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József Solymosi, Mathematics
. Supervisory Committee Member

ii



Abstract

In this thesis, we make progress on the problem of enumerating tableaux on non-classical

shapes by introducing a general family of P-partitions that we call periodic P-partitions.

Such a family of P-partitions generalizes the parallelogramic shapes, which were analysed

by López, Martı́nez, Pérez, Pérez, Basova, Sun, Tewari, and van Willigenburg, and certain

truncated shifted shapes, where truncated shifted shapes were investigated by Adin, King,

Roichman, and Panova. By introducing a separation property for posets and by proving a

relationship between this property and P-partitions, we prove that periodic P-partitions can

be enumerated with a homogeneous first-order matrix difference equation.

Afterwards, we consider families of finite sets that we call shellable and that have been

characterized by Chang and by Hirst and Hughes as being the families of sets that admit

unique solutions to Hall’s marriage problem. By introducing constructions on families of sets

that satisfy Hall’s Marriage Condition, and by using a combinatorial analogue of a shelling

order, we prove that shellable families can be characterized by using a generalized notion

of hook-lengths. Then, we introduce a natural generalization of standard skew tableaux

and Edelman and Greene’s balanced tableaux, then prove an existence result about such a

generalization using our characterization of shellable families.
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Lay Summary

In combinatorics, counting the number of items in a collection, or the number of objects

that satisfy a certain property, can be very difficult and often represents the limits of what is

currently known. Such problems pose interesting challenges to researchers. In this thesis,

we count the number of ways in which certain objects that exhibit a fixed repeating pattern

can be labelled with ordered sequences of numbers.

In discrete maths, there are ways of grouping objects so that every group of objects can be

assigned a suitable representative. Also, in discrete maths, there are labelled arrangements

of numbers where there are restrictions on where the numbers that fill the arrangement are

positioned. In this thesis, we prove some structural results that give a relationship between

the above grouping of objects and the above arrangement of numbers.
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Preface

Chapters 3 to 5 of my thesis originated as a project to generalize enumerative results for

certain tableaux from Tewari and van Willigenburg’s paper [49]. I was successful in accom-

plishing the orignal goals relating to this project and generalized them to P-partitions in the

above chapters. I chose this project under the guidance of my supervisor, Stephanie van

Willigenburg. Moreover, I am responsible for all aspects of the above work and I plan to

submit it for publication.

Chapters 6 to 7 of my thesis originated from a suggestion made by my supervisor to further

develop an earlier result that I derived for skew tableaux. I was successful in developing my

original result, leading to the above two chapters. Furthermore, I have generalized the results

in Chapters 6 and 7 and submitted them for publication. I am responsible for all aspects of

the above work.
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Chapter 1

Introduction

P-partitions were first considered by MacMahon in [31]. Later on, the theory of P-partitions

was developed by Gessel and Stanley [18, 46]. This theory is known to have applications

to, for instance, quasisymmetric functions as P-partitions are essential for the theory of qua-

sisymmetric functions [18].

In this thesis, we investigate the problem of enumerating tableaux on non-classical shapes

by introducing a general class of P-partitions that we call periodic P-partitions. We first

introduce the notion of a connected triple for a poset and prove that periodic P-partitions

generalize many known tableau on non-classical shapes considered in the literature. After-

wards, we consider the problem of counting the number of periodic P-partitions by defining

collections of numbers that sum to this number. We prove a structural property of connected

triples to prove that the aforementioned collections of numbers, represented as column vec-

tors, can be enumerated with a homogeneous first-order matrix difference equation in which

the entries of the matrix have natural combinatorial descriptions.
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Our approach towards P-partitions does not provide closed-form formulas or product for-

mulas for enumeration. On the other hand, our approach with P-partitions is not limited to

the bijective fillings of non-classical shapes that are usually analysed in the literature [1–

3, 27, 38, 47, 49]. In Chapter 8, we briefly outline how our results imply that the P-partitions

we are interested in satisfy constant coefficient linear recurrences, generalizing tableau enu-

meration results for non-classical shapes from López, Martı́nez, Pérez, Pérez, and Basova

[27], from Sun [47], and from Tewari and van Willigenburg [49] that we will describe later

in this section. We now give an overview of the research that our results on P-partitions can

be applied to.

Counting the number of P-partitions is a generalization of the problem of counting the num-

ber of linear extensions of a poset. Counting the number of linear extensions of a poset is in

general an interesting problem. It has been considered ([44], p. 258) to be very important

for measuring the complexity of a poset. A well-known special case of this is the problem

of enumerating standard Young tableaux of various shapes [2]. Among the standard Young

tableaux on non-classical shapes that the results of this thesis applies to are d-dimensional

tableaux of certain shapes for any d ≥ 3, and standard Young tableaux on many of the trun-

cated shifted shapes.

A class of standard Young tableaux that is of recent interest are standard Young tableaux

of truncated shifted shapes. Certain truncated shifted shapes, known as truncated shifted

staircase shapes, are known to enumerate the number of geodescics between distinguished

pairs of antipodes in the flip graph of triangle-free triangulations [3]. Special cases of enu-

merating standard Young tableaux on truncated shifted shapes have been established. Adin,

King, and Roichman [1] enumerated such tableaux for shifted staircase shapes truncated by

a square, or a square minus a single cell in the south-west corner, and Panova [38] indepen-
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dently proved, using different methods, the special case of this problem for shifted staircase

shapes truncated by a single cell.

Hardin and Heinz conjectured ([43], A181196) constant coefficient recurrence relations for

counting the number of standard Young tableaux on shifted strips with constant width up

to when the width is seven. Standard Young tableaux on shifted strips with constant width

are known to correspond to quasisymmetric functions known as the canonical basis, which

is a newly discovered basis of quasisymmetric functions, via descent sets of standard re-

verse composition tableaux and fundamental quasisymmetric functions [49]. These tableaux

were also shown to be connected to the representation theory of the 0-Hecke algebra [49].

Moreover, standard Young tableaux on shifted strips with constant width are also known to

be connected to Higman’s conjecture, which is concerned with enumerating the number of

conjugacy classes in the group of upper unitriangular n by n matrices over Fq [27].

Later research established that Hardin and Heinz’s conjectures are correct. Tewari and

van Willigenburg [49] proved Hardin and Heinz’s conjecture when the constant width is

3, Sun [47] proved Hardin and Heinz’s conjecture when the constant width was 4 and 5, and

López, Martı́nez, Pérez, Pérez, and Basova proved all of Hardin and Heinz’s recurrences and

established a generalization of these recurrences when the width k ∈ N is arbitrary [27].

Lastly, another class of P-partitions are semistandard tableaux. Semistandard tableaux are

fundamental to constructing Schur functions [45] and they are deeply connected to the Specht

modules of the symmetric group [41]. A very well-known class of numbers are the Kostka

numbers, which are the numbers of semistandard tableaux on partition shapes [41]. However,

very little is known about this number [45].

The work of this thesis implies that semistandard tableaux on certain shapes, such as the
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parallelogramic shapes considered by López et.al., Sun, and Tewari and van Willigenburg,

can also be enumerated with a matrix difference equation as described at the beginning of

this section.

Hall’s Marriage Theorem is a combinatorial theorem that characterises when a finite family

of sets has a system of distinct representatives, which is also called a transversal. Hall [21]

proved that such a family has a system of distinct representatives if and only if this family

satisfies the marriage condition. This theorem is known to be equivalent to at least six other

theorems [40] which include Dilworth’s Theorem, Menger’s Theorem, and the Max-Flow

Min-Cut Theorem.

Hall Jr. proved [22] that Hall’s Marriage Theorem also holds for arbitrary families of finite

sets. Afterwards, Chang [10] noted how Hall Jr.’s work in [22] can be used to characterize

marriage problems with unique solutions. Specifically, the families of sets that admit mar-

riage problems with unique solutions were characterized [10]. Later on, Hirst and Hughes

proved that such a characterization of marriage problems with unique solutions can be de-

rived by only using a subsystem of second order arithmetic known as RCA0 [24], and they

showed that their work in [24] can also be extended to marriage problems with a fixed finite

number of solutions [23]. In this thesis, we call the families of finite sets that admit marriage

problems with unique solutions shellable and give a new characterization of these families

of sets by generalizing the notion of standard Young tableaux and Edelman and Greene’s

balanced tableaux.

Standard skew tableaux are well-known and intensively studied in algebraic combinatorics,

for example [25, 35, 36, 45]. Moreover, another class of tableaux was introduced by Edelman

and Greene in [13, 14], where they defined balanced tableaux on partition shapes. In investi-

gating the number of maximal chains in the weak Bruhat order of the symmetric group, Edel-
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man and Greene proved [13, 14] that the number of balanced tableaux of a given partition

shape equals the number of standard Young tableaux of that shape. Since then, connections

to random sorting networks [5], the Lascoux-Schützenberger tree [28], and a generalization

of balanced tableaux pertaining to Schubert polynomials [15] have been explored.

Lastly, properties of products of hook-lengths have recently enjoyed some attention by Pak

et.al. [34, 39] and by Swanson [48]. In particular, an inequality between products of hook-

lengths and products of dual hook-lengths was derived [34, 39, 48]. We introduce a gen-

eralization of standard Young tableaux and balanced tableaux for skew shapes, show, using

our characterization of marriage problems with unique solutions, that the number of such

generalizations that can exist is given by a product of hook-lengths, and show, as a conse-

quence, that the average number of tableaux that belongs to such a generalization is given

by the hook-length formula. We then discuss extensions and possible applications of our

characterization in Chapter 8.

This thesis is structured as follows. In Chapter 2, we give an overview of the preliminaries

and describe the conventions that we will follow. In Chapter 3, we describe in detail the

P-partition enumeration problem we are considering. In Chapter 4, we introduce the no-

tion of a connected triple, formally define periodic P-partitions, give illuminating examples,

and prove that this definition includes many tableaux on certain d-dimensional non-classical

shapes for all d ≥ 3. In Chapter 5, we consider collections of P-partitions, then prove a struc-

tural property of connected triples to prove that these collections satisfy a matrix difference

equation.

In Chapter 6, we introduce a stronger form of the marriage condition and characterize it using

generalized hook-lengths. Moreover, in Chapter 7, we explain how to apply our results to

a generalization of standard Young tableaux and balanced tableaux for skew tableaux and
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breifly indicate ways in which we can extend our approach. Lastly, in Chapter 8, we give an

outline of future directions for this research.
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Chapter 2

Preliminaries

In this chapter, we give the preliminaries that will be needed for this thesis. Throughout

this thesis, let N denote the set of positive integers and let N0 denote the set of non-negative

integers.

For all positive integers n, define [n] = {1,2, . . . ,n}. Moreover, for all positive integers n1

and n2 such that n1 ≤ n2, define [n1,n2] = {k ∈ N : n1 ≤ k ≤ n2}. In particular, [n,n] = {n},

[n,n+ 1] = {n,n+ 1}, [n,n+ 2] = {n,n+ 1,n+ 2}, and so on. Furthermore, for all n ∈ Z,

define [n,∞) = {k ∈ Z : k ≥ n}.

Let X and Y be sets. Define X \Y = {r ∈ X : r /∈ Y}. If X is a subset of Y , then write X ⊆ Y .

Moreover, if X is a proper subset of Y , then write X ⊂ Y . Lastly, if X is not a subset of

Y , then write X * Y . If n ∈ N and if X1, X2, . . . , Xn are sets, then the Cartesian product

X1×X2×·· ·×Xn of X1, X2, . . . , and Xn is the set of ordered n-tuples {(r1,r2, . . . ,rn) : ∀i ∈

[n],ri ∈ Xi}. If X1 = X2 = · · · = Xn and X = X1, then write Xn = X1×X2×·· ·×Xn. We let

Zd denote Xn if X = Z and d = n. Moreover, let /0 denote the empty set. Furthermore, if X
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is a set, then let |X | denote the cardinality of X .

We denote any sequence a1, a2, . . . by (an)n=1,2,.... Lastly, let w∈N. A sequence (an)n=1,2,...

is periodic with period w if an = an+w for all n ∈ N.

A binary relation on a set X is a subset ℜ of X ×X . We write r1 ℜ r2 if (r1,r2) ∈ ℜ. A

binary relation ℜ on X is reflexive if r ℜ r for all r ∈ X , symmetric if, for all r1,r2 ∈ X ,

r1 ℜ r2 implies that r2 ℜ r1, antisymmetric if, for all r1,r2 ∈ X , r1 ℜ r2 and r2 ℜ r1 implies

that r1 = r2, and transitive if, for all r1,r2,r3 ∈ X , r1 ℜ r2 and r2 ℜ r3 implies that r1 ℜ r3.

An equivalence relation ≡ on X is a binary relation on X that is reflexive, symmetric and

transitive. Moreover, a partial order ≤ on X is a binary relation on X that is reflexive,

antisymmetric, and transitive.

Let X be a set, and let≡ be an equivalence relation on X . Then for all r ∈ X , the equivalence

class of r in X with respect to ≡ is the set {r1 ∈ X : r ≡ r1}. An equivalence class in X with

respect to ≡ is an equivalence class of r in X with respect to ≡ for some r ∈ X . Lastly, let

X/≡ denote the set of all equivalence classes in X with respect to ≡.

Example 2.1. Let X = {1,2,3}, and let≡ be the set {(1,1),(2,2),(3,3),(1,2),(2,1)}. Then

1 ≡ 1, 2 ≡ 2, 3 ≡ 3, 1 ≡ 2, and 2 ≡ 1. Moreover, the equivalence classes of X with respect

to ≡ are {1,2} and {3}. Hence, X/≡ equals {{1,2},{3}}.

In order to clarify the conventions that we will follow when describing posets, we briefly

introduce posets and related notions below. More details can be found in [12, 42, 44]. A set

P equipped with a partial order ≤ on P is called a poset.

When describing posets, we will usually say “let P be a poset”, “if P is a poset”, etc. without

explicitly mentioning the partial order ≤ on P. Moreover, an element p of a poset P with
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partial order≤ is an element of the set P and we write p ∈ P. Similarly, a subset X of a poset

P with partial order ≤ is a subset of the set P and we write X ⊆ P. In particular, P⊆ P. We

will also write p ≥ q if q ≤ p, p < q if p ≤ q and p 6= q, p > q if q < p, p � q if p ≤ q is

false, p� q if q� p, p≮ q if p < q is false, and p≯ q if q≮ p. Moreover, if P is a poset with

partial order ≤ and if p,q ∈ P, then we write p ‖ q, and say that p and q are incomparable,

if p � q and q � p. A partial order ≤ on a poset P is a total order on P if, for all p,q ∈ P,

p≤ q or q≤ p.

We will indicate which poset we are referring to if we want to clarify which partial order we

are using. For instance, we will say “x ≤ y in P” to mean that x ≤ y, where x,y ∈ P and ≤

is the partial order on P, “x > y > z in P” to mean that z ≤ y, y ≤ x, x 6= y, and y 6= z where

x,y,z ∈ P and ≤ is the partial order on P, and “x ‖ y in P” to mean that x ≤ y is false and

y≤ x is false, where x,y ∈ P and ≤ is the partial order on P.

We will assume the following when describing subsets of posets. In this paragraph, we will

use subscripts to indicate which partial order we are referring to. Let P be a poset with partial

order ≤P. Then a subposet of P is a subset Q of P equipped with the partial order ≤Q on

Q defined, for all p,q ∈ Q, by p ≤Q q if p ≤P q. In particular, all subposets are posets. For

convenience, we will regard a subset of a poset P as the subposet of P that corresponds to

that subset, and we will regard a subposet of a poset P as the subset of P that corresponds to

that subposet. For instance, if P is a poset and if Q is a subset of P, then when we say things

such as “Q is order isomorphic to a five element poset”, we are assuming that Q is a subposet

of P in the above sense. Moreover, we will, when defining subposets Q of posets P, say “let

Q be a subset of a poset P”, “let P be a poset and let Q⊆ P”, and so on.

Definition 2.2 (Folklore, cf. [2]). We will regard Z as a poset with total order defined by

· · ·<−1 < 0 < 1 < · · · . Moreover, for any d ∈ N, we will regard Zd as a poset with partial

9



order defined by (k1,k2, . . . ,kd)≤ (`1, `2, . . . , `d) if ki ≤ `i for all 1≤ i≤ d.

If d ∈ N and if X ⊆ Zd , then, as explained in the paragraph above Definition 2.2, X is a

subposet of Zd . Furthermore, if u,v ∈ Zd , u = (k1,k2, . . . ,kd), and v = (`1, `2, . . . , `d), then

write u+ v = (k1 + `1,k2 + `2, . . . ,kd + `d), write ku = (k k1,k k2, . . . ,k kd) for all k ∈ Z, and

write v−u = v+ku if k =−1. Lastly, for any X ⊆ Zd and u ∈ Zd , write X +u = {v+u : v ∈

X} and write X−u = {v−u : v ∈ X}.

If P is a poset, then an element p ∈ P is a minimal element of P if for all q ∈ P, q ≥ p in

P or q ‖ p in P. Moreover, a subset X ⊆ P is an antichain of P if, for all p,q ∈ X , p ‖ q in

P. A poset P is finite if P has a finite number of elements; that is, if |P| is finite. Similarly,

a poset P is countable if |P| is countable, and countably infinite if |P| is countably infinite.

Moreover, a poset P is locally finite if for all p,q∈ P such that p≤ q, the number of elements

p1 ∈ P such that p≤ p1 ≤ q in P is finite.

We use the terms function and map interchangeably. Moreover, we define functions on posets

as follows. Assume that R1 and R2 are such that R1 and R2 are posets, R1 is a poset and R2 is

a set, or R1 is a set and R2 is a poset. Then a function f : R1→ R2 from R1 to R2 is a function

f0 from the set of elements of R1 to the set of elements of R2 and we write f (r) = f0(r) for

all r ∈ R1. Let f and f0 be as in the previous sentence. Then f is injective if f0 is injective,

f is surjective if f0 is surjective, and f is bijective if f0 is bijective. We also call a function

f : R1→ R2 a map from R1 to R2.

If R1 and R2 are such that R1 and R2 are sets, R1 and R2 are posets, R1 is a poset and R2 is a

set, or R1 is a set and R2 is a poset, then define the following. Let f : R1→ R2 be a function.

