
ReSprop: Reused Sparsified Backpropagation

by

Negar Goli

B. Sc, Sharif University of Technology, 2017

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

June 2020

© Negar Goli, 2020

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

ReSprop: Reused Sparsified Backpropagation

submitted by Negar Goli in partial fulfillment of the requirements for the degree
of Master of Applied Science in Electrical and Computer Engineering.

Examining Committee:

Tor M. Aamodt, Electrical and Computer Engineering
Supervisor

Leonid Sigal, Computer Science
Supervisory Committee Member

ii

Abstract

The success of Convolutional Neural Networks (CNNs) in various applications is

accompanied by a significant increase in computation and training time. In this

work, we focus on accelerating training by observing that about 90% of gradients

are reusable during training. Leveraging this observation, we propose a new algo-

rithm, Reuse-Sparse-Backprop (ReSprop), as a method to sparsify gradient vectors

during CNN training. ReSprop maintains state-of-the-art accuracy on CIFAR-10,

CIFAR-100, and ImageNet datasets with less than 1.1% accuracy loss while en-

abling a reduction in back-propagation computations by a factor of 10× resulting

in a 2.7× overall speedup in training. As the computation reduction introduced by

ReSprop is accomplished by introducing fine-grained sparsity that reduces compu-

tation efficiency on GPUs, we introduce a generic sparse convolution neural net-

work accelerator (GSCN), which is designed to accelerate sparse back-propagation

convolutions. When combined with ReSprop, GSCN achieves 8.0× and 7.2×
speedup in the backward pass on ResNet34 and VGG16 versus a GTX 1080 Ti

GPU.

iii

Lay Summary

Convolutional Neural Networks play an essential role in today’s computer vision

applications. However, to train these networks, one requires massive data and com-

putational resources. Fortunately, more data is available due to the worldwide us-

age of the internet. But, the lack of efficient algorithms for training to reduce the

computations hinders the progress. One way to decrease the computation in CNNs

(Convolutional Neural Networks) is to produce sparsity in the computations. There

are several methods, which sparsify the inference. However, due to the complexity

of training, few works have studied sparsity in training for reducing the training

computations.

In this thesis, we aim to solve the issue of excessive training time by develop-

ing a new training algorithm which reuses the gradients to sparsify computations.

This method can achieve a substantial speedup on a specific hardware accelerator

designed for sparse training.

iv

Preface

This dissertation is based on a research project conducted by myself under the su-

pervision and guidance of Professor Tor M. Aamodt. The work in this thesis was

also presented in the paper ReSprop: Reuse Sparsified Backpropagation, accepted

to appear in the oral presenation track at the 2020 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR).

I assisted with defining the problem space and was responsible for deriving

mathematical solutions, identifying challenges within this problem space, and de-

signing and optimizing the algorithm to evaluate the proposed idea. Prof. Tor

M. Aamodt provided valuable guidance and directions in identifying the research

problems, developing solution methodologies, and documenting the results.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . xi

List of Abbreviations . xiii

Acknowledgments . xiv

Dedication . xvi

1 Introduction . 1
1.1 Sparse Training . 3

1.2 Gradient Reuse . 4

1.3 GSCN Accelerator . 5

1.4 Contributions . 6

1.5 Organization . 6

2 Background . 8
2.1 Convolutional Neural Network 8

vi

2.1.1 Convolutional Layer . 9

2.1.2 Activation Function . 10

2.1.3 Pooling . 11

2.1.4 Dropout . 11

2.1.5 Normalization . 11

2.1.6 Fully-connected layer . 12

2.2 ResNet, WRN and VGG . 12

2.2.1 VGG . 12

2.2.2 ResNet and WRN . 13

2.3 Training . 14

2.3.1 Training Convolutions and Notation 15

2.3.2 Mini-batch Training . 15

2.3.3 Momentum . 16

2.4 Sparse Convolution . 16

2.4.1 Sparse Hardware Acceleretors 17

3 Related Work . 18
3.1 Dense to Sparse Networks by Weight Pruning 18

3.1.1 Structure . 19

3.1.2 Prunning Criterion . 19

3.1.3 Scheduling . 20

3.1.4 Fine-tuning . 20

3.2 Sparse Training . 20

3.3 Low precision neural network 21

3.4 Reusing Gradient . 22

3.5 Hardware Accelerators for Deep Neural Networks 24

3.5.1 Hardware Accelerator for Sparse Networks 26

4 Gradient Reuse . 28
4.1 Preliminaries . 28

4.2 Approach and Key Insight . 29

4.3 Angle Preservation and comparison with meProp 30

vii

5 ReSprop Algorithm . 33
5.1 ReSprop: Reuse-Sparse-Backprop 33

5.1.1 Stochastic Output Gradient 34

5.1.2 Warm Up . 37

6 GSCN . 39
6.1 Accelerator for Sparse Training 39

6.2 Computation of Convolutional Layers 41

6.3 Background on SCNN . 41

6.3.1 SCNN Limitations . 44

6.4 GSCN Data Flow . 47

6.5 GSCN Architecture . 49

7 Evaluation . 52
7.1 Evaluation . 52

7.2 Experimental Setup . 52

7.3 Accuracy Analysis . 53

7.3.1 Accuracy on CIFAR10 and CIFAR100: 53

7.3.2 Accuracy on ImageNet: 54

7.4 Sensitivity Study . 56

7.4.1 Deep and Wide Networks 56

7.4.2 Impact of Batch Size: . 57

7.4.3 Distribute Training Across Multiple Compute Nodes . . . 57

7.5 Speedup . 58

7.5.1 Adaptive Thresholding: 58

7.5.2 Pre-ReSprop Overhead 59

7.5.3 Theoretical Speedup: . 59

7.5.4 Accelerator for Sparse Back-propagation: 61

8 Conclusion . 64
8.0.1 Discussion . 65

8.0.2 Future Work . 66

Bibliography . 67

viii

List of Tables

Table 4.1 Validation accuracy of meProp and reuse strategy (HG) with

different sparsities and reuse percentages, repectively. Training

ResNet-18 on CIFAR-10 for 30 epochs (batch size = 128, lr =

0.1 and optimizer = SGD). 31

Table 5.1 Validation accuracy of full, average and stochastic ReSprop for

ResNet-18 on the CIFAR-10 dataset for 200 epochs (batch size

= 128, lr = 0.1, optimizer = SGD, avg of 3 runs). 36

Table 6.1 The table shows percentage of unused cartesian product over

total cartesian product in SCNN architecture for gradient of

weights convolution. 47

Table 7.1 Validation accuracy of ReSprop and W-ReSprop at different

reuse-sparsity constraints on the CIFAR-100. 54

Table 7.2 Validation accuracy of ReSprop and W-ReSprop at different

reuse-sparsity constraints on the CIFAR-10. 55

Table 7.3 Top 1 validation accuracy of ReSprop and W-ReSprop algo-

rithms at different reuse-sparsity constraints on the ImageNet

dataset. 55

Table 7.4 Validation accuracy of ResNet-18, 34 and 50 on the CIFAR-100

dataset at 90% reuse-sparsity. 57

Table 7.5 Validation accuracy of ResNet-34 on the CIFAR-100 dataset

with different batch sizes of 32, 64 and 128. 57

ix

Table 7.6 Top 1 validation accuracy of ResNet-18 on the ImageNet dataset

trained on 2, 4 and 8 nodes. 58

Table 7.7 Validation accuracy and train speedup at 90% sparsity com-

pared to dense training (CIFAR-10 dataset). 61

Table 7.8 Theoretical and GSCN speedup at backward pass computations

with 90% resue-sparsity (ImageNet). 61

Table 7.9 GSCN parameters . 62

x

List of Figures

Figure 1.1 Forward and backward propagation through a convolutional

layer during training. 2

Figure 1.2 Percentage of floating point operations during the backward

and forward pass in training different architectures. 3

Figure 1.3 A simple example of gradient’s movement in a 3D space. The

gradient’s movement in the first and second iterations are marked

in red. The changes in the (y) axis is shown in blue dots. . . . 5

Figure 2.1 Different layers in CNN architecture. 9

Figure 2.2 An input with C channels convolving with K filters to produce

an output with K channels. 10

Figure 2.3 Architecure of VGG-16 network. Conv and FC denote convo-

lution and fully-connected layers, respectively. 13

Figure 2.4 A simple residual block with skip connection for double layers. 13

Figure 4.1 HG and meProp angles for different reuse percentages and

sparsities, respectively. The angle is calculated by finding the

average angle of all layers while training ResNet-18 on CIFAR-

10 for 100 iterations (batch size=128). 31

Figure 5.1 Training with ReSprop for layer l at iteration i. 35

Figure 5.2 Back-propagation convolutions in stochastic mode compared

to full mode for layer l at iteration i. 37

xi

Figure 6.1 Forward pass and backward pass convolutions for N input sam-

ples with C channels and K filters each with C channels. . . . 40

Figure 6.2 Figure shows an example of SCNN and GSCN data and work-

load distribution while having four PEs. Input and filter as-

signment to each PE for SCNN and GSCN are different. . . . 42

Figure 6.3 SCNN PE microarchitecture employing SSCN data flow [72]. 43

Figure 6.4 When the size of filter is smaller than input size, SCNN archi-

tecture has negligible amount of unused products. 45

Figure 6.5 When the size of two operands are close in the convolution the

SCNN architecture produces many unused products. 46

Figure 6.6 GSCN PE microarchitecture employing GSCN data flow. The

GSCN PE microarchitecture is built upon SCNN, the units

added or changes in GSCN have been shown with yellow color. 49

Figure 7.1 Top 1 validation accuracy of ReSprop, W-ReSprop, meProp

and W-meProp algorithms for training ResNet-18 on the Im-

ageNet dataset. The baseline is trained with no sparsity or

reusing. 56

Figure 7.2 Computation overhead of ReSprop at forward pass (pre-ReSprop)

for different batch sizes (ImageNet dataset). 60

Figure 7.3 ReSprop training (forward+backward) speedup versus archi-

tecture for three reuse-sparsity percentages (ImageNet). . . . 60

Figure 7.4 Figure shows the speedup for GSCN compared to SCNN and

GTX 1080 Ti GPU while training with ReSprop. 62

Figure 8.1 ReSprop has two parts. Pre-Resprop computations are negli-

gible and back-ReSprop are sparse computations in backward

pass. 64

xii

List of Abbreviations

CIFAR : Canadian Institute for Advanced Research

Conv : Convolution

CNN : Convolutional Neural Networks

CUDA : Compute Unified Device Architecture

DNN : Deep Neural Networks

DRAM : Dynamic Random Access Memory

GPU : Graphics Processing Unit

GSCN : Generic Sparse Convolutional Neural Network

ReLU : Rectified Linear Unit

ReSprop : Reused Sparse Back-propagation

ResNet : Residual Networks

VGG : Visual Geometry Group

xiii

Acknowledgments

First and foremost, I am profoundly indebted to my parents in Iran for their un-

conditional love and blessings. Special thanks to my sister for her support and

encouragement throughout my study.

Second, I would like to express my deep gratitude to Professor Tor M Aamodt,

my research supervisor, for his patient guidance, enthusiastic encouragement, use-

ful critiques of this research work, and generous financial support. I thank him

for providing me with an excellent research atmosphere in his lab. The meetings

and conversations were vital in inspiring me to think outside the box, from multi-

ple perspectives to form a comprehensive study. I will remember and am deeply

thankful for your wisdom and all the life lessons you taught me during my thesis.

Third, I am very fortunate and grateful to have excellent colleagues who offered

me genuine and friendly support and assurance to carry out my research. I should

particularly thank Md Aamir Raihan for several discussions and feedback on my

research project. My special thanks to Francois Demoullin and Deval Shah for

their constant encouragement and motivation, which helped me to get through one

of the tough times of my life. I would also like to thank Dave Evans for his personal

and professional support.

Finally, I would like to express my very great appreciation to Mohammad Ja-

fari, UBC Ph.D. candidate, for his valuable and constructive suggestions during the

planning and development of this research work. His willingness to give his time

so generously has been very much appreciated.

I also gratefully acknowledge the funding provided by the Natural Sciences

and Engineering Research Council of Canada (NSERC) and Computing Hardware

for Emerging Intelligent Sensory Applications (COHESA) that made my research

xiv

possible.

xv

Dedication

To my father Mohammad-Reza Goli, mother Mahin Yaraghi, and sister

Leily Goli.

With gratitude for your inspiration, love, and support.

xvi

Chapter 1

Introduction

We are witnessing an explosion in the use of Deep Neural Networks (DNNs), with

major impact on the world’s economic and social activity. At present, there is abun-

dant evidence of DNN’s effectiveness in areas such as classification, vision, and

speech [34], [16], [68], [75], [64]. Of particular interest are Convolutional Neu-

ral Networks (CNNs), which achieve state-ofthe-art performance in many of these

areas, such as image/temporal action recognition [46], [85] and scene generation

[76]. However, state-of-the-art CNNs require extensive computational resources

and a significant amount of time to be trained. The convolution operation is the

primary computation source in CNNs.

Training a neural network consists of a forward pass and a backward pass. The

backward pass has a higher computational cost compared to the forward pass. In

the backward pass, the back-propagation algorithm is applied which is a common

method for weights adjustment in conjunction with an optimization method such as

gradient descent. The basic idea of the back-propagation algorithm is to propagate

the error (the gradient in gradient descent) back along through the network and

adjust the weights to correct the error. In brief, the backward pass shares similar

computation patterns with the forward pass but involves approximately two-fold

as many convolution operations for both error propagation and weight update, as

shown in Figure 1.1. In this study, we try to reduce the computations in the back-

ward pass. To have a better understanding of training, we need to also keep in mind

that in practice, the most commonly used optimization method for CNN is stochas-

1

*

*

*

Input
Activation

Filter
Values

Filter
Values

Filter
Gradient

Input
Activation

Input
Gradient

Output
Activation

Output
Gradient

Figure 1.1: Forward and backward propagation through a convolutional layer
during training.

tic gradient descent (SGD) [10], which randomly chooses a subset of the training

data, called a minibatch, and updates parameters based on the average error of each

iteration.

Prior work has adopted two main strategies to accelerate CNN training: (1)

reducing the number of iterations per compute node required to converge, using

techniques such as batch normalization reducing internal covariate shift [37], par-

allelize training with data or model parallelism [17, 46], and importance sampling

to reduce the variance of gradient estimates [44, 45]; (2) reducing the amount of

computation per iteration using techniques such as stochastic depth to remove lay-

ers during training [35], randomized hashing to reduce the number of multiplica-

tions [87], quantization [8, 93, 98] and sparse training [21, 54, 90, 94]. We explore

the second strategy and propose Reuse Sparse Backprop (ReSprop), a novel way

to sparsify convolution computations during training1.

1Source code available at https://github.com/negargoli/ReSprop

2

https://github.com/negargoli/ReSprop

0

1

2

3

4

R
eS

P
ro

p
 o

ve
rh

ea
d

 in
 f

o
rw

ar
d

 p
as

s
 (

%
)

2
8

.4
9

%

3
0

.7
6

%

2
8

.0
7

%

3
0

.3
6

%

3
3

.3
9

%

3
3

.3
8

%

7
1

.5
1

%

6
9

.2
4

%

7
1

.9
3

%

6
9

.6
4

%

6
6

.6
1

%

6
6

.6
2

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ResNet18 ResNet34 ResNet50 WRN-50-2 VGG16 VGG19

FP
 o

p
er

at
io

n
s

in
 t

ra
in

in
g

(%
) Forward Backward

Figure 1.2: Percentage of floating point operations during the backward and
forward pass in training different architectures.

1.1 Sparse Training

At their core, convolutions are parallel dot products and accumulations. Thus,

sparse convolutions decrease computational cost by reducing the number of multi-

plication and addition operations. Recent related works [33, 58, 59, 61, 66] study

different approaches to sparsifying inference, and many [1, 2, 13, 30, 72] pro-

pose accelerators to exploit sparsity in inference; however, there is limited work on

sparse training [21, 54, 69, 90, 94].

In a forward-backward pass of a CNN during training, a convolutional layer

requires three convolutions: one for forward propagation and two for backward

propagation shown in Figure 1.1. Our measurements are shown in Figure 1.2 indi-

cate that back-propagation consumes around 70% of the time during training.

MeProp [90, 94] and DSG [54] sparsify the backward pass convolutions us-

ing different sparsification methods. Since the sparsity produces by these methods

is fine-grained, it might results in speedup on specialized hardware but not on an

Nvidia GPU (before newly introduced Ampere GPU), which is the current pre-

ferred platform. Thus, the need for a specialized hardware accelerator for sparse

inference and training is vital.

