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Abstract  

Sustainably managing the world’s forests requires detailed inventories of the resource at 

varying spatial and temporal scales. The structural and compositional diversity of the boreal 

mixedwood forest, one of Canada’s largest forest types, provides valuable timber resources and 

ecological services. However, the extent and complexity of this forest type poses challenges for 

inventories. The objective of this dissertation was to develop and assess the utility of three-

dimensional remote sensing techniques for enhancing forest inventories by characterizing forest 

structure in boreal mixedwood forests. These technologies are scalable and adaptable for use in 

forest inventory as they provide consistent spatial and temporal detail.  

Digital terrestrial photogrammetry from spherical cameras at known locations was used 

to model individual tree stems and sample plots. For individual trees, stem diameters at different 

heights were estimated very accurately (RMSE < 1 cm for stem heights below 10 m), which 

matched or exceeded the accuracy of conventional ground-based inventories. Plot-level point 

clouds based on a relatively small set of images were used to locate and model trees on sample 

plots to an accuracy that was comparable to other studies on homogeneous plots (mean 72% 

detection and 19% RMSE of diameter at breast height). 

At broader scales, airborne laser scanning (ALS) was used to characterize forest structure 

by estimating stem size distributions (SSD) across a large forest management unit. First, ALS 

was used to differentiate unimodal and bimodal stands. Next, parameters of functions describing 

the SSDs were estimated with ALS metrics (r2  0.5) and the resulting functions were more 

accurate in characterizing field-measured SSDs than without differentiating stands by modality. 

For assessing temporal patterns of forest structure, photo-interpreted polygons of fire and 

harvesting were used with the derived SSDs to characterize structural development following 
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stand-replacing disturbance. It was determined that stands that had burned had significantly more 

trees in larger diameter classes than harvested stands (at  = 0.05). This dissertation outlined the 

methods required when applying three-dimensional remote sensing technologies to enhancing 

forest inventories in mixedwood stands and demonstrated the utility of these technologies for 

deriving information to inform responsible decision-making for management of these forests. 
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Lay summary 

Forest inventories are critical for sustainable management. Current challenges such as the 

consistency of acquisition, level of detail, and forest access have led to the adoption of three-

dimensional remote sensing techniques such as photogrammetry and laser scanning for use in 

deriving detailed forest structural attributes. In this dissertation, three-dimensional remote 

sensing methods were adapted for use at different scales in a large, diverse, and important forest 

type in Canada, the boreal mixedwood forest. For information on individual trees and sample 

plots, terrestrial photogrammetry was used to characterize individual tree stems. Moving up to 

the landscape scale, airborne laser scanning was used to determine variation within forest stands. 

Finally, this variation was used to characterize the patterns of structural development over time. 

The role and prospects of the resulting data for enhancing forest inventories was discussed, 

emphasizing the value for heterogeneous forest types such as boreal mixedwood. 
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Chapter 1 – Introduction 

 

1.1. – Background and motivation 

1.1.1. – Forest information 

Forests cover about one third of global land surface, and provide many valuable 

ecological goods and services (FAO 2010). Collecting detailed information of the forest at 

different scales is critical for measuring and monitoring the resource. Generally, forest inventory 

information is collected using a combination of terrestrial and airborne data, but there may be 

issues with the representativeness, consistency, timeliness, and detail of conventional 

inventories. This dissertation aims to develop methods for deriving forest structural information 

with three-dimensional remote sensing technologies across scales in a heterogeneous boreal 

forest.  

Nearly one-third of the world’s 4 billion hectares of forested area is found in the boreal 

forest, making it the world’s largest terrestrial biome (FAO 2010). The boreal forest occurs at 

high latitude regions with relatively shorter growing seasons and a limited range of tree genera 

present such as Abies, Picea, Pinus, Populus, and Betula (Brandt 2009). Due to their extent and 

complexity, boreal forests perform a wide range of ecosystem services. Despite the short 

growing season, the boreal forest has global importance in the carbon cycle, and was estimated 

to have been responsible for 22% of terrestrial carbon sequestered in global forests between 1990 

and 2007 (Pan et al. 2011). Boreal forests regulate and support the local environment, and are 

valuable for services such as water purification, nutrient cycling, and soil production (Hassan, 

Scholes, and Ash 2005). The boreal forest also provides cultural goods and services as long as 

humans have existed in the region (Johnson and Miyanishi 2012). Canada has 28% of the 
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world’s boreal forest, which comprises almost 80% of the nation’s total forested area (Brandt et 

al. 2013). In addition to its vast ecological benefits, forest resources contribute a substantial 

amount to Canada’s economy, supporting over 300,000 jobs and adding $24.6 billion to 

Canada's gross domestic product in 2017 (Natural Resources Canada 2018).  

 

1.1.2. – Boreal forest ecology 

The boreal mixedwood forest region represents an important and extensive component of 

the Canadian boreal forest, generally occupying the southernmost extent of the boreal. Forests in 

this region are defined by their compositional and structural diversity which can differ from other 

boreal forest types. These forests generally support trembling aspen (Populus tremuloides), paper 

birch (Betula papyrifera), black spruce (Picea mariana), white spruce (Picea glauca), and 

balsam fir (Abies balsamea). Boreal mixedwood forests also vary substantially across an east–

west gradient. The eastern portions of the boreal mixedwood tend to get more moisture, meaning 

the dry western portions are more susceptible to fire from lightning strikes (Krawchuk and 

Cumming 2009), and generally have fires with higher intensity and frequency than the east 

(Bergeron et al. 2014; Bergeron and Fenton 2012). The stand dynamics of the western 

mixedwood forests are therefore primarily driven by fire (Krawchuk and Cumming 2009). In 

fact, many boreal mixedwood species have adapted to frequent disturbances in the form of root 

suckering in aspen or cone serotiny in some conifers (e.g. Pinus spp. and Picea mariana; Chen 

and Popadiouk 2002). Soil types and geology also differ along this gradient (Fulton 1989). 

Different environmental conditions across the region influence the presence and mixtures of 

species in boreal mixedwood stands (Lenihan 1993). For example, the eastern boreal tends to 

have more coniferous species, and paper birch (Betula papyrifera) is one of the most common 
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broadleaf species. In the west, however, trembling aspen (Populus tremuloides) is more 

abundant. The mixture of species and disturbances leads to a wide variety of structural types and 

many different pathways between the successional stages in boreal mixedwood forests (Bergeron 

et al. 2014).  

Increased structural and compositional heterogeneity of mixedwood stands can have 

different consequences. For example, heterogeneous stands may have slower overall growth 

rates than pure-species stands as species compete for resources (del Río et al. 2016). However, 

heterogeneous mixedwood stands may provide increased ecosystem services to the surrounding 

area (Turner, Donato, and Romme 2013). Structural and compositional diversity can lead to 

higher potential habitat for species such as birds and understory flora (Cavard et al. 2011). At the 

landscape-level, they influence a variety of ecosystem services and processes such as nutrient 

retention and the presence of migration corridors (Turner et al. 2013). Furthermore, increased 

structural and compositional diversity will lead to an increase in forest resilience, or ability to 

tolerate change while retaining its function, structure, identity, and feedbacks (Walker et al. 

2004). For example, landscape heterogeneity can have a strong influence on wildfires (when fire 

weather is not extreme) by potentially providing fire breaks or low fuel connectivity. Increased 

forest heterogeneity also impacts the post-disturbance structure as a result of increased diversity 

of seed sources or coarse woody debris on which regeneration can take place (Brassard and Chen 

2010).  

Changes in global climate are likely to have a prominent impact on the condition of the 

boreal forest, such as growth rates and disturbance regimes (Seidl et al. 2017). Therefore, 

ecosystem resilience to change will become increasingly important, making the structural and 

compositional diversity of the boreal mixedwood important to measure and assess. The 
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extensive, dynamic, and complex nature of boreal mixedwood forest pose challenges to 

measuring and monitoring; however, in order to sustainably manage these forests, detailed, up-

to-date information on the status of the forest at different spatial scales is required. 

 

1.2. – Forest inventory 

1.2.1. – Scales of forest inventory 

An essential component for understanding forested landscapes is undertaking inventories 

of the resource at various spatial and temporal scales. At the broadest scale are strategic 

inventories, which inform long-term forest strategies or policies (White et al. 2016). This 

includes National Forest Inventories (NFIs), which have been undertaken globally in order to 

measure and monitor forest cover and condition to support a national-level forest policy and 

information needs (Stinson and White 2018). Countries such as Canada, the United States, and 

Finland have NFI programs in place to “assess and monitor the extent, state and sustainable 

development [of the forest] in a timely and accurate manner” (Gillis, Omule, and Brierly 2005). 

At the finest scale are operational forest inventories, which are primarily focused on logistics of 

short-term wood supply to satisfy prevailing demand (Bourgeois et al. 2018). Operational forest 

inventories use a combination of field-based techniques and aerial data to monitor changes or to 

directly plan management interventions of forest units which may be as many as hundreds of 

thousands of hectares in size. Tactical inventories aim to reconcile the two scales – that is, to 

spatially disaggregate strategic inventory targets or guidelines (e.g., annual allowable harvest 

amounts) in order to allocate management interventions to specific areas (e.g., forest 

management units or blocks; Gautam, Lebel, and Beaudoin 2017).  
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Conventional methods for deriving forest inventory attributes require field measurements 

of various structural and compositional attributes of forest stands (Gillis and Leckie 1996). In 

operational inventories, the estimates are then scaled up to a larger area using aerial data or 

existing maps. Manually delineated aerial photography, frequently using digital aerial images, is 

a common source of inventory information. Stand boundaries are first delineated and digitized, 

after which attribute estimation can be performed by a trained interpreter (Leckie and Gillis 

1995). Typical stand-level attributes can include height, species mixtures, and age. These stand 

polygons can then be used to provide an input for biometric modeling approaches to extrapolate 

field-measured data. Strategic inventories may make use of field data to calibrate airborne 

estimates, although use of field data for this scale may be infrequent (Leckie and Gillis 1995). 

Forest managers rely on detailed and up-to-date information on the state of the forest. 

However, increasing financial pressures and uncertain future environmental conditions have 

exacerbated challenges with data acquisition for conventional forest inventories (Barrett et al. 

2016; Kangas, Gobakken, et al. 2018). Despite the importance of aerial data for augmentation of 

forest inventory needs, there are increasing difficulties with the use of aerial photography for 

deriving inventory information. Manual delineation of stands requires a trained interpreter, and 

labor costs can be high. Data demands are also changing, particularly with forest management 

increasingly focusing on a broader range of ecosystem goods and services. In its current 

capacity, aerial photography has challenges in providing information such as below-canopy 

forest structure, which is a primary component of forest inventory. Photo-interpretation is limited 

to describing attributes at the stand level, while some operational forest inventories may require 

information with a finer spatial resolution. Furthermore, the accuracy of photo-interpreted 

attributes may vary depending on the interpreter and it usually has a low probability of having a 
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completely correct stand description (Leckie and Gillis 1995). Due to these increasing 

challenges, enhanced information and auxiliary data sources are required to meet the level of 

detail needed for accurate and robust characterization of forest structure.  

 

1.2.2. – Components of forest inventory 

Forest structure, defined as the arrangement of the physical and biological components of 

a forest, is a primary target of forest inventories. The value of forest structural measurements is 

multifaceted, as their derivatives have important relationships to a variety of ecological and 

operational information needs. A major component of structural attributes is the size of tree 

stems, characterized by the diameter at breast height (DBH) and height of individual trees, which 

are related to many other structural attributes. Using height and DBH, attributes such as total tree 

volume and merchantability can be estimated using a variety of models (Huang 1994). Both 

DBH and volume have strong relationships to estimates of biomass or carbon storage. In fact, 

DBH is among the most important considerations of estimating biomass, even more so than 

height (Lambert, Ung, and Raulier 2005). Understanding the relationships between age and DBH 

or height informs site productivity or growth models, which can provide estimates of future yield 

and optimal harvest times (Liang, Buongiorno, & Monserud, 2005). Taper, the pattern of 

decreasing diameter measurements with increase in height up a stem, is another attribute which 

can inform volume, stem form, and merchantability. Taper is typically either estimated using 

functions requiring DBH, height, and species, or directly measured by felling the tree and taking 

manual measurements at fixed intervals along the stem.  

Aggregation of diameter measurements across a given area yields the stem size 

distribution (SSD), which represents the relative frequency of tree sizes in a given area (e.g. plot 
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or stand; Taubert et al. 2013). A SSD can be used directly to describe stand attributes such as its 

structure, age, and volume (Gobakken and Næsset 2004; Niklas, Midgley, and Rand 2003), or 

used as inputs to models that can describe product quality (Landsberg et al. 2005) or forecast 

growth (García 1992). Similarly, the distribution of tree heights forms vertical structure of an 

area, which provides insights into stand history and successional stage, as disturbance, growth, 

and competition drive vertical structure as stands develop (Latham, Zuuring, and Coble 1998). 

These inventory attributes provide valuable insights to inform stand- and landscape-level forest 

management decisions, so their complete and accurate estimation is critical for maximizing both 

the economic and ecological capacity of forest resources.  

 

 

1.3. – Three-dimensional remote sensing data for enhanced forest inventories 

1.3.1. – Enhanced forest inventory 

Developments in data acquisition and processing methods have led to an increase in the 

use of three-dimensional remote sensing technologies for developing enhanced forest inventories 

(EFIs). One such technology is Light Detection and Ranging, or LiDAR. LiDAR sensors emit 

high-energy pulses (typically in the near-infrared wavelengths) that reflect from surfaces they 

intercept and return to the sensor (Baltsavias 1999). The LiDAR sensor records the return time of 

each pulse and uses the device’s three-dimensional position and direction of the pulse to 

calculate the location of and distance to each surface that was intercepted. The resulting product 

provides a three-dimensional array of points of the scanned area, known as a point cloud (Wulder 

et al. 2008). Acquiring LiDAR data from a unit mounted on an aircraft is referred to as Airborne 

Laser Scanning, or ALS, which is the most common for broad-scale forest inventories due to its 
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ability to accurately and continuously characterize large areas (Hudak, Evans, and Smith 2009). 

As such, ALS point clouds are used to generate descriptive metrics characterizing height, 

volume, and biomass on broader scales (Næsset 2002), as well as fine-scale descriptions such as 

crown dimensions, and vertical and horizontal canopy structure (Coops et al. 2007). Digital 

Aerial Photogrammetry (DAP) is another possible source of airborne data. DAP aligns sets of 

overlapping images to build dense point clouds of the resulting targets using advanced image 

matching techniques. 

One key method for generating information in an EFI is the use of airborne data in an 

area-based approach (ABA; Figure 1.1), in which airborne ALS or DAP data is used with co-

located measured field data to build predictive models and then the relationships are used to 

apply predictive models across an area of interest (Næsset 2002). The ABA uses metrics such as 

height, cover, or variability of ALS returns on a geolocated sample plot to determine the 

relationship between ALS metrics and measured plot attributes such as the dominant height, 

mean diameter, stem number, basal area, or volume (White, Wulder, Varhola, et al. 2013). Once 

these relationships are determined, they are applied across the entire area for which airborne data 

(ALS or DAP) exists, representing grid-cell level estimates of the attribute of interest (typically 

at a 20-meter resolution). These attribute layers then become a valuable information source in an 

EFI. It has been demonstrated that forest inventory attributes can be estimated using ALS data in 

combination with a sample of ground plots such that they satisfy (or exceed) required levels of 

accuracy for forest inventory (van Leeuwen and Nieuwenhuis 2010). Goodbody et al. (2019) 

reviewed 18 studies comparing estimation accuracies for ALS and DAP, showing that ALS 

produced ABA estimates that were slightly more accurate than DAP (< 4%; Table 1.1). 
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Figure 1.1 - An example workflow for forest inventory attribute estimation using ALS and an 

area-based approach 

 

Table 1.1 – A comparison between ALS and DAP metrics in predicting forest inventory 

variables, based on the review of Goodbody et al. (2019). Values are in terms of the RMSE% of 

predictions. 

Variable 

ALS (RMSE%) DAP (RMSE%) Difference 

(DAP – 

ALS) 
Mean Range SD Mean Range SD 

Basal Area 20.0% 10 – 35.4% 8.1% 24.3% 12.6 – 37.7% 9.02% 3.85% 

Diameter 16.0% 
11.4 – 

25.3% 
6.07% 18.5% 12.0 – 33.7% 9.39% 2.52% 

Height 7.4% 3 – 18.6% 3.97% 11.0% 6.8 – 28.2% 5.42% 3.29% 

Volume 20.3% 
11.0 – 

33.2% 
7.03% 25.0% 13.0 – 40.3% 8.15% 3.59% 

 

Recent years have seen photogrammetric principles undergoing a digital revolution, as 

low-cost digital cameras and advanced computing algorithms and methods have become 

available (Leberl et al. 2010). This has led to an increased use of digital aerial photogrammetry 

(DAP) as a data source in EFIs (White et al. 2013b). DAP generates point clouds from 

overlapping sets of aerial images based on image alignment and dense point matching 

approaches. The result is a point cloud with both structural and spectral detail, with spectral 
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information resulting from the matched pixel values from source images. DAP has been used to 

derive accurate wall-to-wall predictions of forest structural attributes when the ground surface is 

known (Bohlin, Wallerman, and Fransson 2012). The passive nature of DAP limits its ability to 

penetrate the forest canopy and provide points below the outer canopy envelope. However, DAP 

has been shown to provide data at a cost of one-third to one-half that of ALS, with valuable use 

in updating forest inventories (regardless of scale) with detailed structural information 

(Goodbody et al. 2019).  

 

1.3.2. – Field-based data acquisition 

 Three-dimensional remote sensing technologies also have the capacity to augment field-

based data acquisition for EFIs. Auxiliary data collection can be performed with terrestrial laser 

scanning (TLS) or digital terrestrial photogrammetry (DTP), which have been shown to satisfy 

the detail required for inventory estimates (Liang et al. 2018; Liang, Jaakkola, et al. 2014). In 

addition to standard inventory measures such as stem location and DBH, these TLS and DTP can 

derive non-destructive estimates of more detailed measurements such as the taper or volume 

(Liang et al. 2016; Piermattei et al. 2019). Typically, TLS point clouds provide slightly more 

accurate estimates of forest attributes than DTP (Liang, Jaakkola, et al. 2014). However, the use 

of DTP has increased in recent years with the decrease in the cost of cameras and improvements 

in computing power and photogrammetric algorithms, leading to the generation of cost-effective 

point clouds for characterizing trees and plots.  
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1.4. – Challenges and opportunities 

Three-dimensional remote sensing from both airborne and terrestrial platforms have the 

capacity to augment forest inventory. However, there are challenges to implementation of these 

products in forest inventories, particularly in mixedwood forests. Area-wide SSD estimates 

provide detailed and spatially- explicit information, and SSDs have been used to demonstrate the 

patterns of stand dynamics (e.g. Zenner 2005), or determine the drivers of change (Toledo, 

Magnusson, and Castilho 2013). While ALS has previously been used to estimate SSD, it has 

primarily been used in homogeneous forests requiring relatively simple techniques (Maltamo et 

al. 2005) or heterogeneous forests requiring more complex ones (Penner, Woods, and Pitt 2015). 

However, less is known about the application of techniques when the complexity of neighboring 

stands may differ, as is the case in boreal mixedwood forests. Additionally, previous studies 

estimating SSD often required auxiliary information such as species mixtures (Packalen and 

Maltamo 2008), thereby reducing the ability of the technique to be applied in areas where the 

species is not known. Furthermore, the capacity of ALS-derived SSDs for characterizing 

temporal patterns in forest structure is relatively unknown. In particular, patterns of structural 

development could be valuable information to managers implementing ecosystem-based 

management techniques since they may differ with stand conditions (Brassard and Chen 2010; 

Grumbine 1994).  

There is also opportunity to improve field data acquisition for deriving additional ground-

based structural estimates or calibration and validation of airborne estimates. While terrestrial 

three-dimensional remote sensing techniques have been used to derive detailed characterization 

of individual trees and sample plots, the cost-effectiveness of these methods is an important 

consideration that needs to be addressed. The high input cost of TLS devices (Eitel, Vierling, and 
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Magney 2013) and challenges with occlusion (Pueschel et al. 2013) and merging scans 

(Newnham et al. 2015) may impede their adoption into forest inventories. DTP often uses 

hundreds to thousands of photographs to characterize trees and plots, thereby increasing the time 

spent acquiring images and processing into a point cloud. Finally, previous studies have been 

limited to relatively homogeneous stands with low stem densities and few species. Further study 

into the patterns of accuracy of DTP in different stand and acquisition conditions is required 

before this technology can be applied in more complex forests. 

 

1.5. – Research objectives and questions 

 The primary objective of this dissertation is to determine the utility of three-dimensional 

remote sensing techniques for deriving structural information across spatial and temporal scales 

in heterogeneous boreal forests (Figure 1.2). To accomplish this, methods were developed for 

estimation of structural attributes from both aerial and terrestrial datasets and the derived 

products are used to enhance understanding of forest structural processes. To meet this objective, 

this dissertation addressed the following core questions: 
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Figure 1.2 - The scales at which structural information is required in forest inventory and the 

structure of the research undertaken in this dissertation 

 

1. What is the potential of DTP for assessing tree-level taper and volume and how do these 

compare to conventional field-based estimates? 

2. How can DTP point clouds be used to cost-effectively augment conventional ground-

based surveys, and how do detection and estimation accuracies depend on field and 

acquisition conditions? 

3. How can ALS be used to model and predict SSD in structurally heterogeneous forests? 

4. What information do ALS-derived SSDs provide regarding structural development 

following stand-replacing disturbance? 

