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Abstract

Nearinfrared spectroscopy (NIRS$ a suitable technique for characterggimany materials
including wood andhas been used to predsaveral woodpropertiesHowever, existing reports

on this use of NIRS have paid little attention to the effect of wood surface condition and grain
orientation. This study therefore uf¢tRSto asseswooddensity, modulus of elasticity, modulus

of rupture,grain angleand annularing width, studying whether and how surface condition and

grain orientation affected the measurement of these properties

The research focuskon using NIRScoupled with partial least squares regression (RL$0
predict the proerties of twosoftwoods(Western hemlock and Dougtéis). PLSR models were
calibrated and validated usitige testset validation methodlhe predictive accur@es based on

grain orientation (quartesawn and flasawn) and wood surface conditigoughand smooth

were comparedModels developed using reduced wavelengths also showed the possibility of
predicting these propertiesinga narrow spectral range.

The results of this study shedthat calibrations based onixed sets, which included bothoss-
sections,were inferior to those based dnese crossectiors separately Promisingpredictive
models were obtained for dens{®?= 0.66) modulus of elasticityR,?= 0.78) and modulus of
rupture (R,? = 0.82) with poor correlations for graimgle and annual ring widt(iRy> O 0.50)
Further the rough surface predictiormutperformedthose fromthe smooth surface for all
properties. The quarteslawn sections also shed better predictive abilitythan the flat-sawn
sectiors for both surface conditits. The only exceptiowasfor modulus ofrupture where the
trend was reversed. The results therefore show the potfmtizsdingNIRS as a nofestructive

techniqueo predictthe properties of wood.



Lay Summary

The maingoal of this thesis was tosess the feasibility of using NIRS to predict the properties of
two softwoods based on different surface conditions and grain orientabidéRS. is a rapid
analysis technique useffdr predictingwood propertiesThis technique haseveral advantages
includingscant need fasample preparatigandthenondestructivenature osamplingHowever,

the reliability of this method depends on the accuracy of spectral acquisition and reference
measuremest While plenty of research rausedNIRS toassess woogdropertieslittle attention

has been paid to applyinge method to twopeciesin Canada: Western hemlock and Douglas

fir. Thisstudythereforefocusel on using NIRS to predict the properties of these softwddsiag

the partial least squares proceduitgyilt NIRS calibrations to predict certain wood properties and

observed the influence of surface condition and grain orientatidiiR® performance.
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1.0 INTRODUCTION

Wood is @ important constructiomaterialthatrequires high degree of structural performance

and reliability(Liang et al. 2016) Consequentlyit has a broad range of applicatiqiNguyenet

al. 2017). Wood is an anisotropic, hygroscopic, and heterogencbs$éal material with a porous
structue that presents variations between species at both microscopic and macroscopic levels
(Hans 2014). This variation is one of the miagportant challenges that wood product producers
face when trying to accurately characterize quality for appropriate ssatlig@ design and
manufacturing $chajer and Orha2006 Fujimotoet al. 2008).

Western hemlock is the single most plentiful treecggsfoundon the coast of British Columbia

(BC), making up 18% of the volume of ®BGC)s gr o\
Hemlockwoodis of medium densityhasmoderate strengthndstiffness andis mostly used for
construction purposes (KennetB(). Dougladir (D-fir) makes up to 8.8% of thgrovincial

growing stock (Bfir species profile n.gland grows along 81BC coast and in the interior of the

province Coastal DBfir wood is known for its superior strength, stiffnesnd higher density

(Cherry et al 2008) andis mostly used aslimensionaltimber, plywood, flooring and in

constructionlJohnsorandGartner2006.

Wood density(} ) influences its physical and mechanical properties and is regardadgsortant
measure of wood quality (Jozeaal 1989).The} within a treeincreasesadially from pith to
bark anddecreasesertically with height in the st@ (Kiaei et al.2015 Tsoumis 1991 Todoroki

et al 2013. The moduli of elasticityand rupturdMOE andMOR) are two important properties
used in choosing wood as a structural material (MissangppMatsumura 2016)MOE is an
indication of stiffnesswhile MORis anindication ofthestrength of a board or structural member
(Johnson and Gartner 2008he annual ring widthARW, which is composed of earlywood with
thinner walls and latewood with thicker wa@landthushas asmaller lumen size and highgr
(Frommet al 200)8 hasbeen reported as an important variable in the predictiocvi@iE and
MOR of wood (Haartveitand Fleete2002) The slope of graifSOQ relative to thdength of a
timberis anotheifactor that contributeto understanding 0 o dt@rgyth properties. The strength
varies with the orientation dfiegrain makingthe measwementof SOGan important requiremeén

for machine grading and structural analysis (Ingemi and Yu 2019).



Uncertainty about some of the properties of wood has letheécdevelopment of prediction
methods by indirectobservatiod that is, obtaining measurements without damaging the
materialor altering its propertiegRomer 2013)Measuremestof } and SOG which directly
affectaproduct mechanical propertieareimportant to the woothdustry. Although traditional
methods have been employed to estimate these properties, a soitthled that is non
destructive swift, easy to implement withithe production lineand requires minimal sample

preparations highly desirable

Near infrared spectroscopy (NIRS)s the measurement of the wavelength and intensitg of

ma t e rabsarpioh ©f nearinfrared light NIR light spans the 8G@500 nm rage and is
energetic enough to excite overtones and combinations of molecular vibrations to higher energy
levels. NIRS is normally used fdine quantitative measurement of functional groups, espgcial
O-H, N-H, and GO, contairing physical and keemical iformation about a sample (Schimlesk

al. 2001) The advantages MIRS includecontactless applicatigiiast acquisition times, nen
destructive sampling, and the potential forlime or portable application®ruckenmulleret al

2018. NIRS has beesuccessfully applied testimate several properties of wosdch as moisture
content M), density {), and mechanical propertiflseblonet al 2013 Acquahet al. 2018§.

This study examines the use of NIR$redictthedensity bendingstrength, stiffness, grain angle
and annual ring width ofiemlock and Efir. The hypothesis is that NIRS will keeswift and
effective tool to predicthe aforementionedropertiesusing multivariate analysisf the acquired
spectra in reatime. Such capbility may allow for sorting before processing andooperty
evaluationtherebyincreasing produajuality anddecreasing processing costs.

1.1 Outline of thesis

Chapter 1 introduces what the research was abouvlayndt was carried out. Chapter2ovides
background information othe ron-destructive evaluation of wdpas well asspectroscopy
specifically explaining the NIRSutilized in this studylt also expainsWestern hemlock and-Er

properties and applicationand describes in detail tlagplication of NIRS technology in wood

property assessmer@hapter 2 endsithas t at e ment o f ived @haptet 3peogdes 6 0 b j



information about thestudy magrial and methodssample peparation, NIR measurements,
procedures for testingood propertiesdensity, MOE, MOR, grain angle, andannualring width),
and the method of analysi€hapter 4 presentfe results of the study and discustem in
relation to the objective of the thesis. Finalhapter 5 draws general conclusions from this

research and makes recommendations for further studies.



2.0. LITERATURE REVIEW

2.1.Non-destructive Evaluation of Wood

Non-destructive evaluation (NDE)is a general term that encompassesious methods or
techniques used tassessmaterial properties, components, or entire process units without
damaging the material in question. These techniques can alst deteacterize, or measure the
presenceand magnitude afatural and processimgfects in wood (ASNT 2016). The importance

of thesemethod increases as the timber industry continues to seek better ways to test wood
products in a nowestructive mannerThese approacks have also gaied attention for the

evaluation of complete wooden structures (Dunn 1992).

The instruments used for NDigay be quitaliverse, andome oftheir benefits and limitations
have been reported in detail (Bucur 2003, Niemz andneésr2012). NDE as method of
identifying the physical and mechanical propertiet wood, from standing trees to dplace
structuresdoessowithout alteringthe materiab snduse capabilitiesThe resultinginformation
can be usedo make decisionabou approprate applicationsand design changdfRosset al
1998).Researcton NDE arosemainly from the needo provide methodologies or techniques for
assessingvood andwoodbased materialand thereby to promote bettedecisionmaking
processesegardng the use of the prodw(Brashawet al. 2009).

Historically, the wood community has developed and used various NDE techniques in applications
such as sorting or grading structural products. Two common examples are machine stress rating
(MSR) oftimberand ultrasonic grading of veneé&m.North AmericaMSR grading couples visual
sorting criteria witiNDE practicego assign amberto an established grade (Galligetral 1977).
Laminated veneer manufacturing facilities use stress wave NDE techfogsesting incoming

veneer into strengttiassedeforefinal productassemblyThese are established through empirical
relationships between thteavel velocity of induced stress wawé¢hrough the venegiand its

strength (Sharp 1985). A detailed revieWNDE techniquesespecially those utiled for the
assessment of wood propertiess conductetly Ross(2015).



2.2 The Physics of Light and Spectroscopy

2.2.1 Physics of light

Light is defined as any natural agent that stimulates the sight samadvies the visibility of things
(Sliney 2016) It has also been regardedaafraction ofthe radiation thatanexcite the human
visual system(Zwinkels 2015. Visible light is theelectromagnetigadiation (EMR) within the
electromagnetic spectrum that easily observed by the humaisual system (CIE 1987). In
physics,flightdo sometimes refers to EMR of any wavelengthether it is visible or not (Smith
2006). The known properties of light include intensity, direction of propagation, frequency or
wavekngth polarization andspeed Uzan and Leclercq 2008)ike other EMR, light propagates

as wavesand the energy imparted by these waves is absorb#éidcted and transmitted he

absorbed energy of these waves is called a photon and represents fjliginta o

For several centuries, scientists disagreed awbather light should be regarded as particles or
waves Sir Isaac Newtorafter conductingariousexperiments in the 7century argued that the
nature of refraction and reflection could only &phined if light were composed of particles
waveswould not travel in straight linesAlthough many physicists subsequengiffemped to
articulate a wave theory of light, thisconceptwas not accepted until Sir Thomas Young
experimentally demonstated wave interference (Young 1807physicist later reached a
consensuthat light could be characterized concurrently as batineam of particles and a wave

depending on the type of experiment (Sliney 2016).

There are three main methodsdafpersing radiationrefraction diffraction, andinterferenceThe
interactiors between particles such as protons and,iand their interactioswith other particles

due to collision energys a field of study knowa s fAspe.dtroscopy

2.2.2. Spectrscopy

The field of pectroscopy is concerned wistiudyingthe interactions between electromagnetic
waves and matteLight interacts witlthe atoms and moleculesmftter in several wayghrough
absorption and emissiofMeasurement ofhese interactiors permits us to identify specific
wavelengths of light that interact with the atoms and molecala$to measurghe amount of
light that is absorbed or emitted at certain wavelengths {®geopy 2017).



Spectroscopyfalls into two types:atomic spectroscopy(AS) andmolecularspectroscopy (MS).
AS comprises atomic absorption and atomic emission spectrosebpg MS comprises mass
spectroscopy, infrared spectroscopy, nuclear magnesionance, and ultraviolet and visible
spectroscopy. In AS, every elememtsha distinct atomic structure characterized by a positively
charged nucleus surrounded iy number of electraginecessary to maintain neutrality (Sahin
2019). In MS,EMR interactswith a materialand produce a spectrumfrom which relevant

compositionabknd structural information about the material can be deduced (Goodman 1994).

