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Abstract 

Anthropogenic disturbances, including roads, are known to influence animal habitat selection 

and mortality. However, little is known about the role of sensory perception in animal responses 

to disturbance. The goal of this thesis was to investigate the effect of visual and auditory 

perception around roads on grizzly bears (Ursus arctos) in Alberta, Canada. As an apex predator, 

the greatest threat to grizzly bear populations in my study area is human-caused mortality near 

roads, yet grizzly bear behavioural responses to roads are not fully understood. In this thesis, 

detailed topographic and land cover data from airborne Light Detection and Ranging (lidar) and 

Landsat imagery were used to estimate visibility and audibility around roads. Using a modified 

semivariogram approach with data on step lengths from GPS-collared grizzly bears, I found that 

grizzly bears responded to roads at slightly further distances when roads were perceptible (80 m) 

than when roads were imperceptible (60 m). I extended the analysis of grizzly bear response by 

modelling habitat selection as a function of road perception and other environmental variables 

using integrated step selection analysis. I also assessed mortality risk in visible areas by 

comparing habitat selection between grizzly bears that died and grizzly bears that survived. 

Grizzly bears were less likely (p < 0.05) to select visible areas when moving slowly or resting, 

suggesting that road visibility is perceived as a risk. However, bears were more likely (p < 0.05) 

to select visible areas when moving quickly, which may indicate that grizzly bears use roads as 

travel conduits. Results suggested no difference in selection for visible areas between grizzly 

bears that survived and grizzly bears that died. However, an exploratory analysis showed that 

grizzly bear mortalities commonly occurred in visible areas. From a management context, 

maintaining 20 m wide vegetative buffers along roadsides may decrease visibility, allowing 

grizzly bears to use travel corridors associated with roadways and access cut blocks for forage 
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while reducing human-induced risk. Collectively these findings highlight the importance of 

sensory perception in understanding animal behaviour. 
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Lay Summary 

Roads and other human disturbances have profound impacts on wildlife behaviour and survival, 

and many studies have examined how wildlife respond to disturbances. However, little is known 

about how perception of a disturbance by sight or sound affects wildlife behaviour. In this thesis, 

I studied the effect of perceptibility on grizzly bear behaviour and mortality in Alberta, Canada. I 

found that grizzly bears responded to roads at further distances when they could see or hear them 

than when roads were imperceptible. In addition, I found that grizzly bears preferred areas 

visible to roads when travelling, but avoided visible areas when resting. This suggests that 

grizzly bears are risk averse when resting, but that they use road corridors for travelling. This 

research highlights the importance of perception in understanding animal behaviour and has 

important management implications for reducing risk around roads. 
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Chapter 1: Introduction 

1.1 Grizzly bears in North America and Alberta 

Grizzly bears (Ursus arctos) were once widespread across North America, ranging from 

the northwestern corner of the continent south as far as Mexico and east to the Mississippi River 

(Schwartz et al. 2003). Grizzly bears are also found in parts of Europe and Asia, where they are 

known as brown bears (Festa-Bianchet 2010). However, grizzly bear populations worldwide 

have been increasingly threatened by anthropogenic activity and habitat loss and extirpated from 

much of their range (McLellan et al. 1999). Grizzly bears were nearly extirpated from the 

contiguous United States, but persist in a few remnant populations in the northwestern states. 

Southern BC and Alberta are at the edge of historical range contractions, while grizzly bears 

remain relatively common in northern BC, the Canadian territories, and Alaska (Schwartz et al. 

2003). In Canada, grizzly bears are designated as a species of “Special Concern” by the 

Committee on the Status of Endangered Wildlife in Canada (COSEWIC), and are designated 

“Threatened” in Alberta as of 2010 (although this designation was originally recommended in 

2002) (Alberta Environment and Parks 2016). Reasons for designation in Alberta included low 

population size (less than 1000 adults), frequent human-caused mortality, and habitat decline 

(Alberta Environment and Parks 2016, Coogan et al. 2018). There is approximately 112 000 km2 

of grizzly bear habitat in Alberta, supporting a population estimated to be about 900 grizzly bears 

(Festa-Bianchet 2010, Proctor et al. 2020). Portions of the Alberta population of grizzly bears are 

genetically connected to larger populations in British Columbia and Montana, although 

topographic features including ice fields and mountains provide natural barriers to dispersal in 

some areas (Proctor et al. 2012).  
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Grizzly bears can also be divided into subpopulations within Alberta. Although grizzly 

bears across Alberta share some gene flow, major highways limit movement between 

subpopulations (Proctor et al. 2005, Festa-Bianchet 2010). For grizzly bear management 

purposes, the province has been divided into seven bear management areas (BMAs) between 

which dispersal is limited (Alberta Environment and Parks 2016). The most recent provincial 

grizzly bear recovery plan delineated two types of conservation areas with each BMA (Alberta 

Environment and Parks 2016). Core areas were identified where high quality habitat was found 

along with low density of open access roads, which is used as a surrogate for reduced risk of 

human-caused mortality. Secondary areas were put in place adjacent to these core areas, but had 

higher road densities (Alberta Environment and Parks 2016). 

1.2 Grizzly bears, anthropogenic activity, and roads 

Alberta’s Rocky Mountains and foothills, which support the highest concentration of 

grizzly bears in the province, are in many places being highly altered by industrialization and 

natural resource extraction, particularly forestry, mining, and oil and gas operations (Nielsen et 

al. 2009). Grizzly bears are omnivore generalists, and they are able to adapt to using disturbed 

areas associated with natural resource extraction so that habitat loss is minimal (Stewart et al. 

2012). However, these activities require extensive road networks which greatly increase human 

access into grizzly bear habitat (Ladle et al. 2019). These roads are also frequently used for 

recreational purposes long after extraction operations cease.  

Besides intraspecific predation, grizzly bears have no natural predators, thus most grizzly 

bear mortalities result from interactions with humans (Nielsen et al. 2004b, Boulanger and 

Stenhouse 2014). Although a sport hunting moratorium was enacted in Alberta in 2006, human-
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caused mortality is still common due to poaching, being mistaken for black bears, real or 

perceived defense of life or property, management actions against “problem” bears, and rail or 

road kills (Festa-Bianchet 2010). In fact, Boulanger & Stenhouse (2014) found that of 22 

mortalities recorded for radiocollared bears between 1999 and 2013 in Alberta, 16 were human-

caused, one was natural, and five were unknown.  

 According to the most recent status report for grizzly bears in Alberta, the expanding 

road network allowing motorized access into grizzly bear habitat poses the single greatest threat 

to recovering grizzly bear populations (Festa-Bianchet 2010). In a review of grizzly bears and 

roads in BC and Alberta, Proctor et al. (2020) found that roads affected grizzly bear populations 

by causing mortality, displacement, and habitat loss. For example, Boulanger and Stenhouse 

(2014) reported that 86% of mortalities recorded for radiocollared bears were within 500 m of a 

road. Roads also act as barriers to movement between subpopulations of grizzly bears, as bears 

avoid crossing major highways (Proctor et al. 2005, Coogan et al. 2018). Grizzly bears have 

lower population densities when road densities are high; the highest grizzly bear densities are 

found in large areas with few or no roads (Lamb et al. 2018).   

Road-associated mortality is especially concerning for grizzly bears because roads are 

often associated with high quality habitat. Grizzly bear distributions are largely resource driven, 

based on the presence of five main food groups: grasses, sedges, and rushes, forbs and roots, 

seeds and berries, mammals, and insects (Munro et al. 2006). Several of these resources are 

concurrent with roads, for example, grasses, sedges, and rushes are primarily found in low 

elevation valleys where roads are commonly situated (Munro et al. 2006, Roever et al. 2008b). In 

addition, roadside openings and adjacent regenerating forest, including cut blocks, provide 

increased production of forage plants, as well as earlier fruiting of berry plants in the spring due 
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to greater light availability (Roever et al. 2008b, Pollock et al. 2017, Larsen et al. 2019). Roads 

may provide additional attractants including road-killed animal carcasses or garbage (Alberta 

Environment and Parks 2016). Grizzly bears may also use roads as travel corridors as has been 

found in other large carnivores (James and Stuart-Smith 2000, Roever et al. 2010). Some studies 

have found that grizzly bears use roads at higher frequencies than expected, even when 

compared to road-like habitats such as low elevation valleys (Nielsen et al. 2006, Roever et al. 

2008a, Graham et al. 2010). In fact, roads that are associated with grizzly bear foods are 

considered a primary sink for grizzly bears – an area that is attractive to grizzly bears but is 

associated with unsustainably high mortality (Machutchon and Proctor 2015, Nielsen et al. 

2017). Grizzly bear behaviour around roads varies by age and reproductive class (Graham et al. 

2010), as well as traffic levels (Northrup et al. 2012). Table 1.1 provides a summary of several 

studies on the influence of roads on grizzly bears in Alberta.  

Table 1.1 A selection of studies on the influence of roads on grizzly bears in Alberta 

Reference Study Area Major Findings 
Nielsen et al. 
2004b 

Central Rockies, 
AB 

Grizzly bear mortality risk increased near roads 

Roever et al. 2008a Yellowhead, AB Grizzly bear selection of roads was greater than 
selection of road-like habitats 

Roever et al. 2010 Yellowhead, AB Grizzly bears selected for areas near roads and 
increased movement rates near roads 

Graham et al. 2010 Yellowhead, AB Grizzly bear road selection and crossing behaviour 
depended on season, sex, and age class 

Northrup et al. 
2012 

Southwestern AB Grizzly bears selected for low traffic roads but 
avoided high traffic roads 

Boulanger and 
Stenhouse 2014 

Western AB Grizzly bear survival and population growth was 
negatively correlated with road density 

Kite et al. 2016 Kakwa and 
Yellowhead, AB 

Grizzly bears’ spatial scale of response to roads 
based on movement patterns ranged from 35 - 90 m  

Whittington et al. 
2019 

Banff National 
Park, AB 

Temporal road closures significantly increased road 
use by grizzly bears 
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1.3 Grizzly bear management strategies in Alberta and BMA 3 

Grizzly bears have low reproductive rates which limit population growth, thus high 

survival, particularly for adult females, is crucial for population recovery (Schwartz et al. 2003). 

Alberta has taken several actions to promote grizzly bear recovery in the province, the most 

notable being the sport hunting moratorium put in place in 2006. In the six years before the 

hunting moratorium (2000 – 2005) there was an average of 26 known grizzly bear deaths in 

Alberta per year, and this declined to an average of 14 known deaths per year in the three years 

following the moratorium (2006 – 2008) (Festa-Bianchet 2010). However, from 2009 to 2018 

there was an average of 23 known grizzly bear deaths per year and 92% of these were human 

caused (Government of Alberta 2019), indicating the need for further reductions in human 

caused mortality.  

Beyond the hunting moratorium, grizzly bear recovery action in Alberta is largely focussed 

on access management. Reducing road density has been correlated to population increases 

(Lamb et al. 2018), and where roads cannot be decommissioned, closing roads to public use may 

be effective to increase grizzly bear security (Proctor et al. 2020). The 2016 draft Grizzly Bear 

Recovery Plan recommends that for population recovery open road density should be limited to 

less than 0.6 km/km2 in Core habitat and 0.75 km/km2 in Secondary habitat (Alberta 

Environment and Parks 2016, Proctor et al. 2020). However, these guidelines are not consistently 

met; for example, within BMA 3 36.4% of Core areas and 71.4% of Secondary grizzly bear 

habitat exceeds recommended thresholds (Alberta Environment and Parks 2016), therefore work 

on achieving these goals continues. 

Some BMAs within Alberta appear to be experiencing population growth in grizzly bears. 

For example, the population estimate for BMA 3 was 74 (95% Confidence Interval 56 - 98) 
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bears in 2014, whereas the previous population estimate in 2004 was 36 bears (95% Confidence 

Interval 29 – 45), thus representing a population increase averaging 7% per year (Stenhouse et al. 

2015). However, it is difficult to elucidate whether local increases are due to management 

actions or movement of grizzly bears (Stenhouse et al. 2015). In particular, translocations of 

bears involved in human-bear conflicts may influence rates of population change; between 2004 

and 2014, 30 bears were translocated into BMA 3. Further research regarding the effectiveness 

of management actions on grizzly bear recovery is needed.  

While the relationship between grizzly bears and roads in Alberta has been researched 

extensively, the role of perception is largely unknown.   

1.4 Animal perception and behaviour 

One factor that may influence grizzly bear habitat selection and movement decisions 

around roads is sensory perception. Animal distributions and movement are functions of intrinsic 

constraints, including an animal’s physiological movement methods and speed, extrinsic 

constraints, such as topographic or anthropogenic barriers, and habitat selection (Martin et al. 

2008). Habitat selection results from individual animal movement decisions, which are based on 

the animal’s knowledge of the landscape (Avgar et al. 2013, Spiegel et al. 2017). However, 

landscape awareness is rarely included in behavioural models (Avgar et al. 2013, Fagan et al. 

