV distance ε from at least k/2 of these outputs, then this fi is used as the overall output

f̂ of this amplified method; otherwise, f̂ = f1 is the overall output.

Let E be the event that at least k/2 of the trials were a success. By a standard Chernoff bound,

P [E ] ≥ 1 − exp(−Ω(k)). When event E occurs, then at least k/2 of g1, . . . , gk have TV distance at

most ε from the target density fj , so the overall output must be f̂ = fj , so ‖fj − f̂‖1 = 0. Thus, the

expected error is

ej = E‖fj − f̂‖1 ≤ P [Ec] · 2 ≤ exp(−Ω(k)) ∀j ∈ [M ].

The total number of samples is n = km(ε), so Lemma 4.29 gives

α
logM − (km(ε))κ(ε) + log 2

2 logM
≤ exp(−Ω(k)).

Choose k = Θ(log(1/ε)) to be sufficiently large. Rearranging gives m(ε) = Ω(logM/κ(ε) log(1/ε)), as

required.

Our main lower bound for learning a single Gaussian is the following result.

Theorem 4.30. Any algorithm that learns the class of d-dimensional Gaussians in Rd in the realiz-

able setting within total variation distance ε and with success probability 2/3 has sample complexity

Ω
(

d2

ε2 log(1/ε)

)
.

Proof. In order to apply Lemma 4.28, we must create a large number M of Gaussian distributions

whose pairwise KL divergence is at most κ, and whose pairwise TV distance is at least 2ε. We will

accomplish this with parameters M = 2Ω(d2) and κ = O(ε2), so Lemma 4.28 will yield the desired

lower bound.

The existence of these M distributions will be shown using the probabilistic method. Specifically,

let us fix parameters r = 9 and λ = Θ(εd−1/2). For each a ∈ [M ], we pick Ua to be a random matrix

of size d× d/r with orthonormal columns (the columns of Ua are chosen to be the first d/r vectors of

a uniformly random orthonormal basis of Rd.). From this, we create the distribution

fa := N (0,Σa) where Σa = Id + λUaU
>
a ∀a ∈ [M ].

To apply Lemma 4.28, we must analyze the pairwise KL divergences and TV distances between

f1, . . . , fM .

Bound on KL divergences. This analysis is straightforward since there is a closed-form expression

for the KL divergence between any two Gaussians. First, observe that any two Σa and Σb have the same
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spectrum: there are d/r eigenvalues equal to 1+λ and the remaining eigenvalues equal 1. Consequently,

log det(ΣbΣ
−1
a ) = log(det Σb · det Σ−1

a ) = 0. (4.14)

Next observe that

Σ−1
a = I − λ

1 + λ
UaU

>
a ; (4.15)

this may be verified simply by multiplying by Σa. Thus

2 ·DKL(fa ‖ fb) = Tr(Σ−1
a Σb − I) (by (4.14) and Lemma B.3)

= Tr

((
I − λ

1 + λ
UaU

>
a

)
(I + λUbU

>
b )− I

)
(by (4.15))

= Tr

(
λUbU

>
b −

λ

1 + λ
UaU

>
a −

λ2

1 + λ
UaU

>
a UbU

>
b

)
(4.16)

= λ · d
r
− λ

1 + λ
· d
r
− λ2

1 + λ
· ‖U>a Ub‖2F

≤ λ2d

(1 + λ)r
≤ λ2d

r
= O(ε2).

This bound holds with probability 1.

Bound on TV distances. The remaining step is to show that dTV (fa, fb) = Ω(ε) for all a 6= b.

Then, by scaling ε by a constant factor, we may apply Lemma 4.28 and complete the proof.

First we provide some intuition on why such an inequality should hold. Let Sa be the subspace

spanned by the columns of Ua. One would expect that a vector drawn from N (0,Σa) should have

a slightly larger projection onto Sa then a vector drawn from N (0,Σb). This would reveal an event

that has slightly higher probability under the former distribution than under the latter. Recalling the

definition of the TV distance as a supremum over events (see Fact 3.4), such an argument would give

the desired lower bound on the TV distance.

Here we use a simpler argument, formulated as Lemma 4.32, which shows that a lower bound

on dTV (fa, fb) can be obtained if ‖U>a Ub‖2F is small. This would hold if the columns of Ua are

nearly pairwise orthogonal to the columns of Ub, which intuitively should hold since Ua and Ub are

chosen randomly. This is formalized in Lemma 4.31 below, which shows that, with positive proba-

bility, ‖U>a Ub‖2F ≤ d/2r for all a 6= b. Then Lemma 4.32 implies that, for all a 6= b, dTV (fa, fb) =

Ω
(

min{1, λ
√
d/r}

)
= Ω(ε), by our choice of parameters.

The main technical lemma underlying our lower bound is Lemma 4.31.

Lemma 4.31. Suppose d ≥ r ≥ 9. There exists M = 2Ω(d2/r) such that the following holds. Let the

matrices Ua, for a ∈ [M ], be independently chosen with size d × d/r and with orthonormal columns.

Then, with positive probability, we have ‖U>a Ub‖2F ≤ d/2r for all a 6= b.

Proof. The columns of each matrix Ua are chosen to be the first d/r vectors of a uniformly random

81



orthonormal basis of Rd. We will show that, for any two such matrices Ua and Ub, with probability

1− 2−Ω(d2/r) we have ‖U>a Ub‖2F ≤ d/2r. The lemma then follows by a union bound.

Fix a, b ∈ [M ] with a 6= b. By rotational invariance, we may assume without loss of generality that

Ua =
(
I
0

)
. Thus ‖U>a Ub‖2F

d
= ‖Ud/r‖2F , where Ud/r is a d/r × d/r principal submatrix of a uniformly

random orthogonal matrix U . (Alternatively, the columns of Ud/r are the first d/r coordinates of d/r

orthonormal vectors in Rd chosen uniformly at random.) Hence, it suffices to show that ‖Ud/r‖2F ≤ d/2r
with probability at least 1 − 2−Ω(d2/r). The main difficulty is that Ud/r does not have independent

entries, due to the orthonormality, but intuitively it should behave very similarly to a matrix with

independent Gaussian entries.

Relating to a Gaussian matrix. The matrix U is naturally related to the Gaussian matrix G ∈
Rd×d/r with i.i.d. N (0, 1/d) entries. Similarly, the matrix Ud/r is naturally related to the Gaussian

matrix Gd/r ∈ Rd/r×d/r comprised of the first d/r rows of G. To see this, let G = UGΣGV
>
G be the

singular value decomposition of G, where UG ∈ Rd×d/r and ΣG, VG ∈ Rd/r×d/r. Observe that, by

rotational invariance, the columns of UG are d/r uniformly random orthonormal vectors, and therefore

the top d/r rows of UG (which we denote, slightly awkwardly, by (UG)d/r) have the same distribution

as Ud/r. More precisely, since UG is independent of ΣG, VG, we have

Gd/r = (UG)d/rΣGV
>
G

d
= Ud/rΣGV

>
G . (4.17)

Observe that E‖Gd/r‖2F = (d/r)2 · (1/d) = d/r2, so it remains to show that ‖Ud/r‖2F is unlikely to

exceed this by a factor r/2.

The Frobenius norms ‖Gd/r‖F and ‖Ud/r‖F can be related as follows. By (4.17),

‖Gd/r‖F
d
= ‖Ud/rΣGV

>
G ‖F

=
√

Tr(Ud/rΣGV >G · VGΣGU>d/r)

=
√

Tr(Ud/rΣG · ΣGU>d/r) (since VG is orthogonal)

= ‖Ud/rΣG‖F
≥ σmin(ΣG)‖Ud/r‖F , (4.18)

where σmin(ΣG) denotes the smallest singular value of ΣG.

Moments of ‖Ud/r‖F . Intuitively, (4.18) should show that ‖Ud/r‖F is unlikely to deviate significantly

above E‖Gd/r‖F , since Eσmin(ΣG) ≥ 1 − 1/
√
r (by Theorem B.12) and since ‖Gd/r‖2F concentrates

sharply around its mean (as it is a sum of i.i.d. random variables). To make this precise, we will bound

the (suitably modified) pth moment of (4.18), for any p ≥ 1.