Spectroscopic experimentgimarily use ight sources that emit radiatiaf discrete and well
defined frequencies (Chat al. 2018)and its data are represented by a rander instance, a plot

oft he ma tefleectanambsdrbance as a function of wavelength/frequency (Saetak

2016). This spectrunis indicative ofthema t e mbleculay structurandhas unique properties
including band position, widthand intendly, which are all usedo obtaininformation about
functional group or to monitor moleculesinderdifferentconditions Mollaoglu et al. 2018) The
spectral response is used to either qualitatively determine the chemical constituents or

guantitatively degrmine the amousbf specificcompound present irthe material.

2.2.2.1Infrared spectroscopy(IRS)
IRS is an analytical technigufor the characterization of a wide range of matereatsl is
commonly used in research gmductionfor quality control purposes (Theophanides 2012). This
technique involves the interaction between infrared radigt®nand matter ands mostly used

to identify and quantifywarious organic compounds present in a materialtheir selectivelR
absorption. The history of IRGatesback tothe 19" century andthe first spectrometer was built
in 1835 By the beginning of the J0century, IRShad becmeavaluabletool for identifying and
characterizinghemical compounds and materials (Theophanides Z0A@)eafterit wasapplied

to more complicated moleculesich asproteins (Elliot and Ambrose 195@nd later,DNA
(Colthupet al. 1990).

IRS is aform of vibrational spectroscgp The absorption oflR radiationby matter resutin
molecular bondsibrations Each molecule possesses unique vibrational charactermtidsthe

resultingIR specta make vibrational spectroscopy a good metfmdcharaterizingmolecular



structureslt is a reliableway to investigatéunctional, structuraland compositional changes in
cells, tissues, and biological molecules. It is also one of the most imporédyticat techniques

used to study almost all typeslimfuids, solutions, and pastdddllaoglu et al 2018).

ThelR rangerefers tahepart of the electromagnespectrum between the visible and microwave
regions and it is divided into threeregions nearinfrared, midinfrared and farinfrared
(Anastaopoulou and Theophanides 197PhelR energy excites the moleculasthe surface of

the material, ancgpart of the energis absorbedselectivelyand proportiondy to the quantity of

the excited molecules (Sandak 2013ifferent molecudr interactionssuch asCi H, Oi H, and
NiH, are stimulatedand often result in phenomena such as stretching (symmetrical er non
symmetrical), scissoring, rocking, waggijangd twisingd phenomenghatdependn factors such
asthe molecular structure, chemical composition physical properties of the surface measured
(Coates 2000).

An instrument callec fispectromete&r measures the light that is reflected or transmitted faom
sampleand uses a detector to plot transmittance through the mdegadast the wavelengthf

the radiation. Th resultingspectrum is better visualized in graphs of transmittance/reflectance
plottedagainst wavelength (Infrared Spectroscopy)nlthis type of information can be obtained

from a single experimenand from small samples or poerd.

2.2.2.2. Neaiinfrared spectroscopy(NIRS)
NIRS is anondestructivetechnique foranalyzingorganic materialshat is rapidly growing in

popularity. Although the use of spectrophotometers to measure spisctna old techniquethe
NIR region of he electromagnetic spectrum was not properly utijizedit was considered to
contain ne-structural information (Barton 2004). The earliest analytical applicafibiRS was
to determine the moisture contéht), crude protein, and oil concentrationscefeal grains (Ben
Gera and Norris 1968ajt was al® usedin the agriculture, food, paper, polymeasnd textile
industrieg(Ciurczak 1992Barton 2004

NIRS is apotentialy rapidtool thatcan be used to get information about wood products in the
industry. NIRS has beensuccessfully appliedn wood science and technolqgss reported
elsewhere o et al 2004 Tsuchikawa2007, Leblonet al 2013).It has been used to ass@4s



(Hoffmeyer and Pedersen 199Bdedipe and DawseAndoh 2008, } (Thygesen 194,
Schimlecket al. 1999) wood chemical propertieS€¢himleck and Evans 2003, Joeéal.2005),
and mechanical propertie&ifidl et al. 2001; Kelleyet al 2004g; Kothiyal andRaturi 2011).1t
has also beemnsedto estimatethe propertiesof normal ad modified wood as well awood
compositegSchimlecket al 2002, Blanco and Villarroya 2002, &t al. 2010).

As lid wood is an opaque materi&MR has difficulty passing througtihick samplessoNIR

spectra are collectadia reflection(Hans 2014)In reflectance spectroscopy, theramsnteraction
between the radiation energy sent by the source and the mafendlicing scattering,
transmissionpand absorption (Leblogt al 2013). The radiation energgflectedfrom the sample

is then measucke Details about reflectance and absorbance spectroscopy with their equations have
recentlybeen reportetly Hans(2014).Detailed reviews of the application of NIRS to wood and
forest productdiave been presentbg Soet al (2004 andTsuchikawa2007).

2.2.2.3. Effect ofsurface roughness on NIRspectra
Wood is a porous material whose surface features are the result of machining conditithres and

w 0 0 éGr@aw®ny (de Moura Palermet al. 2014 Zhanget al 2015) Surface roughness is difficult

to contrd, as it is an important index for wood product quality that is directly affected by wood
machiningandbonding performancgzdemir and Hiziroglub 2007Jhe surface quality of wood

is important in developing NHRased models for predictinggood properties, as previously
reported (Hoffmeyer and Pederson 1996pstaet al 2018). However, NIR-region spectral
absorbancés reported to be inversely proportionalvtood surface roughness (Schimlestkal
200%).

Previous studies hawhown the influence osface roughness dheNIR spectra of woodSome
authors found th@redictedresults of NIRbased models for smooth surfat¢e be better than
thosefor rough surface (Schimlecket al. 2005b,Liu et al 2006).Contrasting resulteave also
been reportedCosta etal. 2018,dos Santost al 2020) where rough surfacealibrations
outperformed those from smooth surfad®@etter predictions from samples of greater roughness
could be attributed to the capture of more information by the EMR during NIR d@&cjussition
(Costaet al 2018).



2.3. WesternHemlock and Douglasfir

2.3.1. Distribution, properties, and usef Western hemlock

Westerrhemlock suga heterophyllay the mosabundanspecies along the coast o€Bandit
alsogrows in the interiowet belt of the Rockountains(Parish 1995). The standing volume of
matured hemlock is about 1.3 billior*and represents about 18% of the total growing stock in
BC (Shahverdi 203). The best climate fots growth is mild or humid weath#nat is characterized

by frequent bg and precipitation during the growth seasuoiine coastal regiofPojaret al.1991).

It growsin pure stands dn mixturewith other specigsn evenagedstands where the climate is

cool and moist

Hemlock isa strong wood whiclis suitable forstructural application§Rohrbach 2008).t lalso
hasa straight and even grain with a medium to fine, cqaasd lustrous structure. The sapwood
and heartwood areften difficult to distinguish(Nourian 2018) In green wood, the sapwood
appears to be a little darker due toldrge amount of free water in M(is sometimes over 20006
Once the free water is evaporated when the wood is dry, thesec@our diffeence between the
two areasmakingit impossible to visually separate them. Howeuee, growth rings are distinct
and uniform in widthalbeitnarrow, delineated by a band of darker latewood aiplirplish to
reddishbrown tinge that iwisible to the ges. Approximately twdahirds or more of the growth
ring is occupied with earlywogdand the transition from earlywood to latewood is gradual
(Hoadley 1990).

& - i
[ Rocky Mountain Douglas-fir [T] Douglas-fir

Western hemlock Douglasfir

Figure 2.1 The distribution map of western hemlaakd DoudpsHir in the Pacific Northwest
(Natural Resources Canada, 2015)



Hemlockis alsoknown for the presence of wetwqaahich is a portion of the heartwood zone
with higherM and} than adjacent part3his zone is related to bacterial activity asdiffi cult to
dry (Shahverdi 2015Nourian 2018. The averagg of hemlock is470/490 kg/n? (Rohrbach
2008). The literature also stated an avefd@E value ranging from 10,000 to 12,300 MPa and
an averag®ORvalue ranging from 75 to 81.1 MPa (Coast Forest lrtsdAssociation 2003).

The strength and the nailing characteristiéshemlock have made it a popular construction
material in North America and oversed&héhverdi 2016 It is commonly used for general
construction, deckingplywood manufacturing,stok lamination,and the production ofglue-
laminated and solid beam®ther uses of hemtk includethe manufacture afloors, windows,
andfloors, andin applicationswhere a higkgrade softwood is needed (Paris®05). Itis also
exported to Japan for pesand beams in roof rafters and traditional housing (Lazarescu and
Avramidis 2012) and is the most important pulpwood species in BC (Softwood Export Council
2004, Rohrbach 2008).

2.32. Distribution, properties, and usesof Douglasfir

Douglasfir (Pseudotsuga menzigsiis one of the most popular softwood species in North
Americg originally named after a Scottish botar{Bavid Douglaywhom the Royal Horticultural
Society in the late 170@breded to study this tree (Hebda 1995)vo common native species of
Pseudotsuga menziesiie P. menziesii var. menziesadalled coastal Bir, andP. menziesii var.
glauca referred toasinterior D-fir (Hermann 1982). The range of coastafiDextends fom
central BC (55 N) south along the Pacific Coastnges into central California to a latitude of
34.44N (Hermann and Lavender 199%vhile the interior D-fir rangesfrom northern Mexico

(19 N) to the north oBC (55 N) (Zustovic 2015.

D-fir is charaatrized bya straight or slightly wavy grain with a medium to coarse texture. The
sapwood and heartwood offid are not difficult to distinguishunlike hemlockas the sapwood

is light in colaur and the heartwood ranges from yellowish to reddigiwn with sharply defined
bands (eavengood 998. Also, in contrast to hemlockhé transition from earlywood to latewood
is abrupt (Osbornet al 2016).D-fir wood is very hard and resistant to abrasiorakingit very

suitable for applications where wear ifaator, as in bridge partand commercial building®\n
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averagg of 450 kgm?®, and MOE and MOR values of 13,500 MPa and 88.6 MPave been
reported for Bfir (Jozsaet al. 1998).

Thehigherstrength of Bfir and the availability of large dimensions frand-growth treesnake

it a good choice of material for the construction industry. Itdess identified as one of the finest
timbers for heavy structural purposesluding glulam beams, laminated arches, and roof trusses
(Douglasfir Species Profile ml). D-fir is used primarily in general construction and as dimension
timber, plywood, and laminated veneer timbedghnsorandGartner2006 Ukrainetzet al 2009.

2.4. SlectedWood Properties

2.4.1 Density
The densityof wood ) is defined as the mass or weight per unit of vol@no¢h at the samigl),

usually expressed ikilograms per cubic meter (kg®) or grams per cubic centimeter/¢gr)
(Haygreen and Bowyer 199@)ensityis known to beinfluenced bythe amount of watern the
hygroscopic range, namely, 0 to 304{Antwi-BoasiakocandAtta-Obeng 2008 which therefore
allows for comparison of values oniynderthe sameév conditions (Kollman and Cote 1968).

