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Abstract 

DNA	Methylation	(DNAm)	is	an	epigenetic	modification	that	is	present	across	the	human	

genome,	primarily	in	the	context	of	CpG	di-nucleotides.			In	human	population	studies,	high	

throughput	bead	chip	microarray	assays	are	the	prevalent	way	to	simultaneously	measure	

the	methylation	state	of	many	thousands	of	genomic	CpG	sites.		Proximal	genomic	CpGs	

have	correlated	methylation	state	within	a	single	cell	and	often	function	as	a	single	

biological	unit.				The	prevailing	common	methylation	state	of	such	multiple	CpGs	within	a	

common	biological	unit	has	been	the	subject	of	intense	study,	due	to	its	immediate	

relevance	for	gene	expression	regulation	and	ultimately	for	health	and	disease.		I	designed	

and	implemented	a	method	for	a	biologically	motivated	DNAm	array	data	reduction,	which	

constructs	co-methylated	regions	(CMRs),	while	incorporating	information	about	the	

genomic	CpG	background	from	the	reference	human	genome	annotation.		The	method	

relies	on	the	correlations	of	CpG	methylation	across	individuals	for	proximal	CpG	probes.		

The	method	aims	for	enhanced	statistical	performance	in	terms	of	statistical	power	and	

specificity,	including	for	downstream	applications.		For	example,	Epigenome	Wide	

Association	Studies	(EWAS),	an	important	such	application,	often	places	the	focus	on	group	

“hits”	with	multiple	adjacent	CpGs	that	are	significant,	because	their	gnomic	proximity	

makes	it	more	likely	that	the	detected	correlations	are	not	spurious.			The	CMRs	capture	

such	groups	and	I	showed	that	the	CMRs	constructed	in	whole	blood	public	data	have	high	

statistical	specificity	in	the	context	of	EWAS	for	chronological	age	and	biological	sex.		When	

the	composite	CMR	methylation	measures	were	used	to	perform	EWAS	for	age	and	sex,	

they	had	high	sensitivity	and	specificity,	including	uncovering	additional	associated	CpGs	
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not	detected	by	conventional	EWAS.	The	utility	of	the	data	reduction	method	was	further	

discussed	within	the	broader	context	of	applying	machine	learning	algorithms	for	high	

dimensional	DNAm	array	data	analysis.	
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Lay Summary 

	

DNA	Methylation	is	a	chemical	modification	occurring	at	millions	of	sites	across	the	human	

genome.		It	is	important	for	the	establishment	of	the	epigenome,	which	specifies	how	

different	types	of	cells	emerge	from	the	same	genome.		Microarray	assays	measure	the	DNA	

methylation	at	hundreds	of	thousands	of	genomic	sites	simultaneously,	producing	high-

dimensional	data.		Since	multiple	genomic	regions	containing	proximal	methylated	sites	

function	biologically	as	units,	their	statistical	analysis	requires	intricate	analytics.		This	

work	develops	a	method	for	DNA	methylation	array	data	reduction	to	enhance	

downstream	analyses	in	terms	of	statistical	power,	specificity	and	biological	interpretation.			

The	method	is	motivated	by	biological	findings	and	uniquely	incorporates	information	

from	the	whole	human	genome	sequence	to	identify	co-methylated	regions.			This	is	based	

on	the	inter-individual	correlation	of	the	methylation	status	of	qualified	proximal	genomic	

sites.	Several	applications	illustrate	the	utility	of	the	method	and	an	open	source	software	

implementation	is	available.	
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Chapter 1: Introduction 

	

1.1 DNA	Methylation	in	Humans	and	its	Measurement	with	Bead	Chip	

Microarrays		

DNA	methylation	(DNAm),	where	a	methyl	group	is	covalently	attached	to	the	5’	

carbon	of	the	Cytosine	base,	is	present	across	the	genome	of	humans	and	primates,	

primarily	in	the	context	of	cytosine-phosphate-guanosine	(CpG)	di-nucleotides.		

Diverse	DNAm	patterns	are	associated	with	the	establishment	and	maintenance	of	

cellular	identity	within	the	tissues	of	higher	organisms[1-4].		Moreover,	at	the	

molecular	level	DNAm	has	been	implicated	in	establishing,	altering	and	maintaining	

the	chromatin	state	and	in	the	regulation	of	gene	transcription[5,	6].		In	addition	to	

its	role	in	developmental	biology,	recent	evidence	suggests	that	DNAm	patterns	in	a	

given	tissue	might	also	associate	with	persistent	environmental	exposures	on	the	

one	hand,	and	health	and	disease	on	the	other	hand,	thus	making	this	a	promising	

approach	for	study	in	various	epidemiological	contexts[7-9].			

	

The	human	genome	contains	about	28M	CpG	sites,	with	most	of	these	methylated.		A	

global	hypo-methylation	trend	with	ageing	has	been	observed	for	adults,	with	the	

exception	of	certain	genomic	contexts,	like	CpG	islands	in	gene	promoters;	for	these,	

the	opposite	trends	have	been	observed[10,	11].		Moreover,	biological	sex	

differences	in	humans,	known	to	range	from	gross	anatomy	and	physiology	to	the	

molecular	level,	include	divergent	epigenetic	profiles,	encompassing	DNAm[12-20].		
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Several	recent	studies	have	documented	associations	between	thousands	of	CpG	

sites	and	sex,	as	well	as	differentially-methylated	regions	(DMRs)	that	include	

imprinted	loci,	as	well	as	many	autosomal	regions[21-23].			In	such	studies,	the	most	

widely	used	approach	for	high	throughput	measurement	of	DNAm	at	a	subset	of	the	

millions	of	genomic	CpG	sites	consists	of	bead	chip	microarrays.	

	

The	most	popular	DNA	methylation	arrays	have	been	the	Illumina	Infinium	

HumanMethylation450	BeadChip	(450K)[24]and	EPIC[25]array	platforms.	These	

arrays	measure	485,512	(450K)	and	865,859	(EPIC)	sites,	respectively,	out	of	the	28	

million	possibly	methylated	CpG	sites	in	the	human	genome.		In	this	dissertation,	the	

bulk	of	the	data	were	obtained	from	publicly	available	datasets[26]that	were	

generated	with	the	450K	platform.	

		

Illumina’s	DNAm	microarray	technology	relies	on	“quantitative	genotyping	of	C/T	

single	nucleotide	polymorphisms	(SNPs)	introduced	following	bisulfite	(BS)	

conversion”,	which	basically	converts	unmodified	cytosines	to	uracil	while	cytosines	

with	DNA	modifications	remain	unaffected.		Notably,	this	particular	readout	of	the	

BS	conversion	does	not	distinguish	between	DNA	methylation	(5mC)	and	hydroxy-

methylation	(5hmC).	The	DNAm	arrays	target	CpG	sites,	along	with	a	small	number	

of	non-CpGs	(CHH	and	CHG),	with	oligomer	“probes”	adhered	to	“beads”,	which	are	

randomly	arranged	within	wells	on	the	surface	of	each	array	[25].		Two	types	of	

probes	are	used	by	the	Infinium	platforms,	Type	1	and	Type	2,	designed	to	
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efficiently	target	different	genomic	context.		Type	1	probes	have	two	different	probe	

sequences	per	CpG	site,	for	methylated	versus	unmethylated	CpGs.	Type	2	probes	

have	only	one	probe	sequence	per	CpG	site.	The	hybridization	to	probes	of	a	

bisulphite	converted	DNA	fragment	enables	single	base	extension	with	a	labelled	

nucleotide	matching	the	nucleotide	immediately	upstream	of	the	target	CpG	site.	

Such	incorporation	of	a	nucleotide	results	in	fluorescent	signal	detection	in	either	

the	red	or	the	green	channel,	depending	on	the	probe	type	and	methylation	signal.			

The	intensity	of	fluorescence	is	translated	into	a	level	of	DNAm	for	each	CpG	site	-	

either	as	a	β	value,	a	number	between	0	=	not	methylated,	and	1	=	fully	methylated,	

or	logit-transformed	β	values,	called	M	values,	which	are	recommended	for	linear	

statistical	analyses[27].		These	DNAm	measurements	characterize	a	single	

individual	with	high	dimensional	data,	where	each	measured	array	probe	

represents	a	separate	dimension	characterizing	a	single	individual.	

	

To	see	how	intermediate	β	values	between	0	and	1	arise	from	measurements	in	bulk	

tissue,	such	as	whole	blood,	which	consists	of	a	mixed	pool	of	cells	of	different	cell	

types,	recall	that	the	DNAm	state	of	a	single	CpG	site	can	be	either	unmethylated,	

β=0,	or	methylated,	β=1.		Thus,	in	a	single	diploid	human	cell,	the	DNAm	state	of	a	

single	CpG	site	can	be	either	unmethylated	on	both	alleles	(β=0),	methylated	on	one	

of	the	alleles	(β=0.5),	or	methylated	on	both	alleles	(β=1).		In	a	bulk	tissue	sample,	

the	measured	DNAm	is	an	average	across	the	mixed	pool	of	different	cells,	and	the	

average	may	have	any	value	between	zero	and	one.		In	this	way	the	β	measures	
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DNAm	percentage	in	a	sample[28].		Similarly,	for	such	bulk	tissue	samples	

consisting	of	pools	of	different	types	of	cells,	differences	in	measured	DNAm	across	

individuals	reflect	either	cell	pool-average	differences	in	DNAm	across	the	cell	types	

in	the	sample,	or	different	mixes	of	cell	types	across	individuals,	or	both.			

	

1.2 High	Dimensional	DNA	Methylation	Array	Data.	

Even	though	the	DNAm	array	methylation	state	measurements	have	sparse	

coverage	of	the	28	milllion	genomic	CpGs,	there	is	still	a	very	large	number	of	

measurements	performed,	some	of	which	may	yield	values	that	are	correlated	due	

to	some	common	underlying	biological	mechanism	affecting	a	set	of	CpG	sites,	

usually	within	a	close	genomic	proximity,	in	concert	[29,	30].			Moreover,	while	

there	are	hundreds	of	thousands	of	CpGs	on	the	DNAm	arrays,	many	of	those	tend	to	

have	little	variability	in	the	same	tissue	across	individuals	[31],	so	a	“natural”	data	

reduction	occurs,	that	can	be	exploited	in	downstream	analyses.			Such	findings	

point	towards	a	general	approach	of	biologically-motivated	DNAm	array	data	

reduction,	where	the	key	requirement	would	be	the	identification	of	redundant	

DNAm	measurements	associated	with	the	same	biological	process,	so	that	their	

common	signal	can	be	preserved	in	the	reduced	data,	while	statistical	noise	is	

filtered	out.		One	powerful	approach	to	such	identification	of	redundant	

measurements	is	to	integrate	existing	domain	knowledge	about	DNA	methylation	

into	the	data	reduction	algorithm[32].			For	example,	this	is	the	tack	of	the	“Co-
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Methylation	with	genomic	CpG	Background”	(CoMeBack)	method	described	in	the	

next	chapter.	

	

When	DNAm	array	data	is	analyzed	along	with	other	phenotypic	data,	for	example	

disease	state,	there	are	two	principal	ways	to	proceed:	First,	DNAm	is	modeled	as	

the	independent	variable	that	is	explained	by	the	phenotype	variable	within	a	linear	

regression	specification.		In	this	case,	the	phenotype	and	other	intrinsic	variables,	

like	age	and	sex,	are	the	explanatory	variables	on	the	righthand	side	of	the	equation	

in	the	linear	regression.		Such	association	studies,	termed	epigenome-wide	

association	studies	(EWAS)	[33,	34],	have	to	cope	with	multiple	tests	of	statistical	

hypotheses[35]	when	a	large	set	of	measurements	from	the	array	data	are	used	in	

separate	statistical	tests.		Second,	the	phenotype	variable	itself	can	be	explained	by	

multiple	DNAm	explanatory	variables.		In	this	case,	one	constructs	a	“predictor,”	for	

the	phenotype	using	DNAm	measurements	obtained	from	the	array,	but	the	large	

number	of	array	measurements	poses	several	challenges,	for	example	overfitting	a	

linear	regression	specification	for	typical	sample	sizes	that	are	much	smaller	than	

the	number	of	DNAm	array	measurements[36].		In	both	scenarios,	data	reduction	

can	be	useful,	whether	it	is	biologically	motivated,	such	as	removing	tissue-specific	

low-variability	probes[31],	or	statistical,	for	example	by	focusing	on	estimated	

clusters	or	modules[37].	
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To	better	understand	how	a	careful	DNAm	data	reduction	may	be	useful	in	both	

scenarios	discussed	above,	I	proceed	to	briefly	discuss	two	important	statistical	

notions	in	the	context	of	DNAm	array	data.		The	two	concepts	are	the	“curse	of	

dimensionality”	[38]	and	the	signal	to	noise	ratio.	

	

1.2.1 The Curse of Dimensionality for DNA Methylation Array Data 

High	dimensional	data	present	unique	analytical	challenges	that	are	never	easy	to	

deal	with.		We	discuss	the	“curse	of	dimensionality”		[36]	in	the	context	of	high	

dimensional	DNAm	array	data	within	the	predictor	scenario,	where	hundreds	of	

thousands	of	DNAm	measurements	are	potential	candidates	for	predicting	the	

phenotype	of	interest.		Intuitively,	high	dimensional	DNAm	variability	implies	that	

two	individuals	are	virtually	never	“similar”	for	sample	sizes	much	smaller	than	the	

high	dimension	of	hundreds	of	thousands	of	DNAm	measurements.		This,	in	turn,	

makes	it	difficult	to	detect	patterns	and	associations	in	the	data.		

	

The	curse	of	DNAm	array	dimensionality	stems	from	two	related	problems.		First,	

one	expects	that	the	DNAm	probes	that	are	truly	associated	with	most	phenotypes	

of	interest	are	only	a	very	small	subset	of	the	hundreds	of	thousands	of	DNAm	array	

measurements.		Second,	the	associations	for	these	true	signals	with	the	phenotype	

are	relatively	weak	in	terms	of	explained	variability	(also	known	as	R-squared)	[39].			

The	hurdle	lies	in	picking	out	the	relatively	few	informative	probes	among	the	many	
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thousands	of	“noise”	measurements,	some	of	which	may	be	spuriously	correlated	

with	the	phenotype	of	interest.	

	

For	DNAm	predictor	scenarios,	the	curse	of	dimensionality	is	manifested	as		“over-

fitting”,	manifested	as	improving	accuracy	in	the	training	data	when	additional		

DNAm	probes	are	used	to	predict	the	phenotype,	while	in	new	data,	testing	such	

expanded	predictors	yields	increasing	error	as	additional	DNAm	probes	are	

included	to	“improve”	the	predictor	[36].		In	this	scenario,	one	has	to	somehow	

select	informative	DNAm	probes,	or	equivalently,	filter	out	the	noisy	ones,	which	

represents	a	form	of	data	reduction.		One	recent	example	of	such	data	reduction	

through	algorithmic	feature	selection	can	be	found	in	the	“epigenetic	clock”	[40]	

which	first	selects	and	then	uses	only	353	DNAm	probes	out	of	the	27K	

measurements	on	the	recently	retired	Illumina	27K	array,	in	order	to	predict	

chronological	age.		We	note	that	this	data	reduction	is	rather	extreme,	as	there	are	

several	thousand	DNAm	array	probes	that	are	weakly	associated	with	age	and	hence	

they	represent	candidates	for	an	age	predictor	[41].		More	generally,	this	example	

illustrates	how	careful	data	reduction	that	preserves	the	most	informative	DNA	

methylation	measurements	can	be	useful	for	the	construction	of	parsimonious	

predictors	for	phenotype,	that	are	based	on	DNAm	array	measurements.	
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1.2.2 Signal-to-Noise ratio 

To	further	understand	the	potential	of	careful	DNAm	array	data	reduction,	we	

consider	a	stylized	EWAS	scenario,	where	the	methylation	beta	is	modeled	as	

“explained	by,”	or	regressed	on,	the	phenotype	variable	of	interest	and	intrinsic	

measures	such	as	age,	sex	and	ethnicity	[33].		With	the	vast	number	of	DNAm	betas	

measured	on	the	array,	multiple	tests	for	associations	are	bound	to	yield	some	false	

positives	due	to	spurious	correlation	that	occurs	by	chance	in	a	given,	typically	

small,	sample.		In	this	scenario,	data	reduction	may	be	useful	in	two	related	ways.	

	

First,	performing	fewer	tests	with	the	reduced	data	lowers	the	multiple	test	

correction	burden,	which	may	help	discovery	when	the	data	reduction	preserves	the	

statistical	signal,	defined	as	the	variance	of	the	expected	methylation	beta	

conditional	on	the	explanatory	phenotypic	variables	[36].			Less	obvious,	good	data	

reduction	may	help	improve	statistical	power,	when	the	data	reduction	procedure	

boosts	the	signal-to-noise	ratio,	where	noise	is	defined	as	the	variance	of	the	

measurement	error	that	is	independent	of	the	explanatory	variables	[36].	

	

Data-driven	reduction	approaches	such	as	removing	non-variable	probes	[31],	or	

focusing	on	estimated	clusters	or	modules	[37],	aim	to	achieve	these	goals	using	the	

statistical	variability	of	the	data.		An	alternative	approach	would	be	to	identify	

multiple	DNAm	array	probes	that	are	redundant	in	the	sense	that	they	measure	the	

same	biological	effect.		Subsequently,	aggregating	these	redundant	probe	betas	in	a	
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single	“summary”	composite	beta,	by	way	of	a	weighted	sum,	would	reduce	the	

statistical	noise	for	that	composite	DNAm	measure.		Intuitively,	if	the	statistical	

errors	of	the	redundant	measurements	were	independent	of	each	other,	they	would	

cancel	out	to	some	extent	as	they	are	added	together.		As	a	result,	the	statistical	

error	of	the	single	composite	measure	would	have	lower	variance,	which	in	turn	

would	improve	the	signal-to-noise	ratio	versus	that	of	each	individual	redundant	

probe.		In	this	way,	a	sensible	data	reduction	method	may	improve	statistical	power,	

or	even	enable	the	downstream	applications	of	more	flexible,	in	terms	of	number	of	

parameters,	statistical	models	that	may	otherwise	overfit	the	data	when	the	signal-

to-noise	ratio	is	low[36].		I	now	proceed	to	briefly	outline	the	emerging	data	

reduction	methods	in	the	context	of	DNAm	array	data	analyses.	

	

1.3 Data	Reduction	in	DNAm	Analyses	

The	data	reduction	methods	that	have	been	applied	for	DNAm	analysis	and	can	be	

considered	as	falling	into	two	groups,	based	on	their	placement	within	the	analytic	

pipeline.		First,	we	can	distinguish	data	reduction	for	exploratory	data	analysis,	

where	broad	global	patterns	of	variability	are	extracted	and	summarized.		The	

widely	used	Principal	Component	Analysis	(PCA)	is	the	archetypal	example,	along	

with	mainstream	alternatives	like	Latent	Factor	Analysis,	Clustering,	and	others[36].		

These	exploratory	analyses	broadly	correspond,	but	are	not	identical,	to	the	

“unsupervised	approach”	category	in	Machine	Learning	(ML)	parlance[42].		Next,	

there	are	more	targeted	analytical	pipelines	that	focus	on	phenotypes	beyond	DNA	



 

 

10 

methylation,	like	the	construction	of	sparse	epigenetic	predictors.		These	analyses	

broadly	correspond	to	the	class	of	“supervised”	ML	algorithms,	that	use	the	

phenotype	“label”	as	an	additional	input.		A	number	of	well-regarded	general	

purpose	ML	algorithms	that	have	been	applied	to	analyze	DNAm	array	data,	

including	elastic	net[40],	LASSO[43],	random	forests[44],	sparse	PCA[45]	and	

others[46].		Such	methods	typically	include	a	data	reduction	step	as	a	key	element	of	

the	algorithm.		However,	since	such	general-purpose	ML	methods	are	designed	to	

have	wide	applicability	in	diverse	domains,	their	data	reductions	are	not	rooted	in	

specific	biological	models.				

	

In	the	context	of	exploratory	DNAm	data	analysis,	data	reduction	may	be	

incorporated	within	more	complex	ML	algorithms	that	aim	to	characterize	specific	

DNAm	patterns	that	may	be	present	in	the	data.		For	example,	a	sparse	version	of	

the	PCA[47]	incorporates	a	data	reduction,	so	that	the	output	transformation	

removes,	or	collapses,	many,	or	most	of	the	input	DNAm	measurements.			In	this	

case,	the	objective	is	to	go	beyond	characterizing	the	global	variability	patterns,	to	

extract	only	the	strongest	pervasive	patterns	as	a	more	limited	subset	of	the	entire	

large	set	of	DNAm	array	probe	measurements.		A	typical	use-case	is	illustrated	by	

the	widely	used	lists	of	top	candidates	for	further	study	reported	in	academic	

papers.	
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On	the	other	hand,	DNAm	analysis	in	a	supervised	ML	context	may	involve	

constructing	predictors	or	risk	scores	for	disease	like	cancer	or	neurological	

disorders	[48-50],	imputation	of	unmeasured	phenotype[51],	or	forensic	

epigenetics[52].		Consider	for	example	the	“elastic	net”	ML	algorithm[53]	has	

become	widely	used	in	DNAm	array	data	analyses	to	produce	epigenetic	predictors.		

The	elastic	net	uses	phenotypic	information	beyond	DNA	methylation	to	reduce	the	

DNAm	array	data.			The	data	reduction	step	in	such	an	algorithm	aims	to	decrease	

the	overall	number	of	initial	DNAm	measurement	inputs	to	a	smaller	subset	of	

robust	signals	that	is	best	suitable	to	prediction	or	imputation	of	the	phenotype	of	

interest.		This	intermediate	step	typically	works	by	removing	the	measurements	

that	either	resemble	noise,	or	are	mutually	redundant.	

