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Abstract 
 

Near-infrared spectroscopy (NIRS) is a suitable technique for characterizing many materials, 

including wood, and has been used to predict several wood properties. However, existing reports 

on this use of NIRS have paid little attention to the effect of wood surface condition and grain 

orientation. This study therefore used NIRS to assess wood density, modulus of elasticity, modulus 

of rupture, grain angle, and annual ring width, studying whether and how surface condition and 

grain orientation affected the measurement of these properties. 

The research focused on using NIRS coupled with partial least squares regression (PLS-R) to 

predict the properties of two softwoods (Western hemlock and Douglas-fir) . PLS-R models were 

calibrated and validated using the test-set validation method. The predictive accuracies based on 

grain orientation (quarter-sawn and flat-sawn) and wood surface condition (rough and smooth) 

were compared. Models developed using reduced wavelengths also showed the possibility of 

predicting these properties using a narrow spectral range. 

The results of this study showed that calibrations based on mixed sets, which included both cross-

sections, were inferior to those based on these cross-sections separately. Promising predictive 

models were obtained for density (Rp
2 = 0.66), modulus of elasticity (Rp

2 = 0.78), and modulus of 

rupture (Rp
2 = 0.82), with poor correlations for grain angle and annual ring width (Rp

2 Ò 0.50). 

Further, the rough surface predictions outperformed those from the smooth surface for all 

properties. The quarter-sawn sections also showed better predictive ability than the flat-sawn 

sections for both surface conditions. The only exception was for modulus of rupture, where the 

trend was reversed. The results therefore show the potential for using NIRS as a non-destructive 

technique to predict the properties of wood. 
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Lay Summary 
 

The main goal of this thesis was to assess the feasibility of using NIRS to predict the properties of 

two softwoods based on different surface conditions and grain orientations. NIRS is a rapid 

analysis technique useful for predicting wood properties. This technique has several advantages, 

including scant need for sample preparation, and the non-destructive nature of sampling. However, 

the reliability of this method depends on the accuracy of spectral acquisition and reference 

measurements. While plenty of research has used NIRS to assess wood properties, little attention 

has been paid to applying the method to two species in Canada: Western hemlock and Douglas-

fir . This study therefore focused on using NIRS to predict the properties of these softwoods. Using 

the partial least squares procedure, I built NIRS calibrations to predict certain wood properties and 

observed the influence of surface condition and grain orientation on NIRS performance.  
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1.0 INTRODUCTION  
 

Wood is an important construction material that requires high degree of structural performance 

and reliability (Liang et al. 2016). Consequently, it has a broad range of applications (Nguyen et 

al. 2017). Wood is an anisotropic, hygroscopic, and heterogenous bio-based material with a porous 

structure that presents variations between species at both microscopic and macroscopic levels 

(Hans 2014). This variation is one of the most important challenges that wood product producers 

face when trying to accurately characterize quality for appropriate end product design and 

manufacturing (Schajer and Orhan 2006, Fujimoto et al. 2008).  

 

Western hemlock is the single most plentiful tree species found on the coast of British Columbia 

(BC), making up 18% of the volume of BCôs growing stock (Middleton and Munro 2001). 

Hemlock wood is of medium density, has moderate strength and stiffness, and is mostly used for 

construction purposes (Kenneth 2001). Douglas-fir (D-fir)  makes up to 8.8% of the provincial 

growing stock (D-fir species profile n.d.) and grows along the BC coast and in the interior of the 

province. Coastal D-fir wood is known for its superior strength, stiffness, and higher density 

(Cherry et al. 2008) and is mostly used as dimensional timber, plywood, flooring, and in 

construction (Johnson and Gartner 2006). 

 

Wood density (ɟ) influences its physical and mechanical properties and is regarded as an important 

measure of wood quality (Jozsa et al. 1989). The ɟ within a tree increases radially from pith to 

bark and decreases vertically with height in the stem (Kiaei et al. 2015, Tsoumis 1991, Todoroki 

et al. 2012). The moduli of elasticity and rupture (MOE and MOR) are two important properties 

used in choosing wood as a structural material (Missanjo and Matsumura 2016). MOE is an 

indication of stiffness, while MOR is an indication of the strength of a board or structural member 

(Johnson and Gartner 2006). The annual ring width (ARW), which is composed of earlywood with 

thinner walls and latewood with thicker wallsðand thus has a smaller lumen size and higher ɟ 

(Fromm et al. 2001)ðhas been reported as an important variable in the prediction of MOE and 

MOR of wood (Haartveit and Flæte 2002). The slope of grain (SOG) relative to the length of a 

timber is another factor that contributes to understanding woodôs strength properties. The strength 

varies with the orientation of the grain, making the measurement of SOG an important requirement 

for machine grading and structural analysis (Ingemi and Yu 2019).  
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Uncertainty about some of the properties of wood has led to the development of prediction 

methods by indirect observationðthat is, obtaining measurements without damaging the 

material or altering its properties (Romer 2013). Measurements of ɟ and SOG, which directly 

affect a productôs mechanical properties, are important to the wood industry. Although traditional 

methods have been employed to estimate these properties, a suitable method that is non-

destructive, swift, easy to implement within the production line, and requires minimal sample 

preparation is highly desirable.  

 

Near infrared spectroscopy (NIRS) is the measurement of the wavelength and intensity of a 

materialôs absorption of near-infrared light. NIR light spans the 800ï2500 nm range and is 

energetic enough to excite overtones and combinations of molecular vibrations to higher energy 

levels. NIRS is normally used for the quantitative measurement of functional groups, especially 

O-H, N-H, and C-O, containing physical and chemical information about a sample (Schimleck et 

al. 2001). The advantages of NIRS include contactless application, fast acquisition times, non-

destructive sampling, and the potential for on-line or portable applications (Druckenmüller et al. 

2018). NIRS has been successfully applied to estimate several properties of wood, such as moisture 

content (M), density (ɟ), and mechanical properties (Leblon et al. 2013, Acquah et al. 2018).  

 

This study examines the use of NIRS to predict the density, bending strength, stiffness, grain angle, 

and annual ring width of hemlock and D-fir. The hypothesis is that NIRS will be a swift and 

effective tool to predict the aforementioned properties using multivariate analysis of the acquired 

spectra in real time. Such capability may allow for sorting before processing and/or property 

evaluation, thereby increasing product quality and decreasing processing costs.  

 

1.1 Outline of thesis 
 

Chapter 1 introduces what the research was about and why it was carried out. Chapter 2 provides 

background information on the non-destructive evaluation of wood, as well as spectroscopy, 

specifically explaining the NIRS utilized in this study. It also explains Western hemlock and D-fir 

properties and applications, and describes in detail the application of NIRS technology in wood 

property assessment. Chapter 2 ends with a statement of the thesisô objective. Chapter 3 provides 
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information about the study material and methods: sample preparation, NIR measurements, 

procedures for testing wood properties (density, MOE, MOR, grain angle, and annual ring width), 

and the method of analysis. Chapter 4 presents the results of the study and discusses them in 

relation to the objective of the thesis. Finally, Chapter 5 draws general conclusions from this 

research and makes recommendations for further studies. 
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2.0.  L ITERATURE REVIEW  
 

2.1. Non-destructive Evaluation of Wood 

 

Non-destructive evaluation (NDE) is a general term that encompasses various methods or 

techniques used to assess material properties, components, or entire process units without 

damaging the material in question. These techniques can also detect, characterize, or measure the 

presence and magnitude of natural and processing defects in wood (ASNT 2016). The importance 

of these methods increases as the timber industry continues to seek better ways to test wood 

products in a non-destructive manner. These approaches have also gained attention for the 

evaluation of complete wooden structures (Dunn 1992). 

 

The instruments used for NDE may be quite diverse, and some of their benefits and limitations 

have been reported in detail (Bucur 2003, Niemz and Mannes 2012). NDE as a method of 

identifying the physical and mechanical properties of wood, from standing trees to in-place 

structures, does so without altering the materialôs end-use capabilities. The resulting information 

can be used to make decisions about appropriate applications and design changes (Ross et al. 

1998). Research on NDE arose mainly from the need to provide methodologies or techniques for 

assessing wood and wood-based materials and thereby to promote better decision-making 

processes regarding the use of the products (Brashaw et al. 2009).  

 

Historically, the wood community has developed and used various NDE techniques in applications 

such as sorting or grading structural products. Two common examples are machine stress rating 

(MSR) of timber and ultrasonic grading of veneer. In North America, MSR grading couples visual 

sorting criteria with NDE practices to assign a timber to an established grade (Galligan et al. 1977). 

Laminated veneer manufacturing facilities use stress wave NDE techniques for sorting incoming 

veneer into strength classes before final product assembly. These are established through empirical 

relationships between the travel velocity of induced stress waves through the veneer, and its 

strength (Sharp 1985). A detailed review of NDE techniques, especially those utilized for the 

assessment of wood properties, was conducted by Ross (2015).  

 

 



5 
 

2.2. The Physics of Light and Spectroscopy  

 

2.2.1 Physics of light 

 

Light is defined as any natural agent that stimulates the sight and improves the visibility of things 

(Sliney 2016). It has also been regarded as a fraction of the radiation that can excite the human 

visual system (Zwinkels 2015). Visible light is the electromagnetic radiation (EMR) within the 

electromagnetic spectrum that is easily observed by the human visual system (CIE 1987). In 

physics, ñlightò sometimes refers to EMR of any wavelength, whether it is visible or not (Smith 

2006). The known properties of light include intensity, direction of propagation, frequency or 

wavelength, polarization, and speed (Uzan and Leclercq 2008). Like other EMR, light propagates 

as waves, and the energy imparted by these waves is absorbed, reflected and transmitted. The 

absorbed energy of these waves is called a photon and represents quanta of light. 

 

For several centuries, scientists disagreed about whether light should be regarded as particles or 

waves. Sir Isaac Newton, after conducting various experiments in the 17th century, argued that the 

nature of refraction and reflection could only be explained if light were composed of particles, as 

waves would not travel in straight lines. Although many physicists subsequently attempted to 

articulate a wave theory of light, this concept was not accepted until Sir Thomas Young 

experimentally demonstrated wave interference (Young 1807). Physicists later reached a 

consensus that light could be characterized concurrently as both a stream of particles and a wave, 

depending on the type of experiment (Sliney 2016).  

 

There are three main methods of dispersing radiation: refraction, diffraction, and interference. The 

interactions between particles such as protons and ions, and their interactions with other particles 

due to collision energy, is a field of study known as ñspectroscopy.ò  

 

2.2.2. Spectroscopy 

 

The field of spectroscopy is concerned with studying the interactions between electromagnetic 

waves and matter. Light interacts with the atoms and molecules of matter in several ways, through 

absorption and emission. Measurement of these interactions permits us to identify specific 

wavelengths of light that interact with the atoms and molecules, and to measure the amount of 

light that is absorbed or emitted at certain wavelengths (Spectroscopy 2017).   
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Spectroscopy falls into two types: atomic spectroscopy (AS) and molecular spectroscopy (MS). 

AS comprises atomic absorption and atomic emission spectroscopy, while MS comprises mass 

spectroscopy, infrared spectroscopy, nuclear magnetic resonance, and ultraviolet and visible 

spectroscopy. In AS, every element has a distinct atomic structure characterized by a positively 

charged nucleus surrounded by the number of electrons necessary to maintain neutrality (Sahin 

2019). In MS, EMR interacts with a material and produces a spectrum from which relevant 

compositional and structural information about the material can be deduced (Goodman 1994).  

 

Spectroscopic experiments primarily use light sources that emit radiation of discrete and well-

defined frequencies (Chu et al. 2018) and its data are represented by a range ðfor instance, a plot 

of the materialôs reflectance/absorbance as a function of wavelength/frequency (Sandak et al. 