Densityis one of the most importaptoperties of woodndis known to vary significantly within

and between trees duzada 2008 This variationcan be attributed to several factpsuch as
differencesin cellular structure@esulting fromphysiological and hereditary charaéécs, andthe
presence of extraneous cpoments Rathgebeet al 200§. For instance, thg of heartwood is

usually higher than that of sapwood due to a higher concentration of extractives such as terpenes,
resins, and polyphenols in heartwood (Hans 20b4addition, @st studies show thatvariation

in wood is usually affected by annual ringdth (Fabris 2000) and varies from the earlywood to

the latewood within rings (Gartnet al. 2002).

Densityis considered important becausmfluenceswood attributesuch ashrinkage, swelling
and mechanicgbropertiedHaygreen and Bowyel989) andbecause oits effect on the general
quality of final products (Anjo®t al 2010).In many cases, is particularly important to tree
breeders ands usually evaluatedvhen there idarge withinspecies variation, a high degree of

genetic conwl, and easy assessment (Sarmtoal. 2012).
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2.42. Mechanical properties
The mechanical properties of woraflect its ability to resist applied forces that tend to deform it

in any manner. Wood with greater resistance to deformhasa higher strengtrand he ability
of wood to resist applied load depends on the magnduadadirection of the force relaion to
its fiber orientationWoodd mechanical properties therefore affect the quality of the products used

in load-carrying applicationsHaartveitandFlaete2006).

Many methods have been identified for measuringrtbehanical propertiesf wood,suchasthe
modulus of ruptureMOR) and themodulus of elasticityNIOE). MOR is a measurmentof the
maximum stress that the material can endure before failure @rwlirsmeasured itNewtors per
square metefN/mm?2). MOE measurs the deformation that redalfrom a given level of stress
before the point of total failurendis alsomeasured iflN/mm?2 Apart from their importance in
structural lumberMOR andMOE arealso valuable traits in standing trees because they reduce
mortalities that results from stenfailures andthe uprooting of trees during harsh weather
conditions Lachenbructet al 2011).

Destructive and NDEechniques areommonlyused tomeasurehe mechanical properties of
wood. The destructive technique is based on the direct estimate d@feand MOR of wood
using static bending testshere a load is applied at ragphan to a piece of wood supported at its
ends (ASTM 2005)The NDE tests are based on propagation speed ugimgr eicoustic or
ultrasonic wavesor on acoustic spectral anaig in whichmechanicabproperties carasily be
estimated.In studying the mechanical properties of wood, it is important to knowthloae
relating to bending strength includamong othersgompressive strength, shear strengthgl
MOR, while the prop#ies relating to wood elasticity includdOE, plasticity, esilience and

Poisson coefficientAndradeet al 2010.

2.43. Slope ofgrain (SOG)
TheSOGof woodrefers to deviations other than those due to spiral grain or its related phepnomena

such adnterlocked and wavy grairandis commonly referred to as cregsainin sawn timber
(Andersonet al. 1945. As wood is highly anisotropicGOG exerts a strong influence on its
material properties (Bodig and Jayne 1982y. instance,taa SOGof 45, Young modulus and

axial strength are reduced toi28% of the value at O(Kollmann and Cote 1968Wwhereas
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longitudinal shrinkage increases considerably. Theregf®&remains a considerable factor when

lumber is gradedespeciallyfor load-bearing appliations(Piazza and Riggio 2008).

SOGhas been previousbvaluated using thermal anisotropy (Natal 2000), Xray computed
tomography (Sepulveda 2001)ansmission measurements (Madikal 2005) and microwave
technology (Schajer and Orhan 2006)addition past researchers have propoa&®DGindicator
using a rotating capacitantgpe transducer sens@vicDonald and Bendtsen 1986, Samsoal
19®8). While measuringthe SOG of wood isoften difficult (Sepulveda 2001)its potentialfor
predicting themechanical propertiesf timberhas been established (Olssdral 2013, Viguieret
al. 2015).

2.44. Annual ring width (ARW)

Woodstructure is mainly composed of tubularréleells that are cemented together and normally
created by the wathe trees growEvery growing season, two layers are fornsadhe outside of

thetrunk, resulting inearlywood and latewood. Annual ring widihRW, defined as the sum of
earlywood and latewood for that seagetfimportantecausef its correlation tavoodmechanical
propertiegAlteyracet al 2006).ARWis alsoone of the most important factors that directly affect

w 0 0 ¢bhysical and mechanical propert{@athalie and Malo 2010 br ahi m and) Ay ken
andits durability (Takataet al.2002).

Past researchers have reported the influencAR¥on the properties of woodkor instance,
Karlmanet al (2005) showed in their work on different species of larchaha&&RWup to 2.5
mm had the highesgt while there was a marked reduction iwhere tle ARWwaswider than 3
mm. Likewise, Ethingtonet al (1996) incorporated variatisim ARWand observed théthe ARW
has a significant effect on the compressive strength perpendicular to the grain of thd asttyd.
statistical analyseperformedon fiv e different specieshowed theeffect of SOGandARWon the
shear strength andOE of the speciefLanget al. 2000, 2002

2.5.NIRS Wood Assessment

2.5.1. Density
The first known study that reported the correlation between NIR spectjaveasi presented by

Thygesen (1994)where solid wood of Norway spruceasused to predict the of wood.Several
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studies havesincereported that NIRS can be used to estimatejttod wood (Hoffmeyer and
Pedersen 1995, Viarm al. 2009, Heiret al. 200%).

A number ofstudies have reported good calibratadn using NIRS. Alveset al (2012) reported
PLSR models forp based on Xay micro-density data for each speciesPinus pinasterand

Larix x eurolepis The common model provided a residual prediction deviation (RPD) of 3.1, and
the single models foPinus pinasterand Larix x eurolepis provided RPDs of 3.5 and 3.2
respectivelyAlso, Fujimotoet al (2012)usedNIRS to estimateghe} of wood independently of

its M regardless the fact th#te increase iM is reported to greatly affect the variation of NIR
spectra (Fujimotet al. 2012, Viaet al. 2003).In the same wayinagakiet al. (2010)developed a
PLSR model for the predictio of the air-dried } of Eucalyptus camaldulensigith an RPD of

3.8. In their experiment, they proved that the model is quite robust and stable by removing 40% of
the samples during the cregalidation step and eed up with an RPD of 3.Zhe use of NIRS

and multivariate analysis to predichas been fully establishe(Hoffmeyer and Pederson 1995,
Via et al.2003)

2.5.2. Mechanicabproperties

Several reporthave previously describatle use oNIRS to estimateghe mechanicaproperties
of wood (Schimeck et al. 1999 Fujimotoet al 2008 Hein 2010. For instanceNIRS wasused
to predictthe MOR of Eucalyptus grandisndEucalyptus urophyllgThumm and Mede2001)

In the same wayNIRS was alsautilized to predict thestrength and elasticity in comgssion
parallel tothegrainof woodwith good correlation coefficients of 0.78 and 0.75 (Hatial. 2009%).

Past researchers have also modeledM@E and MOR of Pinus palustris of different wood
types juvenile, matureand pith(Via et al.2003) Thepoor performancef the models walinked

to the narrow range of valuésr the species utilized in the studgimilarly, others(Rials et al.

2002, Adedipe and Dawsedndoh 2008) have applied NIRS to estimate M@E and MOR of

solid wood and wood composg.Hence this techniqudas been establisheaka very effective,
reliable and practical method of estimating the mechanical propertissfiwfoods (Kelleyet al

2004).

14



2.6. Chemometrics and Multivariate Calibration

Chemometrics halseen fully eplored for the extraction of physical, chemjcahd mechanical
information from spectral data by employing multivariate data analysis teckniquthe
estimation of wood properties. Multivariate analysis methods such as PCAR,Ru$cipal
component rgressior(PCR) andsoft independent modelling olass analogySIMCA) are useful

in the extraction of relevant information from spectroscopic measurenidmsgsis possibl@ver

a broad wavelength rangallowing all data to be used the analysis (Leldn et al. 2013). The
advantage of usinguultivariate analysis techniques is that the wavelength variables tend to be
collinear, and the information extracted or minednthe correlation patterns instead of individual
data pointgErikssonet al 2001).Most of the published studies and revsaw the application of
NIRS in the forest products industmaveapplied chemometrics to predict several properties of
wood and wood produs from NIR spectraSoet al 2004, Tsuchikawa 2007).

Several regressiomethodshave beemsedto quantitatively derive information from reflectance
or absorbance specti@ome ofthe methodssuch asViLR, support vector machil&VvM), PCR

and PLSR, have beenreportedon (Stevenet al 2010, Atzbergeet al 201Q Vohland anl
Emmerling 2011). Aletailedcompari®n of many of these metholasbeenattempted in the past
(Viscarra Rossel and Behrens 20I)e PLS-R method has become one of the most popular for

chemometrics in recent years (Wetdal. 2001) andvas he methodutilized in this study.

There are many kinds of multivariate data mode]lsugh as?CA modelling which models only
the X matrix. INPCA, a principal component model of the essential structure of thésdatdt to
gain an overview of the data strucéu Multivariate calibration is concerned with the X and Y
matrices with X being the independent variable (spectra) and Y being the dampewariable
(property of interest). Thenultivariate model for (X, Y) is a logistic relationship between the
empirical X and Y relationsandestablishing and calibrating such a moigethe first stagen

multivariate modelling (Esbensen al. 2002).The second stage ediction

In multivariate modeling, a set of known X and Y values are first tesddveloghemode| which

is thenused to predidheY values from new X measuremefgpectra which is also the predictor
variable).The interesting point here is that the model makes it possible to use only X measurements
(spectra) in future predictions insteadtaking more Y measurements, MOE, MOR, among
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others) that are very expensive, thgmnsuming, laboriousgangerousand in many cases
destructive These chamaeristics of the Y values makie desirable to replace them with X
measurementsuch as spedythat are simple to use, faster than other methents cheapeto

collect NIRS could therefore be usetb replace slow and cumbersoragperiments such as

physical] mechanicaland wet chemistry measurements

The calibration data must mestveralrequrements such as being representative of the future
population from which the new-Keasurements are to be sampéed the measuring conditions
should also bebroadly similar. However they should not be too similabecause the only
difference will thenbe the ampling variancethat is, the variance due to two independent
samplings from the target population. The determination of the predictive ability &R Riodel
must be accompanied blye separation of the data sets of the property (y variabieg Istuded

in thetraining or calibration set used developingthe model An external or independent test set
based on the calibration ssthenusedto validat the modelanddeterminats predictive ability
(Haukssoret al 2001).

2.6.1. Effect d spectral pre-treatment on chemometrics

The use of spectral pteeatments in chemometridsas been widely studied~or instance,
derivatives were applietb absorption spectra tgain enhance spectral information for the
spectral ranges during a decomposition process-[Reret al 1997). In the same way, mmax
normalization first derivative, and vector normalization after mean centering have beenoused t
improve spectral quality (delhovenet al 2003). Vasquest al (2008) also applied various pre
treatments such as derivatives, normalizataomdnon-lineartransformations on 554 soil sample
spectra from Floridto estimateheir organic carbon contehe effect of log 1/R trafiormation,

first derivative and SNVDT on soil diffuse reflectance spectra (Stenberg and Viscarra 2010),
untransformed spectrandfirst and seconderivative with gaps afneto 64 bands have also been

analyzedo estimateseveral variablefor airborre hyperspectral data (Hivegt al 2011).