	

In	addition	to	statistical	ML	data	reduction	techniques,	DNAm	analytical	pipelines	

often	reduce	the	data	based	on	biological	considerations,	for	example	by	removing	

invariable	probes[31],	as	stated	in	section	1.2.2.	The	justifications	for	such	

variability	filtering,	which	can	be	traced	back	to	the	gene	expression	literature	[54-

57],	typically	include	arguments	that	small	effects	are	not	biologically	informative	or	

reproducible,	while	they	also	hamper	the	statistical	analyses	through	a	high	multiple	

test	correction	burden.		The	widespread	application	of	such	mainstream	biologically	

motivated	pre-processing	procedures	indicates	that	there	is	room	for	a	DNAm	array	

data	reduction	that	integrates	epigenetic	knowledge	to	produce	output	that	is	both	

biologically	informative	and	useful	as	input	to	downstream	analytic	pipelines.		One	
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possibility	for	such	biologically-motivated	data	reduction	involves	focusing	of	co-

methylated	regions,	encompassing	groups	of	(adjacent)	array	probes,	versus	

individual	CpGs.	

	

1.4 Analysis	of	Co-Methylated	Regions:	Considerations	and	Methods	

Existing	dimension	reduction	methods	for	DNAm	array	data	that	output	co-

methylated	regions	(CMRs)	or	DMRs,	can	be	considered	to	fall	into	two	categories	

based	on	their	key	assumptions.		First,	“within	an	individual”	methods	compress	

methylation	ratio	(beta)	levels	within	each	individual,	while	the	other	group	of	

“across	individuals”	methods	exploit	the	correlations	of	the	methylation	levels	to	

other	variables	between	individuals.			DMR	methods	like	Bumphunter	[58]	smooth	

over	beta	values	of	adjacent	CpGs	within	an	individual,	while	methods	like	DMRcate	

[59]	and	A-clustering	[60]	consider	correlations	of	CpG	betas	with	external	

phenotypic	variables,	or	correlations	between	CpG	betas,	respectively.		Consider	the	

above	two	categories	in	some	more	detail.	

	

As	stated	in	section	1.1,	in	bulk	tissue,	the	DNAm	betas	are	often	at	intermediate	

levels	between	zero	and	one	when	they	reflect	the	aggregation	of	stochastic	

methylation	state	across	individual	cells.			As	a	result,	regions	with	multiple	

proximal	CpG	sites	that	function	as	biological	units,	for	example	enhancers,	may	

have	intermediate	methylation	values	for	the	adjacent	CpG	sites	that	vary	from	site-

to	site	within	an	individual.		To	the	extent	that	such	values	are	redundant	
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measurements	of	the	common	DNAm	state	of	the	single	biological	unit,	combining	

these	signals	may	reduce	the	stochastic	noise	and	improve	the	statistical	

performance	in	downstream	analyses.		This	is	the	basic	intuition	behind	methods	

like	Bumphunter	[58]	that	smooth	the	beta	values	over	multiple	adjacent	sites	

within	each	individual.	

	

On	the	other	hand,	when	the	prevailing	co-methylation	state	of	a	multi-CpG	region,	

that	functions	as	a	biological	unit,	varies	across	individuals	due	to	phenotype,	this	

inter-individual	variation	of	the	co-methylation	state	would	be	reflected	in	the	

single	CpG	sites	that	would	be	correlated	across	individuals.		This	presents	an	

opportunity	to	statistically	identify	co-methylated	regions,	by	examining	adjacent	

CpG	correlations	across-individuals.		The	identified	regions	can	subsequently	be	

evaluated	in	terms	of	their	biological	role	by	using	existing	knowledge	about	

functional	genomic	features,	like	enhancers,	that	may	be	tissue-specific	[61,	62].	

	

Across-individual	correlations	of	adjacent	CpGs	can	be	evaluated	directly	as	an	

alternative	to	“within-individual”	smoothing	of	the	DNAm	betas	at	adjacent	CpG	

sites,	with	the	advantage	of	avoiding	“over-smoothing”,	or	more	generally,	choosing	

parameters	for	smoothing	strength	and	window	size.		In	general,	algorithmic	

parameters	for	DNAm	beta	smoothing	may	not	be	easy	to	estimate,	as	they	typically	

vary	across	genomic	and	tissue	context,	as	well	as	across	populations	and	

conditions.		For	example,	co-methylated	regions	vary	due	to	diseases	such	as	
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cancers,	which	may	be	heterogeneous,	or	polygenic,	or	more	generally,	difficult	to	

characterize	extensively	at	the	molecular	level.		Such	complications	would	tend	to	

preclude	the	inference	of	universally	applicable	hyper-parameters	for	algorithmic	

beta	smoothing.		These	considerations	help	explain	the	motivation	for	methods	like	

A-clustering	[60]	and	DMRcate	[59]	that	are	based	entirely	on	across-individual	

correlations	of	adjacent	CpG	sites.			

	

On	the	other	hand,	when	one	evaluates	the	correlation	of	adjacent	array	probe	betas	

across	individuals,	the	genomic	context,	in	particular	the	genomic	density	of	CpG	

sites	not	measured	on	an	array,	can	be	useful	because	it	has	been	shown	to	affect	the	

strength	of	the	beta	correlations	within	individuals	[29,	30].			Consequently,	if	

genomic	CpG	density	is	sufficiently	high,	then	the	CpGs	inter-individual	correlation	

would	tend	to	be	above	the	genomic	context-dependent	background	levels[30].		

Thus,	adjacent	array	probes	that	measure	a	subset	of	such	dense	genomic	CpG	sites	

would	tend	to	have	measured	betas	that	are	correlated	across	individuals.		

	

Based	on	these	considerations,	it	is	possible	that	a	method	for	a	biologically	

motivated	data	reduction,	which	constructs	co-methylated	regions	while	also	

incorporating	a-priori	CpG	coordinates	from	the	reference	human	genome	

sequence,	may	achieve	statistical	performance	improvement,	as	well	as	facilitate	

enhanced	interpretability	in	terms	of	existing	knowledge	about	annotated	genomic	

features.		For	example,	EWAS	studies	often	focus	on	“group	hits”	where	there	are	
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multiple	adjacent	CpG	probes	that	are	significantly	associated	with	the	variable	of	

interest[59,	63],	because	their	genomic	proximity	makes	it	more	likely	that	they	

function	as	an	individual	biological	unit	and	hence	the	detected	correlations	are	not	

spurious.			

	

Biological	considerations	as	the	ones	discussed	above	can	form	the	basis	of	a	“pre-

processing”	DNAm	array	data	reduction	approach	that	incorporates	the	genomic	

proximity	of	array	probes	as	a	key	element,	along	with	the	complete	set	of	all	

genomic	CpGs	annotated	in	the	reference	human	genome	sequence.		In	contrast	to	

statistical	approaches	like	A-clustering[60]	or	DMRcate[59]	that	only	use	across-

individual	correlations,	such	data	reduction	would	be	based	on	a	simple	biological	

model.			As	a	form	of	general	pre-processing,	it	would	have	the	advantage	of	offering	

flexibility	regarding	downstream	analytical	pipelines,	so	that	unsupervised,	

supervised,	or	other	methods	can	be	used	following	such	biologically-motivated	

DNAm	array	data	reduction.	

	

1.5 Thesis Objectives 

The	overarching	objective	of	this	dissertation	was	to	develop	a	powerful,	easy	to	use	

method	and	software	for	DNAm	microarray	data	reduction	that	can	enhance	

discovery	and	specificity,	and	to	demonstrate	its	utility	through	several	biologically	

important	applications.		To	accomplish	this,	I	undertook	the	following	studies	

described	in	chapters	2,	3	and	4.		Chapter	2	describes	the	biological	data	reduction	
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algorithm	“Co-Methylation	with	genomic	CpG	Background”	(CoMeBack)	design	and	

development	in	detail,	and	demonstrates	an	application	for	co-methylated	region	

(CMR)	construction	in	whole	blood	and	the	CMRs’	biological	characterization	in	

terms	of	chromatin	state,	known	mQTLs	and	transcription	factor	binding	sites.		The	

chapter	also	provides	examples	of	possible	downstream	analyses,	including	an	

EWAS	application	for	CMRs	associated	with	chronological	age.		While	this	

application	was	meant	to	illustrate	an	example	use	of	CoMeBack	within	a	typical	

pipeline,	it	is	also	biologically	important,	because	of	the	clinical	relevance	of	age	and	

ageing	to	health	and	disease[11].	

	

The	subsequent	chapter	3	presents	an	extensive	application	of	the	CoMeBack	

method	for	identification	of	co-methylated	regions	associated	with	Sex,	which	is	

among	the	few	phenotypes	that	have	well	established	DNAm	signatures[12,	21].		

The	comprehensive	characterization	of	sex-associated	CMRs	showcases	how	the	

CoMeBack	CMRs	can	be	used	as	an	upstream	data	reduction	to	enhance	discovery	

and	statistical	specificity	within	a	rich	downstream	analytical	pipeline.			The	

application	of	CoMeBack	to	identify	CMRs	associated	with	sex	was	motivated	by	the	

biological	importance	of	the	Sex	phenotype	in	humans,	as	well	as	by	its	feasibility	

using	publicly	available	data	to	form	large	aggregated	samples.			

					

In	the	next	chapter	4	of	this	thesis	I	discuss	three	other	mainstream	machine	

learning	(ML)	algorithms	that	I	have	applied	in	different	projects	that	involved	
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DNAm	data	analysis.		I	used	these	ML	algorithms	for	sparse	predictor	construction	

and	also	to	perform	feature	extraction.			These	applications	addressed	the	specific	

objectives	and	context	of	the	respective	studies.	In	the	chapter,	I	discuss	the	

performance	of	the	constructed	predictors,	as	well	as	performance	limitations,	along	

with	considerations	relevant	to	the	choice	of	a	ML	algorithm	in	these	cases.	

	

The	final	chapter	5	presents	a	discussion,	including	future	research	directions.	
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Chapter 2: CoMeBack: DNA Methylation Array Data Analysis for Co-

Methylated Regions 

2.1 Introduction  

DNA	methylation	(DNAm)	describes	the	covalent	chemical	attachment	of	a	

methyl	group	to	the	5'	carbon	of	the	cytosine	nucleotide,	typically	next	to	a	

guanine	nucleotide,	referred	to	as	a	CpG	site.		Diverse	DNAm	patterns	are	

associated	with	the	establishment	and	maintenance	of	cellular	identity	within	the	

tissues	of	higher	organisms.		Moreover,	at	the	molecular	level,	DNAm	has	been	

implicated	in	establishing,	altering	and	maintaining	the	chromatin	state,	and	in	

the	regulation	of	gene	transcription[5,	64].	In	addition	to	its	role	in	

developmental	biology,	recent	evidence	suggests	that	DNAm	patterns	in	a	given	

tissue	may	also	associate	with	persistent	environmental	exposures,	as	well	as	

overall	health	and	disease,	making	this	an	intriguing	mechanism	to	study	in	

various	epidemiological	contexts	[7-9,	65].		Although	substantial	amounts	of	data	

have	been	generated,	few	DNAm	associations	have	been	replicated	across	

different	studies	[34].		This	may	in	large	part	be	due	to	the	complexity	of	various	

environments	across	populations	studied,	how	a	given	environmental	factor	is	

measured	and	defined,	and	the	power	needed	to	detect	true	statistical	

associations.		

				Most	DNAm	association	studies,	termed	epigenome-wide	association	studies	

(EWAS),	utilize	array	technology,	with	the	most	popular	being	the	Illumina	

Infinium	450K	(450K)	[24]	and	EPIC	[25]	array	platforms.	These	arrays	measure	
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485,512	(450K)	and	865,859	(EPIC)	sites,	out	of	the	28	million	possibly	

methylated	sites	in	the	human	genome.		The	sample	sizes	required	to	overcome	

multiple	test	corrections	are	likely	much	larger	than	the	vast	majority	of	EWASs	

contain	to	date	[39,	65].		There	is	a	need	to	address	the	high	dimensionality	of	

DNAm	array	data	in	a	biologically	driven	way,	in	order	to	detect	any	true	

statistical	associations.		Here	we	propose	a	method	that	clusters	DNAm	array	

data	by	exploiting	the	biological	nature	of	DNAm	where	certain	regions	of	

proximally	located	DNAm	sites	exhibit	correlated	methylation	state	[29,	30].			

Among	such	DNAm	patterns,	the	simplest	contain	groups	of	proximal	CpG	sites,	

as	seen	in	CpG	islands,	broadly	defined	to	have	high	CpG	content	within	a	short	

region	of	DNA	[66].	These	CpGs	have	been	shown	to	typically	function	together	as	

a	unit	[67-71]	and	have	been	investigated	in	terms	of	their	correlated	

methylation	status	and	whether	they	are	joined	together	by	various	biological	

mechanisms	[58-60,	72-75].		While	less	than	10%	of	the	approximately	28	million	

CpGs	in	the	human	genome	are	in	CpG	dense	regions,	they	are	enriched	in	the	

promoters	and	transcription	start	sites	of	developmental	and	housekeeping	

genes,	implying	potential	biological	relevance	[67].	The	selection	and	distribution	

of	CpGs	measured	on	a	particular	DNAm	array	is	not	arbitrary,	as	DNAm	arrays	

are	designed	to	be	enriched	for	probes	measuring	such	sites	with	predicted	or	

established	functional	importance.		For	example,	the	450K	array	interrogates	the	

methylation	status	at	many	thousands	of	groups	of	proximal	CpG	sites	whose	

methylation	is	correlated	across	individuals	[76,	77].				
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				Based	on	this	knowledge,	we	combine	such	sites	into	regional	units	to	reflect	

the	biology	of	DNAm,	and	independent	of	any	variables	of	interest,	making	this	

method	unique	amongst	currently	available	DNAm	regions-based	analyses.		

While	specialized	methods	for	DNAm	array	data	analysis	have	accounted	for	the	

spatial	correlations	of	proximal	CpG	DNAm	levels,	by	either	adjusting	their	p-

values,	or	smoothing	over	their	methylation	levels	in	EWAS	[33,	58],	or	by	

identifying	differentially	methylated	regions	[59,	60,	72-75],	or	by	correlation	

assessment	visualization	[77],	few	tools	implement	a	universal,	biologically	

driven,	unsupervised	pre-processing	approach	for	clustering		adjacent	DNAm	

array	probes.	For	example,	while	unsupervised	dimension	reduction	methods	

like	RPMM	[78]	aim	to	extract	a	very	small	number	of	latent	variables	based	on	

sophisticated	statistical	models,	our	method	instead	uses	a	simple	biological	

model	of	genomic	CpG	proximity	to	produce	a	large	number	of	probe	clusters.		In	

this	way,	our	method	has	some	similarity	only	to	the	A-clustering	(Aclust)	

method	[60]	which	also	produces	many	clusters	based	on	correlated	methylation.		

However,	Aclust	does	not	incorporate	any	information	about	unmeasured	

genomic	CpGs	and	instead	relies	solely	on	a	probe	distance	window,	which	is	

optional.		As	a	result	of	this	different	design,	Aclust	would	group	correlated	

probes	that	would	not	be	eligible	for	consideration	by	CoMeBack,	and	vice	versa.		

CoMeBack	also	differs	from	methods	that	estimate	differentially	methylated	

regions	(DMRs),	for	example	DMRcate	[59],	because	CoMeBack	is	an	

unsupervised	method	that	does	not	use	any	phenotypic	information	to	construct	
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the	regions,	and	instead	relies	only	on	the	correlated	methylation	state	of	certain	

eligible	adjacent	array	probes.					

			Our	method	was	designed	to	construct	co-methylated	regions	(CMRs)	with	high	

specificity,	biological	interpretability	and	enhanced	downstream	discovery	of	

statistical	associations	with	multiple	adjacent	CpG	sites.	For	these	objectives,	we	

addressed	three	related	issues.	First,	two	adjacent	array	probes	may	be	

correlated	when	they	belong	to	the	same	contiguous	CpG	site	region.	We	

determine	which	probes	potentially	measure	a	single	functional	unit	by	

considering	all	genomic	CpG	sites	not	measured	on	the	array,	referred	to	

hereafter	as	background	CpGs.	Second,	by	jointly	considering	adjacent	DNAm	

sites,	we	“borrow”	statistical	power	across	correlated	sites	to	improve	the	

specificity	and	downstream	discovery	of	statistical	associations	with	variables	of	

interest	[63].		Constructing	CMRs	results	in	data	dimension	reduction	that	

implies	a	lower	multiple-test	correction	burden	than	when	using	individual	

probes	in	downstream	analyses,	like	EWAS.			Finally,	combining	sites	into	regions	

results	in	expanded	overlaps	with	annotated	genomic	features	relative	to	the	

individual	sites	from	the	CMR,	potentially	facilitating	biological	interpretation	in	

downstream	feature	enrichment	analyses.		

2.2 Methods  

2.2.1 The CoMeBack Algorithm: Rationale and Design 

Since	neighboring	CpGs	are	often	in	the	same	methylation	state	within	an	
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individual	[29,	30],	we	conjectured	that	adjacent	array	probes	may	have	

correlated	methylation	levels	across	individuals.		This	was	the	reflection	of	

existing	findings	[29,	30,	63]	that	within	an	individual,	genomic	CpGs	within	

400bp	of	each	other	are	highly	likely	to	be	in	the	same	methylation	state,	with	the	

probability	declining	to	an	overall	background	of	about	74%,	as	genomic	distance	

between	CpGs	increased	beyond	2Kbp.		Then,	since	array	probe	coverage	of	

genomic	CpGs	is	sparse,	our	algorithm	would	evaluate	two	contiguous	array	

probes	with	adjacent	genomic	coordinates	only	if	the	reference	human	genome	

annotation	contains	a	“chain”	of	unmeasured	genomic	CpGs	of	a	specified	density	

between	them.		We	set	the	density	of	genomic	CpGs	needed	to	“chain”	proximal	

array	probes	to	be	at	least	one	CpG	every	400bp.	This	density	was	chosen	due	to	

the	likelihood	of	high	correlation	for	such	proximal	CpGs,	as	previously	reported		

[29,	30,	63].		If	such	a	chain	of	unmeasured	CpGs	was	present	in	the	reference	

genome	build,	the	two	array	probes	that	define	the	ends	of	the	chain	were	

considered	to	be	likely	correlated	above	background	levels,	so	long	as	they	were	

less	than	2Kb	apart.	By	using	unmeasured	intermittent	CpGs	from	the	human	

reference	genome	to	link	array	probes,	we	could	avoid	using	a	fixed	length	

window	for	array	probes,	adopting	instead	a	sliding	window	over	all	the	genomic	

CpGs,	including	those	not	measured	on	the	array.			

				The	underlying	rationale	for	this	design	of	CoMeBack	was	to	reduce	the	false	

positives	for	correlated	adjacent	probes,	while	improving	the	detection	of	

possibly	biologically	relevant	co-methylation.		For	example,	as	depicted	in	Figure		
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Figure 1.  In contrast to existing methods, CoMeBack reduces false discoveries by using 
a sliding window over genomic CpG distance. 

	

1,	by	using	a	wide	array	probe	window	of	2Kbp,	a	researcher	may	evaluate	the	

correlation	of	two	probes	with	no	other	intermittent	unmeasured	CpGs,	and	if	the	

probes	are	spuriously	correlated,	which	is	likely	considering	their	distance,	they	

would	still	be	grouped	together	producing	a	false	positive.		Such	cases	would	be	

avoided	by	the	CoMeBack	algorithm,	as	the	correlation	of	the	two	probes	would	
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be	evaluated	only	if	the	reference	human	genome	annotation	showed	that	there	

are	at	least	four	intermittent	unmeasured	CpGs	linking	the	probes	with	a	chain	of	

at	least	one	CpG	per	400bp.		Continuing	with	the	example,	if	the	researcher	

attempts	to	mitigate	the	false	positive	rate	and	selects	an	alternative,	narrower	

array	probe	window	of	1Kbp	instead,	then	a	false	negative	result	would	occur	for	

any	two	adjacent	array	probes	that	measure	the	ends	of	a	CpG	island	spanning	

even	a	single	base	pair	over	the	1Kbp	probe	window:	the	probes	would	not	be	

examined	for	correlation,	even	though	these	sites	are	likely	functioning	as	a	unit.		

In	contrast,	CoMeBack	would	use	the	chain	of	contiguous	unmeasured	genomic	

CpGs	to	slide	the	genomic	CpG	window	until	it	incorporates	the	next	array	probe.		

The	main	assumption	underlying	our	algorithm	is	that	genomic	regions	with	a	

“dense”	CpG	background,	defined	here	as	at	least	one	CpG	per	400bp,	are	more	

likely	to	function	as,	or	to	mark	a	co-methylated	biologically	regulated	unit,	and	

hence	their	correlated	methylation	status	is	less	likely	to	be	spurious.		This	

assumption	is	consistent	with,	and	motivated	by,	the	existing	empirical	findings,	

as	discussed	above.					

				Once	genomic	CpGs	are	chained	together,	CoMeBack	estimates	DNAm	

correlation	across	individuals	for	all	adjacent	array	probes	in	the	chain,	which	is	

declared	a	CMR	if	all	pairs	of	adjacent	probes	are	correlated	above	a	given	

threshold.	Thus,	although	genomic	CpG	coverage	on	the	array	is	generally	sparse,	

two	adjacent	probes	that	are	more	than	400bp	away,	but	less	than	2Kb	away,	

may	still	be	incorporated	into	a	given	CMR,	so	long	as	they	are	chained	by	the	
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presence	of	unmeasured	CpGs	with	a	density	of	at	least	one	CpG	per	400bp,	and	

they	are	correlated	across	individuals	above	a	sample	size	dependent	threshold.	