MeProp reduces the computational cost of training by sparsifying gradients in

back-propagation calculations and DSG by graph selection method and dimension-

3

reduction search, compresses activations with elementwise unstructured sparsity,

and accelerates vector-matrix multiplications (VMM). However, we observe that

meProp fails to converge while training deeper networks or when using large datasets

(Sections 4 and 7.1), and DSG loses more accuracy and achieves less training

speedup compared to ReSprop.

ReSprop reduces the computation overhead of backward pass by reusing gra-

dients to sparsify back-propagation convolutions. ReSprop overcomes prior limi-

tations and loses less than 1.1% accuracy on large dataset such as ImageNet [82].

1.2 Gradient Reuse

In this section, we describe our main insight, which is reusing gradients, and the

motivation behind it. We briefly explain prior works on reusing gradients and then

move to our idea.

The stochastic variance reduction gradient (SVRG) method is proposed by

Johnson and Zhang [40], and belongs to the class of stochastic methods using the

so-called variance reduction technique [4, 19, 40, 62]. The common idea behind

these methods is to use some full gradient of the past to approximate the future for

general non-convex problems to reduce variance. Although the reusing proposed

by SV methods is different from ours in many aspects such as the reusing strategy

and the purpose of reusing, these methods motivate us to think of reusing gradi-

ents between iterations. We assume that at each iteration, not all the gradients will

considerably change, and it would be possible that just a portion of them varies sig-

nificantly, and the rest remains almost the same. We try to visualize the gradient’s

movement in a simple 3D example. As it is shown in this example, the gradient’s

movement in the first and second iterations are slightly different and the amount of

change is almost the same.

Our observations (in Section 4.2) demonstrate that updating a small portion

of the gradient components each iteration and replacing the rest with the previous

iteration’s gradient component values is sufficient for maintaining state-of-the-art

accuracy. The ReSprop algorithm (Section 5.1) exploits gradient reusability and

sparsifies the gradients in the back-propagation convolutions up to 90% with less

than 1.1% loss of accuracy on the ImageNet dataset. ReSprop has less than 2%

4

Figure 1.3: A simple example of gradient’s movement in a 3D space. The
gradient’s movement in the first and second iterations are marked in
red. The changes in the (y) axis is shown in blue dots.

computation overhead and less than 16% memory footprint overhead while train-

ing the ImageNet dataset with batch sizes larger than 128. For 90% sparsity, we

calculate ReSprop theoretical speedups between 9.3× and 9.8× for backward pass

calculations and, as a consequence of Amdahl’s Law [5], between 2.5× and 2.9×
for the overall training process on different architectures.

1.3 GSCN Accelerator

In recent years accelerators, which are dedicated fixed-function peripherals de-

signed to perform a single computationally intensive task over and over, have be-

come an active area of research. Moreover, accelerators have been designed and

adopted into programmable pipelines. Nvidia Tensor Core and ray tracing unit in

Turing GPUs are some examples of it. Due to the high computation of convolu-

tions, there are many algorithms for sparse convolutions and accelerators which try

to exploits fine-grained sparsity produced by these algorithms. The current avail-

able GPUs are not able to exploit fine-grained sparsity, but the newly introduced

NVIDIA Ampere GPU supports fine-grained sparsity of weights in the forward

pass convolution.

5

The fine-grained sparsity introduces by ReSprop, can be accelerated by hard-

ware similar to recently proposed inference accelerators [1, 2, 13, 30, 72]. Al-

though there are many hardware accelerators for sparse inference, accelerators for

sparse training have not been widely explored. Thus, we calculated the speedup

achieved by ReSprop on our proposed custom hardware accelerator for sparse

training.

Among available accelerator, Sparse CNN (SCNN) accelerator is an acceler-

ator for inference, which exploits both weight and activation sparsity to improve

both performance and power [72]. We propose a Generic Sparse Convolutional

Neural network (GSCN) accelerator hardware architecture (Section 6) based on

SCNN. GSCN is designed to accelerate sparse back-propagation convolutions.

GSCN supports sparse back-propagation convolutions and overcomes the deficien-

cies of SCNN in cases of underutilization for small inputs and shortcomings caused

by closely-sized input and filter. Our results (Section 7.5) show ReSprop on GSCN

achieves 8.0× speedups versus a GPU on the backward pass of ResNet34.

1.4 Contributions

The contributions of this dissertation are:

• It shows that we can reuse about 90% of the gradients between consecutive

iterations with minimal loss of accuracy.

• It introduces a new training algorithm called ReSprop, which by reusing the

gradients, makes the backward pass computations sparse. For 90% sparsity,

ReSprop accuracy loss is less than 1.1%. It achieves theoretical speedups

between 9.3× and 9.8× for backward pass calculations and between 2.5×
and 2.9× for the overall training process on different architectures.

• It shows that ReSprop on GSCN achieves between 7.2× and 8.6× speedups

versus a GPU on the backward pass on different architectures.

1.5 Organization

The rest of this dissertation is organized as follows:

6

• Chapter 2 details the internal workings of a Convolutional Neural Network,

and it is basic building blocks. It provides detailed background about train-

ing.

• Chapter 3 discusses related studies on pruning, sparse training, and reuse

gradients.

• Chapter 4 describes our insight for reusing gradients and our reuse strategy

and finally verifies it with experiments and comparison with meProp [90,

94].

• Chapter 5 proposes the ReSprop algorithm based on the reusing strategy and

explain how reusing leads us to the sparse back-propagation calculations in

ReSprop.

• Chapter 6 explains the GSCN architecture and dataflow.

• Chapter 7 demonstrates and analyzes accuracy results for different datasets,

computation reduction, ReSprop overhead, and GSCN accelerator speedup.

7

Chapter 2

Background

To properly explain ReSprop and the experiments done to validate ReSprop, it

is helpful to first briefly go over convolutional neural networks (CNNs), back-

propagation’s calculations in convolution layers and mini-batch training. This

chapter gives an overview of convolutional neural networks (CNNs) and describes

the commonly used CNNs topologies used in our experiments. It then explains

training a network and briefly describes mini-batch training.

2.1 Convolutional Neural Network

The efficacy of Convolutional Neural Networks (CNNs) in image recognition is

one of the main reasons why the world has woken up to the efficacy of deep

learning. CNNs are powering major advances in computer vision, which has ap-

plications for self-driving cars, robotics, drones, security, medical diagnoses, and

treatments for the visually impaired. CNNs are not limited to image recognition;

however, they have been applied directly to text analytics and many other fields.

A CNN architecture typically consists of convolution, activation, pooling, dropout,

batch normalization, and fully-connected layers (Figure 2.1). In this section we

explain the convolution layer, which is the main layer in CNNs in detail and briefly

go over other layers.

8

In
p

u
t

Im
ag

e

C
o

n
vo

lu
ti

o
n

A
ct

iv
at

io
n

 F
u

n
ct

io
n

(N

o
n

-l
in

ea
ri

ty
)

P
o

o
lin

g

N
o

rm
al

iz
at

io
n

Fe
at

u
re

 m
ap

s

D
ro

p
o

u
t

Figure 2.1: Different layers in CNN architecture.

2.1.1 Convolutional Layer

The predominant layers in CNNs are Convolutional layers. Each convolutional

layer is composed of a 3-dimensional input with C channels (width (W)×height (H)×
channels (C)) and K number of 3-dimensional (width (R)×height (S)×channels (C))

filters which in turn form a 3-dimensional (W −R+ 1)× (H− S+ 1)×K output.

These parameters are visualized in Figure 2.2. The width (W) and height (H) of

an image are easily understood. The channels (C) are necessary because of how

colors are encoded. Red-Green-Blue (RGB) encoding, for example, produces an

image three layers deep. Each layer is called a channel, and through convolution,

it produces a stack of output feature maps. The height and weight of the filters are

smaller than those of the input volume. Convolution is a specialized kind of linear

operation. Each filter is convolved with the input volume to compute an activa-

tion map made of neurons. In more details, the filter slides across the width and

height of the input, and the dot products between the input and filter are computed

at every spatial position. The output volume of the convolutional layer is obtained

by stacking the activation maps of all filters along the depth dimension (channels)

(Figure 2.2).

After a convolutional layer, the input is passed through a nonlinear transform

such as tanh or rectified linear unit (ReLU), which will squash input values into a

range between -1 and 1. One of the key challenges with images is that they are

high-dimensional, which means they can consume a lot of time and computing

power to process. Convolutional networks include stage designed to reduce the di-

mensionality of images. Filter stride is one way to reduce dimensionality; another

9

Filters

K* =

Output
Input

R

S

H

W

H

W

H
-S

+
1

W-R+1

H
-S

+
1

W-R+1

Figure 2.2: An input with C channels convolving with K filters to produce an
output with K channels.

way is through downsampling, max-pooling, or subsampling. The pooling layer

is almost part of any CNN network, and it mainly helps extract sharp and smooth

features. It is also done to reduce variance and computations.

2.1.2 Activation Function

The activation function decides whether a neuron should be activated or not by

calculating the weighted sum and further adding a bias to it. A network comprised

of only linear activation functions is very easy to train, but cannot learn complex

mapping functions. Linear activation functions are still used in the output layer for

networks that predict a quantity (e.g. regression problems).

Increasingly, neural networks use non-linear activation functions, which can

help the network learn complex data, compute and learn almost any function rep-

resenting a question, and provide accurate predictions. Thus, the purpose of the

activation function is to introduce non-linearity into the output of a neuron. While

there are many activation functions, the most popular one is Rectified Linear Units

(ReLU). Krizhevsky et al [46] have observed that deep convolutional neural net-

works with ReLUs train several times faster than their equivalents with tanh units.

Moreover, ReLU reduces likelihood of vanishing gradient. Generally, a neuron is

turned on if the output of ReLU is greater than zero, and the neuron is turned off if

the output of ReLU is zero.

10

2.1.3 Pooling

A limitation of the feature map output of convolutional layers is that they record

the precise position of features in the input. This means that small movements in

the position of the feature in the input image will result in a different feature map.

This can happen with re-cropping, rotation, shifting, and other minor changes to

the input image.

A common approach to addressing this problem from signal processing is

called downsampling. Thus, a lower resolution version of an input signal is created

that still contains the large or important structural elements, without the fine detail

that may not be as useful to the task. Downsampling can also be achieved with con-

volutional layers by changing the stride of the convolution across the image [88].

A more robust and common approach is to use a pooling layer. A pooling layer

is added after a nonlinearity (e.g. ReLU). Pooling layer generally takes a patch of

features and performs operations like average (Average Pooling) of all activation

output values or maximum value for each patch of the feature map (max-pooling).

2.1.4 Dropout

Dropout is a regularization method that approximates training a large number of

neural networks with different architectures in parallel. During training, some

number of layer outputs are randomly ignored or “dropped out”. By dropping a

unit out, the method temporarily removes it from the network, along with all its

incoming and outgoing connections. Dropout simulates a sparse activation from a

given layer, which interestingly, in turn, encourages the network to actually learn

a sparse representation as a side-effect. As such, it is used as an alternative for

regularizing the network [89].

2.1.5 Normalization

Batch normalization is a technique for training very deep neural networks that stan-

dardizes the inputs to a layer for each mini-batch. It has the effect of stabilizing the

learning process and dramatically reducing the number of training epochs required

to train deep networks [37]. We explain mini-batch training later in Section 2.3.

11

By standardizing the activations of the prior layer, assumptions the subsequent

layer makes about the spread and distribution of inputs during the weight update

will not change, at least not dramatically. It has the effect of stabilizing and speed-

ing up the training process of deep neural networks.

2.1.6 Fully-connected layer

Fully connected layers are an essential component of CNNs, which have been

proven very successful in recognizing and classifying images. The CNN process

begins with convolution and pooling, and the result of this process feeds into a fully

connected neural network structure that drives the final classification decision. The

fully connected part of the CNN goes through its own backpropagation process to

determine the most accurate weights.

2.2 ResNet, WRN and VGG

Classic CNN network architectures were comprised simply of stacked convolu-

tional layers. Modern architectures explore new and innovative ways of construct-

ing convolutional layers in a way that allows for more efficient learning. Almost

all of these architectures are based on a repeatable unit that is used throughout the

network. In this study we use three common CNN networks called residual net-

works (ResNet) [32], wide residual networks (WRN) [96] and Visual Geometry

Group (VGG) [86].

2.2.1 VGG

VGG is one of the most common deep convolutional network for object recogni-

tion. It was developed and trained by Oxford’s renowned Visual Geometry Group

(VGG), which achieved very good performance on the ImageNet dataset [86]. This

network is characterized by its simplicity, using only 3×3 convolutional layers

stacked on top of each other in increasing depth. Figure 2.3 shows the architec-

ture for VGG-16.

12

3
x3

 C
o

n
v

3
x3

 C
o

n
v

P
o

o
lin

g

3
x3

 C
o

n
v

3
x3

 C
o

n
v

P
o

o
lin

g

3
x3

 C
o

n
v

3
x3

 C
o

n
v

P
o

o
lin

g

3
x3

 C
o

n
v

3
x3

 C
o

n
v

3
x3

 C
o

n
v

P
o

o
lin

g

3
x3

 C
o

n
v

3
x3

 C
o

n
v

3
x3

 C
o

n
v

P
o

o
lin

g

3
x3

 C
o

n
v

FC FC FC

Figure 2.3: Architecure of VGG-16 network. Conv and FC denote convolu-
tion and fully-connected layers, respectively.

2.2.2 ResNet and WRN

A feedforward network with a single layer is sufficient to represent any function.

However, the layer might be massive, and the network is prone to overfitting the

data. Therefore, there is a common trend of using deep network architectures.

However, increasing network depth does not work by simply stacking layers to-

gether. Deep networks are hard to train because of the notorious vanishing gradient

problem [73] as the gradient is back-propagated to earlier layers, repeated multi-

plication may make the gradient infinitely small. As a result, as the network goes

deeper, its performance gets saturated or even starts degrading rapidly. ResNet

solves this problem by introducing an identity shortcut connection that skips one

or more layers (residual block) [32]. Typical ResNet models are implemented with

double or triple layer skips that contain nonlinearities (ReLU) and batch normal-

ization in between. Figure 2.4 shows an example of a residual block in the ResNet

architecture.

Weight Layer

Weight Layer

ReLU

+

ReLU

X

X
F(X)

F(X) +X

Figure 2.4: A simple residual block with skip connection for double layers.

However, deep residual networks are able to scale up to thousands of layers

13

and still improve the performance; each fraction of a percent of improved accuracy

costs nearly doubling the number of layers. Thus, training very deep residual net-

works have a problem of diminishing feature reuse, which makes these networks

very slow to train. To tackle these problems, Zagoruyko et al [96] proposes a

novel architecture where they decrease the depth and increase the width of residual

networks and called it wide residual networks (WRNs).

2.3 Training

In supervised training, which is our concern in this study, both the inputs and the

outputs are provided. The network processes the inputs and compares its resulting

outputs against the desired outputs (forward pass). Errors are then propagated back

through the system, causing the system to adjust the weights which control the

network (backward pass) [81]. This process occurs over and over as the weights

are continually tweaked. Neural networks are trained using gradient descent, where

the estimate of the error used to update the weights is calculated based on the

training dataset. Therefore training can be separated into four distinct sections, the

forward pass, the loss function, the backward pass, and the weight update. A loss

function can be defined in many different ways, but a common one is MSE (mean

squared error). Among different parts in training, the backward pass has the most

computations and consumes about 70% of the time during training 1.2. In this

study we focus on reducing the computations in the backward pass.

The goal of supervised training is to get to a point where the predicted label

(output of the network) is the same as the training label. In order to get there, the

amount of loss (L) needs to be minimized. In other words, the goal of training

is to find out which weights most directly contributed to the loss (or error) of the

network. This is the mathematical equivalent of a ∂L
∂w where w are the weights at

a particular layer. We perform a backward pass through the network to determine

which weights contributed most to the loss and finding ways to adjust them so

that the loss decreases. Once this derivative is computed, the weight gets updated

accordingly. The learning rate (η) is a parameter that is chosen by the programmer.