A detailed review of the most common {ireatmentgor nearinfrared spectra in chemometrics
waspublishedin thelast decadéRinnanet al. 2009). Most of the work done on NHBdalyss of

wood and wood produstasusedsimplespectral prareatmentsuch asls or 2" derivatives, or
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multiplicative scattering correctioi®ther analytical techniques have been used to improve the

quality of the models constructed using NIR spdatata (Axrupet al. 2000)

2.6.2. Effect of grain orientation and surface roughness on NIR&alibrations

One of the factors that influereBlIRS calibrations is wood anisotropy (Hans 2014).réhere
threesectionsn a piece of woordtransverse, radial (quartsawn Qs), and tangenél (flat-sawn

Fs). The effect of these sectioostheNIR spectraf woodhas beemeportedLeblonet al. 2013).
The sectionsof woodto be used for calibratiomust be carefully selected suit theapplication
sothatthe sectiorfrom whichspectraare collected contributes to the performance of Wied
models. For instance, calibrations developased on transverse seciom estimatehe M of red

oak lumbemwvere bettethanthose developeftom QsandFs (Defo et al. 2007).

Thetransverse sech has beemeportedo result inbetterpredictions, whichs attributableo the
distinct anatomical differences within the growth rinfyse differencebetweerthe measurements
for the varioussections could also be explained by the way scannirggmgd out With a
transversaection, incident radiatiogirectly interferes with free water ithecell lumen which is
not the case when scanning other sectisimee the radiatiofirst hascontact withthe cell wall
(Tsuchikawaet al. 1996). The modelsbased onFs sectiors are known to havethe poorest
performance. This is because of the presence of only earlywood or latewood spatigm

scanning is donehich this affects the calibrations (Hans 2014).

An additionalfactor influenang NIRS calibraton is surface roughnesRoughness otvood on
transverse sectians usually higher thaimn Qs andFs sections Tsuchikawaet al. 1996) Also,
transveral sectiors havetracheid cells vth alongitudinal axis that is parallel to the direction of
the NIR ircident radiationwhich results in greateabsorbanceompared tdQs andFs surfaces
(Fujimotoet al. 2008).Absorbance is higher f@sthanFs samples because tf@mercoincides

with the longitudinal orientation of the medullary rays that form the¢isadiating between pith
and bark (Leblonet al. 2013). Generally, an increase in surface roughness decreases the
absorbance of NIR radiatiqdos Santost al 2020)
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2.6.3. Principal component analysigPCA)

PCA is amultivariate analysis techniqukat is oftenapplied to spectroscggor data reduction

and clustering visualizationt decomposga linear combination of original variables iradew
principal component®Cs)(Yu et al.2016) ThePCsshow the structure of the dataset and provide
information on the maispectracomponentgausingdifferencesdbetweersamples (Sandadt al
2016).PCA and PCR are common algorithms used for the calibration of spectrometeén® and
evaluation of unknown measurement spectra (Vogt and Tacke 2002). Thateaicaf PCs is
often accompanied kgingular value decompositid®VD) of the data matrix (Press$ al. 1992).

The k calibration spectr@ontainn measurements at a time.addition the rows of the matrix V

build up the preferred orthonormal basigh# vector subspace spanned by the calibration spectra

(Vogt and Tacke 2002Y.hisis represented mathematically as

Muxm=Uxxr. Skxn. VI «xn) 1)

SVD and PCA are common techniqueshe analysis of multivariate daté/éll et al. 2003 and
wereutilized in this studyA large dataset is widely used in many disciplines and applicatinds
methods are often required to drastically reduce the diomalgy of the data in an interpretable

way to get information from such datasets. While many techniques have been identified for this
purpose, PCA is the oldest and the most widely udeliffie and Cadima 2016).

PCA is based on the principle of rethgethe dimensionality of the dataset while preserving as
much variability as possible (Jolliffe and Cadima 20I)e variability is preserved by finding

new variables that are linear functions of those in the original dafdseearliestiterature on

PCA dates from Pearson (190but not until computers became available decades laer it
computationally feasible to ug&CA on large datasetdt can be based on either the covariance
matrix or the correlation matrixand choosingoetwea these analys has beempreviously
describedJolliffe and Cadima 2016). In either case, the new variables (the PCs) depend on the
dataset rather than being ftefined basis functions and are therefore adaptive in the broad sense
The main uses of PCA@descriptiveather than inferential.
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2.6.4. Partial least squares regressiofPLS-R)

PLSR models have been widely used to extract useful information from spectroscopic data. A
PLSR model relates the spectral information to quantitative informadiooutthe measuwed
samples $wierengaet al 1998).PLSR has proven to be a popular and effeetapproach to
solving several problems in chemometrics. The algorithms are resistant to oveaafitiageasy

to implement and tunend their ability tgproduceinference in high-dimensionality conditions

makesthemideal for a kernel approach (Bennett &rdbrecht2003).

A PLSR model is betteatfinding the relationship between input variables and output variables;
a correlation model is then built using this progedio predict the output variables by utilizing
the input variables (Wanef al 2015).Althoughthe accurag of PLSR may not be significafy
higher tharthatof PCR, itis considered bettérecause there afewerPCsin the final calibration
(Naeset d. 1986).PLSR is also preferredor its faster algorithms, higher precisicand more

harmonious calibration models (Kalivas and Gemperline 2006).

While PLSR is reliable in linear conditions, most industrial praees have explicihontlinear
gualities that can be hard to ignore (Detgal 2013). Hence, a new method that can be utilized in
highly nonlinearprocessexalled theKernel PLS KPLS), has been proposed (Rosipal and Trejo
2001). The KPLS algorithm was introduced to speed up calibratamsile very wide and tall
data, and handle multivariate Y accordinghe nonlinear iterative PLS (NIPALS) standass
reported byAnderssor(2009).KPLS hasalso been shown to be numerically stabidone of the
fasestalgorithms for PLS (Alin 2002Anderson 200p

2.6.5. Validation of chemometrics model

NIR calibration models are oftarsed for the correlation @ther raw ompre-processed spectra
with one or more physad-chemicalproperties of a set of sampléss complicated as it sounds,
numeraiswell-developed calibration techniques haveven to work with most NIRpplications
and these techniques are usually included in chemometric software packagést @nd
Hurburgh2010)

An adequate validation of calibration models is a crucialtstelptermine the suitability of models

to predict new sapies thisis the main reasdior developing NIR calibrations. There are different
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approaches to estimate the suitable number ofte®s included in the calibration.n® of the

mog popularis crossvalidation(CV), atechnique used in the assessment of how the results of a
statisti@l analysis will genefae to an independentdataset. € goal of CV i s to
ability to predict new data that were not included in the calibrationdiol @verfitting or selection

bias (Cawley and Talbot 201®is often used for the & assessment of calibration performance.

A description of this method can be found elsewhere (Seni and Elder 2010).

Another approach used in the validation of cheretwim models is called teset validationwhich

is consideredhe ultimate wayf testing calibration performancere,two-thirds of the samples
are regarded abetraining set and onthird as the validation sebnly the trainingset isused in
thecalibraton, while the validation set igsed for the predictioof new samples based on the PLS

R models tuned with the calibration dataset (Saredak 2016) This method (testet)is regarded

as the most conservative validation for testing modela ogpresentativendependent testet
especially when the purposetasestablish calibration models that can predict quantities (Westad
and Marini 2015)The quality of the predictive ndel can be measured in several waygsne of
which have beenlescrited (Martens and Naes 1991, Schimletial 2001).

2.7. Objective

This studyaims to examine the ability 8fIRS to predictspecificpropertieddensity grain angle,
annual ring widthand mechanical propertlesf Western hemlock and-br. The studyattempts
to developrobust modelg$or within- and betweerspecies variatiobased on PLE& to evaluate
the pedictability basedon orientatiod that is,quartersawn flat-sawn and surface roughness
(roughandsmooth). The results arexpected to pnde the wood industry witinformation on
using NRS for swift and accuratanalysisof wood propertiesand on theinfluence of surface

conditiors when assessing woquloperties
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3.0 MATERIALS AND METHODS

3.1. Sample Preparation

Kiln-dried lumbess of Western hemlock and coastaHiD were obtained frominterfor-Acorn

Sawmill, Surrey, BC and Western Forest Produgawmill, Ladysmith,BC, respectively Sixty

guartersawn(Qs) and sixty flatsawn Fs) samplesl220 mm in length and 50100 mm in cross
sectionwereselected for each wood species. These samples were katheinto dimensions of
25mm x 90mm x 410mm (longitudinal [L]) by a sliding table saw (T7®MARTIN Woodworking

Machines Corp., USAand conditioned at a temperature and relative humadi0 C and 65%
H. A schematic of the cutting pattern of samples is shiovigure 3.1.

Sample 1 Sample 2

1220mm

A
\

Y
A
\

410mm _ 410mm
100mm

\
50mm | I ﬁ

Figure 3.1 Schemdc of the cutting pattern of samples

One of the longitudinatangential surfaces of tH@s samples and one of the longitudimadial
surfaces of th&s samples were then planed in order to have two types of surface conditiens
rough and the othenwoth (Figure 3.2). This was done to examine the effect of surface condition
on NIR spectraNIRS measurements were done on the rough and smooth surfaceQ®aatl
Fssamples. Thus, for each type of surface condition, a total of 240 samples weredafiabgs
different species and two orientatgomere considered in this studgsultingin four combinations

(two wood species o orientations)for a total of 240 samples of mixed woiyge (60 for each

combination).
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(a) (b) (© (d)

Figure 3.2 (a) Hemlockrough (b) D-fir rough (c) hemlock smoothand (d) Dfir smooth.

Each NIRS sample with dimensiols of 25 x 90 x 410 mmtkickness, width and length,
respectively wasconvertednto two strips (samples) of 2Bm x 25mm x 410mm (ength for
destructive MOE ard MOR measurementé-igure 3.3)usingan MTS dynamic material testing
machine (model 810, MTS Systems Corp, Minnesota, U&Aje 25 mm x 25mm x 25mm
(length)samplesvere preparetbr densitydeterminatior{Figure 3.4). A total of 480 samples were

prepared.

Specimen 1

\ 410mm

25mm_» 2 ; >

25mmI | \

i l IZSmm
l[ ;/v
) 410mm >~ 25mm
Specimen 1

Figure 3.3 Cutting pattern of samples fMOE andMOR measurements.
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25mm 25mm
+“—>

25er

25mm

25mm

‘/ZSmm

Specimen 1 Specimen 2

Figure 3.4: Cutting pattern of samples fprmeasurements.

Table 3.1 Sample categorization for NIR analysis, denstyd mechanical properties

Species Orientation NIR },MOEand | SOGandARW
Analysis MOR
Hemlock Quartersawn(Rough 60 120 60
& Smooth)
Flatsawn 60 120 60
(Rough & Smooth)
Douglasfir Quartersawn(Rough 60 120 60
& Smooth)
Flatsawn 60 120 60
(Rough & Smooth)
Total 240 480 240

N.B.: Only 120 samplewereprepared for each wood species for the NIR analysis because one surface was rough
and the other was smooth.

