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Abstract

In 2012, deep learning made a major comeback. Deep learning started break-
ing records in many machine learning benchmarks, especially those in the field of
computer vision. By integrating deep learning, machine learning methods have be-
came more practical for many applications like object counting, detection, or seg-
mentation. Unfortunately, in the typical supervised learning setting, deep learning
methods might require a lot of labeled data that are costly to acquire. For instance,
in the case of acquiring segmentation labels, the annotator has to label each pixel
in order to draw a mask over each object and get the background regions. In fact,
each image in the CityScapes dataset took around 1.5 hours to label. Further, to
achieve high accuracy, we might need millions of such images.

In this work, we propose four weakly supervised methods. They only require
labels that are cheap to collect, yet they perform well in practice. We devised an
experimental setup for each proposed method. In the first setup, the model needs to
learn to count objects from point annotations. In the second setup, the model needs
to learn to segment objects from point annotations. In the third setup, the model
needs to segment objects from image level annotations. In the final setup, the
model needs to learn to detect objects using counts only. For each of these setups
the proposed method achieves state-of-the-art results in its respective benchmark.
Interestingly, our methods are not much worse than fully supervised methods. This
is despite their training labels being significantly cheaper to acquire than for the
fully supervised case. In fact, in fixing the time budget for collecting annotations,
our models performed much better than fully supervised methods. This suggests
that carefully designed models can effectively learn from data labeled with low
human effort.
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Lay Summary

Deep learning has been shown to be useful in many everyday systems. Unfortu-
nately, many systems based on deep learning need a lot of labels to work well.
Acquiring these labels requires a lot of human effort which can be an impractical
endeavor. As a result, new deep learning systems came out that only need few
labels to work fairly well, but not good enough for real-life applications. In this
work, we develop new state-of-the-art systems to handle three types of applications
in image processing. These applications are counting, finding objects in images
and drawing their boundaries. Our systems only need labels that are very cheap to
acquire and were shown to achieve good results in many standard benchmarks.
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Chapter 1

Introduction

1.1 The Rise of Deep Learning: Recent Advances

Deep learning began to receive a renewed interest when it achieved a record-high
classification score on the ImageNet challenge [31]. This result showed that deep
learning could effectively learn from a huge amount of images that represent di-
verse, real-life, everyday scenes. It also showed that deep learning can extract
strong features from images. As a result, deep learning has become successful
for a wide range of large-scale computer vision applications. Examples include
keeping track of crowd counts in surveillance cameras [89, 29], monitoring species
counts [8], and helping autonomous cars navigate urban roads [26].

As it became clearer that deep learning was an effective tool, the research com-
munity shifted its focus towards using deep learning for many classic machine
learning tasks. These tasks include data analytics [85], image segmentation [49],
text summarization [22], and video understanding [133]. Communities outside
machine learning also became more interested in deep learning. More effort was
put into investigating the efficacy of deep learning in areas like medicine [23] and
algorithmic trading [32].

Deep learning has made several research areas more prominent, including, style
transfer [54] and adversarial learning [43]. This is because deep networks seem to
capture image semantics at different levels of abstraction [50]. Compared to hand-
engineered features [28], the deep network features make a much more powerful
representation of the data. In fact, features extracted from a trained network can be
transferred from one domain to another [80]. In contrast, hand-engineered feature
extraction methods [56] need to be tuned towards one dataset of limited size.

Such powerful data representations are useful for tasks like style transfer. The
idea behind style transfer is to change the style of a target image using a source im-
age. For example, prior to deep learning, style transfer methods relied on Gaussian-
based algorithms [3, 46]. However, this led to limited success due to the restricted
capacity of these methods. With deep methods pretrained on ImageNet [118],
styles between images can be efficiently transferred across regions [55]. This made
styling images with sophisticated art require much less human effort. For adversar-
ial learning, the task is to train a model using malicious inputs designed to fool the
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model. The implication is that the trained model can be used in image-to-image
translation [52], image generations [44], and adversarial defense [108]. Similar
to style transfer, models in this framework require the capacity to learn complex
representations, which are given by deep learning networks.

Different industries [37, 98, 107] have become more interested in adopting
deep learning in their applications. As a result, many startups in this field have
acquired large amounts of funding.1 This led to a huge number of deep learning
based work being submitted to machine learning conferences.2 As a result, many
new real-life applications emerged.3 Fortunately, a deep learning method trained
on one dataset can be effectively used for other datasets where the objects of in-
terest are the same. For instance, a person detector trained on COCO [75] can be
deployed to detect persons in new scenes.

Unfortunately, many of these applications include classes that are different
from standard ones. Such classes include penguins, cells, and plants. Thus, new
datasets need to be collected and annotated, in order to fine tune the model for the
new classes. The main challenge, however, is the annotation cost. Deep learning
methods require huge amounts of data to train properly. This annotation requires
costly human effort. For tasks such as semantic segmentation, it can take 1.5 hours
to annotate a single image [26].

In most computer vision problems, we need many annotated data because mod-
els need to learn the variability of the objects in terms of shape, size, pose, and
appearance. Objects may appear at different angles and resolutions, and may be
partially occluded. Further, the background, weather conditions, and illuminations
can vary widely across scenes. Therefore, the model needs to be robust enough to
recognize objects in the presence of these variations.

Thus, enormous interest has been put forth towards creating deep learning
methods that can learn from labels that are cheap to collect [120, 12, 90, 60, 1,
109, 57, 141, 24]. These are known as weakly supervised methods. In most cases,
weakly supervised methods perform much worse than fully-supervised methods.
This presents a dilemma. However, the cost of collecting a fully supervised train-
ing set might be higher than simply manually labeling the test set. Thus, collecting
such training set is not a wise decision. On the other hand, weakly supervised
methods might require much less human effort to achieve reasonable performance.

In this work, we propose weakly supervised methods in order to close the per-
formance gap between weakly and fully-supervised methods. In the next sections,

1https://www.forbes.com/sites/parmyolson/2019/03/04/nearly-half-of-all-ai-startups-are-
cashing-in-on-hype/#7ca745afd022

2https://medium.com/syncedreview/paper-submissions-break-neurips-2019-paper-submission-
system-884a60e32a82

3https://www.kaggle.com/
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we describe three fundamental tasks in computer vision. They are object counting,
instance segmentation and crowd localization. We will illustrate their importance
in real-life applications, explain relevant existing methods, and describe their rela-
tionship to my PhD work. We also discuss the limitations of current methods, and
propose novel methods that address their limitations.

1.2 Background

Figure 1.1: Convolutional neural networks. An architecture consisting of a set
of layers that extract features at different levels of abstraction for an image (Link:
https://i.stack.imgur.com/3tUPW.png.).

Convolutional Neural Networks. Convolutional neural networks (CNNs) are a
type of a neural network architecture that has become standard for image classi-
fication. They are inspired by Fukushima [39], and were successfully applied to
optical character recognition in 1998 [67]. The main component of a CNN is the
convolutional layer. This layer consists of a set of rectangular matrices, known as
filters, that are used to extract features from an image. Such filters are often small
(usually 3x3) which is used to extract features at every (3x3) patch of an image.
This process is known as convolution. To extract these features for a single patch,
the inner product is computed between the filter and the patch (Figure 1.1). The
result is placed as a single entry in a new feature map. Thus the feature map rep-
resents features extracted at different locations of the image. One property of the
convolution operation is that it is translation equivariant. If the same object appears
at different positions, the output of the filter used in the convolution is the same at
each of those positions.

CNNs can be made deeper by adding more layers. For instance, another set
of filters can be applied to each patch of the feature map. In turn, a new set of
features get extracted for each spatial location of that feature map. The advantage
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of having these multiple layers of features is that they might represent higher level
of semantics. For example, if the first layer features represent low-level features
like edges, then the second layer features can extract more complex details like
contours that combine those edges. Since the filters are typically of size 3x3, they
can only capture smaller objects in the image. In order to capture larger objects,
the feature maps are downsampled before the next convolutional layer. This makes
larger objects look smaller so that their features can be extracted by the filters.
Another advantage of downsampling feature maps is translation invariance. An
important feature can be captured even if it is at a different spatial position. This
downsampling process is called max-pooling.

This framework is important for image classification. Higher level features
are often necessary for classifying images correctly. Successful CNNs have many
layers (up to 152 [48]) and have consistently been considered as state-of-the-art for
image-classification.

In image classification, the last feature map of the CNN is flattened into a single
long vector. The weighted sum of this vector is used to obtain a probability that the
image belongs to object classes.

CNNs are trained by adjusting the values of the filters and the parameters used
to compute the last feature maps. The goal is to maximize the image classification
accuracy on the training set. Since CNNs achieved a lot of success for image clas-
sification with large-scale datasets, they form the foundation for many computer
vision solutions.

Fully Convolutional Neural Networks. CNNs can be used for tasks other than
image classification as well. These tasks include image segmentation and object
detection. For segmentation, a CNN model can classify each pixel in an image in
order to obtain the mask for each object and the mask for the background region.

This type of CNN is known as Fully convolutional neural networks [79] (FCNs).
FCNs do not have a fully connected layer as the last layer like with CNNs that are
used for classification. FCN layers are mostly convolutional layers that output a
series of feature maps. The last feature map represents a classification score at ev-
ery spatial location of the image. The depth of that feature map is the number of
classes of the dataset. In order to obtain the label for a single pixel, the entry with
the largest value across the class dimension is set as the label. The first FCN based
method was proposed by Long et al. [79], which was successfully applied for large
scale semantic segmentation (see Figure 1.2).

Instance Segmentation. The task of instance segmentation is to get the mask for
each object in the image and classify them. A gold standard method for this task
is mask region-based convolutional neural networks (Mask R-CNN) [49]. Mask
R-CNN performs instance segmentation in two stages. In the first stage, a region

4



Figure 1.2: A fully convolutional neural networks classifying each pixel with the
object category. Image obtained from Long et al. [79].

proposal network outputs a set of bounding boxes (usually a thousand) indicating
possible locations for the objects of interest (Figure 1.3). The object in a bounding
box can be one of many categories. It can be a rock, dog, horse, pedestrian and so
on. In the second stage, a feature vector and a feature map are extracted for each
proposed bounding box. The feature vector is used to classify the bounding box,
while the feature map is used to segment the bounding box. For classification, a set
of fully connected layers is applied to the feature vector to obtain the classification
score. The size of the feature vector for each bounding box is the same, and they
are usually 1024. For the segmentation, the bounding box feature map is passed
through a fully convolutional neural network to classify each pixel in that bounding
box. The pixels classified as foreground define the mask for the object within the
bounding box.

Many instance segmentation methods build upon mask R-CNN such as MaskLab
[18]. Also, faster methods than mask R-CNN emerged that can perform instance
segmentation in real-time [38]. These methods are known as single-stage detec-
tors which skip the first stage of mask R-CNN by not requiring the extraction of
candidate bounding boxes.
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Figure 1.3: Instance Segmentation Mask R-CNN is a popular framework for in-
stance segmentation. It is a two-stage detector that generates bounding boxes, clas-
sifies them, and segments them. Image obtained from He et al. [49].

1.3 Object Counting

Object counting, as its name would suggest, is the task of counting the number
of objects in an image. It’s widely used for counting crowds of objects from a
fixed camera, which plays an important role for surveillance systems [128, 132],
traffic monitoring [29, 45], ecological surveys [8], and cell counting [25, 68]. In
traffic monitoring, counting methods can be used to track the number of moving
cars, pedestrians, and parked cars. They can also be used to monitor the count
of different species such as penguins, which is important for animal conservation.
Furthermore, object counting methods have been used for everyday scenes to count
objects coming from a large number of classes [35].

Figure 1.4: Various types of annotations. From left to right, the annotations are
ordered in increasing level of difficulty. Image obtained from the PASCAL PART
dataset [20]
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A straightforward way to teach a model to count is to train a model to detect
bounding boxes [103]. However, labeling images with bounding boxes does not
come cheap. In fact, it takes time and mental focus to obtain the right width and
height of the objects, especially when they overlap [57]. This challenge applies to
training models to perform the task of object detection as well. Thus, it is important
to consider weaker supervision [16]. In Figure 1.4, we show different annotations
starting from the weakest labels from the left to the strongest labels on the right.
Image-level labels only indicate whether certain categories of objects exist in the
image. Image-level counts requires the annotator to count the number of objects
existing in the image for each category. Point-level annotations requires a single
pixel being annotated for each object. Bounding box annotations requires care-
fully placed boxes that has the exact same height, and width as the object within
it. Finally, instance segmentation labels require per-pixel labels that distinguish
between the object classes and instances.

Early methods relied on bounding box annotations to count the number of ob-
jects in the image [70]. Their frameworks combine support vector machines and
histogram of gradient features to detect the objects and then count them [28, 127,
122]. Such methods have fallen out of fashion in favor of methods that learn
from point-level annotations, labels that are less costly to acquire than bounding
boxes [10].

For counting with point-level supervision, perhaps the first method was pro-
posed by Lempitsky and Zisserman [68]. It is a density-based method that explic-
itly learns how to count rather than to detect objects. They transform the point-
level annotations into a density map using a Gaussian kernel. Then, they train their
model using a least-squares objective to predict the density map. Many methods
build on top of this framework by incorporating different deep learning architec-
tures [89, 5, 6, 7, 45, 135, 71]. Nonetheless, the training procedures are similar
between them.

Interestingly, density-based methods outperform detection-based methods for
counting [71], despite needing less supervision. The intuition is that detection-
based methods try to learn a more difficult task, which includes predicting the
location, size, and shape of each object. As a result, this can make the model worse
at counting.

On the other hand, density-based methods face a common issue: they assume
a fixed object size and shape. The point annotations are converted to a density map
by applying a Gaussian kernel with a fixed size [45]. As a consequence, it becomes
more difficult for the model to distinguish between objects of different sizes and
shapes.

We address this limitation by proposing a localization-based fully convolu-
tional neural network (LCFCN) [65]. Our counting method uses the provided point
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annotations to guide its attention to the object instances in the scenes in order to
learn to localize them. It has a novel loss function that encourages the model to
output instance regions such that each region contains a single object instance (in
other words, a single point-level annotation). Similar to detection, the predicted
count is the number of predicted instance regions. As a result, our model has the
flexibility to predict different sized regions for different object instances, which
makes it suitable for counting objects that vary in size and shape. Another advan-
tage of using LCFCN is obtaining object locations. These locations are around
the center of each object which are better than a density heatmap which does not
discriminate between overlapping objects.

At the time of submission to ECCV2018, LCFCN achieved new state-of-the-art
results. This phenomenon seems to contradict with the statement made earlier that
solving a harder task, such as detection, results in poorer performance for easier
tasks like counting. After all, LCFCN is a localization method which is not as
difficult as the detection task, but not as easy as the counting task. Our intuition,
however, is that having the model explicitly learn to locate the objects is necessary
for counting objects, much like what humans do when they count.

The contributions of LCFCN [65] are as follows: (1) we propose a novel loss
function that encourages the network to output a single blob per object instance us-
ing point-level annotations only; (2) we design two methods for splitting large pre-
dicted blobs between object instances; and (3) we show that our method achieves
new state-of-the-art results on several challenging datasets including the Pascal
VOC and the Penguins dataset.

1.4 Instance Segmentation

Instance segmentation is the task of classifying every object pixel into a category
and discriminating between individual object instances. It has a wide variety of
applications such as autonomous driving [26], scene understanding [75, 35], and
medical imaging [94].

Most instance segmentation methods follow a two step procedure [49, 18, 38],
where they first detect objects and then segment them. For instance, Mask R-
CNN [49] uses Faster R-CNN [103] for detection and an FCN network [79] for
segmentation. However, these methods require dense labels which leads to a high
annotation time for new applications.

Another class of instance segmentation methods obtain the object masks by
grouping pixels based on a similarity measure. Notable works in this category
include methods based on watershed [9], template matching [123] and associa-
tive embedding [86]. Fathi et al. [36] proposed a grouping-based method that first
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learns the object locations and then learns the pixel embeddings in order to distin-
guish between object instances. These methods also require per-pixel labels which
are costly to acquire for new applications.

Many weakly supervised methods emerged to overcome the need for per-pixel
labels. Instead, they only require weaker labels including bounding boxes [57],
scribbles [74], and image-level [141, 24] annotations. This makes acquiring datasets
a significantly more scalable endeavour. According to Bearman et al. [10], it re-
quires 20 sec/img to acquire image-level labels (which are labels that only indicate
whether an object class appears in an image) for PASCAL VOC [35], compared to
239.7 sec/img for acquiring per-pixel labels. To date, only two weakly supervised
methods address instance segmentation with image-level labels [141, 24]. Unfortu-
nately, these two methods have been only shown to work on the most basic instance
segmentation dataset, PASCAL VOC 2012, and their results are much worse than
fully supervised methods. To address these limitations, we propose two methods,
one that learns from point-level annotations and the other from image-level anno-
tations.