A high learning rate means that bigger steps are taken in the weight updates, and

thus, it may take less time for the model to converge on an optimal set of weights

14

(2.1).

wi+1 = wi−η× ∂L
∂wi

(2.1)

2.3.1 Training Convolutions and Notation

In this section we explain the notation we use in the forward and backward pass

convolutions. As we know in CNNs, convolution is the predominant operation in

the forward and backward pass. The output of the lth layer in the CNNs’ forward-

propagation is obtained by:

yl+1 = wl⊗al (2.2)

Where al and wl denote activations and weights at layer l, respectively, and ⊗ is

the convolution operation. In back-propagation the lth layer receives the output

gradient of the l +1th layer. The output gradient is the gradient of the loss (L)

with respect to the layer’s output (∂L
∂yl+1

). The output gradient is used to compute

the gradient of input activation (∂L
∂al

) and the gradient of weights (∂L
∂wl

). The back-

propagation convolutions for calculating gradient of inputs and weights at the lth

layer can be defined as [49]:

∂L
∂al

=
∂L

∂yl+1
⊗wt

l (2.3)

∂L
∂wl

=
∂L

∂yl+1
⊗at

l (2.4)

2.3.2 Mini-batch Training

Mini-batch gradient descent is a variation of the gradient descent algorithm that

splits the training dataset into small batches that are used to calculate model error

and update model coefficients. Therefore, mini-batch training applies the needed

forward and backward pass calculations and updates the model parameters at each

iteration (mini-batch) [11, 27, 50].

15

2.3.3 Momentum

A very popular technique that is used along with SGD is called Momentum [91].

Instead of using only the gradient of the current step to guide the search, momen-

tum also accumulates the gradient of the past steps to determine the direction to

go. The equations of gradient descent are revised as follows.

zk+1 = β zk +∇ f
(

wk
)

wk+1 = wk−αzk+1
(2.5)

The first equations has two parts. The first term is the gradient that is retained

from previous iterations. This retained gradient is multiplied by a value called

“Coefficient of Momentum” (β) which is the percentage of the gradient retained

every iteration. The change is innocent, and costs almost nothing. When β = 0,

we recover gradient descent. But for β = 0.99, this appears to be the boost the

network needs.

2.4 Sparse Convolution

As we described, the convolutional neural network (CNN) technique is built around

the sharing of weights. It is influenced by the structural architecture of the human

visual system. CNNs are based on ideas that utilize local connectivity between neu-

rons and hierarchically organized transformation of the input. Nodes form groups

of d-dimensional arrays known as feature maps. Each node in a given map receives

inputs from a certain window area of the previous layer, which is referred to as its

receptive field. The convolution operation results in a much sparser NN than the

MLP.

Although CNN has fewer computations compared to MLP, it still has an exten-

sive amount of computations. Thus, there are many different methods that sparsify

the inputs and/or weights to make computations less on CNNs. In sparse CNN, due

to the sparsity of the tensors, the multiplications in which one of the operands or

both of them are zeros can be skipped. Many of the initial works on neural network

focus on removing unimportant connections by sparsifying the weights (pruning).

16

2.4.1 Sparse Hardware Acceleretors

Recent works have examined how to support the processing of sparse weights and

inputs in hardware efficiently. A variety of dedicated hardware accelerators for

sparse matrix multiplication have been proposed. Most of the studies designed

a parallel architecture comprising multiple processing elements using different

dataflows and compression methods.

The DNN dataflow in the recent accelerators can be categorized based on the

data handling characteristics:

1) Weight stationary: The weight stationary dataflow is designed to minimize

the energy consumption of reading weights by maximizing the accesses of weights

from the register file at the PE (processing element).

2) Input stationary: The input stationary dataflow is designed to minimize the

energy consumption of reading inputs to PEs.

3) Row stationary: The row stationary dataflow assigns the processing of a 1-D

row convolution into each PE for processing. It keeps the row of filter weights

stationary inside the register file of the PE and then streams the input activations

into the PE.

4) No local reuse (NLR): While small register files are efficient in terms of

energy (pJ/bit), they are inefficient in terms of area. In order to maximize the

storage capacity, and minimize the off-chip memory bandwidth, no local storage

is allocated to the PE and instead all that area is allocated to the global buffer to

increase its capacity.

SCNN accelerator, which is our focus in this study, supports the processing of

convolutional layers in a compressed format. It uses a stationary input dataflow to

deliver the compressed weights and activations to a multiplier array. We explain

SCNN in detail in Section 6.3.

17

Chapter 3

Related Work

We categorize the related work into four different groups. First, we will discuss

the pruning methods, which result in sparse networks. Second, we cover existing

sparse training methods. Third, we talk about the reusing of gradients in prior

training algorithms. Finally, we explain the hardware accelerators designed for

sparse CNNs.

3.1 Dense to Sparse Networks by Weight Pruning

Creating sparse networks by eliminating the weights has an extensive history. Le-

Cun et al [48]; Karnin [43]; Hassibi and Stork [31] present the early work of net-

work pruning using second-order derivatives as the pruning criterion. Han et al [28]

propose parameter magnitude as the pruning criterion and introduced the pipeline

with three stages. These three stages are: 1) train a large, over-parameterized model

(sometimes there are pretrained models available), 2) prune the trained large model

according to a certain criterion, and 3) fine-tune the pruned model to regain the lost

performance. The process of pruning and fine-tuning is often iterated several times,

gradually reducing the network’s size. Many papers propose slight variations of

this algorithm. For example, some papers prune periodically during training [25]

or even at initialization [52]. Others modify the network to explicitly include ad-

ditional parameters that encourage sparsity and serve as a basis for the pruning

criterion after training [67].

18

Pruning methods vary primarily in their choices regarding sparsity structure,

pruning criterion, scheduling (when to prune), and fine-tuning.

3.1.1 Structure

Some methods prune individual parameters (unstructured pruning). Doing so pro-

duces a sparse neural network, which, although smaller in terms of parameter

count, may not gain speedups using current available libraries and hardware. Other

methods consider parameters in groups (structured pruning), removing entire neu-

rons, filters, or channels to exploit hardware and software optimized for dense

computation [33, 53].

3.1.2 Prunning Criterion

It is common to score parameters based on their absolute values, trained importance

coefficients, or contributions to network activations or gradients. Some pruning

methods compare scores locally, pruning a fraction of the parameters with the low-

est scores within each structural subcomponent of the network (e.g., layers) [29].

Others consider scores globally, comparing scores to one another irrespective of the

part of the network in which the parameter resides [24, 51]. In the same context,

Structured Sparsity Learning (SSL) added group sparsity regularization to penalize

unimportant parameters by removing some weights [95]. Li et al [53] proposed a

one-shot channel pruning method using the L1 norm of weights for filter selec-

tion, provided that those channels with smaller weights always produce weaker

activations. Recently, channel pruning alternatively used LASSO regression based

channel selection and feature map reconstruction to prune filters [33]. Anwar et

al [7]performes structured pruning in convolutional layers by considering strided

sparsity of feature maps and kernels to avoid the need for custom hardware and

uses particle filters to decide the importance of connections and paths. In contrast

to previous pruning studies for deep deterministic models, Zahng et al [?]roposed

a pruning approach for deep probabilistic models by using the mask of the weights.

19

3.1.3 Scheduling

Pruning methods differ in the amount of the network to prune at each step. Some

methods prune all desired weights at once in a single step [57]. Others prune a

fixed fraction of the network iteratively over several steps [29] or vary the rate of

pruning according to a more complex function [25].

3.1.4 Fine-tuning

For methods that involve fine-tuning, it is most common to continue to train the

network using the trained weights from before pruning. Alternative proposals in-

clude rewinding the network to an earlier state [24] and reinitializing the network

entirely [57].

All the methods described in this section focus on gaining higher performance

and/or accuracy at inference. These methods often involve a re-training phase,

which, contrary to our motivation, increases training time.

3.2 Sparse Training

More recent studies try to find the sparse network during training through a prune,

redistribute, and regrowth cycle. Mainly this group of studies prunes the network

during training by adding more computation overhead to the training. The principal

goal of most of them is to gain a higher accuracy using their pruned network for the

inference. Bellec et al [9]; Mocanu et al [65]; Mostafa and Wang et al [69] propose

different regrowth methods for sparsifying the networks through training. Dettmers

et al [21] present faster training by sparse momentum, which uses the exponentially

smoothed gradients as the criterion for pruning and regrowth weights. A different

approach to accelerate training is sparsifying activations. Liu et al [54] introduces

a dynamic sparse graph (DSG) structure, which activates only a small amount of

neurons at each iteration via a dimension-reduction and accelerates forward and

backward passes.

Methods that maintain sparse gradients throughout training are most closely re-

lated to our work. Sun et al [90] and Wei et al [94] introduce meProp, an algorithm

which targets computation reduction in training by sparsifying gradients. Meprop

20

computes an approximate gradient by keeping top-k values of the backward output

gradient and masking the remaining values to 0. The forward propagation is com-

puted as usual. However, during back-propagation, only a small subset of the full

gradient is computed to update the model parameters. Thus, by using meProp algo-

rithm, the backward pass convolutions explained in Section 2.3.1 can be redefined

as follows:
∂L
∂al

= Topk(
∂L

∂yl+1
)⊗wt

l (3.1)

∂L
∂wl

= Topk(
∂L

∂yl+1
)⊗at

l (3.2)

Both of the above equations are sparse calculations due to the sparsity of output

gradients. The amount of computation reduction and training speedup depends

on the sparsity percentage of output gradients. The authors demonstrate meProp

convergence while training a network with two convolutional layers on the MNIST

dataset at 95% gradient sparsity. However, they do not analyze larger datasets and

deeper networks.

Golub et al [26] proposed Dropout which restricts randomly selected gradient

updates during each training iteration and limits the set of weights that can be

updated throughout the entire training process. This work decreases the number of

weights that must be stored during the training process, but it does not make the

training computations sparse.

3.3 Low precision neural network

Reducing data precision or quantization is another viable way to improve the com-

puting efficiency of DNN accelerators. The recent TensorRT results show that the

widely used NN models, including AlexNet, VGG, and ResNet, can be quantized

to 8 bit without inference accuracy loss. However, it is difficult for such a unified

quantization strategy to retain the network’s accuracy when further lower precision

is adopted. Many complex quantization schemes have been proposed, however,

significantly increasing the hardware overhead of the quantization encoder/decoder

and the workload scheduler in the accelerator design. There are many studies that

tried to minimize the hardware overhead while reducing the computation and mem-

21

ory footprint. For example, one of the recent methods called Gist [38] reduces the

memory footprint by encoding schemes of inputs through training, and it has just

4% performance overhead.

Our work focuses on accelerating training by sparsifying the training compu-

tation, and quantization and low periciosn methods are beyond the scope of our

study.

3.4 Reusing Gradient

Full gradient ascent [12] with a constant step size achieves a linear convergence

rate in the number T of iterations (i.e., parameter updates) [71]. However, each

iteration requires N gradient computations, which can be too expensive for large

values of N.

Stochastic Gradient (SG) ascent [11] overcomes this problem by sampling a

single sample xi per iteration, but a vanishing step size is required to control the

variance introduced by sampling. Starting from SAG, a series of variations to SG

have been proposed to achieve a better trade-off between convergence speed and

cost per iteration, they called stochastic variance reduction (SVR) methods. SAG

[80], SVRG [40], SAGA [19], Finito [20], and MISO [63] all are SVR methods

proposed for smooth strongly-convex optimization problems. The common idea of

these methods is to reuse past gradient computations to reduce the variance of the

current estimate.

We breifly explain the most common SVR algorithms in more details. Both

SAGA and SAG can be derived from a variance reduction viewpoint: here X is

the SGD direction sample f ′j
(
xk
)
, whereas Y is a past stored gradient f ′j

(
φ k

j

)
. In

Eqs. 3.3, 3.4 and 3.5 you can see the differences between resuing methodologies.

SAG is obtained by using α = 1/n (notation used in Eq. 3.3) whereas SAGA is the

unbiased version with α = 1 (Eq. 3.4). For the same φ ’s, the variance of the SAG

update is 1/n2 times the one of SAGA, but at the expense of having a non-zero

bias.

22

(SAG) xk+1 = xk− γ

 f ′j
(
xk
)
− f ′j

(
φ k

j

)
n

+
1
n

n

∑
i=1

f ′i
(

φ
k
i

) (3.3)

[19].

(SAGA) xk+1 = xk− γ

[
f ′j
(

xk
)
− f ′j

(
φ

k
j

)
+

1
n

n

∑
i=1

f ′i
(

φ
k
i

)]
(3.4)

[19].

(SVRG) xk+1 = xk− γ

[
f ′j
(

xk
)
− f ′j(x̃)+

1
n

n

∑
i=1

f ′i (x̃)

]
(3.5)

[19].

The SVRG update (Eq. 3.5) is obtained by using Y = f ′j(x̃) with α = 1. The

vector x̃ is not updated every step, but rather the loop over k appears inside an outer

loop, where x̃ is updated at the start of each outer iteration. Essentially SAGA is

at the midpoint between SVRG and SAG; it updates the φ j value each time index

j is picked, whereas SVRG updates all of φ ’s as a batch. The usage of SAG vs.

SVRG is problem dependent. For example for linear predictors where gradients

can be stored as a reduced vector of dimension p− 1 for p classes, SAGA is pre-

ferred over SVRG both theoretically and in practice. For neural networks, where

no theory is available for either method, the storage of gradients is generally more

expensive than the additional backpropagations, but this is computer architecture

dependent. Also having to tune one parameter instead of two is a practical advan-

tage for SAGA.

Recent works explore the extension of SVR approaches to general non-convex

problems [3, 79]. However, the faster theoretical convergence rate of the SVR

methods is not a guarantee of better empirical performance in deep neural networks

[18].

ReSprop reuses gradients in a different way than SVR. ReSprop reuses gra-

23

dients between successive mini-batches to sparsify back-propagation calculations.

The goal of ReSprop is reducing computation, not variance. We show that our

method reaches state-of-the-art accuracy with minimal loss while having 10× com-

putation reduction in back-propagation for different network architectures with

varying widths and depths.

3.5 Hardware Accelerators for Deep Neural Networks

In the early stage of DNN accelerator design, accelerators were designed for the

acceleration of approximate programs in general-purpose processing [23], or for

small Neural Networks (NNs) [56]. Although the functionality and performance

of on-chip accelerators were very limited, they revealed the basic idea of AI-

specialized chips. Because of the limitations of general-purpose processing chips,

it is of necessity to design specialized chips for AI/DNN applications.

On-chip accelerators:

The neural processing unit (NPU) [23] is designed to use hardwarelized on-

chip NNs to accelerate a segment of a program instead of running all parts on

a CPU. The hardware design of the NPU is quite simple. An NPU consists of

eight processing engines (PEs). Each PE performs the computation of a neuron;

that is, multiplication, accumulation, and sigmoid. Thus, what the NPU performs

is the computation of a multiple layer perceptron (MLP) NN. The idea of using

the hardwarelized MLP (NPU) to accelerate some program segments was very

inspiring. If a program segment is frequently executed and approximable, and if

the inputs and outputs are well defined, then that segment can be accelerated by the

NPU. To execute a program on the NPU, programmers need to manually annotate a

program segment that satisfies the above three conditions. Next, the compiler will

compile the program segment into NPU instructions, and the computation tasks

are off-loaded from the CPU to the NPU at runtime. Sobel edge detection and fast

Fourier transform (FFT) are two examples of such program segments. The idea of

the NPU was the inspiration for many of the later studies.

Stand-alone DNN/convolutional neural network accelerator:
For broadly used DNN and CNN applications, stand-alone domain-specific ac-

celerators have achieved great success in both cloud and edge scenarios. Compared

24

with general-purpose CPUs and GPUs, these custom architectures offer better per-

formance and higher energy efficiency. Custom architectures usually require a deep

understanding of the target workloads. The dataflow (or data reuse pattern) is care-

fully analyzed and utilized in the design to reduce the off-chip memory access and

improve the system efficiency. The DianNao series [14] and the tensor processing

unit (TPU) [41], which are academic and industrial examples, respectively, are the

two most popular stand-alone accelerators which we discuss more in details.

The DianNao series includes multiple accelerators with different features. Di-

anNao is the first design of the series. It is composed of the following components:

(1) A computational block neural functional unit (NFU), which performs computa-

tions; (2) An input buffer for input neurons (NBin); (3) An output buffer for output

neurons (NBout); (4) A synapse buffer for synaptic weights (SB); (5) A control

processor (CP). The NFU, which includes multipliers, adder trees, and nonlinear

functional units, is designed as a pipeline. Rather than a normal cache, a scratch-

pad memory is used as on-chip storage because it can be controlled by the compiler

and can easily explore the data locality. While efficient computing units are impor-

tant for a DNN accelerator, inefficient memory transfers can also affect the system

throughput and energy efficiency. The DianNao series introduces a special design

to minimize memory transfer latency and enhance system efficiency.