3.2. NIRS Measurements

Wood sampléNIR spectravere acquiredisingan NIR spectrometer systemvhich consisted of a
light source, an optifiber, a fiber spectrometéASD Lab Spe Pro, Analytical Spectral Devices
Inc. Boulder, CO, USA)asample holderanda computer.
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The optic fiberconnectedo thespectrometewas oriented at 30° above tb@mplesurfaceat a
distance of 130 mmand digned in parallel with the longitudinal axis of the sample. Samples
were illuminated with a tungsten halogen bulb (ABI® Lamp) oriented perpendicular to the
samplesurface The distance between the sample surface and the bulb wasmig&sulting in
an NIR spot size of approximately 80 m(figure 3.5) For each sampldpur spectra were
collected withfour subsets that consisted of 50 scans (to reduce the ,nefgeh were averaged
into a single spectrum. The averaged spectra for thepleamvere usd to predictthe wood

properties.

1.Light source 2.Optic fiber 3.Spectrometer 4.Computer 5.Specimen holder. 6.Specimen

Figure 3.5 Schematic diagram of the NIRS systearigpted from Zhowet al. 2019)

All samples used in this study were scanned in the full wavelength rar@fgdd&#500 nmat
intervals of Inm to cover theisible spectroscopfVis) andNIR spectroscopyanges. The effects

of reduced spectral rangg@®00" 1900 nm, 11002500 nm, 13002300 nm) on spectral information
were also assessef piece of commercial microporous Teflavas chosen as theference
materia] andabackground referen@eanwas taken every 30 minutes to correct for potential drift

overtime.
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The referencespectra wereneasured and stordmkforethe test samplspectracollection. Two
readings weré¢aken (top and bottom ¢a) at quarter points per sample to give four spetira (
rough andwo smooth spectra per sampl&he two spectra per surface warerged to give a
single spectrumanda total of 960 spectra (4 x 240 sangplerere acquired for the experiment.

All NIR' S measurements were taken in a lab location where the temperature ranged between 20
25°C and relative humidity between 435%. Effortwas also made for all NIRS measurements

to be completed in a short time span to awiffuctuationsof the samplesThe setup of the NIR
system used for spectral acquisition is shown in Figure 3.6.

Figure 36: The NIR systensetupused for spectral acquisition
(1. light source2. optic fiber, 3. spectrometer4. specimen)

3.3. Determination ofWood Density (} )

The wooddensity(} v) is defined as the ratioetween the mass and the volume of the sample at a
given M (Williamson andWiemann2010) Thesamples used fgr were conditioned toa target
equilibrium moisture contentMemd of 13.7%% and 13.86 (for hemock and Dfir) in awalk-in
chamber(Constant Temperature Control Limited, Aurord\,0Canada at a temperature and

relative humidity of 20C and 65%H, respectively The difference in théVlemc Of the species
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could be attributed to the wood chemistry @p&cimen moisture historyhich thus affects the
sorption properties of woolasset al. 2014). Thenitial volumesand weight of samplesere

measured using digital caliperanddigital balancerespectively.

The} of the samplesvascalculatecby

Im = Wn/'Vm (2)

wherem (kg/mP) is the densityW (kg) is thesampleweight, andV (m3) is the volume of the

sampleattherespectiveM for the species

3.4. Determination of MOE and MOR

The mechanical testgere donevia a 3-point static bendingnachineloaded witha 10 kN load

cell, a span of 360 mpandloading rate of.3 mm/min according to ASTM D1434. The samples
were conditionedat a temperature of 2@ and 65%H in a walkin chamber Constant
Temperature Control Limited, Aurora, Ontario, Carjadad MOE and MOR were determined
using a MTS dynamicmaterial testing machine (model 810, MTS Systems Corp, Minnesota,
USA) (Figure 3.7) A total of 480 #ips were used for the mechanical tesind spectral
information for the mechanical properties of woodswlso colleted on the samples for NIR

analysis
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Figure 3.7: Material Test Systertmodel 810¥or measurindMOE andMOR

The MOE andMOR of the samples were calculated by

00 YN/mm2 — (3)
(0]

0
S 4
whereP (N) is themaximumload (MOR), L (mm)is thespan lengthP (N) is the applied load at

0 0 'ON/mm?2

elastic limit MOE), se(mm) s the deflection at elastic limib (mm) is thesample widthandh
(mm) is thesampledepth or thickness

3.5. Annual Ring Width Measurements

ARWis importan in the manufacturing of wood products because of its correlation to the strength
properties of woodAlteyracet al 200§9. The samples used for the NIR test were conditioned at
20 C and 65%H for the ARWmeasurementsandthe visual inspection of theRW were carried

out on them
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The rings were counted over a length of 90 amdreported as number of rings per distafroe).
A total of 240 samples were assessal all measurements were done visually with a riilee

ARWin mm was calculated by

oYw a a ? 0)

whereWi (mm)is thei"annual ring width and is the number of rings on tif@sandFs samples
used for the NIRS test

3.6.Slope of GrainMeasurements

The SOGis defined as the angle between the woodhgfiee., the direction ofthe wood fibreg
and the main axis dmber Gind and Teischinge20®). The SOGwas measured with a shop
built scratch gauge with a pivoting angle fioscribing a light groove parallel to the grdkigure
3.8 left) and a MTE-R-GAGE adjustable Lexan protract@figure 3.8 rightyvas used to measure
the SOGwith respect to specimardge measurable to 0.5SOGmeasurementia thismethod is

called apparent or surface rather than maehirasured intern80G

The samples @sl for the NIR testlso had theisSOGmeasured only on the smooth surface of the

samples rather than the rough surface to increase the accuracg@Gheeasurements. For each
specimen, measurements were carried out at three jpi@tsontquarter ed, the middle point
and the rear quantend The groove made kaa minimum length of 306hm so that the average

SOGcould be measured. A total of 240 samples were tested.
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Figure 3.8: Measuring th&OGof wood (left: shop-built scratch gaugendright:
MITE-R-GAGE adjustable Lexaprotractoy.

3.7. Multivariate Data Analysis

Once all spectra were collected, multivariate calibrations were developed for each wood property
by PLSR, and the analysis was performeging Unscrambler® version 10.5.1 (CAM&orway)
software to findbossble correlations between the X components (spectra) and the Y components
(response variableshlso, the NIR data were mearentered and normalised before the RS
analysis. As a rule, in multivariate modelling, the firstgst is to subtract the average from each
variable which is referred to asmean centeringThis ensures that all results will be interpretable

in terms of variation around the mean.

The spectratiata were randomly split into calibration and predictios setsisting of 36 and 24
samples in each combination of species and surface cond@amgles of each combinatioere
then divided into two data sedscording tathe sample set partitioningased on the joint-y
distance (SPXY) algorithniGalvaoet al. 2005) Threefifths (36 samples in each combination)
was used as the calibration set and the remaiwogfifths (24 samplesasthe prediction set
Thereafter, the samples in thalibrationand predictiorses of each combination were merged
into the final calibration (144 samples) and prediction (96 samples) sets, respeGmelyle
calibrations werearried outusing a mixed set with 960 datapisiri4 datapoints x 240 samples)

which included both types of cressctions, and another set with 48ftapoints (4 datapoints x
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120 samples)which consisted of samples fro@sandFs sections, separatelyhe methods used
for the pretreatments of spe@ before model development inclad&avitzkyGolay (SG)
smoothing, standard normal variate (SN\gnd first- and secondrder derivatives.NIR
reflectancalataare usually transformed mtog of inverse reflectance (log 1/R)sorbancethis

is often done to ensure good linear modelling

The development of the models was based on the spectrum oéngitve800' 2500 nm (full NIR
range). Reduced wavelength regions were also used to build stodgieck the influence of
definedspectral rangeon model quality. Reducing the range alémfor the potentialuse of
lightweight, portable,and inexpensive ggtrometerdor predicting wood properties. The best
models were selected based on the cdefficof determination of calibratiorR¢) and the
coefficient of determination of predictioR{), which reflect the ability of the model to predict
new samplesand RPDp which uses the standard deviation of the reference data used in the

prediction andhe standard error of predictidiSEP.

Statistical analysis provided correlations between the wood properties and the spectra for the full
and reduced spectreanges. For each of the wood propas several data sets were created
including the raw spectral datand the first and secondlerivative data.The regression
coefficients plots were also used to check the wavelength contributing most to the, models

were developed based on those Ideg and comparisons were made with the full spectrum.
Outliers were detected using the influence plot generated by PCA mogdeltidghey were

removedbeforere-modellingto improve the predictive ability dhefinal model
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4.0 RESULTS AND DISCUSSION

4.1 NIRS Calibration

Wood propen calibrationswere performed using the tesgt validation methqdegarded as the
best way to validate a mod#.is based ortesting the model on a subset of the availablepgasn
thatwerenot included in the computation of the model components (Saetdek2016) During
the NIR calibration stage, the models weezelopedased on the training sand some samples
(40%) ofthe dataset were randomly selected to represeriitire population (Galvaa al 2005).
These samplesvhich are sometimes called thalidationor testset, were then used to determine
the ability of the model to predict new samplesukssoret al 2001).

Validation of the chemometric model is iompantfor determinng modelling and prediction errgr

outliers, an optimal number of PLS componeatsl trendsT{ounis 2009) The number of factors

or PCs used in the model development was selected by observing the response of the residual Y
variance wih additional factorsThe number of factors used in the final calibration is crucial to
avoid overfiting, a phenomenon where too many factors are included aratttoh of noise is
modelled Agelet and Hurburgh 2010and underfittingwhentoo few facors are included with

higher bias and lower variance (Gowetral 2011).The optimal number of PGssed in this study

was suggested by the Unscram@lasoftware.

The best calibration model was seleatisthghigh R?, reduced error, and rank (number &<p.

All PLS-R models used in this study were based on the KPLS algorithenKPLS is a sample

centric approach where the relationship between every sample is characterized by a kernel function
that maps the data into higher dimensional spabere theihear regression is performed (Mora

and Schimleck 2010). A full descripticof its derivation can be found elsewhere (Rosipal and
Trejo 2001).

The pretreatment of spectra is also an important step in NIRS calibration, done to improve the
model quality.SG smoothing using a 2point filter width and a seconarder polynomial wa
usedduring model developmei(®avitzky and Golay 1964, Gaset al 2009). A common pre
treatment known as the derivatidesuch agirst derivative whichremoves any offset défrence

and the secondlerivative which removes any slope effect in thated were also applied to
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improve spectra quality (Rinnan 2014he derivatives used in this study were calculated by
applying the SG algorithm using 17 smoothing points a@andecondorder polynomial
(Schwanningeet al. 2004)

4.2 Density and Mechanical Properties

4.2.1 Density based on calibrations for akamples

They ranged from 37i 725kg/m® and418i 794 kg/m?, with averagesf 491.97 kg/mand 552.89
kg/m? for hemlock and Efir, respectively Others have found similar resulfsr hemlock
(Gonzalez 199\ ourian 2013andD-fir (Jozsa and Kellogg 1986,0nzalez 1990 As expected,
higher) values were obseed for Dfir than forhemlock Softwood Species Profile r).dThe
variations in thg of thewood could be linked to thdifferences in the amounts of cell wall and
extraneous materials present per unit of volume (Henze 2606). modelling 144 and 96
samplef both speciew/ere used fothecalibrationandpredictionsets The descriptive statistics

for this property from the calibration and predictionsssteshownin Table 4.1.