Then for all X ⊆ R1, let f (X) = { f (r) : r ∈ X}, and, for all Y ⊆ R2, let f−1(Y ) = {r ∈ R1 :

f (r) ∈ Y}. If f is injective, then write f−1(r) = f−1({r}) for all r ∈ f (R1). For all X ⊆ R1,
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let the restriction of f to X , which we denote by f |X , be the function g : X → R2 defined

by g(r) = f (r) for all r ∈ X . Moreover, assume that R3 is a set or a poset. If f : R1→ R2

and g : R2 → R3 are functions, then let g ◦ f denote the function h : R1 → R3 defined by

h(r) = g( f (r)) for all r ∈ R1. Moreover, if f : R1→ R1 is a function, then write f 1 = f and,

for all n ∈ N, write f n+1 = f ◦ f n. Furthermore, if f : R1→ R1 is a bijection, then let f 0 be

the identity map on X and, for all n ∈ Z, let f n+1 = f ◦ f n.

Let P and Q be posets and let f : P→ Q be a function. Then f is order preserving if for all

p,q∈ P, p≤ q implies that f (p)≤ f (q), order reversing if for all p,q∈ P, p≤ q implies that

f (p) ≥ f (q), an order embedding if f is injective and if, for all p,q ∈ P, p ≤ q if and only

if f (p)≤ f (q), and an order isomorphism if f is a surjective order embedding. Moreover, if

P is a poset and if f : P→ P is a function, then f is an order automorphism if f is an order

isomorphism.

We will define Young diagrams in the following way (cf. [2], also cf. [30, 41, 44, 45].)

A Young diagram is the empty set or a finite subset X of N2 such that for some i, j ∈ N,

(1, j) ∈ X and (i,1) ∈ X . We call the elements of a Young diagram X the cells of X . Lastly,

given a Young diagram X , define, for all i ∈ N, row i of X to be the following subset of cells

{r ∈ X : ∃ j ∈ N such that r = (i, j)}

and, for all j ∈ N, define column j of X to be the following subset of cells

{r ∈ X : ∃i ∈ N such that r = (i, j)}.

Sometimes, when we mention a cell r = (i, j) in a Young diagram, we write (i, j) instead of

r.
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In order for us to follow the conventions used in the literature [2, 30, 41, 44, 45], we will

always depict Young diagrams by using an array of boxes where each such box has unit

area and where each such box contains an element of N2 at its centre. Moreover, we also

follow conventions in the literature by doing the following. We will, when depicting a Young

diagram X , always draw row i+1 of X beneath row i and we will always draw column j+1

to the right of column j.

Example 2.3. If X1 = {(1,1),(1,2),(1,3)}, X2 = {(1,1),(1,3),(1,6),(1,7)}, and X3 =

{(1,1),(1,3),(2,2),(3,1),(3,3)}, then the Young diagram X1 is depicted by

,

the Young diagram X2 is depicted by

,

and the Young diagram X3 is depicted by

.

Moreover, row 1 of X1 is X1, column j of X1, where 1≤ j ≤ 3, is {(1, j)}, row 1 of X2 is X2,

column j of X2, where j ∈ {1,3,6,7}, is {(1, j)}, row 1 of X3 is {(1,1),(1,3)}, row 2 of X3

is {(2,2)}, row 3 of X3 is {(3,1),(3,3)}, column 1 of X3 is {(1,1),(3,1)}, column 2 of X3 is

{(2,2)}, and column 3 of X3 is {(1,3),(3,3)}.

Let P be a poset, and let p,q ∈ P. Then q covers p, or p is covered by q, if p < q in P and no

element p′ ∈ P satisfies p < p′ < q in P. If P is a finite poset, then a Hasse diagram of P is a
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visual representation of P such that the elements of P are denoted by small non-intersecting

circles and, for all p,q∈P such that q covers p, q is drawn above p and a line segment, or arc,

is drawn between p to q. We call the non-intersecting circles nodes. Sometimes, when we

want to emphasize certain elements in a finite poset, we will replace the nodes corresponding

to those elements with the elements themselves.

Example 2.4. Let P be the finite poset with elements p1, p2, p3, p4 and partial order on P

defined by p1 < p2, p2 > p3, and p3 < p4. Then a Hasse diagram of P is depicted below.

◦

◦

◦

◦

If we want to emphasize the elements of P, then we write

p1

p2

p3

p4

.

We will depict posets using Hasse diagrams. Moreover, if X is a Young diagram, then, as

X ⊂ Z2, we will interpret X as a poset with partial order as described earlier in this chapter.

So if P is a finite poset that is order isomorphic to a poset Q such that Q is a Young diagram,

then we will sometimes depict P with the Young diagram Q. The orientation of the elements

depicted in a Young diagram is different from the orientation of elements depicted in a Hasse

diagram. In a Hasse diagram, p < q implies that q is positioned above p, but in a Young

diagram, p < q implies that q cannot be positioned to the left of p and q cannot be positioned

above p. We illustrate this with an example.

Example 2.5. If P is the poset depicted by the following Hasse diagram

13



◦

◦

◦

◦ ◦

◦◦ ,

then any of the Young diagrams shown below can also be used to depict P.

If M is a matrix, then let M(i, j) denote the entry in the ith row and jth column of M. A

column vector is a matrix with one column, and a row rector is a matrix with one row. An n1

by n2 matrix is a matrix with n1 rows and n2 columns. If v is a column vector with N rows,

then for all 1≤ i≤ N, let v(i) denote the entry in the ith row of v.

Consider the finite set [n]. A set partition of [n] is a set F of non-empty subsets of [n] such

that every element of [n] is contained in exactly one element of F . A family F of sets is a

surjective function h : I→ X where I and X are sets and where every element of X is a set.

A subfamily F ′ of a family F of sets is the restricion of a family h : I→ X to some subset

I′ of I.

Let F be a family h : I→ X of sets. Then we define a member F of F to be an ordered pair

(i,h(i)) where i∈ I. When we use subscripts to describe the members F of a family h : I→ X

of sets, the subscripts do not necessarily have to be elements of I. If we want to indicate that

F is a member of F , then we write F ∈F . We write F1,F2, · · · ∈F if Fk ∈F for all k.
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Moreover, two members F1 = (i1,h(i1)) and F2 = (i2,h(i2)) of F are different if i1 6= i2. If

F = (i,h(i)) is a member of F , then we write r ∈ F if r ∈ h(i). We write r1,r2, · · · ∈ F if

rk ∈ F for all k. For any set Y , define a function f : F → Y from F to Y to be a function

g : I→ Y , and for all members F ∈F , write f (F) = g(i) if i ∈ I satisfies F = (i,h(i)). We

also call f : F →Y a map from F to Y . Such a function f : F →Y is injective if F1,F2 ∈F

and f (F1) = f (F2) implies that F1 and F2 are not different.

Let F be a family h : I → X of sets. When describing the members F = (i,h(i)) of such

families, we will write h(i) instead of the ordered pair (i,h(i)). We will also use set-theoretic

notation to describe families of sets by writing F = {F : F ∈ F}. For instance, if F is

the family of sets defined by h : {1,2} → {{1}}, then we write F = {{1},{1}}, where the

members (1,{1}) and (2,{1}) of F are both denoted by {1}. Moreover, we write |F |= |I|,

and say that |F | is the number of members of F . A family F of sets is finite if |F | is finite.

Lastly, if F is a family h : I→ X of sets, then write
⋃

F∈F F =
⋃

r∈I h(r).

For all n ∈ N, a partition λ of n, written λ ` n, is a weakly decreasing sequence of positive

integers whose sum is n. We write λ = (λ1,λ2, . . . ,λ`) to denote such a partition, where

λi ∈ N for all 1 ≤ i ≤ ` and λ1 +λ2 + · · ·+λ` = n. For instance, (3,2,2) is a partition of 7

and (3,2,1) is a partition of 6. We also let /0 denote the empty partition, which we define

to be the only partition of 0. Whether the symbol /0 refers to the empty set or to the empty

partition can be easily determined from context.
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Chapter 3

The P-partition enumeration problem

In this chapter, we define some essential terminology and describe the notation that we will

use. Afterwards, we describe the P-partition enumeration problem that we will be focusing

on in this thesis.

If X is a finite set, then a labelling of X is a bijection f : X → [k] where k = |X |. Next,

we introduce terminology for (P,ω)-partitions from [44], but extend labellings to countably

infinite posets and define A (Q,ω) in a non-standard way. If P is a finite poset, then a

labelling of P is a bijection ω : P→ [k] where k = |P|. Moreover, if P is a countably infinite

poset, then a labelling of P is a bijection ω : P→Z. Recall from Chapter 2 that a map f : P→

Q, where P and Q are posets, is order-reversing if p1 ≤ p2 in P implies f (p2)≤ f (p1) in Q.

If P is a countable poset, then a labelling ω of P is natural if ω is an order preserving map

and dual natural if ω is an order reversing map. If P is a finite poset and if ω is a labelling

of P, then a (P,ω)-partition is an order-reversing map f : P→ N0 such that f (x) > f (y) if

x < y and ω(x)> ω(y). We sometimes call a (P,ω)-partition a P-partition. Lastly, if P is a
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countable poset, if Q is a finite poset such that Q ⊆ P, and if ω is a labelling of P, then let

A (Q,ω) denote the set of order-reversing maps U : Q→ N0 such that U(x)>U(y) if x < y

and ω(x)> ω(y). If Q1 ⊆Q, then we let U |Q1 denote the restriction of the function U to Q1.

If P is a poset, then we will depict a labelling or an order-reversing map on P with a Hasse

diagram (or a Young diagram) whose nodes (or cells) are filled with integers. Specifically, if

P is a poset, if p ∈ P, if X ⊆ Z, and if f : P→ X satisfies f (p) = k, then, when depicting f

with a diagram, replace the node (or fill in the cell) corresponding to p with k.

Example 3.1. If (P,≤) is the poset depicted by the left-most diagram shown below, where

P = {p1, p2, p3, p4}, and if f : P→ Z is a function such that f (p1) = 4, f (p2) = 2, f (p3) =

−1, and f (p4) = 3, then we will depict f with the right-most diagram shown below.

p4

p1 p2 p3

3

4 2 −1

Example 3.2. If (P,≤) is the poset depicted by the left-most diagram shown below, where

P = {p1, p2, p3}, and if f : P→ {1,2,3} is a function such that f (p1) = 3, f (p2) = 2, and

f (p3) = 2, then we will depict f with the right-most diagram shown below.

p1
p2 p3

3
2 2

If P is a finite poset and if ω is a labelling of P, then we would like to say that two elements

U1,U2 ∈A (P,ω) are the same if the relative orderings of their entries are the same. Hence,

we define the following equivalence relation on order preserving maps.

Definition 3.3. Let P be a poset, let S1 and S2 be subsets of Z, and let f1 : P→ S1 and

f2 : P→ S2 be maps. Then f1 is order equivalent to f2 if there exists an order isomorphism
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g : f1(P)→ f2(P) such that f2 = g◦ f1. Lastly, we write f1 ≡ f2 if f1 is order equivalent to

f2.

Example 3.4. Let f1 : P→ Z and f2 : P→ Z be depicted by

5 2 2
6 7

and 8 −1−1
9 15

respectively. Then f1(P) = {2,5,6,7}, f2(P) = {−1,8,9,15}, and g : f1(P) → f2(P) is

defined by g(2) = −1, g(5) = 8, g(6) = 9, and g(7) = 15. Since f2 = g ◦ f1, and since g is

an order isomorphism, f1 is order equivalent to f2.

Remark 3.5. The definition of A (Q,ω) we are using is essentially the same as the standard

definition of A (Q,ω) given in [44]. Let P and Q be posets such that Q ⊆ P, and let ω

be a labelling of P. Moreover, let ωQ be the labelling of Q such that ωQ ≡ ω|Q. Then,

A (Q,ω) = A (Q,ωQ).

We now formally define the (P,ω)-partitions that we will count in this thesis.

Definition 3.6. Let P and Q be posets such that Q is finite and Q⊆ P. Moreover, let ω be a

labelling of P and let≡Q,ω denote the equivalence relation on A (Q,ω) defined by f ≡Q,ω g

if f is order equivalent to g. Then define

Tb(Q,ω) = A (Q,ω)/≡Q,ω

and define

|Q,ω|= |Tb(Q,ω)|.

Moreover, if Q1 ⊆Q and if T ∈ Tb(Q,ω), then let T |Q1 be the element T ′ of Tb(Q1,ω) such

that, for all U ∈A (Q,ω) satisfying U ∈ T , U |Q1 ∈ T ′.
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Example 3.7. Let P be depicted by the left-most six cell diagram shown below, let Q ⊆ P

consist of the cells of the left-most diagram that are filled with bullets, and let ω : P→

{1,2,3,4,5,6} be depicted by the right-most diagram shown below.

• • •
• •

2 1 3
6 4 5

For all 1 ≤ k ≤ 6, let pk = ω−1(k). Then A (P,ω) consists of the order-preserving maps

f : P→N0 such that f (p2)> f (p1), f (p1)≥ f (p3), f (p1)≥ f (p6), f (p3)≥ f (p4), f (p6)>

f (p4), and f (p4)≥ f (p5). Three of the elements in A (Q,ω) are depicted as follows.

3 2 2
2 1

5 4 3
2 1

10 9 9
9 7

The element of A (Q,ω) depicted by the left-most diagram shown above is order equivalent

to the element of A (Q,ω) depicted by the right-most diagram shown above. However, the

element of A (Q,ω) depicted by the middle diagram shown above is not order equivalent to

either of the other two elements just mentioned.

An example of an element of Tb(Q,ω) is the following subset of A (Q,ω).

3 2 2
2 1

, 8 5 5
5 4

, 10 1 1
1 0

, . . .

Remark 3.8. If T ∈ Tb(Q,ω), then we will depict T with one of the elements of T . For

example, if T is the element of Tb(Q,ω) whose elements are depicted below

3 2 2
2 1

, 8 5 5
5 4

, 10 1 1
1 0

, . . .

then we will simply depict T with any one of the above diagrams. For instance, we may say
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that T is depicted by

8 5 5
5 4

.
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Chapter 4

Periodic (P,ω)-partitions

In this chapter, we define periodic P-partitions and investigate classes of periodic P-partitions

that exist as follows. We first explain why periodic P-partitions include parallelogramic

shapes and certain truncated shifted shapes. Then, we prove that periodic P-partitions also

include certain d-dimensional, for d ≥ 3, analogues of parallelogramic shapes. Lastly, we

construct an example that differs very much from a parallelogramic shape or a truncated

shifted shape.

In this thesis, we will count the quantity |P,ω| by defining a notion of separation for the poset

P.

Definition 4.1. Let P be a poset. Then a connected triple (A,B,C) of P is an ordered triple

(A,B,C) that satisfies the following two properties.

1. A, B, and C are non-empty subsets of P, A∪B∪C = P, and A∩B = B∩C = A∩C = /0.

2. For all p1 ∈ A and for all p2 ∈C, there exists an element p ∈ B such that p1 < p < p2
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in P.

Moreover, if B is a non-empty subset of P, then B connects P if there exist non-empty subsets

A and C of P such that (A,B,C) is a connected triple of P.

Example 4.2. A parallelogramic shape [27] is a Young diagram X such that for some n,k ∈

N,

X =
n⋃

i=1

k⋃
j=1

{(i, j+ i−1)}.

For instance, if n = 3 and k = 5, then the corresponding parallelogramic shape X is the

following.

Such shapes are also called shifted strips where the parameter k is called the width of such a

strip [47], and they were investigated in [27], [47], and [49]. In this thesis, we will interpret

such shapes as posets in the way specified in Chapter 2.

We make the following observation which can be generalized to any parallelogramic shape.

If P is the poset corresponding to the parallelogramic shape with k = 4 and n = 4 depicted

below, then if A is the subset of P that is depicted by the blank cells, if B is the the subset of

P that is depicted by the cells filled with bullets, and if C is the subset of P that is depicted

by the cells filled with asterisks, then (A,B,C) is a connected triple of P.

•
• • •
∗ ∗ ∗ ∗

We extend the usual definition of the successor function from the natural numbers to the
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integers. Namely, let s : Z→ Z be the successor function defined by

s(n) = n+1

for all n ∈ Z. With this function, we define periodic quadruple systems.

Definition 4.3. Let Z be a countably infinite poset, and let ω be a labelling of Z. Moreover,

let π : Z→ Z be a surjective order preserving map, and let θ : Z→ Z be an order automor-

phism on Z. Then the ordered quadruple (Z,ω,π,θ) is a periodic quadruple system if the

following three properties hold.

1. There exists an order automorphism α : Z→ Z such that the following diagram com-

mutes.

ZZZ

ZZZ

ωπ

ωπ

αθs

2. For all n ∈ Z, π−1({n}) is finite.

3. There exists a finite subset S of Z such that S connects Z.

Remark 4.4. A map α : Z→ Z is an order automorphism on Z if and only if there exists an

integer w∈Z such that α(n)= n+w for all n∈Z. So in the rest of the thesis, we will describe

the order automorphism α : Z→ Z as a map on Z defined by α(n) = n+w. Moreover, in

this thesis, we will use the notational conventions for functions that we described in Chapter

2 for the functions ω , π , and θ in Definition 4.3 and for similarly defined functions.
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Remark 4.5. In Definition 4.3, π−1({n}) can be informally thought of as the subposet of

Z that is the nth copy of the subposet π−1({0}) of Z because π−1({n}) = θ n(π−1({0})) by

Property 1 of Definition 4.3, and because θ is an order automorphism on Z. By Property 2

of Definition 4.3, π−1({0}) is a finite poset and Z is locally finite. Moreover, by Property

1 of Definition 4.3, Z is the pairwise disjoint union of the copies of the subposet π−1({0})

in Z. Hence, we will depict Z with a Hasse diagram of π−1([n1,n2]), where n1,n2 ∈ Z and

n2−n1 is sufficiently large, and visually indicate how this Hasse diagram is contained in Z.

Example 4.6. Let Z be the poset depicted by the left-most diagram shown below, and let

ω be the labelling depicted by the right-most diagram shown below. The labelling ω is a

dual natural labelling of Z. Define π : Z→ Z so that ω−1({−10,−8,−5,−3}) = π−1({1}),

ω−1({−6,−4,−1,1}) = π−1({0}), ω−1({−2,0,3,5}) = π−1({−1}), ω−1({2,4, 7,9}) =

π−1({−2}), and so on. Furthermore, let θ : Z → Z be the order automorphism on Z such

that for all n ∈ Z, θ(ω−1(n)) = ω−1(n−4).

◦
◦
◦
◦

◦
◦
◦
◦

◦
◦
◦
◦

◦
◦
◦
◦

..

.

...

−3

−5

−8

−10

1

−1

−4

−6

5

3

0

−2

9

7

4

2

..

