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Abstract  

Linking   cooperatively   functioning    cis -regulatory   elements   (CREs),   specifically   enhancers  

and   promoters,   is   a   challenging   task.   Current   strategies   include   correlation   of   expression   of  

RNA   transcribed   from   the   CREs,   experimentally   measured   chromatin   interactions   (Promoter  

Capture   Hi-C)   or   machine   learning   based   computational   predictions.   However,   all   three  

approaches   require   the   availability   of   experimental   data,   which   is   sparse   for   most   cells   and  

tissues.   We   propose   a   new   similarity   metric   to   link   enhancers   to   their   target   promoters   based   on  

transcription   factor   (TF)-binding   “signatures”.   TF-binding   signatures   are   binary   string  

representations   ( e.g.    0011001...),   where   each   position   indicates   binding   (“1”)   or   not   (“0”)   of   a   TF  

to   a   CRE.   We   apply   a   cosine   similarity   metric   to   enhancer-promoter   pairs   linked   in   published  

studies   involving   CRISPRi-FlowFISH,   co-expression   (FANTOM),   or   experimental   tiling-deletion  

(CREST-seq).   We   find   a   significant   difference   between   TF   signature   similarities   of   linked  

promoter-enhancer   pairs   compared   to   unlinked   pairs.   Furthermore   we   observe   that   TF-binding  

similarity   scores   are   CRR   specific.   Based   on   the   results,   new   directions   are   proposed   that   may  

allow   further   improvement   towards   a   reliable   mapping   of   interacting   CREs   across   the   genome.   
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Lay   Summary  

The   human   body   is   composed   of   many   different   cell   types   that   all   come   from   the   same  

DNA   instructions.   Neurons,   white   blood   cells   and   muscle   cells   look   and   function   very   differently.  

The   properties   of   each   cell   type   depends   on   which   genes   that   are   turned   on   or   off.   Within   the  

DNA   are   on/off   switches   for   the   genes,   but   they   are   spread   out   and   it   is   not   yet   known   which  

on/off   switches   work   on   which   genes.    In   this   thesis   a   method   is   created   and   tested   that   aims   to  

determine   which   on/off   switches   act   on   which   genes.   The   method   is   based   on   comparing  

characteristics   of   the   on/off   switches   with   the   characteristics   at   the   start   of   the   genes,   under   the  

expectation   that   these   characteristics   should   be   similar   if   they   work   together.  
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Preface  

This   thesis   contains   original   work   performed   at   the   UBC   Centre   for   Molecular   Medicine  

and   Therapeutics   at   the   BC   Children's   Hospital   Research   Institute   under   the   supervision   of   Dr.  

Wyeth   Wasserman.   No   text   is   taken   from   previously   published   material.  

The   TF   binding   signature   design   protocol   was   defined   by   myself   and   Dr.   Oriol   Fornes.   I  

programmed   scripts   creating   TF   binding   signatures   and   calculating   similarity   scores   between  

signatures,   and   performed   downstream   statistical   analysis.   
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Introduction  

While   the   human   body   is   composed   of   many   different   cell   types   ( e.g.    neurons,  

fibroblasts,   leucocytes),   they   all   originate   from   the   same   DNA.   The   morphology   and   function   of  

each   cell   type   depends   on   the   specific   subset   of   genes   that   are   turned   on   ( i.e.    expressed)   or   off  

( i.e.    repressed).   Gene   expression   is   a   complex   cellular   process   that   is   regulated   at   multiple  

levels.   At   the   transcriptional   level,   regulation   of   gene   expression   largely   depends   on   the  

coordinated   action   of    cis- regulatory   regions   (CRRs)   and   transcription   factors   (TFs) 1 .   CRRs   are  

regions   of   DNA   that   regulate   the   spatiotemporal   expression   of   target   genes.   Broadly,   CRRs  

include   promoters,    i.e.    proximal   regulatory   regions   overlapping   transcription   start   sites   (TSSs)   of  

their   target   genes,   and   distal   regulatory   regions   or   enhancers.   TFs   are   proteins   that   bind   to  

these   CRRs   in   a   sequence-specific   manner   to   promote   or   repress   gene   expression 2 .   To   do   so,  

they   stabilize/block   the   binding   of   RNA   polymerase   II   (RNAP2)   to   DNA,   promote   the  

modification   ( e.g.    acetylation/deacetylation)   of   histones   (see   below),   and/or   recruit  

coactivators/corepressors.   Additional   layers   of   transcriptional   regulation   include   aforementioned  

histone   modifications,   and   the   local   three-dimensional   (3D)   architecture   of   DNA.   New  

technologies   and   experimental   methods   have   emerged   to   enable   high-throughput   profiling   of  

different   mechanisms   of   transcriptional   control,   including   the   accessibility   of   chromatin 3 ,  

genomic   locations   where   TFs   bind   to   DNA   and   histones   are   modified    4 ,   and   the   3D   conformation  

of   the   genome 5 .   Together,   they   enable   the   identification   of   CRRs   and   TF   binding   sites   (TFBSs;  

i.e.    specific   genomic   locations   where   TFs   bind).   

While   substantial   progress   has   been   made   in   identifying   CRRs,   linking   enhancers   to  

their   target   genes   remains   challenging.    Current   strategies   include    correlating   data   across  

individual   cells 6    or   across   multiple   cell   types   and/or   tissues,   identifying   chromatin   interactions  

1  

https://paperpile.com/c/jm4M4U/NNtH
https://paperpile.com/c/jm4M4U/nlir
https://paperpile.com/c/jm4M4U/zwjRe
https://paperpile.com/c/jm4M4U/Bz2uv
https://paperpile.com/c/jm4M4U/8MBb
https://paperpile.com/c/jm4M4U/EGGT


 

between   promoter   and   distal   regions   ( e.g.    Promoter   Capture   Hi-C 6,7 ),   or   disrupting   candidate  

enhancer   regions   by   CRISPR   technology .   More   recently,   this   task   has   caught   the   attention   of  

computational   biologists   in   the   field   of   machine   learning    8 , 9 .   The   development   of   machine  

learning   and   other   computational   methods   is   important.   Experiments   can   only   identify  

enhancer-promoter   pairs   in   the   cells   and/or   tissues   analyzed   and,   for   most   of   them,   this   data   is  

sparse.   However,   current   machine   learning   methods   have   limited   performance   and   predicted  

enhancer-promoter   pairs   must   still   be   experimentally   validated 10 .  

Given   the   limitations   of   current   predictive   methods,    developing   a   method   that  

correctly   links   enhancers   to   their   target   genes   is   key   to   furthering   the   current  

understanding   of   gene   regulation.   

In   the   following   sections   I   will   describe   the   current   state   of   understanding   and   research  

methods   that   inform   the   approaches   taken   in   this   thesis.  

 

1.1   Transcription   factors  

Formally,   the   term   transcription   factor   refers   to   proteins   involved   in   the   process   of  

transcription.   In   this   thesis,   I   focus   on   the   subset   of   TFs   that   exhibit   sequence-specific  

DNA-binding   properties,   and   hereafter,   the   term   TF   will   refer   specifically   to   this   subset.   The  

initiation   of   transcription   begins   with   a   TF   binding   to   its   cognate   site,   followed   by   the   sequential  

recruitment   of   coactivator   proteins   and   ultimately   RNAP2.   Note   that   there   is   regulation   of   other  

RNAPs,   for   instance   RNA   polymerase   III,   which   synthesizes   small   RNAs   such   as   5S   rRNA   and  

tRNA,   but   within   this   thesis   I   focus   on   RNAP2-mediated   transcription.   TFs   are   modular   proteins  

composed   of   one   or   more   functional   domains.   DNA-binding   domains   enable   recognition   and  

binding   to   short   (6-20   bp)   DNA   motifs,   trans-activating   domains   allow   interactions   between   TFs  

2  

https://paperpile.com/c/jm4M4U/EGGT+BtrV
https://paperpile.com/c/jm4M4U/YIiS
https://paperpile.com/c/jm4M4U/gEgo
https://paperpile.com/c/jm4M4U/mWqN


 

and   transcriptional   coactivators/corepressors,   and   signal-sensing   domains   respond   to   external  

stimuli   to   increase   or   repress   expression   of   the   transcribed   gene.   Activators   ( i.e.    TFs   that  

promote   transcription)   interact   with   other   TFs   and   coactivator   proteins   to   recruit   RNAP2   for  

transcription   initiation.   In   contrast,   repressors   inhibit   RNAP2   from   initiating   transcription    by  

blocking   the   binding   of   coactivators   or   impeding   RNAP2   progress   along   the   DNA   strand.  

Depending   on   different   protein-protein   interactions   and/or   protein   modifications,   some   TFs   can  

reverse   their   role   acting   as   an   activator   to   function   as   a   repressor.   For   example,   MYC   is   a  

regulator   for   the   transcription   of   ~15%   of   human   genes.   While   MYC   acts   as   an   activator   for  

essential   genes   involved   in   cell   proliferation,   cell   growth   and   metabolism,   it   can   also   interact  

with   other   TFs   ( e.g.    SP1   and   MIZ1)   to   repress   the   expression   of   genes   involved   in   the    negative  

regulation   of   cell   proliferation    11 .  

Each   TF   recognizes   diverse   DNA-binding   sites,   but   only   a   few   of   these   TF   binding   sites  

(TFBSs)   are   occupied    in   vivo .   TF   binding   sites   can   be   conserved   or   change   across   cells   and  

tissues   based   on   the   varying   affinity   of   TF-DNA   interactions   to   specific   DNA   sequences 12 .  

CTCF,   a   ubiquitously   expressed   TF   that   can   function   as   an   activator,   repressor   or   insulator,   has  

relatively   conserved   binding   sites.   On   the   other   hand,   MYC   can   bind   in   a   cell   type-specific  

manner   to   lower   affinity   TFBSs,   facilitating   cell   type-specific   gene   expression 13 .   The   difference   in  

TF   binding   affinity   between   a   variety   of   TFBSs   is   especially   important   during   development,   for  

instance   to   control   spatiotemporal   gene   expression.   Some   TFs   are   constitutively   active   in   all   cell  

types,   while   others   are   expressed   gradiently   in   specific   timepoints   or   cell   types   and   are  

important   for   development    14 , 15 .   In   addition,   some   TFs   preferentially   bind   within   promoter   regions  

while   others   are   enriched   at   enhancers    16 ,    17 ,    18 .   Sp1,   a   TF   involved   in   many   cellular   processes  

including   cell   differentiation,   primarily   binds   within   promoter   regions   while  

growth-factor-inducible   TFs   (AP-1)   binding   is   enriched   at   enhancers    16 ,    19    .   