Table 4.1 Descriptivestatistics of the wood properties from theilbedtion and prediction s&t

Calibration Set (n = 144) Prediction Set (n = 96)

Property | Mean|Min | Max | SD | CV | Mean | Min | Max | SD | CV

) (kg/m3) | 507 | 377 | 725 | 60 |11.83| 546 | 389 | 794 |72.21|13.23

MOE (MPa) | 5608 | 1587| 13247| 2095| 37.36| 6199 | 1601| 11792| 2270 | 36.63

MOR (MPa) | 63 18 110 | 18 | 28.57| 70 33 114 | 17.33| 24.76

SOG() 8.9 15| 16.7 | 3.2 {3596 9.2 13 16 3.4 | 36.96

ARW (mm) 1.8 01| 126 | 1.8 | 100 1.7 02| 131 | 1.6 |94.12

Min is the minimumalue, max is the maximum val@&D is the standard deviation, and CV is the coefficient
of variation

32



All } models gavenoderatepredictions with the R ranging from 0.8i 0.60 andhe Ry? ranging
from 0.51 0.63(Table 4.2) The effect of prareatment on model quality was observespecially
when S5 smoothingwith a25-point filter anda secondorderpolynomialwereused(Savitzky and
Golay 1963. TheR,? improved wherSG smoothing was applieith thespectradata(Table 4.2)
which isin line witho t h e r g@asmwet al R009)where pretreatments improved the model

performanceA typical graphical representation of a raw spattis shownin Figure 4.1.
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Figure 4.1 A typical graphical representatioharaw spectrm.

The} modelsin this studywere considered robust with few factors (no more fhag). This is
interesting because paatithors (Sandakt al 2016 Schimlecket al. 2018 reportedthat fewer
factorsin a PLSR modelis a betterstratey for avoidng dataoverfitting. Although sandard
normal variate (SNVhs well as first and secomntkrivatives were appliedo the raw datano
improvement in th@redictive ability of the modetas shownThiswas not surprisingasthebest
correlationswere previously obtainedfrom raw spectrg Andradeet al. 2010). Overall, results
based on rough surfaxeere better than those from smooth suréa€ais could be explained by
the fact that EMR on a rough surface captures more informatiorothasmodh surface during

scanningwhich contributes to the predictions (Costal 2018).
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The PCA wasused to distinguish between the grain orientations of the two softwoods (hemlock
and Dfir) andto reveal any unusual variation in the PCA model. The PCAesaalots (Figure

4.2) show the four classes of samples earlier described with théwiostomporents PC1 and
PC2(thehighest model contributorsihich explaine®6% of the variation in the raw datacan

be seen thatome samples are clustered tbhge meaningthey are similar and highly correlated
with respect to the PCw#hile thosefar apart from one anothare negatively correlatgdrigure

4.2).
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Figure 4.2: PCA plot for raw spectra obtained from a rough surface (top) and smooth st
(bottom) whereDF: Douglasfir flat-sawn, DQ: Dougla$ir quartersawn, HF: Hemlock flat
sawn HQ: Hemlock quartesawn
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For instance, PC1 describes moféhe variation in th&s sampleswhile PC2 shows the variation
in theQssamples for the rouglugace (Figure 4.2op). In the same way, for the smooth surface,
both PC1 and PC2 fullgescribe the variation in grain orientations for the two species (Figlre 4.
bottom). A few samples are left out of the eclipse and are considered tetatvibutal little to

the PCA model (Figure 4.2).

This showed that NIRS coupled with PCA analyssa useful tool for identifyingand
differentiating betweethe QsandFs samples of the two softwoodshich agreeswith previous

findings (Everardet al 2012).The plots showing the relationship between NiRdicted and

measured values for the best models are showigure 43 for both surfacesThe closeness of

the data points to the target line (black line) is often used to determimeotitbe | 6 s gbtodness
These plots show the strength of correlatbetween the calibration data (blue dots) and validation

data (red dots) for the property measured.

Thecalibratiors in this studyalso involvedselectingthe optimalspectral rangéor the prediction
of . This is considered important to remove #pectrhregions thatnakelittle contribution to
the predictive ability of the modelk.has beemeportedthat not all specttaegions cotribute to
the predictive ability of modelfience the need for amaew spectral rangetoptimize the model
(Leadi et al 2002 Mehmoodet al 2012). Althoughspectral rangeof 1100 2500 nm and 1300

2300 nmwereused tadevelopcalibrations no model performancenprovement was observed

The R,? of } for the rough(0.57i 0.63) and the smootk0.51) surfaceswere obtained Although
thesevaluesare lower thamvhat has beereported for the of Pinus taeddR?, of 0.69; Schimleck

et al 2002, they are higher than ¢} predictions found iranotherstudy (Joneset al 2007) for
the same specielm this study, theough surfaceredictionswere considered best fpdue to the
high R,2valuesand reduced prediction ersoiThis meanthat better predictions could be obtained
for the) of hemlock and Efir by taking the NRS readings on theugh surface of lumber.hHE
summary othecalibration statistics far of the softwoodss shownin Table 4.2.

The difference in the calibration statistics for these studies could be attributed to the range of
observed and the spesused It hasalsobeenshownthatmixed species calibratiomsay not be

as accurate as those based on single speas asn the aforementioned stydSchimlecket al
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Table 4.2 Calibration statistics for based on all samples (n = 240)
andQsand Fs samples (n = 120)

Property | Roughness Spectral Range R2 R? | SEC| SEP | RPD
Raw DataFull Range 0.46 | 0.57 | 44.42| 4897 | 15
' Rough
(Al Smoothed data 0.44 | 0.63 | 44.95| 45.74| 1.6
Smooth Full range 0.60 | 0.51 | 38.55| 54.79 | 1.3
Raw Data (Full Range) 0.52 | 0.53 | 45.58 | 4059 15
' Rough
Q9 Smoothed (110®500) 052 | 057 |4549| 4161 | 14
Raw Data (Full Range) 0.64 0.56 | 39.36 | 4370 1.4
Smooth
Raw Data (11002500) 0.74 | 0.63 | 3356| 4023 | 15
Raw Data (Full Range) 0.3 0.63 | 4253 | 52.67 11
; Rough
(Fs) Raw Data(110Q 2500) 060 | 066 |3262| 5228 | 11
Raw Data (FulRange) 0.30 | 0.59 |4323| 5412 | 15
Smooth
Raw Data(130Q 2300) 0.47 | 059 |3776| 5414 | 15

2010).Likewise, he poor performance of themodels could be atbvuted to the variation infor
different sections of wood along the steas compared tmechanicaproperties (Acqualet al
2018). Again, the generally poor predictive statisticg cduld be ascribed to the diverse genetic
makeup of the samples in tpeediction setPreviousresearcherbavealsorevealed that more
precision and accuracy are neededtasting procedures (spectral acquisitiand reference

method$to improve the calibration statistics from NIRS (Hein 2010).

A direct comparison of thgredictionregression coefficientgenerated from the PLB model was
also performedComparsons were made betwedme regression coefficients pfprediced for
both surface conditiongrough and smoojhSome of the absorption bands related to the major
wood components (cellulose, henligwses, and lignin) were found to have contributedjto

predictions which is in line with the work of otheesearchers (Fujimotet al. 2008). Similarly,
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the cellulose and ligninassociated wavelengths were correlated wjtsuggeshg that wood

chemistry influenceg independent of baseline shift (Hein 2010).
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Figure 4.3: Therelationship between measd and NIRpredicted valugof j (kg/n), based
on rough (top) and snoath (bottom) surfacefor two softwoods (hemlock and-Bx). The blue
and red dots indicate the calibration and prediction sets, respectively.

The results of the regression coeffidieshowed thasimilar wavelengths contrilied to the
predictionof both surfacesThe important wavelengths found to have contributeditecluded:
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1480, 14841493, 1534, 1550, 1540, 1579, 168697, 1793, 211Qdue to crystalline and semi
crystalline cellulose Schwanningeret al. 2011), 1471, and 172{due to the presence of
hemicelluloss; Fujimotoet al 2007, Fackler and Schwanninger 2050 1447, 144&nd1672
1674 (due to the presence of ligniMitsui et al. 2008). The wavelengths contribuiy to the
predictions were rtesurprising, as past authors have also found the spectral range 617000
nm to contain the most important information for predicting wood properties (Schietietk
2003, Todoroviet al.2015).The specific assignmenté NIR spectal featurego dfferent wood
components have been reported by several autBok®bza 2002, Tsuchikawa and Siesler 2003

4.2.2.Density based on calibrations for the Qs and Fs samples

For the modelling of, 72 and 48 samplef both spe@swere used fothe calibration and
predictionsets respectively Most of the models fgr gavemoderateredictionswith R ranging
from 0.52 0.74 and 0.2i 0.60for theQsandFs sectionsrespectivelyThe Ry? rangel from 0.3i
0.63and 0.590.66for theformer and latterespectivelyA comprehensive summary thie model

statistics irovided inTable 4.2.

For the rough surface, th@s sectionyielded better predictiongR:? of 0.52 andR,? of 0.53)
compared to th€&s section(Table 4.2) The roudn surface prediction was considered best due to
the SER40.6 kg/n? for Qssectionand 523 kg/m? for Fs sectior) and the RPD (1.5 fapssection
and 1.1 forFs section) Several prdreatments were appliedut no significant improvememas
foundin themodel performancd& he optimal spectral range fpprediction waslsoinvestigated
in this study. Thespectralrangeof 1100 2500 nm was used wevelopthe } model| andslight
improvement was observél the predictions for the grain orientatiofisable4.2). While the}
predictionvalues are considered reasonabédter resulthave beemeportedoy other researchers
(Schimlecket al.20(). A likely reason for this discrepancy may be relatethtsingle species
used for calibrations their study.This is becaussinglespecies calibrationgive better results
than mxed-species calibrationrsuch aghoseused in this study (Alvest al 2012).

The smooth surface predictions were asuilar to those fromthe rough surface @s section
reported beer statistics). Th&?rangel from 0.641 0.74 and 0.300.47 for theQsandFs sections
respectively In the same wayhe Ry,? rangel from 0.56 0.63 for the Qs sectionandwas0.59 for

theFssection A similar spectral rangel@0Q 2500 nn) alsoimprovedthecalibration forthegrain
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orientations based on the smooth surface (Table@&xall, calibrationbased on th@ssection

were letter than those from thes sectionwhichis also in line wittpast work(Gindl et al 2001).
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Figure 44: PCAplot for the best model based on tbhagh surface anguartersawn section
(top) andthe snooth surface anquartersawn section (bottom)

The difference in the spectral information of the surfaespecially for}, has been previously

explained (Fujimoteet al 2008)andwas attributed to the interaction between the chemical and
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anatomical properties of wood. Another reasould bethe higher exposure of parenchyma cells
in the Qs sectioncompared to th&s secton, which may have affectedalibrations (Heiret al
200%). The best prediction fqr was observed when the rough surface was utilizbd highest
prediction value from the calibrations was faud by utilizing theFs section, a finding similar to

a pasreport(Ribeiro 2009).The potential for predicting theof woodhas been revealed in past
work (Moraet al 2008), where strong correlatiorR,{= 0.80 0.84 were reported between the
measured values and NiRRedicted values for softwood.

