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Abstract 

Forest invasive species (FIS) pose significant threats to the economic and ecological stability of 

our forests. Given the potential impact of invasive species, tools are needed that will help prevent 

invasions, or enable effective early responses through robust interception and surveillance 

frameworks. Spatial models aim at identifying meaningful spatial relationships between different 

geographical features. Climate based spatial models have the ability to provide information on 

current and future potential for invasion and spread. Species distribution modelling (SDM) is a 

valuable tool for predicting the potential distribution of invasive species across space and time. 

While recent developments in modeling approaches and wider availability of environmental 

datasets have create advanced and more accurate SDM, in many cases the developed models ignore 

the associated underlying ecological processes. Moreover, bioclimatic variables usually included 

in the SDMs do not account for anthropogenic impacts on the response variable and the methods 

to integrate species traits as predicted by genetics into projections of species distributions are not 

generally used. In this PhD dissertation I address these key issues in particular reference to two 

pests and two pathogens that represent urgent threats. I explored the sensitivity of SDM modelling 

in two of the major ports in Canada and produced dispersal restricted projections of individual FIS 

distributions in various climate change scenarios. I also analyzed the methodology of determining 

climatic niches and compared the native and post-invasion niches of chosen FIS. 

I found that if I ignored the underlying FIS biology such as use of biologically relevant predictors, 

appropriate feature selection and inclusion of dispersal and biotic interactions when I developed 

SDMs, I obtained complex SDMs that provided an incomplete picture of the potential FIS 

invasion. Most of the representative invasives were far away from reaching niche equilibrium. 

In this thesis throughout I discuss the potential of spatial models in risk analysis of FIS. I provide 

an improved framework for invasive species risk mapping using spatial models. The methodology 

presented in this dissertation to develop pest risk maps is robust and easy and the presented results 

can guide monitoring and help inform management of these and other invasive species.  
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Lay summary 

Biological invasions are becoming one of the main causes of global loss of biodiversity and the 

extinction of species. Early detection and rapid action to prevent introduction or establishment of 

incoming invasives are required for a successful response. Therefore, it is extremely important to 

determine potential areas at risk and identify other relevant factors well in advance for species 

from different geographic sources if effective invasive mitigation strategies are to be formulated. 

This study aims at enhancing understanding of species distribution modelling of invasive species 

with a goal to develop a framework to produce robust risk maps for early assessment of pest risks. 

The mapping framework presented is robust and easy to follow by the risk assessors and the results 

can guide monitoring and help inform management of invasive species. 
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Introduction 

Background  

Biological invasions are becoming one of the main causes of global loss of biodiversity and the 

extinction of species (Groombridge, 1992; Mooney, 2005; Woiwod et al., 1991). They are also 

responsible for substantial monetary losses (e.g. direct economic losses from sectors like 

agriculture, forestry, environment, human health, etc. were reported to be around US$14.45 billion 

in China during 2001-2003 and US$128 billion annually in US) (Pejchar & Mooney, 2009; Xu et 

al., 2006). Biological invasions are usually caused by invasive species [but see (Valéry et al., 

2008)], which the International Union for Conservation of Nature (IUCN) defines as: (i) “a species, 

sub-species or lower taxon occurring outside of its natural range (past or present) and dispersal 

potential (…)” - i.e. alien - that (ii) “becomes established in natural or semi-natural ecosystems or 

habitat, is an agent of change, and threatens native biological diversity” - i.e. invasive (Shine et al., 

2000). Invasive species can be plants, animals, or microorganisms, and their introduction to the 

invaded ecosystem can be either natural or induced by human activities (e.g. as international trade, 

travel and tourism). For this dissertation, forest invasive species (FIS), are referred to as invasive 

species that continue to spread to new areas and pose significant threats to forest health. 

There has been a constant rise in the number of invasive species successfully establishing in new 

habitats (Allen & Humble, 2002; Chornesky & Randall, 2003) and their impacts are anticipated to 

be significant throughout all ecosystems (Levine & D’Antonio, 2003; Musselman, 1994). 

Moreover, the global, national and regional spatial patterns of future species invasion might 

worsen due to rise in international trade (Seebens et al., 2015), increases in human population 

(Seebens et al., 2018) and changes in climate (Peterson et al., 2008). Invasive species are of high 

relevance to both natural and managed ecosystems (Dodds & Orwig, 2011; Kenis et al., 2008; 

Liebhold et al., 1992). The risks for our current ecosystems are so substantial that the Convention 

on Biological Diversity asks for measures ‘‘to prevent the introduction, control or even 

eradication of those alien species which threaten ecosystems, habitats or species’’ (“Convention 

on biological diversity,” 1992). 

https://paperpile.com/c/Rbhw3P/pIPU+k4G4+La4t
https://paperpile.com/c/Rbhw3P/96a4+wboO
https://paperpile.com/c/Rbhw3P/96a4+wboO
https://paperpile.com/c/Rbhw3P/PoIE
https://paperpile.com/c/Rbhw3P/PoIE
https://paperpile.com/c/Rbhw3P/FVb1
https://paperpile.com/c/Rbhw3P/FVb1
https://paperpile.com/c/Rbhw3P/OoQW+J2Tg
https://paperpile.com/c/Rbhw3P/34Ju+YEKM
https://paperpile.com/c/Rbhw3P/0PnQ
https://paperpile.com/c/Rbhw3P/IAgx
https://paperpile.com/c/Rbhw3P/LXJ6
https://paperpile.com/c/Rbhw3P/81Q2+jIIr+HmXh
https://paperpile.com/c/Rbhw3P/81Q2+jIIr+HmXh
https://paperpile.com/c/Rbhw3P/JfSD
https://paperpile.com/c/Rbhw3P/JfSD
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In Canada forests are a major source of capital, providing US$19.8 billion in annual revenue, in 

addition to other social and environmental benefits (NRCan, 2016b). These valued forests have 

historically felt the economic effects of FIS introductions. Significant tree losses in these forests 

were caused by the spruce budworm, European gypsy moth and Dutch elm disease. Additionally, 

several major Canadian cities suffered from widespread tree mortality caused by the Dutch elm 

disease (DED). In Quebec alone, nearly 600,000 elm trees were removed as a result of DED 

infestation between 1945 and 1965 (NRCan, 2016a). In the early 1900s, an alien disease, known 

as the white pine blister rust, accounted for significant annual loss of two white pine species within 

Canada. The white pine blister rust is currently one of several FIS endangering white bark pine, a 

high-elevation species that grows within British Columbia and Alberta (NRCan, 2017a).  

A report prepared by the Canadian government in 2014 stated that 20.3 million ha of forest were 

damaged by non-native forest insects (NRCan, 2016c). The European gypsy moth is considered to 

be one of the most destructive FIS in Canada (Brockerhoff et al., 2010).  This species has defoliated 

hardwoods throughout the regions of  eastern Canada at different times throughout the last century 

(Journal et al., 2016). The emerald ash borer, another non-native FIS, is known to have killed urban 

ash trees in Ontario in 2002. Furthermore, it is estimated that up to 15 million ash trees in urban 

and forested areas have been killed by the borer so far (Poland & McCullough, 2006). A report 

prepared for the Canadian Council of Forest Ministers in the year 2009 stated that Canada could 

have avoided an annual cost of $165 million by preventing the introduction and establishment of 

four damaging FIS: Asian longhorn beetle, emerald ash borer, sirex woodwasp, and sudden oak 

death disease (NRCan, 2017a).   

It is estimated that there are thousands of invasive species with the potential to harm Canadian 

forests (Allen et al., 2002). The World Conservation Union’s list of the 100 worst invasive species 

globally includes many species that have already established in Canada. It was assessed that these 

previous introductions account for an annual loss of $7.5 billion in damages to agricultural crops 

and forests (Government of Canada, 2004). Moreover, Colautti et al., (2006), projected a cost of 

$187 million CDN per year that would be required to combat the 16 established non-native FIS in 

Canada. In addition, international trade could be severely threatened by FIS further affecting the 

economy. The detection of ALB in 1998 almost derailed trade between Canada, China, and Hong 

Kong valued at of $30 billion (Government of Canada, 2004). These costs could have been reduced 
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or perhaps, entirely saved if preventive measures were taken well in advance. This includes 

documenting more information about potential FIS, as well as adding comprehensive surveys and 

inspections at locations with the highest potential risk. Having FIS risk distribution maps and 

additional information on FIS ecology and behavior in advance of introductions and outbreaks 

would greatly help resource managers to plan site specific preventative measures. 

Introductions of FIS to new ecosystems are both inevitable, and predictable (Walther et al., 2009). 

Thus, early detection and rapid response to incoming invasives are required for a successful 

response (Kaiser & Burnett, 2010). Early FIS detections are preferred so the species will not have 

time to occupy its entire potential range (Kaiser & Burnett, 2010; Meyerson & Mooney, 2007). 

Early response strategies involve surveying and monitoring of risk areas under threat of invasion 

to find infestations in their earliest stages of invasion. To identify such areas at risk, that are 

suitable for the establishment of invasive species, climate matching methods show promise as they 

are based on the classical assumption that species will be able to establish populations in areas 

outside of their native range that closely match the environmental conditions of their native 

distribution (Wiens, 2011). Thus, by matching climatic conditions, researchers can discern 

meaningful information about invasive species potential establishment range in new habitats.  

Given the potential impact of invasive species, tools are needed that will help prevent invasions, 

or enable effective early responses through robust interception and surveillance frameworks 

(Barbosa et al., 2012; Jiménez-Valverde et al., 2011; Lafond et al., 2019). Unfortunately, these 

programs are costly and require regional prioritization.  Species distribution models (SDMs) are 

one approach used to identify areas at risk of invasion.  SDMs are a combination of tools that 

translate environmental conditions from a species’ known distribution to predict its potential 

distribution in a new habitat. These can be combined with climatic models that forecast future 

climate scenarios, providing further information on the future potential for invasion and spread. 

The information provided by SDMs is critical for conservation and management planning and for 

understanding invasive species ecology and behavior under changing climatic conditions (Padalia 

et al., 2014). 

FIS distribution maps generated from species distribution models are effective risk depiction tools 

that inform managers about probable outbreaks of invasive species. Here, risk is defined as the 

https://paperpile.com/c/Rbhw3P/Mett
https://paperpile.com/c/Rbhw3P/DAOk
https://paperpile.com/c/Rbhw3P/DAOk+ZqOd
https://paperpile.com/c/Rbhw3P/loR0
https://paperpile.com/c/B58Sie/VKB4+ZMPT
https://paperpile.com/c/B58Sie/hR9g
https://paperpile.com/c/B58Sie/hR9g
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probability that a FIS will establish in a specific area and cause damage.  In addition to this, the 

maps can also describe the spread patterns and potential establishment ranges of FIS and support 

strategic pest management decisions and efforts. This becomes especially important when 

considering global trade restrictions, planning field surveys, and setting up domestic quarantines 

(Venette et al., 2010a).  

SDMs can be broadly classified into two groups: correlative models and process-based 

/mechanistic models (Peterson et al., 2015). Correlative SDMs are trained with species occurrence 

data and associated environmental layers from a known distribution, which is then used to identify 

suitable habitats in a new range for a given invasive species (Elith et al., 2010a). The entire process 

is complex and must manage uncertainties within the modelling process (Gould et al., 2014). 

Recent advances in iterative model development, model fitting, evaluation and improvement have 

led to an increase in accuracy, however questions remain around the practice of model building. 

Without biologically informed baseline data, complex default SDM models could be selected, even 

though alternative settings may be more appropriate (Merow et al., 2013). Additional scrutiny has 

come to other aspects of SDM modelling, such as estimating FIS distributions accurately within a 

new geography (transferability), the choice of bioclimatic variables, and the effect of varying 

model-fitting parameters on the resulting distribution predictions ( Jiménez-Valverde et al., 2008; 

Srivastava et al., 2019). 

Currently, modelling FIS distributions using SDMs present three major challenges: first, use of 

default model settings even though the alternative settings may offer better and more accurate 

outputs. Secondly, bioclimatic variables usually included in the SDMs do not account for 

anthropogenic impacts on the response variable (Lippitt et al., 2008). And finally the methods to 

integrate FIS heritable traits into projections of species distributions are not generally used (Engler 

et al., 2012). This is despite the fact that FIS invasions can be hypothesized as a result of an increase 

in dispersal capabilities (Groves & Di Castri, 1991). Given the prevalence of SDMs within the 

invasion literature, addressing these issues in a SDM framework is critical. 

In this dissertation I present a modelling framework for assessing the invasion risk of FIS. I chose 

four FIS that represent urgent threats to serve as case studies i: two insects (Asian longhorned 

beetle [ALB], Anoplophora glabripennis (Motschulsky); Asian gypsy moth [AGM], Lymantria 

https://paperpile.com/c/B58Sie/O0Vy
https://paperpile.com/c/B58Sie/IZJE
https://paperpile.com/c/B58Sie/LnIM
https://paperpile.com/c/B58Sie/YrTT
https://paperpile.com/c/B58Sie/ghmY+OD7t
https://paperpile.com/c/B58Sie/ghmY+OD7t
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dispar asiatica Vnukovskij and L. d. japonica Motschulsky) and two pathogens (sudden oak death 

[SOD], Phytophthora ramorum Werres; Dutch elm disease [DED], Ophiostoma ulmi (Buisman) 

Melin & Nannf. and O. novo-ulmi Brasier). In chapter 3, I have replaced AGM with another 

invasive insect i.e. sirex woodwasp [WW], Sirex noctilio (Fabricus) due to different objectives and 

also due to the fact that AGM has not been yet established outside its native range. The selected 

FIS pose significant threats to Canadian forests (Hamelin & Roe, 2019). The two insects are 

considered high risk invasives and subject to regulatory action (e.g., removal of tree hosts for ALB 

eradication, denying vessel entry if AGM is detected) by the Canadian Food Inspection Agency, 

the national regulatory body responsible for protecting Canada’s plant resources from invasive 

species. SOD has been found associated with nursery plants in the southern coastal area of BC, 

but not yet in urban or forest environments in Canada. The CFIA conducts annual surveys for SOD 

in nurseries, and if detected, the nursery is placed under quarantine and infected plant material is 

destroyed resulting in economic losses to the owner. DED has devastated elms across most of 

Canada since its arrival in the 1940’s but does not yet occur in Alberta or BC. There are various 

provincial and municipal groups across the country supporting programs to protect remaining elms 

from the deadly disease. Despite these efforts from various plant protection groups, these species 

continue to pose a risk to Canada. For example, a new ALB population was detected in Toronto in 

2013 after the first population, detected in 2003, was successfully eliminated. (Turgeon et al., 

2015). Similarly, the CFIA continues to detect AGM on vessels coming from Asian ports (recent 

find in 2019) after being eradicated around the Vancouver port in 1992 (Nealis, 2009). 

Gypsy moth (Lymantria dispar L.) is an invasive insect which is listed as one of the 100 worst 

invasive species in the world, selected from global invasive species database by the International 

Union for Conservation of Nature (IUCN). Gypsy moth can cause serious defoliation and 

weakening of trees and shrubs, that either leads to tree death directly or indirectly by subsequent 

infestation by a secondary pest. Currently, gypsy moth is spreading in North America (primarily 

in the United States) damaging both commercial and native forest ecosystems over much of the 

introduced range. The pest also poses a significant economic threat to several other countries that 

are taking actions to prevent its introduction (Limbu et al., 2017). Two subspecies, Asian gypsy 

moth (L. dispar asiatica Vinkovskij), distributed throughout temperate Asia, and the Japanese 

gypsy moth (L. dispar japonica Motschulsky), distributed throughout Japan, are of serious concern 

https://paperpile.com/c/B58Sie/Fcol
https://paperpile.com/c/B58Sie/3qnt
https://paperpile.com/c/B58Sie/3qnt
https://paperpile.com/c/B58Sie/f3xi
https://paperpile.com/c/B58Sie/MyAR
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although they have not yet permanently established (though several incursions have been 

eradicated) outside their native range (Paini et al., 2018). The two subspecies, L. d. asiatica and L. 

d. japonica collectively referred to as Asian gypsy moth (AGM) have a broad host range (over 600 

plant species, including conifers) and the females are flight capable (Keena et al., 2008). They 

have an affinity to fly towards light sources and strong dispersal traits, which makes them a greater 

threat than their European counterpart. The AGM females have been found to fly to lights in port 

areas and lay their egg masses on cargo and the superstructure of ships. A study by Paini et al., 

(2018) found that more than 7,500 ships that have the potential to carry AGM egg masses from 

Asia arrived in 2005 at Canadian ports that fall into the climatically suitable range of AGM. 

Several detections of AGM egg masses on vessels coming from Asian ports have occurred in 

Canada (the first eradication effort occurred around the Vancouver port in 1992) which have led 

to the implementation of international phytosanitary measures to prevent AGM establishment that 

are significantly reducing the risk of invasion (Nealis, 2009). 

Asian longhorned beetle is a large cerambycid woodboring beetle that attacks >100 species of 

hardwood trees. ALB is native to Asia (21 to 45 ° N latitude), though predominantly found within 

central and northern China, as well as the Korean peninsula. ALB infested large monocultures of 

hybrid poplars and windbreaks of willows that were planted as part of an afforestation effort in 

northern China in the 1970s and 1980s, and subsequently became recognized as an important forest 

pest (Meng et al., 2015, 2014). The first invasive population of ALB in North America was 

detected in New York in 1996 (Haack et al., 1997; Blackburn et al. 2020) and the first detection in 

Europe was in 2001 (Hérard et al., 2006). Subsequently more invasive populations have been 

discovered in North America between 38 and 44° N latitude (five states and one Canadian 

province) and Europe between 33 and 60 ° N latitude  (11 countries, (Javal et al., 2019a; Moussa 

& Cocquempot, 2017; Blackburn et al. 2020). To date the most northern invasive population of 

ALB was in Finland and the most southern is in Lebanon, indicating that the species can tolerate 

a wide thermal range. The source of the invasive populations remains unclear due to complex 

genetic structure in the native range and potentially reticulated invasion pathways due to secondary 

spread from invasive populations (Javal et al., 2019a, 2019b). 

https://paperpile.com/c/B58Sie/zzCu
https://paperpile.com/c/B58Sie/MyAR
https://paperpile.com/c/B58Sie/f3xi
https://paperpile.com/c/XF3u10/l6R2+3Wn8
https://paperpile.com/c/XF3u10/dNgM+NHWT
https://paperpile.com/c/XF3u10/uAyH
https://paperpile.com/c/XF3u10/dNgM+NHWT
https://paperpile.com/c/XF3u10/dNgM+NHWT
https://paperpile.com/c/XF3u10/dNgM+NHWT
https://paperpile.com/c/XF3u10/dNgM+NHWT
https://paperpile.com/c/XF3u10/dNgM+NHWT
https://paperpile.com/c/XF3u10/dNgM+bYKr


 

 

7 

 

Sudden oak death is an invasive disease caused by Phytophthora ramorum, a pathogen that was 

discovered simultaneously on oaks in California and rhododendron in Europe in the mid-1990s 

(Grünwald et al., 2019; Rizzo et al., 2005). The pathogen is native to Indochina and the source of 

the two introductions was recently discovered to be in Vietnam (Jung et al., 2020). It has an 

extremely broad host range, which facilitates its spread through the horticulture industry. But the 

pathogen can also spread from nurseries into natural forests where it can cause severe outbreaks. 

The epidemic spread is quite different in nurseries, where it is driven by the movement of infected 

material via trade, and in forests where the presence of sporulating hosts, such as bay laurel and 

tanoak in California, is responsible for the production of spores and the intensification of 

outbreaks. The pathogen sporulation and host infection appear to be restricted to the rainy season 

in the Pacific Northwest and the annual variation in precipitation is likely an important factor 

influencing the epidemic (Rizzo et al. 2005). The disease has so far been reported in western North 

America, throughout Europe and recently in Japan and Vietnam (Grünwald et al., 2019; Jung et 

al., 2020). 

Dutch elm disease is caused by a pathogen complex that comprises Ophiostoma novo-ulmi, O. 

ulmi and O. himal-ulmi. The origin of the pathogen is still unclear, but is assumed to have 

originated from the Himalayas (Brasier & Mehrotra, 1995). The first disease pandemic was caused 

by O. ulmi in the 1940s in North America and Europe, followed by a second pandemic by the more 

virulent O. novo-ulmi. The pathogen is vectored by elm bark beetles that carry the fungus spores 

into the vascular system of the host. The pathogen can be spread both by long-term transport of 

elm wood and by the spread of the beetle. The pathogens appear to thrive under various 

environmental conditions. In North America it is found from the West Coast to the East Coast and 

from Saskatchewan to Texas. All North American and European elms are susceptible to various 

degrees, but several Asian elm species are resistant. 

Woodwasp Sirex noctilio is native to Europe, northern Asia and northern Africa where it has few 

negative impacts on Pinus plantations and rarely outbreaks (Spradbery & Kirk, 1978; Wermelinger 

& Thomsen, 2012). The first invasive population of Sirex noctilio was found in New Zealand in 

the early 1900’s and it has since invaded many pine producing countries in the southern 

hemisphere (Australia, Uruguay, Argentina, Brazil, Chile, Western Cape, Eastern Cape, Kwazulu-

https://paperpile.com/c/XF3u10/qeQl+Gxdd
https://paperpile.com/c/XF3u10/N0S1
https://paperpile.com/c/XF3u10/N0S1+Gxdd
https://paperpile.com/c/XF3u10/N0S1+Gxdd
https://paperpile.com/c/XF3u10/nw7h
https://paperpile.com/c/XF3u10/e2e6+No1k
https://paperpile.com/c/XF3u10/e2e6+No1k
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Natal, Mpumalanga and Limpopo). In 2004, it was first discovered in North America (Hoebeke et 

al., 2005) and it is now found in seven U.S. states and 2 Canadian provinces. Genetic analyses 

have revealed a complicated invasion history, with invasive populations showing at least some 

level of admixture, meaning derived from more than one source population (Boissin et al., 2012).  

The Oceania populations came from Europe, then insects from there spread to South Africa and 

South America. South African populations also received insects from South America and an 

unknown location.  South American populations received insects from Europe directly and Chile 

also received insects from the same unknown population as is found in South Africa. North 

American populations are a mixture of insects from South America, Europe and possibly Australia.  

Interestingly, the population of sirex sampled in Switzerland shows invasion by a mixture of the 

unknown source and South American genotypes, even though it is part of the native range.  It uses 

many Pinus species, but P. radiata, P. taeda and P. patula are very susceptible to attack. In the 

invaded areas in the southern hemisphere damaging outbreaks occur. Tree death occurs after 

female wasps oviposit eggs along with a phytotoxic mucus and a symbiotic wood decay fungus 

(Amylostereum areolatum) into stressed trees. Since the larvae require the decaying wood to 

develop, conditions must be right for fungal growth to occur. The temperature range over which 

sirex can complete development is 12.5-33.5°C but 60% die at 33.5°C (Madden, 1981). In warmer 

climates it can have two generations per year and in colder climates it may take multiple years to 

complete a generation (Yousuf et al., 2014). 