 

1.6. – Dissertation overview 

The remainder of this dissertation is composed of six chapters (Figure 1.2), representing 

the different spatial and temporal scales at which forest structural information is required:  
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 Chapter 2 describes Canadian boreal mixedwood forests and provides an overview of the 

remote sensing datasets collected for this dissertation; 

 Chapter 3 focuses on deriving estimates of diameter at different heights and total volume 

for individual trees; 

 Chapter 4 expands the methods developed in Chapter 3 to the plot scale, and examines 

patterns of detection and attribute estimation accuracy across different forest types and 

acquisition conditions; 

 Chapter 5 develops methods for estimating SSDs in a heterogeneous mixedwood forest; 

 Chapter 6 applies derived structural information to support the temporal component of 

forest inventory and enhance understanding of stand structural development over time; 

 Chapter 7 is a synthesis of the work developed across the different spatial and temporal 

scales and provides examples of how terrestrial and airborne data could be combined into 

a next-generation forest inventory which incorporates the strengths of multiple sources of 

input data. 
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Chapter 2 – Study area and data 

 

2.1. – Boreal mixedwood forests 

Boreal mixedwood forests represent a large proportion of the Canadian boreal forest 

(Bergeron et al. 2014), and over 60% of the forested area in Alberta (Strong 1992). In addition to 

providing resources such as timber or pulp, they also provide valuable ecosystem services across 

both regional (e.g. nutrient regulation) and global scales (e.g. carbon sequestration). Naturally 

diverse stands such as those in the boreal mixedwood harbor biodiversity in species such as 

understory plants and songbirds (Cavard et al. 2011). Increased productivity and growth in 

mixedwood stands also means that more carbon could potentially be stored in these stands 

(Zhang, Chen, and Reich 2012) and their structural and compositional diversity makes them 

resilient to disturbances and changes in climate (Cumming 2001; Terrier et al. 2013). Despite 

their importance, there has been limited work in deriving estimates of structural attributes in 

these forest types with three-dimensional remote sensing technologies. This may be due to the 

structural and compositional heterogeneity of these forests, which pose a range of challenges for 

attribute estimation with remotely sensed data. 

 

2.1.1. – Slave Lake study area 

The study area for this dissertation is an approximately 700,000 ha forest management 

unit near the towns of Slave Lake and Swan Hills in central-northern Alberta, Canada (Figure 

2.1). Human activities in the area are primarily related to timber harvesting and oil and gas 

extraction. There are at least 8 common tree species present, with white spruce (Picea glauca), 

black spruce (Picea mariana), trembling aspen (Populus tremuloides) and lodgepole pine (Pinus 
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contorta) as the most common (Table 2.1). Other species present are balsam fir (Abies 

balsamea), balsam poplar (Populus balsamifera), paper birch (Betula papyrifera), and tamarack 

(Larix laricina). 

 

Figure 2.1 - The Slave Lake study area, with its position (black outline) in the Canadian boreal 

forest (dark grey on inset map). Species information comes from AVI polygons. 
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Table 2.1 - Species composition of stands in the study area as determined by photo-

interpretation (Government of Alberta 2005). Mixed stands are those with the dominant species 

representing less than 80% of the stand. Aspen is Populus tremuloides, pine is Pinus contorta, 

black spruce is Picea mariana, and white spruce is Picea glauca. Volume predictions are based 

on data from Tompalski et al. (2018). 

Dominant 

Species 

Total number 

of stands 

% of study 

area (stands) 

Total area 

(ha) 

% of study 

area (area) 

% by total 

volume 

(predicted) 

Mixed 14,309 30.50 179,740 30.57 32.12 

Aspen 9,329 19.89 157,322 26.76 36.10 

Pine 8,142 17.36 113,370 19.28 16.26 

Black spruce 8,867 18.90 77,506 13.18 6.68 

White spruce 4,240 9.04 38,304 6.52 7.12 

Other 2,026 4.32 21,633 3.68 1.71 

 

 Part of the Slave Lake management area is located within the eastern foothills of the 

Canadian Rocky Mountains, with an elevation ranging from 545 to 1575 m above sea level. The 

area has an average annual precipitation of 600 mm and has mean temperatures of -21 C in the 

winter and 20 C in the summer (Natural Regions Committee 2006). Three distinct ecoregions 

exist in the study area. The Central Mixedwood ecoregion, which composes 33.7% of the study 

area, is found primarily at lower elevations. This ecoregion is dominated by stands composed of 

aspen and spruce, with some mixed stands. The Upper Foothills ecoregion, which represents 

13.6% of the study area, occurs at higher elevations. This ecoregion is dominated by stands with 

lodgepole pine and black spruce understory, generally with few or no deciduous species. The 

Lower Foothills ecoregion occurs in the middle of the study area’s elevation range and composes 

52.7% of the study area. This ecoregion is among the most diverse in the province and the large 

proportions of mixed stands represent a gradient between the other ecoregions in the study area. 

Photos of sample plots are shown in Figure 2.2. 
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Similar to other boreal mixedwood forests, the study area experiences a marked amount 

of both stand-replacing and non-stand replacing disturbances. Based on a provincial dataset of 

photo-interpreted stand polygons, 24% of the study area had a stand-replacing disturbance 

between 1956 and 2008, with 21% attributed to stand-replacing fires and 3% to clearcut harvests 

(Government of Alberta 2005). Including non-stand-replacing disturbances, 35% of the stands 

Figure 2.2 – Examples of the forest types in the study area.  
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experienced a disturbance during this same time period, with 21% being from fires, 13% from 

harvesting activities, and 1% from other causes (e.g. windthrow or insect defoliation). 

 

2.2. – Field data 

Two field data acquisition campaigns were carried out in the study area. The first was 

undertaken by Woodlands Forest Management Inc. and occurred between 2004 and 2007 to 

coincide with ALS data acquisition. The field data acquisition followed provincial guidelines for 

the provision of permanent sample plot (PSP) data across the region (Alberta Sustainable 

Resource Management 2005). All plots were circular and had a fixed radius of 11.28 m, with a 

corresponding area of 400 m2. Standard provincial inventory procedures were followed, which 

included the plot center being recorded with a GPS and tagging and measuring each tree having a 

DBH larger than 7 cm. Five representative trees per plot were cored to determine the age of each 

tree, and the average of these was used to summarize the plot age. For all trees ( 7 cm DBH), 

measured tree attributes included height, species, DBH, height to live crown, location, and 

condition or health. While up to 25 attributes were measured for each tree, only 8 attributes were 

relevant for this research and therefore used in this dissertation (Table 2.2).  
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Table 2.2 – The attributes measured for each tree on the sample plots. 

Attribute Measurement technique Units / Classes 

Species Visual assessment 

Aspen (Populus tremuloides) 

Balsam fir (Abies balsamea) 

Birch (Betula papyrifera) 

Balsam poplar (Populus balsamifera) 

Black spruce (Picea mariana) 

Dead 

Jack pine (Pinus banksiana) 

Lodgepole pine (Pinus contorta) 

Tamarack (Larix laricina) 

White spruce (Picea glauca) 

DBH DBH tape Centimeters 

Height Clinometer Meters 

Crown class Visual assessment 

Dominant 

Codominant 

Intermediate 

Suppressed 

Veteran 

Height to live crown Clinometer Meters 

Distance from plot center Laser hypsometer Meters 

Azimuth from plot center Compass Degrees 

Condition code Visual assessment 

Healthy 

Insects 

Disease 

Rabbit browsing 

Shepherd’s crook 

Other browsing 

Mechanical 

Climate 

Flooding 

Poor planting 

Suppression 

Erosion 

 

In addition to the provincial dataset collected in 2004-2007, more sample plots were 

measured in 2018 to support this research, specifically the DTP acquisition, in 2018. This 

involved visiting 18 plots, which were a combination of remeasured PSPs (n = 5) and additional 
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established plots (n = 13) by field crews.  Existing PSPs were located by using GPS coordinates 

and triangulating the known locations of tagged trees closest to plot center. With the exception of 

determining the age, all trees were remeasured according to the provincial standards and 

guidelines, including those which were not previously recorded but had grown above the 

minimum DBH (7 cm) since the last measurement. The remaining 13 new plots were selected to 

increase the range species and structures found in the study area, determined by an analysis of 

photo-interpreted stand polygons and ALS structural metrics. These plots were the same size and 

followed the same measurement protocol as the PSPs. Plot center was recorded with a GPS with 

an accuracy of 3 m and the position (distance and azimuth from plot center) of each tree in the 

plot was measured with a TruPulse 360 laser hypsometer. A summary of plot measurements for 

both acquisition periods is shown in Table 2.3. 

 

Table 2.3 – A summary of the plot measurements collected during the 2006-2008 (n = 71) and 

2018 (n = 18) field seasons. QMD = quadratic mean diameter. 

Characteristic Minimum 
1st 

quartile 
Median Mean 

3rd 

quartile 
Maximum SD 

2
0
0
6
-2

0
0
8
 

Lorey’s height 

(m) 
6.13 12.71 16.27 15.99 19.83 28.39 4.97 

QMD (cm) 3.88 11.00 14.14 13.48 17.08 25.42 4.72 

Total volume 

(m3) 
16.99 154.1 280.83 248.2 348.8 809.1 181.96 

Density (n/ha) 1075 1875 2644 2650 3138 8325 1194.65 

2
0
1
8
 

Lorey’s height 

(m) 
15.79 18.60 21.87 22.49 24.22 28.98 3.80 

QMD (cm) 15.22 20.20 22.80 22.01 25.79 25.79 4.28 

Total volume 

(m3)  
231.1 387.8 457.2 484.0 457.2 660.2 135.12 

Density (n/ha) 750 1000 1428 1288 1682 2525 549.59 
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2.3. – Remotely sensed data 

 The research reported in this dissertation was based on three sources of remotely sensed 

data to characterize forest structure at multiple spatial scales. DTP was used to characterize the 

structure of individual trees and plots. ALS was used to characterize the structure of stands and 

to predict SSDs for the study area. Photo-interpreted stand inventory polygons were used to 

provide information on the disturbance history and composition of delineated stands 

(Government of Alberta 2005).  Methods for DTP acquisition are described in Chapters 3 and 4, 

and ALS processing methods are described in Chapters 5 and 6. 

 

2.3.1. – Airborne laser scanning data 

 The ALS data for the study area was acquired across multiple flights between 2006 and 

2008, with the majority of the coverage occurring in 2008. Coverage of the area by year 

represented 8.83%, 24.37%, and 66.80% of the study area for 2006, 2007 and 2008 flights, 

respectively. Acquisition parameters for the different flight years are found in Table 2.4. The 

combination of these datasets resulted in complete coverage of the study area with an average 

point density of 1.5 points per m2. Further detail about the processing methods for the ALS data 

are found in Chapter 5. 
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Table 2.4 - ALS acquisition parameters for the three different acquisition years 

Characteristic 
Collection Year 

2006 2007-2008 

Acquisition months July 
October 2007 

July-September 2008 

Sensor Optech ALTM 3100 

Flying height 1250 m 1400 m 

Flight speed 160 kts 

Pulse repetition frequency 50 kHz 70 kHz 

Scan frequency 30 Hz 33 Hz 

Scan angle 50° 

Beam divergence 0.3 mrad 

Average point density 1.5 points / m2 

 

2.3.2. – Alberta vegetation inventory polygons 

As a part of the provincial inventory program, aerial photographs are acquired (at 

1:60,000 or 1:40:000 scale) and interpreted by experts to delineate stand boundaries and estimate 

attribute information. The photo-interpretation includes compositional attributes such as species 

mixtures and structural attributes such as height classes. The most recent assessment was 

undertaken with imagery from between 2006 and 2008, coinciding with the ALS acquisitions 

and fieldwork. Research in chapter 6 is based on a dataset of over 50,000 photo-interpreted 

polygons for the study area, completed to provincial standards (Government of Alberta 2005). 

According to these standards, there are up to 65 attributes derived for each delineated stand 

polygon. Of these attributes, the species mixtures and the type of stand-initiating disturbance are 

used in Chapter 6. This dataset of over 7,000 stand polygons is also used to determine the 

patterns of structural development in the study area. 
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Chapter 3 – The utility of terrestrial photogrammetry for assessment of tree stem volume 

and taper in boreal mixedwood forests 

 

3.1. – Introduction 

 In an operational forest inventory, many attributes are manually measured where all, or a 

sample, of the trees above a given diameter threshold in a sample area are measured (Liang et al. 

2016). Traditional inventory methods of measuring tree stem taper is difficult and typically 

requires felling the tree (Huang 1994). For trees with unconventional stem shapes resulting from 

varying growth patterns or environmental conditions, traditional ground-based inventory 

methods and equations based on diameter and height as inputs may fail to provide accurate 

estimates of tree volume or biomass. 

 In order to meet increasing demands of data accuracy and robustness, recent years have 

seen the incorporation of remote sensing technologies to enhance forest inventories (Leckie and 

Gillis 1995; White et al. 2016; Wulder and Franklin 2003). One such technology is terrestrial 

laser scanning (TLS), which uses LiDAR from a ground-based sensor to more effectively 

characterize individual stems at a plot or individual tree scale, providing accurate estimates of 

tree DBH, height, stem volume, and stem biomass (Liang et al. 2016). However, TLS units are 

expensive and often unwieldy (Eitel et al. 2013). A faster and inexpensive alternative to derive 

similar data for use in forest inventory is digital terrestrial photogrammetry, or DTP. Recent 

research has shown the success of DTP in the reconstruction of individual trees for attributes 

such as DBH (Forsman, Börlin, and Holmgren 2016), location within a plot (Liang, Jaakkola, et 

al. 2014), and stem shape (Bauwens et al. 2017).  
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 Despite advancements in DTP technology and associated methods, there are current 

limits to its operational use. The need for manual intervention or trial-and-error in point cloud 

generation has limited the application of DTP within forest management and ecological 

modeling. The advances in automation of point cloud generation was an important in making the 

technology useful as an operational tool (Berveglieri, Oliveira, and Tommaselli 2014; Hapca, 

Mothe, and Leban 2007; Mikita, Janata, and Surovỳ 2016). However, previous studies using 

DTP have relied on either the acquisition of hundreds to thousands of images over a given area 

(Mokroš et al. 2018), or tens to hundreds of images of single trees (Bauwens et al. 2017; Miller, 

Morgenroth, and Gomez 2015), which raises issues of time or data storage requirements in 

operational capacities. Point cloud-derived upper stem measurements, such as those from Fang 

and Strimbu (2017), could provide better estimates of attributes such as taper, volume, or 

biomass (Bauwens et al. 2017). However, most studies focus on relatively even-sized stands or a 

single primary species (Fang and Strimbu 2017). As a result, an additional analysis of point 

cloud accuracy across species and environmental gradients is needed to understand the utility of 

DTP in irregular stands such as those present in boreal mixedwood forests.  

 In this Chapter, I evaluate a methodology for DTP estimation of DBH, upper stem 

diameter (> 1.3 m), and volume of individual trees in a boreal mixedwood forest. Limited sets of 

photographs taken at known locations were used to automatically generate photogrammetric 

point clouds for trees across a range of sizes and species. Estimates of diameters at varying 

heights were derived from the point clouds and used as inputs to estimate taper and volume. The 

accuracy of DTP-derived estimates was assessed based on field-measured taper from felled trees 

and compared to traditional methods (based on height-diameter allometries) for estimation of 

taper and tree volume.  
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3.2. – Methods 

3.2.1. - Field data  

 The trees measured in this study were located within plots established in July 2018. 

Across the sample plots, 15 individual trees were randomly selected and photographed as 

outlined in section 3.2.2. Trees were later felled and diameters were measured in 1-m increments 

up the stem. Field-measured volume was calculated as the sum of section volumes between 

diameter measurements up each stem. Smalian’s formula was used to calculate the volume of 

each section as a function of its length and the top and bottom area. The topmost section was 

treated as a cone and the stump was treated as a cylinder. Attributes for each tree are shown in 

Table 3.1. 

 

  



27 

 

 

Table 3.1 - Characteristics of trees (n = 15) used in this study. Species codes are as follows: Aw 

= trembling aspen (Populus tremuloides), Sw = white spruce (Picea glauca), Pl = lodgepole pine 

(Pinus contorta latifolia), Sb = black spruce (Picea mariana), Fb = balsam fir (Abies balsamea). 

Tree ID Species Height (m) DBH (cm) Volume (m3) 

1 Aw 28.6 28.6 0.9296 

2 Aw 22.3 15.7 0.2028 

3 Sw 25.9 30 0.9071 

4 Sw 26.3 40.4 1.696 

5 Pl 17.0 17.1 0.2078 

6 Sw 22.2 38.1 1.140 

7 Sw 18.7 29.5 0.5952 

8 Pl 17.0 16.1 0.1689 

9 Pl 26.2 26.4 0.7626 

10 Pl 18.2 15 0.1962 

11 Sb 18.0 20.7 0.3487 

12 Pl 19.8 26.1 0.5437 

13 Sb 21.8 31 0.7288 

14 Sb 9.70 10.8 0.0525 

15 Fb 26.0 25.5 0.6668 

Overall Mean - 21.18 24.73 0.6098 

Species Means 

Aw 25.45 22.15 0.5662 

Fb 26.00 25.5 0.6668 

Pl 19.64 20.41 0.3758 

Sb 16.50 20.83 0.3767 

Sw 23.27 34.50 1.085 

 

3.2.2. - Image acquisition 

 Before images were taken, 5 coded targets were positioned on and around each tree (4 on 

the ground and one on a tree approximately 2 m high. In some cases, targets were placed on the 

selected tree but were filtered from resulting point clouds. The coded targets were generated in 

the Agisoft Photoscan software (Agisoft 2018) for automatic detection during image matching, 

and each target was printed such that it took up approximately the width of a standard letter-sized 

page (22 x 28 cm). The targets were used to enhance image alignment, both within and among 

image locations. 
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 Figure 3.1 details the image acquisition method. Images were acquired using two RICOH 

Theta S (RICOH 2017) cameras mounted on a telescoping pole. Each camera was equipped with 

two fisheye lenses whose images are stitched together to generate a single spherical image with a 

360˚ field of view. The mount ensured the two cameras remained at a fixed distance apart (70.0 

cm), which allowed this distance to be inputted as a scale bar during point cloud processing, 

outlined in Section 3.2.3 Using two adjacent cameras (placed ~ 70 cm from each other) allowed 

for high (close to 100%) overlap between image pairs. Sets of images taken at two locations 

meant that approximately half of the circumference of the tree was visible in the set of images. 

Sets of simultaneous images, acquired with both cameras, were taken at each of three heights, 

approximately 2, 3, and 5 m above the ground, and at each of two locations around the tree. The 

result was a set of 12 images (2 cameras, 3 heights above the ground, 2 locations). Preliminary 

testing showed that this methodology provided sufficient coverage around the tree for circle-

fitting techniques to accurately estimate stem diameter. The locations of cameras and coded 

targets were recorded relative to ground level at the location of the first image set, which was 

defined as the center of a local coordinate system (with xyz coordinates of 0,0,0). Table 3.2 

compares the methodology presented in this study to that of previous work producing 

photogrammetric point clouds from ground-based images. 
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Table 3.2 - A comparison of selected studies detailing previous work with DTP to that of the 

proposed methodology. Single asterisk indicates values not explicitly reported but calculated 

based on values presented in study. Double asterisk indicates values not reported but estimated 

based on figures in study. NR = not explicitly reported but calculated based on available data 

Study Goal Scale 
# of  

species 

# of 

trees 

# of 

images 

Avg. # 

images/tree 

RMSE of 

DBH – cm 

(RMSE%) 

Mean DBH  

(SD; cm) 

Liang et al. 

2014 

Tree 

detection and 

DBH 

Plot 
2+ 

(NR) 
25 973 38.9 

2.39 

(6.60) 

31.86 

(NR) 

Miller et al. 

2015 

Crown and 

stem 

attributes 

Tree 4 30 
150 - 

180 
150 - 180 

.021 

(9.60) 

2.198 

(.013) 

Forsman et al. 

2016 

 

DBH and tree 

location 
Plot 

3+ 

(NR) 

12 - 

38 
36 0.95 – 3 

7.4 

(33.8*) 

21.92 * 

(NR) 

Mikita et al. 

2016 

DBH and 

volume 
Stand 1 118 1774 15 

.911 

(2.39) 

38.16 

(7.01) 

Bauwens et 

al. 2017 
Trunk shape Tree 3 37 188 188 

< 1 

(NR) 

122.5 

(53.57*) 

Fang & 

Strimbu 2017 
DBH, taper Tree 1 18 32 ** 32 ** 

1.71 

(5.60) 

30.61 

(6.85) 

Mokroš et al. 

2018 

DBH, 

detection 
Plot 1 74 

440 - 

1271 
6 – 17.2 

4.41 - 5.98 

(16.7 - 20.9) 

25.30 

(NR) 

Proposed 
DBH, taper, 

volume 
Tree 6 15 12 12 - 

24.73 

(8.93) 

 Figure 3.1 - Image acquisition methodology used in this Chapter. a. outlines the camera mount 

setup, b. details the approximate location of photos and coded targets in relation to the tree, and 

c. shows the camera in use during field acquisition. 
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3.2.3. – Point cloud generation 

 Point clouds were processed using an automated Agisoft Photoscan workflow (Agisoft 

2018). First, camera and target locations were entered and targets were automatically detected. 

Next, a scale bar between each pair of photographs was set as the distance between the images 

taken in the field (~ 70 cm). Photos were aligned using a “high” setting and the resulting tie 

points were filtered to remove those with high reconstruction uncertainty. Finally, dense point 

clouds were generated using a “high” setting and were then exported to be used in further 

processing, which was performed on a computer with an Intel Xenon E5-2630 (24 cores @ 2.3 

GHz), 64 GB of DDR3 RAM, and an NVIDIA Quadro P4000 GPU. 

 

3.2.4. - Attribute extraction 

 Generated point clouds were analyzed in Computree (Piboule et al. 2015), a collaborative 

and open-source software to derive detailed tree-level estimates from ground-based point clouds. 

Analysis followed a standard Computree workflow, beginning with detection and removal of 

ground points, followed by noise removal (Belton, Moncrieff, and Chapman 2013). In the next 

step, horizontal clustering of points and vertical aggregation into logs was performed. For 

resulting logs, cylinders were fit at various heights up the stem using a least squares fitting 

technique (e.g. Berveglieri et al. 2017). Finally, smoothed diameters were calculated at breast 

height and 1-meter intervals by averaging diameters of neighboring cylinders (e.g., 1.2 – 1.4 m 

for DBH). 
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3.2.5. - Taper and volume assessment  

 As heights of the point cloud measurements did not reach the full height of the stem, 

estimates of taper were determined by matching point cloud-derived diameters to a database of 

all possible taper curves for the area. In Alberta, variable-exponent taper equations are used 

(Kozak 1988), and parameters of these curves are adapted to various ecoregions of the province 

(Huang 1994). Generation of the curve database and associated matching techniques are 

described below. 

 

3.2.5.1. - Curve database  

 Taper curves were generated for all possible tree dimensions in the study area based on 

parameters used throughout the province (Huang 1994). To generate each curve, taper equations 

required inputs of species, ecoregion, DBH, and total height, while outputting the diameter of the 

tree at any given height. All possible taper curves were thereby created using all possible 

combinations of the variables in my study area – all three ecoregions, six species, DBH values 

from 4 to 40 cm in 0.1 cm increments, and height values from 5 to 35 m, in 0.1 m increments. 