On top of the stand-alone accelerators, a domain-specific instruction set archi-

tecture (ISA), called Cambricon [55], was proposed to support a broad range of NN

applications. Cambricon is a load-store architecture that integrates scalar, vector,

matrix, logical, data transfer, and control instructions. The ISA design considers

data parallelism, customized vector/matrix instructions, and the use of scratchpad

memory. The successors of the Cambricon series introduce support to sparse NNs.

Highlighted with a systolic array, Google published its first TPU paper (tpu1)

in 2017. tpu1 focuses on inference tasks and has been deployed in Google’s data

center since 2015. The structure of the systolic array can be regarded as a special-

ized weight-stationary dataflow.

A DNN/CNN generally requires a large memory footprint. For large and com-

plicated DNN/CNN models, it is unlikely that the whole model can be mapped onto

the chip. Due to the limited off-chip bandwidth, it is of vital importance to increase

on-chip data reuse and reduce the off-chip data transfer in order to improve com-

25

puting efficiency. During architecture design, dataflow analysis is performed, and

special consideration needs to be taken. Eyeriss accelerator [15] explored different

NN dataflows, including input-stationary, output-stationary, weight-stationary, and

no-local-reuse dataflows, in the context of a spatial architecture and proposed the

row-stationary (RS) dataflow to enhance data reuse.

The efficiency of DNN accelerators can also be improved by applying efficient

NN structures. saprsifying the network, for example, makes the model small yet

sparse, thus reducing the off-chip memory access. The NN quantization allows

the model to operate in a low-precision mode, thus reducing the required storage

capacity and computational cost.

3.5.1 Hardware Accelerator for Sparse Networks

As we discussed previous work shown that a large proportion of NN connections

can be pruned to zero with or without minimum accuracy loss. Moreover, some

of the activations are zero due to the Relu function. Thus, many corresponding

computing architectures have also been proposed to exploit this sparsity. In par-

ticular, these works employ Run Length Encoding (RLE) to compress the inputs

or the kernels. The RLE not only compresses the data but also allows to enhance

the throughput by skipping the multiplications of the encoded data. While this ap-

proach seems appealing, combining the sparsity exploitation with other techniques

(i.e. tiling, layer merging, etc. explained later in this section) makes efficient data

flow management (and tiling) a non-trivial problem. Therefore, the existing ar-

chitectures only exploit partial sparsity. Eyeriss [15], EIE [30], Cnvlutin [1], and

Laconic [83] are some of the most well-known works that sought to remove multi-

plications by zero-valued activations and/or weights.

The authors of Cnvlutin achieved this by computing only non-zero inputs and

using an “offset” buffer, alongside the input buffer, to store the indices of each

input’s corresponding weights after zero-skipping. A hardware controller fills the

offset buffer on the fly such that it does not consume extra bandwidth. To further in-

crease acceleration, Cnvlutin prunes near-zero outputs during inference to increase

the sparsity of the next layer’s input buffer. Eyeriss, EIE, and Laconic’s authors

achieved benefits from pruning using similar strategies to those employed by Cn-

26

vlutin’s. EIE compresses and enhances the throughput only for the classification

layers. It targets sparsity in both filters and feature maps only in fully-connected

layers. Eyeriss exploits sparsity of all the layers, however, it cannot enhance the

throughput (by skipping redundant computations), and it compresses only the in-

puts.

However, the special data format and extra encoder/decoder adopted in these

designs introduce additional hardware costs. Some works discuss how to de-

sign NN models in a hardware-friendly way, such as by using block sparsity.

Techniques that can handle irregular memory access and an unbalanced work-

load in sparse NN have also been proposed. For example, Cambricon-X [97] and

Cambricon-S [99]address the memory access irregularity in sparse NNs through a

cooperative software/hardware approach. Cambricon-X first marks non-zero neu-

rons one by one, filters out zero-valued neurons, and then sends the neurons to

the computational units for processing and eliminates unnecessary computation

and weight storage. CNV [1] proposed a new data structure format for storing the

inputs and outputs that enables the seamless elimination of most zero operand mul-

tiplications. The CNV storage format enables it to move the decisions on which

computations to eliminate off the critical path. ReCom [39] proposes a ReRAM-

based sparse NN accelerator based on structural weight/activation compression.

Some other studies like Bit-pragmatic [2] skip zero-valued bits. Bit-pragmatic

exploits activation sparsity in forward pass. In this work, they propose Pragmatic

(PRA), a massively data-parallel architecture that eliminates most of the ineffectual

computations on-the-fly. The idea behind it is using serial-parallel shift-and-add

multiplication while skipping the zero bits of the serial input.

Thus, many previous works have studied accelerating the sparse convolution

during forward propagation, and they focused on different data flows and compres-

sion methods during inference. However, none of them focus on an accelerator for

sparse back-propagation convolutions.

The Sparse CNN (SCNN) accelerator [72] improves performance and energy

efficiency by exploiting the zero-valued weights and activations during inference

(forward pass). In order to evaluate ReSprop on a custom hardware accelerator, we

propose an accelerator based on SCNN. Our accelerator (GSCN) can be used for

both sparse forward and backward pass convolutions.

27

Chapter 4

Gradient Reuse

In this section, we explain our idea of reusing gradients and the insights behind

it. First, we explain CNN convolutions and summarize the notation we will use

throughout the remainder of this thesis. Then, we elaborate our hypothesis about

gradients undergoing minor changes between consecutive iterations and propose

a reuse strategy. Following this argument, we discuss our experiment designed

to evaluate our resue strategy. Finally, we end this chapter with a more detailed

comparison between our work and the most related prior work, meProp [90].

4.1 Preliminaries

In Section 2.3.1 we explained the convolutions calculated in training. In summary,

the output of the lth layer in the CNNs’ forward-propagation (Eq. 4.1), and the

back-propagation convolutions for calculating gradient of inputs (Eq. 4.2) and

weights (Eq. 4.3) at the lth layer is defined as follows (we use same notation as in

Section 2.3.1):

yl+1 = wl⊗al (4.1)
∂L
∂al

=
∂L

∂yl+1
⊗wt

l (4.2)
∂L
∂wl

=
∂L

∂yl+1
⊗at

l (4.3)

In this study, mini-batch training allows us to leverage the correlation among

output gradient components of consecutive iterations and facilitates reusing the

28

output gradient components. We use the term “gradients” to refer to individual

components of the gradient vector throughout this study.

4.2 Approach and Key Insight

Our approach to accelerate CNN training is to modify back-propagation convo-

lutions. The output gradient vector and in turn the vectors dependant on it (Eq.

4.2 and 4.3) are updated in the backward pass. In essence, ReSprop precalculates

a portion of the output gradient vector, and this, in turn, enables precomputing a

portion of the backpropagated values.

We conjectured that there are a large number of similar features between train-

ing samples, and this motivated us to explore reusing the output gradients among

mini-batches. We focus on the feasibility of reusing a subset of the output gradients

between consecutive iterations and measure the inter-iteration similarity of output

gradients. We propose a reuse strategy to leverage precalculated output gradients

from the previous iteration while performing computation only for significantly

changed output gradients in the current iteration (mini-batch). We define our reuse

strategy as follows: If a component of an output gradient compared to its previous

iteration changes more than an adaptive threshold then we use the current (ith) iter-

ation value; otherwise, we reuse the value of the previous iteration. We introduce a

vector we call the hybrid output gradient (HG). We define HG such that it contains

x% of the previous iteration’s gradients and (100− x)% of the current iteration’s

gradients. Here, x% is called the reuse percentage. The HG for layer l at iteration

i is defined as:

(HGl)i = (
∂L

∂yl+1
)i−1 +T hl[(

∂L
∂yl+1

)i− (
∂L

∂yl+1
)i−1] (4.4)

We use the notation (al)i to denote the value of vector a at layer l and iteration

i. Each layer has its own adaptively adjusted threshold (Tl), which satisfies the

reuse percentage. The function T hl(V), where T h stands for “Threshold”, at layer

29

l applied to output gradient vector V is defined as:

∀vi ∈V : ui =

vi |vi|> Tl

0 |vi| ≤ Tl

(4.5)

where ui represents the elements of output vector T hl(V) and Tl is a per layer

adaptive threshold. In Section 5.1, we explain how to use (HGl)i to sparsify back

propagation using ReSprop.

In Section 4.3, we empirically show that HGl is a good approximation to the

original output gradient (∂L
∂yl+1

), and that it is feasible to train the network with the

HG vector. To study the correlation between HG and the original output gradient,

we investigate the angle preservation using cosine similarity.

4.3 Angle Preservation and comparison with meProp

To study the correlation between HG and the original output gradient, we inves-

tigate the angle preservation property of the HG vector. We calculate the cosine

similarity between HG and the original output gradient to measure the angle be-

tween these vectors. According to hyperdimensional computing theory [42], two

independent isotropic vectors picked randomly from a high dimensional space d,

are approximately orthogonal. If there is no correlation between the HG vector and

the original output gradient, they would make an angle of approximately 90◦. On

the other hand, Anderson et al[6] show that binarizing a random vector in high di-

mensional space d (d→ ∞), preserves the vector direction with minimal changes,

and a random vector and its binarized version form an angle of around 37◦. Accord-

ing to Anderson et al.’s observations, in a high dimensional space 37◦ is a relatively

small angle between two vectors, so that both vectors have similar directions.

Figure 4.1 demonstrates the angle between the original output gradient vector

and both the HG vector (dark green bar) and meProp gradient (light blue bar). As

shown at 1 , the angle between output gradient vectors of consecutive iterations

is close to 90◦. This indicates that successive output gradients are approximately

orthogonal. However, we observe that reusing a subset of output gradient in con-

secutive iterations, via HG reuse strategy, reduces the angle between the original

30

0

20

40

60

80

100

30% 50% 60% 70% 80% 90% 100%

A
n

gl
e

Sparsity percentage (meProp) / Reuse percentage (HG)

θ=<HG,Original grad> θ=<meProp,Original grad>

θ=90° θ=37°

1

Figure 4.1: HG and meProp angles for different reuse percentages and spar-
sities, respectively. The angle is calculated by finding the average angle
of all layers while training ResNet-18 on CIFAR-10 for 100 iterations
(batch size=128).

Reuse HG Val Acc Sparsity meProp Val Acc
50% 84.21±0.09 50% 84.14±0.08
60% 84.11±0.06 60% 64.29±0.07
70% 83.87±0.10 70% 50.65±0.13
80% 78.40±0.14 80% 41.67±0.25
90% 73.14±0.17 90% 23.67±0.23

Table 4.1: Validation accuracy of meProp and reuse strategy (HG) with dif-
ferent sparsities and reuse percentages, repectively. Training ResNet-18
on CIFAR-10 for 30 epochs (batch size = 128, lr = 0.1 and optimizer =
SGD).

output gradients and the HG vector to less than 37◦. We compare this strategy with

meProp [90] by studying the angle preservation property and the validation accu-

racy of these algorithms. The meProp algorithm sets output gradients not ranked

in the Top-K by magnitude to zero and calculates Eq. 4.3 and 4.2 with the sparse

output gradient. Figure 4.1 shows the angle between the original output gradient

and meProp. Since cosine similarity is undefined for a zero vector, the angle for

100% sparse meProp is not presented. We can see HG preserves the original out-

put gradient direction far better than meProp’s sparse output gradient. Table 4.1

31

further verifies the network convergence while reusing gradients. This table shows

the validation accuracy of reusing output gradients with small magnitude change

(HG Val Acc) compared to setting small magnitude gradients to zero (meProp Val

Acc). MeProp has considerably less validation accuracy versus HG after 30 epochs

of training. The gap between HG and meProp validation accuracy is more pro-

nounced at higher sparsity percentages. Further, Table 5.1 shows the accuracy of

ReSprop (using HG) improves further after 200 epochs of training CIFAR-10.

32

Chapter 5

ReSprop Algorithm

5.1 ReSprop: Reuse-Sparse-Backprop

This section describes ReSprop, an efficient back-propagation algorithm, which

we developed to exploit the reusability of gradients. We reformulate the back-

propagation convolutions based on the HG vector, which leads to sparse convolu-

tions and a training speedup. The HG vector in Eq. 4.4 at iteration i can be split

into two separated parts: One, ReHG (“Reused HG”) the output gradient of the pre-

vious iteration (∂L
∂yl+1

)i−1 and is computed and stored before the current iteration;

two, SpHG (“Sparse HG”) the result of T h[(∂L
∂yl+1

)i− (∂L
∂yl+1

)i−1]. SpHG is sparse

due to the threshold function. Using these definitions Eq. 4.4 can be rewritten as

follows:

(HGl)i = (ReHGl)i +(SpHGl)i (5.1)

By replacing the output gradient in Eq. 4.3 and 4.2 with the HG vector defined in

Eq. 5.1 the back-propagation convolutions can be rewritten as:

(
∂L
∂wl

)i = ((ReHGl)i⊗ (at
l)i)︸ ︷︷ ︸

1 Pre∇wl

+((SpHGl)i⊗ (at
l)i)︸ ︷︷ ︸

2 Sparse∇wl

(5.2)

(
∂L
∂al

)i = ((ReHGl)i⊗ (wt
l)i)︸ ︷︷ ︸

1 Pre∇al

+((SpHGl)i⊗ (wt
l)i)︸ ︷︷ ︸

2 Sparse∇al

(5.3)

33

Algorithm 1 ReSprop forward pass for lth convolutional layer at iteration i.

1: for l = 1 to Layers do
2: Receive: random sample (∂L

∂yl+1
)i−1

3: (yl+1)i = (wl)i⊗ (al)i

4: (pre∇wl)i = (random (∂L
∂yl+1

)i−1)⊗Avg(at
l)i

5: (pre∇al)i = (wt
l)i⊗ (random(∂L

∂yl+1
)i−1)

6: end for

Using ReHG+ SpHG in the back-propagation convolutions as shown in Eq.

5.2 and 5.3 allows us to break calculations into two parts labeled 1 and 2 . Part 1

represents the precomputed portion and can be calculated in parallel with forward-

propagation, before the current iteration’s backward-propagation starts and part

2 is where computation is saved using sparse convolution due to the sparsity of

SpHG. We name the above algorithm ReSprop. We call the process for calculating

part 1 pre-ReSprop (Alg. 1) and the process for calculating part 2 back-ReSprop

(Alg. 2). Varying reuse percentage leads to different levels of sparsity in back-

ReSprop. Thus, we name the sparsity generated by our algorithm reuse-sparsity

(RS). As shown in Alg. 2 (lines 5 and 7), in ReSprop the back-propagation con-

volutions are sparse, and RS percentage is the main factor that defines the amount

of computation reduction. In Section 7.1, we analyze the accuracy of ReSprop and

show that at 90% RS, it loses negligible (less than 1.1%) accuracy for different

datasets and has higher accuracy compared to DSG and meProp sparse training

algorithms.

5.1.1 Stochastic Output Gradient

Storing the output gradients for an entire mini-batch at each iteration as implied by

Eq. 4.4 to 5.3 creates a substantial memory overheads. We define full mode Re-

sprop as a variant of ReSprop in which we store the output gradient for all samples

in a minibatch. A simple approach for reducing the memory overheads and de-

creasing the computation in pre-ReSprop is to use the average output gradients of

the previous mini-batch. We call this variant average mode ReSprop. In average

mode, we add the extra step of computing average of gradients over the mini-batch.

34

(al)i

Layer
parameters

Pre-ReSprop

Forward convolution
(Yl+1)i

Save parameters for backward pass

Th
re

sh
o

ld() 𝜕L
 𝜕wl i
 𝜕L
 𝜕wl i
() 𝜕L
 𝜕wl i

() 𝜕L
 𝜕al

i
 𝜕L
 𝜕al

i() 𝜕L
 𝜕al

i

(P
re

 ∇
w

l)
i

(P
re

 ∇
a l

) i

(sparse ∇wl)i

(sparse ∇al)i

Rand() 𝜕L
𝜕yl+1

i-1
 𝜕L
𝜕yl+1

i-1Rand() 𝜕L
𝜕yl+1

i-1

(wl)i

(al)i (wl)i

-
+

+

B
ac

k-
R

eS
p

ro
p

(s

pa
rs

e
co

n
v)

Forward pass

Backward pass
f

∇
f

(al+1)i

La
ye

r
L-

1

La
ye

r
L+

1

Layer L

() 𝜕L

𝜕al+1
i

 𝜕L

𝜕al+1
i() 𝜕L

𝜕al+1
i() 𝜕L 𝜕L

𝜕yl+1
i

𝜕yl+1
i

 𝜕L

𝜕yl+1
i

Rand() 𝜕L
𝜕yl+1

i-1
 𝜕L
𝜕yl+1

i-1
Rand() 𝜕L

𝜕yl+1
i-1

Figure 5.1: Training with ReSprop for layer l at iteration i.