Our method, WISE-Net, achieved new state-of-the-art results for instance seg-
mentation with point-level supervision. It is the first to address this problem setup.
Although point-level annotations are more informative than image-level annota-
tions, they are almost as costly to acquire [10].

WISE-Net has two branches: (1) a localization network (L-Net) that predicts
the location of each object; and (2) an embedding network (E-Net) that learns an
embedding space where pixels of the same object are close. The segmentation
masks for the located objects are obtained by grouping pixels with similar embed-
dings. At training time, while L-Net only requires point-level annotations, E-Net
uses pseudo-labels generated by a class-agnostic object proposal method. We eval-
uate our approach on the PASCAL VOC [35], COCO [75], CityScapes [26], and
KITTI [41] datasets.

The experiments show that our method (1) obtains competitive results com-
pared to fully-supervised methods in certain scenarios; (2) outperforms fully- and
weakly supervised methods with a fixed annotation budget; and (3) is a first strong
baseline for instance segmentation with point-level supervision.

We have also proposed WISE-ILS, which is a Weakly Supervised Instance
SEgmentation (WISE) method for Image-Level Supervision (ILS). In this case,
the image label is whether an object class exists in the image. The label does not
tell us how many objects are in the image nor their locations. Thus, the label is less
informative than point-level annotations.

However, image-level labels carry a strong advantage over point-level labels.
With minimal effort, we can obtain many images that have the objects of interest
(like an image with a “car” present). For instance, obtaining such images can
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be done using a scraping tool or an internet search engine, rather than having to
manually label them.

Our framework, WISE-ILS, is significantly different from the two methods
that exist for this setup [141, 24]. These two methods use classifiers that generate
class-activation maps (CAMs) [109, 1] in order to identify peaks that represent
specific locations of the object instances. At test time, the trained model obtains
the object masks in two steps. First, it uses the gradient with respect to the input to
get a rough mask for each object. Then, the rough mask is replaced with the best
matching proposal masks, which are generated from a pretrained object proposal
method [4, 93].

After training the CAM-based method (as in Zhou et al. [141], Cholakkal et al.
[24]), WISE-ILS performs two steps. First, it generates masks for each object in
the training set. Second, those masks are used to train a mask R-CNN [49], a state-
of-the-art instance segmentation method. This simple procedure has achieved new
state-of-the-art for this setup. Our results are based on evaluating our method on
PASCAL VOC 2012, a standard dataset for weakly supervised methods, where we
demonstrate major performance gains compared to existing methods with respect
to mean average precision.

We summarize our contributions as follows. (1) We present a novel framework
that can effectively train a fully supervised method on masks generated by training
on image-level class labels; (2) we show that our framework is amenable to dif-
ferent localization and segmentation methods (for example, a density-based peak
response map (PRM) [24] can be used for localization and RetinaMask [38] can be
used for instance segmentation), and (3) we achieve new state-of-the-art results on
a standard weakly supervised instance segmentation benchmark.

1.5 Crowd Localization in Dense Scenes

Crowd localization is the task of locating a large number of objects of interest in
images. This differs from instance segmentation in that the model does not need to
predict the masks of the objects. It just needs to predict their approximate location,
which could be a form of bounding box, or point annotation that is roughly around
the centers of the objects.

Methods that perform this task provide promising solutions for applications
such as public safety, crowd monitoring, and traffic management. For congested
scenes, some methods can only output the count [16]; however, for many applica-
tions, getting only the count is not enough. These applications demand localization
as well, which could be critical for making decisions in high-risk environments like
riots. Further, localization can help users understand the insights of the counting
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method to judge whether it works in practice.
Crowd datasets often have point-level annotations. These annotations are nec-

essary for many methods that learn to localize objects. Current methods use density-
based and localization-based methods to locate objects in the image [68, 65, 71].
Unfortunately, given a large sequence of image frames from a fixed camera, it
would require significant human effort to annotate the location of each object.
Thus, we investigate weaker supervision where only the image-level count is pro-
vided for each training image.

At first glance, it would seem that the effort required for collecting image-level
counts and point-level annotations are equivalent. After all, a human annotator
needs to point to every object in the image to count them. But this is not true for
several cases.

First, in the case where training images contain 5 or fewer objects, the annotator
can obtain the object count much faster than with point annotations [16]. Second,
in the case of having a large sequence of image frames, it is much easier to count
the number of objects across these frames than to locate each object. The annotator
can first count each object in the first frame, which roughly takes the same amount
as collecting point-level annotations. But if the number of objects remains similar
in the subsequent frames, the annotator would spend less time acquiring the counts
for those frames. Third, in the case of registration-based systems, object counts
can come for free. For instance, if a manager ordered a certain number of cans to
be put in a glass-windowed fridge, then the images taken of that fridge are already
labeled with the count of cans. Therefore, many cases exist where acquiring image
counts can take much less time than point-level annotations.

The few works that exist for localization based on counting are limited to
datasets with few objects [119, 40]. They treat the problem as classification and
use CAM-based methods [109, 1] to identify regions where the objects are as a
localization heatmap. They also leverage proposals [93] which they rank based on
the localization heatmap. At test time, the proposals with the highest scores are
considered the predicted objects of interest. While this framework is a standard for
this setup, it is limited to datasets where the number of objects of interest is usually
one, as in the PASCAL VOC dataset.

On the other hand, one work exists that detects multiple objects in an image
using count-supervision [40]. Known as C-WSL, it trains by performing two steps
every iteration. In the first step, it selects non-overlapping proposals with the high-
est probability of being the ground-truth, using the provided count information. In
the second step, a classification network is updated to maximize its probabilities
in predicting those selected proposals. Thus, it is a block coordinate optimization
paradigm. This procedure converges when the selected proposals do not change
across iterations. Afterwards, a faster region-based convolutonal neural networks
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(R-CNN) [42] is trained on the selected proposals generated for each training ex-
ample. The trained faster R-CNN is then used to detect the objects on the test
set.

However, a limitation of this framework is it uses a CAM-based method to
score the proposals. As a result, it cannot be directly applied to crowd datasets
where the same object class exists in every image. Further, the goal of our setup
is to locate the objects in addition to detecting them. As discussed in the counting
setup, having a method that learns to perform the more difficult task of detection
can yield worse localization results.

Nevertheless, we adapt C-WSL [40] to our setup by proposing a weakly su-
pervised localization method that we call as WSLM. For this method, we generate
proposals in the image and rank them based on those that are most likely to be
the objects of interest. This procedure is heavily influenced by the expectation-
maximization paradigm [30] used in many multiple instance learning [33] setups.

Different from C-WSL, WSLM converts the selected proposals into point-level
annotations, and then updates an LCFCN (our counting method) on these point-
level annotations. Hence, we leverage the localization and counting abilities of
LCFCN to localize and count objects. At test time, the trained LCFCN is used
directly to localize the objects of interest.

Since no direct relevant work exists for this particular setup, we compared our
method against several baselines, namely Glance [16] and WSLM with different
proposal ranking methods. We benchmarked our method against standard crowd
counting datasets. WSLM achieved better results than the baselines with respect
to mean-absolute error, a counting metric, and grid mean absolute error [45], a
localization metric.

We summarize our contributions as follows: (1) we show a novel framework
that can locate objects from count-level supervision only for crowd datasets, and
(2) we show that state-of-the-art results can be achieved by a novel modification of
several baseline frameworks.

1.6 Summary of Contributions

Our work contains novel methods where models don’t need fully annotated labels
to learn to perform their task. With these methods, we achieved state-of the art-
results in four different setups. We display a summary of these setups, and present
the novelty of the methods in Table 1.1.
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Method Task Supervision Overview

LCFCN counting point level Trains a segmentation network using a novel loss
function. This loss encourages a single blob per ob-
ject. The predicted count is the number of blobs in
the image (Figure 1.5).

WISE-Net ins. segm. point level A trained LCFCN finds the objects in the image.
Then, a trained embedding network groups pixels to
get the mask for each of these objects.

WISE-ILS ins. segm. image label A trained PRM [141] and a proposal network are
used to get object masks for each training image as
pseudo labels. Then, a mask R-CNN is trained on
those pseudo labels.

WSLM localization object count A trained Glance method outputs a regression acti-
vation map to get a heatmap of the object locations.
Using an RPN [49], a set of proposals are generated
for the training images, which are scored based on
that heatmap. The best proposals are selected us-
ing CSR [40] and their centroids are chosen as point
annotations, considered as pseudo labels. Then, an
LCFCN is trained on those pseudo labels.

Table 1.1: Summary of the proposed methods and their respective setups.
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Figure 1.5: A summary of our proposed methods. LCFCN predicts blobs for a
test image to obtain the count. WISE-Net first locates the objects using an LCFCN
and then extracts their masks using an embedding network. WISE-ILS first obtains
pseudo labels with the help of a proposal network. A mask R-CNN train on those
pseudo labels to learn to perform instance segmentation. WSLM first obtains point
annotations as pseudo labels and then trains an LCFCN to perform localization.
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Chapter 2

Where are the Blobs

Object counting is an important task in computer vision due to its growing de-
mand in applications such as surveillance, traffic monitoring, and counting ev-
eryday objects. State-of-the-art methods use regression-based optimization where
they explicitly learn to count the objects of interest. These often perform better than
detection-based methods that need to learn the more difficult task of predicting the
location, size, and shape of each object. However, we propose a detection-based
method that does not need to estimate the size and shape of the objects and that
outperforms regression-based methods. Our contributions are three-fold: (1) we
propose a novel loss function that encourages the network to output a single blob
per object instance using point-level annotations only; (2) we design two methods
for splitting large predicted blobs between object instances; and (3) we show that
our method achieves new state-of-the-art results on several challenging datasets in-
cluding the Pascal VOC and the Penguins dataset. Our method even outperforms
those that use stronger supervision such as depth features, multi-point annotations,
and bounding-box labels.

2.1 Introduction

Object counting is an important task in computer vision with many applications in
surveillance systems [128, 132], traffic monitoring [29, 45], ecological surveys [8],
and cell counting [25, 68]. In traffic monitoring, counting methods can be used to
track the number of moving cars, pedestrians, and parked cars. They can also be
used to monitor the count of different species such as penguins, which is impor-
tant for animal conservation. Furthermore, counting methods have been used for
counting objects present in everyday scenes where objects of interest come from a
large number of classes such as the Pascal VOC dataset [35].

Many challenges are associated with object counting. Models need to learn the
variability of the objects in terms of shape, size, pose, and appearance. Moreover,
objects may appear at different angles and resolutions, and may be partially oc-
cluded (see Fig. 2.1). Also, the background, weather conditions, and illuminations
can vary widely across the scenes. Therefore, the model needs to be robust enough
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Figure 2.1: Qualitative results on the Penguins [8] and PASCAL VOC
datasets [35]. Our method explicitly learns to localize object instances using only
point-level annotations. The trained model then outputs blobs where each unique
color represents a predicted object of interest. Note that the predicted count is
simply the number of predicted blobs.

to recognize objects in the presence of these variations in order to perform efficient
object counting.

Due to these challenges, regression-based models such as “Glance” and ob-
ject density estimators have consistently defined state-of-the-art results in object
counting [16, 89]. This is because their loss functions are directly optimized for
predicting the object count. In contrast, detection-based methods need to optimize
for the more difficult task of estimating the location, shape, and size of the object
instances. Indeed, perfect detection implies perfect count as the count is simply
the number of detected objects. However, models that learn to detect objects often
lead to worse results for object counting [16]. For this reason, we look at an easier
task than detection by focusing on the task of simply localizing object instances in
the scene. Predicting the exact size and shape of the object instances is not neces-
sary and usually poses a much more difficult optimization problem. Therefore, we
propose a novel loss function that encourages the model to output instance regions
such that each region contains a single object instance (i.e. a single point-level
annotation). Similar to detection, the predicted count is the number of predicted
instance regions (see Fig. 2.1). Our model only requires point supervision which is
a weaker supervision than bounding-box, and per-pixel annotations used by most
detection-based methods [103, 100, 9]. Consequently, we can train our model for
most counting datasets as they often have point-level annotations.

This type of annotation is cheap to acquire as it requires lower human effort
than bounding box and per-pixel annotations [10]. Point-level annotations provide
a rough estimate of the object locations, but not their sizes nor shapes. Our count-
ing method uses the provided point annotations to guide its attention to the object
instances in the scenes in order to learn to localize them. As a result, our model
has the flexibility to predict different sized regions for different object instances,
which makes it suitable for counting objects that vary in size and shape. In contrast,
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state-of-the-art density-based estimators often assume a fixed object size (defined
by the Gaussian kernel) or a constrained environment [45] which makes it difficult
to count objects with different sizes and shapes.

Given only point-level annotations, our model uses a novel loss function that
(i) allows it to predict the semantic segmentation labels for each pixel in the image
(similar to [10]) and (ii) encourages it to output a segmentation blob for each object
instance. During the training phase, the model learns to split the blobs that contain
more than one point annotation and to remove the blobs that contain no point-level
annotations.

Our experiments show that our method achieves superior object counting re-
sults compared to state-of-the-art counting methods including those that use stronger
supervision such as per-pixel labels. Our benchmark uses datasets representing
different settings for object counting: Mall [17], UCSD [14], and ShanghaiTech
B [136] as crowd datasets; MIT Traffic [129] and Park lot [29] as surveillance
datasets; Trancos [45] as a traffic monitoring dataset; and Penguins [8] as a popula-
tion monitoring dataset. We also show counting results for the PASCAL VOC [35]
dataset which consists of objects present in natural, “everyday” images. We also
study the effect of using different parts of the proposed loss function against count-
ing and localization performance.

We summarize our contributions as follows: (1) we propose a novel loss func-
tion that encourages the network to output a single blob per object instance using
point-level annotations only; (2) we design two methods for splitting large pre-
dicted blobs between object instances; and (3) we show that our method achieves
new state-of-the-art results on several challenging datasets including the Pascal
VOC and the Penguins dataset.

This chapter is organized as follows: Section 2.2 presents related works on
object counting. Section 2.3 describes the proposed approach, and Section 2.4
describes our experiments and results. Finally, we present the conclusion in Sec-
tion 2.6.

2.2 Related Work

Object counting has received significant attention over the past years [97, 16, 68].
It can be roughly divided into three categories [81]: (1) counting by clustering, (2)
counting by regression, and (3) counting by detection.

Early work in object counting use clustering-based methods. These are unsu-
pervised approaches where objects are clustered based on features such as appear-
ance and motion cues [97, 121]. Rabaud and Belongie [97] proposed using feature
points which are detected by motion and appearance cues and are tracked through
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time using PCA [111]. The objects are then clustered based on similar features.
Tu et al. [121] used an expectation-maximization method that cluster individuals
in crowds based on head and shoulder features. These methods use basic features
and often perform poorly for counting compared to deep learning approaches. An-
other drawback is that these methods only work for video sequences, rather than
still images.

Counting by regression methods have defined state-of-the-art results in many
benchmarks. They were shown to be faster and more accurate than other groups
such as counting by detection. These methods include Glance and density-based
methods that explicitly learn how to count rather than optimize for a localization-
based objective. Lempitsky and Zisserman [68] proposed the first method that
used object density to count people. They transform the point-level annotation
matrix into a density map using a Gaussian kernel. Then, they train their model
using a least-squares objective to predict the density map. One major challenge
is determining the optimal size of the Gaussian kernel which highly depends on
the object sizes. As a result, Zhang et al. [136] proposed a deep learning method
that adjusted the kernel size using a perspective map. This assumes fixed camera
images such as those used in surveillance applications. Onoro-Rubio Onoro-Rubio
and López-Sastre [89] extended this method by proposing a perspective-free multi-
scale deep learning approach. However, this method cannot be used for counting
everyday objects as their sizes vary widely across the scenes as it is highly sensitive
to the kernel size.

A straight-forward method for counting by regression is “Glance” [16], which
explicitly learns to count using image-level labels only. Glance methods are effi-
cient if the object count is small [16]. Consequently, the authors proposed a grid-
based counting method, denoted as “subitizing”, in order to count a large number
of objects in the image. This method uses Glance to count objects at different non-
overlapping regions of the image, independently. While Glance is easy to train
and only requires image-level annotation, the “subitizing” method requires a more
complicated training procedure that needs full per-pixel annotation ground-truth.

Counting by detection methods first detect the objects of interest and then sim-
ply count the number of instances. Successful object detection methods rely on
bounding boxes [103, 100, 78] and per-pixel labels [79, 53, 139] ground-truth. Per-
fect object detection implies perfect counting. However, Chattopadhyay et al. [16]
showed that Fast RCNN [42], a state-of-the-art object detection method, performs
worse than Glance and subitizing-based methods. This is because the detection task
is challenging in that the model needs to learn the location, size, and shape of ob-
ject instances that are possibly heavily occluded. While several works [16, 89, 68]
suggest that counting by detection is infeasible for surveillance scenes where ob-
jects are often occluded, we show that learning a notion of localization can help
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the model improve counting.
Similar to our method is the line of work proposed by Arteta et al. [5, 6, 7].