3  

https://paperpile.com/c/jm4M4U/T0lX
https://paperpile.com/c/jm4M4U/a2Pr
https://paperpile.com/c/jm4M4U/MJnP
https://paperpile.com/c/jm4M4U/MNnv
https://paperpile.com/c/jm4M4U/PNvU
https://paperpile.com/c/jm4M4U/Y8m0
https://paperpile.com/c/jm4M4U/8ppf
https://paperpile.com/c/jm4M4U/pRVL
https://paperpile.com/c/jm4M4U/Y8m0
https://paperpile.com/c/jm4M4U/IF85


 

1.1.1   Identification   of    TF   binding   sites  

Development   of   high-throughput   technologies   to   detect   protein-DNA   interactions    in   vitro  

and    in   vivo    has   enabled   the   identification   of   TFBSs.    In   vivo    techniques   measure   TF-DNA  

interactions   in   the   context   of   cellular   chromatin,   while   most    in   vitro    techniques   measure   TF  

interactions   with   “naked”   DNA.    The    in   vitro    methods   are   powerful   ways   to   understand   the  

diversity   of   DNA   sequences   bound   by   a   given   TF.   Since   TF   binding   is   affected   by   DNA  

accessibility   and   cofactors   that   induce   conformational   changes   in   the   DNA,    in   vitro    techniques  

are   unable   to   accurately   capture   the   high   affinity   binding   sites   that   TFs   preferentially   bind   to    in  

vivo    20 .   In   the   context   of   this   thesis,   we   will   therefore   focus   on   chromatin   immunoprecipitation  

followed   by   sequencing   (ChIP-seq),   an    in   vivo    method   to   identify   TFBSs.  

ChIP-seq   has   become   a   standard   technique   to   delineate   the   genomic   locations   where  

TFs   bind   to   DNA.   In   a   ChIP-seq   experiment,   proteins   are   first   crosslinked   to   their   interacting  

DNA.   Next,   DNA   is   fragmented   and   immunoprecipitated   with   antibodies   targeting   the   TF   of  

interest.   Then,   immunoprecipitated   crosslinks   are   reversed   and   the   purified   DNA   is   sequenced  

and   mapped   back   to   genome   coordinates   using   high-throughput   methods.   Finally,   TF-bound  

regions   are   determined   by   peak-calling   algorithms   that   identify   genomic   regions   enriched   in  

sequenced   DNA   fragments.   Note   that   ChIP-seq   can   be   applied   to   other   DNA-binding   proteins  

(e.g.   RNAPII,   p300)   or   to   detect   histone   modifications   (see   section   1.2.3.1).   Efforts   have   been  

made   by   consortia   such   as   ENCODE    21 , 22    to   generate   collections   of   ChIP-seq   datasets   for  

hundreds   of   TFs   in   a   variety   of   biological   samples   including   tissues,   primary   cells,   and  

immortalized   cell   lines.   The   ReMap   database    22    is   a   public   repository   of   human   and    Arabidopsis  

regulatory   region   data   assembled   through   uniformly   analyzing   thousands   of   quality   controlled,  

publically   available,   ChIP-seq   experiments.   The   2020   human   version   of   the   ReMap   includes  

4  

https://paperpile.com/c/jm4M4U/mDfJ
https://paperpile.com/c/jm4M4U/MTKH
https://paperpile.com/c/jm4M4U/H0Bv
https://paperpile.com/c/jm4M4U/H0Bv


 

5,798   high   quality   ChIP-seq   datasets   profiling   regulatory   regions   covering   a   total   of   1,135   TFs  

across   602   cells   and   tissues.   

1.2   Cis-regulatory   regions  

1.2.1   Promoters  

By   definition,   promoters   are   regulatory   regions   of   DNA   located   proximal   to   and  

overlapping   the   TSSs   of   genes,   and   are   essential   for   transcription   of   DNA   to   RNA.   Each   gene  

promoter   must   include   TFBSs,   allowing   for   assembly   of   the   transcription   machinery   and  

recruitment   of   RNAP2.   Genes   commonly   have   multiple   promoters    23 ;   the   FANTOM5   project  

showed   that   more   than   6,000   genes   are   regulated   by   multiple   promoters    24 .   Detailed  

characterization   of   promoters   have   shown   that   some   promoters   use   one   specific   TSS,   while  

other   promoters   produce   transcripts   from   a   variety   of   TSSs 25 .   However,   in   eukaryotes,   about   a  

quarter   of   promoters   include   a   conserved   sequence   called   the   TATA-box    26 .   It   has   been   shown  

in   vitro    that   the   TATA-binding   protein   (TBP)   binds   upstream   of   the   TATA-box   and   is   sufficient   to  

initiate   transcription   of   these   genes    27 .   Promoters   that   do   not   contain   the   TATA-box   (TATA-less  

promoters)   frequently   contain   other   elements   that   allow   general   TFs   to   bind.   The   initiator  

element   (Inr)   and   the   downstream   promoter   element   (DPE)   are   regions   where   general   TFs,  

such   as   TBP   Associated   Factors   (TAFs),   are   able   to   bind   and   interact   with   TBP   to   initiate  

transcription.    23 .   Promoters   featuring   one   specific   TSS   commonly   have   strong   TATA-box   motifs,  

while   promoters   using   a   diverse   set   of   TSSs   do   not 25 .  
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1.2.2   Enhancers   

For   many   genes,   the   precise   control   of   gene   expression   requires   additional   regulatory  

sequences   beyond   the   promoter   region.    In   such   cases,    enhancer-promoter   interactions   may   be  

required   for   the   precise   control   of   gene   expression   levels     28 .   By   definition,    enhancers   are   distal  

regulatory   regions   containing   TFBSs   involved   in   the   spatio-temporal   control   of   gene   expression.  

Enhancers   are   frequently   located   in   non-coding   or   intronic   regions   of   the   genome,   and   can   be  

located   hundreds   of   kilobase   pairs   upstream   or   downstream   of   their   target   genes 29 .   Enhancers  

contribute   to   the   expression   of   their   target   genes   in   a    synergistic    and   partly   redundant   manner  

through   chromatin   looping   facilitated   by   cohesin   and   other   protein   complexes.   Such   looping  

brings   enhancers   to   the   proximity   of   their   target   promoters   in   3D-space 28 .  

Both   promoters   and   enhancers   have   been   shown   to   produce   RNA   transcripts   (both   transcribed  

by   RNAP2).   The   FANTOM5   project   found   that   enhancer   RNA   (eRNA)   transcripts   are  

bidirectionally   transcribed    30 ,   while   promoter   RNA   transcripts   have   directional   bias 24 .   Most  

eRNAs   are   short   (generally   less   than   350   bp),   unstable   and   unspliced.   In   contrast,   sense-strand  

promoter   RNA   transcripts   are   long   (on   average   ~1,200   bp),   and   80%   of   them   are   spliced    30 .  

Recent   experimental   evidence   contradicts   these   classifying   characteristics,   as   it   has   been  

shown   that   promoters   are   also   bidirectionally   transcribed,   producing    antisense   promoter  

upstream   transcripts   (PROMPTs)   that   resemble   eRNAs 31 .    In   addition,   experimental   evidence  

supports   that   some   promoters   can   act   as   enhancers   for   nearby   genes    32 , 33 .   

Thus   it   is   not   inappropriate   to   consider   enhancers   and   promoters   to   be   labels   describing   two  

ends   of   a   continuous   functional   distribution   of   CRRs.   In   the   context   of   this   thesis,   however,  

promoters   are   classified   as   regulatory   regions   overlapping   the   TSS(s)   of   a   gene,   and   enhancers  

are   distal   regulatory   regions   identified   by   any   of   the   methods   discussed   below.  
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1.2.3   Identification   of   cis-regulatory   regions  

Over   the   last   decade,   new   experimental   methods   have   been   developed   to   enable   the  

identification   of   CRRs.   These   methods   include   profiling   genomic   locations   where   histones   are  

modified   ( i.e.    ChIP-seq 4 ),   chromatin   accessibility   ( e.g.    DNase-seq 3 ),   and   RNA   transcription  

initiation   ( e.g.    CAGE 34    ,GRO-seq 35 ).  

1.2.3.1   Histone   modifications  

In   the   nucleus,   DNA   is   coiled   around   proteins   called   histones   to   facilitate   genome  

organization.   Histone   proteins   are   subject   to   diverse   post-translational   modifications   such   as   the  

addition   of   a   methyl   group   (methylation)   or   an   acetyl   group   (acetylation),   at   specific   amino   acids.  

Ultimately,   such   modifications   dictate   the   accessibility   of   the   DNA   region   for   TF   binding 36 .  

Genome-wide   analysis   of   histone   modifications   identified   certain   modifications   as   markers   of  

enhancer   and   TSS   regions,   respectively.   For   example,   the   tri-methylation   (Me3)   at   lysine   4   (K4)  

of   histone   H3   ( i.e.    H3K4Me3)   marks   regions   proximal   to   TSSs 37 ,   while   H3K4me1   marks  

enhancer   regions,   and   the   presence   of   H2K27ac   distinguishes   active   from   inactive   enhancers.  

Histone   modifications   can   be   detected   using   methods   such   as   ChIP-seq   (see   1.1.1   Identification  

of   TF   Binding   Sites).   Over   3,000   uniformly   processed   histone   ChIP-seq   datasets,   conducted   on  

a   variety   of   cell   types   and   tissues,   are   available   through   the   ENCODE   Portal 38 .  

1.2.3.2   Chromatin   accessibility   

Since   accessible   DNA   regions   facilitate   TF   binding,   they   are   also   susceptible   to  

cleavage   by   DNase   I,   an   endonuclease   with   little   sequence   specificity    39 .   DNase   I   hypersensitive  

sites   (DHSs)   can   be   identified   experimentally   using   DNase-seq,   a   technique   that   involves  

digesting   DNA   using   DNase   I   followed   by   sequencing   of   the   cleaved   regions.   In   2012,   the  
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ENCODE   project   performed   DNase-seq   on   125   different   human   cell   and   tissue   types   and  

identified    2,890,742   DHSs   ~150   bp   long.   Downstream   analysis   of   the   identified   DHSs   found   that  

97.4%   of   1,046   experimentally   validated   enhancer   regions   overlap   a   DHS.   In   addition,   it   was  

discovered   that   DHSs   overlapping   promoter   regions   are   relatively   conserved   across   cell   types,  

while   DHSs   overlapping   enhancer   regions   are   more   cell   type-specific    40 .   Today,   over   1,000  

DNase-seq   datasets   covering   hundreds   of   human   cell   and   tissue   types   are   available   through  

the   ENCODE   Portal.  

1.2.3.3   Transcription   initiation   

Enhancer   and   promoter   regions   are   transcribed   into   capped   RNAs   by   RNAP2.  

Introduced   in   2003   by   Shiraki    et   al.     34 ,   cap   analysis   of   gene   expression   (CAGE)   captures   the  

capped   5’   region   of   transcribed   mRNAs   and   eRNAs.   These   captured   transcripts   ( i.e.    tags)   are  

then   sequenced   and   mapped   back   to   a   reference   genome.   The   Functional   Annotation   of  

Mammalian   Genome   (FANTOM)   consortium   ( http://fantom.gsc.riken.jp/ )   both   generated   and  

analyzed   an   extensive   collection   of   CAGE   data   across   the   majority   of   human   cell   types,   organs  

and   immortalized   cell   lines   to   identify   TSSs   and   enhancer   regions.   TSSs   were   identified   by  

clustering   CAGE   tags   that   were   strongly   biased   towards   the   sense   direction   of   the   gene,   while  

enhancers   were   identified   as   regions   enriched   with   bidirectional   CAGE   peaks    24 , 30 .   At   the   time   of  

publication,   the   FANTOM5   project   included   CAGE   data   for   573   primary   human   cells,   152   human  

post   mortem   tissues   and   250   cancer   cell   lines.   From   the   CAGE   data,   the   FANTOM5   project  

identified   TSSs   for   91%   of   human   protein   coding   genes    24 and   43,011   enhancers 30 .   While   some  

are   expressed   ubiquitously,   many   of   these   identified   enhancers   are   expressed   in   a   cell  

type-specific   manner 30 .  
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Global   run-on   sequencing   (GRO-seq)    35 captures   nascent   transcription   from   actively  

engaged   RNA   polymerases.   While   eRNA   instability   inhibits   CAGE   from   detecting   many  

enhancer   regions,   GRO-seq   measurements   are   independent   of   the   instability   and   high   decay  

rate   of   eRNAs,   resulting   in   improved   sensitivity 41 .   A   recent   improvement   to   GRO-seq’s   nuclear  

run-on   based   method,   PRO-seq,   replaces   the   classically   used    bromouridine   substrate   with  

biotin-labeled   nucleotide   triphosphates   (biotin-NTPs)   to   achieve   base-pair   resolution    41 .   Active  

enhancer   and   promoter   regions   can   be   identified   from   raw   GRO-seq/PRO-seq   data   using  

software   such   as   dREG,   a   machine   learning   tool   that   predicts   active   regulatory   regions   based  

on   support   vector   regression.   Due   to   expensive,   time-consuming   experimental   procedures,   the  

number   of   publically   available   GRO-seq/PRO-seq   datasets   is   limited   and   sparse 42 .   

