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Abstract

Emphasis on the importance of subject matter expertise in teaching secondary

mathematics is found in the research literature and in policy. In the United States,

for instance, the No Child Left Behind Act, calls for secondary teachers to be certi-

fied in a subject specialization. In Canada, admission to secondary teacher educa-

tion programs requires extensive subject-specific university coursework. However,

it is unclear if or how extensive subject matter expertise impacts the practices of

teachers in a secondary classroom.

This study aims to explore how advanced coursework in mathematics, beyond

the scope of the high school curriculum, impacts the ways prospective teachers un-

derstand and teach secondary content. Using a qualitative case study methodology,

five prospective secondary mathematics teachers participated, with data obtained

through document analysis and semi-structured task-based interviews. Participants

engaged with classroom-relevant tasks and were explicitly asked how they could

draw upon advanced mathematics to inform their teaching. Participants also de-

tailed their perceptions of the role advanced mathematics plays in their develop-

ment as teachers.

Results from this study reveal that participants saw little value in the content

of advanced mathematics to their teaching, but expressed value towards the be-

liefs and values gained through advanced mathematics, such as problem solving

and rigour. Some participants demonstrated misconceptions at the secondary level,

which had direct connections to content from their post-secondary mathematics

coursework. For example, all participants made the false claim that a real-valued
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polynomial can be factored if and only if it has a root.

Results extend the literature through rich empirical data which illuminates how

prospective secondary mathematics teachers perceive and use advanced mathemat-

ics in understanding the secondary curriculum. While participants held content

knowledge beyond the secondary curriculum, this knowledge was not integrated

in a way that impacted their understanding of secondary mathematics. An under-

standing of post-secondary mathematics has the potential to be of value to sec-

ondary teachers in the classroom, but this potential needs a space to be unlocked. I

argue that mathematicians and teacher educators need to work together to build op-

portunities for prospective teachers to build connections between the mathematics

they know and the mathematics they need to teach.

iv



Lay Summary

I explore the role of advanced mathematics knowledge in the pedagogy of fu-

ture secondary mathematics teachers. This study utilized a qualitative case study

methodology to understand what five teacher candidates perceived as the role of

their advanced mathematics expertise, as well as connections they built between

secondary and post-secondary content. Results revealed that participants did not

view the content from their post-secondary degrees as being relevant to classroom

practice. This was supported through participants’ engagement in task-based in-

terviews, where they expressed limited connections between secondary and post-

secondary mathematics, as well as content misconceptions at both levels. This

study extends the literature in suggesting that advanced mathematical coursework

may play a very limited role in impacting the practice of future teachers. Results

suggest a need for further investigation into the ways mathematicians and teacher

educators support the integration of post-secondary mathematics knowledge into

the mathematical knowledge for teaching of future teachers.
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Glossary

AMK Advanced Mathematical Knowledge, a framework used specifi-

cally for knowledge of mathematics beyond the secondary cur-

riculum.

HCK Horizon Content Knowledge, a component of Mathematical Knowl-

edge for Teaching defined as the knowledge of the mathematics

beyond the curriculum being taught.

KDU Key Developmental Understandings, knowledge that allows a learner

to work with a particular concept in new ways and settings.

MKT Mathematical Knowledge for Teaching, a framework for under-

standing the knowledge used in the teaching of mathematics.

PCK Pedagogical Content Knowledge, a framework which extends the

notion of content knowledge to content knowledge in teaching.
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Chapter 1

Introduction

1.1 Background

Admission requirements for most secondary mathematics teacher education pro-

grams include a degree in mathematics or a related major. Consequently, univer-

sity students enter such mathematics education programs with courses in Abstract

and Linear Algebra, Number Theory, and Real and Complex Analysis, among

others. This requirement does not exist without reason. Much of the content in

secondary mathematics curricula is deeply connected to these advanced university

courses, despite being well outside the content teachers would be expected to teach

secondary students. Some researchers claim that advanced subject matter experi-

ence influences teachers to conceptualize the secondary mathematics curriculum

at a deeper level and provide a richer learning experience for students, leading to

higher student achievement (Paige, 2002). However, there is competing evidence

that suggests no positive correlation exists between advanced mathematics course-

work taken by teachers and their students’ achievement (Monk, 1994).
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The post-secondary education of prospective secondary teachers could be con-

ceptualized as two islands: mathematical content and mathematics pedagogy. Dur-

ing a prospective secondary mathematics teachers’ mathematics education, math-

ematics departments and professors are responsible for building the mathematical

knowledge of these future teachers, while education departments support future

teachers with subject-specific courses in pedagogy. Research in secondary mathe-

matics teacher education follows a similar pattern, with studies focusing on either

future teachers’ mathematical content knowledge (Almeida et al., 2016; Cofer,

2015; Even, 1993; Knuth, 2002; Leung et al., 2016) or mathematics pedagogy

(Dede, 2015; Fernández et al., 2016; Zazkis and Leikin, 2010).

This divide between mathematics content and mathematics pedagogy remains

within the structure of the university, as emphasized by Ted Eisenberg, who “lamented

profoundly the growing divide between the mathematics community and the math-

ematics education community” (Fried, 2014, p.3). In the Mathematical Association

of America’s (MAA) A Call for Change, they state that “the mathematical prepa-

ration of teachers must provide experiences in which they develop an understand-

ing of the interrelationships within mathematics and an appreciation of its unity”

(Leitzel, 1991, p.3). Unfortunately, the divide between mathematics and education

— in teacher education, the research literature, and the university — may not be

conducive to such preparation. Do prospective teachers have the opportunity to

develop interrelationships between these two fields? That is, are they able to build

connections between their advanced university mathematical knowledge and ped-

agogical practice in secondary mathematics?
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This is precisely where the research in this thesis becomes of importance.

Rather than studying the islands of university mathematics content and mathe-

matics pedagogy individually, I studied the bridge between the two and sought to

uncover the role that university mathematics coursework plays in secondary math-

ematics teacher education. To date, there appears to be no empirical study which

examines how prospective teachers bridge these two islands of knowledge. Wasser-

man’s recent work (Wasserman, 2016; Wasserman et al., 2017) bridges the two

islands, but is theoretical in nature and indicates a need for empirical research in

the domain. This current study begins to shed light on the effect a post-secondary

degree in mathematics has on the ways prospective secondary teachers perceive

and understand secondary school concepts, as well as to what extent they draw

upon connections between these two bodies of knowledge to inform their ped-

agogy. Moreover, the investigation has implications for ways in which mathe-

matics teacher educators might support future teachers’ MKT. Indeed, fostering

opportunities for the development of connections which integrate secondary and

post-secondary mathematics may be transformative to prospective teachers’ under-

standing of the secondary curriculum and the ways in which it is taught.

1.2 Research Aims

This study aims to observe, understand, and interpret the ways in which prospective

secondary mathematics teachers draw upon knowledge from their post-secondary

degrees to enhance secondary mathematics learning. Despite the existence of deep

connections between secondary and post-secondary mathematics content (Cofer,
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2015; Wasserman and Stockton, 2013), research suggests that teachers do not per-

ceive their advanced mathematical knowledge as playing an important role in ped-

agogical practice (Zazkis and Leikin, 2010). With the majority of studies on sec-

ondary teachers’ mathematical knowledge focusing explicitly on content in the

secondary curriculum, no such study exists that aims to understand the bridge

that connects secondary and post-secondary mathematics content. The primary

research questions are:

1. What do prospective secondary mathematics teachers perceive as the role of

their advanced mathematics knowledge in their development as teachers?

2. In what ways do prospective secondary mathematics teachers relate advanced

mathematics knowledge to a mathematics concept in the secondary curricu-

lum?

From the results of this question, I will shed light on the role of advanced math-

ematical coursework in the development of future teachers, and point to ways in

which mathematicians and mathematics teacher educators might foster the devel-

opment of MKT for future teachers.

1.3 Significance

This investigation will provide important information on how a post-secondary de-

gree in Mathematics affects the way prospective secondary teachers understand in-

struction of secondary school mathematics concepts and how the connections they

have between these two bodies of knowledge influence their pedagogy. Indeed,

as mentioned above, many secondary mathematics teacher education programs re-

quire extensive mathematical coursework at the university level. However, this
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knowledge is set aside once teacher education candidates enter their pedagogical

study. As Wasserman et al. (2017) argues, advanced mathematical knowledge has

the potential to be transformative to a teacher’s pedagogy by connecting advanced

mathematical knowledge to teaching practices. This study serves as a first step to-

wards understanding the ways prospective teachers have connected their advanced

mathematical knowledge to secondary content, without the intervention of mathe-

matics teacher educators.

Moreover, this investigation has implications for ways in which mathematics

teacher educators might explicitly support future teachers’ understanding of sec-

ondary mathematics concepts and mathematics at the post-secondary level. In-

deed, the interview topics discussed in this study could constitute rich mathemat-

ical discussion in a mathematics pedagogy course, recognizing that teachers have

advanced content knowledge that is relevant in a secondary school context and may

better inform their pedagogy. As a consequence, the development of mathemati-

cal content knowledge that is directly related to secondary mathematics instruction

could enrich the mathematical learning environment for secondary students. Such

an improvement in mathematics teacher education could result in teachers who are

able to engage with secondary mathematics content with more depth and breadth,

and in turn, provide secondary students with a rich mathematical learning experi-

ence. This shift in mathematics education at the secondary level could improve stu-

dents’ mathematics upon entry to university and in turn, increase entry into STEM

fields for post-secondary education.

Finally, this study may encourage mathematics departments to reconsider the
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ways in which they support the mathematical development of future teachers. How

much are future teachers learning in their advanced mathematics courses? What

are they learning and do they find it relevant to their future work? I hope that the

results of this study act as an impetus for mathematicians to interrogate the intent,

goals, and pedagogies of advanced mathematics courses. In the same vein, but a

different context, I hope that my research contributes to conversations about the

ways advanced mathematics expertise is drawn upon in teacher education. With

prospective teachers needing over 30 credits of mathematics coursework at the se-

nior level, to me, it appears to be a missed opportunity to not draw upon, develop,

and encourage reflection on the role of such courses by and for future teachers.

1.4 Methods

In an effort to investigate the research question, I utilized a qualitative research

methodology. More specifically, the following research is a case study (Yin, 2013).

Data collection and analysis was executed through one-on-one interviews, task-

based interviews (Goldin, 2000) and document analysis. Sources of data included

transcriptions of interviews, thematic coding of interview transcripts, participants’

written work, and participants’ academic transcripts. Coding of the transcripts was

done through a grounded theory approach, where codes were assigned to state-

ments throughout the interview. Similar codes were then gathered into themes. Al-

though a quantitative data focused methodology could provide insight into future

teachers’ mathematical knowledge for teaching, it would not provide the depth nec-

essary to understand participants’ perceived role of advanced mathematics knowl-

edge in teacher education. The qualitative case study approach was chosen to be

6



appropriate for this work, since case study allows the researcher to provide rich

description and provide insight into the knowledge, experience, and beliefs of the

future secondary mathematics teachers in this study.

Participants in this study were recruited on a volunteer basis from the sec-

ondary teacher education program at my institution. Since all participants were

enrolled in the program with mathematics as a teachable subject, each of them met

the mathematics coursework requirement for entry into the teacher education. In

total, five teacher candidates enrolled as participants in the study: Taylor, Jaime,

Bailey, Adrian, and Casey. Each of the names assigned are pseudonyms and are

gender neutral. Throughout the thesis, each participant will be referred to under the

pronoun “they,” since gender was not part of my analysis of the interviews. As a

thank you for volunteering their time and experience in the study, each participant

was gifted a $25 VISA gift card.

1.5 Theoretical Framework

As will be detailed in Chapter 2, teacher knowledge can be studied in many dif-

ferent forms. Much of the empirical research on teacher knowledge falls either

the domain of content knowledge, pedagogical knowledge, or the intersection of

these two conceptualizations. This intersection, defined as Pedagogical Content

Knowledge (PCK), was spearheaded by the work of Shulman (1986). Pedagogical

content knowledge is defined as “pedagogical knowledge that goes beyond knowl-

edge of subject matter per se to the dimension of subject matter knowledge for

teaching” (Shulman, 1986, p.9). This work was general to the context of teaching
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and paved the way for future, subject specific conceptualizations. One such notable

example is that of Mathematical Knowledge for Teaching (MKT) (Ball and Bass,

2002; Ball et al., 2008; Hill et al., 2005, 2008). Deborah Ball and her colleagues

have been pioneers in the study and measurement of mathematics teachers’ MKT,

specifically at the elementary level.

However, their framework for MKT may not be appropriate or transferable to

the context of secondary mathematics teachers, who have extensive mathematical

expertise beyond the school curriculum. As such, the MKT framework of Silver-

man and Thompson (2008)was utilized to understand the development of MKT for

prospective teachers in this study. The use of this framework will be justified in

Chapter 2. This particular framework utilizes the work of Piaget and his conceptu-

alization of reflective abstraction (Piaget, 1970, 1985).

Given that my chosen MKT framework is built upon the work of Piaget, it

is important to note that my work situates itself within a constructivist theory of

learning. The constructivist paradigm foundations itself on the assumption that

knowledge is constructed through experience and the processes of assimilation and

accommodation (Piaget, 1970). With much of Piaget’s later work landing in the

domain of mathematical knowledge, the distinction between physical knowledge

based on experience and non-physical knowledge (i.e. logical and mathematical

structures) was of particular importance. He questioned how one’s knowledge of

the abstract, that which cannot be directly experienced, is derived. Piaget suggested

that knowledge of abstract logical-mathematical structures are acquired through

simple abstraction and reflective abstraction (Piaget, 1970).
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The constructivist paradigm being situated within experience aligns itself well

with my chosen qualitative, case study methodology. Through engaging in one-

on-one interviews, I wanted to understand the experience and knowledge of my

participants by living an experience along side them. Moreover, the beliefs and

values which I personally hold about teaching and learning land in the domain of a

constructivist theory. As such, I hold the belief that teachers of mathematics should

be “guides on the side,” facilitating rich discussions catered to the individual needs

of their students.

1.6 Personal Statement

Throughout elementary and secondary school, I did not consider mathematics to

be a subject of personal interest. Growing up with both of my parents as artists, I

valued creativity and imagination; I loved painting, dancing, choreographing, and

creating music, all of which challenged my creativity and imagination. My math-

ematics learning, on the other hand, seemed to be devoid of these characteristics.

The emphasis was on speed, not understanding; memorization, rather than creation.

I can recall asking my teachers why we followed certain rules and algorithms, only

to be told “that is just the way you do it.” These responses left me dissatisfied and

uninterested, but my parents continued to emphasize the importance of a strong

mathematics education. So, I stuck through it, followed the norms of rote memo-

rization, associating my mathematics education with a pathway to success.

At seventeen, I enrolled in courses at the community college. I had spent the

last eight years of my life pursuing a career in classical ballet, but my parents con-
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tinued to emphasize the importance of an education, particularly if I wanted to

pursue a career in dance. The program I was enrolled in counted my community

college courses towards a high school diploma, as well as an Associate’s Degree

from the college. In not knowing what I wanted to study, I took a mixed bag of

courses; psychology, art history, foreign language, science, and mathematics. The

mathematics course I took was Pre-Calculus. It was a class of about twenty-five

students with a professor who taught both at the community college and at the lo-

cal public university. Being the keen student that I was, I sat myself in the front

row of the classroom, assuming that my old ways of doing mathematics would

get me through. However, I was surprised by the cultural shift in learning math-

ematics that I experienced. Thinking mathematically was transformed from being

about the destination to being about the journey; creativity and imagination were

now valued in learning and doing new mathematics. Some of my questions were

answered with responses well beyond the context of the course, but it brought me

to see mathematics as something so much bigger and more beautiful than what I

perceived it to be for so many years.

This shift in learning and doing mathematics acted as the impetus for pursuing

my Bachelor’s and Master’s degrees in mathematics. When I taught my first course

in the fall of 2013, I was brought back to sitting in my Pre-Calculus class years ago

and wondering what that professor did to help me become so interested in math-

ematics. I had years of advanced mathematical coursework under my belt, so I

wondered how I could make that accessible to my students so that I might spark

their curiosity, as my pre-calculus professor did for me. The culture in my class-

room was one of inquiry, and my students would often ask questions beyond the
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horizon of the course. However, I did not want to leave them with a reply similar

to the ones I received in high school. I was challenged to think beyond the content

of the course to my advanced study, and think of how I could use that knowledge

to help them better understand the content of our course. This reflective process

brought me to have a deeper understanding of the mathematics I was teaching, as

well as building a classroom where creativity and imagination were of value.

My interest in the relationship between school and advanced mathematical

knowledge stems from these experiences. It is my hope that my current research

will begin to bridge this gap and create more dynamic relationships between fac-

ulties of education and departments of mathematics. Both of these groups have

opportunities to learn and grow with each other. My hope is that one day, math-

ematics educators could collaborate with mathematics departments to transform

advanced mathematics courses to better serve future teachers, while mathemati-

cians could work with teacher educators to transform mathematics methods courses

which draw upon and extend the mathematical expertise of future teachers. To-

gether, we can work to enrich the mathematical knowledge of future teachers, and

in turn, the mathematical education of students in both elementary and secondary

school.

1.7 Organization

The front matter of this paper, chapters 1, 2, and 3, shed light on the theoretical and

methodological considerations of the study. In chapter 2, I discuss existing litera-

ture on teacher education. I examine the history of teacher education and certifi-

cation, as well empirical studies measuring teachers’ mathematical knowledge for
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teaching (MKT). Through this analysis, I elaborate on the gap of an accepted theo-

retical framework for analyzing and measuring MKT, particularly in the context of

secondary mathematics teachers. I provide justification for my chosen theoretical

framework of MKT (Silverman and Thompson, 2008).

Chapter 3 examines the methodological considerations of this research, includ-

ing extended background on all five participants. In Chapters 4, 5, 6, and 7, I

examine results of the task-based interviews, through the categorization of mathe-

matically related tasks. At the beginning of each of these chapters, I begin with an

overview of some of the connections I have made in my own studies between sec-

ondary and post-secondary mathematics. Finally, Chapter 8 discusses the results

from the previous chapters by interpreting them within the context of my theoret-

ical framework. More specifically, this chapter will examine the development of

participants’ MKT in the context of their studies in mathematics and teacher edu-

cation. The chapter concludes with a discussion on limitations, extensions for the

future, and a discussion of the impact of this work for departments of mathematics

and faculties of education.
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Chapter 2

Literature Review and

Theoretical Framework

Teacher certification exams dating back to the mid-1800s reveal that there has been

a long-term interest in teacher knowledge and quality (Shulman, 1986). What

knowledge should teachers have? How deeply should they understand the con-

tent they are to teach? How would a teacher handle a particular situation in the

classroom - pedagogical or otherwise? These are questions that are debated in the

teacher education literature to this day. Although there is a great deal of interest

in teachers’ general pedagogical knowledge, the past three decades have seen a

growing body of literature specifically dedicated to teachers of mathematics. In

particular, researchers have found themselves concerned with the mathematical

knowledge used in teaching mathematics. To this end, the following chapter aims

to provide a comprehensive review of this subject: mathematics teachers’ Mathe-

matical Knowledge for Teaching (MKT).
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Through this chapter, we will explore the existing literature on secondary math-

ematics teachers’ knowledge. As will be described, early studies focused on math-

ematics knowledge, but more recent research has focused on frameworks for under-

standing teachers’ knowledge. I will begin by going back centuries to understand

and look at the historical development of teacher knowledge in general, noting

the pendulum effect through the years; that is, concerns in teachers’ knowledge

have continually swung back and forth between content knowledge and pedagogi-

cal knowledge, creating confusion as to what knowledge is valuable for teachers to

have. Next, I will look at the combination of the two in Shulman’s (1986) concept

of Pedagogical Content Knowledge (PCK).

Finally, I will turn my attention to the knowledge of mathematics teachers, a

hot topic among education researchers due to concerns of declining North Amer-

ican mathematics scores at the international level (No Child Left Behind Act of

2001, 2019; Richards, 2014). I will examine various frameworks for “mathemati-

cal knowledge for teaching” (MKT), developed as an extension of Shulman’s PCK

for mathematics teachers. However, as will be argued, the integration of advanced

mathematical knowledge is not embedded in this theory, which has lead to alter-

native theories of MKT, such as that of Silverman and Thompson (2008). I will

describe three alternative frameworks for secondary mathematics teachers’ knowl-

edge and justify the choice of my framework for this study.

14



2.1 Teachers’ Content Knowledge: Beginnings

The historical discussion that follows is drawn from Shulman (1986). In his work

Ramus, Method and the Decay of Dialogue, Ong (1958) describes the importance

of pedagogy within the medieval university. The environment was one in which

“content and pedagogy were part of one indistinguishable body of understanding”

(Shulman, 1986, p. 3). Ong asserts that the defining characteristic of rich subject

matter understanding was indicated by a students’ ability to teach via lecture and

discussion. To this day, in order to receive the academic title of “doctor” or “mas-

ter,” one must demonstrate their ability to lead a lecture and discussion during their

defense. Even a millennia ago, Aristotle stated the following regarding the nature

of knowledge:

Broadly speaking, what distinguishes the man who knows from the

ignorant man is an ability to teach, and this is why we hold that art

and not experience has the character of genuine knowledge (episteme)

- namely, that artists can teach and others (i.e. those who have not

acquired an art by study but have merely picked up some skill empiri-

cally) cannot. (Shulman, 1986, p. 4)

In the mid-1800s, the majority of examinations for school teachers focused

on subject matter knowledge (Shulman, 1986, p. 2). Excellence in teaching was

defined by a teacher’s mastery of content, while pedagogical knowledge was a sec-

ondary concern. Shinkfield and Stufflebeam (2012) provide a detailed account of

teacher evaluation in the first half of the 20th century, remarking that very few

schools engaged in the formal evaluation of their teachers. Despite limited devel-

opments in evaluation, emergent teacher education policies of the 1980s were in
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stark contrast to those of the 1870s. A teacher’s capacity to teach was then defined

by their knowledge of pedagogical practices and basic subject matter knowledge.

Shulman argues that the transition towards valuing pedagogical practice over sub-

ject matter was partly due to policymakers’ decisions being based on educational

studies, that themselves ignored subject matter (Shulman, 1986, p. 3). Thus, the

evaluation of content knowledge receded, being overtaken by the evaluation of

effective teaching practices as defined in various “process-product studies” (Shul-

man, 1986, p. 3).

The 1983 document A Nation at Risk painted a rather doom and gloom picture

of the existing status of the United States education system, claiming that “if an

unfriendly foreign power had attempted to impose on America the mediocre edu-

cational performance that exists today, we might well have viewed it as an act of

war” (National Commission on Excellence in Education, 1983, p.5). The document

included an overview of the risks that the U.S. education system faced, evidence

from various sources including declining SAT scores, as well as five recommenda-

tions for improving the existing system. One of these pertained to improvement in

the quality of teacher preparation, with a substantial focus on subject matter knowl-

edge. This recommendation stemmed from a criticism that “the teacher preparation

curriculum is weighted heavily with courses in “educational methods” at the ex-

pense of courses in subjects to be taught” (National Commission on Excellence in

Education, 1983, p.22). With the release of Nation at Risk came reforms such as the

National Science Teachers Association’s 1984 recommendation that all secondary

school science teachers have a minimum of 50 credit hours of science course work

at the university level (Weiss, 1987, p.76). Almost two decades later, the No Child
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Left Behind Act of 2001 called for teachers to be fully certified in their subject spe-

cialization (No Child Left Behind Act of 2001, 2019).

Canada has also experienced pressure in reforms of teacher education (Russell

and Dillon, 2015; Sheehan and Fullan, 1995). Although teacher certification is

controlled by individual provincial governments, each province requires that sec-

ondary teachers have an undergraduate degree in a teachable subject. In Ontario,

the 1960s brought forth a shift in which teacher education was moved from teacher

colleges to Faculties of Education, initiating the present notion of secondary sub-

ject specialization (Kitchen and Petrarca, 2013). More recently, the Ontario gov-

ernment announced that certified teachers will require both an undergraduate de-

gree and a 4-term teacher education program (Kitchen and Petrarca, 2013), further

emphasizing the value they place on pedagogical knowledge. In Quebec, the gov-

ernment mandates that candidates for a teaching diploma in general education at

the secondary level have at least 45 credit hours of university coursework in a basic

school subject, as well as a 4-year Bachelor of Education program with over 700

hours of practicum (Gouvernement du Québec, 2011; Russell and Dillon, 2015).

All of these policies encourage secondary teachers to have subject specific content

knowledge; however, once a teacher is hired by a school, they may be allowed

to teach other subjects. This is particularly the case in British Columbia where

teaching certificates do not signify grade level or subject specialization (British

Columbia Ministry of Education, 2016). Nonetheless, all of these reforms point to

sustained political pressure to have teachers more educated in their subject area.

Shulman’s (1986) notion of pedagogical content knowledge (PCK) acted as a
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medium for reconciling concerns about teachers’ content knowledge and concerns

of teachers’ pedagogical practices. For Shulman, the construct of PCK extends

content knowledge to content knowledge for teaching. Content knowledge is still

at the forefront, but is placed in the context of how teachers navigate such knowl-

edge throughout their teaching. Shulman (1986) emphasized that there was a lack

of research focusing on the relationship between content and pedagogy and sug-

gested that teacher education researchers should begin to explore this newly de-

fined terrain. Following Shulman’s work, an entire body of work dedicated to PCK

(Grossman, 1990; Wilson et al., 1987), extensions to particular subject areas, and

more recently the notion of technological pedagogical content knowledge (TPCK)

has emerged (Koehler and Mishra, 2014). This general work in teacher knowledge

laid the groundwork for mathematics specific research on the relationship between

content and pedagogy (Depaepe et al., 2013).

In particular, Ernest (1989) worked to extend Shulman’s notion of PCK to a

more detailed framework for mathematics teachers. Similar to Shulman, Ernest

(1989) argues that mathematics teachers should have both a curricular and ped-

agogical understanding of mathematics. These constructs mirror that of Shul-

man’s notions of curriculum knowledge and PCK, respectively. What distinguishes

Ernest’s framework from Shulman’s is the attention to the beliefs and attitudes of

teachers and the impact on their practice in the classroom. Ernest argues that this

system is most likely unique to individual teachers and exists as a product of the

individual’s “view or conception of the nature of mathematics, model or view of

the nature of mathematics teaching,” and “model or view of the process of learn-

ing mathematics” (Ernest, 1989, p.250). In the context of secondary mathematics
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teachers, one might ask the following question: what do prospective secondary

mathematics teachers perceive as the role of their advanced mathematics knowl-

edge in their development as teachers? This is a question we will investigate

through this study.

2.2 Mathematical Knowledge for Teaching

Nearly a decade before Shulman initiated work on PCK, Begle (1979) examined

secondary mathematics teachers’ mathematical knowledge. His work was under-

taken to provide “guidance to those interested in conducting comprehensive re-

views of the factual information which exists about the effects of various variables

on student learning of mathematics” (Begle, 1979, p. xv). In his review of the em-

pirical literature on mathematics teachers between 1960-1976, Begle (1979) sug-

gested that there was no direct correlation between student success and the number

of mathematics courses taken by their teachers. In an effort to support this, Monk

(1994) examined secondary mathematics teachers and the effect that various uni-

versity coursework had on their pupils’ improvement in mathematics. Using quan-

titative measures, Monk found a minor positive relationship between the number

of mathematics courses taken and student improvement (Monk, 1994, p.130). Per-

haps more interestingly, he also found that the number of courses in mathematics

pedagogy had a more positive effect on student learning than increased undergrad-

uate coursework in mathematics (Monk, 1994, p.130). Adding further murkiness

to the water, the National Centre for Research on Teacher Education (NCRTE)

claimed that teachers with undergraduate majors in the subject they teach did not

outperform other teachers in their explanations of fundamental concepts (National

Center for Research on Teacher Education, 1987). In their study of prospective
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teachers’ mathematical content knowledge, Kahan et al. (2003) recognized that

the most effective lesson plans from the prospective mathematics teachers in their

study were not necessarily those with the highest grade points averages in mathe-

matical coursework.

Indeed, the four decades of work following Begle (1979) have brought forth no

common consensus as to what extent university mathematics coursework affects

pupils’ learning. These inconsistencies have brought researchers to look beyond

subject matter knowledge and consider the interplay between content and peda-

gogy in the mathematics classroom. In an effort to address this question, Deborah

Ball and her colleagues extend Shulman’s notion of PCK to the teaching of math-

ematics (Ball, 1988, 1990; Ball and McDiarmid, 1990). Deborah Ball is arguably

the pioneer in research on the ways in which teachers of mathematics must know,

understand, and teach the mathematical knowledge at stake in the school curricu-

lum (Ball et al., 2005, 2001; Hill et al., 2008). Along with her colleagues, Ball

has conducted numerous studies in an attempt to describe what “teachers do in

teaching mathematics” (Ball et al., 2005, p.17). In their later work, they define

Mathematical Knowledge for Teaching (MKT) as mathematical knowledge that is

used in teaching mathematics (Ball and Bass, 2002, p.5).

In their most detailed description of MKT, Ball et al. (2008) take the cate-

gories of PCK, content knowledge, and curricular knowledge as defined by Shul-

man (1986) and subdivide them into more well-defined subcategories (see Figure

2.1). They conceptualize MKT as having two dimensions: Subject matter knowl-

edge and PCK. These dimensions break down further in their framework. Subject
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Figure 2.1: Mathematical Knowledge for Teaching (MKT)

matter knowledge is subdivided into Specialized Content Knowledge (SCK), Com-

mon Content Knowledge (CCK), and Horizon Content Knowledge (HCK). The au-

thors define CCK as mathematical knowledge possessed by the average adult. This

type of mathematical knowledge may be held by parents of students to help them

determine whether or not their child has solved the problem correctly. SCK, on

the other hand, is mathematical knowledge held by those beyond the average adult.

This knowledge is independent of pedagogy. In order to have SCK, one must have

a deeper understanding of mathematics so that they may make modifications or

build connections between content.

Finally, the notion of Horizon Content Knowledge (HCK) is a component of

teachers’ knowledge that recognizes how mathematical topics are interrelated across

the mathematics curriculum. Since HCK is a domain of MKT, HCK could be con-

sidered an awareness of mathematics beyond the horizon of the curriculum that
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impacts teachers’ practice (Jakobsen et al., 2013). Advanced mathematics is cer-

tainly beyond the horizon of the secondary curriculum, so does taking a course in

abstract algebra contribute to a teacher’s HCK?

Taking a course in abstract algebra certainly increases a teacher’s mathematical

content knowledge. After taking such a course, students learn about the mathemat-

ical structures of groups and rings, Galois Theory, and extend the notion of linear

algebra to arbitrary fields, among other concepts. However, for this knowledge to

be included in the domain of HCK, the teacher should be able to recognize the rela-

tionships between the concepts in abstract algebra and the secondary curriculum in

a way that influences their pedagogy. By recognizing the relationships between ad-

vanced subject matter and their previously constructed knowledge of school math-

ematics, the teacher has made a conceptual advance in their understanding of the

elementary concept. For example, consider the case of irreducible polynomials. In

high school, students learn that real-valued polynomials can factor into linear and

quadratic polynomials. In abstract algebra, however, students learn that these are

irreducible elements in the polynomial ring R[x] and are then able to work with

them in a new, more abstract setting. This notion of a conceptual advance that

allows one to see a concept through a new lens is what Simon (2006) defines as a

key developmental understanding Key Developmental Understandings (KDU). We

return to this construct later in this chapter.

As with PCK, the MKT framework takes into account mathematical content

knowledge, as well as pedagogical knowledge, and seeks to gain insight into the

mathematical work of teachers. Their framework for MKT has been widely used
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in empirical studies with elementary mathematics teachers, since the framework

itself emerged from practice-based research with elementary teachers. At the ele-

mentary level, Hill et al. (2005) found that teachers’ knowledge of teaching mathe-

matics was the strongest predictor of student achievement in grades one and three.

With these results in mind, Matthews et al. (2010) examined the effect of special-

ized courses for teaching elementary mathematics to a group of pre-service ele-

mentary teachers. Results showed that the teachers in the specialized courses had

higher mathematical content knowledge than those who took standard mathematics

courses (Matthews et al., 2010, p.7). These results demonstrate that understanding

teachers’ MKT is both a fruitful and practical endeavour.

The work of Deborah Ball is exceptional in its focus and reach. Her research

has transformed the landscape of literature and progress in mathematics teacher

knowledge. Having an understanding of what is “in” MKT has served as a launch

pad for numerous professional development initiatives for mathematics teachers

(Clarke, 2007), as well as inspiring change in the pre-service education of future

mathematics teachers (Simon, 2008). Her substantial impact can be seen through

the large number of citations of her work; one article, Ball et al. (2008), has been

referenced nearly 6,000 times. While the work was initially done in the context of

elementary mathematics, it has reached beyond the elementary setting to secondary

and post-secondary mathematics (Artzt et al., 2012; Goos, 2013; Tchoshanov et al.,

2017). One research direction which has stemmed from Ball’s MKT work is that of

Advanced Mathematics Knowledge in Teaching, which we explore in the following

section.
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2.3 Advanced Mathematics Knowledge in Teaching

Research on advanced mathematics knowledge of secondary teachers is a new and

upcoming field of study. Before we begin a discussion on advanced mathematical

knowledge, it is important to define what is meant by it. I borrow the definition of

Advanced Mathematical Knowledge (AMK) from Zazkis and Leikin (2010), who

define AMK as “ knowledge of the subject matter acquired in mathematics courses

taken as part of a degree from a university or college” (Zazkis and Leikin, 2010,

p.264). However, the roots of relationships between elementary and advanced

mathematics date back to over a half a century ago. In his 1939 work Elemen-

tary Mathematics from an Advanced Standpoint, mathematician Felix Klein wrote

to the teacher who found themselves teaching in the “time honoured way” and

whose “university studies [in mathematics] remained only more or less pleasant

memory which had no influence upon his teaching” (Klein, 2004). The purpose of

the book was to explore elementary mathematics from the school curriculum with

the assumption that the reader has extensive post-secondary mathematics expertise.

Mathematicians and non-mathematicians align themselves with the perspective

that advanced mathematics knowledge is of value for practicing secondary teach-

ers. In their 2002 report, the U.S. Department of Education made the bold claim

that advanced subject matter experience influences teachers to conceptualize the

secondary mathematics curriculum at a deeper level and provide a richer learning

experience for students, leading to higher student achievement (Paige, 2002). A

decade later, this claim still held strong, when the Conference Board of the Math-

ematical Sciences claimed that the knowledge of secondary mathematics teachers
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should be well beyond the scope of the school curriculum and recommended that

all secondary mathematics teachers have coursework in single and multi-variable

calculus, introduction to linear algebra, statistics and probability, introduction to

proof, abstract algebra, real analysis, modelling, differential equations, group the-

ory, number theory, history of mathematics, geometry, complex analysis, and dis-

crete mathematics (Conference Board of the Mathematical Sciences, 2012). This

document provides detailed rationale for the inclusion of each of these topics in

the mathematics education of future teachers. This list is almost exhaustive of

some university’s mathematics curriculum and suggests all secondary mathemat-

ics teachers should have a full major in mathematics.