A PCA was &0 used to distinguish between Qs andFs sections of the two softwoods. The
PCA scores plotsof the best model explained 988hthevariation in the data fdoothrough and
smooth surfaces (Figure4). For the rough surface, PC1 shemhmore variabilty in the Qs
sampleswhich wereclustered together (93% variation explained) tiiaiPC2 where the samples
were far apart and explained only 5% of the variation in the data (Figdiy¢of). In the same
way, the PCA obtained from the smoailrface exjained more variation (97% for PC1, 1% for
PC2) in the model with samples found to be highly correlated to one another (Figurettan).
Even though some of the samples ove(faping between PC1 and P¥2he results of the PCA
model shows that 93%of the data collected from tligssection of both species could be separated

with certainty especially when theyell outside the overlapping zone (Figurdy.

The plots showing the relationship between NIR predicted and measuredoathedest moels
selected are shown (Figurésyfor both surface condition§rom the figures, it can be seen that
the data points are not close to the target &ndthe calibration and validation data are not tightly
packed together. This showst the predictios obtainedor the j of woodwere only moderate.

The regression coefficientd the grain orientation®r the rough surface were simil@uggesting

that the same wavelengths contributed farediction.Similar wavelengthslescribedearlier in

this thesis contributed to e} prediction of the smooth surface. The assignment of bands that
contributed tg predictionhas been described earlieithis thesigSection 4.2.1)
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Figure 45: Therelationship betweemeasuredndNIR-predicted valugof j (kg/m®), based
on the rough (top) and smooth (bottom) surta@giartersawnsection) for the softwood3he
blue and red dots indicate the calibration and predictionresisectively.

4.3 Modulus of Elasticity

4.3.1 MOE based on calibrations for all samples
The MOE valuesrangedfrom 1587 6182 MPaand 5532 13247 MPafor hemlock andD-fir,
respectively Similar valueshave beemeported for théVIOE of D-fir (FPL 2010 Mousavi2016),
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although higher values were found for hemlock (Rohrbach 2008, FPL.Z0#0)eason for this
could be the lower density valuednfinsonand Gartner2006) and the possible effect of knots
observed irafew sampleswhich might have caused decreasetheMOE values(Komanet al
2013) Higher MOE valueswereobserved for Efir than forhemlock as expectedhis could be
explained by the reductian its M (13.3) as compared to hemlock (13&9 previously reported
in this thesigSection 3.3) Pastresearcherbavealso revealed that an increase in M@E of
wood could be linkedb the decrease in ité below the fibre saturation point (FS(&kaar 1988
Guntekinand Aydin 2013. For the modelling oMOE, 144 and 96 samplasere used fothe
calibration and predictionsets respectively The descriptive statistics for this propentgrh the

calibration and prediction sedre shownn Table 4.1.

The raw spectra were used to develop calibrationsMQ@E, and moderatepredictions were
obtained An R:? of 0.69 andan R,? of 0.57 were reported for the rough surfasbereadower
valueswith high prediction errors were observed for the smooth surfaable 43), while a
reducedspectralrange(110Q 2300 nm) gave the best prediction for the rough susfagth six
factors which makes the model less robust. The best m@&j&of 0.67) with reduced prediction
error was observed when the spectral ramgse 1300 2300 nm for the smooth surface. These
values are considered reasonable due to the robustnégssrabdel andhe fact that the model

was validated using separate samples.

Pretreatments improwvkthe model quality fothe rough surfacewhereas no improvement was
observed fothe smooth surfac&he firstderivative slightly improve the predictiorvalue(from
0.57 to 0.6 and reduce the prediction eor (Table 43). Improvement in the model quality with
reducedspectralrange was not unexpectagspeciallyin the spectral range d000 2500 nm. It
has beerestablished that this range contains miest distinct spectral information on thest
overtone and combination bands that make up the NIR spectra (Keliey004b) Reducing the
spectral range for calibratiorsllows for the use of lightweight, patile and inexpensive
spectrometers fordld applications (Hedrickt al. 2004).The calibration statisticsre summarized
in Table 43.

Most studies using independent samples rather thanabdations to validate prediction models

generally indicate that crosslidations are ovéy optimistic (Brownet al 2005, Brunett al
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2007). However, the PI-B models developed fthe MOE of agrebased particleboards by NIRS
have yieldedR,? valuesrangng from 0.42 to 0.62 (Heirt al 2011) which are lowetthanthe
results in this studyA ratio of performance to deviation (RPDj between 1.3 and 1.6a8
reported makingit suitable for initial screening. NIR spectra, especially from complex materials
like wood and panel products, ahéven not onlyby the chemistry of the material but alsotbg

solid structure Gierlingeret al. 2004).

Table 43: Calibration statistics folOE based on all samples (n = 240)
andQsandFs samples (n = 120)

Property Roughness Spectral Range R2 Ry? SEC | SEP | RPD
Raw Data (Full Range) 0.69 | 0.57 | 1166 | 1538 | 1.5
MOE
Rough 15! Derivative 0.74 | 0.60 | 1070 | 1486 | 1.5
(Al
Smoothed (110@®300) 0.64 | 0.71 | 1250 | 1263 | 1.8
Raw DatgFull Range) 058 | 0.41 | 1364 | 1779 | 1.3
Smooth Reduced (130®300) 0.66 | 0.67 | 1229 | 1358 | 1.7
Reduced110Q 2500) 0.75 | 0.64 | 1049 | 1416 | 1.6
MOE
Rough Raw Data (Full Range) 0.77 | 0.78 | 1149 | 955 2.1
Q9
Raw Data (Full Range) 0.85 | 0.68 907 | 1160 1.7
Smooth
Raw Data (9001900) 0.84 | 0.72 963 | 1087 | 1.8
Raw Data (Full Range) 0.67 | 0.57 991 | 1719 15
MOE
Rough
(Fs) .
Raw Data (10002500) 0.72 | 0.63 917 | 1590 | 1.6
Smooth Raw Data (Full Range) 0.75 | 0.69 856 | 1453 1.7
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The RPD values were usedewaluate the model performance in this stuslyRPD values for
MOE met the 1.5 criterigexcept for those based on raw spectra ferstimooth surfacevhere the
RPD was 1.3 (Table 3). It has been shown that NIRS can be used as an initial screeningtiool
an RPD of approximately 1.5 (Schimleek al. 2003,Acquahet al 2018).It has also been
suggested thanRPD between 1.5 and34s enough for estimating wood properties (Hein 2010).
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based on the rough surface (top) and smooth surfacei, 2300 nm (bottom) for the
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The regression coefficiemshowing the important variables for these modedse observedThe
important wavelengths identified f&dOE prediction arel212 1225, 1480, 14771484, 148i

1493, and 1586 1596 which have been ascribetb cellulose, while 1471 is related to
hemicellulose and 2200 to lignin. For small clear specimens, high correlatiorteéddOE and
MORwere found at the absorption bands du€Xd and-CH in the semcrystalline or crystalline
regions in cellulose. These results explain #raincreasen the semicrystalline or crystalline
regions of celluloseés related to an increase the MOE and MOR (Fujimoto et al 2007).The

plots showing the relationship betwdgiR predicted and measured values for the best models are

shownin Figure 46 for both surface conditions.

The results obtained in this study using NIRS to predicM®& of wood were better thahose
reportedby Acquahet al (2018) with crossvalidaed modeldor predicing this property for new
samples. Th&?reported was 0.45 f0MOE, even thouglthesamples were taken fromanytrees
(450). The errors reported in their study were also higher than weaobtained in this study.
Higher errors ee usually associated with predictiagindependent test set from calibrated models
because how worse a model will perform is considered wheredplthe test set not originally
used in model training. Overall, the results based on the rough sweeslgetter than those based

on the smooth surface (Tably.

4.3.2 MOE based on calibrations for Qs and Fs samples T

For the modelling oMOE, 72 and48 sample®f both speciesvere ugd for the calibration and
prediction set, respectivelyMost of the models favlOE gave strong correlatiord R:2, ranging
from 0.77 0.85 and 0.6i70.75for theQsandFs sectionsrespectivelyThe R,? rangel from 0.68
0.78 and 0.570.69 for the wo setions, respectively. These results dreline with the MOE
calibration statisticpreviously reported for spectraollected fromsimilar grain orientations
(Thumm and Meder 200Andradeet al. 2010, Kothiyal and Raturi 2011).

Several prdareatments werapplied to improve the model quality but showed no effect. Thus, all
models forMOE were based on raw spectra. For the rough suyrtheeresults based dhe Qs
sectionyieldedbetter calibration statistics than thesection(Table 43). A goodR:?of 0.77 and
anRy?of 0.78were reported faheQssection while anR:?of 0.67 andinR,?of 0.57 were reported

for theFssection These results show théie formemprovidesbetterpredictions foMOE than the
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latter, which is similar to past repor§humm and Meder 20Q0Zhaoet al 2009).TheQssection
showed the potentidbr predicting new samples better (RP2.0). As reportegbreviouslyfor
agricultural materialanRPD between 2.8nd2.5 indicates very good predictioM@uazeret al
2005) Reducing the spectral ranggom 1000to 2500 nn) slightly improvedthe predictionsbut
only for theFs section(R,?from 0.57 to 0.63seeTable 43).

Similar predictiongo the rough surface were also observed for the smooth sinfheesthe Qs
section reported btter statistics than thes section Reasonable prediotis were observed for the
Qs (R2=0.85,R,?= 0.68) andFs (R2= 0.75,R,2= 0.69)sections The same trend was observed
for the prediction error afhe Qs (1160 MPa)andFs (1453 MPa)sections, respectivelyt was
evident that bettepredictions were obtained frothe Qs section Calibrations based otihe Qs
andFs sectiongreviouslyreported (Kothiyakt al. 2014)showedthattheformerhad the stronge
calibrations.The differencen the accuracyf predictioncould be linked tahe surface condition
of the samplgsince earlywood and latewood are betapresented in th@s section than thés
section The resulting spectrurintom theformer usually has a better representationred total
wood characteristics (Thumm and Meder 2001) thanatber, in which calibrations depend on

whether earlywood or latewood was present when spectra were collected (@ail@917).

The narrow spectralange(9001 1900 nm) createdfor the Qs section improved the modelRp?
increased from 0.68 to 0.7ndthe SEPdroppedfrom 1160 to 1087 MP&Spectralrangesof
900 1900 nm and 106@500 nmalsoimproved the model qualityReducing thepectral range is
deemed important becaugas less expesive thanfull spectal analysis (Yuet al 2009). The
aforementioned spectral rangee considered effectier predicting theMOE of wood.Overall,
theQssection reported better statisticsritiheFs section forough and smootsurface conditions
as shownin Table 43. The highest predicte value forMOE was obtained fronthe Qs section
(R, = 0.78)based on the rough surfaaehich agrees withpast work when calibrations wee
developed using the same sect{bajimotoet al 2008).