2017). Most models either assume animals have complete knowledge of the entire landscape 

(e.g. optimal foraging theory) or only knowledge of the landscape immediately around them 

(Fagan et al. 2017). Aben et al. (2017) stress that an essential component of understanding 

animal behaviour is quantifying an animal’s ability to perceive its environment. Perception is a 

key factor influencing animal decisions about foraging (Fagan et al. 2017) and breeding 

strategies (Aspbury and Gibson 2004), and also affects predator-prey relationships including 
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habitat selection and flight distances (Ndaimani et al. 2013, Olsoy et al. 2015, Davies et al. 

2016b). However, while animal responses to human activity are often comparable to predator-

prey responses (Frid and Dill 2002), little work has been done on how the perception of 

anthropogenic disturbances influences wildlife behaviour (Brown et al. 2012a). 

Visual and auditory perception depend on distance as well as topography, land cover, and 

vegetation height and density (Skov-Petersen and Snizek 2007, Reed et al. 2012). While in the 

past, studies of perception have been limited by often subjective field-based estimates of cover or 

broad spatial resolution elevation data ignoring vegetation (Camp et al. 1997, Loarie et al. 2013), 

advances in remote sensing technology allow us to build more accurate depictions of what is 

perceptible to an animal (Loarie et al. 2013, Aben et al. 2018).  

One way to measure perception is by considering what is visible to an animal. Although 

traditionally used for landscape planning and aesthetics, viewsheds have been increasingly used 

in wildlife studies. Studies summarized in Table 1.2 demonstrate that visibility can be used to 

describe animal habitat selection for hunting, denning, resting, and breeding display sites, as well 

as to evaluate the effects of human disturbances. Most studies use a Digital Elevation Model 

(DEM) to compute viewsheds, which allows landscape visibility to be modelled based on 

topography but without vegetation (Aspbury and Gibson 2004, Alonso et al. 2012). However, 

many studies also acknowledge the importance of vegetation in blocking visibility. Vegetation 

may be incorporated by using a Digital Surface Model (DSM) that includes vegetation height 

(Loarie et al. 2013, Davies et al. 2016b), or by adding a layer with estimated vegetation heights 

to a DEM (Montgomery et al. 2012, Costello et al. 2013). Some studies are beginning to use 

horizontal measures of vegetation such as Terrestrial Laser Scanning to estimate not only 

vegetation height but gaps below the canopy as well (Olsoy et al. 2015). 



8 
 

Table 1.2 Selection of studies using viewshed analysis to predict animal movement or behaviour 

Authors Species Viewshed Data  Purpose 
Camp et al. 1997 Golden 

eagle 
DEM Provide an alternative 

management area to buffer zones 
Aspbury and 
Gibson 2004 

Greater 
sage grouse 

30 m DEM Investigate selection of courtship 
display areas 

Hopcraft et al. 
2005 

Lion DEM (triangular 
irregular network) 

Investigate hunting distributions 

Alonso et al. 2012 Great 
bustards 

5 m DEM Investigate selection of courtship 
display areas 

Montgomery et al. 
2012, 2013 

Elk 10 m DEM plus 
vegetation raster 

Describe movement around roads 

Costello et al. 2013 Black bear 10 m DEM plus 
vegetation raster  

Evaluate response to path 
construction 

Loarie et al. 2013 Lion 1.12 m DSM Compare hunting and resting sites 
between sexes 

Ndaimani et al. 
2013 

Sable 
antelope 

30 m DEM Explain flight behaviour 

Jiang et al. 2014 Amur tiger 1 km DEM Determine distribution patterns 
and factors driving range loss 

Olsoy et al. 2015 Multiple Terrestrial Laser 
Scanning point cloud 

Calculate predator/prey sightlines 
to evaluate predation risk 

Davies et al. 2016a African 
wild dog 

1 m DSM Investigate den selection 

Davies et al. 2016b Lion 1 m DSM Predict kill sites 
 

Hearing, or sound, is also an important component of animal perception (Table 1.3). 

“Technophony”, or anthropogenic noise, has been shown to have significant effects on animal 

fitness and behaviour (Shannon et al. 2016, Munro et al. 2018). Although anthropogenic noise is 

most commonly evaluated as an effect on birds and marine mammals that use vocalizations for 

long-distance communication (Shannon et al. 2016), several studies have found that technophony 

influences the behavioural responses of a variety of terrestrial mammals (Table 1.3). In fact, 

traffic noise has commonly been studied as one of the furthest reaching impacts of road 
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disturbances, using many different methods of estimating sound propagation (Coffin 2007, 

Munro et al. 2018). Sound may be measured directly using recording devices, or be modelled 

from road and topographic variables. For example, Brown et al. (2012a) used recording devices 

on their field vehicles to assess traffic noise levels when observing behavioural patterns of 

ungulates, whereas Iglesias et al. (2012) employed sound models typically used for road 

planning when researching the effects of traffic noise on wildlife underpass use.  

Table 1.3 Selection of studies using soundscape analysis to assess the effects on traffic noise on 
terrestrial mammals 
Authors Species Soundscape Data  Purpose 
Archibald et al. 
1987 

Grizzly bear Sound level meter 
transects 

Assess effect of logging traffic 
on space use 

Byrnes et al. 2012 Three rainforest 
mammals 

Traffic noise 
simulators 

Determine traffic noise influence 
on movement and behaviour 

Brown et al. 
2012a 

Elk and 
pronghorn 

Portable recording 
device on vehicle 

Assess effects of road activities 
on behaviour 

Iglesias et al. 
2012 

Eight vertebrate 
species 

Predictor Type 
7810 sound model 

Evaluate effects of traffic noise 
on use of underpasses 

Shannon et al. 
2014 

Prairie dog Sound level meter  Assess traffic noise influence on 
foraging and vigilence  

Iglesias-Merchan 
et al. 2018 

Roe deer Predictor Analyst 
sound model 

Assess effect of traffic on stress 
levels 

 

1.5 Grizzly bear perception 

 Very little is known about the importance of visual perception to grizzly bear behaviour. 

Grizzly bear eyesight is generally thought to be similar to that of humans (Macpherson 1966), 

and they have been recorded to observe moving objects at up to 2 km (Schwartz et al. 2003).  

Some studies, although not evaluating the importance of sight from the perspective of the grizzly 

bear, have looked at the importance of vegetative cover to provide concealment for grizzly bears 

(Oldershaw 2001, Ordiz et al. 2009). For example, when in hiding cover, grizzly bears have 
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shorter flight responses and are less likely to be disturbed by human activity than in open areas 

(Mclellan and Shackleton 1973). Some studies of grizzly bears and roads have also 

recommended reducing visibility around roads to reduce human-bear conflicts, but the 

effectiveness of this has not been studied (Roever et al. 2010).    

Research on noise effects on bears is also limited (Amec Americas Limited 2005). In a 

study on bear repellents on four captive grizzlies, most sounds, including bells, shouting, and 

growling, were ineffective, while sudden loud noises such as a thunderflash and a cap-chur gun 

were effective at causing bears to retreat (Miller 1980). In addition, denning grizzly bears have 

increased heart rates in response to seismic blasts (Reynolds et al. 1983). In a movement study, 

Archibald et al. (1987) measured sound levels around active hauling sites and noted that grizzly 

bears avoided areas where noise exceeded 60 dB(C). Additional research on grizzly bear 

responses to noise disturbance did not directly measure sound, but grizzly bears have been 

reported to respond to loud disturbances such as aircraft overflights, roads, gas development, and 

other human activities (Amec Americas Limited 2005). However, grizzly bears are known to 

habituate quickly to noise disturbances such as acoustic deterrent devices (Amec Americas 

Limited 2005). 

1.6 Research objectives 

The goal of this thesis was to investigate the research question “How can measures of perception 

including sight and sound be used to better understand the effects of disturbance on wildlife, 

specifically, roads on grizzly bears?” To do so I address two sub-questions: 

Sub-question 1: How does road perception affect zones of influence around roads for 

grizzly bears? 
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Sub-question 2: How are grizzly bear movement, behaviour, and mortality influenced by 

road perception? 

1.7 Thesis overview 

This thesis is made up of five chapters: an introduction, information on the study area and 

data used, two research chapters, and a conclusion. 

Chapter 2 describes the study area used for analyses in Chapters 3 and 4 and introduces 

environmental and grizzly bear datasets. 

Chapter 3 addresses sub-question 1 and builds viewsheds and soundscapes around roads 

using detailed remotely sensed landscape data. Semivariograms are used to investigate the use of 

measures of animal perception in creating zones of influence measuring the spatial extent of 

disturbances.  

Chapter 4 addresses sub-question 2 by modelling grizzly bear habitat selection around 

roads using integrated step selection analysis with the viewsheds and soundscapes developed in 

Chapter 3 and grizzly bear movement data. Selection for perception variables is compared 

between grizzly bears that have died and grizzly bears that have survived.  

Chapter 5 provides a summary and conclusions for the analyses in Chapters 3 and 4. It 

also discusses management implications, limitations of the study, and avenues for further 

research. 
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Chapter 2: Study area and data 

2.1 Study area 

My focus area is Alberta’s Bear Management Area 3 (BMA 3), which is the Yellowhead 

region of the eastern foothills of Alberta’s Rocky Mountains (Figure 2.1). The area of BMA 3, 

excluding Jasper National Park for which environmental data were unavailable, is 21632 km2. Of 

this area, 11590 km2 are considered ‘Core’ or ‘Secondary’ grizzly bear habitat, whereas the 

remaining area is used occasionally by grizzly bears. BMA 3 is bordered by Highway 16 to the 

north, Highway 11 to the south, and the BC-Alberta border to the west (Graham and Stenhouse 

2014). To the east the study area has a higher density of humans and increasing agricultural use, 

corresponding with a decrease in grizzly bear densities (Festa-Bianchet 2010). Terrain varies 

from mountains in the west to rolling foothills in the east, with elevation between 766 m and 

3369 m. Most of the study area is covered with coniferous forests, mainly lodgepole pine (Pinus 

contorta) and secondarily spruce (Picea spp) and fir (Abies spp.). The landscape also contains 

mixed forests with trembling aspen (Populus tremuloides) and Balsam poplar (P. balsamifera) as 

well as bogs and meadows (Graham and Stenhouse 2014).  
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Figure 2.1 Study area 

2.1.1 Disturbances 

Historically, the study area experienced frequent fires resulting in a mosaicked landscape 

of successional stages; however, modern fire suppression has led to decreased natural openings 

within the area and increased homogenous, late successional forests (Nielsen et al. 2004). 

Natural openings are partially replaced by those resulting from anthropogenic activities including 

open-pit coal mines, oil and gas extraction, and timber harvest. BMA 3 is also used heavily for 

recreation such as motorized offroad vehicles, mountain biking, camping, and hiking (Ladle et 

al. 2018). An extensive road network supports natural resource extraction activities and 
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recreation. The study area contains 14244 km of roads: mostly unimproved or unclassified roads 

used for industry (8947 km) and gravel roads (4490 km) with few paved roads mostly on the 

outskirts of the study area (815 km). The overall linear density of roads in Core and Secondary 

grizzly bear habitat within the study area of 0.52 km/km2 is within the recommended density 

threshold, however, density varies widely over the study area (Figure 2.1; Alberta Environment 

and Parks 2016). 

2.2 Remote sensing data 

Remotely sensed Airborne Light Detection and Ranging (lidar) data was acquired for the 

study area in 2007. Lidar provides detailed information on topography and vegetation and is 

increasingly being used to calculate viewsheds for  ecological studies (Davies et al. 2016; Aben 

et al. 2018) and, more commonly, transportation studies to inform road placement and safety 

(Jung et al. 2018). The data had an average first return point density of 11.6 points/m2. A 10 m 

Digital Elevation Model (DEM) was created based on returns classified as “ground”, and a 10 m 

Digital Surface Model (DSM) was created from first returns, representing vegetation (see Coops 

et al. (2016) for details on data processing). For the sound analysis, I used a 10-class land cover 

layer including upland and wetland trees, upland and wetland herbs, shrubs, water, barren 

ground, snow or ice and cloud and shadow produced by McDermid et al. (2005). I used annual 

data on stand replacing disturbances including fire and harvesting as well as forest cover data 

derived from remotely sensed Landsat imagery from 2006 to 2017 to determine areas that 

experienced substantial landscape changes between the time of lidar collection and recorded 

grizzly bear presence. Details on the collection, processing, and classification of Landsat 

imagery can be found in Hermosilla et al. (2016, 2017, 2018). I used the official Alberta road 

layer for 2009 to 2016 obtained from the Government of Alberta web portal 
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(https://geodiscover.alberta.ca/). Despite obtaining the most current information available, 

resource roads are dynamic within the study area as new roads are frequently built and some 

roads are decommissioned or overgrown, thus our analysis may include some roads that were not 

in use for the entire study period (Kearney et al. 2020). 

2.3 Grizzly bear data 

Grizzly bear movement data was obtained from GPS locations of grizzly bears collected 

through the fRI Grizzly Bear Program from 2006 to 2017. Bears were captured using culverts or 

aerial darting with helicopters and fitted with Followit (Lindesburg, Sweden) GPS radiocollars 

(Televit, Simplex, and Tellus models) in compliance with the American Society of 

Mammologists (Cattet et al. 2013). Annual permits from the University of Saskatchewan Animal 

Care Committee (#20010016) and University of Alberta Animal Care (AUP00000436) 

authorized capture. GPS data with a sampling interval of one hour was used. The mean location 

accuracy of GPS collars was < 10 m (K. Graham, personal communication, November 27, 2019). 