Teacher education programs have taken strides to align themselves with such

recommendations. Teacher education programs in Canada require that applicants

who wish to specialize in secondary mathematics have at least 30 credits of mathe-

matics coursework at the upper level. Even though advanced mathematics course-

work is seen to be essential by mathematicians, researchers, and professional or-

ganizations, practicing teachers do not share the same sentiment. In their study of

mathematics teachers’ perceptions of AMK in teaching, Zazkis and Leikin (2010)

found that teachers saw benefits from the skills learned in their undergraduate de-

grees, but saw limited value in content specifics. That is, teachers in the study

valued their undergraduate mathematics experience for building their persistence

in problem solving, building connections within the curriculum, and overall confi-

dence. However, they perceived content connections between AMK and secondary

mathematics as being very limited and non-essential to their teaching. Through this

study, they conclude with a call for continued studies on the relationship between
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AMK and MKT, as well as a more well-defined relationship between the two (Za-

zkis and Leikin, 2010).

In very recent work Wasserman and colleagues have been exploring the role

of AMK and HCK of secondary mathematics teachers, with the belief that knowl-

edge of mathematics at the horizon can be “impetus for additions or alterations to

the teachers’ instructional plans” (Wasserman and Stockton, 2013, p.22). In their

initial work, they share two vignettes that show how AMK and HCK influence a

teachers’ pedagogy. For example, the second vignette demonstrates how extended

knowledge of abstract algebra and group axioms could influence a teachers’ lesson

on linear equations. In particular, this knowledge may support lesson design so that

students have time to reflect on important mathematics such as the existence of a

particular identity or inverse, depending on the operation in question. Wasserman

et al. (2017) follow up on this through an effort to make real analysis relevant to

teachers, with the hope that such a model for teaching could help future teachers

in “developing knowledge that is situated in professional practices and that they

will understand as valuable and be able to use in their daily work with students”

(Wasserman et al., 2017, 574).

As this section elaborates, the domain of understanding the role of AMK in

secondary teachers’ practice is a new and developing field. In the section that fol-

lows, we examine less recent literature on teacher knowledge, where the focus is

on content knowledge at the secondary or post-secondary level, not the intersection

of the two.
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2.4 Studies on Teacher Knowledge

The vast majority of research on teachers’ MKT exists at the elementary level.

This is problematic since educational backgrounds of secondary and elementary

teachers typically differ substantially. Secondary mathematics teachers are often

required to take advanced mathematics coursework during their post-secondary

degrees, while this is not a requirement of elementary teachers. To this day, there

are few studies on teachers’ MKT that investigate how this advanced mathematical

knowledge is used in their practice. One of the earliest such studies was that of

Even (1993), where she examined prospective secondary teachers’ understanding

of the function concept. The participants in her study were 162 pre-service sec-

ondary mathematics teachers who had completed the majority of the mathematical

coursework required in their program. A questionnaire was distributed to the par-

ticipants that included a variety of questions addressing subject matter knowledge

of functions, as well as pedagogically focused questions on functions. Further-

more, a subset of the participants engaged in interviews regarding the function

concept.

Results revealed that the prospective teachers in Even’s study possessed a very

limited conception of function. For example, seven out of the ten subjects who

participated in the interview phase stated that all functions can be represented by

a single symbolic formula, claiming that functions and equations “are the same

thing” (Even, 1993, p.105). After her analysis, Even boldly remarks that the re-

sults of her study reveal “a situation in which secondary teachers at the end of the

20th century have a limited concept image of function similar to the one of the 18th
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century” (Even, 1993, p. 112). Even concludes her work with a call for an empha-

sis on subject matter preparation in teacher education programs (Even, 1993, p.

113). She states that prospective teachers need an environment that fosters power-

ful mathematical understandings that can be useful in the teaching of mathematics.

In a response to Even (1993), Wilson (1994) conducted a case study of a single

prospective secondary mathematics teacher and the impact that a ten week course

emphasizing mathematical content and pedagogy had on her understanding of the

function concept. Throughout the study, the participant’s understandings of the

function concept saw significant development, suggesting perhaps unsurprisingly

that courses which integrate content and pedagogy could be useful to prospective

secondary mathematics teachers. Although it is concerning that some teachers have

such limited understanding of secondary mathematics concepts, it is encouraging

that significant improvement is attainable.

Following the work of Even (1993), Stump (1999) investigated prospective sec-

ondary teachers’ understanding of slope. Slope is a fundamental concept in the sec-

ondary curriculum and “challenges the distinction between ratio and rate” (Stump,

1999, p.125), requiring that students have a solid understanding of proportional

reasoning. Stump (1999) questioned whether the secondary teachers (prospective

and in-service) in her study understood the complexities of the slope concept and

whether secondary students’ difficulties with slope (Barr, 1980, 1981) were present

in these teachers. The study revealed that the teachers in question had a limited

understanding of the slope concept. Both the pre-service and in-service teachers

demonstrated misconceptions surrounding the concept of slope, were unable to

answer questions relevant to the secondary curriculum, and lacked connections be-
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tween various representations of slope. The results of Stump (1999) bring one to

question how secondary mathematics teachers are to provide rich learning expe-

riences for students if they do not have a rich understanding of the mathematics

themselves. If mathematics teachers have difficulty with concepts such as func-

tions and slope, how do they fare when it comes to more advanced mathematics,

such as those involving proof? Such concerns motivate my own interest in a well

developed framework for assessing MKT.

Knuth (2002) sought to answer this question in his article examining secondary

school mathematics teachers’ conceptions of proof. Through semistructured inter-

views and proof-focused tasks, Knuth (2002) explored in-service secondary math-

ematics teachers’ conceptions of proof. Through his analysis, he uncovered that

the participating teachers recognized and acknowledged the importance of proof in

mathematics, but not in mathematical pedagogy. Knuth (2002) argued that these

conceptions may exist due to teachers’ previous experiences with proof at the sec-

ondary and tertiary level. In response to both instances, Knuth (2002) claimed

that proof is a mere tool for verification and yields no personal meaning for stu-

dents (Knuth, 2002, p.400). Furthermore, Knuth (2002) observed that many of

the teachers in the study did not have a solid understanding of what constitutes a

valid proof (Knuth, 2002, p.401); that is, the teachers in his study were unable to

recognize what features distinguish a correct proof from an incorrect one. With

teachers having such limited conceptions of proof, he suggests that “university

mathematics professors perhaps play the more significant role in shaping teachers’

conceptions of proof” (Knuth, 2002, p. 403). Although it may be reasonable to

state that university mathematics courses and professors play a significant role in
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the development of teachers’ conceptions of proof, is it reasonable to assume that

mathematics professors see “proof as a meaningful tool for studying and learning

mathematics?” (Knuth, 2002, p. 403) What do university mathematics professors

see as the role of proof in their classrooms and in their pedagogy? Regardless, the

issue of in-service teachers having limited conceptions of proof that Knuth (2002)

unveils reiterates the potential post-secondary courses in mathematics could have

for secondary teachers’ practice.

Following the work of Knuth (2002), Schwarz et al. (2008) conducted a com-

parative case study on prospective secondary mathematics teachers’ knowledge of

proof in Germany, Hong Kong, and Australia. Within this study, the researchers

were concerned with future teachers’ “professional competencies” in the domain of

argumentation and proof (Schwarz et al., 2008, p. 792). Similar to Knuth (2002),

these researchers were not only interested in participants’ ability to execute proofs

requiring only secondary level mathematics, but they also probed participants’

positionality on the role of proofs in mathematics lessons at the secondary level

(Schwarz et al., 2008, p. 793). An open-ended questionnaire was used to examine

the various facets and connections among participants’ knowledge and interviews

were conducted with selected volunteer student teachers afterwards. Overall, 186

prospective teachers from the three countries completed the questionnaire.

Results from the questionnaire revealed that the majority of prospective teach-

ers from all three countries were unable to produce formal proofs from the sec-

ondary curriculum and did not succeed at recognizing whether a given mathe-

matical proof was valid or not (Schwarz et al., 2008, p. 807). Their analysis of
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questions pertaining to beliefs about the nature of proof revealed that the major-

ity of participants had a high affinity towards utilizing proof to understand more

advanced mathematical content. These results directly contradict the finding from

Knuth (2002), that the teachers in his study did not mention proof having a sig-

nificant role in promoting mathematical understanding (Knuth, 2002, p.400). This

brings one to question how each of these authors defines “affinity.” If the teachers

in Knuth’s study had participated in the study of Schwarz et al. (2008), would we

see this same result? These contradictory results could be due in part to incon-

sistencies in the theoretical framings of these studies, an issue which we turn our

attention to in the next section.

In an effort to understand the dynamic between advanced mathematical knowl-

edge and the school curriculum, Cofer (2015) examined prospective secondary

mathematics teachers’ understanding of abstract algebra concepts which implicitly

appear in the secondary curriculum. Cofer (2015) utilized Ball and colleagues’

theoretical conceptualization of MKT in order to identify the mathematical content

knowledge of her participants and how that knowledge affected their pedagogi-

cal choices. She found that many of the prospective teachers in her study were

unable to make meaningful connections between school algebra and university al-

gebra. For example, when asked questions regarding even numbers, participants

were unable to make any connections between the abstract definition of even num-

bers being a subgroup of the integers and the elementary school definition of even

number. In fact, there were multiple participants who were unable to provide any

accurate definition for an even number. The results from Cofer (2015) indicate that

there is a need for research that examines the connections between school and ter-

31



tiary mathematics and how that knowledge is visited in teacher education. Indeed,

Suominen (2015) argues that undergraduate texts in abstract algebra are lacking

in explicit connections between secondary and university mathematics. Students

enrolled in abstract algebra courses often exit the course unable to comprehend

the concepts studied and find themselves unable to connect the concepts within

their existing mathematical understandings (Zazkis and Leikin, 2010). In order to

move beyond this issue, Suominen contends that abstract algebra “can no longer

be considered simply as the generalization of school algebra but rather it should

be regarded as an extension of previous mathematical knowledge from algebra and

geometry” (Suominen, 2015, p.79).

2.5 Frameworks for Teacher Knowledge

Although each of the studies outlined above examine the mathematical knowledge

of prospective secondary teachers, they are primarily concerned with mathematical

content knowledge. The role that content knowledge plays in pedagogy is a sec-

ondary concern. To this end, there is very little empirical research. While most of

these studies make mention of Shulman’s theoretical construct of PCK, only one

utilizes Ball’s framework of MKT. Why is this the case? One answer might arise

from the how this particular MKT framework was developed. As elaborated upon

in Section 2.2, Ball and colleagues’ framework originated in the context of ele-

mentary school teachers’ mathematical work in practice. Based on this research,

a distinction was made between common content knowledge (CCK) and special-

ized content knowledge (SCK). Ball et al. (2008) define CCK as the mathematical

“knowledge of a kind used in a wide variety of settings - in other words not unique
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to teaching; these are not specialized understandings but are questions that typi-

cally would be answerable by others who know mathematics” (Ball et al., 2008, p.

399). Furthermore, they define SCK as “the mathematical knowledge ’entailed by

teaching’ - in other words, mathematical knowledge needed to perform the recur-

rent tasks of teaching mathematics to students” (Ball et al., 2008, p. 399). These

definitions have been widely used and accepted by the elementary mathematics ed-

ucation community and continue to influence a growing body of research (Austin,

2015; Copur-Gencturk and Lubienski, 2013; Ottmar et al., 2015).

It is important to ask whether these constructs are transferable to the context

of secondary mathematics teachers. Do these descriptions of content knowledge

represent the knowledge of secondary mathematics teachers as well as they do

for elementary teachers? Is it reasonable to generalize the MKT framework from

one context to another? The actions of unpacking and connecting mathematical

concepts are necessary tasks for mathematics teachers, but are not necessary for

the average mathematically literate person. For example, elementary mathematics

teachers need to know of various methods to motivate the idea of place value in

arithmetic computations; this is knowledge that the average person does not have.

Thus, within the MKT framework, such work falls under the umbrella of SCK.

However, if one considers a secondary teacher who has a degree in mathematics,

the work of connecting and unpacking mathematics may no longer be considered

unique to teaching. That is, the definition of SCK may need to be modified to ac-

count for the mathematical experiences of secondary teachers. The work of Ball

and her colleagues is valuable because it extends Shulman’s framework of PCK to

the context of mathematics teachers and links pedagogy, mathematical knowledge,
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and student success. However, extending this framework to secondary teachers

may require more care than is initially evident.

There have been a number of efforts to evaluate MKT at the secondary level,

with theoretical frameworks borrowing heavily from Ball et al. (2008). Among a

number of such efforts are the Knowledge of Algebra for Teaching (KAT) project

(McCrory et al., 2012), the SimCalc rate and proportionality teaching survey (Shecht-

man et al., 2006), and the High School Mathematics from an Advanced Standpoint

(HSMPAS) Project (Usiskin et al., 2001). Although each of these projects seeks

to broaden the understanding of MKT at the secondary level, the intent of each

project differs. The KAT project seeks to refine the MKT framework of Ball and

colleagues, with KAT’s original purpose being to unravel the knowledge used in

teaching algebra. Eventually, the KAT project evolved into an instrument used

to evaluate secondary teachers’ knowledge of teaching algebra (McCrory et al.,

2012, p. 591). The SimCalc project is concerned with understanding the ways in

which teachers integrate technology to help their students understand conceptually

demanding mathematics. In contrast to the KAT project, the SimCalc project is

not concerned with the development of theory. Instead, it assumes Ball’s MKT

framework and uses it as a basis to evaluate the effects of technology integration

on teachers’ understanding of the mathematics they teach. Finally, the HSMPAS

focuses on curriculum development for prospective secondary teachers. Similar to

SimCalc, HSMPAS uses Ball’s conceptualization of MKT as given, but assumes

that advanced mathematical knowledge from post-secondary degrees should have

an impact on secondary teachers’ mathematical knowledge for teaching.
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All of these projects recognize that the teaching of mathematics is a form of

“mathematical work” (Ball and Bass, 2002, p.13) and that teachers’ knowledge

a multi-dimensional, complex network interweaving content and pedagogy. The

large number of distinct projects that specifically examine secondary MKT reveals

an extensive interest in the phenomena. Unfortunately, with all of these distinct

projects comes a disconnection with respect to theory:

It is in the arena of underlying theory, however, that these instruments

differ most. Despite claiming to cover roughly the same terrain, these

projects have strikingly different approaches to specifying domains of

measurement - in essence, different approaches to organizing what is

“in” mathematical knowledge for teaching. (Hill et al., 2007, p.131)

The disparity among these theories makes it difficult to link various results

in the research literature. If the goal among researchers is to pursue progress in

the domain of secondary MKT, I believe that one of the first steps should be to

have a theoretical framework for which researchers can agree upon. A more ambi-

tious goal would be the development of an MKT framework which is accepted not

just within the secondary context, but in the elementary and tertiary as well. One

such framework that might fit these credentials is that of Silverman and Thompson

(2008) and their framework for MKT.
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2.5.1 Framework of Silverman and Thompson

The MKT conceptualization of Silverman and Thompson (2008) was developed

while bearing in mind that while a great deal of research exists on the knowledge

of mathematics teachers, there is not a “commonly accepted theoretical framework

for research in mathematics teacher education” (Silverman and Thompson, 2008,

p.501).

In particular, existing frameworks focus on what is “in” MKT. Silverman and

Thompson (2008) distinguish their framework from others in its focus. Rather

than understanding and quantifying the “what” of MKT, Silverman and Thomp-

son (2008) interrogate how such knowledge is developed and what experiences

are necessary to develop understandings that can be pedagogically powerful. The

primary inquiry of their work asks what cognitive processes and understandings

contribute to the development of MKT. The authors position their work and per-

sonal epistemologies in a constructivist paradigm. As a foundation, they utilize

Simon’s notion of a key developmental understanding (KDU) (Simon, 2006), as

well as Piaget’s concept of reflective abstraction (Piaget, 1985). Both of these are

theoretical frameworks that, on their own, are disciplinary orientations for research

on the construction of mathematical understanding. Since Silverman and Thomp-

son’s framework is not independent of other frames, it is necessary to have an

understanding of KDUs and reflective abstraction in order to fully understand this

conceptualization of MKT.
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Key Developmental Understandings

Modern changes to the mathematics curriculum in Canada and the United States

have brought forth an increased focus to the conceptual nature of mathematics and

towards building student understanding of these concepts. However, the develop-

ment of such understandings is difficult for students and for the teachers working to

foster them. Simon (2006) elaborates that the KDU construct is meant to serve as

a way to identify “critical transitions that are essential for students’ mathematical

development” (Simon, 2006, p. 360). In an effort to distinguish these transitions

as “critical,” Simon remarks that KDUs have two major characteristics. First, they

must involve the students making a “conceptual advance” in their understanding.

That is, once a KDU of a particular concept is constructed, students are then able

to make more mathematical connections and think about the concept in ways they

have not before. Simon provides the example of students transitioning from un-

derstanding a fraction, such as 1
5 , as a piece of a whole, to being an independent

quantity; this is a “conceptual advance” which allows students to work with frac-

tions in a new context. The second characteristic of a KDU is that students do not

acquire it from another person’s explanation. The construction of a KDU is through

the internal process of the learner whereby the student reflects on their own activity

and experience.

The KDU construct can play a major role in mathematics pedagogy, both in

instruction and assessment. If fostering the development of KDUs becomes a pri-

ority for a teacher, they could plan their lessons in a way that encourages students

to make the necessary conceptual advances. These lessons should be interactive,
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inductive, and allow students the space to make their own realizations about the

mathematical knowledge at stake. Since one must coordinate assessment with in-

struction, how might one assess whether a student has achieved particular KDU?

Turning once again to the KDU of fraction as quantity, Simon presents Figure 2.2

as an example of a question that assesses whether or not a student has made this

conceptual advance. This diagram could be associated to a question in which a

student must identify if the shaded quantity represents 1
4 of the whole.

Figure 2.2: Assessment item for fraction as quantity (Simon, 2006, p.368)

The notion of a KDU in the context of AMK is an evolving domain of research.

Wasserman and colleagues have been examining the role of such personally power-

ful understandings in the MKT of prospective and in-service mathematics teachers

(Wasserman, 2016; Wasserman et al., 2017). To give the reader a better sense of

what a KDU in this domain looks like, I present the following example. Exponen-

tial functions are a fundamental concept in the upper secondary curriculum, due

to their value in modelling of various real-world phenomena. The notion of an

exponent is first studied as repeated multiplication, when the exponent is a whole

number and then easily extended to the context of rational exponents. However,

the extension to irrational exponents is never explicitly discussed until a univer-
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sity course in real analysis, while the use of irrational exponents is used in the

secondary curriculum. In order to fully understand how to work with irrational

exponents, a learner must have an understanding of irrational numbers beyond the

definition of “not rational.” Indeed, irrational numbers can be thought of as the

limit of a sequence of rationals. Such an understanding and conceptualization of

irrational numbers would allow the learner to work with irrational exponents be-

yond mere approximations.

Reflective Abstraction

Jean Piaget’s work in explicating the possible mechanisms behind children’s think-

ing often found itself grounded in mathematically oriented tasks (Beth and Piaget,

2013). In his later work on the theory of genetic epistemology, Piaget’s focus was

on understanding the formation of logical structures in children (Piaget, 1970).

The distinction between physical knowledge based on experience and non-physical

knowledge (i.e. logical and mathematical structures) was of particular importance

to Piaget, as he questioned how one’s knowledge of the abstract, that which can-

not be directly experienced, is derived. Piaget suggested that knowledge of abstract

logical-mathematical structures are acquired through simple abstraction and reflec-

tive abstraction (Piaget, 1970).

Piaget defined simple abstraction, which he later termed empirical abstraction,

as generalizations “drawn directly from external objects” (Piaget, 1980, p. 89). For

example, a child may abstract a relationship between weight and size by holding

a different object in each hand. They may realize that larger objects imply heav-
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ier weight, but may also realize that a larger object need not be heavier. These

abstractions are based solely on experience with physical objects, and thus repre-

sents an empirical abstraction. Although some mathematical knowledge may be

constructed in this way, Piaget argued that the majority of logical-mathematical

knowledge is not constructed through experience with physical objects. Rather,

it is derived through the coordination of actions performed on physical objects.

Piaget defines abstract knowledge constructed in this manner to be a product of

reflective abstraction.

Piaget (1980) considered reflective abstraction to be the mental process in

which humans construct new knowledge without having a direct interaction with

physical objects. The “reflective” aspect of this abstraction has two-dimensions,

both based off separate meanings of the word “reflection.” Firstly, through reflec-

tive abstraction, the knower is projecting their knowledge at one level to a level of

increased abstraction, just as light projects off a mirror. The second dimension is

the reorganization of knowledge from reflexive thought. Since the knowledge pro-

jected originates from a lower level, the knower must reconstruct the abstractions

from the lower level so that their knowledge connects within the structure of the

higher level of abstraction.

Numerous scholars have recognized the importance of reflective abstraction in

the study of mathematics teaching and learning. Although the notion of reflective

abstraction was developed in the context of the logical development in children,

Piaget himself observed that reflective abstraction could be the logical mechanism

that has influenced the historical development of mathematics as a field (Piaget,
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1985). Ed Dubinsky bases his theoretical framework for mathematics learning at

the postsecondary level on reflective abstraction, arguing that “Piaget’s ideas can be

extended and reorganized to form a general theory of mathematical knowledge and

its acquisition which is applicable to those mathematical ideas that begin to appear

at the postsecondary level” (Dubinsky, 2002, p.96). In his thesis on intellectual

development in mathematics education and instruction, Brun (1975) remarked that

the primary goal of instruction in mathematics should be the fostering of oppor-

tunities for reflective abstraction. Despite the significance of reflective abstraction

and its accompanying constructivist paradigm in literature on mathematics teach-

ing and learning, critiques do exist. Those who align themselves more with the

cultural psychology of Vygotsky (Kozulin, 1990) claim that reflective abstraction

and the constructivist paradigm provides a limited view of mathematics learning

(Cobb et al., 1992), disregards intersubjectivity (Lerman, 1996), and does not take

into account sociocultural theories of teaching and learning (Lerman, 2000).

2.5.2 Mathematical Knowledge for Teaching

Silverman and Thompson’s conceptualization of MKT is based on the argument

that, although a great deal of research exists on the knowledge of mathematics

teachers, there is not a “commonly accepted theoretical framework for research in

mathematics teacher education” (Silverman and Thompson, 2008, p. 501). The au-

thors contend that the majority of research surrounding mathematics teachers has

been centred around what mathematics teachers need to know to teach mathemat-

ics (Silverman and Thompson, 2008, p.500). As such, the previous frameworks

for MKT focus on the mathematical knowledge that allows teachers to interact
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with both students and mathematics on a meaningful level. Although Silverman

and Thompson (2008) agree that it is valuable to recognize the attributes of exem-

plary teaching, they question how teachers develop such knowledge. Thus, in their

work, Silverman and Thompson (2008) transfer the focus of “mathematical reason-

ing, insight, understanding, and skill needed in teaching mathematics” (Silverman

and Thompson, 2008, p.500) towards offering experiences that could lead to the

transformation of a mathematical understanding “having pedagogical potential to

an understanding that does have pedagogical power” (Silverman and Thompson,

2008, p.502).

The work in Silverman and Thompson (2008) situates itself in elementary and

secondary mathematics. Contrary to the argument made in Section 2.5 of other

MKT frameworks, the developmental MKT framework presented by Silverman

and Thompson (2008) can be extended to post-secondary mathematical knowledge.

In the context of my study, the goal is to understand how advanced mathematical

knowledge contributes to MKT. The post-secondary mathematics curriculum is

grounded in abstraction and generality, which as the literature suggests, can be a

source of confusion for many students (Suominen, 2015). While the perspective

taken in these courses is abstract and general, this does not imply that the content

is irrelevant in the context of secondary mathematics. Indeed, Suominen (2015)

argues that the content of post-secondary abstract algebra is an extension of sec-

ondary school algebra.

However, building connections between the abstract generalizations of post-

secondary courses to the concrete context of secondary mathematics requires that
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the learner develop their own, personal understandings between the content areas.

For mathematics majors intending to continue into teacher education, it is possible

that the content knowledge developed in advanced mathematics classes could be

constructed in the lofty domain of abstraction and generalization, without ground-

ing in existing content knowledge. If this is the case, the future teacher may be

unable to communicate the relevance of this content in secondary mathematics.

If connections are made between the content of advanced mathematics courses to

the secondary curriculum, this knowledge has the potential to impact the way a

teacher approaches particular topics in secondary mathematics. That is, the knowl-

edge constructed may have the potential to have a powerful impact on pedagogical

practice.

To give the reader context of how advanced mathematical knowledge could

impact the pedagogical practice of future teachers, I present the following exam-

ple. The notion of a Euclidean Domain is central to the study of rings in abstract

algebra. Put simply, a Euclidean Domain is a structure where one can do divi-

sion, with the familiar constructs of quotients and remainders. I refer the reader

to Aluffi (2009) for a detailed description of Euclidean Domains, but in short, the

structure of the division algorithm for the integers (Z) and the ring of polynomials

with coefficients in the real numbers (R[x]) is identical. That is, dividing inte-

gers, like 786÷ 37, is similar in process to the division of polynomials, such as

(x3 +
√

2x2−4x+ 3
2)÷ (x2 +1).

Division of integers and the long division algorithm is a topic in the elementary

curriculum, while the division of polynomials is a topic in upper secondary math-
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ematics. If a secondary teacher has this understanding of the relationship between

division algorithms in Z and R[x], it may impact their approach to teaching poly-

nomial division. Indeed, one could rethink of 786 and 37 as 7 · 102 + 8 · 101 + 6

and 3 · 10+ 7, respectively. This could provide a nice context for discussing the

procedure of the division algorithm of polynomials, by taking into account what

students already know about the division algorithm for integers. In this example, a

teacher has personally powerful understanding (KDU) of the division of polynomi-

als, which relates to their prior knowledge of integer long division, which in turn,

could potentially impact their pedagogical practice.

The MKT framework of Silverman and Thompson (2008) presents how math-

ematical understandings with pedagogical potential (KDUs) transform into under-

standings with pedagogical power via reflective abstraction. This framework con-

tinually emphasizes “transformation” and “development,” with the intention of un-

derstanding how teachers develop the exemplary teaching practices noted in Ball

and Bass (2002) and Kahan et al. (2003). Rather than identifying the “what” in

teaching, Silverman and Thompson hope to lead other researchers towards inter-

rogating how prospective and in-service teachers develop MKT throughout their

careers. In turn, their framework of MKT is intended to encourage and guide

teacher educators towards designing teacher education programs that encourage

teachers, regardless of whether they are in their first or thirtieth year of teaching,

to think critically about their MKT. Thus, the development of MKT becomes the

development of habits which examine one’s mathematical knowledge, pedagogical

practices, and the interplay between them.
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Cognitive Reliance?

Although Silverman and Thompson (2008) rely on the cognitive perspectives of

Piaget (1985), I argue that their framework also offers space for sociocultural per-

spectives of mathematics instruction. Their developmental MKT framework offers

teachers room to create their own classroom environments that may explore alter-

native ways of knowing and allow students to develop rich mathematical under-

standings. This is indicated by the intended classroom being a “dynamical space,

one that will be propitious for individual growth in some intended direction, but

will also allow for a variety of understandings that will fit with where individual

students are at that moment of time” (Silverman and Thompson, 2008, p.507). In

Simon’s definition of key developmental understandings (KDU), he states that al-

though KDUs and reflective abstraction derive from a cognitive perspective, “they

do not conflict with social constructs such as negotiation of meaning and social and

sociomathematical norms” (Simon, 2006, p. 364). He argues that the KDU con-

struct coordinates cognitive and social perspectives of learning, so that research

progress might be made on problematic questions such as internalization (Bereiter,

1985). Since Silverman and Thompson base their MKT framework on Simon’s no-

tion of a KDU, the case for their MKT framework leaving space for social theories

is further justified.

However, one should be cautious in the coordination of social and cognitive

theories of mathematics learning. One of the first assumptions in Piagetian the-

ory is that language is a product of thought. Piaget (1970) himself argued that

thought and logical structures exist in those who are without language. He used
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the case of children who could not hear or speak to justify that there exists “well-

developed logical thinking in these children even without language” (Piaget, 1970,

p.46). However, Vygotskian theorists would argue the exact opposite; to them,

language is the mechanism which forms thought. Indeed, Vygotsky believed that

“a word is the microcosm of human consciousness” (Vygotsky, 1986, p. 256). The

role of language in thought is central to both theories, but they stand on completely

opposite grounds in regards to what role it plays. If one is to develop a philoso-

phy of learning mathematics that coordinates these two perspectives, as many re-

searchers have done (Burr, 2015; Confrey, 2002; Ernest, 1998), one must be aware

of the underlying theoretical assumptions of each. Indeed, attempts at integrating

these two theories together may bring researchers to face theoretical roadblocks

similar to the ones that physicists face in their attempts to combine quantum the-

ory and general relativity. Although each of these theories are extremely powerful

in their particular contexts, there are major obstacles when attempting to integrate

one into the other (Lerman, 1996). However, with so many opposing arguments

on this issue, I find it impossible to fully refute the integration of a social element

into Piagetian constructivism, nor can I claim it as an unviable framework for the

learning of mathematics. Thus, I am still able to justify Thompson and Silverman

(2008) as a viable theoretical framework for my intended research.

2.6 Summary

Despite common goals, mathematicians and mathematics educators divide them-

selves not only within the confines of the university, but in research endeavours as

well (Fried, 2014). In the Mathematical Association of America’s (MAA) A Call
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for Change, they state that “the mathematical preparation of teachers must pro-

vide experiences in which they develop an understanding of the interrelationships

within mathematics and an appreciation of its unity” (Leitzel, 1991, p.3). Un-

fortunately, the divide between mathematics and education may not be conducive

to such preparation. Mathematics departments and professors are responsible for

building the mathematical knowledge of future teachers, while education depart-

ments support future teachers with subject-specific courses in pedagogy. When,

how and where can prospective teachers build connections between their advanced

mathematical knowledge and the secondary curriculum?

In a desire to bring these fields together, my research of the mathematics teacher

education literature has revealed that there are a number of studies examining

secondary teachers’ knowledge of secondary mathematics, as well as studies on

their knowledge of post-secondary mathematics. However, there is no such study

which examines the way that a post-secondary degree in mathematics influences

a teacher’s understanding of the secondary mathematics curriculum. To fill this

gap, I plan to employ the MKT framework of Silverman and Thompson (2008)

to determine how prospective secondary mathematics teachers come to develop

their MKT through reflective abstraction and key developmental understandings

constructed during their post-secondary mathematics degrees. My work aims to

answer this question and understand the role that advanced coursework plays in

mathematics teacher education by placing advanced coursework in the context of

secondary mathematics pedagogy.

Although there is a significant body of research pertaining to mathematical
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knowledge for teaching (MKT), the terrain is difficult to navigate. Researchers

in the field each have their own definition of what is entailed by MKT and thus

different ways to examine and evaluate it. As mentioned above, the terrain of el-

ementary teachers’ MKT is a single piece of land with its foundation in Ball and

colleagues’ conceptualization of MKT, which has allowed researchers to make sig-

nificant developments in the field. Unfortunately, no such common theory exists

for secondary MKT, causing the field’s development to progress at a pace that is

slower than research at the elementary level. Even though there have been a number

of significant findings on secondary teachers’ knowledge in teaching mathematics,

the theoretical bases of each result are different. Indeed, the lack of a commonly

accepted framework is causing the research community to miss opportunities to

better understand the knowledge used in teaching mathematics and make connec-

tions within the literature as a whole. It is my personal hope that an accepted

framework for secondary MKT comes to the forefront in the coming years, so that

progress can be made in the future. With my own work concerning secondary

MKT, I look forward to being a part of this conversation and making strides to

improve the education of secondary mathematics teachers in the future.

The presented analysis of Silverman and Thompson (2008) argues that their

framework provides researchers with a useful lens for understanding the develop-

ment of MKT, while also leaving space for sociocultural perspectives on mathemat-

ics education. In light of my extended research, I maintain my stance on this facet

of Silverman and Thompson (2008), but argue further that their conceptualization

for MKT could be the bridge for unifying the research community’s understanding

of the knowledge of elementary teachers, secondary teachers, and even university
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professors. Their use of key developmental understandings (KDUs) and reflec-

tive abstraction provide a basis for understanding teachers’ knowledge in a way

that transfers the focus from “mathematical reasoning, insight, understanding, and

skill needed in teaching mathematics” (Silverman and Thompson, 2008, p.500) to

a transformation of mathematical understandings “having pedagogical potential to

an understanding that does have pedagogical power” (Silverman and Thompson,

2008, p.502). Transitioning to this perspective allows researchers to move away

from the specifics of teacher knowledge and towards building “professional prac-

tices that would support teachers’ ability to continually develop MKT throughout

their careers” (Silverman and Thompson, 2008, p.509). In turn, this is a transition

from a framework that is dependent on the level being taught, to one which focuses

on practices that are conducive to the continued development of MKT for teachers

at any level.

As reviewed in this chapter, many educational movements have recognized the

important role that mathematics teachers play in supporting a quality education in

school mathematics. Beyond the issue of theoretical framing, we have seen that

there is a divide between the mathematical knowledge of teachers and how that

knowledge impacts their pedagogy. Despite requiring prospective teachers to have

advanced mathematical coursework at the tertiary level, it is unclear as to what

role AMK plays in their MKT. It is my hope that this study will be able to begin to

bridge this gap and create more dynamic relationships between faculties of educa-

tion and departments of mathematics.

This review has revealed gaps in the literature, which point to a need for a study
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which examines what prospective secondary mathematics teachers perceive as the

role of their advanced mathematics knowledge and the ways in which they relate

their advanced mathematics knowledge to concepts in the secondary curriculum.

In the following chapter, I detail the methodological considerations for my study

which aims to answer these important research questions.
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Chapter 3

Methodology

This chapter describes the methodological considerations of this study. I begin

with a justification of my chosen research methodology (case study), with respect

to the literature on social science research, as well as research in mathematics ed-

ucation. Following this, I describe the setting of the study and the backgrounds

of the individual participants who contributed to the study. I then will detail the

data that was collected and provide rationale for obtaining such data. The chapter

concludes with details on how data collected through the study was analyzed.

3.1 Research Methodology: Case Study and Interview

Unlike many studies of secondary mathematics teachers’ mathematical knowl-

edge, this study was not intended to examine participants mathematical knowledge

of secondary or post-secondary mathematics through standard qualitative tests.

Rather, this study aims to explore the connections participants make between sec-

ondary and post-secondary mathematics. These connections are dependent on the

individual experiences of each participant, which vary due to coursework taken at
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the university, teaching experience, and perceptions of mathematics. In order to in-

vestigate these connections, a qualitative approach to data collection and analysis

had to be employed to explore the mathematical knowledge, connections, and ex-

periences of the prospective teachers in the study. Since the study would be draw-

ing data from a small number of prospective secondary mathematics teachers with

an array of experiences in mathematics and pedagogy, a case study was deemed

the most appropriate methodology for investigating the complexities of the role

advanced mathematical knowledge plays in mathematical knowledge for teaching.