They proposed a method that detects overlapping instances based on optimizing
a tree-structured discrete graphical model. While their method showed promising
detection results using point-level annotations only, it performed worse for count-
ing than regression-based methods such as [68].

Our method is also similar to segmentation methods such as U-net [105] which
learns to segment objects using a fully-convolutional neural network. Unlike our
method, U-net requires the full per-pixel instance segmentation labels, whereas we
use point-level annotations only.

2.3 Localization-based Counting FCN

Our model is based on the fully convolutional neural network (FCN) proposed
by Long et al. [79]. We extend their semantic segmentation loss to perform object
counting and localization with point supervision. We denote the novel loss function
as localization-based counting loss (LC) and, we refer to the proposed model as
LC-FCN. Next, we describe the proposed loss function, the architecture of our
model, and the prediction procedure.

2.3.1 The Proposed Loss Function

LC-FCN uses a novel loss function that consists of four distinct terms. The first
two terms, the image-level and the point-level loss, encourage the model to predict
the semantic segmentation labels for each pixel in the image. This is based on the
weakly supervised semantic segmentation algorithm proposed by Bearman et al.
[10]. These two terms alone are not suitable for object counting as the predicted
blobs often group many object instances together (see the ablation studies in Sec-
tion 2.4). The last two terms encourage the model to output a unique blob for each
object instance and remove blobs that have no object instances. Overall, the four
loss terms is equivalent to applying the cross-entropy loss on strategically placed
foreground and background pixels. Note that LC-FCN only requires point-level
annotations that indicate the locations of the objects rather than their sizes, and
shapes.

Let T represent the point annotation ground-truth matrix which has label c at
the location of each object (where c is the object class) and zero elsewhere. Our
model uses a softmax function to output a matrix S where each entry Sic is the
probability that pixel i belongs to category c. The proposed loss function can be
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written as:

L(S, T ) = LI(S, T )︸ ︷︷ ︸
Image-level loss

+ LP (S, T )︸ ︷︷ ︸
Point-level loss

+ LS(S, T )︸ ︷︷ ︸
Split-level loss

+ LF (S, T )︸ ︷︷ ︸
False positive loss

, (2.1)

which we describe in detail next.

Image-level loss.

The goal of this loss term is to predict at least one pixel for object classes belonging
to the image, and no pixels for the classes that do not belong to the image. It
performs a global max-pooling operation on the output per-pixel probabilities for
an image and applies a cross-entropy loss against the class labels of that image.
Let Ce be the set of classes present in the image. For each class c ∈ Ce, LI
increases the probability that the model labels at least one pixel as class c. Also,
let C¬e be the set of classes not present in the image. For each class c ∈ C¬e, the
loss decreases the probability that the model labels any pixel as class c. Ce and
C¬e can be obtained from the provided ground-truth point-level annotations. More
formally, the image level loss is computed as follows:

LI(S, T ) = − 1

|Ce|
∑
c∈Ce

log(Stcc)−
1

|C¬e|
∑

c∈C¬e

log(1− Stcc) , (2.2)

where tc = argmaxi∈ISic. For each category present in the image, at least one
pixel should be labeled as that class. For classes that do not exist in the image,
none of the pixels should belong to that class. Note that we assume that each
image has at least one background pixel; therefore, the background class belongs
to Ce.

Point-level loss.

This term encourages the model to correctly label the small set of supervised pixels
Is contained in the ground-truth. It uses the standard cross-entropy loss between
the per-pixel probability output and the provided point-level annotations. Is repre-
sents the locations of the object instances. This is formally defined as,

LP (S, T ) = −
∑
i∈Is

log(SiTi) , (2.3)

where Ti represents the true label of pixel i. Note that this loss ignores all the pixels
that are not annotated.
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Split-level loss.

LS discourages the model from predicting blobs that have two or more point-
annotations. Therefore, if a blob has n point annotations, this loss enforces it to be
split into n blobs, each corresponding to a unique object. This loss function is op-
timized as follows. The splits are made by first finding boundaries between object
pairs. Those boundaries are set as background pixels where the cross-entropy loss
is computed between the per-pixel output probabilities and the background pixels
. As a result, The model outputs a binary matrix F where pixel i is foreground if
argmaxkSik > 0, and background, otherwise.

We apply the connected components algorithm proposed by Wu et al. [131] to
find the blobs B in the foreground mask F . We only consider the blobs with two
or more ground truth point annotations B̄. We propose two methods for splitting
blobs (see Fig. 2.2),

1. Line split method. The goal of this method is to find a boundary that allows
us to split a blob with more than one object. If two points are within a
single blob, then we first draw a straight line between those two points. Then
we look into every possible line that is perpendicular to that line. The line
with pixels that have the highest average background probability is selected.
Then, the cross-entropy loss is computed between each of these pixels and
the per-pixel output probabilities of the model.

More formally, for each blob b in B̄ we pair each point with its closest point
resulting in a set of pairs bP . For each pair (pi, pj) ∈ bP we use a scoring
function to determine the best segment E that is perpendicular to the line
between pi and pj . The segment lines are within the predicted blob and they
intersect the blob boundaries. The scoring function z(·) for segment E is
computed as,

z(E) =
1

|E|
∑
i∈E

Si0 , (2.4)

which is the mean of the background probabilities belonging to segment E
(where 0 is the background class). The best edge Ebest is defined as the set
of pixels representing the edge with the highest probability of being back-
ground among all the perpendicular lines. This determines the “most likely”
edge of separation between the two objects. Then we set Tb as the set of
pixels representing the best edges generated by the line split method.

2. Watershed split method. This consists of global and local segmentation pro-
cedures. For the global segmentation, we apply the watershed segmentation
algorithm [11] globally on the input image where we set the ground-truth
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Predicted blobs Line splits Watershed splits

Figure 2.2: Split methods. Comparison between the line split, and the watershed
split. The loss function identifies the boundary splits (shown as yellow lines).
Yellow blobs represent those with more than one object instance, and red blobs
represent those that have no object instance. Green blobs are true positives. The
squares represent the ground-truth point annotations.

point-annotations as the seeds. The segmentation is applied on the distance
transform of the foreground probabilities, which results in k segments where
k is the number of point-annotations in the image.

For the local segmentation procedure, we apply the watershed segmentation
only within each blob b in B̄ where we use the point-annotation ground-truth
inside them as seeds. This adds more importance to splitting big blobs when
computing the loss function. Finally, we define Tb as the set of pixels repre-
senting the boundaries determined by the local and global segmentation.

Fig. 2.2 shows the split boundaries using the line split and the watershed split
methods (as yellow lines). Given Tb, we compute the split loss as follows,

LS(S, T ) = −
∑
i∈Tb

αi log(Si0), (2.5)

where Si0 is the probability that pixel i belongs to the background class and αi is
the number of point-annotations in the blob in which pixel i lies. This encourages
the model to focus on splitting blobs that have the most point-level annotations.
The intuition behind this method is that learning to predict a boundary between the
object instances allows the model to distinguish between them. As a result, the
penalty term encourages the model to output a single blob per object instance.

We emphasize that it is not necessary to get the right edges in order to accu-
rately count. It is only necessary to make sure we have a positive region on each
object and a negative region between objects. Other heuristics are possible to con-
struct a negative region which could still be used in our framework. For example,
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fast label propagation methods proposed in Nutini et al. [88, 87] can be used to
determine the boundaries between the objects in the image. Note that these 4 loss
functions are only used during training. The framework does not split or remove
false positive blobs at test time. The predictions are based purely on the blobs
obtained from the probability matrix S.

False Positive loss.

The goal of this loss term is to prevent the model from predicting blobs that have
no objects in them. For a given training image, the model outputs blobs using
the procedure described in the split-level loss section. The pixels belonging to
the blobs without objects define background pixels. Then the cross-entropy loss is
computed between the model’s per-pixel probabilities and these background pixels.
More formally, the loss function is defined as

LF (S, T ) = −
∑
i∈Bfp

log(Si0), (2.6)

whereBfp is the set of pixels constituting the blobs predicted for each class (except
the background class) that contain no ground-truth point annotations (note that Si0
is the probability that pixel i belongs to the background class). All the predictions
withinBfp are considered false positives (see the red blobs in Fig. 2.5). Therefore,
optimizing this loss term results in less false positive predictions as shown in the
qualitative results in Fig. 2.5. The experiments show that this loss term is extremely
important for accurate object counting.

2.3.2 LC-FCN Architecture and Inference

LC-FCN can be any FCN architecture such as FCN8 architecture [79], Deeplab [19],
Tiramisu [53], and PSPnet [139]. LC-FCN consists of a backbone that extracts the
image features. The backbone is an Imagenet pretrained network such as VGG16
or ResNet-50 [113, 31]. The image features are then upscaled using an upsampling
path to output a score for each pixel i indicating the probability that it belongs to
class c (see Fig. 2.3).

We predict the number of objects for class c through the following three steps:
(i) the upsampling path outputs a matrix Z where each entry Zic is the probability
that pixel i belongs to class c; then (ii) we generate a binary mask F , where pixel
Fic = 1 if arg maxk Zik = c, and 0 otherwise; lastly (iii) we apply the connected
components algorithm [131] on F to get the blobs for each class c. The count is
the number of predicted blobs (see Fig. 2.3).

23



Figure 2.3: Given an input image, our model first extracts features using a back-
bone architecture such as ResNet. The extracted features are then upsampled
through the upsampling path to obtain blobs for the objects. In this example, the
model predicts the blobs for persons and bikes for an image in the PASCAL VOC
2007 dataset.

Separated Mixed
Method Max Median Max Median

Density-only [8] 8.11 5.01 9.81 7.09

With seg. and depth [8] 6.38 3.99 5.74 3.42

With seg and no depth [8] 5.77 3.41 5.35 3.26

Marsde et al. [83] 5.8 x x x

Glance 6.08 5.49 1.84 2.14

LC-FCN8 3.74 3.28 1.62 1.80

LC-ResFCN 3.96 3.43 1.50 1.69

Table 2.1: Penguins datasets. Evaluation of our method against previous state-
of-the-art methods. The evaluation is made across the four setups explained in the
dataset description. Note that the methods used by Arteta et al. [8] use annotations
from multiple labelers and depth.

2.4 Experiments

In this section we describe the evaluation metrics, the training procedure, and
present the experimental results and discussion.
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2.4.1 Setup

Evaluation Metric.

For datasets with single-class objects, we report the mean absolute error (MAE)
which measures the deviation of the predicted count pi from the true count ci,
computed as 1

N

∑
i |pi−ci|. MAE is a commonly used metric for evaluating object

counting methods [15, 115]. For datasets with multi-class objects, we report the
mean root mean square error (mRMSE) as used in Chattopadhyay et al. [16] for
the PASCAL VOC 2007 dataset. We measure the localization performance using
the average mean absolute error (GAME) as in Guerrero et al. [45]. Since our
model predicts blobs instead of a density map, GAME might not be an accurate
localization measure. Therefore, in section 2.4.3 we use the F-Score metric to
assess the localization performance of the predicted blobs against the point-level
annotation ground-truth.

Training Procedure.

We use the Adam [58] optimizer with a learning rate of 10−5 and weight decay
of 5 × 10−5. We use the provided validation set for early stopping only. During
training, the model uses a batch size of 1 which can be an image of any size. We
double our training set by applying the horizontal flip augmentation method on
each image. Finally, we report the prediction results on the test set. We compare
between three architectures: FCN8 [79]; ResFCN which is FCN8 that uses ResNet-
50 as the backbone instead of VGG16; and PSPNet [139] with ResNet-101 as the
backbone. We use the watershed split procedure in all our experiments.

2.4.2 Results and Discussion

Penguins Dataset [8].

The Penguins dataset comprises images of penguin colonies located in Antarctica.
We use the two dataset splits as in Arteta et al. [8]. In the “separated” dataset split,
the images in the training set come from different cameras than those in the test
set. In the “mixed” dataset split, the images in the training set come from the same
cameras as those in the test set. In Table 2.1, the MAE is computed with respect
to the Max and Median count (as there are multiple annotators). Our methods
significantly outperform the methods proposed by Arteta et al. [8] in all of the four
settings, although their methods use depth features and the multiple annotations
provided for each penguin. This suggests that LC-FCN can learn to distinguish
between individual penguins despite the heavy occlusions and crowding.

25



Method MAE GAME(1) GAME(2) GAME(3)

Lemptisky+SIFT [45] 13.76 16.72 20.72 24.36

Hydra CCNN [89] 10.99 13.75 16.69 19.32

FCN-MT [135] 5.31 - - -

FCN-HA [134] 4.21 - - -

CSRNet [71] 3.56 5.49 8.57 15.04

Glance 7.0 - - -

LC-FCN8 4.53 7.00 10.66 16.05

LC-ResFCN 3.39 5.2 7.92 12.57

LC-PSPNET 3.57 4.98 7.42 11.67

Table 2.2: Trancos dataset. Evaluation of our method against previous state-of-
the-art methods, comparing the mean absolute error (MAE) and the grid average
mean absolute error (GAME) as described in Guerrero et al. [45].

Trancos Dataset [89].

The Trancos dataset comprises images taken from traffic surveillance cameras lo-
cated along different roads. The task is to count the vehicles present in the regions
of interest of the traffic scenes. Each vehicle is labeled with a single point anno-
tation that represents its location in the image. We observe in Table 2.2 that our
method achieves new state-of-the-art results for counting and localization. Note
that GAME(L) subdivides the image using a grid of 4L non-overlapping regions,
and the error is computed as the sum of the mean absolute errors in each of these
subregions. For our method, the predicted count of a region is the number of
predicted blob centers in that region. This provides a rough assessment of the
localization performance. Compared to the methods in Table 2.2, LC-FCN does
not require a perspective map nor a multi-scale approach to learn objects of dif-
ferent sizes. These results suggest that LC-FCN can accurately localize and count
extremely overlapping vehicles.

Parking Lot [29].

The dataset comprises surveillance images taken at a parking lot in Curitiba, Brazil.
We used the PUCPR subset of the dataset where the first 50% of the images was
set as the training set and the last 50% as the test set. The last 20% of the training
set was set as the validation set for early stopping. The ground truth consists of a
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Method mRMSE mRMSE-nz m-relRMSE m-relRMSE-nz

Glance-noft-2L [16] 0.50 1.83 0.27 0.73

Aso-sub-ft-3× 3 [16] 0.42 1.65 0.21 0.68

Faster-RCNN [16] 0.50 1.92 0.26 0.85

LC-ResFCN 0.31 1.20 0.17 0.61
LC-PSPNet 0.35 1.32 0.20 0.70

Table 2.3: PASCAL VOC. We compare against the methods proposed in [16].
Our model evaluates on the full test set, whereas the other methods take the mean
of ten random samples of the test set evaluation. Note that Aso-sub-ft-3 uses full
per-pixel supervision

bounding box for each parked car since this dataset is primarily used for the de-
tection task. Therefore, we convert them into point-level annotations by taking the
center of each bounding box. Table 2.5 shows that LC-FCN significantly outper-
forms Glance in MAE. LC-FCN8 achieves only 0.21 average miscount per image
although many images contain more than 20 parked cars. This suggests that explic-
itly learning to localize parked cars can perform better in counting than methods
that explicitly learn to count from image-level labels (see Fig. 2.5 for qualitative
results). Note that this is the first counting method being applied on this dataset.

MIT Traffic [128].

This dataset consists of surveillance videos taken from a single fixed camera. It has
20 videos, which are split into a training set (Videos 1-8), a validation set (Videos
0-10), and a test set (Videos 11-20). Each video frame is provided with a bounding
box indicating each pedestrian. We convert them into point-level annotations by
taking the center of each bounding box. Table 2.5 shows that our method signifi-
cantly outperforms Glance, suggesting that learning a localization-based objective
allows the model to ignore the background regions that do not contribute to the ob-
ject count. As a result, LC-FCN is less likely to overfit on irrelevant features from
the background. To the best of our knowledge, this is the first counting method
being applied on this dataset.

Pascal VOC 2007 [35].

We use the standard training, validation, and test split as specified in Everingham
et al. [35]. We use the point-level annotation ground-truth provided by Bearman
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Methods UCSD Mall ShanghaiTech B

FCN-rLSTM [134] 1.54 - -

MoCNN [63] - 2.75 -

CNN-boosting [125] 1.10 2.01 -

M-CNN [136] 1.07 - 26.4

CP-CNN [114] - - 20.1

CSRNet [71] 1.16 - 10.6

LC-FCN8 1.51 2.42 13.64

LC-ResFCN 0.99 2.12 25.89

LC-PSPNet 1.01 2.00 21.61

Table 2.4: Crowd datasets MAE results.