2016). This spectrum is indicative of the materialôs molecular structure and has unique properties, 

including band position, width, and intensity, which are all used to obtain information about 

functional groups or to monitor molecules under different conditions (Mollaoglu et al. 2018). The 

spectral response is used to either qualitatively determine the chemical constituents or 

quantitatively determine the amounts of specific compounds present in the material.  

 

2.2.2.1. Infrared spectroscopy (IRS)                                                                                                                        S 

IRS is an analytical technique for the characterization of a wide range of materials and is 

commonly used in research and production for quality control purposes (Theophanides 2012). This 

technique involves the interaction between infrared radiation (IR) and matter and is mostly used 

to identify and quantify various organic compounds present in a material, via their selective IR 

absorption. The history of IRS dates back to the 19th century, and the first spectrometer was built 

in 1835. By the beginning of the 20th century, IRS had become a valuable tool for identifying and 

characterizing chemical compounds and materials (Theophanides 2012). Thereafter, it was applied 

to more complicated molecules such as proteins (Elliot and Ambrose 1950) and later, DNA 

(Colthup et al. 1990).  

 

IRS is a form of vibrational spectroscopy. The absorption of IR radiation by matter results in 

molecular bond vibrations. Each molecule possesses unique vibrational characteristics, and the 

resulting IR spectra make vibrational spectroscopy a good method for characterizing molecular 
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structures. It is a reliable way to investigate functional, structural, and compositional changes in 

cells, tissues, and biological molecules. It is also one of the most important analytical techniques 

used to study almost all types of liquids, solutions, and pastes (Mollaoglu et al. 2018).  

 

The IR range refers to the part of the electromagnetic spectrum between the visible and microwave 

regions, and it is divided into three regions: near-infrared, mid-infrared, and far-infrared 

(Anastasopoulou and Theophanides 1972). The IR energy excites the molecules at the surface of 

the material, and part of the energy is absorbed selectively and proportionally to the quantity of 

the excited molecules (Sandak 2013). Different molecular interactions, such as, CïH, OïH, and 

NïH, are stimulated and often result in phenomena such as stretching (symmetrical or non-

symmetrical), scissoring, rocking, wagging, and twistingðphenomena that depend on factors such 

as the molecular structure, chemical composition, or physical properties of the surface measured 

(Coates 2000).  

 

An instrument called a ñspectrometerò measures the light that is reflected or transmitted from a 

sample and uses a detector to plot transmittance through the molecules against the wavelength of 

the radiation. The resulting spectrum is better visualized in graphs of transmittance/reflectance 

plotted against wavelength (Infrared Spectroscopy n.d.). This type of information can be obtained 

from a single experiment, and from small samples or powders.   

 

2.2.2.2. Near infrared spectroscopy (NIRS) 

NIRS is a non-destructive technique for analyzing organic materials that is rapidly growing in 

popularity. Although the use of spectrophotometers to measure spectra is an old technique, the 

NIR region of the electromagnetic spectrum was not properly utilized, as it was considered to 

contain non-structural information (Barton 2004). The earliest analytical application of NIRS was 

to determine the moisture content (M), crude protein, and oil concentrations of cereal grains (Ben-

Gera and Norris 1968a); it was also used in the agriculture, food, paper, polymer, and textile 

industries (Ciurczak 1992, Barton 2004). 

 

NIRS is a potentially rapid tool that can be used to get information about wood products in the 

industry. NIRS has been successfully applied in wood science and technology, as reported 

elsewhere (So et al. 2004, Tsuchikawa 2007, Leblon et al. 2013). It has been used to assess M 
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(Hoffmeyer and Pedersen 1995, Adedipe and Dawson-Andoh 2008), ɟ (Thygesen 1994, 

Schimleck et al. 1999), wood chemical properties (Schimleck and Evans 2003, Jones et al. 2005a), 

and mechanical properties (Gindl et al. 2001; Kelley et al. 2004a; Kothiyal and Raturi 2011). It 

has also been used to estimate the properties of normal and modified wood as well as wood 

composites (Schimleck et al. 2002, Blanco and Villarroya 2002, Li et al. 2010).  

 

As solid wood is an opaque material, EMR has difficulty passing through thick samples, so NIR 

spectra are collected via reflection (Hans 2014). In reflectance spectroscopy, there is an interaction 

between the radiation energy sent by the source and the material, producing scattering, 

transmission, and absorption (Leblon et al. 2013). The radiation energy reflected from the sample 

is then measured. Details about reflectance and absorbance spectroscopy with their equations have 

recently been reported by Hans (2014). Detailed reviews of the application of NIRS to wood and 

forest products have been presented by So et al. (2004) and Tsuchikawa (2007). 

 

2.2.2.3. Effect of surface roughness on NIR spectra 

Wood is a porous material whose surface features are the result of machining conditions and the 

woodôs anatomy (de Moura Palermo et al. 2014, Zhang et al. 2015). Surface roughness is difficult 

to control, as it is an important index for wood product quality that is directly affected by wood 

machining and bonding performance (Ozdemir and Hiziroglub 2007). The surface quality of wood 

is important in developing NIR-based models for predicting wood properties, as previously 

reported (Hoffmeyer and Pederson 1995, Costa et al. 2018). However, NIR-region spectral 

absorbance is reported to be inversely proportional to wood surface roughness (Schimleck et al. 

2005a). 

 

Previous studies have shown the influence of surface roughness on the NIR spectra of wood. Some 

authors found the predicted results of NIR-based models for smooth surfaces to be better than 

those for rough surfaces (Schimleck et al. 2005b, Liu et al. 2006). Contrasting results have also 

been reported (Costa et al. 2018, dos Santos et al. 2020), where rough surface calibrations 

outperformed those from smooth surfaces. Better predictions from samples of greater roughness 

could be attributed to the capture of more information by the EMR during NIR spectral acquisition 

(Costa et al. 2018). 
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2.3. Western Hemlock and Douglas-fir  

 

2.3.1. Distribution, properties, and uses of Western hemlock                                                                      n 

Western hemlock (Tsuga heterophylla) is the most abundant species along the coast of BC, and it 

also grows in the interior wet belt of the Rocky Mountains (Parish 1995). The standing volume of 

matured hemlock is about 1.3 billion m3 and represents about 18% of the total growing stock in 

BC (Shahverdi 2015). The best climate for its growth is mild or humid weather that is characterized 

by frequent fog and precipitation during the growth season in the coastal region (Pojar et al. 1991). 

It grows in pure stands or in mixture with other species, in even-aged stands where the climate is 

cool and moist. 

 

Hemlock is a strong wood which is suitable for structural applications (Rohrbach 2008). It also 

has a straight and even grain with a medium to fine, coarse, and lustrous structure. The sapwood 

and heartwood are often difficult to distinguish (Nourian 2018). In green wood, the sapwood 

appears to be a little darker due to the large amount of free water in it (M is sometimes over 200%). 

Once the free water is evaporated when the wood is dry, there is no colour difference between the 

two areas, making it impossible to visually separate them. However, the growth rings are distinct 

and uniform in width, albeit narrow, delineated by a band of darker latewood with a purplish to 

reddish-brown tinge that is visible to the eyes. Approximately two-thirds or more of the growth 

ring is occupied with earlywood, and the transition from earlywood to latewood is gradual 

(Hoadley 1990).  

 

  

Western hemlock  Douglas-fir  

Figure 2.1: The distribution map of western hemlock and Douglas-fir in the Pacific Northwest 

(Natural Resources Canada, 2015). 
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Hemlock is also known for the presence of wetwood, which is a portion of the heartwood zone 

with higher M and ɟ than adjacent parts. This zone is related to bacterial activity and is diffi cult to 

dry (Shahverdi 2015, Nourian 2018). The average ɟ of hemlock is 470ï490 kg/m3 (Rohrbach 

2008). The literature also stated an average MOE value ranging from 10,000 to 12,300 MPa and 

an average MOR value ranging from 75 to 81.1 MPa (Coast Forest Products Association 2003). 

 

The strength and the nailing characteristics of hemlock have made it a popular construction 

material in North America and overseas (Shahverdi 2015). It is commonly used for general 

construction, decking, plywood manufacturing, stock lamination, and the production of glue-

laminated and solid beams. Other uses of hemlock include the manufacture of doors, windows, 

and floors, and in applications where a high-grade softwood is needed (Parish 1995). It is also 

exported to Japan for posts and beams in roof rafters and traditional housing (Lazarescu and 

Avramidis 2012) and is the most important pulpwood species in BC (Softwood Export Council 

2004, Rohrbach 2008).  

 

2.3.2. Distribution , properties, and uses of Douglas-fir                                                           

Douglas-fir (Pseudotsuga menziesii) is one of the most popular softwood species in North 

America, originally named after a Scottish botanist (David Douglas) whom the Royal Horticultural 

Society in the late 1700s directed to study this tree (Hebda 1995). Two common native species of 

Pseudotsuga menziesii are P. menziesii var. menziesii, called coastal D-fir, and P. menziesii var. 

glauca, referred to as interior D-fi r (Hermann 1982). The range of coastal D-fir extends from 

central BC (55̄ N) south along the Pacific Coast ranges into central California to a latitude of 

34.44̄ N (Hermann and Lavender 1999), while the interior D-fir ranges from northern Mexico 

(19̄ N) to the north of BC (55̄ N) (Zustovic 2015). 

 

D-fir  is characterized by a straight or slightly wavy grain with a medium to coarse texture. The 

sapwood and heartwood of D-fir are not difficult to distinguish, unlike hemlock, as the sapwood 

is light in colour and the heartwood ranges from yellowish to reddish-brown with sharply defined 

bands (Leavengood 1998). Also, in contrast to hemlock, the transition from earlywood to latewood 

is abrupt (Osborne et al. 2016). D-fir wood is very hard and resistant to abrasion, making it very 

suitable for applications where wear is a factor, as in bridge parts and commercial buildings. An 
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average ɟ of 450 kg/m3, and MOE and MOR values of 13,500 MPa and 88.6 MPa, have been 

reported for D-fir (Jozsa et al. 1998). 

 

The higher strength of D-fir and the availability of large dimensions from old-growth trees make 

it a good choice of material for the construction industry. It has been identified as one of the finest 

timbers for heavy structural purposes, including glulam beams, laminated arches, and roof trusses 

(Douglas-fir Species Profile n.d). D-fir is used primarily in general construction and as dimension 

timber, plywood, and laminated veneer timber (Johnson and Gartner 2006, Ukrainetz et al. 2008). 

 

2.4. Selected Wood Properties 

 

2.4.1 Density 

The density of wood (ɟ) is defined as the mass or weight per unit of volume (both at the same M), 

usually expressed in kilograms per cubic meter (kg/m3) or grams per cubic centimeter (g/cm3) 

(Haygreen and Bowyer 1996). Density is known to be influenced by the amount of water in the 

hygroscopic range, namely, 0 to 30% M (Antwi-Boasiako and Atta-Obeng 2009), which therefore 

allows for comparison of values only under the same M conditions (Kollman and Cote 1968).  

 

Density is one of the most important properties of wood and is known to vary significantly within 

and between trees (Louzada 2003). This variation can be attributed to several factors, such as 

differences in cellular structure resulting from physiological and hereditary characteristics, and the 

presence of extraneous components (Rathgeber et al. 2006). For instance, the ɟ of heartwood is 

usually higher than that of sapwood due to a higher concentration of extractives such as terpenes, 

resins, and polyphenols in heartwood (Hans 2014). In addition, past studies show that ɟ variation 

in wood is usually affected by annual ring width (Fabris 2000) and varies from the earlywood to 

the latewood within rings (Gartner et al. 2002). 