Since an upper bound on ‖Ud/r‖F is desired, it will be convenient, and sufficient, to consider only

the moments of positive deviations. To formalize this idea, recall the notation (x)+ := max{0, x}, and

observe that the map x 7→ (x)p+ is monotone and convex on R for p ≥ 1. The bound on the (modified)
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moments proceeds as follows:

E
[
(‖Gd/r‖F −

√
d/r)p+

]
≥ E

[
(σmin(ΣG) · ‖Ud/r‖F −

√
d/r)p+

]
(by (4.18) and monotonicity of (·)p+)

= E
[
E
[

(σmin(ΣG) · ‖Ud/r‖F −
√
d/r)p+ | Ud/r

] ]
The next step uses Jensen’s inequality for the conditional expectation E[·|Ud/r], and convexity of

x 7→ (x)p+ to obtain

≥ E
[ (

E[σmin(ΣG) · ‖Ud/r‖F −
√
d/r |Ud/r ]

)p
+

]
= E

[ (
E[σmin(ΣG) ] · ‖Ud/r‖F −

√
d/r

)p
+

]
(independence of ΣG and Ud/r)

≥ E
[(

(1− 1/
√
r) · ‖Ud/r‖F −

√
d/r
)p

+

]
, (4.19)

by monotonicity of (·)p+ again, and by applying Theorem B.12 to the matrix
√
dG (whose entries are

i.i.d. N (0, 1)), which yields Eσmin(
√
dG) ≥

√
d−

√
d/r and therefore Eσmin(G) ≥ 1− 1/

√
r.

High-probability bound on ‖Ud/r‖F . All that remains is the routine task of deriving a high-

probability bound from moment bounds. Observe that ‖Gd/r‖F
d
= ‖g‖2/

√
d, where g ∼ N (0, I(d/r)2).

Lemma B.8 states that (‖g‖2−d/r)+ is O(1)-subgaussian; by scaling, (‖Gd/r‖F −
√
d/r)+ is O(1/

√
d)-

subgaussian. Since the property of being O(σ)-subgaussian can be characterized via moments (see

Lemma B.9), and since inequality (4.19) shows that the pth moments of ((1 − 1/
√
r) · ‖Ud/r‖F −√

d/r)+ are bounded by the moments of (‖Gd/r‖F −
√
d/r)+, for all p ≥ 1, we conclude that ((1 −

1/
√
r) · ‖Ud/r‖F −

√
d/r)+ is also O(1/

√
d)-subgaussian. This allows us to bound the right tail of

(1 − 1/
√
r) · ‖Ud/r‖F −

√
d/r (but not the left tail, due to the (·)+). Recalling the definition of a

subgaussian random variable (Definition B.7), we have

P
[

(1−
√

1/r) · ‖Ud/r‖F −
√
d/r ≤ t

]
≥ 1− 2−Ω(t2d) ∀t > 0. (4.20)

Fix t =
√
d/(12

√
r). By simple manipulations, the event in (4.20) is equivalent to

‖Ud/r‖2F ≤
d

r
·

( 1√
r

+ 1
12

1− 1√
r

)2

.

This right-hand side is at most d/2r for all r ≥ 9. It follows that ‖Ud/r‖2F ≤ d/2r with probability at

least 1− 2−Ω(d2/r), completing the proof.

Lemma 4.32. Suppose that λ ≤ 1/4. If ‖U>a Ub‖2F ≤ d/2r, then dTV (fa, fb) = Ω
(

min{1, λ
√
d/r}

)
.

The proof will make use of the following fact.

Fact 4.33 ([86, Fact 7(c) in Section 24.4]). Let A,B be size-compatible matrices. Then

max{σmin(A)‖B‖F , σmin(B)‖A‖F } ≤ ‖AB‖F ≤ min{σmax(A)‖B‖F , σmax(B)‖A‖F }. (4.21)
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Proof of Lemma 4.32. The proof relies on the following approximate characterization of the TV dis-

tance between two zero-mean Gaussians. For any two symmetric positive definite matrices Σa and Σb

of the same size,

dTV (N (0,Σa),N (0,Σb)) = Θ
(

min{1, ‖Σ−1/2
a ΣbΣ

−1/2
a − I‖F }

)
.

This result appears in [57, Theorem 1.1]; see also [19, Corollary 2]. Hence to complete the proof it

suffices to show that ‖Σ−1/2
a ΣbΣ

−1/2
a − I‖F ≥ 4

5λ
√
d/r. Observe that Σ

−1/2
a ΣbΣ

−1/2
a − I = Σ

−1/2
a (Σb−

Σa)Σ
−1/2
a . Applying the left inequality in (4.21) twice gives

‖Σ−1/2
a ΣbΣ

−1/2
a − I‖F ≥ σmin(Σ−1/2

a )2‖Σb − Σa‖F .

Recall that the eigenvalues of Σa are 1 and 1 + λ, hence σmin(Σ
−1/2
a ) = (1 + λ)−1/2 ≥

√
4/5 since

λ ≤ 1/4. Moreover, ‖Σb−Σa‖F = λ‖UbU>b −UaU>a ‖F , and since UbU
>
b −UaU>a is symmetric, we have

‖UbU>b − UaU>a ‖2F = Tr((UbU
>
b − UaU>a )(UbU

>
b − UaU>a ))

= Tr(UbU
>
b UbU

>
b ) + Tr(UaU

>
a UaU

>
a )− Tr(UbU

>
b UaU

>
a )− Tr(UaU

>
a UbU

>
b )

= Tr(UbU
>
b ) + Tr(UaU

>
a )− Tr(U>b UaU

>
a Ub)− Tr(U>a UbU

>
b Ua)

= d/r + d/r − ‖U>a Ub‖2F − ‖U>a Ub‖2F
≥ 2d/r − 2d/2r = d/r,

hence ‖Σ−1/2
a ΣbΣ

−1/2
a − I‖F ≥ 4

5λ
√
d/r, completing the proof of the lemma.

Finally, we prove our lower bound for mixtures, Theorem 4.35, for which we will need a standard

result.

Lemma 4.34. Let T ≥ 4 and k ∈ N. There exists a set of tuples X ⊆ [T ]k such that |X | ≥ TΩ(k) and

every pair of distinct x, y ∈ X have Hamming distance |{i ∈ [k] : xi 6= yi}| ≥ k/4.

Proof. This can be proven in several different ways. The conclusion of the lemma states that X is a

code over the alphabet [T ] of rate Ω(1) and relative distance at least 1/4. By standard results [83,

Proposition 3.3.2], the T -ary entropy function HT satisfies 1 − HT (1/4) ≥ 1/4 as T ≥ 4. By the

Gilbert-Varshamov bound [83, Theorem 4.2.1], there exists such a code of rate 1/8.

Theorem 4.35. Any algorithm that learns the class of mixtures of k Gaussians in Rd in the realizable

setting within total variation distance ε and with success probability at least 2/3 has sample complexity

Ω
(

kd2

ε2 log(1/ε)

)
.

Proof. This proof builds on the lower bound construction for learning a single Gaussian (Theorem 4.30),

and extends it to a lower bound for learning a mixture of Gaussians. The high-level idea is simple:

create a family of distributions in k-mix(Gd) such that each Gaussian uses a covariance matrix as

constructed in Theorem 4.30. As we will use Lemma 4.28 again to obtain the sample complexity lower

bound, it suffices to construct 2Ω(kd2) distributions in k-mix(Gd) with pairwise KL divergence O(ε2)
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and pairwise TV distance Ω(ε). Some care is required to ensure that the TV distance is large, and we

will adopt some ideas used in earlier work for mixtures of spherical Gaussians [135, Appendix C.2]. In

more detail, the construction proceeds as follows.

First, we construct a family of covariance matrices. The proof of Theorem 4.30 shows that there

exists a family of symmetric, positive definite matrices Σ1, . . . ,ΣT with T = 2Ω(d2) satisfying

DKL(N (0,Σi) ‖ N (0,Σj)) ≤ O(ε2) ∀i 6= j (4.22a)

dTV (N (0,Σi),N (0,Σj)) ≥ Ω(ε) ∀i 6= j (4.22b)

Σi ≺ 2I ∀i. (4.22c)

Next we will create a family of distributions in k-mix(Gd) for which each Gaussian in the mixture

uses one of these Σi matrices as its covariance matrix. However, there is a tension. On the one hand,

we’d like any two of these mixture distributions to use disjoint sets of covariance matrices, so that

the TV distance between the mixtures is large. On the other hand, that constraint would greatly

reduce the number of mixture distributions we can create, and we want many distributions in order

to maximize the lower bound. This tension is resolved by a compromise obtained via error-correcting

codes.

The formal construction proceeds as follows. First, we pick µ1, . . . , µk ∈ Rd, which will serve as

the means for the Gaussians. The only constraint is that they should be far apart: for some ∆, to

be chosen later, we have ‖µi − µj‖2 ≥ ∆ for all i 6= j. Each mixture distribution will be a uniform

mixture of k Gaussians, for which the ith Gaussian has mean µi. The choice of covariance matrices

is determined using the error-correcting code. Specifically, let X ⊂ [T ]k be a set as in Lemma 4.34

above. The family of mixture distributions is

F := { fx : x ∈ X } where fx :=
1

k

(
N (µ1,Σx1) + · · ·+N (µk,Σxk)

)
.

As desired, we have |F| = TΩ(k) = 2Ω(kd2).