For each combination, equations output the diameter values at height increments of 10 cm up the 

stem. The list of curves was then filtered to remove trees whose allometries were unlikely to 

exist in the study area (e.g., trees that were 30 m tall and had a 4 cm DBH), by removing curves 

from the database whose height values were not within ± 5 m of the predicted height from the 

specified allometric equation. This limited the database to allometrically valid taper curves (e.g., 

those that could exist in the study area) and resulted in a final database of 1,652,778 taper curves. 
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3.2.5.2. – Curve matching 

 Point cloud measurements of diameter at different vertical heights were used to match 

with possible taper curves. Two different curve matching approaches were evaluated in this 

study, outlined in Figure 3.2. In the first method (1), diameters were not weighted and the curve 

was chosen based on having the smallest residual between the point cloud-derived diameters and 

diameters from possible taper curves. The second method (2) applied weighting factors to the 

residuals of diameters closest to 3.28 m. This height was chosen as it was the average of the three 

camera heights, and all cameras are expected to have the lowest residual distance to this point on 

the stem, potentially making it the portion of the stem most accurately reconstructed by the point 

clouds. 

 

Figure 3.2 -  A representation of the two different curve matching techniques (Not 

Weighted and Weighted) used in this Chapter. w in the equations indicates the 

weight applied to the residual closest to 3.28 m. In this simplified example, the blue 

and yellow lines represent two candidate curves coming from the generated taper 

curve database. There were approximately 90,000 candidate curves for each 

species in each ecoregion in the curve database. 
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3.2.5.3. – Verification and accuracy assessment 

 As a comparison, estimates from the point cloud curve matching were compared to three 

other methods: (3) the selection of a taper curve based on measured DBH, height (from laser 

hypsometer), and species before trees were felled; (4) field-measured DBH and species were 

used as inputs to height-diameter allometric equations (Huang 1994) to predict a tree height, 

which was then input to select a taper curve; (5)  the fifth dataset was similar to the fourth, but 

used DBH as estimated from the point cloud as an input to a height-diameter equation to predict 

height. In summary, five methods were compared, two of which used field measurements to 

match a taper equation (3 and 4), and three which were based on point cloud estimates of 

diameter (1, 2, and 5). An overview of these methods is shown in Figure 3.3. The accuracies of 

the DBH, volume, and taper were evaluated by using the Root Mean Squared Error (RMSE), 

RMSE relative to the mean (RMSE%), bias, and bias relative to the mean (bias%). Results of the 

methods were tested to see if estimates differed significantly from one another using a t-test. The 

equations for these statistics are below. 

 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖̂ − 𝑦𝑖)2

𝑁

𝑖=1

 , (1) 

   

 
𝑅𝑀𝑆𝐸% =  

𝑅𝑀𝑆𝐸

𝑦̅
∗ 100 , (2) 

   

 

𝑏𝑖𝑎𝑠 =  
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)

𝑁

𝑖=1

 , (3) 
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𝑏𝑖𝑎𝑠% =  

𝑏𝑖𝑎𝑠

𝑦
∗ 1, (4) 

   

where N is the number of trees, yi is the reference measurement for tree i, 𝑦̂𝑖 is the predicted 

measurement for tree i, and 𝑦̅ is the mean of reference measurements on all trees. 

 

 

Figure 3.3 - An overview of the 5 methods used: curve matching (methods 1 and 2), inputting 

field measurements (methods 3 and 4), and using the DBH as estimated from the point clouds 

(method 5). 
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3.3. – Results 

3.3.1. – Point cloud reconstruction and diameter estimates 

 Once an efficient processing workflow was produced, the total amount of time taken for 

all steps was, on average, 8 minutes per tree (3 minutes for setup of locations and targets, 1 

minute for image acquisition, 3.5 minutes for point cloud generation, 0.25 minutes for deriving 

measurements from CompuTree, and 0.25 minutes for curve matching). The resulting point 

clouds contained between 10,000 and 62,000 stem points for the shortest (Tree 14) and tallest 

(Tree 1) trees, respectively. Points covered an area immediately around the stem and ranged from 

ground level to a maximum height of 4 to 8 m. Diameter estimates were derived from DTP point 

clouds, shown in Figures 3.4 and 3.5, and showed good, unbiased correspondence with manual 

measurements (1.28 cm RMSE, 5.15 RMSE% for DBH). This degree of correspondence was 

observed at other heights along the stem, although the DTP-derived point clouds rarely allowed 

extraction of diameter measurements above five meters. For example, for one of the tallest 

measured trees (Tree 9, a large lodgepole pine, 26.4 cm DBH, 26.2 m height; Table 3.1), the 

generated point cloud allowed stem reconstruction up to 9 m above the ground. The shortest stem 

reconstruction was to a height of 3.5 m on a small black spruce (Tree 14, 10.8 cm DBH, 9.7 m 

height). In general, lower stem heights (e.g., < 3 m) had approximately 50% of the circumference 

of the tree represented by points. However, point clouds further up the stem generally became 

more obscured by canopy or branches, resulting in less direct observation from some of the 

camera perspectives. This resulted in approximately 25% of the stem circumference being 

represented by points. Despite this, points coming from one camera location were often enough 

to derive a sufficiently accurate diameter estimate. For example, a separate analysis using only 6 
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images at a single location for point cloud reconstruction yielded an RMSE of 2.00 cm, or 8.10 

RMSE%, for DBH estimation. 

 

  

3.3.2. – Upper stem diameters and taper assessment  

The relationship between measured and predicted stem diameters for all trees and all 

evaluation methods is shown in Figure 3.5. For comparison across trees of different heights, the 

relationship is shown as both the measurement error by absolute height up the stem and the 

percentage of total tree height for individual trees. For diameters at lower sections of the stem (< 

8 m), both curve matching techniques (methods 1 and 2) performed better than other approaches 

(~ 0.5 cm RMSE). Above 10 m, or approximately 30% of total tree height (across stems), 

method 3 (using the field-measured DBH and height) yielded the most accurate diameter 

estimates (< 1 cm RMSE). In some cases, either the curve matching or the allometric equation 

yielded inaccurate estimates of total tree height, producing larger discrepancies at upper parts of 

Figure 3.4 - Comparison between observed and predicted DBH measurements (n = 15) from DTP 

point clouds. 
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stems (> 75% of total tree height). Despite this, all methods were generally successful at 

characterizing stem diameter, with the most accurate measurements coming at points in the 

bottom 13 m or 50% of the stem (< 1.5 cm RMSE). 
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Figure 3.5 - Error (RMSE) of diameter estimates at various heights up the stem, with points indicating 

RMSE at each measured height and lines showing trend generated by smoothed conditional means. 

Different colored points and lines refer to the five different estimation approaches. The graph on the left 

shows the error in terms of the absolute height, while the one on the right shows the error at heights 

relative to the total tree height in 10% increments. Values over 100% on the y-axis in the right graph 

indicate an incorrect estimate of total tree height. 
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3.3.3. – Volume predictions 

 The relationship between measured and predicted volumes for the different approaches is 

shown in Figure 3.6. Method 3 (using the field-measured DBH and height) produced the most 

accurate overall predictions of volume (0.094 m3 RMSE, 15.5% RMSE). Independent-samples t-

tests were conducted to compare mean diameter accuracy. For all techniques, there was no 

significant difference in the mean accuracy of diameters, suggesting that no one technique 

performed better or worse than the others. All methods of volume calculation were slightly 

negatively biased compared to the ground-measured reference. Of the point cloud-based 

approaches, method 5 (the predicted DBH and allometrically assigned height) yielded the most 

accurate estimates (0.099 m3 RMSE, 16.3 RMSE%), but this was only marginally better and not 

statistically different than the curve matching approaches (methods 1 and 2). Method 1 

(unweighted curve matching) produced more accurate volume estimates (.110 m3 RMSE, 18.1 

RMSE%) than method 2 (weighted curve matching; .120 m3 RMSE, 19.6 RMSE%). However, 

for all 15 trees, no method performed significantly better or worse than the others. 
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3.4. - Discussion 

3.4.1. – Diameter estimates 

 Stem diameters at multiple heights were extracted from DTP point clouds. Point clouds 

produced accurate estimates of DBH (Figure 3.4), showing a RMSE of 1.28 cm and a RMSE% 

of 5.15. Point cloud-based curve matching approaches (methods 1 and 2) produced the most 

Figure 3.6 - The accuracies of the 5 different methods for volume estimation. Each point 

represents a tree and is colored according to the method presented. 
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accurate measurements for the lowest 8 m, or approximately 30% of the stems, while using a 

known DBH and height (method 3) was the most accurate method for the higher parts of the 

stem. For trees with irregular allometries, it was possible that the taper models used in this study 

inaccurately characterized the diameter at different parts of the stem. However, the models were 

determined to be generally accurate in their characterization of stem taper. In some cases, 

methods 1, 2, 4, and 5 produced inaccurate estimates of total tree height resulting in inaccurate 

predictions for volumes and upper stem diameters. This resulted in higher RMSE values for the 

upper parts of trees (> 50% of total height) in scenarios where the total height was unknown. 

However, most tree height estimates were within 3 m of the true height (after falling), and all 

methods produced RMSEs of less than approximately 1.5 cm for diameters in the lowest 50% of 

the stem. Most tree heights measured in the field by a laser hypsometer were within 1 m of the 

true height (after falling), but deviated by about 3 m for the tallest two trees. These discrepancies 

between field-measured (hypsometer) and observed tree height is consistent with findings from 

Luoma et al. (2017), who determined that the standard deviation of field-measured height was 

0.5 m (2.9%), up to a maximum of 4.2 m. 

Compared to certain other studies estimating individual tree DBH from DTP point clouds 

(e.g., Bauwens et al. 2017; Fang and Strimbu 2017; Miller et al. 2015), I used fewer photographs 

(12) and evaluated more species (6) while achieving similar levels of accuracy (Table 3.2). For 

example, Fang and Strimbu (2017) reported DBH estimates with an RMSE% of 5 in a 

monospecific plantation. Similar accuracy with six species indicates that there may not be a 

strong correlation between tree species and DBH accuracy at least for the species included in this 

Chapter. 
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The achieved accuracy with a relatively low number of images may have resulted from 

the inclusion of six scale bars (i.e. one between each set of adjacent images at three different 

heights), which was set to the distance between the cameras as they were mounted on the pole. 

This allowed the point clouds to be scaled more accurately than using the target locations alone. 

Forsman et al. (2016) also used a camera rig (multiple cameras mounted to a portable device) to 

scale the images with known distances while using an average of less than 3 images per tree to 

detect and measure stems on sample plots. Consequently, a rig-based system with known 

distances between cameras may be helpful in producing accurate estimates of tree dimensions in 

cases where relatively few images per tree are captured. 

 

3.4.2. – Volume assessment 

The photogrammetric point clouds were generally accurate in estimating tree volume. For 

smaller trees (i.e. volumes less than 0.5 m3), all methods of volume estimation produced similar 

accuracies. For the largest two trees, method 3 (using the field-measured DBH and height) 

produced inaccurate estimates, possibly due to inaccurate height measurements as taken from the 

ground, which has been shown to be influenced by stand conditions, crown class, and tree 

species (Wang et al. 2019). Although more accurate diameter measurements at upper parts of the 

stem came from method 3 (field-measured DBH and height), the majority of a tree’s volume is in 

the lowest portions of the stem, indicating that accurate diameter measurements at the bottom – 

possibly coming from DTP point clouds – could also result in more accurate volume estimates. 

For example, the lower 50% of tree stems in the study contained about 80% of the total volume 

for the trees. 
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This study addressed the ability of 360˚ cameras to derive detailed tree-level 

measurements. The cameras’ large field of view means that resulting point clouds have a larger 

coverage area than traditional frame cameras, which are typically employed during field 

operations. The results of this study indicate the potential of 360˚ cameras to characterize larger 

areas such as sample plots or stands. Larger coverage from individual images would result in 

fewer images being required for point cloud generation. As a comparison, the frame cameras 

used in Liang et al. (2014) and Mokroš et al. (2018) were able to successfully characterize DBH 

for trees on sample plots, but used up to 973 and 1271 images for 900 and 1225 m2 plots, 

respectively. Spherical images could also provide the basis for a combination of terrestrial and 

aerial photogrammetric point clouds, such as in Mikita et al. (2016), who used terrestrial and 

aerial images to characterize tree DBHs and volumes in a 0.8 ha stand. However, for individual 

trees, only a subset of the entire 360˚ field of view was used for tree reconstruction, indicating 

that similar accuracies may be achieved using a rig-based system of wide-angle or fisheye lens 

cameras. 

Of the related studies listed in Table 3.2, only one estimated volume from DTP point 

clouds (Mikita et al. 2016). Volume estimates from point clouds in their study (RMSE of 0.082 

m3) were slightly more accurate than those reported here (RMSE of 0.099 m3). In this study I 

evaluated the ability to derive individual tree characteristics based on point clouds created from 

fewer images and tested on more species than presented in Mikita et al. (2016). Additionally, 

Mikita et al. (2016) combined DTP and DAP point clouds, while my study was limited to 

ground-based images. More study is needed to determine the relationships, if any, between point 

cloud accuracy and characteristics such as tree size, branchiness, species, or stand density of the 

surrounding area. Based on an international benchmarking study of TLS by Liang et al. (2018), 
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stem detection rates decreased with decreasing mean DBHs and stem density, while DBH 

estimates were stable across stand conditions. Smaller trees will have less surface area for point 

cloud reconstruction, meaning that there may be a resulting increase in error of DBH estimation 

with decreasing tree size (Ryding et al. 2015). 

 

3.4.3. – Applications 

TLS provides more comprehensive point clouds than DTP that can be used for more 

detailed study such as wood quality, and has the ability to return points from occluded areas such 

as in stands with a high stem density or on stems with many branches. However, the results seen 

in this study indicate the potential for DTP to provide similar levels of accuracy to TLS for DBH 

and volume estimates. Studies using a single TLS scan reported 1–3 cm RMSE for DBH (Liang 

and Hyyppä 2013; Maas et al. 2008) and ~10 RMSE% for volume (Liang, Kankare, et al. 2014), 

similar to the results reported here. Liang et al. (2018), also reported accuracies of 10 and 20 

RMSE% for “easy” (low stem density and high mean DBH) and “difficult” (high stem density 

and low mean DBH) plots, respectively.  

While TLS provides attributes such as branching structure and direct measurements of 

upper stem diameters, the cost of handheld cameras to use for DTP is in the hundreds of dollars, 

far less than TLS units, which can be 2 orders of magnitude higher. In this Chapter, DTP 

achieved similar levels of accuracy to TLS for diameter and volume estimates. However, the 

level of detail from a TLS point cloud can derive more detailed estimates of attributes such as 

branching patterns or biomass (Liang et al. 2016). Although the focus of this Chapter was on the 

structural qualities of the point clouds, their spectral attributes could also be used, similar to 

aerial images, to assess species compositions (e.g. Packalen and Maltamo 2006) and tree 
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condition or quality (e.g. Goodbody et al. 2018). Overall, the low cost and portability of the 

cameras, in addition to the objectivity and storability of the point clouds, show their value as a 

tool in forest inventory and modeling.  
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Chapter 4 – Digital terrestrial photogrammetry to enhance field-based forest inventory 

across stand conditions 

 

4.1. – Introduction 

Individual tree measurements are important for characterizing the structure of trees for 

applications such as merchantability or carbon storage. Similarly, plot-level structural 

measurements are used to characterize size variability and past disturbance, or to determine 

product quality (Landsberg et al. 2005), or predict future growth (García 1992). Airborne remote 

sensing products such as ALS require manual ground measurements for calibration and 

validation. As a result, there has been increasing interest in the acquisition of advanced remote 

sensing information products from within a stand that could be used to augment conventional 

forest inventory measurements by providing a detailed characterization of the plot at a given 

point in time for current modeling or retrospective change assessments. Chapter 3 used a smaller 

image set (n = 12 images per tree) to derive accurate diameter and volume estimates from 

individual trees that matched or exceeded the accuracies from conventional field-based 

inventories. Despite these advances in estimating tree-level forest attributes from DTP, less is 

known about how DTP accuracy is impacted when scaling up from an individual tree point cloud 

to an individual plot or stand. 

At the stand scale, previous DTP applications have shown that tree location, DBH, and 

stem taper can be derived (Table 4.1); however these studies have utilised more than 1000 

images using conventional frame cameras (e.g. Mikita, Janata, and Surovỳ 2016; Mokroš et al. 

2018) taken from a variety of positions, increasing the time spent both acquiring and processing 

images and thereby reducing the cost-effectiveness of DTP for attribute estimation. Furthermore, 
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these studies typically focus on relatively simple forest stands with homogeneous canopy 

structure and little understory, limiting the understanding of the sensitivity of DTP to different 

acquisition conditions and stand complexities. This currently limits the widespread adoption of 

the technology to stands with simple structures, such as those without low-lying branches or 

those with a sparse understory and using a large image set, potentially discouraging the use of 

this technology in other forest types. To move towards an operational technology for forest 

estimation, considerable work needs to be done to scale up from individual trees to plot-level 

inventory estimates across a range of stand conditions and forest structures.  Moving from 

individual trees to plots requires additional considerations, as stands can be complex, image 

acquisition conditions such as position and lighting conditions harder to control, and at broader 

scales more variability exists in stand attributes, including tree size, stem form, branching 

patterns, and density, and understory and ground cover presence. Methodological developments 

in the nature of image acquisition focusing on camera rigs and image acquisition patterns can be 

one way to overcome some of the issues by reducing potential occlusion and minimizing 

inconsistencies of point cloud generation (Forsman et al. 2016; Mokroš et al. 2018).  
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Table 4.1 - A comparison of previous studies using DTP for plot-level tree detection and DBH 

estimation. * = values calculated based on data in study but not explicitly reported. RMSE% is 

the RMSE relative to the mean observed diameter value. % Tree Detection is the number of 

correctly detected stems as a percent of the total number of stems. All studies use conventional 

frame cameras. 

Study 
# of 

images 

Area 

(m2) 

Images 

/ m2 

# 

Trees / 

ha 

# of 

species 

Mean 

DBH (cm) 

RMSE of DBH 

estimate (cm / %) 

% Tree 

Detection 

Liang et al. 

2014 
973 900 1.08 278 2+ 31.86 2.39 / 6.6 88 

Liang et al. 

2015 

97 - 

1070 
900 

0.11 - 

1.89 
278 2 31.86 

2.98 - 6.79 / 

8.03 – 18.87 
60 - 84 

Forsman et 

al 2016 
36 

1256.

6 
0.03 

95 – 

302 
3+ 21.92* 7.4 / 33.8* 68 - 83 

Mokroš et al. 

2018 

440 - 

1271 
1225 

0.35 - 

1.04 
547 1 25.3 

4.41 - 5.98 / 

16.7 – 20.9 
49 - 81 

Piermattei et 

al. 2019 

338 - 

775 

706 - 

1256 

0.42 - 

0.70 

390 - 

875 
4 26.83 

1.21 - 5.07 / 

3.94 – 17.0 
65 - 98 

 

In this Chapter, I continued to evaluate the use of DTP for deriving tree form estimates 

across a range of species, sizes, stem forms, and understory conditions with the aim of furthering 

the use of this technology as an additional tool for accurate forest inventory collection and 

update.  To do this, I focused on three main components. First, I proposed a methodology aimed 

at collecting measurements and enhancing traditional field-based forest inventory – that is, to 

provide information not typically measured from conventional field surveys (e.g., taper). Next, I 

applied the new methodology across a broader range of forest conditions than most previous 

studies in order to determine the sensitivity of the detection and DBH estimation accuracy to a 

set of different acquisition parameters and stand conditions. Finally, I aimed to improve the cost-

effectiveness of DTP for plot-level estimates by reducing the number of images taken and 

therefore lowering processing requirements.  
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4.2. Methods 

4.2.1. – Field inventory 

 This Chapter used data acquired during the same field season as in Chapter 3, measured 

in July 2018 (Section 2.2). A summary of the field data for the plots later deemed suitable (see 

Section 4.2.4) is shown in Table 4.2. In total, the dataset consisted of 653 trees on 12 sample 

plots, representing one of the largest studies of DTP for tree-level estimates to date and therefore 

a unique opportunity to explore the patterns of tree detection and estimation accuracy as they 

relate to either plot or acquisition conditions. 

 

Table 4.2 - Summary of field data on 12 sample plots used in this Chapter. * indicates the overall 

DBH range and not the mean. Dominance is based the number of live stems. Aw = Trembling 

aspen (Populus tremuloides), Pl = Lodgepole pine (Pinus contorta), Sb = Black spruce (Picea 

mariana), Sw = White spruce (Picea glauca). 

Plot 
Density 

(n/ha) 

Mean DBH 

(SD; cm) 

DBH range 

(cm) 

Dominant 

Species 

% Species 

Dominance 

Number of 

species 

1 1750 18.6 (6.8) 7.5 – 30.1 Aw 70.0 2 

2 850 27.5 (10.0) 9.5 – 47.6 Sw 82.4 3 

3 1475 20.6 (8.0) 7.4 – 39.3 Pl 76.3 3 

4 1375 25.2 (6.5) 7.6 – 41.0 Pl 96.4 2 

5 1075 24.0 (7.9) 7.5 – 38.8 Pl 81.4 4 

6 1100 22.7 (6.7) 8.5 – 34.0 Aw 59.1 2 

7 1200 24.7 (8.8) 7.2 – 43.8 Pl 45.8 2 

8 2150 18.3 (5.2) 7.9 – 29.8 Sb 45.4 2 

9 1625 20.1 (8.9) 8.8 – 43.4 Sw 56.9 4 

10 1900 18.6 (6.1) 7.2 – 31.9 Aw 72.4 3 

11 750 24.9 (8.5) 10.5 – 38.0 Aw 93.3 2 

12 1075 19.4 (9.7) 8.7 – 50.2 Bw 51.2 3 

Mean 1360.4 22.0 (7.7) 7.2 – 50.2* - 69.2 3  

 

4.2.2. – Workflow 

 The workflow for deriving plot estimates from generated point clouds is summarized in 

Figure 4.1. First, images were systematically acquired on all plots. Next, images were processed 
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into dense point clouds. Cylinders representing stem diameter at various heights were then fitted 

to detected and filtered stems. Finally, detected stems seen from multiple camera locations were 

merged into a final stem map with tree location and DBH, with additional diameter attributes 

above breast height (1.3 m). These stem maps were evaluated for their accuracy based on 

measured plot data.  

 

Figure 4.1 - A workflow of the analysis undertaken in this Chapter 
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4.2.3. – Image acquisition 

Sets of spherical images were acquired using a methodology similar to that of Chapter 3. 