 

Density is considered important because it influences wood attributes such as shrinkage, swelling, 

and mechanical properties (Haygreen and Bowyer 1989), and because of its effect on the general 

quality of final products (Anjos et al. 2010). In many cases, ɟ is particularly important to tree 

breeders and is usually evaluated when there is large within-species variation, a high degree of 

genetic control, and easy assessment (Santos et al. 2012). 
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2.4.2. Mechanical properties 

The mechanical properties of wood reflect its ability to resist applied forces that tend to deform it 

in any manner. Wood with greater resistance to deformation has a higher strength, and the ability 

of wood to resist applied load depends on the magnitude and direction of the force in relation to 

its fiber orientation. Woodôs mechanical properties therefore affect the quality of the products used 

in load-carrying applications (Haartveit and Flæte 2006). 

 

Many methods have been identified for measuring the mechanical properties of wood, such as the 

modulus of rupture (MOR) and the modulus of elasticity (MOE). MOR is a measurement of the 

maximum stress that the material can endure before failure occurs and is measured in Newtons per 

square meter (N/mm²). MOE measures the deformation that results from a given level of stress 

before the point of total failure and is also measured in N/mm². Apart from their importance in 

structural lumber, MOR and MOE are also valuable traits in standing trees because they reduce 

mortalities that results from stem failures and the uprooting of trees during harsh weather 

conditions (Lachenbruch et al. 2011). 

 

Destructive and NDE techniques are commonly used to measure the mechanical properties of 

wood. The destructive technique is based on the direct estimate of the MOE and MOR of wood 

using static bending tests, where a load is applied at mid-span to a piece of wood supported at its 

ends (ASTM 2005). The NDE tests are based on propagation speed using either acoustic or 

ultrasonic waves, or on acoustic spectral analysis in which mechanical properties can easily be 

estimated. In studying the mechanical properties of wood, it is important to know that those 

relating to bending strength include, among others, compressive strength, shear strength, and 

MOR, while the properties relating to wood elasticity include MOE, plasticity, resilience, and 

Poisson coefficient (Andrade et al. 2010).  

 

2.4.3. Slope of grain  (SOG) 

The SOG of wood refers to deviations other than those due to spiral grain or its related phenomena, 

such as interlocked and wavy grain, and is commonly referred to as cross-grain in sawn timber 

(Anderson et al. 1945). As wood is highly anisotropic, SOG exerts a strong influence on its 

material properties (Bodig and Jayne 1982). For instance, at a SOG of 45̄ , Youngôs modulus and 

axial strength are reduced to 10ï25% of the value at 0̄ (Kollmann and Cote 1968), whereas 
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longitudinal shrinkage increases considerably. Therefore, SOG remains a considerable factor when 

lumber is graded, especially for load-bearing applications (Piazza and Riggio 2008).   

 

SOG has been previously evaluated using thermal anisotropy (Naito et al. 2000), X-ray computed 

tomography (Sepulveda 2001), transmission measurements (Malik et al. 2005), and microwave 

technology (Schajer and Orhan 2006). In addition, past researchers have proposed a SOG indicator 

using a rotating capacitance-type transducer sensor (McDonald and Bendtsen 1986, Samson et al. 

1993). While measuring the SOG of wood is often difficult (Sepúlveda 2001), its potential for 

predicting the mechanical properties of timber has been established (Olsson et al. 2013, Viguier et 

al. 2015).  

 

2.4.4. Annual ring width  (ARW)  

Wood structure is mainly composed of tubular fibre cells that are cemented together and normally 

created by the way the trees grow. Every growing season, two layers are formed on the outside of 

the trunk, resulting in earlywood and latewood. Annual ring width (ARW), defined as the sum of 

earlywood and latewood for that season, is important because of its correlation to wood mechanical 

properties (Alteyrac et al. 2006). ARW is also one of the most important factors that directly affect 

woodôs physical and mechanical properties (Nathalie and Malo 2010, Ibrahim and Ayĸenur 2016) 

and its durability (Takata et al. 2002).  

 

Past researchers have reported the influence of ARW on the properties of wood. For instance, 

Karlman et al. (2005) showed in their work on different species of larch that an ARW up to 2.5 

mm had the highest ɟ, while there was a marked reduction in ɟ where the ARW was wider than 3 

mm. Likewise, Ethington et al. (1996) incorporated variations in ARW and observed that the ARW 

has a significant effect on the compressive strength perpendicular to the grain of the wood. Lastly, 

statistical analyses performed on five different species showed the effect of SOG and ARW on the 

shear strength and MOE of the species (Lang et al. 2000, 2002).  

 

2.5. NIRS Wood Assessment  

 

2.5.1. Density                                                                                                                                 T 

The first known study that reported the correlation between NIR spectra and ɟ was presented by 

Thygesen (1994), where solid wood of Norway spruce was used to predict the ɟ of wood. Several 
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studies have since reported that NIRS can be used to estimate the ɟ of wood (Hoffmeyer and 

Pedersen 1995, Viana et al. 2009, Hein et al. 2009a). 

 

A number of studies have reported good calibration of ɟ using NIRS. Alves et al. (2012) reported 

PLS-R models for ɟ based on X-ray micro-density data for each species of Pinus pinaster and 

Larix × eurolepis. The common model provided a residual prediction deviation (RPD) of 3.1, and 

the single models for Pinus pinaster and Larix × eurolepis provided RPDs of 3.5 and 3.2, 

respectively. Also, Fujimoto et al. (2012) used NIRS to estimate the ɟ of wood independently of 

its M regardless the fact that the increase in M is reported to greatly affect the variation of NIR 

spectra (Fujimoto et al. 2012, Via et al. 2003). In the same way, Inagaki et al. (2010) developed a 

PLS-R model for the prediction of the air-dried ɟ of Eucalyptus camaldulensis with an RPD of 

3.8. In their experiment, they proved that the model is quite robust and stable by removing 40% of 

the samples during the cross-validation step and ended up with an RPD of 3.2. The use of NIRS 

and multivariate analysis to predict ɟ has been fully established (Hoffmeyer and Pederson 1995, 

Via et al. 2003).  

 

2.5.2. Mechanical properties 

Several reports have previously described the use of NIRS to estimate the mechanical properties 

of wood (Schimleck et al. 1999, Fujimoto et al. 2008, Hein 2010). For instance, NIRS was used 

to predict the MOR of Eucalyptus grandis and Eucalyptus urophylla (Thumm and Meder 2001). 

In the same way, NIRS was also utilized to predict the strength and elasticity in compression 

parallel to the grain of wood with good correlation coefficients of 0.78 and 0.75 (Hein et al. 2009b). 

Past researchers have also modeled the MOE and MOR of Pinus palustris of different wood 

typesðjuvenile, mature, and pith (Via et al. 2003). The poor performance of the models was linked 

to the narrow range of values for the species utilized in the study. Similarly, others (Rials et al. 

2002, Adedipe and Dawson-Andoh 2008) have applied NIRS to estimate the MOE and MOR of 

solid wood and wood composites. Hence, this technique has been established as a very effective, 

reliable, and practical method of estimating the mechanical properties of softwoods (Kelley et al. 

2004a).  
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2.6. Chemometrics and Multivariate Calibration 

 

Chemometrics has been fully explored for the extraction of physical, chemical, and mechanical 

information from spectral data by employing multivariate data analysis techniques in the 

estimation of wood properties. Multivariate analysis methods such as PCA, PLS-R, principal 

component regression (PCR), and soft independent modelling of class analogy (SIMCA) are useful 

in the extraction of relevant information from spectroscopic measurements. This is possible over 

a broad wavelength range, allowing all data to be used in the analysis (Leblon et al. 2013). The 

advantage of using multivariate analysis techniques is that the wavelength variables tend to be 

collinear, and the information extracted or mined is in the correlation patterns instead of individual 

data points (Eriksson et al. 2001). Most of the published studies and reviews on the application of 

NIRS in the forest products industry have applied chemometrics to predict several properties of 

wood and wood products from NIR spectra (So et al. 2004, Tsuchikawa 2007).  

 

Several regression methods have been used to quantitatively derive information from reflectance 

or absorbance spectra. Some of the methods, such as MLR, support vector machine (SVM), PCR, 

and PLS-R, have been reported on (Steven et al. 2010, Atzberger et al. 2010, Vohland and 

Emmerling 2011). A detailed comparison of many of these methods has been attempted in the past 

(Viscarra Rossel and Behrens 2010). The PLS-R method has become one of the most popular for 

chemometrics in recent years (Wold et al. 2001) and was the method utilized in this study. 

 

There are many kinds of multivariate data modelling, such as PCA modelling, which models only 

the X matrix. In PCA, a principal component model of the essential structure of the data is built to 

gain an overview of the data structure. Multivariate calibration is concerned with the X and Y 

matrices, with X being the independent variable (spectra) and Y being the dependent variable 

(property of interest). The multivariate model for (X, Y) is a logistic relationship between the 

empirical X and Y relations, and establishing and calibrating such a model is the first stage in 

multivariate modelling (Esbensen et al. 2002). The second stage is prediction.  

 

In multivariate modeling, a set of known X and Y values are first used to develop the model, which 

is then used to predict the Y values from new X measurements (spectra which is also the predictor 

variable). The interesting point here is that the model makes it possible to use only X measurements 

(spectra) in future predictions instead of taking more Y measurements (ɟ, MOE, MOR, among 
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others) that are very expensive, time-consuming, laborious, dangerous, and in many cases 

destructive. These characteristics of the Y values make it desirable to replace them with X 

measurements, such as spectra, that are simple to use, faster than other methods, and cheaper to 

collect. NIRS could therefore be used to replace slow and cumbersome experiments such as 

physical, mechanical, and wet chemistry measurements. 

 

The calibration data must meet several requirements, such as being representative of the future 

population from which the new X-measurements are to be sampled, and the measuring conditions 

should also be broadly similar. However, they should not be too similar, because the only 

difference will then be the sampling variance, that is, the variance due to two independent 

samplings from the target population. The determination of the predictive ability of a PLS-R model 

must be accompanied by the separation of the data sets of the property (y variable) being studied 

in the training or calibration set used in developing the model. An external or independent test set 

based on the calibration set is then used to validate the model and determine its predictive ability 

(Hauksson et al. 2001). 

 

2.6.1. Effect of spectral pre-treatment on chemometrics                                                                  The 

The use of spectral pre-treatments in chemometrics has been widely studied. For instance, 

derivatives were applied to absorption spectra to gain enhanced spectral information for the 

spectral ranges during a decomposition process (Ben-Dor et al. 1997). In the same way, min-max 

normalization, first derivative, and vector normalization after mean centering have been used to 

improve spectral quality (Udelhoven et al. 2003). Vasques et al. (2008) also applied various pre-

treatments such as derivatives, normalization, and non-linear transformations on 554 soil sample 

spectra from Florida to estimate their organic carbon content. The effect of log 1/R transformation, 

first derivative, and SNV-DT on soil diffuse reflectance spectra (Stenberg and Viscarra 2010), 

untransformed spectra, and first and second derivative with gaps of one to 64 bands have also been 

analyzed to estimate several variables for airborne hyperspectral data (Hively et al. 2011).  

 

A detailed review of the most common pre-treatments for near-infrared spectra in chemometrics 

was published in the last decade (Rinnan et al. 2009). Most of the work done on NIR analysis of 

wood and wood products has used simple spectral pre-treatments such as 1st or 2nd derivatives, or 
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multiplicative scattering correction. Other analytical techniques have been used to improve the 

quality of the models constructed using NIR spectral data (Axrup et al. 2000). 