2.2.2 The CoMeBack Algorithm: Conceptualization and Implementation 

Figure	2	illustrates	these	elements	of	CoMeBack	by	representing	the	algorithm	as	

three	conceptual	stages.		First,	for	a	given	DNAm	array	dataset	as	input,	the	

reference	human	genome	was	scanned	between	every	two	adjacent	array	probes	

that	are	no	more	than	2Kbp	apart,	for	the	presence	of	an	unmeasured	genomic	

CpG	chain	of	at	least	one	CpG	per	400bp.			In	this	way,	the	algorithm	aimed	to	

minimize	calls	due	to	spurious	correlations	when	two	adjacent	array	probes	are	

not	linked	by	an	unmeasured	CpG	chain.		Note	that	the	first	stage	of	CoMeBack	

did	not	use	the	actual	methylation	data;	instead	it	depends	only	on	the	CpG	

genomic	location	of	the	provided	array	probes,	and	the	reference	human	genome	

build.	

				The	second	stage	used	the	DNAm	data	to	evaluate	across-individual	

correlations	for	the	adjacent	array	probes	linked	by	an	unmeasured	CpG	chain.		If	

the	estimated	array	probe	correlation	was	above	the	threshold,	the	two	adjacent	

probes	were	included	together	within	a	co-methylated	region	(CMR),	and	the	

next	adjacent	array	probe	was	evaluated,	in	the	same	way,	for	inclusion	in	the	

current	CMR.		We	also	implemented	an	optional	constraint	requirement	on	the	

DNAm	levels	of	adjacent	CMR	probes,	so	that	the	absolute	difference	between	the	

median	levels	is	below	a	user-specified	value.			
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Figure 2. CoMeBack has 3 stages, where DNAm data are used at the second stage, along 
with unmeasured annotated genomic CpGs, to construct co-methylated regions (CMRs) 
from correlated array probe. 

 

		To	evaluate	the	relationship	between	correlated	genomic	CpGs	within	

individuals	and	the	correlation	of	these	CpG	sites	across	individuals,	we	

performed	a	simulation,	to	empirically	determine	a	default	guidance	specification	

for	a	correlation	threshold	parameter	dependent	on	sample	size.	

		While	this	guidance	can	be	useful	in	cases	of	small	samples,	the	user	may	wish	to	

fix	the	correlation	threshold	parameter	to	a	higher	value,	if	the	objective	is	to	
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detect	CMRs	with	certain	minimum	DNAm	covariation	across	individuals.	Since	

CMRs	can	be	expected	to	differ	across	tissues,	guidance	for	future estimation	of	

reference	CMRs	in	a	certain	tissue	would	include	using	a	sample	size	of	at	least	

N=500,	with	a	correlation	threshold	of	at	least	15%.	

		In	summary,	the	algorithm	initialized	a	new	CMR	with	a	single	array	probe,	

subsequently	incorporating	additional	proximal	adjacent	array	probes,	if	the	

following	three	conditions	were	met:	1)	the	genomic	distance	between	two	

adjacent	probes	was	less	than	2Kbp,	or	as	set	by	the	user,	and	2)	the	reference	

human	genome	build	annotates	unmeasured	intermittent	genomic	CpGs	between	

two	adjacent	array	probes	with	a	400bp-density,	and	3)	the	DNAm	correlation	

(Pearson,	Spearman	or	Kendal,	as	set	by	the	user)	between	any	two	adjacent	

probes	was	above	a	sample	size	dependent,	or	user-defined	threshold.		Optionally,	

the	user	can	further	constrain	the	absolute	difference	between	adjacent	probes’	

median	DNAm	levels	below	a	specified	threshold.			When	these	thresholds	were	

met,	the	current	CMR	was	declared	finished	and	a	new	CMR	was	initialized,	using	

the	next	adjacent	probe	as	its	starting	first	probe.		Array	probes	that	did	not	meet	

these	thresholds	were	considered	“singleton”	non-CMR	array	probes.	

				Finally,	the	optional	third	stage	of	CoMeBack	estimates,	per	individual,	a	

composite	methylation	measure	for	each	CMR.	By	default,	the	composite	CMR	

methylation	was	defined	as	the	scores	of	the	first	principal	component	of	the	

CMR	probes’	DNAm	levels,	which	is	simply	a	weighted	average,	normalized	by	the	
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sum	of	the	loadings	of	the	probes	in	the	CMR.	This	composite	measure	has	the	

same	scale	as	the	individual	probes	and	can	be	interpreted	as	a	summary	

measure	of	the	individual	probes’	DNAm	level	when	the	optional	constraint	for	

adjacent	CMR	probes	to	have	similar	measures	has	been	included.		The	user	also	

has	the	option	to	alternatively	set	equal	weights	for	the	CMR	composite	measure,	

corresponding	to	an	average	CMR	probe	methylation,	or	to	use	the	probe	median	

methylation	as	the	composite	measure.	

					We	designed	our	method	for	conceptual	simplicity	and	ease	of	use,	via	an	R-

software	package,	so	that	an	investigator	would	input	DNAm	values	and	receive	

CMRs	specific	to	their	data	as	output.	In	addition,	users	could	optionally	calculate	

composite	CMR	methylation	measures,	defined	to	meaningfully	aggregate	the	

multiple	methylation	states	of	the	individual	CpG	sites	grouped	within	each	CMR.		

The	CMRs	and	their	methylation	measures	can	then	be	used	for	common	

downstream	applications	such	as	EWAS	and	PCA,	amongst	others.		We	illustrate	

below	such	applications	after	applying	CoMeBack	to	construct	reference	CMRs	

for	whole	blood.	

2.2.3 Reference CMRs for Whole Blood 

2.2.3.1 Public Data Pre-Processing 

We	constructed	whole	blood	CMRs	using	Illumina	450K	array	data	from	a	large,	

ethnically	heterogeneous	aggregated	cohort	(N=5,191),	comprised	of	several	

publicly	available	datasets	(GSE55763,	GSE84727,	GSE80417,	GSE111629,	
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GSE72680)	[73,	79-81].		First,	intra-dataset	normalization	was	performed	and	

batch	effects	were	corrected	within	each	cohort,	using	the	ComBat	function	from	

the	R-package	sva	[82].		The	datasets	were	then	merged	and	corrected	for	inter-

dataset	batch	effects	using	the	same	function.		The	subset	of	probes	that	were	

measured	in	all	datasets	was	filtered	by	removing	XY	chromosome	binding	

probes,	non-CpG	probes,	cross-hybridizing	probes	[83,	84],	and	probes	

containing,	or	immediately	adjacent	to	a	single	nucleotide	polymorphism	(SNP)	

with	a	minor	allele	frequency	≥	5%,	as	annotated	by	the	Illumina	manifest	and	as	

reported	previously	[84].		Finally,	probes	present	on	the	450K	array	but	absent	

from	the	EPIC	array	were	removed	to	allow	CoMeBack	performance	to	be	directly	

compared	between	both	platforms.		This	pre-processing	resulted	in	404,779	CpG	

sites	that	served	as	the	input	to	CoMeBack.		As	whole	blood	is	composed	of	

multiple	cell	types,	each	with	distinct	DNAm	patterns,	where	individuals	vary	in	

cell	type	proportions,	we	aimed	to	ensure	that	the	estimated	CMRs	were	not	

primarily	capturing	cell-type	heterogeneity	[85].		To	accomplish	this,	we	included	

cell	type	proportions	predicted	with	the	Houseman	method	[28],	as	implemented	

in	the	R-package	minfi[85],	as	covariates	in	a	linear	regression	model	to	adjust	

the	data	for	downstream	analyses.		The	residuals	from	this	model	were	used	to	

estimate	the	CMRs	in	whole	blood.			

			For	the	newer	Illumina	EPIC	platform,	we	also	constructed	whole	blood	CMRs	

using	a	single	large	cohort	(N=795)	from	a	publicly	available	dataset	(GSE132203)		

[86]	that	was	pre-processed	similarly	to	the	other	public	datasets	above.	
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2.2.3.2 CMR Construction in Whole Blood Public Data  

CMRs	were	constructed	by	estimating	correlations	across	individuals	in	cell-type	

corrected	whole	blood	data.	These	CMRs	were	used	to	estimate	composite	

methylation	measures	for	each	individual	in	the	DNAm	data	before	cell-type	

correlation.		Reference	CMRs	were	constructed	using	a	stringent	minimum	

correlation	cut-off	of	30%	in	order	increase	the	likelihood	for	replication	and	

offset	the	imprecise	correlation	estimates	typically	obtained	from	smaller	

datasets,	such	as	those	prevalent	in	public	data	repositories.		The	maximum	

probe	distance	was	set	at	2Kbp,	and	an	alternative	CMR	construction	was	also	

performed	at	1Kbp	maximum	probe	distance.	

2.2.3.3 Robustness of CMRs 

To	assess	how	reproducible	the	constructed	CMRs	were	in	the	presence	of	

biological	and	technical	variability,	processed	data	was	split	into	two	equal-sized,	

random	sub-samples	with	the	algorithm	run	separately	on	each	one.	This	process	

was	repeated	five	times.		We	then	evaluated	how	many	of	the	constructed	CMRs	

were	identical	across	both	datasets,	and	how	many	CMRs	had	at	least	a	2-probe	

overlap	with	CMRs	constructed	in	the	other	sub-sample.	

2.2.4 Characterizing the Reference CMRs	

2.2.4.1 Sparse Coverage of Genomic CpGs with Array Probes 

To	assess	the	sparsity	of	array	probe	coverage	of	genomic	CpGs	included	within	

the	estimated	CMRs,	the	number	of	array	probes	per	CMR,	the	median	CMR	base	
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pair	(bp)	length,	and	the	median	density	of	background	CpGs	were	characterized.		

For	each	n-probe	CMR	(n=2,3,..),	we	reported	two	metrics:	the	median	bp	length	

of	all	n-probe	CMRs,	divided	by	the	number	n,	as	well	as	the	median	number	of	

background	CpGs	for	all	n-probe	CMRs,	divided	by	n.		

2.2.4.2 Chromatin State Enrichment 

We	sought	to	determine	the	chromatin	state	of	the	genomic	regions	overlapping	

the	probes	of	a	CMR.		To	accomplish	this,	the	Roadmap	Epigenomics	[61]	

ChromHMM	[62]	18-state	model	for	PBMCs	was	used	to	estimate	the	overlap	

enrichment	of	genomic	regions	in	different	chromatin	states	within	the	CMRs	

spanning	the	genomic	coordinates	from	the	first	to	the	last	probe,	versus	the	non-

CMR	probe	regions,	two	base-pairs	in	length,	that	span	CpGs	assayed	in	the	non-

CMR	singleton	probes.		The	overlaps	with	chromatin	states	were	counted	using	

the	R-package	GenomicRanges	[87],	with	no-overlaps	counted	as	zeroes	and	

overlaps	counted	as	ones.		

2.2.4.3 Transcription Factor Binding Sites 

CMR	methylation	state	could	potentially	be	affected	by,	or	itself	may	affect,	the	

binding	of	transcription	factors	(TFs)	through	their	binding	sites	[88].		Hence,	we	

examined	CMR	enrichment	for	known	transcription	factor	binding	site	motifs,	as	

compiled	in	the	HOCOMOCO	v11	database	[89].	We	scanned	regions	spanning	

200bp	on	either	side	of	a	probe’s	assayed	CpG,	using	the	tool	FIMO	from	the	

MEME	software	suite	[90].		For	any	enriched	binding	site	motifs,	we	checked	for	
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any	known	effects	of	DNAm	on	TF	binding	affinity,	using	as	reference	the	

reported	binding	specificities	of	full-length	human	transcription	factors	and	

extended	DNA	binding	domains	to	(un)methylated	DNA	for	542	transcription	

factors	[91].	

2.2.4.4 Genetic Control 

Since	the	CMR	CpGs	are	variable	across	individuals	by	design,	we	examined	their	

enrichment	for	34,391	known	whole	blood	DNA	methylation	quantitative	trait	

loci	(mQTLs),	as	reported	in	the	ARIES	study	[92].	CMRs	were	annotated	as	

containing	versus	not	containing	an	mQTL	probe	and	enrichments	were	

estimated	using	Fisher’s	exact	test.		We	considered	the	possibility	that	for	an	

mQTL,	the	observed	methylation	levels	of	adjacent	array	probes	may	be	very	

different	when	the	genetic	variant	affects	only	one	probe,	but	not	the	other.		

Focusing	on	potential	mQTLs	with	minor	allele	frequency	(MAF)	above	5%,	we	

examined	the	corresponding	to	95th	quantiles	for	the	absolute	difference	between	

adjacent	probes’	betas.	The	mQTL	enrichment	in	CMRs	where	the	maximum	of	

the	absolute	difference	over	all	pairs	of	adjacent	probes	was	greater	than	10%,	

was	determined	against	the	background	of	all	CMRs.	

2.2.5  CMR-based EWAS and Comparison with DMRcate 

To	illustrate	potential	downstream	applications	of	the	CMRs	estimated	in	whole	

blood,	we	conducted	a	CMR	EWAS	for	chronological	age	using	CMR	composite	betas,	

defined	in	section	2.2.2	above,	estimated	before	cell-type	correction.	A	linear	model	
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for	age	was	estimated	with	the	CMR	composite	betas,	as	output	by	the	third	stage	of	

CoMeBack,	using	the	bioinformatically	predicted	cell	type	counts	as	covariates,	and	

constraining	their	coefficient	estimates	to	be	between	zero	and	one.	Training	data	

consisted	of	a	random	sub-sample	of	half	the	data,	while	the	remaining	observations	

were	used	as	a	testing	hold-out	sample	for	validation.		To	avoid	any	circular	use	of	

data	in	our	analysis,	the	CMRs	used	for	the	CMR	EWAS	were	constructed	in	the	

training	data	only.		We	restricted	the	age	of	the	subjects	to	be	between	20	years	and	

90	years	to	avoid	potential	non-linear	relationships	with	epigenetic	changes	during	

early	life	and	old	age	as	previously	observed	[40].		Multiple-testing	correction	was	

performed	using	the	Benjamini-Hochberg	(BH)		[35]	false	discovery	rate	(FDR)	

control	at	one	percent.	We	applied	an	ad-hoc	biological	effect	size	filter,	where	the	

implied	change	in	composite	CMR	beta	over	60	years	of	age	difference	would	be	at	

least	five	percent.		In	addition	to	the	hold-out	sample	validation,	we	also	used	the	

EPIC	dataset	for	the	validation	of	CMRs	identified	to	be	associated	with	age.	

	

2.2.6 Comparison with Existing Methods 

2.2.6.1 Comparison with A-Clustering 

We	compared	the	CoMeBack	CMRs	to	the	clusters	output	by	the	A-Clustering	

(Aclust)	algorithm	[60].	Aclust	starts	by	placing	each	probe	in	its	own	cluster,	

subsequently	merging	clusters	without	considering	genomic	CpG	density	or	the	

distance	between	correlated	probes.	An	extra	pre-processing	step	(termed	“d-

base-pair-merge”	DBPM)	can	be	included,	that	uses	a	probe	distance	window	to	
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force	all	probes	between	two	correlated	probes	to	be	included	in	a	cluster,	even	if	

the	intervening	probes	are	not	correlated.	Aclust	was	run	on	our	sub-samples,	

with	a	distance	(defined	as	one	minus	the	correlation)	threshold	of	0.7	that	

matches	the	0.3	correlation	cut-off	used	for	CoMeBack),	and	including	its	DBPM	

pre-processing	step	with	2Kbp	window	(selected	again	to	match	the	probe	

window	size	used	in	CoMeBack).	We	evaluated	how	many	of	the	Aclust	clusters	

were	identical	with	the	CMRs	constructed	in	the	same	data.	Enrichment	of	the	

Aclust	clusters	for	chromatin	states	was	also	performed,	similar	to	the	CMR	

enrichment	analysis	above.	

2.2.6.2 Comparison with DMRcate 

Since	the	CMR-based	EWAS	is	an	important	application	of	CoMeBack	CMRs,	we	

compared	these	results	to	the	output	of	DMRcate	[59],	which	was	used	to	

estimate	differentially	methylated	regions	(DMRs)	associated	with	chronological	

age.		We	used	DMRcate	with	FDR	of	1%	to	match	CoMeBack,	and	with	the	

recommended	default	parameters.		We	considered	all	DMRs	that	overlapped	with	

probes	included	in	the	CMRs,	examined	the	validation	of	these	DMRs	in	the	hold-

out	testing	data,	and	compared	this	to	the	validation	of	the	CMRs	that	had	

significant	age	associations.	

2.2.7 Principal Component Analysis of Composite CMR Methylation  

We	performed	a	principal	component	analysis	(PCA)	of	the	whole	blood	CMRs	

composite	betas	and	compared	them	to	the	PCA	of	the	individual	probes	that	
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composed	the	CMRs.		In	both	cases,	the	PC	scores	were	regressed	on	the	

estimated	cell	type	counts,	age	and	sex	variables,	to	assess	whether	the	

associations	of	phenotypic	variables	of	interest	with	global	DNA	methylation	

patterns	captured	by	the	top	PCs	of	CMR	probes	would	be	retained,	

corresponding	to	associations	found	with	the	PCs	of	the	CMR	composite	betas.		

We	also	considered	variable	probes	alone,	defined	as	probes	where	the	

methylation	beta	difference	between	the	99-	and	1-percentile	was	at	least	5%,	

and	performed	the	comparison	for	the	CMRs	that	contained	at	least	one	such	

variable	probe.	

2.2.8 Reproducibility and Software Availability 

To	enable	uptake	of	our	method	and	to	facilitate	reproducibility	of	our	results,	

the	CoMeBack	open	source	R-package	is	publicly	available	at	

bitbucket.com/flopflip/comeback.	Any	details	of	interest	can	be	further	

examined	directly	in	the	source	code.	

2.3 Results 

2.3.1 Identification of CMRs in Whole Blood  
The	CoMeBack	algorithm	constructs	dataset-specific	CMRs	taking	as	input	all	

genomic	CpGs	and	DNAm	array	measurements.	It	can	be	expected	that	a	subset	of	

the	CMRs	constructed	using	different	datasets	will	be	unique	to	a	particular	

tissue,	genetic	background	or	environment,	but	there	may	also	be	some	

“reference”	CMRs	which	will	be	common	amongst	diverse	datasets,	at	least	
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within	a	given	tissue.		Reference	whole	blood	CMRs	that	contain	at	least	one	

variable	probe	for	2Kb	and	1Kb	probe	windows	respectively	are	available	upon	

request,	for	future	research	that	may	incorporate	the	CoMeBack	CMRs	in	

downstream	analyses.	Additional	reference	CMRs	for	the	EPIC	platform	are	

available	upon	request.	

				To	assess	the	replicability	across	studies	of	the	estimated	CMRs,	we	used	five-

fold	cross-validation	across	two	equal-sized	random	splits	of	our	data	(see	

Methods).	On	average,	there	was	an	78%	identity	of	the	estimated	CMRs	and	92%	

percent	of	the	CMRs	estimated	in	the	training	data	had	at	least	two	probes	in	the	

testing	CMRs.	

2.3.2 CMR Characteristics  

2.3.2.1 Sparse Coverage of Genomic CpGs with Array Probes 

Using	the	whole	blood	dataset	we	compiled	from	public	data,	CoMeBack	

constructed	33,572	CMRs.		These	CMRs	included	97,424	probes,	comprising	

approximately	24%	of	all	450K	probes	used	as	input.		Figure	3	depicts	the	

characterizations	of	CMRs	in	terms	of:	the	number	of	CMRs	with	a	given	number	

of	array	probes	per	CMR;	median	size,	measured	in	bp	per	CMR	probe,	and	

median	number	of	genomic	CpGs	per	CMR	probe.	The	median	CMR	had	two	

probes,	and	80%	of	all	CMRs	had	three	or	less	probes.		There	were	relatively	few	

large	CMRs	that	included	more	than	20	array	probes,	with	the	largest	CMR	

containing	61	CpG	probes.	The	2-probe	CMRs	had	a	median	of	19	background	
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CpGs,	and	a	median	total	length	of	96	bp.		For	the	3-probe	CMRs,	the	median	

background	CpG	number	was	50,	with	a	median	length	of	239	bp.		Overall,	the	

density	of	array	probes	across	CMRs	of	different	size	varied	around	75	bp	per	

CMR	probe	and	18	background	CpGs	per	CMR	probe.		The	relatively	flat	green	

and	blue	density	lines	in	Figure	3	indicate	that	the	density	of	array	probes	versus	

background	CpGs	was	similar	across	CMRs	with	differing	numbers	of	probes.	

Figure 3. Most CMRs included three or less probes.   

The red line is the median CMR. The green line is the median size, measured in bp per 
CMR probe.  The blue line is the median number of genomic CpGs per CMR probe.	
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2.3.2.2 Chromatin State Enrichment 

To	investigate	the	functional	relevance	of	CMR	construction,	we	analyzed	

enrichment	of	chromatin	states	within	the	CMRs.	Figure	4	shows	how	several	

chromatin	states	were	enriched	in	CMR	versus	non-CMR	probes.		All	enhancer	

states	were	enriched,	especially	gene	and	bivalent	enhancers,	as	well	as	

Polycomb	repressed	states.				

		

	

	

	

	

	

	

	

	

Figure 4. Whole Blood CMRs were enriched for enhancer chromatin states.  
Enrichment for overlaps of CMRs with chromatin-state regions (ChromHMM 18-state 
model) versus overlaps for non-CMR singleton probes.	
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2.3.2.3 Other Enrichments: Transcription Factor Binding Sites and mQTLs 

To	investigate	any	potential	role	of	CMRs	in	the	regulation	of	gene	expression,	we	

examined	the	enrichment	of	CMRs	for	known	transcription	factor	binding	site	

(TFBS)	motifs.		Out	of	the	404	motifs	considered,	98	were	present	in	CMR	probe-

spanning	regions	(see	methods),	with	38	motifs	enriched	in	the	CMRs	as	shown	

in	Figure	5.			

Figure 5. Significantly enriched (at 1%, Fisher exact test) TFBS motifs 

 The colors indicates TF preference for (non) methylated CpG, labeled M-plus(minus). 