To avoid the extra step of averaging, stochastic sampling of the previous iteration’s

output gradient can be used in the ReSprop algorithm. We call this variant stochas-
tic mode ReSprop. Our results indicate that using stochastic sampling of the output

gradient does not decrease the accuracy of ReSprop compared to average or full

mode. Table 5.1 shows the validation accuracy results for training ResNet-18 with

CIFAR-10 using full, average, and stochastic mode variants of ReSprop after 200

epochs. Storing and using the output gradient vector of a random sample at each

iteration significantly reduces the computation and memory cost of the ResProp.

Below we use ReSprop as a shorthand for stochastic mode ReSprop.

Algorithms 1 and 2 show the forward and backward pass calculations, respec-

tively, for ReSprop. The convolutions needed for computing pre∇a and pre∇w

in the full mode are shown respectively in Figure 5.2a and 5.2c. We decrease the

memory and computation overheads needed for convolutions in pre-ReSprop by

35

Algorithm 2 ReSprop backward pass for lth convolutional layer at iteration i.

1: for l = Layers to 1 do
2: Receive:(∂L

∂yl
)i, random sample (∂L

∂yl+1
)i−1

3: Calculate (SpHGl)i

4: Receive: (pre∇wl)i from forward pass

5: (∂L
∂wl

)i = (pre∇wl)i +(SpHGi,l⊗ (at
l)i)

6: Receive: (pre∇al)i from forward pass

7: (∂L
∂al

)i = (pre∇al)i +((wt
l)i⊗ (SpHGl)i)

8: Update (wl)i with (∂L
∂wl

)i

9: Send (∂L
∂al

)i to previous layer
10: end for

RS Full (HG) Avg Stochastic
50% 94.54±0.04 94.71±0.06 94.69±0.04
60% 94.38±0.08 94.58±0.03 94.66±0.07
70% 94.36±0.03 94.52±0.04 94.53±0.09
80% 93.18±0.16 93.28±0.12 93.51±0.12
90% 91.10±0.11 91.82±0.07 91.43±0.11

Baseline: 94.42±0.08

Table 5.1: Validation accuracy of full, average and stochastic ReSprop for
ResNet-18 on the CIFAR-10 dataset for 200 epochs (batch size = 128, lr
= 0.1, optimizer = SGD, avg of 3 runs).

a factor of mini-batch size when we use stochastic or average mode. The con-

volutions for stochastic mode is shown in Figure 5.2b and 5.2d. For computing

pre∇a in Figure 5.2b, one random output gradient (K×H×W) out of N samples

is chosen and convolved with weights, producing one sample pre∇a, which then

is replicated N times for all the N samples. Similarly, for computing pre∇w in

Figure 5.2d, a random output gradient (K×H ×W) out of N samples is chosen

and reshaped into the desired shape (K× 1×H ×W). Since in stochastic mode,

we use the output gradient of a random sample, the output gradient is the same

for all the convolutions for computing pre∇w. Thus, due to the distributive prop-

erty of convolutions, instead of convolving a random sample with all N inputs, we

36

weight

C

N
 (

sa
m

p
le

s)

N
 (

sa
m

p
le

s)

=

(
 𝜕L

 𝜕yl+1

 𝜕L
 𝜕yl+1

)i-1(
 𝜕L

 𝜕yl+1
)i-1 (Pre ∇al)i

(a) Compute pre∇a in full mode

=

(
 𝜕L

 𝜕yl+1

 𝜕L
 𝜕yl+1

)i-1(
 𝜕L

 𝜕yl+1
)i-1

weight

C

(Pre ∇al)i
Random

(b) Compute pre∇a in stochastic mode

C =

N
 (

sa
m

p
le

s)

(
 𝜕L

 𝜕yl+1

 𝜕L
 𝜕yl+1

)i-1(
 𝜕L

 𝜕yl+1
)i-1 (Pre ∇wl)iInput

K

(c) Compute pre∇w in full mode

kC =K

(
 𝜕L

 𝜕yl+1

 𝜕L
 𝜕yl+1

)i-1(
 𝜕L

 𝜕yl+1
)i-1

(Pre ∇wl)i
Average of

N Inputs

Random

Avg

Avg

(d) Compute pre∇w in stochastic mode

Figure 5.2: Back-propagation convolutions in stochastic mode compared to
full mode for layer l at iteration i.

can average the inputs and then convolve the average input with a random gradient

sample as shown in Eq.5.4 for layer l and visulized in Figure 5.2d.

(pre∇wl)i = (random (
∂L

∂yl+1
)i−1)⊗Avg(at

l)i (5.4)

Figure 5.1 demonstrates the computation flow of ReSprop for the forward and

backward pass. The Back-ReSprop box in the figure represents backward convo-

lutions which are sparse (lines 5 and 7 in Alg. 2). The computation overhead of

ReSprop for the forward pass computations (pre-ReSprop) is shown in Figure 7.2;

this overhead is less than 2% for batch sizes larger than 128.

5.1.2 Warm Up

Narang et al [70] and Zhu et al [100] show that gradually increasing the spar-

sity percentage as training proceeds results in less drop in the model’s final ac-

curacy compared to maintaining a constant rate of sparsity during training. We

apply the same approach and gradually increase the reuse-sparsity until reaching

a targeted rate of reuse-sparsity. We call this approach warm up ReSprop (W-

37

ReSprop). In W-ResProp, we increase the sparsity percentage linearly in the first

m (m� number o f epochs) epochs until we get to the targeted reuse-sparsity. W-

ReSprop helps the model adapt to gradient reuse, and it noticeably increases the

network accuracy at high reuse-sparsities compared to base ReSprop. Results for

W-ReSprop are shown and compared to base ReSprop in Section 7.1.

38

Chapter 6

GSCN

In recent years, custom hardware designs have been demonstrated to be an effec-

tive hardware platform to accelerate CNN inference and training. However, most

existing architectures focus on sparse CNN inference. The architecture designed

for sparse CNN inference is inefficient when executing sparse training. In this

chapter, we explain our accelerator for sparse training, which is designed based on

the SCNN accelerator.

6.1 Accelerator for Sparse Training

Sparse backward pass convolutions in ReSprop can be accelerated by exploiting

the zero-valued elements in SpHG vector and zero-valued activations that arise

from the common ReLU operator.

Among available accelerators, the SCNN accelerator is an accelerator for compressed-

sparse convolutional neural networks proposed by [72]. It employs an efficient

data flow that enables maintaining the sparsity in a compressed encoding. This ar-

chitecture eliminates unnecessary data transfers and reduces storage requirements.

Although SCNN improves the performance for sparse forward convolution, it suf-

fers from underutilization when the input sizes are small. Moreover, SCNN can

not be used for backward pass convolutions since while calculating the gradients

of weights (Eq. 4.3), SCNN architecture introduces many unused products.

We propose a generic sparse convolution accelerator (GSCN) which improves

39

N
 (

sa
m

p
le

s)

Weight

K* = N

Output Input

H R

S

W

(a) Forward pass convolution

Weight

C

Gradient of Input

N
 (

sa
m

p
le

s)

Output Gradient

N
 (

sa
m

p
le

s)

* =

(b) Backward pass convolution for calculating gradients of inputs

 Input Gradient of
Weight

kC

K * =

Output Gradient

(c) Backward pass convolution for calculating gradients of weights

Figure 6.1: Forward pass and backward pass convolutions for N input sam-
ples with C channels and K filters each with C channels.

SCNN by:

• Implementing different data and workload distribution among processing el-

ements (PEs) to solve PE underutilization.

• Predicting unused computations produced by the SCNN architecture and

skip them.

40

6.2 Computation of Convolutional Layers

As discussed in Section 2.1, the core operation in a CNN convolutional layer is a

2-dimensional sliding-window convolution of an R×S element filter over a W ×H

element input plane to produce a (W −R+1)× (H−S+1) element output plane.

In CNN networks, filter sizes are usually small (3× 3 or 1× 1), and padding is

applied to the input. Thus the output dimensions in many cases are close to the

input size. There can be multiple (C) input planes, which are referred to as input

channels, and multiple filters (K) can be applied to the same input to produce K

output channels. In mini-batch training, a mini-batch of length N input planes is

applied to the same filter volume. Figure 6.1a shows N inputs convolving with K

filters as described in Section 2.1.

During back-propagation convolutions, the output gradient is convolved with

weights, and input activations (Eq. 4.3 and 4.2). The output gradient has K chan-

nels. Thus, to convolve the output gradient with weights and input activations and

have the desired shape, we need to reshape the inputs, weights, and gradients. As

shown in Figure 6.1b the weights’ dimensions are reshaped from (K×C×R× S)

to (C×K×R×S). In this way, for each sample, K output gradients are convolved

with K filters and produce one channel of input gradients. In Figure 6.1c the out-

put gradients and inputs are reshaped to (K×N×W ′×H ′) and (C×N×W ×H),

respectively. Thus, N output gradients are convolved with N inputs to produce

one channel of weight gradients. These reshapings can be done before saving the

weights, gradients, and inputs into the GSCN buffers.

6.3 Background on SCNN

Since GSCN is based on SCNN, in this section, we discuss the SCNN data flow

and architecture in detail. The baseline data flow is based on SCNN’s data flow.

The SCNN data flow employs an input stationary computation order in which an

input activation is held stationary at the computation units as it is multiplied by all

the filters needed to make all its contributions to each of the K output channels.

SCNN also factors the K output channels into K/Kc output-channel groups of size

Kc, and only store weights and outputs for a single output-channel group at a time

41

1 3

PE1

Convolution 3

* =1 3

PE1

Convolution 3

* =
3

PE3 Accumulator
buffers

* =3

PE3 Accumulator
buffers

* =

11

1

2

3

Input
Weight

DRAM

1 2

3 4

1 2

3 4

1

2

4

DRAM

KH

W

R

S

23
4
3

2
1

4
3

2
1

1 3

PE1

Convolution 3

* =1 3

PE1

Convolution 3

* =
1

PE1 Accumulator
buffers

* =1

PE1 Accumulator
buffers

* =
4
3

2
1

4
3

2
1 1 3

PE1

Convolution 3

* =1 3

PE1

Convolution 3

* =
2

PE2 Accumulator
buffers

* =2

PE2 Accumulator
buffers

* =
4
3

2
1

4
3

2
1

1 3

PE1

Convolution 3

* =1 3

PE1

Convolution 3

* =
4

PE4 Accumulator
buffers

* =4

PE4 Accumulator
buffers

* =
4
3

2
1

4
3

2
1

(a) Data and workload distribution over four PEs for first channel in SCNN.

1

PE1 Accumulator
buffer

* =1

PE1 Accumulator
buffer

* =H
W

11

1

2

3

Input
Weight

DRAM

1 2

3 4

1 2

3 4

1

2

4

DRAM

KH

W

R

S

23

2

PE2 Accumulator
buffer

* =2

PE2 Accumulator
buffer

* =H

W

3

PE3 Accumulator
buffer

* =3

PE3 Accumulator
buffer

* =H

W

4

PE4 Accumulator
buffer

* =4

PE4 Accumulator
buffer

* =H

W

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

(b) Data and workload distribution over four PEs for first channel in GSCN.

Figure 6.2: Figure shows an example of SCNN and GSCN data and workload
distribution while having four PEs. Input and filter assignment to each
PE for SCNN and GSCN are different.

inside the weight and accumulator buffers. In this section, we try to explain SCNN

dataflow and architecture by referring to Figure 6.3 for SCNN architecture, 6.2a

for data and workload distribution and Alg. 3 for SCNN dataflow and operations.

SCNN dataflow requires buffers for filters and inputs, and an accumulator

buffer to store the partial sums of the output activations. These buffers are shown in

Figure 6.3 1 . SCNN employs a tiling strategy to spread the work across an array

of PEs (P is the number of available PEs) so that each PE can operate indepen-

dently. The W ×H input plane breaks into smaller W×H
P element tiles (Wt×Ht)

that are distributed across the PEs. Thus each PE would get Wt×Ht portion of the

input. All the Kc weights are broadcast to the PEs, and each PE operates on its own

subset of the input and output space (Alg.3 line 2). The PEs need to communicate

with each other since they contain incomplete, partial sums at the edge of tiles (ha-

los). As shown in 4 Figure 6.3, there is a specific unit for Relu and compression

operations and this unit also takes care of finding the haloes and communications

42

Indices

IndicesIndices

F,I

FxI Multiplier Array (cartesian product)

FxI

W,H,K

IndicesIndices

Input Buffer

Filter Buffer

Indices

Buffer Bank

Buffer Bank
ReLU

Compress
and Halos

Output
BufferCompute

W,H,K
Coordinates

 F
xI

 –
 A

rb
it

ra
te

d
 x

b
ar

1

1

1

2

3

4

Figure 6.3: SCNN PE microarchitecture employing SSCN data flow [72].

between PEs. In SCNN from the filter buffer, a vector of F filter-weights is fetched,

and with a vector of I inputs fetched from the input activation buffer are delivered

to an array of F× I multipliers to compute a full Cartesian product (CP) of output

partial-sums; as shown in Figure 6.3 2 and Alg.3 line 11. This all-to-all operation

is useful since each fetched weight is reused (via wire-based multicast) over all I

activations; each activation is reused over all F weights. The dataflow for each PE

is shown in Alg. 3. As it is shown in lines 2 and 7, each PE will get a portion

of whole input Wt×Ht and all Kc filters. Figure 6.2a further demonstrates data

and workload distribution between PEs. In this figure, we assume an SCNN ar-

chitecture with a total of 4 PEs (p = 4). Thus, each PE will get 1/4 of the input

channel.

As explained SCNN uses the cartesian product to exploit the parallelism of

many multipliers within a PE, and it fetches a vector of F filter-weights from the

weight buffer, and a vector of I inputs from the input activation buffer. These values

will multiply in an array of F × I multipliers to compute a full cartesian product

of output partial-sums. SCNN will exploit the same property to make computa-

tion efficient on compressed-sparse weights and input (Figure 6.3). Parallel to the

non-zero cartesian product, the coordinates in dense output is computed using the

indices from the sparse-compressed filters and inputs as shown in Figure 6.3 3

(Alg. 3 lines 12, 13 and 14). The F× I products are delivered to an array of A ac-

cumulator banks, indexed by the output coordinates (Alg. 3 line 15). To reduce the

contention among products hashed to the accumulator bank, A is set to be larger

than F× I. SCNN shows that A = 2×F× I sufficiently reduces accumulator bank

43

Algorithm 3 SCNN dataflow for each PE

1: BUFFER W-buf[C][Kc∗R∗S/F][F]

2: BUFFER In-buf[C][Wt ∗Ht/I][I]
3: BUFFER Acc-buf[Kc][Wt +R−1][Ht +S−1]
4: BUFFER Out-buf[K/Kc][Kc∗Wt ∗Ht]
5: for k′ = 0 to K/Kc−1 do
6: for c = 0 to C−1 do
7: for a = 0 to (Wt ∗Ht/I)−1 do
8: In[0 : I−1] = In-buf[c][a][0 : I−1];
9: for w = 0 to (Kc∗R∗S/F)−1 do

10: wt[0 : F−1] = W-buf[c][w][0 : F−1];
11: for (parallel for)(i = 0 to I−1)× (f = 0 to F−1) do
12: k = Kcoord(w, f);
13: x = Xcoord(a, i,w, f);
14: y = Y coord(a, i,w, f);
15: acc-buf[k][x][y]+ = in[i]∗wt[f]
16: end for
17: end for
18: end for
19: end for
20: Out-buf[k′][0 : Kc∗Wt ∗Ht−1] = Acc-buf[0 : Kc−1][0 : Wt−1][0 : Ht−1]
21: end for

contention. The output then goes through ReLU and compression, and the partial

sums at the tile edges are computed and sent to other PEs (Figure 6.3 4).