 

2.6.2. Effect of grain orientation and surface roughness on NIRS calibrations 

One of the factors that influences NIRS calibrations is wood anisotropy (Hans 2014). There are 

three sections in a piece of wood: transverse, radial (quarter-sawn, Qs), and tangential (flat-sawn, 

Fs). The effect of these sections on the NIR spectra of wood has been reported (Leblon et al. 2013). 

The sections of wood to be used for calibration must be carefully selected to suit the application 

so that the section from which spectra are collected contributes to the performance of NIR-based 

models. For instance, calibrations developed based on transverse sections to estimate the M of red 

oak lumber were better than those developed from Qs and Fs (Defo et al. 2007).  

 

The transverse section has been reported to result in better predictions, which is attributable to the 

distinct anatomical differences within the growth rings. The differences between the measurements 

for the various sections could also be explained by the way scanning is carried out. With a 

transverse section, incident radiation directly interferes with free water in the cell lumen, which is 

not the case when scanning other sections, since the radiation first has contact with the cell wall 

(Tsuchikawa et al. 1996). The models based on Fs sections are known to have the poorest 

performance. This is because of the presence of only earlywood or latewood portions when 

scanning is done which thus affects the calibrations (Hans 2014).  

 

An additional factor influencing NIRS calibration is surface roughness. Roughness of wood on 

transverse sections is usually higher than on Qs and Fs sections (Tsuchikawa et al. 1996). Also, 

transversal sections have tracheid cells with a longitudinal axis that is parallel to the direction of 

the NIR incident radiation, which results in greater absorbance compared to Qs and Fs surfaces 

(Fujimoto et al. 2008). Absorbance is higher for Qs than Fs samples because the former coincides 

with the longitudinal orientation of the medullary rays that form the tissue radiating between pith 

and bark (Leblon et al. 2013). Generally, an increase in surface roughness decreases the 

absorbance of NIR radiation (dos Santos et al. 2020).  
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2.6.3. Principal component analysis (PCA) 

PCA is a multivariate analysis technique that is often applied to spectroscopy for data reduction 

and clustering visualization. It decomposes a linear combination of original variables into a few 

principal components (PCs) (Yu et al. 2016). The PCs show the structure of the dataset and provide 

information on the main spectral components causing differences between samples (Sandak et al. 

2016). PCA and PCR are common algorithms used for the calibration of spectrometers and the 

evaluation of unknown measurement spectra (Vogt and Tacke 2002). The calculation of PCs is 

often accompanied by singular value decomposition (SVD) of the data matrix (Press et al. 1992). 

The k calibration spectra contain n measurements at a time. In addition, the rows of the matrix VT 

build up the preferred orthonormal basis of the vector subspace spanned by the calibration spectra 

(Vogt and Tacke 2002). This is represented mathematically as 

 

M (K X n) = U (K X K). S (K X K). VT (K X n)                                                                                           (1) 

 

SVD and PCA are common techniques in the analysis of multivariate data (Wall et al. 2003) and 

were utilized in this study. A large dataset is widely used in many disciplines and applications, and 

methods are often required to drastically reduce the dimensionality of the data in an interpretable 

way to get information from such datasets. While many techniques have been identified for this 

purpose, PCA is the oldest and the most widely used (Jolliffe and Cadima 2016).  

 

PCA is based on the principle of reducing the dimensionality of the dataset while preserving as 

much variability as possible (Jolliffe and Cadima 2016). The variability is preserved by finding 

new variables that are linear functions of those in the original dataset. The earliest literature on 

PCA dates from Pearson (1901), but not until computers became available decades later was it 

computationally feasible to use PCA on large datasets. It can be based on either the covariance 

matrix or the correlation matrix, and choosing between these analyses has been previously 

described (Jolliffe and Cadima 2016). In either case, the new variables (the PCs) depend on the 

dataset rather than being pre-defined basis functions and are therefore adaptive in the broad sense. 

The main uses of PCA are descriptive rather than inferential. 
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2.6.4. Partial least squares regression (PLS-R) 

PLS-R models have been widely used to extract useful information from spectroscopic data. A 

PLS-R model relates the spectral information to quantitative information about the measured 

samples (Swierenga et al. 1998). PLS-R has proven to be a popular and effective approach to 

solving several problems in chemometrics. The algorithms are resistant to overfitting and are easy 

to implement and tune, and their ability to produce inferences in high-dimensionality conditions 

makes them ideal for a kernel approach (Bennett and Embrechts 2003).  

 

A PLS-R model is better at finding the relationship between input variables and output variables; 

a correlation model is then built using this procedure to predict the output variables by utilizing 

the input variables (Wang et al. 2015). Although the accuracy of PLS-R may not be significantly 

higher than that of PCR, it is considered better because there are fewer PCs in the final calibration 

(Naes et al. 1986). PLS-R is also preferred for its faster algorithms, higher precision, and more 

harmonious calibration models (Kalivas and Gemperline 2006).   

 

While PLS-R is reliable in linear conditions, most industrial processes have explicit non-linear 

qualities that can be hard to ignore (Ding et al. 2013). Hence, a new method that can be utilized in 

highly non-linear processes, called the Kernel PLS (KPLS), has been proposed (Rosipal and Trejo 

2001). The KPLS algorithm was introduced to speed up calibrations, handle very wide and tall 

data, and handle multivariate Y according to the nonlinear iterative PLS (NIPALS) standard, as 

reported by Andersson (2009). KPLS has also been shown to be numerically stable and one of the 

fastest algorithms for PLS (Alin 2009, Anderson 2009). 

 

2.6.5. Validation of chemometrics model 

NIR calibration models are often used for the correlation of either raw or pre-processed spectra 

with one or more physical-chemical properties of a set of samples. As complicated as it sounds, 

numerous well-developed calibration techniques have proven to work with most NIR applications, 

and these techniques are usually included in chemometric software packages (Agelet and 

Hurburgh 2010).  

 

An adequate validation of calibration models is a crucial step to determine the suitability of models 

to predict new samples; this is the main reason for developing NIR calibrations. There are different 
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approaches to estimate the suitable number of PCs to be included in the calibration. One of the 

most popular is cross-validation (CV), a technique used in the assessment of how the results of a 

statistical analysis will generalize to an independent data set. The goal of CV is to test the modelôs 

ability to predict new data that were not included in the calibration to avoid overfitting or selection 

bias (Cawley and Talbot 2010). It is often used for the basic assessment of calibration performance. 

A description of this method can be found elsewhere (Seni and Elder 2010). 

 

Another approach used in the validation of chemometric models is called test-set validation, which 

is considered the ultimate way of testing calibration performance. Here, two-thirds of the samples 

are regarded as the training set and one-third as the validation set; only the training set is used in 

the calibration, while the validation set is used for the prediction of new samples based on the PLS-

R models tuned with the calibration dataset (Sandak et al. 2016). This method (test-set) is regarded 

as the most conservative validation for testing models on a representative independent test-set, 

especially when the purpose is to establish calibration models that can predict quantities (Westad 

and Marini 2015). The quality of the predictive model can be measured in several ways, some of 

which have been described (Martens and Naes 1991, Schimleck et al. 2001). 

 

2.7. Objective                                                                                                                                                  T 

This study aims to examine the ability of NIRS to predict specific properties (density, grain angle, 

annual ring width, and mechanical properties) of Western hemlock and D-fir . The study attempts 

to develop robust models for within- and between-species variation based on PLS-R to evaluate 

the predictability based on orientationðthat is, quarter-sawn, flat-sawn, and surface roughness 

(rough and smooth). The results are expected to provide the wood industry with information on 

using NIRS for swift and accurate analysis of wood properties and on the influence of surface 

conditions when assessing wood properties. 
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3.0  MATERIALS AND METHODS  
 

3.1. Sample Preparation 

 

Kiln-dried lumbers of Western hemlock and coastal D-fir were obtained from Interfor-Acorn 

Sawmill, Surrey, BC and Western Forest Products Sawmill, Ladysmith, BC, respectively. Sixty 

quarter-sawn (QS) and sixty flat-sawn (Fs) samples 1220 mm in length and 50 x 100 mm in cross-

section were selected for each wood species. These samples were further sawn into dimensions of 

25 mm × 90 mm × 410 mm (longitudinal [L]) by a sliding table saw (T75, MARTIN Woodworking 

Machines Corp., USA) and conditioned at a temperature and relative humidity of 20̄ C and 65% 

H. A schematic of the cutting pattern of samples is shown in Figure 3.1. 

 

 

Figure 3.1: Schematic of the cutting pattern of samples. 

 

One of the longitudinal-tangential surfaces of the QS samples and one of the longitudinal-radial 

surfaces of the FS samples were then planed in order to have two types of surface conditions: one 

rough and the other smooth (Figure 3.2). This was done to examine the effect of surface condition 

on NIR spectra. NIRS measurements were done on the rough and smooth surfaces of all Qs and 

Fs samples. Thus, for each type of surface condition, a total of 240 samples were analysed. Two 

different species and two orientations were considered in this study, resulting in four combinations 

(two wood species x two orientations), for a total of 240 samples of mixed wood type (60 for each 

combination).  
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Figure 3.2: (a) Hemlock rough, (b) D-fir rough, (c) hemlock smooth, and (d) D-fir smooth. 

 

Each NIRS sample, with dimensions of 25 x 90 x 410 mm (thickness, width, and length, 

respectively) was converted into two strips (samples) of 25 mm x 25 mm x 410 mm (length) for 

destructive MOE and MOR measurements (Figure 3.3) using an MTS dynamic material testing 

machine (model 810, MTS Systems Corp, Minnesota, USA), while 25 mm x 25 mm x 25 mm 

(length) samples were prepared for density determination (Figure 3.4). A total of 480 samples were 

prepared. 

 

Figure 3.3: Cutting pattern of samples for MOE and MOR measurements. 
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Figure 3.4: Cutting pattern of samples for ɟ measurements. 

 

 

Table 3.1: Sample categorization for NIR analysis, density, and mechanical properties. 

N.B.: Only 120 samples were prepared for each wood species for the NIR analysis because one surface was rough 

and the other was smooth. 

 

 

3.2. NIRS Measurements 

 

Wood sample NIR spectra were acquired using an NIR spectrometer system, which consisted of a 

light source, an optic fiber, a fiber spectrometer (ASD Lab Spec® Pro, Analytical Spectral Devices 

Inc. Boulder, CO, USA), a sample holder, and a computer.   

Species Orientation NIR 

Analysis 

ɟ, MOE and 

MOR 

SOG and ARW 

Hemlock Quarter-sawn (Rough 

& Smooth) 

60 120 60 

 Flat-sawn 

(Rough & Smooth) 

60 120 60 

Douglas-fir  Quarter-sawn (Rough 

& Smooth) 

60 120 60 

 Flat-sawn 

(Rough & Smooth) 

60 120 60 

Total  240 480 240 
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The optic fiber connected to the spectrometer was oriented at 30º above the sample surface at a 

distance of 130 mm and aligned in parallel with the longitudinal axis of the sample. The samples 

were illuminated with a tungsten halogen bulb (ASD Pro Lamp) oriented perpendicular to the 

sample surface. The distance between the sample surface and the bulb was 168 mm, resulting in 

an NIR spot size of approximately 80 mm (Figure 3.5). For each sample, four spectra were 

collected with four subsets that consisted of 50 scans (to reduce the noise), which were averaged 

into a single spectrum. The averaged spectra for the samples were used to predict the wood 

properties. 

 

1

4

5

152°

25°

1.Light source  2.Optic fiber  3.Spectrometer  4.Computer  5.Specimen holder.  6.Specimen

155mm

2

3

6

 

Figure 3.5: Schematic diagram of the NIRS system (adapted from Zhou et al. 2019). 