To analyze F , the first task is to prove the pairwise KL divergence upper bound. This is straight-

forward. Fix distinct x, y ∈ X . For each i, (4.22a) shows that

DKL(N (µi,Σxi) ‖ N (µi,Σyi)) = DKL(N (0,Σxi) ‖ N (0,Σyi)) ≤ O(ε2).

Convexity of KL divergence [42, Theorem 2.7.2] then shows that DKL(fx ‖ fy) ≤ O(ε2).

The remaining task is to prove dTV (fx, fy) ≥ Ω(ε) for all distinct fx, fy ∈ F . The intuition is as

follows. Say that index i ∈ [k] disagrees if xi 6= yi. Whenever i disagrees, the ith Gaussian in fx and

ith Gaussian in fy have TV distance Ω(ε) by (4.22b). Moreover, the total mixture weight apportioned

to disagreeing indices is at least 1/4, since the code ensures that the number of disagreements is at

least k/4, and each mixture uses uniform weights on its components. Thus, the disagreeing coordinates

should suffice to show that the TV distance is Ω(ε). Proving this formally requires somewhat more care

because each Gaussian is supported on all of Rd, so there is interaction between all Gaussians involved

in the mixtures. However, the parameter ∆ ensures that the means are far apart, so the interaction is
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negligible.

More formally, let A′j ⊆ Rd be such that

Pg∼N (µj ,Σxj )[g ∈ A′j ]− Pg∼N (µj ,Σyj )[g ∈ A′j ] = dTV

(
N (µj ,Σxj ),N (µj ,Σyj )

)
. (4.23)

Define

Aj = A′j ∩Bj where Bj =
{
x ∈ Rd : ‖x− µj‖2 < ∆/2

}
.

Note that the separation of µ1, . . . , µk implies that the balls B1, . . . , Bk are pairwise disjoint. Conse-

quently, the sets A1, . . . , Ak are also pairwise disjoint.

Several preliminary inequalities are required concerning these events. First,

Pg∼N (µi,Σxi )
[g 6∈ Bi] = Pg∼N (µi,Σxi )

[‖g − µi‖22 ≥ (∆/2)2]

= Pg∼N (0,Σxi )
[‖g‖22 ≥ (∆/2)2] (translating to zero-mean)

≤ Pg∼N (0,Id)[‖g‖22 ≥ ∆2/8] (by (4.22c))

≤ ε2/k2, (4.24)

by applying Lemma B.13 with t = 2 ln(k/ε) and choosing ∆ to satisfy ∆2/8 = d+2
√
dt+2t. Inequality

(4.24) also holds replacing xi with yi. Since A′i \Ai ⊆ Bc
i , (4.24) shows that∣∣∣ Pg∼N (µi,Σxi )

[g ∈ Ai]− Pg∼N (µi,Σxi )
[g ∈ A′i]

∣∣∣ ≤ Pg∼N (µi,Σxi )
[g 6∈ Bi] ≤ ε2/k2. (4.25)

This inequality also holds using yi instead of xi. For i 6= j, we have Aj ⊆ Bc
i , so

Pg∼N (µi,Σyi )
[g ∈ Aj ] ≤ Pg∼N (µi,Σyi )

[g 6∈ Bi] ≤ ε2/k2. (4.26)

Finally, by (4.23), (4.25) and the triangle inequality,

Pg∼N (µj ,Σxj )[g ∈ Aj ]− Pg∼N (µj ,Σyj )[g ∈ Aj ] ≥ dTV

(
N (µj ,Σxj ),N (µj ,Σyj )

)
− 2ε2/k2. (4.27)

The total variation distance is lower bounded as follows. Let A := A1 ∪ · · · ∪Ak. Then

dTV (fx, fy)

≥ Pg∼fx [g ∈ A]− Pg∼fy [g ∈ A]

=

k∑
j=1

(
Pg∼fx [g ∈ Aj ]− Pg∼fy [g ∈ Aj ]

)
(by disjointness of the Aj)

=
1

k

k∑
j=1

k∑
i=1

(
Pg∼N (µi,Σxi )

[g ∈ Aj ]− Pg∼N (µi,Σyi )
[g ∈ Aj ]

)
(expanding fx, fy as k-mixtures)

=
1

k

k∑
j=1

(
Pg∼N (µj ,Σxj )[g ∈ Aj ]− Pg∼N (µj ,Σyj )[g ∈ Aj ]

)
(summands with i = j)
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+
1

k

k∑
j=1

∑
i 6=j

(
Pg∼N (µi,Σxi )

[g ∈ Aj ]︸ ︷︷ ︸
≥0

−Pg∼N (µi,Σyi )
[g ∈ Aj ]︸ ︷︷ ︸

≤ε2/k2 by (4.26)

)
(summands with i 6= j)

≥ 1

k

k∑
j=1

(
Pg∼N (µj ,Σxj )[g ∈ Aj ]− Pg∼N (µj ,Σyj )[g ∈ Aj ]

)
− ε2

≥ 1

k

k∑
j=1

(
dTV

(
N (µj ,Σxj ),N (µj ,Σyj )

)
− 2ε2/k2

)
− ε2 (by (4.27))

≥ 1

k
(k/4)Ω(ε)− 3ε2 = Ω(ε),

where the last inequality is because dTV

(
N (µj ,Σxj ),N (µj ,Σyj )

)
≥ Ω(ε) whenever xj 6= yj , which is

the case for at least k/4 of the indices j.
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submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):
1740–1766, 2011. → page 11
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Series A, 30:221–252, 1968. → page 15

[40] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and Shang-Hua
Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in
undirected graphs. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 273–282, 2011. → page 2

90



[41] Thomas M. Cover. Behavior of sequential predictors of binary sequences. In Proceedings of the
4th Prague Conference on Information Theory, Statistical Decision Functions, Random
Processes. Publishing House of the Czechoslovak Academy of Sciences, Prague, 1965. → pages
3, 4, 10, 11, 13

[42] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience
[John Wiley & Sons], Hoboken, NJ, second edition, 2006. ISBN 978-0-471-24195-9;
0-471-24195-4. → page 85

[43] Joseph A Cruz and David S Wishart. Applications of machine learning in cancer prediction
and prognosis. Cancer informatics, 2:117693510600200030, 2006. → page 1

[44] Sanjoy Dasgupta. Learning mixtures of gaussians. In 40th Annual Symposium on Foundations
of Computer Science (Cat. No. 99CB37039), pages 634–644. IEEE, 1999. → pages 6, 58

[45] Sanjoy Dasgupta and Leonard Schulman. A probabilistic analysis of em for mixtures of
separated, spherical gaussians. Journal of Machine Learning Research, 8(Feb):203–226, 2007.
→ page 5

[46] Sanjoy Dasgupta and Leonard J Schulman. A two-round variant of em for gaussian mixtures.
In Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pages
152–159, 2000. → page 5

[47] Constantinos Daskalakis and Gautam Kamath. Faster and sample near-optimal algorithms for
proper learning mixtures of gaussians. In Conference on Learning Theory, pages 1183–1213,
2014. → pages 6, 59

[48] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. Ten steps of em suffice for
mixtures of two gaussians. In Conference on Learning Theory, pages 704–710, 2017. → page 5

[49] Burgess Davis. On the intergrability3 of the martingale square function. Israel Journal of
Mathematics, 8:187–190, 1970. → page 33

[50] Burgess Davis. On the Lp norms of stochastic integrals and other martingales. Duke Math. J,
43(4):697–704, 1976. → pages 4, 5, 11, 13, 18

[51] Peter M. DeMarzo, Ilan Kremer, and Yishay Mansour. Online trading algorithms and robust
option pricing. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
pages 477–486. ACM, 2006. → page 11

[52] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977. → page 5

[53] Luc Devroye. A course in density estimation, volume 14 of Progress in Probability and
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[55] Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation. Springer Science
& Business Media, 2012. → pages 51, 65

3This appears to be a typographical error in the title of the paper.

91

http://dx.doi.org/10.1007/978-1-4613-0125-7


[56] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The minimax learning rate of normal
and Ising undirected graphical models. arXiv preprint arXiv:1806.06887, 2018. → page 60

[57] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between
high-dimensional Gaussians. arXiv preprint arXiv:1810.08693, 2018. → page 84

[58] Ilias Diakonikolas. Learning Structured Distributions. In Peter Bühlmann, Petros Drineas,
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Verlag, 2006. → page 15

[121] Serge A Plotkin, David B Shmoys, and Éva Tardos. Fast approximation algorithms for
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Appendix A

Appendix for Chapter 2

A.1 Standard facts

Fact A.1. Suppose f : R→ R is concave. Then for any α < β, the function g(t) = f(t+β)− f(t+α)

is non-increasing.

Fact A.2. Suppose that f : R → R is concave. Let α < β. Then f(x) ≥ min{f(α), f(β)} for all

x ∈ [α, β].