The models 6r MOE in this study were constructed with no more tfi@e factors This isin
contrast with previous claims (Fujimoét al. 2008) thasix to eightfactors are needed to build
good models that predict mechanical propertiestuall cleasamplesThecalibrations presented

in this study demonstrate that NIRS has the poteatiatedict the mechanical properties of wood
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samples with considerable accuradyRS has also beemsed to predict the mechanical properties
of woodbased materialsuch asnedium-density fibreboardwith anRy2 of 0.80 0.82(Rialset al

2002).
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The PCA was used to distingh between the grain orientatiookthe two softwoodsind show
variatiors in the data. The PCAcores plots of the best model selected explain 98% an®% 96
variation n the data for theough surfaceand99% and 96%explainedfor the smooth surface

The plots showing the relationship between NIR predicted and measured values for the best models
selected for th€@sandFs sectionsare showrin Figure 47. The wavelengths contributing to the

MOE prediction of the former and lattare similar to those reported earlier in this thé€Section

4.3.1) The assignment of NIR peaks has been reported by several authorst @li€2003,
Tsuchikawa and Siesler 2003)

4.4 Modulus of Rupture

4.4.1 MOR based on calibrations for alsamples

TheMORassessed in this study randeam 18 83 MPaand54i 114 MPafor hemlockandD-fir,
respectivelySimilar values have been reported for @R of hemlock (Rohrbach 200&)d D-

fir (FPL 2010 Mousavi 2015 Higher MOR valueswere observed for Efir than forhemlock
which is similar to past reports (FPL 2010his could be attributed to the difference between the
M andj; of the specie?ast reporthaverevealed that bower M andahigherj, as observed in D

fir, is accompanietdy an increase in the mechanical properfiesoumis 202Q)This could have
contributed to the highdvlOR values dserved inD-fir. For the moelling of MOR, the same

number earlier describeddble 4.) were used for the calibration apcediction sets.

Several prdareatments were appliedith no significant improvementbservedso raw spectra
were used to build the model for botlurface coditions For the rough surfacenoderate
predictions(R,?= 0.56 SEP =12.24 MPa werereported while lower valuegR,?>= 0.42,SEP =
13.64 MPa were reported for the smooth surfaddie 13002300 nmrangebased orfirst-
derivative spectra gave a gooegiction for the smooth surfaogith R?increagng from 0.55 to
0.74 andR,? from 0.42to 0.66.The SECdroppedfrom 12.05 to 9.15while the SERventfrom
13.64 to 10.76 MPa (Table4. Previousworks haverevealed similar values fahe MOR of
lumber (Schimlecket al 201§. These findings also agreeith the work of otherswhere
similaritieswere foundn the prediction of lumber and small clear samples (Fujirab&t 2008).
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Table 44: Calibration statistics foMilORbased on all samples (n = 340

andQsandFs samples (n = 120)

Property Roughness Spectral Range R2 sz SEC SEP RPD
MOR Raw Data (Full Range) | 0.68 | 0.56 10.18 | 1224 | 14
Rough
(AID
Smoothed 0.68 | 0.57 10.25 | 1210 | 14
Raw Data (Full Range) | 0.55 0.42 12.05 | 13.64 1.3
Smooth
15t Derivative (13002300) | 0.74 0.66 9.15 10.76 | 1.6
MOR
Rough Raw Data (Full Range) | 0.77 0.52 9.52 11.48 1.4
(Qs)
Raw Data (Full Range) 0.87 0.57 7.20 10.72 15
Smooth
Raw Data (11002500) 0.85 | 0.65 7.68 9.85 1.6
Raw Data (Fli Range) 0.77 0.76 7.42 9.87 1.9
MOR
Rough
(Fs) .
Smoothed (130@2300) 0.66 | 0.82 9.05 8.61 2.2
Raw Data (Full Range) | 0.72 0.67 8.24 11.14 1.7
Smooth
Raw Data (9001900) 073 | 071 | 7.97 | 1110 | 1.7

However, stronger correlation®.£= 0.81 0.86) were previasly reported for small clear samples

of Pinus taedaregardless of whether the cressction or radial surface was rough or sanded

(Schimlecket al 200%). Fujimotoet al (2007) also reportedn R, of 0.84 whenthe MOR of
hybrid larch was predicted ugifNIRS. The lower values that were observed in this sttmyld

be attributed tonot separating the samples into juvenile and mature wood. This could have

contributed to poorer calibrationas samples containing a widariety of juvenile and mature

wood have been reportetd havelower calibration performance (Dahlet al 2017).Another

reason for the lower valuesuld be the range of valuesMR investigated in this studgince

awide range of values Bdeenlinked to improvel model quality (Gindet al 2001).
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The calibrations foMORwere lower than those f(OE, which could bebecausé¢he} of wood

samples strongly affects tiMOR rather than théMOE (Fujimoto et al. 2007).The relationship
betweenMOE andMOR and several properties of woodue been deeribed in detai(Kliger et

al. 1995).Overall, the smooth surface gave better predictions than the rough sarfaserse
trendto the models built foy andMOE.

The impotant wavelengths identified falOR predictionwere 12121225, 14801477 1484,
1484 1493, 1586, 211Qdue to cellulosg 1907, 1910, 2134due to hemicellulos, and 2200
(due to lignin seeFigure4.8). Significant correlations fothe MORwere found at the absorption
bands due tthe-CH in hemicellulosg meaningthatincreasan hemicelluloss is related to an
increasen theMORof wood(Fujimotoet al. 2007). Some wavelengths show negative correlations
at bandsin the 1868 1981 nmrange,which are associated with water and known to play an
important role in the NIRpectrum of woodThygesen and Lundqvist 200Bokobza 2002)All

band assignments ftine spectra of wood can be found elsewh&eh{vanningeet al 2011).

Plots showing the relationship between NIR predicted and measured values for the besfomodels
both surfacesre shownn Figure 49. NIRS coupled with PLER was found to be a suitable
technique fopredicting thg , MOE, andMOR of wood. Overall, the best prediction was obtained
for MOE, followed byMORand ther , which is in accordance with whatsreported in previous
studies Haartveit and Flaete 2006).
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Regression coefficients
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Figure 4.9: Therelationship between measured MI&-predicted valugfor MOR (MPa),
based on the rough surface (top) and smooth surface (bottom) for the softwoods. The t
reddots indicate the calibration and prediction sets, respectively.

4.4.2 MOR based on calibrations for Qs and Fs samples
For the modelling oMOR, 72 and48 sample®f both speciesvere used for the calibration and

prediction sed, respectively Most of the models folMOR gave strong correlations with R:2

52



ranging from 0.770.87 and 0.680.77 for theQs andFs sections respectively The R,? ranges
werefrom 0.52 0.65 and 0.6i70.82 for the former and latteespectivelySimilar reports foMOR
calibratins have been found in the literature (Fujimetal 2007).A summary of the calibration

statistics igresented iTable 44.

Pretreatments were applied to improve the model quddityraw spectagavethe best predictions
for the rough surface.nemodek based on thEs section reported better performance tharQke
section(Table 44). A goodR:?of 0.77 anch moderateprediction valueR,?= 0.52) wereobtained
for theQssection while the Fs section yielde@nR:?of 0.77 anda higher valueof R,?(0.76). The
results obtained for th@s section are considered moderats very low prediction valueRg® =
0.44 and RPDE= 1.1) have been reported (Andraekeal. 2010).The valuesobtainedfor the Fs
section are similar to those past reports (Fumotoet al 2008,Andradeet al 2010).Reducing
the spectral range to 118600 nm, 9001900 nm, and 130@300 nm ¢ not affect the model
performance foeithergrain orientation. An exception was found when smoothed data in the range
of 1300 2300 nm wasised to predidghe MORfor theFs section which slightly improved th&?
from 0.76 to 0.82 and reduced the SEP from 9.87 to 8.61.

A similar trendin the results for the rough surface was observed for the smooth surface where the
Fs sectionyieldedbeter statistics than th@ssection. A goodR:2 of 0.87 andan R,? of 0.57 for
the Qs section andin R of 0.72 andR,? of 0.67 for theFs section werebtained Models based
on the latter \@rechosen as the best due to the HRghand RPD valuegFujimoto et al. 2008)
Pretreatments such as smoothing, SNkt derivative, and secorakrivative reduced the model
guality. Reducing the spectral rangel@0Q 2500 nm for theQs section slightly improved the
predictive ability Ry?from 0.57 to 0.65) and deiced the error (SEP from 10.72 to 9.88eTable

4 4). For theFs section, the prediction slightly improvéuthe900i 1900 nmrange(R.2increased
from 0.67 to 0.71while the SERdroppedfrom 11.14 to 11.10 The improvement in the model
performance deito the reduced spectral ranges was not unexpdttedvork of other researchers
also revealed that the 9QP0O0 nmrangeis usefulfor predictingw o o dnéchanical properties
(Lianget al 2016).

All RPD values foMOR meet the 1.5 criteria except farmodel based on the rough surface and
Qssection where the RPD was 1.4 (Tabletj.A considerabt higher RPD of 2.2 was observed
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for the best model selected for ths section which is in line with the work of Fujimotet al

(2008) for the same graiorientation. Ithas beerestablished that a modelusthavean RPD
greater than 1.5 to be considered asefimpinary screening tool (Heiet al.2009%). Overall, the
Fs sectionyielded better results than th@s section for both surface conditiorand the best

prediction forMORwas observed when the rough surface was utilized.

The PCA was used to distinghi between the grain orientatiooisthe two softwoodsind show
variatiors in the data. The PCAcores plots of the best model selected expl&5% aml 996 of
the variation n the data for the grain orientatiobased on a rough surfacéhe PCA for the
snmooth surface explains 99% and88f thevariation in the data for both grain orientatioR®ts
showing the relationship between NIR predicted aedsured values for thedienodels selected
for the QsandFs sections are showin Figure 4.D. The interpretation of PCA and PLSplots
hasbeenreportedearlierin this thesigSections 4.2.1 and 4.2.2)

The significant wavelengths contributing BMOR prediction for both grain orientationsvere
similar to those reportedarlierin this thesisThe bands at 1674 and 1684 nm were found to be
negatively correlated tslOR These bands haygeviouslybeen assigned to extractives and lignin
(Michell and Scimleck 1996) the lignin contenbf wood has been reported to influence NIR
absorbanceSchimecket al 1997). The relationship between mechanical properties siMORs

and NIR spectra could be attributed how lignin content and compositioaffected NIR
absorbance (Gindit al. 2001).The absorption bands related to cellulosic features were found to
be the most important contributors in model buildingM®R which is in accordance with what

othershavereported Fujimotoet al.2008.
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Figure 4.10: Therelationship betweemeasurec&ndNIR-predicted valugfor MOR (MPa),
based on the rough surfadkat-sawr) (top) and smooth surfacquartersawn) (bottom) for
the softwoodsThe blue and red dots indicate the calibration and prediction sgiectvely
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