Figure 2.4: Predicted blobs on a Shang-
haiTech B test image.

et al. [10] to train our LC-FCN methods. We evaluated against the count of the
non-difficult instances of the Pascal VOC 2007 test set.

Table 2.3 compares the performance of LC-FCN with different methods pro-
posed by Chattopadhyay et al. [16]. We point the reader to Chattopadhyay et al.
[16] for a description of the evaluation metrics used in the table. We show that
LC-FCN achieves new state-of-the-art results with respect to mRMSE. We see that
LC-FCN outperforms methods that explicitly learn to count although learning to
localize objects of this dataset is a very challenging task. Further, LC-FCN uses
weaker supervision than Aso-sub and Seq-sub as they require the full per-pixel
labels to estimate the object count for different image regions.
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MIT Traffic PKLot Trancos Penguins
Separated

Method MAE FS MAE FS MAE FS MAE FS

Glance 1.57 - 1.92 - 7.01 - 6.09 -

LI + LP 3.11 0.38 39.62 0.04 38.56 0.05 9.81 0.08

LI + LP + LS 1.62 0.76 9.06 0.83 6.76 0.56 4.92 0.53

LI + LP + LF 1.84 0.69 39.60 0.04 38.26 0.05 7.28 0.04

LC-ResFCN 1.26 0.81 10.16 0.84 3.39 0.68 3.96 0.63

LC-FCN8 0.91 0.69 0.21 0.99 4.53 0.54 3.74 0.61

Table 2.5: Quantitative results. Comparison of different parts of the proposed
loss function for counting and localization performance.

Crowd Counting Datasets.

Table 2.4 reports the MAE score of our method on 3 crowd datasets using the
setup described in the survey paper [115]. For this experiment, we show our results
using ResFCN as the backbone with the Watershed split method. We see that our
method achieves competitive performance for crowd counting. Fig. 2.4 shows the
predicted blobs of our model on a test image of the ShanghaiTech B dataset. We
see that our model predicts a blob on the face of each individual. This is expected
since the ground-truth point-level annotations are marked on each person’s face.

2.4.3 Ablation Studies

Localization Benchmark.

Since robust localization is useful in many computer vision applications, we use the
F-Score measure to directly assess the localization performance of our model. F-
Score is a standard measure for detection as it considers both precision and recall,
F-Score = 2TP

2TP+FP+FN , where the number of true positives (TP) is the number of
blobs that contain at least one point annotation; the number of false positives (FP)
is the number of blobs that contain no point annotation; and the number of false
negatives (FN) is the number of point annotations minus the number of true posi-
tives. Table 2.5 shows the localization results of our method on several datasets.
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Figure 2.5: Qualitative results of LC-FCN trained with different terms of the pro-
posed loss function. (a) Test images obtained from MIT Traffic, Parking Lot, Tran-
cos, and Penguins. (b) Prediction results using only image-level and point-level
loss terms. (c) Prediction results using image-level, point-level, and split-level loss
terms. (d) Prediction results trained with the full proposed loss function. The green
blobs and red blobs indicate true positive and false positive predictions, respec-
tively. Yellow blobs represent those that contain more than one object instance.

Loss Function Analysis.

We assess the effect of each term of the loss function on counting and localization
results. We start by looking at the results of a model trained with the image-level
loss LI and the point-level loss LP only. These two terms were used for semantic
segmentation using point annotations [10]. We observe in Fig. 2.5(b) that a model
using these two terms results in a single blob that groups many object instances
together. Consequently, this performs poorly in terms of the mean absolute error
and the F-Score (see Table 2.5). As a result, we introduced the split-level loss
function LS that encourages the model to predict blobs that do not contain more
than one point-annotation. We see in Fig. 2.5(c) that a model using this additional
loss term predicts several blobs as object instances rather than one large single blob.
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Split method Trancos Penguins
LC-ResFCN (L) 4.77 1.89

LC-ResFCN (W) 3.34 0.95

Figure 2.6: Split Heuristics Analysis. Comparison between the watershed split
method and the line split method against the validation MAE score.
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Figure 2.7: Split Heuristics Analysis. Comparison between the watershed split
method and the line split method against the validation MAE score.

However, since LI + LP + LS does not penalize the model for predicting blobs
with no point annotations, it can often lead to many false positives. Therefore,
we introduce the false positive loss LF that discourages the model from predicting
blobs with no point annotations. By adding this loss term to the optimization, LC-
FCN achieves significant improvement as seen in the qualitative and quantitative
results (see Fig. 2.5(d) and Table 2.5). Further, including only the split-level loss
leads to predicting a huge number of small blobs, leading to many false positives
which makes performance worse. Combining it with the false-positive loss avoids
this issue which leads to a net improvement in performance. On the other hand,
using only the false positive loss it tends to predict one huge blob.

Split Heuristics Analysis.

In Fig. 2.4.3 we show that the watershed split achieves better MAE on Trancos and
Penguins validation sets. Further, using the watershed split achieves much faster
improvement on the validation set with respect to the number of epochs. This
suggests that using proper heuristics to identify the negative regions is important,
which leaves an open area for future work.

31



2.5 Limitations

LCFCN might be sensitive to the threshold used to get the blobs. For instance, if
the threshold is set to 0.5, and the probability output for multiple objects, say 10,
is 0.25, then LCFCN will output a count of zero. In this case it is likely that there
is at least one object in the image, which LCFCN might fail to count.

LCFCN’s loss function can be highly unstable in the case when many objects
overlap. The optimization might oscillate between satisfying the split-level loss
and the point-level loss causing it to never converge. Further, the loss function is
not directly differentiable with respect to the output of LCFCN. A set of pseudo
ground-truth labels are generated every time the soft probabilities are output from
the network. Those hard labels are then used to update the model parameters.
In this case, it is important to perform early stopping on a validation set before
evaluating the model on the test set.

The optimization speed and convergence is also affected by the amount of
weighing done between the 4 loss terms. If there are many overlapping objects,
then it might help to lower the weight for the split-level loss. Otherwise, the amount
of background pixels might be much more than foreground pixels making LCFCN
predict most regions as background leading to many false negatives.

It is easier for LCFCN to locate larger objects than smaller ones. LCFCN has
more space to output a blob around the center of larger objects, even if these objects
overlap. In this case, the split-level loss is easier to optimize. For smaller objects, it
might be difficult to split the blobs because typical backbones have limited capac-
ity. The receptive field of the backbone and the amount of downsamplings required
might not allow LCFCN to distinguish between small objects that are few pixels
apart.

2.6 Conclusion

We propose LC-FCN, a fully-convolutional neural network, to address the prob-
lem of object counting using point-level annotations only. We propose a novel loss
function that encourages the model to output a single blob for each object instance.
Experimental results show that LC-FCN outperforms current state-of-the-art mod-
els on the PASCAL VOC 2007, Trancos, and Penguins datasets which contain
objects that are heavily occluded.
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Chapter 3

Instance Segmentation with Point
Supervision

Instance segmentation methods often require costly per-pixel labels. We propose
a method that only requires point-level annotations. During training, the model
only has access to a single pixel label per object, yet the task is to output full
segmentation masks. To address this challenge, we construct a network with two
branches: (1) a localization network (L-Net) that predicts the location of each ob-
ject; and (2) an embedding network (E-Net) that learns an embedding space where
pixels of the same object are close. The segmentation masks for the located ob-
jects are obtained by grouping pixels with similar embeddings. At training time,
while L-Net only requires point-level annotations, E-Net uses pseudo-labels gen-
erated by a class-agnostic object proposal method. However, since it is challeng-
ing to learn object masks from point-level annotations only, the object proposal
method was trained on a large scale dataset labeled with class-agnostic masks. We
evaluate our approach on PASCAL VOC, COCO, KITTI and CityScapes datasets.
The experiments show that our method (1) obtains competitive results compared to
fully-supervised methods in certain scenarios; (2) outperforms fully- and weakly
supervised methods with a fixed annotation budget; and (3) is a first strong baseline
for instance segmentation with point-level supervision.

3.1 Introduction

Instance segmentation is the task of classifying every object pixel into a category
and discriminating between individual object instances. It has a wide variety of
applications such as autonomous driving [26], scene understanding [75, 35], and
medical imaging [94].

Most instance segmentation methods, such as Mask-RCNN [49] and MaskLab
[18], rely on per-pixel labels which requires huge human effort. For instance, ob-
taining labels for PASCAL VOC [35] requires an average time of 239.7 seconds per
image [10]. Other datasets with more objects to annotate such as CityScapes [26]
can take up to 1.5 hours per image.
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Figure 3.1: WISE network. Our method, WISE, is trained using point-level an-
notations only. At test time, WISE first uses L-Net to locate the objects in the
image, and then uses E-Net to predict the masks of the located objects. Finally, the
predicted masks are refined with the help of an object proposal method.

Indeed, having a method that can train with weaker supervision can vastly re-
duce the required annotation cost. According to Bearman et al. [10], manually
collecting image-level and point-level labels for the PASCAL VOC dataset took
only 20.0 and 22.1 seconds per image, respectively. These annotation methods are
an order of magnitude faster than acquiring full segmentation labels (see Figure 3.2
for a comparison between the point-level and per-pixel annotation methods).

For semantic segmentation, other forms of weaker labels were explored such
as bounding boxes [57], scribbles [74], and image-level annotation [141]. For
instance segmentation, few work exist that use weak supervision [141, 24]. In this
paper, we propose a weakly supervised Instance SEgmentation (WISE) network,
which is the first to address this task using point-level supervision and supervision
from pretrained proposal networks. However, since it is challenging to learn object
masks from point-level annotations only, the object proposal method was trained
on a large scale dataset labeled with class-agnostic masks.

WISE has two branches: (1) a localization network (L-Net) that predicts the
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Figure 3.2: Image annotation. Point-level (top) and per-pixel (bottom) labels for
COCO and the CityScapes datasets.

location of each object and (2) an embedding network (E-Net) that learns an em-
bedding space where pixels of the same object are closer. L-Net is trained using
a loss function that forces the network to output a single point per object instance.
E-Net is trained using a similarity-based objective function to force the pixel em-
beddings to be similar within the same object mask. Since we do not have access
to the ground-truth object masks, we instead use pseudo-labels generated by an ob-
ject proposal method. These pseudo-labels belong to arbitrary objects and have no
class labels and therefore cannot be directly applied for instance segmentation. At
test time, L-Net first predicts the object locations. Second, E-Net outputs the em-
bedding value for each pixel. Then the pixels with the most similar embeddings to
an object’s predicted pixel location become part of that object’s mask (Figure 3.1).

We summarize our contributions as follows: (1) we provide a first strong base-
line for instance segmentation with point-level supervision; (2) we evaluate our
method on a wide variety of datasets, including, PASCAL VOC [35], COCO [75],
CityScapes [26], and KITTI [41] datasets; (3) we obtain competitive results com-
pared to fully-supervised methods; and (4) our method outperforms fully- and
weakly supervised methods when the annotation budget is limited.
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3.2 Related Work

Our approach lies at the intersection of object localization, metric learning, ob-
ject proposal methods, and instance segmentation. These topics have been studied
extensively and we review the literature below. The novelty of our method is the
combination of these techniques into a new setup, namely, instance segmentation
with point-level supervision.

Instance segmentation. Instance segmentation is an important computer vision
task that can be applied in many real-life applications [102, 104]. This task consists
of classifying every object pixel into categories and distinguishing between object
instances. Most methods follow a two step procedure [49, 18, 38], where they first
detect objects and then segment them. For instance, Mask-RCNN [49] uses Faster-
RCNN [103] for detection and an FCN network [79] for segmentation. However,
these methods require dense labels which leads to a high annotation time for new
applications.

Embedding-based instance segmentation. Another class of instance segmenta-
tion methods obtain the object masks by grouping pixels based on a similarity
measure. Notable works in this category include methods based on watershed [9],
template matching [123] and associative embedding [86]. Fathi et al. [36] propose
a grouping-based method that first learns the object locations and then learns the
pixel embeddings in order to distinguish between object instances. These meth-
ods also require per-pixel labels which are costly to acquire for new applications.
However, our method follows a similar procedure for obtaining the segmentation
masks while requiring weaker supervision.

Weakly supervised instance segmentation. Per-pixel labels used by fully su-
pervised instance segmentation methods require a high annotation cost [35, 26].
Therefore many weakly supervised methods have been explored for object de-
tection [120, 12], semantic segmentation [90, 60, 1, 109] and instance segmen-
tation [57, 141, 24]. Point-level annotation is one of the fastest ways to annotate
object instances. Although such annotation one of the least informative forms of
weak supervision, they were shown to be effective for semantic segmentation [10].
Inspired by their cost-effectiveness, we explore the novel problem setup of instance
segmentation with point supervision in this work.

Object localization with point supervision. An important step in instance seg-
mentation is to locate objects of interest before segmenting them. One way to
perform object localization is to use object detection methods [103, 99]. However,
these methods require bounding-box labels. In contrast, several methods exist that
use weaker supervision to identify object locations [116, 117, 68, 71]. Close to our
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Figure 3.3: Training WISE. Our method consists of a localization branch (L-Net)
and an embedding branch (E-Net). During training, L-Net optimizes Eq. ?? in
order to output a single point per object instance. E-Net optimizes Eq. 3.2 in order
to group pixels that belong to the same object instance.

work is LCFCN (Chapter 2) which uses point-level annotations in order to obtain
the locations and counts of the objects of interest. While this method gives accurate
counts and identifies a partial mask for each instance, it does not produce accurate
segmentation of the instances. We extend this method by using an embedding net-
work that groups pixels that are most similar to the predicted object locations in
order to obtain their masks.

Object proposals. Weakly supervised methods often rely on object proposals [51]
to ease the task of detection [120, 12] and segmentation [90, 10, 141, 60]. Object
proposal methods can output thousands of object candidates per image, but they
do not output class labels for these candidates. Many such methods have been
proposed over the last decade in order to obtain high quality candidates [124, 143,
4, 82, 91, 92]. SharpMask [92] is a popular deep-learning based object proposal
method that has been successfully applied to many weakly supervised computer
vision problems. However, their output object masks cannot be directly used for
instance segmentation as they belong to arbitrary objects and have no class labels.
Our framework uses pseudo-labels generated by SharpMask.

3.3 Proposed Method

We address the problem of weakly supervised instance segmentation, where each
labeled object has a single point annotation. Our method, WISE network, has two
output branches that share a common feature extraction backbone (Figure 3.3): (1)
a localization branch (L-Net) that is trained for locating objects in the image, and
(2) an embedding branch (E-Net) that outputs an embedding vector for each pixel.
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L-Net is trained using point-level annotations in order to output a single pixel for
each object to represent its location and category in the image. On the other hand,
E-Net is trained using masks obtained by a pretrained proposal method. The trained
E-Net can output an embedding vector for each pixel such that similar ones belong
to the same object’s mask. Note that proposal methods have been widely used for
different weakly supervised problem setups [141, 24, 12, 90, 10]

WISE obtains the mask of an object as follows. First, L-Net outputs a pixel la-
bel per object to identify its location, category, and instance. Then, the embedding
of every pixel in the image is compared to the embedding of the pixels predicted
by L-Net to identify which object instance they belong to. Finally, the pixels are
grouped to form the object masks in the image.

3.3.1 Localization Branch (L-Net)

The goal of L-Net is to obtain the locations and categories of the objects in the
image. L-Net is based on LC-FCN Chapter 2 which trains with point level annota-
tions to produce a single blob per object. While LC-FCN was originally designed
for counting, it is able to locate objects effectively. LC-FCN is based on a semantic
segmentation architecture that is similar to FCN [79]. Indeed, semantic segmenta-
tion methods are not suitable for instance segmentation as they often predict large
blobs that merge several object instances together. LC-FCN addresses this issue
by optimizing a loss function that ensures that only a single small blob is predicted
around the center of each object. The location loss term LL is described in detail
in Chapter 2.

Since LC-FCN’s predicted blobs are too small to be considered as useful seg-
mentation masks, we instead leverage the location of each blob by identifying the
pixel with the highest probability of being foreground (Figure 3.4).

3.3.2 Embedding Branch (E-Net)

The goal of E-Net is to produce object masks by grouping pixels with similar em-
beddings together. E-Net’s architecture is based on FCN8 [79], which can output
an embedding vector per image pixel. Using a similarity loss, E-Net learns to out-
put similar embeddings for pixels that belong to the same object and dissimilar
otherwise. This loss requires several points per object (including the background)
in order to distinguish between different objects. While we do not have access
to the ground-truth masks, we instead use masks generated by an object proposal
method to assign a mask for each object.