Rationale 

Canada’s relatively cool climate has acted as a barrier to many invasive species in the past but 

increases in temperature and lack of natural enemies could eventually lead to much higher 

probabilities of new species invasions (NRCan, 2017b). Several FIS that have already established 

in the US, are gradually advancing north to Canada (NRCan, 2016d). In recognition of FIS ability 

to threaten the country’s environment and economy (Roy et al., 2014), a set of proactive measures 

must be introduced to prevent their introduction and establishment in Canada (NRCan, 2016a). 

Therefore, it is extremely important to design a robust SDM framework in order to identify 

potential areas at risk well in advance if effective FIS mitigation strategies are to be formulated. 

Recent increased accessibility to high resolution environmental and FIS data can provide the data 

needed for precise modelling of species distributions (Kumar & Stohlgren, 2009).  

https://paperpile.com/c/XF3u10/RaCE
https://paperpile.com/c/XF3u10/wHTF
https://paperpile.com/c/XF3u10/RbK1
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Currently, for the focal FIS, there is information on preferred hosts, responses to temperature, and 

other biological information, but their specific niche characteristics in their respective introduced 

and invasive ranges have not been defined or compared. Moreover, there are limited studies that 

examine the potential risk distribution regions and spread patterns of the focal FIS across Canada. 

Also, studies addressing impacts of FIS dispersal on projections of their distributions are very rare 

(Srivastava et al., 2019). Providing such information is important in understanding their ecology 

leading to better early detection rates. The outcomes of this study are highly important, as advanced 

modelling approaches presented here allow the evaluation of risk for non-native FIS, even before 

they invade new regions. The present work will assist decision makers with related FIS control 

decisions. 

Research objectives  

The overall aim of my doctoral thesis is to enhance the understanding of species distribution 

modelling for invasive species with a goal to develop a framework to produce robust risk maps for 

early assessment of pest risks. The specific research objectives are listed below. 

• Research objective 1 (Chapter 1): Identify current applications of SDMs and review the 

benefits and challenges of using SDMs to estimate, and spatially project, invasion risk. 

• Research objective 2 (Chapter 2): Map FIS potential distribution, dispersal and prediction 

uncertainty and propose a framework to produce robust pest risk maps. 

• Research objective 3 (Chapter 3): Compare post invasion realized niche shifts across 

diverse populations of FIS. 

Chapter 1 is a review chapter on applications, benefits and challenges of species distribution 

models in invasive species management. Here, I have reviewed basic concepts and the recent 

developments in the fields of SDMs, and related spatial modelling tools and techniques. Chapter 

2 is a research chapter wherein I have developed SDMs to map the potential distributions of the 

focal FIS across Canada and their respective native regions. Here, I have presented a framework 

to produce a dispersal restricted potential distribution of invasives in changing climate scenarios. 

The chapter is important for establishing a risk mapping framework and further identifying the risk 

areas that are more likely to be invaded, given introduction of the FIS, either accidentally or by 

other means. The chapter brings a novel approach to bring the elements of species genetic traits 

https://paperpile.com/c/B58Sie/OD7t
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into projections of species distributions. In Chapter 3, I have investigated niche conservatism for 

major FIS. Exploring niche characteristics between native and introduced ranges offered additional 

insights that will be useful in understanding range expansion and invasion potential of non-native 

species. Figure 1 provides a conceptual diagram outlining the structure of the dissertation.   
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 Designing biology informed anthropogenically driven invasive forest pests risk models 

 

 

 

Figure 1 Conceptual diagram outlining the structure of this dissertation. SDMs- Species distribution models; FIS- Forest invasive species; FN- Fundamental 

niche; RN- Realized niche 
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Chapter I: Species distribution models (SDMs): applications, benefits and 

challenges in invasive species management- A review1 

1.1. Introduction 

SDMs are predictive tools that identify relationships between observed occurrences and 

environmental predictors by using statistical models or theoretically derived response curves (Elith 

& Leathwick, 2009; Guisan & Thuiller, 2005; Stohlgren et al., 2010). SDMs are also referred to 

as correlative or statistical models, habitat models, or ecological niche models and are broadly 

divided into two groups: correlative, and process-based or mechanistic models (Coops et al., 2009). 

These correlative and process based  models are derived from various statistical approaches which 

include generalized linear models (GLM), ordination and classification methods, Bayesian 

models, locally weighted approaches, environmental envelopes, or combinations of these models 

(Elith & Leathwick, 2009). Correlative SDMs approaches utilize species occurrence data and 

associated environmental layers of the study area, to produce maps of probability of occurrence or 

relative environmental suitability for a species, whereas process-based, or mechanistic niche 

models, use species functional characteristics and physiological thresholds for model fitting 

(Kearney & Porter, 2009). The correlative SDMs make use of existing species occurrence data 

collected from surveys, online databases or museums/herbaria records for fitting (Elith & 

Leathwick, 2009). In practice, most mechanistic models require exhaustive experimental data on 

species functional traits which becomes a challenge for the target species under study (Shabani et 

al., 2016). The correlative approach also differs from the mechanistic from the way it represents 

species' niche. A common understanding is that correlative approaches only measure the realized 

niche, which is a subset of a fundamental niche where the species is not absent due to biotic 

competition. Whereas, the mechanistic approach approximates species fundamental niche 

(Dormann et al., 2012). This can be a challenge for correlative approaches as for them the 

 
1The content of this chapter has been adapted from: 

-Srivastava, V*., Lafond, V., & Griess, V. C. (2019). Species distribution models (SDM): applications, benefits and 

challenges in invasive species management. CAB Reviews, 14(020), 1-13. 

-Lafond, V., Lingua, F., Lumnitz, S., Paradis, G., Srivastava, V., & Griess, V. C. (2019). Challenges and opportunities 

in developing decision support systems for risk assessment and management of forest invasive alien species. 

Environmental Reviews, (ja). 

https://paperpile.com/c/Rbhw3P/e9ih+ogqY+k2GC
https://paperpile.com/c/Rbhw3P/e9ih+ogqY+k2GC
https://paperpile.com/c/Rbhw3P/snNe
https://paperpile.com/c/Rbhw3P/k2GC
https://paperpile.com/c/Rbhw3P/Xbjs
https://paperpile.com/c/Rbhw3P/k2GC
https://paperpile.com/c/Rbhw3P/k2GC
https://paperpile.com/c/Rbhw3P/19QQ
https://paperpile.com/c/Rbhw3P/19QQ
https://paperpile.com/c/Rbhw3P/avpB
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fundamental niche of the species remains unknown. However, both of the approaches have their 

own strengths and weaknesses. 

Amongst correlative SDMs, several algorithms are available for predicting species potential 

distributions (Elith & Graham, 2009). MaxEnt is one of the most popular choices for correlative 

models (Merow et al., 2013). MaxEnt is a presence-only based method which has been 

successfully applied to model the distributions of invasive species in different parts of the world 

[e.g., (Fernández & Hamilton, 2015; Ficetola et al., 2007; Kumar et al., 2016; Meyer et al., 2010; 

Padalia et al., 2014; Poulos et al., 2012; Stohlgren et al., 2010; Ward, 2007)]. MaxEnt generates a 

probability estimate of presence (or relative environmental suitability) of a species that varies from 

0 (lowest) to 1 (highest). Whereas, CLIMEX is a process-based species distribution modeling tool 

(Merow et al., 2013; Sutherst, 1985) which generates a climatic suitability index for the species, 

known as the Eco climatic Index (EI). EI ranges from 0 to 100; values close to 100 represent 

landscape suitability for the species establishment, whereas 0 represents locations that are 

unsuitable for survival of the species. Both of them have been found to be very effective in each 

of the categories that aim to predict invasive species establishment risk (Gallien et al., 2010; Jones, 

2012; Kumar et al., 2014b, 2015, 2016; Webber et al., 2011). 

The popularity and rise in the availability of SDMs has facilitated their use in invasive species 

management (Elith & Leathwick, 2009). However, the robustness of risk maps created using 

SDMs has been questioned due to the way the models are developed and the manner in which 

output maps are interpreted (Venette et al., 2010). Guisan & Thuiller, (2005) attribute this to the 

practice of constructing weak ecological baseline assumptions when building an SDM. This might 

lead to inaccurate assessments of invasion risk, which in turn has the potential to support the 

selection of sub- optimal response measures, as well as an over-, or under investment in mitigation 

activities (Venette et al., 2010). 

This research chapter provides an overview of various approaches used to build a robust correlative 

SDM that incorporate strong ecological baseline assumptions for accurate assessments of the 

invasion risk, while also reviewing various applications, benefits and challenges of SDMs, 

particularly in the areas of biological invasions. I have consciously excluded process based models 

[see (Kearney & Porter, 2009)], as they require thorough understanding of species physiological  

https://paperpile.com/c/Rbhw3P/7NVp
https://paperpile.com/c/Rbhw3P/jCbM
https://paperpile.com/c/Rbhw3P/c1Dg+caOt+R7eK+9DIs+MjqO+yBMp+e9ih+9PBT
https://paperpile.com/c/Rbhw3P/c1Dg+caOt+R7eK+9DIs+MjqO+yBMp+e9ih+9PBT
https://paperpile.com/c/Rbhw3P/jCbM+ZwDH
https://paperpile.com/c/Rbhw3P/9PBT+Pg3y+gNra+ZXzf+2Nl7+McK6+eO7n
https://paperpile.com/c/Rbhw3P/9PBT+Pg3y+gNra+ZXzf+2Nl7+McK6+eO7n
https://paperpile.com/c/Rbhw3P/k2GC
https://paperpile.com/c/Rbhw3P/Mok5
https://paperpile.com/c/Rbhw3P/ogqY
https://paperpile.com/c/Rbhw3P/Mok5
https://paperpile.com/c/Rbhw3P/Xbjs
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responses to environmental factors and are often unavailable for new arriving alien species. I 

address the following questions: 

 

1) What are the current applications of SDM in ecology and biological invasions in 

particular? 

2) What are the benefits and challenges of using SDM to estimate, and spatially project, 

invasion risk?  

3) What are the important aspects to consider when building a SDM for mapping invasion 

risk?  

1.2 Methods and materials 

1.2.1 Review methodology 

I conducted a literature search using Clarivate Analytic’s web of science search platform using the 

search phrases “Species Distribution Modelling”, “Niche Modelling”, “Habitat Predictive 

Modelling”, “Habitat Mapping”, Invasive Species Niche Modelling”, and “Invasive Species Risk 

Mapping”. I used these search phrases as published articles in this field often contains these phrases 

in the title of the article. Hence, I sought papers that contained these search phrases in the title. The 

search phrases were entered separately with an “OR” separator on the basic search function, which 

yielded a total of 3,457 articles published between 2000 and 2019. I first restricted this selection 

to papers published between 2000 and 2019, to focus the review on recent SDM applications and 

methodological advancements along with modelling challenges. Later, I refined the search based 

on the research areas in which they were published: environmental sciences ecology, biodiversity 

conservation, zoology, plant sciences, forestry, and entomology. I did this to analyze the trend of 

using SDM in different areas of ecology and biogeography. I then selected 100 scientific papers 

centered on invasive species distribution modelling. Papers were chosen based on the relevancy to 

the topic. I also analyzed the temporal trend of using SDMs in the fields of ecology, biodiversity 

conservation, environmental sciences, plant sciences, evolutionary biology, entomology and 

multidisciplinary sciences (Figure 3 and 4). This was accomplished by using Web of Science 

research categories. Considering these resources, I provide a brief review of the various aspects 
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related to creating an effective distribution model for invasive species, along with the benefits, 

challenges and good practices associated with correlative species distribution models (SDMs).  

1.3 Review text 

1.3.1 Current trends in applications of SDMs in ecology and invasion biology 

SDMs are currently in use for a wide range of applications (Table 1). From characterizing niche 

and ecological requirements of a particular species (Peters & Peters, 1991; Thum & Lennon, 2010; 

York et al., 2011), to mapping the potential distribution of plants and animals (Kumar et al., 2016; 

Peterson et al., 2001, 2004, 2007, 2008; Ward, 2007), or using output maps in policy making, and 

to prioritize conservation efforts (Barrio et al., 2006; Beaumont et al., 2007; Burgess et al., 2017; 

Cayuela et al., 2009; Jeschke & Strayer, 2008; Porfirio et al., 2014; Thomson et al., 2006). 

Williams et al., (2009) successfully used a suite of SDMs as a tool to discover populations of rare 

plant species with highly specialized habitat needs. Their models included generalized linear 

models (GLM), artificial neural networks (ANN), random forests (RF) and MaxEnt. Engler et al., 

(2004) provided an enhanced method for predicting the distribution of rare and endangered species 

from occurrence and pseudo-absence data by simulating pseudo-absences based on ecological 

niche factor analysis (ENFA) and concluded that ENFA weighted pseudo-absences could be a 

possible way to enhance a SDMs explanatory power. Raes et al., (2009) assessed botanical richness 

and endemicity patterns of all species in Flora Malesiana in Borneo using SDM and concluded 

that SDM can effectively guide conservation efforts. Esselman & Allan, (2011) explored SDM 

applications in a data-limited freshwater setting (inadequate human capacity and technology, lack 

of investment in research and monitoring) in developing countries of northeastern Mesoamerica 

to enhance conservation planning and Brotons et al., (2004) used data from long-term monitoring 

programs data to map habitat suitability for 99 bird species. Furthermore, Svenning et al., (2011) 

concluded that SDMs can also be used in paleobotany, where it can provide a quantitative 

ecological perspective, while offering potential for an enhanced contribution of paleobiology to 

ecology and conservation biology. This compliments the ability of the SDMs to provide 

predictions of past organism’s distributions and assessment of their range determinants. Overall, 

the applications of SDMs have evolved continually over the past decade (Figures 2 and 3). 

https://paperpile.com/c/Rbhw3P/xpWA+7c5C+Hj9F
https://paperpile.com/c/Rbhw3P/xpWA+7c5C+Hj9F
https://paperpile.com/c/Rbhw3P/LXJ6+c1Dg+1QjS+tt4x+9PBT+oCn7
https://paperpile.com/c/Rbhw3P/LXJ6+c1Dg+1QjS+tt4x+9PBT+oCn7
https://paperpile.com/c/Rbhw3P/poks+KYmY+IN5J+glCJ+jR5L+gH8Y+oeux
https://paperpile.com/c/Rbhw3P/poks+KYmY+IN5J+glCJ+jR5L+gH8Y+oeux
https://paperpile.com/c/Rbhw3P/Cqhi
https://paperpile.com/c/Rbhw3P/GXRp
https://paperpile.com/c/Rbhw3P/GXRp
https://paperpile.com/c/Rbhw3P/6ias
https://paperpile.com/c/Rbhw3P/Z3y0
https://paperpile.com/c/Rbhw3P/C3yn
https://paperpile.com/c/Rbhw3P/BNeI
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Table 1 Examples of species distribution models applications in the fields of ecology and biogeography 

Type of applications Example reference(s) 

Projecting potential impacts of climate 

change on species distributions 

Dullinger et al., 2004; Elith et al., 2010; Medley, 2010; Padalia et al., 

2015; Vanhanen et al., 2007 

Predicting species invasion  Febbraro et al., 2019; Jiménez-Valverde et al., 2011; Régnière et 

al.,2008; Williamson, 2006 

Characterizing the niche and exploring 

the ecological requirements 

Brotons et al., 2004; Kumar et al., 2014a; Leibold, 1995; Lippitt et al., 

2008; Meentemeyer et al., 2008 

Conservation and policy making Abolmaali et al., 2018; Breiner et al., 2015; Cayuela et al., 2009; 

Daehler et al., 2004; Lawler et al., 2011; Meller et al., 2014. 

Assessing the impacts of land cover 

change and human footprint on species 

distributions  

Ancillotto et al., 2016; Fuller et al., 2012; Gallardo et al., 2015; Smolik 

et al., 2010; Thuiller et al., 2004; Westphal et al., 2008 

Predicting the distribution of rare and 

endangered species 

Abrha et al., 2018; Breiner et al., 2015; Cayuela et al., 2009; Daehler 

et al., 2004; Guisan et al., 2006; Meller et al., 2014; Thapa et al., 2018; 

Tran, 2018; Yi et al., 2016 

Testing an ecological theory Austin, 2007; Elith & Leathwick, 2009; Guisan & Thuiller, 2005; 

Hoffman et al., 2010; Peterson, Townsend Peterson, & Vieglais, 2001; 

Soberon & Townsend Peterson, 2005 

Risk assessment Jiménez-Valverde et al., 2011; Matsuki et al., 2001; Mckenney et al., 

2003; Venette et al., 2010; Yemshanov et al., 2010; Zimmermann et 

al., 2000 

Assessing disease risk                                                      Kluza et al., 2007; Meentemeyer et al., 2008; Peterson & Samy, 2016; 

Václavík et al., 2010 

  

https://paperpile.com/c/Rbhw3P/ajFP+9iyb+pmSY+VKyQ+GTDH
https://paperpile.com/c/Rbhw3P/ajFP+9iyb+pmSY+VKyQ+GTDH
https://paperpile.com/c/Rbhw3P/rWXx+ok8L+2f7K+80k2
https://paperpile.com/c/Rbhw3P/rWXx+ok8L+2f7K+80k2
https://paperpile.com/c/Rbhw3P/C3yn+3K8F+lvMT+aaZ1+U6Yf
https://paperpile.com/c/Rbhw3P/C3yn+3K8F+lvMT+aaZ1+U6Yf
https://paperpile.com/c/Rbhw3P/EBHh+HkNt+gH8Y+ztlt+df0o+DbPd+D30g
https://paperpile.com/c/Rbhw3P/EBHh+HkNt+gH8Y+ztlt+df0o+DbPd+D30g
https://paperpile.com/c/Rbhw3P/NoGc+6dk3+eVZ2+7RGg+2GyB+sYT3
https://paperpile.com/c/Rbhw3P/NoGc+6dk3+eVZ2+7RGg+2GyB+sYT3
https://paperpile.com/c/Rbhw3P/EBHh+HkNt+gH8Y+df0o+DbPd+MBjT+4OvC+Fokn+xZkW+YpQw
https://paperpile.com/c/Rbhw3P/EBHh+HkNt+gH8Y+df0o+DbPd+MBjT+4OvC+Fokn+xZkW+YpQw
https://paperpile.com/c/Rbhw3P/EBHh+HkNt+gH8Y+df0o+DbPd+MBjT+4OvC+Fokn+xZkW+YpQw
https://paperpile.com/c/Rbhw3P/ogqY+k2GC+4odC+T92G+9PFf+C4l5
https://paperpile.com/c/Rbhw3P/ogqY+k2GC+4odC+T92G+9PFf+C4l5
https://paperpile.com/c/Rbhw3P/ogqY+k2GC+4odC+T92G+9PFf+C4l5
https://paperpile.com/c/Rbhw3P/Mok5+2f7K+02yg+4hHz+eetL+J5Dv+ZXzf
https://paperpile.com/c/Rbhw3P/Mok5+2f7K+02yg+4hHz+eetL+J5Dv+ZXzf
https://paperpile.com/c/Rbhw3P/Mok5+2f7K+02yg+4hHz+eetL+J5Dv+ZXzf
https://paperpile.com/c/Rbhw3P/UviE+3K8F+HoU0+4INc
https://paperpile.com/c/Rbhw3P/UviE+3K8F+HoU0+4INc
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Figure 3 Publications on species distribution models and their various areas of application. 

Figure 2 Publications on primary applications of species distribution models in various fields of ecology and 

biogeography. 
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Most SDMs applications fall in the fields of ecology and biodiversity conservation (Figure 3). 

Within these broad fields SDMs are used for diverse applications, primarily related to climate 

change studies, exploring range shifts of species and studying species invasion (Figure 2). It should 

however be noted that this often involves extrapolating the predictions to novel climates, which 

often requires extreme cautions (see 1.3.3.2). 

SDMs applications related to invasive species and risk mapping are relatively recent but the field 

is evolving (Febbraro et al., 2019; Meentemeyer et al., 2008; Padalia et al., 2014; Poulos et al., 

2012; Smolik et al., 2010; Srivastava et al., 2018). In the recent years a gradual increase in the 

number of studies using SDM to answer questions related to biological invasions has been 

observed (Figure 2). I reviewed current applications of the SDMs concerning biological invasions 

and found that the major applications were around investigating species invasion ecology (Ficetola 

et al., 2007; Meyer et al., 2010; Muirhead et al., 2006; Stiels et al., 2011, 2012; Václavík & 

Meentemeyer, 2009), estimate disease risk (Kluza et al., 2007; Meentemeyer et al., 2008; Peterson 

& Samy, 2016; Václavík et al., 2010), determine possible invasive species range shifts under 

climate change (Dullinger et al., 2004; Elith et al., 2010; Medley, 2010; Padalia et al., 2015; 

Vanhanen et al., 2007) and assess the impacts of land cover change (Ancillotto et al., 2016; Fuller 

et al., 2012; Gallardo et al., 2015; Smolik et al., 2010; Thuiller et al., 2004; Westphal et al., 2008) 

and human footprint (Ancillotto et al., 2016; Fuller et al., 2012; Gallardo et al., 2015; Smolik et 

al., 2010; Thuiller et al., 2004; Westphal et al., 2008) on invasive species distribution. Although 

SDMs can be applied in a variety of ways to solve the complex issues related to invasive species, 

numerous challenges are linked to the process involved in developing SDMs and predicting the 

distributions. In the following sections I review the benefits and challenges associated with the 

SDMs in brief.     

1.3.2 Benefits and challenges of using SDM in invasion biology  

In regions where invasive species are a significant contributor to the global change in biodiversity 

and considered one of the key reasons for species extinctions (Holmes et al., 2009), preventive 

measures assisted by SDMs can be of great value. For example, a report prepared for the Canadian 

Council of Forest Ministers in the year 2009 stated that Canada could have avoided spending $165 

https://paperpile.com/c/Rbhw3P/caOt+Sd1v+R7eK+rWXx+3K8F+7RGg
https://paperpile.com/c/Rbhw3P/caOt+Sd1v+R7eK+rWXx+3K8F+7RGg
https://paperpile.com/c/Rbhw3P/9DIs+G793+8Lip+MjqO+nHYT+iAu7
https://paperpile.com/c/Rbhw3P/9DIs+G793+8Lip+MjqO+nHYT+iAu7
https://paperpile.com/c/Rbhw3P/9DIs+G793+8Lip+MjqO+nHYT+iAu7
https://paperpile.com/c/Rbhw3P/UviE+3K8F+HoU0+4INc
https://paperpile.com/c/Rbhw3P/UviE+3K8F+HoU0+4INc
https://paperpile.com/c/Rbhw3P/ajFP+9iyb+pmSY+VKyQ+GTDH
https://paperpile.com/c/Rbhw3P/ajFP+9iyb+pmSY+VKyQ+GTDH
https://paperpile.com/c/Rbhw3P/NoGc+6dk3+eVZ2+7RGg+2GyB+sYT3
https://paperpile.com/c/Rbhw3P/NoGc+6dk3+eVZ2+7RGg+2GyB+sYT3
https://paperpile.com/c/Rbhw3P/NoGc+6dk3+eVZ2+7RGg+2GyB+sYT3
https://paperpile.com/c/Rbhw3P/NoGc+6dk3+eVZ2+7RGg+2GyB+sYT3
https://paperpile.com/c/Rbhw3P/TzGA
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million annually by preventing the introduction and establishment of four damaging a forest 

invasive species (FIS): Asian longhorn beetle, emerald ash borer, sirex woodwasp, and sudden oak 

death disease. Using risk maps to guide surveying and monitoring programs aimed at finding 

infestations in their earliest stages of invasion appears to be a promising and cost-effective 

approach (Brockerhoff et al., 2012; Kumar et al., 2014b). These distribution maps generated from 

SDMs are becoming the favored guide for resource managers who repeatedly survey for non-

native species (Jiménez-Valverde et al., 2011; Venette et al., 2010). Risk maps derived from SDMs 

support decision making for pest management and depict risk probability based on the likelihood 

of an alien species arrival or establishment (Jiménez-Valverde et al., 2011). These maps can play 

a pivotal role in the study of alien species and have potential to describe where invasive species 

might arrive, establish, spread, or cause harmful impacts. They might also aid in pest management 

decisions such as international trade regulations, design of surveys and local quarantines (Venette 

et al., 2010).  