	

Several	of	the	transcription	factors	(TFs)	which	bind	these	enriched	TFBSs	are	

known	to	function	in	blood	cells,	for	example	the	KLF	and	SP	family	transcription	

factors.		Moreover,	while	most	of	the	38	enriched	motifs	did	not	have	a	known	

affinity	preference	for	positive	or	negative	DNAm,	we	found	six	TFs	whose	

binding	affinity	is	affected	by	DNAm	status	of	the	CpGs	contained	within	the	motif.		
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Five	of	these	TFs	were	“M-plus”	(see	[91]),	the	label	for	TFs	that	have	increased	

binding	affinity	to	methylated	motif	CpGs,	while	one	had	decreased,	“M-minus”,	

binding	affinity	to	methylated	motif	CpGs..	

				Considering	the	potential	genetic	influence	on	CMRs,	we	found	that	the	

majority	of	the	CMRs	did	not	include	a	known	whole	blood	mQTL,	as	depicted	in	

Figure	6.			

	

Figure 6. Enrichment for mQTL probes identified in the ARIES dataset. 

	

Next,	we	found	that	CMRs	where	the	maximum	of	the	95th	quantiles	for	the	

difference	between	adjacent	probe	medians	was	greater	than	10%,	were	

enriched	for	whole	blood	mQTLs.		Conversely,	CMRs	where	the	maximum	of	the	

95th	quantiles	for	the	difference	between	adjacent	probe	medians	was	less	than	

10%,	were	not	enriched	for	mQTLs.			
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2.3.3 CMR-based EWAS Application: DNAm Association with 

Chronological Age  

A	widely	used	study	design,	EWAS,	relates	genome-wide	DNAm	of	individual	

probes	to	phenotypic	variables	or	health	outcomes	[33]	by	using	linear	

regressions,	resulting	in	a	large	number	of	tests	being	performed.	To	assess	the	

utility	of	CMRs	for	EWAS,	we	tested	CMR	associations	with	chronological	age,	

which	correlates	with	both	DNA	methylation	and	predicted	cell	type	proportions	

[40,	93,	94].		For	this	CMR-based	EWAS,	we	used	the	whole	blood	CMRs	

composite	DNAm	values,	estimated	in	the	training	dataset,	and	regressed	them	

on	age	and	cell	count	covariates,	followed	by	validation	in	the	testing	data	(see	

Methods).		

					Focusing	on	statistically	significant	CMRs,	where	the	calculated	change	of	

composite	DNAm	values	over	60	years	of	age	was	at	least	five	percent,	resulted	in	

1,332	“large	effect”	CMRs	(out	of	18,388	CMRs	with	BH	FDR	below	one	percent)	

comprised	of	4,660	probes.		Of	these	CMRs,	911	had	increasing	and	421	had	

decreasing	methylation	with	age.	In	general,	there	was	a	trend	observed	where	

increasing	DNAm	with	age	was	more	frequent	amongst	CMRs	with	large	effect	

sizes.		

		Figure	7	shows	that	of	1,332	significant	CMRs,	1,291	were	validated	(2.4%	false	

positives),	while	in	the	hold-out	test	data,	1,325	were	validated	(0.5%	false	

positives),	with	a	high	correlation	between	the	effect	sizes	in	the	training	and	
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testing	data	(R-squared	of	99%),	as	depicted	in	Figure	8.		The	top	age-associated	

CMRs	included	well-known	age-related	genes	that	contain	multiple	CpGs	which	

were	highly	correlated.		The	best	documented	example	of	this	being	the	3-probe	

CMR	within	ELOVL2,	for	which	methylation	in	this	gene	has	been	repeatedly	

found	to	associate	with	age	[95].		The	validated	age-associated	CMRs	are	

available	upon	request.	

	

	

	

	

	

	

	

	

 
Figure 7. CMRs associated with age were well validated on the EPIC platform.   

Volcano plot of the DNA methylation (beta) changes with age, in the EPIC validation 
dataset, of the CMRs age effect size against p-values on negative log scale.  Hits with 
increased (decreased) methylation are blue (red). 
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Figure 8. Validation of CMRs associated with chronological age. 

Left: Volcano plot of the DNA methylation changes with age, in the validation dataset, of 
the CMRs age effect size against p-values on negative log scale.  Higher (lower) 
methylated hits are blue (red). Right: Regression of age effect sizes in testing vs. training 
data for the significant CMRs. 

	

To	test	for	potential	missing	individual	probe	hits	due	to	the	CoMeBack	data	

reduction,	as	well	as	the	potential	for	additional	discoveries	from	the	CMR-EWAS,	

we	considered	standard	EWAS	of	all	the	individual	probes.		Focusing	on	“large	

effect”	probes	for	which	the	calculated	change	of	composite	DNAm	measures	over	

60	years	was	at	least	five	percent,	as	above,	there	were	3,769	probes	significant	

in	the	training	data,	of	which,	3,755	were	validated	in	the	testing	data.		Of	these	

probes,	3,714	(99%)	were	within	a	significant	CMR.		In	terms	of	CMR-only	

discoveries,	29	of	the	validated	significant	“large	effect”	CMRs	had	no	individually	

significant	“large	effect”	probes,	with	example	shown	in	Figure	9.	
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Figure 9. Example of a validated significant CMR, where the individual probes were not 
significant in standard site by site EWAS with multiple-test correction.	
	

We	characterized	the	enrichment	of	whole	blood	CMRs	associated	with	age	

versus	the	CMR	background,	using	the	ChromHMM	genomic	chromatin	state	

regions	in	PBMCs	as	described	in	the	Methods	above,	as	depicted	in	Figure	10.		

Relative	to	all	CMR	background,	the	age-associated	whole	blood	CMRs	were	

significantly	enriched	for	quiescent	low-transcribed,	weak	Polycomb	repressed,	

and	weakly	transcribed	chromatin	states.	
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Figure 10. Enrichment of significant age-associated CMRs for genomic chromatin states. 

	

2.3.4 PCA of Whole Blood CMRs 

To	determine	whether	the	composite	CMR	methylation	data	reduction	may	be	

useful	for	unsupervised	exploratory	data	analysis,	we	considered	all	phenotypic	

variables	that	were	available	in	all	the	publicly	available	datasets,	including	the	

bioinformatically	predicted	cell	type	proportions.	Figure	11	shows	the	principal	

components	(PCs)	of	the	composite	CMR	methylation	in	comparison	to	the	PCs	

for	the	individual	probes	included	in	these	CMRs.		Trying	to	assess	the	potential	

ability	of	CMR	data	reduction	to	detect	global	methylation	pattern	associations,	

we	examined	whether	the	global	patterns	observed	with	the	CMR	PCs	were	
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similar	to	the	ones	for	the	PCs	of	the	individual	probes	included	in	the	CMRs.		

A	 	 	 	 	 	 	 B	
	

	
C	 	 	 	 	 	 	 D	 	 	 	 								

	Figure 11.	Associations for PCs of the CMRs were consistent with those of the 
individual probes’ PCs.  

PC analysis of whole blood CMRs data (A) versus PCs for the individual probes included 
in the CMRs (B).  Regression of PC scores on estimated cell-type counts, age and sex 
showed that global CMR methylation patterns associated with these variables are 
consistent with the patterns present in the individual probes’ PCs. (C): PCs for CMRs that 
have at least one variable probe, compared to PCs for these variable probes, shown in (D). 				
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Considering	all	CMRs	the	first	PC	for	the	CMR	data	explained	about	13%	of	the	

total	variance,	as	seen	in	Figure	11,	while	the	second	PC	added	another	3%.	In	

comparison,	the	first	PCs	for	the	individual	probe	data	explained	11%	of	the	

variance,	with	the	next	PCs	explaining	comparably	less	variation	than	the	

corresponding	CMR	PCs,		consistent	with	a	lower	total	variability	of	the	reduced	

CMR	data.					

				For	both	the	CMR	and	the	individual	probes’	PCs,	most	of	the	top	PCs’	scores	

were	associated	with	predicted	cell	type	proportions,	age	and	sex,	and	

association	patterns	across	the	PCs	were	generally	similar	between	CMRs	and	

individual	probes.		For	example,	age	and	sex	associations	were	weaker	than	the	

predicted	cell	type	proportion	associations	in	the	first	PC	scores	for	both	CMRs	

and	probes,	while	the	second	PCs	had	weak	association	with	specifically	CD8T	

cell	type	proportions.		Figure	11	highlights	similar	results	when	considering	

CMRs	that	contained	variable	probes.			

2.3.5 Comparison with Existing Methods 

2.3.5.1 Comparison with A-Clustering 

Figure	12	depicts	comparisons	with	the	Aclust,	which	estimated	33,292	clusters,	

similar	to	the	number	of	CMRs	produced	from	CoMeBack.		Figure	12(left)	shows	

that	the	intersection	of	clusters	identified	by	Aclust	with	the	CMRs	was	only	

16,958	common	clusters	(51%).	The	majority	of	these	common	clusters	contain	

exactly	two	correlated	probes.		The	difference	in	probe	sets	captured	by	the	two	
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methods	is	even	more	pronounced	for	larger	sets,	with	Aclust	calling	

substantially	more	clusters	with	three	or	more	probes	than	CoMeBack	as	shown	

in	Figure	12(right).			

	

Figure 12. CoMeBack differs from A-Clustering.   

Left: CoMeBack versus Aclust, all CMRs and clusters. Right: CMRs and A-clusters 
containing 3 or more probes. 

 					

We	also	considered	the	enrichment	of	the	Aclust	clusters	for	chromatin	states,	as	

we	did	for	the	CMRs	above,	depicted	in	Figure	13.		Unlike	the	CMRs,	the	Aclust	

clusters	were	enriched	for	most	chromatin	states,	including	heterochromatin	and	

quiescent	low-transcribed	states,	suggesting	that	the	probes	composing	the	

Aclust	clusters	may	be	more	heterogeneous	than	those	within	CMRs,	in	terms	of	

overlapping	genomic	regions	in	multiple	chromatin	states.	To	further	probe	this	

possibility,	we	examined	how	many	Aclust	clusters	were	entirely	within	a	single	
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ChromHMM	state,	as	opposed	to	overlapping	multiple	states.		We	found	that	only	

64%	of	the	Aclusters	were	in	a	single	chromatin	state,	versus	81%	of	the	CMRs.	

	

Figure 13. Aclust clusters were enriched for most chromatin states, including 
heterochromatin and quiescent low-transcribed states. 

	

2.3.5.2 CMR EWAS Comparison with DMRcate 

				Since	the	CMR-based	EWAS	is	a	major	application	of	CoMeBack,	we	also	

considered	how	it	compared	to	existing	tools	designed	specifically	for	

differentially	methylated	region	(DMR)	detection.		We	compared	the	CMR-EWAS	

with	a	widely-adopted,	recent,	method	developed	for	differential	methylation	
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analysis,	DMRcate	[59].		Using	chronological	age	as	the	variable	of	interest,	

DMRcate	estimated	24,110	DMRs,	in	the	training	data,	of	which	14,291	DMRs	

(59%)	contained	at	least	one	probe	present	in	any	CMR	that	was	constructed	in	

the	training	data.		We	considered	how	many	of	these	DMRs	had	sets	of	probes	

corresponding	exactly	to	an	entire	CMR,	to	find	only	441	out	of	the	24,110	(2%)	

were	among	the	18,388	CMRs	significant	for	age	in	the	training	data,	as	shown	in	

Figure	14(left).			

	

Figure 14. CoMeBack versus DMRcate.  
Left: Age-associated DMRs that have the same probes as CMRs. Right: DMRs that 
overlap age-associated CMRs. 

	

On	the	other	hand,	when	considering	partial	overlaps	of	the	DMRs	probe	sets	

with	the	CMRs,	we	found	that	11,733	(49%)	DMRs	had	overlaps,	but	were	not	

identical,	with	the	age-significant	CMRs,	as	shown	in	Figure	14(right).		Finally,	of	
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the	1,332	significant	CMRs	with	large	effects,	1,289	(97%)	were	included	as	a	

probe	subset	within	a	DMR	called	by	DMRcate.	

2.4 Discussion 

We	envisioned	our	method	as	offering	a	biologically-driven	analysis	that	reduces	

the	dimensionality	of	the	data,	by	constructing	regions	of	correlated	DNAm,	while	

considering	the	locations	of	background	genomic	CpGs.		This	makes	CoMeBack	

distinctive	from	existing,	pure	correlation-based	methods,	such	as	A-clustering	[60],	

which	conversely	allows	for	the	clustering	of	non-proximal	correlated	probes,	or	of	

proximal	non-correlated	probes,	and	does	not	account	for	background	CpG	density.		

CoMeBack	may	be	viewed	as	a	method	for	evaluating	which	adjacent	CpG	sites	can	

be	grouped	together	as	a	single	unit,	whose	methylation	state	is	related	and	

potentially	involved	in	transcriptional	regulation.		Our	approach	can	enhance	

standard	individual	CpG	EWAS	by	uncovering	statistical	associations	with	multiple	

probes	with	high	specificity,	while	also	offering	as	output	genomic	regions	that	may	

be	easily	interpretable	in	terms	of	biological	function.		

				Our	goal	was	to	implement	a	useful,	convenient	tool	for	unsupervised	data	

reduction	that	can	be	applied	upstream	of	existing	analytic	pipelines,	potentially	

lowering	false	positive	rates,	as	multiple	adjacent	sites	are	associated	to	a	

phenotypic	variable	of	interest.		Our	biologically	motivated	data	pre-processing	

approach	outputs	CMRs	for	further	downstream	analyses	and	interpretation.		The	

basis	of	the	CMR	construction	was	genomic	CpG	proximity,	differing	from	existing	

methods	that	use	array-probe	proximity	or	solely	correlations.		The	premise	of	our	



 

 

52 

approach	was	to	anchor	the	correlated	CMR	probes	into	putative	biological	

mechanisms	acting	to	jointly	methylate	adjacent	CpG	sites,	by	using	genomic	

background	CpGs	to	define	density	and	proximity.		We	hypothesized	that	this	

reduced	the	discovery	of	spurious	correlations	that	may	be	present	in	the	adjacent,	

yet	sparse	array	probes.		

				To	illustrate	an	analytic	pipeline	that	builds	on	CoMeBack,	we	constructed	

reference	CMRs	in	whole	blood,	followed	by	CMR	characterization	in	terms	of	

chromatin	state	and	transcription	factor	binding	sites.	The	reference	CMRs	

estimated	in	whole	blood,	including	those	associated	with	chronological	age,	

demonstrated	that	while	there	are	fewer	CMRs	compared	to	non-CMR	singleton	

probes,	the	CMRs	were	likely	biologically	significant.		These	CMRs	were	enriched	for	

key	regulatory	elements	including,	several	types	of	enhancers,	mQTLs,	and	binding	

site	motifs	for	transcription	factors,	some	of	which	preferentially	bind	methylated	

CpGs	[91].		The	enrichment	results	suggest	that	CMRs	with	DNAm	that	varies	across	

individuals	are	enriched	in	regulatory	elements	involved	in	transcription,	which	is	

consistent	with	prior	findings	from	whole	genome	bisulfite	sequencing	experiments	

[61].		It	is	notable	that	several	TFs	whose	binding	affinity	is	affected	by	DNAm	status	

of	the	motif’s	CpGs	are	“M-plus”	[91],	which	is	the	label	for	TFs	that	have	increased	

binding	affinity	to	methylated	motif	CpGs.		Such	potential	M-plus	transcription	

factor	binding	suggests	a	mechanism	for	gene	expression	regulation	that	is	different	

from	the	current	working	model	of	promoter	CpG	island	methylation	that	

suppresses	the	binding	of	M-minus	transcription	factors.		The	mQTL	enrichment	
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suggests	that	genetic	variability	is	an	important	driver	of	across-individual	DNAm	

variability	[96],	and	genetic	drivers	may	affect	multiple	adjacent	CpGs	

simultaneously.		

				Next,	we	note	that	in	the	case	of	chronological	age	CMR-EWAS,	the	results	were	

broadly	consistent	with	existing	reports	of	life-long	methylation	gains	in	CpG	islands,	

as	well	as	with	the	observed	higher	proportion	of	sites	with	increasing	methylation	

among	the	most	highly	replicated	sites	that	are	strongly	associated	with	age	[11].		

The	enrichment	results	for	the	age-associated	CMRs	for	chromatin	states	were	

consistent	with	existing	results	showing	loss	of	methylation	in	passive	chromatin	

state	regions	with	age	in	whole	blood	[11].		The	comparison	with	DMRcate	showed	

that	DMRs	called	by	DMRcate	had	somewhat	lower	reproducibility	than	the	CMRs,	

while	on	the	other	hand,	virtually	all	of	the	“large	effect”	CMRs	were	validated	by	

DMRcate,	in	the	sense	that	they	were	contained	within	one	of	the	larger	DMRs	called	

by	DMRcate.	Finally,	the	PCA	results	were	consistent	with	prior	findings	showing	

that	cell-type	composition	and	age	are	the	major	drivers	of	global	DNAm	patterns	in	

whole	blood	[11].	

				CoMeBack	is	distinct	amongst	currently	existing	methods	in	its	approach	for	

DNAm	data	reduction,	as	CMR	clustering	is	guided	by	the	background	genomic	CpG	

density.		To	further	differentiate	CoMeBack	from	similar	methods	that	involve	

correlation-based	clustering,	we	briefly	discuss	below	some	key	conceptual	and	

methodological	differences	from	the	most	similar	alternative	method,	Aclust.	While	

Aclust	uses	correlations	of	adjacent	probes	to	output	clusters,	it	has	different	
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objectives	and	methodology,	and	perhaps	most	importantly,	it	produced	

substantially	different	output.		Unlike	CoMeBack,	the	clustering	in	Aclust	is	just	one	

part	of	the	Aclust	DMR	detection	pipeline,	where	the	Aclust	clustering	step	aims	to	

find	correlated	probes	that	are	appropriate	for	the	multivariate	specification	used	in	

the	Aclust	downstream	DMR	estimation.		The	Aclust	algorithm	does	not	take	into	

account	the	unmeasured	genomic	CpGs	used	by	CoMeBack,	nor	the	distance	

between	the	correlated	probes,	unless	an	extra	pre-processing	step	(DBPM)	is	

included.		However,	this	step	uses	a	fixed	probe	window	to	merge	“all	the	sites	

(probes)	wedged	in	between”	two	probes	that	are	correlated,	potentially	resulting	

in	non-correlated	intermittent	probes	being	force-merged	within	a	cluster.		As	a	

result	of	these	conceptual	and	implementation	differences,	the	output	of	the	two	

algorithms,	when	applied	to	the	same	data,	was	found	to	have	substantial	

differences	in	terms	of	the	actual	clusters	generated,	including	their	characteristics,	

such	as	single	chromatin	state	overlaps.		

				Considering	downstream	analyses,	while	the	CMR-based	EWAS	is	a	major	

application	of	CoMeBack,	our	algorithm	is	different	from	tools	like	DMRcate	[59],	in	

that	it	is	not	guided	by	phenotypic	variables,	like	environments,	age	or	health	

outcomes,	when	constructing	the	CMRs.		Rather,	CMR	EWAS	proceeds	after	CMRs	

are	constructed,	with	a	concomitant	reduction	in	the	multiple-testing	correction	

penalty.		To	further	differentiate	CoMeBack	from	DMRcate,	we	note	that	unlike	

DMRcate	DMRs,	CMR	probes	were	required	to	have	positive	correlation	and	the	
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methylation	levels	across	a	CMR’s	probes	can	optionally	be	constrained	to	be	similar	

to	each	other.			

Overall,	our	CMR	EWAS	analysis	illustrated	how	the	use	of	CMRs	for	EWAS	could	

enable	the	detection	of	additional	sets	of	co-methylated	CpGs	that	are	correlated	

with	a	phenotype	of	interest.		Given	the	ease	of	use	of	the	CoMeBack	software,	we	

believe	that	CMR-based	EWAS	can	usefully	supplement	standard	single	probe	EWAS.		

While	the	CMR	output	may	enhance	EWAS	discovery,	validation	and	interpretation,	

it	may	also	be	used	in	other	non-EWAS	downstream	analyses,	like	PCA,	or	networks	

of	the	constructed	CMRs.		We	also	note	that	singleton	probes	that	are	not	included	in	

CMRs	can	be	easily	identified	and	used	in	downstream	analyses,	in	conjunction	with	

the	CMRs.		For	downstream	analysis	that	focuses	on	CpGs	with	variable	DNAm	

across	individuals,	a	user	might	choose	to	utilize	all	probes	measured	on	the	array,	

even	those	that	do	not	meet	the	thresholds	required	for	inclusion	into	a	CMR.	

				We	also	illustrated	a	CoMeBack	application	for	unsupervised	exploratory	analysis,	

using	the	composite	CMR	DNAm	values	for	PCA.		With	respect	to	predicted	cell-type	

proportions,	age	and	sex,	the	resulting	global	DNA	methylation	patterns	typically	

observed	when	analyzed	in	a	probe	specific	way,	were	retained	when	evaluated	

using	CMRs.		This	concordance	indicated	that	this	type	of	exploratory	analysis	can	

also	be	informative	in	the	case	of	other	phenotypic	variables	of	interest,	with	

regressions	of	CMR	PC	scores	used	to	assess	the	associations	of	phenotype	with	

global	DNAm	patterns	captured	by	the	top	PCs.				
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				Overall,	we	hope	that	the	applications	of	CoMeBack	illustrated	in	this	paper	

demonstrate	its	usefulness	for	enhancing	different	analytic	pipelines	for	DNAm	

array	data.	The	user-friendly	CoMeBack	software	is	freely	available	as	an	open-

source	R-package.	
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Chapter 3: CoMeBack Application for	Characterization of Autosomal 

Co-methylated Regions associated with Sex  

3.1 Background 

Biological	sex	is	defined	by	the	genetic	complement	of	sex	chromosomes	(X	and	Y	

chromosomes);	human	males	have	a	46,XY	chromosome	complement	while	females	

possess	a	46,XX.		Beyond	genetic	differences,	males	and	females	also	differ	at	the	

anatomical,	physiological,	and	molecular	levels	[12-20,	97-99].		Several	studies	

using	DNA	methylation	(DNAm)	arrays	have	documented	associations	between	sex	

and	methylation	at	thousands	of	CpG	sites,	as	well	as	larger	differentially	

methylated	regions	(DMRs)	on	the	autosomes,	with	some	of	these	including	

imprinted	loci,	perhaps	not	surprisingly	given	the	underpinning	biology	[21-23].		