GPS data from 2007 to 2014 were used for Chapter 3 analyses, and data from 2006 – 2017 were 

used for Chapter 4 analyses. 

2.3.1 Grizzly bear mortality data 

Grizzly bear mortality data was used for Chapter 3 analyses. Information on grizzly bear 

mortalities was collected in two primary ways. First, deaths of radiocollared grizzly bears are 

suspected when the GPS signal remains stationary for long periods of time outside of denning 

season, and mortalities were confirmed by fRI Research field crews. Of 39 radiocollared bears 

used in Chapter 3 analyses, 10 had died as of the end of the study period in 2017. Secondly, I 

acquired mortality data for grizzly bears without radiocollars that were reported by hunters 

https://geodiscover.alberta.ca/
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(before the sport hunting moratorium) or by the public. Information was obtained about the 

location of all known deaths of collared and uncollared grizzly bears in the Yellowhead region 

between 2000 and 2017 from the fRI Research Grizzly Bear Program. There were 69 recorded 

deaths, but only 22 deaths had exact location of mortality. Most exact mortality locations were 

investigated by fRI Research crew members or Fish and Wildlife Officers and recorded with 

handheld GPS units.  
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Chapter 3: Building a perceptual zone of influence for wildlife: 

delineating the effects of roads on grizzly bear movement 

3.1 Introduction 

Anthropogenic disturbances have major impacts on shared landscapes, influencing both 

land management and wildlife conservation. Tracking anthropogenic disturbances is essential for 

understanding and mitigating the impact of human activity (Burton et al. 2014); researchers and 

managers are increasingly using a range of geospatial tools, including remote sensing 

technologies, to map and monitor rapid landscape changes (Bolton et al. 2019). However, the 

ecological effects of spatially fixed disturbances - such as roads, mines, well sites, or other 

human infrastructure - are rarely limited to the specific area disturbed, but typically extend to 

affect the surrounding landscape. This area around the disturbance is known as the zone of 

influence, defined as the furthest extent that a disturbance affects the surrounding habitat and 

wildlife (Wilson 2016). The extended effects that delineate a disturbance’s zone of influence can 

be divided into two categories: 1) environmental effects, for example, chemical run-off, exotic 

plant invasion, or dust and 2) effects on wildlife health and behaviour, such as changes in 

movement patterns or bird songs (Coffin 2007). Health and behavioural effects can spread well 

beyond the spatial extent of detectable environmental changes and can vary with species (Wilson 

2016, Medinas et al. 2019).  

Whether measuring environmental or behavioural effects, the resulting zone of influence 

is most often delineated as a simple buffer zone around the disturbance feature based on the 

calculation of a Euclidean distance threshold (Shanley and Pyare 2011, Boulanger et al. 2012). A 

drawback to the buffer approach to managing disturbances is that zones of influence are not 
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constant widths but are context-specific (Kite et al. 2016). For example, zones of influence 

around roads for desert tortoises (Gopherus agassizii) have been estimated to extend less than 

200 m from roads in some studies but over 3 km from roads in others, depending on the criteria 

used (Boarman and Sazaki 2006). In reality, the boundaries of a zone of influence are irregular, 

extending to varying degrees from a feature depending on the characteristics of the disturbance, 

surrounding landscape, and the species of interest (Forman and Deblinger 2000, Coffin 2007, 

Shanley and Pyare 2011). In fact, the Canadian Environmental Assessment Agency recommends 

that practitioners consider flexible boundaries when estimating the zone of influence for 

environmental impact assessments (CEAA 2012). Recent literature demonstrates a move towards 

more mechanistic methods of building zones of influence, by, for example, investigating changes 

in animal distributions or movement (Boulanger et al. 2012, Kite et al. 2016).  

One way to improve our understanding of the mechanisms of animal response to 

disturbance is to study sensory detection (Tablado and Jenni 2017); animal decision making 

depends on collecting data via sight, sound, or chemosenses (Fagan et al. 2017). While 

disturbances may also influence wildlife behaviour via undetected secondary effects, quantifying 

an animal’s ability to perceive a disturbance increases our ability to make inferences about their 

subsequent behaviour. Visual or auditory perception may be estimated by modelling viewsheds 

(sight propagation) and soundscapes (sound propagation) around the disturbance. While constant 

buffer zones of influence do not consider the dynamic nature of either the geographical or the 

biological context, viewshed and soundscape modelling incorporate both of these aspects. The 

type, structure and configuration of vegetative, geological and edaphic conditions in a landscape 

influence sight and sound propagation, and the resulting perception of that signal is essential to 

animal movement and behaviour.  
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 Past research has used viewsheds and soundscapes to assess zones of influence around 

disturbances, but for largely different purposes. Although zones of visual impact are common for 

human aesthetic purposes (Wood 2000), they are rarely used for wildlife except to assess 

visibility as a measure of risk (Montgomery et al. 2012, Buchanan et al. 2014). Conversely, 

sound has often been considered an important part of the zone of influence for wildlife (Shannon 

et al. 2016). Studies of sound disturbance commonly examine how anthropogenic noise disrupts 

animal communications (Shannon et al. 2016), and noise has been found to negatively affect 

widlife abundance and body condition (Ware et al. 2015, McClure et al. 2017). However, few 

studies have used sight or sound as measures of perceptibility – how detectable the disturbance is 

(Brown et al. 2012a). Understanding how perception affects the zone of influence is an important 

avenue for new research.  

To investigate the role of perception in understanding the effects of disturbances on 

wildlife, I developed a case study using grizzly bears (Ursus arctos), a threatened species in 

Alberta, Canada (Festa-Bianchet 2010). The negative effects of roads on grizzly bears have been 

addressed in various regions by either limiting road densities or limiting public access to roads 

(Festa-Bianchet 2010, Boulanger and Stenhouse 2014). However, the variety of responses 

observed by grizzly bears to roads makes it difficult to generalize management decisions across 

landscapes. Proctor et al. (2020) reported estimates of road impacts on grizzly bear behaviour 

and survival extending between 100 m and 1 km, settling on 500 m as the minimum distance for 

habitat to be classified as “secure” (unaffected by the road). However, more research into the 

spatial extent of road disturbance is needed (Proctor et al. 2020). 

In this chapter, I addressed two objectives. My first objective was to estimate perception 

of roads using viewshed and soundscape modelling with detailed remotely sensed landscape 
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data. My second objective was to demonstrate how this perception data could be used with 

wildlife movement data to estimate context-specific zones of influence (or “road-effect zones”) 

using data from grizzly bears in Alberta, Canada. I hypothesized that the zone of influence would 

extend further in areas where roads are perceptible than in areas where roads are imperceptible.  

3.2 Methods 

Detailed landscape and road data were used to model a visual zone of influence 

(viewshed) and auditory zone of influence (soundscape), which were combined to create a 

perceptual zone of influence (Figure 3.1). The modelled perception layers were then related to 

grizzly bear movement data using modified semivariogram models to create a behavioural zone 

of influence specific to grizzly bears, as described in the diagram below (Figure 3.1). 

 

Figure 3.1 Flow diagram of approach to building perceptual and behavioural zones of influence 
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3.3 Perception analyses 

3.3.1 Viewsheds 

Viewsheds can be used to approximate visual perception using 3D topographic and 

vegetation data at an x, y, z (height above ground) location (Aben et al. 2018). To create 

viewsheds, lidar data was resampled to a 10 m resolution. Viewsheds are usually considered 

intervisible, assuming that if Point B is visible from Point A then Point A must also be visible 

from Point B (Llobera 2003). Therefore, I modelled viewsheds at points along roads at 10 m 

intervals then assessed where a given bear relocation was in relation to the viewshed, rather than 

calculate the viewshed for each bear point and look for a road within it. All locations with clear 

sightlines to a road were assigned as within the viewshed. Since most studies of grizzly bear 

selection and survival agree that the zone of influence around roads for grizzly bears is less than 

or equal to 1 km (Proctor et al. 2020), the analysis was limited to within this buffer.  

I performed two viewshed analyses for comparison: one using the DEM, representing a 

bare landscape, and one using the DSM. DSMs, which incorporate natural and anthropogenic 

features on the landscape such as trees and buildings, are useful for characterizing forested 

landscapes (Aben et al. 2018). DSMs do not account for forest permeability and gaps at 

resolutions coarser than individual trees, potentially resulting in false negatives, where visible 

areas are classified as invisible (Murgoitio et al. 2013). However, for my analyses it was 

assumed that forests block most lines of sight, which is reasonable for roadside forest in BMA 3. 

Oldershaw (2001) did field tests of visibility in Alberta forest interiors, finding that maximum 

visibility averaged 18 m for Engelmann spruce forests and 26 m for lodgepole pine forests. It can 

be assumed that visibility is even lower when looking in from a road, as forest edges are often 
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denser than the interior due to greater light availability and increased shrub presence, eventually 

forming a closed side canopy blocking light penetration (Matlack 1994).  

A challenge to using the DSM for viewshed analyses is that the model runs as if 

observers are standing on top of trees and buildings. To address this, an additional output of the 

visibility analysis was used: the Above Ground Level (AGL). The AGL is zero for all visible 

cells, but for invisible cells provides the height the cell would need to be raised to be visible. I 

combined this with the canopy height model (CHM). If the CHM > 1 m, the approximate grizzly 

bear eye height, visible cells were reclassified to invisible as the grizzly bear would be standing 

within the trees rather than on top of them. For invisible cells, if CHM + AGL was less than 1 m 

it was assumed a grizzly bear would be able to see above the vegetation and it was reclassified as 

visible.    

Viewsheds are most often considered as a binary response: visible or invisible (Davies et 

al. 2016). However, clarity decreases with distance, so that objects on the edge of a viewshed are 

much less obvious than objects near the viewer (Fisher 1994). Several models of non-binary 

viewsheds have been proposed (Table 3.1); however, for this thesis I used a simple distance 

decay of 0.975 per 25 m (visibility = 0.975distance/25) (Skov-Petersen and Snizek 2007) making 

viewsheds comparable to the built in modelled decay of the soundscapes. The distance decay 

was applied separately for each road point, as the nearest road point to a cell is not necessarily 

the nearest point to which it is visible. The minimum visibility for areas within the viewshed was 

0.36 at a distance of 1 km.  
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Table 3.1 Review of viewshed methods 

Method Description References Software 

Binary 
Viewshed 

Points are intervisible if a straight 
line connecting them is always 
above the surface 

De Floriani and Magillo 
2003 

Built into ArcGIS (Spatial Analyst Visibility with 
OBSERVERS as Analysis type) 

Cumulative 
viewshed 

Counts how many times a point is 
visible  

Chamberlain and 
Meitner 2013 

Built into ArcGIS (Spatial Analyst Visibility with 
FREQUENCY as analysis type) 

Probable 
Viewshed 

Monte Carlo simulation of DEM 
error to account for uncertainty 

Fisher 1994, Rášová 
2014  

ArcGIS Desktop toolbox developed by Rášová (2014) 
https://www.arcgis.com/home/item.html?id=9645d482c2f341fb
a27890c6346a097b 

Fuzzy 
viewshed 

Visibility decreases with distance 
decay function (usually 
exponential)  

Kumsap et al. 2005, 
Ogburn 2006, Rášová 
2014 

ArcGIS Desktop toolbox developed by Rášová (2014) 
https://www.arcgis.com/home/item.html?id=5e9cb4fd73fe4288
a4cf534cc5a119aa; see also Alberti (2017)  

Higuchi 
viewshed 

Visibility is divided into 3 zones: 
perfect clarity, decaying clarity, 
and background 

(Wheatley and Gillings 
2000, Rášová 2014) 

ArcGIS Desktop toolbox developed by Rášová (2014) 
https://www.arcgis.com/home/item.html?id=5e9cb4fd73fe4288
a4cf534cc5a119aa 

Visual 
Magnitude 

Proportion of an observer’s field 
of view calculated from distance, 
slope, and angle 
 

Fabrizio and Garnero 
2013, Chamberlain and 
Meitner 2013  

ArcGIS Pro toolbox developed by (Chamberlain and Meitner 
2013) 
https://github.com/czechflek/VisualMagnitude 
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Table 3.2 Sample of sound propagation models used in ecological soundscape modelling 
Method Description References Software 
SPreAD-GIS Developed for modelling noise 

from outdoor recreation 
Reed et al. 2012, Keyel 
et al. 2017 

ArcGIS Desktop toolbox developed by Reed et al. (2012)  
http://sarahreed.squarespace.com/tools/ 

CadnaA Models traffic noise using 
count data  

Barber et al. 2011, 
Bastián-Monarca et al. 
2016 

Commercial software available from 
https://www.datakustik.com/en/products/cadnaa/ 

NMSim Developed for aviation Fleming et al. 2005, 
Keyel et al. 2017 

ArcGIS Desktop toolbox developed by Reed et al. (2012)  
http://sarahreed.squarespace.com/tools/ 

ISO 9613-2 International standard for noise 
propagation; older model 

Schomer 2003, Keyel et 
al. 2017 

ArcGIS Desktop toolbox developed by Reed et al. (2012)  
http://sarahreed.squarespace.com/tools/ 

Predictor 
Analyst 

Designed for environmental 
noise mapping 

Iglesias-Merchan et al. 
2018 

Commercial software available from 
https://www.bksv.com/en/News/Predictor-LimA-latest-
version 
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3.3.2 Soundscapes 

Soundscapes can be created by modelling sound propagation from noise sources over a 

landscape, taking into consideration land cover and elevation data (Reed et al. 2012). A single 

averaged sound level is highly inadequate to describe sound around the road network in rural 

Alberta, as traffic varies by season and industrial activity, which can change considerably from 

year to year. Unfortunately, real-time sound data is unavailable for previously collected GPS 

locations. Therefore, I only modelled roads where traffic levels were sufficient that relatively 

constant noise emission could be assumed. Although several models of traffic noise have been 

developed (Table 3.2), I used SPreAD-GIS  which is specially designed for rural areas such as 

BMA 3 (Reed et al. 2012). Soundscapes were modeled at 30 m intervals along roads using 30 m 

resolution land cover and elevation data. A resolution of 30 m is recommended by Keyel and 

Reed (2017) as an acceptable trade off between detail and processing time for sound modelling. 