In terms of data collection methods, the semi-structured research interview (Kvale,

1996) was chosen as the primary source of data collection. The following sections

will argue for the use of case study and the interview as research methods for this

study.

3.1.1 Case Study

Case study is a flexible research methodology that provides researchers with a rich

picture of a phenomena and can be “characterized as being particularistic, descrip-

tive, and heuristic" (Merriam, 1998, p. 29). The definition of what necessarily

constitutes a case study varies from author to author (Stoecker, 1991), but some

key features remain, including that the heart of any case study is the case. Miles

and Huberman (1994) define the case as existing within the bounds of a particular

context; that is, the case is a real-life phenomenon, which manifests itself in a re-

stricted domain. For example, studying the general population’s understanding of

fractions does not constitute a valid case. Firstly, there is no limit in terms of who

can participate. The sample would need to be condensed to a specific person or

group of people with a unique characteristic (i.e. grade 4 mathematics teachers).
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Secondly, the topic of fractions is far too broad; the subject should be condensed

to a more concrete problem - such as division of fractions - for it to align with the

particularistic nature of case study research.

After defining the case, the flexibility of case study allows the researcher to

engage with multiple modes of data collection and to cross reference data from the

various sources. As Merriam (1998) remarks, most qualitative studies in education

utilize one, at best two, of the three widely used methods of qualitative data col-

lection - interview, observation, and document analysis. Researchers employing a

case study methodology, however, often engage with all three of these modes of

data collection and triangulate resultant data to converge on research results and

theoretical propositions (Yin, 2013).

The case study methodology has been widely used in the field of mathematics

education research, particularly in the context of prospective secondary mathemat-

ics teachers. Conner et al. (2011) conducted a case study with six prospective

secondary mathematics teachers and investigated the change in their beliefs about

mathematical reasoning and proof over a two-semester course sequence. Their

case study utilized survey, interview, observation, and written work to come to a

rich description of changes in the student teachers’ belief systems. Kinuthia et al.

(2010) investigated pre-service teachers’ development of the use of technology in

the mathematics classroom by conducting a qualitative case study in which they

triangulated focus group interviews and various reflections by the student teach-

ers over the course of a technology integration class. On a more quantitative note,

Buchholtz et al. (2008) examined prospective secondary mathematics teachers’ ad-
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vanced mathematics knowledge at universities in Germany, Hong Kong, China

(Hangzhou), and South Korea through a case study. Their study was quantitative

in nature, but based off their data, they suggest that prospective teachers are unable

to connect advanced knowledge to the secondary curriculum.

In qualitative education research, where many research studies are used as jus-

tification for intervention and changes of existing education programs, the credibil-

ity of research must be examined in some way. Unlike quantitative research where

credibility is associated with the appropriate use of statistical tests, the nature of

qualitative research calls for different criteria to judge trustworthiness, credibility,

confirmability, and data dependability (Yin, 2013, p. 45); namely external validity,

internal validity, and reliability. The issues of internal validity, external validity,

and reliability in qualitative research are key criteria in evaluating the rigour and

trustworthiness of a case study. These constructs will be addressed within the con-

text of this study in Section 3.5.

3.1.2 Interviews as Data

How might one come to understand another’s thought, experience, story, or cul-

ture? To interview is to question. It is the process of asking questions, aimed at a

deeper understanding of the interviewee and the topic at hand. How one goes about

asking questions, acquiring and interpreting answers is a question of method and

may take a wide variety of forms. The flexibility that the interview offers as a mode

of inquiry positions it as one of the hallmark research methods within social science

research. Holstein and Gubrium (2000) approximate that nearly ninety percent of

published social science research utilizes the interview in some form. The technol-
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ogy of the twenty-first century has made it easier than ever for researchers to utilize

interview data. These technologies include: audio and video recorders which al-

low researchers to revisit their conversations; transcription machines which greatly

reduce days of labour into a mere hours; and coding programs that are able to effi-

ciently manage and analyze massive amounts of data.

Despite these technological advances, the interview itself remains the same; it

is a conversation that leads to an “inner view" of the respondent (Chirban, 1996;

Kvale, 1996; Kvale and Brinkmann, 2009). Interviews serve as a method to under-

stand the other: the “hows," “whats," and “whys" of their lives. How social science

research interviewers come to understand these constructs, as we will see, is non-

uniform. The methods and practices of researchers who utilize the interview as

a research method depends greatly on epistemological commitments, the research

question, and context. Thus, as a researcher engaging with interview as a potential

research method, I found myself engulfed in a massive body of methodological

literature.

As Kvale (1996) asks in the opening of his book, “if you want to know how

people understand their world and their life, why not talk with them?" (Kvale, 1996,

p. 1) The research interview is a conversation (Burgess, 2003; Lofland and Lofland,

1984) where participants elaborate on their life experiences, in their own words.

For the researcher, the purpose of the interview is to inquire about the perspectives,

or views, of an individual. Kvale and Brinkmann (2009) provide two metaphors for

how a researcher might conduct an interview: that of a miner or a traveler. Within

the traveler metaphor, the interview is a journey where the researcher wanders,
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engages in conversation, and perhaps follows a method through their exploration.

In contrast, the miner arrives to the interview with a defined goal in mind. The

conversation in the interview is directed toward uncovering knowledge which is

embedded within the participant.

3.1.3 Variations on the Interview

Variations on the ways in which interviews are conducted vary across disciplines

and epistemological positions. Stemming from modernist social science tradition,

the structured interview is an interview in which all questions are predetermined

by the researcher, both in terms of wording and order; multiple respondents will

receive the same questions in the same order (Clifford et al., 2016). Fontana and

Prokos (2007) remark that the structured interview requires that the interviewer

“play a neutral role, never interjecting their opinion of a respondent’s answer"

(Fontana and Prokos, 2007, p. 20). Thus, structured interviews are intended for

obtaining an objective account of another’s experience, borrowing from the rig-

orous practices of the scientific method. On the opposite end of the spectrum is

the unstructured interview. With origins in ethnographic methods (Bruner, 1986),

the unstructured interview sees the interviewee as a narrator of their experience

and life history (Sandelowski, 1991). This type of interview gives the interviewee

the ability to adjust the direction of the interview, elaborating on points that are of

significance to them through stories that need not follow a particular progression

(Denzin, 2001).

Someplace in between these two lies the semistructured interview, which is

arguably the most common variation of the interview among researchers in the
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social sciences (Kvale and Brinkmann, 2009). Similar to the structured interview,

some questions may be prepared and tested ahead of implementation, but unlike the

structured interview, there is the freedom for the interviewer to probe and explore

responses. The semistructured interview is subjective; different respondents will

provide the interviewer with different responses, thus altering the overall course

of the interview. Many authors see the subjective nature as a benefit, rather than

obstacle (Ginsburg, 1997; Kvale and Brinkmann, 2009; Qu and Dumay, 2011),

arguing that variations in responses help one to better understand the complexities

of a particular phenomena.

3.1.4 Debates on the Interview as Data

Researchers who associate themselves to a postmodern school of thought often

dismiss the structured interview, claiming it as an ineffective research tool. For

example, in his critique of the research interview from a postmodern standpoint,

Scheurich (1997) states the following:

The researcher uses the dead, decontextualized monads of meaning,

the tightly boundaried containers, the numbing objectifications, to con-

struct generalizations which are, in the modernist dream, used to pre-

dict, control and reform, as in educational practice. (Scheurich, 1997,

p. 64)

For Scheurich (1997), the acknowledgement of subjectivity should be at the

forefront of research interviewing, not the prospect of generalizability. Proponents

of the structured interview have a similar distaste for the unstructured interview of

the postmodern tradition. Critics of postmodernism remark that it does not lead to
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any “true" understanding (Spiro, 1996) and that its effects are “relativism; nihilism;

solipsism; fragmentation, pathos, hopelessness" (Hill et al., 2002, p. 5). Since the

postmodern interview does not provide the scientific certainty modernists desire in

order to justify changes in policy and practice, it is viewed as a fruitless research

tool.

The critiques of those who thoroughly oppose unstructured interviews and

those who oppose structured interviews are, in fact, very similar. Each group dis-

misses research on the basis of an asserted a priori philosophical position. Criticism

of these methods and their underlying philosophies are based off characteristics

that the philosophies under scrutiny simply do not have. As Rosenau (1991) re-

marks, the anti-theoretical position that postmodernism foundations itself on, is in

fact a theoretical stand. Further, Eagleton (1996) observes that “for all its vaunted

openness to the Other, postmodernism can be quite as exclusive and as censori-

ous as the orthodoxies is opposes" (Eagleton, 1996, p. 26). Philosophical beliefs

aside, there are obvious benefits to utilizing structured interviews in social science

research. Similarly, there is a time, a place, and a purpose for postmodern research

interviewing. What is troubling is the explicit rejection of valuable research based

on epistemological beliefs. I do not reject the postmodernist interview, nor do I

reject the structured survey interview. Rather, I perceive these variations on the

interview as having their place in the social science literature and research commu-

nity. The decision of which variant to use should be dependent on the investigator’s

research question and what they wish to uncover in their work.

These criticisms are from researchers who are proponents of the interview as a
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research method. Despite its widespread use in social science research, criticisms

of the interview as a research method still ensue. Critics often claim they are “not

scientific, but only [reflect] common sense" (Kvale, 1996, p. 285). I concur with

Kvale (1996) that perhaps one must carefully define “science," before defining

something as “not science." Merriam Webster has multiple definitions of science;

“the state of knowing: knowledge as distinguished from ignorance or misunder-

standing," “a department of systematized knowledge as an object of study," “a

system of knowledge concerned with the physical world and its phenomena" (Sci-

ence, 2019). The definition we take to mean “scientific" will change whether the

qualitative research interview is “scientific" or not. Unfortunately, just as we have

multiple definitions of science, terms such as “knowledge" and “systematized" may

also have alternative meanings. With so many variations on what constitutes sci-

ence, it does not seem as though one can state that the qualitative interview is not

science. As Kvale (1996) puts it so well, “the automatic rejection of qualitative

research as unscientific reflects a specific, limited conception of science, instead

of seeing science as the topic of continual clarification and discussion" (Kvale,

1996, p. 61). The qualitative research interview is capable of providing system-

atized knowledge, provided that the researcher has a rigorous understanding of the

interview as a research method, taking into consideration the issues of validity and

reliability.

Scientific practices, assumptions, inferences, and mathematics must be based

on solid arguments which are logically sound. The research community of the

physical sciences has an understanding of what constitutes “good science." Namely,

that it is valid, reliable, and generalizable. The shift of this holy trinity of scien-
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tific research to social science research, particularly to the method of interview-

ing in qualitative social science research, is one of the largest battle grounds for

researchers in the field. Some qualitative researchers completely dismiss the con-

structs of validity, reliability, and generalizability as outdated modernist constructs

that are irrelevant to the study of human experience and psychology (Constas,

1998; Scheurich, 1997), while others argue that there exists a definitive reality,

thus valuing these constructs (Denzin and Lincoln, 2000). However, these argu-

ments are once again based on asserted a priori philosophical beliefs and defi-

nitions of the constructs in question. A characteristic of research that these two

camps can agree on, however, is the mutual hope that their research will build the

understanding of the phenomenon of study; that their research is trusted and will

inform future research. Regardless of your philosophical stance, there are ways

to ensure that qualitative interview research responds to validity, reliability, and

generalizability.

3.1.5 Summary

Regardless of the methodological and philosophical debates surrounding the in-

terview as a research method, the interview still maintains its position as a hall-

mark research method in the social sciences. The research interview combines

structure with flexibility (Legard et al., 2003), positioning it as a method that is

available to any researcher, regardless of their epistemological position. Whether

one’s research relies on descriptive statistics and mathematical analysis (Schwarz

et al., 2008) or on narrative and poetic responses (Richardson, 2000), there exists

a variation of the interview that will both complement and enhance one’s research.

Through interviews, we can come to discover not only the phenomena in question,
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but connections related to that phenomena in various contexts.

This thesis explores the impact that post-secondary mathematical content knowl-

edge has on prospective secondary mathematics teachers’ understanding of sec-

ondary mathematics concepts. Although it will be valuable to understand what

mathematical content knowledge the participants in my study have, my interests

lie in how teachers relate their advanced mathematical knowledge to the secondary

curriculum. I hope to go beyond mere content, and explore the meaning that my

participants have constructed. Each participant will have unique educational ex-

periences in mathematics and pedagogy, resulting in mathematical knowledge for

teaching that is specific to them. For this research, the semi-structured interview

offers itself as a methodological tool that will allow me to tackle and explore the

subtleties behind mathematical understanding, to treat each participant as an in-

dividual with their own unique experience, and as Spradley (1979) noted, to be a

learner; to listen and learn of pedagogically powerful mathematics that I myself,

may not have thought of before.

3.2 Setting

Data for this study was collected from five prospective secondary mathematics

teachers. At the time of data collection, each participant was enrolled in the Bach-

elor of Education program in Secondary Mathematics at the Vancouver campus

of the University of British Columbia. As per the requirements of the Secondary

Mathematics B.Ed. program at UBC, all participants obtained degrees in mathe-

matics, or a related subject. More specifically, the UBC Teacher Education Of-

fice states that potential teacher candidates have at least 30 credits of mathematics
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coursework, 18 of which must have been at the senior level (3rd year or higher).

Furthermore, there is a “breadth requirement" for potential teacher candidates, stat-

ing that a candidate must have at least three credits from at least three of five

“core" topics, those being algebra, probability/statistics, geometry, discrete math,

and number theory. The participants that were interviewed in this study had math-

ematical coursework and experience well beyond the secondary curriculum.

Each participant provided their undergraduate transcripts with coursework taken

and grades obtained. The subject GPA of each participant was calculated out of

100. This was done by multiplying the number of credits for the courses taken by

the grade obtained and summing over all mathematics courses taken. This number

was then divided by the total number of credits taken, yielding a score out of 100.

3.2.1 Participants

In this section, I will outline the backgrounds and experiences of each participant

in the study. The names used in this thesis are pseudonyms, to protect the identities

of the participants. All participants completed their undergraduate mathematical

coursework at large, Canadian research institutions.

Taylor had their Bachelor of Science in Mathematics. They completed their

BSc in 2017 and transitioned immediately to the Bachelor of Education program

in Secondary Mathematics at UBC in September of 2017. In their BSc, Taylor took

62 credits of mathematics coursework, with a final subject GPA of 79.6.

Jaime had their Bachelor of Engineering in Engineering Physics. Their BEng
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was completed in 2000, making them the participant farthest removed from post-

secondary mathematics coursework. They also completed a Master’s of Business

Administration, prior to their entrance into the UBC BEd program. Jamie took 28

credits in mathematics coursework, with a subject GPA of 72.1.

Bailey completed their Bachelor of Arts with a double major in Mathematics

and English in 2015. Their degree included 45 credits of mathematics coursework,

with a subject GPA of 88.7. Bailey had extensive TA experience in mathematics

and computer science, prior to entering the teacher education program. Bailey had

English and Mathematics as subject specializations in their BEd.

Adrian completed a Bachelor of Science with Honours in Mathematical Physics

in 2015 and a Master’s degree in Theoretical Physics in 2017, before entering

the Bachelor of Education program, with teachable subjects of mathematics and

physics. In their BSc, Adrian completed 39 credits of mathematics coursework,

with a GPA of 95. Even before starting their BSc, Adrian was committed to the

idea of a career in academia as a research physicist. However, throughout their

studies, Adrian was involved in a number of activities involving teaching and learn-

ing of mathematics and science, including extensive tutoring, TA experience, and

summer science camps for youth. It was during their Master’s degree that Adrian

decided to pursue a career in education, after realizing their passion was in teach-

ing and learning, rather than academic physics research. Adrian hopes to teach

mathematics and physics for International Baccalaureate (IB) students, and was in

the IB cohort throughout their BEd studies.
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Casey completed their Bachelor of Arts in Mathematics in 2013, prior to enter-

ing the Bachelor of Education program. In their degree, Casey completed 61 credits

of mathematics coursework, with a GPA of 72.2. Additionally, Casey audited some

graduate level mathematics courses offered through their institution. Casey stated

an interest and specialization in algebraic structures, which they hoped to bring

into their teaching.

The experience of the participants in this study is summarized in Table 3.1.

Participant Degrees Math Credits Math GPA

Taylor BSc Math 62 80

Jaime BEng Physics 28 72

Bailey BA Math, English 45 89

Adrian
BSc Mathematical Physics

MSc Physics
39 95

Casey BA Math 61 72

Table 3.1: Summary of participant backgrounds
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3.3 Data Collection

For the data collection, all five participants provided the researcher with their un-

dergraduate academic transcripts. These transcripts provided the researcher with

background knowledge of the participants’ mathematical coursework. Addition-

ally, each participant filled out a short survey outlining their relevant work experi-

ence. Once the researcher obtained this information, one-on-one semi-structured

interviews (Seidman, 2013) with the participants and the researcher were sched-

uled. The interviews were conducted in a conference room in the Faculty of Ed-

ucation building, with the interviewer and participant sitting next to each other.

Scrap paper, pens, and pencils were provided to each participant. Interviews audio

recorded and any written work produced was scanned. The interviews consisted of

three parts, each of which will be elaborated below.

3.3.1 Experiences in Post-Secondary Mathematics

To begin the interview, participants were asked to reflect on their post-secondary

mathematics courses and the role this knowledge plays in their pedagogical prac-

tice (Zazkis and Leikin, 2010). In this portion of the data collection, I was inter-

ested in understanding whether participants perceived their advanced courses in

mathematics to have an impact on their practice as secondary mathematics teach-

ers. Leading questions in this portion are included below and were presented orally

to the participant:

• How do you conceptualize mathematics as a field of study?

• Do you think it is important for secondary mathematics teachers to know

advanced mathematics?
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• What roles do you see those four years of learning playing in your next year

of study?

• Do you see your post-secondary degree in mathematics having an impact on

your teaching?

3.3.2 Connections Between Secondary and Post-Secondary
Mathematics

The second portion of the interview was a task-based, semi-structured interview

(Goldin, 2000), intended to explore the ways in which participants connected their

advanced mathematical knowledge to problems in the secondary curriculum. Par-

ticipants were provided with a list of seven tasks written on a sheet of paper. Par-

ticipants were then asked to choose four of the tasks to discuss with the researcher.

The tasks I chose to engage participants with are inspired by previous studies

of secondary mathematics teachers’ PCK and MKT which have drawn from ad-

vanced mathematical knowledge. In taking Silverman and Thompson (2008) as

a framework for the development of MKT, finding tasks that had the potential to

reveal KDUs were chosen. As a gentle reminder for the reader, recall that a KDU

is defined to be an understanding which transforms the way a learner understands a

particular mathematical concept, allowing them to work with the concept in ways

unfamiliar to them previously. In the context of this study, I hoped for partici-

pants to share post-secondary mathematical understandings that transformed their

understanding of the secondary curriculum. The tasks used in this study needed to

have the potential to reveal participants’ understandings that connected secondary

mathematical knowledge to advanced mathematical knowledge. Furthermore, I
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wanted to use tasks which had been used or examined in previous research stud-

ies on teachers’ secondary and/or post-secondary mathematics content knowledge.

Thus, I converged on problems that readily bridged these two content levels.

For example, Task C on the factorization of polynomials was chosen because

polynomials are a major concept of the secondary curriculum, as well as the study

of abstract algebra in post-secondary mathematics. This task had the potential to

reveal KDUs which bridged post-secondary abstract algebra and secondary school

algebra. A similar argument can be made for Task A. Indeed, exponents and ex-

ponential functions are a major topic of discussion in secondary mathematics, but

the proof that this notion can be extended to any “type” of power is not examined

until a course in real analysis. Such a construction requires an understanding of

irrational numbers as a limit of a sequence of rationals, an understanding that al-

lows the learner to work with irrational numbers in ways they were unable to when

irrationals were simply “not rational.”

In an effort to dig deeper into the understandings and mathematical knowledge

for teaching of the participants, leading questions for each of the tasks are included.

Note that many of the questions begin with “what advanced mathematics is relevant

here?" This is to recognize whether the participants have developed a personally

powerful understanding (KDU) of the particular secondary mathematics concept.

Then, the question of “how could you make this relevant/accessible to your stu-

dents?" explored the participants’ efforts to make a KDU pedagogically powerful;

that is, to reflect on their advanced mathematical knowledge and to recognize its

relevance in the secondary curriculum. This is precisely the process of reflective
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abstraction: to reflect on and connect knowledge constructed at various levels of

abstraction. Initially, participants were asked how they would respond to the sit-

uation. If the response did not clearly make a connection to their post-secondary

mathematics work, teachers were asked, quite explicitly, to make connections be-

tween advanced mathematics and the secondary curriculum. This approach was

chosen to ensure that participants were clear in the types of mathematical connec-

tions that I was interested in. Below is the list of mathematical tasks provided to

the participants to choose from, along with follow-up questions. The reader may

note that each task was inspired by previous work in the field. In comparison to the

past work, the focus of the discussion was on the connections participants made

between secondary and post-secondary mathematics in the context of the given

tasks.

• Task A: Your students are confused as to why we can define and calculate

2
√

3.

– How would you respond to your students? What mathematics is rele-

vant here? How can you make it accessible?

– Inspired by work from Wasserman et al. (2017)

• Task B: A student is working through a problem and asks if 0.999 . . .= 1.

– How would you respond? What knowledge from your post-secondary

math classes could you use to explain it? How could you make your

response more accessible to your student?

– Inspired by work from Krauss et al. (2008)
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• Task C: You are teaching a week on factoring polynomials and you have

found that your students are struggling to recognize when they should stop

trying to factor.

– How would you respond? Can you think of anything you learned in

your post-secondary mathematics courses that might help your stu-

dents? How could you make it accessible? Is there anything from

an advanced course that might provide motivation for this topic?

– Inspired from the researcher’s teaching experience.

• Task D: Your students are learning about inverse functions. What would you

include in your lesson plan?

– What knowledge from your post-secondary mathematics work might

be relevant in this context? How could you make it accessible/useful in

your pedagogy?

– Inspired by work from Leung et al. (2016) and Zazkis and Kontorovich

(2016)

• Task E: You are teaching a week on symmetry to your students. What would

you include in your lesson plan?

– What knowledge from your post-secondary mathematics courses might

be relevant here? How could you make it accessible?

– Inspired by Sultan and Artzt (2010)

• Task F: You have been teaching a unit on quadratic functions for a few

weeks and one of your students asks you why they need to know about them.
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– How would you respond? Did you talk about quadratic functions in

any of your university mathematics courses? Could you make it acces-

sible/useful in your pedagogy of this topic?

– Inspired by the researcher’s own teaching experience.

• Task G: A student is confused as to whether
√

2 is an irrational or rational

number, especially after realizing it is the length of the diagonal of a square

of side length 1.

– How would you respond? In what contexts did rational and irrational

numbers appear in your university mathematics courses? How would

you use that knowledge in your teaching?

– Inspired by Sirotic and Zazkis (2007)

I have summarized the tasks which participants chose to engage with in Table

3.2. As noted above, participants were asked to choose four tasks with which to

engage. However, Adrian, Bailey, and Taylor engaged with five of the tasks. In the

case of Adrian, this was due to their desire to continue the conversation, whereas

with Bailey and Taylor, the discussion naturally emerged from the discussion in

Task G.
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Participant
Task A

(2
√

3)

Task B

(0.999 . . .)

Task C

(Factoring)

Task D

(Inverses)

Task E

(Symmetry)

Task F

(Quadratics)

Task G

(
√

2)

Taylor

Jaime

Bailey

Adrian

Casey

Table 3.2: Tasks chosen by participants

3.3.3 Secondary Mathematics Instrument

The third, and final portion of the interview consisted of a mathematical instrument

containing problems drawn from the BC curriculum which correspond to tasks

from the second portion of the interview. As the literature suggests a degree in

mathematics does not necessarily imply a thorough understanding of secondary

mathematics (Cofer, 2015; Even, 1993; Stump, 1999), this portion of this interview

was intended to respond to such claims. With only a few exceptions, participants

successfully responded to all questions in the instrument. Bearing this in mind and

after reviewing participants’ responses to these problems, I concluded that their

responses did not substantially contribute to the emergent themes of connections

between secondary and post-secondary mathematics observed through the task-

based interviews. Thus, this portion of the data was withdrawn from my analysis.
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3.4 Data Analysis

The primary mode of data analysis was the transcription of the audio-recorded

interviews. After each interview had been completed, the audio-recordings were

transcribed. Once all interviews were complete, the portions of the transcripts as-

sociated to each task were grouped. The grouped transcripts were analyzed through

an emergent coding process. Key phrases, adjectives, and statements from the par-

ticipants were underlined and associated to a code which summarized the theme

of the underlined portion of the transcript. In coding, I was particularly interested

in statements that shed light on what the participants understood mathematically in

this task, both at the secondary and post secondary level. I was also concerned with

participants’ remarks that connected mathematical content to pedagogical choices

in their future teaching. For example, in the task exploring inverse functions, a

participant’s statement on the importance of domain restrictions in teaching inverse

functions would be associated to the code domain restrictions, while a participant’s

comments on the general nature of inverses being dependent on operations would

be given the code operations. This coding procedure was completed for all the

tasks, as well as the initial interview on perceptions.

Common codes were grouped together into emergent themes that are represen-

tative of participants’ understandings in relation to the relevant task or question.

This was done for both the one-on-one interview exploring participants’ percep-

tions of their degrees and for the task-based interviews. Since many participants

chose to write out some mathematics during their task-based interviews, the written

work produced was used to support the dialogue from the task-based interviews.

72



Reference to relevant written work was documented in the coded transcripts. Fi-

nally, by utilizing the academic transcripts provided by participants, statements

were cross-matched to the advanced mathematical coursework they had taken. This

cross-matching provided context for the origin of mathematical concepts discussed.

The focus of this study is on the links made between secondary and post-

secondary mathematics content. In Chapters 1 and 2, I argue that both university

mathematics courses and mathematics methods courses play a role in developing

such knowledge. With respect to data analysis, the MKT framework of Silverman

and Thompson (2008) and associated framework of KDUs in Simon (2006) was

used to focus my analysis on expressed understandings of the participants, partic-

ularly ones which drew upon knowledge from their advanced degrees. Silverman

and Thompson (2008) centre the development of MKT in terms of mathemati-

cal understandings with pedagogical potential, becoming ones with pedagogical

power.

In my coding and development of emergent themes, I was particularly inter-

ested in how participants’ mathematical understandings bridged secondary and

post-secondary content and pedagogical practice. Such comprehension would be

examples of personally powerful understandings with the power to change the way

they teach secondary mathematics. In Chapter 2, I explain that reflective abstrac-

tion may be the mechanism for the development of such knowledge. This theory

allowed me to contextualize the expressed experiences of participants’ own mathe-

matics education and whether these experiences were conducive to the integration

of advanced knowledge into their MKT.
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The emergent themes are explored in more detail in the following chapters, but

Table 3.3 on the following page summarizes the emergent codes and themes from

the tasks. In this table, I have provided all codes that emerged from the transcripts,

as well as the themes which were generated from the codes. The rich descriptions

of the emergent themes of participants’ understandings and mathematical knowl-

edge for teaching will be examined and detailed in Chapters 4, 5, 6, and 7.
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Task Codes Themes

Perceptions

procedural, theory, problem solving,
reasoning, facts, skepticism,

connections, application, elegant,
content, concepts, pedagogy,
real world, proof, practical,

pragmatic, support, enrichment,
exposure, rote, understand,

rigour, pure, applied, abstract

two facets of mathematics,
content versus beliefs and values

problem solving skills
pragmatic teacher education
disconnect of post-secondary

Task A
(Value of 2

√
3)

rational, rigour, faith,
continuity, exact, series,

infinity, inverse,
concrete, define

complexity of exponents,
approximation vs. exact,

existence versus definition

Task B
(Value of 0.999 . . .)

memorized, thirds, rational,
sequence, convergence, intuition,

approaching, limit, concrete,
asymptote, faith, cardinality

reliance on memorized proof,
concrete conceptualizations

limits and infinity

Task C
(Factoring)

recipe, approach, graphs,
factoring, quadratic, roots,

complex, cubics, proof,
application, Galois, zero,
abstract algebra, calculus

relating graphing & factoring,
extend quadratic/cubic behaviour,

complex factors & roots,
disconnect from abstract algebra

Task D
(Inverse functions)

reciprocal, operation, domain,
sine, opposite, exponents,

application, restriction, test,
function, mapping, reflection

Inverse w.r.t operation,
domain restrictions

reflection vs. functional inverse,
“undoing” of functions

Task E
(Symmetry)

picture, nature, reflection,
rotation, physics, tactile,
visual, graphs, geometry,
groups, triangle, inverse

symmetry, nature and art,
types of symmetry,

geometric symmetry,
example driven

Task F
(Quadratics)

application, curve, formula
factor, basic, complex, vertex,

roots, interest, memorize,
velocity, extrema, concrete,

meaning, visual, graph, bridge,
physics, model, accessible

relating graphing & factoring,
beginning access point for learning,
limited applications impact interest

Task G
(Irrationality of

√
2)

memorize, proof, contradiction,
logic, confidence, intuition,

definition, zoom, limit
numerically

proof in secondary math,
procedural logic,

decimal versus exact

Table 3.3: Interview transcript codes and themes
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As stated above, common codes were grouped into themes. However, codes for

a particular task may be grouped into multiple themes. To help the reader better

understand the coding and thematic generation, consider the following quote from

Adrian, in response to Task D:

Adrian: Yeah, these are reciprocal functions, which is not what we are

talking about, but some people call them inverses because you

are taking the, technically this is the multiplicative inverse of the

function, but that’s not what we are talking about. What we are

talking about is inverse functions, which is taking the opposite of

the function.

The codes reciprocal, operation, and opposite were used to interpret this quote.

While both codes of reciprocal and opposite explicitly appeared in this quote, the

code operation was used to refer to Adrian’s mention of multiplicative inverses,

versus functional ones. These codes were grouped together into the relevant theme

of recognizing inverses with respect to operations, as well as the theme of “undo-

ing” of a function, which Adrian refers to as the “opposite.”

As a second example of the coding process, consider the following transcript

between the interviewer and Bailey:

Interviewer: Can you think of a limit that would be equal to one but also have

something to do with 0.999 . . .?

Bailey: Like we would want an equation that is approaching one from the
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bottom, so that would be a 1 over x plus something. Here’s my

graph. I’m rusty on all my graphs look like. It would just be 1

over x plus 1. Would that be right? Yeah.

Interviewer: And so as we take this limit we are getting one, but what does

this have to do with point 999?

Bailey: Because 1 minus a tiny tiny piece is .9999, right? So that asymp-

tote is approaching it.

The codes limits, approaching, and asymptote were used to understand how

Bailey understood the equality of 0.999 . . . = 1. The appearance of these codes in

Bailey’s execution of this task revealed that the connections and understandings

Bailey had made between secondary and post-secondary mathematical knowledge

existed in the content domain of Calculus and Real Analysis. However, this tran-

script also reveals that Bailey may not have a personally powerful understanding

(KDU) of limits in the context of number, since the use of a continuous function is

not appropriate for the justification of 0.999 . . . = 1. This transcript suggests that

Bailey may have benefited from further learning experiences that would help build

a more robust understanding of number by drawing upon their advanced content

knowledge and engaging in the process of reflective abstraction.

Further, a single code may fit into multiple themes. This can be seen through

Bailey’s quote from Task C, where they stated:
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Bailey: You could probably factor if the coefficients were complex be-

cause you can have i2 and you can get some negative ones. So

my whole argument of being able to get zero becomes untrue.

x2 + 1 has no roots in the real plane, but it does in the complex

plane.

The codes zero, roots, and complex emerged from this quote and contributed

to the theme of relating graphing and factoring, as well as the relationship between

complex factors and real-valued intercepts. All of the themes which are related

to the tasks are representative of the expressed understandings and mathematical

knowledge for teaching of the participants, as individuals and as a group.

A second phase of study was performed on the emergent themes. Since the goal

of this research is to better understand the role of advanced mathematics knowledge

for future teachers, I wanted to have a better understanding of how these themes fit

in the framework of the academic journey to become a secondary teacher. Common

themes from all tasks were gathered together and associated to either “advanced

mathematics” or “teacher education.” The intent of this coding was to help better

understand where the development of MKT could be supported. Rather than plac-

ing the focus on the knowledge, understanding, and experience of the participants,

the study of the themes in the context of a teacher’s academic journey will help put

into perspective what mathematicians and mathematics teacher educators can do

to enhance and build upon the mathematical understandings of their students. We

examine this in Chapter 8.
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3.5 Validity and Reliability

Particularly in qualitative education research, where many research studies are used

as justification for intervention and changes of existing education programs, the

credibility of research must be examined in some way. Unlike quantitative re-

search where credibility is associated with the appropriate use of statistical tests,

the nature of qualitative research calls for different criteria to judge trustworthi-

ness, credibility, confirmability, and data dependability (Yin, 2013, p. 45); namely

external validity, internal validity, and reliability. The issues of internal validity,

external validity, and reliability in qualitative research are key criteria in evaluating

the rigour and trustworthiness of a case study.

The concept of external validity aligns with generalizability; that is, to what

extent can the results of the study be applied to other studies? The issue of gen-

eralizability has “plagued qualitative researchers for some time” (Merriam, 1998,

p. 207). To reconcile this matter, I find it useful to reiterate the purpose of case

study. For Merriam (1998) and myself, the priority of case study is the case. My

intent as a case study researcher is to understand my case in depth, not necessarily

to generalize to what is true of many. Although I research “the particular” in case

study, if research of a similar case is conducted, the results obtained from my work

may serve as a flag for themes in their data.

Guba (1981) suggests the analog of external validity in a qualitative paradigm

may be considered to be “transferability.” He offers thick description as a mode

to “permit comparison of this context to other possible contexts to which transfer
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might be contemplated” (Guba, 1981, p. 86). The utilization of multiple sources

of data in this study is conducive to thick description, as each of my data sources

contributes uniquely to the individual participants. Furthermore, my sampling of

participants from the teacher education program at UBC is meant to maximize

resultant data of the study. Despite representing only a small fraction of their co-

hort, their varied experience in advanced mathematical coursework yields multiple

perspectives for the ways in which future teachers make connections between sec-

ondary and post-secondary mathematics.

Validity is not a construct only relevant to the final results or method, but a

construct that consistently informs the research interviewer. During the interview

portion of the proposed study, the researcher should be attentive to whether the

questions and responses in the interview are guiding the respondent in a particular

direction. To address this, I followed Ginsburg (1997) and his multi-phase ap-

proach in clinical interviews. He advises researchers to return to the same question

at various moments in the interview, phrasing the question in a different way each

time. In this sense, the researcher can cross-check statements made by the respon-

dent, strengthening the viability of any conclusions made by the researcher. This

technique was employed throughout the interview process, to ensure that I was not

misinterpreting participants’ remarks.

Thomas Schwandt defines “triangulation” as a means of “checking the integrity

of the inferences one draws” (Schwandt, 2007, p.298). Triangulation will be the

primary mode of increasing validity and reliability in this study, and will be done

through cross referencing data from the various interview transcripts The utiliza-
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tion of triangulation, as well as detailed accounts of methods throughout the re-

search process are ways in which the I can assure that results align with the data

collected. By implementing multiple research methods, I will obtain more data to

compare and contrast, to support inferences, and to enrich the research.