6.3.1 SCNN Limitations

In this section, we describe the SCNN limitations. As we described, SCNN dataflow

and architecture are computation efficient for sparse inference. However, SCNN

has two main problems:

1) SCNN data flow performs well when the input dimension (W ×H) is big

enough to utilize all the PEs. For most of the classification networks, the size of

the input and accordingly, the size of the output and gradient of output in deeper

layers become small. Thus, tiling (dividing) the small input size across PEs (Wt×

44

Ht) in SCNN data flow will cause significant underutilization of PEs and loss of

performance for most of the state of the art classification networks in deep layers.

For example, the 16x16 input can not be divided between 64 PEs, and many PEs

would be idle.

Cartesian product

222221 2221

10

20

10

20 2221

10

20

2

3 4

2

3 4

1 2

3 4

1

=x

Output gradient with
padding
14x14

Weight
2x2

2

3 4

2

3 4
1 2

3 4
1 2

4 5

2

4 5
1 2

4 5
1 2

3 4

2

3 4
1 2

3 4
1

Cartesian Result:
1x21, 2x22, 2x21, 1x22

Cycle N in a PE when I = {21,22} and F={1,2}

Cartesian product

Cartesian Result:
3x21, 4x22, 4x21, 3x22

`

2

3 4

2

3 4
1 2

3 4
1 2

3 4

2

3 4
1 2

3 4
1 2

3 4

2

3 4
1 2

3 4
1

 Cycle N+1 in a PE when I = {21,22} and F={4,5}

1

2

3

4

3

4

21 22

23 24
`

21 22

23 24
`

Figure 6.4: When the size of filter is smaller than input size, SCNN architec-
ture has negligible amount of unused products.

2) The SCNN cartesian product works well for the forward pass convolutions

since the filter dimensions (R× S) are smaller than input dimensions (W ×H).

However, each output product in the cartesian product mostly yields a useful partial

sum. However, in gradients of weights convolution (Figure 6.1c) the input window

is almost the same size as the output gradient. Thus many of the output products

from the cartesian product would not be used, so we call them unused products. In

Figure 6.5, we demonstrate the unused products produces when the size of input

(14×14) and gradients (12×12) are close. In this example, the size of F and I is 2.

Thus, at each cycle, the cartesian product produces four products. As shown in the

figure after the first cartesian product (cycle N), there is no need to slide the input

window further, and we need to skip the rest of the computations (cycle N+1) and

other upcoming cycles till we read the next filter row into the F or read the next I

45

-1

-2

21 22

23 24

-3

-4

Cartesian product

222221 2221

10

20

10

20 2221

10

20

=
x

Input
14x14

Output
gradinet

12x12

Cartesian Result:
1x21, 2x22, 2x21, 1x22

Cycle N in a PE when I = {21,22} and F={-1,-2}

Cartesian product

Cartesian Result:
-3x21, -4x22, -4x21, -3x22

`

Cycle N+1 in a PE when I = {21,22} and F={-3,-4}

222221 2221

10

20

10

20 2221

10

20 -2 -3-2 -3-1 -5 -6-5 -6-4-2 -3-1 -5 -6-4 222221 2221

10

20

10

20 2221

10

20 -2 -3-2 -3-1 -5 -6-5 -6-4-2 -3-1 -5 -6-4 222221 2221

10

20

10

20 2221

10

20 -2 -3-2 -3-1 -5 -6-5 -6-4-2 -3-1 -5 -6-4
222221 2221

10

20

10

20 2221

10

20-2 -3-2 -3-1 -5 -6-5 -6-4-2 -3-1 -5 -6-4 222221 2221

10

20

10

20 2221

10

20-2 -3-2 -3-1 -5 -6-5 -6-4-2 -3-1 -5 -6-4 222221 2221

10

20

10

20 2221

10

20-2 -3-2 -3-1 -5 -6-5 -6-4-2 -3-1 -5 -6-4

-2 -3-2 -3-1 -5 -6-5 -6-4-2 -3-1 -5 -6-4

-3

-4

21 22

23 24
`

Figure 6.5: When the size of two operands are close in the convolution the
SCNN architecture produces many unused products.

input activations.

The number of unused products is minor when size of the filter is smaller than

the input size (Figure 6.4). The forward pass convolutions and one of the con-

volutions in the backward pass, which calculated gradient’s of inputs, are in this

category. The cartesian product for two cycles convolving gradients (14×14) with

filters (2×2) in SCNN is shown in Figure 6.4 for these cases. Size of F and I are

two and four parallel products computed in each cartesian product. As shown in

this example, unlike Figure 6.5, the cartesian products are useful in both cycles and

are part of the convolution calculations.

Table 6.1 shows the percentage of the cartesian product (4×4) that its products

are not useful (all the 16 products are not used) over the total number of cartesian

products in for gradient of weight convolution using SCNN architecture. I and F

are four, and SCNN has in total 64 PEs.

46

ResNet18 ResNet34
Unused cartesian products (%) 64.91% 69.6%

Table 6.1: The table shows percentage of unused cartesian product over total
cartesian product in SCNN architecture for gradient of weights convolu-
tion.

6.4 GSCN Data Flow

We propose a Generic Sparse Convolutional Neural network (GSCN) with slight

differences from SCNN data flow to solve the first problem mentioned in Section

6.3.1. This data flow employs the input stationary the same as SCNN, but it over-

comes the underutilization problem. In GSCN’s data flow, the input is not divided,

but instead, the whole input is broadcasted to all the PEs. In this way, overcome the

underutilization problem. In GSCN, instead, a subset of filters is assigned to each

PE as follows. Thus, the size of input and filter buffer is different form of SCNN.

The input buffer is P× larger and the filter buffer is P× smaller.

Assume the number of PEs is P, and we have K filters which same as SCNN

are grouped to Kc filters. In GSCN, each PE gets Ks = ∗Kc
p filters, and the partial

sums are stored in the accumulator buffers. In GCSN’s data flow, there is no need

to communicate between PEs since each PE contains complete partial sums. Alg.

4 shows the GSCN dataflow. As it is shown in lines 1, 2, and 4, the size of buffers

is different from SCNN. At line 5, GSCN’s loop is over Ks filters instead of Kc

filters, and at line 7, the loop is going over all the input elements. Note that the rest

of the algorithm is almost the same as SCNN apart from the accumulator buffer

size (lines 15 and 20).

Figure 6.2b further demonstrates our proposed data flow. In this example, it is

assumed that GSCN architecture has 4 PEs. As it is shown, each PE gets whole

input (W ×H), while filters are divided between PEs.

GSCN, like SCNN, uses available compression methods [30, 92] to compress

sparse filters and inputs to reduce both arithmetic operations and data movement.

The GSCN encoding includes a data vector consisting of the non-zero values and an

index vector that includes the number of non-zero values followed by the number of

47

Algorithm 4 GSCN dataflow for each PE

1: BUFFER W-buf[C][Ks∗R∗S/F][F]

2: BUFFER In-buf[C][W ∗H/I][I]
3: BUFFER Acc-buf[Ks][W +R−1][Ht +S−1]
4: BUFFER Out-buf[K/Ks][Ks∗W ∗H]

5: for k′ = 0 to K/Kc−1 do
6: for c = 0 to C−1 do
7: for a = 0 to (W ∗H/I)−1 do
8: In[0 : I−1] = In-buf[c][a][0 : I−1];
9: for w = 0 to (Ks∗R∗S/F)−1 do

10: wt[0 : F−1] = W-buf[c][w][0 : F−1];
11: for (parallel for)(i = 0 to I−1)× (f = 0 to F−1) do
12: k = Kcoord(w, f);
13: x = Xcoord(a, i,w, f);
14: y = Y coord(a, i,w, f);
15: acc-buf[k][x][y]+ = in[i]∗wt[f]
16: end for
17: end for
18: end for
19: end for
20: Out-buf[k′][0 : Ks∗W ∗H−1] = Acc-buf[0 : Ks−1][0 : W −1][0 : H−1]
21: end for

zeros before each value. The 3-dimensional R×S×K filter is effectively linearized,

enabling full compression across the dimension transitions. The activations are

encoded in a similar fashion but across the H×W ×C dimensions. As the fitters

are divided among the PEs, each tile of compressed filters is actually R×S×Ks.

The total size of the accumulator buffer for GSCN (∗Kc
p × out put ′s size) does

not differ from SCNN accumulator size (Kc× out put ′s size
p). Specifically, the input

buffer size needs to be P times larger than SCNN, while the weight buffer size is P

times smaller than the SCNN weight buffer. This is also visible by comparing the

first four lines of Alg. 3 and Alg. 4.

To avoid having a significant input buffer size, GSCN can divide the input

space into sub-volumes so that the collection of PEs operates on a sub-volume of

48

the inputs at a time. In this way, DRAM accesses for one temporal portion can be

hidden by pipelining them in tandem with the computation of another portion. The

sub-volume input space implementation is part of our future works.

6.5 GSCN Architecture

In this section we discuss the GSCN’s architecure which is based upon SCNN but

tackles SCNN second limitation (unused products) and improves the performance.

indices

indicesindices

F,I

indices

FxI multiplier array (Cartesian product)

FxI

W,H,K

indicesindices

Input buffer

Filter buffer

Address Generator Unit

indices

Predictor

Buffer bank

Buffer bank

ReLU
Compress

Output
buffer

Compute
W,H,K

coordinates

Feedback

 F
xI

 –
 A

 a
rb

it
ra

te
d

 x
b

ar

1

2

3

Figure 6.6: GSCN PE microarchitecture employing GSCN data flow. The
GSCN PE microarchitecture is built upon SCNN, the units added or
changes in GSCN have been shown with yellow color.

To prevent unused calculation, GSCN proposes a predictor (Figure 6.6 2) that

predicts unused products after loading inputs and filters’ indices into the coordinate

computer. This predictor sends feedback to the input and filter buffer’s address

generation unit 1 . In SCNN and GSCN as well, the inputs are stored in (W →H)

and filters in (R→ S→K) sequence. In Alg. 5 the filter storage sequence is shown.

The first outer loop is over width, and the last loop is over filters. Thus, the width

is always increasing while reading weights from filter buffer.

GSCN fetches a vector of I inputs from the input buffer, performs the cartesian

product for all the filters in the filter buffer (F × I each time), and then moves to

the next I inputs. Note that input and filter are operands for forward pass convo-

lutions, and in the back-propagation convolutions, we have gradient and input’s of

the previous layer, and gradients and weight.

49

Algorithm 5 GSCN storage order for filter elements in the buffer for each channel

1: Ks = Kc
Number o f PEs

2: for r = 1 to R do
3: for s = 1 to S do
4: for k = 1 to Ks do
5: FilterBuffer.pushback(filter(k,s,r))
6: end for
7: end for
8: end for

As explained while loading the filters from the filter buffer, the filter’s width

will never decrease since the outer loop is over width while storing the filters in

the filter buffer (Alg. 5 line 1). The coordinate computer computes the output

coordinates for a given F × I. Assume the input indices are w and h, and weight

indices are s and r. If the calculated output coordinate becomes negative ((w−r)<

0 or (h− s) < 0), it means that a particular output product is not going to be used

in the convolution as shown in figure 6.5.

Thus, when the width of all output coordinates (w− r) produced by a cartesian

product (for a given F× I) are negative, it indicates that all next F filter vectors are

going to produce unused products with that particular I vector.

If none of the current F filters vectors are useful, the predictor skips all the

upcoming products until we move to the next I input vector. Feedback signal sent

to the address generator unit changes the address pointer so that the next I input

vector and the first F filter from filter buffer be fetched.

This method will help us to skip many of the unused cartesian products and

increase performance. The PE architecture is pipelined, and the predictor is placed

right after loading the inputs; thus, our prediction will be acted upon with one cycle

delay. Figure 6.6 demonstrates the microarchitecture of a GSCN PE, including a

filter buffer, input/output buffer, address generation unit, a multiplier array, a coor-

dinate computation, a predictor, a scatter crossbar, a bank of accumulator buffers,

and a post-processing unit for ReLU and compression. The ReLU and compres-

sion unit in GSCN is more straightforward than SCNN since GSCN doesn’t need

to communicate with other PEs for the tile edges (Figure 6.6 3). We expect that

50

predictor enables us to skip a considerable portion of unused products. Since about

60% of products are not useful in the gradients of weight convolution, ideally, we

would get about 2× speedups.

51

Chapter 7

Evaluation

7.1 Evaluation

In this section, we present experimental results of the ReSprop and W-ReSprop al-

gorithms adapted to different datasets and architectures. Moreover, we quantify the

theoretical computation reduction of ReSprop and simulate the speedup it achieves

on a generic hardware accelerator designed to support sparse back-propagation.

7.2 Experimental Setup

We implement the ReSprop and W-ReSprop algorithms in PyTorch [74]. We use

the custom C++ and Cuda extensions of pytorch to write our custom convolution

layer. Note that this code is showing the functionality of ReSprop algorithm, and

due to the fine-grained sparsity to gain the speedup, a hardware accelerator is re-

quired. To evaluate our algorithms, we train three different widely used state-of-

the-art architectures; ResNet-18, 34, 50 [32], Wide Residual Networks [96], and

VGG-16 [86] on three different datasets: CIFAR-10, CIFAR-100 [47] and Ima-

geNet ILSVRC2012 [82]. For training, we use the SGD optimizer with momen-

tum of 0.9, weight decay of 0.0001, initial learning rate of 0.1 and 5 to 8 warm up

epochs for W-ReSprop. The baseline is trained with no sparsity or reuse. CIFAR-

10 and CIFAR-100 datasets are trained for 200 epochs on a single GPU with a

mini-batch size of 128. The learning rate is annealed by a factor of (1/10)th at the

52

80th and 120th epochs. We run each experiment with three different seeds and use

the average value for all the results. The ImageNet dataset is trained for 90 epochs

with a total mini-batch size of 256 samples on 4 GPUs (RTX 2080 Ti GPU). The

learning rate is reduced by (1/10)th at the 30th and 60th epoch. The above choice

of hyper-parameters follows [32, 36]. For all evaluations in this section, we use the

above setup, except in Section 7.4, where we study batch size impact and effect of

the number of compute nodes on accuracy.

To model the performance of the GSCN and the baseline (SCNN) architecture,

we rely primarily on a custom-built DNNsim cycle-level simulator [22]. We ex-

tend this simulator to support GSCN. The simulator is driven by the 90% sparse

hybrid gradient, sparse input activation and weights extracted from the PyTorch

framework [74] while training with ReSporp. The simulator executes each layer

of the network one at a time. We demonstrate the results for GSCN, computing

back-propagation convolutions for a mini-batch size of 64 compared to GTX 1080

Ti GPU. The GPU back-propagation convolutions is measured by isolating the

back-propagation convolution function in C++ back-end in PyTorch framework.

7.3 Accuracy Analysis

In this section, we provide a comprehensive analysis of the ReSprop and W-ReSprop

algorithms and evaluate convergence and robustness on a wide range of models.

7.3.1 Accuracy on CIFAR10 and CIFAR100:

Tables 7.1 and 7.2 show the accuracy of the ReSprop and W-ReSprop algorithms

at different reuse-sparsity percentages on CIFAR-10 and CIFAR-100 datasets. We

can see that ReSprop and W-Resprop algorithms achieve better accuracy than the

baseline with reuse-sparsities of 50% and 60%, respectively. CIFAR-10, with

fewer classification classes, is more robust to reuse gradients, and it suffers only

a slight accuracy loss at 70% reuse-sparsity using the ReSprop algorithm. While

the accuracy drop for reuse-sparsities higher than 70% is considerable in the Re-

Sprop algorithm, it can be avoided by the addition of a warm up phase. For both

CIFAR-10 and CIFAR-100, on three different architectures, W-ReSprop algorithm

53

loses less than 0.95% validation accuracy at 90% and less than 0.7% at 80% reuse-

sparsity.

CIFAR-100
RS Algorithm ResNet34 WRN-28-10 VGG-16

50%
ReSprop 76.02±0.15 81.45±0.17 72.58±0.23

W-ReSprop 76.4±0.11 81.78±0.16 72.79±0.21

60%
ReSprop 75.81±0.15 80.44±0.16 70.89±0.22

W-ReSprop 76.01±0.12 81.34±0.15 72.45±0.22

70%
ReSprop 73.92±0.18 78.34±0.11 69.76±0.19

W-ReSprop 75.60±0.13 81.09±0.15 71.98±0.23

80%
ReSprop 70.76±0.15 76.87±0.13 66.04±0.29

W-ReSprop 75.44±0.17 80.87±0.14 71.88±0.23

90% ReSprop 69.12±0.13 75.06±0.10 65.32±0.21
W-ReSprop 75.14±0.16 80.38±0.17 71.57±0.24

Baseline 75.61±0.16 81.29±0.17 72.50±0.21

Table 7.1: Validation accuracy of ReSprop and W-ReSprop at different reuse-
sparsity constraints on the CIFAR-100.