A.2 Background on stochastic calculus

In this section, we provide some background on stochastic calculus. More material on this subject can

be found in Mörters and Peres [113], Revuz and Yor [127], Rogers and Williams [130]. We assume the

reader is familiar with some basic measure-theoretic probability such as the definition of σ-algebra,

filtrations, stopping times, and conditional probability. For this, we refer the reader to Durrett [67],

Klenke [97].

For the remainder of this section, we fix a probability space (Ω,F ,P) and a filtration (Ft)t≥0. To

avoid technicalities, we will assume that all stochastic processes are continuous.

Definition A.3 (Brownian Motion; see [113, Definition 1.1]). A real-valued stochastic process {B(t) :

t ≥ 0} is a standard Brownian Motion if:

• B0 = 0,

• for all 0 ≤ t1 ≤ . . . ≤ tn, the random variables Btn −Btn−1 , . . . , Bt2 −Bt1 are independent,

• for all t, h > 0, Bt+h −Bt has a normal distribution with mean zero and variance h,

• t 7→ Bt is almost surely continuous.

Theorem A.4 (Wiener [144]). Brownian Motion exists.

Definition A.5 (Martingales [97, Definition 9.24]). A stochastic process (Xt)t≥0 with E [|Xt|] < ∞
for all t ≥ 0 is a

• martingale if E [Xt | Fs] = Xs for all s < t.
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• submartingale if E [Xt | Fs] ≥ Xs for all s < t.

• supermartingale if E [Xt | Fs] ≤ Xs for all s < t.

Definition A.6 (Semimartingales [127, Definition IV.1.17]). A stochastic process (Xt)t≥0 is a semi-

martingale if it can be decomposed as Xt = Mt + At where M is a martingale and A is an adapted

process of finite variation.

We note that the decomposition is unique; see the discussion after Definition IV.1.17 in [127].

Remark A.7. Semimartingales are defined more generally in [127, Definition IV.1.17]. In particular,

they allow M to be a local martingale which are a class of stochastic processes that include martingales

as a special case. We will work with this restricted definition to avoid additional definitions and

notations.

An important example of a semimartingale that we make use of in this thesis is reflected Brownian

Motion, i.e. the process |Bt| where B is Brownian Motion. This follows from Tanaka’s formula (see

[113, Theorem 7.33, Lemma 7.40]) which states that |Bt| = Wt + Lt where W is a Brownian Motion

and L is the local time of B. Roughly, the local time of a process X is the amount of time that X

spends around the origin; for a formal definition, we refer the reader to [113, §6.1], [130, §IV.43], or

[127, §6]. The crucial point is that Lt is a continuous, increasing (hence, of finite variation), adapted

process.

Theorem A.8 ([130, Lemma IV.30.6], [127, Theorem IV.1.8]). Let M be a martingale. There is a

unique increasing, continuous, adapted process, denoted1 [M ] such that M2 − [M ] is a martingale.

Definition A.9 ([130, Definition IV.31.3], [127, Proposition IV.1.18]). Let X be a semimartingale and

let X = M +A be its decomposition into a martingale and an increasing, continuous, adapted process.

We define the quadratic variation of X as [X] = [M ].

Observe that if A is an increasing, continuous, adapted process then [A] = 0.

Next, let B be a Brownian Motion. It is well-known that B2
t − t is a martingale [113, Lemma 2.47].

Hence, [B]t = t. Using Definition A.9, we also have [|B|]t = t.

A.2.1 Itô’s formula

In this section, we use Cn to denote the class of functions whose nth derivatives exist and are continuous.

Recall from classical calculus that if f ∈ C1 and Xt is a continuous process of finite variation then

the fundamental theorem of calculus states that

f(XT )− f(X0) =

∫ T

0
f ′(Xt) dXt.

1We note that in [127], they use the notation 〈X,X〉 instead of [X]. For a martingale M , Revuz and Yor [127] use 〈M,M〉
to denote the increasing process of M . On the other hand, [M ] is often used to denote the quadratic variation process
of M . When M is a continuous martingale, there is no distinction between [M ] and 〈M,M〉 (compare Rogers and
Williams [130, Lemma IV.30.6] and Revuz and Yor [127, Theorem IV.1.8]). Hence, there is no distinction for continuous
semimartingales X.
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We now state the single-dimensional Itô’s formula which is an important tool in stochastic calculus.

Theorem A.10 (Itô’s formula; see [127, Theorem IV.3.3], [130, Theorem IV.32.8]). Let f ∈ C2 and

X be a continuous semimartingale. Then

f(XT )− f(X0) =

∫ T

0
f ′(Xt) dXt +

1

2

∫ T

0
f ′′(Xt) d[X]t.

Observe that the quantity 1
2

∫ T
0 f ′′(Xt) d[X]t is the main difference between Itô’s formula and

traditional caclulus. We give some intuition for why this is the case when X = B is Brownian Motion.

In this case, since [B]t = t, Itô’s formula asserts that f(BT )− f(B0) =
∫ T

0 f ′(Bt) dBt + 1
2

∫ T
0 f ′′(Bt) dt.

Suppose that ∆t is an infinitesimal quantity and let ∆Bt = Bt+∆t − Bt. Then a second-order Taylor

expansion gives

f(Bt+∆t)− f(Bt) ≈ f ′(Bt)∆Bt +
1

2
f ′′(Bt)(∆Bt)

2 ≈ f ′(Bt)∆Bt +
1

2
f ′′(Bt)∆t,

where in the last approximation, we used that, roughly, (∆Bt)
2 ≈ ∆t. “Integrating” the above formula

would then give Itô’s formula for Brownian Motion. We note that this argument can be made rigorous

as is done in [113, §7]. To gain some familiarity with Itô’s formula, we present a couple short examples.

Example 0. As a sanity check, let us use Itô’s formula to compute
∫ T

0 dBt. In this case, we can take

f(x) = x so that f ′(x) = 1 and f ′′(x) = 0. Itô’s formula then gives BT − B0 =
∫ T

0 dBt as one might

expect.

Example 1. In the next example, we compute
∫ T

0 Bt dBt. Recall that [B]t = t. Taking f(x) = x2

2 ,

we get B2
T −B2

0 =
∫ T

0 Bt dBt + 1
2

∫ T
0 dt so, upon rearranging and using B0 = 0,

∫ T
0 Bt dBt = B2

T − T .

The next theorem states a multi-dimensional version of Itô’s formula. To state this, we require

the following fact. For two continuous martingales M,N , there is a unique, increasing, continuous,

adapted process, denoted [M,N ] such that MN − [M,N ] is a martingale [127, Theorem IV.1.9], [130,

Definition IV.30.6]. The process [M,N ] is called the quadratic covariation process of M and N . If

X,Y are semimartingales with M,N being their respective martingale parts then [X,Y ] = [M,N ].

Theorem A.11 (Itô’s formula; see[127, Theorem IV.3.3], [130, Theorem IV.32.8]). Let f ∈ C2 and

X = (X1, . . . , Xd) be a d-dimensional continuous semimartingale. Then

f(XT )− f(X0) =

d∑
i=1

∫ T

0
∂if(Xi

t) dXk
t +

d∑
i,j=1

1

2

∫ T

0
∂i,jf(Xt) d[Xi, Xj ]t.

In the remark following [127, Theorem IV.3.3], it is stated that if Xi is a process of finite variation

then f only needs to be C1 in coordinate i. In the two-dimensional case with a process of the form
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(A,X), where A is a process of finite variation and X is a one-dimensional semimartingale, Itô’s formula

states

f(AT , XT )−f(A0, X0) =

∫ T

0
∂xf(At, Xt) dAt+

∫ T

0
∂yf(At, Xt) dXt+

1

2

∫ T

0
∂yyf(At, Xt) d[X]t. (A.1)

We can apply this with At = t and Xt = |Bt| where B is Brownian Motion. As [|B|]t = t, this gives

the formula as stated in Theorem 2.40.

A.3 Proof of Lemma 2.48

The main idea of the proof is that we will approximate Rα by a sequence of smooth functions (i.e. func-

tions in C2,2).

Fix α > 0. Recall that R̃α(t, x) = x
2 + κα

√
t ·M0

(
x2

2t

)
for t > 0, x ∈ R, where κα = 1√

2π erfi(α/
√

2)
.

(For t = 0, it suffices to define R̃α(t, x) = 0.) We also have the truncated version, Rα, defined as

Rα(t, x) =


R̃α(t, x) t > 0 ∧ x ≤ α

√
t

R̃α(t, α
√
t) t > 0 ∧ x ≥ α

√
t

0 t = 0

.

Recall also that pα = ∂xRα. For convenience, we restate the lemma.

Lemma 2.48. Fix α > 0. Then, almost surely, for all T ≥ 0, ContRegret(T, pα, B) ≤ Rα(T, |BT |).