.

...

To see that (Z,ω,π,θ) satisfies Property 1 of Definition 4.3, let α : Z → Z be defined

by α(n) = n− 4 for all n ∈ Z. Then for all p ∈ Z, s(π(p)) = π(θ(p)) and α(ω(p)) =
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ω(θ(p)). For instance, if p = ω−1(3), then s(π(p)) = s(−1) = 0, π(θ(p)) = 0, α(ω(p)) =

α(3) =−1, and ω(θ(p)) =−1, implying that s(π(p)) = 0= π(θ(p)) and α(ω(p)) =−1=

ω(θ(p)). Moreover, by how π is defined in this example, |π−1(n)| = 4 for all n ∈ Z. So

(Z,ω,π,θ) satisfies Property 2 of Definition 4.3. To see that (Z,ω,π,θ) satisfies Property

3 of Definition 4.3, let S ⊂ Z be defined by S = ω−1({−6,−4,−2,−1}). The set S is finite,

and S connects Z. Hence, (Z,ω,π,θ) is a periodic quadruple system.

Remark 4.7. In Example 4.6, removing ω−1(−2) from the index shape S = ω−1({−6,−4,

−2,−1}) results in a subset

S′ = ω
−1({−6,−4,−1})

of Z that does not connect Z. To see this, suppose that (A,S′,C) is a connected triple of Z for

some subsets A⊂ Z and C ⊂ Z. We first make the following observation.

For all p ∈ S′, π(p) = 0. Moreover, π is order preserving. Hence, Definition 4.1 implies that

{p ∈ Z : π(p)< 0} ⊆ A and {p ∈ Z : π(p)> 0} ⊆C

for the following reason. Suppose without loss of generality that for some p ∈ Z satisfying

π(p)> 0, p ∈ A. By Property 1 of Definition 4.1, C is non-empty. So there exists an element

q ∈C. By Property 2 of Definition 4.1, there exists an element p′ ∈ S′ such that p < p′ < q

in Z. But then, as π is order preserving,

0 < π(p)< π(p′) = 0

which is impossible.

With this observation, we continue as follows. Let p0 = ω−1(−2) and let q0 = ω−1(−3).
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Since π(p0) =−1 and π(q0) = 1, the above observation implies that p0 ∈ A and q0 ∈C. But

then, by Property 2 of Definition 4.1, there exists an element p′ ∈ S′ such that p0 < p′ < q0

in Z. But that is impossible because p0 ‖ q0 in Z. Hence, S′ does not connect Z.

Example 4.8. Let Z be the poset depicted by the left-most diagram shown below, and let ω be

the labelling depicted by the right-most diagram shown below. The labelling ω is an infinite

analogue of certain labellings on skew shapes that are known as Schur labellings [45]. De-

fine π : Z→ Z so that ω−1({−5,0,5,10}) = π−1({1}), ω−1({−9,−4,1,6}) = π−1({0}),

ω−1({−13,−8,−3,2}) = π−1({−1}), ω−1({−17,−12,−7,−2}) = π−1({−2}), and so

on. Furthermore, let θ : Z → Z be the order automorphism on Z defined by θ(ω−1(n)) =

ω−1(n+4).

◦
◦
◦
◦

◦
◦
◦
◦

◦
◦
◦
◦

◦
◦
◦
◦

..

.

...

−5

0

5

10

−9

−4

1

6

−13

−8

−3

2

−17

−12

−7

−2

..

.

...

To see that (Z,ω,π,θ) satisfies Property 1 of Definition 4.3, let α : Z→ Z be defined by

α(n) = n+4 for all n ∈Z. Then for all p ∈ Z, s(π(p)) = π(θ(p)) and α(ω(p)) = ω(θ(p)).

For instance, if p=ω−1(−8), then s(π(p))= s(−1)= 0, π(θ(p))= 0, α(ω(p))=α(−8)=

−4, and ω(θ(p)) =−4. So s(π(p)) = 0 = π(θ(p)) and α(ω(p)) =−4 = ω(θ(p)). More-

over, by how π is defined in this example, |π−1(n)|= 4 for all n ∈ Z. So (Z,ω,π,θ) satisfies
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Property 2 of Definition 4.3. To see that (Z,ω,π,θ) satisfies Property 3 of Definition 4.3,

let S⊂ Z be defined by S = ω−1({−4,1,2,6}). The set S is finite, and S connects Z. Hence,

(Z,ω,π,θ) is a periodic quadruple system.

We now formally define the P-partitions that we have informally been calling the P-partitions

that exhibit a certain repeating pattern.

Definition 4.9. Let (Z,ω,π,θ) be a periodic quadruple system and let n ∈N. Then a length

n periodic (P,ω)-partition derived from (Z,ω,π,θ) is a (P,ω)-partition (P,ω) such that

P = π−1([n]) and ω ≡ ω|P. Moreover, a periodic (P,ω)-partition derived from (Z,ω,π,θ)

is a length n periodic (P,ω)-partition derived from (Z,ω,π,θ) for some n ∈ N.

Remark 4.10. Since P = π−1([n]) =
⋃n

k=1 π−1({k}), P can be informally thought of as the

poset that results from pasting together n copies π−1({1}), π−1({2}), . . . , and π−1({n})

of the poset π−1({0}) where the pasting is determined by the periodic quadruple system

(Z,ω,π,θ).

Enumeration formulas for counting certain combinatorial objects that we now describe was

established in [27] with special cases being established in [47, 49]. Let X be a parallel-

ogramic shape with n rows and k cells in each row as described in Example 4.2. Then

a standard Young tableau of shape X is a bijective filling of the cells of X with integers

from [nk] such that the entries increase along every row from left to right and the entries

increase along every column from top to bottom, and we call such a standard Young tableau

a standard Young tableau of parallelogramic shape. For instance, the following is a standard

Young tableau of parallelogramic shape

1 2 4 6
3 5 7 10

8 9 11 12
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as the entries 3, 5, 7, and 10 increase from left to right along row 2 of the above Young

diagram, the entries 4, 5, and 8 increase from top to bottom along column 3 of the above

Young diagram, and so on.

Our analysis of P-partitions applies the above paragraph for the following reason. Con-

sider a periodic quadruple system (Z,ω,π,θ). The problem of enumerating the sequence

(|Pn,ω|)n=1,2,..., where Pn = π−1([n]) for all n, generalizes the problem of counting the num-

ber of standard Young tableaux on parallelogramic shape, with n rows and k cells in each

row, when k is fixed. The case when k = 4 is detailed in the following example.

Example 4.11. Let Z, ω , π , and θ be as in Example 4.6. Then the length n periodic (P,ω)-

partitions derived from (Z,ω,π,θ) correspond to the standard Young tableaux of parallelo-

gramic shape with n rows and four cells in each row. For instance, three length 3 periodic

(P,ω)-partitions derived from (Z,ω,π,θ) are as follows, where the left-most and the middle

(P,ω)-partitions depicted below are order equivalent.

12 11 9 8
10 7 6 5

4 3 2 1

13 12 10 9
11 8 7 6

5 4 3 2

13 12 11 7
10 9 6 5

8 4 3 2

In particular, replacing every entry k in the left-most diagram depicted above with 12−

k+1 gives an example of standard Young tableaux of parallelogramic shape, and replacing

every entry k in the middle or right-most diagram depicted above with 12− k+2 gives two

examples of standard Young tableaux of parallelogramic shape.

Next, we explain how we can also apply our results to semistandard tableaux. If X is a

parallelogramic shape, then define a semistandard tableau of shape X to be a function f :

X→ Z where f (i1, j)< f (i2, j) if (i1, j),(i2, j) ∈ X and i1 < i2, and where f (i, j1)≤ f (i, j2)
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if (i, j1),(i, j2) ∈ X and j1 < j2. That is, fill the cells of X so that the entries weakly increase

along every row from left to right, and the entries increase along every column from top

to bottom. Moreover, if f is a semistandard tableau of shape X , then define a semistandard

tableau class on X to be the set F of semistandard tableau of shape X that are order equivalent

to f . For example, if X is a parallelogramic shape with n = 3 and k = 4, then a semistandard

tableau class on X can be depicted by

1 1 2 2
2 3 5 5

5 6 7 7

.

The periodic P-partitions that we introduced in Definition 4.9 can be regarded as a general-

ization of the semistandard tableau of parallelogramic shape X if the number of cells in each

row of X is fixed. This is explained in the following example when the number of cells in

each row is four.

Example 4.12. Let Z, ω , π , and θ be as in Example 4.8. Then the length n periodic (P,ω)-

partitions derived from (Z,ω,π,θ) correspond to the semistandard tableaux of parallelo-

gramic shape with n rows and four cells in each row. For instance, three length 3 periodic

(P,ω)-partitions derived from (Z,ω,π,θ) are as follows, where the left-most and the middle

(P,ω)-partitions depicted below are order equivalent.

6 6 6 6
5 4 3 2

3 2 1 1

9 9 9 9
8 7 6 3

6 3 2 2

9 9 8 8
7 6 6 6

5 5 5 5

In particular, replacing every entry k in each of the three diagrams depicted above with

12−k+1 gives depictions of three semistandard tableaux of shape X, where X is the paral-

lelogramic shape with 3 rows and 4 cells in each row.
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Truncated shifted shapes are non-classical shapes that are a generalization of the parallelo-

gramic shapes. For the following definition, note that if X1, X2, . . . is a sequence of sets and

if n1,n2 ∈ N are such that n2 < n1, then
⋃n2

i=n1
Xi = /0.

Definition 4.13. (cf. [2, 49]) Let n∈N and let k1,k2, . . . ,kn be a sequence of positive integers

such that for some i∈ [n], k1≤ k2≤ ·· · ≤ ki and ki≥ ki+1≥ ·· · ≥ kn. Then a truncated shifted

shape is the Young diagram X defined by

X =
n⋃

i=1

ki⋃
j=i

{(i, j)}.

Remark 4.14. In Definition 4.13, if i = 1, then k1 ≥ k2 ≥ ·· · ≥ kn, and if i = n, then k1 ≤

k2 ≤ ·· · ≤ kn.

Example 4.15. Let n = 3, let k1 = 3, let k2 = 4, and let k3 = 3. By setting i = 2, we see

that k1 ≤ k2 ≤ ·· · ≤ ki and ki ≥ ki+1 ≥ ·· · ≥ kn because k1 ≤ k2 and k2 ≥ k3. Moreover, the

truncated shifted shape
⋃n

i=1
⋃ki

j=i{(i, j)} is depicted below.

Definition 4.16. (cf. [2, 49]) Let X be a truncated shifted shape that consists of n cells. Then

a standard Young tableau of shape X is a bijective filling of the cells of X with the elements

of [n] such that entries increase from left to right along every row of X and entries increase

from top to bottom along every column of X.

Example 4.17. Consider the truncated shifted shape X in Example 4.15. The four standard

Young tableaux of shape X are depicted below.

1 2 3
4 5 6

7

1 2 3
4 5 7

6

1 2 4
3 5 6

7

1 2 4
3 5 7

6
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Periodic P-partitions can also be regarded as a generalization of the standard Young tableaux

on certain truncated shifted shapes. Fix a number w ∈ N, assume that (an)n=1,2,... is a se-

quence of positive integers that is periodic with period w, and assume that an ≥ 2 for all

n ∈ N. For all m ∈ N, let Ym be a truncated shifted shape with mw rows such that for

all 1 ≤ i ≤ mw, row i of Ym consists of ai cells. Consider a periodic quadruple system

(Z,ω,π,θ). The problem of enumerating the sequence (|Pn,ω|)n=1,2,..., where Pn = π−1([n])

for all n, is a generalization of the problem of counting the number of standard Young

tableaux of shape Ym, where the sequence (Ym)m=1,2,... is a defined above. This is illustrated

in the following example.

Example 4.18. Let (an)n=1,2,... be a periodic sequence, with period w = 2, that is defined by

4, 5, 4, 5, . . . . Then the sequence of truncated shifted shapes corresponding to this periodic

sequence is depicted below

, , · · ·

A periodic quadruple system (Z,ω,π,θ) that we can use to enumerate the number of stan-

dard Young tableaux on the above shapes is as follows. Let Z be depicted by the left-most

diagram shown below, and let ω be depicted by the right-most diagram shown below.
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◦
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−1

−2
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3
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1

9

8

7

6

..

.

...

Next, let

π
−1({0}) = ω

−1([9]) = ω
−1({1,2,3,4,5,6,7,8,9}),

let

π
−1({1}) = ω

−1([−8,0]) = ω
−1({−8,−7,−6,−5,−4,−3,−2,−1,0}),

and so on. Moreover, let θ : Z → Z be defined by θ(ω−1(n)) = ω−1(n− 9) for all n ∈ Z.

Then the map α : Z→ Z defined by α(n) = n−9 for all n ∈ Z satisfies α(ω(p)) = ω(θ(p))

for all p∈ Z. Moreover, for all p∈ Z, s(π(p)) = π(θ(p)). Hence, the quadruple (Z,ω,π,θ)

satisfies Property 1 of Definition 4.3. Moreover, ω−1({2,3,4,6,7,8}) is a finite subset of Z

that connects Z. So (Z,ω,π,θ) also satisfies Property 2 of Definition 4.3. It follows that the

quadruple defined is a periodic quadruple system.

A natural question is to ask whether there exist periodic quadruple systems that are d-

dimensional analogues of the periodic quadruple systems considered in Example 4.11, Ex-

ample 4.12, and Example 4.18 for d ≥ 3. To that end, we prove that, for d ≥ 3, there exist
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periodic quadruple systems that are d-dimensional analogues of Example 4.6 and Example

4.8.

We construct a family of periodic quadruple systems (Z,ω,π,θ), which generalize Example

4.8 and Example 4.6, such that Z is a subposet of Zd .

Definition 4.19. Fix a positive integer d ≥ 2, and consider Zd . Then let n1,n2, . . . ,nd−1 ∈N

and n′1,n
′
2, . . . ,n

′
d−1 ∈ N satisfy ni > n′i for all 1≤ i≤ d−1. Next, let X ⊂ Zd be defined by

X = [n1]× [n2]×·· ·× [nd−1]×{0},

and define ∆ ∈ Zd by

∆ = (n′1,n
′
2, . . . ,n

′
d−1,1),

where 0 < n′i < ni for all 1≤ i≤ d−1. Lastly, define

Z(X ,∆) =
⋃

n∈Z
(X +n∆).

Informally, Z(X ,∆) is a union of translates of a (d−1)-dimensional parallelogram where X

is the parallelogram and ∆ is the translate. Moreover, recall that we will regard Zd as a poset

as described in Definition 2.2. So as Z(X ,∆) ⊂ Zd we will regard Z(X ,∆) as a subposet of

Zd . Because Zd is a countably infinite and locally finite poset, Z(X ,∆) is a countably infinite

and locally finite poset. An example of such a poset Z(X ,∆) when d = 3, n1 = n2 = 3, and

n′1 = n′2 = 1 is depicted in the left-most diagram of Figure 4.1. Moreover, the poset Z in

Example 4.8 and Example 4.6 satisfies Z = Z(X ,∆) where X = {(1,0),(2,0),(3,0),(4,0)}

and ∆ = (1,1).

Informally, we can think of Z = Z(X ,∆) as a pair consisting of a set of points and a shift.
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Definition 4.20. Let Z(X ,∆) be as described in Definition 4.19. Then define π∆
X : Z(X ,∆)→

Z by π(p) = n for all n ∈ Z and for all p ∈ X +n∆, and define θ ∆
X : Z(X ,∆)→ Z by θ(p) =

p+∆ for all p ∈ Z(X ,∆).

Informally, π∆
X indicates which copy of X we have, and θ ∆

X indicates where the next copy of

a point is.

Example 4.21. Let d = 2, X = {(1,0),(2,0)}, and let ∆=(1,1). Moreover, let (Z1,ω1,π1,θ1)

be the periodic quadruple system from Example 4.6 and let (Z1,ω2,π2,θ2) be the periodic

quadruple system from Example 4.8. Then

Z1 = Z2 = Z(X ,∆), π1 = π2 = π∆
X , and θ1 = θ2 = θ ∆

X .

Example 4.22. Consider the labelling ω of Z(X ,∆) depicted by the right-most diagram in

Figure 4.1, and assume that ω(X) = [−1,7]. Then π∆
X ({[−10,−2]}) =−1, π∆

X ([−1,7]) = 0,

π∆
X ([8,16]) = 1, and so on. Moreover, θ ∆

X (ω
−1(5)) = ω−1(14), θ ∆

X (ω
−1(−7)) = ω−1(2),

and so on.

The dual natural labelling ω in Example 4.6 can be generalized. For we can let ω be a dual

natural labelling of Z(X ,∆) such that ω(p) > ω(q) for all p,q ∈ Z(X ,∆) and ω(p′+∆) =

ω(p′)− |X | for all p′ ∈ Z(X ,∆). Moreover, note that such a natural labelling ω has the

property that (Z(X ,∆),ω,π∆
X ,θ

∆
X ) satisfies Property 1 of Definition 4.3.

Define the following family of hyperplanes of Zd . For all i ∈ [d] and k ∈ Z, let

Hi,k = {(k1,k2, . . . ,kd) ∈ Zd : ki = k}.

Informally, Hi,k is the hyperplane of Zd that consists of all points whose ith coordinate equals

to k.
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Moreover, for brevity, call a subset S ⊆ Z(X ,∆) a 0-subset of Z(X ,∆) if S = Z(X ,∆), and, if

k ∈ [d], define a k-subset of Z(X ,∆) to be a proper subset S⊂ Z(X ,∆) such that S 6= /0 and

S = Z(X ,∆) ∩
k⋂

i=1

Hd−i+1,ni

for some n1,n2, . . . ,nk ∈ Z. Because Z(X ,∆)∩Hd,n = X +n∆ for all n ∈ Z, any 1-subset of

Z(X ,∆) is finite. It follows that if k ≥ 1, then any k-subset of Z(X ,∆) is finite.

Example 4.23. Consider the set X, the poset Z(X ,∆), and the labelling ω of Z(X ,∆) in

Example 4.22. Moreover, refer to Figure 4.1. An example of a 1-subset of Z(X ,∆) is X,

which satisfies ω(X) = [−1,7]. This is because, by letting n3 = 0, we have

X = Z(X ,∆)∩H3,0.

An example of a 2-subset of Z(X ,∆) is the subset S(2) of X satisfying ω(S(2)) = {5,6,7}.

This is because, by letting n3 = 0 and n2 = 0, we have

S(2) = Z(X ,∆)∩H3,0∩H2,0.