E-Net learns a mapping from an input image to a set of embedding vectors of
size d for each pixel. Let Ei and Ej be the embeddings for pixel i and pixel j,
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Figure 3.4: Localization branch (L-Net). L-Net’s raw output is a small blob per
predicted object (top). L-Net’s final output is the set of pixels with the largest
activation within their respective blobs (bottom). These pixels are used as input to
E-Net at test time.

respectively. We measure the similarity between a pair of pixels using a squared
exponential kernel function, similar to that of Fathi et al. [36]:

S(i, j) = exp

(
−||Ei − Ej ||22

2d

)
, (3.1)

where S(Ei, Ej) tends to 1 as Ei and Ej get closer, and tends to 0 as they get apart
in the embedding space. Note that our method can use other similarity functions
as in Newell et al. [86], Fathi et al. [36], Kong and Fowlkes [61].

Our goal is to train E-Net such that embeddings of pixel pairs belonging to the
same object instance yi = yj have the same embedding S(i, j) = 1, and to dif-
ferent object instances yi 6= yj have different embeddings S(i, j) = 0. Therefore,
E-Net minimizes the following loss function4:

LE = −
∑

(i,j)∈P

[
1{yi=yj} logS(Ei, Ej) + 1{yi 6=yj} log (1− S(Ei, Ej))

]
, (3.2)

where P is a set of pixel pairs. We found that using the negative log-liklihood gave
us a more stable optimization compared to using the L2 loss.

4Note that the log and exp cancel out in the first term of the equation but not the second term.
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Figure 3.5: pseudo-labels. (Left) ground-truth point-level annotations; (Center) a
set of generated object proposals that intersect with the point annotations; (Right)
proposals with best “objectness”.

Since we require more than one point label per object to optimize Equation 3.2,
we use extra points from pseudo-labels generated by an object proposal method
(see Figure 3.5). We used the SharpMask proposal method which is a fully-
convolutional neural network that was trained to output class agnostic masks [92].
At each training iteration, the mask pseudo-label of an object is randomly selected
from the set of proposals (obtained by the proposal method) that intersect with the
object’s point annotation. Further, we define the background as the region that does
not contain any proposal mask.

We obtain the set of pixel pairs P for Eq. 3.2 as follows. We pair each pixel
represented by the point-level annotation with k random pixels5 from each object’s
mask pseudo-label including the background region. This randomness allows the
model to learn the important pixels that correspond to the objects of interest. The
final objective function of WISE is defined as:

LW = λ · LL + (1− λ) · LE , (3.3)

where λ is the weight that balances between L-Net’s and E-Net’s loss terms.

3.3.3 Prediction at Test Time

As shown in Figure 3.6, WISE predicts masks of objects using the following steps.
First, L-Net outputs a pixel coordinate for each object representing its location
and category. Second, E-Net outputs the embedding vectors for all pixels in the
image. Third, E-Net computes the similarity (Equation 3.1) between each pixel
in the image and two sets of pixels: (1) L-Net’s predicted pixel coordinates, and
(2) several selected background pixels. Next, E-Net assigns each pixel to the most
similar object, resulting in a mask for each object including the background region.

5We chose k as the number of objects in the image.
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Figure 3.6: Prediction. First L-Net outputs blobs for the objects of interest.
Second, E-Net outputs embeddings for each pixel in the image. Then, nearest-
neighbors is applied to group pixels based on their similarity in the embedding
space. The grouped pixels form the masks of the objects of interest.

Finally, the object masks are refined by replacing them with the mask pseudo-
label (generated from a proposal method) with the largest Jaccard similarity (see
Figure 3.1).

For selecting the background pixels deterministically, we first define the back-
ground regions as the pixels that do not correspond to any of the generated proposal
masks. We use the k-means algorithm for clustering the pixel embeddings into k
groups. Then, for each cluster we select the closest pixel to the mean of that cluster,
giving us k representative pixels from the background.

3.4 Experiments

We evaluate the WISE network on a wide variety of datasets: PASCAL VOC [35],
COCO [75], CityScapes [26], and KITTI [41] datasets. We compare our results
against fully-supervised and weakly supervised methods. We compare WISE against
several baselines to showcase the efficacy of each of its components. We also fix
the annotation budget for acquiring per-pixel, point-level, and image-level labels
and compare several models based on the type of label they require. Unless other-
wise specified, the performance is measured using average precision (AP) as in He
et al. [48], computed with Intersection-over-Union (IoU) thresholds of 0.25, 0.5,
and 0.75.

3.4.1 Methods and Baselines

We include the following methods in our benchmarks:
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Method AP25 AP50 AP75

L-Net + Blobs 08.4 01.2 00.1
L-Net + Best proposal 42.9 33.4 19.1
L-Net + Oracle proposal 57.3 45.1 37.2
L-Net + GT-Mask 61.2 61.2 61.2

PRM + E-Net 43.0 32.0 19.0
GT-points + E-Net 63.1 47.0 26.3

WISE (L-Net + E-Net) 53.5 43.0 25.9

Table 3.1: Ablation Studies. A benchmark illustrating the contribution of each
WISE’s component on PASCAL VOC 2012.

L-Net + Blobs: use the raw output of L-Net (see Figure 3.4) (which is a predicted
blob per object in the scene) as mask prediction.
L-Net + Best proposal: replace each object location predicted by L-Net with the
SharpMask’s proposal that has the highest “objectness” score.
L-Net + Oracle proposal: replace each object location predicted by L-Net with
the SharpMask’s proposal that achieves the highest evaluation score (e.g.mAP).
L-Net + GT-Mask: replace each object location predicted by L-Net with the
ground-truth mask.
PRM + E-Net: use the object locations predicted by PRM (as described in Zhou
et al. [141]) as input to E-Net to obtain the object masks. Note that PRM only
requires image-level labels.
GT-points + E-Net: use the ground-truth object locations (point-level annotations)
as input to E-Net to obtain the object masks.
WISE (L-Net + E-Net): use L-Net’s predicted object locations as input to E-Net
to obtain the object masks.

3.4.2 Implementation Details

L-Net and E-Net share the same backbone, a ResNet-50 [48] pretrained on Ima-
geNet [31]. They also have independent upsampling paths with similar architecture
as FCN8 [79]. The number of output channels for L-Net is the number of classes,
and for E-Net is d = 64, the size of a pixel’s embedding vector. We observed mi-
nor differences in the results between different embedding dimensions. For each
image, we use 1000 pretrained SharpMask [92] proposals (note that we do not fine-
tune the proposal network on any dataset, but it has been pretrained on classes that
are present in our training set). During training, for each point-annotation we sam-
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Method Annotation AP25 AP50 AP75

Mask R-CNN [142] per-pixel 17.1 11.2 03.4
SPN [142] image-level 26.0 13.0 04.0
PRM [141] image-level + proposals 44.0 27.0 09.0
Cholakkal et al. [24] image-level + proposals 48.5 30.2 14.4

PRM + E-Net (Ours) image-level + proposals 43.0 32.0 19.0
WISE (Ours) point-level + proposals 47.5 38.1 23.5

Table 3.2: PASCAL VOC 2012 with a fixed annotation budget. Comparison
across methods with the same annotation budget.
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SDS [47] 58.8 0.5 60.1 34.4 29.5 60.6 40.0 73.6 6.5 52.4 31.7 62.0 49.1 45.6 47.9 22.6 43.5 26.9 66.2 66.1 43.8
Chen et al. [21] 63.6 0.3 61.5 43.9 33.8 67.3 46.9 74.4 8.6 52.3 31.3 63.5 48.8 47.9 48.3 26.3 40.1 33.5 66.7 67.8 46.3
PFN [72] 76.4 15.6 74.2 54.1 26.3 73.8 31.4 92.1 17.4 73.7 48.1 82.2 81.7 72.0 48.4 23.7 57.7 64.4 88.9 72.3 58.7
R2-IOS [73] 87.0 6.1 90.3 67.9 48.4 86.2 68.3 90.3 24.5 84.2 29.6 91.0 71.2 79.9 60.4 42.4 67.4 61.7 94.3 82.1 66.7
Fathi et al. [36] 69.7 1.2 78.2 53.8 42.2 80.1 57.4 88.8 16.0 73.2 57.9 88.4 78.9 80.0 68.0 28.0 61.5 61.3 87.5 70.4 62.1
WISE (Ours) 59.0 5.6 63.6 41.4 21.9 40.6 34.1 73.8 8.5 38.7 29.1 64.6 58.1 60.4 33.3 25.1 43.8 32.7 64.7 60.7 43.0

Table 3.3: Comparison to fully supervised methods. Per-class comparison
against the AP50 metric on PASCAL VOC 2012.

ple a proposal non-uniformly based on its “objectness” score to represent its mask
pseudo-label. We set k as the number of predicted objects (by L-Net) for selecting
the background pixels at test time. The model is trained using the Adam [58] opti-
mizer with a learning rate of 10−5 and a weight decay of 0.0005 for 200k iterations
with a batch size of 1. We choose λ = 0.1 in Equation 3.3 in order to make the
scale between its two loss terms similar.

3.4.3 Experiments on PASCAL VOC 2012

PASCAL VOC 2012 [35] contains 1, 464 and 1, 449 images for training and vali-
dation respectively, where objects come from 20 categories. We use the point-level
annotations provided by Bearman et al. [10] as ground-truth for training our meth-
ods. We report the AP across several thresholds on the validation set, as described
in the dataset’s instance segmentation setup [35].

Comparison to methods and baselines.

In this section, we discuss the results shown in Table 3.1. A straightforward method
to obtain object masks is to use L-Net’s raw output (which we refer to as “L-Net +
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Model COCO 2014 KITTI CityScapes
AP25 AP50 AP75 AP25 AP50 AP75 AP25 AP50 AP75

L-Net Best proposal 18.3 13.6 7.3 46.4 38.1 22.2 27.2 15.5 6.7
WISE (Ours) 25.8 17.6 7.8 63.4 49.8 30.9 28.7 18.2 8.8

Table 3.4: Baseline comparisons. Results across different average precision IoU
thresholds.

Blobs”). However, it performs poorly as the predicted blobs are often small around
the center of the object.

A natural extension is to replace L-Net’s predicted blobs by a segment proposal
obtained from an object proposal method. Therefore, we discovered a reasonable
strategy which is to replace each of L-Net’s predicted blobs by the proposal of
highest “objectness” score (“L-Net + Best-proposal”). However, “L-Net + Oracle”
shows that a perfect proposal selection strategy can vastly improve on the segmen-
tation results.

Accordingly, we propose WISE which improves on “L-Net + Best-proposal”
by having E-Net that learns rough segmentation of the objects. This method selects
better proposals by choosing those with the highest intersection over union (IoU).
Note that other object proposal selection strategies have been used in other weakly
supervised instance segmentation setups [141, 24].

To assess how much improvement we can make over L-Net, we report the
results of “GT-points + E-Net” which uses the ground-truth points instead of L-
Net’s predictions. We see that L-Net’s performance is close to its upper-bound.
Further, we provide the results of “PRM + E-Net” which is an extension to WISE
that can train using image-level annotations only. Similarly, we observe that the
results are not widely different. However, image-level labels might not be suitable
for datasets when the number of objects in an image is high and when the same
object class exist in almost every image as the car category in CityScapes.

Comparison to Similar Annotation Time

We compare the performance between state-of-the-art methods in Table 3.2 when
the annotation time is fixed. Therefore, we limit the annotation budget to around
8.13 hours which is calculated as 20.0 × 1, 464 seconds. Bearman et al. [10] has
shown that it takes 20.0, 22.1, and 239.7 seconds per image for collecting image-
level, point-level, and per-pixel labels, respectively. As a result, for the same anno-
tation time budget, we acquire 1, 464 images with image-level labels, 1, 325 images
with point-level labels, and 122 images with per-pixel labels. We selected these
images uniformly without replacement from the training set. We also reported the
result of Mask R-CNN [84] trained on the images with the per-pixel labels. The ta-

44



ble shows that our method significantly outperforms other approaches, suggesting
that using point-level annotations is a cost-effective labeling method for instance
segmentation. Further, Figure 3.7 illustrates that WISE can capture high quality
masks for PASCAL VOC objects, although it can fail in merging two masks of the
same object such as in the horse image.

Comparison to Weakly and Fully Supervised Methods

Acquiring point-level labels is almost as cheap as image-level labels, yet they vastly
improve results, as shown in Table 3.2. For a fair evaluation, we compare “PRM
+ E-Net” which uses image-level labels against current state-of-the-art image-level
instance segmentation methods. The concurrent work of Cholakkal et al. [24] per-
forms better with respect to AP25, which is expected as their counting results is
better than LCFCN which is what L-Net is based on.

Further, we report WISE results against fully supervised methods in Table 3.3
for each category with respect to AP50. While WISE achieves competitive results,
there is room for improvement between weakly and strong- supervised methods.

Model AP50 AP75

Base-DA [34] 46.0 28.1
Mask-RCNN [49] 55.2 35.3

WISE (Ours) 17.4 07.7

Table 3.5: COCO 2014. Comparison to fully supervised methods.

3.4.4 Experiments on COCO 2014

For COCO 2014 [75], we train on the union of the 80k train images and the 35k
subset of validation images, and report the results on minival consisting of 5k im-
ages, following the experimental setup of He et al. [49]. It consists of 80 categories
belonging to a wide variety of everyday objects. We obtain ground-truth points
by taking the pixel with the largest distance transform for each instance segmenta-
tion mask. We use the standard COCO metrics including AP (averaged over IoU
thresholds), AP50, and AP75. Table 3.4 shows that WISE outperforms our base-
line “L-Net + Best Proposal”, which suggests that E-Net generates better proposal
masks. The qualitative results in Figure 3.7 show that WISE can successfully cap-
ture the mask of diverse objects. Table 3.5 shows that while our results are poor
compared to fully supervised methods, they establish a first strong baseline for
instance segmentation with point-level supervision.
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3.4.5 Experiments on KITTI

KITTI [41] is a meaningful benchmark for autonomous driving. Using the setup
described in Zhang et al. [138], we train our models on the 3, 712 training images
where the ground-truth points are the provided bounding box centers. We reported
results on the 120 validation images using the MUCov and MWCov metrics, as
described in Silberman et al. [112]. Table 3.4 shows that WISE significantly out-
performs the baseline “L-Net + Best Proposal”, suggesting that relying on the best
“objectness” score for picking the proposal is not the optimal approach. Further-
more, Table 3.6 shows that WISE achieves competitive results compared to meth-
ods that use full supervision. Figure 3.7 shows quality masks being generated for
the cars and persons objects on KITTI images by WISE.

Model MWCov MUCov
DepthOrder [137] 70.9 52.2
DenseCRF [138] 74.1 55.2
AngleFCN+Depth [123] 79.7 75.8
Recurrent+attention [102] 80.0 66.9

WISE (Ours) 74.2 58.9

Table 3.6: KITTI. Comparison to fully supervised methods.

3.4.6 Experiments on CityScapes

CityScapes [26] is a popular autonomous driving benchmark for instance segmen-
tation. It contains 2, 975 high-resolution training images, and 500 validation im-
ages that represent street scenes acquired from an on-board camera. The pixels are
labeled into 19 classes, but only 8 classes belong to countable objects (used for
instance segmentation): person, rider, car, truck, bus, train, motorcycle, and bicy-
cle. The ground-truth point for each object is the pixel with the largest distance
transform within its corresponding ground-truth segmentation mask.

Table 3.4 shows that WISE sets a new strong baseline for the weakly supervised
setting, while achieving better results than the comparable baseline “L-Net + Best
proposal”. Further, Figure 3.7 illustrates that our method can obtain good masks for
various objects of interest. However, fully supervised methods shown in Table 3.7
outperform our weakly supervised method with a large margin, motivating future
research on this problem setup.

In Table 3.8, we compare “GT-points + E-Net” against the methods proposed
by Remez et al. [101] which use bounding box ground-truth labels at test time.
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Using their evaluation setup, we report the results in Table 3.8 which shows better
results across four categories. This is despite E-Net using weaker labels than Cut
& Paste. According to Bearman et al. [10], it takes an average of 10.2 seconds
to acquire a bounding box, but only 2.4 seconds to get an annotation for a single
object instance.

Method AP
InstanceCut [59] 15.8
DWT [9] 19.8
SGN [77] 29.2
Mask-RCNN [49] 31.5

WISE (Ours) 07.8

Table 3.7: CityScapes. Comparison to fully supervised methods.

Method Car Person T. light T. sign
Box [101] 62.0 49.0 76.0 76.9
Simple Does it [57] 68.0 53.0 60.0 51.0
GrabCut [106] 62.0 50.0 64.0 65.0
Cut & Paste [101] 67.0 54.0 77.0 79.0

Fully Supervised [101] 80.0 61.0 79.0 81.0

GT-points + E-Net (Ours) 77.6 55.4 77.8 80.1

Table 3.8: CityScapes. Methods with bounding boxes at test time.

3.5 Limitations

The two-stage procedure of WISE-Net might cause error propagation. Errors from
L-Net can propagate to E-Net which can cause a drop in performance. Thus, we
plan to improve on this architecture by investigating single-stage methods that can
learn to directly perform segmentation for the objects of interest.