For the remainder of this section, we will write f̃ = R̃α and f = Rα. Let φ(x) be any non-increasing

C2 function satisfying φ(x) = 1 for x ≤ 0 and φ(x) = 0 for x ≥ 1. For concreteness, we may take

φ(x) =


1 x ≤ 0

(1− x) + 1
2π sin(2πx) x ∈ [0, 1]

0 x ≥ 1

. (A.2)

We leave it as an easy calculus exercise to verify that φ is indeed a non-increasing C2 function.

Next, define φn(x) = φ(nx) and

fn(t, x) = f̃(t, x) · φn(x− α
√
t) + f(t, α

√
t) ·
(

1− φn(x− α
√
t)
)
.

Note that fn ∈ C2,2 on R>0 × R for all n. The function fn is a smooth approximation to f and its

limit is exactly f (= Rα).

Claim A.12. For every t > 0, x ∈ R, limn→∞ fn(t, x) = f(t, x).

Proof. If x ≤ α
√
t then φn(x − α

√
t) = 1 so fn(t, x) = f̃(t, x) = f(t, x). In particular, this also

holds for the limit. Next, suppose that a = x − α
√
t > 0. If n > 1/a then φn(x − α

√
t) = 0 so

fn(t, x) = f̃(t, α
√
t) = f(t, x).
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Recall that our goal is to relate f(T, |BT |) and
∫ T

0 ∂xf(t, |Bt|) d|Bt|. However, one cannot apply

Itô’s formula to f directly as it is not in C1,2. Instead, we will apply Itô’s formula to the smoothed

version of f , namely fn, and then take limits. The remainder of this section does this limiting argument

carefully.

For technical reasons (namely that f̃(t, x) has a pole when t → 0 and x 6= 0), we will not be able

to start the stochastic integral at 0. Hence, we will fix ε > 0 and, at the end of the proof, we will allow

ε→ 0.

The following lemma bounds the stochastic integral of ∂xfn with respect to |Bt|.

Lemma A.13. Almost surely, for every T ≥ ε∫ T

ε
∂xfn(t, |Bt|) d|Bt| ≤ fn(T, |BT |)− fn(ε, |Bε|)

−
∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

− 1

2

∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f̃(t, |Bt|)− f(t, α

√
t)
)

dt.

(A.3)

Proof. The proof is by Itô’s formula (Theorem 2.40) applied to fn. We have, for all T ≥ ε,

fn(T, |BT |)− fn(ε, |Bε|) =

∫ T

ε
∂xfn(t, |Bt|) d|Bt|+

∫ T

ε

(
∂tfn(t, |Bt|) +

1

2
∂xxfn(t, |Bt|)

)
dt. (A.4)

Computing derivatives of fn, we have

∂tfn(t, x) = (∂tf̃(t, x)) · φn(x− α
√
t)− α

2
√
t
f̃(t, x)φ′n(x− α

√
t)

+ ∂t(f(t, α
√
t)) · (1− φn(x− α

√
t)) +

α

2
√
t
f(t, α

√
t) · φ′n(x− α

√
t)

(A.5)

∂xfn(t, x) = (∂xf̃(t, x)) · φn(x− α
√
t) + f̃(t, x)φ′n(x− α

√
t)− f(t, α

√
t)φ′n(x− α

√
t) (A.6)

∂xxfn(t, x) = (∂xxf̃(t, x)) · φn(x− α
√
t) + 2(∂xf̃(t, x))φ′n(x− α

√
t)

+
(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x− α

√
t).

(A.7)

Recalling the notation
∗
∆ = ∂t + 1

2∂xx, we have

∗
∆fn(t, x) =

( ∗
∆f̃(t, x)

)
· φn(x− α

√
t)︸ ︷︷ ︸

= 0

+ ∂t(f(t, α
√
t))︸ ︷︷ ︸

> 0 (Claim A.14)

·(1− φn(x− α
√
t))

+ (∂xf̃(t, x))φ′n(x− α
√
t)︸ ︷︷ ︸

≥ 0

+
α

2
√
t
· (f(t, α

√
t)− f̃(t, x)) · φ′n(x− α

√
t) +

1

2

(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x− α

√
t).

(A.8)

By Lemma 2.47,
∗
∆f̃ = 0. By Claim A.14 below, ∂t(f(t, α

√
t)) > 0. Next, observe that (∂xf̃(t, x)) ·

φ′n(x − α
√
t) ≥ 0. To see this, if x ≤ α

√
t then φ′n(x − α

√
t) = 0. On the other hand, if x > α

√
t
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then φ′n(x− α
√
t) ≤ 0 because φn is non-increasing; and ∂xf̃(t, x) ≤ 0 by Lemma 2.47 and Eq. (2.40).

Hence, we can lower bound Eq. (A.8) by

∗
∆fn(t, x) ≥ α

2
√
t
· (f(t, α

√
t)− f̃(t, x)) · φ′n(x− α

√
t) +

1

2

(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x− α

√
t). (A.9)

Plugging Eq. (A.9) into Eq. (A.4) gives

fn(T, |BT |)− fn(ε, |Bε|) ≥
∫ T

ε
∂xfn(t, |Bt|) d|Bt|

+

∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

+
1

2

∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f̃(t, |Bt|)− f(t, α

√
t)
)

dt.

(A.10)

Rearranging Eq. (A.10) gives the lemma.

Claim A.14. If t > 0 then ∂t(f̃(t, α
√
t)) > 0.

Proof. Note that

f̃(t, α
√
t) =

√
t ·
(
α

2
+

M0(α2/2)√
2π erfi(α/

√
2)

)
=
√
t · f̃(1, α).

So it suffices to check that f̃(1, α) > 0. To see this, note that f̃(1, 0) = κα > 0 and ∂xf̃(1, x) ≥ 0 as

long as x ≤ α (by the first identity of Lemma 2.46). Hence, f̃(1, α) > 0.

At this point, we would like to take limits on both sides of Eq. (A.3). This is achieved by the

following two lemmas.

Lemma A.15. Almost surely, for every T ≥ ε,
1. limn→∞

∫ T
ε

α
2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt = 0; and

2. limn→∞
∫ T
ε φ′′n(|Bt| − α

√
t) ·
(
f̃(t, |Bt|)− f(t, α

√
t)
)

dt = 0.

Lemma A.16. For every T ≥ ε,∫ T

ε
∂xfn(t, |Bt|) d|Bt|

L2

−→
∫ T

ε
∂xf(t, |Bt) d|Bt|

as n→∞.

Within this section, Xn
L2

−→ X means that E
[
(Xn −X)2

]
→ 0 as n→∞. We relegate the proofs

of Lemma A.15 and Lemma A.16 to Appendix A.3.1. We now take limits on both sides of Eq. (A.3)

to obtain the following bound on the stochastic integral of ∂xf .

Lemma A.17. Almost surely, for every T ≥ ε,∫ T

ε
∂xf(t, |Bt|) d|Bt| ≤ f(T, |BT |)− f(ε, |Bε|). (A.11)
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Proof. By Lemma A.16, for every T ≥ ε,∫ T

ε
∂xfn(t, |Bt|) d|Bt|

L2

−→
∫ T

ε
∂xf(t, |Bt) d|Bt|.

Hence, by [97, Corollary 6.13 and Theorem 7.3], there exists a subsequence nk such that∫ T

ε
∂xfnk(t, |Bt|) d|Bt|

a.s.−−→
∫ T

ε
∂xf(t, |Bt) d|Bt|.

Using Lemma A.13 to bound the left-hand-side and then Lemma A.15 to take limits gives that

Eq. (A.11) holds for any fixed T ≥ ε. Hence, almost surely, Eq. (A.11) holds for all rational T ≥ ε.

As both sides of Eq. (A.11) are almost surely continuous as a function of T , Eq. (A.11) holds for all

T ≥ ε.

Proof (of Lemma 2.48). We will work in the probability 1 set where Lemma A.17 holds (for every

rational ε > 0) and t 7→ Bt is continuous.

Fix T > 0. Note that ContRegret(T, ∂xf,B) is defined because ∂xf ∈ [0, 1/2] and ∂xf(t, 0) = 1/2

for all t > 0 (see Eq. (2.46)). Recalling Definition 2.36, we have, for ε ≤ T ,

ContRegret(T, ∂xf,B) =

∫ T

0
∂xf(t, |Bt|) d|Bt|

=

∫ T

ε
∂xf(t, |Bt|) d|Bt|+

∫ ε

0
∂xf(t, |Bt|) d|Bt|

≤ f(T, |BT |)− f(ε, |Bε|) +

∫ ε

0
∂xf(t, |Bt|) d|Bt| (Lemma A.17).

