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Abstract 

Transportation agencies have limited fiscal resources to manage their pavement infrastructure. 

Planning for the future includes uncertainty, such as the uncertainty of future traffic levels, 

cost of rehabilitation actions, price indices, among others. Deterioration modeling also includes 

uncertainty, such as random and measurement uncertainty. Failing to consider these 

uncertainties may lead to sub-optimal management policies that are unable to adapt to the 

future. Thus, the objective of this thesis is to develop a reinforcement learning algorithm to 

manage pavement systems at the project-level that minimizes the life-cycle cost. 

The deterioration model developed uses an iterative-methods approach to estimate 

infrastructure performance models based on sampling theory. The model addresses the issue 

around measurement uncertainty underlying infrastructure condition assessments for 

continuous distress indicators and its effect on the parametric models underlying decision-

support tools. Through a case study of pavement roughness data collected as part of Federal 

Highway Administration’s long-term pavement performance program, the new approach 

reduces the unexplained variance that would typically enter decision-support tools by 14%. It 

also addresses concerns around heteroscedasticity surrounding conventional methods, 

allowing modelers to recover efficiency in their statistical estimates.  

Finally, the Q-learning algorithm with an ε-greedy policy efficiently learns an optimal 

management policy for infrastructure assets while simultaneously incorporating several 

sources of uncertainty. An important advantage of this approach is that it is model-free and 

non-parametric, imposing no restrictions on the structure of the uncertain inputs. This study 

subsequently implements the Q-learning approach across three separate case studies. The 
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proposed algorithm leads to the selection of a management policy that, on average, reduces 

expected life-cycle costs between 3% and 15% compared to traditional infrastructure 

management approaches.  

This research contributes to the pavement management literature by creating improved 

performance models and providing a holistic view of uncertainties in the management process. 

There are several opportunities to expand upon this research which are discussed.   
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Lay Summary 

This research introduces an innovative tool to manage pavement systems. A deterioration 

model was developed to consider the uncertainty caused by random variability and 

deterioration measurements. By doing so, the deterioration accuracy increased in comparison 

to current models. The advantage of improving deterioration accuracy is more accurate 

maintenance policies for pavements. This helps agencies manage their limited budgets more 

efficiently.  

A reinforcement learning tool that minimizes the cost of managing a pavement throughout its 

life was also designed. This tool also considers the uncertainty of future traffic volumes and 

price indices for rehabilitation activities. When compared to how pavements are currently 

being managed, the reinforcement learning tool reduced the agency’s management cost. The 

advantage of this tool is that it can be applied to any pavement management system, allowing 

for “flexibility between locations and input variables”. These results help transportation 

agencies manage their limited budgets by making more optimal decisions. 
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Chapter 1. Introduction  

Pavement systems are one of the most important facilities of transportation infrastructure, with 

nine trillion tonne-kilometers of transport and freight being supported on over fifteen trillion 

kilometers every year worldwide (Santero et al. 2011a). An efficient system provides economic 

opportunities and benefits (i.e., the creation of jobs, an increase in private investment, trade 

stimulation) while a deficient system can have negative economic effects (i.e., a constraint on the 

migration of labor, slower market expansion, poor material handling) (Rodrigue 2017; Deng 

2013). Thus, it is important for transportation agencies to maintain pavement systems at a certain 

performance level to provide societal benefits, (e.g., lower travel costs for goods and services) 

(Boarnet 1997). However, agencies have limited fiscal resources to manage their existing 

infrastructure (Arif and Bayraktar 2018). In 2016, the American Society of Civil Engineers 

(ASCE) conducted a survey that illustrates the gap between the funding available for networks and 

the funding required to maintain them; road networks are about 50% underfunded (ASCE 2016). 

With the condition of American roads being graded a ‘D’ or a large facility of the system requiring 

maintenance by the ASCE, it is evident more funding is required (ASCE 2017). 

To manage this infrastructure with limited budgets, pavement management systems (PMS) can be 

used to make informed decisions (Torres-Machi et al. 2018). A PMS is a tool used to determine 

scheduling of pavement activities, allocation of resources and budgeting (FAA 2006). The 

Department of Transportation in Arizona (ADOT) was one of the first to adopt the use of a PMS 

in 1980; there were issues on how to distribute money to Arizona districts and the effects of road 

conditions with budget cuts (Golabi et al. 1982). The system had to: (a) contribute to the planning 

process by contributing to budget allocation, (b) be relatively simple to use and, (c) be flexible 

enough for sensitivity analysis to occur. This used Markov models and linear programming to 
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model pavement deterioration and minimize agency cost respectively (Li et al. 2006). This 

influenced the development of similar international systems that utilize optimization models; some 

of these models are discussed in Chapter 2. 