1.3   Linking   enhancers   to   promoters  

While   identifying   CRRs   has   become   increasingly   possible   (both   computationally   and  

experimentally),   linking   enhancers   to   their   target   promoters   remains   challenging 43 .   Enhancers  

can   skip   the   nearest   gene   to   regulate   a   more   distal   one,   and   the   genomic   distance   between  

enhancers   and   promoters   can   be   quite   large 44 .   Current   strategies   include   correlation   of   DHS   or  

expression   data   across   multiple   cells   and/or   tissues   ( e.g.    CAGE   data   from   the   FANTOM5  

project 30 ),   chromatin   interactions   ( e.g.    Promoter   Capture   Hi-C 7 ),   CRISPR   perturbations   and  

machine   learning   methods,   each   with   underlying   limitations.   Linking   CRRs   by   correlation  

requires   data   from   many   cell   types   and   has   a   low   accuracy   for   rarely   expressed   genes.   While  

the   identification   of   distal   regions   that   interact   with   promoters   is   important   in   identifying  

enhancers,   current   Promoter   Capture   Hi-C   methods   are   expensive   (e.g.   require   a   large   number  

of   cells)   and   have   low   resolution 7 .   As   an   alternative   to   the   physical   interaction   measured   by  

chromatin   capture   methods,   CRISPR-based   methods   allow   detection   of   genetic   interactions.  
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Emerging   methods   that   rely   on   CRISPR   technologies   are   limited   by   low   throughput   and   are  

restricted   to   the   subset   of   genes   that   can   be   assayed.   Finally,   machine   learning   methods   often  

have   inflated   performance   measures   and   require   experimental   validation   to   identify   truly   linked  

CRRs 45 .   

1.3.1   Correlation  

Thurman    et   al. 46    observed   that   known   cell   type-specific   enhancers   become   DNase  

hypersensitive   synchronously   with   their   target   gene’s   promoters.   Correlation   analysis   (using   a  

simple   Pearson   correlation)   between    1,454,901   DHSs   and   all   promoters   within   500   kilobase  

pairs   (kb)   of   each   DHS   across   79   cell   types   identified   in   the   ENCODE   project   was   performed,  

resulting   in   1,595,025   DHS-promoter   linkages    46 .   Assuming   that   each   DHS   is   a   candidate  

enhancer,   this   analysis   found   that   on   average   a   promoter   is   correlated   with   22.8   enhancers,   with  

84%   of   promoters   correlated   with   more   than   one   enhancer.   Moreover,   DHS-correlated  

enhancer-promoter   pairs   were   enriched   for   chromatin   interactions    46 .  

In   addition   to   the   identification   of   CRRs,   the   FANTOM5   project   linked   enhancers   to   their  

target   genes   based   on   correlation   of   CAGE   data.   The   Pearson   correlation   coefficient   was  

calculated   between   CAGE   tags   per   million   (TPMs),   across   available   samples,   of   all  

intra-chromosomal   enhancer-TSS   pairs   within   500   kb;   highly   correlated   enhancer-TSS   pairs   ( r    >  

0.7)   were   identified   as   putative   enhancer-TSS   pairs.   This   method   of   linking   enhancers   to   TSSs  

resulted   in   TSSs   being   associated   to   4.9   enhancers   each   on   average,   with   enhancers   being  

linked   to   2.4   TSSs   each   on   average.   Linking   enhancers   to   promoters   by   correlation   of  

expression   appeared   to   be   substantially   more   concordant   than   correlation   of   DHS   after  

validation   against    ChIA-PET   (RNAP2-mediated)   interaction   data   from   the   ENCODE   consortium  
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( 20.6%   vs   4.3%   at   the   same   threshold)    30 .   This   suggests   that   not   all   regions   accessible   to   TFs  

are   transcribed   enhancers.   

1.3.2   Promoter   Capture   Hi-C  

It   has   been   observed   that   distal   enhancers   are   aided   by   DNA   looping   to   control   the  

expression   of   their   target   promoters.   Consequently,   Promoter   Capture   Hi-C   (PCHi-C),   an   assay  

that   captures   long-range   interactions   of   promoter   regions,   can   be   used   to   identify   enhancers   for  

target   promoters 7 .   In   PCHi-C,   interacting   regions   of   the   genome   are   crosslinked   and   digested   to  

generate   di-tags.   Di-tags   encompassing   promoter   regions   are   captured   by   specific   RNA   baits  

and   sequenced.   Misfud    et   al.    used   PCHi-C   to   identify   distal   interacting   regions   for   21,841  

promoters   in   GM12878   and   CD34+   cells.   Distal   regions   found   to   interact   with   active   promoters  

were   enriched   in   DHS   and   enhancer-associated   histone   marks   such   as   H3K4me1,   H3K4me3,  

and   H3K27ac.   Furthermore,   DNA   fragments   interacting   with   inactive   or   weakly   transcribed  

promoters   were   enriched   for   H3K27me3,   a   repressing   mark,   and   depleted   for   the   activating  

marks   present   in   fragments   interacting   with   active   promoters.   The   DNA   regions   interacting   with  

promoters   were   cell   type   dependent.   For   instance,   GM12878   cell   type-specific   enhancers   were  

enriched   in   the   promoter-interacting   fragments   of   the   GM12878   PCHi-C   dataset.  

1.3.3   CRISPR-based   methods  

In   the   classic   CRISPR-Cas9   assay,   cells   expressing   Cas9   are   infected   with   a   viral   library  

of   guide   RNAs.   Then,   Cas9   cleaves   DNA   regions   that   are   complementary   to   the   guide   RNA  

resulting   in   double   strand   breaks.   Next,   the   breaks   are   joined   either   by   a   donor   template   or   by  

the   cell’s   double   strand   break   repair   machinery,   which   frequently   introduces   mutations   that  

affect   function   at   the   target   locus.   
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CRISPRi-FlowFISH 47    is   a   method   that   utilizes   CRISPR   technology   to   identify   enhancer   regions  

of   target   genes.   KRAB-dCas9,   a   nuclease-deficient   Cas9   bound   to   an   inhibitor,   is   expressed   in  

cells   instead   of   Cas9   to   minimize   the   varying   effects   of   mutations.   Cells   expressing   fluorescently  

tagged   target   genes   are   infected   by   a   guide   RNA   library   designed   to   target   candidate   enhancer  

regions   ( i.e.    to   deliver   the   KRAB   inhibitor   to   the   enhancer   region).   Then,   RNA   fluorescence    in  

situ    hybridization   (FISH)   followed   by   fluorescence-activated   cell   sorting   (FACS)   is   performed   to  

label   and   bin   cells   with   different   expression   levels   of   the   target   gene.   The   effect   of   each   guide  

RNA   towards   gene   expression   can   be   inferred   after   high-throughput   sequencing   of   the   resulting  

bins,   and   enhancer   regions   can   be   identified   as   guide   RNAs   that   significantly   decrease   the  

target   gene’s   expression.   

While   candidate   enhancer   regions   are   a   prerequisite   for   designing   the  

CRISPRi-FlowFISH   guide   RNA   library,   CRR    scan   by   tiling-deletion   and   sequencing  

(CREST-seq)   do   not   require   such   a    prerequisite .   In   a   CREST-seq   experiment,   cells   expressing  

Cas9   are   infected   with   a   guide   RNA   library   that   introduces   a   large   number   of   overlapping  

genomic   deletions   (~2   kb   deletions,   each   overlapping   by   1.9   kb).   Then,   FACS   is   performed   to  

isolate   cells   with   lowered   expression   of   the   target   gene.   Next,   deletions   resulting   in   lowered  

expression   of   the   target   gene   are   determined   by   high-throughput   sequencing.   Finally,   enhancer  

regions   are   inferred   from   regions   enriched   in   guide   RNA-facilitated   deletions.   

1.3.4   Machine   learning   methods  

Supervised   machine   learning   methods   have   emerged   as   an   alternative   to   experimental  

approaches   to   predict   enhancer-promoter   linkages   in   a   cell   type-specific   manner.   These  

methods   rely   on   the   analysis   of   integrated   genomics   data   of   candidate   CRRs.   Despite   some  
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initial   promise,   independent   benchmarking    10    showed   that   the   performance   of   computational  

approaches   are   often   little   better   than   a   simple   pairing   of   enhancers   with   the   closest   promoters.  

TargetFinder   is   a   popular   tool   that   claims   to   accurately   link   enhancers   to   their   target   promoters  

based   on   distinguishing   patterns   of   TF   binding,   histone   modifications   and   DHSs   between  

interacting   and   non-interacting   enhancer-promoter   pairs    8 .   The   method   reported   a   false  

discovery   rate   (probability   of   false   positive   enhancer-promoter   pairs)   15   times   lower   than   the  

false   discovery   rate   of   linking   enhancers   to   the   most   proximal   promoter.   Further   analysis   of   the  

training   and   testing   sets   of   TargetFinder   by    Cao   et   al.    found   that   53–76%   of   regions   between  

interacting   enhancer-promoter   pairs   overlapped   with   each   other,   while   only   0.16%   of   regions  

between   interacting   enhancer-promoter   pairs   overlapped   a   window   of   a   non-interacting  

enhancer-promoter   pair 45 .   After   correcting   for   this   bias,    Cao   et   al.    found   that   the   accuracy   of  

TargetFinder   in   predicting   enhancer-promoter   pairs   decreased   dramatically   from   77-90%   to  

1.3-9.8%   in   the   6   different   cell   lines   studied 45 .   Furthermore,    Moore   et   al . 10 compared  

TargetFinder’s   performance   to   a   distance-based   approach   ( i.e.    linking   enhancers   to   the   closest  

promoter)   and   found   that   TargetFinder   only   slightly   outperformed   the   distance-based   approach  

when   trained   and   tested   on   the   same   cell   line,   but   performed   worse   than   the   distance-based  

approach   when   a   trained   model   was   tested   on   data   from   a   different   cell   line.  