3.6 Summary

In this chapter, I have detailed the methodological considerations of this study. I

discussed the details of the study’s setting, participants, data collection and analy-

sis. Finally, I described the ways in which I handled the issues of generalizability,

validity, and reliability. After the completion of this chapter, the groundwork for

my study is complete. As a reminder to the reader, the work that follows aims to

answer the questions:

1. What do prospective secondary mathematics teachers perceive as the role of

their advanced mathematics knowledge in their development as teachers?

2. In what ways do prospective secondary mathematics teachers relate advanced

mathematics knowledge to a mathematics concept in the secondary curricu-

lum?

In the following chapter, I begin the presentation of results through partici-

pants’ perceptions of the role of advanced mathematics knowledge in their growth

as a teacher.
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Chapter 4

Perceptions of the Role of

Advanced Mathematics in

Pedagogical Development

In this chapter, we discuss the portion of the interview exploring participants’ per-

ceptions of the role of post-secondary mathematics education in their growth as

secondary mathematics teachers. The primary prompts for this portion of the in-

terviews included:

1. How do you perceive mathematics as a field of study?

2. Is a degree in mathematics needed to teach secondary mathematics?

3. What do you perceive as the role of advanced mathematics knowledge in

your growth as a teacher?

4. In what ways is your advanced knowledge being drawn upon in your teacher
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education?

4.1 Perceptions of Mathematics

To begin the interview with the participants, I wanted to gather a sense of the per-

ceptions and values participants held about mathematics as a field of study. Indeed,

as remarked in the literature, teachers’ perceptions of mathematics can play a sig-

nificant role in the pedagogy of teachers. This first interview question of “how do

you perceive mathematics as a field of study?” was intended to connect partici-

pants’ responses to later interview questions and to further understand their future

goals in teaching mathematics. Overall, participants’ responses to this question

revealed two distinct conceptions of mathematics: as a tool for understanding the

world and as a pure, abstract, self-contained knowledge system. This distinction

was expressed by all participants. Additionally, the relationship between mathe-

matics and problem solving was a common theme expressed by four out of five of

the participants.

All participants expressed mathematics as having two facets. This was ex-

pressed succinctly by Jaime:

Jaime: I see math as kind of having two sides to it. Part of it is definitely

a way of explaining the world. And definitely on the science side,

it’s a way to explain how things work and kind of simplify them

to build a model. The other side though is more pure, abstract

math, where it’s the realm of a lot of logic. This idea will lead

to this idea which may not have an obvious or maybe any direct
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relevance to the actual world. So I kind of see those two sides of

it.

Jaime and Bailey both expressed mathematics having a characteristic of beauty.

This beauty was conceptualized as a product of the abstract and independent nature

of mathematics. As Bailey stated, mathematics can be conceptualized as “a system

we have constructed that explains things outside of itself” and even with this char-

acteristic, it additionally “has perfection within the system.” Beauty was conceptu-

alized by Jaime through a relationship between mathematics and art. Jaime viewed

the act of doing mathematics as an artistic endeavour, where creativity was a key

component to success. However, they noted the complex nature of conceptualizing

mathematics as art, in that mathematicians are governed by “rules” different than

that of a painter. Jaime later shifted to conceptualizing creativity in mathematics as

similar to creativity in music, in the sense that “everyone can respect someone who

can freely improvise and be creative on the piano, but it’s a lot of work to get there.”

Jaime came to appreciate this relationship later in their undergraduate work,

remarking that through their education in engineering, “it got to the point in my

education where physics and math were inseparable because everything in physics

was explained through mathematics.” Jaime later conceptualized mathematics not

just as a way of describing, but as a self-contained puzzle, where various theo-

ries and structures were brought together to uncover new ideas and solve unknown

questions. Casey brought forth a similar conception of mathematics as a way of

building new structures and ideas out of existing ones, through the process of rigour

and proof.
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Although Taylor saw a distinction between applied and pure mathematics, they

remarked that one can not exist without the other. Indeed, Taylor mentioned in their

interview that “mathematics is about understanding what is in the real world but

also in the abstract. Abstractly, you have to theorize everything and whether that

theory also fits in the physical world.” This was a unique statement from Taylor,

with respect to other participants’ responses and points to the value of understand-

ing both facets of mathematics. However, Taylor followed up this comment with

another, stating that sometime mathematics may exist without application to the

physical world and might exist as a “brain exercise.” This conception is in line

with other participants’ perspectives on mathematics as a self-contained knowl-

edge system. Indeed, as Adrian remarked, “we have created rules in a space and

we want to see what those rules produce. It’s almost like a little game that we’ve

played, but with incredible, far reaching consequence with what we can do with it.”

The use of mathematics as a tool to understand the physical world was valued

by Jaime and Adrian, who both had their undergraduate work in physics. Although

both of these participants saw value in the abstract side, their expertise brought

them to value the applied side and looked forward to bringing this into their future

teaching. Adrian noted that “with my focus in physics, I looked a lot at math as a

way of describing things quantitatively and drawing out patterns and sort of seeing

the world in a very structured way.” Adrian looked forward to bringing their sci-

entific and mathematical expertise into the classroom, so that future students could

see value in mathematics for solving applied problems and understanding why such

problems and questions are important. They hoped that in doing this, their number

85



one goal of making class “interesting, relevant, and engaging” for students could

be achieved.

Regardless of these two facets, all participants remarked on the relationship

between mathematics and problem solving. Participants saw value in an education

in mathematics for building skills in problem solving:

Taylor: Mathematics is the study of the thinking process of logical think-

ing.

Bailey: Math is a way of working, with problems as a way of learning,

rather than problems as a way to reinforce learning.

With their undergraduate mathematics being focused in pure mathematics, Tay-

lor, Bailey and Casey each saw value in mathematics as a way of building and

developing critical thinking skills through problem solving. As Casey noted, pure

mathematics distinguishes itself with a “purification in proof and theory.” Each

of these participants saw an intrinsic value in studying mathematics for the sake

of mathematics for their future students. Their hope was that the study of mathe-

matics in a self-contained system would help their students learn “how to logically

solve problems and work through things” even if it is not their intended field of fu-

ture study, according to Bailey. This sentiment was echoed by Taylor who viewed

the learning of mathematics as an opportunity to develop reasoning and “sophisti-

cated thinking skills” inside and outside of mathematics. With an increased focus

on critical thinking in modern curricula, these remarks are not without merit.
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Similar to their conceptions of mathematics, Adrian and Jaime took a more

application based approach to their values of mathematics and problem solving,

viewing mathematics as a powerful tool to explain how the world works. Adrian

mentioned the “Math Matters” movement and how powerful mathematics could

be in helping students understand local and global issues affecting society today.

Casey took a more research based approach to their response, viewing the power of

mathematics to “uncover or discover a problem that hasn’t been researched before

and find a way to progress that problem up to a certain point in our field.” This

comment aligned well with Adrian’s hope of bringing in research and extension

projects for their advanced students, so that they might be able to have an idea of

current research questions in science.

Overall, participants remarked that their undergraduate experience in mathe-

matics changed their perspective on what constitutes mathematics. Bailey men-

tioned that mathematics in high school seemed to be a “series of things” with an

end and no purpose. Bailey felt that their university experience changed this per-

spective and that they looked forward to bringing it into their future teaching. They

hoped that their university experience would help students see that “if you think

you don’t like math, maybe you don’t like one part of math because there is so

much to it.” Taylor shared their struggle in shifting from thinking of mathematics

as a tool to thinking of it as a form of argumentation. This shift was difficult for

Taylor in first and second year mathematics, reflecting on a feeling of “why can’t I

just understand this?” As remarked above, Jaime experienced a similar shift, now

viewing mathematics in an artistic light.
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These remarks from participants are an appropriate segue to the following

section on participants’ perceptions of the role advanced mathematics knowledge

plays in their identity as a future secondary teacher. Even though all participants

perceived intrinsic value in learning mathematics, these sentiments are not echoed

as strongly in the questions that follow.

4.2 Role of Advanced Knowledge for Teachers

In this section, we will explore participants’ responses to questions 2 and 3; that is,

what do participants perceive as the role of their advanced knowledge as a teacher

and do they think advanced mathematics knowledge is important for secondary

teachers to have?

Participants answered these questions with varied responses and degrees of

strength in their beliefs. Overall, all participants expressed that a major degree in

mathematics is not necessary to teach secondary mathematics. The view of what

extent of post-secondary mathematics training is necessary varied from participant

to participant.

Four participants expressed the value of post-secondary content expertise being

of value in the classroom. In particular, Bailey, Taylor, Adrian, and Casey stated

the importance of having content knowledge beyond their students’. As Bailey

mentioned, “you need more experience than where your grade 12 students are go-

ing to be.” Adrian agreed with this remark from Bailey, stating “I think I could

get by with first-year university knowledge.” Adrian perceived this as important so
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that “you’re more advanced than your students and have a perspective on where it

can take them in an academic sense.”

The view of advanced knowledge being of value for building connections was

expressed by all participants, except for Jaime. Adrian, Taylor, and Casey all saw

value in post-secondary mathematics degrees. They each expressed that this ad-

vanced knowledge is important for being able to field students’ questions, answer-

ing students’ questions in different ways, having an understanding of conceptual

background, and for being able provide context for what mathematics is on the

horizon.

Taylor expressed a unique perspective on the value of a mathematics degree for

secondary teachers, in that it helped them to learn to think like a mathematician.

Taylor: How are you sure that this statement is true? The humbleness

of seeing the nature and making sophisticated thinking skills to

how much we do not know about the world in general. That’s

what mathematics taught me and I want students to know that sort

of aspect of mathematics. Mathematicians don’t make random

statements about things. They try to formulate a right question

and try to develop in a certain way that the question they pose is

helping the big question they originally posed.

Taylor also mentioned the value of their mathematics education in building

skepticism, reasoning skills, and knowing connections between different fields of
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math. Similar to Taylor, Adrian saw great value in the ability to provide opportu-

nities for enrichment. Adrian remarked that university specialization is of value in

building “research and extension projects” and giving advice to students who are

genuinely interested in mathematics and university studies.

These remarks focus primarily on skills and practices learned through post-

secondary studies in mathematics, as compared to content. When content was

the focus of the conversation, Jaime and Bailey expressed seeing little value in

advanced content. For them, the notion of advanced content was “too distant”

and they saw “limited connection threads” between secondary and post-secondary

mathematics. Jaime held the strongest view on this position:

Jaime: I think that a lot of what I did in university math was so distant

from what I did in high school, I don’t think it was essential. We

are doing stuff in three dimensions and all this weird stuff. It’s

so far away from what high school kids are doing. I think there’s

a downside of taking a lot of advanced math, that you go pretty

deep down the rabbit hole and then you can get out of touch.

Jaime supported this by noting their belief that pedagogical skills are sepa-

rate from content knowledge and that content knowledge isn’t necessary to be an

excellent teacher and that advanced degrees might just be “screening tools” for be-

coming teachers. They shared during the interview that “if someone knew high

school math well, they could turn around and teach that well.”
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Bailey was in partial agreement with Jaime on this, mentioning that “prag-

matically, we need more math teachers.” Bailey elaborated on this, remarking

that “having a love, understanding, and interest" in mathematics is more important

than extensive university coursework. They did, however, mention a collection

of courses of which it would be useful for a secondary teacher to have. Bailey

thought that coursework in calculus, linear algebra, proofs, number theory, and

geometry could act as alternative lenses to view the secondary mathematics cur-

riculum through and could offer fun problem solving opportunities.

Even though all of the participants saw at least some value in teachers having

post-secondary degrees in mathematics, the participants perceived their degrees as

having value to them, personally. The recurring codes in participants’ responses

were connections, problem solving, and application.

The skill to “build connections” between concepts was seen as valuable to all

the participants. Adrian, Casey, and Jaime saw their advanced knowledge having

great value in being able to say where content goes later in the curriculum. Jaime

summarized this well in saying that their advanced knowledge “gives me a sense of

what all this can mean in the end.” Adrian took a more research oriented approach

to their response, remarking that their advanced degree allowed them to “appreci-

ate the immensity of knowledge that is out there in terms of math and physics and

having an idea of what is actually being researched.” Pragmatically, Casey viewed

that a teacher with a mathematics degree might have conceptual understanding of a

particular area of expertise, which they might be able to bring into their classroom

for enrichment.
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Taylor found value in their advanced degree expanding the scope on what con-

stitutes mathematics. They noted that they did not have a good idea of what math-

ematics was in high school, but that “in university, I started to realize that it’s

something very different from what I learned in high school.” Since Taylor went

through a personal revolution of their views of mathematics, Taylor wanted to share

this with their students, with the hope that students could see “that computation is

not everything mathematics does, but more about why certain things work the way

they do.” Similarly, Bailey remarked on how extended content knowledge yields a

“bigger sense of how things fit together” and followed this in saying it would help

them include some “fun math little tidbits.” However, they were unsure on how to

do this within the curriculum, as university mathematics “really is diverging from

what is taught in high school math.”

Concerns of the restrictions of the curriculum were common in participants’

views of bringing their advanced content knowledge into their teaching; Adrian

elaborated that the role of their advanced degree in their teaching is different in

theory and in practice. They remarked on how, even though they see personal

value in it, that it might not make a difference in practice:

Adrian: It feels very much like this is what you need to know and it’s

our job [as a teacher] to get you [the students] to know it. As

opposed to this is an interesting field of study, we want to explore

it, what kinds of questions can we ask, and leading them on this
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inquiry process where we get them to explore ideas beyond their

conventional grade level. That just seems like not at all what’s

happening.

Taylor mirrored this concern, that even if they wanted to include content be-

yond the curriculum, teaching secondary school is not completely autonomous.

They worried that their hopes and goals in teaching might not be achievable in a

real classroom.

Experience in problem solving was viewed as a benefit of advanced mathemat-

ical coursework by Taylor, Jaime, Adrian, and Bailey. For Taylor and Bailey in

particular, experience in proof was viewed as a benefit they both wanted to bring

into their classrooms. After stating that their perception of what constituted math-

ematics changed from high school to university, Taylor remarked that their devel-

opment to think logically and prove rigourously was a contributing factor. They

reflected on the role of computational thinking being heavy in high school and that

they did not have a conception of proof. In their university mathematics courses,

they admitted that their professors “didn’t really explain to me” what it meant to

prove something and they struggled in courses where proof was a component. Tay-

lor noted that they wanted to share this experience and university knowledge with

their students so that they might not be “totally embarrassed when they go to uni-

versity.”

Bailey also saw immense value of proof in secondary mathematics education,

remarking that the habit of teaching mathematics in a “do this, do that” manner
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“really seems to kill math.” They worried that this mentality makes mathematics

“an exercise of just doing steps instead of solving problems.” Their hope is that in-

troducing proof techniques, through they might be beyond the curriculum, would

be a valuable tool to bring context and explanation to the question of why particular

techniques and strategies work or are used.

As Jaime did not have coursework in proof, the value they saw in problem solv-

ing was experience in learning how to approach a problem. Jaime remarked on the

value of understanding limitations, assumptions, and context of problems, partic-

ularly with respect to modelling in problem solving. They viewed their advanced

coursework as helping them understand that “creating a model is useful because

it tells us something, but we have to remember that it doesn’t tell us everything.

That’s one of the things that I got through my degree is limitations on things that

you do and do not know.” Adrian saw similar value in problem solving, partic-

ularly in applying mathematics to “real world” problems and understanding why

these models are useful. However, they feared that their ideas for extensions might

not be well-received by students, in which case “everything after first or second

year undergrad gets thrown away as not very important.”

4.3 Advanced Knowledge in Teacher Education

As elaborated above, all of the participants saw some value in their own advanced

coursework experience for their future work as teachers, as well as benefits of

advanced mathematics courses for secondary teachers in general. However, partic-

ipants felt that their extended expertise in mathematics was not being drawn upon
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in their mathematics teacher education. This concern was succinctly summarized

by Bailey, who remarked: “I need my math to teach, but the teacher education pro-

gram isn’t requiring me to have any knowledge of math.”

Jaime, Adrian, and Bailey each wanted a more practical and pragmatic ap-

proach to their teacher education. Each of these participants expressed a desire for

more content focused education with respect to what they perceived as the goals of

their methods courses in mathematics:

Jaime: I found them a little bit scattered. I think we are seeing a lot

of bits and pieces of here are some neat little ideas, but I find it

really hard to pull them together. I think I would have liked to do

more or at least see more ideas of how to specifically bring this

into teaching the curriculum. I’m more interested in the teaching

side. Like how would you introduce a concept? I have found that

we got a few neat ideas. One week we did a math art project. And

yeah, that’s cool for all of us because we like it, but it might not

be so relevant for a math teacher.

Adrian: My math methods feel nebulous in terms of what the focus is.

It’s more like where are some nice connections in math, here are

some nice ideas of what a math teacher should be, here are some

mathematical related activities, here are some projects, some pa-

pers, some analyses. I think it would have been really nice to

focus on how am I going to teach this [concept]?

Bailey: We’ve read a lot of like, theory, theoretical papers, about methods
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of teaching math, but not in any concrete way. We didn’t go into it

with enough meat to do anything with it. It’s just this grab basket

of oh, you can teach through movement or you can teach math

through art. But you can’t really. There is a whole curriculum.

Yeah you can add that in, but there is a whole curriculum that you

need to find a better way to teach.

Adrian and Bailey brought forth interesting perspectives on this end, since they

both had two teachable subjects and were taking methods courses in those subject

areas.

Bailey: In my other methods courses, we do a lot of really applicable

stuff. Like, we look at a paper someone wrote about teaching

critical theory about Shakespeare and we look at the actual teach-

ing methods for teaching that topic and teaching different types of

writing and book suggestions and like what you teach and all this

stuff. And I think it’s really building on both our knowledge of

English as a discipline and like actually giving us practical ways

to teach it. In my math methods, you can do all them knowing

literally grade 10 math.

Adrian: I really like the way my other course was structured. It was very

much structured around showing cool experiments and how to

connect it to the curriculum and give you a chance to teach. In

math, I think having a focus on “how am I going to use this?”

would have been nice. How do I make all of these teaching ideas

and concepts effective and relevant? How do I design an effective
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activity that hits all these points, and is engaging, and assess the

curriculum?

Adrian and Bailey found that they were building subject expertise through their

other methods courses, but found this to be lacking in their mathematics methods

courses. They continued to express a desire for “practical, actual math in the class-

room” and worry that after their teacher education “we are going to teach math the

way we probably would have before. I’ve come out with no concrete examples for

secondary math.”

With the exploration of concrete ways to teach content, comes the question

of whether or not it is possible in methods courses. Adrian enjoyed opportunities

to explore teaching math through social justice, but felt as though “our professors

give us an idea that is not enough, but don’t really follow up with how to make it

enough [in the classroom],” while Jaime remarked that “from grade to grade, the

content is going to be different and it’s unrealistic to try to cover all that. I’m more

interested in the teaching side and how you would introduce a concept.” Bailey

suggested a pragmatic approach:

Bailey: I think even learning the process of looking at how something

is often taught, thinking about how it’s taught, thinking of new

ideas, doing that for a few topics will probably help you practice

doing it for other topics. In my other teachable, I have all these

touch points of jumping off new ideas and ways of teaching that

I don’t feel like I really have from math.

To navigate these struggles, Taylor and Adrian felt that they needed to prompt
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themselves through self-guided reflection on how they could use their advanced de-

gree experience, but this was not being prompted through their courses. As Adrian

lamented, “I’ve done it on my own because it’s something I’m interested in and

something I’m good at, but not something that the instructors have encouraged.”

Taylor expressed similar experience on their end, remarking that “I think of the

materials that I learned in university when I see the material here in the education

program and how I can advance that material.” However, the feeling of being able

to integrate post-secondary expertise into secondary teaching was not held by all

participants.

Bailey shared that they felt as though it may not be possible to build subject ex-

pertise in their courses, saying that in math “you really are diverging from what is

taught in high school math. So there is not use in talking about group theory in an

education program for high school math because that’s never gonna come, it’s a dif-

ferent discipline almost.” This is in contrast to their other methods courses, where

they said “you’re becoming more proficient in writing, which is what your students

are doing.” Is there such a great divide between secondary and post-secondary

mathematics content?

Taylor and Casey perceived some degree of “doing mathematics” in their math-

ematics methods courses. Interestingly, both Taylor and Casey made mention of

the history of mathematics as an example. Taylor took a course in the history of

mathematics during their mathematics degree and some of this material was ex-

plored in a course in their teacher education program. They saw this extended

knowledge being useful in providing alternative proofs and ways of understanding
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the Pythagorean Theorem. Casey expressed concern, however, that the content in

their teacher education course might not have been as relevant as it could have been

for teaching of the secondary curriculum:

Casey: We did cover a lot about the history of zero and the history of one,

the stepping stones of math. And I didn’t know about Babylonian

tablets. But I felt we stopped off at around the year 400 AD. We

didn’t cover anywhere from the year 1000 to 1900 mathematics.

And then I thought what would be relevant for high school math-

ematics.

The relevance of the history of mathematics was the only direct relationship

between the secondary and post-secondary curricula brought forth by the partic-

ipants. Although this connection existed in their teacher education courses, the

participants’ responses suggest that this connection may be limited. Indeed, the

history explored in the teacher education context is more in line with an ethno-

mathematical perspective on mathematics education, while the courses offered in

mathematics departments tend to be more centred on European perspectives. Re-

gardless, one must ask how this fits in to participants’ concerns of “practical and

pragmatic” responses to teaching existing mathematics curricula.

4.4 Summary

In this chapter, we discussed participants’ responses to interview questions which

explored their perceptions of the role of advanced mathematics knowledge in their

growth as teachers. Through this discussion, a disconnect was observed between
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the content versus the beliefs and values learned in post-secondary mathematics

coursework. Furthermore, an even greater disconnect was expressed by partici-

pants in regard to the ways in which their mathematical expertise was being drawn

upon during their teacher education.

All participants expressed a love and affinity for mathematics as a subject

and looked forward to bringing this into their teaching. Many of the participants

viewed their education in post-secondary mathematics having a personal impact on

what they understood to count as mathematics, which they did not experience in

high school. Through the skills and values gained in their advanced mathematics

courses — such as proof, logic, rigour, and application — participants hoped they

would be able to give their future students an opportunity to see the “two-faceted”

nature of mathematics as both a way to read the world and as a self-contained

knowledge system. The inclusion of problem solving was mentioned by all partic-

ipants as a skill learned through their post-secondary coursework which they hoped

to extend to their secondary teaching to develop critical thinking skills and contex-

tualize mathematical content.

The attributes of their post-secondary mathematics education which partici-

pants were excited to bring forward in their classroom were primarily skill based,

rather than content based. When the focus of the conversation became about math-

ematics content, participants did not see much value. Indeed, many participants

expressed a great disconnect between the secondary and post-secondary curricu-

lum, considering that university mathematics is too far removed from what students

learn in secondary school. While some advanced courses such as number theory

100



were mentioned as being useful for enrichment, overall, participants felt that the

connections between secondary and post-secondary mathematics dropped off after

second year university mathematics.

Following this line of thought, participants unanimously agreed that extensive

post-secondary mathematics coursework (beyond the second year) need not be a

pre-requisite to teach mathematics. While some participants took a more pragmatic

approach to this question, addressing the demand for more mathematics teachers,

others expressed that advanced content knowledge may not imply better teaching

of the curriculum. Participants did not see value in their own content expertise for

their teaching, and in turn, did not see the value in requiring such content expertise

for other mathematics teachers.

These opinions may have been exacerbated by participants’ perceptions of the

ways in which their content expertise was being drawn upon in their teacher ed-

ucation, as well as their desire for a more pragmatic teacher education program.

In sum, participants did not feel as though they needed the extensive mathematics

coursework that was necessary for entrance into their teacher education program.

They perceived the amount of mathematics they were doing in their program to

be minimal and expressed a desire for critically examining the content of the cur-

riculum. This is in contrast to what they believed to be the focus of their methods

courses, which was bringing in fun and interesting connections between mathemat-

ics and other disciplines, such as art or social studies. Although participants saw

value in this, they expressed concern in not having the expertise to critically exam-

ine the existing curricula, current ways of teaching it, and finding better ways to do
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so. Overall, participants expressed a disconnect between “the curriculum they have

to teach” and the techniques they were learning in their methods courses. Of all

the participants, Taylor and Adrian expressed some value of advanced coursework

beyond the second year, but their remarks were more based in enrichment for the

curious student.

Some participants who had chosen two teaching specialities shared very differ-

ent experiences in their other methods courses, where they felt as though they were

building upon their content expertise to enhance their classroom pedagogy. They

felt that their advanced content expertise was of importance, while being drawn

upon and extended in these courses.

The initial remarks from participants in this first portion of the interview sug-

gest that the participants do not perceive post-secondary mathematics as an ex-

tension of the secondary curriculum. In the following chapters, we examine the

aforementioned claim more closely in the context of mathematics questions that

do have extensions to the post-secondary curriculum, while also examining con-

tent knowledge in more depth.
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Chapter 5

The Overextension of Familiar

Mathematical Ideas: A Case of

Polynomials

The following chapter elaborates on participants’ engagement with tasks C and F:

Task C: You are teaching a week on factoring polynomials and you have found

that your students are struggling to recognize when they should stop trying to

factor. How would you respond?

Task F: You have been teaching a unit on quadratic functions for a few weeks and

one of your students asks you why they need to know about them. How would you

respond?

Since the mathematics of these tasks are intimately related, the analysis of re-

sponses to these tasks will be combined in this chapter. As will be the structure
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for the results chapters which follow, I begin with a “mathematical background,”

which will set the mathematical context for participants’ responses. This back-

ground is in no way comprehensive, but covers some of the major connections

which I have made in my own studies, as well as connections mentioned by partic-

ipants who engaged with tasks C and F. Next, I examine participants’ responses to

the tasks and the higher level connections made to advanced mathematics content.

5.1 Mathematical Background

Polynomials are a fundamental concept in the secondary mathematics curriculum.

Linear graphs are some of the first graphs that students encounter in their math-

ematical studies and are often used as one of the first examples for the study of

functions. Polynomial functions are widely used in many fields outside mathemat-

ics in modelling various social and physical phenomena.

Generally, a polynomial of degree n over R is a function which may be written

as f (x) = anxn + an−1xn−1 + . . .+ a1x+ a0, where an,an−1, . . . ,a0 are elements in

a set R and x is a variable that takes values over R.

In this portion of the study, I was interested in exploring the understandings

participants’ held in regards to the factoring of polynomials. Knowledge of fac-

toring and finding zeros of polynomial functions are key skills in the secondary

curriculum, as well as in university mathematics courses. In the following section,

I outline some of the major places where polynomial functions appear in the sec-

ondary and post-secondary mathematics curricula, along with how and why they
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are studied.

In the BC curriculum, students first encounter the notion of lines in grade 9

and continue working with polynomials up to and including Calculus 12. The stan-

dard progression of study begins with linear functions (degree one polynomials),

quadratics (degree two), and higher degree polynomials. Typically, factoring of

polynomials is explored first, before moving to the graphing of polynomial func-

tions, where the relationship between graphing and zeros is particularly useful.

Quadratic functions act as a first introduction to a “curved” function, after students

have gained confidence working with linear functions. Quadratic functions can be

used for modelling phenomena that obtain extreme values. Examples include, but

are not limited to: modelling revenue and/or profit, maximizing areas, object tra-

jectories, and scenarios involving time, distance and velocity. Even if quadratics

do not precisely describe a particular phenomenon, they act as a welcoming entry

point to modelling with functions.

In university, polynomials are central to helping students build an understand-

ing of calculus, both in differential and integral calculus. In differential calculus,

polynomial functions are often utilized as examples in nearly all topics, because

students are familiar with them. In particular, students’ pre-existing knowledge of

the existence of roots and knowledge of finding zeros is central to using them as

common examples throughout the course. In integral calculus, the use of polyno-

mials is central to the concept of Taylor approximations and Taylor series, which

constitutes the latter half of most integral calculus courses. Furthermore, determin-

ing anti-derivatives involving polynomial and rational functions constitute a large
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portion of the examples students encounter in integral calculus. The most promi-

nent appearance of polynomials in determining anti-derivatives is through the con-

cept of partial fraction decomposition. In this technique, when encountered with

a rational function R(x) =
p(x)
q(x)

, where p(x) and q(x) are polynomials, students

decompose the single rational function into a sum of simpler, rational functions.

The key in this technique is decomposing the denominator into irreducible

pieces. For a simpler example, consider 1
6 . When factoring natural numbers, the

irreducible components are prime numbers, so we factor 6 as 2 ·3. And indeed, 1
6

can be decomposed as 1
2 −

1
3 . So the question is: What are the irreducible compo-

nents in the context of polynomials?

Consider the following example of∫ 1

0

x+1
x2 +5x+6

dx.

The denominator of the integrand
x+1

x2 +5x+6
, can be factored as (x+3)(x+2).

Since the denominator decomposed as a product of two linear functions, we need

to find constants A and B such that

x+1
x2 +5x+6

=
A

x+2
+

B
x+3

.

After a bit of algebra, one can determine that A = −1 and B = 2. Thus, the

integral can be rewritten as ∫ 1

0

−1
x+2

+
2

x+3
dx.

Now, an antiderivative of the integrand is − ln |x+2|+2ln |x+3|, so, the Fun-

damental Theorem of Calculus may be applied to determine the area under the
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curve.

These problems become more technical as the degree of the integrand’s denom-

inator increases. If the degree of the denominator is 2, one of two things happens:

one, the denominator decomposes as two linear terms, in which case partial frac-

tion decomposition as it was done above is the technique of choice. Or two, the

denominator does not factor, remains as an irreducible quadratic (such as x2 + 1),

so that the anti-derivative may involve the inverse tangent function arctan(x). Stu-

dents often encounter a table such as Table 5.1 when learning about the technique

of partial fraction decomposition in Integral Calculus.

Type of factor Example Decomposition

Linear factor x−a A
x−a

Repeated linear factor (x−a)n A1
x−a +

A2
(x−a)2 + · · ·+ An

(x−a)n

Irreducible quadratic factor x2 +bx+ c Ax+B
x2+bx+c

Repeated irreducible quadratic (x2 +bx+ c)n A1x+B1
x2+bx+c +

A2x+B2
(x2+bx+c)2 + · · ·+ Anx+Bn

(x2+bx+c)n

Table 5.1: Partial fraction decomposition guidelines

This table is dependent on the fact that all real-valued polynomials can be de-

composed into a product of linear and irreducible quadratic terms. Indeed, linear

terms of the form ax+b and irreducible quadratics of the form ax2+bx+c are the
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irreducible, non-factorable pieces in the context of decomposing polynomials, just

as prime numbers are the irreducible elements in the context of factoring natural

numbers.

Another course in which the factoring of polynomials is of great importance is

in Linear Algebra. At its core, Linear Algebra is the study of linear functions and

vectors in multidimensional space. Vectors, which have magnitude and direction,

are added and multiplied by scalars, while linear functions take vectors as inputs

and abide to the rules of vector addition. Matricies, which are the core of study in

Linear Algebra, are a way to organize information about linear functions. The ma-

jority of introductory Linear Algebra courses in post-secondary restrict their study

of vector spaces to “real-valued” space, that is, Rn.

The study of Linear Algebra in such courses often culminates with the study of

eigenvalues, eigenvectors, and eigenspaces. Many real-world phenomena may be

modelled with linear functions and eigenvalues make solving such problems much

easier. A classic example of the use of eigenvalues and eigenvectors is the predator-

prey phenomenon over time t. Suppose that species x, wolves, are a predator of

species y, bunnies. A higher population of wolves will result in a lower the popula-

tion of bunnies that are available to reproduce. At the same time though, a smaller

bunny population means that the wolves have less food available. So, a smaller

bunny population will affect the reproduction rate of the wolves. Then, a smaller

wolf population makes reproduction easier for the bunnies. This cycle continues

with these two populations directly affecting one another and can be represented

by a differential equation of the form:
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dx
dt

= ax+by
dy
dt

= cx+dy

As is, this is a complicated system of differential equations to solve, since the

system is “coupled”. That is, the two pieces are dependent on each other. However,

using linear algebra allows one to “de-couple” the system into independent pieces

that can be studied independently. Determining what these independent pieces are

is the goal of the study of eigenvectors and eigenvalues.

So what do polynomials have to do with this? The answer lies in the deter-

mination of eigenvalues of a given matrix A. By definition, x is an eigenvector of

A if Ax = λx. Bringing everything to one side yields (A− λ I)x = 0, where I is

the identity matrix. If a non-zero solution to this equation exists, this means that

(A−λ I) is not invertible. So, the determinant of the matrix A−λ I must be zero.

The solutions to the characteristic equation det(A−λ I) = 0 represent the eigen-

values of the matrix A. Since the characteristic equation is a polynomial, students

must apply their understanding of factoring and polynomial solutions in order to

determine eigenvalues of various matrices.

These ideas are expanded upon in-depth if and when students take a course in

Abstract Algebra. This course is normally only taken by mathematics majors, with

some students interested in theoretical physics enrolling in the course. Abstract

algebra is concerned with the study of general algebraic structures. The notions of

grade-school arithmetic and high school algebra are placed within a larger, more

general theoretical structure. The structures studied abide to pre-defined axioms

109



and are studied generally. Most universities offer a two course sequence in abstract

algebra: one on groups and another on rings and fields. Groups, rings, and fields

constitute three categories of algebraic structures with far reaching extensions in

mathematics, with groups having relevance in chemistry and physics.

Before trying to understand what a group, ring, or field is abstractly, students

often encounter sets that satisfy the axioms of one or more structures. Often, the

first example of a group might be the integers, Z, under the addition operation,

while the first example of a ring might be the real numbers, R, under the opera-

tions of multiplication and addition. These familiar structures are extended to more

dynamic ones, including various polynomial rings.

The types of questions one might ask about various rings and field include:

What are the irreducible elements? That is, what are the elements of the ring or

field in question that cannot be decomposed into less “complicated” pieces? For

R[x], the ring of polynomials whose coefficients are real, the irreducible elements

are linear and irreducible quadratics. When one extends R to include the complex

number i =
√
−1, the polynomial ring C[x] has only linear polynomials as its ir-

reducible elements. This implies the famous Fundamental Theorem of Algebra,

which states that all complex valued polynomials in C[x] may be factored into a

product of linear polynomials. Another question might be: How can we create new

rings from existing ones? To answer this question, the answer to the previous must

first be understood so that the notion of a “prime ideal” may be understood. Then,

the notion of a “quotient ring” may be constructed as a way to generate new rings

with new algebras. Finally, one might ask whether it is possible to understand the
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algebra of one ring by understanding the algebra of another, more familiar one?

The answer to this question is yes. One such example is that of polynomial rings

whose coefficients belong to a field (such as R or C). In this case, all of the famil-

iar theorems that are true in Z have analogs in the polynomial ring, including the

Division Algorithm, Euclidean Algorithm, and Unique Factorization. Even more

information may be gathered if two rings happen to be “isomorphic” to one an-

other, meaning that a perfect bijection exists between the two rings.