Sound was modelled at one third octave frequency bands between 400 and 2000 Hz and then 

weighted and reported as db(A). In the absence of sound data around roads, input sound levels 

for traffic were taken from Harrison et al. (1980) as recommended by Keyel and Reed (2017). 

Input sound levels varied by frequency between 60 and 68 dB at 15 m from the source. The 

decay function depended on frequency, elevation, vegetation type, and weather conditions (Table 

3.3; Reed et al. 2012). 

Table 3.3 Input values used for SPreAD-GIS sound modelling 

Inputs Temperature  Humidity  
Wind 

Direction  Wind Speed  
Seasonal 

Conditions 

Value 20°C 50% 200° 6 km/h Clear, calm summer 
day 
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Because sound levels are additive when there are multiple sources, a road with many 

vehicles will propagate sound further than a road with few vehicles. Therefore, for busier paved 

roads I converted frequencies to acoustic energy and summed the energy from each point to 

create the soundscape, so that each cell on the landscape was receiving sound from multiple road 

points at once. For two lane gravel roads, the model was built taking only the maximum energy 

value from a single point for each cell, assuming one vehicle present on a road segment at a time. 

Sound was not modelled for unimproved roads (i.e., single lane gravel and dirt roads) because I 

assumed that sound emitted by lower traffic volumes was inconsistent. 

A predetermined audio perception threshold was used to calculate areas within hearing of 

bears. I used 25 dB as the threshold, which represents approximate ambient sound levels in 

undisturbed wilderness; ambient sound levels vary from approximately 20 dB in barren 

landscapes to 29 dB in coniferous forests (Kelly 2013). 

The DSM viewshed and soundscape were combined to estimate a “perception zone” 

where bears could see or hear a road. Sight and sound layers were both scaled between 0 and 1 

and then each cell value was summed to represent the combined perceptibility of sight and 

sound, with a maximum perception value of 2.  

3.3.3 Movement analyses 

I used grizzly bear GPS data as described in Chapter 2 in a modified semivariogram 

analysis. For the analyses described in this chapter, GPS data was limited to those collected 

between 2007 and 2014 (Figure 3.2).  
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Figure 3.2 Density heat map of grizzly bear GPS locations from 2007 to 2014 

 

To account for changes occurring on the landscape between 2007, when lidar data was 

collected, and 2014, any GPS points recorded in areas where Landsat imagery indicated 

significant changes such as clear-cutting or growth had occurred were removed. Omissions 

represented less than 10% of the original dataset. All data was cropped to the extent of the lidar 

coverage. Data was limited to within 500 m from the road because of insufficient data from 

perceptible areas at greater distances and because results from Kite et al. (2016) suggested 

response distances well under 500 m. After filtering, models were built on 39482 data points 
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from 28 individual bears and 54 bear years. Of these, 36.9% of the data came from 10 adult 

females (breeding = 21.4%, nonbreeding = 15.4%), 22.9% of the data came from 8 sub-adult 

(age less than 5 years) females (breeding = 7.7%, nonbreeding = 15.2%), 20.4% came from 8 

adult males (breeding = 10.6%, nonbreeding = 9.8%), and 19.9% came from 8 sub-adult males 

(breeding = 9.8%, nonbreeding = 10.0%). Some bears had data as both sub-adults and adults. 

The number of points per individual ranged from 28 to 5038. 

I used a modified semivariogram approach to test for differences in response distances 

between areas perceptible (either by sight or by sound) and imperceptible to a road. 

Semivariograms assess autocorrelation between points by visualizing the variance in an attribute 

at increasing binned distances (Turner and Gardner 2015). The distance where variance levels off 

gives the range, where locations are no longer autocorrelated (Turner and Gardner 2015, Kite et 

al. 2016). Semivariograms can be modified so that instead of plotting the variation in attributes 

between pairs of points, the coefficient of variation in groups of points is plotted at increasing 

distance bins from a feature (Kite et al. 2016). In this case, the range represents the distance at 

which a feature no longer influences that attribute. I followed a similar approach to that outlined 

by Kite et al. (2016) by using the range of modified semivariograms of grizzly bear step lengths 

(natural log transformed) to assess mechanistically at what distances bears respond to roads. Step 

lengths, the distance between two consecutive GPS fixes, are commonly linked to animal 

behaviour; for example, long step lengths may indicate searching for new forage patches, 

whereas short step lengths could indicate within-patch foraging (Morales et al. 2004) or mating 

behaviour (Graham and Stenhouse 2014). By plotting variance in step lengths with distance to 

roads and determining where variance levels off, the response distance where roads no longer 

impact grizzly bear behaviour can be inferred.  
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Grizzly bears have previously been found to have different movement patterns between 

day and night (Nielsen et al. 2004a, Graham and Stenhouse 2014). In addition, perceptibility is 

expected to change based on light availability and time-dependent traffic levels. Grizzly bear 

GPS locations were divided into areas perceptible to a road (perceptibility > 0) and those 

imperceptible to any road (perceptibility = 0), as well as into daytime locations (5 AM to 10 PM) 

and nighttime locations (10 PM to 5 AM). While Kite et al. (2016) subsetted bear locations into 

classes based on sex, age, and season, previous research has suggested that there should be at 

least 30 - 50 points per distance bin (Babish 2000) resulting in insufficient data within some 

categories for my analysis. Therefore, data was pooled in a population level model. Distance bins 

of 10 m were used to match the scale of the viewshed data. I fit curves to the semivariograms 

using least squares regression and chose the curve with the lowest residual sum of squares as the 

best fit. The range, or response distance, was found by calculating the cumulative sum of 

differences between the average slope and the slope for each lag; the maximum cumulative sum 

value identifies where variation stops increasing and becomes random (Kite et al. 2016). 

I used the maximum response distances determined by the semivariograms for 

imperceptible and perceptible areas to determine a combined behavioural zone of influence for 

grizzly bears that accounts for visual and auditory perception. I also examined how perceptibility 

influenced average step lengths near roads.  

3.3.4 Comparing zones of influence 

To assess how the perceptual zone of influence compares to the standard distance-based 

zone of influence I calculated the area within the binary perceptual zones of influence compared 

to the most accepted distance buffer of 500 m (Mattson et al. 1987, Proctor et al. 2020). The 

zones of influence using the DSM and DEM viewsheds were also compared by calculating the 
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percent change in area, in order to estimate how forestry practices or other vegetation 

disturbances may influence the perceptual zone of influence. Finally, the behavioural zone of 

influence was compared with all other options.  

3.3.5 Software 

The viewshed analysis was conducted using the arcpy tool “Visibility” within the spatial 

analyst extension. Soundscape modelling was carried out using SPreAD-GIS from the ArcGIS 

Sound Mapping Toolbox (Reed et al. 2012), run through arcpy. Semivariogram modelling and 

area calculations were performed in R (R Core Team 2019). Maps were created in ArcGIS.  

3.4 Results       

3.4.1 Perception analyses 

My approach resulted in the generation of four perception-based zones of influence 

(Figure 3.3). 
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Figure 3.3 Model outputs for a) Visual Zone of Influence (DSM), b) Visual Zone of Influence 
(DEM), c) Auditory Zone of Influence, d) Perceptual Zone of Influence, combining DSM 
visibility and scaled audibility. The star marks the location of the magnified panel 
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The distance decayed viewshed had a maximum value of 1.0 (perfect visibility) and a 

minimum value of 0.36 at 1000 m (Figure 3.4 a-b). The soundscape was cut-off at a minimum of 

25.0 dB and rose to a maximum of 92.0 dB adjacent to the road (Figure 3.4 c). Scaled, this layer 

had a minimum value of 0.27 and a maximum value of 1.0. Perceptibility, combining the scaled 

audibility and visibility, ranged between 0.27 and 2.0, with most values falling below 1.0 (Figure 

3.4 d). 

 

Figure 3.4 Histograms of a) Visibility (DSM), b) Visibility (DEM), c) Audibility, d) 
Perceptibility. Histograms were based on 100 000 pixels sampled within 1 km of a road 
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Figure 3.5 Profile plot showing changes in perceptibility for an example a) paved road, b) two 
lane gravel road, and c) unimproved road at increasing distances from the road, dependent on 
DEM and DSM. Grey areas represent 0 perceptibility. Note that although the x-axis shows 
distance from a single point, perceptibility may be influenced by other road sections. Negative 
and positive numbers represent increasing distances on opposite sides of a road  
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Audibility depends primarily on distance, and secondarily on topographic and land cover 

features, including hills and forests, which may block signal propagation (Figure 3.5 a-b). Both 

measures of visibility also depend on distance, but are more affected by topography and, for the 

DSM visibility, canopy height (Figure 3.5).  

3.4.2 Movement analyses 

I found that grizzly bears displayed altered movement patterns at greater distances from 

perceptible roads than imperceptible roads for daytime movements (Figure 3.6 a, b; Table 3.4). 

In addition, step lengths increased near roads in all areas, but step lengths were longer within the 

perceptible portion of the zone of influence (mean = 199 m, ln ~ 5.3) than the imperceptible 

portion (mean = 179 m, ln ~ 5.2) (Figure 3.6 c).  

Table 3.4 Outcomes of semivariogram models for 28 grizzly bears from 2007 to 2014 for 
daytime and nighttime movements. N is number of step length observations in each subset, Med 
N/bear represents the median and range of the number of step length observations per bear, 
Function represents the best fitting semivariogram curve, RSS is the residual sum of squares, and 
distance is the range found by the modified semivariogram 

Subset N Med N/bear 
(range) Function RSS Distance (m) 

Day 
(Imperceptible) 12580 274 (6 - 1564) Y ~ a + b/X 0.037 60  m 

Day (Perceptible) 9701 218 (1 - 1419) Y ~ a + 
b/X0.5 

0.120 80  m 

Night 
(Imperceptible) 8817 

225 (17 - 1283) 
Y ~ a + b/X 0.025 60  m 

Night (Perceptible) 8384 172 (3 - 1276) Y ~ a + b/X 0.186 60  m 
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Figure 3.6 Modified semivariogram model using all daytime grizzly bear step lengths for a) 
imperceptible and b) perceptible areas. The y-axis is the coefficient of variation in step lengths 
grouped within distance bins from the road. Panel c) shows how daytime step lengths change 
with distance to road when perceptible and imperceptible with reference response scales 

 I used the 80 m response distance for perceptible areas and 60 m response distance for 

imperceptible areas to create a behavioural zone of influence (Figure 3.7). A response distance of 
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80 m represents a decayed visibility value of approximately 0.922/1, a sound level of around 40 

– 60 dB depending on road type and topography, and a combined perception value of 

approximately 1.5/2 where perceptible by both sight and sound.  

 

Figure 3.7 Subset of the study region showing the behavioural zone of influence (light) using 60 
or 80 m buffers depending on perceptibility, overlaying the perceptual zone of influence 
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3.4.3 Comparing zones of influence 

The smallest zones of influence are the treed viewshed and the soundscape (representing 

only improved roads) (Table 3.5). The treed viewshed covers 10% of the bare earth viewshed 

(Figure 3.8).  

Table 3.5  A comparison of the area occupied by seven methods of delineating a zone of 
influence (ZOI) 

 

500 m 
buffer 

Visual ZOI 
(DSM) 

Visual ZOI 
(DEM) 

Auditory 
ZOI  

Perceptual 
ZOI 

Behavioural 
ZOI 

Area 
(km2) 

10501 1110 11112 1363 2241 1785 

% 500 
m buffer 

100 10.6 105.8 12.98 21.34 16.99 

% Study 
Area 

48.9 5.1 51.4 6.3 10.4 8.2 
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Figure 3.8 Comparison of viewsheds created using DSM (treed) and DEM (bare) landscapes; a) 
the DSM viewshed shows logged areas, and b) DEM visibility is much greater 
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3.5 Discussion 

Understanding the influence of disturbances is essential to conservation. The analyses in 

this chapter demonstrate how landscape data may be combined with wildlife movement data to 

create a biologically and topographically relevant zone of influence around disturbances, using 

perception as the mechanistic bridge linking disturbance stimuli with behavioural response. This 

research aims to contribute to understanding the effects of disturbance by taking into 

consideration the surrounding landscape and species-specific movement behaviour (Medinas et 

al. 2019). Previous work has shown how changes in distributions, movement behaviours, and 

population dynamics can be used to estimate the zone of influence (Polfus et al. 2011); my work 

on perception provides one of the underlying mechanisms of these behavioural responses (Avgar 

et al. 2013, Tablado and Jenni 2017).  