PEP-motif 9 ( predicting   enhancer-promoter   interactions)   is   a   machine   learning   tool   that  

predicts   enhancer-promoter   pairs   from   sequence-based   features   ( i.e.    motifs).   For   each   cell   line  

(K562,   GM12878,   HeLa-S3,   HUVEC,   IMR90,   NHEK),   TF   binding   motifs   of   enhancers   and  

promoters   in   TargetFinder’s   cell   line-specific   positive   and   negative   sets   are   concatenated   and  

used   to   train   a   supervised   model.   While   PEP-motif   reports   a   similar   performance   to  

TargetFinder   with   a   weighted   average   precision   and   recall   (F1)   accuracy   of    77-90% ,     Moore   et  

al. 10    found   that   PEP-motif   performs   worse   than   the   distance-based   method.   PEP-motif   achieves  
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an   area   under   the   precision   recall   curve   (AUPRC)   of   0.3   while   the   distance-based   method  

achieves   an   AUPRC   of   0.43   after     retraining   the   PEP-motif   model   with   unbiased   training   and  

testing   sets.   

While   machine   learning   methods   for   predicting   enhancer-promoter   interactions   are  

anticipated   to   be   impactful,   current   performance   metrics   indicate   there   is   substantial   opportunity  

for   improvement.   

1.4   Hypothesis  

In   depth   analyses   of   the   regulation   of   specific   genes   have   revealed   cases   in   which   the  

same   TF   functionally   binds   to   motifs   within   both   the   gene’s   promoter   region   and   a   distal  

enhancer   region,   such   as   the   TF   HNF1   in   the   GC   gene 48 .    Since   enhancers   act   in   conjunction  

with   promoters   to   regulate   gene   expression,   and   because   TFs   recruit    RNAP2    and   accessory  

factors   to   promote   transcription   at   these   CRRs,   we   hypothesize   that   overlapping   patterns   of   TF  

binding   will   be   enriched   in   cooperatively   functioning   pairs   of   enhancers   and   promoters.   Such  

enrichment   would   provide   a   mechanism   to   predict   links   between   enhancers   and   their   target  

promoters.   

Past   approaches   based   on   the   hypothesized   relationship   between   TF   binding   patterns   at  

enhancers   and   promoters   have   performed   poorly,   potentially   due   to   the   data   features   used.   We  

suspect   that   the   low   performance   of   PEP-motif   is   due   to   using   computationally   predicted,   rather  

than   experimentally   identified,   TFBSs,   especially   since   DNA   accessibility   is   not   considered   in  

the   approach.   In   addition,   we   hypothesize   that   TF   binding   similarity   between   enhancers   and  

their   target   promoters   is   TSS-specific,   with   a   signal   that   cannot   be   sufficiently   captured   in   the  

global   manner   that   PEP-motif   is   trained.  
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We   have   developed   a   correlation   metric   to   link   enhancers   to   promoters   based   on   TF   binding  

signatures   (Figure   1).   The   signature   is   a   binary   string   representation   ( e.g.    0011001...),   where  

each   position   indicates   the   binding   (“1”)   or   not   (“0”)   of   a   TF   at   the   CRR.   The   correlation   is  

calculated   as   the   cosine   similarity   between   signatures.   We   hypothesize   that   TF   binding  

signatures   will   be   more   similar   between   enhancers   and   their   target   promoters   compared   to  

enhancers   and   promoters   they   do   not   target.  

 

Figure   1.   Schematic   overview   of  

enhancer-promoter   linkage   using   TF   binding  

binary   vectors.    The   figure   depicts   a   segment  

of   DNA   within   which   are   observed   two   promoter  

regions   (Prom1   and   Prom2)   delineated   with  

right-angle   arrows.   In   addition   to   these   promoter  

regions,   there   are   three   distinct   enhancer  

regions   (Enh1,   Enh2,   and   Enh3)   indicated   by  

coloured   boxes.   Curved   arrows   indicate  

functional   roles   of   an   enhancer   acting   upon   a  

promoter.   Coloured   diamonds   indicate   specific   types   of   TFs   binding   to   the   DNA   at   each   region.   Below   a  

data   matrix   depicts   the   observed   experimental   ChIP-seq   data   that   reports   the   binding   of   a   TF   to   the   DNA,  

where   a   1   indicates   observed   binding   in   the   cell   type   of   interest,   and   a   0   indicates   no   observed   binding.   
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Methods  

2.1   Experimental   data   sources  

Experimental   data   was   obtained   from   published   manuscripts,   spanning   several  

experimental   approaches.   CRISPRi-FlowFISH   data   for   cell   line   K562,   derived   from   bone  

marrow   lymphoblasts,   was   obtained   from 10 .   CAGE-based   data   (cell   lines   K562,   MCF-7   from  

breast   epithelium,   Hep-G2   from   liver,   and   GM12878   from   B-lymphocytes),   including   TSSs,  

enhancers   and   their   linkage,   were   obtained   from   the   FANTOM5   Consortium    30 ;    24 .   CREST-seq  

data   (cell   line   H1   hESC)   was   obtained   from 33 .   Transcription   initiation   regions   (TIRs)   identified   by  

dREG    42    were   provided   by   Drs.   Charles   Danko   and   Zhong   Wang    (cell   lines   K562,   MCF-7,   and  

GM12878).   TF   binding   data   (cell   lines   K562,   MCF-7,   Hep-G2,   GM12878   and   H1   hESC)   were  

obtained   from   ReMap2018 49 .  

All   data   is   publicly   available   and   relates   to   the   build   37   of   the   Genome   Reference  

Consortium   human   genome   (hg19).  

2.2   Software   utilized  

Bedtools   (version   v2.28.0)   ( https://bedtools.readthedocs.io/en/latest/index.html# )   was  

used   to   overlap   ChIP-seq-identified   TFBSs   with   candidate   CRRs.   Python   (version   3.7)   with   the  

biopython    and    scipy    modules   were   used   to   generate   TF   binding   signatures   for   each   CRR   and  

compare   TF   binding   signatures   between   CRRs.   
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R   (version   3.6.0)   with   the    Tidyverse    ( https://joss.theoj.org/papers/10.21105/joss.01686 )   library  

was   employed   to   perform   statistical   analyses   and   visualize   TF   binding   similarities   between  

CRRs.  

2.3   Defining   promoter   regions   

Promoter   regions   vary   in   size   among   genes,   which   makes   the   task   of   setting   a   constant  

promoter   size   nontrivial.   Machine   learning   analysis   of   chromatin   modification   data   in   the   4   kb  

region   centered   around   a   TSS   determined   that   most   activating   histone   modifications   are  

observed   within   the   2   kb   region   centered   at   each   TSS 50 .   Through   positional   analysis   of  

ChIP-seq   data,   it   was   found   that   TFs   binding   sites   were   present   in   high   concentration   within   the  

300   bp   upstream   of   the   TSS   and   more   uniformly   spread   across   the   8   kb   upstream   and   2   kb  

downstream   of   regions   tested    51 .   Furthermore,   GENCODE    52 ,   which   is   part   of   the   ENCODE  

project,   and   the   Benchmark   of   candidate   Enhancer-Gene   Interactions   

(BENGI) 10    define   promoters   as   2   kb   regions   centered   at   TSSs.   After   extensive   literature  

analysis,   we   decided   to   adopt   the   definition   of   promoter   region   used   by   GENECODE   and  

BENGI   ( i.e.    2   kb   region   centered   at   the   TSS).   However,   58%   of   CAGE   peaks   generated   by   the  

FANTOM5   project   occur   in   promoters   with   multiple   TSSs 24 .   Thus,   the   choice   for   the   TSS   upon  

which   to   center   the   promoter   region   is,   again,   nontrivial.   The   FANTOM5   project   identified  

differentially   regulated   TSSs,   some   with   proximity   within   100   bp   from   each   other,   for   91%   (94%  

at   the   permissive   threshold)   of   human   protein   coding   genes.   TSSs   were   ranked   and   numbered  

sequentially   by   the   total   number   of   CAGE   tags   covering   the   region   (for   example    p1@RELA  

corresponds   to   the   TSS   of    RELA    with   the   largest   tag   support);   highest   ranked   TSSs   will   now   be  

referred   to   as   the   strongest   TSSs   for   a   particular   gene.   In   our   analysis,    the   promoter   region   of  

17  

https://joss.theoj.org/papers/10.21105/joss.01686
https://paperpile.com/c/jm4M4U/F2Yh
https://paperpile.com/c/jm4M4U/Ssn5
https://paperpile.com/c/jm4M4U/amHI
https://paperpile.com/c/jm4M4U/mWqN
https://paperpile.com/c/jm4M4U/Q596


 

each   gene   was   generated   by   centering   a   2   kb   region   around   the   strongest   TSS   of   that  

gene .  

2.4   Defining   enhancer   regions  

Positional   specificity   analysis   of   TF   binding   shows   conserved   patterns   of   TF   motifs   within  

enhancer   regions 53 .   Grossman    et   al.    53    interrogated   400   bp   regions   centered   at  

nucleosome-depleted   regions   with   strong   DHS   signals,   and   found   that   cell   type-specific   TF  

motifs   are   concentrated   near   the   DHS   signal   peak,   and   that   the   majority   are   distributed   between  

-100   bp   and   +100   bp   from   the   peak   max   ( i.e.    the   nucleotide   position   within   the   peak   with   the  

most   mapped   reads) 53 .   Furthermore,   the   FANTOM5   project   identified   enhancer   regions   based  

on   divergent   transcription   events.   They   observed   that   reverse   and   forward   strand   transcription  

initiation   correspond   to   nucleosome   boundaries   and   are   separated   by   180   bp   on   average    30 .  

Since   TF   binding   is   strongest   at   nucleosome-depleted   regions,    we   define   enhancer   regions   to  

be   200   bp   in   length,    and   adapt   this   definition   to   data   type   dependent   requirements   as  

discussed   below.  

2.4.1   Enhancer   regions   in   CRISPRi-FlowFISH   data  

In   the   published   CRISPRi-FlowFISH   analysis,   30   genes   located   in   five   genomic   regions  

ranging   from   1.1Mbp   to   4.0Mbp   in   length   were   screened   for   enhancer   regions.   All   ENCODE  

DHSs   within   the   450   kb   region   surrounding   each   target   gene   (108-277   DHSs   per   gene   totaling  

884   unique   DHSs)   were   expanded   by   175   bp   on   each   side,   resulting   in   500   bp   candidate  

enhancer   regions   for   testing.   A   total   of   127   significant   enhancer-gene   linkages   were   identified,  

covering    93   of   the   884   unique   enhancer   regions.   Figure   2   shows   that   multiple   enhancers   were  

identified   for   the   majority   of   target   genes,   and   that   the   majority   of   identified   enhancers   showed  
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functional   links   to   only   one   gene.   Our   analysis   included   all   884   unique   candidate   enhancers 47 ,  

but    the   enhancer   region   was   restricted   to   the   central   200   bp    (to   be   consistent   with   the   size  

of   the   FANTOM   enhancers).   

 

Figure   2.    Overview   of   significant   enhancer-promoter   interactions   identified   by   CRISPRi-FlowFISH.   

A   reference   data   collection   obtained   from 47    was   generated   using   the   CRISPRi-FlowFISH   technology.   The  

histograms   presented   here   depict:    a)    the   number   of   identified   enhancers   reported   per   gene   (where   the  

genes   are   listed   along   the   Y-axis);   and    b)    The   percentage   of   genes   which   are   observed   to   be   influenced  

per   enhancer.   