Lastly, an example of a 3-subset of Z(X ,∆) is the subset S(3) of S(2) satisfying ω(S(3)) = {6}.

This is because, by letting n3 = 0, n2 = 0, and n1 = 1, we have

S(3) = Z(X ,∆)∩H3,0∩H2,0∩H1,1.

With the notion of a k-subset, we can define a generalization of Schur labellings as follows.

Definition 4.24. For all k ∈ [d− 1], let uk be the element of Zd such that for all 1 ≤ i ≤ d,

the ith coordinate of uk is 0 if i 6= k and 1 if i = k. Moreover, define ud = ∆. Then ω∆
X is the
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labelling of Z(X ,∆) such that 0 ∈ ω∆
X (X) and the following holds. If 1≤ k≤ d, p ∈ Z(X ,∆),

and S is the (d− k+1)-subset of Z(X ,∆) that contains p, then

ω
∆
X (p+uk) = ω

∆
X (p)+(−1)k−1|S|.

Example 4.25. Consider the set X, the poset Z(X ,∆), and the labelling ω of Z(X ,∆) in

Example 4.22. Moreover, refer to Figure 4.1. The labelling ω equals to ω∆
X . Firstly, by

the definition of ω in Example 4.22, 0 ∈ ω(X). Secondly, to illustrate how ω satisfies all

conditions of Definition 4.24, let p ∈ Z(X ,∆) be defined by p = ω−1(6). Since u1 = (1,0,0),

u2 = (0,1,0), and u3 = ∆ = (1,1,1), we have that p+u1 = ω−1(7), p+u2 = ω−1(3), and

p+u3 = ω−1(15). Moreover, let S(1) = X, let S(2) be as in Example 4.23, and let S(3) be as

in Example 4.23. These three sets are such that S(1) is the 1-subset of Z(X ,∆) that contains

p, S(2) is the 2-subset of Z(X ,∆) that contains p, and S(3) is the 3-subset of Z(X ,∆) that

contains p. Moreover, |S(1)|= |X |= 9, |S(2)|= 3, and |S(3)|= 1. Hence,

ω(p+u1) = 7 = 6+1 = ω(p)+(−1)0 ·1 = ω(p)+(−1)0|S(3)|,

ω(p+u2) = 3 = 6−3 = ω(p)+(−1)1 ·3 = ω(p)+(−1)1|S(2)|,

and ω(p+u3) = 15 = 6+9 = ω(p)+(−1)2 ·9 = ω(p)+(−1)2|S(1)|.

The generalized Schur labelling ω∆
X of Z(X ,∆) satisfies

ω
∆
X (p+∆) = ω

∆
X (p)+(−1)d−1 |X |

for all p∈ Z(X ,∆). So, from the above definitions of π∆
X and θ ∆

X , the quadruple (Z(X ,∆),ω∆
X ,

π∆
X ,θ

∆
X ) satisfies Property 1 of Definition 4.3.
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Figure 4.1: A three-dimensional analogue of Example 4.8. Here, X = {(i, j,0) : 1 ≤
i≤ 3 and 1≤ j ≤ 3} and ∆ = (1,1,1).

Let ω be a labelling of Z(X ,∆) such that (Z(X ,∆),ω,π∆
X ,θ

∆
X ) satisfies Property 1 of Defini-

tion 4.3. Because X is finite, we see that (Z(X ,∆),ω,π∆
X ,θ

∆
X ) satisfies Property 2 of Defini-

tion 4.3. We show that (Z(X ,∆),ω,π∆
X ,θ

∆
X ) also satisfies Property 3 of Definition 4.3.

Recall that, informally, Z(X ,∆) is a union of translates of a (d− 1)-dimensional parallelo-

gram where X is the parallelogram and ∆ is the translate. Moreover, recall that, informally,

Hi,k is the hyperplane of Zd that consists of all points whose ith coordinate equals k.

Theorem 4.26. Let Z(X ,∆) be as described in Definition 4.19, and let π∆
X , and θ ∆

X be
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as described in Definition 4.20. If ω is a labelling of Z(X ,∆) such that the quadruple

(Z(X ,∆),ω,π∆
X ,θ

∆
X ) satisfies Property 1 of Definition 4.3, then (Z(X ,∆),ω,π∆

X ,θ
∆
X ) is a pe-

riodic quadruple system. In particular, the quadruple (Z(X ,∆),ω∆
X ,π

∆
X ,θ

∆
X ) is a periodic

quadruple system, there are periodic quadruple systems (Z(X ,∆),ω,π∆
X ,θ

∆
X ) where ω is

natural, and there are periodic quadruple systems (Z(X ,∆),ω,π∆
X ,θ

∆
X ) where ω is dual nat-

ural.

We roughly indicate how we will prove Theorem 4.26 in the following example.

Example 4.27. Consider the poset Z(X ,∆) where X is

{(1,1,0),(1,2,0),(1,3,0),(2,1,0),(2,2,0),(2,3,0),(3,1,0),(3,2,0),(3,3,0)}

and where ∆ = (1,1,1). Moreover, let π = π∆
X , where π∆

X is as described in Definition 4.20.

In each of the three diagrams in this example, the point (1,1,0) is highlighted in blue, the

point (1,2,0) is highlighted in red, and the point (1,3,0) is highlighted in green.

The intersection H1,2∩Z(X ,∆) consists of nine elements and is depicted by the nine elements

in the left-most diagram shown below that are filled with bullets. Moreover, the intersection

H2,2∩Z(X ,∆) consists of nine elements and is depicted by the nine elements in the right-most

diagram shown below that are filled with bullets or that are highlighted in red.
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Lastly, the intersection H3,0∩Z(X ,∆) consists of the nine elements depicted below that are

filled with bullets, highlighted in blue, highlighted in red, or highlighted in green.
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From the depictions of H1,2∩Z(X ,∆), H2,2∩Z(X ,∆), and H3,0∩Z(X ,∆), we see that for all

p′,q ∈ Z(X ,∆) such that π(q) ≥ 2 and π(p′) = −2, p′ < q because H1,2 lies in between p′

and q, H2,2 lies in between p′ and q, and H3,0 lies in between p′ and q. Similarly, we see that

for all p, p′ ∈ Z(X ,∆) such that π(p′) = −2 and π(p) ≤ −6, p < p′. Hence, the finite set

π−1([−5,1]), which has 7 ·9 = 63 elements, connects Z(X ,∆).

Now, we prove Theorem 4.26.

Proof. If ω is a labelling of Z(X ,∆) such that the quadruple (Z(X ,∆),ω,π∆
X ,θ

∆
X ) satisfies

Property 1 of Definition 4.3, then the following can be said. Assume that there is a finite
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subset S of Z(X ,∆) such that S connects Z(X ,∆), then the quadruple (Z(X ,∆),ω,π∆
X ,θ

∆
X )

satisfies Property 3 of Definition 4.3. Moreover, by Definition 4.19 and Definition 4.20,

(Z(X ,∆),ω,π∆
X ,θ

∆
X ) satisfies Property 2 of Definition 4.3. This implies, by Definition 4.3,

that the quadruple (Z(X ,∆),ω,π∆
X ,θ

∆
X ) is a periodic quadruple system.

Hence, to prove the theorem it is enough to prove that there is a finite subset S of Z(X ,∆)

such that S connects Z(X ,∆). Let π = π∆
X , and let d be the positive integer corresponding to

X , ∆, and Z(X ,∆) as described in Definition 4.19.

We first show that for all i∈ [d] and k ∈Z, Z(X ,∆)∩Hi,k is finite. Suppose that Z(X ,∆)∩Hi,k

is infinite for some i ∈ [d] and k ∈ Z. Then consider the subsets (X +n∆)∩Hi,k for all n ∈ Z.

Since Z(X ,∆)∩Hi,k is infinite, since X +n∆ is finite for all n ∈ Z, and since

Z(X ,∆) =
⋃

n∈Z
X +n∆,

there is an infinite subset Y ⊆ Z such that (X + n∆)∩Hi,k 6= /0 for all n ∈ Y . Recall that

∆ = (n′1,n
′
2, . . . ,n

′
d−1,1), and write n′d = 1. Since n′j > 0 for all j ∈ [d], the definition of Hi,k

implies that the following holds for all p ∈ X

|{p+n∆ : n ∈ Z}∩Hi,k| ≤ 1.

So for all distinct n1,n2 ∈ Y ,

{p ∈ X : p+n1∆ ∈ Hi,k}∩{p ∈ X : p+n2∆ ∈ Hi,k}= /0.
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But then, as Y is infinite and as

⋃
n∈Y

{p ∈ X : p+n∆ ∈ Hi,k} ⊆ X ,

it follows that X is infinite, contradicting the assumption that X is finite. So Z(X ,∆)∩Hi,k is

finite for all i ∈ [d] and k ∈ Z.

Since ∆ = (n′1,n
′
2, . . . ,n

′
d) and, for all j ∈ [d], n′j > 0, it follows from the definition of Hi,k

that for all i ∈ [d] and k ∈ Z,

Hi,k∩Z(X ,∆) 6= /0.

Hence, as Z(X ,∆)∩Hi,k is finite for all i ∈ [d] and k ∈ Z, there is a positive integer m and a

sequence of integers k∗1,k
∗
2, . . . ,k

∗
d , such that Z∩Hi,k∗i 6= /0 and Z(X ,∆)∩Hi,k∗i ⊆ π−1([m]) for

all i ∈ [d]. Now, observe that the definition of the partial order on Zd implies the following.

If v1,v2 ∈ Zd , and if, for all i ∈ [d], there are integers n′i,n
′′
i ∈ Z such that n′i < n′′i , v1 ∈ Hi,n′i

,

and v2 ∈ Hi,k′′i
, then v1 < v2 in Zd . Hence, if p,q ∈ Z(X ,∆) are such that π(p) < 1 and

π(q)> m, then p < q in Z(X ,∆). Repeating this argument for π−1([m+2,2m+1]) instead

of π−1([m]), we see that if p,q ∈ Z(X ,∆) are such that π(p) < 1 and π(q) > 2m+ 1, then

there is an element p′ ∈ π−1({m+1}) such that p < p′ < q in Z(X ,∆). Therefore, the finite

subset S ⊂ Z(X ,∆) defined by S = π−1([2m+1]) connects Z(X ,∆). From this, the theorem

follows.

Hence, there are d-dimensional analogues of Example 4.8 and Example 4.6 for all d ≥ 3.

Remark 4.28. The proof of Theorem 4.26 can be used to generalize Theorem 4.26 to include

examples such as Example 4.18. This is based on the fact that the proof of Theorem 4.26 does
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Figure 4.2: A more exotic example of a periodic quadruple system.

not entirely depend on Definition 4.19.

Periodic quadruple systems, and their corresponding periodic (P,ω)-partitions, can be very

different from the examples we have considered so far. The following is a simple example

of such a system.

Example 4.29. Let Z be the poset depicted in Figure 4.2. And let p1, q1, p0, q0, p−1, and

q−1 be the six elements of Z that are as specified in Figure 4.2. Let ω : Z → Z be defined

by ω(p0) = 0, ω(q0) = 1, and, for all p ∈ Z, ω(θ(p)) = ω(p)+ 2, let π : Z → Z satisfy

π(p1)= π(q1)= 1, π(p0)= π(q0)= 0, π(p−1)= π(q−1)=−1, and so on, and let θ : Z→ Z
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satisfy θ(p−1) = p0, θ(q−1) = q0, θ(p0) = p1, θ(q0) = q1, and so on. To check that the

quadruple (Z,ω,π,θ) satisfies Property 1 of Definition 4.3, let α : Z→ Z be defined by

α(n) = n+2 for all n ∈Z. Then for all p ∈ Z, s(π(p)) = π(θ(p)) and α(ω(p)) = ω(θ(p)).

To see that (Z,ω,π,θ) satisfies Property 3 of Definition 4.3, let Pn = π−1([n]) for all n ∈ N.

We show that P15 connects Z. Consider the element q0 ∈ Z. We have the inequalities,

q0 < θ
4(p0)< θ

7(p0)< θ
10(p0)< θ

13(p0),

q0 < θ
4(p0)< θ

4(q0)< θ
8(p0)< θ

11(p0)< θ
14(p0),

and

q0 < θ
4(p0)< θ

4(q0)< θ
8(p0)< θ

8(q0)< θ
12(p0).

Moreover, {θ 14(p0),θ
13(p0),θ

12(p0)} is the set of minimal elements of π−1([12, ∞)). So as

{θ 14(p0),θ
13(p0),θ

12(p0)} ⊂ P15, it follows that for all p ∈ Z satisfying π(p) ≥ 16, there

is an element q ∈ P15 such that q0 < q < p. Since θ is an order automorphism on Z, the

same conclusions also hold for θ−1(q0) and θ−1(P15) = π−1([0,14]), and for θ−2(q0) and

θ−2(P15) = π−1([−1,13]). So as {q0,θ
−1(q0),θ

−2(q0)} is the set of maximal elements of

π−1(Z\N), it follows that P15 connects Z. Hence, (Z,ω,π,θ) is a periodic quadruple system.
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Chapter 5

The matrix difference equation

In this chapter, we enumerate the number of periodic P-partitions as follows. We define

collections of numbers that sum to the number we are interested in. Each member of this

collection counts periodic P-partitions that satisfy certain additional restrictions. Afterwards,

we introduce tableau transfer matrices, whose entries count certain P-partitions, and prove

the following. We first prove a structural property of the connected triples we introduced in

the previous chapter. Then, using this structural property, we prove that the aforementioned

collections of numbers, represented as column vectors, can be enumerated with a homoge-

neous first-order matrix difference equation in which the matrix is a tableau transfer matrix.

Building from the previous chapter, we define the following notion.

Definition 5.1. Let (Z,ω,π,θ) be a periodic quadruple system. Then an index shape of

(Z,ω,π,θ) is a finite subset S of π−1(Z\N) that satisfies the following two properties.

1. (π−1(Z\N)\S , S , π−1(N)) is a connected triple of Z.
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2. θ(S)⊆ S∪π−1({1}).

Remark 5.2. If S is an index shape of a periodic quadruple system (Z,ω,π,θ), then S

connects Z. This fact, and the fact that S is finite, will become important later on in this

chapter.

Using Example 4.6 as a guide, we start our running example.

Example 5.3. Let (Z,ω,π,θ) and S be as defined in Example 4.6. Since in Example 4.6 we

saw θ(ω−1(n)) = ω−1(n−4),

S = ω
−1({−6,−4,−2,−1}),

(π−1(Z\N)\S,S,π−1(N)) is a connected triple of Z. Hence, S satisfies Property 1 of Defi-

nition 5.1. Since

θ(S) = ω−1({−10,−8,−6, −5}) and π−1({1}) = ω−1({−10,−8,−5,−3}),

θ(S) = ω
−1({−10,−8,−6,−5})

⊆ ω
−1({−10,−8,−6,−5,−4,−3,−2,−1}) = S∪π

−1({1}).

Hence, θ(S)⊆ S∪π−1({1}), implying that S satisfies Property 2 of Definition 5.1. It follows

that S is an index shape of (Z,ω,π,θ).

The following definition is an analogue of the notion of order equivalence that depends on

the order automorphism θ on Z in a periodic quadruple system.

Definition 5.4. Let (Z,ω,π,θ) be a periodic quadruple system, and let S1 and S2 be subsets

of Z. And assume that S2 = θ k(S1) for some k ∈ Z. Then for all T1 ∈ Tb(S1,ω) and T2 ∈
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Tb(S2,ω), write T1 ≡θ T2 if for all U1 ∈ T1 and U2 ∈ T2, there is an order isomorphism

g : U1(S1)→U2(S2) such that g◦U1 =U2 ◦θ k.

Informally, the above definition says that T1 ≡θ T2 if the relative ordering of the entries in T1

is the same as the relative ordering of the entries in T2.

Example 5.5. Let (Z,ω,π,θ) and S be as described in Example 5.3. First note from

Example 5.3 that since θ(ω−1(n)) = ω−1(n− 4), θ−1(ω−1(n)) = ω−1(n+ 4). The sub-

poset S of Z can be depicted using the left-most Young diagram shown below, the subposet

S ∪ θ−1(S) ∪ π−1({0}) of Z can be depicted using the right-most Young diagram shown be-

low that consists of eight cells. In the right-most Young diagram, the cells filled with circles

or asterisks represents θ−1(S) and the cells filled with asterisks or bullets represents S.

◦
◦ ◦ ∗
• • •

Let T be the element of Tb(S ∪ θ−1(S) ∪ π−1({0}) , ω) that is depicted by the left-most

diagram shown below.

7
8 6 3
5 4 2 1

7
8 6 3

3
4 2 1

Now, let S1 = θ−1(S), let S2 = S, let T1 = T |S1 , let T2 = T |S2 , and let k = 1. Firstly, S2 =

θ k(S1). Secondly, for all U1 ∈ T1 and U2 ∈ T2, there is an order isomorphism g : U1(S1)→

U2(S2) such that g ◦U1 = U2 ◦ θ k. For instance, if U1 is depicted by the middle diagram

shown above and if U2 is depicted by the right-most diagram shown above, then define g :

{3,6,7,8} → {1,2,3,4} by g(3) = 1, g(6) = 2, g(7) = 3, and g(8) = 4. The map g is an
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order isomorphism from {3,6,7,8} to {1,2,3,4} and g satisfies g◦U1 =U2 ◦θ k. From this,

we see that T1 ≡θ T2.

We now use index shapes to define the following family of square matrices. Informally, we

are defining matrices that are built from index shapes and that allow us to enumerate many

different (P,ω)-partitions at once. Recall that we write M(i, j) to denote the entry in row i

and column j of a matrix M. Lastly, in the following definition, note that

S⊆ θ
−1(S)∪π

−1({0})

due to Property 2 of Definition 5.1.

Definition 5.6. Let (Z,ω,π,θ) be a periodic quadruple system, and let S be an index shape

of (Z,ω,π,θ). Moreover, let L be an indexing of Tb(S,ω), let N = |S,ω|, and let R : [N]→

Tb(S,ω) be the inverse of L. Then the tableau transfer matrix M derived from (Z,ω,π,θ),

S, and L is the N by N matrix M such that for all 1 ≤ i ≤ N and 1 ≤ j ≤ N, M(i, j) is the

number of elements T of

Tb(θ−1(S)∪π
−1({0}),ω)

such that

T |S ≡θ R(i) and T |θ−1(S) ≡θ R( j).

When S and L are not specified, we will call M a tableau transfer matrix derived from

(Z,ω,π,θ).