Moreover,	in	Epigenome-Wide	Association	Studies	(EWAS)	using	DNAm	array	data	

[24,	25,	33,	34]	,	it	is	now	a	standard	practice	to	adjust	for	sample	sex	and	age	

covariates	when	investigating	associations	with	a	phenotype	or	a	disease.		Yet,	our	

understanding	of	the	role	of	DNAm	associations	with	sex	remains	limited,	both	in	

terms	of	functional	significance	and	how	they	are	established.	

The	reasons	for	this	incomplete	characterization	include	limitations	from	the	tissue-

specificity	of	DNAm,	as	well	as	its	plasticity	in	response	to	environmental	factors,	

which	are	difficult	to	control	for	in	typical	DNAm	study	designs	[100-102].	Thus,	

DNAm	studies	within	a	tissue	and	a	specific	condition	typically	have	modest	sample	

sizes,	low	statistical	power	and	specificity,	and	their	findings	cannot	be	generalized	

to	other	tissues	or	diseases.		On	the	other	hand,	DNAm	biology	involves	prevalent	
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co-methylated	genomic	regions	that	function	as	biological	units	[68-71,	103],	such	

as	CpG	islands	in	gene	promoters	[66]	and	imprinted	regions	[104].		Hence,	studying	

such	co-methylated	regions	would	enhance	our	current	understanding	of	the	role	of	

DNAm	in	sexual	dimorphism.			

While	most	previous	studies	on	the	relationship	between	sex	and	DNAm	in	humans	

[12-23]	were	limited	in	scope	or	statistical	power,	their	focus	has	been	mainly	on	

associations	of	single	CpG	loci,	as	measured	by	individual	probes	on	DNAm	arrays.		

Few	recent	studies	[21,	105]	have	estimated	a	small	number	of	sex	DMRs	by	using	

the	sex-phenotype	information	to	aggregate	adjacent	individually	significant	probes	

and	impute	DMRs.		There	is	a	need	for	further	characterization	of	such	sex-

associated	co-methylated	regions,	as	that	would	facilitate	the	functional	

interpretation	of	DNAm	associations	with	sex.	

The	developmental	establishment	of	sex	differences	in	DNAm	is	of	general	interest	

in	the	field	of	Developmental	Origins	of	Health	and	Disease	(DOHaD)	[106-108],	and	

several	recent	studies	have	focused	on	DNAm	during	the	puberty	transition	[109-

112].		These	studies	have	focused	on	individual	CpGs	measured	on	high-throughput	

DNAm	arrays,	either	across	the	genome,	or	in	candidate	regions	related	to	sex	

hormones.		Further	characterization	of	changes	over	time	in	the	DNAm	status	of	co-

methylated	genomic	regions,	across	all	autosomes,	may	help	to	elucidate	the	

potential	functional	role	of	DNAm	during	early	life	development	in	general	and	

during	the	puberty	transition	in	particular.	
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3.2 Results  

3.2.1 Discovery and validation of sex-associated CMRs in whole blood 

To	identify	genomic	regions	that	show	sexually	dimorphic	DNAm,	we	generated	an	

aggregate	discovery	cohort	of	3,795	normative	adult	whole	blood	(WB)	samples	by	

combining	Infinium	HumanMethylation450	BeadChip	array	data	from	publicly	

available	datasets	(GSE55763,	GSE84727,	GSE80417,	GSE111629,	GSE72680)	[73,	

79-81].		In	total,	2,414	males	and	1,381	females	25-80	years	of	age	and	of	diverse	

genetic	backgrounds	were	merged	followed	by	cell-type	correction	using	the	

Houseman	method	[28]	(Table	1).			

Using	the	CoMeBack	algorithm	to	identify	co-methylated	regions	(CMRs)	[113],	

autosomal	DNAm	sites	were	grouped	based	on	correlation	and	CpG	background	

density	yielded	34,568	WB	CMRs	in	the	aggregate	discovery	cohort.		Of	these,	337	

genomic	CMRs,	a	total	of	1285	probes,	were	sexually	dimorphic	(denoted	sCMRs).	

More	specifically,	these	sCMRs	showed	significant	differences	in	DNAm	between	

males	and	females	with	false	discovery	rate	[35]	(FDR)<0.05	and	absolute	

composite	CMR	beta	[113]	difference>4%,	and	were	composed	of	probes	that	all	

showed	the	same	direction	of	change	between	males	and	females.	
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Analysis GEO Dataset Tissue N Females Males Age Range Reference
GSE55763 Whole blood 2,669 860 1809 31-75 Lehne et al., 2015

CMR Construction, GSE84727 Whole blood 377 92 285 25-66 Hannon et al, 2016
sCMR Discovery, GSE80417 Whole blood 224 117 107 26-79 Hannon et al, 2016
Sex Predictor   GSE111629 Whole blood 175 68 107 26-55 Horvath et al, 2015
Construction GSE72680 Whole blood 350 244 106 26-77 Grady Trauma Project

sCMR Validation   GSE125105 Whole blood 697 388 309 17-87 Arloth & Binder 2019

GSE79100 Kidney 31 16 15 Winterpatch & Lukassen 2018
GSE80261 Buccal 96 57 39 Portales-Casamar et al 2016

sCMR Tissue GSE61258 Liver 79 34 45 Horvath et al 2014
Concordance GSE64509 Brain 25-41 17-22 8-11 Horvath et al 2015

GSE87640 Immune cells 20 8 12 Ventham et al. 2016

Sex Predictor GSE132203 Whole blood 794 571 223 18-76 Grady Trauma Project
Validation

Table 1. Public datasets used for discovery and validation of sCMRs.	
	

The	337	sCMRs	were	validated	in	a	separate	cohort	(GSE125105)	of	312	males	and	

387	females	aged	17-87	that	was	processed	independently	as	described	in	the	

Methods	section.		After	quality	control	(see	Methods),	1191	out	of	1285	sCMR	

probes	(92%)	remained	in	the	validation	dataset.		To	retain	as	many	sCMRs	as	

possible	for	validation,	we	chose	to	include,	sCMRs	represented	by	at	least	one	

probe	in	the	validation	data,	resulting	in	334	sCMR.	Of	these,	305	sCMRs	had	at	least	

one	significant	(nominal	p<0.05)	probe	with	the	remaining	CMR	probes	showing	the	

same	direction	of	sex-biased	DNAm	between	males	and	females	(Figure	1).		These	

305	validated	sCMRs	ranged	in	size	from	2-15	probes	(7-2609	bps),	encompassed	a	

total	1,174	probes,	and	were	detected	across	all	autosomes	(Suppl.	File	1).		In	total,	

235	sCMRs	had	higher	DNAm	levels	in	females	compared	to	males,	while	70	had	

higher	levels	in	males	compared	to	females.	
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Figure 15. The validated sex-associated CMRs were present in all autosomes.  
A.  Volcano plot of the validated sCMRs, with FDR of 5%.  B. An example of a validated 
top hit, SLC6A4. C: Number of N-probes sCMRs with median bp length and number of 
CpGs; red line is median of 3 probes. D: The autosomes are plotted proportional to their 
length, with sCMRs mapped to genomic coordinate position.  Chromosomes 1,2, and 19 
had the highest absolute number of sCMRs, while chromosomes 17, 19 and 22 had the 
highest density of sCMRs, defined as number of sCMRs divided by chromosome length. 
 

3.2.1.1 sCMRs were not Enriched for GO and KEGG terms 

Closer	inspection	of	the	305	validated	robust	sCMRs	revealed	that	they	were	

associated	with	167	genes	(see	Methods).	Focusing	on	genes	overlapping	sCMRs	

revealed	that	they	were	not	enriched	for	any	particular	GO	term	or	KEGG	pathway.		

Nevertheless,	careful	inspection	of	the	list	of	sCMR	associated-genes	revealed	genes	

involved	in	sex	biology,	sex-linked	phenotypes,	or	steroid	hormone	biology.		For	

example,	sCMRs	were	observed	overlapping	the	estrogen	receptor	gene	(ESR1),	as	
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well	as	the	Cytochrome	P450	1B1	(CYP1B1)	gene,	which	is	involved	in	the	

metabolism	of	hormones	[114].	Furthermore,	a	sCMR	was	also	observed	

overlapping	the	SLC6A4	gene	(Figure	1,B),	which	encodes	a	serotonin	transporter	

that	has	been	implicated	in	a	range	of	mental	health	conditions	[115-118]	including	

depression	and	social	anxiety.		The	sCMR	overlapping	the	SLC6A4	gene	had	two	

probes	with	more	than	5%	difference	in	median	probe	methylation	between	males	

and	females,	and	the	maximum	absolute	difference	was	7.4%.	

	

3.2.2 Characterization of sCMRs 

3.2.2.1 Enrichments of genomic features with relevance to Sex  

3.2.2.1.1 sCMRs were enriched for several chromatin states  

Having	identified	and	validated	305	sCMRs	in	WB,	we	then	sought	to	characterize	

them	further.	Using	the	ChromHMM	algorithm	[62],	which	defines	chromatin	states,	

we	observed	that	sCMRs	were	significantly	enriched	in	ZNF	repeats,	polycomb	

repressive	elements,	heterochromatin,	bivalent	enhancers,	and	transcription	start	

site	(TSS)	characteristics	(TSS	flanking,	active	TSS,	TSS	flanking	downstream,	and	

bivalent	TSS)	compared	to	the	entire	34,568	CMR	background	(Figure	16	A).	

Upon	dividing	the	set	of	all	305	validated	sCMRs	based	on	whether	they	had	higher	

DNAm	levels	in	females	compared	to	males,	or	vice	versa,	different	chromatin	states	

were	found	to	be	enriched	in	the	two	subsets	(Figure	16	B).		For	sCMRs	with	higher	

levels	in	females,	the	highest	enrichments	were	observed	in	heterochromatin,	ZNF	

repeats	and	Polycomb-repressed	states,	while	for	sCMRs	with	higher	levels	in	males,	
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the	most	enriched	states	were	TSS	upstream	and	downstream	and	Type	2	Active	

Enhancers	[62].	

	

3.2.2.1.2 sCMRs were enriched for a few TFBS motifs  

To	investigate	the	potential	role	of	sCMRs	in	regulation	of	gene	expression,	we	

examined	the	enrichment	of	sCMRs	for	known	transcription	factor	binding	site	

(TFBS)	motifs.		Out	of	the	404	motifs	determined	by	HOCOMOCO,	a	comprehensive	

database	of	transcription	factors	[89],	98	were	found	in	sCMRs	probe-spanning	

regions	(see	methods),	and	9	motifs	were	enriched	in	the	sCMRs	(Figure	16,C).		Of	

note,	the	motif	with	highest	enrichment	was	for	SPI1,	which	is	not	shown	in	Figure	

2,C	due	to	a	much	higher	odds	ratio	compared	to	the	other	elements.	

Several	of	the	enriched	TFs	are	known	to	function	in	blood	cells,	including	the	KLF	

and	SP	family	of	transcription	factors	[119].		Moreover,	3	TFs	(KLF6,	KLF12	and	

KLF15)	show	increased	binding	to	methylated	DNA	(see	[91]),	while	1	TF	(SP3)	

prefers	to	bind	unmethylated	DNA.	

We	considered	sCMRs	that	had	higher	median	DNAm	in	females	compared	to	males	

and	vice	versa	(see	above).		Performing	a	TFBS	motif	enrichment	analysis	separately	

for	these	two	sets	of	sex-biased	sCMRs	(Figure	16	D),	we	found	7	motifs	enriched	for	

at	least	one	of	the	sexes.		One	M-plus	TFBS	motif,	KLF15	was	enriched	for	sCMRs	

with	higher	DNAm	in	females,	while	two	M-plus	TFs,	KLF6	and	SP1,	were	enriched	

among	the	sCMRs	with	higher	DNAm	in	males.	Several	TFBS	motifs	with	unknown	
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methylation	preference	were	enriched	differently	in	sCMRs	with	higher	median	

DMAm	in	males	versus	females.	

	

3.2.2.1.3 sCMRs were enriched for sex hormone-related CpGs   

To	investigate	the	potential	functional	relevance	of	the	sCMRs	in	sexual	maturation,	

we	considered	whether	sCMRs	were	enriched	for	CpGs	with	known	DNAm	

associations	to	changes	in	reproductive	hormones	over	the	puberty	transition	in	

boys.		We	found	that	the	sCMRs	were	significantly	enriched,	at	5%	level,	for	CpGs	

associated	with	changes	in	DNAm	over	the	puberty	transition	in	boys	for	all	five	sex	

hormones	considered	(Figure	16	E).	Specifically,	for	three	out	of	the	five	

reproductive	hormones	considered	(Inhibin	B,	anti-Müllerian	hormone	and	

Testosterone),	the	enrichment	was	significant	at	the	more	stringent	1%	level.		The	

sCMRs	were	also	enriched	for	probes	in	the	entire	set	of	CpGs	reported	in	to	be	

associated	with	any	of	the	five	hormones	[109].			

Considering	the	direction	of	sex-biased	DNAm	in	sCMRs	(Figure	16	F),	we	found	that	

CpGs	associated	with	sex	hormone	changes	in	boys	were	enriched	in	sCMRs	with	

higher	median	methylation	in	males.	On	the	other	hand,	CpGs	associated	with	

changes	in	follicle-stimulating	hormone	in	boys	were	not	significantly	enriched	in	

sCMRs	that	had	higher	median	female	methylation,	as	one	might	expect	from	a	

hormone	integral	to	female	ovulation.	
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Figure 16. The sCMRs were enriched for chromatin states and genomic features.   
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A, B. Enrichment in chromatin states related to the transcription start site and weak 
Polycomb repressed.  C, D.  Enrichment for several transcription factor binding site 
(TFBS) motifs, including several involved in blood physiology, as well as TFs whose 
binding affinity depends on DNAm status. Transcription factors SPI1 (not shown) had 
odds ratio above 30. E,F. Enrichment for CpGs associated with sex hormone changes in 
boys over the puberty transition.  

 
3.2.2.1.4 sCMRs were not enriched for imprinted genes or for imprinting control 

centers 

Genomic	imprinting	is	the	DNAm-mediated	process	of	monoallelic	gene	silencing	

depending	on	the	parent-of-origin	[104].		Although	DMRs	associated	with	imprinted	

genes	have	been	widely	reported,	studies	have	also	shown	that	DNAm	levels	at	

imprinted	loci	can	often	vary	by	offspring	sex	[120-124].		This	led	us	to	investigate	

whether	the	305	validated	sCMRs	overlapped	with	CpGs	from	imprinted	genes	that	

exhibit	sex-specific	DNAm	differences.	We	identified	that	only	a	single	sCMR	

contained	probes	associated	with	a	known	maternally	imprinted	gene,	NLRP2.	We	

next	sought	to	identify	whether	the	validated	sCMRs	were	also	enriched	for	the	45	

imprinting	control	centers	(ICR)	[125,	126].		Interestingly,	only	4	sCMRs	overlapped	

with	an	ICR,	and	there	was	no	significant	enrichment	against	the	CMR	background.	

3.2.2.1.5 sCMRs were enriched for lncRNAs  

We	observed	that	among	the	most	significant	large	effect	sCMRs	there	were	several	

long	non-coding	RNAs	(lncRNAs),	which	seemed	intriguing	in	light	of	recent	

evidence	linking	lncRNA	to	DNAm	[127-129]	and	to	sex	maturation	in	model	

organisms	[130,	131].		Therefore,	we	examined	whether	the	305	validated	sCMRs	

overlapped	the	9,066	lncRNAs	that	have	been	explored	in	relation	to	DNAm	changes	
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in	cancer	[132].		Overall,	we	found	a	total	of	69	sCMRs	(23%)	overlapped	lncRNAs	

regions,	revealing	a	significant	enrichment	for	lncRNAs	in	sCMRs.	

3.2.2.1.6 sCMRs were enriched for methylation quantitative trait loci  

Considering	the	influence	of	genetic	variation	on	DNAm	patterns	within	a	tissue,	we	

anticipated	that	the	majority	of	the	sCMRs	will	include	a	known	methylation	

quantitative	trait	locus	(mQTL)	(Figure	17).	Using	the	most	conservative	set	of	

mQTLs	that	included	probes	from	both	the	ARIES	[92]	and	the	McRae	[133]	studies,	

we	found	that	51%	of	the	sCMRs	contained	a	probe	that	was	among	the	29,130	

probes	identified	in	both	studies.	Comparing	these	numbers	against	the	WB	CMRs	

background	revealed	a	significant	enrichment	for	mQTL	within	sCMRs.		

A	 	 	 	 								B		 	 	 	 								
	
	
	
	
	
	
	

C	

 

 
 

 
 

 
 

Figure 17. mQTLS were enriched in the sCMRs.	
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A:	Enrichment.	B.	Number	of	WB	mQTLs	in	the	two	different	studies.	C.	Previously	
reported	mQTLs	from	the	two	studies.	
	

	

3.2.2.1.7 sCMRs were not enriched for genes differentially expressed between 

sexes 

A	recent	study	[134]	identified	sex-specific	differences	in	gene	expression	in	WB	

and	PBMC	samples,	allowing	us	to	determine	if	these	overlapped	sCMRs.			

Interestingly,	three	sCMRs	overlapped	with	two	genes	differentially	expressed	

between	the	sexes:		PER3	and	NLRP2,	the	latter	being	the	same	gene	which	was	

previously	identified	as	the	only	imprinted	autosomal	gene	associated	with	an	sCMR	

probe	(see	section	3.2.2.1.4	above).	

	

3.2.3 Developmental establishment of sCMRs in whole blood 

Given	that	sCMRs	were	identified	in	adults	(25-80	years),	we	next	investigated	if	

sex-specific	DNAm	difference	at	these	CpG	sites	were	also	observed	in	younger	

samples.	Using	the	ARIES	cohort	[108]	which	includes	484	males	and	487	females	

sampled	at	age	0,	7	and	15	years,	(see	Methods),	we	observed	that	most	of	the	

sCMRs	showed	sex-specific	differences	in	DNAm	from	birth	(Figure	18	A).	

Nevertheless,	10	sCMRs	contained	probes	that	were	significant	only	at	the	later	time	

points	(7	and	15)	suggesting	that	a	handful	of	sCMRs	may	develop	during	this	time	

period	(Figure	18	B).	
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A	 	 	 	 	 														B	

Figure 18. Several sCMRs were established over the period 7-15 years.  
A. Common sCMRs containing at least one significant probe at different ages. B. 
Example, one of the10 sCMRs that were significant at 7 and 15 years, but not at 0 years. 

	

	
3.2.4 WB sCMR concordance across different tissues and cancer 

3.2.4.1 	sCMRs had notable concordance across tissues 

DNAm	patterns	vary	substantially	by	tissue	and	cell	types	[1,	4,	135].		Using	publicly	

available	GEO	datasets,	we	examined	DNAm	profiles	of	the	305	validated	sex-

specific	WB	sCMRs	across	multiple	somatic	tissues	and	immune	cell	types	including	

buccal,	kidney,	liver,	brain,	monocytes,	CD4	and	CD8	T	cells.	(Figure	19).		

Overall,	32-75%	of	the	305	validated	sCMRs	were	also	determined	to	be	sex-specific	

sCMRs	in	the	investigated	tissues	based	on	a	5%	nominal	significance	threshold.		In	
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particular,	over	75%	of	the	WB	sCMR	were	present	in	buccal	tissue,	which	is	among	

the	tissues	most	commonly	assayed	for	DNAm	state.			

	

	

	

	 A	 	 	 	 	 B	
	 	
	

Figure 19. Whole blood sCMRs were concordant across multiple tissues.  
A: Percentage of the 305 validated sCMRs that contained a CpG that was significantly 
associated with sex at the 5% significance level. B: concordance of sCMR median beta 
value difference across tissues.  The median beta differences were calculated per sCMR, 
as the median female beta minus the median male beta and are shown here for the sCMR 
probe that was most significantly differentially methylated in whole blood.  

	

The	sCMRs	beta	differences	between	males	and	females	were	notably	consistent	in	

direction	and	magnitude	of	sex-biased	DNAm	across	tissues.		Moreover,	17	sex-

specific	WB	sCMRs,	containing	85	CpG	probes	were	significant	in	all	the	investigated	

tissues	and	immune	cell	types,	despite	small	sample	sizes	(Figure	20).		Although	not	
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significantly	enriched	for	any	gene	ontology	terms,	some	of	the	17	sCMRs	overlap	

with	known	genes,	including	MYF5,	SOD3,	OOEP,	DDX43,	SOGA3,	and	PXDNL.	

	
Figure 20. Several WB sCMRs were significantly associated with sex across different 
tissues despite small sample sizes for most tissues.			

Brain	sCMRS	shown	were	common	to	all	Brain	regions.		Blood	CMRs	
shown	were	common	across	all	blood	cell	types	examined.	
	