Six images were taken at the same height and configuration as Chapter 3 at each of 17 locations 

systematically spread around the plot, resulting in a total of 102 images acquired per plot (17 

locations x 3 heights x 2 images). Depending on conditions (understory or trees obscuring access 

to the desired location), image sets were taken at plot center and then at approximately 6 and 12 

meters from plot center at 8 cardinal directions (Figure 4.2). These locations of image sets were 

chosen because they balanced the need to reduce the number of images required to generate the 

plot-level point clouds, while being able to see most areas of the plot from multiple locations – 

possibly reducing occlusion of stems from fewer image locations. A combination of the close 

distance between cameras and spherical nature of the images led to a large image overlap at each 

location, allowing point clouds to be generated from relatively few images (similar to Chapter 3) 

which were representative of stems and from which dimensional measurements could be taken.  

To spatially register each point cloud within the plot, approximately 20-25 coded targets 

generated by Agisoft Metashape Professional (Agisoft 2018) were placed in each plot. Each 

target was printed on a single letter-sized piece of paper (215.9 x 279.4 mm) and the radius of the 

circular codes was approximately 18 cm. Each code was assigned a number and, when 

automatically detected in the processing software, could be used to spatially register the resulting 

point cloud. A total of four targets were put on the ground and the remaining targets were placed 

at 2 m up tree stems so that at least one target could be seen from each camera location and they 

did not directly obscure a DBH measurement. The location of each target was recorded by 

measuring its height above the ground (0 or 2 m) and its distance and azimuth from plot center 

with the TruPulse 360 laser hypsometer, thereby giving each target a 3D position within the plot.  
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Figure 4.2 - The location of image sets acquired on each sample plot. Image locations are shown 

with a 5 m radius at which resulting point clouds were generated. Areas of the plot are colored 

according to the number of image theoretically being able to see that area. 

 

4.2.4. – Point cloud processing and reduction of dataset 

Images were processed into point clouds using Agisoft Metashape Professional (Agisoft 

2018) using a semiautomated processing approach and a computer with an Intel Xenon E5-2630 

(24 cores @ 2.3 GHz), 64 GB of DDR3 RAM, and an NVIDIA Quadro P4000 GPU. First, 

images were aligned and tie points found using the “highest” accuracy setting. Then, a dense 

point cloud was generated with depth filtering set to “aggressive” and quality settings set to 

“high.” Point clouds were translated based on the known camera locations within a local 
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coordinate system using the plot center as origin (X = 0, Y = 0, Z = 0). The targets described in 

section 4.2.3. were automatically detected and the point cloud was scaled by the known distance 

between cameras (0.7 m). If an image location did not have an automatically detected target, 

targets were located on the images manually. This was the only manual intervention in point 

cloud generation and occurred on approximately <30% of image sets. The representativeness of 

reconstructed trees would likely decrease with an increasing distance to the spherical camera 

(Rodríguez-García et al. 2014). Therefore, only resulting points within 5m of the camera location 

were used. The result was coverage of the plot from one, two, three, and four image locations 

representing 9.6%, 54.7%, 27.6%, and 8.1% of the total plot ground area, respectively.  

 

4.2.5. – Taper curve matching 

A taper curve matching approach was used, based on the weighted approach described in 

Chapter 3 (Method 2), and using the functions outlined in Huang (1994). Each detected tree with 

more than 7 derived cylinders was filtered for outliers (cylinders whose diameter measurement 

was ± 2 standard deviations from the mean of the detected tree) and then matched to a taper 

function and given an estimate of DBH. The result was, for each camera location, detected stem 

locations with a fitted taper function. 

 

4.2.6. – Location-based merging 

 While detecting trees from multiple locations helped to overcome issues with occlusion, 

this approach also meant that the trees seen from multiple locations needed to be filtered and 

merged so detected trees would not be counted twice. To do this, similar trees were merged 

based on the approach of Liang and Hyyppä (2013). Detected trees within a set distance (1 m) of 
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each other were clustered based on those having a similar DBH estimate (within 60% of original 

DBH). Next, each cluster of similar trees was merged into one output tree and a DBH estimate 

was calculated as the weighted mean of trees in the cluster, with detected trees closer to an image 

location having a higher weight. Theoretically, stems closer to a camera location would have 

more pixels (and therefore points in the resulting point cloud) representing stem points, resulting 

in a larger number of points with which to fit a cylinder, potentially providing a more accurate 

estimate of diameter (Liang and Hyyppä 2013). The merging process resulted in information on 

location, DBH, and taper for all of the detected trees on each plot. 

 

4.2.7. – Accuracy assessment and sensitivity analysis 

4.2.7.1. - Tree detection rate and DBH accuracy: 

 In order to assess the accuracy of the tree detections, I used an approach similar to Liang 

et al. (2018) who buffered around each measured tree to determine the closest detected tree 

which had an accurate corresponding diameter to the measured tree (in this Chapter, accuracy 

was defined as being within 80% of the measured DBH). This tree was selected as the match and 

removed from the pool of detected trees with which to match to measured trees. Detection 

accuracy was assessed as the number of matched trees as a percentage of the total number of 

measured trees. The commission error was also calculated as the number of trees detected with 

DTP but not corresponding to a field-measured tree, as a percentage of the total number of field-

measured trees. The accuracy of estimated DBH was compared to the field-measured DBH using 

the RMSE and RMSE%. Bias in the DBH estimate was calculated by subtracting DTP estimates 

of DBH from the measured values, where negative values represent overestimation of DBH and 

negative values represent underestimation. 
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4.2.7.2. – Sensitivity analysis: 

The sensitivity of the three accuracy measures (% detection, % commission, DBH 

RMSE) to field and acquisition conditions (Table 4.3) was determined at both the individual tree 

and plot levels. At both scales, attributes were chosen as representative of the shape, visibility, 

and variability of the trees and plots. Here, the species of tree and the crown class were used to 

determine the sensitivity of the accuracy to the shape or form of the target. Species of trees with 

simpler structures, such as aspen and lodgepole pine are self-pruning, meaning that they 

generally have fewer low branches and consistently more visible stems (Burns and Honkala 

1990). Conversely, species such as black spruce and white spruce have more areas of the stem 

inconsistently captured or obscured, potentially limiting the ability of the resulting point clouds 

to be accurately reconstructed. An analysis of field measurements showed that mean live crown 

ratios (the proportion of the stem having a live crown) for balsam fir, black spruce, and white 

spruce were approximately 0.25 – 0.30, while those of aspen and lodgepole pine were 

approximately 0.5 – 0.6. The crown class also represents form, as trees that are intermediate or 

suppressed typically have different stem forms and branching patterns than those that are 

dominant or codominant. Any tree that was dead and standing had a species code listed as dead 

on field forms, resulting in a wide range of possible forms that infrequently resembled live trees 

of the same species. For this reason, dead trees were used as a separate species class in the 

sensitivity analysis.  
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Table 4.3 - A description of variables used in the sensitivity analysis to determine the effect of 

plot and acquisition conditions on detection and estimation accuracy at the tree and plot scales. 

For species names, see Section 2.1.1. 

Tree-level variable Plot-level variable Classes 

DBH (cm) Mean DBH (cm) - 

Mean nearest neighbor distance 

(n = 5; m) 

Standard deviation of DBH 

(cm) 

- 

Distance to camera (m) Stem density (n/ha) - 

Species Dominant species 

Aspen, White birch, 

Balsam fir, Balsam poplar, 

Lodgepole pine, Black 

spruce, White spruce, 

Dead 

Height to live crown (m) Mean height to live crown (m) - 

Crown class Most common crown class 
Dominant / co-dominant, 

intermediate / suppressed 

- Minimum DBH 7, 10, and 15 cm 

 

The visibility was represented by the height to live crown, DBH, and distance to camera 

at the tree scale, and the mean height to live crown and DBH at the plot scale. Trees that are 

smaller or farther away from the camera have fewer reconstructed 3D points on the stem, 

potentially reducing their visibility. Lower live crowns would also potentially impact the 

visibility as they could obscure or occlude the stem. The variability of acquired images was 

assessed for individual trees by using the mean nearest neighbor (NN) distance (n = 5). The 

variability of acquired images was tested on plots by using the standard deviation (SD) of DBH 

and stand density (n/ha). Higher tree densities (smaller NN distance or higher plot density) could 

increase occlusion or misrepresentation of smaller trees, while highly variable plots (high SD of 

DBH) could inconsistently detect trees or estimate DBH. 

Linear and logistic regression were used on numerical and categorical variables to 

characterize the influence of the tree-level variables on the estimation error (as a percent of 

DBH) and detection, respectively. On the plots, linear regression was used to characterize the 
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influence of the acquisition conditions on the RMSE%, percent detection, and percent 

commission. To do this, the estimation errors (response) were regressed against the acquisition 

conditions (features). For both individual trees and sample plots, a variable was determined to 

have a significant effect on the accuracy measure if the p-value of the model was < 0.05 and 

regression assumptions were met.  

The extent to which the minimum DBH influenced the accuracy at the plot level was also 

determined. While a standard value is generally used, this information could be used to inform 

expected levels of accuracy on sample plots in different jurisdictions. Three sets of minimum 

DBH values were tested – using a 7 cm minimum DBH as is standard for Alberta PSPs, using 10 

cm minimum DBH which is consistent with inventory in other locations (such as Liang et al. 

2014, Liang et al. 2015), and a 15 cm minimum DBH as this is approximately the threshold at 

which a tree is deemed to be merchantable based on guidelines for forest managers in the study 

area. However, in assessing the patterns of accuracy, the original dataset (7 cm minimum DBH) 

was used. 

 

4.3. – Results 

4.3.1– Reduction of dataset 

After the point clouds were processed for the initial 18 plots, some had large errors, 

unmatched image sets, or low-quality point clouds. While the majority of the plots had 

representative point clouds, there were 6 plots that did not, as many trees were either poorly 

reconstructed or completely missing from the point cloud. These substandard plots shared two 

conditions unique from the other 12: the mean height to live crown was less than 5 m and over 

60% of the measured trees had DBH < 15 cm. Most substandard plots had a dominant species as 
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either black spruce, white spruce, or balsam fir. An analysis of existing diameter distribution and 

species inventory maps in the study area indicated these conditions only occurred on 5% of the 

total study area. Based on these conditions, I applied a filter to the original dataset to remove 

plots where the above conditions were not met. This resulted in a final dataset of 12 plots which 

were deemed suitable for analysis and therefore used in the remainder of the Chapter. 

 

4.3.2. – Tree-level results 

 A total of 460 out of 653 trees were detected from the point clouds on 12 sample plots, 

representing an overall detection rate of 70.4%. Additionally, the DBH was estimated from the 

detected trees with an RMSE of 4.59 cm or 19.3% (Figure 4.3). The relative DBH estimation 

error ranged from 0 to 77.0% of DBH; however, only 98 trees (21.3% of detected trees) had 

errors greater than 25%, and 171 trees (37.2% of detected trees) had estimates within 10% of 

DBH. The greatest errors generally occurred on medium-sized trees (15 – 30 cm), but the 

majority of trees fell within this size class (69% of detected trees). There was a slight negative 

bias to DBH estimates (-0.48 cm, -2.03%), shown by the lines in Figure 4.3 which represent the 

trend on each plot.  
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4.3.3. – Plot-level results 

 The plot-level results showed a wide range of accuracies for the 12 sample plots (Table 

4.4). For example, the detection rate ranged from 60.0% to 90.9%, with a mean value of 72.3%. 

The commission rates ranged from 8.1% to 26.2% (mean 18.2%). The DBH estimation error 

stayed fairly consistent, with the RMSE ranging from 3.7 cm to 5.8 cm (mean 4.6 cm) resulting 

in RMSE% values that ranged from 14.4% to 26.0% (mean 19.0%). With the exception of three 

plots, the RMSE% of DBH stayed below 20% on each plot. 

With increases in the minimum DBH values from 7 to 15 cm, the plot-level results 

generally showed an increase in the percent detection (from 72.3 to 79.3%), an increase in the 

percent commission (from 18.2 to 20.0%), a slight decrease in the RMSE of DBH (4.6 to 4.5 

Figure 4.3 - DBH estimation accuracy for all study trees using a minimum DBH of 7 cm (n = 460), with 

colors corresponding to the 12 sample plots. Lines represent the trend by plot. Plot numbers are the 

same as in Table 4.2, which includes plot-level summaries.  
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cm), and a decrease in the RMSE% (from 19.0 to 17.5%). There was a wide range of results 

within each scheme (Table 4.4) with, for example, the detection accuracy ranging from 60 to 

90% and the RMSE% ranging from 14.4 to 26.5% at the 7 cm minimum DBH.  

 

Table 4.4 - Plot-level results, showing the percent detection, percent commission, and DBH 

estimation accuracy for all plots at each of three minimum DBH schemes. 

Plot Number Percent Detection 
Percent 

Commission 
DBH RMSE (cm) DBH RMSE% 

Min. DBH 

(cm) 
7 10 15 7 10 15 7 10 15 7 10 15 

1 61.4 71.7 80.4 10.0 11.7 13.0 3.9 3.9 4.0 17.8 17.8 17.5 

2 82.4 81.8 86.2 14.7 15.2 10.3 5.8 5.4 5.5 19.4 17.7 17.8 

3 62.7 71.2 75.0 23.7 21.2 22.7 4.6 4.3 4.4 19.0 18.1 17.3 

4 90.9 90.7 87.0 12.7 11.1 13.0 4.2 4.2 4.0 16.4 16.4 15.6 

5 69.8 73.2 77.8 14.0 14.6 16.7 4.1 4.1 4.0 15.8 15.8 15.1 

6 84.1 86.1 92.1 25.0 18.6 10.5 4.0 3.8 3.9 16.3 15.8 15.5 

7 77.1 82.2 78.6 20.8 17.8 14.3 5.7 5.2 4.8 21.2 19.3 17.5 

8 69.8 70.4 83.3 8.1 9.9 15.0 3.7 3.6 3.8 18.1 17.3 17.4 

9 60.0 61.3 69.1 26.2 29.0 47.6 5.8 5.9 6.1 26.0 25.9 23.3 

10 60.5 65.7 70.8 13.2 12.9 20.8 5.0 5.0 5.4 24.5 24.5 23.1 

11 83.3 83.3 80.8 20.0 10.0 19.2 3.8 3.5 3.6 14.4 13.2 12.5 

12 65.1 68.4 70.4 30.2 34.2 37.0 4.2 4.3 4.7 18.8 18.3 17.5 

Mean 72.3 75.5 79.3 18.2 17.2 20.0 4.6 4.4 4.5 19.0 18.3 17.5 

 

4.3.4. – Accuracy and sensitivity analysis 

 Six variables for both individual trees and on sample plots were tested for their effects on 

the accuracy of resulting estimates (Table 4.5). Linear and logistic regression were used to 

characterize the influence of these variables on the accuracy metrics (detection, commission, and 

DBH error), with significant impacts representing variables in the regression with p < 0.05. 

Generally, the accuracy on the tree scale was more sensitive to the variables tested than at the 

plot scale; however, there were far more samples for the trees (n = 460) than the plots (n = 12). 

At the tree level, significantly affecting the detection of individual trees was the DBH, distance 
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to camera, certain species of tree, height to live crown, and crown class, while only DBH, mean 

nearest neighbor distance, distance to camera, and one species affected the error of DBH 

estimation (Figure 4.4). At the plot level, mean DBH and stand density significantly (p < 0.05) 

affected the detection rate, while the standard deviation of DBH and the most common crown 

class significantly affected the percent commission (Figure 4.5). Of the variables tested, none 

had a statistically significant impact on the DBH RMSE% at the plot level. Furthermore, the 

dominant species and mean height to live crown had no significant effect on the accuracy of plot-

level estimates. 
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Table 4.5 - The sensitivity of the detection, commission, and percent error to different plot and 

acquisition conditions. Listed numbers are p-values, with * indicating that the variable 

significantly impacts the results (α = 0.05) and the assumptions of linear regression are met. The 

species listed are those having a significant impact on the results, with Bw = White birch, Sw = 

White spruce, and Dd = dead trees. At the tree level, % error refers to the error as a percentage 

of the DBH, while representing the RMSE% at the plot level. Commission rate is only assessed at 

the plot level due to only plot-level variables having a potential effect. I/S = 

Intermediate/Suppressed 

 

Tree-level variable 

Detection 

rate 
Commission 

% error 

(DBH) 

T
re

e 
sc

al
e 

(n
 =

 4
6
0
) 

DBH (cm) <0.01* - <0.01* 

Mean nearest neighbor distance (k = 5; m) 0.50 - 0.01* 

Distance to camera (m) <0.01* - <0.01* 

Species 

Bw (<0.01), 

Sw (<0.01), 

Dd (0.01)* 

- Sw (0.02) 

Height to live crown <0.01* - 0.07 

Crown class All <0.01* - I/S (<0.01)* 

P
lo

t 
sc

al
e 

(n
 =

 1
2
) Mean DBH (cm) <0.01*  0.98 0.21 

Standard deviation of DBH (cm) 0.94 0.03* 0.66 

Stand density (n/ha) 0.05* 0.15 0.13 

Dominant species 0.67-0.90 0.28 0.21-0.97 

Mean height to live crown 0.98 0.70 0.49 

Most common crown class 0.17 0.02* 0.13 
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Figure 4.4 – The influence on accuracy at the individual tree level (n = 460). The DBH (a) and 

distance (b) from the tree to the camera detecting it on the accuracy of the DBH estimate, with 

the colors of the points corresponding to the tree species. DBH error on the top row is the 

difference in the DBH estimate from measured DBH, expressed as a percentage of the measured 

value. The black line represents a linear model to predict the percent error, with shaded area 

being the standard error of the model. The bottom row shows the influence of species (c, d) and 

DBH (d) on the detection accuracy of individual trees. 
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Figure 4.5 - Patterns of accuracy at the plot level (n = 12). The top row shows the effects of 

minimum DBH measurement (a), stem density (b) and mean DBH (c) on detection accuracy. The 

middle row shows the effect of minimum DBH (d), crown class (e), and the standard deviation of 

DBH (f) on percent commission. Finally, the bottom plot shows the effect of minimum DBH (g) 

on percent detection. On scatterplots, the black line represents the linear relationship between 

the variables and the percent detection or commission, with the grey area being the standard 

error. On boxplots, a black line connects the means for each group of minimum DBH values. 

Plot numbers are the same as in Table 4.2, which includes plot-level summaries. 

 

4.4. – Discussion 

4.4.1. – Tree-level accuracy  

In general, the overall detection rate and estimation accuracy from this Chapter is 

comparable to other studies (~70% detection and ~4 cm RMSE; Table 4.1).  However, the results 
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were able to demonstrate the use of DTP in forest types that were more heterogeneous and had a 

wider range of understory conditions and branching patterns than in previous studies. Trees with 

larger DBHs and those closer to image sets had significantly lower error in DBH estimation from 

DTP (Table 4.5, Figure 4.4a-b). While there may be a compounding effect of variables such as 

tree size and distance to camera, these variables were not correlated to one another. If a tree is 

larger or closer to a camera, it will take up more pixels in the image, resulting in more matched 

points in the output point cloud. Likewise, tree size also had a significant impact on detection 

(Table 4.5, Figure 4.4c). Only a few species – white spruce, white birch, and dead trees – were 

significantly less likely to be detected, while white spruce was the only species with significantly 

higher error in tree-level DBH estimates. The bark of white birch is thin and can flake off, 

thereby resulting in a wide range of stem forms that may not represent the true size, while 

standing dead trees have a wide range of potential forms (leaning, rotting, etc.), possibly 

resulting in their lower likelihood of detection (Burns and Honkala 1990). White spruce, 

conversely, is shade-tolerant and retains its branches, even those lower on the tree (Bergeron et 

al. 2014). The shade tolerance of white spruce means that they may grow in the understory and 

develop higher densities than that of other species in the study area, likely increasing occlusion 

of other stems. Another possible reason for lower detection rates and estimation accuracies for 

white spruce may be that portions of the stem containing branches increase the possibility of 

occlusion in the images, especially when images were taken from greater heights or trees had 

larger distances to the camera. Patterns of DBH estimation accuracy in this Chapter were similar 

to that of Chapter 3, in which black spruce and white spruce trees with low branches had only 

partial reconstructions of the stem and larger error of diameter estimates farther up the stem. 
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4.4.2. – Plot-level accuracy 

With a 7 cm minimum DBH, the results showed a mean plot-level stem detection rate of 

72.3%. Although slightly lower in some cases, the accuracy and detection rates reported were 

comparable to that of others (Table 4.1) despite using a smaller set of images (102) in plot 

conditions that were denser (750-2150 stems/ha) and more variable (mean DBH 22.0 cm, SD 7.7 

cm; Table 4.2). For example, Liang et al. (2014) achieved a detection rate of 88%, using 973 

images on a 900 m2 sample plot that had a stem density of 278 stems/ha. On the best plot in their 

study area, Piermattei et al. (2019) achieved a detection rate of 98%, using 338 images on a 707 

m2 sample plot with a density of 651 stems/ha.  The mean RMSE of DBH estimation on all 

plots – 4.6 cm or 19.0% – was also comparable to other studies. For four methods tested by 

Mokroš et al. (2018), the DBH RMSE% ranged from approximately 16 to 20, which was similar 

to results seen in this chapter. Forsman et al. (2016) had higher errors for DBH estimates 

(approximately 30% RMSE) than those of the present work, but took fewer pictures that were 

generally farther away from sample trees, suggesting that there may be a balance of the number 

of images and the resulting accuracy when using DTP at the plot scale. 

Despite the similar accuracies, forest types in other studies were markedly different than 

that of the Slave Lake study area. For example, the studies described in Table 4.1 had far lower 

densities and generally larger and less variable mean DBH values, likely indicating more even-

aged stands with limited understory. These studies provided important context and 

methodological recommendations to that of the current Chapter, but direct applications of past 

methods may not be sufficient in more complex habitats. The current Chapter provides 

recommendations for future study, but more research is needed to apply these methods for 
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deriving operational inventory estimates in heterogeneous forest types such as the boreal 

mixedwood. 

Results from other studies follow the general trend seen here, that detection rate tends to 

increase with larger tree sizes and lower stem densities. Although using fewer images, my results 

are comparable to those from similar plot conditions in previous studies, likely due to the use of 

high image overlap at each camera location and a spherical camera for point cloud generation. In 

all previous studies using DTP at a plot scale, a conventional frame camera was used. While 

spherical cameras have a wider field of view, there are also issues and considerations to be made 

with the geometric distortion of objects in the view (Barazzetti, Previtali, and Roncoroni 2017). 