7.3.2 Accuracy on ImageNet:

Table 7.3 shows the accuracy obtained by the ReSprop and W-ReSprop on ResNet34,

VGG-16 and Wide-Resnet-50-2. The results indicate that unlike CIFAR datasets

for which W-ReSprop and ReSprop algorithms outperform the baseline at reuse-

sparsities lower than 70%, for the ImageNet dataset at 50% resue-sparsity ReSprop

and W-ReSprop have less than 0.5% and 0.15% loss of accuracy, respectively. We

observe that for the CIFAR-100 dataset, the W-ReSprop algorithm has better accu-

racy at high reuse-sparsities compared to the base ReSprop; the same trend holds

for the Imagenet dataset. W-ReSprop at 90% reuse-sparsity has less than 1.1% ac-

curacy loss in all three networks. For a fair comparison with W-ReSprop, we eval-

uate W-meProp, a variation of the meProp algorithm employing a warm up phase.

Figure 7.1 demonstrates the validation curve of ReSprop, W-ReSprop, meProp and

W-meProp algorithms on the ImageNet dataset for the Resnet-18 architecture. The

validation curve indicates a significant loss of accuracy for meProp and W-meProp.

54

CIFAR-10
RS Algorithm ResNet34 WRN-28-10 VGG-16

50%
ReSprop 95.85±0.06 96.58±0.09 93.35±0.18

W-ReSprop 95.91±0.05 96.93±0.11 93.28±0.19

60%
ReSprop 95.25±0.04 95.89±0.11 93.18±0.14

W-ReSprop 95.41±0.09 96.79±0.07 93.26±0.15

70%
ReSprop 95.01±0.07 95.68±0.08 92.63±0.16

W-ReSprop 95.23±0.09 96.13±0.15 92.91±0.17

80%
ReSprop 94.17±0.07 93.23±0.08 91.90±0.18

W-ReSprop 94.96±0.13 95.93±0.12 92.64±0.17

90% ReSprop 91.61±0.09 90.71±0.15 90.01±0.18
W-ReSprop 94.36±0.07 95.67±0.11 92.43±0.18

Baseline 95.13±0.09 96.30±0.11 93.25±0.15

Table 7.2: Validation accuracy of ReSprop and W-ReSprop at different reuse-
sparsity constraints on the CIFAR-10.

RS Algorithm ResNet34 WRN-50-2 VGG16

50%
ReSprop 73.08 78.69 70.09

W-ReSprop 73.21 78.81 70.41

70%
ReSprop 67.12 73.34 68.73

W-ReSprop 72.73 78.25 70.01

90% ReSprop 63.78 67.72 60.76
W-ReSprop 72.44 77.93 69.46

Baseline 73.34 78.88 70.50

Table 7.3: Top 1 validation accuracy of ReSprop and W-ReSprop algorithms
at different reuse-sparsity constraints on the ImageNet dataset.

MeProp has validation accuracy of 32.56% at 50% sparsity while the ReSprop vali-

dation accuracy at 50% reuse-sparsity is 69.83% which is 0.03% less than the base-

line. The W-Resprop algorithm at 50% reuse-sparsity gains 0.08% higher accuracy

than the baseline and loses negligible accuracy of 0.7% at 70% reuse-sparsity.

55

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

V
al

id
at

io
n

 a
cc

u
ra

cy
 -

to
p

1
 (

%
)

Epoch

ReSprop - 50% RS meProp - 50% sparsity

ReSprop - 70% RS meProp - 70% sparsity

W-ReSprop - 70% RS W-meProp - 70% sparsity

Baseline

Figure 7.1: Top 1 validation accuracy of ReSprop, W-ReSprop, meProp and
W-meProp algorithms for training ResNet-18 on the ImageNet dataset.
The baseline is trained with no sparsity or reusing.

7.4 Sensitivity Study

In this section, we analyze the depth and width of the network on ReSprop, we

vary the batch size from 32 to 128 while training ResNet-34 on the CIFAR-100

dataset on a single GPU, and train ResNet-18 on the ImageNet dataset with 2,4

and 8 GPUs.

7.4.1 Deep and Wide Networks

Previous studies have shown that network depth and width affect network conver-

gence [60, 77, 84]. Here, we study the effect of depth and width on the ReSprop

algorithms. Table 7.4 shows the accuracy of ResNet-18, 34 and 50 for W-Resprop

algorithm on CIFAR100 at 90% reuse percentage. We observe from the results that

W-ReSprop converges to the state-of-the-art accuracy with minimal loss of accu-

racy for deep networks. At 90% reuse-sparsity W-ReSprop algorithm has an accu-

56

racy loss of 0.17% for ResNet-50. Similarly, the results for WRN-28-10 shown in

Table 7.1 and 7.2, shows slight accuracy loss on training wide networks with the

W-ReSprop algorithm.

ResNet18 ResNet34 ResNet50
W-ReSprop 90% 73.26 75.15 76.67

Baseline 74.84 75.61 76.84

Table 7.4: Validation accuracy of ResNet-18, 34 and 50 on the CIFAR-100
dataset at 90% reuse-sparsity.

7.4.2 Impact of Batch Size:

Here, we explore effects of batch size on the accuracy of ReSprop. Table 7.5

demonstrates that ReSprop converges with negligible accuracy loss for different

batch sizes. ReSprop and W-ReSprop algorithms achieve higher accuracy for

larger batch sizes. This behavior may be a result of including more samples in-

creasing the likelihood similar features are present resulting in a higher correlation

with the next iteration’s gradients.

Batchsize 32 64 128
ReSprop 70% 72.94 73.48 73.92

W-ReSprop 90% 74.98 75.09 75.14
Baseline 76.12 75.88 75.61

Table 7.5: Validation accuracy of ResNet-34 on the CIFAR-100 dataset with
different batch sizes of 32, 64 and 128.

7.4.3 Distribute Training Across Multiple Compute Nodes

Data parallelism is a popular way to accelerate training [46, 78]. To explore the

impact of distributed training on accuracy, and still ignoring speedup, we evaluate

ReSprop on multiple GPUs to compute gradient updates and then aggregating these

locally computed updates. Below, we focus on training with multiple GPUs on a

57

single machine by splitting the input across the specified GPUs. The ReSprop

algorithm (Alg. 1 and 2) is applied during the training on each GPU independently.

Table 7.6 shows the accuracy results for training ResNet-18 on ImageNet with a

varied number of GPUs on a single machine. Since the ReSprop algorithm is

applied to each GPU, the number of GPUs does not affect the model’s accuracy

trained with the ReSprop algorithm.

GPUs in total 2 4 8
Batchsize in total 128 256 512
W-ReSprop 90% 68.73 68.81 68.61

Baseline 69.21 69.45 69.47

Table 7.6: Top 1 validation accuracy of ResNet-18 on the ImageNet dataset
trained on 2, 4 and 8 nodes.

7.5 Speedup

In this section, we quantify the computation reduction, overheads, and the speedup

of the ReSprop algorithm. Since we are using 5 to 8 epochs of whole training (90-

200 epochs) for the warm up phase, the speedup for W-ReSprop would be the same

order as the ReSprop algorithm.

7.5.1 Adaptive Thresholding:

The threshold operation can be implemented with O(n) complexity. For each layer,

if the reuse-sparsity of (SpHGl)i becomes less than the targeted reuse-sparsity, we

halve Tl (Eq (4.5)) to force more elements to zero and use the updated value of Tl

for the next iteration. On the other hand, if the sparsity of (SpHGl)i is more than

the targeted reuse-sparsity, we increase Tl by doubling it. To accelerate the process

of moving toward the desired Tl , we chose the initialization value of 10−7 for all

the layers in all the experiments, based on the output gradient’s distribution on the

ResNet-18, 34 and 50 on CIFAR datasets. We experimentally find that for a given

layer and a fixed reuse-sparsity, the threshold is almost constant during training.

Thus, the threshold can be updated after a specific number of iterations, which

58

reduces the computation overhead. The total computation overhead of adaptive

thresholding, matrix additions, and subtractions in the ReSprop algorithm is less

than 2.5% for both Imagenet and CIFAR datasets.

7.5.2 Pre-ReSprop Overhead

As shown in Section 5.1, the ReSprop algorithm consists of pre-ReSprop and back-

ReSprop. Pre-ReSprop can be calculated in parallel with the original forward pass

convolution. Figure 7.2 plots computation overhead (measured in terms of floating-

point operations) added by ReSprop to the forward-pass at different batch sizes.

This overhead is less than 2% for batch sizes larger than 128. We theoretically

analyze the memory footprint by calculating ReSprop parameters that need to be

stored and fetched. The results of the pre-ReSprop calculations and a random

sample of the previous iteration’s output gradient are stored and used in the back-

ReSprop. We compute ReSprop memory footprint overhead by considering the

adaptive threshold, pre-ReSprop, and back-ReSprop overheads. For the CIFAR

and ImageNet datasets for batch sizes larger than 128, ReSprop has less than 16%

memory footprint overhead compared to the total model parameters and the input

activations’ memory footprint for different architectures (ResNet18, 34, 50 and

VGG-16).

7.5.3 Theoretical Speedup:

We evaluate the theoretical improvement in computational cost for forward and

backward passes by comparing the number of floating-point operations with and

without ReSprop. First row of Table 7.8 shows the theoretical speedup of ReSprop

for the backward pass. Since ReSprop accelerates only the backward pass, the the-

oretical training (forward + backward) speedup can be calculated using Amdahl’s

Law [5]. Figure 7.3 shows the total training speedup considering the overheads

of pre-ReSprop and thresholding. This analysis shows that at 90% reuse-sparsity,

ImageNet can be trained 2.5× to 3.0× (on average 2.7×) faster using ReSprop.

Among sparse training algorithms, DSG sparsifies back-propagation convolutions

(Eq. 4.2 and 4.3). Table 7.7 shows the accuracy and speedup of DSG and W-

ReSprop. W-ReSprop with the same sparsity percentage achieves higher accuracy

59

0

1

2

3

4

5

6

7

8

9

ResNet18 ResNet34 ResNet50 WRN-50-2 VGG16 VGG19

R
eS

P
ro

p
 o

ve
rh

ea
d

 in
 f

o
rw

ar
d

 p
as

s
 (

%
)

32

64

128

256

Figure 7.2: Computation overhead of ReSprop at forward pass (pre-ReSprop)
for different batch sizes (ImageNet dataset).

and speedup. Reducing dimension for sparsifying gradients and inputs is the main

reason for accuracy loss at high sparsities in DSG.

0

0.5

1

1.5

2

2.5

3

3.5

ResNet18 ResNet34 ResNet50 WRN-50-2 VGG16 VGG19

Sp
ee
d
u
p 50%

70%

90%

Figure 7.3: ReSprop training (forward+backward) speedup versus architec-
ture for three reuse-sparsity percentages (ImageNet).

60

ResNet-18 WRN-8-2
Algorithm Speedup Acc ↓ Speedup Acc ↓

DSG 2.2 3.88% 2.3 2.74%
W-ReSprop 2.7 0.51% 2.8 0.43%

Table 7.7: Validation accuracy and train speedup at 90% sparsity compared
to dense training (CIFAR-10 dataset).

ResNet18 ResNet34 VGG-16
Theoretical 9.83 9.68 9.34

GSCN+Baseline 1.32 1.81 1.27
GSCN+ReSprop 8.6 8.01 7.21

Table 7.8: Theoretical and GSCN speedup at backward pass computations
with 90% resue-sparsity (ImageNet).

7.5.4 Accelerator for Sparse Back-propagation:

We modify the SCNN [72] to support back-propagation convolutions and call the

resulting architecture a generic sparse convolution accelerator (GSCN). We feed

GSCN with sparse convolutions of ReSprop. To model performance of GSCN, we

rely primarily on the DNNsim cycle-level simulator [22]. We extend this simulator

to support GSCN.

Table 7.9 lists the key parameters of the GCN design we explore in this paper.

The design employs four tiles of 8×8 array of PEs, each PE with a 4×4 cartesian

multiplier array, and an accumulator buffer with 32 banks. Since we need a generic

architecture, we set the GSCN’s buffer size in a way that it is sufficient for all

forward and backward pass convolutions. The filter and input buffer each carry a

4-bit overhead for each 16-bit value to encode the compressed coordinates.

To run more than one input sample parallel (mini-batch training) in GSCN

design GSCN will tile the PEs in which n× n PE array is called a tile. Tiles will

fetch the same filters (reuse the filters), but each tile has a different input sample.

Since PE tiles are applying convolutions on different input samples, there is no

need of communicate among them.

Figure 7.4 shows the speedup on GSCN compared to SCNN and GTX 1080 Ti

61

N
or

m
al

iz
ed

 c
om

pu
ta

tio
n

tim
e

0

0.25

0.5

0.75

1

ResNet18
Gradient of Input

convolutions

ResNet34
Gradient of input

convolutions

ResNet18
Gradient of weight

convolutions

ResNet34
Gradient of weight

convolutions

GTX 1080 Ti SCNN GSCN (without predictor) GSCN (with predictor)

Figure 7.4: Figure shows the speedup for GSCN compared to SCNN and
GTX 1080 Ti GPU while training with ReSprop.

Table 7.9: GSCN parameters

GSCN Parameters Values
Tiles 4

PE/Tile 64

PE Parameters Value
Multiplier width 16 bits

Accumulator width 24 bits
Multiply array (F×I) 4×4
Accumulator banks 32

Accumulator bank entries 32
Filter buffer 2KB
Input buffer 10KB

Output buffer 10KB

GPU. For GPU timing, the execution time for two back-propagation convolution

kernels are measured on a real GTX 1080 Ti GPU. The y-axis shows relative com-

putation time based on GPU execution time. This figure demonstrates that adding

predictor has made gradient of weight calculation about 2× faster, as we expected.

Table 7.8 shows the speedup we can gain on GSCN accelerator compared to

GTX 1080 ti GPU by running standard training (second row) and ReSprop algo-

62

rithm (third row) on GSCN.

63

Chapter 8

Conclusion

This work proposes Reuse-Sparsified Backpropagation for faster training by reusing

the gradients during training. ReSprop sparsifies backward convolutions while

adding minimal computation overhead to the forward pass. Storing and reusing

a random gradient at each iteration enables us to make the pre-calculation over-

head about 2% for batch sizes larger than 128. Moreover, the memory overhead

becomes negligible by storing just one random gradient. Thus, pre-ReSprop cal-

culations are negligible and can be done in parallel to forward pass. As shown in

Figure 8.1 We proposed W-ReSprop as a variant of ReSprop. W-ReSprop enables

Forward-pass Backward-pass

ReSprop-forward

Forward-pass ReSprop-backward (sparse)

Time

Original
Training

ReSprop
Training

Figure 8.1: ReSprop has two parts. Pre-Resprop computations are negligible
and back-ReSprop are sparse computations in backward pass.

us to lose less accuracy compared to ReSprop. W-ReSprop helps network to get

adapted to the reuse and after first few epochs we continue the training with the

target reuse percentage.

ReSprop and W-ReSprop can be used for training common network architec-

64

tures and achieves average 2.7× overall speedup in training with negligible loss

in model accuracy. The backward pass takes 70% training time, and the speedup

gained by ReSprop is due to the 10× faster backward pass. Thus, the overall (the-

oretical) training speedup can be calculated from the above using Amdahl’s Law

as:

Speedup =
1

(1−0.7)︸ ︷︷ ︸
forward-pass (not accelerated)

+
0.7
10︸︷︷︸

backward-pass

Our experiments show that ReSprop and W-ReSprop are robust to the choice of

batch sizes, architectures, and are applicable to distribute training across multiple

GPUs.

To find the speedup of ReSprop on a hardware accelerator, we need a sparse

accelerator that supports training. Most previous studies on CNN sparse acceler-

ators, however, have paid less attention to the training aspect, despite being more

computationally demanding than inference. We modify SCNN accelerator to sup-

port sparse back-propagation convolutions to measure the speedup of the ReSprop

algorithm on our customized hardware design.