2.4.2   Enhancer   regions   in   FANTOM5   CAGE   data  

The   FANTOM5   project   observed   that   while   promoter   RNAs   are   enriched   in   the   sense  

direction,   eRNAs   display   a   pattern   of   similar   transcript   levels   in   both   directions.   On   the   basis  

that   enhancer   regions   are   bidirectionally   transcribed,   the   FANTOM5   project   identified   43,011  

candidate   enhancers   across   808   human   CAGE   datasets   covering   573   primary   human   cells,   152  

human   post   mortem   tissues   and   250   cancer   cell   lines.   Further   analysis   of   these   enhancers  

revealed   that   89%   are   supported   by   ENCODE   DHSs   and   71%   are   supported   by  

enhancer-marking    histone   modifications   such   as   H3K4me1   or   H3K27ac.   Active   enhancers   in  

19  

https://paperpile.com/c/jm4M4U/1vRd
https://paperpile.com/c/jm4M4U/1vRd


 

K562,   GM12878,   MCF-7   and   Hep-G2   cells   were   included   in   our   analysis.   Based   on   supporting  

evidence   that   weak   enhancers   ( i.e.    not   displaying   strong   eRNA   signals)   are   not   enriched   in   TF  

binding 42 ,   we   generated   two   additional   subsets   for   each   set   of   FANTOM5-identified   cell  

type-specific   enhancers   to   filter   out   weak   enhancers.   The   first   subset   excludes   enhancers   that  

have   not   been   linked   to   a   TSS   in   the   FANTOM5   project.   In   addition,   we   generate   a   second  

subset   of   CAGE-identified   enhancers   for   GM12878   and   MCF-7   that   are   also   supported   by  

PRO-seq   data    42    by   overlapping   FANTOM5-identified   enhancers   with   dREG-identified   TIRs.  

dREG 42    is   a   machine   learning   tool   that   identifies   active   cell   type-specific   TIRs   from   nascent  

transcription   sequencing   technologies.   Figure   3   shows   the   differences   in   TIR   sizes   between   cell  

lines.   Both   the   GM12878   and   MCF-7   TIRs   were   determined   based   on   PRO-seq   experiments  

and   have   similar   mean   lengths   of   521   bp   and   522   bp   respectively.   As   the   K562   TIRs   were  

determined   based   on   lower   resolution   GRO-seq   experiments   and   have   a   mean   TIR   length   of  

2,878,   we   decided   not   to   use   them   for   this   study.   Table   1   summarizes   the   size   and   average  

enhancer   length   (defined   by   FANTOM5)   of   each   cell   type-specific   enhancer   set.   The   central   200  

bp   region   of   each   enhancer   was   used   in   our   analysis.   

 

 

Figure   3.   Overview   of  

dREG-identified   TIR   lengths.  

dREG-predicted   TIRs   were  

provided   by   Drs   Charles   Danko  

and   Zhong   Wang   (Cornell  

University,   Ithaca,   New   York,  

USA),   based   on   the   method  

described   in 42 .   The   histograms  

presented   here   depict:   the  

distributions   of   TIR   sizes   for  
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each   cell   line   where   TIR   lengths   are   along   the   X-axis   and   the   number   of   TIRs   for   each   length   are   on   the  

Y-axis.   

 

Cell   Type  Total  
FANTOM5  
Enhancers  

Promoter-link 
ed  
Enhancers   

dREG   peak  
overlapping  
Enhancers   

Average  
FANTOM5  
Length   (bp)  

K562  6,925  2,350  -  320  

GM12878  12,783  4,499  1,463  326  

MCF-7  3,151  1,161  189  330  

Hep-G2  8,425  2,865  -  320  

Table   1.   Summary   of   CAGE   identified   enhancers.    The   number   of   enhancers   in   each   cell   type-specific  

set   are   denoted.   The   number   of   dREG   overlaps   was   determined   for   Total   Enhancers.   K562   enhancers  

overlapping   dREG   peaks   are   excluded   from   our   analysis   due   to   the   low   resolution   of   dREG   K562   TIRs.  

Hep-G2   enhancers   overlapping   dREG   peaks   are   unavailable   due   to   lack   of   PRO-seq   data   for   HepG2  

cells.  

2.4.3   Enhancer   regions   in   CREST-seq   data  

The   published   CREST-seq   study   was   performed   on   human   embryonic   stem   H1   cells   (H1  

hESC)   to   identify   enhancer   regions   of   the    POU5F1    gene.   Within   the   2Mbp   region   centered   at  

the    POU5F1    gene,   adjacent   genomic   regions   averaging   2   kb   and   overlapping   by   1.9   kb   were  

deleted   using   CRISPR   technology.   An   enrichment   analysis   was   performed   to   identify   sgRNAs  

resulting   in   deletions   that   significantly   decreased    POU5F1    expression.   A   set   of   44   enhancers,  

along   with   the   promoter   of    POU5F1 ,     were   identified.   CREST-seq-identified   enhancer   regions  

average   2,956   bp   in   length,   and   a   majority   (69%)   are   supported   by   ENCODE   DHSs.  

Furthermore,   identified   enhancer   regions   are   enriched   in   activating   histone   modifications  

H3K27ac   (22%),   H3K4me3   (31%),   and   H3K4me1   (22%),   and   depleted   in   repressive  

modifications   H3K9me3   (6.7%)   and   H3K27me3   (6.7%).   Due   to   the   large   size   of  

CREST-seq-identified   enhancers   we   generated   multiple   overlapping   enhancer   regions   for   each  
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of   them.   We   split   the    2Mbp   region   centered   at    POU5F1    into   200   bp   windows   with   a   step-size   of  

100   bp   using   Bedtools 54    makewindows .    Each   window   was   overlapped   with   all  

CREST-seq-identified   enhancer   regions   using   Bedtools    intersect ,   and   a ll   windows   overlapping   a  

CREST-seq   enhancer   were   labelled   as   enhancer   regions   in   our   analysis.    

2.5   Associating   transcription   factor   ChIP-seq   data   to   CRRs   

TF   ChIP-seq   datasets   for   K562,   GM12878,   Hep-G2,   MCF-7   and   H1   hESC   cells   were  

obtained   from   ReMap 49 .   Table   2   shows   the   number   of   ChIP-seq   datasets   and   TFs   covered   for  

each   cell   line.   All   TF   binding   data   was   aggregated   for   each   cell   line   and   overlapped   with  

candidate   enhancer   and   promoter   regions.   TF   binding   was   associated   with   enhancer   regions  

based   on   the   percentage   overlap   of   the   enhancer   regions   (200   bp)   with   the   TF   ChIP-seq   peak  

(ranging   from   50-300   bp).   A   TF   was   defined   as   binding   an   enhancer   if   >50%   of   the   enhancer  

region   overlapped   a   ChIP-seq   peak   for   that   TF.   For   promoter   regions   (2,000   bp),   a   TF   was  

defined   as   bound   if   at   least   one   ChIP-seq   peak   for   that   TF   was   completely   encompassed   in   the  

promoter   region.   

 

Cell   Type  Number   of   TFs   Number   of   Datasets  

K562  204  530  

GM12878  110  186  

Hep-G2  103  287  

MCF-7  85  142  

H1   hESC  31  78  

Table   2.   Summary   of   the   number   of   available   human   TF   ChIP-seq   datasets   for   each   cell   type.    TF  

ChIP-seq   datasets   were   obtained   from   ReMap2018 49 .   The   number   of   unique   TFs   and   experimental  

datasets   for   each   cell   type   are   denoted.  
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2.6   Transcription   Factor   Binding   Signatures  

TF   binding   signatures   are   binary   string   representations   ( e.g.    0011001...),   where   each  

position   indicates   the   binding   (“1”)   or   not   (“0”)   of   a   TF   to   a   CRR   (or   candidate   CRR).   The   length  

of   a   signature   differs   between   cell   types   and   depends   on   the   availability   of   cell   type-specific   TF  

ChIP-seq   data   (see   Table   2),   ranging   between   31   in   H1   hESC   to   204   in   K562   cells.   For   each  

cell   type,   the   TF   represented   at   each   position   is   kept   constant   to   enable   comparisons   between  

enhancer   and   promoter   signatures.   

2.7   Comparing   signatures   between   enhancers   and   promoters  

TF   binding   similarity   between   enhancer   and   promoter   TF   binding   signatures   was  

computed   by   means   of   cosine   similarity,   which   measures   the   cosine   of   the   angle   between   two  

non-zero   vectors:   

os(θ) c =   A·B
A   B|| || || ||

 

Where   A   and   B   are   the   TF   binding   signatures   being   compared.   Cosine   similarities   were  

calculated   using   the   “ distance.cosine”    function   of   the   Python’s   “ scipy”    package 55 .   The   cosine  

similarity   between   two   signatures   ranged   between   0   and   1,   with   1   indicating   two   identical  

signatures.   

We   used   Z-scores   to   normalize   cosine   similarities   to   account   for   the   variation   in   the  

number   of   TF   binding   events   across   promoters   and   enable   comparison   across   different   genes:  
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 Z =   σ
x­μ   

Where   is   the   mean   of   all   cosine   similarities   for   a   given   promoter   and     the   standard  μ σ  

deviation.   Z-scores   were   calculated   using   the   “ stats.zscore ”   function   of   the   Python’s   “ scipy ”  

package.   
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Results  

3.1   Positive   and   Negative   Sets   of   enhancer-promoter   pairs  

To   compare   the   TF   binding   similarities   between   linked   and   unlinked   enhancer-promoter  

pairs,   we   established   a   set   of   experimentally   supported   enhancer-promoter   pairs   ( i.e.    “positive  

set”),   and   a   corresponding   “negative   set”   of   enhancers   which   were   assigned   to   genes   that   they  

do   not   regulate   ( i.e.    unlinked).   We   generated   three   different   positive   and   corresponding   negative  

sets   based   on   the    bonafide    enhancer-to-gene   linkages   identified   by   CRISPRi-FlowFISH   and  

CREST-seq,   and   on   the   expression   correlation   of   CAGE   tags   from   FANTOM5.  

3.1.1   CRISPRi-FlowFISH   Positive   and   Negative   Sets  

The   authors   of   the   CRISPRi-FlowFISH   dataset    47    perturbed   hundreds   of   K562   DHSs   ( i.e.  

candidate   enhancers)   with   the   KRAB-dCas9   system,   and   quantified   their   effects   on   the  

expression   of   a   target   gene   by   RNA   fluorescence    in   situ    hybridization   (FISH)   and   flow  

cytometry.   Enhancers   were   defined   as   200   bp   regions   centered   on   experimental   K562   DHSs.  

For   the   target   genes,   the   promoter   was   defined   as   the   2,000   bp   region   centered   at   the   strongest  

TSS.   KRAB-dCas9-inhibited   enhancers   that   significantly   decreased   the   expression   of   a   given  

target   gene   (p-value   <   0.05)   were   regarded   as   positive,   otherwise   they   were   regarded   as  

negative   (Figure   4).   All   enhancers   overlapping   the   promoter   region   of   their   target   genes   were  

excluded.  
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Figure   4.   Schematic   overview   of   CRISPRi-FlowFISH   Positive   and   Negative   Sets .   Data   obtained   from  
47    was   generated   using   the   CRISPRi-FlowFISH   technology.   The   figure   depicts   a   segment   of   DNA   within  

which   are   observed   two   candidate   enhancer   regions    (Enh   A   and   Enh   B)   delineated   with   two   small  

rectangles.   In   addition   to   these   enhancer   regions,   there   is   one   target   gene   (Gene   1)   indicated   by   the   large  

rectangle.   The   red   circle   indicates   KRAB-dCAS9    blocking   the   accessibility   of   its   bound   region   to   TF  

binding,   therefore   inhibiting   transcription    at   its   bound   region.   