 

All samples used in this study were scanned in the full wavelength range of 350ï2500 nm at 

intervals of 1 nm to cover the visible spectroscopy (Vis) and NIR spectroscopy ranges. The effects 

of reduced spectral ranges (900ï1900 nm, 1100ï2500 nm, 1300ï2300 nm) on spectral information 

were also assessed. A piece of commercial microporous Teflon was chosen as the reference 

material, and a background reference scan was taken every 30 minutes to correct for potential drift 

over time.  

 

30̄  

80mm 
168mm 
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The reference spectra were measured and stored before the test sample spectra collection. Two 

readings were taken (top and bottom face) at quarter points per sample to give four spectra (two 

rough and two smooth spectra per sample). The two spectra per surface were averaged to give a 

single spectrum, and a total of 960 spectra (4 x 240 samples) were acquired for the experiment. 

All NIR S measurements were taken in a lab location where the temperature ranged between 20 - 

250C and relative humidity between 40 - 55%. Effort was also made for all NIRS measurements 

to be completed in a short time span to avoid M fluctuations of the samples. The set-up of the NIR 

system used for spectral acquisition is shown in Figure 3.6. 

 

Figure 3.6: The NIR system setup used for spectral acquisition  

(1. light source, 2. optic fiber, 3. spectrometer, 4. specimen). 

 

3.3. Determination of Wood Density (ɟ) 

 

The wood density (ɟM) is defined as the ratio between the mass and the volume of the sample at a 

given M (Williamson and Wiemann 2010). The samples used for ɟ were conditioned to a target  

equilibrium moisture content (Memc) of 13.7% and 13.3% (for hemlock and D-fir) in a walk-in 

chamber (Constant Temperature Control Limited, Aurora, ON, Canada) at a temperature and 

relative humidity of 20̄C and 65% H, respectively. The difference in the Memc of the species 
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could be attributed to the wood chemistry and specimen moisture history which thus affects the 

sorption properties of wood (Glass et al. 2014). The initial volumes and weight of samples were 

measured using a digital caliper and digital balance, respectively.  

 

The ɟ of the samples was calculated by 

 

ɟM  = WM/V M                                                                                                                                                                                                                   (2)                                                                                                                                                                                             

                                                                                                                                                 

where, ɟM  (kg/m3) is the density, W (kg) is the sample weight, and V (m3) is the volume of the 

sample at the respective M for the species. 

 

3.4. Determination of MOE and MOR 

 

The mechanical tests were done via a 3-point static bending machine loaded with a 10 kN load 

cell, a span of 360 mm, and loading rate of 1.3 mm/min according to ASTM D143-94. The samples 

were conditioned at a temperature of 20̄C and 65% H in a walk-in chamber (Constant 

Temperature Control Limited, Aurora, Ontario, Canada), and MOE and MOR were determined 

using an MTS dynamic material testing machine (model 810, MTS Systems Corp, Minnesota, 

USA) (Figure 3.7). A total of 480 strips were used for the mechanical tests, and spectral 

information for the mechanical properties of wood was also collected on the samples for NIR 

analysis.  
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Figure 3.7: Material Test System (model 810) for measuring MOE and MOR. 

 

The MOE and MOR of the samples were calculated by 

 

ὓὕὙ N/mm 2
ό
                                                                                                                               (3)  

ὓὕὉ N/mm 2
ύ 

Ў╫▐ύ
                                                                                                                             (4)  

where P (N) is the maximum load (MOR), L (mm) is the span length, P (N) is the applied load at 

elastic limit (MOE), æ (mm) is the deflection at elastic limit, b (mm) is the sample width, and h 

(mm) is the sample depth or thickness. 

 

3.5. Annual Ring Width Measurements 

 

ARW is important in the manufacturing of wood products because of its correlation to the strength 

properties of wood (Alteyrac et al. 2006). The samples used for the NIR test were conditioned at 

20̄ C and 65% H for the ARW measurements, and the visual inspection of the ARW were carried 

out on them.  
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The rings were counted over a length of 90 mm and reported as number of rings per distance (mm).  

A total of 240 samples were assessed, and all measurements were done visually with a ruler. The 

ARW in mm was calculated by  

 

ὃὙὡ άά
ὡὭ

ὲ
                                                                                                                           υ 

                                                                                                                                               

where Wi (mm) is the i th annual ring width and n is the number of rings on the Qs and Fs samples 

used for the NIRS test. 

 

3.6. Slope of Grain Measurements 

  

The SOG is defined as the angle between the wood grain (i.e., the direction of the wood fibres) 

and the main axis of lumber (Gindl and Teischinger 2002). The SOG was measured with a shop-

built scratch gauge with a pivoting angle for inscribing a light groove parallel to the grain (Figure 

3.8 left), and a MITE-R-GAGE adjustable Lexan protractor (Figure 3.8 right) was used to measure 

the SOG with respect to specimen edge, measurable to 0.5̄. SOG measurement via this method is 

called apparent or surface rather than machine-measured internal SOG. 

 

The samples used for the NIR test also had their SOG measured only on the smooth surface of the 

samples rather than the rough surface to increase the accuracy of the SOG measurements. For each 

specimen, measurements were carried out at three points: the front quarter end, the middle point 

and the rear quarter end. The groove made had a minimum length of 300 mm so that the average 

SOG could be measured. A total of 240 samples were tested. 
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Figure 3.8: Measuring the SOG of wood (left: shop-built scratch gauge; and right:  

MITE-R-GAGE adjustable Lexan protractor). 

 

3.7. Multivariate Data Analysis 

 

Once all spectra were collected, multivariate calibrations were developed for each wood property 

by PLS-R, and the analysis was performed using Unscrambler® version 10.5.1 (CAMO, Norway) 

software to find possible correlations between the X components (spectra) and the Y components 

(response variables). Also, the NIR data were mean-centered and normalised before the PLS-R 

analysis. As a rule, in multivariate modelling, the first stage is to subtract the average from each 

variable, which is referred to as mean centering. This ensures that all results will be interpretable 

in terms of variation around the mean. 

 

The spectral data were randomly split into calibration and prediction sets consisting of 36 and 24 

samples in each combination of species and surface conditions. Samples of each combination were 

then divided into two data sets according to the sample set partitioning, based on the joint x-y 

distance (SPXY) algorithm (Galvão et al. 2005). Three-fifths (36 samples in each combination) 

was used as the calibration set and the remaining two-fifths (24 samples) as the prediction set. 

Thereafter, the samples in the calibration and prediction sets of each combination were merged 

into the final calibration (144 samples) and prediction (96 samples) sets, respectively. Sample 

calibrations were carried out using a mixed set with 960 datapoints (4 datapoints x 240 samples), 

which included both types of cross-sections, and another set with 480 datapoints (4 datapoints x 
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120 samples), which consisted of samples from Qs and Fs sections, separately. The methods used 

for the pre-treatments of spectra before model development included Savitzky-Golay (SG) 

smoothing, standard normal variate (SNV), and first- and second-order derivatives. NIR 

reflectance data are usually transformed into log of inverse reflectance (log 1/R) (absorbance); this 

is often done to ensure good linear modelling. 

 

The development of the models was based on the spectrum of wavelengths 800ï2500 nm (full NIR 

range). Reduced wavelength regions were also used to build models to check the influence of 

defined spectral ranges on model quality. Reducing the range allowed for the potential use of 

lightweight, portable, and inexpensive spectrometers for predicting wood properties. The best 

models were selected based on the coefficient of determination of calibration (Rc
2) and the 

coefficient of determination of prediction (Rp
2), which reflect the ability of the model to predict 

new samples, and RPDp, which uses the standard deviation of the reference data used in the 

prediction and the standard error of prediction (SEP).  

 

Statistical analysis provided correlations between the wood properties and the spectra for the full 

and reduced spectral ranges. For each of the wood properties, several data sets were created, 

including the raw spectral data and the first- and second-derivative data. The regression 

coefficients plots were also used to check the wavelength contributing most to the models, models 

were developed based on those variables, and comparisons were made with the full spectrum. 

Outliers were detected using the influence plot generated by PCA modelling, and they were 

removed before re-modelling to improve the predictive ability of the final model.   
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4.0 RESULTS AND DISCUSSION 
 

4.1 NIRS Calibration 

 

Wood property calibrations were performed using the test-set validation method, regarded as the 

best way to validate a model. It is based on testing the model on a subset of the available samples 

that were not included in the computation of the model components (Sandak et al. 2016). During 

the NIR calibration stage, the models were developed based on the training set, and some samples 

(40%) of the dataset were randomly selected to represent the entire population (Galvao et al. 2005). 

These samples, which are sometimes called the validation or test set, were then used to determine 

the ability of the model to predict new samples (Hauksson et al. 2001).  

 

Validation of the chemometric model is important for determining modelling and prediction errors, 

outliers, an optimal number of PLS components, and trends (Tounis 2009). The number of factors 

or PCs used in the model development was selected by observing the response of the residual Y-

variance with additional factors. The number of factors used in the final calibration is crucial to 

avoid overfitting, a phenomenon where too many factors are included and a fraction of noise is 

modelled (Agelet and Hurburgh 2010), and underfitting, when too few factors are included with 

higher bias and lower variance (Gowen et al. 2011). The optimal number of PCs used in this study 

was suggested by the Unscrambler® software.  

 

The best calibration model was selected using high R2, reduced error, and rank (number of PCs). 

All PLS-R models used in this study were based on the KPLS algorithm. The KPLS is a sample-

centric approach where the relationship between every sample is characterized by a kernel function 

that maps the data into higher dimensional space, where the linear regression is performed (Mora 

and Schimleck 2010). A full description of its derivation can be found elsewhere (Rosipal and 

Trejo 2001). 

 

The pre-treatment of spectra is also an important step in NIRS calibration, done to improve the 

model quality. SG smoothing using a 25-point filter width and a second-order polynomial was 

used during model development (Savitzky and Golay 1964, Gaspar et al. 2009). A common pre-

treatment known as the derivativesðsuch as first derivative, which removes any offset difference, 

and the second derivative, which removes any slope effect in the dataðwere also applied to 
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improve spectra quality (Rinnan 2014). The derivatives used in this study were calculated by 

applying the SG algorithm using 17 smoothing points and a second-order polynomial 

(Schwanninger et al. 2004).  

 

4.2 Density and Mechanical Properties 

 

4.2.1 Density based on calibrations for all samples                                                                    T 

The ɟ ranged from 377ï725 kg/m3 and 418ï794 kg/m3, with averages of 491.97 kg/m3 and 552.89 

kg/m3 for hemlock and D-fir , respectively. Others have found similar results for hemlock 

(Gonzalez 1990, Nourian 2018) and D-fir  (Jozsa and Kellogg 1986, Gonzalez 1990). As expected, 

higher ɟ values were observed for D-fir than for hemlock (Softwood Species Profile n.d). The 

variations in the ɟ of the wood could be linked to the differences in the amounts of cell wall and 

extraneous materials present per unit of volume (Henze 2006). For ɟ modelling, 144 and 96 

samples of both species were used for the calibration and prediction sets. The descriptive statistics 

for this property from the calibration and prediction sets are shown in Table 4.1.  

 

Table 4.1: Descriptive statistics of the wood properties from the calibration and prediction sets. 

 

Min is the minimum value, max is the maximum value, SD is the standard deviation, and CV is the coefficient 

of variation. 