Several studies have investigated the use of sight or sound in understanding animal 

responses to disturbances; for example, Montgomery et al. (2012) used visibility interacting with 

distance to understand elk use around roads, and Brown et al. (2012a) studied the impact of 

anthropogenic noise on ungulate behaviour. However, few studies have considered sight and 

sound together. A notable exception is Clevenger and Wierzchowski (2006), who used both 

viewsheds and soundscapes in their model of animal movement around the Trans-Canada 

highway, finding that incorporating these and other fine-scale spatial databases significantly 

improved model reliability. In another study, Gnieser (2000) used a 200 m sound buffer plus an 

800 m viewshed to determine a visitor exclusion area that minimized both auditory and visual 

disturbances on nesting golden eagles. My research is one of the first to incorporate sight and 

sound as well as wildlife movement data to create improved zones of influence. 
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Although limited research on perception is available for disturbances, the importance of 

perception is becoming widely acknowledged in predator-prey analyses (Aspbury and Gibson 

2004, Loarie et al. 2013, Lawson et al. 2019). For example, viewsheds are important to 

determining both lion kill sites (Davies et al. 2016b), and lek selection of great bustard (Alonso 

et al. 2012), highlighting the importance of perception for both predator and prey. Wildlife 

encounters with human disturbances have been compared to predator-prey interactions (Frid and 

Dill 2002), supporting the incorporation of perception into understanding disturbances as well.  

The response distances estimated by modified semivariogram models are comparable to 

those found by Kite et al. (2016), who reported response distances between 25 and 90 m for 

grizzly bears to roads in west central Alberta. My initial hypothesis that the zone of influence 

would extend further in areas where roads are perceptible than where roads are imperceptible 

was supported. This result corroborates previous work suggesting that wildlife avoid human 

disturbances at further distances in open areas than forests due to increased visibility (Benítez-

López et al. 2010). However, I found that the difference between perceptible and imperceptible 

areas was small and only for daytime movements. The lack of differentiation between 

perceptible and imperceptible areas at night may correspond to low visibility and low traffic 

levels resulting in limited nighttime perception. In addition, visualisation of step length results 

showed that step lengths increased in perceptible areas more than in imperceptible areas within 

the zone of influence. Previous work has shown increased movement rates near roads (Roever et 

al. 2010), and this chapter suggests that this response is heightened when the road is perceptible. 

My findings are comparable to previous studies finding that animal flight distances are reduced 

when visually shielded (Camp et al. 1997, Ndaimani et al. 2013).  
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The response distance of 80 m based on variation in step lengths is very near to the road, 

even when only including areas perceptible to roads. This response distance represents mostly 

areas rated as highly perceptible by either sight or sound, suggesting that bears may not perceive 

roads as a risk worth changing behaviours for except at near distances and high perceptibility. 

These findings are consistent with previous research showing that animal responses start at 

sound levels above 40 dB (Shannon et al. 2016) and that the impact of visibility is highly 

dependent on distance (Montgomery et al. 2012). 

 In addition to showing that not all areas perceptible to a road influence grizzly bear 

movement behaviour, modified semivariogram models demonstrated that movement behaviour is 

affected in areas imperceptible to roads. This result implies a minimum response distance to 

roads, even when not visible or audible. A response may be caused by perception that was not 

picked up in my model, such as occasional traffic noise on roads where sound was not modelled, 

glimpses of a road through gaps in trees, or a bear having recently passed through an area where 

it could perceive the road. Grizzly bears may also be responding to olfactory cues, which were 

outside of the scope of this study. Alternatively, responses to roads may be unrelated to 

perception, but due to differences in vegetation and topography near roads, or memory (Avgar et 

al. 2013). Grizzly bears are known to become habituated to human disturbances (Roever et al. 

2008a, Penteriani et al. 2016), thus grizzly bears may be less likely to respond to disturbances 

which they have encountered before regardless of perceptibility. Future work could compare 

movement patterns between recently translocated bears and bears within their home range to 

investigate the relationship between perception and habituation. Grizzly bears may also alter 

movement patterns around roads based on attractive food resources such as regenerating 

vegetation along roadsides (Roever et al. 2008a). 
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Semivariogram model results can be sensitive to changes in model parameters including 

bin distance or maximum distance cut-off, limiting the confidence in the exact estimates. In 

addition, differences between perceptible and imperceptible areas were low, representing only 

two distance bins. The results may have been affected by limited data in some distance bins (e.g., 

very few imperceptible areas immediately adjacent to roads), unaccounted for changes in the 

landscape between the creation of the perception layer and the grizzly bear movement data, 

intermittent sound on unimproved roads, or because of additional unmeasured variation in bears 

or the landscape. Grizzly bears have been found to differ in their responses to road based on sex, 

age, and season (Roever et al. 2010), as well as traffic levels (Northrup et al. 2012). For example, 

female grizzly bears with cubs have been suggested to use areas with higher levels of human 

disturbance to avoid infanticidal males (Cristescu et al. 2016b), and also have overall lower 

movement rates than other grizzly bears (Schwartz et al. 2003), making it difficult to generalize 

responses at the population level. Sensitivity to additional factors should be considered when 

making management decisions. Future research could also consider the influence of visual and 

auditory perception separately, as animals may respond differently to different types of 

perception. For example, while either sight or sound may alert an animal to the presence of a 

disturbance, it may be that the animal associates one of these signals with risk but not the other. 

My findings that perception influenced grizzly bear movement variability and speed suggest that 

the role of perception in animal response merits further research. 
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Chapter 4: Road perception influences habitat selection by grizzly 

bears (Ursus arctos)  

4.1 Introduction 

The study of animal behaviour is incomplete without considering the overarching effects 

of human activity on the landscape. Few wildlife populations are untouched by human activity; 

in particular, roads are considered the largest global anthropogenic disturbance and continue to 

expand at rapid rates (Brady and Richardson 2017). Roads have many detrimental effects on 

wildlife populations, such as causing direct mortality through vehicle collisions and acting as a 

barrier to movement, resulting in road avoidance by many species (Coffin 2007). However, some 

wildlife display selection of roads and roadsides, possibly because roads can act as food sources 

or travel corridors (Dickie et al. 2020). Habitat selection around roads has been studied 

extensively, however, many studies use simple distance-to-road metrics without considering how 

the environmental context around roads may affect animal behaviour (Montgomery et al. 2012). 

As improvements in remote sensing technology increase the availability of fine-scale landscape 

data, I can develop more nuanced explanations of animal responses and better mitigate the 

effects of disturbances. 

In the previous chapter I created viewsheds and soundscapes and demonstrated how 

perception data may be used with wildlife data to make inferences about zones of influence. In 

this chapter I take a closer look at how visual and auditory perception may influence both grizzly 

bear behaviour and risk.  
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Visibility may influence not only a bear’s awareness of the landscape, but also how it 

interacts with people. While a grizzly bear hearing road traffic will not affect whether it is 

detectable by humans, visibility is usually considered two-way, thus how visible a road is to a 

grizzly bear is equivalent to how visible a grizzly bear is to someone travelling along the road. 

Therefore, visibility may influence not only animal behaviour but also human-caused risk around 

roads. Several studies of grizzly bear behaviour around roads have suggested that visibility may 

increase the likelihood of negative human-bear interactions around roads, recommending leaving 

buffer strips of forest to reduce visibility between forage-rich cut blocks and roads when forest 

harvesting occurs (Graham et al. 2010, Roever et al. 2010, Kite et al. 2016). However, no known 

research is available linking grizzly bear mortality around roads to visibility.  

4.1.1 Research aim 

The objectives of this chapter were to investigate the role of perception in grizzly bear 

habitat selection and mortality around roads. I hypothesized that road perception increases 

perceived and actual risk of human-caused mortality for grizzly bears resulting in modified 

habitat selection and mortality in visible areas. I addressed three specific hypotheses: 1) Models 

of grizzly bear habitat selection including road perception will improve upon models without 

road perception. 2) Grizzly bears will be more likely to select areas near roads, as has been found 

previously, but will be less likely to select areas perceptible to roads. 3) Grizzly bears that have 

died during the study period will be more likely to select road visibility than grizzly bears that 

have survived. I tested my hypotheses by evaluating selection coefficients from models of 

grizzly bear movement using integrated step selection analysis and viewsheds and soundscapes 

derived from remote sensing data. The second hypothesis was evaluated using only the 
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perception variable found to be the most useful in modelling habitat selection based on the 

results of the first hypothesis.  

4.2 Materials and methods 

Integrated step selection analysis (iSSA) was used to evaluate grizzly bear responses to 

road perception. First, I used iSSA on individual bears and years and selected the best model 

describing grizzly bear movement and habitat selection using corrected Akaike Information 

Criterion (AICc). Then, the best model was used to create a population level model and 

bootstrapped selection coefficients were calculated to assess population responses. To assess 

whether road visibility influenced mortality risk, selection coefficients were compared between 

bears that survived and bears that died. Finally, I compared the locations of grizzly bear 

mortalities with GPS locations of live bears and landscape availability to explore whether 

mortalities were more frequent when visible to roads.  

4.2.1 Study area 

For the second stage in the analysis I limited my study area to grizzly bear core and 

secondary areas within BMA 3, an area of 11 590 km2 as described in Chapter 2.  

4.2.2 Grizzly bear movement data 

Grizzly bear movement data between 2006 and 2017 as described in Chapter 2 was used. 

Any grizzly bears with less than two weeks of data (672 observations) were removed from the 

analysis, leaving 39 individual bears (18 females and 21 males) and 69 bear-years.  
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4.2.3 Creation of landscape variables 

Ten landscape variables were created from remotely sensed data for inclusion in iSSA 

models (Table 4.1). These variables were chosen to represent terrain, resource availability and 

risk, which are expected to influence grizzly bear habitat selection patterns (Nielsen et al. 2010). 

I used the perception layers as described in Chapter 3 as predictors of interest. To evaluate 

potential landscape changes in canopy height occurring between the time of lidar collection and 

the later grizzly bear data for the visibility layer, I consulted annual disturbance and forest cover 

data derived from remotely sensed Landsat imagery (Hermosilla et al. 2016, 2017, 2018). When 

evaluating potential changes, I reclassified visible areas to invisible if a location changed from 

open in 2007 to forested at the time of grizzly bear movement, and if sufficient time had passed 

for growth of greater than one meter to occur. Invisible areas were reclassified to visible if a 

stand-replacing disturbance occurred and if the location was visible when modelled using a DEM 

(bare landscape). Visibility was estimated to change for only 3.8% of grizzly bear locations and 

running models with and without estimated changes was not found to alter model inferences, 

therefore I retained all original data. Elevation and absolute distance to edge were also derived 

from lidar data. Absolute distance to edge describes the distance from the forest edge either from 

or within a forested stand > 2m in height.  

Food layers were created for ten bi-monthly periods from the beginning of May to the 

end of September based on the modelled distributions of important grizzly bear foods, compiled 

and weighted to provide a rating between 0 and 100 where 100 is the maximum food value, as 

described in Nielsen et al. (2010). Food models were available annually from 2014 onward, and 

the 2014 model was used for grizzly bear data collected before 2014. Solar Insolation and 

Terrain Wetness Index were derived from the NASA Shuttle Radar Topography Mission 
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(SRTM) digital elevation model. Solar Insolation uses terrain variability to estimate the amount 

of solar energy reaching the Earth’s surface, and terrain wetness index describes the distribution 

of surface water.  

Distance to road was calculated as Euclidean distance to the nearest road using road 

layers downloaded from the Government of Alberta web portal (https://geodiscover.alberta.ca/).  

4.2.4 Integrated step selection analysis 

An extension of Resource Selection Functions, iSSA is commonly used to model animal 

behaviour, allowing selection to be modelled as a result of movement and habitat variables 

simultaneously (Prokopenko et al. 2017, Scrafford et al. 2018). Availability in iSSA is defined 

on a stepwise basis: each observed step, or set of two consecutive data points, is compared to 

possible steps with the same origin. Thus, availability is relative to the probability of an animal 

taking a step in the absence of habitat selection (Avgar et al. 2016, Prokopenko et al. 2017).  

Five random available steps were generated for each observed step, based on the 

distributions of observed step lengths (Euclidean distance) and turning angles (angular deviation 

in direction). Predictor variable information was extracted from the end of each observed and 

available step. Continuous predictor variables were standardized by subtracting the mean and 

dividing by the standard deviation, and checked for Pearson’s Correlation. All pairwise 

correlation coefficients were less than 0.5. 