3.1.2   Nascent   transcription-based   Positive   and   Negative   Sets  

In   the   FANTOM5   project,   enhancers   and   TSSs   were   linked   based   on   correlation   of  

CAGE   tags   by   calculating   the   Pearson   correlation   coefficient   between   the   expression   levels   of  

all   enhancer   and   TSS   pairs   located   within   500   kb   from   each   other   and   expressed   >1TPM   in   at  

least   one   sample.   Enhancer-TSS   pairs   were   linked   if   the   Pearson   correlation   between   their  

expression   levels   was   significant   (based   on   a    Benjamini-Hochberg    FDR    <=   1e-5;   adjusting   the  

original   empirically   determined    p -value) .  

We   focused   on   K562   (for   comparison   with   the   CRISPRi-FlowFISH   data)   and   three   other  

well   characterized   cell   lines   (GM12878,   Hep-G2   and   MCF7),   and   established   one   positive   set  

and   two   corresponding   negative   sets   for   each.   Enhancers   and   promoters   were   defined   as  

described   in   the   Methods   (see   sections   2.3   Defining   Promoter   Regions   and   2.4.2   Enhancer  

Regions   in   FANTOM5   CAGE   Data).   For   each   cell   line,   we   generated   all   possible  

enhancer-promoter   pairs   where   both   the   enhancer   and   TSS   were   expressed   and   located   within  

500   kb.   Enhancer-promoter   pairs   that   had   been   linked   by   FANTOM5   were   included   in   the  

positive   set,   while   the   remaining   enhancer-promoter   pairs   composed   the   first   negative   set  

(Figure   5a ) .   The   second   negative   set,   more   restrictive,   was   obtained   by   filtering   out   any  

unlinked   enhancers   ( i.e.    enhancers   not   linked   to   any   TSS   in   the   positive   set;   Figure   5b).   
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Figure   5.     Depiction   of  

FANTOM5   Positive   and  

Negative   Sets.    The  

FANTOM5   consortium   linked  

enhancers   to   TSSs   by  

correlation   of   expression.  

The   figure   depicts   a   segment  

of   DNA   within   which   are  

observed   three  

FANTOM5-identified  

enhancer   regions    (Enh1,  

Enh2   and   Enh3)   delineated   with   coloured   rectangles.   In   addition,   there   are   two   distinct   promoter   regions  

(Prom1   and   Prom2)   delineated   with   right-angle   arrows.   Curved,   solid   arrows   indicate   positive  

enhancer-promoter   pairs   (enhancers   and   promoters   that   are   linked   by   correlated   FANTOM5   CAGE  

expression   patterns),   and   dashed   arrows   indicate   negative   pairs.   Panel    a)    depicts   a   negative   set  

including   all   FANTOM5-identified   cell   type-specific   enhancers.,   Panel    b)    depicts   a   negative   set   restricted  

to   enhancers   that   are   linked   to   at   least   one   promoter   in   FANTOM5   (Enh3   is   excluded   from   this   negative  

set   as   it   is   not   linked   to   any   promoter).  

The   FANTOM5   method   of   linking   enhancers   to   TSSs   based   on   correlation   of   expression  

is   expected   to   lead   to   the   inclusion   of   false   negative   pairs   to   our   negative   set.   For   instance,   false  

negative   enhancer-promoter   pairs   were   introduced   when   an   enhancer   was   not   linked   to   the  

strongest   TSS   of   a   target   gene   but   to   a   weaker   one   (Figure   6).   To   avoid   this,   we   integrated  

nuclear   run-on   assay-based   ( i.e.    GRO-   and   PRO-seq)     TIRs   identified   by   dREG   to   our   analysis.  

While   CAGE   captures   the   5'   transcripts   of   capped   RNAs,   GRO-   and   PRO-seq   capture  

elongating   RNAs.   Figure   7   shows   multiple   CAGE   TSSs   overlapping   the   same   TIR.  

Subsequently,   to   establish   high-confidence   positive   and   negative   sets,   for   each   cell   line,   we  

mapped   FANTOM5   enhancer   and   TSS   annotations   to   dREG-identified   TIRs   in   that   cell   line.  

Enhancer-promoter   pairs   are   in   the   dREG-filtered   positive   set   if   they   are   linked   by   FANTOM5  

and   they   are   in   two   separate   dREG   TIRs.   Enhancer-promoter   pairs   are   present   in   the  
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dREG-filtered   negative   set   if   they   are   within   500   kb   and   are   located   in   separate   dREG   TIRs   not  

linked   in   the   positive   set.   

 

 

Figure   6.   Correcting   for   false   negative   pairs   by   filtering   for   dREG   overlapping   enhancer   and  

promoter   regions.    Three   FANTOM5-identified   enhancer   regions    (Enh1,   Enh2   and   Enh3)   delineated   with  

coloured   rectangles   and   two   FANTOM5-identified   TSS   regions(TSS1   and   TSS2)   delineated   with  

right-angle   arrows   are   shown   in   the   DNA   region   above.   Curved   solid   arrows   indicate   FANTOM5   Positive  

Set   pairs   and   dashed   arrows   indicate   FANTOM5   Negative   Set   pairs.   dREG   predicted   TIRs   overlapping  

FANTOM5-identified   enhancer   and   TSSs   are   depicted   with   green   bars   below   the   DNA   region.   False  

negative   pairs   arise   when   a   negative   enhancer-TSS   FANTOM5   pair   overlaps   the   dREG   TIRs   of   a   positive  

enhancer-TSS   pair   (Enh1-TSS2   and   Enh2-TSS1).   

Figure   7.   Genome   browser   view   of   the    RELA    promoter   region .   The   short   black   bars   represent  

FANTOM5-identified   TSSs   and   the   long   black   bars   represent   dREG   identified   TIRs   for   each   respective  
cell   line.   
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3.1.3   CREST-seq   Positive   and   Negative   Sets  

Diao    et   al. 33    used   CREST-seq   to   interrogate   the   2Mbp    POU5F1    locus   in   human  

embryonic   stem   cells   H1,   identifying   45    POU5F1    enhancers.   Identified   enhancers   (as   described  

in   Methods)   were   labelled   as   positive   while   the   remaining   windows   were   labelled   as   negative  

(Figure   8).   The   10   kb   region   surrounding   the   strongest    POU5F1    TSS   was   excluded   to   prevent  

overlap   between   the   promoter   region   and   any   enhancer.  

  

 

 

 

Figure   8.   Generation   of   CREST-seq   Positive   and   Negative   set.     Data   was   generated   using  

CREST-seq   technology 33 .   The   figure   depicts   the   2Mbp   region   of   DNA   centered   at   the   promoter   of   the  

POU5F1    gene   (right   angle   arrow) .    The   region   is   split   into   200bp   windows   with   a   step   size   of   100bp.  

Windows   overlapping   identified   enhancers   by   CREST-seq   (blue   bars)   are   in   the   Positive   Set   and   all   other  

windows   are   in   the   Negative   Set  

3.1.4   Window-based   analysis   of   a   representative   gene  

We   decided   to   perform   a   computational   analysis   on   a   sample   gene   to   depict   anecdotally  

how   the   TF   binding   profile   comparison   could   be   used   to   suggest   candidate   relationships  

between   enhancers   and   promoters.   We   selected    RELA    because   it   is   active   in   the   GM12878   cell  
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line   (for   which   there   is   abundant   TF   binding   data),   and   happened   to   be   of   interest   to   a   member  

of   the   lab.   We   focused   on   the   1Mbp   region   centered   at   the   strongest   TSS   of    RELA ,   a   TF   critical  

for   lymphoblastoid   B   cell   ( e.g.    GM12878)   development   and   function   (Figure   9).   Emulating   the  

CREST-seq   reference   case,   within   the   1Mbp   region,   we   generated   200   bp   overlapping   windows  

with   a   step-size   of   100   bp.   Windows   overlapping   a   FANTOM5   enhancer   linked   to    RELA    in   the  

GM12878   positive   set   were   labelled   as   positive,   while   windows   overlapping   an   enhancer   linked  

to    RELA    in   the   GM12878   negative   set   were   regarded   as   negative.   Moreover,   windows  

overlapping   other   GM12878   enhancers   ( i.e.    not   present   in   the   positive   or   negative   sets)   were  

labelled   as   “unlinked”,   and   windows   overlapping   other   active   GM12878   TSSs   were   labelled   as  

“TSS”.   The   remaining   unlabelled   windows   were   labelled   as   “none”.   To   ensure   that   no   windows  

overlapped   with   the   promoter   region   of   the   gene,   windows   within   10   kb   of   the   strongest   TSS   of  

RELA    were   excluded.   

Figure   9.   Generation  

of   labelled    RELA  

windows.    The   figure  

depicts   the   1Mbp   region  

of   DNA   centered   at   the  

RELA    gene   (right   angle  

arrow) .    The   region   is   split   into   200bp   windows   with   a   step   size   of   100bp.     Enhancers   linked   to    RELA    in   the  

FANTOM5   Positive   Set   are   denoted   with   green   bars,   enhancers   linked   to   RELA   in   the   FANTOM5  

Negative   Set   are   denoted   with   red   bars,   FANTOM5   identified   enhancers   that   have   not   been   linked   are  

denoted   with   purple   bars   and   FANTOM5   identified   TSSs   of   other   genes   are   denoted   with   blue   bars.  

Windows   overlapping   each   feature   are   labelled   respectively,   and   windows   that   do   not   overlap   any   feature  

are   labeled   “none”  
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3.2   TF   binding   similarity   comparisons   between  

enhancer-promoter   pairs  

3.2.1   TF   binding   similarity   comparison—linkage   by   CRISPRi-FlowFISH   

We   observed   a   significant   difference   in   the   distributions   of   cosine   similarity   scores  

between   enhancer-TSS   pairs   in   the   positive   and   negative   CRISPRi-FlowFISH   sets   (Figure   10a;  

K-S   test   statistic   =   0.34;    p -value   =   9.9e-11).   Hypothesizing   that    the   signal   is   TSS-specific   and  

cannot   be   compared   across   genes   ( i.e.    a   cosine   similarity   of   0.6   can   be   the   best   for   one   gene,  

and   can   represent   a   negative   result   in   another),   we   performed   Z-score   normalization   to   enable  

comparison.    Although   Z-score   normalization   did   not   increase   the   difference   between   the   two  

distributions   (Figure   10b;   K-S   test   statistic   =   0.34;    p -value   =   8.8e-12),   the   majority   of   negative  

pairs   had   a   negative   Z-score   while   the   majority   of   positive   pairs   had   a   positive   Z-score.   
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Figure   10.   TF   binding   similarity   comparison   of   CRISPRi-FlowFISH   supported   positive   and   negative  

sets.    Cosine   similarity   scores   were   calculated   between   binary   TF   binding   vectors   for   all   enhancers   and  

promoters   in   the   CRISPR-FlowFISH   reference   data   set.   The   results   depicted   in    a)    on   the   left   are   violin  

plots   in   which   the   y-axis   represents   the   observed   cosine   similarity   and   the   x-direction   depicts   the  

frequency   of   observations   within   the   range   of   observed   scores.   The   green   distribution   is   for   scores  

between   functionally   linked   enhancers   and   promoters   ( i.e.    from   the   positive   set),   while   the   red   distribution  

represents   scores   between   promoter   and   enhancer   pairs   from   the   negative   set.   The   results   on   the   right  

are   the   same   data,   but   plotted   in   a   smoothed   histogram   (where   the   x-axis   is   the   cosine   similarity   and   the  

y-axis   is   the   frequency   of   observations).   Z-score   normalization   was   performed   on   all   cosine   similarity  

scores   described   above.   The   results   of   normalization   are   depicted   in    b)    and   consistent   with   the   formatting  

of   (A)   

We   analyzed   whether   the   observed   differences   could   be   explained   by   a   bias   in   distance  

(linear   distance   in   terms   of   bp)   between   enhancers   and   promoters.   We   compared   the   distance  

between   positively   and   negatively   labelled   enhancers   to   their   target   genes   (Figure   11a),   and  

observed   that   positive   enhancers   tend   to   be   closer   to   their   target   genes.   We   corrected   for   the  
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difference   in   distance   by   calculating   the   distance   between   all   enhancer-gene   pairs   and   matching  

each   positive   enhancer-gene   pair   with   the   most   similar   negatively   labelled   enhancer-gene   pair  

in   distance   (Figure   11b).   After   correcting   for   distance,   the   positive   and   negative   sets   still  

displayed   a   significant   difference   in   cosine   similarity   distributions   (K-S   test    D   =   0.42,   p-value   =  

7.4e-9)   Figure   11c .  