Though SDMs have multiple benefits as discussed above in estimating and projecting invasion 

risk and can be used in variety of ways to assist decision makers, building SDMs and projecting 

the distributions of an invasive species is not an easy task.  Many uncertainties are associated with 

these projections, particularly when it comes to building a robust SDM for an invasive species. 

Invasive species often encounter novel environment settings in their nonnative range and it 

becomes hard for a SDM to capture the new settings from the native range of the species (Kumar 

et al., 2015).The key challenges with respect to using SDMs to estimate and spatially project 

invasive risk have been discussed and highlighted in various reviews. For example, Venette et al. 

(2010) addressed the challenges around unavailability or inadequate information for model 

construction, choice of model, selection of predictors, calibration and validation of models and 

lastly interpretation of the outputs. Whereas, Araújo & Guisan, (2006) identified: clarification of 

the niche notion, sampling design, parameterization, model selection and predictor contribution 

and model evaluation as major challenges. I found major challenges of using SDMs to estimate 

and spatially project invasion risks were related to projection (transferability), niche 

characterization, biotic interactions, species dispersal and uncertainty. 

https://paperpile.com/c/Rbhw3P/Pg3y+W7c1
https://paperpile.com/c/Rbhw3P/2f7K+Mok5
https://paperpile.com/c/Rbhw3P/2f7K
https://paperpile.com/c/Rbhw3P/Mok5
https://paperpile.com/c/Rbhw3P/Mok5
https://paperpile.com/c/Rbhw3P/gNra
https://paperpile.com/c/Rbhw3P/gNra
https://paperpile.com/c/Rbhw3P/V3YH
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1.3.3 Building SDM for mapping invasion risk 

Building a SDM for mapping invasion risk is a multifaceted exercise. Below are outlined the 

required focal steps to build a correlative SDM (Elith & Leathwick, 2009):  

1. Collection of species occurrence data. 

2. Assessment of the accuracy and completeness of the occurrence data. 

3. Inspecting the relevance of the environmental variables to be included in the model. 

4. Minimalizing the correlation effect among the predictor variables. 

5. Selecting a suitable algorithm and later fitting the model to train the datasets. 

6. Evaluating the predictive performance on the test data.  

7. Projecting predictions onto geographic space.  

8. Iterating the process to improve the model performance  

Each of these steps is associated with a set of challenges related to data and method choice, which 

can be even more pronounced in the case of invasive species (Venette et al., 2010). Several factors 

that are involved at each step of SDM development may affect the model predictions, for e.g. 

biased sampling (step 1), inaccurate data (step 2), autocorrelation among the predictor variables 

(step 3) etc.  

Species observation data, their quality and treatment, appear as a critical aspect to achieve more 

robust models for accurate predictions of invasion risk. SDMs indeed heavily rely on good 

occurrence data and relevant environmental dataset. Although current availability of high-

resolution bio-climatic data on various aspects of environments aids for better SDM, occurrence 

information for invasive species often comes as a challenge due to lack of resources or knowledge. 

The knowledge on absence information of invasive species is also often lacking. Therefore, 

different SDMs method have been developed to use either presence-absence (PA) or presence-

only (PO) data (Brotons et al., 2004). In addition, some modelling techniques also use ‘pseudo-

absence’ data for model fitting (e.g., GARP), but these are counted as presence-only methods as 

absence of species is not guaranteed regarding these pseudo-absence locations. Yet, selection of 

pseudo-absence or background sampling is often neglected by modelers, who should try to 

constrain the pseudo-absence or background sampling to the same spatial extent as presences 

https://paperpile.com/c/Rbhw3P/k2GC
https://paperpile.com/c/Rbhw3P/Mok5
https://paperpile.com/c/Rbhw3P/C3yn
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(Liang et al., 2018). The lack of observation data for invasive species demands for more sampling 

and exchange of data between countries. 

SDMs are based on the notion of niche conservatism to which invasive species seldom complies. 

Therefore, issues like transferability, biotic interactions in native and invaded ranges, niche 

characteristics, species dispersal and uncertainty associated with modelled predictions should get 

addressed to appropriately represent invasion risk. In the following sections I discuss these aspects 

and best practices to incorporate them in the SDMs.  

a) Invasive species niche characterization 

SDMs are strongly dependent on the concept of niches in ecology (Jiménez-Valverde et al., 2011) 

as niche requirements are a key factor in determining suitable areas where an alien species can 

establish. Distribution models of invasive species are generally trained on native distributional 

areas (Padalia et al., 2015; Rodda et al., 2011), which often have higher probability to meet the 

distributional equilibrium (Anderson et al., 2003). However, the presence/absence of information 

from invaded regions may offer additional insights into novel environments and biotic contexts 

(Thuiller et al., 2005). Some invasive species might have different niche requirements in non-

native areas than from their native ranges and can also evolve at rapid rates to modify their 

environmental requirements with change in the climate i.e. evolutionary niche shift (Sinclair et al., 

2010), thus it becomes important to check niche conservatism. For example, Fernández & 

Hamilton, (2015) studied the ecological niche transferability of an invasive species and concluded 

that the ecological niche a species holds in their native range is generally a poor predictor of 

invaded range, despite the fact that niche conservatism has often been assumed when predicting 

the spread of invasive species (Medley, 2010).  

In these cases, SDMs won’t be able to precisely predict the spread of invasive species, nor the 

characteristics of the niche for non-native ranges. To limit this risk, Medley (2010) used a 

reciprocal distribution modelling (RDM) approach to investigate niche conservatism for the Asian 

tiger mosquito (Aedes albopictus) and highlighted the importance of the reciprocal models in 

controlling bi-directional dispersal between native and non-native distributions. Reciprocal model 

is a combination of two models i.e., one created using native occurrences and projected onto 

invaded regions, and the other using invasive occurrences which is projected back onto the native 

https://paperpile.com/c/Rbhw3P/JZSY
https://paperpile.com/c/Rbhw3P/2f7K
https://paperpile.com/c/Rbhw3P/ajFP+cEbQ
https://paperpile.com/c/Rbhw3P/gKL0
https://paperpile.com/c/Rbhw3P/M1Nx
https://paperpile.com/c/Rbhw3P/Aa9r
https://paperpile.com/c/Rbhw3P/Aa9r
https://paperpile.com/c/Rbhw3P/yBMp
https://paperpile.com/c/Rbhw3P/yBMp
https://paperpile.com/c/Rbhw3P/9iyb
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distribution (Fernández & Hamilton, 2015). If the native model accurately predicts the introduced 

distribution, and vice versa, the niche has been conserved. It is vital to characterize the niche prior 

to creating a pest risk map, as it can provide additional novel insights on invasive species ecology 

and will yield better informed forecasts of invasive species distributions. 

b) Projecting invasive species distributions  

Novel correlative methods (e.g. MaxEnt; Elith et al., 2006) outperforms more established methods, 

particularly due to ability to fit complex functions, include interactions amongst predictors and use 

of penalty functions to avoid overfitting. Concern is that these correlative models do not perform 

well when projected to novel environments (transferability; Kumar et al., 2014b). Reason being 

their underlying assumption of conservation of niches, which cannot be always true in case of alien 

species (see 1.3.3.1). Since correlative SDMs only measures realized niche, the concept of niche 

conservation has been increasingly doubted because of species environmental variability 

(Dormann et al., 2012). Also, the performances of correlative SDMs might suffer if not fitted 

properly while projecting into novel environments.  

Another study by Sobek-Swant et al., (2012) raises similar concern over SDMs transferability 

abilities. It is widely known that correlative models work best in well sampled regions but much 

of the efforts are needed when predicting species distributions in unsampled regions (nonnative 

ranges in case of alien species). Peterson et al. (2007) chose MaxEnt and GARP to compare model 

transferability success. They chose three bird species Caprimulgus vociferus, Coccyzus 

americanus, and Zenaida macroura that had broad geographical distributions along with a set of 

19 bioclimatic variables in addition to topographical variables. Best subset method was applied in 

the case of GARP while MaxEnt software was used with default settings except tuning the 

regularization multiplier value. Authors found that MaxEnt predictions showed overfitting to the 

input data and was only transferable at low thresholds. Whereas, GARP had a higher success rate 

at the prediction with increased commission errors. GARP models constantly showed similarity 

with species known distributions while MaxEnt models produced an odd pattern in coherence with 

the input data, interestingly, there were no significant differences between their validation scores. 

Contrary to it, Sobek-Swant et al., (2012) found higher AUC scores for GARP for their 

comparative study with MaxEnt. Authors modelled potential distribution of invasive emerald ash 

borer (Agrilus planipennis) in its invaded and native ranges using four ecologically relevant 

https://paperpile.com/c/Rbhw3P/yBMp
https://paperpile.com/c/Rbhw3P/pnkg
https://paperpile.com/c/Rbhw3P/Pg3y
https://paperpile.com/c/Rbhw3P/avpB
https://paperpile.com/c/Rbhw3P/agKY
https://paperpile.com/c/Rbhw3P/agKY
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bioclimatic variables. They found that the MaxEnt model did not provide a reliable estimate 

whereas, GARP when trained in the native range performed well. This better performance of 

GARP leads to the notion that this model might deal with spatial bias better than MaxEnt . GARP 

has been found successful for predicting invasive species distributions. However, it has been 

criticized for over prediction (Padalia et al., 2014) as it fails to model less important relationships 

in the data (Elith & Graham, 2009).  

In an attempt to minimize the prediction errors (false presences and absences) due to poor 

transferability of SDMs and non-equilibrium distribution of alien species, both correlative and 

mechanistic approaches should be used in cohesion. The predictive performance of MaxEnt has 

been found to be significantly improved when fitted with outputs from process based mechanistic 

models (Kumar et al., 2014b). Authors used MaxEnt and CLIMEX to assess the risk of 

establishment of western cherry fruit fly in California. They included climatic, topographic, and 

species-specific phenology variables along with human footprint as variables and found that the 

MaxEnt model was improved by including the Eco climatic index generated from the CLIMEX 

models. In recent years, following the same line of development of combining the two approaches, 

hybrid models have been developed (Gallien et al., 2010). These models combine correlative 

SDMs with expert knowledge driven mechanistic models. The hybrid models overcome 

limitations of traditional models as they take advantage of both the approaches and yield more 

reliable predictions. Golding & Purse, (2016) developed a Bayesian SDM using Gaussian process 

(GP). This GP model enables the user to incorporate prior ecological knowledge via a prior 

estimate of a model function (Golding & Purse, 2016), for example, effect of moisture limits on a 

pathogen (sudden oak death: Phytophthora ramorum) distributions. This approach can effectively 

bridge mechanistic and correlative models, such that it retains the information from a mechanistic 

process while extrapolating the model to novel environments. I recommend critical evaluation of 

the available modelling options and further refine the model with a hybrid approach to allow more 

robust estimates of future distribution of invasive species in novel environments.  

Additionally, extreme caution should be taken when projecting alien species distributions, 

specifically under changing climatic conditions as extrapolation beyond climatic limits in the 

training data is an unreliable practice (Anderson et al., 2003), since alien species are seldom at 

equilibrium within their environments. Studies in the past have addressed issues related to 

https://paperpile.com/c/Rbhw3P/caOt
https://paperpile.com/c/Rbhw3P/7NVp
https://paperpile.com/c/Rbhw3P/Pg3y
https://paperpile.com/c/Rbhw3P/McK6
https://paperpile.com/c/Rbhw3P/kwnO
https://paperpile.com/c/Rbhw3P/kwnO
https://paperpile.com/c/Rbhw3P/gKL0
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extrapolation when projecting SDM into novel environments and suggested linking SDM with 

landscape, population, and physiological models representing processes of change to improve the 

model extrapolations (Aitken et al., 2008; Fernández & Hamilton, 2015; Uribe-Rivera et al., 2017). 

c) Biotic interactions and dispersal constraints  

Invasive species are dynamic in nature and can compete with native biological communities such 

that the complete invasive mechanism is hard to determine or forecast. In the past, scientists have 

debated the utility of incorporating biotic interactions into SDM (Araújo & Luoto, 2007; Wisz et 

al., 2013). These could include: the presence of competitors/predators, or the absence of mutualists 

in the SDM. A limited number of studies are available which explicitly include predictors 

describing biological interactions (Venette et al., 2010), despite the fact that habitat projections 

into future climate conditions where biotic interactions may have transformed are likely to result 

in inaccurate assessments (Araújo & Luoto, 2007). 

In a study, Araújo & Luoto, (2007) used generalized additive modelling (GAM) to investigate 

relationships between species and climate; species and host plants; and species and climate + host 

plants and found that inclusion of biotic interactions significantly increases the explanatory power 

of the SDM at macro scales.  Another similar study carried out by Meier et al., (2010) using 

variance partitioning to estimate the proportion of the variance explained by biotic and abiotic 

predictors, found that non-inclusion of community composition and other local biotic factors will 

strongly influence prediction of species distributions. Distribution models of invasive species 

generally improve after inclusion of information on biotic interactions and the availability of 

related information on these interactions can advance the SDM projections.  

Additionally, development of SDM for alien species is commonly based on climatic and land use 

predictor variables. However, the distribution of non-native species is heavily governed by the 

influence of humans on the landscape (Vitousek, 1997). Studies considering the impacts of human 

footprint on alien species distributions shows that human footprint can significantly affect the 

distribution of alien species (Ancillotto et al., 2016; Gallardo et al., 2015; Masin et al., 2014; 

Smolik et al., 2010; Strubbe et al., 2015; Westphal et al., 2008). Thus, inclusion of related variables 

explaining human pressure on landscapes becomes imperative when building a SDM for alien 

species. Datasets like “human footprint” (Sanderson et al., 2002), “Global Human Influence Index 

https://paperpile.com/c/Rbhw3P/yBMp+A5jX+45ha
https://paperpile.com/c/Rbhw3P/IMDb+FExr
https://paperpile.com/c/Rbhw3P/IMDb+FExr
https://paperpile.com/c/Rbhw3P/Mok5
https://paperpile.com/c/Rbhw3P/IMDb
https://paperpile.com/c/Rbhw3P/IMDb
https://paperpile.com/c/Rbhw3P/L8Y3
https://paperpile.com/c/Rbhw3P/o3ju
https://paperpile.com/c/Rbhw3P/eVZ2+7RGg+2GyB+sYT3+1vhK+mRM7
https://paperpile.com/c/Rbhw3P/eVZ2+7RGg+2GyB+sYT3+1vhK+mRM7
https://paperpile.com/c/Rbhw3P/uOn0
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(HII)” (http://sedac.ciesin.columbia.edu), “population density”, “road density”, “urbanization” 

and “tourism” available from World resources institute (https://www.wri.org) can be of immense 

significance (Ancillotto et al., 2016). The availability of various datasets explaining human 

footprint on landscapes provides new opportunities for researchers to model the impact of human 

influence on the distribution of alien species.    

Alien species are mobile in nature and often have traits that facilitate dispersal. However, for most 

alien species, it is still unknown how much of their complete potential distribution range is 

represented by observed individuals. This leads to an unknown fundamental niche, although 

Guisan & Thuiller, (2005) relate this issue to species competitive and dispersal abilities. So far, 

most studies have ignored the dispersal limitations of alien species (Engler et al., 2012; López-

Darias et al., 2008), assuming their distribution to be either unlimited, or null (Engler et al., 2009). 

This strategy can work for species with a wide host range and strong dispersal abilities. Despite 

this, these assumptions can often provide inaccurate information regarding potential distributions 

and further lead to under- or over- estimation of potential suitable areas. This can also yield greater 

uncertainties with respect to conservation decisions. Despite these risks, very few studies 

acknowledge the importance of a species dispersal ability while projecting the distribution across 

space and time (Bancroft & Smith, 2005; Smith et al., 2004).  

Also some major invasive species have been known to be introduced by human mediation (Bartell 

& Nair, 2004; Lippitt et al., 2008) and international trade and movement of people are attributed 

to increased numbers of alien species introductions to novel environments (Meurisse et al., 2019; 

Roe et al., 2019). In their nonnative range their movement is either through stratified local diffusion 

(Tobin et al., 2016) or long distance dispersal associated with human movement (Muirhead et al., 

2006). The human footprint variables (for e.g. port and road proximity, roads, navigable rivers, 

etc.) discussed previously can be directly linked to the vectors and pathways of alien species 

distributions (Gallardo et al., 2015). However, models are needed to predict distribution based on 

patterns and density of propagule dispersal addressing both local diffusion and long-distance 

movement. There are several studies that have tried to include information on species dispersal 

traits to model their distributions (Bancroft & Smith, 2005; Smith et al., 2004). These dispersal 

traits can then be used to inform spread models such as a modular dispersal framework (MDIG) 

https://www.wri.org/
https://paperpile.com/c/Rbhw3P/sYT3
https://paperpile.com/c/Rbhw3P/ogqY
https://paperpile.com/c/Rbhw3P/Opeu+ZqNJ
https://paperpile.com/c/Rbhw3P/Opeu+ZqNJ
https://paperpile.com/c/Rbhw3P/dmEL
https://paperpile.com/c/Rbhw3P/45cG+zExo
https://paperpile.com/c/NVCs2R/Br1mU+4dMCw
https://paperpile.com/c/NVCs2R/Br1mU+4dMCw
https://paperpile.com/c/NVCs2R/SANFB+cmS00
https://paperpile.com/c/NVCs2R/SANFB+cmS00
https://paperpile.com/c/NVCs2R/dNi1P
https://paperpile.com/c/NVCs2R/2Elbh
https://paperpile.com/c/NVCs2R/2Elbh
https://paperpile.com/c/NVCs2R/IVe3p
https://paperpile.com/c/NVCs2R/Q0eE7+OCFUC
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(Lustig et al., 2017), individual-based spread model (Adams et al., 2015) and MigClim (Engler et 

al., 2012). Dispersal is a key factor when predicting invasive species distribution, since, generally, 

all potentially suitable areas cannot be colonizable. Thus, I strongly recommend addressing 

dispersal and biotic interactions when building SDM for mapping invasion risk.     

d) Mapping impacts of uncertainty 

SDMs are complex tools which inevitably include some degree of uncertainty (Heikkinen et al., 

2006).The uncertainty in SDM predictions and performances results both from incomplete 

knowledge of the species, and from errors in specification of the model  (Beale & Lennon, 2012; 

Refsgaard et al., 2007). Furthermore, many correlative SDMs are projected at high resolutions and 

under climate change scenarios without explicitly addressing uncertainty, making many invasive 

species risk maps of questionable accuracy (Yemshanov et al., 2010). This further affects the 

decision making and resource allocation measures in conservation planning (Barry & Elith, 2006).  

In order to lessen the risk of adverse uncertainties in species distribution, SDMs should explicitly 

address levels of uncertainties in their modelled predictions (Beaumont et al., 2007). Various 

authors have also advocated to depict levels of uncertainties in the modelled predictions (Beale & 

Lennon, 2012; Refsgaard et al., 2007) but received less consideration. Gould et al., (2014) created 

a tool to provide spatially explicit illustrations of the impact of uncertainty on their modelled 

projections. Their uncertainty tool uses a Monte Carlo process to produce probabilistic and 

spatially explicit output. Another approach yet faster are GP models (Golding & Purse, 2016) 

which automatically produces levels of uncertainty in modelled predictions without bootstrapping 

procedures. The produced prediction uncertainty map measures uncertainty as the variance of the 

estimated function for the group of predictors (Golding & Purse, 2016). The most recent method 

to tackle uncertainty in SDM projections is hyper-envelope modeling interface-V2 (HEMI-2) tool.  

HEMI-2 uses Monte Carlo methods to perform uncertainty, validation, and sensitivity analyses 

(Graham & Kimble, 2019). Another R based “mopa” package also exist (Iturbide et al., 2018). The 

package can handle multi-factor SDM ensemble experiments and can explore various uncertainty 

factors (e.g. occurrence datasets, pseudo-absence/background data, future climate projections, 

SDM algorithms, etc.), in addition to assessing contribution of independent factors to the overall 

uncertainty. It is obvious that conservation and management actions regarding invasive species 

distributions are linked with huge investments and substantial impacts on ecosystems globally 

https://paperpile.com/c/NVCs2R/92d1M
https://paperpile.com/c/NVCs2R/Eq1fL
https://paperpile.com/c/NVCs2R/DmMrv
https://paperpile.com/c/NVCs2R/DmMrv
https://paperpile.com/c/Rbhw3P/7NiN
https://paperpile.com/c/Rbhw3P/7NiN
https://paperpile.com/c/Rbhw3P/FVK2+dtao
https://paperpile.com/c/Rbhw3P/FVK2+dtao
https://paperpile.com/c/Rbhw3P/J5Dv
https://paperpile.com/c/Rbhw3P/S5sc
https://paperpile.com/c/Rbhw3P/KYmY
https://paperpile.com/c/Rbhw3P/FVK2+dtao
https://paperpile.com/c/Rbhw3P/FVK2+dtao
https://paperpile.com/c/Rbhw3P/0QmZ
https://paperpile.com/c/Rbhw3P/kwnO
https://paperpile.com/c/Rbhw3P/kwnO
https://paperpile.com/c/B58Sie/HvtA
https://paperpile.com/c/Rbhw3P/DE6S


 

 

27 

 

(Marbuah et al., 2014). Therefore, with so much at stake it has become vital to assess the impacts 

of uncertainty on modelled predictions. 

1.4 Conclusion 

SDMs with strong underlying biological assumptions will have better predictive powers and 

produce invasive species risk maps that will be more likely to forecast precise estimates of invasion 

risk. Here in this review chapter I have discussed the major aspects to consider when building 

SDMs for mapping invasion risk. I limited myself to issues related to model transferability, biotic 

interactions along with dispersal limitations (local and regional) and uncertainty, which appeared 

especially relevant in the case of invasive species. However, I do acknowledge other important 

aspects to consider such as autocorrelation amongst predictors (Segurado et al., 2006), extent and 

resolution of the study area (Anderson & Raza, 2010), variable selection, pseudo-absence 

generation procedures (Boyce, 2010; Pearce & Boyce, 2006; Vanderwal et al., 2009) and model 

evaluation (Anderson et al., 2003). These discussed challenges need to be addressed to ensure that 

the predictions match the foreseeable distributional scenario, especially under influence of climate 

change.  

Furthermore, the critical issues and related best practices discussed in this chapter will aid species 

distribution modelers in creating more scientifically sound models and ecologically relevant 

predictions. Future work should be around developing more easy to use hybrid models (Anderson 

et al., 2003) that are capable of addressing both local diffusion and long distance movement of 

alien species. These findings form a foundation for the analysis presented in the following chapter 

that shows how best practices suggested above in designing SDMs for invasive species produce 

more accurate models.  