This work introduces a generic sparse convolution neural-network accelera-

tor (GSCN), which overcomes the shortcomings of previous accelerators in back-

propagation convolutions. Thus, GSCN can be used both for sparse training and

inference. GSCN achieves 6× and 5.5× speed up on ResNet18 and ResNet34

back-propagation, respectively, compared to sparse convolutional neural network

(SCNN) accelerator. It also achieves 8.7× and 7.1× speedup compared to the GTX

1080 Ti GPU.

8.0.1 Discussion

ReSprop method can be considered as a new variant of momentum for each indi-

vidual output gradient parameter. While momentum has a hyperparameter β for

the gradient of weights, our method has a fixed β = 1 or β = 0 for each output

gradient element. Moreover, ReSprop is an orthogonal approach to the choice of

optimizers, and it can be used with different optimizers such as Adam or Adagrad.

65

8.0.2 Future Work

The adaptation of the proposed methodology with a diverse set of CNN architec-

tures, such as fully convolutional networks, could be followed in future work. The

future work also includes a deeper analysis of reusing gradient in other non-CNN

models such as fully connected and recurrent neural networks. This thesis has been

mainly focused on the reusing of output gradient, while analysis of the sparsity of

weights combined with the reusing idea could be explored in the future. Also, it

could be interesting to consider the effect of reusing gradient on reusing weights

and sparsifying the weights.

Moreover, the GSCN accelerator is an ongoing project and many aspects of it

such as NOC between PEs, running large batch sizes, and how to gain a higher

performance in sparse calculations is an ongoing project.

66

Bibliography

[1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network
computing. in 2016 ieee. In ACM/IEEE International Conference on
Computer Architecture (ISCA), volume 10, 2016. → pages 3, 6, 26, 27

[2] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov, and
A. Moshovos. Bit-pragmatic deep neural network computing. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 382–394. ACM, 2017. → pages 3, 6, 27

[3] Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex
optimization. In International Conference on Machine Learning, pages
699–707, 2016. → page 23

[4] Z. Allen-Zhu and Y. Yuan. Improved svrg for non-strongly-convex or
sum-of-non-convex objectives. In International conference on machine
learning, pages 1080–1089, 2016. → page 4

[5] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, pages 483–485, 1967. → pages 5, 59

[6] A. G. Anderson and C. P. Berg. The high-dimensional geometry of binary
neural networks. arXiv preprint arXiv:1705.07199, 2017. → page 30

[7] S. Anwar, K. Hwang, and W. Sung. Structured pruning of deep
convolutional neural networks. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 13(3):1–18, 2017. → page 19

[8] R. Banner, I. Hubara, E. Hoffer, and D. Soudry. Scalable methods for 8-bit
training of neural networks. In Advances in Neural Information Processing
Systems, pages 5145–5153, 2018. → page 2

67

[9] G. Bellec, D. Kappel, W. Maass, and R. Legenstein. Deep rewiring:
Training very sparse deep networks. arXiv preprint arXiv:1711.05136,
2017. → page 20

[10] L. Bottou. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010. →
page 2

[11] L. Bottou and Y. L. Cun. Large scale online learning. In Advances in neural
information processing systems, pages 217–224, 2004. → pages 15, 22

[12] A. Cauchy. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847. → page 22

[13] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, et al. Dadiannao: A machine-learning supercomputer. In
IEEE/ACM International Symposium on Microarchitecture, pages
609–622. IEEE Computer Society, 2014. → pages 3, 6

[14] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam. Diannao family:
energy-efficient hardware accelerators for machine learning.
Communications of the ACM, 59(11):105–112, 2016. → page 25

[15] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE
journal of solid-state circuits, 52(1):127–138, 2016. → page 26

[16] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural
networks for image classification. In 2012 IEEE conference on computer
vision and pattern recognition, pages 3642–3649. IEEE, 2012. → page 1

[17] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, et al. Large scale distributed deep networks.
In Advances in Neural Information Processing Systems, pages 1223–1231,
2012. → page 2

[18] A. Defazio and L. Bottou. On the ineffectiveness of variance reduced
optimization for deep learning. arXiv preprint arXiv:1812.04529, 2018. →
page 23

[19] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite
objectives. In Advances in Neural Information Processing Systems, pages
1646–1654, 2014. → pages 4, 22, 23

68

[20] A. Defazio, J. Domke, et al. Finito: A faster, permutable incremental
gradient method for big data problems. In International Conference on
Machine Learning, pages 1125–1133, 2014. → page 22

[21] T. Dettmers and L. Zettlemoyer. Sparse networks from scratch: Faster
training without losing performance. arXiv preprint arXiv:1907.04840,
2019. → pages 2, 3, 20

[22] I. Edo, O. Awad, A. H. Zadeh, D. M. Stuart, A. D. Lascorz, M. Nikolić, and
A. Moshovos. DNNsim: Deep Learning Accelerators Toolkit.
https://github.com/isakedo/DNNsim. → pages 53, 61

[23] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration
for general-purpose approximate programs. In 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pages
449–460. IEEE, 2012. → page 24

[24] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. The lottery ticket
hypothesis at scale. arXiv preprint arXiv:1903.01611, 2019. → pages
19, 20

[25] T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural
networks. arXiv preprint arXiv:1902.09574, 2019. → pages 18, 20

[26] M. Golub, G. Lemieux, and M. Lis. Dropback: Continuous pruning during
training. arXiv preprint arXiv:1806.06949, 2018. → page 21

[27] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,
2016. → page 15

[28] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015. → page 18

[29] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and
connections for efficient neural network. In Advances in neural
information processing systems, pages 1135–1143, 2015. → pages 19, 20

[30] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally.
Eie: efficient inference engine on compressed deep neural network. In
ACM/IEEE International Symposium on Computer Architecture (ISCA),
pages 243–254. IEEE, 2016. → pages 3, 6, 26, 47

69

https://github.com/isakedo/DNNsim

[31] B. Hassibi and D. G. Stork. Second order derivatives for network pruning:
Optimal brain surgeon. In Advances in Neural Information Processing
Systems, pages 164–171, 1993. → page 18

[32] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. → pages 12, 13, 52, 53

[33] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep
neural networks. In IEEE International Conference on Computer Vision,
pages 1389–1397, 2017. → pages 3, 19

[34] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, B. Kingsbury, et al. Deep neural networks for
acoustic modeling in speech recognition. IEEE Signal processing
magazine, 29, 2012. → page 1

[35] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks
with stochastic depth. In European Conference on Computer Vision, pages
646–661. Springer, 2016. → page 2

[36] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 4700–4708, 2017. → page 53

[37] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015. → pages 2, 11

[38] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. Gist:
Efficient data encoding for deep neural network training. In 2018
ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 776–789. IEEE, 2018. → page 22

[39] H. Ji, L. Song, L. Jiang, H. H. Li, and Y. Chen. Recom: An efficient
resistive accelerator for compressed deep neural networks. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
237–240. IEEE, 2018. → page 27

[40] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in Neural Information
Processing Systems, pages 315–323, 2013. → pages 4, 22

70

[41] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the
44th Annual International Symposium on Computer Architecture, pages
1–12, 2017. → page 25

[42] P. Kanerva. Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors.
Cognitive computation, 1(2):139–159, 2009. → page 30

[43] E. D. Karnin. A simple procedure for pruning back-propagation trained
neural networks. IEEE Transactions on Neural Networks, 1(2):239–242,
1990. → page 18

[44] A. Katharopoulos and F. Fleuret. Biased importance sampling for deep
neural network training. arXiv preprint arXiv:1706.00043, 2017. → page 2

[45] A. Katharopoulos and F. Fleuret. Not all samples are created equal: Deep
learning with importance sampling. arXiv preprint arXiv:1803.00942,
2018. → page 2

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012. → pages 1, 2, 10, 57

[47] A. Krizhevsky et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009. → page 52

[48] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In
Advances in Neural Information Processing Systems, pages 598–605, 1990.
→ page 18

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998. → page 15

[50] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop.
In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012. →
page 15

[51] N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.
→ page 19

71

[52] N. Lee, T. Ajanthan, S. Gould, and P. H. Torr. A signal propagation
perspective for pruning neural networks at initialization. arXiv preprint
arXiv:1906.06307, 2019. → page 18

[53] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710, 2016. → page 19

[54] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie. Dynamic
sparse graph for efficient deep learning. arXiv preprint arXiv:1810.00859,
2018. → pages 2, 3, 20

[55] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen.
Cambricon: An instruction set architecture for neural networks. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 393–405. IEEE, 2016. → page 25

[56] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang,
M. Barnell, Q. Wu, et al. Reno: A high-efficient reconfigurable
neuromorphic computing accelerator design. In Proceedings of the 52nd
Annual Design Automation Conference, pages 1–6, 2015. → page 24

[57] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018. → page 20

[58] C. Louizos, K. Ullrich, and M. Welling. Bayesian compression for deep
learning. In Advances in Neural Information Processing Systems, pages
3288–3298, 2017. → page 3

[59] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural
networks through l 0 regularization. arXiv preprint arXiv:1712.01312,
2017. → page 3

[60] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural
networks: A view from the width. In Advances in Neural Information
Processing Systems, pages 6231–6239, 2017. → page 56

[61] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for
deep neural network compression. In IEEE International Conference on
Computer Vision, pages 5058–5066, 2017. → page 3

[62] M. Mahdavi, L. Zhang, and R. Jin. Mixed optimization for smooth
functions. In Advances in neural information processing systems, pages
674–682, 2013. → page 4

72

[63] J. Mairal. Incremental majorization-minimization optimization with
application to large-scale machine learning. SIAM Journal on
Optimization, 25(2):829–855, 2015. → page 22

[64] H. Malmgren, M. Borga, and L. Niklasson. Artificial Neural Networks in
Medicine and Biology: Proceedings of the ANNIMAB-1 Conference,
Göteborg, Sweden, 13–16 May 2000. Springer Science & Business Media,
2012. → page 1

[65] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and
A. Liotta. Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science. Nature communications, 9
(1):2383, 2018. → page 20

[66] D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsifies
deep neural networks. In International Conference on Machine Learning,
pages 2498–2507. JMLR. org, 2017. → page 3

[67] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning
convolutional neural networks for resource efficient inference. arXiv
preprint arXiv:1611.06440, 2016. → page 18

[68] J. Morajda. Neural networks and their economic applications. In Artificial
intelligence and security in computing systems, pages 53–62. Springer,
2003. → page 1

[69] H. Mostafa and X. Wang. Parameter efficient training of deep
convolutional neural networks by dynamic sparse reparameterization.
arXiv preprint arXiv:1902.05967, 2019. → pages 3, 20

[70] S. Narang, E. Elsen, G. Diamos, and S. Sengupta. Exploring sparsity in
recurrent neural networks. arXiv preprint arXiv:1704.05119, 2017. →
page 37

[71] Y. Nesterov. Introductory lectures on convex optimization: A basic course,
volume 87. Springer Science & Business Media, 2013. → page 22

[72] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally. Scnn: An accelerator
for compressed-sparse convolutional neural networks. In ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA), pages
27–40. IEEE, 2017. → pages xii, 3, 6, 27, 39, 43, 61

73

[73] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine
learning, pages 1310–1318, 2013. → page 13

[74] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in
pytorch. 2017. → pages 52, 53

[75] J. L. Patel and R. K. Goyal. Applications of artificial neural networks in
medical science. Current clinical pharmacology, 2(3):217–226, 2007. →
page 1

[76] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015. → page 1

[77] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein. On the
expressive power of deep neural networks. In International Conference on
Machine Learning, pages 2847–2854. JMLR. org, 2017. → page 56

[78] R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised
learning using graphics processors. In International Conference on
Machine Learning, pages 873–880. ACM, 2009. → page 57

[79] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance
reduction for nonconvex optimization. In International Conference on
Machine Learning, pages 314–323, 2016. → page 23

[80] N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method
with an exponential convergence rate for finite training sets. In Advances
in neural information processing systems, pages 2663–2671, 2012. → page
22

[81] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536,
1986. → page 14

[82] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):
211–252, 2015. → pages 4, 52

74

[83] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M. Stuart,
Z. Poulos, and A. Moshovos. Laconic deep learning inference acceleration.
In Proceedings of the 46th International Symposium on Computer
Architecture, pages 304–317, 2019. → page 26

[84] O. Sharir and A. Shashua. On the expressive power of overlapping
operations of deep networks. arXiv preprint arXiv:1703.02065, 2017. →
page 56

[85] K. Simonyan and A. Zisserman. Two-stream convolutional networks for
action recognition in videos. In Advances in Neural Information
Processing Systems, pages 568–576, 2014. → page 1

[86] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. →
pages 12, 52

[87] R. Spring and A. Shrivastava. Scalable and sustainable deep learning via
randomized hashing. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 445–454. ACM, 2017. →
page 2

[88] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806,
2014. → page 11

[89] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958,
2014. → page 11

[90] X. Sun, X. Ren, S. Ma, and H. Wang. meprop: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In Proceedings of
the 34th International Conference on Machine Learning, pages 3299–3308.
JMLR. org, 2017. → pages 2, 3, 7, 20, 28, 31

[91] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In International conference
on machine learning, pages 1139–1147, 2013. → page 16

[92] R. W. Vuduc and J. W. Demmel. Automatic performance tuning of sparse
matrix kernels, volume 1. University of California, Berkeley Berkeley, CA,
2003. → page 47

75

[93] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. In Advances in
Neural Information Processing Systems, pages 7675–7684, 2018. → page 2

[94] B. Wei, X. Sun, X. Ren, and J. Xu. Minimal effort back propagation for
convolutional neural networks. arXiv preprint arXiv:1709.05804, 2017. →
pages 2, 3, 7, 20

[95] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity
in deep neural networks. In Advances in Neural Information Processing
Systems, pages 2074–2082, 2016. → page 19

[96] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016. → pages 12, 14, 52

[97] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen. Cambricon-x: An accelerator for sparse neural networks. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–12. IEEE, 2016. → page 27

[98] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network
quantization: Towards lossless cnns with low-precision weights. arXiv
preprint arXiv:1702.03044, 2017. → page 2

[99] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen,
and Y. Chen. Cambricon-s: Addressing irregularity in sparse neural
networks through a cooperative software/hardware approach. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 15–28. IEEE, 2018. → page 27

[100] M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of
pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.
→ page 37

76

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Sparse Training
	1.2 Gradient Reuse
	1.3 GSCN Accelerator
	1.4 Contributions
	1.5 Organization

	2 Background
	2.1 Convolutional Neural Network
	2.1.1 Convolutional Layer
	2.1.2 Activation Function
	2.1.3 Pooling
	2.1.4 Dropout
	2.1.5 Normalization
	2.1.6 Fully-connected layer

	2.2 ResNet, WRN and VGG
	2.2.1 VGG
	2.2.2 ResNet and WRN

	2.3 Training
	2.3.1 Training Convolutions and Notation
	2.3.2 Mini-batch Training
	2.3.3 Momentum

	2.4 Sparse Convolution
	2.4.1 Sparse Hardware Acceleretors

	3 Related Work
	3.1 Dense to Sparse Networks by Weight Pruning
	3.1.1 Structure
	3.1.2 Prunning Criterion
	3.1.3 Scheduling
	3.1.4 Fine-tuning

	3.2 Sparse Training
	3.3 Low precision neural network
	3.4 Reusing Gradient
	3.5 Hardware Accelerators for Deep Neural Networks
	3.5.1 Hardware Accelerator for Sparse Networks

	4 Gradient Reuse
	4.1 Preliminaries
	4.2 Approach and Key Insight
	4.3 Angle Preservation and comparison with meProp

	5 ReSprop Algorithm
	5.1 ReSprop: Reuse-Sparse-Backprop
	5.1.1 Stochastic Output Gradient
	5.1.2 Warm Up

	6 GSCN
	6.1 Accelerator for Sparse Training
	6.2 Computation of Convolutional Layers
	6.3 Background on SCNN
	6.3.1 SCNN Limitations

	6.4 GSCN Data Flow
	6.5 GSCN Architecture

	7 Evaluation
	7.1 Evaluation
	7.2 Experimental Setup
	7.3 Accuracy Analysis
	7.3.1 Accuracy on CIFAR10 and CIFAR100:
	7.3.2 Accuracy on ImageNet:

	7.4 Sensitivity Study
	7.4.1 Deep and Wide Networks
	7.4.2 Impact of Batch Size:
	7.4.3 Distribute Training Across Multiple Compute Nodes

	7.5 Speedup
	7.5.1 Adaptive Thresholding:
	7.5.2 Pre-ReSprop Overhead
	7.5.3 Theoretical Speedup:
	7.5.4 Accelerator for Sparse Back-propagation:

	8 Conclusion
	8.0.1 Discussion
	8.0.2 Future Work

	Bibliography