The right-hand-side is continuous in ε so taking ε→ 0 (and recalling that f(0, 0) = 0), gives

ContRegret(T, ∂xf,B) ≤ f(T, |BT |).

A.3.1 Additional proofs from Appendix A.3

For an event A we write I[A] to denote the indicator of the event A. Before we prove Lemma A.15, we

will need one key observation.

Lemma A.18. Fix ε > 0. Then there is a constant Cε > 0 (depending also on α) such that for t ≥ ε
and x satisfying

∣∣x− α√t∣∣ ≤ 1,

1.
∣∣∣f̃(t, x)− f(t, α

√
t)
∣∣∣ ≤ Cε · (x− α√t)2; and

2.
∣∣∣∂xf̃(t, x)

∣∣∣ ≤ Cε · ∣∣x− α√t∣∣.
Proof. The key observation is that f(t, α

√
t) is already a first-order Taylor expansion of f̃(t, x) (in

x) about the point α
√
t. Indeed, f̃(t, α

√
t) = f(t, α

√
t) and (∂xf̃)(t, α,

√
t) = 0. Hence, by Taylor’s
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Theorem (see e.g. [131, Theorem 5.15])∣∣∣f̃(t, x)− f(t, α
√
t)
∣∣∣ ≤ 1

2
· (x− α

√
t)2 · sup

t≥ε,|x−α√t|≤1

∣∣∣∂xxf̃(t, x)
∣∣∣

By the second identity in Lemma 2.46, we have∣∣∣∂xxf̃(t, x)
∣∣∣ =

κα exp(x2/2t)√
t

.

Since t ≥ ε and x ≤ 1 + α
√
t, we have∣∣∣∂xxf̃(t, x)

∣∣∣ ≤ κα exp((1 + α
√
t)2/2t)√

ε

=
κα exp(α2/2 + α/

√
t+ 1/2t)√

ε

≤ κα exp(α2/2 + α/
√
ε+ 1/2ε)√

ε
.

So one can take Cε = κα exp(α2/2+α/
√
ε+1/2ε)√

ε
. This gives the first assertion.

The second assertion is similar. Indeed, since (∂xf̃)(t, α
√
t) = 0, we have∣∣∣(∂xf̃)(t, x)

∣∣∣ =
∣∣∣(∂xf̃)(t, x)− (∂xf̃)(t, α

√
t)
∣∣∣

≤
∣∣∣x− α√t∣∣∣ · sup

t≥ε,|x−α
√
t|≤1

|∂xxf̃(t, x)|

≤ Cε ·
∣∣∣x− α√t∣∣∣ .

We also need a simple claim which bounds the value of |φ′n(x)| and |φ′′n(x)|.

Claim A.19. There is an absolute constant C > 0 such that |φ′n(x)| ≤ Cn and |φ′′n(x)| ≤ Cn2.

Proof. Note that φ′n(x) = n · φ′(nx) and n2 · φ′′(nx). It is easy to see, from differentiating Eq. (A.2)

or by continuity and compact arguments, that there exists C > 0 such that |φ′(x)| , |φ′′(x)| ≤ C for all

x ∈ R.

Proof (of Lemma A.15). We start with the second assertion. The first assertion is similar but simpler.

We claim that there exists a constant C ′ (depending on ε and α) such that∣∣∣φ′′n(|Bt| − α
√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)∣∣∣ ≤ C ′I[|Bt| − α√t ∈ [0, 1/n]]. (A.12)

(Recall that for an event A, I[A] denotes the indicator of A.) Indeed, if |Bt| − α
√
t /∈ [0, 1/n] then

φ′′n(|Bt| − α
√
t) = 0 so both sides of Eq. (A.12) are equal to 0. On the other hand, if |Bt| − α

√
t ∈

[0, 1/n] then Lemma A.18 shows that |f(t, α
√
t) − f̃(t, |Bt|)| ≤ Cε/n

2 where Cε is the constant from

Lemma A.18. Next, Claim A.19 gives |φ′′n(|Bt| −α
√
t)| ≤ Cn2. So taking C ′ = Cε ·C gives Eq. (A.12).

Hence,
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∣∣∣∣∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

∣∣∣∣ ≤ ∫ T

ε
C ′ · I[|Bt| − α

√
t ∈ [0, 1/n]] dt

= C ′ ·m
({

t ∈ [ε, T ] : |Bt| − α
√
t ∈ [0, 1/n]

})
,

where m denotes the Lebesgue measure. By continuity of measure, we have

lim
n→∞

m
({

t ∈ [ε, T ] : |Bt| − α
√
t ∈ [0, 1/n]

})
=

∫ T

ε
I
[
|Bt| = α

√
t
]

dt = 0 a.s.

This proves the second assertion.

For the first assertion, we can use the bound (from Lemma A.18 and Claim A.19)∣∣∣φ′n(x− α
√
t) ·
(
f(t, α

√
t)− f̃(t, x)

)∣∣∣ ≤ C ′

n
I[x− α

√
t ∈ [0, 1/n]] ≤ C ′

n
. (A.13)

Hence, ∣∣∣∣∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

∣∣∣∣ ≤ ∫ T

ε

α

2
√
t

C ′

n
dt

≤ C ′α
√
T/n→ 0.

Proof (of Lemma A.16). By Eq. (A.6), we have

∂xfn(t, x)− ∂xf(t, x) =
(
∂xf̃(t, x)φn(x− α

√
t)− ∂xf(t, x)

)
+
(
φ′n(x− α

√
t) ·
(
f̃(t, x)− f(t, α

√
t)
))

.
(A.14)

For the first bracketed term, since ∂xf̃(t, x) = ∂xf(t, x) when x ≤ α
√
t and ∂xf(t, x) = 0 when

x ≥ α
√
t, we have∣∣∣∂xf̃(t, x)φn(x− α

√
t)− ∂xf(t, x)

∣∣∣ =
∣∣∣∂xf̃(t, x)φn(x− α

√
t)
∣∣∣ I[x− α√t ∈ [0, 1/n]]

≤ C ′

n
,

where the final inequality is by the second assertion in Lemma A.18. The second bracketed term has

been bounded in Eq. (A.13), and so we have proved∣∣∣∂xfn(t, x)− ∂xf(t, x)
∣∣∣ ≤ C ′′

n
for all t ≥ ε and all x. (A.15)

Tanaka’s formula (see [130, Theorem IV.43.3]) states that

|Bt| =
∫ t

0
sign(Bs) dBs + Lt =: Wt + Lt,

where L is the local time at zero of B and W is a Brownian motion. Recall that t 7→ Lt is a continuous

non-decreasing random process which increases only on the set { t : Bt = 0 }. Therefore by the Itô
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isometry property, for any T ≥ ε,

E
[(∫ T

ε
∂xfn(t, |Bt|) d|B|t −

∫ T

ε
∂xf(t, |Bt|) d|B|t

)2]
≤ 2E

[(∫ T

ε
(∂xfn − ∂xf)(t, |Bt|) dWt

)2
]

+ 2E
[(∫ T

ε
(∂xfn − ∂xf)(t, |Bt|)) dLt

)2
]

= 2E
[∫ T

ε
(∂xfn − ∂xf)(t, |Bt|)2 dt

]
+ 2E

[(∫ T

ε
(∂xfn − ∂xf)(t, 0) dLt

)2
]
.

Now use (A.15) to bound the right-hand side by

2(C ′′/n)2T + 2(C ′′/n)2E
[
L2
T

]
≤ C ′′′n−2T,

where the last inequality uses Tanaka’s formula (and the fact that Wt is also a standard Brownian

motion) to bound

E
[
L2
T

]
= E

[
(|BT | −WT )2

]
≤ 2E

[
|BT |2

]
+ 2E

[
|WT |2

]
= 4E

[
|BT |2

]
= O(T ).

The result follows.
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Appendix B

Appendix for Chapter 4

B.1 Standard facts

Definition B.1. Let A and B be symmetric positive definite matrices of the same size. The log-det

divergence of A and B is defined as LD (A,B) := Tr(B−1A− I)− log det(B−1A).

The log-det divergence is an asymmetric measure of distance between matrices and is closely re-

lated to the KL divergence between their corresponding Gaussian distributions, as can be seen from

Lemma B.3.

Claim B.2. Let A, B and C be square matrices of the same size. Suppose that A and B are symmetric,

positive definite and C is invertible. Then LD (A,B) = LD (CAC,CBC).

Proof. From the definition it is apparent that LD (A,B) only depends on the spectrum of B−1A. So

the claim follows from the fact that B−1A and (CBC)−1CAC have the same spectrum. This fact

holds because v is an eigenvector for B−1A of eigenvalue λ if and only if C−1v is an eigenvector for

(CBC)−1CAC of eigenvalue λ.