In order to overcome these issues, high overlap from six cameras in an image set and also close 

ranges used (5m radius) seemed to reduce these issues. Although not investigated in the current 

work, future work investigating the effect of camera types and image specifications on the 

accuracy of resulting point clouds is needed. Additionally, the small number of plots used in the 

study may limit some of the takeaways from the error analysis. 

Other studies have investigated the use of stereoscopic hemispherical images for forest 

attribute estimation. Stereoscopic hemispherical images have great potential to benefit forest 

inventory as they can substantially reduce the number of required images and therefore the 

amount of time spent on the sample plot. For example, Rodríguez-García et al. (2014) used pairs 

of images in a Eucalyptus plantation to derive accurate measurements of stem position and 

diameter at different heights up the stem. Additionally, results showed that measurement 

precision was stable up to distances of 8 m from the camera setup. Some studies have used 

methods for automated detection and segmentation of tree stems before estimating attributes 

such as diameter or basal area (Herrera et al. 2011; Sánchez-González et al. 2016). This Chapter 
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used multiple filtering steps to reduce error in generated point clouds, but automated detection 

and segmentation of tree stems may generate point clouds which require less filtering. Despite 

the advances of studies using stereoscopic hemispherical photos, many of them use proprietary 

algorithms to derive information from the photographs. To develop the operational capacity for 

these technologies for estimation of forest inventory attributes, either standardizing existing 

algorithms or open processing pipelines will be required. 

As the minimum DBH changed for the different estimation schemes (7, 10, and 15 cm), 

the detection rate also changed from 72.3% to 75.5% to 79.3%. Additionally, as the minimum 

size changed, the absolute RMSE for DBH was stable (around 4.5 cm), indicating that the DBH 

error was more inherent to the acquisition and merging parameters than the tree size. This could 

imply that DTP is more accurate when estimating groups of larger trees or that the smallest trees 

had low detection rates and inaccurate DBH estimates, so excluding them from the dataset 

increased the overall accuracy in terms of the % detection and RMSE%. This could also imply 

that tree size had no influence on error from 7 to 15 cm DBH, seen in Figure 4.5g, showing a 

wide range of accuracies for trees in this DBH range, while that of larger diameters is generally 

more accurate and less variable. This analysis also showed that the mean height to live crown 

had no significant influence on the DTP accuracy. The original dataset of 18 plots was reduced 

to a set of 12 plots suitable for analysis. This was due to unsuitable plot conditions (e.g. mean 

height to live crown < 5 m and mean DBH < 15 cm) which caused the resulting point clouds to 

be unrepresentative and difficult from which to take detailed measurements. As plots with low 

stem visibility were removed from the analysis, this result may suggest that after a certain 

threshold of visibility (here, a mean height to live crown of 5 m), the height to live crown no 

longer influences the accuracy of the results at the plot scale. These conditions were likely a key 
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factor in the misregistration of the DTP point clouds because 5 m was also the greatest height at 

which an image was acquired, meaning that trees with partially occluded stems may not be fully 

reconstructed in a resulting point cloud. Additionally, smaller trees (diameter < 15 cm) have 

fewer reconstructed 3D points on the stem due to the smaller tree size and therefore fewer 

matched points in the point cloud, especially for trees further away from camera locations. A 

critical component of this methodology at the plot scale is the consideration of the conditions in 

which DTP is to be used. For example, limitations may exist on the species (those without many 

branches low on the stem) and tree sizes (> 60% over 15 cm) for which DTP is successful. While 

this may represent a limitation of the technology, the determination that only a small proportion 

of the study area contains these conditions (~5%) is encouraging to the wider adoption of the 

technology to different forest types. Furthermore, the results from this Chapter may show 

patterns of accuracy expected under different conditions to those wanting to undertake their own 

research using DTP.   

 

4.4.3. – Comparison to TLS 

An international benchmarking study using TLS by Liang et al. (2018) first classified 

stands into categories of complexity and then tested the outcomes of different algorithms for tree 

detection and estimation. The study described general tree detection rates for single-scan TLS of 

70% and 60%, while multi-scan results showed 90% and 80% detection for easy and medium 

stands, respectively. Furthermore, the RMSE% of DBH estimation was approximately 10% for 

easy and 15% for medium stands. “Medium” difficulty plots in the study had a density around 

1000 stems per ha and some understory vegetation, meaning this category may be closest to the 

plots used in this Chapter. Therefore, the detection rate and DBH estimation accuracy achieved 
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using the DTP methodology in this Chapter could be comparable to TLS, albeit with slightly 

lower accuracy. 

Ultimately, the costs and complexity of TLS should be weighed with their accuracy. TLS 

units often cost in the tens of thousands of dollars or more (Eitel et al. 2013). To compare, the 

cameras, mount, and pole used in this work cost less than CAD$700 in total. Depending on the 

forest type and the variable of interest, point clouds generated from TLS units could potentially 

have more accurate results than those of DTP. Additionally, point clouds derived from TLS have 

more detail in characterizing attributes such as branching patterns or providing direct 

measurements of upper portions of stems (Liang et al. 2016). However, results from this Chapter 

and others (Table 4.2) have shown that DTP could present a viable alternative to detection and 

DBH estimation when tree, stand, or acquisition conditions are suitable and costs need to be 

minimized. 

 

4.4.4. – Applications and context 

 Deriving plot attributes using DTP has associated costs, such as the cost of cameras and 

computing resources to generate point clouds. However, the resulting estimates and point clouds 

could provide vital information to a variety of forest inventory applications. First, point clouds 

represent objective and methodologically consistent estimates across acquisitions. Point clouds 

are also storable, meaning that they can be used to track changes over time (for example, to 

derive changes in tree size or stem form over time, including for biomass allocation or carbon 

storage) or be used to derive. Furthermore, they can be used to derive additional information not 

taken on traditional field inventory, or those taken using destructive sampling methods. Such 

estimates could be taper or merchantable volume, which require diameters of upper parts of the 
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stem, such as in Chapter 3, where it was determined that DTP-based estimates of taper were 

more accurate than conventional approaches for the lowest parts of the stem. Finally, plot-level 

estimates could be used as inputs to aerial inventories or used as field data to support area-based 

estimates. Future studies could include DTP-based estimates of plot attributes to either validate 

aerial models or update existing area-wide inventory estimates. 
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Chapter 5  - Enhancing the estimation of stem-size distributions for unimodal and bimodal 

stands in a boreal mixedwood forest with airborne laser scanning data 

 

5.1. – Introduction 

Chapters 3 and 4 demonstrated the importance of ground-based structural measurements 

in forest inventory. These measures are important for intensive inventories at small spatial scales 

and for providing calibration and validation for airborne surveys. The next scale at which forest 

inventory information is required is the stand or landscape (Figure 1.2), in which measures of 

structure and composition are used to characterize the forest at broader spatial scales such as a 

forest management unit or region. While these measurements can include information such as the 

species mixtures or disturbance history, attributes such as SSDs provide robust structural 

information which benefit a range of timber production and ecological monitoring purposes. To 

support these information needs, there is increasing interest in the capacity to estimate stand-

level SSDs over large areas, and to understand patterns of their variance – particularly across the 

diverse species and age gradients that exist in mixedwood stands.  

SSDs of homogenous stands are typically unimodal, while two or more maxima are often 

observed in heterogeneous stands with more complex structure. Various statistics, such as the 

bimodality coefficient or Hartigan’s dip statistic (Freeman and Dale 2012), can be used to assess 

multimodality of SSD. However, it can also be characterized using the ecological characteristics 

of the stand, including if stands are multilayered (Podlaski 2010), have high variance in 

diameters (Maltamo and Gobakken 2014), ages (Zhang et al. 2001), or number of species (Liu et 

al. 2002), or by more complex metrics such as the ratio of stem density to top height (D/H; 

Thomas et al. 2008). As stands mature, they do not follow a linear pattern of structural 
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development, making the prediction of mature stand structures difficult (Kane, McGaughey, 

Lutz, et al. 2010). Heterogeneity, typically associated with multimodal stands, results from 

ecological legacies and disturbance histories specific to individual areas (Franklin et al. 2002). 

In addition to size class frequencies, SSDs can be summarized using a variety of 

statistical models or probability density functions (PDFs). The most common PDF for 

characterizing SSDs is the Weibull distribution because of its flexibility with a limited number 

(two) of parameters to predict or impute (Bailey and Dell 1972). Fitting PDF parameters to 

measured diameter at breast height (DBH) values relies on optimization techniques such as 

maximum likelihood estimation (MLE; Myung 2003). Despite the flexibility of the Weibull 

distribution, it is limited to characterization of stands with unimodal SSD (Packalen and 

Maltamo 2008). If an SSD of a stand is not unimodal, it should be characterized by a more 

complex distribution or use a nonparametric estimation method such as a Finite Mixture Model 

(FMM; Thomas et al. 2008) or k-NN (Penner et al. 2015).  

For complete characterization of forest structure, the SSD of all stands in the area of 

interest need to be estimated or measured. SSDs derived from field measurements are spatially 

constrained, time consuming and expensive to acquire. Hence, field-based estimates of SSDs 

alone cannot provide the large-area spatial coverage required in a forest management context. A 

common inventory approach to address the limitation in spatial coverage is to use air-photo 

interpretation, which can provide complete spatial coverage of an area. However, this approach 

is limited to the scale of the aerial photography and the expertise of the interpreter, and as a 

result it is difficult to provide the detailed tree-level information required for an SSD. Eid et al. 

(2004), for a spruce/pine forest in Norway, determined that photo interpretation provided poorer 

estimates of stand inventory attributes, such as basal area, height, and number of trees, than 
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estimation by other remote sensing methods. They found, for example, deviations of 20% for 

photo-interpreted height, compared to deviations of 12% for laser scanning estimates. Inaccurate 

photo-interpreted estimates were projected to have more than three times the loss in the value of 

a stand than ALS-based estimates. 

These limitations in spatial coverage and accuracy, coupled with increasing financial 

pressures and needs for highly detailed data, are resulting in the increased use of active remote 

sensing technologies for informing forest inventories. Airborne laser scanning (ALS) has been 

incorporated into forest inventories because it provides very detailed information on forest 

structure over large spatial extents (White et al. 2016). It has been demonstrated (Næsset 2002) 

that attributes such as dominant height, mean diameter, stem number, basal area, and volume can 

be adequately estimated using ALS data in combination with a sample of ground plots (van 

Leeuwen and Nieuwenhuis 2010; Næsset 2007). ALS also has been used to characterize SSDs in 

unimodal stands requiring relatively simple estimation techniques (Maltamo et al. 2005) and in 

multimodal stands with more complex procedures (Penner et al. 2015). However, less has been 

done to estimate SSDs of boreal mixedwood forests, which can have both simple and irregular 

distributions in neighboring stands, making them more difficult to predict (Liu et al. 2002), and 

estimation of stand modality with ALS has been limited to vertical forest structure (e.g. Kao et 

al. 2005; Maltamo, Suvanto, and Packalén 2007). In the case of forests varying between 

unimodal and multimodal SSDs, the thresholds for applying different fitting techniques is also 

poorly understood. Landscape-scale evaluation of modality in predicting SSD in mixedwood 

stands can provide valuable insights into the complexity of these forests.  

In this chapter, I evaluate the efficacy of ALS metrics to first differentiate plots with 

unimodal and multimodal SSDs and then to predict parameters of those distributions. Using both 
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ground plot measurements and ALS estimates of plot structural characteristics (e.g. height or 

age), I investigate the capacity of ALS metrics to distinguish between areas with single or 

multimodal distributions and then apply ALS to predict SSDs with the distribution most 

appropriate to the characterized distribution type. I then compare ALS parameter estimates to 

fitted parameters and ground measured SSDs. Finally, I discuss the applications of this 

methodology and explain how estimates could be predicted across an entire area of interest. 

 

5.2. – Methods  

5.2.1. – Modality 

The bimodality coefficient (Pfister et al. 2013) is a statistical approach to assessing a 

stand’s modality. It has also been used in botany (Ellison 1987) and psychology (Freeman and 

Dale 2012) and provides a measure from 0 (perfect unimodality) to 1 (perfect bimodality). A 

critical value of 5/9 (~ 0.5556) is used to distinguish bimodal (> 5/9) from unimodal (< 5/9) 

distributions (Freeman and Dale 2012). The bimodality coefficient was applied to 71 PSPs and 

identified 23 (32%) as bimodal and 48 as unimodal with respect to SSD. 

 

5.2.2. – ALS data processing  

ALS data processing began with separating point clouds into ground and non-ground 

returns based on adaptive TIN models (Axelsson 2000). Next, point clouds were normalized to 

heights above the ground surface before being clipped to the extent of sample plots. Metrics 

describing the vertical distribution of returns in each plot were calculated based on normalized 

ALS point clouds using FUSION (McGaughey 2008), as well as the statistical software R (R 

Core Team 2018) with the lidR package (Roussel and Auty 2019). A suite of these metrics was 
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selected to fully characterize the height, variability, cover, and structure of the area 

corresponding to each PSP (Table 5.1). ALS metrics were separated into categories of similar 

types: height (e.g., height of 50th percentile), cover (e.g., percent above 2m), standard deviation, 

and canopy structure (e.g., rumple).  
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Table 5.1 – ALS metrics used to predict PDF parameters 

 

Metric Description Source Category 

P05 
Height of the 5th percentile of 

returns 
McGaughey 2008 Height 

P25 
Height of the 25th percentile of 

returns 
McGaughey 2008 Height 

P50 
Height of the 50th percentile of 

returns 
McGaughey 2008 Height 

P75 
Height of the 75th percentile of 

returns 
McGaughey 2008 Height 

P95 
Height of the 95th percentile of 

returns 
McGaughey 2008 Height 

Std.Dev. 
Standard deviation of return 

heights 
McGaughey 2008 

Variability of 

Heights 

Variance Variance of return heights McGaughey 2008 
Variability of 

Heights 

IQ 
Interquartile range of return 

heights 
McGaughey 2008 

Variability of 

Heights 

Skewness Skewness of return heights McGaughey 2008 
Variability of 

Heights 

Kurtosis Kurtosis of return heights McGaughey 2008 
Variability of 

Heights 

AAD 
Average absolute deviation of 

return heights 
McGaughey 2008 

Variability of 

Heights 

Median Median of return heights McGaughey 2008 
Variability of 

Heights 

% First Returns Above 

2m 

Percent of first returns above 2 

meters 
McGaughey 2008 Cover 

% All Returns Above 2m 
Percent of all returns above 2 

meters 
McGaughey 2008 Cover 

0.5 m – 2 m Return 

Proportion 

Proportion of returns between 0.5 

and 2 m 
McGaughey 2008 Cover 

2 m – 5 m Return 

Proportion 

Proportion of returns between 2 

and 5 m 
McGaughey 2008 Cover 

5 m – 10 m Return 

Proportion 

Proportion of returns between 5 

and 10 m 
McGaughey 2008 Cover 

10 m – 20 m Return 

Proportion 

Proportion of returns between 10 

and 20 m 
McGaughey 2008 Cover 

Rumple 
Ratio of canopy surface area to 

plot area 

Kane, McGaughey, 

Bakker, et al. 2010 
Structure 

Filling Ratio 
Proportion of returns in voxels 

under the canopy 
Tompalski 2012 Structure 

VCI 

Vertical complexity index – 

distribution of abundance of 

returns in specified height bins 

van Ewijk, Treitz, and 

Scott 2011 
Structure 

Vertical Rumple 

Measure of variance of vertical 

structure as a function of filled 

voxels in point cloud 

Tompalski et al. 2015 Structure 

LAD CV 

Coefficient of variation of leaf 

area density – vertical dispersion 

of foliage density through the 

canopy 

Bouvier et al. 2015 Structure 



78 

 

 

Filling ratio (FR) is a proportion of filled voxels under the canopy (Tompalski 2012). 

Voxels are volumetric pixels—cubic bins of a pre-defined size (e.g., 1m x 1m x 1m), which, 

when stacked, cover the entire 3-dimensional extent of the ALS point cloud (Popescu and Zhao 

2008).  

 

 
𝐹𝑅 =  

𝑉𝑉𝐸𝐺

∑ ∑ 𝐻𝑀𝐴𝑋𝑖𝑗 −  𝐻𝐺𝑖𝑗

𝑗𝑚𝑎𝑥

𝑗=1
𝑖𝑚𝑎𝑥

𝑖=1

 , (1) 

   

where VVEG is the volume of vegetation (represented as the volume of voxels with returns), 

𝐻𝑀𝐴𝑋𝑖𝑗 is the maximum voxel height for ij, and 𝐻𝐺𝑖𝑗  is the ground height of point ij (a value of 0 

in normalized point clouds).  

 

5.2.3. – Analysis approach 

 Figure 5.1 summarizes the workflow applied. The measured trees within each ground plot 

were first combined into of 2-cm diameter classes and classified as either unimodal or bimodal 

using the bimodality coefficient. Then, various stand characteristics, measured on plots and 

predicted using ALS, were assessed for their ability to identify the plots as either unimodal or 

bimodal. Once the best ALS metric for identification was determined, it was used to categorize 

plots for estimation of SSD parameters by ALS. Field-based SSD on classified plots were used 

as response data for prediction with ALS metrics. Each of these steps is described in further 

detail below. 
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5.2.4. – Differentiation of modality in stem size distributions 

Stands classified as multimodal are thought to be highly variable and structurally 

heterogeneous, and this heterogeneity has been quantified in different ways (Table 5.2).  I 

examined how effective each of the characteristics identified in Table 5.2 were for differentiating 

between unimodal and bimodal SSD using both ground measurements and ALS-derived 

predictions of the five characteristics for differentiation. In an operational context, the use of a 

Figure 5.1 - Workflow for differentiating bimodal plots and estimating SSD parameters with 

ALS. 
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single ALS metric would be advantageous if it could be used as an effective heuristic to identify 

unimodal and bimodal grid cells, because a single metric would be available wall-to-wall 

(wherever ALS data is acquired), would be generated as a standard preliminary processing step 

for an area-based approach (described below), and would require no ground samples or 

additional modelling.  

 

Table 5.2 – Published predictors of multimodal diameter distributions and how they are used to 

classify bimodal plots. 

Differentiation Source Quantified as 

Uneven-aged 

stands 
Zhang et al. 2001 Std. dev. of ages 

Mixed-species 

stands 
Liu et al. 2002 % Dominant species 

Density / Height 

Ratio 
Thomas et al. 2008 N / top height 

Multilayered Podlaski 2010 Std. dev. of heights 

Varied diameters 
Maltamo and Gobakken 

2014 
Std. dev. of DBHs 

 

First, as a baseline, five ground-measured characteristics were assessed for their ability to 

discriminate unimodal and bimodal plots. Next, using an area-based approach, predictive models 

were developed to estimate each of the five ground-measured characteristics in Table 5.2 using 

ALS metrics (Table 5.1) as predictors and the ground-measured characteristics as response 

variables. Models were built using stepwise linear regression, and final models were selected 

based on combinations of up to 3 metrics (to avoid overfitting) that captured the most variation 

in the sample population. Predictor variables were selected so that those showing a strong 

correlation (r > 0.8; van Aardt, Wynne, and Oderwald 2006)) with each other or coming from the 

same category of descriptors were not included in the same model. The accuracy of area-based 
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models for each of the aforementioned characteristics was assessed in terms of an adjusted r2 and 

relative RMSE for all sample plots. Finally, individual ALS metrics were used to differentiate 

SSD modality. 

 

5.2.5. – Accuracy of modality differentiation 

Modality differentiation was assessed by determining the overall accuracy of the 

classification that each measure produced. The classification accuracy was defined as the 

percentage of all PSPs which were correctly classified as either unimodal or bimodal. This was 

assessed for each characteristic and ALS metric, and allowed for consistent comparison between 

structural characteristics and individual metrics. A successful classification was defined as a 

statistically significant improvement from no classification (i.e. if I assume all plots are 

unimodal). The exact binomial test was used to assess the statistical difference between each 

classification method and the classification of all plots as unimodal (Aronoff 1982).  

 

5.2.6. – Predictive modeling of SSD parameters using ALS metrics 

Once an SSD of a plot was classified as either unimodal or bimodal using the most 

accurate ALS model, a structurally appropriate distribution function was fit to the ground-

measured SSD (Figure 5.2). As complete data in the study area exists for trees > 7 cm DBH, a 

truncated Weibull distribution was used for describing the SSD in unimodal stands, with the 

truncation point set at 7 cm (McGarrigle et al. 2011). While nonparametric imputation such as k-

NN and Random Forest have been used to predict SSDs (Bollandsås et al. 2013), these typically 

require large amounts of samples to be taken (Maltamo et al. 2009). Instead, a Finite Mixture 

Model (FMM), which applies k separate distributions to k components of data which are split at 
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statistical breakpoints, where k is the number of modes in the data (Liu et al. 2002), was used for 

the bimodal distributions (i.e., k = 2). Similar to Thomas et al. (2008), separate Weibull 

distributions were fit using MLE. Once the parameters of the appropriate distributions were 

estimated from the measured DBHs, the parameters were used to develop area-based models 

from the ALS metrics in order to estimate the PDF parameters and the SSD across the 

management area.  

 

 

Figure 5.2 – Weibull distributions (blue) best fit unimodal stands (left), while more complex 

distributions such as a Finite Mixture Model (green) best fit multimodal stands (right). 

 

5.2.7. – Evaluation of SSD parameters using the error index (EI) 

To examine the fit of the ALS-predicted SSD to the original measured tree stem DBHs, 

the Error Index (EI) proposed by Reynolds et al. (1988) was used. The EI reports the sum of 

observed differences in each class as a proportion of the number of trees at a site. The EI is a 

frequently used method of evaluating SSD functions, as it allows for comparison across different 

fitting techniques (e.g., Palahí, Pukkala, and Trasobares 2006) or PDFs (e.g. Zhang et al. 2003). 

Two different EI calculations were used – one to compare fits of ground-measured distributions 

(EIG, Equation 2) and one to compare fits of ALS-estimated distributions (EIALS, Equation 3): 
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where fREFi is the measured frequency in DBH class i, fPDFi is the PDF-derived frequency in DBH 

class i, fALSi is the estimated frequency in DBH class i, nREFi is the total number of measured 

stems in class i, and nALS is the total number of estimated stems in class i. EIALS was determined 

following Packalén and Maltamo (2008), with nALS determined using an area-based approach and 

the same variables used for the PDF parameter estimation. Both error indices range from 0, 

indicating a perfect fit, to 200, indicating non-overlapping distributions. 