5.2 Participant Understandings

All five participants engaged with the researcher with discussion of the factoriza-

tion of polynomials, while all but Bailey engaged with the tasks on quadratics. The

popularity of participants choosing these tasks should not be a surprise, due to the

importance that is placed on the study of polynomials, both in secondary and post-

secondary mathematics courses.

Among the participants, all had taken calculus and linear algebra, with Taylor,

Bailey, and Casey having taken courses in Abstract Algebra. Taylor and Bailey

took two algebra courses (one on groups and another on rings and fields) at their

respective universities. Casey took one course officially, as well as auditing two

courses without credit. Adrian admitted to knowing very little about Abstract Al-

gebra, having acquired an understanding of its utility through brief mention in some

theoretical physics courses. As an engineering major, Jaime had no exposure to the

concepts of Abstract Algebra in their mathematics courses, but did have numerous

courses in differential equations, where the techniques of determining eigenvectors
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and eigenvalues are of significance.

In their responses to justifying the study of quadratics in secondary school,

many participants viewed the study as an access point to studying curved functions

and modelling progressively complex phenomena:

Taylor: Quadratic functions incorporate the concept of a curved function

and are the basis for how a lot of mechanisms work.

Jaime: For modelling, you would be using lots of more complicated

functions and all the work with quadratics is setting up for that,

so you can get them into a form where you can do things mean-

ingfully, or so you can find where the zero points are.

Adrian: A lot of things can be modelled by quadratics, as it turns out.

They are a pretty good basis for a lot of modelling. Also, it’s

accessible, it builds on stuff they already know.

Although each of these participants expressed value in teaching quadratic func-

tions as an entry point to modelling complex phenomena, Adrian and Taylor ex-

pressed concern about making the concept sufficiently interesting to students. Adrian

was concerned that “polynomials can describe certain systems, but outside of sci-

ence and math, I don’t think it’s super useful,” while Taylor lamented that “my

knowledge of applications of quadratics is very limited and I need to find out how

I can make students more interested.” Taylor expressed that they appreciated math

for the sake of math and that a focus on “real world application” takes away from

studying mathematics independent of application.
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On the other hand, Jaime viewed applications as important to “get the mys-

tique” out of quadratics. They noted that “a lot of the time we just see these equa-

tions and they don’t really mean anything.” Jaime’s concern in teaching quadratics

was to put meaning to “a formula that just exists almost for the sake of existing.”

Graphing was considered to be a valuable entry point for building meaning, since

“you can just look and see behaviour.”

While Taylor, Jaime, and Adrian’s responses focused more broadly on the fea-

tures of quadratics, such as zeros, vertex/extrema, and applications to physics,

Casey’s responses were example driven:

Casey: You could talk about quadratics and engineering the construc-

tion of a bridge. Quadratics have a very symmetric property to

it, because the arch is the most economically sound method of

connecting to points across a body of water. Speaking of speed

equals distance over time, you could talk about quadratics with

that and flying aircraft.

When prompted to explain how the second example related to quadratics, Casey

emphasized a skill based focus to this problem. Casey stated they would use ratio-

nal functions as a means to teach the importance of quadratics. However, in their

response, it was evident that quadratics were used as a means to solve the problem,

rather than motivating the concept independently:
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Figure 5.1: Casey’s work on quadratics and air travel

Casey: We say a plane flies, the way I learned it was Glasgow to Hali-

fax, with umm, it goes faster going from Glasgow to Halifax, so

the airwind is a couple more kilometres per minute, but coming

back we get delayed, presuming there is the same wind, because

of course, presuming the plane is just pushing you in the same

direction, you go faster from G to H than from H to G. So this

is the distance, that’s some kind of time and it’s delayed by two

hours and this is two hours. But to solve this quadratic here, what

would you get? You would get a 48s and these two would cancel

out, but then you would have this problem here and calculate the

average speed of the plane. That’s what I would explain why is

it useful, the arc of a bridge kind of problem and also the plane

problem. But I might start with the plane one first.

It is unclear as to why Casey considered this to be a valuable introduction to the

use of quadratic functions. While quadratics are useful in modelling phenomenon

114



with distance, rate, and time, using them in conjunction with rational functions,

factoring, and physics might be a difficult entry point for many students. As we

will see below, the factorization of polynomials is not as trivial as some may think.

Indeed, all participants in the study demonstrated misconceptions regarding the

factoring of polynomials, in both their secondary and post-secondary knowledge.

Of all the participants, Jaime was the least confident in discussing the factoring of

polynomials. Immediately, however, they recognized the importance of this type

of open ended question for students.

Jaime: We are developing habits of how do you approach a problem.

And part of this is that we have these different techniques we

have used and it’s going to be a mental checklist of does it look

like this or that? You may need to use one technique, two, maybe

you can’t use any.

Although Jaime recognized the complexity of this problem, when asked to

work through some problems, Jaime struggled.

Interviewer: So if we started off with a simple case of factoring a quadratic,

how would you respond?

Jaime: It’s been a long time since I factored quadratics, but I remember

this type, the question and having this in my mind and being not

quite sure if I’m done or not.

Interviewer: So what could it look like?
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Jaime: I have no idea. It’s been a long time. I’m not sure where you are

going with that.

Interviewer: What about something like x2 + 2x+ 1 versus x2 + 1? For these

two, how would you approach factoring these? If you can factor

or if you can’t?

Jaime: I feel really embarrassed. I know there are specific things and

patterns, but it’s been so long I can’t remember what they were.

Sorry, I have a vague recollection of where this goes, but I don’t

know.

Interviewer: Let’s talk about this one (x2 + 1). Is there a way to graph this

function that would tell you what it looks like? Do you remember

a way to relate factoring to graphing?

Jaime: So we are dealing with parabolas and shifting. Yeah, I remember

the graphing side of it. I like the idea of bringing that in. How that

was factored out though, I don’t know. It’s been so very long. The

way I look at this, the idea of shifting it, being symmetric about

x, these are the things I would tap into. I honestly have no idea

about factoring or the point of it, other than finding a difference

of squares. So yeah, I see that your zero is going to be here (at

y = 1).

Interviewer: So where is your zero in this case?

Jaime: It’s at 1. So that’s the stuff I remember, but in terms of factoring,

I don’t know. But I chose it (this task) because I remember that
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feeling of not knowing. There is an uncertainty and I remember

it getting worse in university.

This dialogue with Jaime brings up two major concerns. The first being a lim-

ited understanding of a fundamental concept from the secondary curriculum. Jaime

admitted earlier in the interview that they were a bit rusty on their mathematics

and needed to review, but the concept of factoring quadratics is not an advanced

secondary concept. However, at the time of the interview, Jaime was half way

through their teacher education program and preparing to go on practicum, where

they would be teaching in a classroom. If tasked with teaching this fundamental

concept in their practicum, Jaime would not only be working on developing the

pedagogical aspects of their teaching, but the mathematical as well.

Secondly, the difficulties Jaime experienced in this task raise questions about

the degree of review Jaime would have to do before teaching such a concept. The

two examples posed to Jaime are two of the simplest examples for quadratic factor-

ization, but the extent to which Jaime was able to talk about these two quadratics

was limited. One should question whether the depth of mathematical knowledge

for teaching developed through such a review would include HCK and to what

extent KDUs would be developed. As a new teacher entering into a career in edu-

cation, how much time will Jaime have to dedicate to reviewing mathematics to a

depth and breadth beyond the context of the prescribed curriculum and text?

Of the remaining four participants, a common thread was shared. This com-

mon thread, which points to a major misconception of participants’ understanding
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of polynomial functions, factoring, and roots, was explicitly observed with each

individual participant. At some point of engaging with the task, each participant

stated a variation of the following:

A real-valued polynomial can be factored if and only if it has a root.

Although this is true when the polynomial in question is of degree two, this

assumption fails for any polynomial of a higher degree. However, participants each

had strongly held misconceptions to this end. Consider the following dialogue with

Bailey:

Interviewer: So with the idea of roots and factoring, if a polynomial doesn’t

have any roots, does that mean it can’t be factored?

Bailey: Yes. Yes. And if it doesn’t have any nice roots, it can’t be factored

nicely.

Interviewer: What would you encourage your students to do in factoring x5−

1?

Bailey: I would have them graph it. I can’t think now of what it looks

like. It’s going to be a squiggly-ish kind of thing. It’s gonna have

one root. You know that 15−1 = 0, right? So you can find that.

Interviewer: So what would be a factor of x5−1?

Bailey: x−1 would be a factor

Bailey was correct in their description that if a polynomial has a root at x = a,

then x− a is a factor of the polynomial. Indeed, connecting graphing of polyno-

mials to factoring could help students build deeper connections between geometric
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and algebraic representations of polynomials. However, Bailey later generalized

this logic in the opposite direction:

Interviewer: And what would be leftover? It doesn’t have to be exact.

Bailey: Let’s do polynomial division. Wow, I don’t remember how. We

are multiplying the x4, gonna multiply it in, ummm, x4− 1 mi-

nus....x...it’s gonna be x4 + x3 + x2 + x+ 1....something like that.

Maybe there will be a negative somewhere.

Interviewer: So can this be factored?

Bailey: No, no. So since we have a one at the end, things get nice and I

think you could do a fun, you could talk about powers of 1 and

how if it’s negative, if it’s an odd power, we could have a negative

one, but it’s even. We have an x3 and an x, so if we have negative

numbers. We have 1− 1 + 1− 1 + 1 and we have two of the

same thing. This is always going to cancel itself out, so we can’t

possibly get zero.
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Figure 5.2: Bailey’s factoring of x5−1

Bailey seems to suggest here that in order to determine whether a polynomial

can be factored, one just needs to see if it has a root. As mentioned above, this

claim is false. Bailey has generalized the logical implication that a root implies

factoring to factoring implies a root. Taylor chose the same polynomial of x5− 1

as Bailey to work with. After finding the factor of x−1 and performing long divi-

sion, Taylor claimed that the leftover quartic factor could not be decomposed any

further, as is seen in Figure 5.3.

Figure 5.3: Taylor’s factoring of x5−1

Adrian demonstrated a similar misconception and was very explicit in their un-

derstanding. Adrian demonstrated a robust understanding in relating the graphs of
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quadratic and cubic functions to the existence of roots. The written work associated

to this dialogue excerpt may be seen in Figure 5.4:

Adrian: My first instinct is always drawing a picture. If I draw this picture,

and I’m going to assume they have learned vertex form, but at the

least I can plug it into Desmos. Maybe they don’t understand why

it looks like that, but you can get it. So this one (quadratic with

two roots) looks like this (draws graph). And what we are doing

is that we are able to break it down into these two points. These

are the points that go to zero and allow us to break it up (factor).

The fact that this crosses the x axis at these points allows us to

factor it like this. But for this one (x2+1) it looks like this (above

the x-axis). It does not have those pieces that we can break it up

into, so we are not able to factor it. These are the two possibilities.

Well, no. I guess the other possibility is that you have it where

it just touches the x-axis, in which case, there are two, it’s gonna

look something like (x−a)2. The point being that there are three

different possibilities. It touches once, it touches twice, it doesn’t

touch at all. And that tells us it’s going to look like this, can’t

factor it and it will look like this (above the x-axis)

Interviewer: And what about a cubic? What are the possibilities in breaking it

down into cases if you had a cubic as well?

Adrian: Well, there is going to be at least one solution guaranteed, since

the mean value theorem says there will be one solution. There

is a case where you get one solution, two solutions where it will
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just touch like that, and a case where you have three solutions,

and that’s it.

Interviewer: And so for factoring, what would that entail?

Adrian: I think for this one (a single root) you’re going to end up with an

x−1 and a quadratic without any real roots. This one (two roots)

I think you’re gonna end up with one root and a double root on the

other side, and this one, you’ll have three roots and three linear

factors, something like that.

Figure 5.4: Adrian’s factoring approach
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In this portion of the interview, Adrian demonstrated a deep understanding

of the relationship between graphing and roots of polynomial, in the context of

cubic and quadratic functions. Adrian was able to connect understandings of the

general algebraic form to the impact on the shape and location of the graph in

the Cartesian plane and did not need explicit examples in order to demonstrate

this understanding. However, when extending the polynomial to a higher degree,

Adrian generalized their understanding of irreducible quadratics to polynomials of

higher degree.

Interviewer: So we are seeing a relationship between roots and being able to

factor. Does that apply generally?

Adrian: I suppose, yeah.

Interviewer: If we move to something like a quartic, something like x4 + 1,

what about that? Can this be factored?

Adrian: No, because it doesn’t have any x-intercepts. So it’s just going

to sit like that. The factors link to whether there is a solution

to it being equal to zero, because if you let x be one of those

values, zero times something that isn’t zero is still zero. Whole

thing is zero. These are connected to this idea of where does it

touch the x-axis. So if your function touches the x-axis and it’s a

polynomial, usually, in almost any, I can’t think of a case where

you can’t break it up like this.

Here, Adrian explains why x4 + 1 cannot be factored, by connecting it to the

shape of the graph. Indeed, the graph of y = x4 +1 is a translation of the graph of
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y = x4 up the x-axis by one unit. Thus, the graph of y = x4 +1 does not have any

x-intercepts. That is, there are no values of x for which x4 +1 = 0. However, this

does not imply that x4+1 cannot be factored. The roots do tell us something about

its factorization, but it does not tell us everything. Since the curve does not have

any real roots, we know that it will not have any linear factors of the form x− a.

Indeed, if it did, we would have that:

y = x4 +1 = (x−a)(x3 +bx2 + cx+d) (5.1)

According to Adrian’s earlier explanation of cubic polynomials, the polyno-

mial of x3+bx2+cx+d must have at least one root, so x4+1 would then have two

roots, with x = a being the second (substituting x = a into Equation 5.1 yields an

output of zero). So, we could have that x4 +1 factors into two irreducible quadrat-

ics. We can write x4 +1 as a difference of squares by observing that

x4 +1 = x4 +2x2 +1−2x2

= (x2 +1)2− (
√

2x)2

= (x2 +
√

2x+1)(x2−
√

2x+1)

Indeed, the quadratics of x2 +
√

2x+ 1 and x2−
√

2x+ 1 are both irreducible

as their graphs lie above the x-axis and are concave up, as per Adrian’s earlier jus-

tifications for the irreducibility of quadratics.
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Adrian reconfirmed the misconception again later in the interview:

Adrian: If you can graph that (the polynomial) and it doesn’t touch the

x-axis, you are done factoring.

Interviewer: And so we are saying that if we are up at degree five (for a poly-

nomial), we don’t....

Adrian: We know there is one (root).

Interviewer: Right, we know there is one root. But we don’t necessarily know

we can factor the rest? Is that true?

Adrian: Yes.

Casey held multiple misconceptions about the factoring of polynomials and

roots at the secondary level. Casey began their discussion with mention of the

evaluation of the discriminant of a quadratic.

Casey: I would start with saying well what is the value of 2a? And we

can get different examples of 2a and they can plug it into their

calculator. And then we can kind of work and reverse engineer

a little and say that ok, well, for any given a here, and we do

this separately on a page and do the top, the top bit here (the

discriminant of b2−4ac). So I would start, I don’t even know. 36

and 4 and the 6 and then 9.

Interviewer: Let’s not think of particular examples. In what ways is this going

to factor?
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Casey: Well, it should look like x minus number, x minus number.

Interviewer: So is it (the polynomial) always going to look like this?

Casey: Yeah, basically.

In this excerpt, Casey claims that all quadratics can be factored into two linear

terms. While this is true of some quadratics, it is not true for all. This was some-

what contradicted later in the interview when discussing x4 + 1 and through their

description of the relationship between roots and factoring of polynomials.

Interviewer: Let’s say something like x4 +1. Can this be factored?

Casey: No.

Interviewer: Ok, why not?

Casey: Well, because, ok, well, if we could break it down here into say

x2 +1. Then what I would do is make the substitution y = x2 and

say that’s y2 +1 and then square root of negative one. They (the

students) understand square root of negative one. That’s what I

would do, I would go back to grade 9 kind of material and explain

that.

Interviewer: What would you say is the relationship between roots and factor-

ing?

Casey: Well, factoring is just like a visual representation of what the

polynomial looks like. And we know that. Umm, I mean, that’s

how I would start. That is really the very definition of what fac-

toring really becomes.
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Figure 5.5: Casey’s factoring of x4 +1

In this excerpt, Casey seems to combine the technique of substitution for the

reduction of quartics to quadratics and claims that because the quartic reduces to

an irreducible quadratic, that the quartic does not factor. Their work can be seen in

Figure 5.5.

5.3 Post-secondary Connections

When asked to discuss polynomials in a post-secondary context, Adrian, Bailey,

and Taylor were able to speak to the behaviour of polynomials when complex num-

bers are considered. Each of these participants was familiar with and mentioned

the Fundamental Theorem of Algebra, in one way or another.

Theorem 1. THE FUNDAMENTAL THEOREM OF ALGEBRA: Let f (z) be a degree

n polynomial with coefficients in C. Then, there are exactly n+1 complex numbers

w0,w1, . . . ,wn (not necessarily distinct) such that

f (z) = w0(z−w1)(z−w2) · · ·(z−wn).

That is, every polynomial function over C can be factored into linear factors over

C.

Below are excerpts from these participants regarding the extension of polyno-

mials to include complex roots.

Bailey: You could probably factor if the coefficients were complex be-

cause you can have i2 and you can get some negative ones. So
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my whole argument of being able to get zero becomes untrue.

x2 + 1 has no roots in the real plane, but it does in the complex

plane.

Adrian: There are n factors and they will either be real or complex. If you

want to know how many real ones, graph it and see how many

times it touches the x-axis, that’s about it. I mean, there is al-

ways n solutions to it, they are just usually complex. You can talk

about these (polynomials) having complex roots and that means

different things in different situations. Especially in quantum me-

chanics and any sort of periodic, ahh, what’s it called, Fourier

Analysis. Anything with periodic functions, Fourier decomposi-

tions, all that sort of stuff, complex numbers and roots are really

important.

Taylor: A quartic polynomial can be factored, but we would have to in-

corporate the complex number, the imaginary number. It’s a Fun-

damental Theorem of Algebra that when you have a degree of

4, degree of n, there are n solutions including the solution for

complex numbers, but then it doesn’t tell us how we can write its

roots. The proof wasn’t very easy to understand, but now that I

see those number of roots, how many roots can be there, that they

let me know that there are four solutions, four complex solutions

to the polynomial equation, not necessarily telling us how to do

it, but telling us there are four solutions.

These participants knew the extension of this problem to the context of com-
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plex analysis. Indeed, some of the concepts in complex analysis are deeply rooted

in problems in the secondary curriculum. However, based on the dialogue in the

interviews, their understanding of the significance of this statement may not have

been fully developed. The power of the above theorem is that any polynomial may

be factored into linear terms that are dependent on its roots. While participants

knew the statement of the theorem and recognized its significance in the context

of complex numbers and the factorization of polynomials, their dialogue suggests

that their understanding on the matter was restricted to the course they took in com-

plex analysis or abstract algebra. That is, participants held limited links between

the complex analysis and secondary mathematics content. In what ways could the

Fundamental Theorem of Algebra be motivated so that it builds their understand-

ing of Complex Analysis, while simultaneously drawing upon their knowledge

(and misconceptions) of related concepts in the context of real numbers?

Casey frequently connected their understanding of post-secondary content. How-

ever, the depth in which they were able to do so was limited. In particular, Casey

made frequent mention of concepts from Galois Theory, but it seems as though

their understanding of these advanced concepts may have negatively impacted their

understanding of the material in the secondary context. When discussing the fac-

torization of cubic polynomials, these misconceptions became evident.

Interviewer: Ok, so let’s say we have a cubic then, let’s start out with ax3 +

bx2+cx+d. If you were to factor this, what are the possibilities?

What would it look like?

Casey: Well that would be something that goes back to here (to the alter-

129



nating group).

Interviewer: And what do you mean by that?

Casey: If it’s the 1 then you’re going to get the whole number here, if it’s

A3, it’s the rotational groupa, if it’s the S3 it’s the, well if it’s A3

it’s all three rational numbers and if it’s the S3 one then you’ve

got that and two imaginary numbers.

Interviewer: And are you always going to be able to factor this?

Casey: No.

Interviewer: And why not?

Casey: Because you can’t. Because you just have to make some exam-

ples that end up being something that, well, the one that I had in

this lesson plan was like, I guess going back to your question, it

was a really really, I guess if you want to call it squirly cubic, but

anyway, ultimately one of the x’s happened to be something like

this and another x happened to be that. It was something, but I

graphed that but then I graphed the inverse.

Interviewer: So focusing on this, so you’re saying that it is possible that a cubic

cannot be factored?

Casey: Very much so. And in how to factor the nth polynomial, and sort

of how beyond the cubic, it’s not always umm, well no, beyond

the quartic, it’s not always possible. Like we talked about ax3.

This is an odd polynomial and it might not be factorable. There
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are specific cases depending on what relation a, b, and c have, but

if it works out that this relation happens, it’s a lot more likely that

this is factorable.

Figure 5.6: Casey’s factoring of cubics

In discussing the factorization of cubics, Casey tries to relate the cubic polyno-

mials to their Galois groups of the alternating and symmetric groups of three ele-

ments (A3 and S3, respectively). Indeed, one of the major points of study in a course

in Galois Theory is the factorization of cubics and the existence of a “quadratic for-

mula equivalent” for higher degree polynomials, which is more commonly known

as “solvability by radicals”. In the early 1800s, Paolo Ruffini of Italy and Niels

Henrik Abel of Norway proved that, given a polynomial of degree five, there is no

algebraic formula to solve for its roots. Evariste Galois later refined these ideas in

what was later defined as Galois Theory.

The precise statement to which Casey was probably referring, with respect to

the factorization of cubics, is the following:

Theorem 2. Let f (X) be a separable, irreducible cubic in Q[X ] with discriminant

∆. If ∆ is a perfect square in Q then the Galois group of f (X) over Q is A3. If ∆ is

not a perfect square in Q then the Galois group of f (X) over Q is S3.

Casey was trying to draw upon their post-secondary understanding of the fac-

torization of cubics and corresponding Galois groups, but it appears as though the
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exposure to these concepts may have confused their understanding of them at the

secondary level. The connection between roots and splitting fields (i.e. where a

polynomial can be fully factored) is detailed in the following theorem.

Theorem 3. Let f (X) ∈Q[X ] be a separable cubic with discriminant ∆. If r is one

root of f (X) then a splitting field of f (X) over Q is K(r,
√

∆). In particular, if f (X)

is a reducible cubic then its splitting field over Q is Q(
√

∆).

With all of the claims that exposure to advanced mathematics content helps

deepen future teachers’ understanding of the secondary curriculum, this excerpt

with Casey suggests an instance of the opposite occurring. Casey also makes the

claim that beyond the quartic, you may not be able to factor. Once again, this is

an instance of mixing theorems from Abstract Algebra with content from the sec-

ondary curriculum. Indeed, it is true that there is no “quadratic formula equivalent”

for polynomials above degree 5 and Taylor described this in their interview through

the following excerpt:

Taylor: Quadratics pop up quite frequently in many, many areas. Calcu-

lus for sure and Galois theory, as well. Quadratic function has

formula for its solution. So what we know of as quadratic for-

mula. Even cubic equation has a solution, based on the coeffi-

cients of that cubic function, but once you increase the degree

of the function to, from five and bigger, you no longer have a

formula expressible by coefficients, and isn’t it amazing that you

don’t have the formula out of this coefficients? Because we have

a solution for quadratic, cubic, and fourth degree, but why not

fifth? And how do we know? How did mathematicians know
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this and how did they figure it out? Yeah. But then again, maybe

quadratic equation is the most famous for having, deriving the so-

lution, finding the root of that equation, it’s really the most basic

one. Why does it have it while the fifth degree function doesn’t

have it?

5.4 An Experience of Abstract Algebra

As laid out in Chapter 4, many of the participants did not see their advanced mathe-

matics courses as having a significant impact on their mathematical knowledge for

teaching, besides the development of their problem solving skills and understand-

ing of the importance of proof and rigour.

With respect to abstract algebra and the factoring of polynomials in this partic-

ular task, Bailey shared a profound reflection of some of their advanced, abstract

mathematics courses. Recall that Bailey was one year out of their undergraduate

degree at the time of this interview.

Interviewer: In thinking about all the courses that you’ve taken, when did the

study of polynomials come up?

Bailey: Calculus. In calculus, you talk a ton about polynomials and you

need to understand how they work. Math like really does move

away from numbers or functions. You’re really just talking about

concepts and ideas. Especially in something like abstract algebra.

You’re really out there....

Interviewer: Did you talk polynomials in abstract algebra at all?
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Bailey: Ummm, I feel like no, it’s been a long time. That course is a blur.

Interviewer: Why was it a blur?

Bailey: I had Professor X. Do you know him? That was my professor. I

barely survived. So, I took group theory with him and I also took

honours linear algebra with him in my second year. And he is

obviously a genius but he doesn’t teach in a way that’s accessible.

Once you lose the train of the class you’re just gone for the rest

of it. So you kind of have to teach yourself the whole thing,

especially if you’re not able to keep up with the class, which I

really was not. So, you can tell he’s a genius, but in terms of

teaching, I think it was really good for the couple of students that

were also geniuses and could keep up with that.

Interviewer: And did you take another abstract algebra course after that?

Bailey: Yeah, I took ring theory after.

Interviewer: And did you, what did you talk about in that class?

Bailey: I really forget ring theory, I gotta say. Yeah, it’s a total blur. It’s

interesting because I was supposed to have someone who was

supposed to be very good and then she got sick and had to leave.

So I had a sub kind of thing, a grad student, and he was not very

good either. But it moved at a slower pace and I could follow

it more. I feel like there are some polynomials in ring theory. I

really, I actually don’t remember those classes. Which is strange.
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It was only 2 years ago. I never applied it to anything else. They

were just isolated things and I never looked at them at all.

Interviewer: When you took those courses, who did you think the professors

were seeing as the target audience?

Bailey: Like, people who were going to do math research, probably.

Interviewer: Do you think that’s what the, who the target audience should be?

Bailey: Umm, I don’t know. It’s interesting at that level. Because that

math is pretty advanced and it’s applicable, but not really beyond

math. So I guess it’s fair that’s who the audience is.

The examination of most abstract algebra texts would yield significant content

associated to polynomials. One could argue that claiming polynomials were not

a topic of study in abstract algebra would be equivalent to never examining the

Renaissance in an art history course. The study of these structures occupies a sig-

nificant portion of many courses in this realm.

Rather than focusing on the fact that Bailey did not recall learning this content

in their courses, I turn the reader’s attention to the experience Bailey had as a stu-

dent in these courses. Bailey shares that their experience in this course may not

have been the most conducive for learning. Recall that Bailey was a strong stu-

dent, who graduated with an 89% average in their university mathematics courses.

This leads one to question what advanced university mathematics courses are of-

fering future teachers, or more broadly, students who do not plan to take careers in

academia? I will return to this theme in the discussion in Chapter 8.
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5.5 Summary

In this chapter, I examined participants’ engagement with tasks C and F, both of

which explored the content domain of polynomial functions. All five participants

engaged with task C, with Bailey being the only participant who did not engage

with task F. The analysis of the dialogue from these tasks revealed that partici-

pants, overall, did not hold conceptualizations of polynomial functions that bridged

secondary and post-secondary mathematics. Indeed, as was elaborated in Section

5.4, Bailey perceived the content of abstract algebra to be very “out there” and

not relevant to the content of the secondary curriculum. While Bailey was the

only participant to explicitly state such a disconnect, the lack of connections ex-

pressed by other participants prompts further questioning. Even if participants

do recognize content connections between post-secondary and secondary mathe-

matics, these connections may not be substantial enough to impact their practice.

Indeed, Taylor recognized that the work in Galois theory was related to Task C, but

they did not perceive it as having potential in their pedagogical practice with the

task.

I argue that the study of polynomials in abstract algebra does have potential

to impact a teacher’s mathematical knowledge for teaching. All participants who

responded to the task recognized a substantial connection between graphing, the

existence of roots, and factoring. As many participants expressed, the graphing

of a quadratic can be easily extended to understand the factorization of the poly-

nomial in terms of its roots. This is also true in the case of cubics. However,

these understandings were overextended to all polynomials, with the claim that “a
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polynomial can be factored if and only if it has a root.” This misconception could

be adjusted with exposure to the ideas of irreducible polynomials, as studied in a

course in abstract algebra. However, the participants who did have this coursework

experience held the same misconception. The only secondary to post-secondary

connection that was expressed by multiple participants was the connection of fac-

toring to complex valued roots and the Fundamental Theorem of Algebra. That is,

if a quadratic has no x-intercepts, it has a complex root. However, this conceptual-

ization was extended to quartics and higher-order polynomials.

Even though the behaviour and mathematics of quadratics was overextended

to all polynomials, the ideas and concepts of quadratics are a central component of

the secondary curriculum. Many participants expressed the study of quadratics as

a beginning access point for ideas such as graphing, factoring, and mathematical

modelling. Participants expressed significant value towards problem solving, ap-

plication, and mathematical modelling in Chapter 4 and viewed quadratic functions

as an accessible context for exploration and the development of problem solving

skills. At the time, however, participants also expressed concerns regarding the

limitations of applications involving quadratic functions. While participants were

aware of some commonly used applications, such as kinematics, they were unsure

on how to make the concept meaningful and interesting for a wide variety of stu-

dents. They were further concerned that repeating the same types of applications

of quadratics might actually hinder student’s interest and perpetuate the notion that

mathematics has limited “real-world” applications.

Participants’ engagement with these two tasks is a valuable first look into the
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connections future teacher’s have constructed between their advanced mathematics

knowledge and the content they are to teach. The forthcoming chapters will further

the exploration of such connections in other content domains.
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Chapter 6

The Role of Limits, Infinity, and

Formal Definitions in Secondary

Mathematics

6.1 Introduction

Many degrees in pure mathematics are characterized by two courses: Abstract Al-

gebra and Real Analysis. These courses constitute the basis for more advanced

coursework, graduate studies, and mathematical research. Prior to taking these

courses, many undergraduates enrol in a course on Mathematical Proof, in which

the principles of proof, abstraction, and common definitions in many mathemat-

ical domains are studied. In Chapter 5, I discussed Abstract Algebra at length,

with respect to polynomial functions and factoring. In this chapter, I will exam-

ine participants’ engagement with the tasks that relate to courses in Real Analysis,
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Calculus, and the introduction of advanced mathematics. The interview tasks that

draw on these subjects include the tasks on inverse functions, limits, and exponents.

6.2 Inverse Functions

I remind the reader that the task regarding inverse functions was the following:

You are teaching a unit on inverse functions. What would you include in your

lesson plan?

This task was partially inspired by the work of Zazkis and Kontorovich (2016)

and Leung et al. (2016), where they examined teachers’ understanding of inverses

and their associated notations. Among the five participants, Adrian and Casey en-

gaged in this task. Before exploring their understandings of this topic, let us dive

into some of the mathematics of inverse functions to provide context for the inter-

view data in Sections 6.2.2 and 6.2.3. The responses from these two participants

vary drastically in their appropriateness and depth of understanding.

6.2.1 Mathematical Background

Among all the concepts covered in this study, the notion of inverses has the earliest

appearance in the school curriculum. The term “inverse” is very general, mathe-

matically. Indeed, the first place in which an inverse is studied in school is with

respect to addition and subtraction. When the idea of 0 is presented to students,

you could see questions like “if you have two cookies and I take two away, how

many cookies do you have?” The student would reply that they have no cookies

and that we denote the idea of “none” by the number 0. Similarly, one could ask

“if you have two cookies and I share none with you, how many do you have?” The
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number 0 is known as the “additive identity” in the real numbers. That is, if you

take a real number a and add 0, you still have a. Then, one would say that −a is

the additive inverse of a, since a+(−a) = 0.

A similar idea is explored when students gain the key developmental under-

standing that a fraction is a kind of number. Initially, when fractions are learned

in school. they are understood as a piece of a whole. For example, 1
2 would be

viewed as one half of a whole of something, whether that something be the area of

a square, a pizza, or a collection of cookies. Later on, students learn that you can

treat 1
2 as a number. Just as you can add 2 to 1, you can add 1

2 to 1 through the

properties of fraction addition, so that the mixed number 1 1
2 is equivalent to 3

2 .

Furthermore, fractions can be multiplied, just as whole numbers may be mul-

tiplied, once additional properties of fraction multiplication are explored. Then,

students can come to realize that 1
2 · 2 = 1, 3

2 ·
2
3 = 1, and 1

2 · 1 = 1
2 . By “flipping”

a number and finding its “reciprocal,” the product of the original number and the

reciprocal equals 1. That is, given a real number a, a · 1
a = 1. In formal language,

we say 1 is the multiplicative identify element of the reals and that 1
a is the multi-

plicative inverse of a.

The notion of inverse is then generalized to concepts outside of numbers, the

first being the notion of an inverse function. Just as additive and multiplicative

inverses return a number to the identity, functional inverses undo the output of

a function and return an identity element. The identify element in the realm of

functions is the function that returns exactly what was put in: that is, f (x) = x.
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However, in the previous examples, the identity was followed by an operation. In

the instance of functions, the operation is function composition. The following two

definitions are that of the identity function and inverse functions. In these cases,

we take X to be an arbitrary set of elements.

Definition 1. The function f : X → X defined by f (x) = x for all x ∈ X is the

identity function on X. We use Ix to denote the identity function on X.

Definition 2. Let f and g be functions. f and g are inverse functions if and only if

f ◦g = IDg and g◦ f = ID f , where D f and Dg are the domains of f and g, respec-

tively. We say that a function f is invertible if and only if an inverse exists.

This is the final appearance of inverses in the school curriculum, but not in

the post-secondary curriculum. Any student who takes a course in Linear Algebra

will see the notion of inverses for matricies. Similar to the earlier instances of in-

verses and identity elements, these must be defined in the case of matricies. Special

“matrix multiplication” and “matrix addition” are defined in the first week of any

linear algebra course, along with “additive” and “multiplicative” identity matricies.

The notion of inverses is fundamental in all fields of mathematics. These con-

cepts are studied generally in courses such as an introduction to proof, abstract

algebra, real and complex analysis, topology, differential equations, among many

other courses. Essentially, all mathematics majors will encounter the study of in-

verse functions multiple times through the course of their mathematical studies.
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6.2.2 Participant Understandings

As mentioned above, Adrian and Casey were the two participants to engage with

this task. The responses given were very different between these two participants,

with Adrian demonstrating a depth of understanding of inverse functions, while

Casey demonstrated multiple misconceptions at the secondary and post-secondary

levels.

Adrian’s initial response to the question was immediately indicative of their

depth of understanding:

Adrian: I did a little bit about this awhile ago. So when you say in-

verse functions, you mean inverse, not reciprocal functions? Like

arcsin, arccos, log?

Interviewer: Well, what’s the difference?

Adrian: Well there is a huge difference!

Interviewer: Tell me about it!

Adrian: Well in one case, you have a function, you can talk about the

reciprocal of that function which is 1 over the function. For ev-

ery value, take 1 over that value. And typically that’s done in a

graphing sense and if I want to graph the reciprocal of that func-

tion, basically anywhere it is zero, I’ll have an asymptote and

anywhere in between, if it’s big and positive, it will be small and

positive. If it’s big and negative, the reciprocal will be small and

negative. And you go through this whole sort of, usually what

you’ll end up with, if you have some sort of polynomial curve,
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you’re going to end up with something with big dips in places.