A PMS can be applied at the network level, which focuses on a cost-efficient way to maintain the 

pavement network, or the project level, which focuses on a certain facility of the network (Ismail 

et al. 2009). While a PMS may consist of different components, the four main elements are: (1) 

network inventory, (2) condition evaluation, (3) prediction models on performance and, (4) 

planning (Shahin 2005). A network inventory is a record of the pavement facilities in a network, 

where a facility is the smallest unit that a construction and maintenance action can be applied 

(Ismail et al. 2009). Pavement condition evaluation considers the functional evaluation of a 

pavement, such as its roughness and surface distresses while the structural evaluation of a 

pavement considers its structural capacity. Performance prediction models at both the project and 

network-level focus on evaluating the condition of the system and determining the rehabilitation 

actions required. These models mainly include the predicted physical deterioration of the pavement 

system and may be updated when the true pavement behavior is available (Chootinan et al. 2006). 

Tools such as regression, straight line extrapolation and Markovian models can be used to develop 

these models (Ismail et al. 2009). At the network level, these prediction models are used for budget 

planning and condition forecasting, while at the project level, prediction models are used to decide 

maintenance actions with the aid of life-cycle cost analysis. These prediction models can evaluate 

potential design and maintenance alternatives and estimate the required thickness for this structure 

given the parameters (Abaza 2004). Planning methods, the final component of PMS, is the module 

where future maintenance and rehabilitation actions are decided (Ismail et al. 2009). These action 
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plans are determined based on the: (1) current pavement condition, (2) predicted pavement 

performance and, (3) available fiscal resources. 

Within performance prediction models at the project level, life-cycle cost analysis (LCCA) and 

life-cycle assessment (LCA) are available for use. LCCA is used to reduce the costs over the 

lifetime of a facility by evaluating design, construction and maintenance actions to meet that 

objective of minimizing the agency’s costs (Santos et al. 2019). LCCA considers the cost of 

materials (initial construction) as well as the cost of rehabilitation actions in order to use limited 

budgets more efficiently. LCA is used to estimate the direct and indirect environmental impact of 

a pavement system, such as the impact of alternative construction and maintenance activities 

(Araújo et al. 2014; Yu and Lu 2012). The impact category of this assessment is typically in Global 

Warming Potential (GWP), where CO2, CH4 and N2O or greenhouse gases are converted into CO2-

equivalent emissions (Araújo et al. 2014; Huang et al. 2009).  

However, there are challenges with using deterioration models, LCCA and LCA in PMS. In LCCA 

and LCA, this challenge is the uncertainty in estimating future parameters, such as deterioration, 

costs and traffic, with regards to short term and long-term decisions (Swei et al. 2015). If inputs 

are treated as deterministic, this may cause decision-makers to choose actions that are no longer 

suitable in the future. With regards to deterioration models, a critical component of a PMS, a low-

fidelity deterioration model will lead to the selection of a sub-optimal construction design and 

maintenance schedule (Swei et al. 2018). 

With limited fiscal resources, it is important to have a pavement management tool that: (a) 

considers the uncertainty in pavement measurements in deterioration modeling and, (b) considers 

the uncertainties present in life-cycle cost (LCC) for maintenance scheduling over a selected period 
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of time. While the literature provides countless studies on pavement management tools that 

consider the aforementioned challenges, these studies do not focus on every aspect of these points. 

For example, a PMS may focus on many rehabilitation alternatives but only considers one possible 

source of uncertainty due to computational limits. Thus, the objective of this thesis is to bridge the 

gap between theory and practice by designing a tool that incorporates uncertainty in the 

deterioration and management processes while optimizing decisions. Improving deterioration 

modeling by incorporating uncertainty will lead to better degradation estimates, which, in turn, 

lead to a more optimal method to allocate limited budgets. With uncertainties being pervasive and 

the need to be more proactive in pavement management decisions, it is important now, more than 

ever, to create this tool. By using reinforcement learning to make smarter decisions that are riddled 

with uncertainty, this developed tool will support a more sustainable future.  

The specific goals of this thesis are to: 

1. Develop a pavement degradation model that is able to calculate the International 

Roughness Index (IRI) after accounting for both random and measurement uncertainties.  