Example 5.7. Consider the periodic quadruple system (Z,ω,π,θ) and the index shape S

from Example 5.5. There are two elements of Tb(S,ω), and they are depicted by the below

diagrams.
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4
3 2 1

3
4 2 1

In particular, N = 2. Next, define L : Tb(S,ω)→ {1,2} so that L sends the element of

Tb(S,ω) depicted by the left-most diagram shown above to 1 and L sends the element of

Tb(S,ω) depicted by the right-most diagram shown above to 2. Lastly, let R = L−1 be the

inverse of L so that

R(1) = 4
3 2 1

and R(2) = 3
4 2 1

.

The tableau transfer matrix M derived from (Z,ω,π,θ), S, and L is equal to

3 4

2 3

 .

To see how to construct M, we calculate M(2,1). The number M(2,1) is the number of

elements T ∈ Tb(S ∪ θ−1(S) ∪ π−1({0}) , ω) such that T |S = R(2) and T |θ−1(S) ≡θ R(1).

Consider the below diagram, which depicts S as the set of cells filled with bullets or asterisks,

which depicts θ−1(S) as the set of cells filled with circles or asterisks, and which depicts

π−1({0}) as the set of cells filled with bullets or are empty.

◦
◦ ◦ ∗
• • •

By an exhaustive search in which we use the left-most diagram shown below as a reference,

it can be checked that the two elements T of Tb(S ∪ θ−1(S) ∪ π−1({0}) , ω) such that

T |S = R(2) and T |θ−1(S) ≡θ R(1) are the elements that are depicted by the left-most diagram

shown below or the right-most diagram shown below.
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8
7 6 3
5 4 2 1

8
7 5 3
6 4 2 1

To complement Definition 5.6, we define the following. Informally, we are defining the

column vectors that correspond to the tableau transfer matrices. Recall that we write v(i) to

denote the entry in row i of a column vector v.

Definition 5.8. Let (Z,ω,π,θ) be a periodic quadruple system, let S be an index shape of

(Z,ω,π,θ), and let L be an indexing of Tb(S,ω). Moreover, let R = L−1 be the inverse

of L. Then an admissible number for (Z,ω,π,θ) and S is an integer n′ such that n′ ≤

0 and S ⊆ π−1([n′,0]). Next, let n′ be an admissible number for (Z,ω,π,θ) and S, let

T0 ∈ Tb(π−1([n′,0]),ω), let n ∈ N, let Qn = π−1([n′,n]), let Pn = π−1([n]), and let P′ =

π−1([n′,0]).

Define the nth set derived from (Z,ω,π,θ), S, and T0 to be the set Xn(T0) of elements T ∈

Tb(Qn,ω) such that T |P′ = T0 and the following condition holds. If U ∈ T , p ∈ P′, and

q ∈ Pn, then U(p)>U(q).

Moreover, for all 1 ≤ i ≤ |S,ω|, let the ith part of the nth set derived from (Z,ω,π,θ), S, L,

and T0 be the set Xn,i(T0) of elements T ∈ Xn(T0) such that T |θ n(S) ≡θ R(i). Lastly, define

the nth vector derived from (Z,ω,π,θ), S, L, and T0 to be the column vector vn with |S,ω|

entries such that, for all 1≤ i≤ |S,ω|, vn(i) = |Xn,i(T0)|.

Informally, the above definition describes the following. The nth sets as given in the above

definition are a collection of modified periodic (P,ω)-partitions that will allow us to enumer-

ate the periodic (P,ω)-partitions themselves. Moreover, the ith parts of such sets, as given in

the above definition, provides us with a set partition of such collections of modified periodic
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(P,ω)-partitions that we will use later on in the chapter, and the nth vectors give the cardinal-

ities of these ith parts. Lastly, admissible numbers enable us to effectively use such modified

periodic (P,ω)-partitions.

Example 5.9. Let (Z,ω,π,θ), S, and L be as in Example 5.7, and let R = L−1 be the inverse

of L. In particular, from Example 5.7, S = ω−1({−6,−4,−2,−1}). The number n′ =−1 is

an admissible number for (Z,ω,π,θ) and S because

S⊆ π
−1([−1,0]),

and from Example 4.6,

π
−1({0}) = ω

−1({−6,−4,−1,1}) and π
−1({−1}) = ω

−1({−2,0,3,5}).

This is depicted below where the eight cells represent π−1([−1,0]) and the cells filled with

bullets represent S.

•
• • •

In particular, as n′ =−1, P′ = π−1([−1,0]) and Tb(π−1([n′,0]),ω) = Tb(π−1([−1,0]),ω).

Depicted below are the first three terms of (Qn)n=1,2,.... The first three terms of (Pn)n=1,2,...

are depicted by the cells filled will bullets (note that Pn ⊆ Qn for all n = 1,2, . . . ). Moreover,

in each of the three diagrams, the eight blank cells depict P′ = π−1([−1,0]).

• • • •

,

• • • •
• • • •

,

• • • •
• • • •
• • • •

, . . .
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Next, assume that T0 is the following element of Tb(π−1([−1,0]),ω).

8 7 6 4
5 3 2 1

We illustrate Xn(T0), Xn,i(T0), and vn when n = 1. As described in Example 5.7, Tb(S,ω) has

two elements. Hence, by Definition 3.6, |S,ω|= 2 and it follows that the range for the index

i is 1 ≤ i ≤ 2. The 1st set X1(T0) derived from (Z,ω,π,θ), S, and T0 can be determined as

follows.

Consider the element T ∈ Tb(π−1([−1,1]),ω) defined by

12 11 10 8
9 7 6 5

4 3 2 1

.

To see that T ∈ X1(T0), we note the following. Since T |P′ is depicted below,

12 11 10 8
9 7 6 5

,

T |P′ = T0 by definition. Lastly, note that for all U ∈ T , p ∈ P′, and q ∈ P1, U(p)>U(q). For

instance, let U ∈ T be defined by

22 21 20 11
12 8 7 6

4 3 1 0

,

let p ∈ P′ be depicted below by the cell filled with a circle, and let q ∈ P1 be depicted below

by the cell filled with a bullet.
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◦

•

Then,

U(p) = 11 > 4 =U(q).

Any element T ′ of Tb(π−1([−1,1],ω) that is not T does not satisfy the condition T ′|P′ = T0

or does not satisfy the condition U(p)>U(q) for some U ∈ T ′, p ∈ P′, and q ∈ P1. Hence,

the 1st set X1(T0) derived from (Z,ω,π,θ), S, and T0 is

X1(T0) = {T}.

Let T be the element of X1(T0). Since θ(S) is depicted by the four cells filled with bullets,

where the twelve cell diagram below depicts Q1

•
• • •

,

it follows that T |θ(S) is depicted by the following from the definition of T on the previous

page.

5
3 2 1

It follows that T |θ(S) ≡θ R(1), hence the 1st part, X1,1(T0), of the 1st set derived from

(Z,ω,π,θ), S, L, and T0, is X1(T0). Moreover, the 2nd part, X1,2(T0), of the 1st set de-

rived from (Z,ω,π,θ), S, L, and T0, is the empty set because the only element of X1(T0) is

T , T |θ(S) ≡θ R(1), and R(2) 6= R(1).
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Therefore, as |X1,1(T0)|= 1 and |X1,2(T0)|= 0, the 1st vector derived from (Z,ω,π,θ), S, L,

and T0 is the following column vector.

v1 =

1

0


The sum of the entries in the column vectors defined in Definition 5.8 gives the number of

periodic (P,ω)-partitions.

Proposition 5.10. Let (Z,ω,π,θ) be a periodic quadruple system. Moreover, let S be an

index shape of (Z,ω,π,θ), let L be an indexing of Tb(S,ω), let R = L−1 be the inverse of

L, let Pn = π−1([n]) for all n ∈ N, let n′ be an admissible number for (Z,ω,π,θ) and S,

let T0 ∈ Tb(π−1([n′,0]),ω), and let N = |S,ω|. Lastly, let vn be the nth vector derived from

(Z,ω,π,θ), S, L, and T0. Then for all n ∈ N,

|Pn,ω|=
N

∑
i=1

vn(i).

Before proving this proposition, we illustrate this proposition with an example.

Example 5.11. Let (Z,ω,π,θ), S, and L be as in Example 5.7. Moreover, let R = L−1 be

the inverse of L. By Example 5.9, an admissible number n′ for (Z,ω,π,θ) is n′ =−1. So let

T0 ∈ Tb(π−1([n′,0]),ω) be depicted by the following diagram as calculated in Example 5.9.

8 7 6 4
5 3 2 1

One can calculate that the 2nd vector v2 derived from (Z,ω,π,θ), S, L, and T0 is equal to

3

2

 .
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To see how to calculate v2, we note the following. Let P′ = π−1([−1,0]) be as in Example

5.9 and set n = 2. Then, as n′ =−1, Qn = Q2 is depicted by the twelve cell diagram below,

Pn = P2 is depicted by the cells filled with bullets, and P′ is depicted by the blank cells as

calculated in Example 5.9.

• • • •
• • • •

In the same way that we calculated the 1st set X1(T0) derived from (Z,ω,π,θ), S, and T0,

we can calculate that the 2nd set X2(T0) derived from (Z,ω,π,θ), S, and T0 consists of the

following five elements.

16 15 14 12
13 11 10 9

8 7 6 3
5 4 2 1

16 15 14 12
13 11 10 9

8 7 5 3
6 4 2 1

16 15 14 12
13 11 10 9

8 7 6 5
4 3 2 1

16 15 14 12
13 11 10 9

8 7 5 4
6 3 2 1

16 15 14 12
13 11 10 9

8 7 6 4
5 3 2 1

To check that the above diagrams depict elements of X2(T0), note that each element T ∈

X2(T0) depicted above satisfies T |P′ ≡θ T0 because T |P′ is depicted below.

16 15 14 12
13 11 10 9

Moreover, as in Example 5.9, it can be seen that for all T ∈ X2(T0) depicted above, for all

U ∈ T , for all p ∈ P′, and for all q ∈ P2, U(p)>U(q).

55



Next, note that, θ 2(S) is depicted by the four cells filled with bullets, where the sixteen cell

diagram below depicts Q2 as calculated in Example 5.9.

•
• • •

Hence, the following holds. The 1st part, X2,1(T0), of the 2nd set derived from (Z,ω,π,θ), S,

L, and T0 consists of the elements T ∈ X2(T0) such that Tθ 2(S) ≡θ R(1). It can be checked,

by checking the five elements earlier in this example and comparing the entries that are in

θ 2(S) with R(1) as given in Example 5.9, that the elements of X2,1(T0) are depicted below.

16 15 14 12
13 11 10 9

8 7 6 5
4 3 2 1

16 15 14 12
13 11 10 9

8 7 5 4
6 3 2 1

16 15 14 12
13 11 10 9

8 7 6 4
5 3 2 1

In particular,

v2(1) = |X2,1(T0)|= 3.

The 2nd part, X2,2(T0), of the 2nd set derived from (Z,ω,π,θ), S, L, and T0 consists of the

elements T ∈ X2(T0) such that Tθ 2(S) ≡θ R(2). It can be checked similarly to the calculation

of X2,1(T0) above that the elements of X2,1(T0) are depicted below.

16 15 14 12
13 11 10 9

8 7 6 3
5 4 2 1

16 15 14 12
13 11 10 9

8 7 5 3
6 4 2 1

In particular,

v2(2) = |X2,2(T0)|= 2.
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The sum of the entries of v2 is v2(1)+v2(2) = 3+2 = 5. Moreover, Tb(P2,ω) consists of the

following five elements.

8 7 6 3
5 4 2 1

8 7 5 3
6 4 2 1

8 7 6 5
4 3 2 1

8 7 5 4
6 3 2 1

8 7 6 4
5 3 2 1

In particular, |P2,ω|= 5, which equals to the sum of the entries of v2.

Proof. Let n ∈N, let Xn,i(T0) be the ith part of the nth set derived from (Z,ω,π,θ), S, L, and

T0 for all 1≤ i≤ N, and let Xn(T0) be the nth set derived from (Z,ω,π,θ), S, and T0. Recall

that, by Definition 5.8, Xn,i(T0) is the set of elements T ∈ Xn(T0) such that

T |θ n(S) ≡θ R(i)

for all 1 ≤ i ≤ N. Moreover, for all T ∈ Xn(T0), there is exactly one number 1 ≤ i ≤ N

such that T |θ n(S) ≡θ R(i) because R(i1) 6= R(i2) for all 1≤ i1 ≤ N and 1≤ i2 ≤ N satisfying

i1 6= i2. Hence, we have

Xn(T0) =
N⋃

i=1

Xn,i(T0),

where the union is pairwise disjoint. Moreover, |Xn(T0)| = |Pn,ω| for the following reason.

Define the map f : Xn(T0)→ Tb(Pn,ω) by

f (T ) = T |Pn.

By Definition 5.8, T |P′ = T ′|P′ = T0 for all T,T ′ ∈ Xn(T0), where P′ = π−1([n′,0]). Fur-

thermore, for all T ∈ Xn(T0), for all U ∈ T , for all p ∈ P′, and for all q ∈ Pn, U(p) >U(q).
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Hence, for all T,T ′ ∈ Xn(T0), T 6= T ′ if and only if T |Pn 6= T ′|Pn . So as f (T ) = T |Pn for all

T ∈ Tb(Pn,ω), f is injective.

To see that the map f is surjective, let T ∈ Tb(Pn,ω) and let U ∈ T . Set Qn = π−1([n′,n])

and let U0 ∈ T0 be such that for all p ∈ P′ and q ∈ Pn,

U0(p)>U(q).

Then, define U ′ ∈A (Qn,ω) by

U ′(p) =


U0(p) if p ∈ P′

U(p) if p ∈ Pn.

Lastly, let T ′ be the element in Tb(Qn,ω) that satisfies U ′ ∈ T ′. Then,

f (T ′) = T ′|Pn = T.

Hence, as the choice of T was arbitrary, f is surjective.

It follows that f is a bijection and, as f is a bijection, |Xn(T0)|= |Pn,ω|. Lastly, by Definition

5.8, vn(i) = |Xn,i(T0)| for all 1≤ i≤ N. Therefore,

|Pn,ω|= |Xn(T0)|=
N

∑
i=1
|Xn,i(T0)|=

N

∑
i=1

vn(i).

Next, we prove a structural property of connected triples. It is a crucial lemma that will allow

us to prove the main result of this chapter. Informally, the following lemma states that for
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connected triples of finite posets, we can define a notion of union for two P-partitions in a

well-defined manner.

For the proof of the following lemma, recall that if U1,U2 ∈A (P,ω) for some finite poset P

and labelling ω of P, then U1 and U2 are order equivalent if U1 ≡U2.

Lemma 5.12. Let Q be a finite poset, let (A,B,C) be a connected triple of Q, and let ωQ

be a labelling of Q. Then for all T ′ ∈ Tb(A∪B,ωQ) and T ′′ ∈ Tb(B∪C,ωQ) such that

T ′|B = T ′′|B, there is a unique element T ∈ Tb(Q,ωQ) such that T |A∪B = T ′ and T |B∪C = T ′′.

Example 5.13. Let Q be the twelve element poset depicted by the below diagram. Moreover,

let A be the subposet of Q depicted by the cells that are filled with asterisks, let B be the

subposet of Q depicted by the cells that are filled with bullets, and let C be the subposet of

Q depicted by the blank cells. Moreover, let ωQ be a dual natural labelling of Q, where in

terms of tableaux the entries in the rows decrease from left to right, and the entries in the

columns decrease from top to bottom.

∗ ∗ ∗ •
∗ • • •

From how A, B, and C are defined, (A,B,C) is a connected triple of Q by Definition 4.1. Let

T ′ be the element of Tb(A∪B,ωQ) that is depicted by the left-most diagram below, and let

T ′′ be the element of Tb(B∪C,ωQ) that is depicted by the right-most diagram below.

8 7 6 3
5 4 2 1

7
8 5 3
6 4 2 1

Then T ′|B = T ′′|B for the following reason. The element T ′|B of Tb(B,ω) is depicted by
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the left-most diagram shown below and the element T ′′|B of Tb(B,ω) is depicted by the

right-most diagram shown below.

3
4 2 1

7
8 5 3

Hence, T ′|B = T ′′|B. So by Lemma 5.12, there exists a unique element T ∈ Tb(Q,ωQ) that

satisfies T |A∪B = T ′ and T |B∪C = T ′′. This unique element T is depicted by the following

diagram.

12 11 10 7
9 8 5 3

6 4 2 1

The reason that T |A∪B = T ′ and T |B∪C = T ′′ is because T |A∪B is depicted by the left-most

diagram shown below, T |B∪C is depicted by the right-most diagram shown below, and the

left-most diagram shown below also depicts T ′.

12 11 10 7
9 8 5 3

7
8 5 3
6 4 2 1

Proof. It is enough to prove the following. Assume that there are elements U1,1,U1,2 ∈

A (A∪B,ωQ) and elements U2,1,U2,2 ∈ A (B∪C,ωQ) such that U1,1 ≡ U1,2, U2,1 ≡ U2,2,

U1,1|B ≡U2,1|B, and U1,2|B ≡U2,2|B. Then the following two statements hold.

1. There exist elements U1 ∈ A (Q,ωQ) and U2 ∈ A (Q,ωQ) such that U1|A∪B ≡ U1,1,

U1|B∪C ≡U2,1, U2|A∪B ≡U1,2, and U2|B∪C ≡U2,2.

2. If U ′1 ∈A (Q,ωQ) and U ′2 ∈A (Q,ωQ) satisfy U ′1|A∪B≡U1,1, U ′1|B∪C ≡U2,1, U ′2|A∪B≡

U1,2, and U ′2|B∪C ≡U2,2, then U ′1 ≡U ′2.
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We first prove Statement 1. Since U1, j|B ≡U2, j|B for all 1 ≤ j ≤ 2, there are order embed-

dings g1, j : U1, j(A∪B)→ N0 and g2, j : U2, j(B∪C)→ N0 such that, for all p ∈ B,

g1, j(U1, j(p)) = g2, j(U2, j(p)).

So for all 1≤ j ≤ 2, define U j : Q→ N0 by

U j(p) =


g1, j(U1, j(p)) if p ∈ A∪B

g2, j(U2, j(p)) if p ∈ B∪C.

For all 1≤ j ≤ 2, the above map U j is well-defined because of the definition of g1, j and g2, j.