It’s never zero because 1 over something can never be zero. It

can be very small, but not 0, unless it goes to infinity, in which

case I guess it would be zero, technically sort of.

Interviewer: So this is reciprocal functions?

Adrian: Yeah, these are reciprocal functions, which is not what we are

talking about, but some people call them inverses because you

are taking the, technically this is the multiplicative inverse of the

function, but that’s not what we are talking about. What we are

talking about is inverse functions, which is taking the opposite

of the function. So if I have f (x) = y, what I am talking about

is f inverse of y and basically swapping x and y, which is what

is taught in school. You’re taking the opposite of that function,

which is a weird idea in and of itself. And sometimes it’s eas-

iest to look at how you would go about doing this in practice.

Classically, what usually gets done is that you can get between

these two by simply swapping x and y, and that’s equivalent to

reflecting over the line y = x and this usually gets paired after

transformations so that they know how to do reflections over a

certain axis. Some stuff I like to do is if you have a piece of paper

that is sufficiently thin and you can draw a thick black line, we

can actually flip it around like this and look through the piece of

paper and see what it would look like and physically perform the

manipulation. Which is kind of valuable, especially if students
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are struggling with the actual mental how do I flip that? And I

think beyond that, examples are really awesome. logs and expo-

nents. You can talk about undoing functions. If they have already

gone through lessons on exponents, they have probably encoun-

tered logs, so the idea that you could undo this, going backwards,

doing the opposite of this. sin, arcsin. I don’t think there are

any other common inverse functions I can think of. You can talk

about domain restrictions, so in order for this to still be a func-

tion you still need all your function things, which is more of a

grade 10 topic, but it’s still brought in as to what it means to be

an inverse function. And you can define your inverse functions

differently, depending on what range you want to talk about.

In this excerpt, Adrian immediately spoke to detailed understandings on the

differences between inverses and reciprocals, with respect to functions. Adrian

was later able to formalize their understanding of inverse functions via his claim

that “if g(x) is the inverse function of f (x), then f (g(x)) = g( f (x)) = x. In their

description of inverse functions, Adrian began to speak to domain restrictions, but

this was not explored further in the interview.

Adrian brought up an interesting understanding with respect to logarithms.

Other participants, when engaging with the task on exponents, conceptualized

the logarithmic function as being independent of exponential functions. However,

Adrian shared his conceptualization of the logarithmic function as follows:

Interviewer: And so for the case of y = ex, how do we get the inverse function
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log?

Adrian: This reflection, by swapping x and y and defining something. Re-

ally, that’s the way logarithms are defined, is what is the thing that

undoes an exponential? We call it log. This is what it looks like

because we know this whole idea that if we have an inverse, we

swap the x and y coordinates and we insist that it has these prop-

erties and it’s logically consistent and now we have logarithms in

our mathematical construction.

Adrian shares their understanding that the construction of the logarithm is a

consequence of the properties of exponential functions. Historically, the construc-

tion of logarithms came well before exponential functions, due to their properties of

mapping multiplication to addition. Regardless, the construction that Adrian shares

is the one that is most commonly seen in modern school mathematics. Overall,

Adrian demonstrated a full-bodied understanding of functional inverses in this por-

tion of the interview, sharing some common misconceptions students may make,

as well as in-depth applications, which will be described in the following section

on post-secondary understandings.

When Casey started to respond to this task, they immediately conveyed mis-

conceptions about inverse functions.

Casey: You could have something to do with the very fact that these two

circles are reflected in the line y = x. Now, I mean there is a lot

more umm, you know, I guess inherent with inverse functions.
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Interviewer: Such as?

Casey: Well, if we want to, it depends because if it’s grade 11 then it

would be algebraic inverses.

Interviewer: What is an algebraic inverse?

Casey: It’s sort of flipping the parabola around (draws graph of y =

±
√

x).

Interviewer: So the inverse of this (graph of quadratic) is that (graph of y =

±
√

x)?

Casey: Yes, but then we start to talk about one-to-one and onto, right?

But then we start talking about real number domain and you begin

to ask why can’t it be the U here and just over here?

In this portion, Casey demonstrates two misconceptions, but also alludes to

a detailed understanding of domain restrictions with respect to inverse functions.

The first misconception is in their first claim of reflecting circles being an inverse.

The notion of “swapping x and y” corresponding to a reflection over the x-axis is

relevant to functions, but a circle is not a function. Immediately, Casey provides an

example that is relevant to a unit on symmetry and reflections, but not with respect

to inverse functions.

This same misconception is demonstrated when Casey draws the inverse of

a quadratic function in the shape of a sideways “U”. Casey begins to clean up

this misconception by mentioning domain restrictions. Indeed, if we consider the

147



function f (x) = x2, its inverse function is g(x) =
√

x. The relation h(x) = ±
√

x,

as Casey drew, is not a function (it has two outputs for every input). Even though

y = x2 is an easy example in most mathematical contexts, it is not a simple example

in the case of inverse functions. This is due to the following theorem:

Theorem 4. A function is invertible if and only if it is one-to-one and onto.

Casey had this vocabulary and used it throughout the interview, but also demon-

strated misunderstandings while using it:

Casey: It was in mathematical proofs, it was actually the first time I ever

saw what an inverse really means. To be one-to-one and onto and

if both those criteria are satisfied, then it is a true inverse.

Interviewer: What do you mean by that? If a function is one-to-one and onto,

then what does that mean?

Casey: Well, injective and surjective.

Interviewer: Then it is...?

Casey: Then it’s like a real inverse, I think

Interviewer: And what does that mean?

Casey: Well, oh I know, it means the vertical line test. In grade 10, you

take just a ruler and go across the graph here and of course, just

the regular U (parabola) it’s all one-to-one but when you turn it

90 degrees, no it’s not one to one, there are two points, and it’s

the inverse of the left hand side of the y graph there. So there’s a

problem there, it’s not one-to-one.
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Interviewer: The sideways one is not one-to-one?

Casey: Yeah, the sideways horseshoe.

Interviewer: And what does it mean to be one-to-one exactly?

Casey: That every x coordinate maps to every y coordinate exactly once.

There is a unique point. But what I feel an inverse functions, and

that’s why I chose this task, is there’s a real, there’s a real problem

here, especially with this cubic thing happening here that I found

students had trouble with, is that well, the vertical line test, this

is the first time they have ever seen an S shape, but the one-to-

one problem here is they kind of understand taking a ruler and

seeing like you just go across the graph and see that vertically

every point is one-to-one

Interviewer: So the vertical line test is for showing that something is one to

one?

Casey: Yeah, I should call this actually the “C” parabola shape, well, the

letter “C”, no, you can just stick the ruler right there and you have

two points. But the biggest disconnect is realizing that the lower

point cannot map to the one that’s over there.
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Figure 6.1: Casey’s work for the “inverse” of y = x2

In this dialogue excerpt, Casey starts off well by noting that inverse functions

have something to do with being one-to-one and onto. In order to clarify the math-

ematics here, we say that f is a surjective (onto) function if and only if the range

(i.e. the possible outputs of the function) of f is equal to the codomain (i.e. the set

f sends its inputs to). For example, f (x) = x3, where f : R→R, would be an onto

function, since the range of f (x) is all real numbers, which is equal to the codomain

of R. However, the function g(x) = x2, where g : R→ R, is not one-to-one, since

the range of g(x) is R≥0, which is not equivalent to R. One could construct g to be

onto, by changing the codomain. However, this is not customary in practice.

Similarly, a function is one-to-one if every output comes from a single input.

For example, f (x) as above would be one-to-one since there are no two inputs that

yield the same output. However, g(x) as defined above is not one to one, since

every output (other than 0) comes from exactly two inputs.

From this, we can observe Casey’s understanding of what it means for a func-

150



tion to be one-to-one is flawed. In fact, one does not need these more advanced

definitions to see this. The vertical line test is presented in high school as a test to

determine whether or not a graph is a function. However, Casey uses the vertical

line test to justify that f (x) = x2 is one-to-one (which it’s not) and that the graph

of ±
√

x is not one-to-one. There are two major issues with this second remark.

Firstly,±
√

x is not a function, since the various inputs go to two outputs. As a con-

sequence, trying to remark whether this graph is one-to-one function is impossible.

The function of g(x) = x2 is often utilized as a counterexample to the notions of

one-to-one and onto, due to students’ familiarity with it. The use of it as a primary

example for introducing inverse functions could be more confusing for students,

rather than helpful. As a teacher myself, this is an example I would avoid until

later in a lesson plan.

When describing inverse trigonometric functions, Casey brought in the notion

of one-to-one, but without the misconceptions of earlier:

Figure 6.2: Casey’s written work for the inverse of sin(x)

Casey: This would have to be restricted one-to-one, this we can call

sin(x) and you can see that this looks like a [graph of] sin(x)
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but we would need to know to stop here at this point and then just

make sure it’s back at this point to make arcsin(x).

Interviewer: What do you mean of this point back to that point?

Casey: Well, to make it one-to-one, so it does not overlap. Because the

minute you cross this root here, you’re in trouble. You get a repeat

with the first one because it’s periodic.

In this excerpt, Casey demonstrates a correct conception of one-to-one, with a

minor flaw. Casey was able to effectively communicate that in order to define the

inverse function arcsin(x), we needed to restrict the domain of sin(x). This, how-

ever, was the only instance throughout the interview where Casey demonstrated a

correct conceptualization. Later on, Casey returned to their generalization of in-

verses “switching x and y” with respect to their example with circles (see Figure

6.3):

Casey: I wanted them to do this concept here [of (x,y) to (y,x)]. Any

old way they wanted to show me, as I walked. around that oh,

yeah, (8,1) is now (1,8). If you have the Euclidean, because the

inversion here is y = x, you just flip the image up here and you

can do that.
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Figure 6.3: Casey’s work for circles and inverses

Casey seems to have generalized the notion of a reflection to that of inverse

functions. Although there is a connection between real valued functions and re-

flections over the line y = x, this can not be generalized in the way Casey outlines

above. Through this dialogue with Casey, it is evident that they have extensive

knowledge of inverse functions, but also hold some misconceptions that could im-

pact their pedagogical practice.

6.2.3 Post-Secondary Connections

The analysis above documents participants’ understandings of inverses that is rele-

vant to their teaching in a secondary classroom. In the following section, I describe

the understandings participants held in the context of post-secondary mathematics,

and the ways (if any) they thought this knowledge could be brought into their sec-
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ondary classrooms.

Adrian continually mentioned exponential and logarithmic functions through-

out their description of inverses. Through their discussion, they thought that dis-

cussion of logarithmic scales could be of great value to secondary students:

Adrian: Well, even if they heard of scales that are logarithmic, but have

never thought of what it is to be a logarithmic scale. It’s weird,

even now, doing the mental acrobatics to actually figure out that

if it is increased by a factor of 10, it really is increasing by 1. It’s

bizarre, I think, for a lot of students.

In response to the number e, I inquired as to why Adrian thought it was so

important for students to know and care about e:

Adrian: Honestly, I did not understand why e was so important until I did

calculus. If y = ex and I take the derivative of y, it’s also equal

to ex. And this is the only function for which it is true. That’s

kind of neat. This is the only function for which its derivative

and all of its subsequent derivatives are equal to the value of the

function.

Interviewer: And how do you define e? When you think of e, what is the first

definition you go to?

Adrian: This one [the differential equation], 100%.

Interviewer: Any others?
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Adrian: I know there is one definition where it is like,
(
1+ 1

n

)n, limit as n

goes to infinity, where this comes back to compounding interest.

I guess the other I can think of is just Taylor series, but that’s the

only other one I can think of.

Figure 6.4: Adrian’s work for the value of e

In this excerpt, Adrian shares three different definitions of e that could be

used in teaching (see Figure 6.4). Each of these definitions was covered in post-

secondary mathematics, but as is mentioned at the beginning, Adrian did not really

learn the importance of the number e until university. This is an explicit example of

advanced mathematics contributing to a secondary teachers’ mathematical knowl-

edge for teaching in the secondary classroom.

Casey’s connections of inverses to post-secondary mathematics were based in

coursework. Casey’s immediate mention of inverses was with respect to a course

in mathematical proof, which was elaborated in an excerpt in the previous section.

When prompted to discuss. inverses in a post-secondary context, Casey continued

to talk about mathematics without accurately describing what was being discussed.

For example, Casey discussed the field of algebraic topology as being relevant to
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inverse functions, but was unable to articulate how: “Sort of the topological sense

of these inverse functions go into more in the realm of the hypercube kind of thing.

Because it’s a lot more topological wise where you can deform a shape to ulti-

mately create an inverse rather than just taking the parabola and going, you need

the Euclidean plane.”

At this point, Casey was on the verge of developing a very interesting exam-

ple of inverses, which aligns with the notion of “undoing,” as Adrian mentions is

important with inverses. Indeed, Casey is referring to functions which will deform

one space into another, while the “inverse” will bring us back to where we started.

Precisely, what Casey is referring to is known rigourously as a homeomorphism.

Abstractly, homeomorphisms are continuous, bijective functions from one space

to another, which have a continuous inverse. The classic example of a homeomor-

phism would be the deformation of a coffee cup into a donut. Indeed, if a coffee

cup were made out of moldable clay, one could “deform” and manipulate the clay

to transform it into a donut. This can be done without tearing or poking holes into

the clay.

While Casey had this example in their mind, they were unable to articulate

the ways in which it was connected to the earlier discussions on inverses (through

undoing a function). Rather, Casey attempted to relate it to the example of the

parabola, which as was discussed earlier, is an inappropriate example for this

prompt. Although Casey held this more advanced knowledge, they were unable

to link it to what they already knew. Once again, this example is a demonstration

of the power of post-secondary mathematics knowledge in providing examples and
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contexts for building a deeper understanding of secondary mathematics concepts.

6.3 Limits

The task on number sense and limits which participants responded to was the fol-

lowing:

A student is working through a problem and asks you whether 0.99999 . . .= 1.

How would you respond?

Of the five participants, Adrian, Bailey, Jaime, and Taylor shared their under-

standings and the pedagogical choices they would make in the classroom. This task

interrogates participants’ understanding of number, limits, and approximations.

6.3.1 Mathematical Background

Students explicitly encounter the notion of a limit if and when they take a math

course that examines the notion of asymptotes. Asymptotes are first seen in rela-

tionship to rational functions, which may be studied in grades 10 and 11. Asymp-

totes have significant applications to the physical and social sciences, through the

modelling of various phenomena that “level out” over time.

In high school, asymptotes are often introduced as features of graphs. However,

the precise definition of an asymptote requires the notion of a limit. These may be

observed through the following definitions.

Definition 3. The line y = L is a horizontal asymptote of the graph of f (x) if

lim
x→∞

f (x) = L or lim
x→−∞

f (x) = L.
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Definition 4. The line x= a is a vertical asymptote of the graph of f (x) if lim
x→a−

f (x)=

±∞ or lim
x→a+

f (x) =±∞.

The avoidance of the limit definition of asymptotes is challenging, as it often

causes a misconception that asymptotes are lines that graphs “cannot cross,” result-

ing in a less than full-bodied understanding of what a limit represents.

The notion of a limit is the foundation of all calculus. Indeed, the derivative and

the integral are both limits, at their core. All courses in Calculus begin by defining

the notion of a limit. However, the level of rigour in which the limit is defined

varies. In Stewart’s Calculus, which is probably the most widely used Calculus

text in North America, the definition of the limit is as follows:

Definition 5. We write lim
x→a

f (x) = L if we can take the values of f (x) arbitrarily

close to L (as close to L as we like) by taking x sufficiently close to a (on either side

of a), but not equal to a.

This definition uses non-rigourous language to define a limit. Computations of

limits are then relegated to a "plug and chug" method, where most of the functions

studied are ones which are continuous, have a removable discontinuity at a, or have

a jump discontinuity at a. This restricts the types of functions that students have

exposure to in first-year calculus, while simultaneously simplifying the complexity

of a limit.

The proper definition of a limit is seen once a student enters a course in Real

Analysis. Rudin’s Principles of Mathematical Analysis is a widely used text in

North American undergraduate real analysis. The definition of limit is given as
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follows:

Definition 6. We write lim
x→a

f (x) = L if there is a point L with the property that for

every ε > 0 there exists a δ > 0 such that | f (x)− L| < ε for all points x in the

domain of f for which 0 < |x−a|< δ .

This definition provides a mathematical context for the words "sufficiently"

and "arbitrarily" that are used in Stewart’s definition of limit. Through this use of

rigourous language, the family of function in which one can study limits of func-

tions opens up dramatically.

This is not the only instance of the notion of a limit that students run into in

their mathematical careers. Indeed, the notion of a limit is observed in the con-

cept of sequences, which is a concept that may be studied in school at a very

early age. For example, the Fibonacci numbers are an example of a sequence.

This sequence is commonly used with school age children to connect mathemat-

ics with nature and art, as this sequence has connections to the organization of

pine cones, the nautilus shell, the golden ratio, and other natural phenomenon.

Mathematically, the Fibonacci sequence is the sequence of numbers {Fn}n≥0 =

{1,1,2,3,5,8,11,19,30,49, . . .}. Each new term in the Fibonacci sequence is gen-

erated by adding the two terms prior. That is, Fn = Fn−1 +Fn−2.

When students first encounter sequences in Calculus, the definition of the limit

of a sequence is colloquially simplified, as it was for functions. The following

definition is seen in Stewart’s Calculus:

Definition 7. A sequence {an}n≥0 has a limit L if we can take the terms an to be as
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close as we like to L by choosing n to be sufficiently large. Then, we say lim
n→∞

an = L

and that the sequence converges to L.

The use of colloquial language in this definition may lead the learner to make

certain generalizations about the convergence of sequences due to a limited collec-

tion of sequences which may be studied. Again, the formal definition of a conver-

gent sequence may be viewed in Körner’s Companion to Analysis:

Definition 8. We say that a sequence a1,a2, . . . tends to a limit L as n tends to

infinity if, given any ε > 0, we can find an integer n0(ε) such that |an−L|< ε for

all n≥ n0(ε).

Once again, one can observe the rigour given to the words “sufficiently” and

“arbitrarily” when the context is changed from Calculus to Real Analysis. Many

learners come into courses in real analysis with pre-existing conceptions of what

it means for a limit to exist, based on their experiences and definitions in calculus.

In all honesty, I was one of these students. When I entered my first course in real

analysis, it was as though I had learned nothing at all in my calculus courses. If

anything, I would argue that my studies in calculus hindered my initial learning in

real analysis, since I came in with certain ideas of what was the “right” way to deal

with limits, which was invalid in this new context.

The final instance of limits which will be discussed in this section, is that of

series. A series, at its core, is an infinite sum of a sequence.

Definition 9. The series ∑
n≥0

an converges if and only if the sequence of partial sums

given by {Sn}n≥0 = {a0,a0 +a1,a0 +a1 +a2, . . .} is a convergent sequence.
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The convergence of a series is dependent on the notion of a limit, since we

want to show that the sum of the various terms of the sequence have a limit, as n

goes to infinity. As will be described in the next section, one participant used their

understanding of sums, limits, and series to describe the equivalence of 0.999 . . .=

1 in their interview.

6.3.2 Participant Understandings

Upon first glance of this problem, three out of four of the participants went to the

same example: the equivalence of 1
3 and 0.333 . . ..

Taylor: Starting with the fraction 1 over 3, cause that leaves us point 333

that’s going to be infinitely long and if I multiply by 1 over 3 by 3,

that gives us 1. But if you are on the decimal side, that’s gonna be

point 9999, so yeah. I would say they are equal. Yeah, because if

you look at the fraction part, it clearly gives us 1, but the decimal

point gives us infinitely long repeated decimal. Yeah.

Bailey: You can start with a fraction. We know that a third equals 0.333

repeating forever and then from that it’s clear that 3 thirds is 1.

Because one third plus one third plus one third is point 999 for-

ever and no matter where we start, we are just gonna get nines.

We can take as many threes as we want for the dots, if we take it

to infinity, it’s just gonna be 9999 forever.

Adrian: This one is an easy one! 1 over 3 is 0.333 dot dot dot. And if we

multiply by three, over here we get 1, but on the other side we get

.999 dot dot dot.
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Figure 6.5: Taylor’s work for 0.999 . . .= 1

These quotes are interesting in that they use a seemingly less obvious equiva-

lence to prove another equivalence. Indeed, it seems more intuitive that 0.999 . . .=

1, rather than
1
3
= 0.333 . . .. Each of these participants used an equivalence that

holds the same amount of uncertainty as the initial problem, if not more.

All participants felt the need to “concretize” this problem for students. This

was particularly relevant to Jaime, who believed that 0.999 . . . 6= 1.

Interviewer: So what would be your mathematical justification to a grade 9

student about this problem?

Jaime: Just figuring out why they are different? I would take the ap-

proach of using an analogy. Like 1
2 and 1 are not the same. But if

you are looking at half a centimetre versus one centimetre from

a metre away or ten metres away, there is a technical difference.

Well, what if we make it .75 and .8? Then would you say they are

the same? Like, could you come up with a definitive rule on that?

And I think that would be the way I angle that, is that any kind

of rule of making them the same is arbitrary. I’m thinking again
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about analogies with measuring. These two things are a little bit

different.

Interviewer: If a student wanted an arithmetic argument as to why they were

different, what would you say?

Jaime: Like nine ninety nine pricing. If you have it as two digits, if

you pay with coins, you get nothing back, but a bill, you get

something. So they are fundamentally different.

Jaime wanted to provide students with a concrete context for the abstract issue

of infinity, which is an excellent way to build a more robust understanding. How-

ever, it seems that through these concrete examples, Jaime compromised their own

understanding of infinity. As Bailey noted, “I would need to see a lot of evidence

as to why that’s true in different ways. Cause it just feels unnatural” and as Taylor

states, “this tells us that certain things are true even though they are not intuitive.”

Jaime continually discussed the idea of understanding this problem from a “prac-

tical point of view” and “eventually having to truncate and make a compromise.”

However, in compromising and truncating, the conceptual complexity of the prob-

lem may be lost and may promote the development of misconceptions in students’

understanding of infinity. Adrian captures this challenge in the following excerpt,

with an excellent example for building understanding of infinity:

Adrian: I think the biggest issue is infinity. The idea of what it means to

be truly infinite. Maybe introducing the idea of the infinite hotel

or the fact that there is the same number of even numbers as there

are all positive numbers. I think this sort of strikes at the core
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of what it means to be infinite, which I think is a really tough

problem to wrap your head around. I would have them look at

how many numbers there are, different types of infinities, or what

it means to be infinite. Not just something that’s very large.

6.3.3 Post-Secondary Connections

The mention of limits and post-secondary mathematics was prevalent throughout

this task. All participants made mention of limits, in one way or another. Through

the interview, it became clear that the problem hinged on the conceptualization

of a number as a limit. This will be explored further through the analysis of the

exponents task, but we first focus our attention on the concept of number as limit

through participants’ engagement with this task.

Of all the participants, Adrian shared the most robust understanding of this

problem in terms of limits:

Interviewer: How could you prove that 0.999 with infinitely many digits is

equal to one?

Adrian: Hmm, my first instinct is limits, but I’m not sure how to employ

limits here.

Interviewer: So what is your instinct to go with limits?

Adrian: Cause it looks like a limit here. In my mind, whenever I am

thinking about infinities or large lists of things, I start thinking

about limits. Umm, I mean, I could maybe do a limit of....ok,
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how could I set this up like a limit? I could do a magnitude of

1 minus the sum as i goes from 1 to n 0.9 times 0.1. Actually,

I’ll do this from 0 to n and 0.1 to the power of i and look at the

limit as n goes to infinity here. Now, I can set up this as a limit

and maybe try to convince myself that this limit should be zero.

That the distance between these two numbers should be 0 and

then these two numbers would be the same.

Figure 6.6: Adrian’s work for 0.999 . . .= 1

Adrian was able to construct 0.9999 . . . as lim
n→∞

n

∑
i=0

0.9(0.1)n (see Figure 6.6),

by writing the number as the limit of a sum of a sequence. In this case, what

Adrian constructed is equivalent to the geometric series
∞

∑
i=0

0.9(0.1)n. Using con-

cepts from Calculus and Real Analysis, one can prove that
∞

∑
i=0

0.9(0.1)n converges

to
0.9

1−0.1
= 1. Thus, the limit that Adrian constructed proves the equivalence of

0.999 . . .= 1. This construction is in contrast to the construction Bailey presented,

using the concepts of asymptotes of real-valued functions, as observed in Figure

6.7 and the following dialogue:
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Figure 6.7: Bailey’s work for the limiting behaviour of 0.999 . . .

Interviewer: Is there any material from your math degree to help you answer

this question.

Bailey: I can’t think of a simple answer

Interviewer: And that’s ok. You can be as complicated as you want it to be.

Bailey: I guess I can’t, it really seems, I don’t know. I can’t even verbalize

why that’s true other than it’s a system we created and in our

system it clearly is true that .99999 . . . equals 1. I assume there

is some reason that is much more eloquent than that, that I’m

not thinking about. But talking about approaching infinity and

infinite number of digits.

Interviewer: So what mathematical ideas do you need for that?

Bailey: Like Calculus, right? Like asymptotes and approaching infinity.

Like some stuff from proofs about different sizes of infinity is
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good knowledge to back up your understanding of it.

Interviewer: What’s a fundamental idea needed to define an asymptote?

Bailey: Approaching infinity? Approaching some number, like limits? Is

that what we are looking for?

Interviewer: So how could we define using a limit that .999 is equal to one?

What kind of limit could we look at for this?

Bailey: We could just look at a function that, you know...

Interviewer: What kind of function would you look at?

Bailey: Like 1 over x would probably work? Actually, that one wouldn’t

really work. You could set up a graph that has that asymptote,

like plus one. And talk about limits. But that wouldn’t help me

explain it to a grade 10 student.

Interviewer: Can you think of a limit that would be equal to one but also have

something to do with this .999 infinite?

Bailey: Like we would want an equation that is approaching one from the

bottom, so that would be a 1 over x plus something. Here’s my

graph. I’m rusty on all my graphs look like. It would just be 1

over x plus 1. Would that be right? Yeah.

Interviewer: And so as we take this limit we are getting one, but what does

this have to do with .9999?
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Bailey: Because 1 minus a tiny tiny piece is .9999, right? So that asymp-

tote is approaching it.

Initially, Bailey was unsure of what advanced mathematics could be used to

solve this problem, but eventually landed on the notion of asymptote. In the pro-

cess, Bailey revealed some misconceptions of the asymptote concept. This is evi-

dent in the following excerpt:

Interviewer: Let’s say you had a really talented student in grade 11. How could

you take these ideas and make it accessible to push them beyond

what they are doing in the curriculum?

Bailey: Like you could draw a graph for them that has an asymptote ap-

proaching one, from the bottom and say, let’s look at different

values and calculate a table and see that it is clearly going to one.

But I don’t know if that would really explain it, but that kind of

shows that it’s never getting to one

Interviewer: And why’s that? Could you elaborate?

Bailey: Because an asymptote never gets there, it gets close, but never

gets there. So even though with this example, the limit is 1, it’s

not, I mean, I think it might be counterintuitive. I don’t know if it

explains that it’s true. It might almost be an argument as to why

it’s not true. Cause like it’s not actually ever getting there.

The primary misconception here is that “an asymptote never gets there.” In-

deed, many of the examples students see in school mathematics suggest this. How-
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ever, if one examines the limit definition of an asymptote, this is not implicit. In-

deed, the function f (x) = 1 has a horizontal asymptote at y = 1 since lim
x→∞

1 = 1.

Similarly, there are functions such as g(x) = sin(x)
x , which cross the asymptote of

y = 1 infinitely many times. This misconception of asymptote is well-documented

in the literature (Kajander and Lovric, 2009).

However, this observation is somewhat tangential to the task. The primary

observation from these excerpts is that Bailey does not appear to conceptualize

0.999 . . . as a limit. Indeed, this could be inferred from comments such as “Because

1 minus a tiny tiny piece is .9999, right?” Bailey seems to think of 0.999 . . . as

being independent from this problem. Rather, Bailey wants to look at concrete

instances of 0.999 . . ., that is, instances such as 0.999 . . .9︸ ︷︷ ︸
n digits

.

6.4 Exponentials

The task on numbers which participants responded to was the following:

Your students are confused as to why they can define and compute 2
√

3. How

would you respond?

At its core, this question attends to participants’ understanding of exponen-

tial functions and their extension to non-integral powers. Of the five participants,

Adrian, Bailey, and Taylor responded to this scenario.
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6.4.1 Mathematical Background

The notion of an exponent is first seen in school with integral exponents. That is,

an = a ·a · · ·a︸ ︷︷ ︸
n times

. That is, an is a times itself n times. We say that a is the base and

n is the exponent. In this definition, n must be a counting number. Otherwise, the

notation of “n times” does not make much sense. Indeed, what would it mean to

multiply something by itself 1.2 times?

This notion is later extended to negative exponents by defining a−n =
1
an and

is extended further to rational numbers by examining connections between radicals

and exponents, where n
√

a = a1/n and ( n
√

a)m
= a

m
n .

Exponents are examined from a mostly computational basis, until the concept

of exponential functions is studied in late secondary school. The exponential func-

tion with base a is defined as f (x) = ax. The graphs of these functions are often

motivated by having students create a table of values for a given base a with vari-

ous inputs of x (normally integers) and connecting the dots to create a continuous

line.

However, prior to this “connecting of the dots,” learners had only been exposed

to evaluating powers which were integral or rational. What about all of those num-

bers in between (i.e. irrational numbers)? The exponential function is defined for

x values which are irrational, but this idea is never explored until a student takes a

course in real analysis. How does one define numbers like 3π , 2
√

3, and ee?
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The theorem for rational exponents is dealt with in detail in the first 10 pages of

Rudin’s Principles of Mathematical Analysis, with the problem of extending to all

real numbers being an exercise in the first chapter. Indeed, the study of the numbers

system that provides the basis for the remainder of the study in real analysis is

necessary before progressing to complex mathematical notions that depend on this

system. Included in this study is the recognition of irrational numbers as the limit

of a sequence of rationals. This is an instance of concepts which implicitly appear

in secondary mathematics, but cannot be properly dealt with until a learner takes

a course in real analysis. Even if this concept cannot be covered in secondary

school, the teacher with the awareness of the complexity of extending exponential

powers to rational and irrational powers could bring context and take extra care

when teaching related material with their learners.

6.4.2 Participant Understandings

As mentioned above, the participants who chose to engage with this question were

Adrian, Bailey, and Taylor. Overall, all participants were able to engage with this

problem at the secondary level, but did not have rigourous mathematical explana-

tions to justify the construction of irrational exponents. Despite this, there were a

number of commonalities amongst the responses. In particular, the use of rational

exponents and inverse functions.

At the very beginning of the interview, Taylor made the observation that “hav-

ing the exponent that’s not a whole number is just weird to [students], I guess.”

All participants mentioned the “concrete” nature of whole number exponents: the

ability to multiply a number by itself a finite number of times. From this, partici-
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pants shifted their attention to rational exponents and square roots, but recognized

a large conceptual shift for students:

Taylor: Well, the square root of 2 is actually the same thing as 2 to the

power of a half. And this is true by definition, because when

you square the square root of 2, that the student may know or

not know, but this is by the definition of square root and you’re

squaring it again, which means that you’re multiplying the num-

ber by itself, then you get the square root of 4 which is 2. That’s

why it’s 1 over 2 because when you have 2 to the power of a half

and square it again, you get 2 to the power of 2 over 2, which is

just 2. So, square root of 2 and 2 to the power of a half are the

same thing. So, the exponent doesn’t always have to be a whole

number.

Bailey: A student I tutored had a lot of trouble conceptualizing what pow-

ers to a half are. Because all of the sudden we go from expo-

nents meaning times itself so many times and then something

else. Like, negative one doesn’t mean we are timesing negative

one times, it means something else. I conceptualize it as the in-

verse functions. Instead of multiplying by itself twice, we had to

multiply the previous thing to get 2.
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Figure 6.8: Bailey’s work explaining rational exponents

Adrian: You can start talking about fractional powers, like the square root,

cube roots, and so on and so forth. I would probably do this

from the inverse. If this is, if I have x = 21/2, I can square both

sides and get this idea. Something squared is equal to 2, what is

that something? You’re throwing square roots in, which students

don’t like as it is.

All participants instantly used the relationship between radicals and roots to

justify rational exponents. Furthermore, relating the rational exponents (in partic-

ular, exponents of the form 1
n ) allowed participants to relate non-integral powers

back to the more concrete territory of integral powers. However, participants lost

this convenience when the conversation shifted to irrational powers:

Taylor: I could approximate it with a rational number. I want to be careful

as to not exceed the value of
√

3. But also it has to be smaller

than 2, so tightening the range of what potential value can be. We

don’t know that this value exists. Where does it lie on that graph

[of the exponential function] would be the question to students. I

think that narrowing down the range would be able to help them

understand the value that it takes.
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Bailey: If we think of 2
√

3 as 2 to the 1.7 something, I would say it’s like

2 to the power of 1 and then some fraction. Obviously we can’t

write it as a fraction, but we could write 1.75 as 1 and three quar-

ters. Like, we understand what that means. We can understand

that this is root four to the power of 3. And from there, I feel like

we could elaborate to say that even though we can’t put it into a

power and that it’s very close to this.

Adrian: If you can understand 2 to the 1.7, I don’t think it’s too much to

extend it 2
√

3. Like, get students to understand that these things

can exist on their own. And maybe this is a good way of break-

ing it down. it’s 21 times 20.5 times all these things multiplied

together and you can find each of those separately and estimate

them in different ways. Maybe that’s a good way of doing it? It’s

two to the 1.7 ish, we don’t really care.

Figure 6.9: Adrian’s work finding a value of 2
√

3
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The idea of relating an irrational exponent to a rational exponent is a very

reasonable approach and is certainly a way to define irrational exponents. However,

no participant was familiar with the formal definition and drew upon the notion of

approximations and other mathematical ideas (such as continuity) in order to justify

the concept of an irrational power:

Taylor: I mean, I would say that the exponent can be continuous that

by that I would say that it doesn’t have to be a whole number

or rational value. But something that falls out of range of that

whole number and rational numbers. So irrational, since it lies

on that number line from zero to infinity, it lies on that number

continuum. I would say that square root of 3 is also somewhere

on that, since I know the value, somewhere between 1.7 and 1.8.

So you can have the value as an exponent too. And as you saw

through the graph of it, the exponent function is continuous, so

there’s a value for 2 square root of 3 as well.

Figure 6.10: Taylor’s work for work defining 2
√

3
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Bailey: So yeah, I would just take this and make it a fraction over a mil-

lion, hundred million. So essentially we are taking the hundred

millionth root and taking the 7 hundred whatever power. I think

it would be pretty easy to show it does exist, but where I think it

would be hard would to have some reason as to why it exists. We

can come up for something as to what it means for fraction. Like

square root, cube root. That has a definition that makes sense.

Whereas once it becomes an irrational number, I don’t see any

kind of concrete definition. I guess you could do something like

I’m looking here. If you take 2 to the root three and take it to the

root three and then you get 2 to the 3. Maybe you can get some-

where with that? You’ve obviously got lots of irrational powers

but maybe if you played around with that maybe you could work

it to someplace that shows something.