2. Develop a script that calculates the fiscal cost of a transportation agency to maintain a 

pavement section for a specified time period. The script should also account for various 

present and future uncertainties such as pavement degradation, price indices, the cost of 

construction and maintenance actions and traffic growth.  The output of this script should 

be a policy that minimizes the LCC of a pavement facility at the project level. 

Chapter 2 of this thesis reviews the existing LCA/LCCA models at the project level. Previously 

designed models and their considered sources of uncertainty are discussed prior to identifying the 

existing gaps. Chapter 3 discusses deterioration model, which includes reviewing the existing 
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literature, describing the designed method and model as well as the discussing the results of the 

deterioration model. Chapter 4 includes reinforcement learning; a literature review, the chosen 

algorithm and the results of using reinforcement learning on the listed objectives. Finally, Chapter 

5 discusses the results, reviews the objectives and identifies areas of opportunity. 
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Chapter 2. Life-cycle planning of pavements 

Life Cycle Cost Analysis (LCCA) was first developed by the U.S Department of Defense in the 

1960s to increase the cost-effectiveness of government spending (Shields and Young 1991). In the 

1990s, pavement LCCA expanded into the federal literature, including vehicle-operating-cost 

models (Liu et al. 2015). In 1995, the Federal Highway Administration (FHWA) made it 

compulsory to utilize LCCA for National Highway System projects that cost more than $25 million 

in order to “reduce long-term costs and improve quality and performance” (FHWA 1996). FHWA 

and AASHTO continue to provide guidance to states developing their own LCCA procedures, as 

more than 80% of states in the United States use LCCA and consider agency cost to manage their 

limited fiscal resources (Ozbay et al. 2004). Both researchers and practitioners incorporate the 

uncertainty of relevant input parameters in LCCA.   

LCCA in pavement systems can be used to account for the economic impact materials and 

rehabilitation alternatives have (Liu et al. 2015). For example, applications of LCCA may compare 

materials used in rigid and flexible pavements or pavement types at the project and network level 

(Batouli et al. 2017). In short, LCCA provides agencies with a comprehensive framework to make 

economically driven decisions between alternative investments (Santero et al. 2011a, Guo et al. 

2019) 

Life Cycle Assessment (LCA) has been used since the 1990s to evaluate the environmental impact 

of pavement infrastructure (Santero et al. 2011a). Like LCCA, it is a decision-support tool that is 

able to assess the environmental impact and burden of alternatives throughout the pavement’s life-

cycle (Zhang et al. 2008). Figure 1, taken from Santero et al. (2011a), illustrates the relevant life-

cycle phases for pavements. However, as social and environmental effects do not affect agency 
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costs, they are often discarded; only 40% of states in the United States consider social and 

environmental impacts (Heidari et al. 2020).  

 

Figure 1. Phases of a pavement’s life cycle (Santero et al. 2011a) 

For infrastructure, the goal of LCA/LCCA is to quantify the cost effectiveness and environmental 

impacts for design, maintenance and rehabilitation alternatives that meet certain service 

requirements (Reigle and Zaniewski 2002; Walls and Smith 1998). By quantifying and comparing 

the behavior of pavements when alternative materials and rehabilitation techniques are applied, 

sustainability goals can be met (Liu et al. 2015). However, LCCA and LCA do not make a decision; 

rather these tools are used to support a management decision.  

This thesis specifically focuses on LCCA as most transportation agencies have implemented a 

form of this application in their systems. Future work includes an integrated LCCA-LCA tool. 
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2.1 Life-cycle phases of a pavement 

Figure 1 illustrates the five main stages of a pavement’s lifecycle along with the activities 

associated with each stage. The first stage, the material production phase, includes the extraction 

of raw materials, such as limestone and the production of cement and other pavement materials 

(Liu et al. 2015). This phase also includes any necessary transportation of materials. The 

construction phase includes onsite construction equipment and traffic delay caused by construction 

activities. The longest part of a pavement’s lifecycle is the use phase (Santero et al. 2011b). An 

engine will exert effort to keep a vehicle’s tires rolling over a pavement; this is known as rolling 

resistance (Trupia et al. 2017). In the use phase, rolling resistance, albedo (i.e, radiative forcing), 

lighting that is used on pavements, among other factors are how pavements interact with the 

environment phase (Santero et al. 2011b). With rolling resistance, roads with high volumes and 

heavy truck traffic will have a higher environmental impact than low volume roads with few trucks. 

However, it’s been found that many pavement LCA studies do not fully expand on the use phase 

in their analysis (Santero et al. 2011a). These studies may use absolute values for total traffic 

emissions instead of those that are specifically the pavement’s contribution. 