3.2.4.2 sCMRs could separate primary breast cancer samples based on estrogen 

and progesterone status  

In	an	effort	to	determine	the	persistence	of	sCMRs	to	disease	status,	we	turned	our	

attention	to	one	of	the	most	extreme	cases	of	DNAm	dysregulation:	cancer.	Taking	

advantage	of	publicly	available	datasets	from	The	Cancer	Genome	Atlas	(TCGA)	

Research	Network	across	a	variety	of	cancer	types	(see	methods),	we	found	that	

most	sCMR	probes	showed	disrupted	patterns	of	sex-specific	DNAm	pattern	
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compared	to	normative	blood	samples	(Figure	21	A).		Although	these	differences	

suggest	that	disease	may	dysregulate	sex-specific	effects	on	DNAm,	one	caveat	of	

this	analysis	is	that	the	cancer	samples	were	derived	from	a	variety	of	tissue	types,	

many	of	which	were	not	included	in	our	across-tissue	comparisons,	due	to	lack	of	

publicly	available	data	for	healthy	subjects.	Nevertheless,	given	the	link	between	

sCMR	probes	and	genes	related	to	steroid	hormone	biology,	we	found	that	they	

could	clearly	separate	primary	breast	cancer	samples	based	on	estrogen	and	

progesterone	status	(Figure	21	B).	

	 A	 	 	 	 	 B	
	
	

	

	

	

	

	

Figure 21. sCMR probes differentiated breast cancer samples based on estrogen and 
progesterone status.  

A. Lack of sCMR methylation concordance across difference cancers. B.  sCMR probes 
differentiated breast cancer samples based on estrogen and progesterone status. N/P are 
negative/positive for Estrogen Receptor (ER)/Progesterone Receptor (PR) respectively. 
 

3.2.5 An Autosomal Predictor of Sex with Good Performance 

We	used	the	1174	autosomal	CpG	probes	from	the	305	validated	sCMRs	to	construct	

a	sex	predictor	using	a	machine	learning	method,	elastic	net	regression	[53].		The	

predictor	had	87	probes	in	71	sCMRs.	The	predictor’s	performance	was	tested	in	an	
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independent	Illumina	Infinium	Human	Methylation	EPIC	beadchip	microarray	

dataset	(Figure	22).	The	predictor	performed	well,	with	an	area	under	the	receiver	

operating	curve	(AUC)	of	99.8%,	and	overall	accuracy	of	99%.					

A									 	 	 	 	 	 B	

	

	

	

	

	

	

Figure 22. The sex predictor achieved high accuracy in an independent EPIC dataset.  

A. Performance was assessed using area under the receiver operating curve (AUC).        
B. Confusion table showing predictor accuracy for Males versus Females. 

	

Next,	to	explore	pan-tissue	and	pan-array	technology	applicability,	with	possible	

utility	for	other	DNAm	assays,	such	as	pyrosequencing,	we	considered	the	feasibility	

of	a	sparse	predictor	that	uses	only	a	very	small	set	of	probes	as	inputs.	We	

constructed	and	investigated	the	performance	of	two	different	sparse	predictors.		

First,	we	constructed	a	“minimal”	predictor	by	selecting	among	the	same	set	of	1174	

probes	from	all	validated	sCMRs	but	imposed	a	stronger	regularization	for	the	

elastic	net	algorithm	(see	Methods).		Next,	a	“pan-tissue-sCMR	(PTS)”	predictor	was	

constructed	from	CpGs	only	from	the	17	sCMRs	that	were	found	to	contain	a	

significant	probe	across	all	tissues	investigated	in	this	study	(Figure	23).	
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A	 	 	 	 	 	 B	

	

	

	 	
	
	
	
	
	
	
	
	

C	 	 	 	 	 	 D	

Figure 23. The	sparse	sex	predictors	achieved	good	accuracy	in	independent	data.	 
A,B	Minimal	Predictor.		C,D,	PTS	predictor.	Rigth:	Performance	was	
assessed	using	area	under	the	receiver	operating	curve	(AUC).	Left:	
Confusion	tables	showing	predictor	accuracy	for	males	versus	females.	
	

The	minimal	predictor	(Figure	23	A,	B)	relied	on	21	CpG	probes	and	its	performance	

was	still	adequate,	with	an	area	under	the	receiver	operating	curve	(AUC)	of	96%	

and	overall	accuracy	of	90%	in	the	testing	EPIC	data.		
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The	PTS	predictor	(Figure	23	C,D)	used	75	probes	as	input	and	still	had	reasonable	

performance,	with	an	area	under	the	receiver	operating	curve	(AUC)	of	92%	and	

overall	accuracy	of	89%	in	the	testing	DNAm	data.	

	

3.3 Discussion 

We	aimed	to	characterize	co-methylated	autosomal	genomic	regions	spanning	

multiple	DNAm	array	probes	with	sex-specific	beta	methylation	ratios.		We	used	

pre-defined	reference	WB	CMRs	[113]	and	interrogated	their	association	with	sex	in	

adults,	and	at	ages	0,	7	and	15.		It	is	reasonable	to	focus	on	genomic	regions	

spanning	multiple	CpGs	as	opposed	to	individual	CpGs	because	groups	of	proximal	

CpGs,	as	captured	by	the	CMRs,	have	been	shown	to	frequently	function	as	biological	

units	[68-71,	103],	for	example	CpG	islands	in	gene	promoters	[66].		Additionally,	

previous	studies	have	already	characterized	individual	sex-associated	CpGs,	so	we	

sought	to	enhance	the	characterization	of	sex-associated	DNAm	changes	by	focusing	

on	genomic	regions.	Our	choice	of	methodology	was	motivated	by	previous	results	

showing	that	using	CMRs	for	EWAS	can	improve	specificity	and	substantially	

improve	statistical	power	[113].	

3.3.1 Characteristics of sCMRs 

We	discovered	and	validated	305	WB	sCMRs	with	large	sex	differences	in	DNAm	

beta	values.		These	sCMRs	contained	1174	CpGs,	including	a	number	of	CpG	sites	

identified	in	previous	studies	to	be	differentially	methylated	by	sex	[21,	105]	(Figure	

24).	In	addition,	multiple	tissues	and	immune	cell	types	including	buccal,	kidney,	
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liver,	brain,	monocytes,	CD4	and	CD8	T	cells	also	exhibited	similar	sex-specific	

DNAm	differences	for	at	least	30%	of	the	305	validated	WB	sCMRs.	

A	 	 	 	 	 	 	 B	

	
Figure 24. sCMR probes had limited overlap with previous studies of individual probes. 	

A.	The	sCMRs	included	72	previously	reported	sex-associated	individual	
CpGs.	B.	Among	the	305	validated	sCMR,	45	included	an	individual	CpG	
validated	in	a	previous	study.	
	

Using	a	longitudinal	youth	cohort	with	data	from	three	time	points,	we	found	that	

282	of	the	305	validated	sCMRs	(92%)	contained	Cps	that	were	significantly	

associated	with	sex	at	age	0,7,	and	15	years,	while	10	sCMRs	were	only	significant	at	

ages	7	and	15,	but	were	not	significant	at	birth.	These	sCMRs	were	consistent	with	

prior	findings,	as	they	included	known	CpGs	that	change	their	methylation	status	

during	puberty	[109].			

3.3.2 Sex-specific methylation patterns 

We	examined	common	genomic	feature	annotations	for	the	305	validated	sCMRs	in	

an	attempt	to	glean	some	insight	into	their	potential	role	in	the	establishment	of	the	
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sex	phenotype	and	their	significance	in	sex-specific	disease	etiology.	Interestingly,	

TSS-related	and	Polycomb-Repressed	chromatin	state	regions,	as	well	as	blood	and	

sex-related	TFBS	and	lncRNAs	were	enriched	among	the	sCMRs.		Several	of	these	

TFs	have	binding	affinity	that	is	dependent	on	DNAm	methylation	[91].		Next,	CpGs	

associated	with	sex	hormone	changes	in	boys	over	puberty,	as	reported	previously	

[109],	were	enriched	in	CMRs	for	all	five	hormones	considered,	suggesting	that	

DNAm	may	play	a	role	in	the	gene	expression	regulation	related	to	sex	hormones.		

These	findings	suggest	that	sCMRs	may	overlap	a	subset	of	genomic	regions	that	

have	a	functional	role	in	the	establishment	and	maintenance	of	sex	phenotype.		

We	also	found	that	the	validated	sCMRs	were	enriched	for	WB	mQTLs	identified	in	

previous	studies	and	these	enrichments	were	regardless	of	which	particular	mQTL	

study	was	used	as	a	reference.		These	results	suggest	that	for	a	subset	of	the	sCMRs	

containing	mQTLs,	genetic	variability	may	drive	the	differential	DNAm	pattern	

across	the	sexes.		Finally,	it	was	intriguing	that	the	sCMRs	were	enriched	for	

lncRNAs,	indicating	that	there	may	be	another	sex-specific	layer	in	the	known	

interplay	between	lncRNAs	and	DNAm	in	the	establishment	of	chromatin	state	and	

downstream	gene	expression	[127-129].			

3.3.3 Autosomal Predictor of Sex 

The	autosomal	sex	predictor	that	was	constructed	from	the	validated	sCMR	probes	

exhibited	good	performance	and	would	be	useful	for	identifying	samples	with	mis-

labeled	sex,	where	XY	chromosome	array	probes	are	not	available,	such	as	from	

most	processed	publicly	available	datasets.		Moreover,	using	only	the	sCMRs	that	
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were	found	to	be	significantly	differentially	methylated	in	all	tissues	still	produced	a	

predictor	with	reasonable	performance	that	would	be	usable	across	different	

tissues.		Finally,	the	sparse	21-probe	predictor	would	be	suitable	for	identifying	

candidate	regions	for	pyrosequencing,	either	for	validation	of	sCMRs,	or	for	calling	

of	sample	sex.	

3.3.4 Strengths and limitations 

We	focused	on	pre-defined	CMRs	in	whole	blood,	in	order	to	determine	genomic	

regions,	as	opposed	to	individualCpGs,	that	may	be	differentially	methylated.		We	

used	CoMeBack	CMRs	[113]	which	have	been	show	to	improve	power	and	

specificity,	and	confirmed	that	our	significant	CMRs	in	the	discovery	cohort	were	

validated	in	an	independent	dataset.		On	the	other	hand,	our	choice	to	focus	on	the	

34,568	reference	CMRs,	which	contain	about	25%	of	all	probes	from	the	450K	array	

that	are	not	cross-hybridizing	(100,633	probes),	also	means	that	single	probes	not	

within	a	CMR	were	not	considered	for	sex-specific	DNAm	in	this	study.		However,	

we	note	that	about	one	hundred	thousand	of	these	singleton	probes	are	known	to	be	

invariable	[31]	across	individuals.		Moreover,	previous	studies	[21,	105]	have	

already	considered	single	CpG	EWAS	for	sex	in	a	large	cohort,	which	we	considered	

for	our	comparison	to	the	sCMRs.	

	

3.4 Conclusion 

We	aimed	to	enhance	and	extend	the	characterization	of	sex-specific	DNAm	by	

studying	the	associations	between	sex	and	a	set	of	pre-defined	co-methylated	
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regions,	that	were	estimated	agnostic	to	phenotypic	information,	in	a	large	sample	

of	WB	DNAm	data	collected	with	the	Illumina	Infinium	Human	Methylation	450K	

microarray	platform.		The	WB	dataset	was	compiled	from	five	publicly	available	

sources	and	included	only	healthy	(control)	individuals	from	multiple	ethnicities	

spanning	a	wide	age	range	between	25-80	years.		We	validated	our	sex-associated	

DNAm	findings	in	three	independent	datasets.	

We	took	advantage	of	the	longitudinal	ARIES	cohort	to	examine	the	presence	of	sex-

associated	CMRs	at	birth	(age	0)	and	at	ages	7	and	15	years.		We	examined	the	

mainstream	publicly	available	genome	annotations	and	database	resources	to	

investigate	any	enrichments	of	the	validated	sCMRs	for	genomic	features,	including	

chromatin	states,	as	well	as	transcription	factor	binding	site	motifs	and	known	

genes	related	to	sexual	dimorphism.			

Co-methylated	regions	associated	with	sex	included	many	loci	with	substantial	

DNAm	differences	and	enrichments	for	chromatin	states,	mQTLS	and	other	genomic	

features,	including	ones	related	to	sex	biology.		A	substantial	proportion	of	the	WB	

sCMRs	also	showed	sex-specific	DNAm	differences	in	other	somatic	tissues.	Such	

sCMRs	were	prevalent	across	all	autosomes,	hence	their	characteristics	should	be	

considered	in	future	candidate	gene	studies	and	epigenome	wide	association	

studies.		Finally,	we	showed	that	it	is	possible	to	use	a	limited	subset	of	these	sCMRs	

to	predict	sample	sex	based	on	autosomal	DNAm.	
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3.5 Methods 

3.5.1 Study populations 

3.5.1.1 Discovery 

We	constructed	a	large,	ancestrally	diverse	aggregate	cohort	of	5,191	normative	

adult	whole	blood	samples	(GSE55763,	GSE84727,	GSE80417,	GSE111629,	

GSE72680)	[73,	79-81].	To	minimize	technical	effects,	all	GEO	datasets	were	pre-

processed	uniformly.	Filtered	and	normalized	DNAm	data	was	used	when	available.	

Beta	value	distributions	of	Type	1	and	Type	2	probes	were	plotted	to	confirm	if	the	

probe	type	differences	on	the	450k	array	were	corrected.		Beta-Mixture	Quantile	

(BMIQ)	normalization	[136]	was	used	to	correct	for	variations	resulting	from	probe	

biases	if	needed.		Samples	outside	the	25-80	years	age	range	or	labeled	as	diseased	

were	excluded	from	the	analysis.	Samples	likely	to	be	sex-mislabels	(see	sex	check	

using	XY	probes	below)	were	also	removed	from	the	discovery	cohort.		In	detail,	the	

estimation	of	the	sex	associations	for	adults	used	the	CMRs	composite	betas,	defined	

as	the	scaled	score	of	the	first	principal	component	of	the	CMR	probe	betas	[113],	

and	it	was	restricted	to	the	age	range	of	25-80	years,	to	avoid	the	known	non-

linearity	[40]	outside	this	range	in	the	specification	for	the	association	between	

methylation	and	chronological	age.		The	sample	size	for	this	range	was	4,605	

individuals,	whose	CMR	betas	were	used	to	identify	sCMRs.	We	then	removed	

individuals	that	had	a	disease	and	retained	only	healthy	controls	from	each	dataset	

and	we	also	removed	sex-mislabeled	samples,	resulting	in	the	final	set	of	3,795	

individuals.		
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To	evaluate	whether	samples	from	each	dataset	had	been	assigned	the	correct	sex	

based	on	chromosome	complement,	samples	were	subjected	to	hierarchical	

clustering	based	on	the	beta	values	from	XY	probes.	Genetic	sex	was	evaluated	for	

each	sample	by	cluster	membership,	irrespective	of	the	sample’s	annotated	sex	in	

available	metadata.	Samples	were	subsequently	clustered	on	beta	values	at	a	subset	

of	5	probes	mapping	to	the	XIST	promoter	(cg03554089,	cg12653510,	cg05533223,	

cg11717280,	cg20698282)	[137].		In	all	datasets	two	primary	clusters	

corresponding	to	male	and	female	samples	were	observed	in	both	clustering	checks	

(XY	and	XIST	probes),	samples	that	clustered	with	those	of	the	opposite	sex	in	either	

sex	check	were	removed	from	further	analyses.	For	male	samples	that	clustered	

with	samples	of	their	own	sex	when	considering	all	XY	probes,	but	clustered	with	

female	samples	when	considering	only	XIST	probes,	we	assessed	sex	chromosome	

copy	number	to	rule	out	47,XXY	chromosome	complements	with	the	conumee	R	

package	[138].		In	total,	10	sex	mislabeled	samples	were	identified,	corresponding	to	

a	prevalence	rate	of	0.2%,	which	is	much	lower	than	reported	prevalence	of	sex	

mislabeling	in	gene	expression	studies	[139].	

3.5.1.2 Validation 

We	validated	the	significant	sCMRs	(FDR<0.05)	with	large	sex	effect	sizes,	defined	as	

at	least	4%	beta	difference,	in	two	publicly	available	cohorts.	First,	we	used	a	large	

cohort	of	adult	individuals	with	publicly	available	DNAm	data	(GSE125105)	[140],	

which	was	pre-processed	(see	below)	as	the	other	public	datasets	included	in	the	

discovery	dataset.		Next,	we	validated	the	sCMRs	in	the	0,	7	and	15-year	old	subjects	
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of	the	Accessible	Resource	for	Integrated	Epigenomic	Studies	(ARIES)	cohort	[141],	

a	subsample	of	1018	mother–child	pairs	from	the	Avon	Longitudinal	Study	of	

Parents	and	Children	(ALSPAC),	a	population-based	birth	cohort	[142-144].			The	

ARIES	cohort	had	883	individuals	(438	male	and	445	female)	at	age	0,	971	

individuals	(484	male	and	487	female)	at	age	7	and	938	individuals	(463	male	and	

475	female)	at	age	15	years,	where	the	minimum	subject	overlap	was	854	

individuals	present	at	both	ages	0	and	15.	

3.5.2 Data preprocessing and quality assurance 

First,	intra-dataset	batch	effect	correction	was	performed	within	each	cohort,	using	

the	R-package	sva	[82].	The	discovery	datasets	were	then	merged	and	corrected	for	

inter-dataset	batch	effects.		The	subset	of	probes	that	were	measured	in	all	datasets	

was	filtered	by	removing	XY	chromosome	binding	probes,	non-CpG	probes,	cross-

hybridizing	probes	[83,	84],	and	probes	containing,	or	immediately	adjacent	to	a	

single	nucleotide	polymorphism	(SNP)	with	a	minor	allele	frequency	≥	5%,	as	

annotated	by	the	Illumina	manifest	and	[84].	Finally,	probes	present	on	the	450K	

array	but	absent	from	the	EPIC	array	were	removed	to	allow	comparisons,	without	

modifications,	to	the	newer	EPIC	arrays.		This	pre-processing	resulted	in	404,779	

CpG	sites.	The	EPIC	samples	were	pre-processed	similarly.	

3.5.3 CMR Estimation  

We	used	the	whole	blood	CMRs	for	the	Illumina	450K	array	constructed	with	the	

CoMeBack	algorithm	[113]	with	Spearman	correlation	of	30%	and	the	other	

parameters	at	default	values,	in	the	discovery	dataset	described	above.		As	whole	
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blood	is	composed	of	multiple	cell	types	with	distinct	DNAm	patterns,	and	cell	type	

proportions	vary	across	individuals,	we	aimed	to	ensure	that	the	estimated	CMRs	

are	not	primarily	capturing	cell-type	heterogeneity	[85].		Thus,	we	adjusted	the	

methylation	beta	ratios	for	cell	type	proportions	predicted	with	the	Houseman	

method	[28],	as	implemented	in	the	R-package	minfi	[85],	within	a	constrained	

linear	regression	model.	We	used	the	CoMeBack	CMRs	constructed	in	the	cell-type	

corrected	whole	blood	data	and	then	used	these	CMRs	to	estimate	the	composite	

CMR	betas	in	the	uncorrected	data,	as	described	in	[113].			

3.5.4 Statistical analysis 

We	used	the	CMR	composite	beta,	defined	as	the	weighted	sum	of	the	probe	betas	as	

calculated	with	the	CoMeBack	algorithm	[113],	within	a	linear	regression	

specification.		The	weights	were	defined	previously	[113],	as	the	scaled	loadings	of	

the	first	principal	component.		The	linear	specification	included	estimated	blood	cell	

type	counts,	wk	(Ʃk	wk=1),	as	well	as	sex	and	age,	and	their	interaction:	

	

βCpG_i		 =	Ʃk	wk	+	Sex	+	Age	+	Sex*Age	+	ε		

	

We	estimated	the	least-squares	specification	above	while	constraining	the	cell-type	

specific	beta	estimates	to	be	between	zero	and	one.	

	

3.5.5 CMR Characteristics: Chromatin State Enrichment 

We	sought	to	determine	the	chromatin	state	of	the	genomic	regions	overlapping	
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the	probes	of	a	CMR.		To	examine	the	chromatin	state	of	the	CMRs,	we	used	the	

Roadmap	Epigenomics	[61]	ChromHMM	[62]18-state	model	for	PBMCs	to	

estimate	enrichment	for	overlaps	with	genomic	regions	in	different	chromatin	

states,	of	the	CMRs	spanning	the	genomic	coordinates	from	the	first	to	the	last	

probe,	versus	the	non-CMR	probe	regions,	two	base-pairs	long,	that	span	CpGs	

assayed	in	the	non-CMR	singleton	probes.		The	overlaps	with	chromatin	states	

were	counted	with	the	R-package	GenomicRanges	[87],	with	no-overlaps	counted	

as	zeroes	and	overlaps	counted	as	ones.	

3.5.6 Transcription Factor Binding Sites Enrichment  

CMR	methylation	state	could	potentially	be	affected	by,	or	itself	may	affect,	the	

binding	of	transcription	factors	(TFs)		[88,	91]	through	their	binding	sites.		Hence,	

we	examined	CMR	enrichment	for	known	transcription	factor	binding	site	motifs,	

as	compiled	in	the	HOCOMOCO	v11	database	[89].	We	scanned	regions	spanning	

200bp	on	either	side	of	a	probe’s	assayed	CpG,	using	the	tool	FIMO	from	the	

MEME	software	suite	[90].		For	any	enriched	binding	site	motifs,	we	checked	for	

any	known	effects	of	DNAm	on	TF	binding	affinity,	using	as	reference	the	

reported	binding	specificities	of	full-length	human	transcription	factors	and	

extended	DNA	binding	domains	to	(un)methylated	DNA	for	542	transcription	

factors	[91].	
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3.5.7 Enrichment for sex hormone-related CpGs 

We	considered	whether	the	sCMRs	were	enriched	in	CpGs	with	known	statistical	

association	to	changes	in	reproductive	hormones	over	the	puberty	transition.		We	

used	the	top	999	CpGs	identified	in	[109]	as	significantly	associated	(at	FDR	of	5%)	

with	changes	in	reproductive	hormones	among	boys	during	the	puberty	transition	

(the	study	found	no	significant	probes	for	girls).		These	significant	probes	comprised	

999,	492,	403,	282,	and	218	CpGs	associated	with	changes	in	testosterone	(TS),	

follicle-stimulating	hormone	(FSH),	luteinizing	hormone	(LH),	anti-Müllerian	

hormone	(AMH),	and	Inhibin	B	(InhB),	respectively.				