  

https://paperpile.com/c/Rbhw3P/hAYE
https://paperpile.com/c/Rbhw3P/oSZ5
https://paperpile.com/c/Rbhw3P/ghYK
https://paperpile.com/c/Rbhw3P/ZYSp+rJuB+vNHu
https://paperpile.com/c/Rbhw3P/gKL0
https://paperpile.com/c/Rbhw3P/gKL0
https://paperpile.com/c/Rbhw3P/gKL0
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Chapter II: Species distribution modelling for FIS- Implementing species 

specific genetic traits into SDMs projections under climate change2 

2.1 Introduction 

In the previous chapter, I have outlined various challenges and best practices in constructing 

species distribution models. I have also argued that most SDMs lack strong underlying biological 

assumptions and often fail to address model complexity and biotic interactions. I claimed that to 

build a robust SDM, critical issues outlined must be addressed in a modelling framework. Hence, 

in this chapter I took the opportunity to design and evaluate SDMs while incorporating the 

suggested best practices and later recommend SDM framework for assessing the invasion risk. 

The use of MaxEnt has grown regularly every year since 2008, in part due to increasing focus on 

invasive species. Accessibility to software platforms that implement MaxEnt, as well as forest 

invasive species (FIS) distribution data have further accelerated its use within the literature. With 

this accessibility there is increased need for methodological studies that ideally analyze effects of 

various SDM design strategies implementing MaxEnt. Evaluations of SDMs are not rare (Guisan, 

Thuiller, & Zimmermann, 2017; Liu, White, & Newell, 2011; Potts & Elith, 2006; Senay & 

Worner, 2019), but studies evaluating the effects of SDM design strategies on model performance 

with FIS are limited. Furthermore, a recent review (Srivastava et al., 2019), suggested that SDM 

outputs should address prediction uncertainty, biotic interactions, and link species dispersal traits 

with projections of species distributions, details which are often missing in many SDM studies 

(Araújo & Guisan, 2006; Engler, Hordijk, & Guisan, 2012). Also, SDM studies should account for 

the effects of sampling bias in the occurrence data, critical yet rarely reported details for models 

based on presence-only datasets (Phillips et al., 2009). Failing to correct for sampling bias may 

lead to distribution projects reflecting the sampling bias rather than the true potential distribution 

of a species (Støa, Halvorsen, Mazzoni, & Gusarov, 2018; Syfert, Smith, & Coomes, 2013). These 

different aspects of SDMs need to be addressed in an accurate modelling framework to ensure that 

 
2 The content of this chapter has been adapted from: 

-Srivastava, V*., Griess, V. C., & Keena, M. A. (2020). Assessing the potential Distribution of Asian Gypsy Moth in 

Canada: A comparison of two Methodological Approaches. Scientific Reports, 10(1), 1-10. 

-Srivastava, V*., Roe, A., Keena, M., Hamelin, R., Griess, V. C. (2020). Oh the places they’ll go: improving species 

distribution modelling for invasive forest pests in an uncertain world. Under review with Biological Invasions. 

https://paperpile.com/c/B58Sie/ghqf+faGK+UF0Q+dkuA
https://paperpile.com/c/B58Sie/ghqf+faGK+UF0Q+dkuA
https://paperpile.com/c/B58Sie/ghqf+faGK+UF0Q+dkuA
https://paperpile.com/c/B58Sie/OD7t
https://paperpile.com/c/B58Sie/fNzn+o1Yi
https://paperpile.com/c/B58Sie/Wj1j
https://paperpile.com/c/B58Sie/2QAR+miJd
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the FIS distribution predictions match future invasion scenarios, especially under the inherently 

unpredictable changing global climate (Venette et al., 2010). 

In the past, studies have shown that model complexity also plays a major role in transferability of 

SDMs in novel environments (Moreno-Amat et al., 2015; Warren & Seifert, 2011); when an SDM 

is overfit it underestimates the species potential habitat whereas when it is under fitted SDM it 

tends to overestimate it. Studies recommend to optimally balance the model complexity and 

accuracy by fine tuning model parameters (Moreno-Amat et al., 2015; Warren, Wright, Seifert, & 

Bradley Shaffer, 2014). The practice of fine tuning SDM parameters includes calibrating several 

initial models with a wide array of model parameters, selecting the optimal set of parameters that 

results in the “best model”, and then further calibrating the model with the chosen parameters 

(Cobos, Townsend Peterson, Barve, & Osorio-Olvera, 2019; Warren & Seifert, 2011). MaxEnt, 

one of the most popular correlative SDMs (Morales, Fernández, & Baca-González, 2017; Potts & 

Elith, 2006) enables users to map potential distributions while making a number of modelling 

assumptions and choosing a number of model settings (Barry & Elith, 2006). This includes choice 

of background samples or pseudo absences (PAs), selection of appropriate features and 

regularization (β) multiplier (Elith et al., 2011). The choice of background impacts the 

transferability of SDMs, thus it becomes important to modify the background sample so that there 

is a clear ecological justification for the selection (Chapman, Pescott, Roy, & Tanner, 2019; Liang 

et al., 2018). It is recommended to constrain the PA locations to the same geographic range as 

presences for accurate predictions (Liang et al., 2018). MaxEnt is a powerful SDM capable of 

incorporating complex and highly non-linear response curves using various feature classes and it 

is also equally vital to select appropriate feature shape prior to model development along with 

optimal regularization value to reduce over fitting (Anderson & Gonzalez, 2011; Merow et al., 

2013). Regularization penalizes the model in proportion to the magnitude of the coefficients and 

consequently shrinks many coefficients toward zero while setting others to zero, thereby putting 

off many features from the model (Merow et al., 2013; Tibshirani, 1996).  

Here I focused on four focal FIS to evaluate the effects of various SDM design strategies on FIS 

distribution predictions in Canada, as well as their overall global distributions (Figure 4). Readers 

are referred to the background section of the thesis for details on focal FIS. In addition to focusing 

https://paperpile.com/c/B58Sie/vLEX
https://paperpile.com/c/B58Sie/ji8D+ALiN
https://paperpile.com/c/B58Sie/ALiN+BWo6
https://paperpile.com/c/B58Sie/ALiN+BWo6
https://paperpile.com/c/B58Sie/ji8D+0KjW
https://paperpile.com/c/B58Sie/dkuA+Tiz2
https://paperpile.com/c/B58Sie/dkuA+Tiz2
https://paperpile.com/c/B58Sie/wsEO
https://paperpile.com/c/B58Sie/RkYE
https://paperpile.com/c/B58Sie/MhMC+nXc8
https://paperpile.com/c/B58Sie/MhMC+nXc8
https://paperpile.com/c/B58Sie/MhMC
https://paperpile.com/c/B58Sie/YrTT+lHR8
https://paperpile.com/c/B58Sie/YrTT+lHR8
https://paperpile.com/c/B58Sie/YrTT+Hu1C
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on these four species, I also chose to explore the sensitivity of SDM modelling in two of the major 

ports in Canada: Vancouver, British Columbia and Toronto, Ontario. The ports of Vancouver and 

Toronto are one of the major ports in Canada wherein cargo volume reached a record high of 147 

million tons and 2.2 million metric tons in 2018 respectively. In addition to high trade volumes, 

CFIA continue to detect FIS around these two ports.  Continued detections suggest that these ports 

are high risk entry points (Paini, Mwebaze, Kuhnert, & Kriticos, 2018). Thus, I hypothesize that 

the ports of Vancouver and Toronto are likely to serve as points of entry for the FIS, so I produced 

dispersal restricted projections of individual FIS distributions in various climate change scenarios 

that also accounted for anthropogenic factors governing the species spread.   

https://paperpile.com/c/B58Sie/zzCu
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Figure 4 Selected FIS to serve as case studies 

2.2 Research objectives  

The key objectives of this research chapter are: 

1) To evaluate the effects of various SDM design strategies on FIS distribution predictions in 

Canada, as well as their overall global distributions  

2) To explore the sensitivity of SDM modelling in two major ports in Canada: Vancouver, 

British Columbia and Toronto, Ontario via implementing species-specific dispersal traits 

into projections of species distribution. 
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3)  To evaluate impacts of uncertainty in modelled predictions with respect to input data. 

4) Develop method to create FIS proxy presence data. 

2.3 Methods and materials 

In general, I took the following steps below to develop SDMs for focal FIS and evaluate the effects 

of model design on distribution predictions. I summarize the technical workflow in Figure 5 and 

break down each step in further detail below: 

(1) Obtain occurrence records for each target species (see 2.1 Occurrence Data).  

(2) Develop spatial datasets representing current environmental conditions and future climate 

scenarios, alongside spatial information on the human footprint in the area of interest (see 2.2 

Environmental Variables). 

(3)  Build MaxEnt models to predict the potential distribution of focal FIS in Canada. (See 2.3 

Species distribution model) 

(4) Quantify uncertainty with respect to input data and map using hyper-envelope modeling 

interface-V2. (See 2.3 Uncertainty mapping) 

(5) Create dispersal limited projections of future FIS distributions under selected climate change 

scenarios using MigClim. (See 2.3 Dispersal mapping) 

(6) Develop FIS proxy presence data based on presence of hosts.  
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Figure 5 Flowchart representing the modelling flow used to model FIS distribution, dispersal and uncertainty in this 

study. 

2.3.1 Occurrence data  

Presence records of AGM, ALB, DED and SOD were collected from various sources to map the 

known distributions of the selected FIS. The sources included (1) Records provided by the 

Canadian Food Inspection Agency (CFIA); (2) Global Biodiversity Information Facility database, 

an online database for species occurrences; (3) CABI invasive species compendium and (4) 

Scientific articles and maps. I deleted duplicate records such that each observation falls inside a 

separate 10 km grid cell, leading to a total of 186, 198, 193 and 95 distinct occurrence records for 

AGM, ALB, DED and SOD respectively (Figure 6).  
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Figure 6 Selected forest invasive species occurrences in their respective native and introduced ranges. The Köppen-

Geiger climate classification (vegetation-based) system (Kriticos et al., 2012) was used as a background.  This is done 

to allow assessing preliminary risk based on whether a species is found in the same climate zone as the pest risk 

assessment area. Refer Kottek et al., (2006) for a detailed description of the parameters. 

2.3.2 Environmental variables 

I downloaded 19 bioclimatic variables from the WorldClim database version 1.4 

(http://www.worldclim.org/) (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), averaged for the 

1950–2000 period, at a spatial resolution of 5 arc minutes (approximately 9 km resolution at the 

equator). For future 2050 climate projections, I used three representative concentration pathways 

(RCPs) of the IPCC—RCP 2.6 (greenhouse gas emissions peak in 2010-2020 and declining after), 

4.5 (emissions peak around 2040 and then decline), and 8.5. (rise temperature throughout the 21st 

century). I chose three general circulation models (GCMs) of physical climate processes for which 

the predicted values of each of the bioclimatic variables were available: Community Climate 

System Model (CCSM4), Hadley Global Environment Model 2 - Earth System (HadGEM2-ES) 

http://www.worldclim.org/
https://paperpile.com/c/B58Sie/1Eav
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and Model for Interdisciplinary Research on Climate (MIROC5). The selected GCMs are being 

used in Climate BC/WNA/NA model for producing future grid projections of climate and species 

range in Canada and North America (Wang et al., 2012). In order to incorporate responses of 

dispersal and human footprint on FIS distributions I incorporated additional data on human 

footprint “Human Influence Index-HII” at 1 km from SEDAC and resampled to match the native 

climate grid resolution. The Human Influence Index (HII) is a measure of direct human influence 

on terrestrial ecosystems, derived from nine global variables including land cover, population 

density, built-up areas, roads, navigable rivers and nighttime lights (“Socioeconomic Data and 

Applications Center | SEDAC,” n.d.)).  

2.3.3 Species distribution model  

2.3.3.1 MaxEnt 

MaxEnt version 3.3.3k (Phillips, Anderson, & Schapire, 2006) was used to map the potential 

distribution of the focal FIS due to unavailability of FIS absence data. MaxEnt being presence- 

background model has been successfully used in mapping the potential distribution of FIS in past 

(Elith et al., 2006; Kumar, Neven, & Yee, 2014; Kumar, Yee, & Neven, 2016; Lira-Noriega, 

Soberón, & Equihua, 2018). MaxEnt is a machine learning algorithm used for describing 

probability distributions following the principle of maximum entropy, subject to restraints imposed 

by the presence of species and their surrounding environment (Phillips & Dudík, 2008). The 

entropy is defined by the following equation: 

H(π̂) = ∑ π̂(x)Inπ̂(x)xϵX  

Where π is the unknown probability distribution; π̂ is the approximation of π; X is a finite set; x is 

an individual element in set X; and ln is the natural logarithm. The entropy is nonnegative and is 

at most the natural log of the number of elements in X. 

MaxEnt model for each FIS was built separately using available training data from native as well 

as introduced ranges and was later projected onto Canada to map potential suitable areas for FIS 

establishment. 

https://paperpile.com/c/B58Sie/QybU
https://paperpile.com/c/B58Sie/Bgjp
https://paperpile.com/c/B58Sie/Bgjp
https://paperpile.com/c/B58Sie/bPVS
https://paperpile.com/c/B58Sie/6f5a+bceG+NE3Q+qi5b
https://paperpile.com/c/B58Sie/6f5a+bceG+NE3Q+qi5b
https://paperpile.com/c/B58Sie/0q70
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2.3.3.2 Model design and evaluation 

The occurrence data was partitioned randomly into training and evaluation sets (30% for the AGM 

and DED models and 20% for ALB and SOD). The best set of relevant uncorrelated environmental 

variables along with the optimal regularization multiplier for selected FIS was selected using R 

package “MaxentVariableSelection” (Jueterbock et al., 2016). 10,000 background locations were 

generated within an area defined by a minimum sized convex polygon encompassing FIS 

occurrences using SDM toolbox (Brown et al., 2017). FIS accessible areas were included in 

background generation as suggested by Chapman et al. (2019). The environmental variables were 

reduced in a stepwise manner in order to avoid overfitting the occurrence records for regularization 

multipliers ranging from two to four as over fitted models are poorly transferable in novel 

environments (Elith et al., 2010b). The Pearson’s correlation coefficient threshold was set to 0.8 

and when variables were found to be correlated only the variable with the highest contribution was 

kept. The variable contribution threshold was set to 1, below which the environmental variables 

were excluded from the model. The best performing model was chosen based on the lowest 

Akaike’s Information Criterion for small sample size scores (AICc) (Warren & Seifert, 2011). 

Once the best performing predictor set of variables and a regularization parameter value was 

chosen for all focal FIS the model was evaluated using the training data set. The training data was 

portioned into ten random subsets using k-fold cross validation function in MaxEnt. This was done 

to evaluate the average behavior of the model. In order to produce simple models with smooth 

fitted functions I used only hinge features (Elith et al., 2010b). Jackknife resampling was used to 

identify those variables that contributed most to the model. The method provides systematic 

resampling and leads to improved estimates of the sample parameter and a lower sampling bias 

(Tukey, 1958). To account for sampling bias in the FIS occurrence data I generated a bias grid that 

up-weights occurrence data points with fewer neighbors in the geographic landscape using the 

Gaussian kernel density of sampling localities tool in SDMToolbox (Brown, 2014). Additionally, 

the fade by clamping function was used to limit extrapolations beyond the environmental range of 

the training data.  

https://paperpile.com/c/B58Sie/9nZZ
https://paperpile.com/c/B58Sie/L5ju
https://paperpile.com/c/B58Sie/6T91
https://paperpile.com/c/B58Sie/ji8D
https://paperpile.com/c/B58Sie/6T91
https://paperpile.com/c/B58Sie/btz1
https://paperpile.com/c/B58Sie/pa6f
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2.3.3.3 Model comparisons with different SDM approaches 

In order to evaluate the effects of various SDM design strategies and to find the best SDM design 

strategy for the case-based FIS I individually designed and evaluated seven different MaxEnt 

models (Table 2). The seven MaxEnt models were (i) MaxEnt model with default parameters and 

all environmental variables (climatic predictors + HII) (ii) MaxEnt model with default parameters 

and all climatic variables (here only climatic predictors) (iii) MaxEnt model with default 

parameters and selected variables (ref. above section on variable selection, only selected 

environmental variables were kept) (iv) MaxEnt model with default parameters and selected 

climatic variables (ref. above section on variable selection, here only climatic predictors were 

used) (v) MaxEnt model with tuned parameters (selected environmental variables along with tuned 

regularization value) (vi) MaxEnt model with sampling correction (selected environmental 

variables along with tuned regularization value plus restricted background with sampling bias grid) 

(vii) MaxEnt model with no sampling correction (selected environmental variables along with 

tuned regularization value plus restricted background. Here there was no sampling correction 

implemented). 
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Table 2 Summary of individually designed default and tuned MaxEnt models along with their predictors. MaxEnt 

model types from i to iv are with default parameters whereas model types from v to vii are with tuned settings. 

 

Model 

Number of predictors    

 AGM              ALB                     DED                               SOD         
Model details 

Type i  20 

(BIO1-

BIO19+HII)  

 

20 

(BIO1-

BIO19+HII) 

 

 20 

(BIO1-BIO19+HII) 

 

20 

(BIO1-

BIO19+HII) 

 

MaxEnt default + all 

environmental variables 

(climatic predictors + HII)  

Type 

ii 

19 

(BIO1-

BIO19) 

19 

(BIO1-BIO19) 

19 

(BIO1-BIO19) 

19 

(BIO1-BIO19) 

MaxEnt default + all 

climatic variables (here 

only climatic predictors) 

Type 

iii 

4 

(BIO1,2,14,

HII) 

6 

(BIO1,4,6,11,13

,HII) 

8 

(BIO1,3,7,11, 

14,15,19,HII) 

5 

BIO4,14,15,19,HI

I) 

MaxEnt default + selected 

variables (ref. above 

section on variable 

selection, only selected 

environmental variables 

were kept) 

Type 

iv 

4 

(BIO1,13,14

) 

3 

(BIO1,4,13) 

4 

(BIO1,3,14,15) 

3 

(BIO4,15,19) 

MaxEnt default + selected 

climatic variables (ref. 

above section on variable 

selection, here only 

climatic predictors were 

used) 

Type 

v 

4 

(BIO1,2,14,

HII) 

6 

(BIO1,4,6,11,13,

HII) 

8 

(BIO1,3,7,11, 

14,15,19,HII) 

5 

BIO4,14,15,19,HI

I) 

MaxEnt tuned (selected 

environmental variables 

along with tuned 

regularization value) 

 vi 4 

(BIO1,2,14,

HII) 

6 

(BIO1,4,6,11,13,

HII) 

8 

(BIO1,3,7,11, 

14,15,19,HII) 

5 

BIO4,14,15,19,HI

I) 

MaxEnt tuned + sampling 

correction (selected 

environmental variables 

along with tuned 

regularization value plus 

restricted background with 

sampling bias grid) 

Type 

vii 

4 

(BIO1,2,14,

HII) 

6 

(BIO1,4,6,11,13,

HII) 

8 

(BIO1,3,7,11, 

14,15,19,HII) 

5 

BIO4,14,15,19,HI

I) 

MaxEnt tuned - sampling 

correction (selected 

environmental variables 

along with tuned 

regularization value plus 

restricted background. 

Here there was no 

sampling correction 

implemented) 
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2.3.4 Model evaluation 

Model evaluation was performed using the withheld presence data for the selected FIS. True skill 

statistic (TSS) (difference between the rate of successes and errors), sensitivity (fraction of 

correctly predicted presences), correct classification rate and omission error scores at maximizing 

test sensitivity and specificity threshold were used to evaluate the models. I extracted the same 

number of pseudo absences (PAs) as testing presences in order to calculate the evaluation scores. 

PAs were extracted in the same spatial range as the presences. The TSS ranges from -1 to +1, 

where values of 0 or less indicate a model performance no better than random, and a value of +1 

indicates perfect performance (Allouche et al., 2006). The evaluation scores were calculated using 

NicheToolBox. 

I also performed a transferability test with DED and AGM. I created two models: default with only 

climatic data and a tuned with selected predictors. For DED, I fitted both models with occurrences 

that excluded Canadian localities. On a similar basis, transferability of AGM was also analyzed. It 

should be noted that I had only few interceptions of AGM in Canada, so I decided to visualize the 

transferability success with overlaying interception location records of EGM (European gypsy 

moth), since EGM and AGM are assumed to have similar ecological characteristics and hosts 

(Keena et al.  2019). 

2.3.5 Uncertainty mapping 

Prediction uncertainty in the modelled outputs before projecting (i.e. modelled predictions in areas 

of recorded presence) was analyzed using hyper-envelope modeling interface-V2 (HEMI-2) 

through injecting random noise in the input data (occurrence records and environmental variables).  

HEMI-2 uses Monte Carlo methods to perform uncertainty, validation, and sensitivity analyses. It 

generates mean and standard deviation habitat suitability maps (Graham & Kimble, 2019). Since 

most of my records came from online databases, it might contain a location error that might be off 

by several kilometers, increasing the overall uncertainty of the model outputs. Also, the 

environmental data contains various levels of uncertainty and might not correlate well with the 

time of species establishment (Gould et al., 2014; Graham & Kimble, 2019). Thus, for each FIS I 

injected a normally distributed noise in the occurrence (10 km) and environmental data with 10 

https://paperpile.com/c/B58Sie/3ysY
https://paperpile.com/c/B58Sie/HvtA
https://paperpile.com/c/B58Sie/HvtA+LnIM
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cross-validation runs to combine uncertainty based on occurrence, predictors and cross-validation. 

I iterated the individual FIS model 100 times to achieve a stable output. 

2.3.6 Dispersal mapping 

In order to include selected FIS specific dispersal constraints into projections of their potential 

distributions under climate change, I used MigClim (Engler et al., 2012). MigClim is a function 

library built in R software that allows implementation of species dispersal limitations in SDM 

predictions under climate change conditions. MigClim is a cellular automaton model so cells are 

the measured units and here each cell corresponds to 10 km pixel. Here a target cell becomes 

colonized with the combined probability P col: 

𝑃 𝑐𝑜𝑙 = (1 − ∏(1 −

𝑛

𝑖=1

  𝑃 𝐷𝑖𝑠𝑝 𝑖 ×  𝑃 𝑃𝑟𝑜𝑝 𝑖))  ×  𝑃 𝑖𝑛𝑣 

 

Here P Disp i is a probability function of the distance between the target cell and the source cell i. 

P prop i is a probability that is function of time since the source cell i became occupied and 

represents the propagule production potential of the source cell i over the time. P inv denotes the 

habitat invisibility of the target cell. 