 

 Calibration Set (n = 144) Prediction Set (n = 96) 

Property Mean Min  Max SD CV Mean Min  Max SD CV 

ɟ (kg/m3) 507 377 725 60 11.83 546 389 794 72.21 13.23 

MOE (MPa) 5608 1587 13247 2095 37.36 6199 1601 11792 2270 36.63 

MOR (MPa) 63 18 110 18 28.57 70 33 114 17.33 24.76 

SOG ( )̄ 8.9 1.5 16.7 3.2 35.96 9.2 1.3 16 3.4 36.96 

ARW (mm) 1.8 0.1 12.6 1.8 100 1.7 0.2 13.1 1.6 94.12 
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All ɟ models gave moderate predictions, with the Rc
2 ranging from 0.46ï0.60 and the Rp

2 ranging 

from 0.51ï0.63 (Table 4.2). The effect of pre-treatment on model quality was observed, especially 

when SG smoothing with a 25-point filter and a second-order polynomial were used (Savitzky and 

Golay 1964). The Rp
2 improved when SG smoothing was applied to the spectral data (Table 4.2), 

which is in line with othersô work (Gaspar et al. 2009) where pre-treatments improved the model 

performance. A typical graphical representation of a raw spectrum is shown in Figure 4.1.  

 

Figure 4.1: A typical graphical representation of a raw spectrum. 

 

The ɟ models in this study were considered robust with few factors (no more than five). This is 

interesting because past authors (Sandak et al. 2016, Schimleck et al. 2018) reported that fewer 

factors in a PLS-R model is a better strategy for avoiding data overfitting. Although standard 

normal variate (SNV) as well as first and second derivatives were applied to the raw data, no 

improvement in the predictive ability of the model was shown. This was not surprising, as the best 

correlations were previously obtained from raw spectra (Andrade et al. 2010). Overall, results 

based on rough surfaces were better than those from smooth surfaces. This could be explained by 

the fact that EMR on a rough surface captures more information than on a smooth surface during 

scanning, which contributes to the predictions (Costa et al. 2018). 
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The PCA was used to distinguish between the grain orientations of the two softwoods (hemlock 

and D-fir)  and to reveal any unusual variation in the PCA model. The PCA scores plots (Figure 

4.2) show the four classes of samples earlier described with the first two components, PC1 and 

PC2 (the highest model contributors), which explained 96% of the variation in the raw data. It can 

be seen that some samples are clustered together, meaning they are similar and highly correlated 

with respect to the PCs, while those far apart from one another are negatively correlated (Figure 

4.2).  

 

 

Figure 4.2: PCA plot for raw spectra obtained from a rough surface (top) and smooth surface 

(bottom), where DF: Douglas-fir flat-sawn, DQ: Douglas-fir quarter-sawn, HF: Hemlock flat-

sawn, HQ: Hemlock quarter-sawn. 
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For instance, PC1 describes more of the variation in the Fs samples, while PC2 shows the variation 

in the Qs samples for the rough surface (Figure 4.2, top). In the same way, for the smooth surface, 

both PC1 and PC2 fully describe the variation in grain orientations for the two species (Figure 4.2, 

bottom). A few samples are left out of the eclipse and are considered to have contributed little to 

the PCA model (Figure 4.2).  

 

This showed that NIRS coupled with PCA analysis is a useful tool for identifying and 

differentiating between the Qs and Fs samples of the two softwoods, which agrees with previous 

findings (Everard et al. 2012). The plots showing the relationship between NIR predicted and 

measured values for the best models are shown in Figure 4.3 for both surfaces. The closeness of 

the data points to the target line (black line) is often used to determine the modelôs goodness of fit. 

These plots show the strength of correlation between the calibration data (blue dots) and validation 

data (red dots) for the property measured. 

 

The calibrations in this study also involved selecting the optimal spectral range for the prediction 

of ɟ. This is considered important to remove the spectral regions that make little contribution to 

the predictive ability of the models. It has been reported that not all spectral regions contribute to 

the predictive ability of models, hence the need for a narrow spectral range to optimize the model 

(Leardi et al. 2002, Mehmood et al. 2012). Although spectral ranges of 1100ï2500 nm and 1300ï

2300 nm were used to develop calibrations, no model performance improvement was observed. 

 

The Rp
2 of ɟ for the rough (0.57ï0.63) and the smooth (0.51) surfaces were obtained. Although 

these values are lower than what has been reported for the ɟ of Pinus taeda (R2
p
 of 0.69; Schimleck 

et al. 2002), they are higher than the ɟ predictions found in another study (Jones et al. 2007) for 

the same species. In this study, the rough surface predictions were considered best for ɟ due to the 

high Rp
2 values and reduced prediction errors. This meant that better predictions could be obtained 

for the ɟ of hemlock and D-fir by taking the NIRS readings on the rough surface of lumber. The 

summary of the calibration statistics for ɟ of the softwoods is shown in Table 4.2. 

 

The difference in the calibration statistics for these studies could be attributed to the range of ɟ 

observed and the species used. It has also been shown that mixed species calibrations may not be 

as accurate as those based on single species, such as in the aforementioned study (Schimleck et al. 
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Table 4.2: Calibration statistics for ɟ based on all samples (n = 240)  

and Qs and Fs samples (n = 120). 

 

2010). Likewise, the poor performance of the ɟ models could be attributed to the variation in ɟ for 

different sections of wood along the stem, as compared to mechanical properties (Acquah et al. 

2018). Again, the generally poor predictive statistics of ɟ could be ascribed to the diverse genetic 

makeup of the samples in the prediction set. Previous researchers have also revealed that more 

precision and accuracy are needed in testing procedures (spectral acquisition and reference 

methods) to improve the calibration statistics from NIRS (Hein 2010). 

 

A direct comparison of the prediction regression coefficients generated from the PLS-R model was 

also performed. Comparisons were made between the regression coefficients of ɟ predicted for 

both surface conditions (rough and smooth). Some of the absorption bands related to the major 

wood components (cellulose, hemicelluloses, and lignin) were found to have contributed to ɟ 

predictions, which is in line with the work of other researchers (Fujimoto et al. 2008). Similarly, 

Property Roughness Spectral Range Rc
2

 Rp
2

 SEC SEP RPD 

ɟ  

(All)  
Rough 

Raw Data (Full Range) 

 

            Smoothed data 

0.46 

 

0.44 

0.57 

 

0.63 

44.42 

 

44.95 

48.97 

 

45.74 

1.5 

 

1.6 

 Smooth Full range 0.60 0.51 38.55 54.79 1.3 

ɟ  

(Qs) 
Rough 

Raw Data (Full Range) 

 

Smoothed (1100ï2500) 

0.52 

 

0.52 

0.53 

 

0.57 

45.58 

 

45.49 

40.59 

 

41.61 

1.5 

 

1.4 

 Smooth 

Raw Data (Full Range) 

 

Raw Data (1100ï2500) 

0.64 

 

0.74 

0.56 

 

0.63 

39.36 

 

33.56 

43.70 

 

40.23 

1.4 

 

1.5 

ɟ  

(Fs) 
Rough 

Raw Data (Full Range) 

 

Raw Data (1100ï2500) 

0.32 

 

0.60 

0.63 

 

0.66 

42.53 

 

32.62 

52.67 

 

52.28 

1.1 

 

1.1 

 

Smooth 

Raw Data (Full Range) 

 

Raw Data (1300ï2300) 

0.30 

 

0.47 

0.59 

 

0.59 

43.23 

 

37.76 

54.12 

 

54.14 

1.5 

 

1.5 
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the cellulose- and lignin-associated wavelengths were correlated with ɟ, suggesting that wood 

chemistry influences ɟ independent of baseline shift (Hein 2010).  

 

 

 

Figure 4.3: The relationship between measured and NIR-predicted values of ɟ (kg/m3), based 

on rough (top) and smooth (bottom) surfaces for two softwoods (hemlock and D-fir). The blue 

and red dots indicate the calibration and prediction sets, respectively. 

 

The results of the regression coefficients showed that similar wavelengths contributed to the ɟ 

prediction of both surfaces. The important wavelengths found to have contributed to ɟ included: 
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1480, 1484ï1493, 1534, 1550, 1540, 1579, 1580ï1597, 1793, 2110 (due to crystalline and semi-

crystalline cellulose; Schwanninger et al. 2011), 1471, and 1724 (due to the presence of 

hemicelluloses; Fujimoto et al. 2007, Fackler and Schwanninger 2010), and 1447, 1448, and 1672ï

1674 (due to the presence of lignin; Mitsui et al. 2008). The wavelengths contributing to the 

predictions were not surprising, as past authors have also found the spectral range of 1100ï1700 

nm to contain the most important information for predicting wood properties (Schimleck et al. 

2003, Todorovic et al. 2015). The specific assignments of NIR spectral features to different wood 

components have been reported by several authors (Bokobza 2002, Tsuchikawa and Siesler 2003). 

 

4.2.2. Density based on calibrations for the Qs and Fs samples 

For the modelling of ɟ, 72 and 48 samples of both species were used for the calibration and 

prediction sets, respectively. Most of the models for ɟ gave moderate predictions, with Rc
2 ranging 

from 0.52ï0.74 and 0.32ï0.60 for the Qs and Fs sections, respectively. The Rp
2 ranged from 0.53ï

0.63 and 0.59ï0.66 for the former and latter, respectively. A comprehensive summary of the model 

statistics is provided in Table 4.2.  

 

For the rough surface, the Qs section yielded better predictions (Rc
2 of 0.52 and Rp

2 of 0.53) 

compared to the Fs section (Table 4.2). The rough surface prediction was considered best due to 

the SEP (40.6 kg/m3 for Qs section and 52.3 kg/m3 for Fs section) and the RPD (1.5 for Qs section 

and 1.1 for Fs section). Several pre-treatments were applied, but no significant improvement was 

found in the model performance. The optimal spectral range for ɟ prediction was also investigated 

in this study. The spectral range of 1100ï2500 nm was used to develop the ɟ model, and slight 

improvement was observed in the predictions for the grain orientations (Table 4.2). While the ɟ 

prediction values are considered reasonable, better results have been reported by other researchers 

(Schimleck et al. 2002). A likely reason for this discrepancy may be related to the single species 

used for calibrations in their study. This is because single-species calibrations give better results 

than mixed-species calibrations such as those used in this study (Alves et al. 2012). 

 

The smooth surface predictions were also similar to those from the rough surface (Qs section 

reported better statistics). The Rc
2 ranged from 0.64ï0.74 and 0.30ï0.47 for the Qs and Fs sections, 

respectively. In the same way, the Rp
2 ranged from 0.56ï0.63 for the Qs section and was 0.59 for 

the Fs section. A similar spectral range (1100ï2500 nm) also improved the calibration for the grain 
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orientations based on the smooth surface (Table 4.2). Overall, calibrations based on the Qs section 

were better than those from the Fs section, which is also in line with past work (Gindl et al. 2001).  

 

 

 

 

Figure 4.4: PCA plot for the best model based on the rough surface and quarter-sawn section 

(top) and the smooth surface and quarter-sawn section (bottom). 

 

The difference in the spectral information of the surfaces, especially for ɟ, has been previously 

explained (Fujimoto et al. 2008) and was attributed to the interaction between the chemical and 
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anatomical properties of wood. Another reason could be the higher exposure of parenchyma cells 

in the Qs section compared to the Fs section, which may have affected calibrations (Hein et al. 

2009a). The best prediction for ɟ was observed when the rough surface was utilized. The highest 

prediction value from the ɟ calibrations was found by utilizing the Fs section, a finding similar to 

a past report (Ribeiro 2009). The potential for predicting the ɟ of wood has been revealed in past 

work (Mora et al. 2008), where strong correlations (Rp
2 = 0.80ï0.84) were reported between the 

measured values and NIR-predicted values for softwood. 

 

A PCA was also used to distinguish between the Qs and Fs sections of the two softwoods. The 

PCA scores plots of the best model explained 98% of the variation in the data for both rough and 

smooth surfaces (Figure 4.4). For the rough surface, PC1 showed more variability in the Qs 

samples, which were clustered together (93% variation explained) than did PC2, where the samples 

were far apart and explained only 5% of the variation in the data (Figure 4.4, top). In the same 

way, the PCA obtained from the smooth surface explained more variation (97% for PC1, 1% for 

PC2) in the model with samples found to be highly correlated to one another (Figure 4.4, bottom). 