The maintenance phase includes rehabilitation actions that occur during the life of the pavement. 

This phase is connected to every phase of the life-cycle as this phase has impacts similar to those 

of the materials and construction phase. Thus, it can occur during the use phase and after the end-

of-life phase (Santero et al. 2011a). At the end-of-life phase, pavements can be either (a) 

demolished and landfilled (i.e. “cradle-to-grave”); (b) demolished and recycled (i.e. “cradle-to-

cradle”); or (c) remain and support the following pavement structure (i.e. “cradle-to-cradle”) 

(Santero et al. 2011b; Liu et al. 2012). Pavements are typically not chosen to be demolished and 

landfilled due to the decline of natural resources and increasing construction prices. However, 
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there may be specific materials that cannot be recycled (Santero et al. 2011b). If a pavement is 

recycled or supports the following pavement structure, the environmental impacts become 

complicated to determine, as assumptions, forecasting and allocation uncertainty affect this 

decision. Environmental impacts, such as demolition and transportation impacts, are included in 

this scenario (Liu et al. 2015). 

As the tool is focusing on reducing LCC for agencies, the construction and maintenance phases, 

which also include material production phase, are the ones that are most important. These actions 

directly affect agencies. The end-of-life phase for this tool assumes that pavement sections can be 

salvaged depending on their last rehabilitation action and deterioration rate. Chapter 4 expands on 

the salvage rate in more detail. 

2.2 LCCA components 

2.2.1 Uncertainty in LCCA 

There are several inputs that LCCA uses to make an informed decision. These measures are 

associated with two types of uncertainty. The first type of uncertainty is aleatory (i.e., random) 

uncertainty. This uncertainty is associated with randomness in samples and parameters, as 

measured values could be different from their true values (Babashamshi et al. 2016; Ilg et al. 2017). 

The second type of uncertainty is epistemic uncertainty. This is associated with system 

performance as well as variability (Reza et al. 2013). Epistemic uncertainty can stem from a lack 

of information, ambiguity and incomplete data (Zhang et al. 2006; Reza et al. 2013).  While both 

types of uncertainty involve variability in values, aleatory uncertainty is statistical, resulting from 

stochastic methods involving experimental data such as Monte Carlo simulations (Reza et al. 

2013).  
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To account for these uncertainties that underly the planning of transportation infrastructure, 

agencies rely on probabilistic LCCA to evaluate alternative pavement design and maintenance 

schedules (Abdelaty et al. 2016; Swei et al. 2015). While these models incorporate several sources 

of uncertainty, pavement engineers typically use these models to evaluate only a few available 

design and construction alternatives (Swei et al. 2015; Pittenger et al. 2012). This reality has 

motivated researchers to develop multiple optimization-based approaches to minimize life-cycle 

costs for a pavement facility. The important advantage of an optimization-based approach is that 

it facilitates a greater exploration of available design and maintenance choices. Due to 

computational limitations, however, these methods tend to only consider uncertainty around 

pavement degradation, as further discussed in the upcoming section. Alternatively, these 

approaches may be deterministic (Wu et al. 2017), thereby failing to account for uncertainty in 

relevant input factors (e.g., construction costs, future traffic). By treating these inputs as 

deterministic, current optimization-based approaches leave decision-makers susceptible to 

suboptimal investment strategies that are unable to adapt to unknown future conditions. 

2.2.2 LCCA Inputs 

Rehabilitation actions, which include routine maintenance and reconstruction, are the costs that 

directly affect agencies. The uncertainty with rehabilitation actions is due to the varying cost of 

these actions and limited information of the cost of maintenance actions. Several studies have 

implemented uncertainty of cost in LCCA, which will be discussed in the following section. 

Maintenance timing and deterioration also affect LCC, as there are two possible strategies for 

maintaining pavement segments. The first strategy is conventional maintenance, where an agency 

will only maintain when a pavement segment has reached its maximum deterioration. However, 

preventative maintenance (i.e., maintenance that occurs when a threshold, before maximum 
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deterioration, is reached) is more cost-effective than conventional maintenance (Babashamsi et al. 