 

https://geodiscover.alberta.ca/
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Table 4.1 Predictor variables used in step selection modelling with references indicating 
relevance to grizzly bear habitat selection 

Predictor Variable Name Spatial 
Resolution 

Reference 

Natural loge of step length 
(Ln(sl)) 

n/a Munro et al. 2006 

Time of Day (Tod) n/a Munro et al. 2006 
Food rating (Food) 30 m Nielsen et al. 2010, Larsen et al. 2019 
Elevation (Elev) 10 m Nielsen et al. 2004b, Nielsen 2005 
Solar Insolation (Insol) 30 m Nielsen et al. 2004a, Nielsen 2005 
Terrain Wetness Index (TWI) 30 m Nielsen 2005 
Absolute distance to edge 
(Edge) 

30 m Nielsen et al. 2004a, Stewart et al. 2013 

Distance to road (Rd) 10 m Roever et al. 2010, Boulanger and Stenhouse 2014 
Visibility (Vis) 10 m n/a 
Audibility (Aud) 30 m  n/a 
Perceptibility (Percep) 10 m n/a 

 

4.2.4.1 Model Selection 

To address the first hypothesis that accounting for road perception improves model 

performance, I created conditional logistic regression models of grizzly bear movement to 

determine how adding road perception affects model performance (Table 4.2). The Core model 

included variables selected based on previous research on grizzly bear habitat selection, but did 

not include any road variables (Table 4.1; Table 4.2). Additional models included either distance 

to road or a perception variable, or both. Step length was included to allow for differences in 

selection based on movement speed. Time of day was divided into day (reference category), 

twilight (including dawn and dusk), or night based on the sunrise/sunset calculator from the 

National Oceanic & Atmospheric Administration (NOAA; 

https://www.esrl.noaa.gov/gmd/grad/solcalc/sunrise.html). In addition to the additive effects 

among predictor variables, I included an interaction between step length and time of day, and 

https://www.esrl.noaa.gov/gmd/grad/solcalc/sunrise.html
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between step length and distance to road, to accommodate previous observations that grizzly 

bear movement changes with time and proximity to roads (Roever et al. 2010, Prokopenko et al. 

2017). An interaction was also included between step length and perception variables. 

Two rounds of modelling were completed. The first round of modelling was used to 

determine whether and which perception variables were important to grizzly bear habitat 

selection, thus I compared equivalent models including either distance to road, road audibility, 

road visibility, or combined road perception to each other and a core model (Table 4.2). In the 

second round of modelling, I added a model including both the best perception variable and 

distance to road. Perception variables that were not found to be important in the first round of 

modelling were excluded from further analyses. 

Individual grizzly bear behaviour is highly variable (Northrup et al. 2012, Hertel et al. 

2017), therefore each grizzly bear was modelled separately to determine the best model. I used 

similar methods to Prokopenko et al. (2017) and Ladle et al. (2018) to fit each model on each 

bear-year and calculated AICc and AICc weight to determine the best model for each bear-year. I 

summed the AICc tally (i.e. number of times a model had the lowest AICc) and averaged AICc 

weights across all bear-years to identify a best performing model that was used for further 

analyses (Prokopenko et al. 2017, Berman et al. 2019). I checked whether the results were biased 

by bears with multiple years by performing the tally using only the first year of data for each 

bear and results remained qualitatively similar (analysis not shown); therefore, I retained all 

bear-years. To determine the most important variables and consistency among grizzly bear 

responses I tallied the number of times each variable was significant within the best model for 

each bear-year and counted the number of bear-years that matched the population trend (either 

likely or unlikely to select) for each predictor variable.  
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4.2.4.2 Best Model Outputs 

I predicted probability of use based on the best model as a function of road perception 

and distance to road using methods developed by Avgar et al. (2017). Probability of use plots are 

a useful visualization tool for observing patterns of selection, where selection is averaged over 

the range of values for other predictor variables and relative to the most suitable resource unit. 

For this chapter, I pooled the fitted model outputs for all available (random) steps from each of 

the 69 bear-years. Grizzly bear responses to road variables were divided into three movement 

modes; hourly step lengths of less than 10 m (ln ~ 2.30) were classified as resting (n = 64772), 

step lengths from 10 m -  390 m (ln ~ 5.97) were classified as foraging (n = 278040), and steps 

greater than 390 m were classified as travelling (n = 133720) (Hunter 2007).  

To address the second hypothesis that grizzly bears will select areas near roads but avoid 

areas perceptible to roads, I obtained selection coefficients for the population, creating a 

population level model including all bears and years using the best model as determined by the 

AICc tally and weights. Confidence intervals for selection coefficients were calculated using 

2000 bootstrapped iterations (Prokopenko et al. 2017). I used a simple cluster bootstrap 

clustering on individuals (n = 39), so that each bear had an equal probability of being included in 

a resample, regardless of the amount of data for that individual. Separate models were also 

created for adult males (n = 14), sub-adult males (n = 11), adult females (n = 8), sub-adult 

females (n = 12), and females with cubs (n = 5) to allow for differences in selection between age 

and reproductive classes. Sub-adults were less than five years old. Some individuals sampled in 

multiple years were included in more than one age or reproductive class.  
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4.2.4.3 Additional Interactions with Visibility 

I was interested in how road visibility may interact with additional ecologically important 

variables, so I created two additional models for an exploratory post-hoc analysis. First, to the 

Distance + Visibility model (Table 4.2) I added interactions between road visibility and food 

availability, and between road visibility and time of day to investigate the relationships between 

these variables. Second, I investigated the role of road visibility at the start of the step to see 

whether seeing a road alters grizzly bear decisions about future habitat selection and movement. 

To do this, road visibility was extracted at the beginning of each step. Road visibility at the start 

and at the end of steps were correlated, so they were not included in the same model. Instead, I 

used the Distance model (Table 4.2) and added an interaction between road visibility at the 

beginning of the step and distance to road at the end of the step, and an interaction between 

beginning road visibility and step length. For both new models population level coefficients and 

confidence intervals were calculated using cluster bootstrapping as described above.  

4.2.5 Mortality analysis  

To address the third hypothesis that grizzly bears that died will be more likely to select 

road visibility, I compared the selection coefficients between bears that had died during the study 

period (2006 - 2017) with bears that survived to see whether bears that spent more time in visible 

areas had higher mortality. The data were divided into bears that died (n = 10) and bears that 

survived (n = 29), and the best model was fitted to each group using simple cluster 

bootstrapping. I obtained and compared selection coefficients and confidence intervals for each 

group.  
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Finally, I performed an exploratory analysis with known locations of grizzly bear deaths 

within the study area between 2000 and 2017. Of exact locations, 91% (20 locations) of data 

were within 500 m of a road, so I limited analyses to within this buffer. I compared the 

proportion of visible locations between mortality locations, used grizzly bear steps, and the 

overall landscape within 500 m of a road. Sample size was low, so the data were visualized 

without testing for significance.  

4.3 Software 

Data organization and analysis was primarily carried out in R (R Core Team 2019) using 

the packages “amt” version 0.0.6 (Signer et al. 2019) and “mclogit” version 0.6.1 (Elff 2018). 

ArcGIS was used for map creation and variable processing.   

4.4 Results 

4.4.1 Model selection 

In the first round of selection, the Visibility model performed significantly better than 

competing models, and was the best model for almost half of the bear years (Table 4.2). The 

Audibility model performed worse than the Distance model with no perception variables and the 

Perceptibility model performed only slightly better than the Distance model. Therefore, the 

Audibility model and Perceptibility model incorporating both sight and sound were discarded for 

the second round of model selection and were not included in any further analyses. In the second 

round of model selection, the Distance + Visibility model was most commonly selected as the 

best model according to the lowest AICc across 69 bear-years. According to average AICc 

weights, the Distance + Visibility model was 44 times more likely [0.654/0.015] to be the best 
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model than the Core model with no road variables, and 9 times more likely to be the best model 

than the Distance model [0.654/0.072] (Table 4.2). The Distance + Visibility model was used for 

remaining analyses.  

Table 4.2 Model descriptions and AICc tally and average AICc weight for 69 bear-years 

Model Variables Tally 
(round 1) 

Weight 
(round 1) 

Tally 
(round 2) 

Weight 
(round 2) 

Core Ln(sl) + Food + Ln(sl):Tod + 
Elev + Insol + TWI + Edge 

0 0.006 1 0.015 

Distance Core + Rd + Rd:Ln(sl) 14 0.202 4 0.072 
Visibility Core + Vis + Vis:Ln(sl) 34 0.477 17 0.259 
Audibility Core + Aud + Aud:Ln(sl) 3 0.046 NA NA 
Perceptibility Core + Percep + Percep:Ln(sl) 18 0.269 NA NA 
Distance + 
Visibility 

Core + Rd + Rd:Ln(sl) + Vis 
+ Vis:Ln(sl) 

NA NA 47 0.654 

 

4.4.2 Best model outputs 

The variables that were significant for the most bear-years in the Distance + Visibility 

model were step length, step length interacting with time of day, and step length interacting with 

visibility (Table 4.3). Effect direction was determined as selection coefficients greater than one 

indicating more likely to select (+) and selection coefficients less than one indicating less likely 

to select (-), and was consistent over individuals for these variables. The selection coefficient for 

road visibility was not significantly different from one, indicating that at mean step length (96 

m), visibility was neither selected nor avoided at the population level. However, a coefficient 

greater than one for step length interacting with visibility indicated that when bears had shorter 

than average step lengths, bears were less likely to select areas with higher road visibility. As 

step lengths increased, bears were more likely to select road visibility.  

 



54 
 

Table 4.3 Mean and 95% confidence intervals of selection coefficients (β) estimated from the 
Distance + Visibility iSSA model including all 69 bear-years (i.e. population level) model and 
direction of the population effect (N.S. indicates that confidence intervals overlap with one). 
Also shown is the number of times across 69 individual bear-year models that estimated 
coefficients were consistent with the direction of the population effect and number of times each 
variable was significant (p < 0.05) using the Distance + Visibility model 

Predictor Population Mean 
(95% CI)  

Effect 
Direction 

 Effect 
Agreement (/69)  

Significant (/69) 

Ln(sl) 1.289 (1.238,1.341) +  67 63 
Food 1.022 (0.993,1.05) N.S. NA 29 
Elev 0.829 (0.695,0.964) - 47 39 
Insol 1.037 (1.005,1.068) +  39 37 
TWI 1.007 (0.987,1.027) N.S. NA 19 
Edge 0.783 (0.735,0.831) - 63 49 
Ln(sl):Night 0.582 (0.522,0.641) - 66 61 
Ln(sl):Twilight 0.845 (0.773,0.917) - 45 30 
Rd 0.950 (0.919,0.981) - 43 30 
Vis 1.000 (0.965,1.035) N.S. NA 37 
Ln(sl):Rd 0.942 (0.930,0.954) - 55 30 
Ln(sl):Vis 1.143 (1.119,1.167) + 65 54 

 

Probability of use plots were used to illustrate trends around visibility, roads, and movement 

modes. As suggested by selection coefficients, when travelling, bears were more likely to use 

areas of high road visibility, whereas they were less likely to use visible locations when resting 

(Figure 4.1). No clear pattern in probability of use was observed when moving at foraging 

speeds. Grizzly bears were much less likely to use areas near roads at resting speeds when roads 

were visible, whereas there was no clear pattern in probability of use for distance to road while 

resting when not visible from roads (Figure 4.2). Bears were slightly more likely to use locations 

near roads when foraging, but were more likely to use invisible areas as they approached roads. 

Locations close to roads were most likely to be used when grizzly bears were travelling, with 
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little differentiation between visible and invisible areas. Narrow confidence intervals may be 

attributed to the high number of available steps used for probability of use plots. 

 

 

Figure 4.1 Probability of use as a function of visibility and movement mode based on the 
Distance + Visibility model for 69 bear-years. Lines were fitted using a cubic spline function 
with four knots and visualized with 95% confidence intervals. This figure only includes areas 
with sightlines to a road 
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Figure 4.2 Probability of use as a function of distance to road, binary visibility, and movement 
mode based on the Distance + Visibility model for 69 bear-years. Lines were fitted using a cubic 
spline function with four knots and visualized with 95% confidence intervals 

Selection coefficients for road visibility were not significantly different between age and 

reproductive classes (Figure 4.3). However, there was an indication that adult females were less 

likely to select road visibility than males and sub-adults (although confidence intervals 

overlapped). The selection coefficient for females with cubs was significantly less than one (p < 

0.05), indicating they were less likely to select road visibility at average movement speeds.  
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Figure 4.3 Selection coefficients based on 2000 bootstrapped samples, clustering on individual, 
for grizzly bear age and reproductive classes. Predictors are defined in Table 4.1. (F_WC = 
Female With Cubs; F_Ad = Female Adult (solitary); F_SA = Female Sub-Adult; M_Ad = Male 
Adult; M_SA = Male Sub-Adult). The dotted line represents no selection 

4.4.3 Additional interactions with visibility 

Adding interactions did not significantly (p < 0.05) change selection coefficients for 

variables already in the best model. Grizzly bears were more likely to select areas of high 

visibility when food rating was also high and vice versa (Table 4.4). No difference in selection 

for visibility was observed between day and night. Grizzly bears were overall less likely to select 

road visibility at twilight, however, this interaction was significant for very few individual bear 

years. When road visibility at the beginning of a step was high, grizzly bears were more likely to 

select areas near roads and take longer steps. 