3.5.8 lncRNAs Enrichment 

We	considered	whether	the	sCMRs	were	enriched	in	lncRNAs	probes	that	were	

compiled	in	a	previous	study	of	DNAm	changes	in	cancer	[132].	The	lncRNA	list	

included	9,066	lncRNAs,	and	each	lncRNA	had	an	associated	set	of	450K	probes.		We	

considered	the	intersections	of	these	probe-sets	with	the	CMRs	and	performed	an	

enrichment	test	using	Fisher’s	exact	test.			

3.5.9 Enrichment of imprinted genes and imprinting control centers 

We	tested	whether	the	sCMRs	were	enriched	for	probes	from	a	known	set	of	

imprinted	genes.	For	this,	we	downloaded	a	list	of	107	genes	from	‘Geneimprint’	by	

July	2019	[145]	where	the	genes	were	filtered	to	only	those	with	status	‘imprinted’	

in	Homo	sapiens.		Of	these	genes,	90	had	available	information	in	ENSEMBL	[146].		

We	used	the	genomic	ranges	for	these	imprinted	genes	obtained	from	ENSEMBL	to	

count	intersection	with	the	CMRs.			
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We	also	considered	enrichment	for	the	45	imprinting	control	centers	reported	in	

[125,	126].		The	genomic	ranges	were	obtained	from	[126].		We	performed	the	

enrichment	test	using	Fisher’s	exact	test.	

3.5.10 mQTLs Enrichment 

We	examined	the	sCRMs	enrichment	for	known	whole	blood	DNA	methylation	

quantitative	trait	loci	(mQTLs),	as	reported	in	the	ARIES	study[92]and	the	McRae	

study	[133].	The	CMRs	were	annotated	as	containing	versus	not	containing	an	

mQTL	probe	and	enrichments	were	estimated	using	Fisher’s	exact	test.	

3.5.11 Enrichment of GO and KEGG terms  

We	considered	whether	the	sCMRs	were	enriched	in	GO	and	KEGG	terms	using	the	

missMethyl	R-package	[147].		The	sCMR	genomic	regions,	spanning	the	genomic	

coordinates	from	the	first	to	the	last	probe,	were	annotated	for	overlaps	with	the	

genomic	regions	of	all	known	genes	as	annotated	by	ENSEMBL	[146].	

3.5.12 CMRs Established over the 0 to 7 to 15 years period 

We	used	the	ARIES	cohort	[108]	to	investigate	which	CpGs	among	the	1174	probes	

included	in	the	305	validated	sCMRs	had	significant	sex	differences.		We	used	a	

linear	model	separately	in	the	age	0,	7	and	age	15	years	sub-samples.			We	tested	all	

probes	from	the	validated	sCMRs	using	a	Welch	test	and	an	sCMR	was	considered	

validated	if	it	contained	at	least	one	significant	probe	in	the	ARIES	cohort.	

3.5.13 Whole Blood sCMRs Across different tissues 

We	utilized	several	publicly	available	datasets	from	GEO	[26]	(Kidney:	GSE79100,	

Buccal:	GSE80261,	Liver:	GSE61258,	Brain:	GSE64509,	and	immune	cell	types:	
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GSE87640)	to	examine	tissue	specificity	of	the	305	validated	sex-specific	whole	

blood	sCMRs.		These	samples	were	run	on	the	450K	array	that	quantifies	DNAm	at	

485,512	CpG	across	the	genome.	To	minimize	technical	effects,	all	GEO	datasets	

were	pre-processed	uniformly.	Filtered	and	normalized	DNAm	data	was	used	when	

available.	Beta	value	distributions	of	Type	1	and	Type	2	probes	were	plotted	to	

confirm	if	the	probe	type	differences	on	the	450k	array	were	corrected.		Beta-

Mixture	Quantile	(BMIQ)	normalization	[136]	was	used	to	correct	for	variations	

resulting	from	probe	biases	if	needed.	Further,	only"	control"	samples	from	each	

dataset	were	included	in	the	analysis	(Kidney:	31	samples,	Buccal:	96	samples,	

Liver:	79	samples,	Cerebellum:	32	samples,	Frontal	cortex:	41	samples,	

Hippocampus:	25	samples,	Immune	cell	types:	20	samples).	As	part	of	sample	

quality	check,	we	confirmed	reported	sex	identity	using	the	XY	probes	and	

reassigned	sex	labels	if	samples	clustered	incorrectly.	We	imputed	at	the	median	

any	probes	that	had	a	single	missing	value,	and	removed	probes	with	more	than	one	

missing	values.		Probe	Filtering	resulted	in	variable	subsets	of	CpGs	associated	with	

the	1174	CpGs	linked	with	the	validated	305	sCMRs	(1171	Kidney	CpGs	,	1142	

Buccal	CpGs,		full	set	of	1174	for	all	other	tissues).	

3.5.14 Cancer data analysis 

Level	3	450K	methylation	data	for	10	different	TCGA	cohorts	(BRCA,	COAD,	LUAD,	

GBM,	STAD,	KIRC,	LIHC,	BLCA,	THCA,	SKCM	-	Thyroid	carcinoma,	Breast	invasive	

carcinoma,	Skin	Cutaneous	Melanoma,	Stomach	adenocarcinoma,	Glioblastoma	

multiforme,	Lung	adenocarcinoma,	Kidney	renal	clear	cell	carcinoma,	Liver	
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hepatocellular	carcinoma,	Colon	adenocarcinoma,	and	Bladder	Urothelial	Carcinoma	

respectively)	were	retrieve	from	Firebrowse	reporsitory	(firebrowse.org,	version	

2016_01_28).	Only	tumor	samples	were	retained	for	the	analysis.		

R	package	umap	[148]	was	used	to	obtain	the	Uniform	Manifold	Approximation	and	

Projection	(UMAP)	plot	with	the	following	parameters:	random	state=123,	

n_neighbors=40,	min_dist=0.2.																					

3.5.15 Autosomal Predictor of Sex 

We	used	the	1174	probes	from	the	305	validated	sCMRs	to	construct	a	sex	predictor	

using	the	elastic	net	machine	learning	algorithm,	whose	parameters	were	tuned	

with	7-fold	cross-validation.		The	predictor	was	tested	in	an	independent	dataset,	

GSE132203,	where	DNAm	was	measured	on	the	EPIC	platform,	which	was	

processed	similarly	to	the	other	datasets,	as	described	above.		We	removed	the	

samples	from	the	GSE132203	data	that	were	also	present	in	the	GSE72680	dataset.	

For	the	sparse	predictor,	we	increased	the	shrinkage	penalty	parameter	by	ten	

times	the	cross-validated	value	for	the	shrinkage	parameter	that	was	one	standard	

error	higher	than	the	minimum.		For	the	PTS	predictor,	we	used	the	85	probes	that	

were	in	the	17	sCMR	that	had	at	least	one	significant	probe	in	all	tissues	considered.	

	

3.5.16 Software 

Preprocessing,	quality	control,	analysis,	replication	and	enrichment	analyses	were	

done	using	R[149],	version	3.6.2.	
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Chapter 4: Applications of Mainstream Machine Learning Algorithms 

for DNA Methylation Array Data Analysis 

4.1 Background 

While	data	reduction	of	the	high	dimensional	DNAm	array	measurements	may	offer	

advantages,	as	discussed	in	chapter	2,	some	research	questions	may	call	for	a	

different	approach,	where	using	the	non-reduced	data	as	input	would	be	

appropriate.		For	example,	the	construction	of	a	DNAm	based	predictor	for	a	

condition	or	disease,	that	a-priori	is	expected	to	include	many	variably	methylated	

sites,	may	be	better	addressed	with	mainstream	Machine	Learning	(ML)	methods	

that	use	the	complete	data	as	input,	while	such	methods	may	also	perform	data	

reduction	or	feature	extraction	as	part	of	the	complete	prediction	algorithm.		

	

ML	techniques	involve	model-free	prediction	of	outcomes	(also	known	in	the	ML	

literature	as	“labeling	of	examples”)	[36],	after	tuning	of	the	algorithmic	parameters	

on	a	training	dataset,	without	an	explicit	biological	or	sometimes	even	a	statistical	

model.		In	contrast	to	biologically	motivated	data	reduction	like	CoMeBack	(chapter	

2),	where	the	output	is	intended	for	further	downstream	analyses,	ML	predictive	

algorithms	produce	output	that	is	the	end-goal	of	their	application.		In	particular,	

such	algorithms	typically	use	the	full	high-dimensional	data	for	algorithmic	training	

and	tuning.		Subsequently,	the	performance	of	the	particular	ML	algorithm	is	

evaluated	based	on	predictive	accuracy	in	new	data,	as	prediction	is	the	end-goal	of	

such	ML	applications	in	DNAm	data.	
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Such	a	strategy	using	a	general	purpose	ML	algorithm	was	successfully	pursued	by	

Horvath,	who	constructed	an	“epigenetic	clock”	predictor	for	chronological	age	[40]	

that	has	been	widely	adopted.		He	extracted	a	relatively	large	set	of	353	probes	out	

of	about	27	thousand	array	probes,	by	applying	the	elastic	net	(EN)	ML	algorithm	

[53].		These	probes	were	used	for	an	“age	predictor”	with	a	simple	linear	

specification.		This	intuitive	and	easy-to-use	linear	predictor	was	quickly	adopted	in	

the	community,	with	the	main	application	centering	on	finding	various	statistical	

associations	of	phenotypic	variables	with	the	residual	statistical	noise	of	the	clock,	

that	was	labeled	“epigenetic	age	acceleration.”		Typically,	the	newly	found	statistical	

associations	are	interpreted	in	terms	of	their	biological	significance.			

	

This	example	illustrates	an	“all-in-one”	approach	to	DNAm	predictor	construction,	

where	the	ML	algorithm	incorporates	a	data	reduction	step	as	part	of	the	

construction.			In	this	case,	by	shrinking	some	of	the	linear	coefficient	estimates	-	

those	below	the	pre-specified	threshold	parameter	-	to	zero,	the	EN	algorithm	drops	

uninformative	measurements,	effectively	reducing	the	high	dimensional	DNAm	data	

as	part	of	the	predictor	construction.		On	the	other	hand,	I	showed	in	chapter	3	that	

such	general	purpose	ML	algorithms	as	the	EN	also	can	be	applied	successfully	

downstream	of	the	CoMeBack	“pre-processing”	data	reduction.	
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This	chapter	discusses	three	applications	of	mainstream	ML	algorithms	in	450K	

array	data,	focusing	on	how	the	choice	of	the	particular	algorithm	used	for	

phenotype	prediction	was	motivated	by	the	characteristics	of	the	data	and	the	

objectives	of	the	study.		This	discussion	may	help	guide	the	choice	of	ML	algorithms	

in	future	applications.	

	

4.2 Overview of three mainstream ML Algorithms that I have been applied to 

DNAm array data. 

This	section	contains	a	brief	discussion	of	the	basic	structure	of	three	mainstream	

ML	algorithms	that	I	have	applied	successfully	for	DNAm	array	data	analysis:	the	

LASSO,	Elastic	Net	(EN)	and	Random	Forest	(RF)	algorithms[36].	

	

While	the	basic	structure	of	the	LASSO	and	the	elastic	net	algorithms	consists	of	a	

penalized	linear	regression	specification	[36],	they	differ	in	the	type	of	penalty	used	

for	producing	a	subset	of	“shrunk”	coefficient	estimates,	which	has	implications	for	

the	suitability	of	the	algorithm	for	the	intended	DNAm	analysis	application.		In	

particular,	both	algorithms	include	an	“L1”	penalty	on	the	absolute	values	of	the	

linear	coefficient	estimates,	which	results	in	the	truncation	of	small	absolute	value	

coefficients	to	zero,	and	thus	can	be	used	for	auxiliary	array	probe-feature	selection.		

This	property	is	desirable	in	scenarios	where	the	sample	size	is	small,	and	hence	

variance	of	the	estimates	in	new	data	and	overfitting	are	the	major	concerns[36].			
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In	the	case	of	DNAm	data,	typically	there	are	no	a-priori	biological	reasons	to	

assume	that	the	relationships	of	DNAm	to	phenotype	are	the	truly	linear	[88].		

Hence,	adopting	the	simple	linear	specification	implies	that	a	strong	bias	of	the	

phenotype	estimator	may	be	acceptable	in	lieu	of	its	lower	variance	in	new	data.		As	

a	way	to	achieve	such	low	variance,	the	penalized	regression	specification	reduces	

the	high	dimensional	DNAm	array	data,	where	the	number	of	array	probes,	p,	is	

much	greater	than	the	number	of	observations,	N,	that	is,	p>>N.			As	typical	DNAm	

datasets	with	relatively	small	sample	size,	N,	they	require	some	form	of	penalty	for	

the	number	of	estimated	parameters	in	order	to	avoid	overfitting	and	in	the	case	of	

the	linear	specification	used	in	the	LASSO	and	the	EN	algorithms,	this	involves	

shrinking	the	absolute	value	of	the	coefficients.		The	EN	uses	the	L2	penalty	of	the	

ridge	regression[36],	which	squares	the	coefficient	estimates,	and	it	adds	this	L2	

penalty,	with	some	weight,	to	the	L1	lasso	penalty.		In	this	way,	the	feature	selection	

of	the	LASSO,	which	drops	probe	with	small	estimated	coefficients,	is	preserved,	

while	strong	signals	(with	large	coefficient	estimates)	for	array	probes	that	are	

correlated	may	still	be	retained	because	of	the	use	of	the	ridge-like	L2	penalty.				

	

The	above	discussion	of	the	difference	between	the	two	linear	specifications	

estimated	with	the	LASSO	versus	the	EN	suggests	that	the	choice	of	one	over	the	

other	would	be	driven	primarily	by	sample	size	considerations.		The	LASSO	choice	

may	be	more	appropriate	for	extremely	small	samples,	like	pilot	studies,	where	a	

sparse	strong	signal	may	be	sought	or	expected,	while	the	elastic	net,	which	retains	
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some	redundant	correlated	signals	may	be	more	appropriate	for	somewhat	larger	

samples,	where	performance	may	be	meaningfully	improved	without	significant	

overfitting	concerns	by	including	additional	parameter	estimates.		In	particular,	the	

EN	is	also	a	more	suitable	choice	than	the	LASSO	when	applied	downstream	of	

CoMeBack	pre-filtering,	because	the	probes	in	the	CoMeBack	CMRs	are	correlated	

by	construction,	and	the	inclusion	of	multiple	probes	from	the	same	informative	

CMR	may	be	expected	to	improve	predictor	performance.		This	reasoning	

underpinned	the	choice	of	elastic	net	for	the	sex	predictors	constructed	in	Chapter	

3,	as	well	as	in	one	of	the	applications	discussed	below	in	this	chapter.	

	

The	two	linear	specifications	of	the	LASSO	and	the	EN	can	be	contrasted	with	the	

random	forest	(RF)	ML	algorithm,	which	draws	on	the	recursive	partitioning	notion		

[36]	and	may	be	appropriate	for	some	classification	applications	to	DNAm	array	

data.		RF	is	an	ensemble	method	[36],	which	combines	recursive	partitioning	trees	

with	randomization,	so	that	over-fitting	may	be	reduced	in	moderate	sized	datasets.		

When	the	number	of	probes	(features	in	ML	parlance)	is	large,	as	in	DNAm	arrays,	

and	many	weakly	informative	features	are	expected,	an	ensemble	method	like	RF	

has	been	shown	to	often	have	good	performance	[36].		For	the	smaller	statistical	

samples	of	DNAm	array	data	observations,	the	choice	of	tree	depth	would	be	driven	

by	over-fitting	considerations	and	in	cases	where	the	hypothesis	considers	many	

weakly	informative	probes	that	are	not	expected	to	interact,	“stumps”	(single	splits)	
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would	be	specified	for	the	RF	algorithm,	that	are	conceptually	similar	to	a	“main	

effects	only”	linear	model.	

	

Considering	probe-feature	extraction	as	another	form	of	data	reduction,	it	is	notable	

that	RF	may	also	be	used	to	extract	the	DNAm	probes	that	were	most	informative	

for	the	classification	task	at	hand.		This	subset	of	probes	could	then	be	used	within	a	

simple	recursive	partitioning	framework	[36],	so	that	only	a	limited	number	of	

probes,	with	their	cut-off	methylation	levels,	is	used	for	phenotype	classification.		

For	example,	if	a	small	number	of	“diagnostic”	probes	is	desired	for	classification,	a	

simple	committee	vote	decision	rule	can	be	used,	that	is	based	on	the	top	most	

important	probes	as	identified	by	the	RF	algorithm.		I	pursued	such	approach	for	

detecting	maternal	blood	contamination	in	cord	blood	[44].	

	

4.3 Applying Random Forest for Detection of Maternal Blood Contamination in 

Cord Blood 

The	maternal	blood	contamination	study	[44]	focused	on	selecting	a	small	number	

of	probes	for	detection	of	maternal	blood	contamination	in	cord	blood.		The	goal	of	

the	study	was	to	select	a	very	small	set	of	informative	probes	that	may	be	suitable	

for	pyrosequencing	measurement	of	CpG	methylation.		The	measured	DNAm	levels	

would	be	compared	against	a	threshold	level	and	would	be	used	to	decide	on	the	

presence	of	maternal	blood	contamination.			For	completeness,	I	briefly	describe	the	
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study	design,	before	discussing	my	chosen	approach	to	address	the	problem	and	the	

relevant	results.	

	

Neonatal	cord	blood	is	a	well-interrogated	tissue	in	epigenetic	population	studies,	as	

it	may	be	expected	to	be	informative	about	early	human	development	and	also	it	is	

ready	available.		Such	studies,	when	using	DNAm	array	data,	are	often	hindered	by	

the	introduction	of	maternal	blood	during	labor,	or	by	cross-contamination	during	

sample	collection.		When	considerable	maternal	contamination	is	present,	its	DNAm	

could	interfere	with	the	DNAm	signal	arising	from	the	cord	blood,	or	it	may	

introduce	spurious	DNAm	signals	arising	purely	from	the	maternal	blood.				

	

In	particular,	the	study	discussed	here	was	motivated	by	the	discovery	of	maternal	

contamination	of	cord	blood	in	a	cohort	of	150	neonates	that	were	assayed	with	the	

Illumina	450K	DNAm	array.		The	contamination	was	initially	identified	by	the	

uncharacteristic	X	chromosome	DNAm	patterns	in	17	male	neonates.		The	study	

then	exploited	the	fact	that	DNAm	exhibits	substantial	differences	between	

neonates	and	adults	[150,	151]	and	hence	observed	contamination,	in	terms	of	

measured	DNAm	signal,	would	be	different	between	male	and	female	neonates.		

Specifically,	since	the	X	chromosome	DNAm	has	highly	distinct	patterns	for	males	

versus	females,	the	DNAm	of	XX	blood	from	female	mothers	mixed	with	the	blood	of	

XY	male	neonates	would	be	more	distinct	from	the	a	mix	with	XX	female	neonates.	
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The	main	objective	of	the	study	was	to	identify	a	small	panel	of	CpGs	that	can	be	

used	to	identify	contaminated	cord	blood	samples.		The	study	design	was	based	on	

filtering	of	DNAm	array	probes,	including	an	application	of	the	RF	algorithm,	to	

select	10	informative	CpGs	that	can	discriminate	between	(un)contaminated	

samples.		These	10	CpGs	were	used	for	a	predictor	of	maternal	contamination	that	

was	validated	in	an	independent	dataset	of	189	additional	samples,	as	well	as	by	

performing	pyrosequncing	assays	in	house.				

	

In	more	detail,	the	informative	CpG	site	selection	involved	a	two-stage	data	

reduction	approach,	where	the	first	stage	looked	at	individual	probe	associations,	to	

identify	the	probes	that	had	the	highest	discriminatory	power	for	contaminated	

samples.		This	stage,	which	can	be	viewed	as	an	initial	filtering	step	in	the	spirit	of	

dimension	reduction,	was	performed	in	order	to	reduce	the	number	of	RF	inputs	to	

only	the	stronger	statistical	signals.		While	these	filtered	probes	were	all	highly	

statistically	significant,	they	were	still	potentially	redundant	and	the	goal	for	the	RF	

filtering	that	I	performed	as	the	second	stage,	was	to	further	reduce	the	number	of	

CpG	sites	to	a	very	small	set,	that	would	also	be	suitable	for	pyro-sequencing	

assessment.		In	this	case,	I	received	a	list	of	2,250	candidate	CpGs	that	were	

obtained	by	collaborators	who	had	performed	an	initial	filtering	based	on	a	linear	

model	specification.		My	task	was	to	identify	a	very	small	set	of	10	top	candidate	

CpGs	that	would	be	used	within	a	final	predictor	to	call	maternal	contamination.	
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More	specifically,	my	objective	for	the	predictor	was	to	produce	a	very	small	set	of	

10	independent	DNAm	signals	that	may	be	used	for	committee	voting	to	decide	on	

the	contamination	status	outcome.		Since	the	sample	size	in	this	study	was	relatively	

small	(N=60),	I	chose	the	RF	approach	because	it	could	incorporate	multiple	

predictors	in	a	non-linear	way,	while	also	being	robust	to	over-fitting	[36].		The	

relatively	small	size	of	the	dataset	also	dictated	my	choice	to	use	stumps	(single	

node	splits)	for	the	RF.		While	the	predictive	performance	of	the	algorithm	was	used	

for	assessment	of	the	feasibility	of	contamination	detection	based	on	DNAm,	its	

ancillary	output	of	probe-feature	importance	informed	the	choice	of	top	candidates	

for	the	proposed	pyro-sequencing	application,	including	the	in-house	validation.	