Since MigClim does not generate habitat suitability maps itself, I used MaxEnt to generate the 

required inputs. Future FIS distribution maps for the year 2050 were produced for climate change 

scenarios using MaxEnt for three RCPs (2.6, 4.5, and 8.5) and three GCMs (CCSM4, HadGEM2-

ES and MIROC5). These maps were used as an input along with an initial distribution map of the 

FIS. I assumed two initial infestation points i.e. Vancouver port and Toronto port, since the chosen 

FIS have been intercepted at these introduction points in the past (Hamelin & Roe, 2019; Nealis, 

2009). A reclassification threshold was selected based upon maximum test sensitivity and 

specificity for each FIS along with their respective dispersal kernel. A dispersal kernel with 

dispersal probabilities of 1, 0.8, 0.6 and 0.4 was set for AGM, since females can fly from less than 

1km up to 20-40km (Keena, et al., 2001; Srivastava et al., 2020). For the other FIS a dispersal 

kernel was set to 1 with maximum probability since the short distance dispersal was found to be 

https://paperpile.com/c/B58Sie/fNzn
https://paperpile.com/c/B58Sie/Fcol+f3xi
https://paperpile.com/c/B58Sie/Fcol+f3xi
https://paperpile.com/c/B58Sie/IWKT
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limited (<10 km) (Dunn, 2012; Grünwald et al., 2012; Grünwald et al., 2019; Smith et al., 2001). 

Additional, random long-distance dispersal events were generated at a frequency of 0.1 at min-

max distance range of 100 (10 cells) and 200km (20 cells) since the selected FIS are capable of 

dispersal through various means of transport, such as human-assisted transportation (Koch et al., 

2013). Since, DED dispersal is limited to the presence of Elm trees, a strong barrier was 

implemented in the model to simulate dispersal events only in the pixels having Elm presence. 

Additional information on considered FIS biology and ecology is provided in appendix vii. I had 

one environment change step (2050) where in total 40 dispersal steps were simulated 

[envChgSteps] × [dispSteps], here 40, which corresponds to 40 years from 2010 to 2050. The 

simulations were repeated for 10 times producing dispersal limited future distribution maps of FIS 

from 2010 to 2050 under selected climate change scenarios. 

2.3.7 FIS proxy data 

I prepared a database on known localities of Ulmus americana (main host for DED, n= 234) and 

developed a MaxEnt model based on the methods described in the section 2.3.3. A comparison 

was then made with the modeled output of DED in order to access the similarities/dissimilarities 

between the predictions.  

2.4 Results 

2.4.1 Model selection and fitting 

The best model for AGM included four variables (bio1- Annual Mean Temperature, bio 2- Mean 

Diurnal Range, bio 14- Precipitation of Driest Month and HII- Human influence index) and for 

ALB included six variables (bio1- Annual Mean Temperature, bio4- Temperature Seasonality, 

bio6- Min Temperature of Coldest Month, bio11- Mean Temperature of Coldest Quarter, bio13- 

Precipitation of Wettest Month and HII). Similarly, for DED it had eight variables (bio 1, bio3- 

Isothermality, bio 7, bio 11, bio 14, bio 15-Precipitation Seasonality, bio 19- Precipitation of 

Coldest Quarter and HII) and for SOD five variables (bio4, bio14, bio15, bio19 and HII) (Figure 

4). The best fitting model parameters for the top FIS model are shown in table 3 and figure 7. 

https://paperpile.com/c/B58Sie/PNGD+OKPJ+yoCR+ZNlk
https://paperpile.com/c/B58Sie/BexP
https://paperpile.com/c/B58Sie/BexP
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Table 3 Summary of best performing FIS model and evaluation scores 

Species Betamultiplier Variables AIC AICc BIC 

AGM 4.00 4.00 4738.31 4743.21 4798.44 

ALB 3.00 6.00 3946.04 3952.88 4010.22 

DED 3.50 8.00 4725.63 4731.03 4794.14 

SOD 2.00 5.00 1913.74 1945.24 1976.67 

 

 

Figure 7 Variable selection and regularization fitting for FIS distribution models. The optimal set of variables along 

with the best beta multiplier is identified as the model of lowest AICc value. The number of environmental variables 

included in each model is coded by dot color and size and the model with highest minimum AICc value is marked in 

red. 
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2.4.2 Effects of SDM design on predictive performance  

The performance of the seven SDM designs for individual FIS varied. When the models were 

evaluated using the withheld presence data, I found the best SDM design strategy to be model type 

vi with “sampling correction” for each FIS. The worst model was model type iv “default with 

select climate variables”. However, the performance of models created with default parameters 

was found to improve by tuning of the model parameters and correcting the sampling bias and 

further improved when both were implemented together for each FIS. For example, TSS score 

increased from 0.481 (average TSS for all four SDMs created from default settings) to 0.64 when 

model parameters were tuned and sampling corrections were applied in AGM model. Likewise, 

for ALB, DED and SOD it increased from 0.586 to 0.655, 0.606 to 0.75 and 0.733 to 0.900 

respectively. The detailed model evaluations for comparison between different SDM designs for 

DED is shown in figure 8 and for other three FIS in appendix i. 
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Figure 8 Evaluation summary of Dutch elm disease models using true skill statistic, correct classification rates, omission error and sensitivity metrics. The worst 

performing model (type iv) is highlighted with a horizontal across for comparison purposes. Summary of other FIS models are shown in Appendix I. 
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2.4.3 Potential distribution of FIS 

Modelled predictions selected from best SDM design practice for each FIS matched closely with 

the observed FIS observations in their respective environment (cabi.org/ISC & Appendix iii-a). 

Associated uncertainty with the modelled FIS predictions in their individual ranges is depicted in 

appendix iii-b. Prediction uncertainties about input data for AGM and ALB was more confined in 

the north west direction (cold and humid) when compared to DED and SOD which were in the 

southern (hot and humid) and eastern (hot and dry) locations respectively. 

Predictions obtained from transferring these FIS models to a nonnative range (Canada) highlighted 

areas at risk (available for their potential establishment). Similar provinces were modelled to be 

suitable for AGM, ALB and DED potential establishment, however different suitability scores 

were recorded in these provinces for these three FIS. The identified suitable areas were in the 

provinces of British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec, New 

Brunswick, Nova Scotia and Newfoundland. Whereas, SOD suitability was modelled only in the 

province of British Columbia, near the western coast (Appendix ii). With climate change FIS 

distributions in Canada expanded to the north and west (Figure 9 and Appendix ii). 
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                                                                 Figure 9 Potential distribution of Dutch elm disease in current and future climate change scenario. 
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Upon comparing the current Canadian potential distributional ranges of FIS with their future 

suitability ranges in various climate change scenarios, I found that AGM, ALB and DED expanded 

their ranges in all considered GCMs and RCPs. The greatest range expansion was recorded in RCP 

8.5 and the least in RCP 2.6 for all selected GCMs (Figure 10).  

 

Figure 10 FIS range expansion in km2 in different climate change scenarios. 

2.4.4 Environmental responses and variable contribution 

Suitable conditions (probability of presence >0.45, based on maximum test sensitivity and 

specificity threshold) for AGM were modelled in areas with annual temperatures between 5 and 

25ºC which agrees with the temperature responses of AGM and that its populations may struggle 

in areas that experience longer periods of temperatures ≥ 30ºC (Limbu et al., 2017). AGM 

distributions were found to expand into areas where temperatures warmed to acceptable levels and 

to decline in areas where temperatures began to exceed the 30ºC level for longer periods of time. 

The occurrence data and modelled distributions also indicate that areas receiving precipitation 

between 10 and 160 mm in the driest month are suitable for AGM establishment (Figure 11a). 

ALB suitable areas (probability of presence >0.44, based on maximum test sensitivity and 

specificity threshold) were modelled in areas receiving annual mean temperature of 7 to 25ºC and 

minimum temperature of the coldest month between -15 to 15ºC with 50-500 mm precipitation in 

the wettest month. This agrees with ALB’s ability to develop at temperatures between 10 and 35ºC 

https://paperpile.com/c/B58Sie/MyAR
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and the fact that larvae are freeze tolerant (Keena & Moore, 2010, Torson et al. in prep, Roe. 

unpublished data). The DED suitability (probability of presence >0.48) was modelled in areas 

having annual mean temperature between 3 to 10ºC and temperature annual range between 15 to 

44ºC. This supports the findings of Brasier & Mehrotra, (1995) where DED was found to be 

adapted to a subtropical environment due to its high optimum growth temperature. Sporulation of 

DED fungus are inhibited by prolonged exposure to high summer temperatures and low moisture 

content (Webber, 1990). SOD potential distributions were modelled in areas with moderate 

temperature variability and high variability in precipitation (Appendix v). I showed that the SOD 

populations can be strongly influenced by variability in precipitation which is more confined to 

regions typical to coastal areas and islands. Most of the SOD infestation sites in California and 

Oregon are located within 30 km of the Pacific coastline or San Francisco bay (David M. Rizzo & 

Garbelotto, 2003). Also, moisture is critical for the germination of spores and fungal growth (see 

Appendix vii) 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/B58Sie/QoCk
https://paperpile.com/c/B58Sie/11lF
https://paperpile.com/c/B58Sie/12yn
https://paperpile.com/c/B58Sie/12yn
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Figure 11(a) Relationships between environmental predictors and the probability of the presence of Asian gypsy moth: Red curves show the mean response and 

blue margins are ±1 SD calculated over 10 replicates. (b) Jackknife test for AUC of individual environmental variable importance (blue bars) relative to all 

environmental variables (red bar) for the MaxEnt model. Values shown are averages over 10 model runs. Refer to table 4 for description on the coded climatic 

variables used in the analysis.
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The jackknife test identified Human Influence Index (HII) and Mean Diurnal Range (Bio 2) as the 

most important predictors of AGM distribution, while identifying HII and Min Temperature of 

Coldest Month (Bio 6) for ALB distribution (Figure 11b and appendix v). Jackknife test found 

Annual Mean Temperature (Bio 1) and Isothermality (Bio 3) for DED and Temperature 

Seasonality (Bio 4) and Precipitation of Driest Month (Bio 14) for SOD. HII made the largest 

contribution to the MaxEnt model of AGM and ALB distribution when used in isolation and 

reduced the model’s predictive ability the most when omitted. Similarly, Annual Mean 

Temperature (Bio 1) was identified for DED and Temperature Seasonality Bio 4 for SOD 

(Appendix v). 

2.4.5 FIS dispersal  

Inclusion of FIS specific dispersal limitations into projections of FIS distributions under climate 

change conditions limited the distribution range when compared with scenarios of unlimited 

dispersal for all selected FIS (Appendix v). Figure 12 shows the total area found to be colonized 

at the end of a simulation for each FIS under multiple climate change conditions starting from two 

infestation points. The increase in the area colonized by AGM and ALB was found to be highest 

in RCP 8.5 and when the infestation started from port of Toronto. No cells were colonized for 

DED when infestation started from port of Vancouver and similarly, for SOD when infestation 

started from port of Toronto. The area colonized by DED was higher in RCP 8.5 than RCP 2.6 and 

4.5 but for SOD the colonization was lowest in RCP 8.5 and highest in RCP 2.6. Detailed dispersal 

limited output maps for each FIS under each considered scenario are shown in appendix vi.    
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Figure 12 Colonization in dispersal restricted future distribution of FIS under different climate change scenarios. I 

assumed Vancouver port and Toronto port as two initial infestation points. 

2.4.6 FIS proxy data  

The results generated with the host locations of DED matched very closely to the modelled 

distributions of the DED pathogen. Suitability predictions matched in all the provinces however 

small changes in the suitability scores were observed in the regions of Eastern Canada (Appendix 

ix).     
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2.5 Discussion & conclusions 

The results I generated are in agreement with the recent findings that have shown the effects of 

model complexity and varying parameters on SDM performance (Halvorsen et al., 2016; Morales 

et al., 2017; Rodda et al., 2011; Stolar & Nielsen, 2015; Syfert et al., 2013). My analysis clearly 

found that the use of default settings for the distribution modelling of FIS were not adequate in 

each of the considered cases, instead high accuracy was achieved when model parameters were 

finely tuned and model complexity was optimally balanced. The method proposed by Brown et al. 

(2017) to correct sample selection bias greatly improved the predictive performance of SDMs 

when the collected data resulted from an unclear survey design or was derived from online 

databases. The importance of the background data selection strategy in SDMs have been 

highlighted for a long time (Barbet-Massin et al., 2012; Syfert et al., 2013) and here I validated its 

importance in working with FIS by improving the accuracy of the SDMs by following the 

recommendation of Chapman et al. (2019) to include all areas for which data is available. I 

achieved both significant improvements in the predictive performances of SDMs with less 

complex models and found them to be more accurate in providing predictions upon transferring to 

Canadian (i.e. novel) environments. I validated transferability success using DED records in 

Canada since the other three FIS are not yet established in Canada (Appendix viii). However, for 

AGM predictions I assessed transferability success by overlaying interception location records of 

EGM (European gypsy moth) provided by the CFIA, since EGM and AGM are assumed to have 

similar ecological characteristics and hosts (Keena & Shi, 2019). This is consistent with earlier 

findings that showed that complex models have poor transferability due to overfitting (Moreno-

Amat et al., 2015; Petitpierre, et al., 2017). 

HII is a measure of direct human influence on terrestrial ecosystems which includes access routes, 

navigable rivers, nighttime lights along with other important variables, it effectively contributed 

in correctly identifying the suitable areas for each FIS. Inclusion of human influence index “HII”, 

in addition to climatic predictors to account for FIS dispersal and human footprint, increased the 

overall accuracy of the FIS model. HII also significantly contributed to each FIS model (Figure 

11b). The effectiveness of HII in the models can be directly linked to the biology of each FIS. For 

example, AGM can hitchhike on man-made objects and disperse along the transportation corridors, 

particularly as egg masses or pupae. Dispersal of adult moths along transportation corridors is 

https://paperpile.com/c/B58Sie/xeFY+nYWu+Tiz2+dKJI+miJd
https://paperpile.com/c/B58Sie/xeFY+nYWu+Tiz2+dKJI+miJd
https://paperpile.com/c/B58Sie/miJd+RoEI
https://paperpile.com/c/B58Sie/fCvY
https://paperpile.com/c/B58Sie/ALiN+fYTw
https://paperpile.com/c/B58Sie/ALiN+fYTw
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further promoted by their attraction to light sources. The SOD pathogen shows similar association 

with human influence. Spores can move with infected plants, which helps explain why more 

infected trees were detected on public lands open to general recreation than on adjacent lands 

lacking public access (Cushman et al., 2008).  Furthermore, the chances of an SOD infection 

increased when sites were within 50km of human habitation (Cushman et al., 2008). DED and 

ALB, the remaining focal taxa, also showed higher dispersal in areas with an increased human 

footprint. In fact, most of the ALB invasions are located in or near urban areas (Appendix vi). 

Climate has been considered a critical barrier for the establishment and spread of invasive species 

into temperate regions. However, climatic models predict that eastern Canada’s average 

temperature will increase by 3-5°C by 2100 (Dukes et al., 2009). This increase in temperature, 

particularly winter temperatures, could eventually lead to much higher probabilities of successful 

FIS establishments (Dukes et al., 2009; Huang et al., 2011). I chose to examine how FIS 

distributions changed as I accounted for temperature increases associated with climate change.  

Three of the four species (AGM, ALB, and DED) showed greater distributions under future 

climate projections (Figure 11). FIS range is expected to expand with highest range expansion in 

rcp 8.5, thus leading to much higher probabilities of FIS establishments and spread. SOD range 

was observed to shrink possibly due to its specific moisture requirements. Given the combined 

threat of invasion and climate change, it is critical to model future distributions to ensure resources 

are adequately allocated to at risk areas based on current or future climate regimes rather than 

historical estimations (Huang et al., 2011). 

Correlative SDMs (MaxEnt) are focused primarily on the realized niche (actual distribution) so 

may underestimate the fundamental niche (potential distribution). This is because the model is 

representing only a portion of niche that is represented by the observed records and it is highly 

unlikely that a new FIS is at equilibrium with its current environmental conditions. This might 

provide an inaccurate assessment of overall species niche. Additionally, the habitat that is 

colonizable may differ from the potential habitat so including dispersal into habitat projections can 

greatly improve projections. This was shown for SOD when several types of models were 

evaluated (Václavík & Meentemeyer, 2009). Uncertainty when deciding on resource allocation for 

FIS control measures can lead to poor targeting and unnecessary economic expenditures. My 

approach of addressing dispersal limitations using MigClim integrates species-specific genetic 

https://paperpile.com/c/B58Sie/UXgV
https://paperpile.com/c/B58Sie/UXgV
https://paperpile.com/c/B58Sie/4RoK
https://paperpile.com/c/B58Sie/4RoK+QTVE
https://paperpile.com/c/B58Sie/QTVE
https://paperpile.com/c/B58Sie/jPVB


 

56 

 

traits (flight capacity, long dispersal distance, etc.) and allows for better simulating FIS spread 

under potential future climate conditions. I have found suitable areas where FIS likely to spread if 

it gets introduced and establishes in Vancouver and Toronto. Such information can be used by 

managers to more finely focus eradication efforts. 

I find that ignoring underlying FIS ecology and biology in SDMs and using complex (i.e. default) 

SDMs provide an incomplete picture of FIS invasion both in space and time.  In these focal cases 

I recommend simplifying model complexity and including dispersal and biotic factors to achieve 

more accurate outputs for each species when projecting models across time. I strongly encourage 

SDM users to perform species-specific tuning when modeling FIS distributions with MaxEnt to 

determine the best SDM design, as suggested by other authors (Halvorsen et al., 2015; Moreno-

Amat et al., 2015; Muscarella et al., 2014; Shcheglovitova & Anderson, 2013). However, often 

the biological and ecological knowledge of new incoming FIS is unavailable. In such cases, 

climate suitability seems to be the most widely-accepted approach to delineate the probable target 

regions for the FIS (Srivastava et al., 2019). Yet, climate suitability alone cannot explain the niche 

requirements of the species, though occasionally it is the most important factor (Stohlgren & 

Schnase, 2006). In such cases I suggest performing species specific model parameterization using 

recently developed tools like kuenm (Cobos et al., 2019) that offers more rigorous processes of 

model evaluation and selection and further linking the SDM with simplified dispersal models like 

KISSMig (Nobis & Normand, 2014) which seems to be a sound alternative since it does not require 

information on species demography and dispersal processes.  

Two of the major limitations of SDMs when it comes to input data are the spatial biases linked 

with the occurrence dataset (Elith, 2017; Phillips et al., 2006b) and limited/no presence 

information for the FIS in question (Venette et al., 2010). This becomes a serious concern when 

there is a fresh arrival of an invading species but limited or no information regarding potential 

habitat distributions consequences. In this regard, FIS known host tree distributions can 

significantly assist in estimating potential spatial distribution of suitable habitats. There is an 

increasing trend of integrating remotely sensed datasets to model species distributions (Web & 

Troll, 2013). This has proven to assist SDMs and improve the model performances (He et al., 

2015). Remotely derived information on host tree distributions has been used to mask the spatial 

extent of suitable landscapes for the FIS establishment (Kluza et al., 2007). However, host 

https://paperpile.com/c/B58Sie/ALiN+Bhzo+QzWN+HkxB
https://paperpile.com/c/B58Sie/ALiN+Bhzo+QzWN+HkxB
https://paperpile.com/c/B58Sie/OD7t
https://paperpile.com/c/B58Sie/r9NN
https://paperpile.com/c/B58Sie/r9NN
https://paperpile.com/c/B58Sie/0KjW
https://paperpile.com/c/B58Sie/JgQA
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distributions can also be assumed to be a suitable landscape in which a species can establish, and 

the same notion can be hypothesized for a presence locality of the FIS. Here, I have shown that by 

using presence locations of the FIS host an information on potential areas of FIS establishments 

can be obtained. This immediate assessment of the potential areas at risk due to the new incoming 

invasive can be of high significance when there’s no or limited data on the FIS presence. This 

novel approach provides risk assessors with the ability to develop SDMs for less surveyed FIS and 

for FIS that have recently arrived. 

 Preventing FIS introductions completely is by far the best method to protect the forest resources 

of a country (Myers et al., 2000) and a key component of the strategy involves detection of 

infestation areas in the early stages of invasion by means of surveys and constant monitoring. Maps 

produced from this study provide information about the potential suitable distribution ranges of 

focal FIS. This type of information is useful in designing early pest surveys and setting of domestic 

quarantines. Additionally, these maps can be effectively used in making scientifically informed 

management choices and help to further inform related conservation priorities and trade decisions. 

However, the maps produced should be interpreted with caution as there is no best transferable 

SDM for all species and predictions differ with varying modelling assumptions. Also, FIS infested 

material could arrive to any other vulnerable port or transportation destination, thus additional 

simulations for specific scenarios based on actual points of entry are still needed. The outputs will 

benefit Canada’s forest resources ecologically and economically as the mid-range projected annual 

loss to industry for individual FIS are: US$16M for ALB, US$625M for DED, US$121M for the 

gypsy moth (Colautti et al., 2006) and US$25M for SOD (Nelson et al., 2009). In the following 

chapter I address some of the SDM limitations by using a modified niche delineation approach and 

explore if the assumption of niche conservatism used in this chapter holds true by comparing FIS 

niches in their respective native and introduced ranges. 

 

 

https://paperpile.com/c/B58Sie/0n5V
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 Chapter III: Assessing niche shifts and conservatism by comparing the native 

and post-invasion niches of major forest invasive species3 

3.1 Introduction 

In the previous chapter I have assumed that the FIS niches were conserved, which means that the 

native and nonnative niches of the FIS were no different. However, this assumption is not always 

true and invasives might evolve over time and modify their niches in order to match the available 

conditions in their respective invasive ranges. Thus, in this chapter I am extending the research to 

find if the focal FIS niches have been conserved during their invasion course.  

The geographic range of a species results from the complex interaction of many biotic and abiotic 

factors (Peterson et al., 2012; Soberon & Peterson, 2005). Climatic conditions are considered to 

be major determinants of a species range (Stohlgren & Schnase, 2006). However, climate alone 

cannot always predict the distribution of a species as many species do not occupy all available 

habitats due to accessibility. Geographic barriers such as mountain ranges and oceans limited the 

migration of many species to new areas. With increased trade, anthropogenic movement of alien 

species has accelerated in the past century breaching these historic barriers and permitting the 

unprecedented movement of organisms around the globe (Seebens et al., 2018). As alien species 

are introduced to novel habitats, they are exposed to a variety of abiotic and biotic conditions that 

may (or may not) resemble their native range. Here, climate along with other range-limiting factors 

plays a key role in the future outcomes of these introductions, once human mediated dispersal 

and/or elimination of dispersal boundaries allows movement beyond the native range (Guisan et 

al., 2014; Jiménez-Valverde et al., 2011).  

Ecological niche can be defined as a multi-dimensional environmental space within which a 

species can maintain its source populations (Hutchinson, 1978). The ecological niche can be 

further described as fundamental and realized niche. The fundamental niche represents the 

conditions where a species can live indefinitely, whereas realized niche represents only a portion 

 
3 The content of this chapter has been adapted from: 

Srivastava, V*., Liang, W., Keena, M., Roe, A., Hamelin, R., Griess, V. C. (2020). Assessing niche shifts and 

conservatism by comparing major forest invasive species between native and invasive ranges. Under review with 

Global Ecology and Biogeography. 

https://paperpile.com/c/XF3u10/4yEF+Q6uT
https://paperpile.com/c/XF3u10/X1sW
https://paperpile.com/c/XF3u10/DFmJ
https://paperpile.com/c/XF3u10/Pk1d+E49M
https://paperpile.com/c/XF3u10/Pk1d+E49M
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of fundamental niche where species actually exists under competition, dispersal limitations and 

other biotic interactions. Predicting the potential distribution or realized niche of invasive species 

has received increased attention. Species distribution models (SDMs) have become a popular tool 

to investigate and predict the potential distribution of a new invader. SDMs rely on matching 

environmental conditions available in species native and invasive range to predict the niche. 