Moreover,   we   analysed   whether   the   observed   differences   could   be   explained   by   a   bias  

in   GC   composition.   We   observed   a   significant   difference   in   the   GC   content   distributions   ( K-S  

test   D   =   0.24,   p-value   =   2.1e-6)    between   positive   and   negative   enhancers,   and   found   that  

positively   labeled   enhancers   have   higher   GC   content   than   negatively   labeled   enhancers   (Figure  

11a).   In   order   to   correct   for   such   discrepancy,   we   matched   each   positively   labelled  

enhancer-gene   pair   with   a   negatively   labelled   enhancer-gene   pair   (keeping   the   gene   constant)  

with   the   most   similar   GC   content.   Like   for   distance,   the   same   observed   signal   (though   less  

significant)   could   be   seen   after   correcting   by   GC   content;   negative   pairs   displayed   a   significantly  

lower   cosine   similarity   than   positive   pairs.   
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Figure   11.   CRISPRi-FlowFISH   Positive   and   Negative   Set   comparison   after   correcting   for   distance  

and   GC   content.    Cosine   similarity   scores   were   calculated   between   binary   TF   binding   vectors   for   all  

enhancers   and   promoters   represented   in   the   CRISPRi-FlowFISH   reference   data   set.   The   results   depicted  

in    a)    on   the   left   are   violin   plots   in   which   the   y-axis   represents   the   observed   cosine   similarity   and   the  

x-direction   depicts   the   frequency   of   observations   within   the   range   of   observed   scores.   The   green  

distribution   is   for   scores   between   functionally   linked   enhancers   and   promoters   ( i.e.    from   the   positive   set),  

while   the   red   distribution   represents   scores   between   promoter   and   enhancer   pairs   from   the   negative   set.  

The   results   in   the   middle   compares   GC   content   between   enhancer   and   promoter   pairs   from   the   positive  

(green)   and   negative   (red)   sets   (where   the   x-axis   is   the   percent   GC   composition   and   the   y-axis   is   the  

density   of   observations).   The   results   on   the   right   compares   the   distances   between   enhancer   and  

promoter   pairs   from   the    positive   (green)   and   negative   (red)   sets(where   the   x-axis   is   the   distance   in   bp  

and   the   y-axis   is   the   density).   The   results   in    b)    represent   comparisons   made   in    a)    after   correcting   for  

distance   by   pairing   each   positive   enhancer-promoter   pair   to   the   negative   pair   most   similar   in   distance.  

The   results   in    c)    represent   comparisons   after   GC   content   is   corrected   by   pairing   each   positive  

enhancer-promoter   pair   to   the   negative   pair   with   the   most   similar   GC   composition.  
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3.2.2   TF   binding   similarity   comparison—linkage   by   FANTOM5   

To   investigate   whether   the   observed   signal   could   be   generalized   beyond   K562   cells,   we  

compared   TF   binding   signatures   between   FANTOM5-derived   positive   and   negative   sets   in   four  

cell   lines:   K562   (to   enable   comparison   with   the   CRISPRi-FlowFISH   data),   GM12878,   MCF-7  

and   Hep-G2.   As   shown   in   Figure   12,   the   difference   in   distributions   of   cosine   similarities   between  

the   positive   and   negative   sets   were   significant   in   all   four   cell   lines.  

 

 

 

 

 

 

 

 

 

Figure   12 .    Cosine   similarity   comparison   between   FANTOM5   Positive   and   Negative   Sets.    Cosine  

similarity   scores   were   calculated   between   binary   TF   binding   vectors   for   all   enhancers   and   promoters  

represented   in   each   (K562,   Hep-G2,   GM12878,   MCF7)   FANTOM5   dataset.   Violin   plots   were   generated  

for   each   cell   line   in   which   the   y-axis   represents   the   observed   cosine   similarity   and   the   x-direction   depicts  
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the   frequency   of   observations   within   the   range   of   observed   scores.   The   green   distribution   is   for   scores  

between   enhancers   and   promoters   linked   by   FANTOM5.   The   dark   red   distribution   represents   scores  

between   promoters   and   all   cell   type   specific   enhancers   that   are   not   reported   to   be   correlated   by  

FANTOM5.   The   bright   red   distribution   represents   scores   between   promoters   and   cell   type   specific  

enhancers   that   are   not   reported   to   be   correlated   but   are   linked   in   FANTOM5.  

We   then   compared   TF   binding   similarity   between   enhancer-gene   pairs   in   positive   and  

negative   sets   at   the   promoter   level.   For   each   cell   line,   we   compared   promoters   with   both  

positively   and   negatively   linked   enhancers   and   found   that   for   the   majority   of   promoters,   the  

average   cosine   similarity   score   is   higher   for   positively   labelled   enhancers   when   compared   to  

negatively   labelled   enhancers.   (Figure   13).  

 

Figure   13.     Average   Positive   Set   vs   average   Negative   Set   cosine   similarity   comparison.    In   each   cell  
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line-specific   plot,   each   point   represents   a   unique   promoter.   The   Y   coordinate   represents   the   average  

cosine   similarity   score   calculated   between   binary   TF   binding   vectors   of   a   promoter   and   the   enhancers  

linked   to   it   by   FANTOM5   (situated   within   500kbp).   The   X   coordinate   represents   the   average   cosine  

similarity   score   between   the   promoter   and   cell   type-specific   enhancers   linked   elsewhere   in   FANTOM5  

(Negative   Set   linked)   or   all   cell   type-specific   enhancers   in   FANTOM5   that   are   not   linked   to   the   promoter  

(Negative   Set   all).   Corresponding   Wilcoxon   Test   statistics   are   reported   for   each   graph.   

In   an   attempt   to   correct   for   the   potential   inclusion   of   false   positive   and   negative   pairs   by  

the   correlation   method   used   in   FANTOM5,   we   filtered   the   GM12878   and   MCF-7   positive   and  

negative   sets   for   pairs   overlapping   dREG-predicted   TIRs.   After   filtering,   a   similar   proportion   of  

promoters   had   a   higher   average   cosine   similarity   for   positively   labelled   enhancers   than   for  

negatively   labelled   enhancers   (Figure   14b).   

 

Figure   14.   Promoter   level   comparison   of   TF   binding   similarity   between   dREG-filtered   Positive   and  

Negative   Sets    Cosine   similarity   scores   were   calculated   between   binary   TF   binding   vectors   for   all  

enhancers   and   promoters   in   dREG-corrected   Positive   and   Negative   Sets.   The   results   depicted   in    a)    are  

scatterplots   where   each   point   represents   a   unique   promoter   with   the   x-coordinate   being   the   average  
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negative   set   cosine   similarity   and   the   y-coordinate   being   the   average   positive   set   cosine   similarity   of   the  

promoter   before   filtering   with   dREG.   The   results   after   dREG   filtering   are   depicted   in    b)    where   each   point  

represents   a   unique   promoter   with   the   x-coordinate   being   the   average   negative   set   cosine   similarity   and  

the   y-coordinate   being   the   average   positive   set   cosine   similarity   of   the   promoter   after   dREG   filtering.   The  

diagonal   line   represents   the   axis   where   the   average   Positive   Set   score   equals   the   Negative.   The   number  

of   promoters   above   and   below   the   diagonal   is   reported   for   each   graph.  

At   the   enhancer   level,   differences   between   TF   binding   similarity   between   enhancer-gene  

pairs   in   positive   and   negative   sets   were   more   discernible.   After   filtering,   a   greater   proportion   of  

enhancers   had   a   higher   average   cosine   similarity   for   positively   labelled   promoters   than   for  

negatively   labelled   promoters   (Figure   15).   

 

Figure   15.   Enhancer   Level   Comparison   of   TF   binding   similarity   between   dREG-filtered   Positive  

and   Negative   Sets    Cosine   similarity   scores   were   calculated   between   binary   TF   binding   vectors   for   all  

enhancers   and   promoters   in   dREG-corrected   Positive   and   Negative   Sets.   The   results   depicted   in    a)    are  

scatterplots   where   each   point   represents   a   unique   enhancer   with   the   x-coordinate   being   the   average  
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negative   set   cosine   similarity   and   the   y-coordinate   being   the   average   positive   set   cosine   similarity   of   the  

enhancer   before   filtering   with   dREG.   The   results   after   dREG   filtering   are   depicted   in    b)    where   each   point  

represents   a   unique   enhancer   with   the   x-coordinate   being   the   average   negative   set   cosine   similarity   and  

the   y-coordinate   being   the   average   positive   set   cosine   similarity   of   the   promoter   after   dREG   filtering.   The  

diagonal   line   represents   the   axis   where   the   average   Positive   Set   score   equals   the   Negative.   The   number  

of   enhancers   above   and   below   the   diagonal   is   reported   for   each   graph.  

We   analyzed   the   compositions   of   dREG   filtered   FANTOM5   positive   and   negative   sets  

and   found   that   while   each   promoter   has   a   balanced   set   of   positive   and   negative   enhancers,  

enhancers   are   heavily   biased   to   have   negative   promoters   linked   to   them   (Figure   16).   This   bias  

appears   to   be   due   to   an   imbalance   in   the   number   of   active   promoters   versus   enhancers   in   each  

cell   type.   Each   set   of   cell   type   specific   promoter   regions   identified   by   FANTOM5   is   more   than  

five   times   larger   than   than   the   corresponding   FANTOM5   identified   enhancer   region   set.   