	

In	more	detail,	when	the	RF	algorithm	was	used	to	produce	a	prediction	for	

maternal	blood	contamination	from	the	filtered	set	of	2250	CpGs	that	were	output	

from	the	first	filtering	stage,	it	ranked	the	CpG	sites	by	the	mean	decrease	in	

accuracy,	which	is	a	measure	of	their	relative	importance	for	the	predictor.		This	

probe	importance	output	of	the	RF	algorithm	was	the	basis	for	the	probe-feature	

selection	that	identified	the	top	candidate	probes.			For	each	of	the	selected	10	

probes	with	top	importance,	a	threshold	value	was	determined	for	separating	

contaminated	from	non-contaminated	samples.		These	cut-off	values	were	

determined	by	performing	binary	recursive	partitioning	for	each	top	probe	[36].		
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In	summary,	the	algorithm	was	trained	with	60	samples	and	the	top	10	probe	

features	in	terms	of	relative	importance	were	the	input	for	the	final	predictor.		

These	sites	were	also	examined	and	curated	by	epigenetics	experts	for	their	

suitability	for	pyro-sequencing	assays.		The	three	CpG	sites:	cg25556035,	

cg15931839,	and	cg02812891	chosen	had	the	best	discrimination	between	

contaminated	and	non-contaminated	male	samples,	and	were	CpG	sites	for	which	

robust	pyrosequencing	assays	were	feasible	(Figure	25).			

	

Figure 25. The maternal contamination predictor had good performance. 

Confusion	tables	for	the	3	individual	probes	used	for	the	predictor,	and	for	the	
committee	majority	vote	(bottom	right).	
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The	3	probes	were	used	as	“committee	members”	to	make	contamination	calls	

based	on	pyrosequencing	assays,	so	that	a	majority	vote	of	at	least	2	probes	would	

determine	the	call	outcome.		A	more	strict	call	would	require	all	3	committee	

members	to	agree	on	the	call.			

	

The	subsequent	predictor	validation	by	pyrosequncing	assay	in	an	independent	

cohort	of	189	individuals	demonstrated	its	robust	performance	and	confirmed	that	

the	RF	algorithm	application	was	appropriate	for	the	construction	of	this	predictor	

of	maternal	contamination	of	cord	blood	based	on	DNAm.			We	now	turn	to	the	

application	of	another	ML	algorithm,	the	EN,	for	prediction	of	phenotype,	based	on	

DNAm	array	data.	

	

4.4 Applying the Elastic Net algorithm to construct a childhood abuse exposure 

predictor in Sperm 

My	objective	for	the	study	of	exposure	to	childhood	abuse	(CA)	[43]	was	to	

construct	a	sparse	predictor	of	CA	based	on	DNAm	in	human	sperm.		This	small	size	

pilot	study	was	motivated	by	previous	findings	[152]	indicating	that	differential	

DNAm	associated	with	CA	may	be	expected	at	multiple	loci	in	Sperm	tissue.		Given	

the	very	small	sample	size,	I	chose	to	construct	a	sparse	predictor	that	would	be	

expected	to	avoid	severe	overfitting	based	on	a	penalized	generalized	linear	model,	

with	an	EN	algorithm	that	combines	L1	and	L2	penalty	(see	description	above).		

Below,	I	briefly	describe	the	study	design	for	completeness,	followed	by	discussion	
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of	the	ML	approach	chosen	to	address	the	problem	and	a	summary	of	the	predictor	

results.	

	

CA	has	been	associated	with	differences	in	DNAm	in	multiple	tissues[152].		The	

study	discussed	here	was	the	first	one	to	examine	the	association	of	CA	with	DNA	

methylation	in	human	sperm.		The	study	design	included,	first,	a	composite	CA	

measure	where	physical,	emotional,	and	sexual	abuse	in	childhood	that	was	

measured	on	a	discrete	scale	and	was	characterized	as	none,	medium,	or	high.		Next,	

DNAm	was	assayed	using	HumanMethylation450	BeadChips	in	46	sperm	samples	

from	34	men	in	a	longitudinal	non-clinical	cohort.		As	a	main	focus,	the	study	

considered	the	associations	of	the	DNAm	principal	components	(PCs)	with	CA,	as	

well	as	differentially	methylated	regions	(DMRs)	for	CA.		As	a	secondary	objective,	

this	study	aimed	to	identify	a	small	panel	of	CpGs	that	can	be	used	to	predict	CA	in	

sperm	samples.		For	the	purpose	of	constructing	the	predictor,	the	CA	measure	was	

dichotomized	as	High	versus	Low,	where	the	Low	category	included	the	“none”	and	

“medium”	levels	of	the	composite	CA	measure.		Given	the	focus	on	DMRs	associated	

with	CA,	I	applied	the	EN	algorithm	to	construct	a	CA	predictor	for	sperm	DNAm.			

	

The	EN	algorithm,	which	incorporated	a	data	reduction	step,	identified	multiple	CpG	

sites	predictive	of	CA.		The	use	of	the	EN	instead	of	the	LASSO	algorithm	was	guided	

by	the	study	design,	which	aimed	to	compare	the	CpG	sites	selected	for	the	predictor	

with	the	sites	identified	in	a	separate	DMR	analysis.			To	this	end,	the	EN	was	the	
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appropriate	choice,	because	it	was	more	likely	than	the	LASSO	to	retain	correlated	

CpGs	within	a	DMR	due	to	the	L2	penalty,	which	is	not	used	by	the	LASSO.		In	this	

application,	an	EN	penalized	generalized	linear	regression	was	estimated	both	for	

the	input	set	of	all	array	probes	and	for	the	restricted	set	of	probes	in	the	most	

significant	DMRs,	using	the	dichotomized	CA	variable	mentioned	above	as	the	

outcome	variable.		The	output	of	the	algorithm	consisted	of	a	predictor	model	that	

used	an	extremely	small	set	of	DNAm	probes.			

	

Specifically,	when	applied	to	the	full	data,	the	EN	approach	identified	probes	

cg02622647,	cg04703951,	and	cg17369694	as	the	most	useful	ones	for	classifying	

male	participants	with	none	or	medium	versus	high	abuse	exposure.	These	probes	

correctly	classified	79%	of	participants	(12	true	positives,	five	false	positives,	15	

true	negatives,	and	two	false	negatives)	in	the	training	data.			

	

Next,	I	refined	the	predictor	construction	by	filtering	of	the	input	probes	and	using	

only	the	probes	from	the	12	most	significant	DMRs.		The	resulting	predictor	

included	4	probes	(Figure	26)	and	had	improved	performance	of	88%	accuracy	in	

the	training	data.		Note	that	the	use	of	filtered	probes	from	DMRs	for	the	4-probe	CA	

predictor	construction,	which	led	to	a	performance	improvement,	is	conceptually	

similar	to	the	construction	of	the	Sex	predictor	in	Chapter	3,	where	only	the	probes	

of	the	sex-associated	CMRs	were	used	to	construct	a	sparse	predictor	for	biological	

sex.	
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Figure 26. DNA methylation predictor for childhood abuse exposure. 

The	predictor	based	on	four	probes	(cg02622647,	cg09926099,	cg00537837,	
cg20333904)	selected	from	the	four	most-significant	DMRs	(NDUFA10,	MIR5093,	
LRRK1	and	ARL17A)	achieved	accuracy	of	88%	(p-value	of	0.002)	in	predicting	low	
versus	high	CA	exposure	(left	panel).	The	predictive	accuracy	was	similar	in	the	
replication	set	(right	panel)		
	

As	no	public	datasets	with	measured	sperm	DNAm	and	CA	were	available,	I	could	

not	test	directly	the	predictor’s	ability	to	predict	CA	status	in	an	independent	cohort.		

However,	the	constructed	3-probe	predictor	was	applied	to	three	independent	

datasets	(GSE108058[153],	GSE102970[154],	and	GSE64096[155])	to	ascertain	

whether	the	prevalence	of	abuse	estimated	with	this	predictor	was	approximately	

the	same	as	the	prevalence	in	the	whole	cohort	from	which	the	pilot	study	sample	

was	drawn,	where	high	abuse	prevalence was 29%.		In	the	three	independent	
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datasets	examined,	the	predicted	CA	prevalence	was	30%,	35%,	and	25%,	

respectively,	which	was	similar	to	the	main	cohort	prevalence.				

	

While	this	study	also	demonstrates	the	limitations	of	performance	evaluation	when	

independent	testing	datasets	are	not	available,	such	scenario	is	not	atypical,	given	

the	limited	availability	of	public	DNAm	data	with	detailed	phenotypic	

measurements.		In	the	next	section,	we	now	consider	a	recent	application	of	the	

LASSO	algorithm	for	predictor	construction,	where	performance	evaluation	was	also	

limited	by	testing	data	availability.	

	

4.5 Applying the LASSO algorithm to construct a body weight percentage change 

predictor 

The	physical	activity	(PA)	intervention	study[41],	investigated	DNAm	patterns	

before	and	after	a	lifestyle	intervention	from	a	6-month	pilot	randomized	control	

trial.		In	this	study,	my	objective	was	to	construct	a	sparse	predictor	of	body	weight	

change	over	a	6-month	period	based	on	the	subject’s	DNAm	patterns.		I	used	the	

LASSO	algorithm	for	the	feature	selection	of	a	very	small	subset	of	the	450K	array	

probes.		While	the	LASSO	model	may	incur	high	bias	(see	Chapter	1)	due	to	its	

sparse	linear	specification,	the	main	consideration	driving	its	choice	in	this	study	

was	the	very	small	training	sample	size,	with	its	associated	danger	of	over-fitting		

[36]	a	complicated	model	with	large	number	of	estimated	parameters.			Below,	I	

briefly	describe	the	study	design,	before	proceeding	to	summarize	the	main	
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properties	and	performance	results	for	the	constructed	weight	percentage	change	

predictor.	

	

This	PA	intervention	study	explored	potential	epigenetic	mechanisms	underlying	

the	many	health	benefits	conferred	by	PA,	by	examining	the	DNAm	patterns	of	20	

healthy	postmenopausal	community-dwelling	women	aged	55	to	70	years,	who	did	

not	have	a	mobility	disability.		The	study	design	was	a	pilot	randomized	controlled	

trial	over	6	months,	which	tested	the	association	between	longitudinal	measures	of	

DNAm	and	changes	in	several	objective	measures,	including	PA	and	weight	loss.		

The	study	subjects	were	allocated	to	an	intervention	group,	or	to	a	control	group,	

with	both	groups	receiving	different	monthly	group-based	health-	related	education	

sessions.		Specifically,	the	randomized	controlled	trial	consisted	of	nine	2-hour	

sessions	focused	on	reducing	sedentary	behavior	for	the	intervention	group,	versus	

six	1-hour	sessions	focused	on	other	topics,	for	the	control	group.		Samples	of	

peripheral	blood	mononuclear	cells	(PBMCs)	were	collected	both	at	baseline	before	

the	intervention	and	then	at	6	months,	after	the	trial	was	completed.		The	samples	

were	interrogated	with	the	Illumina	450k	Methylation	array	to	quantify	genome-

wide	DNAm.	The	goals	of	the	study	were	to	examine	potential	associations	between	

the	6-month	lifestyle	intervention	and	epigenetic	changes,	and	to	determine	if	it	was	

possible	to	construct	an	epigenetic	predictor	of	the	intervention.		
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One	of	the	main	objectives	was	to	construct	a	sparse	predictor	for	weight	loss,	using	

only	a	very	small	number	of	CpG	probes.		These	probes	would	be	examined	further	

for	their	biological	function.		This	additional	interrogation	would	include	

comparisons	with	the	existing	literature	and	annotations,	to	check	whether	the	

probes	are	known	from	prior	studies	focusing	on	body	mass	index	(BMI)	measures,	

or	if	they	may	be	interpretable	in	terms	of	known	genes	or	regulatory	regions	

relevant	to	BMI.		To	construct	a	DNAm	predictor	for	weight	percentage	change	over	

the	intervention,	I	applied	the	LASSO	ML	algorithm.	

	

In	this	study,	the	absence	of	a	“golden	standard”	for	evaluation,	combined	with	the	

limited	knowledge	of	relevant	biological	mechanisms	involving	DNAm,	suggested	

that	in	order	to	avoid	over-fitting	in	an	exploratory	analysis,	the	probe	selection	

with	the	LASSO	had	to	be	performed	with	heavy	regularization	due	to	the	very	small	

sample	size	(N=20).		Hence,	the	penalty	parameter	for	the	LASSO	regularization	

(determining	how	small	the	absolute	value	of	the	estimate	has	be	for	it	to	be	set	to	

zero)	was	set	at	a	large	value	in	order	to	retain	only	the	most	relevant	probe	

measurements.		In	this	way,	the	use	of	a	very	small	set	of	probes	within	a	simple	

linear	specification	aimed	to	reduce	the	variance	of	the	weight	loss	predictor	in	new	

data.	

	

The	application	of	the	LASSO	in	the	PA	intervention	study	resulted	in	identification	

of	five	CpG	sites,	(cg17920653,	cg25134701,	cg24088639,	cg22664307,	and	
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cg08104023),	whose	base	line	DNAm	was	able	to	predict	the	percent	body	weight	

change	over	the	6-month	period,	while	controlling	for	baseline	weight.		The	

performance	of	the	predictor	was	adequate,	given	the	very	small	size	of	the	sample	

used	for	the	construction:	the	correlation	between	the	predicted	weight	loss	and	

actual	weight	loss	was	74%		(Figure	27).		Thus,	the	accuracy	of	the	DNAm	array	data	

based	predictor	was	limited	by	adequate	training	data	availability.		Hence,	the	main	

purpose	of	this	construction	was	to	explore,	as	proof	of	concept,	the	potential	

feasibility	of	constructing	a	relatively	accurate	predictor	when	more	training	data	

become	available.	

	

	

Figure 27. Performance of the weight percentage change predictor. 

Fitted	values	of	weight	percentage	change	(PC)	from	a	robust	linear	model	plotted	
against	actual	measured	values.	Grey	shading	shows	the	95%	confident	intervals.	
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4.6 Conclusions 

The	three	applications	discussed	above	illustrated	how	mainstream	ML	algorithms	

can	be	applied	in	the	context	of	DNAm	data	to	address	a	particular	set	of	research	

questions.		Such	algorithms	can	be	useful	for	prediction	or	imputation	of	

unmeasured	phenotype	based	on	DNAm	array	data.		While	data	reduction	of	the	

high-dimensional	DNAm	array	measurements	is	a	central	component	of	two	of	the	

algorithms	discussed	above,	it	is	embedded	within	the	algorithm	and	the	reduced	

data	typically	are	not	the	main	intended	output	of	the	algorithm.		The	choice	of	using	

a	mainstream	ML	approach,	as	opposed	to	a	biologically	motivated	data	reduction	

or	filtering,	such	as	CoMeBack,	can	be	guided	by	the	particular	study	objectives.		As	

the	above	examples	showed,	mainstream	ML	algorithms	can	be	applied	successfully	

in	studies	with	a	narrow	focus	on	phenotype	prediction	from	DNAm	array	data.		The	

choice	of	a	particular	ML	algorithm,	for	example	LASSO	vs	EN,	may	be	driven	

primarily	by	the	quantity	and	quality	of	training	DNAm	data,	as	well	as	by	biological	

considerations,	such	as	focusing	on	genomic	regions,	as	opposed	to	individual	CpG	

sites.	
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Chapter 5: Conclusions and Future Directions 

5.1 DNAm array Data Reduction with CoMeBack may improve specificity, power 

and biological interpretation 

In	this	thesis	I	developed	a	biologically	motivated	method	for	DNAm	microarray	

data	reduction,	examined	its	performance	and	demonstrated	its	applications	using	

publicly	available	data.		The	need	for	DNAm	array	data	reduction	stems	from	the	

high	dimensional	nature	of	the	data,	which	presents	substantial	analytical	

challenges.		Moreover,	biological	hypotheses	about	the	role	of	DNAm	in	gene	

expression	regulation	often	entail	a	low	expected	number	of	significant	CpG	sites,	

possibly	with	small	effects.		

	

The	CoMeBack	method	discussed	in	this	thesis	was	based	on	existing	biological	

findings	about	correlations	among	proximal	genomic	CpG	sites	and	hence	it	

approached	the	data	reduction	problem	in	a	way	that	is	different	from	data	driven	

methods	relying	purely	on	statistical	models.		The	main	motivation	for	

incorporating	biological	findings	was	to	reduce	the	false	positive	findings	that	occur	

due	to	spurious	correlations,	and	to	increase	statistical	power	by	improving	the	

signal	to	noise	ratio.	

	

The	applications	of	CoMeBack	to	public	data	demonstrated	that	the	method	

achieved	good	statistical	power	and	specificity,	including	new	findings	in	CMR-

based	EWAS	about	chronological	age	and	biological	sex,	that	were	not	discovered	by	
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standard	single	CpG	site	analysis.		Moreover,	the	reference	whole	blood	CMRs	that	

were	constructed	with	public	data	were	extensively	characterized	in	terms	of	

chromatin	state,	mQTLs	and	transcription	factor	bindings	sites,	highlighting	the	

utility	of	the	data	reduction	for	downstream	analysis	with	various	analytical	

pipelines.	

	

The	CoMeBack	algorithm	was	implemented	in	an	easy	to	use,	open	source	R	package		

that	has	useful	functionalities	for	analysis	of	both	450K	and	EPIC	arrays	and	offers	

the	user	flexibility	in	terms	of	setting	the	key	algorithmic	parameters.		Future	

developments	of	the	CoMeBack	method	may	lead	to	further	improvements	in	terms	

of	available	functionality	and	performance.		In	particular,	with	additional	public	data	

becoming	available,	there	are	several	areas	where	I	plan	to	continue	development	of	

the	CoMeBack	methodology.	

	

5.2 Reference CMRs for different tissues 

The	whole	blood	reference	CMRs	that	were	constructed	with	public	450K	data	can	

be	used	successfully	for	downstream	CMR-EWAS	application,	as	I	demonstrated	in	

chapter	3,	which	characterized	the	CMRs	associated	with	Sex.		Such	applications	

showcase	the	utility	of	reference	CMRS	for	additional	tissues	that	can	be	used	to	

address	tissue-specific	biological	hypotheses.		The	growing	number	of	publicly	

available	DNAm	datasets	for	different	tissues	offers	the	exciting	prospect	of	

constructing	additional	reference	CMR	sets	for	multiple	tissues.	Moreover,	going	
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forward,	the	use	of	the	newer	Illumina	EPIC	platform,	which	doubles	the	number	of	

assayed	genomic	CpG	sites,	will	afford	a	more	extensive	characterization	of	the	

CMRs	than	the	one	with	the	recently	retired	450K	platform.		

	

5.3 Using extended annotation data for CMR construction 

The	CoMeBack	algorithm	used	genomic	CpG	coordinates	to	implement	a	biologically	

meaningful	filtering	of	correlated	CpG	sites	that	aimed	to	reduce	false	positives	

arising	from	spurious	correlations.		It	is	conceivable	that	this	simple	biological	

model	may	be	extended	to	incorporate	additional	functional	annotations	of	genomic	

features,	as	they	become	available	for	different	tissues.		For	example,	the	genomic	

coordinates	of	tissue-specific	enhancers	and	other	chromatin	states	may	be	useful	

for	a	more	refined	filtering	of	correlated	CpG	sites.		As	such	data	become	more	

readily	available,	I	plan	to	incorporate	an	optional,	more	flexible	use	of	extended	

genomic	annotations	within	the	CoMeBack	software,	with	the	goal	of	further	

improving	the	statistical	specificity	of	future	tissue-specific	reference	CMRs	

constructed	with	publicly	available	EPIC	data.	

	

	

5.4 Adding convenience functionalities for Visualization and Integration with 

other softwares 

The	CoMeBack	software	outputs	CMRs	that	are	easy	to	analyze	within	downstream	

analytical	pipelines,	as	was	demonstrated	in	chapters	2	and	3.		It	is	conceivable	that	
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some	of	these	downstream	characterizations	of	CMRs	may	become	standard	

practice,	like	enrichments	of	a	subset	of	CMRs	of	interest	for	genomic	features	like	

imputed	or	measured	chromatin	states,	or	TF	binding	sites.		In	such	ase,	it	may	be	

desirable	to	incorporate	such	additional	functionality	within	the	software,	in	order	

to	facilitate	the	downstream	analysis.		Moreover,	built-in	visualization	of	CMRs	and	

their	enrichments	may	improve	the	appeal	of	the	software	and	increase	its	adoption,	

as	researchers	may	prefer	a	more	integrated	solution	that	also	addresses	the	need	

to	present	their	results.		As	I	proceed	with	further	applications	of	CoMeBack	in	my	

own	research,	I	plan	to	incorporate	the	most	commonly	used	downstream	analyses	

within	the	next	versions	of	the	software,	while	also	taking	into	account	any	external	

user	feedback	that	may	appear	on	the	software	website.		

	

	

5.5 Computational performance improvements 

While	CoMeBack	has	reasonable	performance	on	modern	computers,	the	future	

planned	extensions	of	the	functionality	mentioned	above	are	expected	to	place	an	

additional	computational	burden,	for	example	by	running	multiple	CpG	filters	based	

on	various	genomic	annotations.		Such	potential	developments	would	call	for	

additional	optimizations	of	the	software	in	order	to	cope	with	larger	datasets	and	

potentially	more	sophisticated	filtering	of	correlated	CpGs.		If	improved	

computational	performance	becomes	desirable	in	the	future,	I	plan	to	offer	a	

parallelized	version	of	the	software.		In	addition	to	that,	I	plan	to	perform	some	
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additional	computational	experiments	to	explore	the	potential	of	using	optional	

graphics	processing	unit	(GPU)	acceleration	to	speed	up	the	algorithm.		It	is	my	

hope	that	such	meaningful	improvements	would	increase	the	appeal	and	adoption	

of	the	CoMeBack	software.	
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