Recent improvements in SDMs with increased availability of species occurrences and climatic 

data have led to a wider use for investigating species climatic niche evolution during an invasion 

(Fitzpatrick et al., 2007; Jiménez-Valverde et al., 2011).  

However, using SDMs to predict invasive niches has recently come under scrutiny. SDMs are 

based on the assumption of niche conservatism - that species occupy similar niches in both their 

native and invasive ranges - which is supported by little evidence (Jiménez-Valverde et al., 2011; 

Peterson et al., 2012). Moreover, niche overlaps measured using SDMs are likely to vary 

depending on the extent and distribution of environmental gradients in the study area and 

potentially due to varying statistical assumptions and procedures related to model fitting 

(Broennimann et al., 2012).   

Furthermore, invasive species may undergo evolutionary niche shifts through genetic drift or 

selection that can modify their environmental requirements to match the available conditions in 

invasive ranges (Stohlgren & Schnase, 2006), such that the niche of the invasive range may no 

longer resemble that of the native range. Given this, SDMs will not be able to precisely predict the 

potential range of an invasive species or the characteristics of the niche for invasive range 

distributions (Srivastava, 2019). Moreover, SDMs are primarily based upon species occurrence 

records in their native range to describe a new potential distribution and may highly underestimate 

where an invasive species could survive. SDMs based on native ranges would also fail due to their 

inability to predict the post introduction influences of adaptations, interactions and dispersal 

barriers within the invasive range (Tingley et al., 2014). Given these constraints, doubts can arise 

whether the calculated niche corresponds to the one occupied by the given invasive, hence leading 

to significant levels of uncertainty regarding the outcomes of the assessed niche shifts (Araújo & 

Peterson, 2012). Thus, exploring niche shifts between native and invasive ranges may offer 

additional insights that might be useful in understanding range expansion and invasion potential 

of invading species (González-Moreno et al., 2015).  

https://paperpile.com/c/XF3u10/hNNG+Pk1d
https://paperpile.com/c/XF3u10/hNNG+Pk1d
https://paperpile.com/c/XF3u10/hNNG+Pk1d
https://paperpile.com/c/XF3u10/Pk1d+Q6uT
https://paperpile.com/c/XF3u10/Pk1d+Q6uT
https://paperpile.com/c/XF3u10/Ijye
https://paperpile.com/c/XF3u10/X1sW
https://paperpile.com/c/XF3u10/X1sW
https://paperpile.com/c/XF3u10/1s0Z
https://paperpile.com/c/XF3u10/hTVY
https://paperpile.com/c/XF3u10/st73
https://paperpile.com/c/XF3u10/st73
https://paperpile.com/c/XF3u10/bjd2
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To address the criticisms leveled at SDMs for predicting niche space, the ordination method 

proposed by Broennimann et al. (2012) allows a direct comparison of the species environmental 

relationships within the environmental space and employs various maximization criteria to 

construct two dimensional representations of the niches using the associated environmental 

variables (Broennimann et al., 2012; Jongman et al., 1995). In addition, this method equally weighs 

all environmental variables and considers both species’ geographic and environmental spaces. 

Moreover, the approach corrects the densities of known species occurrences by considering the 

available environmental space and correcting for sampling biases. 

I used the ordination method to evaluate and contrast post invasion realized niche shifts across 

diverse populations of two insects (sirex woodwasp [WW], Sirex noctilio (Fabricus); (Asian 

longhorned beetle [ALB], Anoplophora glabripennis (Motschulsky) and two pathogens (sudden 

oak death [SOD], Phytophthora ramorum Werres; Dutch elm disease [DED], Ophiostoma ulmi 

(Buisman) Melin & Nannf. and O. novo-ulmi Brasier) which are currently occupying new ranges. 

I also analyzed the effects of differences in choice of variables (all versus selected) in evaluating 

climatic niche features for these focal FIS. 

All four focal FIS pose significant threats to tree health in their invasive ranges (Hamelin & Roe, 

2019; Lantschner & Corley, 2015) and pose continuing risk of spread to new areas (Roe et al., 

2019). In the following I examine if the introduced invasives occupy similar environmental 

conditions in their invasive ranges when compared to their native populations. I also calculated 

how stable the niche is, determined if the species niche is expanding/evolving over time, and 

evaluated if the entire area defined by the niche has been invaded yet in each introduced range to 

better understand the niche dynamics of the selected species. I predict that sirex populations will 

show shifts in their niches and some degree of evolution. There seem to be two primary groupings 

(European and unknown source) of the strains that have become invasive and they seem to respond 

to biocontrols differently. These groups may also have different responses to temperature. Sirex 

causes more damage in the southern hemisphere than in the northern hemisphere which may have 

multiple causes (hosts, biological controls, and climate). The introduced ALB populations will 

show shift in their niches possibly due to alterations in their host preferences and variations in 

climatic profiles, given the more northern populations in Europe and that the invaded range does 

not go as far south in latitude as it does in China. Also, infested areas may represent a small part 

https://paperpile.com/c/XF3u10/Ijye+GWqd
https://paperpile.com/c/XF3u10/6aWX+9MD9
https://paperpile.com/c/XF3u10/6aWX+9MD9
https://paperpile.com/c/XF3u10/f0Vv
https://paperpile.com/c/XF3u10/f0Vv
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of potentially suitable areas. Similarly, SOD populations are very likely to show shift in their 

niches due to shifts in their hosts and may expand their niche in the invasive ranges. The SOD 

pathogen is known to have a broad host range, but host jump can result in new outbreaks, as the 

outbreak on larch in Europe. The other big driver could be climate, as climate change could turn 

current inhospitable climates into disease-conducive climates. DED populations could show niche 

evolution due to expansion of the host and climate change. Also, some DED vectors are more 

efficient transmitters of the pathogen and can intensify outbreaks.   

 

Figure 13 Geographical distribution of sirex woodwasp (WW), Asian longhorned beetle (ALB), sudden oak death 

(SOD) and Dutch elm disease (DED). Native ranges for each invasive are shown in green. Since the origin of Dutch 

elm disease is not known I assume them to be native to Asia for the purpose of comparison. 
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3.2 Research objectives 

The key objectives of this research chapter are: 

1) To compare post invasion realized niche shifts across diverse populations of major FIS. 

2) To analyze the effects of differences in choice of variables in evaluating climatic niche features 

for representative FIS. 

3.3 Methods 

3.3.1 Occurrence data 

An occurrence database was compiled for WW, ALB, SOD and DED from various sources,  

including (1) Records provided by the Canadian Food Inspection Agency (CFIA); (2) Global 

Biodiversity Information Facility database, an online database for species occurrences; (3) Centre 

for Agriculture and Bioscience International (CABI) invasive species compendium and (4) 

Scientific articles and maps (Figure 13) (Srivastava et al. 2020; Jung et al. 2020; Zahiri et al. 2019). 

I used Google Earth (Google Inc 2020) to obtain proxy coordinates for records lacking geographic 

coordinates. In order to generate geographically unique occurrences and account for potential 

sampling bias I applied a buffer of 5 km around each record using spThin R package (Aiello-

Lammens et al., 2015). Considering dispersion abilities of the representative species a minimum 

convex polygon around the occurrences with an added dispersion distance of 1 degree was applied 

to define their geographic background in their respective regions. Following backgrounds were 

considered for each invasive: (1) WW- Eurasia (native, n = 116), North America (NA, n = 12), 

South America (SA, n = 12), South Africa (SF, n = 11) and Oceania (Australia + New Zealand), 

n= 33 (2) ALB- Asia (native, n = 149), Europe (EU, n=23) and North America (NA, n = 26) (3) 

SOD- Indochina (native, n = 8), North America (native, n = 45) and Europe (EU, n = 53) (4) DED- 

Asia (native, n = 10), Europe (EU, n = 105) and North America (NA, n = 209). 

3.3.2 Climate data 

19 bioclimatic variables were obtained from the WorldClim database version 1.4 

(http://www.worldclim.org/) (Hijmans et al., 2005), averaged for the 1950–2000 period at a  spatial 

resolution of 2.5 arc minutes and were masked to match the extent of each species distribution. 

Following Broennimann et al. (2012), I evaluated niche features of the focal species among their 

https://paperpile.com/c/XF3u10/DIij+N0S1+lqDh
https://paperpile.com/c/XF3u10/i0E6
https://paperpile.com/c/XF3u10/i0E6
http://www.worldclim.org/
https://paperpile.com/c/XF3u10/cvd87
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invasive ranges after calibrating them on their respective geographical regions. The selection of 

the best set of range-limiting uncorrelated climatic variables for each of the representative species 

was made using the R package “MaxentVariableSelection” (Jueterbock et al., 2016). The best set 

of variables for WW and ALB included five variables, for SOD four and seven for DED. 

Table 4 Climatic variables for niche analyses of selected forest invasives selected using the R package “Maxen 

tVariableSelection” (Jueterbock et al., 2016). 

Variables WW ALB SOD DED Variable Details 

Bio1 ✓ ✓   ✓ Annual Mean Temperature 

Bio2 ✓       Mean Diurnal Range 

Bio3       ✓  Isothermality 

Bio4   ✓ ✓   Temperature Seasonality 

Bio5     Max Temperature of Warmest Month 

Bio6   ✓     Min Temperature of Coldest Month 

Bio7 ✓     ✓ Annual Temperature Range 

Bio8     Mean Temperature of Wettest Quarter 

Bio9     Mean Temperature of Driest Quarter 

Bio10     Mean Temperature of Warmest Quarter 

Bio11   ✓   ✓ Mean Temperature of Coldest Quarter 

Bio12     Annual Precipitation 

Bio13   ✓     Precipitation of Wettest Month 

https://paperpile.com/c/XF3u10/xKvrt
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Bio14 ✓   ✓ ✓ Precipitation of Driest Month 

Bio15 ✓   ✓ ✓ Precipitation Seasonality 

Bio16     Precipitation of Wettest Quarter 

Bio17     Precipitation of Driest Quarter 

Bio18     Precipitation of Warmest Quarter 

Bio19     ✓ ✓ Precipitation of Coldest Quarter 

 

3.3.3 Measuring climatic niche shifts 

I used the environmental principle components analysis (PCA-env) method proposed by 

Broennimann et al. (2012) to test for shifts in the realized niches of focal species after their 

introduction into their invasive ranges. This method allowed me to compare the environment 

conditions available to a species within a region with its observed locations and calculate the 

available environment space which was defined by the first two axes from the PCA. By applying 

a kernel smoothing function to occurrence densities this method corrects for potential sampling 

biases by considering available environmental space within the entire background.  

I compared the climatic conditions available for each species within their invasive ranges to those 

found within the native range. My approach followed Silva et al. (2016) where they created 

occurrence density models while correcting for the available environmental conditions for the 

studied species and quantified niche overlap using Schoener’s D index (Schoener, 1970), which 

varies from 0 (no niche overlap) to 1 (when the niches are identical. I then used this metric to test 

for niche equivalency and similarity. The niche equivalency test compares the observed niche 

overlap with the estimated overlap when occurrences are randomly reassigned to both 

backgrounds. The species occurrences were randomized in both backgrounds and Schoener’s D 

was recalculated 100 times to produce a null distribution of overlap scores which was then 

compared with the observed value (Warren et al., 2008). The niche equivalency test used exact 

https://paperpile.com/c/XF3u10/0MWg
https://paperpile.com/c/XF3u10/N4jH
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locations of species and didn’t take into account the entire available space, whereas the niche 

similarity test considered differences in the surrounding environment conditions available across 

the species distributional area (Aguirre-Gutiérrez et al., 2015). The test examined if the observed 

overlap between the compared niches is different from the overlap between the observed niche in 

one range and randomly selected niches in the other range. I thus measured niche similarity 

between each pair of ranges by comparing the overlap of one range with randomized occurrences 

on the background conditions of the other (1 → 2), keeping the original number of occurrences 

and vice versa (2 → 1). The rejection of niche similarity hypothesis signifies that the environmental 

conditions occupied by the species in the invasive range are more similar to the environmental 

conditions occupied in the native range than would be expected by chance (overlap between native 

and invasive niche is larger than random expectation) (Strubbe et al., 2015). Hence, a p-value >.05 

signifies niches that are less similar than expected by chance (Manzoor et al., 2020). I have used 

niche similarity test here to assess niche shifts and conservatism. For detailed information on niche 

similarity test readers are referred to Broennimann et al. (2012) and (Strubbe et al., 2015). 

In order to provide more insight into the niche dynamics of the representative species I also 

calculated how stable the niche was, determined if the species niche is expanding/evolving over 

time, and evaluated if the entire area defined by the niche has been invaded yet. Niche stability 

and expansion (= 1-niche stability) measure the proportion of occupied environmental space in the 

introduced range that is overlapping and non-overlapping, respectively, to that of the native range. 

To determine if the non-native niche was completely invaded the proportion of native range that 

doesn't overlap with the invasive range was calculated. I used the package ecospat (Cola et al., 

2017) in R (R Development Core Team 2020) to obtain the proportion of climatic niche in each 

comparison as proposed by Guisan et al. (2014). The R code for the PCA-env was modified from 

Broennimann et al. (2012) and Silva et al. (2016) to perform the analysis. To assess the impact of 

variable selection on the niche analysis, I compared the results obtained using the complete set of 

climatic variables (n=19) to the best set of range-limiting uncorrelated climatic variables. I 

discussed variations in the climatic niches of the focal species in the direction 1 → 2 (only 

considering native versus invasive ranges).   

https://paperpile.com/c/XF3u10/WfJ3
https://paperpile.com/c/XF3u10/9tTq
https://paperpile.com/c/XF3u10/Si2e
https://paperpile.com/c/XF3u10/9tTq
https://paperpile.com/c/XF3u10/uMv6
https://paperpile.com/c/XF3u10/uMv6
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3.4 Results 

The selected set of climatic variables for each study species explained more than 75% of the 

variance in environmental conditions (Table 4). In contrast, the complete set of variables explained 

less than 75% of the original environmental variation for all four species (Figure 14-17). When I 

compared these two datasets, selected vs complete, I found that they produced different 

proportions of niche overlaps and other studied metrics, where the selected set of variables 

provided results that were closer to the observed species occurrences. Hereafter, I present only the 

results generated using the selected variable sets but provide details for each dataset in the provided 

tables (Table 5-8) for direct comparison.  

Sirex woodwasp 

All introduced populations of WW showed low niche overlap (0.01-0.19, Table 5) and were not 

similar to the native range (did not exhibit high similarity to the native range and showed variable 

niche overlap proportions that varied from 0.01 to 0.19 (Table 5). The overlap scores between the 

native and invasive ranges were very low for South America (0.01) and Africa (0.02). The WW 

populations in Africa and SA occupied more humid and colder environments than those found in 

the Australian and NA ranges. Whereas, the WW populations in Australia occupied warmer 

conditions compared to native and other invasive ranges of WW. Also, along with native 

populations the Australian populations preferred drier environments (Figure 14). Climatic niches 

of the invasive ranges of WW showed moderate to low degrees of niche invasion when compared 

to the native range (0.57-0.91) indicating that there is considerable niche range into which the 

populations could expand. However, there was no expansion and stability observed in the niches 

of the Oceania and NA populations when compared to the native range. Populations in African 

and SA ranges showed moderate niche expansion and stability (Table 5).  
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Table 5 Summary of niche test of sirex woodwasp between native range Eurasia (EUA) and invasive ranges Africa, 

Oceania, North America (NA) and South America (SA) using all and selected climatic variables. Bold values represent 

niche comparison values between native versus each introduced ranges (1→2) whereas unbolded values represent 

comparisons between introduced ranges versus native range (1←2). Significant p values (α = 0.05) are represented 

by *. 

Region Variable Overlap Similarity test 
   (p values, α =   0.05) 

Uninvaded Expansion Stability 

Africa All 0.02 0.515 0.079 0.87 0.47 0.47 0.87 0.53 0.13 

Selected  0.02 0.624 0.099 0.57 0.31 0.31 0.57 0.69 0.44 

Oceania All 0.24 0.267 0.050* 0.54 0.26 0.26 0.54 0.74 0.46 

Selected  0.14 0.178 0.030* 0.70 0.00 0.00 0.70 1.00 0.30 

NA All 0.31 0.475 0.020* 0.49 0.00 0.00 0.49 1.00 0.51 

Selected 0.19 0.347 0.396 0.57 0.00 0.00 0.57 1.00 0.43 

SA All 0.04 0.356 0.089 0.85 0.63 0.63 0.85 0.37 0.15 

Selected 0.01 0.366 0.030* 0.91 0.57 0.57 0.91 0.43 0.09 
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Figure 14 Native and invasive climatic niches of sirex woodwasp in different regions along with variable factor maps. 

Multivariate climatic space was calculated using the PCA-env method. Results using all variables are shown in parts 

a and b whereas parts c and d shows the results obtained with selected variables. The solid and dashed lines delineate 

the niche occupied by the 50% densest population and all available climatic niche, respectively. Shadings correspond 

to the density of occurrences in each region. Green, orange, blue, purple, and red represent Africa (non-native), 

Oceania (non-native), North America (non-native), South America (non-native), and native range, respectively. Refer 

to table 4 for description on the coded climatic variables used in the analysis.  

Asian longhorned beetle  

ALB has a large geographic distribution within its native range, spanning from 21 to 45° N degrees 

of latitude (Figure 13), with multiple invasions within North America and Europe. The ALB niches 

are defined by five climatic variables (bio1, 4, 6, 11, 13; Table 1), four of which are related to 

temperature. The niche overlap with the native distribution ranged from 0.17 to 0.33 for the 

invasive ranges in NA and EU respectively (Table 6). The NA niche showed less niche overlap 

with the native niche than EU. The results show that the introduced populations in the EU occupy 

locations that are warmer and more humid than those found in NA (Figure 15). NA populations 

exhibited a climatic niche that was significantly more similar than expected by chance, to the native 
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range. However, EU populations did not exhibit niche similarity to the native range (Table 6). The 

lack of significant similarity between native and invasive ranges shows that these invasive ranges 

have different climatic features based on the best set of climatic variables than that observed in the 

native range despite having an overlap value of 0.33. Climatic niches of the invasive ranges of 

ALB showed high degrees of niche filling when compared to the native range (Table 6).  However, 

I observed little to no expansion in the niches of EU and NA populations, and these invasive 

populations showed high niche stability. 

Table 6 Summary of niche test of Asian longhorned beetle between native range in Asia and invasive range in Europe 

(EU) and North America (NA) using all and the selected climatic variables. Bold values represent niche comparison 

values between native versus each introduced ranges (1 → 2) whereas unbolded values represent comparisons 

between introduced ranges versus native range (1←2). Significant p values (α = 0.05) are represented by *. 

Region Variable Overlap Similarity test 
    (p values, α =   0.05) 

Uninvaded Expansion Stability 

EU All 0.01 0.752 0.040* 0.97 0.00 0.00 0.97 1.00 0.03 

Selected  0.33 0.980 0.059 0.06 0.00 0.00 0.06 1.00 0.94 

NA All 0.01 0.960 0.040* 0.98 0.00 0.00 0.98 1.00 0.02 

Selected  0.17 0.010* 0.119 0.00 0.00 0.00 0.00 1.00 1.00 
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Figure 15 Native and invasive climatic niches of Asian longhorned beetle in different regions along with variable 

factor maps. Multivariate climatic space was calculated using the PCA-env method. Results using all variables are 

shown in parts a and b whereas parts c and d shows the results obtained with selected variables. The solid and dashed 

lines delineate the niche occupied by the 50% densest population and all available climatic niche, respectively. 

Shadings correspond to the density of occurrences in each region. Green, red, and blue colors represent Asia (native), 

Europe (non-native), and North America (non-native), respectively. Refer to table 4 for description on the coded 

climatic variables used in the analysis. 

Sudden oak death  

SOD has a broad geographic distribution in its invasive range in North America and Europe, but 

its native range was unknown until recently (Figure 13). The discovery of a very diverse population 

of the pathogen in South Asia makes that region a likely center of origin. Climatic niche analyses 

of SOD revealed different climatic preference of SOD in the invasive ranges as both introduced 

EU and NA populations had less similar niche to that of native range. I observed an overlap of 

only 0.9% in climatic niches of NA and native populations but 16% overlap between EU native 

populations (Table 7). The SOD populations in NA were exposed to more variations in temperature 

whereas those in EU were exposed to more variations in precipitation compared to the native range 

(Figure 16). Introduced populations occupied drier areas compared to the native range. Based on 



 

71 

 

the complete set of climatic variables SOD populations in the invasive EU range occupied colder 

environments than populations in native and NA range (Figure 16).  Most of the available SOD 

niche (99%) was not yet invaded in NA and 58.5% of the niche remained uninvaded in the EU 

range. A high degree (77.3%) of niche expansion was observed in the NA range whereas a 

moderate degree (58%) of niche expansion was observed in the EU range. Both invasive ranges 

had low niche stability (Table 7). 

Table 7 Summary of niche test of sudden oak death between native range Indochina (Vietnam) and invasive ranges 

Europe (EU) and North America (NA) using all and selected climatic variables. Bold values represent niche 

comparison values between native versus each introduced ranges (1→2) whereas unbolded values represent 

comparisons between introduced ranges versus native range (1←2). Significant p values (α = 0.05) are represented 

by *. 

Region Variable Overlap Similarity test 
   (p values, α =   0.05) 

Uninvaded Expansion Stability 

EU All 0.357 0.168 0.267 0.044 0.234 0.234 0.044 0.766 0.956 

Selected  0.161 0.554 0.861 0.585 0.580 0.580 0.585 0.420 0.415 

NA All 0.262 0.188 0.010* 0.567 0.552 0.552 0.567 0.448 0.433 

Selected  0.009 0.267 0.950 0.989 0.773 0.773 0.989 0.227 0.011 

 



 

72 

 

 

Figure 16 Native and invasive climatic niches of sudden oak death in Indochina (Vietnam), Europe and North America 

along with variable factor maps. Multivariate climatic space was calculated using the PCA-env method. Results using 

all variables are shown in parts a and b whereas parts c and d shows the results obtained with selected variables. The 

solid and dashed lines delineate the niche occupied by the 50% densest population and all available climatic niche, 

respectively. Shadings correspond to the density of occurrences in each region. Red, blue and green colors represent 

Europe (non-native), North America (non-native) and Indochina (native) respectively. Refer to table 4 for description 

on the coded climatic variables used in the analysis. 

Dutch elm disease  

DED has a broad geographic distribution in its invasive range in North America and Europe. Its 

native range is believed to be Asia, where a close relative of the DED pathogen is found and is 

used here for the native range (Fig 13). DED niche overlap comparisons between the chosen 

‘native’ and invasive ranges also showed different overlap proportions ranging from 0.18 to 0.49 

for invasive ranges in NA and EU, respectively. The DED populations occupied drier and warmer 

conditions in NA than in the EU range. The NA populations also showed a shift towards colder 
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regions as compared to the ones in the EU range. Moreover, the populations in the native range 

were exposed to higher variation in precipitation than those found in the invasive ranges. However, 

invasive DED in both NA and EU occupied cooler environments than native populations. DED 

populations in all ranges preferred humid environments (Figure 17). Both EU and NA populations 

exhibited a realized climatic niche that was not significantly similar to the native range (Table 8). 