 

5.3. – Results 

5.3.1. – Differentiation of modality in stem size distributions 

Most of the metrics and models were successful in differentiating plots into either 

unimodal or bimodal distributions (Table 5.3). SDDBH and the SDH had the highest overall 

classification accuracy (70.4% and 67.6%, respectively) of the ground-measured metrics, while 

the SD of ages and % dominant species had the lowest accuracy (both 59.2%).  
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Table 5.3 – Accuracy of bimodal plots classification using ground measurements, ALS 

predictions, and corresponding ALS metrics. * indicates a significant improvement from no 

classification (i.e. assuming all plots are unimodal). 

 Differentiation Overall Accuracy 
ALS Prediction Accuracy 

Adj. r2 RMSE% 

P
lo

t 
D

at
a 

SDA 59.2 - - 

% dominant 

species 
59.2 - - 

D/H 64.8 - - 

SDH 67.6 - - 

SDDBH 70.4 - - 

A
L

S
 

P
re

d
ic

ti
o
n
s 

SDA 66.2 .059 88.4 

% dominant 

species 
63.4 .155 27.3 

D/H 74.7* .600 43.8 

SDH 67.6 .694 25.7 

SDDBH 74.7* .640 31.2 

A
L

S
 M

et
ri

cs
 

Variance 77.5* - - 

Kurtosis 46.5 - - 

Canopy Relief 

Ratio 
57.8 - - 

% All Returns > 

2m. 
63.4 - - 

Filling Ratio 66.2 - - 

Rumple 74.7* - - 

 

Characteristics related to tree size variability (SDH, SDDBH, D/H) were most accurately 

predicted by ALS (Adj. r2 > 0.6), while as expected, characteristics not related to tree dimensions 

(SDA, % dominant species) had poorest predictions (Adj. r2 < 0.2). In terms of their capacity to 

discriminate modality, the best ALS-predicted characteristic was SDDBH (74.7%), while the 

poorest was % dominant species (63.4%). Of the individual ALS metrics used to differentiate 

modality, the variance of ALS return heights was the most accurate (77.5%) and provided the 

most accurate differentiation overall. The variance of ALS return heights was therefore selected 

for differentiating modality for the remainder of this Chapter. 
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5.3.2. – Predictive modeling of SSD parameters using ALS metrics 

The adjusted r2 values for the predicted Weibull and FMM parameters were similar (0.5 – 

0.6) with the exception of the unimodal shape parameter and the shape parameter for the second 

group of the FMM (0.3925 and 0.2019, respectively; Table 5.4). Although each of the metrics in 

Table 5.1 was used in at least one predictive model, some appeared more frequently than others. 

The most frequently used metrics were P95, Kurtosis, % All Returns Above 2 m, and the Filling 

Ratio. 

 

Table 5.4 – Prediction accuracy of SSD parameters for unimodal (n = 48) and bimodal (n = 23) 

plots as differentiated by ALS. 

Parameter 

Prediction 

Accuracy 

Adj. r2 RMSE% 

U
n

im
o
d
al

 

Shape .3925 23.26 

Scale .6271 30.39 

B
im

o
d
al

 

Shape1 .5497 30.25 

Scale1 .5898 32.86 

Shape2 .2019 33.93 

Scale2 .5203 29.81 

% over 

breakpoint 
.5389 42.91 

 

 

5.3.3. – Accuracy of predicted distributions 

Using a mixture model on bimodal plots resulted in a higher accuracy than using a 

unimodal distribution on all plots for both ground-measured and ALS-predicted parameters 

(Table 5.5; Figure 5.3). For ground-measured plots, the mean EIG was 28.20 using mixture 

models and unimodal distributions when appropriate, while only using a unimodal distribution 
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would have resulted in an EIG value of 31.24. Similarly the mean EIALS was 49.13 after 

differentiating modality, while predicting only a unimodal distribution on all plots would have 

resulted in a mean EIALS value of 51.31. Plots deemed bimodal based on ground measurements 

and ALS predictions had higher mean error values than unimodal plots, with a difference of 9.01 

between EIG values and 19.35 between EIALS values. 

 

Table 5.5 – Measured (EIG) and predicted (EIALS) values on sample plots, showing differences in 

unimodal and bimodal plots. 

 

Ground 

estimates 

(EIG) 

ALS 

predictions 

(EIALS) 

Mean EI (unimodal plots) 25.29 42.86 

Mean EI (bimodal plots) 34.30 62.21 

Mean EI (all plots) 28.20 49.13 

Mean EI (Unimodal Weibull on all 

plots) 
31.24 51.31 

Figure 5.3 – Examples of measured and predicted curves following correct and 

incorrect differentiation on four plots.  
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5.4. – Discussion 

5.4.1. – Differentiation of modality in stem size distributions 

The fact that neighboring stands in the boreal mixedwood forest can have vastly different 

structures requires flexible and spatially detailed approaches to SSD estimation. Field campaigns 

to measure SSD across large, diverse, and often remote areas are not feasible given constraints 

on time and resources. In addition, a priori knowledge of an appropriate PDF to use for fitting 

the SSD would be valuable when operating in structurally diverse areas. The methodology 

outlined in this Chapter provides the ability to quickly and effectively characterize diverse 

forests over large spatial extents by providing detailed measures of the vertical distribution of 

vegetation over large areas using ALS data.  

The ground-measured variables best able to differentiate bimodal distributions were those 

relating to tree sizes, such as SDH and SDDBH. This is consistent with estimating SSD, which 

represents the variation in tree DBH. If a stand has highly variable tree sizes, there will be a 

correspondingly large variance in DBHs and heights, likely reflecting in a multimodal SSD. Age 

variability and species mixtures provided less accurate differentiations, as maturing stand 

structure depends more on disturbance trends and ecological legacies than species or age 

differences (Franklin et al. 2002; Kane, McGaughey, Lutz, et al. 2010).  

Likewise, the most accurate ALS predictions of plot characteristics came from those 

related to tree size. This was expected, as ALS metrics best characterize physical structure and 

have more difficulty in estimating intrinsic characteristics such as the age or species of a tree. 

While attributes such as the percent dominant species and the SD of ages can be used to classify 

bimodal plots at the ground level, they are not predicted very accurately with ALS, which limits 
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their use at an operational capacity. The variance of ALS heights performed the best in 

classifying bimodal plots, and was chosen as the preferred determinant of modality in this 

Chapter. This metric is commonly calculated as part of the standard suite of ALS metrics 

generated from software packages such as LAStools (Isenburg 2014) and FUSION (McGaughey 

2008). Consequently, it is easily generated, accessible, and readily interpretable as a heuristic for 

distinguishing modality. While alternative approaches to modality characterization could include 

logistic regression or other modeling techniques, the parsimony, consistency, and transferability 

of a single metric makes this approach more applicable in other study areas and research. Further 

work could investigate more detailed ALS-based stratification of the study area to appropriately 

model other forest characteristics in addition to SSD. 

 

5.4.2. – Predictive modeling of SSD parameters using ALS metrics 

The parameters of the Weibull and FMM distributions were predicted well using ALS-

derived metrics. Thomas et al. (2008) predicted Weibull and FMM parameters using ALS in a 

similar study area and achieved similar or slightly more accurate results for parameter 

predictions. However, their study first stratified by species and structural groups and predictive 

models included up to 7 variables, whereas I used no more than 3 input variables in each model 

and did not stratify by species groups. Applying predictions across the landscape using the 

approach of Thomas et al. (2008) would require the availability of reliable species information at 

the same spatial resolution as the ALS data, which can be difficult or expensive to acquire. 

Likewise, the current capacity of ALS does not allow for accurate and spatially detailed species 

characterization, making stratification by species often not feasible.  
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The density of ALS data used in this Chapter was around the minimum required for 

regression using an area-based approach (generally around 1 pt/m2; White, Wulder, Vastaranta, 

et al. 2013). However, a study by Cao et al. (2016) using multiple point densities determined that 

density did not significantly impact the prediction accuracy, suggesting that lower point density 

data may still successfully characterize forest structure when used in an area-based approach. 

The plots used in this study had an area of 400 m2, which may be considered small when 

compared to those of other studies. However, Ruiz et al. (2014) found that larger plot sizes do 

not significantly increase the accuracy of models, but contributed to larger costs of measurement. 

Using the provincial network of 400 m2 plots seemed to balance the need for large plots with the 

need for many plots over a large area and therefore was determined to be an appropriate size for 

this Chapter. 

 

 

5.4.3. – Accuracy of predicted SSDs 

The aforementioned discrepancies in prediction accuracy of SSD parameters likely 

compounded the errors of distributions fitted to ALS data. Thus, the mean EIALS value for 

bimodal plots was slightly higher than that for unimodal plots. However, the methodology used 

in this Chapter produced more accurate results in terms of both EIG and EIALS than if all plots had 

been classified as unimodal. The difference in EIALS values was relatively low for predicted 

distributions and slightly higher for measured distributions; this suggests that the accuracy of a 

predicted SSD decreases with decreasing parameter prediction accuracy. Thomas et al. (2008) 

did not report EI values; however, a study by Tompalski et al. (2015) reported similar EIALS 

values to those reported herein when predicting SSD for unimodal distributions. Tompalski et al. 
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(2015) scaled EI values by 0.5 while I used 100 (Equation 3). When correcting for this difference 

in scale, my mean EIALS values were slightly more accurate than those reported by Tompalski et 

al. (2015), whose mean value was 71.6. 

 

5.4.4. – Model application 

 Unless a stand is small or completely homogeneous, a single plot-level SSD will likely 

not be representative of SSD for the stand (Borders, Wang, and Zhao 2008). Therefore, 

techniques for aggregation of predictions from cell-level SSD are necessary to generate a stand-

level SSD. One such approach involves summing predicted SSDs from each grid cell composing 

a delineated stand (Siipilehto et al. 2016). More complex approaches involve multidimensional 

scaling (Magnussen and Renaud 2016), in which an estimator can be used for extrapolation to 

larger units, or segmenting areas into smaller units such as microstands, which are areas grouped 

by similar ALS-predicted attributes such as volume and height (Lundholm 2018). If stand-level 

predictions are the desired result, a final aggregation step should be used to scale up from cell-

level predictions; however, this was beyond the scope of the Chapter and SSD predictions 

remained at the cell level.  
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Chapter 6 – Structural development following stand-replacing disturbance in a boreal 

mixedwood forest 

 

6.1. – Introduction 

 The structure of a forest stand can be used to directly characterize the state of the forest at 

a given point in time, but it also represents a key tool to understanding past, present, and future 

stand dynamics. Although dependent on localized factors such as disturbance, stand structures 

change relatively predictably with increasing time since disturbance (Enquist and Niklas 2001). 

Based on a review of studies in the boreal mixedwood forest, Chen and Popadiouk (2002) define 

four main structural phases, which include (with increasing structural complexity): stand 

initiation, stem exclusion, canopy transition, and gap dynamics. Understanding the structural 

differences between these phases and the resulting ecological implications is critical for a variety 

of applications. For example, stand structure is helpful in understanding future biomass 

accumulation (Brown, Schroeder, and Birdsey 1997) and identifying areas of old growth which 

provide valuable services such as harboring biodiversity (Lindenmayer and Franklin 2002) and 

improving water quality (Wirth 2009). Furthermore, knowing the general structures of existing 

forests helps to predict what structures might be present under future climate scenarios (Toledo 

et al. 2013). 

Passive, optical, remotely sensed imagery can provide useful insights on the return of 

vegetation following disturbance (Griffiths et al. 2014; Hansen et al. 2013; Kennedy et al. 2012). 

Spectral recovery refers to the identification of relevant image-based metrics that characterize the 

spectral return of vegetation and forest post-disturbance (Broadbent et al. 2006; Chu and Guo 

2013; Frolking et al. 2009). Linkages between spectral measures of recovery derived from 
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remotely sensed data and measures of forest structure and composition derived from ALS (White 

et al. 2018) and field plots (White et al. 2019) are nascent. Depending on the information need, 

measures of forest recovery can be structural, compositional, or functional. ALS has been used to 

classify areas based on the structural complexity of stands (Kane, McGaughey, Lutz, et al. 2010); 

however, study of post-disturbance forest structure across species and disturbance types has been 

limited. Whereas the fine spatial and temporal resolutions of Landsat time series are critical in 

studying spectral recovery trends (Pickell et al. 2015; White et al. 2017), ALS’s ability to 

provide detailed three-dimensional metrics makes it a key tool for the study of structural 

recovery following disturbance (White et al. 2018). For example, Bolton et al. (2015) used ALS 

metrics as a means of determining changes in forest structure in the first 25 years following fire 

in the boreal forest of Canada. However, spatially extensive studies such as this typically use 

only individual metrics and not more detailed indicators of forest structure such as SSDs. 

There are a variety of different ways to quantify a forest’s response to disturbance. As 

forest stands develop following a stand-replacing disturbance, attributes such as aboveground 

biomass and species richness may reach values comparable to late seral stands in as few as 30 

years for tropical forests (Letcher and Chazdon 2009). Depending on the disturbance regime and 

stand conditions, however, a boreal stand may take a few hundred years to reach its pre-

disturbance SSD. Despite this, SSDs are an information-rich asset to determining or quantifying 

structural phases. For example, Zenner (2005) used a > 400–year chronosequence of SSDs to 

model structural development in Douglas-fir forests. Furthermore, SSDs have been used to 

understand mechanisms underlying structural changes. Toledo, Magnusson, and Castilho (2013) 

studied the abiotic factors which change tropical forest SSDs and determined that smaller trees 

(≤ 22 cm DBH) were more susceptible to competition-based disturbance, while exogenous 
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disturbances and senescence primarily affected larger stems (≥ 45 cm DBH). Despite knowledge 

of the mechanisms of change and the general dynamics of SSDs, more research is needed to 

examine how developing SSDs differ between and within both species groups and disturbance 

types. Doing so can further ecological understanding of the expected developmental pathways 

across these attributes. 

In this analysis, ALS-derived SSDs are used to characterize the patterns of structural 

development across species and disturbance type in a boreal mixedwood forest. Using these 

SSDs and photo-interpreted stand polygons of similar species, age, and disturbance, a 

chronosequence representing over 50 years of forest structural development was developed to 

determine the patterns of structural development following stand-replacing disturbances. 

First, I will investigate the differences in structural development phases based on the type 

of disturbance. Although having initially different rates of regeneration, harvested and burned 

stands are thought to eventually reach the same structure (Brassard and Chen 2010). However, 

the pathways that both disturbances take to this eventual structure are not well known. Stands 

regenerating after fires are understood to generally have more rapid rates of initial growth and 

structural development, but quantification of structural development is limited (Bartels et al. 

2016). An enhanced understanding of structural development following fire could enable insights 

on disturbance legacies resulting from different disturbance types. 

Next, development will be characterized by species. There are a variety of possible 

structural pathways that a stand could take following disturbance, depending on qualities such as 

the pre-fire composition or productivity (Bergeron et al. 2014; Taylor and Chen 2011). Time 

since disturbance alone is not sufficient to predict structure, as stand development is known to be 

a nonlinear process (Kane, McGaughey, Lutz, et al. 2010; Taylor and Chen 2011). Stands with a 
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high compositional diversity, such as those in the boreal mixedwood, will have different growth 

patterns than pure stands due to interspecific competition for resources (del Río et al. 2016). A 

species-level understanding of the initial structural pathways of these stands following 

disturbance will help to inform their management and understand their development, particularly 

under future climate scenarios. 

Finally, structural development will be characterized by both species and the disturbance 

type. Structural gains from species-specific adaptations to post-fire establishment and growth in 

the boreal forest, such as cone serotiny in lodgepole pine (Pinus contorta) or root suckering in 

aspen (Populus tremuloides), have been previously studied (Bergeron et al. 2014). However, an 

understanding of differences in species-level regeneration is needed to determine how dynamics 

differ between stands originating from fire and from harvest. While knowledge of stand 

structural dynamics in the boreal forest is well-documented (Angelstam and Kuuluvainen 2004; 

Bergeron et al. 2014; Oliver 1981), there has been limited work in quantifying development with 

broad-scale and detailed data such as an SSD.  

In addressing these questions, I aim to characterize SSDs for different species and 

disturbance types at three different structural phases in order to better understand structural 

development from stand-replacing disturbances in the boreal mixedwood forest. 

 

6.2. Methods 

6.2.1. – Workflow 

 Wall-to-wall diameter distributions produced in Chapter 5 were initially summarized for 

all delineated stand polygons. Then, based on the mean SSD for each stand, stands were 
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clustered into structural development phases based on species and disturbance. Finally, stands in 

each cluster were summarized using generalized additive models (Figure 6.1).   

 

6.2.2. – Alberta vegetation inventory (AVI) data 

The stand polygons used were a part of the AVI and were photo-interpreted by 

professional interpreters based on 1:60,000 or 1:40,000 air photos (Government of Alberta 

2005). To distinguish stand-level disturbances, only stands with a single, stand-replacing 

Figure 6.1 – A workflow detailing the structural classification approach. “Stand-Level Means” refers to 

the averaging of SSD cell values for each raster for each individual stand polygon.  
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disturbance were used. This resulted in 7,087 stands being used for analysis – 6,180 disturbed by 

fire and 907 disturbed by harvesting. Although photo-interpretation may only be able to directly 

identify the species of upper canopy vegetation (Wulder and Franklin 2003), this was deemed to 

be suitable for this study as the young stands used for analysis would likely have limited, if any, 

understory vegetation of significance. AVI polygons have an estimate of stand age, but there 

may be difficulties in correctly estimating stand age, especially for complex stands. Additionally, 

stand structure does not linearly develop in relation to the time since disturbance, as stands may 

reach different structural phases at far different times, dependent upon the different successional 

pathways present for each stand. For these reasons, the time since disturbance was not 

considered for this study.  

 

6.2.3. – Stem size distributions 

 This Chapter uses SSD models developed in Chapter 5. The derived models were applied 

across the entire study area, giving each 20 x 20-meter grid cell an estimate of SSD parameters. 

Only forested areas – those meeting the common definition of at least 10% canopy cover (FAO 

2005) – were included in the predictions by removing cells whose percentage of ALS first 

returns over 2 m was less than 10% (similar to Bolton et al. 2018). For each cell with SSD 

parameters, the proportion of trees within bins of 5 cm increments were calculated (similar to 

Zenner 2005). This meant that, regardless of the modality, each cell had a comparable set of 

values representing the proportion of stems greater than the lower bound of each size class (10, 

15, 20, 25, 30, 35, and 40 cm). In order to mitigate any effect from neighboring stands, cells 

within 20 m (the size of a single cell) of a stand border were removed. For each disturbed 
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polygon, the mean of these proportions were used to represent the mean SSD of the stand (Figure 

6.2).  

 

 

6.2.4. – Chronosequence of forest stands disturbed by wildfire and harvest 

 Species proportions in AVI polygons were used to assign species groups to each stand. If 

a species was estimated to represent at least 80% of trees in that stand, it was assigned to one of 

four species groups according to provincial classifications, listed in Table 6.1 (Huang, Meng, and 

Yang 2009). If no species formed at least 80% of the stand, then the stand was added to a fifth 

“mixed” group (Smith 1996). The number of stands by species and disturbance type is shown in 

Table 6.2.  

 

  

Figure 6.2 – Three examples of summarizing the individual SSDs in a stand into one 

representative curve 
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Table 6.1 - Species and their resulting groups occurring as dominant within AVI polygons 

Species Group 

balsam poplar (Populus balsimifera) 

aspen trembling aspen (Populus tremuloides) 

paper birch (Betula papyrifera) 

black spruce (Picea mariana) black spruce 

lodgepole pine (Pinus contorta) pine 

balsam fir (Abies lasiocarpa) 
white spruce 

white spruce (Picea glauca) 

 

Table 6.2 – Number of stands by species and disturbance type. 

 Aspen Black 

Spruce 

Mixed Pine White 

Spruce 

Total 

Burned 1,814 986 1,817 1,307 256 6,180 

Harvested 320 9 222 268 88 907 

Total 2,134 995 2,039 1,575 344 7,087 

 

6.2.5. – Identifying structural phases 

 To understand differences in structure across the study area, each stand was clustered into 

distinct phases of structural development based on the species, disturbance type, and SSD 

proportions outlined in Section 6.2.3. Of the four structural phases named by Chen and 

Popadiouk (2002), only the first three (stand initiation, stem exclusion, canopy transition) would 

be expected given the 50-year chronosequence. While approximately 50 years could correspond 

to the early stages of the canopy transition phase in shade tolerant and mixed-species stands, pure 

stands of shade intolerant species such as aspen and pine may not have had sufficient time to 

reach this phase. However, SSDs of aspen and pine stands in a third phase of development could 

still be different from those in the stem exclusion phase. Therefore, SSDs were grouped based on 

a k-means clustering approach with k equal to 3 clusters and limited to a minimum of 10 stands 
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in each cluster. It was determined that using three clusters for the dataset instead of another value 

highlighted the differences between structural phases while minimizing the variation within each 

cluster. Clusters were sorted in terms of increasing structural development (e.g. fewer small 

stems and more large stems) and named “Phase 1”, “Phase 2”, and “Phase 3”, which 

approximated to the three structural phases outlined above. Clustering was based on the SSDs for 

each combination of species and disturbance type. In other words, stands were first separated by 

species and disturbance type and then clustered based on the SSDs in each stand. For example, 

there were 3 phases each for harvested aspen, burned aspen, harvested pine, burned pine, etc. In 

total, this resulted in 30 phases – 3 structural development phases for each of 5 species groups 

and 2 disturbance types. The result was a dataset that had, for each disturbed stand polygon, 

attributes of the species group, disturbance type, structural development phase, and SSD 

proportions. 

 

6.2.6. – Summary with generalized additive mixed models 

  Generalized Additive Mixed Models (GAMMs) were used to model SSDs and their 

variation for each species and disturbance type. GAMMS were chosen to model nonlinear trends 

between multiple variables (here, SSD proportions) while also accounting for over-dispersion in 

data which was often highly variable within species or disturbance groupings. GAMMs use cubic 

regression splines to estimate nonlinear relationships between the explanatory and response 

variables (Wood 2017), and have been used to model nonlinear trends in fields such as 

movement ecology (Rickbeil et al. 2017) and photogrammetric error modeling (Goodbody, 

Coops, Hermosilla, Tompalski, and Pelletier 2018). SSD proportions by species or disturbance 

were related to the SSD proportions using negative binomial GAMMs in order to model the 
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distribution of SSD values within each structural phase (Zuur et al. 2009). GAMM predictions 

and their standard error were used to assess significance between species groups and disturbance 

types. For all curves, 95% confidence intervals were constructed around the predicted value. If 

two or more confidence intervals did not overlap on an SSD for a given diameter, the curves 

were characterized as being significantly distinct from one another at this diameter. All analysis 

was carried out in R using the “mgcv” package (R Core Team 2018; Wood 2001). 