Moreover, for all 1≤ j ≤ 2, the map U j satisfies

U j|A∪B = g1, j ◦U1, j ≡U1, j and U j|B∪C = g2, j ◦U2, j ≡U2, j.

Hence, to prove Statement 1, it is enough to prove that U j ∈A (Q,ωQ) for all 1≤ j ≤ 2. So

let j ∈ {1,2}. To see that U j is order reversing as required by the definition of A (Q,ωQ) in

Chapter 3, suppose otherwise.

Because U j|A∪B ∈A (A∪B,ωQ) and U j|B∪C ∈A (B∪C,ωQ), U j|A∪B and U j|B∪C are order

reversing.

So, as we are supposing that U j is not order reversing, there are elements p ∈ A and q ∈C

such that p < q but U j(p)<U j(q). By Property 2 of Definition 4.1, there exists an element

p′ ∈ B such that p < p′ < q in Q. As p, p′ ∈ A∪B, as p < p′ in A∪B, and as U j|A∪B is order

reversing, it follows that U j(p)≥U j(p′). Moreover, as p′,q∈B∪C, as p′< q in B∪C, and as

U j|B∪C is order reversing, it follows that U j(p′)≥U j(q). But then, U j(p)≥U j(p′)≥U j(q),
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which is contrary to the assumption that U j(p)<U j(q).

So U j is order reversing. Suppose that U j /∈ A (Q,ωQ). Then there are elements p,q ∈ Q

such that p < q in Q, ωQ(p)> ωQ(q), and U j(p) =U j(q). Because U j|A∪B ∈A (A∪B,ωQ)

and U j|B∪C ∈A (B∪C,ωQ), it follows that p∈ A and q∈C. Since p∈ A and q∈C, Property

2 of Definition 4.1 implies that there exists an element p′ ∈ B such that p < p′ < q in Q.

If ωQ(p) ≤ ωQ(p′) and ωQ(p′) ≤ ωQ(q), then ωQ(p) ≤ ωQ(p′) ≤ ωQ(q), implying that

ωQ(p)≤ωQ(q). But that is contrary to the assumption that ωQ(p)>ωQ(q). Hence, ωQ(p)>

ωQ(p′) or ωQ(p′)> ωQ(q). So as p, p′ ∈ A∪B, p < p′ in A∪B, p′,q∈ B∪C, p′< q in B∪C,

U j|A∪B ∈A (A∪B,ωQ), and U j|B∪C ∈A (B∪C,ωQ), it follows that

U j(p)>U j(p′)≥U j(q) or U j(p)≥U j(p′)>U j(q).

But then, U j(p)>U j(q), which is contrary to the assumption that U j(p) =U j(q).

Hence, Ui ∈A (Q,ωQ), and Statement 1 follows.

To prove Statement 2, let U1,1, U1,2, U ′1, U1,2, U2,2, and U ′2 be as described in the beginning

of the proof, and suppose that U ′1 is not order equivalent to U ′2. Because U ′1|A∪B ≡U1,1 ≡

U1,2 ≡U ′2|A∪B and because U ′1|B∪C ≡U2,1 ≡U2,2 ≡U ′2|B∪C, we have that U ′1|A∪B ≡U ′2|A∪B

and U ′1|B∪C ≡U ′2|B∪C. So there are elements p,q ∈Q such that p ∈ A, q ∈C, and exactly one

of the following holds.

• U ′1(p)<U ′1(q) and U ′2(p)>U ′2(q)

• U ′1(p)>U ′1(q) and U ′2(p)<U ′2(q)

• U ′1(p) =U ′1(q) and U ′2(p) 6=U ′2(q)
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• U ′1(p) 6=U ′1(q) and U ′2(p) =U ′2(p)

Suppose that U ′1(p) < U ′1(q) and U ′2(p) > U ′2(q). Then, as U ′1 and U ′2 are order reversing

maps, it follows that p ‖ q in Q. But as (A,B,C) is a connected triple of Q, that violates

Property 2 of Definition 4.1. Similarly, if U ′1(p)>U ′1(q) and U ′2(p)<U ′2(q), then Property

2 of Definition 4.1 would be violated. So without loss of generality, suppose that U ′1(p) =

U ′1(q) and U ′2(p) 6=U ′2(q).

Since p∈A and q∈C, Property 2 of Definition 4.1 implies that there exists an element p′ ∈B

such that p < p′ < q in Q. Hence, as U ′1 is order reversing and as U ′1(p) = U ′1(q), U ′1(p) =

U ′1(p′) = U ′1(q). So as p, p′ ∈ A∪B and U ′1|A∪B ≡U ′2|A∪B, it follows that U ′2(p) = U ′2(p′).

Similarly, as p′,q ∈ B∪C and U ′1|B∪C ≡U ′2|B∪C, it follows that U ′2(p′) = U ′2(q). But then,

U ′2(p) = U ′2(q), which is contrary to the assumption that U ′2(p) 6=U ′2(q). Hence, Statement

2 follows.

Remark 5.14. Note that the converse of Lemma 5.12 is also true. If T ∈ Tb(Q,ω), then T

uniquely determines T |A∪B ∈ Tb(A∪B,ω) and T |B∪C ∈ Tb(B∪C,ω).

In preparation for the main result of this chapter, we introduce the following technical def-

inition. It defines a positive integer that depends on the periodic quadruple system being

considered.

Definition 5.15. Let (Z,ω,π,θ) be a periodic quadruple system and let S be an index shape

of (Z,ω,π,θ). Then the minimum number for (Z,ω,π,θ) and S is the smallest positive

integer m such that if n ∈ N satisfies n≥ m, then for all p ∈ Z satisfying π(p) = n+1, there

exists an element q ∈ θ n(S) such that q < p in Z and π(q)≥ 1.
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Remark 5.16. The minimum number of a periodic quadruple system always exists. Let

(Z,ω,π,θ) be a periodic quadruple system and let S be an index shape of (Z,ω,π,θ). Since

S is finite, there is a positive integer n such that, for all p ∈ θ n(S), π(p) ≥ 1. Moreover, S

connects Z, so as θ is an order automorphism on Z, θ n(S) connects Z. Hence, by Property

2 of Definition 4.1, it follows that for all p ∈ Z satisfying π(p) = n+1 and p′ ∈ Z satisfying

π(p′) ≤ 0, there exists an element q ∈ θ n(S) such that p′ < q < p. But as π(q) ≥ 1 for all

q∈ θ n(S), it follows from Definition 5.15 that the minimum number of (Z,ω,π,θ) exists and

is at most n.

Example 5.17. If (Z,ω,π,θ) is a periodic quadruple system built from a truncated shifted

shape such as the periodic quadruple system in Example 4.18, then there is an index shape S

of (Z,ω,π,θ) such that the minimum number for (Z,ω,π,θ) and S is 1. In particular, there

are such index shapes for periodic quadruple systems built from parallelogramic shapes such

as the one in Example 4.6. To see how to check that such index shapes exist, we observe the

following special case.

Let (Z,ω,π,θ) and S be as in Example 5.11. We explain why the minimum number m for

(Z,ω,π,θ) and S is 1. Consider the twelve cell diagram below.

∗
◦ ◦ ◦
• • • •

The above diagram depicts the poset π−1([0,2]). Moreover, π−1({0}) is represented by the

four cells in the top row of the diagram, θ(S) is depicted by the cells filled with an asterisk

and the cells filled with circles, and π−1({2}) is depicted by the cells filled with bullets.

Set m = 1, and set n = m. From the above diagram, it can be seen that if p ∈ Z satisfies

π(p) = n+1 = 2, then p is represented by one of the cells filled with bullets. From the same
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diagram, it can be seen that there exists an element q ∈ θ n(S) = θ(S), specifically one of the

cells filled with a circle, such that q < p in Z and π(q) ≥ 1. Hence, m = 1 is the minimum

number of (Z,ω,π,θ).

Remark 5.18. Example 5.17 can be generalized to prove the following. If (Z,ω,π,θ) is a

periodic quadruple system as described in Theorem 4.26, then there is an index shape S of

(Z,ω,π,θ) such that the minimum number for (Z,ω,π,θ) and S is 1.

We now prove the main result of this chapter by proving the existence of a certain matrix

difference equation. For the proof, recall the definitions of the sets Xn(T0) and Xn,i(T0) in

Definition 5.8.

Theorem 5.19. Let (Z,ω,π,θ) be a periodic quadruple system, let S be an index shape of

(Z,ω,π,θ), and let L be an indexing of Tb(S,ω). Moreover, let n′ be an admissible number

for (Z,ω,π,θ) and S, let T0 ∈ Tb(π−1([n′,0]),ω), and let (vn)n=0,1,2,... be a sequence such

that for all n ∈ N0, vn is the nth vector derived from (Z,ω,π,θ), S, L, and T0. Lastly, let M

be the tableau transfer matrix derived from (Z,ω,π,θ), S, and L, and let m be the minimum

number for (Z,ω,π,θ) and S. Then for all n≥ m,

vn+1 = M vn.

Example 5.20. Let (Z,ω,π,θ), S, L, T0 be as in Example 5.9 and Example 5.11. By Example

5.17, the minimum number m for (Z,ω,π,θ) and S is 1. So consider the 1st vector v1 derived

from (Z,ω,π,θ), S, and L. As shown in Example 5.9,

v1 =

1

0

 .
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Next, let M be the tableau transfer matrix from Example 5.7. What this theorem allows us to

do is to determine vn from M and v1 for any n≥ 1. For instance, we showed in Example 5.11

that

v2 =

3

2

 .

This vector can also be obtained from M and v1 as follows.

v2 = Mv1 =

3 4

2 3


1

0

=

3

2


Proof. Let n ∈ N. Define Q = π−1([n′,n+ 1]), C = π−1({n+ 1}), B = θ n(S), and A =

π−1([n′,n])\B. Then (A,B,C) is a connected triple of Q. Note that A∪B = π−1([n′,n]) and

θ(B) = θ n+1(S).

If T ∈ Xn+1(T0), then T |A∪B ∈ Tb(A∪B,ω) and T |B∪C ∈ Tb(B∪C,ω). Since T ∈ Xn+1(T0),

Definition 5.8 implies that for all U ∈ T , p∈ π−1([n′,0]), and q∈ π−1([n+1]), U(p)>U(q).

Hence, for all U ∈ T , p ∈ π−1([n′,0]), and q ∈ π−1([n+ 1]), U(p) > U(q), and it follows

that T |A∪B ∈ Xn(T0) and T |B∪C ∈ Tb(B∪C,ω) . As noted in Remark 5.14, T ∈ Xn+1(T0)

uniquely determines T |A∪B and T |B∪C.

Next, define the map

f : Xn+1(T0)→{(T ′′,T ′) ∈ Tb(B∪C,ω)×Xn(T0) : T ′′|B = T ′|B}

by

f (T ) = (T |B∪C,T |A∪B)

for all T ∈ Xn+1(T0). By what we just showed, f is well-defined and injective. We will prove
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that f is also a bijection. To that end, it is enough to show that f is surjective.

Let T ′ ∈ Xn(T0), let T ′′ ∈ Tb(B∪C,ω), and assume that T ′|B = T ′′|B. Recall that Tb(Q,ω) =

Tb(Q,ωQ), where ωQ is the labelling of Q such that ω|Q≡ωQ. Hence, by Lemma 5.12, there

is a unique element T ∈ Tb(Q,ω) such that T |A∪B = T ′ and T |B∪C = T ′′. So to prove that f

is surjective, it is enough to prove that T ∈ Xn+1(T0).

Let P′ = π−1([n′,0]) and let P = π−1([n+ 1]). Because T |A∪B = T ′ ∈ Xn(T0) and because

P′ ⊆ A∪B, Definition 5.8 implies that T |P′ = T0. Hence, by Definition 5.8, it is enough to

show that for all U ∈ T , p ∈ P′, and q ∈ P, U(p)>U(q). To that end, let U ∈ T , let p ∈ P′,

and let q ∈ P.

If π(q)≤ n, then p,q ∈ A∪B, implying, as T |A∪B ∈ Xn(T0), that U(p)>U(q) by Definition

5.8 applied to T |A∪B. So assume without loss of generality that π(q) = n+ 1. Because

n ≥ m, by hypothesis where m is the minimum number for (Z,ω,π,θ) and S, Definition

5.15 implies that there exists an element p′ ∈ θ n(S) such that p′ < q in Z and π(p′)≥ 1. In

particular, as p′ < q and U is order reversing, U(p′)≥U(q).

Because B = θ n(S), p′ ∈ B. Moreover, T |A∪B ∈ Xn(T0) and p ∈ P′. Furthermore, by Defi-

nition 5.8, U(p′′) >U(q′′) for all p′′ ∈ P′ and q′′ ∈ π−1([n]). Lastly, p′ ∈ π−1([n]) because

p′ ∈ θ n(S) and π(p′)≥ 1. So as p ∈ P′ and p′ ∈ π−1([n]), we have U(p)>U(p′). Hence,

U(p)>U(p′)≥U(q),

implying that U(p)>U(q). From this, it follows that T ∈ Xn+1(T0). Hence, f is a bijection.

Whence, for all T2 ∈ Tb(S,ω), the number of elements T ∈ Xn+1(T0) satisfying T |θ n+1(S) ≡θ
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T2 is

∑
T1∈Tb(S,ω)

M(T2,T1) |{T ∈ Xn(T0) : T |θ n(S) ≡θ T1}| (5.1)

for the following reasons.

Since B = θ n(S), the fact that f is a bijection implies that the following is true for all

T2 ∈ Tb(S,ω). If g is the restriction of f to the set of elements T ∈ Xn+1(T0) satisfying

T |θ n+1(S) ≡θ T2, then g is injective and the range of g is the set of ordered pairs (T ′′,T ′) ∈

Tb(B∪C,ω)×Xn(T0) satisfying T ′′|θ n+1(S) ≡θ T2 and T ′′|θ n(S) = T ′|θ n(S).

Moreover, as θ is an order automorphism on Z, as

B∪C = θ
n(S)∪π

−1({n+1}) = θ
n+1(θ−1(S)∪π

−1({0})),

as θ n(S) = θ n+1(θ−1(S)), and as M is the tableau transfer matrix derived from (Z,ω,π,θ),

S and L, Definition 5.6 implies that for all T1,T2 ∈ Tb(S,ω), the number of elements T ′′ ∈

Tb(B∪C,ω) satisfying T ′′|θ n+1(S) ≡θ T2 and T ′′|θ n(S) ≡θ T1 is M(T2,T1).

Hence, the number of elements T ∈ Xn+1(T0) satisfying T |θ n+1(S) ≡θ T2 is given by Expres-

sion 5.1.

Lastly, by Definition 5.8,

|Xn,L(T1)(T0)|= |{T ∈ Xn(T0) : T |θ n(S) ≡θ T1}|

for all T1 ∈ Tb(S,ω), and

|Xn+1,L(T2)(T0)|= |{T ∈ Xn+1(T0) : T |θ n+1(S) ≡θ T2}|
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for all T2 ∈ Tb(S,ω).

Therefore, for all T2 ∈ Tb(S,ω), Definition 5.8 implies that

vn+1(L(T2)) = |Xn+1,L(T2)(T0)|

= |{T ∈ Xn+1(T0) : T |θ n+1(S) ≡θ T2}|

= ∑
T1∈Tb(S,ω)

M(T2,T1) |{T ∈ Xn(T0) : T |θ n(S) ≡θ T1}|

= ∑
T1∈Tb(S,ω)

M(T2,T1) |Xn,L(T1)(T0)|

= ∑
T1∈Tb(S,ω)

M(T2,T1) vn(L(T1)).

From this, the theorem follows from the definition of matrix multiplication.

69



Chapter 6

Results relating to the marriage condition

In this chapter, we consider families of sets that satisfy Hall’s marriage condition. We intro-

duce a generalized notion of hook-lengths for such families. Then, we establish an existence

result based on such generalized hook-lengths that gives a new characterization of marriage

problems with unique solutions. Afterwards, we prove a corollary that complements this

existence result.

Definition 6.1. (Hall, [21]) Let n ∈ N, and let F be a finite family of subsets of [n]. Then a

transversal of F is an injective function t : F → [n] such that t(F) ∈ F for all F ∈F .

Informally, a transversal maps each F to one of its elements.

Definition 6.2. (Hall, [21]) Let n ∈N, and let F be a finite family of subsets of [n]. Then F

satisfies the marriage condition if for all subfamilies F ′ of F ,

|F ′| ≤
∣∣∣∣ ⋃

F∈F ′
F
∣∣∣∣.
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Example 6.3. A simple example illustrating both Definition 6.1 and Definition 6.2 is as

follows. Let n = 5, and let

F = {{1},{1,2},{1,2,3},{1,2,3,4},{1,2,3,4,5}}.

Then F satisfies the marriage condition. For example, if F ′ is the subfamily of F defined by

F ′= {{1},{1,2,3}}, then |F ′|= 2 and |{1}∪{1,2,3}|= 3. The map t : F →{1,2,3,4,5}

defined by t([k]) = k for all 1≤ k ≤ 5 is a transversal of F .

One could interpret the above example as evidence to the possibility that a family of sets of

[n] has a transversal if and only if it satisfies the marriage condition. It turns out that this is

always true. The following is known as Hall’s Marriage Theorem.

Theorem 6.4. (Hall, [21]) Let n ∈ N, and let F be a family of non-empty subsets of [n].

Then F has a transversal if and only if F satisfies the marriage condition.

In order to use the families of sets in Hall’s Marriage Theorem, we will define more structure

on the objects being considered. Definition 6.5 represents the local conditions and general-

ized hook-lengths mentioned in Chapter 1; how this relates to hook-lengths will become

clear in the next chapter. Recall the notation we use for functions in Chapter 2.

Definition 6.5. Let n ∈ Z, let F be a family of non-empty subsets of [n], and let t be a

transversal of F . Then a configuration f of t is a function f : [n]→ N such that for all

F ∈F ,

f (t(F))≤ |F |.

Moreover, a permutation σ : [n]→ [n] satisfies f if the following holds for all F ∈F . The

positive integer σ(t(F)) is the kth smallest element of σ(F), where k = f (t(F)).
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Example 6.6. Let n = 5. Moreover let F and let t : F → [n] be as defined in Example 6.3.

Furthermore, let Fi = [i] for all 1 ≤ i ≤ 5 so t(Fi) = i. Lastly, let f : [n]→ N be defined by

f (1) = 1, f (2) = 1, f (3) = 2, f (4) = 4, and f (5) = 2. The map f is a configuration of

t. For instance, since F3 = {1,2,3}, t(F3) = 3, f (t(F3)) = 2, |F3| = 3, and f (t(F3)) ≤ |F3|.