Lemma B.3 (Rasmussen and Williams [123, Equation A.23]). For two full-rank Gaussians N (µ0,Σ0)

and N (µ1,Σ1), their KL divergence is

DKL(N (µ0,Σ0) ‖ N (µ1,Σ1))

=
1

2

(
Tr(Σ−1

1 Σ0 − I) + (µ0 − µ1)>Σ−1
1 (µ0 − µ1)− log det(Σ0Σ−1

1 )
)

=
1

2

(
LD (Σ0,Σ1) + (µ0 − µ1)>Σ−1

1 (µ0 − µ1)
)
.

Lemma B.4. Let A,B be symmetric, positive definite matrices, satisfying (1− α)B � A � (1 + α)B

for some α ∈ [0, 1/2]. Then LD (A,B) ≤ dα2.

Proof. Let λ1, . . . , λd be the eigenvalues of B−1A. By the hypothesis, each λi ∈ [1− α, 1 + α]. So,

LD (A,B) = Tr(B−1A− I)− log det(B−1A) =
d∑
i=1

(λi − 1) − log
d∏
i=1

λi
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=
d∑
i=1

(λi − 1− log(λi)) ≤
d∑
i=1

(λi − 1)2 ≤ dα2.

The first inequality follows from x− 1− log x ≤ (x− 1)2, valid for any x ≥ 1/2.

Lemma B.5. For two full-rank Gaussians N (µ,Σ) and N (µ′,Σ′), their total variation distance is

bounded by

2dTV(N (µ0,Σ0),N (µ1,Σ1))2 ≤ DKL(N (µ0,Σ0 ‖ N (µ1,Σ1))

=
1

2

(
LD (Σ0,Σ1) + (µ0 − µ1)>Σ−1

1 (µ0 − µ1)
)
.

Proof. Follows from Lemma B.3 and Lemma 3.9.

Lemma B.6. For any µ, σ, µ̂, σ̂ ∈ R with |µ̂− µ| ≤ εσ and |σ̂ − σ| ≤ εσ and ε ∈ [0, 2/3] we have

‖N (µ, σ2)−N (µ̂, σ̂2)‖1 ≤ 2ε.

Proof. By Lemma B.5,

4dTV(N (µ̂, σ̂2),N (µ, σ2))2 ≤ σ̂2

σ2
− 1− log

( σ̂2

σ2

)
+
|µ− µ̂|2

σ2
≤
( σ̂
σ

)2
− 1− log

(( σ̂
σ

)2
)

+ ε2.

Since z := σ̂/σ ∈ [1− ε, 1 + ε] and ε ≤ 2/3, using the inequality x2 − 1− log(x2) ≤ 3(x− 1)2 valid for

all |x− 1| ≤ 2/3, we find

dTV(N (µ̂, σ̂2),N (µ, σ2))2 ≤ 1

4
(3(z − 1)2 + ε2) ≤ 1

4
(4ε2) = ε2.

The lemma follows since the L1 distance is symmetric and is equal to twice the TV distance.

Definition B.7. A random variable X is said to be σ-subgaussian if P[|X| ≥ t] ≤ 2 exp(−t2/σ2) for

all t > 0.

For instance if X ∼ N (0, 1) then X is
√

2-subgaussian, see, e.g., Abramowitz and Stegun [6, formula

(7.1.13)].

Lemma B.8 (Theorem 3.1.1 in [139]). Let g ∼ N (0, Id). Then (‖g‖2 −
√
d) is O(1)-subgaussian.

Consequently, (‖g‖2 −
√
d)+ is also O(1)-subgaussian.

Lemma B.9 (Proposition 2.5.2 in [139]). There exist absolute positive constants C1, C2 with the follow-

ing properties. A random variable X is σ-subgaussian if supp≥1 p
−1/2 (E|X|p)1/p ≤ C1σ. Conversely,

if supp≥1 p
−1/2 (E|X|p)1/p ≤ C2σ then X is σ-subgaussian.

Lemma B.10 (Hoeffding’s Inequality, Proposition 2.6.1 in [139]). Let X1, . . . , Xn be independent,

mean-zero random variables and suppose Xi is σi-subgaussian. Then, for some global constant c > 0

and any t ≥ 0,

P

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

]
≤ 2 exp

(
−ct2∑n
i=1 σ

2
i

)
.
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Lemma B.11. Let g1, . . . , gn ∼ N (0, 1) and a1, . . . , an > 0. Then, there is a global constant c > 0

such that for every t ≥ 0,

P

[∣∣∣∣∣
n∑
i=1

aig
2
i − E

(
n∑
i=1

aig
2
i

)∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−cmin

{
t2∑n
i=1 a

2
i

,
t

maxi ai

})
.

Proof. This statement follows from Bernstein’s inequality for subexponential random variables (The-

orem 2.8.1 in [139]).

Theorem B.12 (Gordon’s Theorem, Theorem 5.32 in [138]). For a matrix A, let σmin(A) denote the

smallest positive singular value of A. Let G be an m×n matrix with entries independently drawn from

N (0, 1). Then Eσmin(G) ≥
√
m−

√
n.

B.2 Concentration inequalities

Lemma B.13 ([102, Lemma 1]). Let X have the chi-squared distribution with parameter d; that is,

X =
∑d

i=1X
2
i where the Xi are i.i.d. standard normal. Then,

P[X − d ≥ 2
√
dt+ 2t] ≤ exp(−t) and

P[d−X ≥ 2
√
dt] ≤ exp(−t).

Lemma B.14 (Corollary 5.50 in [138]). There exist an absolute constant C with the following property.

Let X1, . . . , Xm ∼ N (0, Id) and let ε ∈ (0, 1). Suppose that t ≥ 1. If m ≥ Ct2d/ε2 then

P

[∥∥∥∥∥ 1

m

m∑
i=1

XiX
>
i − Id

∥∥∥∥∥ > ε

]
< 2 exp(−t2d).

B.3 Other standard facts

Definition B.15 (ε-net). Let ε ≥ 0. We say N ⊆ X is an ε-net for X in metric d if for each x ∈ X
there exists some y ∈ N such that d(x, y) ≤ ε.

Lemma B.16 (Corollary 4.2.13 in [139]). For any ε ∈ (0, 1], there exists an ε-net for Bd
2 in `2 metric

of size (3/ε)d.

Recall the `∞ metric between (x1, . . . , xd) and (y1, . . . , yd) is defined as maxi |xi − yi|.

Lemma B.17. For any ε ∈ (0, 1] there exists an ε-net for [−1, 1]d in `∞ metric of size ε−d.

Proof. Partition [−1, 1]d into ε−d cubes of side-length 2ε. The cube centers form an ε-net for [−1, 1]d

in `∞.

B.4 Proof of Lemma 4.17

We first give a high-level idea of the proof. Let g be the target distribution and suppose there exists

ρ ≥ 0 and f ∈ k-mix(F) such that ‖g − f‖1 ≤ ρ. Since f ∈ k-mix(F), we can write f =
∑

i∈[k]wifi,
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where fi ∈ F , wi ≥ 0, and
∑

i∈[k]wi = 1. A first attempt would be to try to write g =
∑

i∈[k]wigi

such that each ‖gi − fi‖ ≤ r; if this were true, then given a sufficient number of samples from f , we

would have sufficient samples from each fi, and then we could use an r-robust compression scheme for

each fi to output some ĝi satisfying ‖gi − ĝi‖1 ≤ ε. Alas, it is not clear whether we can ensure that

‖gi − fi‖1 ≤ r for all i. However, Lemma B.18 below asserts that we can write g =
∑

i∈[k]wigi in such

a way that for each i, either ‖gi − fi‖ ≤ r or wi is small (in fact, the sum of all such weights is small)

and, hence, their contribution to the TV distance is small. Thus, we will only need to deal with the

case where ‖gi − fi‖ ≤ r, a task for which r-robust compression is well-suited.

Lemma B.18. Let g be a density and suppose there exists f =
∑

i∈[k]wifi with (w1, . . . , wk) ∈ ∆k

and each fi ∈ F such that ‖g − f‖1 ≤ ρ for some ρ ≥ 0. Then we can write g =
∑

i∈[k]wigi such that,

for any r > 0, ∑
i : ‖gi−fi‖1>r

wi < ρ/r.

The proof of this lemma appears below in Appendix B.4.1. We now turn to proving Lemma 4.17.

Proof of Lemma 4.17. Let g be the target distribution. Let f ∈ k-mix(F) such that ‖f − g‖1 ≤ ρ for

some ρ ≥ 0. Let g =
∑

i∈[k]wigi be the representation given by Lemma B.18. The learner first takes

M = 160m(ε/10) log(3k/δ)k/ε samples from g. Let S be the set of these samples. We view g as a

mixture of the gi, so S can be partitioned into k subsets such that the ith subset has distribution

gi. We learn each of the components individually. The learner does not know which sample point

comes from which component, but it can try all possible ways of partitioning S into k subsets, hence

generating several ‘candidate distributions’, such that at least one of them is close to g. Moreover, the

learner also ‘guesses’ the weights wi as follows: let W be an (ε/10k)-net in `∞ for ∆k of size (10k/ε)k

(see Lemma B.17). So there exists some point (ŵ1, . . . , ŵk) ∈W such that maxi |wi − ŵi| ≤ ε/10k.