Another limitation is that the performance of the embedding network is heav-
ily influenced by the quality of the masks output by the proposal network. It is
challenging to learn object masks from point-level annotations only, but we plan to
investigate methods based on self-attention to address this challenging setup.
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3.6 Conclusion

In this chapter, we have introduced a weakly supervised instance segmentation
network (WISE). It can train by using point-level annotations and by leveraging
pseudo-labels from object proposal methods. WISE uses L-Net to first detect the
object locations which are then given as input to E-Net in order to obtain the seg-
mentation masks. E-Net is based on an embedding network that groups pixels in
the image-based on their similarity which are then used to select the best matching
proposal mask. We have validated our method across a wide variety of datasets.
The results show that WISE obtains competitive results against fully supervised
methods and outperform weakly supervised methods with a fixed annotation cost.
The results also provide a strong first baseline for instance segmentation with point-
level supervision. Although a pretrained proposal method was used in this prob-
lem setup, it was not finetuned on any of our datasets. However, an interesting
future direction is to address this task with a more challenging setup that requires
proposal-free methods.
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Figure 3.7: Qualitative results. Qualitative results of WISE on the four datasets
evaluated.
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Chapter 4

Where are the Masks

A major obstacle in instance segmentation is that existing methods often need many
per-pixel labels in order to be effective. These labels require substantial human
effort and for certain applications, such labels are not readily available. To address
this limitation, we propose a novel framework that can effectively train with image-
level labels, which are significantly cheaper to acquire. For instance, one can do an
internet search for the term ”car” and obtain many images where a car is present
with minimal effort. Our framework consists of two stages: (1) train a classifier
to generate pseudo masks for the objects of interest; (2) train a fully supervised
Mask R-CNN on these pseudo masks. Our two main contribution are proposing
a pipeline that is simple to implement and is amenable to different segmentation
methods; and achieves new state-of-the-art results for this problem setup. Our
results are based on evaluating our method on PASCAL VOC 2012, a standard
dataset for weakly supervised methods, where we demonstrate major performance
gains with respect to mean average precision compared to existing methods.

4.1 Introduction

The recent progress in deep neural networks (DNNs) and segmentation frameworks
has given us major improvements in the task of instance segmentation [49, 18].
Their success has been demonstrated in various applications such as autonomous
driving [26], scene understanding [75, 35], and medical imaging [94, 62]. Nonethe-
less, these methods require a large number of training examples with per-pixel la-
bels, or labels which distinguish between object categories and instances in the
image. As acquiring them is often prohibitively expensive, the effectiveness of
these methods is limited to a small range of datasets and object categories.

Many weakly supervised methods emerged to overcome the need for per-pixel
labels. Instead, they only require weaker labels ranging from bounding boxes [57],
scribbles [74], and image-level [141, 24, 2] annotations. This makes acquiring
datasets a significantly more scalable endeavour. According to Bearman et al. [10],
it requires 20 sec/img to acquire image-level labels (which are labels that only
indicate whether an object class appears in an image) for PASCAL VOC [35],

50



compared to 239.7 sec/img for acquiring per-pixel labels. To date, only two weakly
supervised methods address instance segmentation with image-level labels, making
our work one of the few that tackles a relatively unexplored research area.

Perhaps the first work to address this problem setup is PRM [141]. It trains
a classifier which can then identify local regions belonging to different objects of
the same category. It extends CAM-based methods [109, 1] by not only identifying
large regions where objects are vaguely located, but also identifying peaks that rep-
resent the specific locations of the object instances. At test time, the trained PRM
obtains the object masks in two steps. First, it uses the gradient with respect to the
input to get a rough mask of the objects using a process called peak backpropaga-
tion. This results in a peak response map. Then, the masks in this map are replaced
by the best matching proposal masks, which are generated from a pretrained object
proposal method [4, 93]. However, PRM’s results are much worse than that of fully
supervised methods, leaving a large room for improvement (Table 4.1).

We propose WISE-ILS, a Weakly supervised Instance SEgmentation method
that only requires Image-Level Supervision. It builds on PRM by using its output
pseudo masks to train a fully-supervised method, namely, Mask R-CNN [84]. Our
intuition as to why this procedure is effective is that Mask R-CNN is potentially
robust to noisy pseudo masks, and the noisy labels within these masks might be
ignored during training as they are potentially uncorrelated. The success of such
a de-noising strategy has been demonstrated in semantic segmentation and object
localization [57].

We show that simple techniques for obtaining the pseudo masks lead to a sur-
prisingly effective supervision for Mask R-CNN. We summarize our contributions
as follows. (1) We present a novel framework that can effectively train a fully su-
pervised method on pseudo mask labels obtained from image-level class labels; (2)
we show that our framework is amenable to different localization and segmenta-
tion methods (for example, a density-based PRM [24] can be used for localization
and RetinaMask [38] can be used for instance segmentation), and (3) we achieve
new state-of-the-art results on a standard weakly supervised instance segmentation
benchmark.

4.2 Related Work

Instance segmentation is widely studied within the computer vision community [49,
18, 38]. However, an ongoing challenge is that it is time-consuming and expensive
to obtain the required per-pixel labels needed by most instance segmentation meth-
ods [35, 26]. Current trends to overcome this issue leverage weaker labels (such
as image-level labels) and pseudo labels obtained with the help of object proposal
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Figure 4.1: Framework overview. Our weakly supervised instance segmentation
(WISE-ILS) method learns to perform instance segmentation with image-level su-
pervision. First, a classifier is trained with a peak stimulation layer to identify peaks
at which the objects are located (row 2). A proposal gallery (such as MCG [4]) is
used to obtain rough masks for the located objects, which are then used as pseudo
masks to train Mask R-CNN [49] (row 3). Row 4 shows the output of a Mask
R-CNN trained on the noisy pseudo mask labels.

methods. While most of these methods are for object detection and semantic seg-
mentation, we review them below as they are relevant.

Instance segmentation. Instance segmentation is one the most challenging tasks
in computer vision. The task is to classify every object pixel into its corresponding
category and distinguish between object instances [102, 104]. Most recent methods
rely on deep networks and follow a two step procedure [49, 18, 38], where they first
detect objects and then segment them. For instance, Mask-RCNN [49] uses Faster-
RCNN [103] for detection and an FCN network [79] for segmentation. In this
work, we use Mask R-CNN as our fully supervised method and train it on pseudo
masks instead of the costly per-pixel labels.

Learning with weak supervision. Due to the taxing task of acquiring per-pixel
labels, many weakly supervised methods emerged that can leverage labels that are
much cheaper to acquire [35, 26]. These labels range from bounding boxes [57],
scribbles [74], points [10, 65, 66], and image-level annotation [141]. Our setup
considers one of the weakest forms of annotation, image-level labels.
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Image-level labels as weak supervision. Acquiring image-level labels is an at-
tractive form of annotation due to its extremely cheap cost. The annotator only
needs to indicate whether a certain object class appears in an image, regardless of
how many of them appear. While this form of annotation has gained steam within
the research community, most of the proposed methods are for semantic segmen-
tation [48, 120, 1]. Perhaps the lack of such research for instance segmentation is
partially accounted for by the fact that instance segmentation is a more challenging
task. Only recently did works emerge for this problem setup [141, 24, 2]. Zhou
et al. [141] and Cholakkal et al. [24] extend the Class Activation Map (CAM) [140],
by not only identifying a heatmap that vaguely represents the regions where objects
are located, but also identifying peaks of that heatmap that represent the locations
of different objects. At test time, they adopt a post-processing step that matches
each located object with a proposal, generated from an object proposal method.
These proposals are considered as the final instance segmentation output. In con-
trast, we use these outputs as pseudo masks to train a fully supervised method.

Learning with pseudo labels. Our method first generates pseudo-labels and then
train a model on these labels in a fully-supervised manner. While this is novel for
instance segmentation, similar approaches were used for object detection [119] and
semantic segmentation [27, 96, 57] in weakly supervised settings. However, these
methods cannot be directly applied to instance segmentation, as they do not dis-
tinguish between object instances. Many such methods also rely on object propos-
als [51] to ease the task of detection [120, 12], and segmentation [90, 10, 141, 60].
Object proposals are class-agnostic methods that can output thousands of object
candidates per image and have progressed significantly over the last decade [124,
143, 4, 82, 91, 93]. Similar to PRM [141] and PRM+Density [24], we also leverage
object proposals to generate the pseudo masks.

4.3 Proposed Method

Our approach to instance segmentation with image-level supervision consists of
two main steps: (1) obtain pseudo masks for the training images given their ground-
truth image-level labels; and (2) train a fully supervised instance segmentation
method on these pseudo masks (Figure 4.2). In particular, this framework is based
on two components: a network that obtains the pseudo masks by training a PRM
[141] on the image-level labels and leveraging object proposal methods [4] and
Mask R-CNN [49] as a fully supervised instance segmentation method. We show
the training steps of our framework in Algorithm 1.

At test time, we can predict the object instance masks using the trained Mask
R-CNN only, discarding the PRM component. In this setup, we are interested in

53



Figure 4.2: WISE-ILS training. The first component (shown in blue) learns to
classify the images in the dataset. The classifier first outputs a class activation map
(CAM); then, obtains CAM’s local maximas using a peak stimulation layer (PSL).
To train the classifier, the classification loss is computed using the average of these
local maximas. As the CAM peaks represent located objects, we select a proposal
for each of these objects to obtain pseudo masks. The second component (shown
in green) trains a Mask R-CNN on these pseudo masks.

segmenting C classes of objects. For a training image, the image-level label is
given as Y = [y1, y2, ..., yC ], where yi = 1 or 0, indicating whether the image has
an object of class i. We describe our components in more detail below, and also
investigate a post-processing steps that can improve Mask R-CNN’s final output.

4.3.1 Pseudo Mask Generation Branch

We rely on PRM [141] to generate segmentation seeds that identify salient parts
of the objects. These seeds help in generating pseudo masks as a source of su-
pervision for Mask R-CNN. Following PRM’s methodology, we train a CAM-
based classifier which has a fully convolutional network (FCN) followed by a peak
stimulation layer (PSL). As shown in Figure 4.2, the FCN outputs a class acti-
vation map (CAM) which specifies the class confidence at each image location.
Then, PSL outputs N c local maxima of CAM within a window size r, namely,
Lc = {(i1, j1), (i2, j2), ..., (iNc , jNc)} which represents locations in the CAM for
the c-th object class (more details in Zhou et al. [141]). In order to boost the
activations of these local maxima, their average activation is first computed as,
sc = 1

Nc

∑
(ik,jk)∈Lc M c

ik,jk
, where M c is the activation map corresponding to

class c. This average is then used for binary classification, specifically the multi-
label soft-margin loss [64], which for a training example with label y is computed
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Algorithm 1: WISE-ILS training
1: Train a CAM-based classifier C until convergence as in PRM [141];
2: while iter < max iter do
3: Randomly sample a training image I;
4: Generate a set of proposals P for I;
5: Use PSL on C to obtain the set of peaks L for I;
6: Initialize an empty list of Targets T ;
7: for (ik, jk) ∈ L do
8: Select a proposal (Gk, bk) randomly using Eq. 4.2, it has to intersect

with (ik, jk);
9: Add Gk to list T ;

10: end for
11: Compute L(I, T, θ) as in Eq. 4.3;
12: Update the weights for θ using back-propagation;
13: end while

as
M(sc, y) = log(1 + exp(−sc · y)). (4.1)

This classification component is trained until convergence. We then generate
the pseudo masks for the training images by using the trained classifier and an
off-the-shelf object proposal method (specified as the dotted line in Figure 4.2).
The peaks obtained from PSL, which represent object locations in the image, are
replaced with proposal masks based on their “objectness”, which are scores given
by the proposal method as confidence measure for being objects. We adopt a de-
noising strategy where we select a proposal randomly based on its objectness score:
proposals with higher objectness are more likely to be selected. More formally, to
obtain the mask for an object located at peak (i, j), we first generate a set of n pro-
posals whose masks intersect with (i, j), namely, P = {(G1, b1), (G2, b2), ..., (Gn, bn)}
with maskGk and objectness score bk. Then, the probability of selecting a proposal
mask Gk is

P (Gk) =
bk∑n
j=1 bj

. (4.2)

The rationale behind selecting proposals randomly is that they have common
pixels that correspond to the salient parts of the located object, despite the fact that
they have different objectness. While proposal masks are not originally associated
with a class label, we get the object class label information from CAM and assign
it to the corresponding proposals. These proposals can be used as pseudo masks to
train a fully supervised instance segmentation method.
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Figure 4.3: Inference. At test time, only the trained Mask-RCNN is required
to output the prediction masks in the image. As an optional refinement step, the
predicted masks can be replaced with the object proposals of highest Jaccard simi-
larity.

4.3.2 Fully Supervised Segmentation Branch

We can construct the segmentation labels for all the training images by using the
trained pseudo mask generation branch. These are used as supervision to train a
Mask R-CNN (shown as green components in Figure 4.2). Depending on the ap-
plication, other choices of fully supervised methods can be used instead of Mask
R-CNN: if the goal is to perform instance segmentation at real-time, one can con-
sider training a YOLACT [13], and for semantic segmentation, one can consider
training a DeepLab [19] segmentation network.

Mask R-CNN [49] combines Faster R-CNN [103] and FCN-based [79] meth-
ods to first detect the objects and then segment them. For an image I , with target
pseudo masks T , Mask R-CNN with parameters θ is trained by optimizing the
following objective function,

L(I, T, θ) = Lcls + Lbox + Lmask, (4.3)

where Lcls is the classification loss for the detected objects, Lbox is the localization
loss for the detected objects, Lmask is their segmentation loss. These terms are
explained in more detail in the original Mask R-CNN paper [49].

At test time, we can simply use the trained Mask R-CNN to predict the object
masks for an unseen image. To refine these masks, we leverage the same object
proposal method as that used in training. In turn, we replace each predicted object
mask with the proposal of highest Jaccard similarity. Figure 4.3 illustrates how this
refinement process can lead to a better object mask.
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Method Supervision mAP25 mAP50 mAP75 ABO
Mask R-CNN [49] pixel-level 58.9 51.4 32.4 -
DeepMask [57] pixel-level - 41.7 09.7 -

PRM [141] image-level 44.3 26.8 09.0 37.6
PRM+Density [24] image-level++ 48.5 30.2 14.4 44.3
DeepMask [57] bounding box 39.4 08.1 - -

WISE-ILS (Ours) image-level 48.5 40.4 22.2 51.3
WISE-ILS+Refine (Ours) image-level 49.2 41.7 23.7 55.2

Table 4.1: PASCAL VOC 2012. Comparison of our framework (WISE-ILS)
against other methods on various levels of supervision. WISE-ILS+Refine uses
the refinement step shown in Figure 4.3. Mask R-CNN and DeepMask use full
supervision, whereas PRM uses image-level labels. Similar to WISE-ILS, PRM
and PRM+Density leverage a pretrained proposal method. Requiring stronger su-
pervision than WISE-ILS, DeepMask and PRM+Density have access to bounding
box and image-level counts, respectively.

4.4 Experiments

In this section, we demonstrate the efficacy of our method by comparing it against
previous methods and analyzing the pseudo masks.

4.4.1 Experimental Setup

We follow the setup by Zhou et al. [141], Cholakkal et al. [24] for a fair benchmark,
where the model only has access to an off-the-shelf proposal method and image-
level labels for the training set. Also from their setup, we adopt the evaluation
metric, mean average precision for Intersection-over-Union (IoU) of 0.25, 0.5, and
0.75.

Like other works in the literature of weakly supervised methods, we perform
all comparisons on the PASCAL VOC 2012 dataset [35]. The dataset represents
a diverse set of everyday scenes. It is divided into 1442 images for training, and
1449 images for validation. Annotators for this dataset acquired per-pixel labels
for 20 objects, ranging from inanimate objects such as airplanes and bikes, and
living objects such as humans and horses. However, we only use the image-level
labels to train our methods.
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Mask R-CNN 71.2 0.3 72.2 53.2 29.8 68.7 47.3 77.1 13.3 54.7 41.0 65.5 51.5 69.6 57.8 31.0 46.9 45.6 69.7 61.4 51.4
WISE-ILS 59.2 0.6 62.6 38.6 18.8 57.3 31.7 66.9 8.3 40.5 11.0 55.5 48.7 60.2 34.4 24.4 38.3 33.1 61.7 56.9 40.4
WISE-ILS+Refine 63.2 0.3 60.7 39.1 21.0 59.4 31.9 68.6 9.2 43.1 15.6 58.0 48.6 62.3 36.4 21.9 38.8 34.3 65.5 56.9 41.7

Table 4.2: PASCAL VOC 2012. Per-class comparison against the mAP50 metric
on PASCAL VOC 2012 validation set. Mask R-CNN was trained with the ground-
truth per-pixel labels.