Similarly, f (t(F1)) = 1 ≤ 1 = |F1|, f (t(F2)) = 1 ≤ 2 = |F2|, f (t(F4)) = 4 ≤ 4 = |F4|, and

f (t(F5)) = 2≤ 5 = |F5|.

Moreover, the permutation σ : [n]→ [n] defined by σ = 41352 satisfies f . For example, con-

sider F3 = {1,2,3}. As before, t(F3) = 3 and f (t(F3)) = 2, so k = 2. Moreover, σ(t(F3)) =

σ(3) = 3. Lastly, σ(F3) = {σ(1),σ(2),σ(3)} = {1,3,4}, and σ(t(F3)) = 3 is the second

smallest element of σ(F3). Similarly, for F1, k = 1, σ(t(F1)) = 1, and σ(F1) = {4}; for

F2, k = 1, σ(t(F2)) = 1, and σ(F2) = {1,4}; for F4, k = 4, σ(t(F4)) = 5, and σ(F4) =

{1,3,4,5}; and for F5, k = 2, σ(t(F5)) = 2, and σ(F5) = {1,2,3,4,5}.

Configurations satisfy the following property, whose usefulness will become more apparent

in the next chapter.

Lemma 6.7. Let n ∈ N, and let F be a family of subsets of [n] that has a transversal t :

F → [n] such that t is surjective. Then every permutation σ : [n]→ [n] satisfies exactly one

configuration f of t.

Proof. Let σ : [n]→ [n] be a permutation. Then σ satisfies the configuration f of t defined by

letting, for all F ∈F , f (t(F)) = k where σ(t(F)) is the kth smallest element of the set σ(F).

Now, suppose that σ satisfies more than one configuration of t. Then, let f1 and f2 be two

distinct configurations of t. Because f1 6= f2 and because t is surjective, there is an element

F ∈ F such that f1(t(F)) 6= f2(t(F)). So write k1 = f1(t(F)) and write k2 = f2(t(F)).

Since σ satisfies f1, Definition 6.5 implies that σ(t(F)) is the kth
1 smallest element of σ(F).
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Moreover, since σ satisfies f2, Definition 6.5 implies that σ(t(F)) is the kth
2 smallest element

of σ(F). However, this is impossible because k1 = f1(t(F)) 6= f2(t(F)) = k2.

Now, we define the following stronger form of the marriage condition that was defined by

Chang [10] and Hirst and Hughes in [24].

Definition 6.8. (cf. ([24], Theorem 4)) Let n ∈ N, let F be a finite family of subsets of [n],

and write m = |F |. Then F is shellable if there exists a bijection σF : [m]→F such that

for all k ∈ [m], ∣∣∣∣ k⋃
i=1

σF (i)
∣∣∣∣= k. (6.1)

Informally, σF maps each k to a subset, such that the union of the first k subsets has cardi-

nality k.

Remark 6.9. Shellable families of sets are connected to Theorem 6.4. Chang ([10], Theorem

1) noted that a simple consequence of Hall Jr.’s work ([22], Theorem 2) is that a finite family

F of subsets of [n] has exactly one transversal if and only if F is shellable. Later on, Hirst

and Hughes showed that this can be proved using a subsystem of second order arithmetic

called RCA0 [24] and proved an extension of this result involving infinite families of finite

sets in the context of reverse mathematics. From the aforementioned characterization of

finite families of subsets of [n] that have exactly one transversal, we have, by Theorem 6.4,

that all shellable families satisfy the marriage condition.

Remark 6.10. The term shellable is not used in [10], [22], and [24]. However, we use this

terminology because Definition 6.8 resembles the definition of a shellable pure d-dimensional

simplicial complex ([8], Appendix A2.4, Definition A2.4.1). The differences between Defi-

nition 6.8 and Definition A2.4.1 are as follows. The sets in Definition 6.8 do not require

additional conditions on the cardinalities of the members of F . Also, in Definition A2.4.1,
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the requirement of the existence of a bijection σF : [m]→F as described in Definition 6.8

is relaxed to requiring the existence of a certain bijection from a subset of [m] to a subset of

F .

Remark 6.11. When describing the members of a shellable family, we will use a total order-

ing on the members of that family. Specifically, let F be a shellable family of subsets of [n]

and let m = |F |. By Definition 6.8, there exists a bijection σF : [m]→F such that Equation

6.1 is satisfied for all k ∈ [m]. From this bijection σF , define a total ordering <F on the

members of F by defining, for all members F ′,F ′′ ∈F , F ′ <F F ′′ if σ
−1
F (F ′′)< σ

−1
F (F ′).

The shelling order of a shellable complex from ([8], Appendix A2.4, Definition A2.4.1) is a

variant of this total ordering.

Example 6.12. Let n ∈ N, and define the following finite family of sets.

F = {[i] : i ∈ [n]}

Then F is shellable for the following reason. Firstly, |F |= n, so the variable m in Definition

6.8 satisfies m = n. Next, define the bijection σF : [n]→F be letting σF (k) = [k] for all

k ∈ [n]. Then for all k ∈ [n], ∣∣∣∣ k⋃
i=1

σF (i)
∣∣∣∣= |[k]|= k.

So as F and σF satisfy Equation 6.1, F is shellable.

Example 6.13. If n ∈ N and n≥ 3, then a family of subsets of [n] that satisfies the marriage

condition but is not shellable is

F = {[n]\{k} : k ∈ [n]}.

This family satisfies the marriage condition because for any subfamily F ′ of F with at least
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one member, ∣∣∣∣ ⋃
F∈F ′

F
∣∣∣∣ =


n−1 if |F ′|= 1

n else.

However, if F is shellable, where m = |F |, then the following holds. By Definition 6.8

and Equation 6.1, there exists a bijection σF : [m]→ F such that |σF (1)| = 1. So as

σF (1) ∈ F , it follows that F has a member whose cardinality is one. However, for all

F ∈F , |F |= n−1≥ 2. So it follows that F is not shellable.

Now, we prove the main result of this chapter. It is a partial converse of Lemma 6.7.

Theorem 6.14. Let n∈N. Moreover, let F be a family of subsets of [n] such that F satisfies

the marriage condition, let t be a transversal of F , and assume that |F | = n. Then F

is shellable if and only if the following holds. For all configurations f of t, there exists a

permutation σ : [n]→ [n] that satisfies f .

Example 6.15. Let n = 3. Moreover, let F = {{1,2,3},{1,3}}, and let t : F → [n] be de-

fined by t({1,2,3}) = 1 and t({1,3}) = 3. The family F is not shellable since we cannot

find a bijection σF : [m]→ F such that |σF (1)| = 1. Now, let f : [n]→ N be the con-

figuration of t defined by f (1) = 1, f (2) = 2, and f (3) = 1. It is a configuration of t since

f (t({1,2,3})) = f (1) = 1≤ 3 = |{1,2,3}| and f (t({1,3})) = f (3) = 1≤ 2 = |{1,3}|. Then

no permutation σ : [n]→ [n] satisfies f as follows.

Suppose that there is a permutation σ0 : [n]→ [n] that satisfies f . First, consider the element

F1 = {1,2,3} of F . Then k = f (t(F1)) = f (1) = 1. Moreover, σ0(F1) = {1,2,3}. So as

σ0 satisfies f , σ0(t(F1)) = σ0(1) is the smallest element of {1,2,3}. Hence, σ0(1) = 1.

Next, consider the element F2 = {1,3} of F . Then k = f (t(F2)) = f (3) = 1. So as σ0

satisfies f , σ0(t(F2)) = σ0(3) is the smallest element of σ0(F2) = {σ0(1),σ0(3)}. But then,
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σ0(3)< σ0(1), contradicting the fact that σ0(1) = 1.

Proof. First assume that for all configurations f of t, there exists a permutation σ : [n]→

[n] that satisfies f . If n = 1, then the only family of {1} with a transversal is the family

F = {{1}}, which is shellable. So assume without loss of generality that n ≥ 2. Consider

the configuration f1 of t defined by f1(t(F)) = |F | for all F ∈ F . By assumption, there

exists a permutation σ ′ : [n]→ [n] that satisfies f1. Moreover, let k ∈ [n−1], and assume that

we can fix an ordering F = {F ′i : i ∈ [n]} of F so that the following holds for all integers

0≤ j ≤ k−1. ∣∣∣∣n− j⋃
i=1

F ′i

∣∣∣∣= n− j (6.2)

Note that Equation 6.2 holds if k = 1 because the fact that F has a transversal implies that⋃
F∈F F = [n].

Next, let 1≤ s≤ n− k+1 satisfy

σ
′(t(F ′s )) = max

1≤ j≤n−k+1
σ
′(t(F ′j)). (6.3)

Suppose that there exists an element j ∈ [n] such that 1≤ j≤ n−k+1, j 6= s, and t(F ′s )∈ F ′j .

By Equation 6.3, σ ′(t(F ′j)) ≤ σ ′(t(F ′s )). So as t(F ′s ) ∈ F ′j and t(F ′s ) 6= t(F ′j), it follows that

for some 1 ≤ ` ≤ |F ′j | − 1, σ ′(t(F ′j)) is an `th smallest element of σ ′(F ′j). But then, as

f1(t(F ′j)) = |F ′j |, σ ′ does not satisfy f1, contradicting the assumption that σ ′ satisfies f1.

Hence, t(F ′s ) /∈ F ′i for all 1 ≤ i ≤ n− k + 1 satisfying i 6= s. In particular, fix an ordering

F = {F ′′i : i ∈ [n]} of F so that F ′′i = F ′i if i > n− k+ 1 and F ′′n−k+1 = F ′s , where s is as

described in the above paragraph. From Equation 6.2, this ordering of the members of F
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satisfies the following equation for all integers 0≤ j ≤ k.

∣∣∣∣n− j⋃
i=1

F ′′i

∣∣∣∣= n− j

As the choice of k∈ [n−1] is arbitrary, it follows that there exists an ordering F = {F1,F2, . . . ,Fn}

of F such that ∣∣∣∣ k⋃
i=1

Fi

∣∣∣∣= k

for all 1≤ k ≤ n. Hence, F satisfies Equation 1 of Definition 6.8. So, by Definition 6.8, F

is shellable.

Next, assume that F is shellable. Because F is shellable, we will use the total ordering as

described in Remark 6.11 to describe the members of this family. We proceed by induction

on n. If n = 1, then the only family of subsets of {1} with a transversal is the family F =

{{1}}. Moreover, with t being the transversal of F defined by mapping {1} to 1, the only

configuration f that satisfies t is the function f : {1} → N defined by f (1) = 1, and any

permutation σ : {1}→ {1} satisfies f .

So let n≥ 2 and assume that the induction hypothesis holds. Let t be a transversal of F and

let f be a configuration of t. Because F is shellable, Definition 6.8 and Remark 6.11 imply

that there is an element n′ ∈ [n] such that, for all F ∈F , n′ /∈ F or t(F) = n′. So without loss

of generality, assume that n′ = n. Let F ′ be the family of sets defined by

F ′ = {F ∈F : t(F) 6= n}.

As n /∈ F for all F ∈F such that t(F) 6= n, F ′ is a family of subsets of [n−1]. Next, define

t ′ : F ′→ [n−1] by letting t ′(F) = t(F) for all F ∈F ′. Moreover, because t is a transversal
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of F , t ′ is a transversal of F ′. By Definition 6.8 and the choice of n = n′, F ′ is shellable

for the following reason.

Define the bijection σF ′ : [n−1]→F ′ by

σF ′(k) = σF (k)

for all k∈ [n−1]. Because σF satisfies Equation 6.1 of Definition 6.8, σF ′ satisfies Equation

6.1 of Definition 6.8. Hence, F ′ is shellable. So by the induction hypothesis, there exists a

permutation σ ′ : [n−1]→ [n−1] that satisfies all configurations f ′ of t ′.

Let m = f (n), and let Fσ be the element of F such that t(Fσ ) = n. There is an order

embedding κ : [n− 1]→ [n] such that the element k ∈ [n]\κ([n− 1]) is the mth smallest

element of κ(Fσ ). With κ defined, define σ : [n]→ [n] as follows. Let σ(n) be the element

of [n] that is not in κ([n−1]), and, for all k ∈ [n−1], let σ(k) = κ(σ ′(k)). Because n = n′

and n′ ∈ F for exactly one element F ∈F , σ satisfies f . From this, the theorem follows.

Remark 6.16. A family F of subsets of [n] such that |
⋃

F∈F F |= |F |= n is called a critical

block in [22]. In [22], Hall Jr. used this notion as a very important ingredient in extending

Hall’s Marriage Theorem to infinite families of finite sets.

As a corollary, we show the following.

Corollary 6.17. Let n ∈N. Moreover, let F be a family of subsets of [n] that has a transver-

sal, let t be a transversal of F , and assume that |F | = n. Then every configuration f of t

is satisfied by some permutation σ : [n]→ [n] if and only if the following holds. The con-

figuration f0 of t defined by f0(t(F)) = 1 for all F ∈ F is satisfied by some permutation

σ0 : [n]→ [n].
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Example 6.18. The family of sets in Example 6.15 is, as shown in that example, a family

where the configuration f0 as defined in Corollary 6.17 is not satisfied by any permutation.

Proof. By Theorem 6.4, F has a transversal if and only if F satisfies the marriage condition.

So by Theorem 6.14, it is enough to prove that F is shellable if and only if the configuration

f0 of t as described in the corollary is satisfied by some permutation σ0 : [n]→ [n].

We first show that if F is not shellable, then the configuration f0 is not satisfied by any

permutation. Let f1 be the configuration of t defined by f1(t(F)) = |F | for all F ∈F . The

first part of the proof of Theorem 6.14 proves that if f1 is satisfied by some permutation

σ : [n] → [n], then F is shellable. So as F is not shellable, f1 is not satisfied by any

permutation σ : [n]→ [n]. Moreover, a permutation σ : [n]→ [n] satisfies f0 if and only if

the permutation σ ′ : [n]→ [n] defined, for all k ∈ [n], by

σ
′(k) = n−σ(k)+1

satisfies f1. Hence, it follows from the above that if F is not shellable, then f0 is not satisfied

by any permutation.

So assume that F is shellable, and use a total order to describe the members of F by letting

σF : [n]→F be as described in Definition 6.8. Define the permutation σ0 : [n]→ [n] by

having

σ0(t(σF (k)) = n− k+1

for all k ∈ [n]. This permutation satisfies f0 because for all k ∈ [n], σ0(t(σF (k))) = n−k+1

is the smallest element of σ0(σF (k)). This completes the proof of the corollary.
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Chapter 7

Applications to skew tableaux

In this chapter, we describe how the results in the previous chapter can be applied to skew

shapes. Specifically, we introduce a generalization of standard skew tableaux and Edelman

and Greene’s balanced tableaux, then prove some existence results about these generalized

structures as described in Chapter 1 by using the characterization of the stronger form of the

marriage condition. Afterwards, we briefly indicate other ways in which we can apply the

results of Chapter 7.

Definition 7.1. (cf. [30], p.7 and [41], Definition 2.1.1, Definition 3.7.1) Let λ =(λ1,λ2, . . . ,λ`)

and µ = (µ1,µ2, . . . ,µ`′) be partitions of positive integers such that `′ ≤ ` and µi ≤ λi for all

1≤ i≤ `′. Moreover, let

X =
⋃̀
i=1

λi⋃
j=µi+1

{(i, j)}.

Lastly, let X ′⊂N2 be such that X ′=X+v for some v∈Z2, X ′−(0,1)*N2, and X ′−(1,0)*

N2. Then define the skew shape λ/µ to be the Young diagram that is equal to X ′.

If µ = /0 is the empty partition, then for any partition λ of a positive integer, define the skew
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shape λ/µ to be the Young diagram that is equal to

⋃̀
i=1

λi⋃
j=1

{(i, j)}

and call this Young diagram the Young diagram of λ . We also call the Young diagram of λ

a normal shape. Lastly, if λ = /0 is the empty partition, then we define the Young diagram of

λ to be the empty set.

Example 7.2. Let λ = (4,2,1,1), and consider the Young diagram of λ . By Definition 7.1,

row 1 of this diagram consists of λ1 = 4 cells, row 2 of this diagram consists of λ2 = 2 cells,

row 3 of this diagram consists of λ3 = 1 cell, and row 4 of diagram consists of λ4 = 1 cell.

Hence, the Young diagram is as follows.

Remark 7.3. Let λ be a partition of a non-negative integer. Then we will refer to the Young

diagram of λ as λ . In particular, we can speak of cells of λ or even rows of λ . Since we will

do this, we will say things such as “let λ be a normal shape” when mentioning the Young

diagram of λ .

Example 7.4. Let λ = (4,3,2,2) and µ = (2,2,1). Then `= 4, `′ = 3, and for all 1≤ i≤ `′,

µi ≤ λi. Hence, the skew shape λ/µ is well-defined. The set X as described in Definition

7.1 is obtained from the Young diagram of λ by deleting the µ1 = 2 left-most cells of row 1

of λ , the µ2 = 2 left-most cells of row 2 of λ , and, as µ3 = 1, the left-most cell of row 3 of

λ . Because this set X satisfies X − (0,1) * N2 and X − (1,0) * N2, it follows that X ′ = X.
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Hence, by Definition 7.1, the skew shape λ/µ is the following Young diagram.

Remark 7.5. When mentioning skew shapes λ/µ , we simply say “let λ/µ be a skew shape”

without explicitly mentioning that λ and µ are partitions that satisfy the conditions described

in Definition 7.1.

Definition 7.6. (Folklore, cf. [30, 41, 45]) Let λ/µ be a skew shape consisting of n cells.

Then a standard skew tableau of shape λ/µ is a bijective filling of the cells of λ/µ with

numbers from [n] such that entries increase along every row from left to right and entries

increase along every column from top to bottom. Moreover, a reverse standard skew tableau

of shape λ/µ is a bijective filling of the cells of λ/µ such that the entries decrease along

every row from left to right and entries decrease along every column from top to bottom. If

µ = /0, then a standard skew tableau of shape λ/µ is a standard Young tableau of shape λ

and a reverse standard skew tableau of shape λ/µ is a standard reverse tableau of shape λ .

Example 7.7. Consider the skew shape λ/µ from Example 7.4. An example of a standard

skew tableau of shape λ/µ is the following.

1 4
2

5
3 6

To see that the above is a standard skew tableau, note that the entries, 1 and 4, in row 1 of

this tableau are increasing from left to right, that the entries 5 and 6, in column 2 of this

tableau are increasing from top to bottom, and so on. An example of a reverse standard skew
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tableau of shape λ/µ is the following.