We say component i is tiny if wi < ε/20k, and we say component i is far if ‖gi − fi‖1 > r. We

say a component is nice if it is neither far nor tiny. The sum of weights of tiny components is at most

ε/20, and the sum of weights of far components is at most ρ/r by Lemma B.18.

The number of samples from component i is binomial with mean Mwi. By a Chernoff bound and a

union bound over nice components, with probability at least 1−δ/3, there are at leastm(ε/10) log(3k/δ)

points from each nice component. If this is the case, then the definition of robust compression implies

that for each such component gi, with probability at least 1−δ/3k there exists a sequence Li ∈ Sτ(ε/10)

and a sequence Bi ∈ {0, 1}t(ε/10) such that ‖J (Li, Bi) − fi‖1 ≤ ε/10, where J is the corresponding

decoder. By a union bound over nice components, this is simultaneously true for all nice components,

with probability at least 1− δ/3.

Thus far we have proved that with probability at least 1− 2δ/3 there exist sequences L1, . . . , Lk ∈
Sτ(ε/10) and B1, . . . , Bk ∈ {0, 1}t(ε/10) such that ‖J (Li, Bi) − fi‖1 ≤ ε/10 for each nice component i.

The learner builds the following set of candidate distributions:

C :=

{
k∑
i=1

ŵiJ (Li, Bi) : L1, . . . , Lk ∈ Sτ(ε/10), B1, . . . , Bk ∈ {0, 1}t(ε/10), (ŵ1, . . . , ŵk) ∈W

}
.
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We claim that with probability at least 1−2δ/3 at least one of the distributions in C is (3ε/10+2ρ/r+ρ)-

close to g. This corresponds to the ‘correct’ sequences Li, Bi, and ŵi. To show this, let T denote the

set of tiny components, let F denote the set of far components, and let N denote the nice components.

Then we have∥∥∥∥∥∥
∑
i∈[k]

ŵiJ (Li, Bi)− wigi

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑
i∈[k]

wi(J (Li, Bi)− fi)

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
i∈[k]

(ŵi − wi)J (Li, Bi)

∥∥∥∥∥∥
1

+ ‖f − g‖1

≤
∑
i∈T∪F

wi ‖J (Li, Bi)− fi‖1 +
∑
i∈N

wi ‖J (Li, Bi)− fi‖1

+
∑
i∈[k]

|ŵi − wi| · ‖J (Li, Bi)‖1 + ρ

≤
∑
i∈T∪F

wi · 2 +
∑
i∈N

wi · (ε/10) +
∑
i∈[k]

(ε/10k) + ρ

≤ (ε/10 + 2ρ/r) + ε/10 + ε/10 + ρ,

where the first two inequalities are by the triangle inequality and the last inequality is by definition of

tiny and far. This proves the claim.

Next the learner applies the algorithm of Theorem 3.13 (with error parameter ε/40) to obtain a

member of C whose distance from g is bounded by 3 · (3ε/10 + 2ρ/r + ρ) + 4(ε/40) ≤ ε+ 3ρ(1 + 2/r),

as required. The overall failure probability is bounded by 2δ/3 (probability of the claim failing) plus

δ/3 (the probability that algorithm of Theorem 3.13 fails).

The sample complexity of the algorithm is bounded as follows. The number of candidate distribu-

tions can be bounded by

|C| ≤
(
M τ(ε/10)2t(ε/10)

)k
· (10k/ε)k ≤Mkτ ′(ε/10) · (10k/ε)k,

whence the total sample complexity can be bounded by

M +
log(3|C|2/δ)

2ε2

= O

(
m
( ε

10

)
log
(k
δ

)k
ε

+
log(1/δ) + k log(k/ε) + kτ ′(ε/10) log

(
m( ε

10) log(k/ε)k/ε
)

ε2

)

= Õ

(
km(ε/10)

ε
+
kτ ′(ε/10) logm(ε/10)

ε2

)
,

completing the proof.

B.4.1 Proof of Lemma B.18

Let X := {x : g(x) < f(x)}. Our goal is to “transform” each fi into another density gi so that

g =
∑

i∈[k]wigi. Note that X consists of the domain points on which f exceeds g. Hence, to transform

each fi into gi, we would “scale it down multiplicatively” on points in X , and “scale it up additively”
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on points not in X . These transformations need to be done carefully for each function gi to end up

being non-negative and integrate to 1.

To that end, we define

gi(x) :=

fi(x)g(x)/f(x) for x ∈ X ,

fi(x) + ∆i(x) for x /∈ X ,

where

∆i(x) :=
(
g(x)− f(x)

)(∫
X
fi(y) · f(y)− g(y)

f(y)
dy

)/∫
X

(
f(y)− g(y)

)
dy.

Recall that Z is the domain of g and the densities in F . We now check that each gi is a density and

that g =
∑

i∈[k]wigi.

Claim B.19. For all i ∈ [k], gi is a density on Z.

Proof. We first check that gi(x) ≥ 0 for all x. If x ∈ X , then gi(x) ≥ 0 because fi, g, f are all densities

and hence non-negative. If x /∈ X , then ∆i(x) ≥ 0 because g(x)− f(x) ≥ 0 on X c and f(x)− g(x) ≥ 0

on X . We now check that
∫
Z gi(x) dx = 1. Since both g and f are densities, both integrate to 1 over

Z, and therefore ∫
X c

(g(x)− f(x)) dx =

∫
X

(f(x)− g(x)) dx. (B.1)

The following calculation completes the proof.∫
X c
gi(x) dx =

∫
X c

(∆i(x) + fi(x)) dx

=

∫
X c (g(x)− f(x)) dx∫
X (f(y)− g(y)) dy

·
∫
X

(
fi(y) · f(y)− g(y)

f(y)

)
dy +

∫
X c
fi(x) dx

=

∫
X

(
fi(y) · f(y)− g(y)

f(y)

)
dy +

∫
X c
fi(x) dx

=

∫
X
fi(y) ·

(
1− g(y)

f(y)

)
dy +

∫
X c
fi(y) dy

=

∫
X
fi(y) dy −

∫
X
fi(y) ·

(
g(y)

f(y)

)
dy +

∫
X c
fi(y) dy

= 1−
∫
X
fi(y) · g(y)

f(y)
dy

= 1−
∫
X
gi(y) dy

In the above calculations, the second equality is by definition of ∆i, the third equality is by (B.1), the

sixth equality is because fi is a density, and the last equality is by definition of gi.

Claim B.20. g =
∑

i∈[k]wigi.
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Proof. First suppose x ∈ X . Since
∑

i∈[k]wifi = f , we have

∑
i∈[k]

wigi(x) =
∑
i∈[k]

wifi(x)
g(x)

f(x)
= g(x).

On the other hand, for x /∈ X we have∑
i∈[k]

wigi(x) =
∑
i∈[k]

wi∆i(x) + wifi(x)

=
∑
i∈[k]

wi

(
(g(x)− f(x))∫

X (f(y)− g(y)) dy
·
∫
X

(
fi(y) · f(y)− g(y)

f(y)

)
dy

)
+
∑
i∈[k]

wifi(x)

=
(g(x)− f(x))∫

X (f(y)− g(y)) dy
·
∫
X

(∑
i∈[k]

wifi(y) · f(y)− g(y)

f(y)

)
dy + f(x)

=
(g(x)− f(x))∫

X (f(y)− g(y)) dy
·
∫
X

(f(y)− g(y)) dy + f(x)

= g(x)− f(x) + f(x) = g(x),

where the first equality is by definition of gi, the second equality is by definition of ∆i, and second last

equality is by because
∑

i∈[k]wifi = f .

Let I := { i ∈ [k] : ‖fi − gi‖1 > r }. It remains to show that
∑

i∈I wi < ρ/r. Observe from the

definition of the gi that we also have X = { x : gi(x) < fi(x) } for each i ∈ [k]. Thus, using Claim B.20,

‖f − g‖1 = 2

∫
X

(f(x)− g(x)) dx = 2
∑
i∈[k]

wi

∫
X

(fi(x)− gi(x)) dx =
∑
i∈[k]

wi‖fi − gi‖1.

Thus, from the hypothesis of the lemma,

ρ ≥ ‖f − g‖1 =
∑
i∈[k]

wi‖fi − gi‖1 ≥
∑
i∈I

wi‖fi − gi‖1 >
∑
i∈I

wir,

by definition of I. This gives
∑

i∈I wi < ρ/r, as required.
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