 

6.3. Results 

6.3.1. – Wall-to-wall SSD predictions 

  The variance of ALS return heights identified approximately 30.43% of forested cells in 

the study area to be bimodal, which corresponded well with the proportion of bimodal sample 

plots used in the analysis (32.39%; Table 6.3). Stand boundaries generally followed homogenous 

areas of modality (Figure 6.3c), but developing stands were typically heterogeneous in terms of 

their modality (Figure 6.3a and 6.3b).  

 

Table 6.3 – Counts of areas determined unimodal and bimodal in sample plots and those 

predicted by ALS 

 Unimodal Bimodal Total 

Sample Plots 48 (67.61%) 23 (32.39%) 71 

Wall-to-Wall Cells 10,222,949 (69.57%) 4,473,115 (30.43%) 14,696,069 
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 For the entire study area, GAMMs were used to summarize the SSDs of all stands 

belonging to each species group (Figure 6.4). Stands in the aspen and pine groups had slightly 

fewer small stems (less than 10 cm DBH), while those in the mixed and black spruce groups had 

slightly more stems in this size class. However, none of the differences among different species 

groups were significant. Furthermore, for much of the modeled SSDs, GAMMs of all species 

groups showed almost no difference.  

Figure 6.3 – Map outlining cells predicted to be unimodal or bimodal, and their position in the 

study area and within stand boundaries. 
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6.3.2. – Overall structural development phases 

 Cell-level SSD predictions were then summarized into stands and clustered into structural 

development phases based on species and disturbance type (Table 6.4). Phases were sorted based 

on increasing structural development (fewer small stems and more large stems). For most species 

and disturbance types, the highest proportion of stands fell within Phase 2. The only exception 

was harvested stands in the black spruce group. The low sample size (n = 9) for this group was 

determined to be insufficient for comparison with the other groups and it was therefore removed 

from further analysis. 

Figure 6.4 – Stem size distribution estimates for all cells in the study area, 

summarized with GAMMS by species. Colored lines represent the means 

by species, and the dashed black line represents the global mean. Shading 

indicates a 95% confidence interval. 
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Table 6.4 – Counts of the number of stands in each Phase. *Due to a low sample size, harvested 

black spruce stands were removed from further analysis 

 
Phase 1 Phase 2 Phase 3 

Burned Harvested Burned Harvested Burned Harvested 

Aspen 510 109 714 143 590 68 

Black Spruce 378 4* 500 2* 108 3* 

Mixed 560 102 886 110 371 10 

Pine 530 64 567 109 210 95 

White Spruce 58 24 134 54 64 10 

  

GAMMS were constructed to compare burned and harvested stands within each 

structural phase (Figure 6.5). The SSDs of Phase 1 for both disturbance types were similar to one 

another and showed no significant difference. In Phase 2, burned stands had slightly more trees 

in larger diameter classes (up to ~ 25 cm), but these differences were not significant. However, 

Phase 3 burned stands showed an SSD with significantly fewer trees from approximately 7 – 9 

cm DBH and more trees from approximately 14 – 23 cm DBH than harvested stands.  
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6.3.3. - Structural development phases following disturbance 

Structural phases for both disturbance types were generally the same among the different 

species groups (Figure 6.6). The only exception was burned stands in the black spruce group, 

which showed significantly fewer stems in lower diameter classes in Phase 1. However, there 

were no significant differences between the SSDs of species for the other phases. The variability 

in SSDs for each phase, shown by the 95% confidence interval (shaded areas in Figure 6.6) 

increased as the phases increased in development. Additionally, harvested stands generally had 

more variability in the SSDs for each phase.  

 

Figure 6.5 – SSD for overall structural development phases by disturbance type. Shading 

indicates a 95% confidence interval around GAMM estimates (solid line), with significant 

differences in SSD as non-overlapping confidence intervals. Phases represent general structural 

pathways of development, similar to stand initiation, stem exclusion, and canopy transition. 
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6.3.4. – Species-level responses to disturbance 

 Similar trends in SSDs for each structural phase were seen in aspen and pine dominated 

stands (Figure 6.7). For both species groups, there was no difference in SSDs of burned and 

harvested stands for Phase 1. Phase 2 showed slight but significant differences between 

disturbance types for some diameter classes – significantly more trees in burned stands for 

approximately 11 – 13 cm and 10 – 13 cm DBH for aspen and pine stands, respectively. The 

greatest differences between the SSDs of the disturbance types was seen in Phase 3 for both 

Figure 6.6 – Stands clustered on structural development phases within species and 

disturbance types. Harvested black spruce stands had insufficient sample size for 

analysis (n = 9) and are not shown. Shading represents a 95% confidence interval 

around each GAMM prediction. 
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species, where both aspen and pine stands had significantly fewer trees in small diameter classes 

(~ 7 – 9 cm), and pine stands also had significantly more trees in the ~ 14 – 22 cm DBH classes. 

 

 

The mixed and white spruce species groups had similar SSDs for each structural phase 

and disturbance type (Figure 6.8). In fact, for both species types, there were no significant 

differences between burned and harvested SSDs in all phases for all diameter classes. In some 

cases, SSDs of burned and harvested stands showed slight differences – for example from 10 – 

Figure 6.7 – Differences between structural clusters for aspen and pine stands 

following disturbance. Shading represents a 95% confidence interval around each 

GAMM prediction. 
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15 cm DBH in Phase 2 for both mixed and white spruce stands – but these differences were not 

significant. Additionally, the highest variances seen in any phase for all species groups occurred 

in Phase 3 for both harvested mixed and white spruce stands.  

 

6.4. – Discussion 

6.4.1. – Wall-to-wall SSD predictions 

SSD parameters were predicted using an area-based approach in order to provide 

estimates of SSD for all forested cells. SSD curves, separated by species, were not significantly 

Figure 6.8 – Differences between structural phases for mixed and white spruce 

stands following disturbance. 
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different from one another (Figure 6.4). The most difference (although not significant at  = 

0.05) was for the proportions of trees in the smallest DBH class (7-10 cm). Stands in the pine and 

aspen groups had slightly lower proportions of trees in this class, while stands in the mixed and 

black spruce groups had slightly higher proportions. This may be due to different growth rates. 

For example, pine and aspen stands are primarily comprised of shade intolerant trees with fast 

initial growth rates, while black spruce stands are comparatively slower growing (Bergeron et al. 

2014; Chen and Popadiouk 2002). On the other hand, inter-specific competition in mixed species 

stands is known to significantly alter growth rates of trees compared to pure stands, which may 

be a reason for the mixed group having higher proportions in the smallest DBH class (Brassard 

and Chen 2010; del Río et al. 2016). 

 Any errors in the predictive models for SSD parameters would have been passed along to 

the area-wide SSD estimates. However, an ALS-derived area-based approach is the principal 

method for area-wide SSD estimation, and was therefore seen to be the best approach to use in 

this study (Maltamo et al. 2007; Xu et al. 2014). Two averaging steps (cells into stands and 

stands into phases) were taken to reduce the effect that any error may have on conclusions from 

the analysis. Conversely, the opposite may have also occurred – that is, over-generalization of 

the variation in the SSD curves. However, confidence intervals from the GAMMS in the analysis 

were useful in assessing both inter-phase differences and intra-phase variability of the SSDs. 

Lastly, the focus of this study was to compare the shapes of predicted SSDs to one another, and 

not necessarily to construct highly accurate SSD models. Therefore, if there was a prediction 

error, it would likely be found in all curves and any comparisons between curves would still be 

valid. There was no significant bias in either the parameter predictions or the estimates of 
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proportions in each DBH class, confirming the use of the SSD models as developed in Chapter 5 

for this research. 

 

6.4.2. – Structural development phases 

 My results showed that there was no significant difference between SSDs of burned and 

harvested stands for Phase 1 or Phase 2. However, burned stands had significantly more large 

trees and significantly fewer small trees than harvested stands in Phase 3. This indicates that 

there may be more structural development within the chronosequence for burned stands, or that 

there are conditions which give burned stands different pathways to future development 

(Brassard and Chen 2010).  For example, there is generally more residual vertical structure in 

stands following a fire than following a harvest, which could provide seed, nutrients, or an older 

age cohort to encourage structural development in these stands (Brassard and Chen 2010). A key 

influence on future structure and growth of naturally regenerating stands is initial stand 

development, which could be described with attributes such as stand density and composition. 

For example, the findings of Johnstone et al. (2004) showed that patterns of stand structure 

initiated within a few years after fire are maintained through subsequent decades of stand 

development.  

 

6.4.3. – Structural development phases by disturbance type 

 All species groups had similar SSDs across all structural phases for both disturbance 

types (Figure 6.6). The only significant differences between curves were for stands in the black 

spruce group, which had fewer trees in the smaller diameter classes than the other species groups 

in Phase 1. This may be due to the relatively slower growth rate of black spruce, as trees of this 
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species may not have had sufficient time during the chronosequence (~ 50 years) to develop a 

more heterogeneous structure (Chen and Popadiouk 2002). Species groups showed similar SSDs 

for the all structural phases. In other words, the SSD of a stand in the stem exclusion phase 

following a fire will look generally the same regardless of the species present. Stands take 

different amounts of time to reach certain structural phases depending on factors such as 

productivity (Bergeron et al. 2014). However, from the perspective of the SSD, all species had 

the same general structures in each phase of stand development. 

Phase 3 in burned and harvested stands had the highest intra-phase variability for all 

phases (Figure 6.6). Phase 3 often had the smallest sample for each species (Table 6.4), so it is 

possible that Phase 3 was the most variable and, as such, SSD curves in this cluster could have 

been more variable than in clusters with larger and more homogeneous samples. Additionally, 

intra-phase variability increased with increasing structural development (Figure 6.6). A variety 

of successional pathways dependent on external factors may lead stands to a specific 

development phase (Taylor and Chen 2011), meaning that there may be a variety of shapes to an 

SSD depending on, for example, smaller disturbance sizes (Coomes et al. 2003).  

For both disturbance types, stands in the white spruce group had more trees in the smaller 

diameter classes, possibly as a result of the slow growth rate in this group compared to that of the 

others (Chen and Popadiouk 2002). In harvested stands, the mixed group had significantly more 

structural development than the other species groups. Heterogeneous stands contain trees with 

different growth rates, patterns of regeneration, and levels of shade tolerance (Chen and 

Popadiouk 2002), leading to a higher likelihood of achieving a more complex structure (Taylor 

and Chen 2011).  
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6.4.4. – Structural development phases within species groups 

 Stands in the aspen and pine groups showed similar patterns of development between 

disturbance types (Figure 6.7). Both species groups showed initial structural similarity between 

burned and harvested stands (Phase 1), but more structural development in burned stands in 

Phases 2 and 3. Fast-growing and fire-adapted species such as these (e.g. root suckering in aspen 

and cone serotiny in lodgepole pine) have a more developed structure following fires than 

following harvesting (Bergeron et al. 2014; Frey et al. 2003). Additionally, the high shade 

intolerance of aspen means that trees of this species will be among the quickest to display initial 

structure because of their capacity for rapid initial establishment after disturbance (Bergeron et 

al. 2014). Also, burned stands typically have higher initial stem densities, leading to more self-

thinning and stem exclusion and therefore a quicker reduction in the proportion of trees in 

smaller diameter classes than in harvested stands. 

It is possible that pure stands of shade-intolerant species may not have secondary cohorts 

of regenerating trees, meaning that there will be lower proportions of smaller trees in later 

development phases. This is seen in Phase 3 of Figure 6.7 as there being comparatively fewer 

trees in the smallest diameter classes than the initial cohort of regenerating trees. Conversely, the 

white spruce and mixed groups did not have this decrease in the proportion of small trees in 

Phase 3, as the presence of shade tolerant species meant that a secondary cohort of trees could 

establish. This phenomenon is seen in Figure 6.8 as there being higher proportions of smaller 

trees in Phase 3 of the white spruce and mixed species groups. 

The mixed species and white spruce groups also showed similar patterns of structural 

development to one another (Figure 6.8). These species groups differed from stands in the aspen 

and pine groups in that burned and harvested stands had very similar SSDs for Phases 1 and 2. 
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One reason for the mixed group showing such similarities would be the variety of possible 

species compositions present in this group. This variety would lead to a corresponding variety of 

growth rates and different post-disturbance adaptation strategies. Thus, the patterns of structural 

development may resemble one another, as the initial regeneration would follow similar patterns 

of growth and competition (Taylor and Chen 2011). Additionally, shade tolerance and slow 

growth rates of species in the white spruce group mean that these stands would have similar 

structural development to one another (Phases 1 and 2), as they may not have had time during 

these earlier phases to develop heterogeneous structures (Chen and Popadiouk 2002).  
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Chapter 7  - Three-dimensional remote sensing for augmentation of next-generation forest 

inventories 

 

7.1. – Context of dissertation 

The accuracies attained in Chapter 3 indicate the potential for DTP for supporting forest 

inventories. National Forest Inventories (NFIs) have typical accuracy requirements of 0–2 cm for 

DBH, 10–20% for volume, and 1-3 cm for upper stem diameters (Liang et al. 2016). Each of 

these accuracy requirements was met using DTP point clouds techniques in this Chapter. Other 

potential applications of raw images and resulting point clouds include the estimation of canopy 

leaf area (Bréda 2003) or as inputs to centroid sampling of tree volume (Wiant, Wood, and 

Gregoire 1992). Additionally, point clouds provide measurements which can be stored as an 

objective, 3D record of tree or forest condition at a given point in time. This indicates the 

potential for use of DTP in calibrating or validating models of forest growth. If images of the 

same tree are acquired at multiple times, a time series of point clouds could be generated and 

analyzed to monitor tree growth or change either at an individual tree or at stand level (Liang et 

al. 2012; Sheppard et al. 2016).  

Across all sample plots, results from Chapter 4 showed a wide range of accuracies which 

may influence the applications of the work. For example, performing the methods presented in 

this Chapter in a high-value timber stand to achieve a low accuracy of detection and DBH 

estimation may not have substantial value to forest managers. In this example, however, timber 

value is often positively correlated with tree size, and results from this Chapter showed higher 

accuracies on large trees (Figure 4) and plots with larger mean DBH values (Figure 5). The 

patterns of accuracy seen in this Chapter can also be used to leverage expectations of accuracies 
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in future work. Other value in the work could come with the objectivity and permanence of raw 

images and resulting point clouds, having inherent value for forest inventory applications by 

providing a potential for assessment of plot attributes not typically measured during a forest 

inventory (e.g., understory condition, stem form) and can be stored for retrospective analysis. 

 The difference in structures among stands requires detailed, landscape-level information 

to guide the fitting and modeling process. In order to meet the scope and detail needed for 

accurate forest management decisions, Chapter 5 used ALS as a means of differentiating and 

predicting SSD parameters in a boreal mixedwood forest. The differentiation step allowed me to 

fit structurally appropriate SSDs to respective stands and allowed for more robust 

characterizations of SSD than using a single model for the entire study area. The structural 

heterogeneity of the boreal mixedwood may have led to lower parameter prediction accuracies 

and error index values in this Chapter when compared to those of other studies (Packalen and 

Maltamo 2008; Tompalski et al. 2015). However, differentiating bimodal areas and their 

subsequent characterization by FMMs should provide insights into stand characteristics that 

would lead to more informed decisions and more accurate understanding of stand structure in 

complex forest types.  

Chapter 6 demonstrated the ability of wall-to-wall, ALS-derived SSDs to capture 

differences in structural development following stand-replacing disturbance. Understanding 

forest structural development is critical to interpreting past changes and predicting future 

conditions. For example, this knowledge can be used by forest managers to prescribe 

silvicultural treatments under ecosystem-based management techniques. These techniques aim to 

mimic natural stand dynamics using management interventions such as thinning or prescribed 

burns. Therefore, they rely on detailed knowledge of the development of natural stands under 
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post-fire scenarios. This work could also be used as a benchmark as the patterns of development 

following a disturbance under current ecological conditions for comparison to past or future 

patterns of development. 

 

7.2. – Forest inventories – current status and challenges 

 Regardless of the level of application, forest inventories have basic data acquisition 

requirements (based on recommendations for Canada; Gillis 2001). First, inventories need to be 

representative; that is, to provide a detailed and complete or near-complete perspective of the 

forest. With increasing economic and ecological pressures on forest managers, the need for 

enhancing the capacity of forest information is also increasing (Smith 2002). Inventories also 

need to be consistent (McRoberts et al. 2005). For example, managers operating in 

heterogeneous forests or across large extents need to know that the data were collected using 

methods that are reliable and unbiased across all sites. When considering inventories across large 

spatial extents, this is especially important, as inventory measurements across a range of forest 

types, stand conditions, and acquisition methods will likely increase the disparity of data 

acquisition. Next, the data needs to be timely, representing a detailed snapshot of the forest at a 

given point in time and put into a database which can be used for future monitoring (Gillis 2001). 

The timeliness of the inventory demonstrates the temporal reliability of the information. Finally, 

the inventory needs to be effective (Kangas 2010). This relates to both the accuracy of the 

measurements undertaken as well as the cost-effectiveness of the data acquisition approach. 

Having accurate information is crucial for management, as subsequent decisions can influence 

the resulting economic or ecological value of forest stands (Bergseng et al. 2015). Cost-
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effectiveness is of particular importance when access to field sites is difficult or the number of 

required field plots is high (Andersen et al. 2009; Wulder et al. 2012). 

The intensity and scale of measured attributes may depend on the information need and 

the scale at which the inventory is carried out. For example, operational inventories are typically 

localized to stands of interest for wood procurement and generally include intensive dimensional 

measurements of trees or plots of interest (Laamanen and Kangas 2011). Strategic inventories 

generally include a network of sample plots measured at regular intervals (Gillis et al. 2005). On 

the plots, typical measurements include the height, DBH, species, and condition (Smith 2002; 

White, Wulder, Varhola, et al. 2013). These inventory measurements are then scaled up to larger 

areas using aerial data or existing maps (White et al. 2016). Stand polygons delineated from 

vertical aerial photographs are a common source of airborne data and include photo-interpreted 

attributes such as species composition, age, size (e.g. stand height, basal area, or mean diameter), 

and condition (Leckie and Gillis 1995). Satellite imagery can be used as an alternative source of 

aerial information, but in Canada this is generally limited to northern regions with difficult 

accessibility and high costs for fieldwork (Falkowski et al. 2009; Gillis et al. 2005). 

 There are challenges with the collection and assessment of data acquired for forest 

inventories across all of these information needs (Table 7.1). Table 7.1 describes four important 

characteristics of forest inventory; representativeness, consistency, timeliness, and effectiveness. 

Representative information in forest inventory is data that provide robust detail about the 

structure and composition of the forest. In the case of operational inventories in particular, more 

representative information may be required for important attributes such as diameters above or 

below breast height, stem size distributions, detailed volume estimates, understory condition, or 

the quantity of coarse woody debris on the ground. Consistency in forest inventory 
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measurements is important in diverse forests or broad spatial extents. While some inventory 

measurements such as diameter or species are generally consistent, attributes that require 

subjective interpretation such as stand or tree condition may differ across different individuals. 

Additionally, the measured height of trees may differ more than other attributes such as DBH 

(Luoma et al. 2017; Wang et al. 2019) and may vary by location, as trees in denser stands are 

more difficult to accurately measure from the ground due to occlusion from other stems 

(Andersen, Reutebuch, and McGaughey 2006). When combining inventory information across 

different areas or that was collected with different purposes in mind, issues can arise due to 

inconsistencies across acquisitions. Different measurement methods, training, and tools, such as 

minimum DBH thresholds or height sampling approaches, can impact the compatibility of data 

from different field campaigns. Inventory standards are often implemented to ensure consistent 

field protocols are implemented within jurisdictions. For example, the minimum DBH measured 

differs between the neighboring provinces of British Columbia (4 cm for living trees and 10 cm 

for dead trees) and Alberta (7 cm) in Canada, meaning that merging inventory measurements 

from these two areas is challenging (Alberta Sustainable Resource Management 2005; Ministry 

of Sustainable Resource Management 2003).  

Timeliness in forest inventories refer to the near-complete snapshot that the information 

demonstrates at a given point in time. In field-based forest inventory measurements, the ability of 

the field data to provide a complete perspective of the stand at a point in time may be 

insufficient, as recorded dimensional measurements may not provide sufficient insight to allow 

for a detailed retrospective analysis of stand condition. Finally, the effectiveness of an inventory 

means that the acquired information is accurate and justified by the costs. In ground-based forest 

inventory, the cost may come into question when the required number of field plots is high, 
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access to remote areas is challenging, or the application of the data is narrow (Kangas 2010). 

Field campaigns can cost an average of CAD$400 or more per plot measured (Bourgeois et al. 

2018), and as high as several thousands of dollars in remote locations (Wulder et al. 2012). 

Increasing the costs of transportation to remote sites or the salaries of individuals spending more 

time on a site will likely result in greater costs per plot. For areas with lower values (e.g. low 

timber values in an operational inventory), high costs may not be justified. Due to limitations 

regarding the representativeness, consistency, timeliness, and effectiveness of conventional data 

acquisition, there is a need to augment these inventories with other methods in order to address 

these limitations and improve characterizations of the forest across all scales of inventory.  