Figure   16.   Promoter   and   Enhancer   Set   Compositions.    The   results   depicted   in    a)    compares   the  

number   of   positive   (green)   and   negative   (red)   enhancers   linked   to   each   promoter   in   the   dREG   filtered  

positive   and   negative   sets.   The   x-axis   represents   the   number   of   enhancers   and   the   y-axis   depicts   the  

density   of   observations.   The   results   depicted   in    b)    compares   the   number   of   positive   (green)   and   negative  

(red)   promoters   linked   to   each   enhancer   in   the   dREG   filtered   positive   and   negative   sets.   The   x-axis  

represents   the   number   of   promoters   linked   to   each   enhancer   and   the   y-axis   represents   the   density   of  

observations.   
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To   balance   the   number   of   positive   and   negative   promoters   linked   to   each   enhancer   in  

the   dREG   filtered   positive   and   negative   sets,   we   matched   each   positive   enhancer-promoter   pair  

with   a   negative   enhancer-promoter   pair   most   similar   in   distance.   The   same   observed   enhancer  

specific   signal   is   present   in   the   resulting   balanced   sets   (Figure   17).   

 

 

 

 

 

 

 

 

 

 

Figure   17.   Balanced   enhancer   level   comparison   of   TF   binding   similarity   between   dREG-filtered  

Positive   and   Negative   Sets    The   number   of   positive   and   negative   promoters   linked   to   each   enhancer   in  

dREG   filtered   Positive   and   Negative   Sets   were   balanced   by   matching   each   positive   enhancer-promoter  

pair   with   a   negative   enhancer-promoter   pair   most   similar   in   distance.   The   results   of   balancing   the   MCF7  

set   is   depicted   in    a) .   On   the   left   is   a   scatter   plot   where   each   point   represents   a   unique   enhancer   with   the  

x-coordinate   being   the   average   negative   set   cosine   similarity   and   the   y-coordinate   being   the   average  

positive   set   cosine   similarity   of   the   enhancer.   The   diagonal   line   indicates   where   the   average   Positive   Set  

score   equals   the   Negative.   The   number   of   enhancers   above   and   below   the   diagonal   is   reported.     In   the  

center   is   a   bar   graph   comparing   the   number   of   positive   (green)   and   negative   (red)   enhancers   linked   to  
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each   promoter   after   balancing.   The   x-axis   represents   the   number   of   enhancers   and   the   y-axis   depicts   the  

number   of   promoters.   On   the   right   is   a   bar   graph   comparing   the   number   of   positive   (green)   and   negative  

(red)   promoters   linked   to   each   enhancer   after   balancing.   The   x-axis   represents   the   number   of   promoters  

and   the   y-axis   depicts   the   number   of   enhancers.   The   results   depicted   in    b)    and    c)    represent   the  

comparisons   made   in    a)    but   for   GM12878   and   K562   datasets   respectively.   

3.2.3   TF   binding   similarity   comparison—individual   promoters  

We   hypothesized   that   TF   binding   similarity   scores   between   enhancer-gene   pairs   is   CRR  

specific   rather   than   directly   comparable   between   pairs   involving   different   promoters   within   the  

same   gene   (or   between   genes).    While   the   FANTOM5   enhancer-promoter   linkages   did   not   show  

a   strong   signal   at   the   promoter   level   on   a   genome   wide   scale,   under   the   hypothesized  

promoter-specific   scoring   we   would   expect   better   performance   on   the   local   level,   so   we   sought  

some   case   examples   of   deep   data   on   individual   promoters.   

We   compared   the   TF   binding   signatures   between   the   CREST-seq    POU5F1    positive   and  

negative   sets.   We   observed   that   most   windows   not   overlapping   with   a    POU5F1    enhancer   have  

a   negative   Z-score   (Figure   18a).   These   windows   correspond   to   genomic   regions   without  

coverage   for   TF   binding   data.   Therefore,   we   omitted   these   regions   from   our   analysis.   The  

resulting   plot,   Figure   15b,   still   shows   a   difference   in   the   distribution   of   Z-scores,   with   enhancers  

having   higher   Z   scores.   
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Figure   18.   Comparison   of   Z-scores   between   CREST-seq-identified    POUF51    enhancer   regions   and  

neighbouring   TF   binding   regions.    Z-scores   were   calculated   from   cosine   similarity   scores   between  

binary   TF   binding   vectors   for   all   identified   enhancers   by   CREST-seq   and   the    POU5F1    promoter,   as   well  

as   neighbouring   regions   and   the    POU5F1    promoter.   The   results   depicted   in    a)    compares   the   distribution  

of   Z-scores   between   enhancer   regions   (green)   and   surrounding   non-enhancer   regions   (red)   where   the  

x-axis   is   the   Z-score   and   the   y-axis   is   the   density   of   observations.   In    b)    non-enhancer   regions   without   TF  

binding   activity   are   removed   and   Z-scores   are   compared   between   enhancer   and   non-enhancer   regions.  

Similarly   we   compared   TF   binding   similarity   between   the    RELA    promoter   and   each  

labelled   200   bp   window   (described   in   3.1.4.).   Figure   19   shows   the   different   distributions   of  

cosine   similarities   after   Z-score   normalization.   We   observed   that   positive   and   TSS-labelled  

windows   had   the   highest   Z-scores   when   compared   to   the   rest.   Our   findings   are   in   concordance  

with   the   observation   made   by   Diao    et   al. 33    that   promoters   of   proximal   genes   can   function   as  

enhancers.  
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Figure   19.   Comparison   of   distribution   of   Z   scores   between   labeled   windows   surrounding    RELA.   

Z-scores   were   calculated   from   cosine   similarity   scores   between   binary   TF   binding   vectors   for   all  

FANTOM5-identified   enhancers   and   the    RELA    promoter.   Enhancers   linked   to    RELA    in   the   FANTOM5  

Positive   Set   are   represented   in   green,   enhancers   linked   to    RELA    in   the   FANTOM5   Negative   Set   are  

represented   in   red   bars,   FANTOM5-identified   enhancers   that   have   not   been   linked   to   any   TSS   are  

represented   in   purple,   FANTOM5-identified   TSSs   of   other   genes   are   represented   in   blue,   and   regions   that  

do   not   overlap   any   feature   ( i.e.    none)   are   represented   in   yellow.   The   results   depicted   in    a)    compares   the  

distribution   of   Z-scores   between   each   labelled   region   with   the   Z-score   on   the   x-axis   and   the   density   of  

observations   on   the   y-axis.   The   results   in    b)    are   the   same   data   as    a)    but   presented   as   boxplots   with   the  

y-axis   representing   the   observed   Z   scores.   
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Discussion  

We   have   developed   a   novel   metric   to   link   enhancers   to   their   target   genes   based   on  

similarity   of   TF   binding.   In   our   analysis,   we   show   that   enhancers   share   more   commonalities   in  

TF   binding   with   their   target   genes   compared   to   genes   they   do   not   regulate.    While   there   are  

statistically   significant   differences   between   score   distributions,   the   distributions   remain  

overlapping,   and   on   a   genome   scale.   By   coupling   additional   information   about   active   regulatory  

regions   into   the   process,   we   demonstrate   that   pairing   of   promoters   to   a   specific   enhancer   of  

interest   can   be   informative,   while   the   mapping   of   enhancers   to   a   specific   promoter   of   interest   is  

not   improved   by   the   filtering   process.   Case   studies   of   individual   genomic   regions   support   the  

observation   that   the   scores   are   CRR   specific,   and   therefore   the   method   may   be   most  

immediately   useful   for   local   analyses   of   individual   genes.   The   TF   binding   profile   comparison  

introduced   in   this   thesis   represents   one   of   many   approaches   (both   computational   and  

experimental)   currently   being   pursued   to   determine   relationships   between   enhancers   and  

promoters.   Two   computational   methods,   TargetFinder   and   PEPmotif,   learn   general   features   of  

enhancer-promoter   pairs,   but   they   do   not   capture   enhancer-specific   patterns.   Based   on   the  

research   in   the   thesis,   it   appears   that   local   CRE-specific   characteristics   will   be   important   to  

optimize   the   mapping   success.   Fulco    et   al. 43    developed   the   activity-by-contact   (ABC)   model   to  

computationally   link   enhancers   to   their   promoters   based   on   integrating   the   presence   of  

overlapping   DHS   and   H3K27ac   markers   at   each   enhancer   with   Hi-C   identified   promoter   regions  

interacting   with   each   enhancer.   In   the   published   results   involving   the   three   models,   ABC  

appears   to   be   performing   slightly   better,   but   direct   comparison   is   difficult   because   the   methods  

require   distinct   input   data.   In   the   future,   it   may   be   possible   to   combine   the   approaches   in   the  

ABC   model   with   the   TF   binding   profile   comparisons   to   improve   performance.   
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Improvement   of   the   TF   binding   profile   comparison   approach   should   be   feasible.   The   use  

of   cosine   similarity   as   the   metric   for   comparisons   was   based   on   trying   a   range   of   vector  

comparison   options.   We   anticipate   that   there   may   be   further   improvements   possible   with  

alternative   approaches.   In   recent   work   in   my   laboratory   (Saraswat,   unpublished),   the   scoring  

system   was   adjusted   by   dividing   its   cosine   similarity   by   the   sum   of   cosine   similarities   of   all  

enhancers   (positive   and   negative)   linked   to   that   promoter,   in   an   attempt   to   resolve   the   local  

nature   of   the   original   metric.   We   will   continue   to   evaluate   this   alternative,   which   appears  

promising.   Training    machine   learning   methods   with   the   TF   binding   profiles,   rather   than  

performing   vector   comparisons   as   in   this   thesis,   may   also   allow   improved   performance.  

Following   our   observations   in   the   FANTOM5   and   CREST-seq   positive   and   negative   sets   that  

TF-binding   similarity   is   a   CRE-specific   metric   rather   than   a   continuous   scale,   we   believe   that   our  

novel   bioinformatics   approach   should   be   incorporated   as   a   feature   to   future   machine   learning  

models   to   improve   the   performance   of   computationally-predicted   enhancer-promoter   pairs  

rather   than   be   used   on   its   own.   

There   are   distinct   limitations   of   the   TF   binding   profile   comparisons,   as   it   depends   on  

experimental   TF   ChIP-seq   data.   For   example,   data   sparsity   affects   our   analysis   in   H1   cells;   TF  

binding   data   is   available   for   31   different   TFs   in   H1   cells   in   comparison   to   over   80   TFs   for   other  

cell   lines   in   our   analysis.   Future   developments   to   the   TF   binding   profile   method   will   attempt   to  

mitigate   experimental   data   dependencies   by   focusing   on   computational   prediction   based   on   a  

combination   of   experimental   data   and    DNA   sequence   using   machine   learning   methods.   In  

particular,   there   are   indications   that   comparisons   on   the   sequence   level   based   on   gapped  

k-mers   may   have   utility.   

The   challenge   of   reliably   identifying   which   CREs   are   functionally   interacting   represents  
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the   current   challenge   in   a   long-term   effort   to   unravel   the   complex   regulatory   networks   governing  

transcriptions.   Dramatic   advances   in   recent   years   have   allowed   the   individual   CREs   to   be  

annotated   across   the   genome,   but   the   higher   order   relationships   between   them   remain  

challenging   to   predict.   This   thesis   explored   a   new   algorithmic   approach   to   predicting  

relationships   between   enhancers   and   promoters   based   on   a   hypothesis   that   functionally  

interacting   members   of   the   two   classes   of   CREs   will   tend   to   be   bound   by   the   same   TFs.   The  

research   showed   the   approach   to   be   promising,   and   provides   direction   for   further   work   focused  

on   adjusting   the   comparisons   to   account   for   the   specific   properties   of   individual   promoters   or  

enhancers.    
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