Even though some of the samples overlap (falling between PC1 and PC2), the results of the PCA 

model shows that 93% of the data collected from the Qs section of both species could be separated 

with certainty, especially when they fell outside the overlapping zone (Figure 4.4). 

 

The plots showing the relationship between NIR predicted and measured values for the best models 

selected are shown (Figure 4.5) for both surface conditions. From the figures, it can be seen that 

the data points are not close to the target line, and the calibration and validation data are not tightly 

packed together. This shows that the predictions obtained for the  ɟ of wood were only moderate. 

The regression coefficients of the grain orientations for the rough surface were similar, suggesting 

that the same wavelengths contributed to ɟ prediction. Similar wavelengths described earlier in 

this thesis contributed to the ɟ prediction of the smooth surface. The assignment of bands that 

contributed to ɟ prediction has been described earlier in this thesis (Section 4.2.1). 
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Figure 4.5: The relationship between measured and NIR-predicted values of ɟ (kg/m3), based 

on the rough (top) and smooth (bottom) surfaces (quarter-sawn section) for the softwoods. The 

blue and red dots indicate the calibration and prediction sets, respectively. 

 

 

4.3 Modulus of Elasticity 

 

4.3.1 MOE based on calibrations for all samples                                                                                             T 

The MOE values ranged from 1587ï6182 MPa and 5532ï13247 MPa for hemlock and D-fir , 

respectively. Similar values have been reported for the MOE of D-fir (FPL 2010, Mousavi 2016), 
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although higher values were found for hemlock (Rohrbach 2008, FPL 2010). The reason for this 

could be the lower density values (Johnson and Gartner 2006) and the possible effect of knots 

observed in a few samples, which might have caused decreases in the MOE values (Koman et al. 

2013). Higher MOE values were observed for D-fir than for hemlock, as expected. This could be 

explained by the reduction in its M (13.3) as compared to hemlock (13.7), as previously reported 

in this thesis (Section 3.3). Past researchers have also revealed that an increase in the MOE of 

wood could be linked to the decrease in its M below the fibre saturation point (FSP) (Skaar 1988, 

Güntekin and Aydin 2013). For the modelling of MOE, 144 and 96 samples were used for the 

calibration and prediction sets, respectively. The descriptive statistics for this property from the 

calibration and prediction sets are shown in Table 4.1. 

 

The raw spectra were used to develop calibrations for MOE, and moderate predictions were 

obtained. An Rc
2 of 0.69 and an Rp

2 of 0.57 were reported for the rough surface, whereas lower 

values with high prediction errors were observed for the smooth surface (Table 4.3), while a 

reduced spectral range (1100ï2300 nm) gave the best prediction for the rough surface with six 

factors, which makes the model less robust. The best model (Rp
2 of 0.67) with reduced prediction 

error was observed when the spectral range was 1300ï2300 nm for the smooth surface. These 

values are considered reasonable due to the robustness of the model and the fact that the model 

was validated using separate samples. 

 

Pre-treatments improved the model quality for the rough surface, whereas no improvement was 

observed for the smooth surface. The first derivative slightly improved the prediction value (from 

0.57 to 0.60) and reduced the prediction error (Table 4.3). Improvement in the model quality with 

reduced spectral range was not unexpected, especially in the spectral range of 1000ï2500 nm. It 

has been established that this range contains the most distinct spectral information on the first 

overtone and combination bands that make up the NIR spectra (Kelley et al. 2004b). Reducing the 

spectral range for calibrations allows for the use of lightweight, portable, and inexpensive 

spectrometers for field applications (Hedrick et al. 2004). The calibration statistics are summarized 

in Table 4.3.  

 

Most studies using independent samples rather than cross-validations to validate prediction models 

generally indicate that cross-validations are overly optimistic (Brown et al. 2005, Brunet et al. 
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2007). However, the PLS-R models developed for the MOE of agro-based particleboards by NIRS 

have yielded Rp
2 values ranging from 0.42 to 0.62 (Hein et al. 2011), which are lower than the 

results in this study. A ratio of performance to deviation (RPD) of between 1.3 and 1.6 was 

reported, making it suitable for initial screening. NIR spectra, especially from complex materials 

like wood and panel products, are driven not only by the chemistry of the material but also by the 

solid structure (Gierlinger et al. 2004).  

 

Table 4.3: Calibration statistics for MOE based on all samples (n = 240)  

and Qs and Fs samples (n = 120). 

 

 

 

 

Property Roughness Spectral Range Rc
2 Rp

2 SEC SEP RPD 

MOE  

(All)  
Rough 

Raw Data (Full Range) 

 

1st Derivative 

 

Smoothed (1100ï2300) 

0.69 

 

0.74 

 

0.64 

0.57 

 

0.60 

 

0.71 

1166 

 

1070 

 

1250 

1538 

 

1486 

 

1263 

1.5 

 

1.5 

 

1.8 

 Smooth 

Raw Data (Full Range) 

 

Reduced (1300ï2300) 

 

Reduced (1100ï2500) 

0.58 

 

0.66 

 

0.75 

0.41 

 

0.67 

 

0.64 

1364 

 

1229 

 

1049 

1779 

 

1358 

 

1416 

1.3 

 

1.7 

 

1.6 

MOE  

(Qs) 
Rough Raw Data (Full Range) 0.77 0.78 1149 955 2.1 

 Smooth 

Raw Data (Full Range) 

 

Raw Data (900ï1900) 

0.85 

 

0.84 

0.68 

 

0.72 

907 

 

963 

1160 

 

1087 

1.7 

 

1.8 

MOE  

(Fs) 
Rough 

Raw Data (Full Range) 

 

Raw Data (1000ï2500) 

0.67 

 

0.72 

0.57 

 

0.63 

991 

 

917 

1719 

 

1590 

1.5 

 

1.6 

 Smooth Raw Data (Full Range) 0.75 0.69 856 1453 1.7 
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The RPD values were used to evaluate the model performance in this study. All RPD values for 

MOE met the 1.5 criteria, except for those based on raw spectra for the smooth surface, where the 

RPD was 1.3 (Table 4.3). It has been shown that NIRS can be used as an initial screening tool with 

an RPD of approximately 1.5 (Schimleck et al. 2003, Acquah et al. 2018). It has also been 

suggested that an RPD between 1.5 and 2.5 is enough for estimating wood properties (Hein 2010).  

 

 

 

Figure 4.6: The relationship between measured and NIR-predicted values for MOE (MPa), 

based on the rough surface (top) and smooth surface, 1300ï2300 nm (bottom) for the 

softwoods. The blue and red dots indicate the calibration and prediction sets, respectively. 
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The regression coefficients showing the important variables for these models were observed. The 

important wavelengths identified for MOE prediction are 1212ï1225, 1480, 1477ï1484, 1484ï

1493, and 1586ï1596, which have been ascribed to cellulose, while 1471 is related to 

hemicelluloses and 2200 to lignin. For small clear specimens, high correlations for the MOE and 

MOR were found at the absorption bands due to -OH and -CH in the semi-crystalline or crystalline 

regions in cellulose. These results explain that an increase in the semi-crystalline or crystalline 

regions of cellulose is related to an increase in the MOE and MOR (Fujimoto et al. 2007). The 

plots showing the relationship between NIR predicted and measured values for the best models are 

shown in Figure 4.6 for both surface conditions. 

 

The results obtained in this study using NIRS to predict the MOE of wood were better than those 

reported by Acquah et al. (2018), with cross-validated models for predicting this property for new 

samples. The Rp
2 reported was 0.45 for MOE, even though the samples were taken from many trees 

(450). The errors reported in their study were also higher than what were obtained in this study. 

Higher errors are usually associated with predicting an independent test set from calibrated models, 

because how worse a model will perform is considered when applied to the test set not originally 

used in model training. Overall, the results based on the rough surface were better than those based 

on the smooth surface (Table 4.3).  

 

4.3.2 MOE based on calibrations for Qs and Fs samples                                                     T               

For the modelling of MOE, 72 and 48 samples of both species were used for the calibration and 

prediction sets, respectively. Most of the models for MOE gave strong correlations of Rc
2, ranging 

from 0.77ï0.85 and 0.67ï0.75 for the Qs and Fs sections, respectively. The Rp
2 ranged from 0.68ï

0.78 and 0.57ï0.69 for the two sections, respectively. These results are in line with the MOE 

calibration statistics previously reported for spectra collected from similar grain orientations 

(Thumm and Meder 2001, Andrade et al. 2010, Kothiyal and Raturi 2011). 

 

Several pre-treatments were applied to improve the model quality but showed no effect. Thus, all 

models for MOE were based on raw spectra. For the rough surface, the results based on the Qs 

section yielded better calibration statistics than the Fs section (Table 4.3). A good Rc
2 of 0.77 and 

an Rp
2 of 0.78 were reported for the Qs section, while an Rc

2 of 0.67 and an Rp
2 of 0.57 were reported 

for the Fs section. These results show that the former provides better predictions for MOE than the 
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latter, which is similar to past reports (Thumm and Meder 2001, Zhao et al. 2009). The Qs section 

showed the potential for predicting new samples better (RPD > 2.0). As reported previously for 

agricultural materials, an RPD between 2.0 and 2.5 indicates very good prediction (Mouazen et al. 

2005). Reducing the spectral range (from 1000 to 2500 nm) slightly improved the predictions, but 

only for the Fs section (Rp
2 from 0.57 to 0.63; see Table 4.3). 

 

Similar predictions to the rough surface were also observed for the smooth surface, where the Qs 

section reported better statistics than the Fs section. Reasonable predictions were observed for the 

Qs (Rc
2 = 0.85, Rp

2 = 0.68) and Fs (Rc
2 = 0.75, Rp

2 = 0.69) sections. The same trend was observed 

for the prediction error of the Qs (1160 MPa) and Fs (1453 MPa) sections, respectively. It was 

evident that better predictions were obtained from the Qs section. Calibrations based on the Qs 

and Fs sections previously reported (Kothiyal et al. 2014) showed that the former had the stronger 

calibrations. The difference in the accuracy of prediction could be linked to the surface condition 

of the sample, since earlywood and latewood are better represented in the Qs section than the Fs 

section. The resulting spectrum from the former usually has a better representation of the total 

wood characteristics (Thumm and Meder 2001) than the latter, in which calibrations depend on 

whether earlywood or latewood was present when spectra were collected (Dahlen et al. 2017). 

 

The narrow spectral range (900ï1900 nm) created for the Qs section improved the model (Rp
2 

increased from 0.68 to 0.72), and the SEP dropped from 1160 to 1087 MPa. Spectral ranges of 

900ï1900 nm and 1000ï2500 nm also improved the model quality. Reducing the spectral range is 

deemed important because it is less expensive than full spectral analysis (Yu et al. 2009). The 

aforementioned spectral ranges are considered effective for predicting the MOE of wood. Overall, 

the Qs section reported better statistics than the Fs section for rough and smooth surface conditions, 

as shown in Table 4.3. The highest predictive value for MOE was obtained from the Qs section 

(Rp
2 = 0.78) based on the rough surface, which agrees with past work when calibrations were 

developed using the same section (Fujimoto et al. 2008).   

 

The models for MOE in this study were constructed with no more than five factors. This is in 

contrast with previous claims (Fujimoto et al. 2008) that six to eight factors are needed to build 

good models that predict mechanical properties for small clear samples. The calibrations presented 

in this study demonstrate that NIRS has the potential to predict the mechanical properties of wood 
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samples with considerable accuracy. NIRS has also been used to predict the mechanical properties 

of wood-based materials such as medium-density fibreboard, with an Rp
2 of 0.80ï0.82 (Rials et al. 