4.4.2 Implementation Details

We discuss our method’s procedure and parameters below. We also plan to make
the code publicly available.

Network architecture. As a common practice, we use the ResNet-50 [48] that
is pretrained on ImageNet [31] as the backbone for PRM and Mask R-CNN. Unlike
PRM, Mask R-CNN’s backbone is equipped with a feature pyramid network [76]
that extracts features at different resolutions. The pretrained weights, along with
the rest of the parameters, are then finetuned on the PASCAL VOC 2012 training
set. The remaining parameters of PRM and Mask R-CNN are in the implementa-
tion details discussed in Zhou et al. [141], and He et al. [49], respectively. We used
a pretrained SharpMask [93] for our proposal method.

Optimization parameters. Following the official code of Mask R-CNN, we
scale its input images so that the short axis has a minimum of 800px and the long
axis a maximum of 1333px. Using a single GPU of TitanX, we set our batch size
as 1 and train using the SGD optimizer with a learning rate of 0.00125 for 50K
iterations. This learning rate was adjusted from He et al. [49], where they used
a bigger batch size. We also augment the dataset with horizontal flips and color
jittering as recommended by Deng et al. [31]. PRM was trained as described in
Zhou et al. [141].

4.4.3 Comparison to Previous Work

We first quantitatively compare our approach against previous methods that use the
same supervision as ours; that is, image-level labels, an object proposal method,
and a ResNet-50 backbone pretrained on ImageNet. Table 4.1 summarizes the re-
sults on the PASCAL VOC 2012 dataset. Our method significantly outperforms
the current state-of-the-art by a large margin with respect to Average Best Over-
lap (ABO) [95], mAP25, mAP50, and mAP75. Further, WISE-ILS without re-
finement also beats current state-of-the-art. Even more so, our method outper-
forms Cholakkal et al. [24] which uses slightly stronger labels than image-level.
Their labels distinguish between images with 0, 1, 2-4, and 4-or more objects.
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Mask R-CNN + GT 92.4 15.1 97.4 87.9 91.4 94.4 93.8 100 68.2 93.4 88.8 97.4 96.4 95.3 92.8 89.3 92.3 97.7 100 100 89.2
Pseudo Masks 24.5 1.0 29.1 18.7 11.3 38.6 26.6 43.1 8.0 35.6 6.1 38.8 46.2 23.8 10.7 7.4 35.9 29.4 41.6 39.1 25.8
WISE-ILS 43.8 3.2 43.8 35.9 16.8 51.9 36.3 56.8 7.3 45.8 15.1 53.5 59.8 45.5 18.2 10.9 47.3 38.9 61.5 58.5 37.5

Table 4.3: PASCAL VOC 2012 training set. Comparison of the generated pseudo
masks, and WISE-ILS’s predicted masks with respect to mAP50. WISE-ILS was
trained on a set of pseudo masks, and was able to output better masks for the same
training images. Mask R-CNN + GT was trained on the ground-truth per-pixel
labels.

Figure 4.4 visualizes qualitative results of WISE-ILS for each category. We fur-
ther report the per-class results in Table 4.2 and compare it against Mask R-CNN
trained on the true masks with respect to mAP50. This illustrates that our results
are competitive against fully-supervised methods.

Our method can also compete with those that use stronger supervision. Against
DeepMask [57], our method outperforms two of their methods, one that uses bound-
ing boxes as labels, and the other that uses full supervision as labels (see Table 4.1).
Compared to Mask R-CNN trained on the pixel-level labels, our method still has a
large room for improvement, which can be bridged by either improving the object
localization component or the object proposal method.

The overall results suggests that Mask R-CNN can effectively train from noisy,
incomplete labels. The labels are noisy because the proposal masks are not perfect,
and incomplete because PRM does not locate all the objects in the image. Indeed,
we hypothesize that using a better object localizer such as that of Cholakkal et al.
[24] would lead to better results. But we leave that for future work.

Analysis of Pseudo masks

We measure the generated pseudo masks performance by computing the mAP50
between the ground-truth and the generated masks. We also compute the mean
absolute error to determine the number of identified objects in the images. These
results are summarized in Table 4.3, which show that a large room for improvement
is required for both metrics. Examples of the synthesized masks are shown in
Figure 4.1, where one can see that the pseudo masks are not of high quality, yet the
trained Mask R-CNN is able to output good masks in Figure 4.4.

Ablation Studies

The object sizes and the number of objects in an image can have severe impact on
the performance of an instance segmentation model. Figure 4.5 shows that WISE-
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Figure 4.4: Qualitative results. Qualitative results of WISE-ILS on PASCAL
VOC 2012 val. set. The images illustrate the predicted masks of the trained Mask
R-CNN for different classes.

ILS struggles with segmenting small objects, and when the number of objects is
larger than 4. In fact, there is a heavy decline in performance when the number of
objects is more than 1. More robust than WISE-ILS, a Mask R-CNN trained on
per-pixel labels is able to maintain higher performance with small objects and with
images with larger number of objects. In addition, such Mask R-CNN performs
significantly better than WISE-ILS for small objects. This suggests that the pseudo
masks trained by WISE-ILS are likely far from accurate.
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Figure 4.5: Statistical Analysis. The left figure illustrates the performance of
WISE-ILS and a Mask R-CNN trained on per-pixel labels across various object
sizes; and the right figure illustrates the same benchmark but across images with
different number of objects.

4.5 Limitations

The performance of our method and the competing methods [141, 24] in this prob-
lem setup are heavily influenced by the quality of the proposal network. The pro-
posal network used for these methods was trained on class-agnostic masks of the
PASCAL [35] dataset. Thus, we plan to decrease the amount of supervision by
having a proposal network only trained on object classes that do not exist on the
training set.

4.6 Conclusion

We proposed a weakly supervised instance segmentation method that follows a
two-stage pipeline for training on image-level labels. In the first stage, it uses class
activation maps with a peak stimulation layer to locate the objects in the training
images, and then object proposals to generate pseudo masks for these objects. In
the second stage, we use Mask R-CNN to train on the pseudo masks in a fully
supervised manner. We evaluate on PASCAL VOC 2012, a standard benchmark
for weakly supervised methods, where Mask R-CNN trained on pseudo masks
outperformed not only methods with the same level of supervision, image-level
labels, but also methods that use counts and bounding boxes in their supervision.
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Chapter 5

Object Localization for Dense
Scenes with Count Supervision

We propose a weakly supervised localization model (WSLM) that can localize
objects in congested scenes and still perform accurate count estimation. Unlike
most existing counting methods, WSLM only requires count supervision, instead
of point-level annotations. WSLM follows 3 main steps. First, it trains an exten-
sion of Glance [16], which we call as Glance-ram. to convergence. Glance-ram
can output an additional regression activation map (RAM). Second, it uses RAM
to score and select a set of region proposals for the training images and converts
them to pseudo point-level annotations. These proposals are generated using a
pretrained region proposal network (RPN). Third, it trains a state-of-the-art local-
ization method like LCFCN (Chapter 2) on these pseudo point-level annotations.
WSLM is flexible in that other counting methods with an attention mechanism can
be considered for the first step, other proposal methods for the second step, and
other localization networks for the third step. We evaluate WSLM on 6 datasets of
congested scenes, including ShanghaiTech, UCSD, and Mall. With count super-
vision, we deliver state-of-the-art performance with Glance-ram, and a first strong
baseline for object localization in congested scenes with WSLM.

5.1 Introduction

Object counting and localization are important tasks for understanding highly con-
gested scenes. Object counting is the task of counting objects of interest, whereas
object localization is the task of locating these objects in the image. These methods
provide promising solutions for applications such as public safety, crowd monitor-
ing, and traffic management. For congested scenes, some methods can only out-
put the count [16]; however, for many applications, getting only the count is not
enough. These applications demand localization as well, which could be critical
for making decisions in high-risk environments like riots. Further, localization can
help users understand the insights of the counting method to judge whether it works
in practice. The last row in Figure 5.1 shows examples of objects being localized
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Figure 5.1: WSLM overview. The weakly supervised localization model (WSLM)
learns to count and localize objects in crowded images. It learns to transform
image-level counts into localization pseudo ground truth points and trains a count-
ing and localization network on them.

in congested scenes.
Despite being essential in a myriad of applications however, both tasks of ob-

ject counting and localization remain unsolved. Their challenge in practical sce-
narios arises from the state of real-life images, in which objects are often severely
occluded, vary in scale, illumination and clutter, or are distributed unevenly within
the scene. Existing methods for object counting and localization are either density-
based or localization-based. These methods are explained in detail in Chapter 2.

In this work, we are interested in a model that is able to count and localize
objects in a scene, but that is trained only on count data. This would alleviate the
burden of labeling each image with points placed on every object, which we argue,
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constitutes a more costly endeavor.
At first glance, it would seem that the effort required for collecting point-level

annotations and image-level counts are equivalent — after all, a human annotator
needs to point to every object in the image in order to count them. But in many
cases, acquiring object counts in images requires much less human effort than an-
notating the location of each object. For example, according to subitizing theory,
when training images contain 4 or less objects, the annotator can obtain the object
count much faster than with point annotations [16]. Another example is the case
of labeling a large sequence of image frames: instead of counting and locating the
objects in each frame separately, an annotator can do count and annotate the ob-
jects only in the first frame, and then adjust her count and annotations by adding
or subtracting objects as they appear or disappear in subsequent frames. This latter
process takes roughly the same amount of time as collecting point-level annotations
for one frame, thus vastly decreasing the total labeling time for the entire sequence
of frames. A final example is the case of registration-based systems, where object
counts can be obtained for free: if a manager orders a certain number of cans to be
placed in a glass-windowed fridge, then the images taken of that fridge are already
labeled with the count of cans.

Many methods exist for weakly supervised localization, but they are not suit-
able for highly congested scenes. Examples include CAM-based models [109, 1],
which localize objects for datasets with image-level supervision. These models
treat the problem as a classification task, as a consequence of which they have two
problems. First, they can only localize one object per image and fail if the im-
age contains more than one object of the same class. Second, they only work for
multiclassification problems and fail if the dataset contains only one class, because
the classification model relies on the background images in order to identify the
objects of interest. PRM [141] and C-WSL [40] are two weakly supervised lo-
calization algorithms that extend basic CAM-based methods to localize more than
one object per image, but they rely on having few objects per scene and on many
background images. Glance [16], on the other hand, can learn to count objects in
dense scenes using counts only, but does not perform object localization.

Therefore, we propose our Weakly Supervised Localization Model (WSLM)
that can localize objects in congested scenes and still perform accurate count es-
timation. Unlike most existing counting methods that require point annotations,
WSLM only requires count supervision. WSLM follows three main steps. First,
it trains to convergence the Glance-ram model, which is a model that extends
Glance [16] by adding a Regression Activation Map (RAM). Although similar to
class activation maps, RAM highlights the discriminative regions that the model
uses to build its regression output. Further, instead of global average pooling like in
most CAM methods, Glance-ram uses local average pooling to have peaks emerge
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at different locations of the RAM. These peaks are meant to represent the objects
of interest. Glance-ram has close similarities to PRM [141], which uses peaks to
get object instances. The main difference between the two is that PRM uses the
classification loss, and ours uses the regression loss. As a side note, incorporating
RAM and local average pooling to Glance has improved its counting ability by a
good margin.

In the second step of WSLM, proposals are first generated for each training
image using a pretrained region proposal network (RPN). Then, each proposal is
scored based on three metrics. The first metric is the objectness score of a proposal,
which indicates how likely it is that an object is a proposal, and which is provided
by the proposal network. The second metric is how much the proposal overlaps
with activated regions in the generated RAM. The third metric is based on gener-
ating peak response maps (PRMs) as in Zhou et al. [141]. In this case, the location
of the proposal centroid is backgpropagated with respect to the generated RAM,
resulting in a PRM for that proposal. Each proposal is then ranked by aggregating
their metric scores, and the top proposals are selected using the count-based region
selection method in Gao et al. [40]. Finally, the selected proposals are converted to
point-level annotations by taking their centroids.

In the final step of WSLM, a state-of-the-art localization method like LCFCN
(Chapter 2) is trained on these pseudo point-level annotations. At test time, only
the trained LCFCN is kept while the rest of the components are discarded. This
trained LCFCN performs both counting and localization.

Since no direct relevant work exists for this particular setup, we compare our
methods Glance-ram and WSLM against Glance [16] and the fully supervised
LCFCN [65]. We benchmark our methods against various counting datasets such
as Trancos [45], Shanghai Tech B [136], Park Lot [29], Penguins [8], UCSD [14],
and Mall [17]. Based on these results, Glance-ram achieves better count accuracies
than Glance, while WSLM achieves better results than Glance in most cases, while
also obtaining good localization performance.

We summarize our contributions as follows: we (1) present WSLM, a novel
framework that can count and locate objects with count-level supervision for dense
scenes; (2) present Glance-ram, which extends Glance with an attention map that
achieves state-of-the-art for counting objects with count supervision; and (3) show
that WSLM achieves better count accuracy than Glance while still being able to
localize objects. While WLSM does not perform as well as the the fully supervised
LCFCN, it serves as a strong baseline and hopefully inspires further research in this
challenging yet interesting problem setup.
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5.2 Related Work

Our work lies at the intersection of three main topics: object counting and localiza-
tion, multiple-instance learning methods for weak supervision, and object proposal
methods. In the remainder of this section, we briefly discuss these topics.

Counting and Localization. Methods under this topic can be grouped into two
main categories: (1) regression-based methods, and (2) detection-based methods.

Regression-based methods optimize the localization-based counting loss objec-
tive. Models in this category are Glance [16] and density-based methods [68, 45,
136, 89, 71, 24]. Density-based methods require point-level annotations that makes
them unsuitable for the problem setup of this work. On the other hand, Glance only
requires count-level supervision, but only outputs the count rather than the object
locations, which is an important task that we consider in this work.

Detection-based methods learn to find the object locations, but also their width
and height [103, 100, 78]. Even though perfect detection implies perfect counting,
these methods fell out of fashion in favor of regression-based approaches for the
counting task. Since detection is a harder task than counting, learning to count
through detection can lead to worse counting results than explicitly learning to
count. A further limitation is that these methods require bounding box annotations,
which are costly to acquire [10]. An easier task than detection is localization where
objects only need to be located rather than have their heights and widths estimated.
One example of an effective localization-based method is LCFCN (Chapter 2),
which is state-of-the-art for locating objects of interest. The reasoning behind why
LCFCN works well for counting is counting objects requires locating the objects
in the image as a perquisite.

Multiple-Instance Learning Methods for Weak Supervision. Many weakly su-
pervised localization methods use multiple-instance learning (MIL) [33]. MIL is
a weakly supervised learning setup, whereby instead of receiving individually-
labeled instances as input, the model receives a set of labeled bags of instances.
A bag is labeled positive if at least one of its instances is positive, and negative oth-
erwise. Li et al. [69] study the problem of weakly supervised object localization
where image-level annotations are available. They present a domain adaptation ap-
proach that has two steps. In the first step, they adapt the classification by using a
mask-out strategy to filter the noisy object proposals; in a second step, they adapt
detection by learning a Faster RCNN [103] using bags of instances. This approach
is for weak supervision when image annotations are available, and is not directly
comparable to our method as it use a classification model rather than a regres-
sion. Tang et al. [119] convert the weakly supervised detection problem into a MIL
problem where object detectors are hidden nodes in the network. They integrate a
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Figure 5.2: Training WSLM. WSLM consists of 4 components: (1) a proposal
generation network that generates agnostic object proposals, (2) a trained glance-
ram that scores the proposals based on how much they overlap with the regression
activation map, (3) a proposal selection method that chooses the top C proposals
based on their score and, (4) a localization and counting network that is trained on
the pseudo ground truth generated by the proposal selection method.

multiple-instance detection network and instance classifiers into a single network
to locate the most discriminative regions of an image. C-MIL [126] introduces a
continuation optimization method into MIL to prevent the MIL setting from get-
ting stuck in local minima. C-WSL [40] is the only work on weakly supervised
localization with count supervision. The approach is based on ranking region pro-
posals to get high-quality proposals. However, it relies on a classification network
that requires many background images, which is not the case for most counting
datasets.

Object proposals. Many weakly supervised methods rely on object proposals [51]
to help with the task of detection [120, 12] and segmentation [90, 10, 141, 60].
Object proposals are class-agnostic methods that can output thousands of object
candidates per image and have seen great progress over the last decade [124, 143,
4, 82, 91, 92]. Region Proposal Networks (RPN) [84] and SharpMask [92] are
popular deep-learning based object proposal methods that have been successfully
applied to many weakly supervised computer vision problems. However, their out-
put object masks cannot be directly used for localization as they belong to arbitrary
objects and have no class labels.
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5.3 Proposed Method: WSLM

The goal of WSLM is to localize objects in congested scenes and still perform
accurate count estimation. It does this with the help of an attention-based counting
method, a proposal network, and a fully supervised localization method. Roughly,
WSLM performs the following steps in sequence.