Adrian: Plug it into Desmos and see what happens. You get this graph.

What can you recognize? You recognize two to the 0 is one, two

to the 1 is two, two to the 2 is four. You can even recognize the

points down here...how about the points in the middle, how do we

access these points? And giving them this idea that you can work

in between, the idea that there is something between these two

numbers, that there is a continuous pattern that exists. Umm, that

might be a good way to do it, but it’s still not satisfying. It’s not

as, like the fact that you can plug this into Desmos doesn’t prove

it’s a thing. For some students it will be fine, for some students it
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won’t be. And as a mathematician, I’m not satisfied with it. And

I’m trying to remember how this was actually introduced to me

because it’s been so long.

Figure 6.11: Adrian’s work extending exponents to irrationals

Adrian and Taylor had a similar idea of bringing the graph of exponential func-

tions in to help convince students that they could define and compute 2
√

3. How-

ever, as Adrian notes, this is not sufficient. Both Taylor and Adrian thought they

could bring in the notion of continuity in order to justify the existence of 2
√

3, but

this is not mathematically sound, as Adrian notes. In fact, existence is a necessary

condition for continuity.

Definition 10. A function f (x) is continuous at x = a if the following three condi-

tions are all satisfied:

1. f (a) exists
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2. lim
x→a

f (x) exists.

3. lim
x→a

f (x) = f (a)

If continuity is to be used as a justification, existence is necessary. This is an in-

teresting example that demonstrates how advanced mathematical knowledge could

negatively impact a teacher’s understanding of secondary mathematics. Indeed, the

notion of continuity is a concept that can be explained non-rigourously and is often

associated to the idea of drawing a line and never lifting your pen up. However,

the rigourous definition requires an understanding of what happens at a particular

point, where the notion of a point in Euclidean space is abstract in and of itself. As

Adrian remarked, “the fact that you can plug this into Desmos doesn’t prove it’s a

thing.”

Of all the participants, Bailey came the closest to a rigourous definition:

Interviewer: So how would you conceptualize an irrational power?

Bailey: I feel like we could elaborate to say that even though we can’t put

it into a power, that it’s very close to this. And you could almost

do the whole approaching from both sides thing, using rational

numbers. But yeah, I don’t actually have a good explanation for

that and I don’t know that there is one. It’s gotten so abstract. I

don’t know of a concrete explanation for how it exists.

Bailey was very focused on concretizing the idea of exponents, seeing as the

first conceptualization of integral powers is very concrete. As Bailey notes, even

rational powers can be concretized “because we have a concrete representation of
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where square roots exist in nature and there are cool origami proofs. And if you

can do that, you can convince them [students] that square root two exists.” As will

be elaborated below, this dialogue brings forward an interesting perspective on the

issue of “exactness” and “existence.”

6.4.3 Post-Secondary Connections

The notions of “defining,” “exactness,” and “existence” were problems for Taylor

during this task, as demonstrated in the following excerpt. As will be seen, Taylor

came very close to the proper definition, but their progress may have been hindered

by confusing these three notions.

Taylor: I’m pretty sure that there is a way to approximate this...ummm, I

think it involves some series. But yeah, I would have to google

it. I’m pretty sure there is a way to do it

Interviewer: What would you use the series for? Just kind of roughly?

Taylor: So it’s not square root of 3 for the one I remember but finding the

value of pi, there is a way to know the exact value of pi using ei-

ther the Taylor series or the Newton’s method. I can’t quite recall

what the name was, but yeah. But the process is quite beautiful.

Yeah. But yeah, so in terms of finding square root of 3, I think

there would be a way to find it using Taylor series, which I’m not

quite sure now, but yeah.

Here, Taylor wants to use the idea of series to deal with
√

3. This is not far off

from what Adrian and Bailey suggested in decomposing
√

3 into rational pieces.
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However, the issue of defining the irrational exponent still exists. Taylor’s goal at

this point it to find the value, rather than justify existence. In order to try to see

if Taylor could use this idea to get to the definition, the interviewer hoped Taylor

would recognize
√

3 as the limit of a sequence of rationals.

Interviewer: So if you were to associate a series to the square root of three,

what kind of series would you associate it to? What would the

series be made up of?

Taylor: Mmmmm, I’m not so sure.

Interviewer: No?

Taylor: No.

Interviewer: Could you associate a sequence to it?

Taylor: Ummmm, yeah, I think, you can associate a sequence, it’s not

very specific but let’s say we have a value that is approaching

from, I don’t even, I don’t know if I’m using the right term.

Interviewer: That’s okay don’t worry.

Taylor: Approaching from above and approaching from downward then

there is some value that is in between. Then finding a correct

function of these two would allow us to find the value of square

root of 3.

Taylor shifts attention from defining to finding an “exact” value. This is inter-

esting because π and
√

3 are exact values, while other methods, such as a series,
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are alternative representations which converge to
√

3. This dialogue continued to a

point in which a misconception of irrational numbers was unveiled:

Interviewer: So what you are saying is you would want to define two se-

quences that would approach square root of three?

Taylor: Right, yeah.

Interviewer: And generally can you think of a....is there an association gener-

ally between irrational numbers and sequences?

Taylor: Yeah, umm, I would think so, yeah.

Interviewer: And what kind of relationship would there be?

Taylor: Because infinite series can incorporate the problem of infinite

decimal point and sometimes it’s not very repeating per se, I mean

not repeating as decimals, so when those series are incorporated

they would also involve a value of irrational numbers such as

square root of two or three.

It is in the last remark from Taylor where they claim that a series representation

of an irrational number should involve irrational numbers. This is not the case. In-

deed, as mentioned in 6.4.1, all irrational numbers may be the limit of a sequence

of rationals. Although Taylor refers to series in their justification, it is not true

that series which converge to irrational numbers contain irrational terms. Indeed,

the famous series ∑
n≥1

1
n2 = 1+

1
4
+

1
9
+

1
25

+ . . . is a series with all rational terms

converging to
π2

6
, which is irrational. This is one example of many.
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Overall, from these excerpts comes forward key developmental understanding

of exactness and irrational numbers. The “exact” form of π is π . By not writing

out the decimal expansion of π , “exactness" is maintained. The case is similar

for
√

3;
√

3, e, π , and
√

2 are all exact values. At this moment, super computers

are searching for the next digits of π and this process will never stop. Through a

decimal expansion, information about the number is lost, as is “exactness.” Tay-

lor’s remarks are mirrored in Bailey’s lament of wanting “concrete representations

and explanations” for irrational numbers. Indeed, one might suggest that irrational

numbers are concretely irrational.

One final path that both Taylor and Adrian saw as being relevant for this task

was the relationship between exponentials and logarithms. Through this discus-

sion came an interesting conception of the logarithm function. In the high school

curriculum, exponentials are introduced first, partly due to the "concrete" nature of

the definition of ax, when x is a natural number. Much later in the curriculum, the

logarithm base a is defined as the inverse of the exponential function f (x) = ax.

That is, g(x) = loga(x) is the function such that ( f ◦g)(x) = (g◦ f )(x) = x, as dis-

cussed in 6.2.1.

While Adrian tried to bring logarithms into their strategy, they quickly aban-

doned that route, recognizing that it did not simplify the situation in any way:

Adrian: Something squared is equal to two, what is that something? I

guess you can sort of use the same idea here, but it’s not as neat.

Interviewer: And why is it not as neat? Could you elaborate on that?
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Adrian: I think if you can connect this to fractional powers, they can un-

derstand it as a cube root, or even if you have two to the two over

three, you can think of it as two squared, cube root. But this one

does not have as nice of an interpretation. You’re now thinking

of this as, yeah.....uhh, you can’t think of it in terms of multiplied

a certain number of times or taking an integer form. Umm, yeah,

and I mean even if you use this argument, this rationale, you can

take the square root three root (i.e.
√

3
√

x) of both sides. Some-

thing to the root of square root three (
√

3
√

x) equals two, which is

probably not helpful and makes it worse.

Although Taylor did not respond to the task which explicitly explores under-

standings of inverse functions (see 6.2), the dialogue that follows unveils an inter-

esting conception:

Interviewer: Do you have anything you would want to add to this? Any ideas

from your math courses that you took that are coming up that

come to mind with this problem?

Taylor: Since I am dealing with the exponent function I would introduce

the idea of the inverse of two to the power of x.

Interviewer: And how would that be useful?

Taylor: That would be useful because, not really useful, but again how

inverse function the exponent function relate.

Interviewer: And how do they relate?
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Taylor: They relate because it gives identity function?

Interviewer: Go ahead, you’re fine!

Taylor: Let’s say this is an exponent function, y = 2x. To find the in-

verse function there is logarithmic function: y becomes x and x

becomes y, then we are trying to figure out what y is in terms of

x here. So I would bring log on both side to get log(x) equal to

log(2) to the power of y, which is y times log(2) so that again

would be log(x) over log(2) which is why that would imply that

by the logarithmic rule, would be log2(x) which is y. This is an

inverse function of 2x. Then it’s inverse, how do you check it?

We just, let’s say this exponent 2x is f (x) and let this be, let the

inverse function log2(x) be g(x). And if we make it a composite

function f ◦g, would be by definition f at g(x), that means two to

the power of, and in the place of x, we substitute log, so 2log2(x),

and that gives us a value of x, by definition that proves that the

logarithmic function is inverse function of 2x, because when you

composite it gives identity function.
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Figure 6.12: Taylor’s work on exponents and logarithms

The interest in this excerpt lies in Taylor’s use of logic. At the end, Taylor

states that “by definition that proves that the logarithmic function is inverse func-

tion of 2x, because when you composite it gives identity function.” However, in

order to prove that log2(x) is the inverse function of 2x, Taylor must use the fact

that it is an inverse. This relates to Taylor’s previous dialogues in the sense that

it brings forward some confusion between what constitutes a definition and/or ex-

istence. Indeed, the logarithmic function may be defined as the inverse function

to the exponential. One can show that an inverse of f (x) = 2x exists (since 2x is

injective), but this does not tell one what the inverse is.

A post-secondary education in mathematics is where prospective teachers en-

counter such logical notions such as definitions, axioms, existence, and exactness.

The results from this task reveal that mathematics educators might want to recon-

sider the ways in which these logical pillars are addressed in the post secondary

curriculum, so that future mathematics teachers may have a more robust under-

standing of the mathematics they teach.
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6.5 Summary

In this chapter, I have explored participants’ responses to tasks involving concepts

from Calculus and Real Analysis. Results from these tasks reveal that overall,

advanced mathematics coursework in calculus and real analysis did not have a sig-

nificant impact on teachers’ mathematical knowledge for teaching, with respect to

these tasks.

Participants remarked that their advanced mathematics coursework offered valu-

able experiences which helped them build a more robust understanding of the na-

ture of infinity. However, while engaging in the interview tasks, some misunder-

standings about infinity were revealed. Indeed, with respect to both the task involv-

ing 0.999 . . ., as well as 2
√

3, participants were unable to conceptualize these two

numbers as limits. Particularly in the case of 2
√

3, this limited participants in their

justification of “what” this number was and how to define it. Approximation ver-

sus exactness and existence versus the definition were two tensions exhibited by the

participants who engaged with this task. In the case of 0.999 . . ., all participants

who engaged in this task presented a memorized justification, which is arguably

less intuitive. Rather than focusing on a limiting notion of this number, partici-

pants wished to justify the equivalence concretely, using metaphors and graphs.

While metaphors and examples can be excellent tools for developing understand-

ing of abstract concepts, some participants drew upon examples that did not fully

capture the concepts they were hoping to concretize.
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While only two participants engaged in the task on inverses, analysis of the

transcripts revealed that the notions of operation and the “undoing” of these oper-

ations were important facets of their mathematical knowledge for teaching in this

domain. However, this revealed a tension with respect to what it means to “undo”

in a functional sense. Casey revealed an overextension of the idea of inverses with

respect to the notion of reflecting the graph of a function over the line y = x. This

same misconception also brought forth the issue of domain restrictions and the

role that these play in the existence and finding of inverse functions. While Casey

mentioned that domain restrictions should be studied when teaching about inverse

functions, it was clear that Casey held numerous misconceptions regarding the me-

chanics and use of domain restrictions.

Overall, results from this chapter suggest that participants’ understanding of

these tasks were primarily held in the domain of secondary content. While some

connections were made to notions in calculus and real analysis, these understand-

ings did not appear to impact the ways in which participants would approach them

in a classroom. That is, the understandings developed in their university mathe-

matics coursework were not built up from their existing mathematics knowledge.

While participants held understandings of limits, sequences, exactness, and conti-

nuity, these understandings seem to only exist in the domain of “university math”

which, as detailed in Chapter 4, was perceived to be disconnected from secondary

mathematics content. Results from this chapter suggest that university courses

in calculus and real analysis might benefit from a reconsideration of the ways in

which they support the construction of connections between secondary and post-

secondary mathematics, so they might better foster the development of MKT for
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future teachers. This will be discussed more in-depth in Chapter 8.
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Chapter 7

The Tensions of Proof and

Applications Observed Through

Geometric Tasks

7.1 The Square Root of Two

In this section, I will discuss participants’ responses to Task G, which was the

following:

A student is confused as to whether
√

2 is an irrational or rational number,

especially after realizing it is the length of the diagonal of a square of side length

1. How would you respond?

The purpose of this task was to explore participants’ understandings of the real

number system. Of the five participants in the study, Taylor and Bailey chose to en-

gage in this task. Overall, responses to this task revealed a reliance on memorized
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proofs, but analysis of the transcripts revealed more general misunderstanding in

the context of proofs in secondary and post-secondary mathematics.

7.1.1 Mathematical Background

Irrational numbers could be considered one of the most abstract concepts of the

secondary curriculum. Without them, the real number system is vastly incomplete,

but the theoretical jump from rational to irrational numbers can be challenging for

students and teachers alike (Fischbein et al., 1995). These difficulties are due in

part to the nature of irrational numbers. One such aspect of their nature that might

hinder theoretical understanding is the fact that, despite the rationals being a dense

set, they do not cover the entire real number line. That is, any interval of the real

line, no matter how small, is guaranteed to have a rational number in it. However,

there are “holes” which need to be filled. These numbers are the irrationals. A

second piece which may hinder understanding of irrationals, is their relationship to

incommensurability. As noted by Fischbein et al. (1995), this difficulty can even

be observed through the historical development of understanding irrational num-

bers, as the discovery of incommensurable segments was a result of early Greek

mathematicians, while the fully theory of irrationals was not developed until the

nineteenth century.

The challenges associated with irrational numbers are exacerbated by subsets

of numbers such as constructible, algebraic, and transcendental numbers. The first

definition of irrational numbers that students might encounter is that irrational num-

bers are decimals which do not terminate and do not repeat. This definition is vague

and leaves space for interpretation. Indeed, a number like 0.10100100010000 . . . is
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irrational, but it somewhat follows a repeating pattern.

Some irrational numbers are constructible; that is, they can be constructed us-

ing a finite number of arithmetic operations (including the square root) on the inte-

gers.
√

2 is an example of an irrational constructible number, while irrationals such

as e and π are not. Although the definition of “constructible” is purely geometric,

there is a deep relationship between constructible numbers and field extensions in

abstract algebra. I turn the reader to Aluffi (2009) for an extended mathematical

discussion. Irrational numbers such as e and π are examples of transcendental

numbers, who are not roots to any polynomial equation, with integer coefficients.

Numbers which are roots to such equations are called algebraic. The relationship

between these subsets of irrational numbers grows further, with any constructible

number being algebraic.

A course in elementary number theory may be one of the first places under-

graduate students begin to rigorously look at the real number system, despite the

focus of most elementary number theory classes being the integers. One of the first

such exposures would be the proof of
√

2 as irrational. This proof utilizes proper-

ties of integers and the rationals, in conjunction with a proof by contradiction. The

proof requires some degree of abstraction, but does not involve the use of unfamil-

iar definitions and constructions. Indeed, the most complicated piece of this proof

may be the technique of proof by contradiction, as will be observed by participants’

responses in 7.1.2. I present the proof of
√

2 being irrational to provide context for

the section that follows:
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Proof. Suppose that
√

2 is rational. Then,
√

2 =
m
n

, for some m,n ∈ Z, where m

and n are relatively prime. That is, m and n have no common factors. Squaring

both sides, we have that 2 =
m2

n2 , which is equivalent to 2n2 = m2. This means that

m2 is an even number, which implies that m must be even. Thus, we may write

m = 2k, for some k ∈Z. So, 2n2 = 4k2, which after dividing both sides by 2, yields

n2 = 2k2. Under the same argument as before, this implies that n is also even. This

is a contradiction to our assumption that m and n are relatively prime, since we

have just shown that both m and n are even numbers. Thus,
√

2 is not rational.

7.1.2 Participant Understandings and Post-Secondary Connections

As mentioned above, of the five participants, Taylor and Bailey engaged in this

task. Interestingly, both participants initially responded in an almost identical man-

ner, making reference to the elementary number theoretic proof that the square root

of two is irrational, which was outlined in 7.1.1. The interview dialogue was brief,

due to both participants immediately drawing from post-secondary mathematics

knowledge, so I have combined sections where they have previously been written

separately.

Taylor: I would first ask the student what is a rational number. They

might say it is a fraction, but by fraction, what do you mean?

Well, all fractions have a numerator and denominator which are

integers or whole numbers. So ok, I would proceed with saying

let’s suppose square root of 2 is rational and argue by contradic-

tion.

Bailey: So, first I would talk about rational and irrational numbers, be-
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cause it seems the student is confusing what that means. If I had

students who understood what that means, I might actually show

them the proof of root 2 being irrational. Proof by contradiction

is a little confusing, but it’s a cool proof.

Figure 7.1: Taylor’s proof that
√

2 is irrational

Taylor chose to talk though the entirety of the proof during their interview (see

Figure 7.1), while Bailey made reference only to the strategy of using the proof.

Although the intent of this task was to explore participants’ understanding of the

real number system, these remarks opened an opportunity to discuss methods of

proof. With this in mind, I was curious to understand how Taylor and Bailey con-

ceptualized the method of proof by contradiction.
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Taylor: Assuming from what is absurd, you can derive the truth. That

means that if you assume a stupid thing, that you can, then you

will in the end derive something that doesn’t make sense from

what you assumed.

Bailey: I would say that we know that this first thing is true and if we

can take steps where we know all of them are valid and we get to

something that is clearly untrue, then your first premise had to be

flawed by logic.

Taylor and Bailey both demonstrated an understanding of the utility and strat-

egy behind proof by contradiction. That is, if you are trying to prove that a state-

ment P is true, assume that ¬P (read “not P”) is true. From this, a successful proof

by contradiction will yield that if ¬P is true, then a statement Q and ¬Q are both

true. Since Q and ¬Q are opposite statements, both cannot be true at the same time.

This will always be false. The truth or falsity of P is actually equivalent to the truth

or falsity of the conditional statement if P then Q∧¬Q. This may be observed in

Table 7.1.

P ¬P Q∧¬Q ¬P =⇒ Q∧¬Q

T F F T

T F F T

F T F F

F T F F

Table 7.1: Truth table for logical equivalence of P and ¬P =⇒ Q∧¬Q
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Notice that the far-left and far-right columns are equivalent. Thus, proving P

is equivalent to proving ¬P =⇒ Q∧¬Q. The latter conditional statement may be

proven using a direct proof method. When participants were asked why proof by

contradiction is a valid method of proof for the problem they wanted to use it for,

dialogue revealed that they were able to use it as a tool, but did not have a rigorous

justification for its utility:

Taylor: Umm, it works because, umm, I think it works because when you

make an argument that is not true, by assuming that certain thing

then you see a contradiction because of that assumption. Then

we have to meet that the statement doesn’t work. So you have

to go to the other assumption and start with that. Yeah, uh, the

statement. We make a statement that is not true and if you assume

that as a true then we get, we might, get a statement that is directly

contradicting the statement we assumed.

Bailey: The deductive logic is hard. Saying that if all these steps are

valid and this is untrue then the only option is that the premise

was untrue.

From this dialogue, it is unclear whether or not Taylor and Bailey understand

the reasoning behind the proof by contradiction strategy. Although both make note

of the strategy of P versus ¬P, they make reference to the premise of the statement

being the fundamental component to the argument, rather than the logical equiva-

lence of P to ¬P =⇒ Q∧¬Q.
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When prompted to reflect on the logic behind the strategy, Taylor seemed to

recognize that they did not fully understand the reasoning behind the method of

proof by contradiction:

Taylor: For me, I would say the logic was always what was taken for

granted. In my undergrad, it was a rule of law, for making argu-

ments. To make my students understand why it’s making sense, I

have to study it for myself first.

While Taylor and Bailey were both very familiar with the proof by contradic-

tion strategy, the dialogue suggests that they may have never had the opportunity

to develop a personally powerful understanding of this proof method. Taylor rec-

ognizes that they used this method regularly in their mathematics studies, but that

they never questioned how or why it worked. In order to have a pedagogically

powerful understanding, one needs to have a personally powerful understanding

— a KDU.

This dialogue brings forth an interesting connection between post-secondary

mathematics education and mathematical knowledge for teaching. Both Taylor and

Bailey saw value in bringing strategies of proof into their future teaching. Bailey

remarked on how they found it strange that proof did not have a more significant

role in the curriculum, since it holds such an important position in post-secondary

mathematics. However, as Taylor notes, methods of proof may not be intuitive

and a deep understanding of why such methods of argumentation are valid requires

deep understanding of logic. Even so, Taylor felt as though the methods of proof

were taken for granted in their studies. This resulted in Taylor recognizing a tension
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in their MKT, stating “it’s ironic because I argue an important aspect of mathemat-

ics is asking why, but I’m sort of reinforcing students to just accept this process as

a legitimate solution.”

Taylor chose to conclude this task with the number theoretic proof, since they

viewed it as a simple but rigourous argument that would be accessible to high

school students. Bailey, on the other hand, presented an alternative method focused

on “zooming in” on the number line (see Figure 7.2):

Bailey: I would probably “zoom in.” Ok, maybe
√

2 is like 1.41 some-

thing. So I would say, well, here’s 1.5. And we would zoom in

and have a new number line where this is 1.4 and this is 1.5 and

ok, it’s in between here. And do a few of those to show no matter

how far deep we go, we have more, we are closer to the number

on either side.

Figure 7.2: Bailey’s picture of “zooming in” to
√

2

In this excerpt, Bailey uses the decimal expansion form of
√

2, so I was curious

to see how Bailey would respond without this assumption in place:

Interviewer: So numerically, how would you justify the decimal form of
√

2?
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Bailey: We could do 1 squared is 1, and 2 squared is 4. So like, let’s try

1.5. That’s too much. Let’s try 1.3. That’s too little. And just get

closer and closer to it. It would be like an asymptote of a graph.

We are approaching
√

2. But I feel like it might convince my

students the opposite. Like, it’s so clear that it never gets there,

so it makes it seem like the number doesn’t exist.

Bailey’s remarks point to the understanding of irrational numbers being the

limit of a sequence of rationals, as outlined in 6.4.1. However, based on Bailey’s

dialogue in 6.4.2, it is unclear as to whether or not this understanding was fully

developed. Recall that Bailey had difficulty in providing a justification for the

equality of 0.999 . . .= 1 and wanted to relate the number 0.999 . . . to the function

f (x) = 1
x + 1. During this task, Bailey was unable to conceptualize 0.999 . . . as a

limit of a discrete sequence. While their work with
√

2 points to some conception

of number as limit, remarks from 6.4.2 leave room for interpretation.

7.2 Symmetry

In this section, I will explore participants’ responses to the task on what they would

include in a lesson plan unit on symmetry. The task was phrased as follows:

You are teaching a week on symmetry to your students. What would you include in

your lesson plan?

Of the five participants, Jaime, Bailey, and Casey engaged with this task. Over-

all, connections to the post-secondary curriculum were limited, with only Casey

bringing forward an explicit example of symmetry in the post-secondary curricu-

lum. The mathematics of symmetry discussed was focused at the secondary or ele-
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mentary level. Even for discussion generated at the post-secondary level, the con-

versation was primarily in the context of particular examples or problems, rather

than a general extension to the post-secondary curriculum.

7.2.1 Mathematical Background

At its core, symmetry is a notion of balance and proportion. Mathematically, the

definition becomes more complicated. For our purposes, I define a geometric ob-

ject to be symmetric if it is invariant to particular geometric transformations. These

transformations include reflection, rotation, scaling, and translation.

Symmetry has the possibility of appearing early in the elementary mathemat-

ics curriculum, through the examination of plants, animals, and other symmetric

objects in nature. Later in the secondary curriculum, some formality can come to

symmetry through the language of functions: Even functions, where f (x) = f (−x)

are symmetric across the y-axis, odd functions who are symmetric to the line y = x

and satisfy f (−x) = − f (x). The absolute value of a function, | f (x)| is an addi-

tional context where symmetry can be explored, particularly if all outputs of the

function f (x) are negative. Overall, translations and reflections of functions in the

plane are a context where the familiar notions of symmetry are made rigourous.

Translations, reflections, and rotations of geometric shapes can be combined

to create mathematical works of art, and tessellations can be an exciting way for

students to explore various types of symmetry. By definition, a tessellation is a

tiling of the Euclidean plane using one or more geometric shapes. The key in

constructing a tessellation is that no gaps should exist and no geometric shapes
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should overlay. Tessellations have a rich history in ancient architecture, design,

and art. One of the most famous examples of bridging tessellations, mathematics,

and art is the work of the artist M.C. Escher. As was noted by mathematician Doris

Schattschneider, although the relationship to mathematics was evident in his art, the

work of Escher was heavily mathematical Schattschneider (2010). The mathemat-

ics in his work was non-trivial and required a rich understanding of geometry and

symmetry. Such a context could be a rich avenue for students and future teachers

of mathematics to extend and expand their mathematical horizons, while drawing

upon content they already know.

In the context of advanced mathematics, a significant appearance of symmetry

in the post-secondary curriculum would be the symmetric and alternating groups,

S3 and A3, respectively. Initially, one may define these groups in the following

way: Consider the set X = {1,2,3}. We apply a bijective function from X to X

that rearranges the elements of X . Such a function f : X → X may be as follows:

f (1) = 2, f (2) = 3, and f (3) = 1. For short hand, we would represent this as

f =

1 2 3

2 3 1

. The set S3 is the set of all permutations of these three objects. In

total, there are six permutations of the set X = {1,2,3}. They are:

f1 =

1 2 3

1 2 3

 , f2 =

1 2 3

1 3 2

 , f3 =

1 2 3

2 1 3

,

f4 =

1 2 3

3 2 1

 , f5 =

1 2 3

2 3 1

 , f6 =

1 2 3

3 1 2
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This definition can be extended to construct the symmetric group on n ele-

ments, denoted Sn. Now, with this first introduction to the symmetric group, one

might question why it has the name “symmetric” group. Indeed, the construction

of this group, at a surface level, does not seem to have anything to do with symme-

try, but of permutations. The direct relationship between the symmetric group and

geometric symmetry appears when one introduces the notion of a dihedreal group.

A dihedral group is the group of symmetries on a regular polygon. For a regular

polygon with n sides, the dihedral group on that n-gon would be denoted by Dn.

Given an equilateral triangle, the group of symmetries would be D3. How many

elements does this group have? That is, how many symmetries are there to an

equilateral triangle? The symmetries we consider are rotational and reflectional

symmetries and they exist as follows:

d1 =

1

2 3
d2 =

1

3 2
d3 =

2

1 3

d4 =

3

2 1
d5 =

2

3 1
d6 =

3

1 2

Observing the pictures above, note that the element d2 is a reflection along the

vertical bisector, which flips the vertices 2 and 3. The element d3, on the other

hand, is a rotational symmetry of 60 degrees, in the counterclockwise direction.

Returning to the example of S3 and permutations of the set {1,2,3}, notice that

each element of S3 corresponds to an element of D3. With a little bit more work,

one can actually show that these two groups are in fact isomorphic. That is, the

algebra of the dihedral and symmetric groups of three elements are equivalent.
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The examples presented above only scratch the surface of possibilities for ex-

ploring symmetry in secondary and post-secondary mathematics. The implications

of symmetry in physics, chemistry, biology, and art are far-reaching and could take

up the entirety of a book. For those looking for extended literature on symmetry,

mathematics and applications, please refer to Field and Golubitsky (2009).

7.2.2 Participant Understandings

Of the five participants, Jaime, Bailey, and Casey engaged with this task. While

Casey immediately jumped to connections in the post-secondary curriculum, Jaime

and Bailey kept most of their examples to lie within the secondary context. In their

dialogue, the emergent theme was a focus on visual and tactile symmetry.

The relationship between nature and mathematics was expressed as an inter-

esting avenue to explore symmetry, by both Jaime and Bailey. Jaime suggested

having students find and suggest places that they see symmetry in their daily lives,

while Bailey thought it would be valuable to bring in interesting examples like

snowflakes and plant growth to have a more interdisciplinary discussion on the

role of symmetry and nature. Although a connection was not explicitly mentioned

by Jaime, they remarked that “facial symmetry is very tied to people’s perception

of beauty.” While Jaime did not mention this, their connection between nature and

symmetry had the potential to open up an interesting lesson exploring the Golden

Ratio, symmetry, art, and biology.

Both Jaime and Bailey recognized that there are two types of symmetry within
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the secondary curriculum, rotational and reflective. Jaime and Bailey saw these as

being particularly important, since both of these symmetries appear frequently in

nature, yielding multiple places of entry for “students to build their own working

definition” of symmetry, as Jaime suggested.

When considering the mathematical content of the secondary curriculum, Jaime

and Bailey both mentioned graphing and transformations as being a major compo-

nent of symmetry in the curriculum. Bailey mentioned “the only symmetry we talk

about in high school is the graph, like here’s the axis of symmetry and that’s really

straightforward.” Jaime mirrored this comment when mentioning the graphing of

parabolic functions and axes of symmetry, but went a little further:

Jaime: I think that the idea of symmetry with respect to time is this idea

that we are talking about not just folding these papers and seeing

a reflection, it’s a more general concept. Like, if you were re-

versing time, the same thing would happen but it would go back-

wards. We see a ball fall down, but according to Newton’s laws

of motion, it has the exact same motion coming up.

Jaime used their experience in physics to give context to the symmetric shape

of parabolic functions, which extended the notion of symmetry as a visual/tactile

concept, to something more abstract. Although all of the examples Bailey sug-

gested were purely visual, they considered bringing in mathematical objects such

as fractals, to explore a more abstract conceptualization of symmetry. The key

point for Bailey was “bringing in cool visualizations, cool stuff they can see.” Bai-

ley thought that students would have difficulty understanding the abstract terms of
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symmetry and thought that visual and tactile representations of symmetry would

be an optimal “entry way” for students to begin exploring the concept.

Interestingly, none of the participants made mention of the relationship be-

tween mathematics, art, and symmetry. This is particularly interesting considering

that Jaime and Bailey both made mention of the math and art projects completed in

their math methods courses during their teacher education. Both participants found

the assignment to be fun and productive, but did mention concern about how to fit

these types of projects into the stated curriculum.

7.2.3 Post-Secondary Connections

Overall, connections made between the secondary curriculum and post-secondary

mathematics by participants were limited. Jaime made no explicit connections to

post-secondary content, Casey brought forth one example, and Bailey mentioned

some examples at a surface level, but the general view was captured in the follow-

ing statement:

Bailey: I can’t think of ways that my math degree would help them under-

stand the stuff that’s in the curriculum, like symmetry of graphs.

As has been the case for the other tasks, connections made between symmetry,

secondary, and post-secondary mathematics were primarily example driven rather

than conceptually driven. As mentioned above, Casey started the interview by once

again discussing the alternating and symmetric groups of three elements (A3 and

S3, respectively). Although Casey had these groups in mind as a post-secondary
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example of symmetry, when discussing how it would be used in their pedagogy, it

became clear that Casey’s understanding was primarily process driven.

Interviewer: What would you include in a lesson on symmetry?

Casey: Given a 60-60-60 triangle, we could take the bisector and label

the corners A, B, and C. The bottom line is if we flip the triangle,

it’s the same. But then, also given the rotations of the triangle,

we could also explain that it’s the same as if you flipped it along

one of the bisectors. I would just draw a fancy squiggle line and

show that the verticies of the triangle have flipped. It’s related to

Galois theory.

Interviewer: Can you elaborate on the relationship to Galois theory?

Casey: Well, we are taking this whole 60 degrees and we are flipping it,

but the point is that in the Euclidean plane, it is symmetric, so...

Interviewer: Could you be a bit more specific as to how this relates to Galois

theory?

Casey: Well, it’s the alternating group. And this one is the symmetric

group. Alternating group is how you rotate the triangle, but the

symmetric group is not just rotations, but reflections. What I

would do is start with a dotted line (bisector) and then it flips

and I think that it would ultimately, it would be something like

CBA because we, I think we are flipping it here.

Interviewer: And so what are you trying to do exactly?
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Casey: Well, we are trying to explain symmetry in a triangle, but this I

don’t think would be understandable to students.

Figure 7.3: Casey’s work on symmetries of an equilateral triangle

Casey recognized that the various symmetries of a triangle would be an ad-

vanced connection between symmetry in the secondary curriculum and advanced

mathematics content, as is evident by the dialogue and Figure 7.3. However, based

on the dialogue, it appears as though the connective threads were limited. Casey

tried to walk through the example and provided accurate definitions, but the dis-

cussion of these connective threads was limited in depth. At the end of the excerpt,

Casey mentions that this concept would not be accessible to secondary students.

When prompted as to whether or not it could be made accessible, Casey stated that

the point of the triangle was to explain symmetry. Once again, this is an example

of advanced mathematical knowledge that has pedagogical potential, but has not

been developed enough to impact pedagogy in a classroom setting.

206



This excerpt of dialogue is particularly interesting. The alternating and sym-

metric groups are a tactile example of a very abstract concept. Bringing this struc-

ture into a unit in the secondary curriculum could be a rich opportunity to engage

students with some advanced mathematics beyond the horizon. However, in order

to do so, teachers must have a rich understanding of the mathematics in order to

make it accessible to a novice. Even though Casey had the content example, the

utility of it in the classroom would be limited, due to a somewhat isolated under-

standing of the groups in question.

As is evident from the quote at the beginning of this section, Bailey was not

entirely sure how post-secondary mathematics could be helpful in helping students

understand the content of the prescribed, secondary curriculum. This quote mirrors

Bailey’s concern from 4.2, where they expressed that post-secondary mathematics

content was “too distant” from the secondary curriculum.

Despite this view, Bailey did bring forward a number of examples of sym-

metry in the post-secondary context. In particular, Bailey mentioned symmetric

matrices, Euclidean and non-Euclidean geometry. Bailey viewed the concepts

from Euclidean geometry being of value, particularly when considering the use

of symmetry in various geometric proofs. They remarked that “in the Euclidean

geometry course I took, symmetry obviously comes up in the proof of geomet-

ric shapes. It’s valuable to see that two things are the same, but opposite.” In

regard to non-Euclidean geometry, Bailey admitted to not knowing an extensive

amount, but thought that considering geometry on different types of surfaces, such
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as a parabaloid or sphere, could be an interesting avenue to explore how “different

symmetries exist” on those and how “we have this one system and there are other

totally different systems which have totally different systems in there.” They later

mentioned that they would enjoy finding some resources on that to bring into the

classroom. Once again, this is an example of how teacher educators might have

an opportunity to draw upon and develop the extensive mathematical expertise of

future teachers.