2002). 

 

 

 

 

Figure 4.7: The relationship between measured and NIR-predicted values for MOE (MPa), 

based on the quarter-sawn (top) and flat-sawn (bottom) sections for the softwoods. The blue 

and red dots indicate the calibration and prediction sets, respectively. 
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The PCA was used to distinguish between the grain orientations of the two softwoods and show 

variations in the data. The PCA scores plots of the best model selected explain 98% and 96% 

variation in the data for the rough surface, and 99% and 96% explained for the smooth surface. 

The plots showing the relationship between NIR predicted and measured values for the best models 

selected for the Qs and Fs sections are shown in Figure 4.7. The wavelengths contributing to the 

MOE prediction of the former and latter are similar to those reported earlier in this thesis (Section 

4.3.1). The assignment of NIR peaks has been reported by several authors (Via et al. 2003, 

Tsuchikawa and Siesler 2003). 

 

4.4 Modulus of Rupture  

 

4.4.1 MOR based on calibrations for all samples 

The MOR assessed in this study ranged from 18ï83 MPa and 54ï114 MPa for hemlock and D-fir , 

respectively. Similar values have been reported for the MOR of hemlock (Rohrbach 2008) and D-

fir (FPL 2010, Mousavi 2016). Higher MOR values were observed for D-fir than for hemlock, 

which is similar to past reports (FPL 2010). This could be attributed to the difference between the 

M and ɟ of the species. Past reports have revealed that a lower M and a higher ɟ, as observed in D-

fir , is accompanied by an increase in the mechanical properties (Tsoumis 2020). This could have 

contributed to the higher MOR values observed in D-fir. For the modelling of MOR, the same 

number earlier described (Table 4.1) were used for the calibration and prediction sets. 

 

Several pre-treatments were applied, with no significant improvement observed, so raw spectra 

were used to build the model for both surface conditions. For the rough surface, moderate 

predictions (Rp
2 = 0.56, SEP = 12.24 MPa) were reported, while lower values (Rp

2 = 0.42, SEP = 

13.64 MPa) were reported for the smooth surface. The 1300ï2300 nm range based on first-

derivative spectra gave a good prediction for the smooth surface, with Rc
2 increasing from 0.55 to 

0.74 and Rp
2 from 0.42 to 0.66. The SEC dropped from 12.05 to 9.15, while the SEP went from 

13.64 to 10.76 MPa (Table 4.4). Previous works have revealed similar values for the MOR of 

lumber (Schimleck et al. 2018). These findings also agree with the work of others, where 

similarities were found in the prediction of lumber and small clear samples (Fujimoto et al. 2008). 
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Table 4.4: Calibration statistics for MOR based on all samples (n = 240)  

and Qs and Fs samples (n = 120). 

 

 

However, stronger correlations (Rp
2 = 0.81ï0.86) were previously reported for small clear samples 

of Pinus taeda, regardless of whether the cross-section or radial surface was rough or sanded 

(Schimleck et al. 2005b). Fujimoto et al. (2007) also reported an Rp
2 of 0.84 when the MOR of 

hybrid larch was predicted using NIRS. The lower values that were observed in this study could 

be attributed to not separating the samples into juvenile and mature wood. This could have 

contributed to poorer calibrations, as samples containing a wide variety of juvenile and mature 

wood have been reported to have lower calibration performance (Dahlen et al. 2017). Another 

reason for the lower values could be the range of values of MOR investigated in this study, since 

a wide range of values has been linked to improved model quality (Gindl et al. 2001).  

 

Property Roughness Spectral Range Rc
2 Rp

2 SEC SEP RPD 

MOR  

(All)  
Rough 

Raw Data (Full Range) 

 

Smoothed 

0.68 

 

0.68 

0.56 

 

0.57 

10.18 

 

10.25 

12.24 

 

12.10 

1.4 

 

1.4 

 Smooth 

Raw Data (Full Range) 

 

1st Derivative (1300ï2300) 

0.55 

 

0.74 

0.42 

 

0.66 

12.05 

 

9.15 

13.64 

 

10.76 

1.3 

 

1.6 

MOR  

(Qs) 
Rough Raw Data (Full Range) 0.77 0.52 9.52 11.48 1.4 

 Smooth 

Raw Data (Full Range) 

 

Raw Data (1100ï2500) 

0.87 

 

0.85 

0.57 

 

0.65 

7.20 

 

7.68 

10.72 

 

9.85 

1.5 

 

1.6 

MOR  

(Fs) 
Rough 

Raw Data (Full Range) 

 

Smoothed (1300ï2300) 

0.77 

 

0.66 

0.76 

 

0.82 

7.42 

 

9.05 

9.87 

 

8.61 

1.9 

 

2.2 

 Smooth 

Raw Data (Full Range) 

 

Raw Data (900ï1900) 

0.72 

 

0.73 

0.67 

 

0.71 

8.24 

 

7.97 

11.14 

 

11.10 

1.7 

 

1.7 
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The calibrations for MOR were lower than those for MOE, which could be because the ɟ of wood 

samples strongly affects the MOR rather than the MOE (Fujimoto et al. 2007). The relationship 

between MOE and MOR and several properties of wood have been described in detail (Kliger et 

al. 1995). Overall, the smooth surface gave better predictions than the rough surface, a reverse 

trend to the models built for ɟ and MOE. 

 

The important wavelengths identified for MOR prediction were 1212ï1225, 1480, 1477ï1484, 

1484ï1493, 1586, 2110 (due to cellulose), 1907, 1910, 2134 (due to hemicelluloses), and 2200 

(due to lignin; see Figure 4.8). Significant correlations for the MOR were found at the absorption 

bands due to the -CH in hemicelluloses, meaning that increase in hemicelluloses is related to an 

increase in the MOR of wood (Fujimoto et al. 2007). Some wavelengths show negative correlations 

at bands in the 1868ï1981 nm range, which are associated with water and known to play an 

important role in the NIR spectrum of wood (Thygesen and Lundqvist 2000, Bokobza 2002). All 

band assignments for the spectra of wood can be found elsewhere (Schwanninger et al. 2011). 

 

Plots showing the relationship between NIR predicted and measured values for the best models for 

both surfaces are shown in Figure 4.9. NIRS coupled with PLS-R was found to be a suitable 

technique for predicting the ɟ, MOE, and MOR of wood. Overall, the best prediction was obtained 

for MOE, followed by MOR and then ɟ, which is in accordance with what was reported in previous 

studies (Haartveit and Flæte 2006). 
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Figure 4.8: Regression coefficients based on raw data for the rough surface (top) and the 

smooth surface (bottom). 
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Figure 4.9: The relationship between measured and NIR-predicted values for MOR (MPa), 

based on the rough surface (top) and smooth surface (bottom) for the softwoods. The blue and 

red dots indicate the calibration and prediction sets, respectively. 

 

 

4.4.2 MOR based on calibrations for Qs and Fs samples 

For the modelling of MOR, 72 and 48 samples of both species were used for the calibration and 

prediction sets, respectively. Most of the models for MOR gave strong correlations, with Rc
2 
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ranging from 0.77ï0.87 and 0.66ï0.77 for the Qs and Fs sections, respectively. The Rp
2 ranges 

were from 0.52ï0.65 and 0.67ï0.82 for the former and latter, respectively. Similar reports for MOR 

calibrations have been found in the literature (Fujimoto et al. 2007). A summary of the calibration 

statistics is presented in Table 4.4. 

 

Pre-treatments were applied to improve the model quality, but raw spectra gave the best predictions 

for the rough surface. The models based on the Fs section reported better performance than the Qs 

section (Table 4.4). A good Rc
2 of 0.77 and a moderate prediction value (Rp

2 = 0.52) were obtained 

for the Qs section, while the Fs section yielded an Rc
2 of 0.77 and a higher value of Rp

2 (0.76). The 

results obtained for the Qs section are considered moderate, as very low prediction value (Rp
2 = 

0.44 and RPD = 1.1) have been reported (Andrade et al. 2010). The values obtained for the Fs 

section are similar to those in past reports (Fujimoto et al. 2008, Andrade et al. 2010). Reducing 

the spectral range to 1100ï2500 nm, 900ï1900 nm, and 1300ï2300 nm did not affect the model 

performance for either grain orientation. An exception was found when smoothed data in the range 

of 1300ï2300 nm was used to predict the MOR for the Fs section, which slightly improved the Rp
2 

from 0.76 to 0.82 and reduced the SEP from 9.87 to 8.61. 

 

A similar trend in the results for the rough surface was observed for the smooth surface where the 

Fs section yielded better statistics than the Qs section. A good Rc
2 of 0.87 and an Rp

2 of 0.57 for 

the Qs section and an Rc
2 of 0.72 and Rp

2 of 0.67 for the Fs section were obtained. Models based 

on the latter were chosen as the best due to the high Rp
2 and RPD values (Fujimoto et al. 2008). 

Pre-treatments such as smoothing, SNV, first derivative, and second derivative reduced the model 

quality. Reducing the spectral range to 1000ï2500 nm for the Qs section slightly improved the 

predictive ability (Rp
2 from 0.57 to 0.65) and reduced the error (SEP from 10.72 to 9.85; see Table 

4.4). For the Fs section, the prediction slightly improved in the 900ï1900 nm range (Rp
2 increased 

from 0.67 to 0.71, while the SEP dropped from 11.14 to 11.10). The improvement in the model 

performance due to the reduced spectral ranges was not unexpected. The work of other researchers 

also revealed that the 900ï1900 nm range is useful for predicting woodôs mechanical properties 

(Liang et al. 2016). 

 

All RPD values for MOR meet the 1.5 criteria except for a model based on the rough surface and 

Qs section, where the RPD was 1.4 (Table 4.4). A considerably higher RPD of 2.2 was observed 
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for the best model selected for the Fs section, which is in line with the work of Fujimoto et al. 

(2008) for the same grain orientation. It has been established that a model must have an RPD 

greater than 1.5 to be considered as a preliminary screening tool (Hein et al. 2009a). Overall, the 

Fs section yielded better results than the Qs section for both surface conditions, and the best 

prediction for MOR was observed when the rough surface was utilized. 

 

The PCA was used to distinguish between the grain orientations of the two softwoods and show 

variations in the data. The PCA scores plots of the best model selected explain 95% and 99% of 

the variation in the data for the grain orientations based on a rough surface. The PCA for the 

smooth surface explains 99% and 98% of the variation in the data for both grain orientations. Plots 

showing the relationship between NIR predicted and measured values for the best models selected 

for the Qs and Fs sections are shown in Figure 4.10. The interpretation of PCA and PLS-R plots 

has been reported earlier in this thesis (Sections 4.2.1 and 4.2.2). 

 

The significant wavelengths contributing to MOR prediction for both grain orientations were 

similar to those reported earlier in this thesis. The bands at 1674 and 1684 nm were found to be 

negatively correlated to MOR. These bands have previously been assigned to extractives and lignin 

(Michell and Schimleck 1996); the lignin content of wood has been reported to influence NIR 

absorbance (Schimleck et al. 1997). The relationship between mechanical properties such as MOR 

and NIR spectra could be attributed to how lignin content and composition affected NIR 

absorbance (Gindl et al. 2001). The absorption bands related to cellulosic features were found to 

be the most important contributors in model building for MOR, which is in accordance with what 

others have reported (Fujimoto et al. 2008). 
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Figure 4.10: The relationship between measured and NIR-predicted values for MOR (MPa), 

based on the rough surface (flat-sawn) (top) and smooth surface (quarter-sawn) (bottom) for 

the softwoods. The blue and red dots indicate the calibration and prediction sets, respectively. 

 

 

 




