Climatic niches of the introduced ranges of DED showed highest degrees of niche filling when 

compared to the native range. However, expansion in the niches of EU (22%) and NA (57%) 

populations were observed. Also, the EU range was found to be more stable than NA 

Table 8 Summary of niche test of Dutch elm disease between native range Asia and invasive ranges Europe (EU) and 

North America (NA) using all and selected climatic variables. Bold values represent niche comparison values between 

native versus each introduced ranges (1 → 2) whereas unbolded values represent comparisons between introduced 

ranges versus native range (1←2). Significant p values (α = 0.05) are represented by *. 

Region Variable Overlap Similarity test 
   p values, α =   0.05) 

Uninvaded Expansion Stability 

EU All 0.69 0.238 0.238 0.00 0.26 0.26 0.00 0.61 1.00 

Selected  0.49 0.347 0.307 0.00 0.22 0.22 0.00 0.78 1.00 

NA All 0.57 0.030* 0.010* 0.00 0.39 0.39 0.00 0.74 1.00 

Selected  0.18 0.089 0.307 0.00 0.57 0.57 0.00 0.44 1.00 
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Figure 17 Native and invasive climatic niches of Dutch elm disease in different regions along with variable factor 

map. Multivariate climatic space was calculated using the PCA-env method. Results using all variables are shown in 

parts a and b whereas parts c and d shows the results obtained with selected variables. The solid and dashed lines 

delineate the niche occupied by the 50% densest population and all available climatic niche, respectively. Shadings 

correspond to the density of occurrences in each region. Green, red, and blue colors represent Asia (native), Europe 

(non-native), and North America (non-native), respectively. Refer to table 4 for description on the coded climatic 

variables used in the analysis. 

3.5 Discussion & conclusions 

The selection of relevant climatic factors is critical when delineating the climatic niches of invasive 

species (Fourcade et al., 2018; Petitpierre et al., 2017), however when selecting climatic variables 

to assess niche shifts, multiple approaches have been used. A few researchers have selected all 19 

bioclimatic variables found in the WorldClim database (Mairal et al., 2017; Silva et al., 2016) 

whereas several have chosen only variables considered relevant to assess the niche shift (Liang, 

Papeş, et al., 2018; Liang, Tran, et al., 2018; Quintero & Wiens, 2013a, 2013b). The commonly 

used approaches assess the correlation between variables and then chose a subset to avoid 

multicollinearity (Braunisch et al., 2013). However, relevant variables should additionally be 

https://paperpile.com/c/XF3u10/V7yC+ZxwL
https://paperpile.com/c/XF3u10/qkdM+nUHr
https://paperpile.com/c/XF3u10/EdCr+EdWr+wYT0+9Ec7
https://paperpile.com/c/XF3u10/EdCr+EdWr+wYT0+9Ec7
https://paperpile.com/c/XF3u10/scLH
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selected based on the underlying species’ ecology (Petitpierre et al., 2017). In this study I 

demonstrate the importance of selecting relevant climatic variables when defining the climatic 

niches of invasive species (Austin & Van Niel, 2011). When I used the relevant variables for each 

species, I found different values for each studied niche feature, compared with the results generated 

using all climatic variables. The results generated using a subset of variables produced results that 

were close to known distribution of my focal species. My results suggest that using a complete set 

of bioclimatic variables for niche analysis may underestimate or generate a niche which can be 

misleading and further limit our understanding on accurate niche delineation of respective species. 

Further, inappropriate selection of variables might not produce robust niche models and could 

produce false information on habitat quality and relative importance of variables in defining the 

niche (Warren & Seifert, 2011; Zeng et al., 2016). Using a complete set of bioclimatic variables 

in niche mapping should not be recommended based on my results. Previously, other researchers 

have demonstrated the importance of variable selection in determining suitable ranges for species 

establishment (Cobos et al., 2019; Halvorsen et al., 2016; Warren & Seifert, 2011). Title and 

Bemmels (2017) also found that including more variables which are likely to have direct relevance 

on ecological or physiological processes of target species can substantially improve the 

performance of niche models. I recommend using a subset of variables that are biologically 

important to the target species and have been obtained by a rigorous selection method for the niche 

analysis.  There are many powerful tools available to assist in the selection of the best set of 

variables for the niche analysis. Recently developed tools like kuenm (Cobos et al., 2019), 

MaxentVariableSelection (Jueterbock et al., 2016) or ENMeval (Muscarella et al., 2014) all offer 

rigorous processes of variable selection that might be useful in carrying out the analyses.  

My test results of niche shifts can be explained by combined effects of environmental requirements 

(species ecology) and evolutionary changes allowing focal species to occupy newer areas and 

spread into novel environments. A species range can expand as a result of local adaptations 

including gene flow and dispersal (Medley, 2010). Moreover, frequent introductions from multiple 

sources could also produce novel genetic combinations through hybridization helping invasive to 

adapt in a new environment (Stohlgren & Schnase, 2006). A genetically hybridized superior 

population can utilize new environmental conditions as compared to their parents (Sheth & Angert, 

2014). Also the founder effect could further help in rapid adaptations by expressing beneficial 

fitness-related alleles (Blows & Hoffmann, 2005).  

https://paperpile.com/c/XF3u10/ZxwL
https://paperpile.com/c/XF3u10/C2Pv
https://paperpile.com/c/XF3u10/ZPi1+lUZH
https://paperpile.com/c/XF3u10/gDnJ+ZPi1+wvdU
https://paperpile.com/c/XF3u10/gDnJ
https://paperpile.com/c/XF3u10/xKvrt
https://paperpile.com/c/XF3u10/SrIN
https://paperpile.com/c/XF3u10/ISbd
https://paperpile.com/c/XF3u10/X1sW
https://paperpile.com/c/XF3u10/ab9V
https://paperpile.com/c/XF3u10/ab9V
https://paperpile.com/c/XF3u10/LPPv
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The results show that all introduced WW populations have different environmental preferences 

and there may have been some evolution of the niche in the invasive ranges. The niche differences 

mirror the invasion history that was revealed through genetic analysis.  The NA and Oceania 

populations originated primarily from Europe, the SA populations had multiple origins (including 

one that is still unknown) and the African populations had origins in SA, Oceania and the same 

unknown source as part of the SA populations. The indicated range expansion in the SA and 

African populations may simply be an artifact due to the lack of sampling some unknown source 

population in Eurasia that was indicated by the genetic analyses.  The unknown range may expand 

the niche in the native range once discovered and that may coincide with the apparent range 

expansions.  It should, however, not be forgotten that the WW invasion is continuing and 

complicated by the fact that a nematode that can sterilize female wasps and the symbiotic fungus 

the wasp larvae need to feed on also travel with it. In addition, there are different strains of both 

the fungus and nematode as well as some parasitoids that all can affect the realized niche and 

spread of the WW in invade areas (Slippers et al. 2015). 

The WW results also suggested that there was a considerable proportion of the introduced niche 

that was not yet invaded.  This agrees with the results of modeling the potential range of the WW 

using CLIMEX (Ireland et al. 2018).  There are areas of suitable native or exotic pines in Australia, 

Brazil, and North America that the WW could still disperse into.  If portions of these additional 

areas differ in climate from the already occupied niche, then the invaded niche may be 

underestimated as was suggested for the SOD invaded niches. 

ALB occupies a large climatic niche within its native range. This niche spans at least 24 degrees 

of latitude, and area that is characterized by significant temperature gradients (Javal et al., 2019a). 

The smaller niches estimated for ALB in the invaded regions are likely based on the small, 

localized invasive populations. Invasive ALB populations are subjected to intensive eradication 

programs (Haack et al., 2010), aimed at limiting the dispersal and spread into surrounding habitat. 

As such, the distribution of ALB is intentionally limited to these small infestations and the niches 

estimated for this species may not reflect the true invasive potential of this species.  

Temperature was a dominant environmental factor driving niche differentiation between climatic 

niches within these non-native habitats speaks to the plasticity within the ALB populations. 

https://paperpile.com/c/XF3u10/dNgM
https://paperpile.com/c/XF3u10/RJiE
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Invasive populations in North America and Europe occupy different niches, albeit niches that were 

encompassed, more or less, by the niche diversity within native range. ALB is known to be very 

plastic in its response to temperature (Keena & Moore, 2010), which suggests that new infestations 

may have the capacity to survive and establish in a range of habitats outside its native range. For 

example, ALB can survive in cool climates by altering the number of larval instars and requiring 

(Keena & Moore, 2010). This ability to adapt may also explain the niche expansion beyond the 

borders of the native range seen in the EU populations. Although ALB in the introduced ranges 

currently seem to have filled their niche, their ability to adapt could expand the niche if new 

introductions occur. However, since the ALB in both NA and EU are under eradication that has 

limited the natural spread potential beyond the areas where the introductions occurred. This likely 

has limited the realized niche, resulted in higher niche filling rates, and high niche stability as was 

observed in this study. 

The large proportion of the SOD niche that is uninvaded in NA and Europe may indicate that the 

NA and EU populations are early in the invasion process and could disperse much more before 

reaching niche equilibrium. The SOD pathogen can disperse in two ways: via anthropogenic 

transport on plants and naturally via spores. The first means can lead to long-distance, even 

intercontinental transport. But the spores naturally disperse slowly through wind driven rain with 

about half of the new infections occurring within 100 m of already infested trees (Rizzo et al., 

2005). Also, as the best set of climatic variables suggest, the pathogen has specific temperature 

and moisture requirements for infection that occur only seasonally and vary between years 

(Meentemeyer et al., 2004; Tooley and Kyde, 2005). New infections also require susceptible hosts 

to be close to the infected trees. Most models of SOD spread and potential range in invaded areas 

include a susceptible host layer for this reason (Magarey et al., 2007; Václavík and Meentemeyer, 

2009; Cunniffe et al., 2016). Adding a host variable to the niche model could improve the niche 

characterization. However, it has been shown that trying to model the niche for SOD when it is in 

an early stage of invasion will tend to underestimate the true niche so this may have affected the 

results (Václavík and Meetenmeyer, 2012). The host range of this pathogen is still poorly 

understood and the recent host jump to Japanese larch was unexpected (Brasier & Webber, 2010). 

The results suggest niche evolution in the invasive ranges of SOD. This was also supported by a 

very high degree of niche expansion observed in both invasive populations of SOD and the fact 

that niche stability is very low. This could result from the pathogen being introduced into areas 

https://paperpile.com/c/XF3u10/ZRrw
https://paperpile.com/c/XF3u10/ZRrw
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with many new susceptible hosts and a less favorable or more variable climate so that rapid 

selection for the most viable fungal genotypes may have occurred. Another possibility exists, that 

the sampling of the native range is still limited and thus may be underestimating the true extent of 

the native niche and therefore the overlap with the introduced niches. Although my study did not 

address subspecific niche adaptation, this could be done in the future. There are in fact three 

lineages of SOD in the Pacific Northwest and British Columbia and some of the lineages diverged 

as long as 1M years ago (Grünwald et al., 2019; Dale et al., 2019). It is possible that there are two 

different areas that make up the NA niche 50% zone which could suggest that there may be 

different genotypes with different niches. 

The lack of similarity between native and introduced ranges of DED shows that the populations in 

the introduced ranges have different environmental preferences and adaptations than those 

observed in the chosen ‘native’ range. This could be caused by the presence of an entirely different 

species of the pathogen in Asia compared to the ones present in North America and Europe. The 

climatic niches in the invasive ranges of DED showed the highest degrees of niche filling 

compared to the native range possibly due to limited sampling of the pathogen in the presumed 

native range (Brasier, 1990). The niche expansion in North America and Europe could be linked 

to the differences in the fungal pathogen adaptation, the observed hybridization among the 

subpopulations of the pathogen and the availability of highly susceptible host species (Brasier, 

2000, 2001; Brasier & Mehrotra, 1995; Hessenauer et al., 2020). Brasier (2000) has described the 

expansion of the Dutch elm disease outbreak (the second pandemic) following the appearance of 

a second species, O. novo-ulmi, that had optimum growth temperature (22C) lower than that of 

the original pathogen, O.ulmi (27.5-30°C); it is likely that O. novo-ulmi is better adapted to cooler 

climates than O. ulmi which is considered to be better adapted to subtropical climates (Brasier & 

Mehrotra, 1995; Stipes et al., 1981).  

Most of my representative invasives were far away from reaching niche equilibrium and this 

finding was based completely upon observed species locations (realized niche). I know my results 

disregard the important biotic processes that may have delineated the species niche. Also limited 

samples from native and invasive ranges may have underestimated the actual distribution ranges 

of the invasives and hence the results obtained from this study should be assessed with caution.  

Additional observation data and information on physiological requirements of invasives derived 
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from genomics from both native and introduced ranges would be useful to better understand and 

predict the behavior of the representative invasives in their respective newly introduced ranges. 

The information on climatic niche expansion and other important niche characteristics can prove 

to be a useful cost-effective tool in managing and monitoring representative invasives future spread 

and currently infested areas.   
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 General conclusions  

4.1 Summary of key results  

This dissertation had following three key objectives: 

• Identify current applications of SDMs and review the benefits and challenges of using SDMs to 

estimate, and spatially project, invasion risk. 

• Map FIS potential distribution, dispersal and prediction uncertainty and propose a framework to 

produce robust pest risk maps. 

• Compare post invasion realized niche shifts across diverse populations of FIS. 

These above listed objectives were independently addressed in three research chapters as detailed 

below. 

Chapter 1 provided an in-depth literature review on correlative species distribution models, 

particularly in reference to forest invasive species. The chapter discussed various application areas 

of SDMs. It was found that the SDMs are being applied to answer wide range of questions in the 

fields of ecology and biogeography. Particularly it was shown that the key applications of SDMs 

were to characterize niche and ecological requirements of species, map species potential 

distribution, conservation and policy making, impacts of climate change or human footprint on 

species distribution, risk assessment and testing of ecological theory. Moreover, Chapter 1 found 

that the use of SDMs have evolved continually over the past decade particularly in the areas of 

climate change, risk mapping, analyzing species evolution and range shifts. It was found that the 

use of SDMs in invasion ecology is very recent and is gradually increasing.  The chapter provided 

a detailed discussion on benefits and challenges of using SDMs for invasive species management. 

Specifically, issues around building a robust correlative SDM were discussed. This chapter also 

outlined potential benefits and associated challenges of using SDM to estimate, and spatially 

project, invasion risk.  It was shown that SDMs are very effective tool in the fields of ecology and 

conservation biology and are accompanied with multiple benefits. However, challenges are linked 

in constructing SDMs. It was found that the challenges were linked with model building processes 

and uncertainties were associated with the modeled distributions. It was shown that the major 

challenges of using SDMs were related to transferability, niche characterization, biotic 
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interactions, species dispersal and uncertainty which were more relevant in the case of invasives. 

Best practises were also discussed under each challenges and suggestions were made in order to 

create more robust and accurate models. Throughout the thesis I have argued that in order to create 

an effective pest risk map, the risk modeler must incorporate strong ecological baseline 

assumptions for the accurate assessments of the invasion risk. 

Chapter 2 brought the best practices and suggestions made in chapter 1 into a working framework 

and demonstrated its effectiveness in producing more accurate and ecologically relevant 

predictions. It was demonstrated that SDM’s default settings were not effective and the 

performance of models were found to be improved by incorporating the suggested best practices. 

Evidence suggested that selection of background data, tuning of model parameters, choice of 

relevant predictors and sampling correction led to more accurate models and better transferability. 

In addition, it was demonstrated that the inclusion of human influence index, to account for FIS 

dispersal and human footprint, increased the overall accuracy of the FIS model while significantly 

contributing to each FIS model. Suitable areas where focal FIS can spread and eventually colonize 

once they get established at the chosen initial entry point were discovered along with 

environmental factors affecting their suitability distributions. 

As discussed in the background section and in Chapter 1 that a major challenge of using SDMs for 

invasive species is that they don’t include dispersal limitations of the species and often assume 

dispersal to be either absent or unlimited. It was shown that FIS specific dispersal traits can be 

effectively included in the distribution projections. And as a result, it was found that including FIS 

dispersal limited the range shift of the focal FIS. In the chapter it was made evident that an invasive 

SDM must include dispersal in order to highlight actual areas at risk of invasion. 

The methodology presented in chapter 2 addresses model parameterization, selection of predictors, 

inclusion of dispersal and representation of prediction uncertainty together in a workflow. The risk 

assessment framework presented in chapter 2 is easy and allows early assessment of pest risk via 

integrating species specific dispersal traits.  In general, these findings demonstrate that SDMs for 

invasive species, require a very careful construction and must address biotic interactions along 

with species biology and dispersal. 
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Chapter 3 investigated niche shifts and conservatism for the selected FIS. As discussed in the 

second chapter and in the background section that SDMs are based on the assumption of niche 

conservatism which seldom applies to invasive species. Analysis presented in chapter 2 have 

assumed the notion of niche conservatism to be true, but the occurrences from nonnative regions 

were taken into consideration in order to account for any additional information that invaisves in 

nonnative ranges might contain. However, FIS specific niche characteristics in both native and 

nonnative ranges were not compared, and thus whether the focal FIS niches were conserved, 

experienced shifts or whether they evolved in their invaded ranges were unknown. Thus, chapter 

3 explored the niche similarities or dissimilarities of focal FIS by matching the overlap between 

respective native and introduced ranges in an environmental space. Moreover, Chapter 3 further 

explored the methodology of comparing niches and analyzed the impacts of variable selection on 

the estimated niches. Chapter 3 discovered that the variable selection impacted the delineation and 

overlap of each studied niche. Whereas, the subset of climatic variables selected from the first two 

PCA-environment axes explained more variance in environmental conditions than the complete 

set of climatic variables for all four species. It was also shown that most focal species showed 

niche shifts and further incomplete occupation of available niche within their invaded ranges. It 

further demonstrated that the proportion of niche overlap between the native and invasive ranges, 

varied with species. Chapter 3 demonstrated that exploring niche characteristics between native 

and introduced ranges offers additional insights that will be useful in understanding range 

expansion and invasion potential of non-native species. 

4.2 Innovations of the research 

This dissertation provided key innovations for designing SDMs for mapping invasion risk of forest 

invasives: 

• The novel best practices to improve SDMs were outlined in Chapter 1 and the following 

chapters validated that their inclusion improves the accuracy of the models and accordingly 

forecasts the invasion risk. A novel framework for FIS risk assessment has been presented in 

chapter 2 and 3 and it was shown in both the chapters that model development and predictor 

section significantly affected the modeled outcomes. The presented methods form a standard 

for producing risk maps using SDMs. 
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• Chapter 2 provided new insights into the ongoing need of invasive SDMs to address dispersal 

limitations of the species. The chapter brought together the elements of FIS specific dispersal 

abilities and their respective modeled distributions. The novel method allowed to simulate FIS 

spread from a hypothesized entry point for a set of anticipated future climate change 

conditions, while integrating species specific genetic traits and dispersal barriers. This novel 

methodology enables distribution modelers to forecast invasive species spread while 

incorporating the dispersal capabilities of the species under changing landscape and climate 

conditions. 

• Chapter 2 utilized a novel approach for visualizing uncertainty in species distribution models. 

This approach provided an effective representation of uncertainty with respect to input data in 

MaxEnt models. 

• In order to find ways to model habitat suitability of a new incoming FIS for which almost 

negligible to very few observation data are available, a methodology was tested to replace the 

FIS presence data with that of its host. It was shown that by using the presence locations of 

the FIS host, information on potential areas of FIS establishments can be obtained. This 

approach provides risk assessors the ability to develop SDMs for less surveyed as well as for 

recently arrived FIS.  

• This thesis provided new information with respect to focal FIS distributions, preferred 

climates, spread patterns, impacts of climate change on their range expansion and specific 

niche characteristics in their native and nonnative ranges. This information will help the 

decisionmakers towards management around these selected FIS. 

4.3 Key limitations 

My thesis presents advances towards a better understanding of spatial models for use in invasion 

ecology in particular reference to forests invasive pests. The methodology presented to develop 

pest risk maps is robust and easy despite there are few limitations and challenges.  

In chapter 1, I have limited myself to issues related to model transferability, biotic interactions 

along with dispersal limitations (local and regional) and uncertainty, which appeared especially 

relevant in the case of invasive species. However, I have excluded other important aspects to 

consider such as autocorrelation amongst predictors , extent and resolution of the study area , 
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variable selection, pseudo-absence generation procedures  and model evaluation  which might also 

be useful to consider. 

Challenges associated with the data are identified in the chapters 2 and 3. Sampling bias and 

inadequate FIS observation samples from native and invasive ranges may have underestimated the 

actual distribution ranges of the invasives. Additionally, lack of data from invasive ranges may 

have failed to capture FIS local adaptations and associated evolutionary niche shifts.  In chapter 2, 

I have used SDMs to predict invasive niches. However, the approach has recently come under 

scrutiny due to the underlying assumption of niche conservatism which is supported by little 

evidence (Jiménez-Valverde et al., 2011; Peterson et al., 2012). Moreover, the estimated niches 

are likely to vary depending on statistical assumptions and procedures related model building and 

fitting.  

To model the species niches, I have used coarse resolution climatic grids of 10 km and 5 km due 

to the data limitations. However, this resolution might not be adequate to completely capture 

species biological differences in the considered ranges. Moreover, the approach presented to model 

potential distribution of FIS only measured the realized niche, which is a subset of fundamental 

niche where the species is not absent due to biotic competition. Hence in this work the fundamental 

niche of the FIS remains unknown.  

I have produced FIS dispersal maps assuming the focal FIS will enter through selected ports. 

However, the FIS infested material could arrive to any other vulnerable port or transportation 

destination other than Vancouver and Toronto, thus additional simulations for specific scenarios 

based on actual points of entry are still needed.  

The methods proposed in chapters 2 and 3 disregard the important biotic processes that may have 

delineated the species niche. Additional observation data and information on physiological 

requirements of invasives derived from genomics from both native and introduced ranges would 

be useful to better understand and predict the behavior of the representative invasives in their 

respective newly introduced ranges.  

SDMs are primarily based upon species occurrence records in their native range to describe a new 

potential distribution and may highly underestimate where an invasive species could survive. 
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SDMs based on native ranges would fail due to their inability to predict the post introduction 

influences of adaptations, interactions and dispersal barriers within the invasive range (Tingley et 

al., 2014). Similarly, the modelled areas in the invaded range that do not match the conditions in 

the native niche could be interpreted as shifts due to evolution or adaptation. However, these areas 

may also represent landscapes which would are part of the species’ fundamental niches in their 

native environments, but which have not been documented due to their absence as a result of other 

factors such as competition, predation, host distribution, etc. Distinguishing these two patterns, to 

assign differences in niche occupancy between the native and invaded range implies based on a 

mechanism, seems difficult with this data. Due to the above stated limitations the results obtained 

from this study should be assessed with caution. 