7.3 Summary

In this chapter, I examined participants’ responses to the mathematical tasks that

were geometric in nature. While participants did draw upon post-secondary math-

ematics to provide context to how they would approach tasks in the classroom (i.e

the proof that
√

2 is irrational), most of the discussion was focused on individual

examples, rather than conceptual connections between content areas and levels.

This was particularly evident in the context of symmetry, where connections

were example driven and did not contribute to an understanding of symmetry dif-

ferent from a secondary context. Participants who engaged in this task were quick

to mention applications of symmetry in art and nature, but the depth of mathemat-

ics mentioned did not extend past the secondary level. Indeed, all of the exam-

ples brought forth by participants were visual examples of reflectional or rotational

symmetry. Casey was the only participant who engaged in this task that brought an

explicit connection to post-secondary with dihedral and symmetric groups, but the

connections were once again example driven. When prompted to elaborate on their
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understanding of these mathematical objects and their role in higher mathematics,

Casey did not provide further context beyond a worked example.

The task which discussed the irrationality of
√

2 revealed an unexpected but

fruitful result regarding the role of proof in the secondary and post-secondary math-

ematics classroom. The dialogue revealed that perhaps post-secondary mathemat-

ics courses should be more conscious of students’ understanding of proof concepts,

so that they do not simply become techniques without an understanding behind

them. Indeed, there has been major pushback towards technique driven mathe-

matics teaching at the elementary and secondary level and nearly all participants

mentioned their hope of bringing their knowledge of proof into their future sec-

ondary mathematics classroom. This result leads one to question whether despite a

mathematician’s desire for students to have deep, conceptual understanding, many

techniques may be “taken for granted,” as they were for Taylor. Finally, the com-

plicated nature of irrational numbers was mentioned, similar to the task involving

2
√

3. Participants mentioned that justifying
√

2 simply as a number with the value

of
√

2 could be a challenging conceptualization for many students and turned to

decimal representations to help understand “the value” of
√

2.

In this chapter of results, the common thread of limited conceptual connections

between secondary and post-secondary mathematics continues to be woven. While

some connections were made through explicit proofs and examples, transcripts

revealed that these connections did not run deep. As I move into the discussion,

I prompt the reader to consider how to facilitate the construction of mathematical

knowledge for teaching with depth and breadth in content connections.
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Chapter 8

Conclusion and Implications

8.1 Conclusions

In this study, I sought to examine the ways in which prospective secondary mathe-

matics teachers drew upon advanced mathematics in their practice. My work was

motivated partly by my own practice and experience, but primarily by the claims

that coursework in advanced mathematics helps build connections to the secondary

curriculum that can be transformative to teachers’ practice and deepen their under-

standing of the secondary curriculum. After examining the literature, it was clear

to me that a gap existed between empirical studies on teachers’ secondary content

knowledge and advanced content knowledge. One of the goals of this research

was to bridge these two content areas and begin to understand the ways in which

prospective secondary mathematics teachers build their own bridges and connec-

tive threads.

As a refresher, the research questions for this study were:
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1. What do prospective secondary mathematics teachers perceive as the role of

their advanced mathematics knowledge in their development as teachers?

2. In what ways do prospective secondary mathematics teachers relate advanced

mathematics knowledge to a mathematics concept in the secondary curricu-

lum?

I utilized a qualitative, case study methodology to examine these questions.

This methodology allowed me to gain rich descriptions of the understandings, be-

liefs, and experiences of the participants in my study, as expressed through the

one-on-one, task-based interviews with participants. The five participants engaged

in their choice of four tasks, from a list of seven pre-chosen tasks which embedded

connections between secondary and post-secondary mathematics. The interviews

were transcribed and coded, as described in Chapter 3. The themes that emerged

from the data suggest that the prospective mathematics teachers in this study had

limited opportunities to build content connections between secondary and post-

secondary mathematics. In the discussion that follows, I examine the themes in

the context of improving the education of future teachers, both in university math-

ematics courses and teacher education.

8.1.1 The Role of University Mathematics in Teacher Development

The first research question stated above aimed to extend the work of Zazkis and

Leikin (2010) and understand what prospective teachers perceived as the role of

their advanced knowledge in their development as teachers. One of the major

themes developed in my analysis of participants’ perceptions of the role of ad-
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vanced mathematical knowledge (AMK) in their work as a teacher was the notion

that much of the content in post-secondary mathematics is disconnected from what

is taught in secondary school. Although all participants perceived value in having

an advanced degree for reasons such as having experience beyond the students, be-

ing able to field questions, and having an increased awareness of what mathematics

is, the majority of the benefits mentioned were focused on skills and beliefs, rather

than content.

The participants in this study lamented that although admission to the teacher

education program required advanced mathematical coursework, their mathemat-

ics methods courses did not require them to use their extensive mathematical ex-

pertise. Participants with two teachable subjects found this to be unique to their

mathematics methods, since their content expertise was being extended and drawn

upon in their other methods courses. In particular, in Section 4.3, Bailey remarked

on how they felt their expertise in literature was used and extended during their

English methods courses, while their mathematics courses required no more than

grade 10 mathematics. As a caveat, I must once again remark that I did not observe

or obtain syllabi for the methods courses taken by participants. My remarks and

analysis are based solely on the shared perceptions of participants in my study.

Bailey’s remarks on the differences between their two methods courses con-

nects well with other participants’ commentary on the structure of their teacher

education program. Many participants remarked that they wanted a more “prag-

matic” approach to their mathematics methods courses. Since I am unaware of the

precise nature of the methods courses, I am unable to discuss their structure in any
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specific way; however, I can speak to one of the sub-themes revealed in the partic-

ipants’ remarks. The desire for a more pragmatic program was often followed by

a remark that the mathematics methods courses did not require any knowledge of

mathematics.

Indeed, teaching mathematics and building MKT is mathematical work (Ball

and Bass, 2002). Generating appropriate activities, understanding where content

extends to and develops from within the curriculum, and evaluating where students

might be confused in a particular lesson are all elements of MKT and require not

only pedagogical expertise, but mathematical expertise. KDUs are understand-

ings that transform the ways in which one understands and works with a concept.

In turn, such an understanding could transform and impact MKT, as understood

through the framework of developing MKT (Silverman and Thompson, 2008). Al-

though the notion of a KDU was developed to help teachers understand key learn-

ing moments in the curriculum, the construct could be used to help future teachers

see how their advanced mathematical knowledge is connected to the mathematics

they plan to teach. However, in order to develop KDUs, prospective teachers need

to experience opportunities for learning that foster the development of such under-

standings. My research indicates that prospective secondary mathematics teachers

perceive that there were few opportunities to draw upon and little need for ad-

vanced mathematical knowledge in their mathematics methods courses.

To summarize, participants in this study perceived their expertise as unneces-

sary in their teacher education program, as well as in their future work as teach-

ers. This view was evidenced by participants’ perceived disconnect between sec-
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ondary and post-secondary mathematics content. It is entirely possible that despite

a perceived disconnect between these content domains, participants may have held

transformed understandings of secondary mathematics concepts due to their con-

tent expertise. The task-based interviews served as a context for exploring this

possibility. As will be elaborated below, the perceived disconnect was explicitly

observed through participants’ engagement in the tasks.

8.1.2 Content Connections Between University and Secondary
Mathematics

The second research question above aimed to understand the ways prospective

secondary teachers’ related advanced mathematics knowledge to secondary math-

ematics content. Overall, I found that participants had limited content connec-

tions between secondary and post-secondary mathematics content. Participants ex-

pressed a perceived disconnect between secondary and post-secondary content and

this disconnect was observed in discussing connections between post-secondary

mathematics and specific problems at the secondary level.

Participants in the study demonstrated multiple misconceptions about the be-

haviour of real-valued polynomial functions, both at the secondary and post-secondary

level (Chapter 5). While depth of understanding of base cases, such as quadratics

and cubics, were demonstrated by participants such as Adrian and Taylor, these

understandings remained at the secondary level. The content knowledge gained in

courses, such as abstract or linear algebra, did not seem to have an impact on their

understanding of polynomials, beyond the use of specific examples. Participants’
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discussion of number and limits, while accurate in a secondary context, did not

go beyond the horizon of the secondary curriculum (Chapter 6). Even participants

such as Bailey, Taylor, and Adrian who had taken advanced courses in real analy-

sis did not hold conceptualizations of irrational numbers beyond the definition of

“not rational.” With respect to examining prospective teachers’ connections within

geometric tasks, results were somewhat tangential to what was expected (Chapter

7). Indeed, results indicate that participants had a limited understanding of the use

of proof methods, particularly proof by contradiction. Taylor, for example, rec-

ognized this gap in their understanding and and connected it to their desire to use

proof as a means for building understanding in their future classrooms (Chapter

4). Through our discussion of the irrationality of
√

2, Taylor remarked that they

may have taken their understanding of proof strategies for granted and that they

would need to teach themselves again, before teaching others. Taken together,

these results reveal that participants’ did not hold personally powerful understand-

ings of post-secondary mathematics that had the potential to impact their pedagog-

ical practice.

The process of reflective abstraction is understood to be the mechanism in

which learners build new knowledge, with the construction of new knowledge

being based on past knowledge and experience. So, according to Piaget, the con-

struction of new understandings should be built by extending already existing ones.

Stakeholders and educators alike have continually emphasized the importance of

building mathematical connections, to help build a more robust understanding of

the secondary curriculum (Conference Board of the Mathematical Sciences, 2012).

Indeed, as elaborated in the review of the literature, this is one of the major reasons
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for requiring mathematics teacher to have extensive experience in advanced math-

ematics. However, taking university mathematics does not necessarily imply that

reflective abstraction is happening.

Bailey remarked that university mathematics “really is diverging from what is

taught in high school.” In the interviews, Bailey expressed a love and passion for

mathematics and teaching, but based on their remarks throughout the interview,

their university mathematics education may have not offered the meaningful op-

portunities necessary to engage in reflective abstraction and build KDUs. As noted

in the analysis of participants’ responses during the polynomials tasks, Bailey ex-

pressed that in the abstract algebra courses they took, the content was “out there,”

far removed from secondary mathematics, and the structure of the course was use-

ful for the students who would pursue research careers in mathematics (Chapter 5).

Suominen (2015) followed on the work of Cofer (2015), who found that “un-

dergraduate abstract algebra students are not recognizing mathematical connec-

tions between abstract algebra and secondary school mathematics” (Suominen,

2015, p. 75). Through examining the connections to secondary mathematics ex-

plicitly stated in abstract algebra texts, she argues that the teaching of abstract

algebra should be reconceptualized as an extension of secondary algebra and ge-

ometry, rather than a generalization. The work of Suominen (2015) dove tails with

the laments of Bailey. Possibly due to Bailey’s experiences in advanced mathemat-

ics, they came to the belief that secondary and post-secondary mathematics share

limited connection threads. Simon (2006) argues that KDUs are not constructed by

seeing examples or being relayed information, but through a personal process of
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reflective abstraction. If advanced mathematics courses are taught in the traditional

manner, are there explicit opportunities for students to build meaningful KDUs and

engage in reflective abstraction? One should consider how the work of Suominen

(2015) in the context of abstract algebra extends to other advanced mathematics

courses.

One such example, is the conceptualization of number as limit. This concep-

tion appeared in the task on 0.999 . . . = 1, as well as the task on 2
√

3. Building a

robust understanding of number has been stated to be of immense value and thor-

oughly relevant content knowledge for mathematics teachers (Conference Board

of the Mathematical Sciences, 2012). Past work suggests that real analysis can

be a rich context for future teachers to develop their MKT, as it opens opportuni-

ties to gain a robust understanding of certain mathematical concepts, such as my

study’s tasks about 2
√

3 and 0.999 . . . (Wasserman et al., 2017). Despite the ma-

jority of the participants having coursework in analysis, the results of these tasks

suggest missed opportunities to extend the content of the secondary curriculum to a

more robust and rigorous post-secondary context. Wasserman et al. (2017) present

a framework for teaching real analysis that may be a suitable for mathematicians

who are interested in teaching a course that will help future teachers build connec-

tions and KDUs to related content of the secondary curriculum.

In their framework, they argue that future teachers would benefit from a course

in real analysis that is “building up from practice and stepping down from practice”

(Wasserman et al., 2017, p.562), so that fundamental mathematical ideas that are

buried in the secondary curriculum resurface in real analysis courses. I argue that
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the results of my study further support a need for the utilization of Wasserman’s

framework, which may prove useful for professors of real analysis. Gauging by

the extensive post-secondary mathematical coursework taken by the participants

of this study, they appeared to have the mathematical skill necessary to build con-

nections between secondary and post-secondary content. However, based both on

the limited connections drawn during the task-based interviews, as well as the per-

ception that advanced courses are more relevant for gaining skills than extending

content, their university mathematics coursework may have provided limited op-

portunities to engage in reflective abstraction and develop KDUs. Employing the

framework of Wasserman et al. (2017) might be an appropriate first step in consid-

ering how mathematicians can build real-analysis courses that will help build the

MKT of future teachers.

While some students, such as Taylor and Adrian, exited their advanced courses

with a sense of a bigger picture, others, like Bailey and Jaime, left their advanced

courses feeling a disconnect between university mathematics and the curriculum

they are to teach. I am in no way arguing that university mathematics pedagogy

should be completely transformed or that the traditional pedagogical methods of

university mathematics courses should be disposed; indeed, as was noted by many

participants, there are benefits to learning how to “think like a mathematician,” as

Taylor put it. Problem solving skills, rigour, proof, and understanding are funda-

mental to a quality university mathematics education. Unfortunately, based on the

results of this study, a focus on the first three elements may undermine understand-

ing.
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Although the traditional definition-theorem-proof approach used in many upper-

year mathematics courses (Thurston, 1998) may be working for some, it may leave

just as many (if not more) in the dark. University mathematics courses do have

the opportunity to provide future secondary mathematics teachers with knowledge

that could impact their MKT. With many advanced courses being requirements for

future teachers, the results here suggest that advanced courses may not be provid-

ing sufficient opportunities for teacher candidates to build connections between the

content they know, the content they are learning, and the content they will eventu-

ally teach. All of the participants in this work were successful university students.

Indeed, many of the participants completed their undergraduate coursework with

very high GPAs and course marks. Most courses in advanced mathematics fo-

cus heavily on theory and rigour, but the results of this study suggest that such

a focus on theory may hinder understanding. Bailey, who was a very successful

mathematics student, lamented that some of their classes felt like “a total blur,”

only two years later. How might mathematicians adjust their pedagogical prac-

tice so that successful students, like Bailey, complete their coursework seeing the

relevance and connections of advanced coursework to mathematics they already

know? However, I feel that it is necessary to note that I am not entirely aware of

the lived experiences and lived curriculum of the participants in my study. Indeed,

participants may have experienced connections in their coursework, but these ex-

periences were not recalled during interviews in the study.

Additionally, some participants’ demonstrated misconceptions of secondary

mathematics content, which is in line with previous work in the field (Even, 1993;

Leung et al., 2016; Stump, 1999). Indeed, misconceptions at the secondary level
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were observed in every task. In the context of polynomials, all participants over

extended their knowledge of quadratics and cubics to the cases of higher degree

polynomials. With exponential functions, irrational numbers, and decimals, mis-

conceptions were held by multiple participants with respect to approximation ver-

sus exactness. The notion of reflection symmetry was overextended in the context

of inverses by Casey. While all of these misconceptions exist in the domain of

secondary mathematics, they have the potential to be corrected by drawing upon

participants’ advanced mathematical expertise.

The results of this thesis shed light on the content links future teachers make be-

tween secondary and post-secondary mathematics. The links observed in this work

were few and did not extend beyond first-year mathematics, for the most part. If

there were connections to content beyond the first-year mathematics curriculum,

the depth and power of these connections to teaching secondary mathematics was

limited to singular examples. Despite extensive mathematics coursework at the

post-secondary level, results suggest that their knowledge of advanced mathemat-

ics did not transform their understanding of secondary mathematics content. In the

following section on implications, I will detail suggested actions educators and re-

searchers may want to take to support the development of MKT that integrates ad-

vanced mathematical knowledge into future teachers’ understanding of secondary

mathematics content.
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8.1.3 Limitations

As was elaborated in Chapter 3, the qualitative, case study approach was utilized

to help provide rich descriptions of the ways participants perceive and draw upon

advanced mathematics knowledge to inform their teaching. The sample size of this

study, at only five participants, allowed for me to deeply engage with the quali-

tative data obtained during the one-on-one interviews. However, it is important

to note that these results are not generalizable, and were not intended to be. The

data, results, and description in this study are unique to the participants of this

study. The results do not necessarily extend to all prospective secondary mathe-

matics teachers with similar backgrounds. Rather, the intent of this study was to

examine the ways post-secondary mathematics knowledge informs mathematical

knowledge for teaching (MKT), to provide initial insights that mathematicians and

mathematics educators might consider as they reevaluate the ways they support the

development of MKT for future teachers. The results of this study suggest the need

for future work which examines faculty members’ (in mathematics and mathemat-

ics education) perceptions of the role of their courses in the development of future

teachers’ MKT.

Another limitation of the study comes from the tasks included in the task-based

interviews. Although all of the tasks offered to participants were inspired and de-

veloped from past literature on MKT, they constitute a very limited collection of

tasks that could be used to understand the role of advanced mathematics knowl-

edge (AMK) in developing MKT. It is entirely possible that participants may have

been able to draw upon post-secondary mathematics knowledge in other tasks, but
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this work would require an additional study where the tasks allow participants to

draw upon their mathematical expertise more generally. However, results from the

one-on-one interviews about participants’ perceptions of the role of AMK in their

growth as teachers suggests connections may still be limited, due to the perceived

disconnect between content in secondary and post-secondary mathematics.

Regardless of these limitations, the results of this study are of value and have

implications for the ways mathematicians, mathematics teacher educators, and sec-

ondary mathematics teachers (practicing or pre-service) build connections between

secondary and post-secondary mathematics.

8.2 Implications

When I entered into this work, I hoped that this study could be a step in helping both

mathematicians and teacher educators to consider the ways in which they support

connections between advanced mathematics and the development of mathematical

knowledge for teaching and key developmental understandings. In the sections

that follow, I outline the prospective implications of this work in both research and

practice.

8.2.1 Implications in Research

The results of this work have opened up a number of new questions and avenues

for exploration. The first portion of the study examined prospective teachers’ per-

ceptions of the role of advanced content for their teaching, but I am now curious to

explore mathematicians’ perspectives. In particular, what role do mathematicians

perceive advanced mathematics plays in the development of secondary teachers?
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In what ways do they support the development of MKT in their courses? When

they are teaching advanced courses, who is their target audience? To whom are

they teaching? These are all questions that I believe should be explored, so that we

have context for the ways advanced mathematics courses are currently taught.

Another extension area for future research into AMK and MKT would be class-

room observations in university mathematics courses. These observations would

explore the explicit connections being made between secondary content and the

content of the course being observed, by both the professor and the students. This

work could occur in any advanced mathematics course, but courses in abstract al-

gebra, real analysis, geometry, and proof appear to be important, due to their direct

and rich relationship to the secondary curriculum. Furthermore, such observations

would provide depth and context to some of the current study’s participants’ claims

that there are limited connections being made in university mathematics classes. In

understanding how and where mathematicians already build connections between

secondary and post-secondary mathematics, we may gain a sense of how and where

to make such opportunities more frequent.

Additionally, an interesting domain to investigate is the analog of the above

study, but in teacher education. That is, in what ways do teacher educators and

future teachers build connective threads between post-secondary and secondary

mathematics content in math methods courses? Again, classroom observations

would provide some support or defence to the claims made by participants in this

study, such as “not needing math beyond grade 10” and feeling as though there

was not a focus on “how am I going to teach a concept”? Finally, these classroom
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observations could provide context on the ways in which mathematics methods

courses help build the various facets of MKT for future teachers, including con-

nections between secondary and university mathematics.

8.2.2 Implications in Practice

The results of this study suggest that prospective teachers may need more explicit

opportunities for reflective abstraction in their advanced mathematics courses. This

is an important, but ambitious endeavour, that requires mathematicians to think

deeply about the content they teach, where the construction of KDUs might oc-

cur, and would involve reconceptualizing some courses as extensions, rather than

generalizations (Suominen, 2015). Furthermore, it would require professors to in-

clude explicit opportunities inside or outside of class that encourages students to

go through the process of reflective abstraction, relate new content to what they

already know, and build new meaning and inferences.

The notion of a KDU may be a helpful context for mathematicians to consider

the ways they are supporting the development of MKT. Although Simon (2006)

focuses on how elementary mathematics teachers could identify critical learning

points in the elementary curriculum, this construct could be equally as beneficial

for mathematicians to consider in university mathematics. In particular, mathe-

maticians may want to question what moments in the curriculum are a “trans-

formation” of concepts previously studied by students. Once these moments are

identified, Simon (2006) argues there must be transformation of the instructor’s

practice, if the focus is to be on the development of KDUs. Indeed, as mentioned
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in Chapter 2, students are the ones who have to go through the process of reflec-

tive abstraction to develop their own KDU. Identifying these key moments in the

post-secondary mathematics curriculum may provide a basis for the development

of connections between what advanced mathematics and the mathematics they al-

ready know and plan to teach.

Alternatively, mathematics departments might want to consider the develop-

ment of a new course that would explicitly examine secondary mathematics from

an advanced perspective. Many departments offer mathematics courses for fu-

ture elementary school teachers, but few offer a mathematics course specifically

aimed at future secondary teachers. If it is indeed the case that limited connective

threads are being developed in advanced mathematics courses, prospective sec-

ondary mathematics teachers might benefit from a course that takes the content

from advanced courses — considered to be “disconnected” and “out-there” — and

relates it retrospectively through the content of the secondary curriculum. Fol-

lowing a framework similar to Wasserman et al. (2017), such a course could be a

transformative course for prospective teachers that changes their perspective on the

role of advanced mathematics in the development of MKT. The results of my study

could provide a start for this kind of mapping of connected threads and concepts in

advanced mathematics courses.

Mathematicians, particularly those in positions of course construction and de-

velopment, may not be the only ones who should consider the development of

opportunities to build connections between secondary and post-secondary mathe-

matics content. Even if prospective teachers exit their undergraduate degrees hold-
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ing the perception that their advanced mathematics knowledge is not relevant to

their future work as teachers, teacher educators are in a prime position to disrupt

this belief. Participants’ responses to the task on symmetry is an excellent ex-

ample. Although most participants’ responses landed in the domain of secondary

content, there were connective threads to post-secondary mathematics. With the

existence of these threads, such as symmetry groups and alternative geometries,

comes an opportunity for teacher candidates to build upon and explore these con-

nections with respect to the curriculum. While some may argue that such advanced

knowledge isn’t necessary, the argument I make in this work is that it has the po-

tential to have a positive effect on future teachers’ understanding and pedagogy

of secondary mathematics. Teacher educators can provide meaningful, curriculum

centred learning moments for future teachers to develop their MKT.

The task on applications of quadratic functions could be another content area

for teacher educators to build the MKT of prospective teachers. Despite recogniz-

ing the importance of the concept as an “entry point” for more advanced mathe-

matical modelling, some of the participants communicated that they had limited

examples for how to motivate this central concept of the secondary curriculum.

This dovetails with some participants’ concern that they are afraid they are going

to “teach the way they were taught,” due to the view that they have limited con-

crete examples to bring into the classroom. These same participants lamented pro-

foundly at the prospect of students loosing interest in mathematics due to limited

and contrived examples. The exploration of new applications of concepts (such as

quadratic functions) could be an opportunity for teacher educators to develop the

pedagogical and content expertise of future teachers. The inclusion of more math-
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ematical work in math methods courses may be an interesting avenue for teacher

educators to explore.

Adrian mentioned that they tried to reflect on how their advanced content ex-

pertise connected the secondary curriculum in their own practice, but did not find

it being emphasized in their methods courses. All the participants in this study had

extensive mathematical expertise, which was unique to the coursework they had

taken in their undergraduate studies. While Adrian had post-secondary expertise in

physics and applied mathematics, Casey had more experience in pure mathemat-

ics. Both of the participants, being in the shared space of a mathematics methods

course, had much to learn from each other.

Indeed, the shared space of a mathematics methods course has the potential to

yield opportunities for teacher candidates to share content extensions and mathe-

matical knowledge that could impact their future teaching practice. In order for

this to happen, there need to be incentives and opportunities to do so. Teacher can-

didates are content experts and teacher education is a space to build MKT, of which

pedagogical and subject matter knowledge are elements. Even if the focus is on

pedagogical knowledge, the results of this study could encourage teacher educators

to consider the ways in which they are building, extending, and drawing upon the

mathematical content knowledge and expertise of future teachers.

All the above future work remains in the context of prospective secondary

mathematics teachers. Another extension of this work would be in the domain

of practicing teachers. Zazkis and Leikin (2010) examined practicing teachers’
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perceptions of the role of their advanced mathematics knowledge (AMK) in their

teaching and found that the participating teachers held many of the same views

as participants in this study. In particular, they observed that participants viewed

AMK as valuable in building skill and confidence, but not necessarily in regard

to content. Combining the insights from Zazkis and Leikin (2010) and the cur-

rent study leaves me interested to follow-up with the current study’s participants

to explore whether they maintain the same perceptions of the role AMK in their

pedagogy, after several years of teaching experience. Due to limited research in

this area, both task-based interviews and/or classroom observations, would prove

fruitful.

Overall, I foresee numerous opportunities to develop resources for mathemati-

cians and mathematics teacher educators to help them in developing connections

between secondary and post-secondary content. Before doing this, however, it

would be prudent to investigate how these connections are already being devel-

oped in university mathematics and teacher education. I look forward to the re-

search community engaging with the results of this study through related work that

will one day benefit the mathematical learning of future teachers, while simultane-

ously building meaningful relationships between mathematicians and mathematics

educators.

8.3 Closing Remarks

This study has examined the role of advanced mathematics knowledge in the math-

ematical knowledge for teaching of future secondary mathematics teachers. Through

a qualitative case study, I examined the ways in which participants explicitly drew
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upon advanced knowledge to inform their teaching. This was done through task-

based interviews, which were composed of potential classroom situations where

advanced mathematics knowledge could be used to enhance their pedagogy. I sup-

ported the results from these task-based interviews with interviews that explored

what participants perceived more generally as the role of their advanced mathemat-

ics knowledge in their growth as teachers.

Results from this study suggest a perceived disconnect between mathematics

studied at the university level and mathematics taught and studied in secondary

school, which has been observed in existing literature (McGuffey et al., 2019; Za-

zkis and Leikin, 2010). This was observed through participants’ remarks of the

role of their advanced knowledge in their teaching. Although beliefs and values de-

veloped in university mathematics were viewed as valuable by many participants,

connections between mathematics content were viewed as limited and irrelevant

to their future work. This was supported through the task-based interviews, where

participants demonstrated content misconceptions at the secondary level, on top of

providing a limited number of content connections between secondary and post-

secondary mathematics.

Previous literature suggests that advanced mathematics knowledge has the po-

tential to transform teachers’ understanding of the secondary curriculum through

the expansion of one’s horizon content knowledge (Wasserman and Stockton, 2013).

However, past literature also suggests that secondary mathematics teachers do not

perceive advanced mathematics to play an important role in their teaching (Wasser-

man et al., 2015; Zazkis and Leikin, 2010). The results of this study are in line with
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previous literature and further support the need for building connections between

secondary and post-secondary content. My study extends previous literature by ex-

plicitly examining prospective secondary teachers’ perceptions of their advanced

content expertise and the connective threads of this expertise to the content they

will eventually teach. The development of such connections to impact pedagogical

practice may require a reconceptualization of advanced mathematics courses and

mathematics methods courses, so that they more frequently engage students in the

process of reflective abstraction (Piaget, 1970) and the construction of key devel-

opmental understandings (Simon, 2006) between secondary and post-secondary

mathematics.

It is my hope that the results of this study will encourage mathematicians

and mathematics educators to find common ground in the domain of secondary

teacher education. Both of these parties play fundamental roles in the education

and training of future mathematics teachers, who in turn prepare prospective stu-

dents for university mathematics. This study could inspire further collaboration

between mathematicians and mathematics education scholars in the academy, as

the results are of importance to both of these academic departments. Although

some strides are being made increase cross-departmental research and collabora-

tion (Fried, 2014), I believe that the domain of secondary mathematics teacher

education has the potential to be a mutual investment for these two groups to fur-

ther collaborate in enhancing the mathematical knowledge for teaching of future

teachers, and in turn, the mathematics learning of students in secondary school.
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Please choose four tasks from the following list: 

• TASK B: Your students are confused as to why we can define and calculate 2 ".  

• TASK C: A student is working through a problem and asks you if 0.99999…= 1. 

• TASK D: You are teaching a week on factoring polynomials and you have found that 

your students are struggling to recognize when they should stop trying to factor.  

• TASK E: Your students are learning about inverse functions. What would you include in 

your lesson plan?  

• TASK F: You are teaching a week on symmetry to your students. What would you 

include in your lesson plan?  

• TASK G: You have been teaching a unit on quadratic functions for a few weeks and one 

of your students asks you why they need to know about them.  

• TASK H: A student is confused as to whether 2 is an irrational or rational number, 

especially after realizing it is the length of the diagonal of a square of side length 1.  
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1. One of the factors of 3𝑥% − 16𝑥 + 𝑘 is 𝑥 − 7. Determine the value of k. Justify your 
answer.  

2. Which of the following is not a function? Justify your answer. 

 
3.  When a polynomial P(x) is divided by x+3, the remainder is 2. Which point must be on 

the curve y = P(x)? Justify your answer. 

a. (3, -2) 

b. (-3,0) 

c. (-3, 2) 

d. (3,2)  

4. For which of the following functions is 𝑓 𝑓 𝑥 = 	𝑥 for all x in the domain of 𝑓 𝑥 ? I: 
f(x) = x, II: f(x) = -x, III: f(x) = 1/x 

a. I and II only 

b. I and III only 

c. II and III only 

d. I, II, and III 

5. Write 0. 99998 as a fraction. Justify your answer. 

6. Find the graph of 𝑦 = 35 − 5. What is the x-intercept? Justify your answers.  
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• How do you conceptualize mathematics as a field of study?  

•  

• Do you think it is important for secondary mathematics teachers to know advanced 

mathematics? Why or why not?  

•  

• What roles do you see those four years of learning playing in your next year of study? 

What grade(s) do you hope to teach?  

•  

• Do you see your post-secondary degree in mathematics having an impact on your 

teaching? In what ways?  
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Prospective Secondary Mathematics Teachers’ Knowledge for Teaching 
 
Dear Teacher Candidate,  
 
We are writing to invite you to take part in the doctoral dissertation research of Vanessa Radzimski in the 
Department of Curriculum and Pedagogy at the University of British Columbia, Vancouver Campus. The 
primary investigator for this study is Dr. Cynthia Nicol and the co-investigator is Vanessa Radzimski. 
Through this research study, we hope to better understand the relationships between university level 
mathematics knowledge and knowledge for teaching in the secondary mathematics classroom. As a future 
secondary mathematics teacher with a post-secondary degree in mathematics you are in an ideal position 
to provide valuable first-hand information from your own perspective. 
 
As a participant, we invite you to participate in an interview component (one-on-one or focus group). 
We’ll ask you to complete a short survey so that we may assign you to either the one-on-one or focus 
group interviews. This will ensure that we have a diverse group of participants in each. We ask all 
participants to provide the researchers with their university transcripts, clearly indicating mathematical 
courses taken, in order to provide background information for the interviews. For those in the one-on-one 
interviews, we’ll ask you to think about math problems of the type found in the BC Grade 8-12 math 
curriculum. All interviews will be audio recorded and transcribed. Your responses to the questions and 
academic transcripts will be kept confidential. You will be assigned a false name for all written reports 
and publications. Total time for participation will be around 2 – 2.5 hours. For those in the focus group 
interviews, we will discuss your experiences in your mathematics degrees. The interview will be 
transcribed and you will be assigned a false name for all written reports and publications. Total time for 
participation in the focus group will be around 1 – 1.5 hours.   
 
As a token of appreciation for your time, you will receive a $25 VISA gift card as compensation for your 
participation in the study. Your participation will be a valuable addition to our research and findings 
could lead to greater public understanding of mathematics teacher education and influence a higher level 
of communication between departments of mathematics and departments of teacher education at the 
university. It could also serve as an opportunity for you to think deeply about the ways in which your 
advanced mathematical knowledge might inform your pedagogy. 
 
If you are willing to participate please contact Vanessa Radzimski by E-mail or phone within ten days of 
receipt of this letter, suggesting a day and time that suits you and we will do our best to arrange a meeting 
to your availability. The purpose of this meeting will be to discuss the study in more depth and sign the 
consent form, if you agree to participate. If you have any questions please do not hesitate to ask. 
 
Thank you again for considering this research opportunity! 
Cynthia Nicol and Vanessa Radzimski 

248



 

 

E-mail to Course Instructor for Recruitment 
 
Dear XXX, 
 

Under the supervision of Dr. Cynthia Nicol of the University of British Columbia, I am 
conducting a study entitled “Prospective Secondary Mathematics Teachers’ Knowledge for 
Teaching.” Through this research study, we hope to begin to understand how a post-secondary 
degree (minor or major) in mathematics influences teachers’ pedagogy in the secondary 
mathematics classroom. As the course instructor for EDCP 342: Mathematics - Secondary: 
Curriculum and Pedagogy at the University of British Columbia, we would like to request a time 
to visit to your course so that we can recruit potential participants for this study. 

 
We would like to arrange a time, at your convenience, to visit a session of your class and outline 
the research to your students. The co-researcher (myself) will provide consent forms to students 
in the class and return at the end of the course to answer any questions and complete the consent 
process with any students who wish to consent that day. Additionally, students will be able to e-
mail Dr. Nicol, or myself, with an interest to participate within ten days of the date of initial 
contact. In total, we will only need approximately ten minutes at the beginning of your class. 
 
Precautions will be taken to protect your confidentiality. I am the only one who will know your 
identity and all identifying information will be masked. 
 
If you have any questions please contact me (by phone or e-mail) or my supervisor, Dr. Cynthia 
Nicol (by e-mail). Our contact information is provided on the attached consent form. Please 
respond by e-mail within seven days of the date this e-mail was sent to express your approval of 
my visit. If you would like me to provide you with a hard-copy of the consent form in advance, 
please let me know and I will make arrangements. 
 
Best wishes, 
 
 
 
Vanessa Radzimski 
PhD Candidate 
University of British Columbia 
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Page 1 of 1 
Version: October 30, 2017 

Verification of Payment for Participation in “Prospective Secondary Teachers’ 

Mathematical Knowledge for Teaching” 

 

By signing this document, you are verifying that you, __________________________________, 

received the $25 VISA gift card that you would receive for participating in the study entitled 

“Prospective Secondary Teachers’ Mathematical Knowledge for Teaching” with Cynthia Nicol 

(primary investigator) and Vanessa Radzimski (co-investigator). 

 

Signature: ____________________________________ 

 
 
 

Date: _________________________ 
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