  



58 
 

Table 4.4 Selection coefficients (β) mean and confidence intervals for additional interaction 
terms not included in model selection process and direction of the population effect (N.S. 
indicates that confidence intervals overlap with one). Also shown is number of times coefficients 
were consistent with the direction of the population effect and number of times each variable was 
significant (p < 0.05) for 69 individual bear-years 

Predictor Population 
Mean (95% CI)  

Effect 
Direction 

 Effect Agreement 
(/69)  

Significant (/69) 

Vis:Food 1.022 (1.003, 
1.041) 

+ 39 17 

Vis:Night 0.977 (0.950, 
1.005) 

N.S. NA 12 

Vis:Twilight 0.960 (0.931, 
0.990) 

- 39 4 

Rd:Vis(start) 0.962 
(0.941,0.984) 

- 44 20 

Ln(sl):Vis(start) 1.116 
(1.083,1.148) 

+ 62 48 

 

4.4.4 Mortality analysis 

Patterns of selection for most predictor variables were similar between bears that died 

and those that survived during the study period (Figure 4.4). There was a significant difference 

(non-overlapping CI) in selection for distance to road; bears that died were more likely to select 

areas nearer the road. No significant difference was observed in road visibility coefficients 

between bears that died and bears that survived.  
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Figure 4.4 Selection coefficients for the Distance + Visibility model based on 2000 bootstrapped 
samples, clustering on individual, for dead and living bears. Predictors are defined in Table 4.1. 
The dotted line represents no selection. Population level coefficients are shown for reference 

Our exploratory analysis suggests that grizzly bear mortalities occurred 

disproportionately in areas visible to roads; 40% of all mortalities (8 of 20) occurred in visible 

areas, whereas only 24% of used locations (19907 of 84404) were visible to roads and only 10% 

of the available landscape was visible (10436222 of 101967060 cells) (Figure 4.5).  
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Figure 4.5 The proportion within 500 m of a road of invisible and visible points for: landscape 
cells representing availability (n = 101967060), GPS collar relocations of live bears (n = 84404), 
and known locations of grizzly bear mortalities (n = 20) 

4.5 Discussion 

In this chapter, I used iSSA to investigate grizzly bear habitat selection and mortality 

around roads. While I originally explored the influence of both audible and visual perception, 

audible perception was not found to be important to habitat selection around roads so only road 

visibility was used in further analyses. Incorporating road visibility improved models of habitat 

selection, providing evidence of the importance of visual perception in understanding animal 

behaviour. In addition, behaviour (inferred from movement) was important to understanding 

grizzly bear selection of road visibility, and bears selected for road visibility when travelling but 

against road visibility when resting. I did not find a link between selection of road visibility and 

mortality; however, only a limited sample size was available.  
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4.5.1 Road perception and habitat selection 

Models including road visibility outperformed models of grizzly bear habitat selection 

including road audibility or combined perceptibility. Although my results may be limited by a 

lack of traffic data providing fine tuned information about sound, this suggests that grizzly bear 

responses to roads do not primarily depend on being aware of the road, which sound would 

indicate. Instead, the importance of visibility suggests that bears may respond to the more direct 

contact of being able to both see and be seen from roads.  

4.5.2 Road visibility and habitat selection 

My first hypothesis that models of grizzly bear selection including road perception would 

improve upon models without road perception was strongly supported for visibility and was 

consistent across bear-years, suggesting that road visibility is an important factor in animal 

habitat selection. Replacing road distance with road visibility substantially improved model 

AICc, and the model including both distance and visibility to roads was clearly the best model in 

terms of both the AICc tally and weights. My work is consistent with previous work done by 

Montgomery et al. (2012, 2013) on elk (Cervus elaphus), where binary visibility interacting with 

distance to road better explained elk space use than distance to road alone.  

My second hypothesis, that grizzly bears would be less likely to select areas perceptible 

to roads, was explored with respect to road visibility with mixed results. While this chapter did 

not find an overall avoidance of road visibility at the population level, grizzly bears were less 

likely to select visible areas when moving at below average speeds, which is consistent with the 

theory of risk avoidance. However, grizzly bears were also more likely to select road visibility 

when moving at greater than average speeds. Thus, although visibility’s main effect was 
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insignificant, the interaction with step length was one of the most important variables explaining 

selection across bear-years. These results demonstrate the importance of evaluating habitat 

selection concurrently with movement, allowing us to detect relationships that would otherwise 

pass unobserved (Scrafford et al. 2018).  

Previous research has shown that grizzly bear selection and movement varies by time of 

day; for example, Graham & Stenhouse (2014) found that grizzly bears moved fastest in the 

morning and evening and slowest at night. In addition, grizzly bears have been found to avoid 

high traffic roads more during the day than at night when traffic is lighter (Northrup et al. 2012). 

I used an interaction between time of day and road visibility to see whether time of day 

explained the variation in movement patterns. However, no difference in selection for road 

visibility between day and night time was observed, and although grizzly bears were overall less 

likely to select road visibility at twilight, this pattern was significant for very few bears. 

Therefore, the evidence does not suggest that differences in selection of road visibility are 

explained by time of day alone. 

Roever et al. (2010) also found longer step lengths associated with roads, suggesting that 

grizzly bears may increase speeds either because roads elicit a flight response or because roads 

are used as travel conduits. I found increased step lengths associated with road visibility at both 

the beginning and the end of steps, which could support either a flight response (long step 

lengths associated with high visibility at the start of steps) or a travel response (long step lengths 

associated with high visibility at the start and end of steps). Prokopenko et al. (2017) similarly 

found increased step lengths in elk near roads and concluded that they increased movement rates 

as an indication of being disturbed. However, while flight responses would be expected to be 

away from a road, I found that grizzly bears were more likely to select areas nearer roads when a 
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road was visible at the beginning of a step. In addition, selection for road visibility suggests that 

grizzly bears may follow roads and visually orient themselves along them, supporting the travel 

hypothesis. Alternatively, visible areas are open with low vegetation and may allow for greater 

ease of movement for grizzly bears, contributing to the observed patterns of selection for road 

visibility when travelling. 

Another common explanation for grizzly bear selection of roads is that they are foraging 

for roadside vegetation (Roever et al. 2008b). I found that grizzly bears were slightly more likely 

to select areas near roads at intermediate speeds, such as those used when foraging, but that they 

were less likely to use visible areas as they approached roads. These results support the foraging 

hypothesis, but suggest that grizzly bears are more wary when using areas near roads for feeding 

than when travelling. This is consistent with migratory theories observing that wildlife prioritize 

the path of least resistance while moving, but choose areas that reduce predation risk when 

foraging and resting (Saher and Schmiegelow 2005). I also found a slight positive interaction 

between road visibility and food rating, suggesting that grizzly bears may be attracted to areas of 

high visibility near roads where forage is also visible.  

Grizzly bears were less likely to rest in locations visible to roads. This response implies a 

risk associated with visible areas, as was anticipated. Although my study is the first, to my 

knowledge, to investigate grizzly bear response to road visibility, visibility depends largely on 

cover, as all visible areas in the study were in open habitat. Cover has been previously discussed 

in terms of concealment and security for brown bears. Bears in open habitat are more likely to be 

involved in human-bear conflict resulting in bear mortality, and grizzly bear flight responses to 

humans are further and more frequent in open habitats than within hiding cover (Mclellan and 

Shackleton 1973, Oldershaw 2001). Cover also influences bear behaviour; Nielsen et al. (2004a) 
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observed that grizzly bears stayed near the edge of forest harvesting areas and were more likely 

to use open areas at night. In addition, bears have been found to forage in open areas but select 

greater concealment at den sites (Libal 2011), and resting sites (Munro et al. 2006, Ordiz et al. 

2011, Pigeon et al. 2016). Cover may also be selected while resting to avoid heat in open areas 

(Nielsen et al. 2004a). The results in this chapter may partially reflect a general selection of 

grizzly bears for covered, secure areas when resting and open areas when foraging and travelling 

that is not dependant on road visibility. However, previous studies were limited to using cover or 

concealment as a proxy for risk avoidance, without specifying the risk to be avoided. Including 

road visibility provides an added association between open areas and anthropogenic risk, 

allowing a mechanism explaining why concealing vegetation may be selected. Because grizzly 

bears have no natural predators besides other grizzly bears (Hertel et al. 2016), the use of 

concealing cover may be an adaptive response to avoid human encounters in an increasingly 

human dominated landscape.  

 Patterns of selection around roads and visibility were similar between age and 

reproductive classes, with no significant differences in selection coefficients observed. However, 

females with cubs were more likely to select against road visibility at average step lengths, a 

response that was not observed at the population level. Although previous research has found 

that females with cubs select areas with greater human disturbance, possibly to avoid male 

grizzly bears which can pose a danger to cubs (Graham et al. 2010, Cristescu et al. 2016a), my 

research suggests greater wariness around roads in females with cubs. Female grizzly bears with 

cubs have been found to travel less and have smaller home range sizes, which may be a strategy 

to increase cub security (Schwartz et al. 2003, Graham and Stenhouse 2014). Cristescu et al. 

(2016b) also found that while females with cubs were frequently found in active mining areas, 
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they selected for tree islands that provide hiding cover. Decreased selection for areas visible to 

roads in females with cubs supports my hypothesis that visibility increases perceived risk around 

roads for grizzly bears.  

4.5.3 Road visibility and mortality 

My analysis found that grizzly bears that were more likely to select areas near roads have 

higher mortality as has been found previously (Nielsen et al. 2002, Boulanger and Stenhouse 

2014). However, I did not find statistical support for a relationship between selection of road 

visibility and grizzly bear mortality as predicted by my third hypothesis. This may be due to low 

sample size in my analysis (n = 10 collared grizzly bear deaths). However, in the exploratory 

analysis including all known locations of grizzly bear mortalities, mortalities were located in 

visible areas more frequently than expected based on used or available locations within 500 m of 

a road. This pattern may be largely attributed to the relationship between visibility and distance 

to road, and was based on very few data points. However, a high proportion of mortalities in 

visible areas suggests that further research into the risk of visibility is warranted. 
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Chapter 5: Conclusion 

5.1 Overview addressing main research question 

My overarching research question was “How can measures of perception including sight 

and sound be used to better understand the effects of disturbance on wildlife, specifically, roads 

on grizzly bears?” I answered this question by first, using remote sensing data to create 

viewsheds and soundscapes around roads in the Yellowhead region of Alberta, and secondly, 

using these models along with grizzly bear movement data to create zones of influence and 

model habitat selection.  

In chapter 3, perception was estimated around roads using detailed remotely sensed data. 

Viewsheds were created at a 10 m resolution from topographic and vegetation data around roads 

and soundscapes were created at a 30 m resolution using topographic and land cover data. I 

combined the viewshed and soundscape layers to create an overall perception zone. Finally, I 

used grizzly bear GPS data to create a species-specific zone of influence, finding that during the 

day grizzly bears responded at slightly further distances when roads were perceptible than when 

roads were imperceptible.  

In chapter 4, I investigated the role of perception in grizzly bear habitat selection by 

performing further analyses using grizzly bear GPS data and the modelled perception around 

roads. During my model selection process, I found that of three variables - visibility, audibility, 

and perceptibility - visibility was the most useful in modeling grizzly bear habitat selection, 

therefore I focused the remainder of my analyses on visual perception. I found that a model 

including both road distance and road visibility was the best model (lowest AICc) for explaining 

habitat selection and that grizzly bears were more likely to select areas visible to roads when 
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travelling but less likely to select areas visible to roads when resting. I also found that female 

grizzly bears with cubs were overall less likely to select areas visible to roads, suggesting that 

bears in these vulnerable demographic classes are more risk averse. I did not find a difference in 

selection coefficients for road visibility between grizzly bears that survived and those that died (p 

< 0.05), however, an exploratory analysis demonstrated that grizzly bear mortalities may occur 

more frequently in visible areas.  

In answering my research question, I determined that perception can be used to better 

understand the effects of disturbance using a case study with grizzly bears and roads. In 

particular, perception was able to make more precise estimates of the zone of influence. 

Perception was also used to clarify our understanding of when and why grizzly bears use areas 

near roads, and thus suggest better management. My results did not confirm a relationship 

between perception and mortality risk for grizzly bears; however, I suggest that further research 

is warranted to examine linkages between the observed behavioural responses and population 

outcomes.  

5.2 Significance of research and key findings 

In this thesis, I used perception as the cognitive link between the spatial pattern of grizzly 

bear movement and the underlying processes of grizzly bear behaviour and their responses to 

anthropogenic disturbances (Nathan et al. 2008, Spiegel et al. 2017). In Chapter 3, I developed a 

novel method of evaluating the site- and species-specific zone of influence for a disturbance by 

including perception by sight and sound and behaviour, resulting in irregular zones of influence 

around roads. I used detailed remote sensing data including lidar, which allows fine scale 

modelling of vegetation height. Incorporating lidar based vegetation is significant because many 
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previous studies, having no vegetation data available, have relied on elevation data alone to 

model viewsheds, which overestimates visibility (Murgoitio et al. 2013). The inclusion of 

vegetation not only increases the accuracy of visibility models, but also provides a connection 

between visibility and human activity such as forest harvesting. This research demonstrates how 

advances in remote sensing technology can contribute to the fields of animal ecology and natural 

resource management. I found that, during the day, grizzly bears responded at further distances 

to roads when the road was estimated to be perceptible than when the road was estimated to be 

imperceptible, indicating that efforts to reduce sight and sound propagation around human 

activity may be one way to reduce the zone of influence of a disturbance. Increasing our 

understanding of the zone of influence, which is commonly used in anthropogenic impact 

mitigation, can aid in landscape planning and remediation efforts to minimize the effects of 

human activities and developments.  