 

Table 7.1 – An assessment of the advantages and disadvantages for data requirements of 

conventional field-based forest inventories 

 Conventional field-based inventory 

Advantages Disadvantages 

Representativeness 

Standard measurements 

strong in describing 

overall stand 

characteristics 

Usually no direct 

measurements of taper or 

form of stems 

Consistency 

Usually consistent for 

attributes such as species 

or DBH 

Not always consistent for 

attributes such as 

condition or height in 

dense stands 

Timeliness 

Ability to directly 

measure and capture 

detail in stands 

Limited physical record 

to determine changes 

other than explicit 

measurements 

Effectiveness 

Accurate and generally 

cost-effective in simple 

forests 

Likely less cost-effective 

in areas of lower timber 

value or poor 

accessibility 
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7.3. – Three-dimensional remote sensing for enhanced forest inventory 

 Both ALS and DAP have seen success in representative, consistent, timely, and effective 

wall-to-wall estimates of inventory attributes such as height, volume, or diameter (Table 1.1; 

Næsset 2002), and have begun to be integrated into data acquisition for operational inventories 

(Kangas, Astrup, et al. 2018a). In addition, more robust predictions can be made for attributes 

such as crown dimensions or leaf area (Roberts et al. 2005). Spectral properties of DAP point 

clouds have been shown to estimate properties such as insect defoliation (Goodbody et al. 2018), 

although the utility DAP spectral information for estimation of forest inventory attributes is yet 

to be demonstrated (Tompalski, White, et al. 2019). ALS estimates of forest properties are 

consistent across acquisitions, particularly due to the predictable nature of the interaction 

between laser pulses and canopy layers and the ground (Baltsavias 1999). Image acquisitions and 

processing algorithms may differ between DAP acquisitions, potentially limiting the consistency 

of resulting point clouds. These potential inconsistencies have been alleviated with methods such 

as normalizing the DAP point cloud with ALS-derived elevation models or using point-matching 

procedures such as iterative closest point to align point clouds (Gressin et al. 2013; Zhang, 

Glennie, and Kusari 2015). Both ALS and DAP point clouds represent a permanent three-

dimensional record of an area, and the gridded nature of resulting products (e.g. rasters of area-

based predictions) allow for consistent summary of information when compiling data across 

spatial and temporal extents (Holopainen, Vastaranta, and Hyyppä 2014). Integral to the 

effectiveness of ALS and DAP is the procurement of wall-to-wall coverage, meaning that 

spatially-explicit maps of forest attributes can be made at the tree, grid-cell, or stand level for an 

entire area. This represents a substantial advantage over purely ground-based methods, which 

often have extents limited by access or costs, and costs of area-based approaches for ALS are 
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less than those of conventional field-based inventory methods (Andersen et al. 2006; Vastaranta 

2012). Furthermore, when trees are properly identified, ALS may be more accurate in height 

measurement of taller trees than ground-based methods (Wang et al. 2019).  

 TLS and DTP have been able to meet information needs and achieve the precision 

required for inventory estimates (Liang et al. 2015, Liang et al. 2018). Point clouds from 

terrestrial data sources are more spatially constrained than those from airborne data, but provide 

a much higher level of localized detail. In addition to standard inventory measurements such as 

DBH or basal area, representative dimensional measurements such as taper, volume, and stem 

form can be derived with TLS or DTP (Liang et al. 2016; Piermattei et al. 2019). While species 

identification is critical in inventories, it remains a challenge to accurately classify species with 

three-dimensional remote sensing data, demonstrating the need for developing research or using 

field crews to augment remote sensing data collection (Lin and Herold 2016; White et al. 2016). 

TLS estimates typically are more consistent in different forest types than those of DTP (Liang et 

al. 2015, Liang et al. 2018) because of properties of the laser pulses (e.g., ability to penetrate 

vegetation). DTP measures are generally consistent, but the accuracies have been shown to differ 

among forest types (Chapter 4). The data storage capacity is an important consideration to make, 

as terrestrial point clouds can require large computing resources to process and store. However, 

the complete perspective of a given stand at a point in time is critical to understanding forest 

condition (e.g. understory condition, tree form), and the storability of these point clouds becomes 

a great asset to their use in forest inventories. Moreover, ground-based point clouds allow non-

destructive estimates that match or exceed the level of accuracy of destructive manual sampling 

(Chapter 3). Liang et al. (2015) showed that TLS may provide slightly more accurate estimates 

of forest inventory attributes than DTP, with 100% detection and 4% RMSE of DBH 
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measurements of TLS data when compared to values of 84% detection and 10% RMSE for DTP. 

However, the initial costs of TLS devices are tens to hundreds of times higher. Despite these 

costs, the value of ground-based characterizations remains high and they represent an invaluable 

source of information for forest inventory. A summary of the representativeness, consistency, 

storability and effectiveness of three-dimensional remote sensing data sources is shown in Table 

7.2.  
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Table 7.2 - A comparison of conventional field-based inventory with airborne and terrestrial 

three-dimensional remote sensing methods for data acquisition 

 
Airborne – 3D point clouds from ALS 

/ DAP 

Terrestrial 3D point clouds from TLS 

/ DTP 

 Advantages Disadvantages Advantages Disadvantages 

Representative 

Structural 

characteristics 

(e.g. crown 

dimensions) or 

spectral 

properties (e.g. 

defoliation from 

DAP) can be 

derived 

Tree-level detail 

such as species is 

difficult to derive 

Capable of 

providing 

detailed 

dimensional 

measurements 

(e.g. diameters up 

the stem) 

Characteristics 

such as species 

are more difficult 

to derive 

Consistent 

Both sources 

have consistent 

heights, 

especially when 

using previous 

ALS acquisitions 

to normalize or 

register DAP 

point clouds 

DAP only 

captures outer 

canopy points 

and generally 

shows less 

variation in 

height 

Generally 

consistent, and 

measurements are 

unbiased 

Accuracies may 

vary depending 

on stand 

condition, 

especially with 

DTP 

Timely 

Spatially 

complete 

coverage 

provides 

complete aerial 

perspective at a 

given time   

Processing and 

additional 

estimation 

required for 

attributes such as 

DBH or volume 

Near-complete 

perspective of the 

area at a given 

point in time aids 

in current and 

retrospective 

monitoring 

Measurements 

aren’t direct and 

require 

instrument 

calibration and 

processing 

Effective 

Cost-effective 

surveying of 

complete area 

with very 

accurate heights 

Inability of DAP 

to penetrate into 

the canopy limits 

its abilities to 

characterize 

vertical structure 

Able to provide 

accurate and non-

destructive 

estimates, 

particularly for 

attributes that are 

difficult to 

measure from the 
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7.4. – Next-generation forest inventories 

 Next-generation forest inventories at all scales should integrate the strengths of a range of 

different types of measurements. This would include field-based assessment of attributes difficult 

to derive using remote sensing technologies (e.g. species mix and health condition). These field 

data would be augmented by an array of point cloud datasets acquired from the ground to 

provide an accurate assessment of tree and stand structure at ground level, ensuring attributes 

like DBH, number of stems and taper are accurately assessed. As well, aerially-derived point 

cloud information would be incorporated to provide an opportunity to map and extend these fine 

plot scale measurements over larger areas in a cost-effective way. Data collection on harvesters 

can also be implemented, allowing for detailed stem characterizations or summaries of standing 

timber to calibrate or validate existing models (Holopainen et al. 2014; Saukkola et al. 2019). 

Using these inputs would enhance the capabilities of forest inventory and move towards 

providing a complete, accurate, unbiased, and detailed snapshot of the forest at a given point in 

time. A visual example of a next-generation forest inventory is shown in Figure 1 and described 

in Sections 7.4.1 and 7.4.2. These examples primarily focus on enhancing operational forest 

inventories (Stinson and White 2018); however, strategic forest inventories may also benefit 

from the data acquisition examples below. 
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Figure 7.1 - An example of next-generation forest inventory using single or multiple acquisitions 

of three-dimensional remote sensing data 

7.4.1. – Sample design and field measurements 

 Sampling design is critical to accurate and representative forest inventory. When 

accounting for the input costs of inventory and the subsequent loss due to suboptimal or 

inaccurate information, Holmström, Kallur, and Ståhl (2003) found that proper planning of 

sampling locations had the potential to reduce overall costs of an inventory by as much as 50%. 

Additionally, if ground samples are not representative of the range of forest conditions, resulting 

models may not perform consistently across all forest types (White, Wulder, Varhola, et al. 

2013). Airborne remote sensing data can be processed and used to inform the location of sample 

plots using structurally guided sampling, which uses metrics such as height percentiles, cover, or 

variability to design a sampling strategy motivated by forest structure. Groupings can be defined 

by principal component analysis (PCA), in which many highly correlated structural metrics are 

summarized into a set of fewer uncorrelated metrics. The PCA feature space can then be 
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stratified into classes representing different structural conditions (Kane, McGaughey, Lutz, et al. 

2010). More simply, structural groups can be defined by stratifying individual airborne metrics 

or combinations of uncorrelated metrics. After groups or strata are defined and located, sample 

plots can be randomly placed in each group.  

Next, the field component of the inventory would occur. While the measured attributes 

may change depending on the goal of the inventory, common attributes include the location, 

height, DBH, species, and condition of trees on sample plots (Smith 2002; White, Wulder, 

Varhola, et al. 2013). Concurrent with the manual inventory should be ground based three-

dimensional data acquisition. Regardless of the technology (DTP or TLS), the resulting point 

cloud should provide complete coverage of the plot and be georeferenced to supply the locations 

of the detected trees. The point cloud should be able to detect all or most trees, or at least come 

with an understanding of the trees expected to be missed with the technology (for example small, 

suppressed trees as in Chapter 4). Finally, the resulting dataset should provide sufficiently 

detailed measurements of the resulting stems, to derive tree attributes such as taper, volume, 

lean, or shape. These measurements should meet approximately similar accuracy requirements as 

NFIs – for example, within 2 cm of DBH, 10-20% of volume, and 1-3 cm of upper stem 

diameters (Liang et al. 2016). 

 

7.4.2. – Implementation and outcomes 

7.4.2.1. – Single date 

 Single data acquisitions for a next-generation forest inventory could be used to generate 

wall-to-wall predictions from an area-based modeling approach (Næsset 2002). Inputs to these 

models can be derived from the terrestrial point clouds, which would provide estimates of 
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attributes such as DBH or volume. Furthermore, the detailed nature of the point clouds could 

provide insight into output from the predictive models where conventional inventories may not. 

For example, where predictions have large deviations from the measured values, users could 

look to stand characteristics such as the species or age to support hypotheses explaining such 

deviations and to evaluate the consistency of the predictions across the range of conditions seen 

in the area of interest.  

 

7.4.2.2. – Multiple acquisitions 

 While acquisition of three-dimensional data at a single point in time can provide a 

detailed perspective of the forest at that time, the acquisition of multitemporal data provides an 

opportunity to investigate changes in tree size and condition across spatial scales. At fine scales, 

changes in individual trees could be seen in both aerial and terrestrial point clouds, particularly 

those geolocated in terrestrial point clouds. For example, multitemporal terrestrial acquisitions 

can be used to show differences in DBH leading to a non-destructive estimate of the annual 

increment of trees (Mokroš et al. 2020). Across broader spatial scales, multitemporal airborne 

acquisitions can be combined to assess stand differences between acquisitions (Tompalski, 

Rakofsky, et al. 2019) or to predict future stand growth (Tompalski et al. 2018). Just as with 

single-date acquisitions, the combination of airborne and terrestrial data can provide information 

about the condition of the forest or why the changes may have taken place (e.g. assessing 

disturbance or irregular growth). 
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7.5. – Impediments to implementation 

 Despite the extent to which three-dimensional remote sensing technologies have been 

used for augmenting conventional forest inventories, more work needs to be done in developing 

their use for widespread adoption. For example, the cost (approximately CAD$5 per ha for ALS) 

of data acquisition can be prohibitive, particularly across very broad scales (Wulder et al. 2008). 

However, research has shown that costs can be alleviated by using ALS transects or strip 

sampling with satellite data to interpolate metrics and estimates across broad extents (Babcock et 

al. 2018; Hilker, Wulder, and Coops 2008). Recent years have seen the development of new ALS 

technologies and methods for forest attribute estimation, such as multispectral (Wallace et al. 

2014) and single-photon LiDAR (Swatantran et al. 2016). While these technologies have shown 

promise in generating high-quality point clouds, more needs to be known before their widespread 

adoption, including their utility in different forest types and cost-effectiveness when compared to 

standard ALS, which uses near-infrared wavelengths. In addition, multispectral imagery has 

enhanced the spectral capabilities of DAP (Goodbody et al. 2018; Shen et al. 2019); however, 

increases in the number of image bands will likely lead to an increase in the time required to 

generate point clouds. These technologies are still in development but could be promising 

additions to available methods for providing airborne three-dimensional data for forest inventory. 

 TLS data acquisition also has seen rapid expansion in recent years, but still requires 

methodological and technological development before widespread implementation into forest 

inventories can be achieved. First, TLS units are generally expensive, costing as much as 

$40,000 or more (Eitel et al. 2013). While the potential value for data products is very high, the 

initial cost of the units may be prohibitive to some operators. However, the use of low-cost and 

low-resolution systems have been shown to produce similar data at a lower initial cost to the 
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user, while also reducing processing time and storage requirements (Hilker et al. 2012; Kelbe et 

al. 2015). Ground-based forest attribute estimation with TLS is generally more accurate than 

DTP (15-20% higher detection rate and >5% lower DBH RMSE; Liang et al. 2015), but 

accuracies also decrease with increasing stand homogeneity or density (Liang et al. 2018). While 

DTP has recently emerged as a potential cost-effective alternative to TLS, methodological and 

technological developments are still required to make this technology operational for larger areas 

and to have accuracies of resulting point clouds match those of TLS.  

To encourage widespread adoption of the technologies, steps should also be made in 

sharing and communicating methods, data, and resources. Many levels of government around the 

world have made three-dimensional remote sensing data freely available to the public (Kangas, 

Astrup, et al. 2018b). As an additional tool to forest managers and scientists, a central repository 

of data processing methods or easily replicable steps would help to ensure the consistency of 

processed data, especially across broad spatial or temporal extents. As the cost of ALS data 

acquisition can be prohibitive to some stakeholders, either centralized or localized cost sharing 

agreements could be used to provide data to meet an array of needs (Reutebuch, Andersen, and 

McGaughey 2005). 

 

7.6. – Context of this dissertation  

7.6.1. – Limitations 

 While the approaches developed in this research are valuable for deriving forest 

inventory attributes across a range of spatial and temporal scales, they have some limitations. 

First, DTP can produce accurate estimates of dimensional measurements such as DBH or taper, 

but the stand conditions are an important consideration when undertaking such an analysis. As 
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shown in Chapter 4, tree detection and DBH estimates are more accurate when the trees are 

larger and closer to the camera, while plot-level estimates are more accurate in less dense stands, 

with less occlusion with larger trees. Additionally, the processing and storage of the point clouds 

should be considered when undertaking this analysis. While some standard processing pipelines 

are in place to go from raw images to forest inventory data, there may be some manual 

intervention required in, e.g., aligning the images or deriving measurements from the point 

clouds. These interventions may be minor but would require additional training and knowledge 

from the user. 

Components of this thesis have demonstrated the capacity for three-dimensional remote 

sensing to provide detailed estimates at each spatial scale of a forest inventory. However, a 

sufficient quantity of terrestrial and airborne data were not acquired concurrently in the study 

area, so a complete end-to-end next generation forest inventory using three-dimensional point 

clouds could not be undertaken. Additionally, the results reported in Chapter 4 indicate that more 

work needs to be done to improve the consistency and accuracy of DTP methods across a range 

of forest types such as those found in a boreal mixedwood forest.  

 Limitations around the airborne datasets used in this thesis also exist. Predicted SSDs in 

Chapter 5 were classified as either unimodal or bimodal, whereas more complex structures and 

modality may have existed. In this case, nonparametric means of SSD estimation may have been 

more appropriate, but the estimation of such detail may have been inaccurate or inconsistent with 

low point densities of the ALS data used in this study (~1.5 points/m2 in the study area). 

Furthermore, SSD predictions were made at the cell level, while management may be done at the 

stand level, meaning that an additional scaling step would be needed to derive stand-level 

predictions. Just as with any forest inventory attribute estimate from ALS, errors in SSD 
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prediction are passed on to other modeling steps. In the case of Chapter 6, these were structural 

development phases following disturbance. This was addressed by using a large number of 

samples (>7,000 disturbances) to characterize structural development phases, but any errors 

would have been propagated to the estimated SSD for each phase. 

 

7.6.2. – Innovations 

 Chapter 3 and 4 developed novel methods for improving the cost-effectiveness of DTP at 

the individual tree and plot level, respectively. In Chapter 3, spherical cameras and known 

scaling distances were used to model the taper and volume of sample trees with a relatively small 

number of photographs and a low processing time. Chapter 4 applied similar techniques to the 

plot level to show the utility of DTP for assessing plot-level forest inventory attributes, in 

addition to demonstrating the influence of different acquisition and field conditions on the 

accuracy of point clouds.  

Widening the scope of inventory to Chapters 5 and 6 require the use of ALS to generate 

area-based estimates of forest structure. Boreal mixedwood forests exhibit a wide range of forest 

conditions, meaning that structural complexity may exhibit large variation in adjacent areas. 

Chapter 5 developed a novel method for estimation of stem size distributions (SSD) in these 

forest types which used the potential variation to contextualize the complexity of the estimated 

SSD. Chapter 6 investigated temporal components of forest inventory by incorporated these SSD 

estimates with photo-interpreted stand polygons of disturbance. While previous studies have 

used optical imagery or single ALS metrics to characterize the patterns of development 

following stand-replacing disturbance, I used a robust measure of forest structure (SSD) to 

characterize different structural phases across a wide range of species. 
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While the use of DTP for generating terrestrial estimates and ALS for estimating wall-to-

wall attributes have been previously demonstrated in other studies, they generally focus on 

simple or homogeneous forests. The utility of these technologies as they pertain to more complex 

forests is critical for their widespread applications in forest inventory. Refining these methods for 

use in heterogeneous forests is of particular importance to Canada, where mixedwood stands are 

a dominant component of the boreal forest which makes up 78% of the nation’s total forested 

area (Brandt et al. 2013). Additionally, this thesis grew knowledge around patterns of accuracy 

of DTP, underscoring the importance of stem visibility in terms of the mean DBH (> 15 cm), 

stand density (lower densities are more accurately detected), and the species of trees (those 

without low branches) which allow for more accurate detection and DBH estimation. This 

knowledge could be used to develop expectations and baselines for those looking to use similar 

methods in future work.  

 

7.6.3. – Future work 

Future work should also focus on automation of point cloud processing for DTP and 

approaches to enable the integration of data sources (e.g. ALS and DAP, ALS and TLS, DAP 

and DTP, etc.). When doing this, the cost-effectiveness and accuracy of using TLS or DTP when 

compared to conventional field-based estimates should be considered. Advancements in DTP 

could also determine the effectiveness of different image acquisition methods such as using 

video, drone imagery from above and below the canopy, or single pairs of stereo images.  

This dissertation was able to derive forest inventory estimates using DTP in a variety of 

forest types. However, work using this technology is still developing and more study is needed 

before it can be used in a fully operational context. Based on the methods and results from this 



132 

 

 

dissertation, the following methodological recommendations and considerations are presented to 

those wanting to undertake future study using DTP for forest attribute estimation: 

1. Consideration of field conditions 

a. Conditions such as the stem density (lower densities are more accurate), tree size 

(generally a mean DBH below 15 cm), and species (those without branches 

obscuring the lower portions of the stem) should be taken into consideration, with 

an expected range of accuracy associated with each 

2. Camera setup 

a. Spherical cameras such as those used in this work increase the field of view and 

allow for fewer images to be taken, but have greater distortion, especially as the 

distance from the image increases.  

b. Reduces the number of required images (about 0.26 per m2 of plot area) and 

allows for a potentially faster processing scheme as only a small set of images 

need to be matched at each time 

3. Taper curve matching 

a. Allows for estimation of DBH without needing to see stem at breast height 

b. Reducing possible error of cylinder fitting by matching a smoothed taper curve 

through potentially erroneous diameter measurements 

 

While nonparametric methods to SSD estimation have previously been used, these 

typically rely on more complex estimation techniques and may not generalize well to new areas 

(Bollandsås et al. 2013). Future work can be done in order to compare the conditions under 

which different estimation techniques are more accurate. This would be useful to understand the 
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forest types or airborne datasets that are more conducive to different estimation techniques such 

as ABA or nonparametric methods. 

Applications of wall-to-wall predictions of SSD could continue to be used in 

understanding patterns of structural development. While this dissertation did not make use of 

explicit age or non-stand replacing disturbance, future work could use finer temporal or 

disturbance information to understand more detailed patterns of development or dynamics 

following non-stand replacing disturbance. Bergeron et al. (2014) describe the different 

pathways that mixedwood stands may take in structural development, but more explicit 

quantification of these pathways would be useful to forest managers in order to understand the 

trajectories of stands as they develop and respond to non-stand replacing disturbance such as 

insect damage or drought (Coops et al. 2020). 

 

7.7. – Conclusions 

The importance of forests continues to increase with global ecological and economic 

changes. Dealing with these changes will require innovations in the means in which they are 

inventoried.  Gains from the augmentation of conventional forest inventories with three-

dimensional remotely sensed data can be seen at all spatial scales of inventory. For tactical 

inventories, the information gained from detailed stem reconstructions could yield an increase in 

resources or a better perspective of possible timber procurement. Operational forest inventories 

could incorporate detailed wall-to-wall estimates of current forest attributes or monitor these 

attributes through time, including the projection of future forest resources. Finally, strategic 

inventories would benefit from the spatially consistent nature of the data collected to allow for 

direct comparisons across sites with scalable estimates for regional or national forest inventories.  
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Changing resource demands and climatic conditions require cost-effective means of 

deriving robust and accurate forest inventory measurements. DTP is one such tool that could be 

used to enhance traditional forest inventories. This dissertation showed that accurate estimates of 

tree location and DBH can be obtained with DTP under certain forest conditions, with a variety 

of possible applications such as updating existing forest inventories or determining 

merchantability.  However, requirements of stem visibility and data storage and processing 

requirements may be potential drawbacks, with more study required to advance the operational 

capacity of the technology. Nevertheless, results from this dissertation showed promise in the use 

of DTP in a range of forest types, demonstrating its potential future use as an effective 

technology in forest inventory when conditions are appropriate. 

The structurally complex SSDs that exist in the boreal mixedwood forest should be fit 

with correspondingly complex distribution models. The difference in structures among stands 

requires detailed, landscape-level information to guide the fitting and modeling process. Using a 

differentiation step allowed me to fit structurally appropriate SSDs to respective stands and 

allowed for more robust characterizations of SSD than using a single model for the entire study 

area. 

This dissertation also demonstrated the ability of wall-to-wall, ALS-derived SSDs to 

capture differences in structural development following stand-replacing disturbance. 

Understanding forest structural development is critical to interpreting past changes and 

predicting future scenarios. Information on the general structure of stands at different 

developmental stages can be used by forest managers to help prescribe silvicultural treatments, 

by ecologists to understand differences in development between stands, or by governments to 

help inform policy on management of forests. 
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Uncertain future environmental conditions underscore the need to continue the 

development of methods for representative, consistent, timely, and effective monitoring of the 

world’s forests. Three-dimensional remote sensing technologies have the capacity to fill in 

critical data and knowledge gaps currently seen in some forest inventories. If used successfully, 

these technologies can be used to augment conventional inventories to inform sustainable and 

effective management and monitoring of the world’s 4 billion hectares of forest (FAO 2010). 
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