1. Train the attention-based counting method on the count labels. This gener-
ates an activation map that scores regions in the image based on how likely
it is that they contain the objects of interest.

2. Use the generated activation maps to select among the set of proposals gen-
erated by a region proposal network (RPN). The centroids of the selected
proposals are then set to be the pseudo ground-truth point-level annotations.

3. Use these annotations to train a fully supervised localization method (such
as LCFCN).

We explain these steps and WSLM’s components in more detail below.

5.3.1 Attention-Based Counting

We propose Glance-ram, an attention-based counting method inspired by Glance [16]
and class activation maps (CAM). The goal of Glance-ram is to generate regres-
sion activation maps (RAM), which represent discriminative regions that help the
model obtain the regression output.

Glance-ram differs from Glance in that it has no fully connected layers. The
output of the last convolutional layer is used as the regression activation map to
visualize the regions of interest. In order to aggregate the output of the activation
map, we use local average pooling (LAP) that is inspired by Zhou et al. [141]. We
do not use global average pooling (GAP) because it assigns equal importance to
all responses, which makes it hard to distinguish between the foreground from the
background.

LAP works as follows. First, a set of K local maxima L are obtained from
RAM within a window of size r. L = {(i1, j1), (i2, j2), ..., (ik, jk)}, which rep-
resents locations in the regression activation map. In order to boost the activa-
tions of these local maxima, their average activation is first computed as s =
1
K

∑
(ik,jk)∈LMik,jk , where M is the regression activation map. In order to stim-

ulate only discriminative local maxima, we select the maxima that are higher than
the median across the maxima and compute the mean of the selected maxima.

The regression output is the mean across the selected local maxima. This mean
value is used to compute the mean squared error with respect to the provided count
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Figure 5.3: Glance-ram. Given the regression activation map as M , Glance-ram
generates a PRM for a spatial location j as follows. First set the gradient to 1 for
Mj and 0 for the rest of the activations in M . Then, backpropagate the gradient
signal to the input image to obtain the informative regions for spatial location j.
For a specific proposal i, we generate its PRM using the proposal’s centroid as its
spatial location.

labels; this error is then is backpropagated to update the model. During training,
the described forward pass and backward pass are repeated until Glance-ram con-
verges.

5.3.2 Generating Point Annotations

The next step is to generate pseudo point-level annotations for the training images.
To do so, we leverage the trained regression model, Glance-ram, and an off-the-
shelf object proposal method by following these steps. First generate a set of n
proposals using the object proposal method. Then, score each proposal i using
three metrics. The first metric is the objectness score of the proposal, denoted as
Oi, which is given by the proposal method. This score is class-agnostic in that it
does not indicate whether the proposal belongs to an object of interest. Fortunately,
metric two and metric three address this limitation. Metric two uses the regression
activation map (RAM) generated from the trained Glance-ram. Let Z be the set of
pixel coordinates within a proposal i, M be the regression activation map, and Mz
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be the RAM score at pixel z. Then the score for proposal i is the average

1

|Z|
∑
z∈Z

Mz.

This represents how much the proposal overlaps with what Glance-ram sees as
important regions for getting the object count. The third metric is based on the
Peak Back-propagation method in Section 3.3 in Zhou et al. [141]. For each spatial
location, this method can generate a fine-detailed instance-aware representation
known as the peak response map (PRM). GivenM as the regression activation map,
we can generate a PRM for spatial location j as follows. First set the gradient to 1
for Mj and 0 for the rest of the activations in M . Then, backpropagate the gradient
signal to the input image to obtain the informative regions for spatial location j.
For a specific proposal i, we generate its PRM using the proposal’s centroid as its
spatial location. For simplicity, denote Ri as the PRM for proposal i. Then, the
score of proposal i with metric three is the average,

1

|Z|
∑
z∈Z

Rz,

where Rz is the proposal’s PRM score at pixel z, and Z is the set of pixel coordi-
nates in proposal i. Putting these three metrics together, the score of a proposal i is∑

z∈Zi

αMz + βRz + γOz, (5.1)

where α, β, and γ are coefficients for weighing between the different metrics.
The next step in generating the pseudo point-level annotations is to select the

best proposals for each training image. Given the score of each proposal, we select
the best k proposals using CRS [40], a count-based region selection method, where
k is the provided object count annotation for a given image. In contrast to naively
selecting the top k proposals, CSR attempts to select k distinct proposals, each
covering a single object. Finally, the centroids of the selected proposals are used
as the pseudo point-level annotations.

5.3.3 Training the Localization Network

The goal of the localization network is to count and localize the objects in the im-
age. The network is directly trained on the generated point-level annotations in
Section 5.3.2. We use LCFCN [65] instead of the more commonly used density-
based localization methods for the following reason. LCFCN does not require
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Dataset class # images # Resolution # Min # Ave # Max # Total count
UCSD [14] person 2,000 158x238 11 25 46 49,885
Trancos [45] car 1,641 640x480 9 36.54 95 46,796
Mall [17] person 2,000 320x240 13 - 53 62,325
PKLot [29] person 2,000 320x240 13 - 53 62,325
Shanghai [136] person 716 768x1024 9 123 578 88,488
Penguins [8] penguin 80,095 2048x1536 0 7.18 67 575,082

Table 5.1: Datasets’ statistics.

obtaining density maps, which need domain knowledge about the size of the ob-
ject [71]. At test time, we only use the trained LCFCN to predict the locations of
the objects in the image. Thus, other components of WSLM can be discarded at
deployment.

5.4 Experiments

Our goal is to show that WSLM can (1) effectively localize objects in dense scenes,
and at the same time (2) get the right object count. To evaluate the localiza-
tion capabilities of WSLM, we compare it against the fully supervised localiza-
tion method LCFCN. To evaluate its object count capabilites, we compare WSLM
against Glance, a competitive method for counting objects that only uses object
count as supervision.

5.4.1 Experimental Setup

Datasets. We experiment on a variety of challenging counting datasets. They
range from low to high density scenes and pose different challenges regarding ob-
ject scale variation, clutter, and occlusion. Table 5.1 displays the statistics and brief
overview of the datasets used in our benchmark. Originally, these datasets are la-
beled with point-level annotations; that is, each object has a single pixel labeled
with the object class. However, we only consider the count-level supervision for
training WSLM.

Evaluation Metrics. We evaluate WSLM in terms of count and localization esti-
mation. We report the count estimation error using the mean absolute error (MAE):

MAE =
1

N

N∑
i=1

|yi − ŷi| (5.2)
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where N is the number of test samples, yi is the ground truth count and ŷi is the
estimated count corresponding to sample i.

For the localization estimation error, we consider the grid average mean abso-
lute error (GAME) [45]. It is computed as

GAME(L) =
1

N

N∑
i=1

(
4L∑
l=1

|Dl
i − D̂l

i|) (5.3)

whereDl
i is the number of point-level annotations in region l, and D̂l

i is the model’s
predicted count for region l. GAME(L) first divides the image into a grid of 4L

non-overlapping regions, and then computes the sum of the MAE across these
regions. Note that GAME(0) is equivalent to MAE.

Methods Definition. We compare the following methods.

Glance: uses the ImageNet pre-trained network as described in Chattopadhyay
et al. [16].

Glance-ram: uses the ImageNet pre-trained ResNet50 network. It also has a re-
gression attention map followed by a local average pooling operations.

WSLM: first scores each proposal using Eq. 5.1. It then selects the best proposals
to get the pseudo point level annotations for the training images. Finally, it trains
an LCFCN model on those pseudo annotations.

LCFCN: is the ResNet50 variation of the LCFCN method described in Laradji
et al. [65].

Implementation Details. We optimize all our models using ADAM [58] with
learning rate of 1e-5 and weight decay of 0.0005. The proposals are generated
using a pretrained region proposal network (RPN) [103]. We use a threshold of 0.1
for the CSR proposal selection method, and set the weight coefficients α, β, and γ
as 1

3 .
Note that the pretrained region proposal network (RPN) [103] generates 1000

proposals per image. We use the same pretrained RPN for all our datasets. The
RPN used here consists of a ResNet-50 [48] as backbone and a feature-pyramid
network [76] to extract features for different resolutions.

5.4.2 Experimental Results

Below we describe our benchmark datasets and the results of our methods. The
results include quantitative analysis on the counting and localization performance,
and qualitative illustrations of the predictions of our methods on test images.

72



Method MAE GAME
Glance 4.20 -
Glance-ram (ours) 3.23 -
WSLM (ours) 2.82 18.20

LCFCN 0.99 4.12

Table 5.2: Results on the UCSD Dataset.

UCSD [14]. Perhaps the first dataset for counting people, UCSD consists of
images collected from a video camera at a pedestrian walkway. This dataset has
less object density compared to other counting datasets; but it is still challenging
due to pedestrians overlapping each other, which makes counting and localization
difficult.

Each frame in UCSD is 238x158 pixels, which is not suitable for our ResNet
based models. Thus, we resize the frames to 952x632 pixels using bilinear inter-
polation. This practice has also been adopted in Li et al. [71]. Additionally, as
common practice [14], we use the frames 601-1400 as training set and the rest as
test set.

Table 5.2 shows that Glance-ram outperforms Glance, suggesting that having
an attention map is an important component. On the other hand, WSLM outper-
forms both Glance and Glance-ram with respect to MAE; but it performs poorly
with respect to GAME against the fully supervised method. The most challenging
aspect of this dataset, however, is in the cluttered regions, where the pseudo point-
level annotations are not on top of each pedestrian (Figure 5.4). Further, a pseudo
point-level annotation is selected on the top left corner of the image, although it has
no pedestrian (Figure 5.4). This limitation is likely due to overfitting. Despite the
challenges, Figure 5.4 shows that WSLM achieves comparably good localization
by finding the right objects of interest.

Trancos [45]. This dataset consists of images taken from traffic surveillance cam-
eras for different roads. The task is to count the vehicles present in the regions of
interest. These vehicles often highly overlap in the image [45], making the dataset
challenging for localization. While each vehicle is originally labeled with a point
annotation, we only use the vehicle count as training labels.

The results shown in Table 5.3 indicate that Glance-ram achieves lower MAE
than Glance. They also indicate that WSLM performs better in object counting,
yet it can perform good localization. Compared to the fully supervised LCFCN,
WSLM performs poorly mainly due to the quality of the pseudo point-level anno-
tations.
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Method GAME0 GAME1 GAME2 GAME3
Glance 8.70 - - -
Glance-ram (ours) 6.92 - - -
WSLM (ours) 6.70 12.90 17.60 24.00

LCFCN 3.57 4.98 7.42 11.67

Table 5.3: Results on the Trancos Dataset.

Mall [17]. Collected from a fixed camera installed in a shopping mall, Mall
consists of 2000 frames of size 320x240. These frames have diverse illumination
conditions and crowd densities, and the objects vary widely in size and appearance.
Results are shown in Table 5.4.

Method MAE GAME
Glance 4.03 -
Glance-ram (ours) 3.38 -
WSLM (ours) 3.10 18.40

LCFCN 2.12 8.70

Table 5.4: Results on the Mall Dataset.

PKLot [29]. The dataset consists of images taken from a fixed camera at a parking
lot in Curitiba, Brazil. The goal is to find the number and location of cars in the
images. The original labels are bounding boxes over each car. For the ground truth
point-level annotations, we pick the centroids of the bounding boxes, although we
train our models using the number of cars only. We use the PUCPR subset of the
dataset with the first half of the images as the training set, and the rest as the test
set.

Method MAE GAME
Glance 1.82 -
Glance-ram (ours) 1.14 -
WSLM (ours) 1.23 2.50

LCFCN 0.21 0.23

Table 5.5: Results on the PKLot Dataset.

Results are shown in Table 5.5. The proposed Glance-ram outperforms both
Glance and the proposed WSLM, while LCFCN outperforms all three methods.

74



However, WSLM has an advantage over both these methods as (1) it is trained on
only count annotations and (2) it outputs localization (Figure 5.4). Note also that
since WSLM is trained on pseudo point-level annotations, it is not surprising that
it performs worse than LCFCN.

ShanghaiTech B [136]. Part B consists of images taken from the streets of metropoli-
tan areas in Shanghai. Part B has 400 and 316 images, respectively. The dataset
successfully creates a challenging image set with diverse scene types and vary-
ing density levels. However, the number of images for various density levels are
not uniform, making the training and evaluation biased towards low density lev-
els. Nevertheless, the complexities present in this dataset such as varying scales
and perspective distortion has created new opportunities for more complex CNN
network designs.

Method MAE GAME
Glance 23.50 -
Glance-ram (ours) 18.3 -
WSLM (ours) 38.70 82.30

LCFCN 13.14 23.30

Table 5.6: Results on the ShanghaiTech B Dataset.

The MAE, and GAME results are shown in Table 5.6. While Glance-ram out-
performs Glance, WSLM achieves the worst result. This suggests that WSLM is
not suitable for extremely dense scenes like ShanghaiTech. However, Figure 5.4
shows qualitative results for WSLM that indicate that it can perform some good
degree of localization.

Penguins Dataset [8]. The dataset consists of images of penguin colonies that are
collected from fixed cameras in Antarctica. We use the “mixed” dataset split where
images in the training set come from the same cameras as those in the test set.
Penguins can come in many different sizes: there are baby penguins, big penguins,
small penguins, and so on.

Due to the size of the Penguins datasets, we report the results on the valida-
tion set of Penguins. Results are shown in Table 5.7 with qualitative examples in
Figure 5.4.
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Figure 5.4: Qualitative results. Comparison between ground-truth point annota-
tions, pseudo point annotations, and predictions made by WSLM.
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Method MAE GAME
Glance 2.23 -
Glance-ram (ours) 2.6 -
WSLM (ours) 3.21 5.31

LCFCN 2.10 3.20

Table 5.7: Results on the Penguins Validation Set.

5.5 Limitations

Occlusions can affect the performance of our method. It is possible that the object
count does not match the number of objects seen in the image because some objects
might completely occluded by another object in front of it. In this case, it might
be desirable to allow the model to localize less objects than the actual count during
training.

The model might learn to localize the wrong object class due to ambiguity. The
number of objects for one class might be similar to the class of interest. With only
count supervision, it might be impossible for our model to learn which object class
is of interest. Thus, it might be worth having at least few images with point-level
supervision in order to identify the class for the objects of interest.

In contrast to Glance, our methods also require supervision from a pretrained
proposal network that has been trained on a dataset like PASCAL [35] dataset.
However, the proposal network has been trained on images that look very different
than our datasets, and they were trained on class-agnostic bounding boxes.

5.6 Conclusion

We have proposed WSLM, a Weakly Supervised Localization Model that can local-
ize objects in congested scenes and still perform accurate count estimation. WSLM
performs three main steps. First, it trains Glance-ram to convergence, which ex-
tends Glance [16] by having a Regression Activation Map (RAM). Second, it uses
RAM to score and select a set of region proposals for the training images and
converts them to pseudo point-level annotations. We have shown the efficacy of
WSLM on six datasets of congested scenes, including ShanghaiTech, UCSD, and
Mall. With count supervision, we have delivered state-of-the-art performance with
Glance-ram, and a first strong baseline for object localization in congested scenes
with WSLM.
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Chapter 6

Conclusion

Throughout this work, we have proposed four weakly supervised methods. They
require annotations that are significantly cheaper to collect than the standard anno-
tations. If the annotation budget is fixed, our weakly supervised methods achieve
better results than the standard fully supervised methods. The first method can
learn to count objects from point annotations only as opposed to detection-based
methods that require bounding boxes. The second method can learn to segment ob-
jects by using point annotations as well. This significantly reduces the cost required
for obtaining training labels for segmentation. In fact, it can take up to 1.5 hours
to label a single image as opposed to around a half minute of annotation time. For
the third method, we decreased the annotation required even further by proposing
a segmentation model that only requires image-level labels. Finally, we proposed a
detection model that only requires image-level counts. In many cases, image-level
counts have similar cost to image-level labels and can come for free. Yet, counts
provide more information than labels. Our benchmarks have shown that each of the
proposed method achieve state-of-the-art results in their respective weakly super-
vised setup. Interestingly, in some cases our methods had comparable performance
compared to fully supervised methods. One main weakness for our instance seg-
mentation methods is that they require proposal methods that have been trained on
large scale methods. Therefore, for future work, we plan instead to use an unsuper-
vised methods for generating proposals. Another weakness for two-stage methods
is error propagation. Errors from one-stage can affect the performance of the sec-
ond stage. This can occur in WISE-ILS where the errors in pseudo label generation
can heavily influence the training performance of Mask RCNN. For future work,
we plan to extend these weakly supervised methods to work with synthetic data, to
work in a few-shot setup [130], or to be used for active learning [110]. All these
setups can significantly minimize the amount of annotation required.
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