In Chapter 4, I highlighted the importance of accounting for perception in understanding 

animal habitat selection, particularly around anthropogenic disturbances. While sound was not 

found to be important to grizzly bear habitat selection in my models, I found that models that 

included road visibility better explained grizzly bear habitat selection than models using only 

distance to road. Grizzly bears were more likely to select road visibility when moving quickly, 

supporting the hypothesis that roads are used as travel conduits for grizzly bears. However, 

grizzly bears were less likely to select visible areas when moving slowly or resting, suggesting 

that road visibility is also perceived as a risk. With these findings, I demonstrated how using 

perception along with movement data can be used to explain animal behaviour. Finally, I 

demonstrated how perception may be used to explore relationships between anthropogenic 

disturbances and not only animal behaviour but mortality risk. In my analysis, no difference in 
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selection for road visibility was detected between surviving and dead grizzly bears, and the 

sample size of known bear mortalities was insufficient to determine whether the probability of 

grizzly bear mortality was statistically higher in areas visible from roads. However, I provide a 

framework for future work to take into account the potential role of visibility in increasing 

animal risk around roads either by comparing selection for visible areas between animals that 

died and those that survived or by testing whether mortalities are more likely to occur in visible 

areas.  

5.3 Management implications 

The work in Chapter 3 provides a framework to use advances in remote sensing data to 

model wildlife perception over the landscape. While previous studies have incorporated some 

aspects of perception into wildlife analyses, few have considered both sight and sound together 

or used broad landscape scales. The viewshed and soundscape modelling approaches described 

may be used as management tools to understand animal behaviour and responses in various 

contexts. For example, perception modelling may be used to explore animal space use in 

response to hunting or tourist activity, or to explore the effects of habitat modification on animal 

behaviour. Perception models may be used in spatial planning including choosing the location of 

crossing structures or designing wildlife corridors and protected areas. 

Specifically, in this chapter I suggest a novel method of estimating zones of influence for 

current or proposed disturbances using perception modelling and semivariograms. My results 

suggest that the zone of influence should be wider in areas where disturbance perceived by the 

animal may be higher due to greater propagation of sight and sound; however, these methods 

allow for behavioural zones of influence to vary by context. Viewsheds and soundscapes may be 
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used not only to define zones of influence for roads, but also for diverse disturbance types 

including mining or oil and gas operations. In this study, perceptual zones of influence and 

behavioural zones of influence varied widely from the standard 500 m buffer zone (Proctor et al. 

2020). I do not suggest that the behavioural zone of influence estimated here for grizzly bears be 

used to replace larger buffer zones, as altered behaviour derived from step lengths is only one 

possible effect of disturbances; grizzly bears may experience increased health and survival risks 

from roads at much greater distances than those at which they change movement patterns. When 

making zones of influence for management purposes, multiple scales and metrics of response 

should be considered. While my study examined perception and behaviour at very fine scales, 

species abundance may be affected at much greater scales (Torres et al. 2016). However, 

incorporating animal perception and movement would allow priority to be placed on areas with 

the highest perceptual - and thus behavioural - impact when making management decisions. 

My methods may be broadly applied to any stationary disturbance for which remote 

sensing data is available, as well as used for land planning and development. The perceptual 

zone of influence does not require field observations and can effectively be created for proposed 

developments or forestry operations to determine configurations that will minimize the 

perceptual zone of influence or avoid predetermined key wildlife habitats. In addition, perceptual 

and behavioural zones of influence can be tailored to species of interest, such as woodland 

caribou (Rangifer tarandus caribou), which have been found to be negatively affected by various 

human activities (Vors et al. 2007). While GPS location data is useful for evaluating movement 

responses, semivariograms may also be applied to other types of numerical data such as song 

amplitude in birds. 
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My results suggest possible ways to decrease the zone of influence, particularly for forest 

harvesting disturbances. Along with my results in Chapter 3 showing that grizzly bears respond 

to roads at greater distances when perceptible to roads, Chapter 4 provided further evidence of 

the effects of road visibility on grizzly bears. Although my study did not reveal a relationship 

between selection of road visibility and mortality, an exploratory analysis demonstrated that a 

higher proportion of grizzly bear mortalities occurred in areas visible to a road than expected 

based on grizzly bear use of visible areas. In addition, the avoidance of areas visible to roads by 

vulnerable demographic classes (females with cubs), and during more vulnerable behaviours 

(resting vs travelling), suggests that road visibility is perceived as a risk to grizzly bears. In an 

increasingly human-dominated landscape where natural disturbances are infrequent, grizzly 

bears have adapted by accessing forage in human-caused disturbances such as cut blocks 

(Roever et al. 2008b, Kearney et al. 2019). Bears have also been found to alter space use patterns 

by time of day to avoid human activity (Machutchon and Proctor 2015, Ladle et al. 2018). 

Wildlife operate within trade-offs between obtaining resources and avoiding risks (Davies et al. 

2016a), and my research suggests that an additional adaptive strategy employed by grizzly bears 

is using areas not visible to roads to reduce risk while foraging and resting. Recent changes to 

forestry practices in North America have focussed on creating harvesting patterns that mimic 

natural disturbances, in an effort to reduce human impact on wildlife (Nielsen et al. 2008, Larsen 

et al. 2019). Another innovation that may facilitate continued coexistence between grizzly bears 

and people is implementing measures to reduce visibility around roads. The comparison of DSM 

(treed) versus DEM (bare) viewsheds in Chapter 3 illustrates the effectiveness of vegetation in 

reducing viewshed size, thus visibility may be minimized by maintaining vegetative buffers 

between roads and adjacent harvesting sites, a practice that is also used to reduce visibility of cut 



72 
 

blocks along roads for aesthetic reasons (Wing and Johnson 2001). Field tests in Alberta found 

that, on average, visibility extended up to 18 m in Engelmann spruce forests and 26 m in 

lodgepole pine forests (Oldershaw 2001). Therefore, leaving forested buffers at least 20 m wide 

on the edge of cut blocks could allow grizzly bears to use travel corridors associated with 

roadways and access cut blocks for forage while reducing human-induced risk. Providing visual 

cover allows humans and grizzly bears to coexist in closer quarters, facilitating shared 

landscapes (Mclellan and Shackleton 1973; Oldershaw 2001). While grizzly bears cannot be 

prevented from using the roads intruding into their habitat, actions can be taken to reduce 

encounters with humans and thus increase grizzly bear security.  

5.4 Limitations 

5.4.1 Limitations in modelling perception 

One limitation to modelling perception in my study was that it did not incorporate 

temporal aspects. Time is especially important for modelling traffic noise, which depends on the 

number of vehicles on a road at a time and varies by road, season, and time of day. For this 

thesis, I did not have access to detailed traffic data and roads were assumed to have constant 

traffic levels depending on road class, a simplification that may not have accurately represented 

sound perception for grizzly bears. Visibility is also not static, but depends on vegetation cover 

and height, which may change seasonally and annually. In addition, road networks change 

annually as new roads are built and old roads are decommissioned. Therefore, my study was 

limited in that I could not be sure whether a road was perceptible at the time of grizzly bear 

passing.  
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An additional limitation to modelling perception was processing time. In this thesis, 

visibility was modelled at a 10 m resolution and audibility was modelled at a 30 m resolution. 

Data were available at much finer resolutions; however, fine scale modelling was prohibitively 

computationally expensive due to the large extent of the study area and many kilometers of 

roads. Processing time also limited opportunities for modelling different scenarios, for example 

daytime or nighttime traffic or simulated changes in vegetation over time.   

5.4.2 Limitations in modelling grizzly bear responses 

Another limitation to the study was the moderate fix rate available for grizzly bear GPS 

relocations. Visibility occurs in fine scale patterns over the landscape, and a bear could pass 

through multiple visible and invisible areas in the space of one hour. In addition, analysis of the 

risks facing grizzly bears would benefit from more detailed data collection around grizzly bear 

mortalities, as less than a third of known deaths within the study area had accurate location data. 

Finally, I only analysed the influence of road perception on grizzly bear selection and mortality. 

Visibility or audibility may also affect grizzly bear stress, health, and reproduction, indirectly 

affecting population fitness. For example, viewshed at den sites has been found to be an 

important predictor of litter size in African wild dogs (Lycaon pictus) (Davies et al. 2016a).  

5.4.3 Model uncertainty 

It is also important to acknowledge the inherent uncertainty in ecological modelling. In my 

study, there was uncertainty at both the perception level of modelling and the wildlife level of 

modelling. Uncertainty in ecological modelling may be due to measurement or observation 

errors (Cressie et al. 2009); in the case of my study, observation error may have occurred in both 

landscape and wildlife data. Advanced remote sensing technology is increasingly accurate 
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(Hilker et al. 2010), however, errors may occur in both collection and processing or classification 

of remote data. In addition, although GPS collars were found to have on average high accuracy 

(K. Graham, personal communication, November 27, 2019), even a 10 m error in location 

accuracy could cause a GPS location to be classified incorrectly as visible or invisible, 

particularly as grizzly bears often select for forest edges (Larsen et al. 2019) where visible and 

invisible areas would be adjacent. Uncertainty is amplified as both the temporal and spatial 

resolution increases. For example, simplifying lidar vegetation heights into 10 m grid cells 

eliminates small forest gaps, which could influence visibility. In addition, uncertainty is 

introduced in the modelling process for step selection analysis. Along with uncertainty 

associated with the temporal resolution used, user choices around the method of generating and 

the number of available steps, as well as how to model individuals within populations may have 

significant effects on model outcomes (Holloway and Miller 2014). Individual variation is 

especially important to grizzly bears, which have been found to exhibit strongly individualistic 

behaviour (Hertel et al. 2017). Overall, my models suggested that incorporating perception was 

useful to explaining grizzly bear habitat selection and movement, however, accurately predicting 

grizzly bear decisions remains beyond the modelling scope of this work.  

5.5 Future work 

I recommend that future work incorporate temporal variation in traffic, vegetation and land 

cover, and roads in modelling perception. For example, Kearney et al. (2020) developed 

algorithms based on satellite imagery to update road networks and detect temporal changes due 

to new roads and road reclamation. Additional work could also be done to allow updating lidar 

data on vegetation heights based on satellite land cover data that can be collected at more 

frequent intervals. Temporal variation in traffic noise could also be estimated from traffic counts, 
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mobile big data, or from noise detectors placed along roadways (Barber et al. 2011, Shannon et 

al. 2014). Alternatively, the addition of acoustical recording devices (Lynch et al. 2013) or even 

cameras (Patel et al. 2017) to GPS tracking devices could provide real-time information on 

animal perception.  

Future work should continue to build on GIS applications to improve processing efficiency 

over large areas, which would allow perception to be modelled at finer spatial scales. For 

example, some studies have used lidar point clouds to create detailed three dimensional 

viewsheds; however, so far these studies have focussed on much smaller areas (Murgoitio et al. 

2014).  

To further explore the relationship between perception and grizzly bear behaviour, future 

work would benefit from more frequent data on grizzly bear movement. In addition, while I used 

only step lengths to estimate when grizzly bears were resting, foraging, or travelling, 

accelerometer data could provide detailed activity data to improve dividing grizzly bear locations 

into behavioural modes (Abrahms et al. 2016). For instance, two sequential GPS locations in 

close spatial proximity may indicate either resting or intense foraging (Brown et al. 2012b), 

which can be determined using accelerometers. I also recommend further research employ a 

more nuanced approach to understanding fitness responses in grizzly bears and other wildlife. 

For example, hormones collected from animal hair can be used to determine stress levels 

(Heimbürge et al. 2019), thus future analyses could evaluate relationships between time spent in 

areas perceptible to roads and grizzly bear stress.  

Additional work may also consider other aspects of perception, such as olfaction. While 

odour is more difficult to measure or model than sight or sound, previous research has evaluated 
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the effect odours have on human perception of roads (Jiang et al. 2016), and grizzly bears and 

many other animals rely extensively on their sense of smell (Schwartz et al. 2003). Grizzly bears 

are also known to become habituated to human disturbances (Roever et al. 2008b, Penteriani et 

al. 2016), and future work may consider whether grizzly bear perception and behaviour is 

influenced by memory, for example by comparing models between recently translocated bears 

and bears within their home range. Perceptual ability also varies by species and even individuals 

(Fagan et al. 2017), and evaluating animal responses in light of these differences would be 

beneficial.  

Finally, as remote sensing technology becomes increasingly available, it opens new 

possibilities for studies of animal behaviour to more easily incorporate new variables such as 

perception. I recommend that my methods be developed further for use with new disturbance 

types, landscapes, and species.   
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