6 1
4

5
3 2

The above is a reverse standard skew tableau since the entries, 6 and 4, in column 3 of this

tableau are decreasing from top to bottom, the entries, 3 and 2, in row 4 of this tableau are

decreasing from left to right, and so on.

When describing families of sets, we will replace [n] in the last chapter with the set of cells

of λ/µ . Moreover, in place of the permutations σ : [n]→ [n], we define generalized standard

skew tableaux.

Definition 7.8. (cf. [41], Definition 2.1.3) Let λ/µ be a skew shape with n cells. Then a

generalized standard skew tableau of shape λ/µ is a bijective filling of the cells of λ/µ with

numbers from [n].

Example 7.9. If λ = (4,3,1) and µ = (2), then an example of a generalized skew tableau of

shape λ/µ is as follows.

3 5
6 1 2
4

Definition 7.10. ([41]) Let λ/µ be a skew shape. For any cell (i, j) in λ/µ , define the

corresponding hook H(i, j) and hook-length h(i, j) as follows:

• H(i, j) = {(i′, j) ∈ λ/µ : i′ ≥ i}∪{(i, j′) ∈ λ/µ : j′ ≥ j},

• h(i, j) = |H(i, j)|.
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Example 7.11. Consider the following skew shape λ/µ , where λ = (5,4,3,3) and µ =

(2,2,1). Moreover, let r be the cell of λ/µ depicted below that is filled with a bullet. Then

Hr consists of the cells that are filled with asterisks or bullets, and hr = 4.

• ∗
∗
∗

Let λ be a normal shape. Then an inner corner of λ ([41], Definition 2.8.1) is a cell r ∈ λ

such that deleting r from λ results in another normal shape. With this definition in mind, let

λ/µ be a skew shape with n cells, and consider the family of sets defined by F = {Hr : r ∈

λ/µ}. Then F is shellable. To see this, let r1,r2, . . . ,rn be a sequence of cells in λ/µ that

is obtained as follows.

• Let r1 be an inner corner of λ .

• If 1≤ k < n and if r1, r2, . . . , rk have already been defined, then let λ (k) be the Young

diagram that results from deleting cells r1, r2, . . . , and rk from λ , and let rk+1 be an

inner corner of λ (k).

Lastly, let λ (n) = µ . Define σF : [n]→ F by letting σF (k) = Hrk for all k ∈ [n]. The

bijection σF satisfies Equation 6.1 because, for all k ∈ [n], λ (k) has n− k cells,

λ
(k) ∪

k⋃
i=1

Hri = λ/µ, (7.1)

and

λ
(k) ∩

k⋃
i=1

Hri = /0. (7.2)
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Hence, F is shellable by Definition 6.8. In particular, by Remark 6.9, F has a unique

transversal. The unique transversal t : F → λ/µ of F is given by t(Hr) = r for all r ∈ λ/µ .

Example 7.12. Let λ = (4,2,2) and let µ = (1). Next, let F = {Hr : r ∈ λ/µ}. We illustrate

why F is shellable. The normal shape λ is depicted below and all inner corners of λ are

filled with bullets.

•

•

Pick the inner corner r1 = (3,2) of λ . Then the normal shape λ (1) is depicted below and all

inner corners of λ (1) are filled with bullets

•
•

•

and we can pick the inner corner r2 = (1,4) of λ (1). Continuing in this way, one possibility

is the following sequence of cells in λ/µ depicted below.

r6 r5 r2
r7 r3
r4 r1

In particular, r3 = (2,2), r4 = (3,1), r5 = (1,3), r6 = (1,2), and r7 = (2,1). Now, define σF :

{1,2, . . . ,7}→F so that σF (1) = H(3,2), σF (2) = H(1,4), σF (3) = H(2,2), σF (4) = H(3,1),

σF (5) = H(1,3), σF (6) = H(1,2), and σF (7) = H(2,1). This bijection satisfies Equation 7.1

and Equation 7.2. Hence, F is shellable.

Edelman and Greene introduced the following variant of standard Young tableaux.
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Definition 7.13. (Edelman and Greene, [13]) Let λ be a normal shape containing n cells.

Then a balanced tableau of shape λ is a bijective filling of the cells of λ with numbers

from [n] such that if (i, j) ∈ λ and if i′ is the largest positive integer such that (i′, j) ∈ λ , if

k = i′− i+1, and if Si, j is the set of entries m such that m is contained in a cell in H(i, j), then

the entry in cell (i, j) of λ is the kth smallest entry of Si, j.

Example 7.14. Let λ = (4,3,2). Then a balanced tableau of shape λ is as follows.

4 5 8 3
6 7 9
1 2

For instance, let i = 2 and j = 1. Then the entry contained in cell (i, j) of λ is 6. More-

over, the largest integer i′ such that (i′, j) ∈ λ is 3, k = i′− i+ 1 = 3− 2+ 1 = 2, H(i, j) =

{(2,1),(2,2),(2,3),(3,1)} and Si, j, the set of entries m of this tableau such that m is con-

tained in a cell in H(i, j), equals {1,6,7,9}. Hence, the kth smallest entry of Si, j is 6, which is

the entry in cell (2,1) of the above tableau.

In order to generalize standard skew tableaux, reverse standard skew tableaux, and balanced

tableaux, we introduce the following special case of configurations from Definition 6.5.

Definition 7.15. Let λ/µ be a skew shape. A configuration of λ/µ is a function f : λ/µ→N

from the cells of λ/µ to the positive integers so that if r ∈ λ/µ , then f (r)∈N and f (r)≤ hr.

Remark 7.16. We say that f is a configuration of λ/µ rather than say that f is a con-

figuration of the transversal t of the set F = {Hr : r ∈ λ/µ} defined by t(Hr) = r for all

r ∈ λ/µ .

Example 7.17. Consider the skew shape λ/µ where λ = (3,2,1) and µ = (1). We denote

configurations f of λ/µ by filling, for all r ∈ λ/µ , cell r with the number f (r). For instance,

three configurations of λ/µ are the following.
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1 1
1 1
1

2 1
2 1
1

3 1
3 1
1

Now, we define the special case of the notion of satisfaction from Definition 6.5.

Definition 7.18. Let T be a generalized standard skew tableau of shape λ/µ and let f be a

configuration of λ/µ . Then T satisfies f if for all cells r ∈ λ/µ , the entry in cell r of T is

the kth smallest, where k = f (r), entry in the set of entries of T that are located in the hook

Hr.

In particular, a standard skew tableau of shape λ/µ is precisely a generalized standard skew

tableau of shape λ/µ that satisfies the configuration f0 of λ/µ defined by f0(r) = 1 for

all r ∈ λ/µ , and a reverse standard skew tableau of shape λ/µ is precisely a generalized

standard skew tableau of shape λ/µ that satisfies the configuration f1 of λ/µ defined by

f1(r) = hr for all r ∈ λ/µ . We will see examples of this in Example 7.19.

Moreover, if λ is a normal shape, then let f be the configuration of λ such that, for all

(i, j) ∈ λ , if i′ is the largest positive integer such that (i′, j) ∈ λ , then f ((i, j)) = i′− i+ 1.

So any tableau T of shape λ is balanced if and only if T satisfies f . This characterization of

balanced tableaux was used in [13] as the definition of balanced tableaux; the special case

of Definition 7.15 for normal shapes also appears in [13] under a different name. Namely,

Edelman and Greene call f (r) the hook rank of r. However, they only use hook ranks to

define balanced tableaux. In this thesis, we have a very different emphasis as we focus on

properties of the configurations themselves.

Example 7.19. Consider the skew shape λ/µ from and the three configurations of λ/µ from

Example 7.17. The generalized standard skew tableaux that satisfy the leftmost configuration

depicted in Example 7.17 are precisely the standard skew tableaux of shape λ/µ . Moreover,
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the generalized standard skew tableaux that satisfy the rightmost configuration depicted in

Example 7.17 are precisely the reverse standard skew tableaux of shape λ/µ . Furthermore,

four examples of generalized standard skew tableaux that satisfy the middle configuration

depicted in Example 7.17 are displayed below.

4 5
2 3
1

2 1
4 3
5

4 2
3 5
1

3 2
4 5
1

Definition 7.20. Let λ/µ be a skew shape and h be a configuration of λ/µ . Then we write

N(h) to denote the number of generalized standard skew tableaux of shape λ/µ that satisfy

h.

Corollary 7.21. Let λ/µ be a skew shape. Then the number of configurations f of λ/µ such

that N( f )> 0 is

∏
r∈λ/µ

hr .

Proof. There are ∏r∈λ/µ hr configurations f of λ/µ since f (r) ≤ hr for every r ∈ λ/µ .

So, since {Hr : r ∈ λ/µ} is a shellable family of subsets of the set of cells of λ/µ by the

discussion after Example 7.11, Theorem 6.14 implies that N( f )> 0 for all configurations f

of λ/µ . From this, the corollary follows.

A well-known formula is the hook-length formula, first proved by Frame, Robinson, and

Thrall [16]. It is as follows. If λ is a normal shape with n cells, then the number of standard

Young tableaux of shape λ equals
n!

∏r∈λ hr
.

Moreover, the above formula was also proved by Edelman and Greene to equal to the number

of balanced tableaux of shape λ [13]. In our context, we will show that the above formula
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also has interesting connections to the configurations that we are investigating.

Corollary 7.21 has the following consequence.

Theorem 7.22. Let λ/µ be a skew shape with n cells, and let X(λ/µ) denote the set of

configurations of λ/µ . Moreover, let N be the number of configurations f of λ/µ such that

N( f )> 0. Then,
1
N ∑

f∈X(λ/µ)

N( f ) =
n!

∏r∈λ/µ hr
.

Example 7.23. Let λ/µ = (4,3,2)/(2,1). Then

1
N ∑

f∈X(λ/µ)

N( f ) =
n!

∏r∈λ/µ hr
=

6!
1 ·3 ·1 ·3 ·1 ·2

= 40.

The hook-lengths are represented with the following diagram.

3 1
3 1

2 1

Proof. Every generalized standard skew tableau of shape λ/µ satisfies exactly one configu-

ration of λ/µ by Lemma 6.7, so by Definition 7.20 and the fact that there are n! generalized

standard skew tableaux of shape λ/µ ,

∑
f∈X(λ/µ)

N( f ) = n!.

Moreover, by Corollary 7.21,

N = ∏
r∈λ/µ

hr.

From this, the theorem follows.
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Lastly, we note that a special case of our work has also been considered in the literature by

Viard. We derived our work independently of Viard.

Remark 7.24. Consider a finite subset S of N2. Next, for all r = (i, j) ∈ S, define Fr =

{(i1, j) ∈ S : i1 ≥ i}∪ {(i, j1) : j1 ≥ j}, and define F = {Fr : r ∈ S}. This construction is

related to the tools we used in Chapter 7 for the following reason. By using the same ex-

planation as the one we gave for why {Hr : r ∈ λ/µ} is shellable, we observe that F is

shellable and that its unique transversal is defined by t(Fr) = r for all r ∈ S.

Let F and t be as described in the above paragraph. Viard [50, 51] considered objects that

are equivalent to configurations of t and permutations that satisfy such configurations. Viard

[50, 51] asserted that he has established one direction of a special case of Theorem 6.14 by

claiming to have proved a statement equivalent to asserting that all configurations f of t are

satisfied by at least one permutation σ : S→ S. In particular, using his claim, he derives

two consequences that imply Corollary 7.21 and Theorem 7.22.There are two versions of his

arguments (a less general version in [50] and a more general version in [51]), both versions

are different from our proof of Theorem 6.14.
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Chapter 8

Conclusion

In this thesis, we proved that the number of periodic P-partitions can be analysed with the

homogeneous first-order matrix difference equation in Theorem 5.19.

The case of Theorem 5.19 when the labelling ω is dual-natural can be applied to the fol-

lowing. As indicated by Example 4.6, Theorem 5.19 can be applied to bijective fillings of

the parallelogramic shapes considered by López et.al. [27], by Sun [47], and by Tewari

and van Willigenburg [49]. Moreover, as indicated in Example 4.18, Theorem 5.19 can be

applied to bijective fillings of certain truncated shifted shapes. This would add to what is

known about enumerating bijective fillings on truncated shifted shapes from Adin, King,

and Roichman [1, 3] and from Panova [38].

The case of Theorem 5.19 when the labelling ω is a generalized Schur labelling can be ap-

plied to the problem of enumerating semistandard tableaux. The problem of enumerating

tableaux known as semi-standard tableaux is, in general, far from solved [45]. For semi-

standard tableaux on partition shapes, the number of such numbers are called Kostka num-
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bers. These numbers are related to Specht modules and have several implications in algebraic

combinatorics [41, 45].

Moreover, in this thesis, we gave a new characterization of shellable families in Theorem

6.14 by generalizing the notion of standard Young tableaux and Edelman and Greene’s bal-

anced tableaux and proved an existence result for such generalized tableaux on skew shapes

in Theorem 7.22. This would add to the properties described in Remark 6.9 that are known

about shellable families of sets. Additionally, as shellable families are families of sets that

satisfy a stronger form of the marriage condition, Theorem 6.14 adds to what is known about

the marriage condition. Further to this, Theorem 6.14 and Theorem 7.22 provide existence

results to natural generalizations of balanced tableaux and skew tableaux and establish that

the numbers of such tableaux are related to the enumerative formulas for balanced tableaux

discovered by Edelman and Greene in [13, 14] and the enumerative formulas for standard

Young tableaux discovered by Frame, Robinson, and Thrall in [16].

We now discuss the future directions that we have in mind for this work.

Recall that the Cayley-Hamilton Theorem states that if M is a square matrix and if p(x) is the

characteristic polynomial of M, then p(M) = 0. By applying the Cayley-Hamilton Theorem

to the square matrix in Theorem 5.19 and by using Lemma 5.10, we plan to prove that the

matrix difference equation in Theorem 5.19 can be used to prove that periodic P-partitions

can be enumerated with constant coefficient linear recurrence relations. In particular, we

plan to recover all of the constant coefficient linear recurrence relation results of López et.al.

[27], Sun [47], and Tewari and van Willigenburg [49].

In view of the above plan, we aim to analyse six aspects of the above recurrence relations ob-

tained via the Cayley-Hamilton Theorem, which, in this chapter, we call periodic recurrence
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relations after the periodic P-partitions that they enumerate, and the number of periodic P-

partitions, which are enumerated by the periodic recurrence relations.

Firstly, we plan to use a known result that express the characteristic polynomial of a square

matrix A in terms of its trace trA [26] and to give combinatorial descriptions for trM when

M is the matrix in Theorem 5.19. From this, we can obtain combinatorial descriptions for

the coefficients of the periodic recurrence relations. Using the work from ([6], Question

1284192; c.f. [9], Section 3.1) to describe the characteristic polynomial of the square matrix

A, the above combinatorial descriptions can also be converted into a determinantal formulas

for the above coefficients.

Secondly, we plan to analyse the asymptotics of the number of periodic P-partitions. Con-

sider the notation Pn as given in Proposition 5.10. We plan to prove that |Pn,ω| is asymptotic

to crn as n→∞ for some constants c > 0 and r > 1 that depend on the sequence (Pn)n=1,2,....

To do this we will use properties of transfer matrices for directed graphs [44] to prove fur-

ther combinatorial properties of the matrix in Theorem 5.19, then invoke results in Perron-

Frobenius theory [4, 11, 32].

Thirdly, we plan to analyse the largest and second largest eigenvalues of the matrix in Theo-

rem 5.19. For the largest eigenvalue, we plan to give a combinatorial description and to give

bounds. For the bounds, we will use Perron-Frobenius theory and matrix theory [33]. Such

an approach can also utilize many known bounds, that have varying levels of complexity,

for the largest eigenvalue [7, 17, 20, 32, 33, 37, 52]. For the second largest eigenvalue, we

plan to use certain tools in matrix and spectral graph theory [11, 33] to give combinatorial

descriptions.

Fourthly, in a related direction, we plan to establish a link between certain finite posets and

93



certain monic polynomials in Z[x]. Speficially, we plan to prove a relationship between

the minimal polynomials of the matrices in Theorem 5.19 and the posets that are the index

shapes in Theorem 5.19 by proving the following.

Conjecture 8.1. The condition that one such minimal polynomial divides another such min-

imal polynomial is equivalent to the condition that one such poset is a subposet of another

such poset.

Fifthly, as an application of the connected triple concept we introduced, we plan to prove

that many columns of the transfer matrices in Theorem 5.19 are identical. A generaliza-

tion of such properties was explored by Lundow [29] where symmetry properties of certain

recurrence relations were investigated.

Lastly, in the case when the labelling ω in the periodic quadruple system (Z,ω,π,θ) is dual-

natural, we also plan to adapt López et.al’s proof technique from [27], by generalizing it to

the level of generality considered in this thesis, to derive exponential upper bounds on the

orders of the periodic recurrence relations, and to derive exponential upper bounds on the

degrees of the minimal polynomials of the matrices in Theorem 5.19.

For the results relating to generalized balanced tableaux and marriage problems with unique

solutions, there are three aspects of these results that we plan to analyse.

In a preprint submitted for publication, we generalize Theorem 6.14 to certain words in [n]m,

where m≤ n and m is bounded below by a formula that depends on the shellable family F .

Moreover, we generalize Theorem 7.22 to shellable families and the aforementioned words

in [n]m and the expression in Theorem 7.22 is generalized to include Stirling numbers of the

second kind. In discussing the feasibility of such a formula, we use known properties of

these Stirling numbers.
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There is a known formula in the literature, that is a more complex form of the hook-length

formula, for determining the number of standard skew tableaux of shape λ/µ [34]. More-

over, asymptotic properties of such numbers were analysed by Morales, Pak, and Panova in

[34]. By combining these results with Theorem 7.22, we plan to investigate the number of

configurations f such that N( f ) is strictly less than the expression given in Theorem 7.22.

Such an investigation appears to be generalizable since there are variants and generalizations

of Naruse’s formula that are known [19, 36], and since for at least some of these variants,

extensions of Morales, Pak, and Panova’s asymptotic properties are conjectured to extend to

at least some of these variants.

Lastly, we plan to define a natural partial ordering on the possible configurations f of a

transversal t of a family of sets. With this partial order, we plan to derive a product formula

that would give a general upper bound for N( f ), where N( f ) is as defined in Theorem 7.22,

by utilizing the order-preserving maps in the proof of Theorem 6.14.
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