4.4 Future directions 

• One of the key inputs to the SDMs is species occurrence data. For invasive species, often the 

occurrence data is inadequately available for the purpose of developing SDMs. Moreover, the 

available records occasionally lack georeferencing and adequate sampling. This insufficiency 

limits the performances of SDMs. Hence, much efforts are required towards data collection, 

frequent updates and accessibility in the future.  It is recommended to allow more 

collaborative projects aimed at sharing and open distribution of knowledge and data on 

invasives. In the future, citizen science may contribute to enrich the invasives database, 

followed by genomics led invasive identification and data transfer to species distribution 

modelers. 

• Currently, species distribution models lack processes to address species dispersal both at local 

and at regional scale. Dispersal is a key ability of a species that governs its spread and 

distribution potential. SDMs ignoring dispersal abilities of FIS might find it hard to 

differentiate between potentially suitable and potentially colonizable habitat. This increases 

the risk of misrepresentation of actual areas at risk of invasion and will trigger over valuation 

of survey and management costs. It is recommended that in future, the development of SDMs 

is such that it can address dispersal at both local and regional scales.  

• Human-mediated dispersal, most notably along the transportation routes serve as a vector for 

many invasives, both at the pre and post introduction stages. Primary introductions often occur 

as a result of long-distance dispersal events such as international travel, trade, shipping, etc. 
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Whereas, secondary spread occurs on much smaller scales (e.g. landscape) and result from 

natural events or human activities. Currently, most spatial models disregard to include the 

processes at secondary levels of spread (e.g. cars, local transport, recreation, etc.). In future, 

there is scope to develop a spatial model that can simulate species spread while addressing 

both primary and secondary spread. 

• Most of the niche-based models ignore important biotic processes of invasive species such as 

species interactions, local adaptations, etc. These important biotic processes play a key role in 

shaping a species niche and thus SDMs lacking these processes might not accurately predict 

the species niche. This inability of SDMs to include biotic processes might be lacking due to 

lack of any straightforward approach to include all the processes together. In future 

development of a model to simulate invasive spread by including all important biotic 

processes is warranted.  

• In chapter 3, I have compared niches of DED and SOD at species level. However, there are 

differences present at sub species level for these pathogens. In future, work could be done in 

order to address subspecific niche adaptations of both DED and SOD. 

• My work in chapter 3 shows that some of the focal FIS show preferences to novel 

environments in non-native range that might be due to genetic drifts or selection. If its genetic 

drift which is responsible to allow the organism to persist in the new environment, then the 

related genes must have been present in the source population. This can also be then relating 

to the regions of native niche that are fundamental niches, but not realized niches.  Thus, it 

might be useful to carry research to answer the question “can the novel niches occupied in the 

invaded landscape identify parts of the fundamental niche in the native landscape that are not 

occupied?”. Also, the ordination method proposed here can be used in combination with a 

vector analysis to identify directional trends in what the population is doing in the invaded 

landscape (i.e. its moving into dryer areas, more diverse areas, areas with shorter or longer 

growing seasons, etc.). This could be an interesting way to explore tools for identifying the 

characteristics in a species that makes it a good invader. 

• Throughout the thesis I have highlighted the potential of SDMs for their use in management 

of invasive species. As prevention of invasives is considered the most cost-effective approach 

(Hulme 2009), the maps produced from this study will serve as a guide for prioritizing survey 

areas and directing the required provisions for focal invasives survey and necessary 
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management actions. It is recommended that the maps produced here should be used for 

setting up quarantines and cross border inspections in order to keep these threatening FIS away 

from getting into areas of high invasion risk. Areas at risk were identified in this thesis, if 

focal FIS were to establish in areas around port of Vancouver and Toronto. In future 

management and preventive actions related to these FIS must take place in these identified 

areas in order to ensure effective early detection and rapid response to these invaders. 

Recommendations are made to replace the hypothesized point of entry with actual FIS point 

of entry (when available) to simulate actual dispersal path of FIS. This work presents an 

opportunity for pest risk assessors to use the pest risk framework to inform related risk 

management decisions.   
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Appendix-I 

Evaluation summary of FIS models using TSS, correct classification rates, omission error and sensitivity metrics. The worst performing 

model (type iv) is highlighted with a horizontal across line for comparison purposes. 
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Appendix-II 

Potential distribution of selected FIS in current and future climate change scenarios. 
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Appendix-III 

 

(a) Predicted potential distribution of selected FIS in their respective distributional area. Higher probability (red colors) represent areas 

suitable for FIS. Zero probability or lower probability (dark green) indicates areas less suitable. 
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(b) Prediction uncertainty for the modelled FIS distributions. Higher uncertainty (red colors) represent highly uncertain areas with low 

confidence in modelled predictions whereas, lower uncertainty (dark green) indicates areas having low prediction uncertainty with 

higher confidence. 
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Appendix-IV 

(a) Relationships between environmental predictors and the probability of the presence of FIS: Red curves show the mean response and 

blue margins are ±1 SD calculated over 10 replicates. (b) Jackknife test for AUC of individual environmental variable importance (blue 

bars) relative to all environmental variables (red bar) for the MaxEnt model. Values shown are averages over 10 model runs. Temperature 

values are *10.  

Asian longhorned beetle 
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Dutch elm disease 

 

(a) 
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Sudden oak death 

 

 

(a) 
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Appendix-V 

Table: Comparing dispersal limited to unlimited FIS dispersal projections under climate change 

conditions. Here numbers represent total number of cells colonized under each scenario. 

(a) Asian gypsy moth 

                          

Infestation point-               

Vancouver port 

 

Infestation point- Toronto 

port 

 

    Unlimited dispersal 

GCM/Sc

enario 

ccsm4 hadgem2

es 

miroc5 ccsm4 hadgem

2es 

miroc5 ccsm4 hadgem

2es 

miroc5 

rcp26 1507 1711 1625 4708 4943 4767 13627 13616 13027 

rcp45 1543 2148 2256 4975 5027 4940 13340 13682 13129 

rcp85 1748 2347 2457 5010 5149 5087 13916 13507 13122 

 

(b) Asian longhorned beetle 

 Infestation point- 

Vancouver port 

Infestation point- Toronto 

port 

 

   Unlimited dispersal 

GCM/Sc

enario 

ccsm4 hadgem2

es 

miroc5 ccsm4 hadgem2e

s 

miroc5 ccsm4 hadgem2e

s 

miroc5 

rcp26 71 76 68 2482 2497 2446 6743 6848 6545 

rcp45 75 82 72 2528 2539 2613 7019 7715 7237 

rcp85 76 91 79 2567 2587 2663 7782 8560 7386 
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         (c) Dutch elm disease 

  

Infestation point- Toronto 

port 

 

      Unlimited dispersal 

GCM/Scenari

o 

ccsm

4 

hadgem2es miroc5 ccsm4 hadgem2es miroc5 

rcp26 1555 1533 1552 6743 6848 6545 

rcp45 1568 1580 1568 7019 7715 7237 

rcp85 1595 1601 1622 7782 8560 7386 

 

           (d) Sudden oak death  

  

Infestation point- Vancouver 

port 

 

 

       Unlimited dispersal 

GCM/Scena

rio 

ccsm4 hadgem2es miroc5 ccsm4 hadgem2es miroc5 

rcp26 877 777 893 1165 977 1060 

rcp45 822 679 848 1060 944 1095 

rcp85 669 500 759 1032 911 1035 
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Appendix-VI 

FIS dispersal limited distributions under different climate change scenarios and two hypothesized 

infestation points- 

AGM (Infestation point- Vancouver port) 

 

Dispersal restricted future distribution of AGM under GCM-CCM4 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of AGM introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of AGM under GCM-HADGEM2ES and RCP 2.6, 4.5 and 

8.5 climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of AGM introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of AGM under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of AGM introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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AGM (Introduction point- Toronto port) 

 

Dispersal restricted future distribution of AGM under GCM-CCSM4 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of AGM introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of AGM under GCM-HADGEM2ES and RCP 2.6, 4.5 and 

8.5 climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of AGM introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of AGM under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of AGM introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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ALB (Introduction point- Vancouver port) 

 

Dispersal restricted future distribution of ALB under GCM-CCSM4 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of ALB introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of ALB under GCM-HADGEM2ES and RCP 2.6, 4.5 and 

8.5 climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of ALB introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of ALB under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of ALB introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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ALB (Introduction point- Toronto port) 

 

Dispersal restricted future distribution of ALB under GCM-CCSM4 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of ALB introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 

 



 

152 

 

 

Dispersal restricted future distribution of ALB under GCM-HADGEM2ES and RCP 2.6, 4.5 and 

8.5 climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of ALB introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of ALB under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of ALB introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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DED (Introduction point- Toronto  port) 

 

Dispersal restricted future distribution of DED under GCM-CCM4 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of DED introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 

 



 

155 

 

 

Dispersal restricted future distribution of DED under GCM-HADGEM2ES and RCP 2.6, 4.5 and 

8.5 climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of DED introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of DED under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of DED introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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SOD (Introduction point- Vancouver port) 

 

Dispersal restricted future distribution of SOD under GCM-CCM4 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of SOD introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of SOD under GCM-HADGEM2ES and RCP 2.6, 4.5 and 

8.5 climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of SOD introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Dispersal restricted future distribution of SOD under GCM-MIROC5 and RCP 2.6, 4.5 and 8.5 

climate change scenarios. Color gradient from blue to grey represents the first 10 years of the 

simulation time frame when colonization first occurred, the light grey to light yellow color gradient 

represents the next 10 years followed by orange and rose color gradients (years 2031- 2050). Dark 

red pixel indicates the hypothesized point of SOD introduction while the green pixels represent 

suitable areas that were not colonized due to dispersal limitations. 
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Appendix-VII 

AGM life history parameters and associated references 

AGM is a potent invader with more than 600 known hosts. AGM females are capable of flight and 

can lay eggs on human-made objects. 

●       Generations per year 

○ Univoltine- one generation per year (Elkinton & Liebhold, 1990) 

●       Dispersal 

○    Adult females disperse and spread their population naturally by sustained flight 

and wind-borne dispersal of first instars (M. A. Keena, Côté, Grinberg, & 

Wallner, 2008). 

○   Attracted to lights at night (Montgomery & Wallner, 1988; Schaefer & 

Strothkamp, 2014) 

●       Dispersal Distance 

○   Frequent long distance dispersal flights (average less than 1 km to max range 

of 20-40 km) (Iwaizumi, Arakawa, & Koshio, 2010; M. A. Keena et al., 2008) 

○    Russian females may fly distances up to 100 km and eastern Siberian females 

seen crossing mountain ranges in large groups during outbreaks  (Rozhkov and 

Vasilyeva 1982) 

○   Egg masses in Japanese cities found within 1 km of forests(Liebhold, Turcáni, 

& Kamata, 2008). 

○   Average flight distance of 1 day old Chinese females in 8 hours on flight mills 

was 5.65 km and maximum was 10.67 km (Yang, Luo, & Shi, 2017) 

●       Reproductive capacity, 

○       Producing an average of 600 to 1000 eggs per egg mass (USDA) 

●       Distribution 

○       Found throughout temperate Asia. Usually east of the Ural Mountains into 

Far East Russia, through most of Japan, China and Korea. It is not found east 

of the Himalayan range in India (USDA) 

 

https://paperpile.com/c/B58Sie/wrmUQ
https://paperpile.com/c/B58Sie/4kJQD
https://paperpile.com/c/B58Sie/4kJQD
https://paperpile.com/c/B58Sie/lwOZx+DA114
https://paperpile.com/c/B58Sie/lwOZx+DA114
https://paperpile.com/c/B58Sie/4kJQD+hFWCa
https://paperpile.com/c/B58Sie/Giusu
https://paperpile.com/c/B58Sie/Giusu
https://paperpile.com/c/B58Sie/imq6c
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●       Critical temp. 

○       AGM populations may struggle in regions experiencing longer periods of 

temperatures ≥ 30ºC and survival rate is highest between 15and 25ºC (Limbu 

et al., 2017). 

ALB life history parameters and associated references 

●       Sex ratio 

○       1-!:14 male - female (Bancroft & Smith, 2005) 

○       1:1 male-female (Trotter, Talbot Trotter, Pepper, Davis, & Vazquez, 2019) 

○   Other papers use only the females to model spread since she drives the 

establishment of new infestations 

●       Generations per year 

○       Temperature dependent 

●       Haack 2010 

●       (M. A. Keena & Moore, 2010) 

●      (Faccoli & Gatto, 2016) 

●      (Favaro, Wichmann, Ravn, & Faccoli, 2015) 

○       Not strictly univoltine (one year); may take multiple years to develop 

■    (M. A. Keena & Moore, 2010; Trotter & Keena, 2016)  (in Finland may 

take 10+ years) 

■       (Straw, Tilbury, Fielding, Williams, & Cull, 2015) 

●   3 years for Paddock Woods 

■      (Kappel, Talbot Trotter, Keena, Rogan, & Williams, 2017) 

●    Do not  use the Newtonian Cooling model to estimate within tree 

temps - may not accurately reflect temps within tree 

●  But estimated that in northern states will take minimum 2-3 years 

to complete development, some areas up to 5-6 years 

●       Dispersal Distance 

○       Frequent short distance dispersal flights (<1.5km) 

■      (Javal, Roux, Roques, & Sauvard, 2018) 

https://paperpile.com/c/B58Sie/MyAR
https://paperpile.com/c/B58Sie/MyAR
https://paperpile.com/c/B58Sie/bjyZQ
https://paperpile.com/c/B58Sie/H9RaX
https://paperpile.com/c/B58Sie/gD5J
https://paperpile.com/c/B58Sie/TYpgc
https://paperpile.com/c/B58Sie/JUTuo
https://paperpile.com/c/B58Sie/ySTj+gD5J
https://paperpile.com/c/B58Sie/Sfmoi
https://paperpile.com/c/B58Sie/3tHpZ
https://paperpile.com/c/B58Sie/Tetp
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○       Tendency to remain on and reinfest natal tree 

■       Haack 2010 

○       Dispersal occurs when tree host quality deteriorates 

■       Sawyer 2007 

○       Rare long distance flights (<1.5km) 

■       Human mediated transport likely more significant at farther distances 

●      (Fournier & Turgeon, 2017) 

○       ~10km (modeled and based on graph) 

■       Trotter 2018 

○       Longest single sustained flight on flight mill = 4006m; median = 247.6m 

■       Javal 2018 

○       Lifetime dispersal for a female = 14060m; median=3964m 

■       Javal 2018 

●       Spread rates 

○       in England in one stand, mean rate of population spread 29.3m/year 

■        (Straw, Fielding, Tilbury, Williams, & Cull, 2016) 

○       Jersey City spread 50m/year 

■       Sawyer et al. 2004 

○       New Jersey spread 2,4-3.2km in 5-6years 

■       Sawyer et al. 2010  

○       Italy spread 2x2km in 5 years 

■       Favaro et al. 2013  

●       Probability to disperse 

○       55% of tethered test flights = no flight 

■       Javal 2018 

○       <50% took flight in a number of laboratory experiments, esp females 

■       (Melody A. Keena, 2018) 

●       Critical temps 

○       10.2C - egg hatch 

○       Temperature developmental model -(Trotter & Keena, 2016) 

○       Adult emergence in spring after 400-degree-days (10C threshold) 

https://paperpile.com/c/B58Sie/TmIJ
https://paperpile.com/c/B58Sie/NeRs
https://paperpile.com/c/B58Sie/9f0p
https://paperpile.com/c/B58Sie/ySTj
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■       (Smith, Tobin, Bancroft, Li, & Gao, 2004) 

○       Dispersal ceases below 15°C 

■       (Keena 2018) 

●       Habitat preferences 

○       Edge preference 

■     (Williams, Lee, & Kim, 2004) 

■   (Shatz, Rogan, Sangermano, Ogneva-Himmelberger, & Chen, 2013) 

DED biology and vector life history 

DED is vectored by several species of bark beetle: Hylurgopinus rufipes (native), Scolytus 

multistriatus (introduced - Europe), and Scolytpus schevyrewi (introduced - Asia). 

●       Surprising lack of dispersal information for above three species 

○      (Harwood, Tomlinson, Potter, & Knight, 2011) 

●       Dispersal Kernel 

●       (Harwood et al., 2011) 

○       DED vectors 

■     Negative exponential kernel of 20km (15-40km) 

■     Experts estimate max dispersal = 12.88km 

■     Most dispersal within 500m of host 

■   Median dispersal distance of 150m for a negative square power 

law function for incorporating radial dispersal 

■    Probability of 0.002 for dispersal >12.88km 

■   Combined beetle and firewood kernel of 3:1 beetle:firewood 

movement gives a reasonable pattern of spread in early stages 

of epidemic 

●       History of DED in UK 

●      (Tomlinson & Potter, 2010) 

●       Review of factors influencing flight in bark beetles (Jones, Shegelski, Marculis, 

Wijerathna, & Evenden, 2019)  

●       Bark beetles (= Scolytinae) contain vectors of DED 

https://paperpile.com/c/B58Sie/VrOB
https://paperpile.com/c/B58Sie/7C1h
https://paperpile.com/c/B58Sie/LEd2
https://paperpile.com/c/B58Sie/G4gO
https://paperpile.com/c/B58Sie/G4gO
https://paperpile.com/c/B58Sie/c0Xa
https://paperpile.com/c/B58Sie/wfDE
https://paperpile.com/c/B58Sie/wfDE
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●       Flight capacity vs dispersal - distinct 

○     Capacity = physiological ability to fly 

○   Dispersal = capacity + imapct of external factors (e.g. environment) 

○    Long distance dispercal characterized by above canopy flight carried 

by wind (e.g. Mountain pine beetle dispersal over Rocky Mountains; 30-

100km/day via wind) 

●       Dispersal distance  

○   mean for beetles ranges from 500m to 6km; max distances can be 

>25km, but this is a long thin tail, bulk of the pop is short distance 

●       Fat-tailed dispersal kernel needed to capture potential for bark beetles to 

disperse long distances 

●      Min temp for flight initiation in bark beetles range from 10.6C - 21C; mean = 

15.6C 

●       Dispersal distance 

○       Mark recapture - 38% pop close to release site, 52% within 400-600m from 

release site (Strobel & Lanier, 1981) 

○       5-6km dispersal (Wolfenbarger & Jones, 1943) 

○       Mark recapture - 1km (Pines & Westwood 2008) 

○       400-600m dispersal (Wollerman, 1979) 

SOD biology and vector life history parameters and associated references 

There are no known vectors of SOD other than humans but any organism that can move soil is 

potentially a vector of SOD.(Grünwald et al., 2012, 2019; Kliejunas, 2010; David M. Rizzo, 

Garbelotto, & Hansen, 2005) 

●       Dispersal 

○   Long range spread of disease through sporangia and chlamydospores, 

chlamydospores can survive for a week at a constant temperature of 55°C. 

○     Natural dispersal of SOD is by movement of plant material, waterborne and 

soilborne chlamydospores, and by waterborne, soilborne and wind-blown rain 

https://paperpile.com/c/B58Sie/ZgIm
https://paperpile.com/c/B58Sie/uNbR
https://paperpile.com/c/B58Sie/QtXI
https://paperpile.com/c/B58Sie/sedl+1koW+yoCR+ZNlk
https://paperpile.com/c/B58Sie/sedl+1koW+yoCR+ZNlk


 

165 

 

containing sporangia.(David M. Rizzo & Garbelotto, 2003; David M. Rizzo et 

al., 2005)(Grünwald et al., 2019) 

●       Dispersal distance 

○      Splash dispersal-propagules can travel up to 60 cm above infested surfaces 

(Kuske, 1983). 

○   Local spread <1 km (ecological (Condeso, Emiko Condeso, & Meentemeyer, 

2007; Ellis, Václavík, & Meentemeyer, 2010)and genetic (Mascheretti, 

Croucher, Kozanitas, Baker, & Garbelotto, 2009; Mascheretti, Croucher, 

Vettraino, Prospero, & Garbelotto, 2008)) 

○ Most inoculum remains within 10 m of the host (Davidson, Wickland, Patterson, 

Falk, & Rizzo, 2005) 

○    Maximum dispersal distance < 8 km during rare storm events (apsnet.org). 

○    Number of trees infected was higher on public lands that were open to 

recreation than on adjacent lands lacking public access and higher human 

population densities within 50 km increased chances of fungal infection 

(Cushman et al., 2008). 

●    Effects of temperature and moisture on growth and sporulation 

○    Fungal growth occurs 10-31°C (Tooley, Browning, Kyde, & Berner, 2009) 

○    Exposure to temperatures over 30°C decreases survival and a few minutes at 

40°C kills the fungus (Browning, Englander, Tooley, & Berner, 2008)  

○    Sporangia production occurs over the temperature range of 16-22°C 

(Englander, Browning, & Tooley, 2006) 

○    A dew period of as little as 1 hour was enough for fungal development but 

moisture for 24-48 hours is required for maximal disease development in the 

laboratory (Tooley et al. 2009) 

○    Most clonal hyphal colonies can survive 24 h exposure to -5 C and some can 

withstand -25 C for 24 h. (Browning et al. 2008). 

●       Distribution 

○   SOD is distributed only in Europe and parts of North America, with three 

identified clonal lineages (EU1, NA1 and NA2), named for the continent where 

https://paperpile.com/c/B58Sie/12yn+sedl
https://paperpile.com/c/B58Sie/12yn+sedl
https://paperpile.com/c/B58Sie/ZNlk
https://paperpile.com/c/B58Sie/L6rT
https://paperpile.com/c/B58Sie/BA3c+FeXL
https://paperpile.com/c/B58Sie/BA3c+FeXL
https://paperpile.com/c/B58Sie/JzzR+ief3
https://paperpile.com/c/B58Sie/JzzR+ief3
https://paperpile.com/c/B58Sie/JzzR+ief3
https://paperpile.com/c/B58Sie/SIyo
https://paperpile.com/c/B58Sie/SIyo
https://paperpile.com/c/B58Sie/UXgV
https://paperpile.com/c/B58Sie/37V9
https://paperpile.com/c/B58Sie/qtnN
https://paperpile.com/c/B58Sie/i5hM
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they were first found, followed by a number indicating the order of discovery 

(Grünwald et al., 2009) 

●       Habitat 

○   Coastal forest types  (David M. Rizzo & Garbelotto, 2003; D. M. Rizzo, 

Garbelotto, Davidson, Slaughter, & Koike, 2002) , moist and moderate climates 

(Rizzo et al., 2005). 

 

  

https://paperpile.com/c/B58Sie/ZqBP
https://paperpile.com/c/B58Sie/12yn+TMP0
https://paperpile.com/c/B58Sie/12yn+TMP0
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Appendix-VIII 

 

Figure: DED potential distribution predictions in novel environment (Canada) obtained from (a) 

a complex (default) MaxEnt and (b) a simple (tuned) MaxEnt model. Canadian DED occurrences 

are overlaid on suitability surface for visual comparison of the outcomes. 

 

Figure: AGM potential distribution predictions in novel environment (Canada) obtained from (a) 

a complex (default) MaxEnt and (b) a simple (tuned) MaxEnt model. Canadian EGM occurrences 

are overlaid on suitability surface for visual comparison of the outcomes.  
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Appendix-IX 

 

Figure: Ulmus americana (DED host) potential distribution predictions in novel environment 

(Canada) obtained from a tuned MaxEnt model.  

 

Figure: DED potential distribution predictions in novel environment (Canada) obtained from a 

tuned MaxEnt model. 

 