2016; Wu et al. 2017). Determining when to maintain depends on how fast a pavement deteriorates, 

which is typically measured using the International Roughness Index (IRI), which is expressed in 

units of slope (m/km, in/mi) (Park et al. 2007; Liu et al. 2015). A lower IRI value, such as 0.0 

m/km, means a pavement is perfectly smooth, but this is not feasible due to pavements having 

bumps and dips. There is no maximum IRI, but an IRI above 8 m/km means a vehicle cannot 

access that pavement except at reduced speeds. In the designed system mentioned in Chapter 4, 

the minimum IRI when a pavement segment is constructed and maintained is 1.0 m/km (63.6 

in/mi) while the maximum IRI is 2.36 m/km (150 in/mi). Deterioration is affected by several 

factors, such as average annual daily truck traffic (AADTT), age of a pavement segment and 

pavement segment’s thickness or structural number (SN). Deterioration also has associated 

uncertainties such as aleatory and measurement uncertainty, which affect how fast a segment 

degrades. Thus, future planning of maintenance actions is associates with several uncertainties that 

need to be accounted for. 

Traffic, as mentioned previously, affects deterioration and ultimately, is an impact factor in LCCA. 

Future traffic projections are usually based on traffic growth rates, which are calculated from 

historical traffic data. However, these are subject to uncertainty as growth rates may fluctuate and 

thus, not follow the projected demand (Li and Madanu 2009; Wu et al. 2017). Rates can vary 

depending on the geographic location of a segment and their proximity to growth areas. 

Maintenance treatment intensity refers to the type of rehabilitation treatment chosen for a segment 

depending on its deterioration (Swei et al. 2016). Failing to apply the right maintenance treatment 

at the scheduled time could result in a shorter service life (Li and Madanu 2009). Uncertainty with 

maintenance treatment intensity stems from: (1) when to apply the treatment, which is associated 
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with scheduling, dependent on deterioration and, (2) the type of treatment to be applied, dependent 

on deterioration. 

In LCCA, discount rates are one of the most significant factors, which determines the present value 

of costs in the future by reflecting historical trends over a long time period (Santero et al. 2011c; 

Wu et al. 2015). FHWA recommends using discount rates that are published in the latest version 

of the White House Office of Management and Budget (OMB). However, there is no universal 

agreement on the discount rate that should be applied to pavement projects. State agencies utilize 

discrete real rates, which factor out inflation rates, that range from 3% to 5.3% while a small 

number of states use a probabilistic analysis to address the underlying uncertainty of the discount 

rate due to fluctuations throughout a pavement’s life-cycle (Li and Madanu 2009; Wu et al. 2017).  

2.2.3 Existing Studies 

A large number of probabilistic LCCAs evaluate a few alternatives and use Monte Carlo 

simulations to propagate their life-cycle cost uncertainty. Probabilistic LCCAs have focused on 

the uncertainty in future traffic volumes (Guo et al. 2012; Harvey et al. 2012; Jawad and Ozbay 

2006; Li and Madanu 2009; Reigle and Zaniewski 2002; Salem et al. 2003; Zhang et al. 2010), 

construction costs, such as material prices (Harvey et al. 2012; Huang et al. 2004; Swei et al. 2015; 

Tighe 2001), maintenance treatment intensities (Li and Madanu 2009), and future maintenance 

schedules, which is done through pavement deterioation models (Harvey et al. 2012; Huang et al. 

2004; Salem et al. 2003; Swei et al. 2015). There are also several studies on optimization-based 

methods that consider more rehabilitation actions and generate an optimal policy. There are 

deterministic approaches, such as Santos et al. (2019) and Mamlouk et al. (2000). While 

deterministic models are simple and computationally efficient, they fail to capture the uncertainty 

in an infrastructure’s stochastic deterioration (Morcous and Lounis 2005). Morcous and Louins 
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(2005) developed genetic algorithms that utilize Markov-chain models to optimize the 

maintenance of infrastructure networks. These captured the uncertainties that are present in 

infrastructure deterioration, measurement errors and condition assessment.  

There are several other optimization-based approaches that only consider the underlying 

uncertainty of pavement deterioration. Kuhn and Madanat (2005) developed a robust linear 

programming algorithm to minimize agency and user cost. Kuhn (2009) used approximate 

dynamic programming via value function approximation to generate the optimal policies for 

individual facilities. These were then used to generate network-level maintenance schedules with 

fiscal constraints. To minimize the life-cycle cost of a specific system, Guo et al. (2019) used a 

heuristic enumeration approach that incorporated uncertainty in both pavement deterioration and 

cost, while other studies focused on a single source of uncertainty. Finally, while Jawad and Ozaby 

(2006) and Zhang et al. (2010) do not account for the uncertainty in pavement deterioration, both 

account for the uncertainty in future traffic and/or costs via genetic algorithms and dynamic 

programming. Table 1 summarizes these findings and categorizes them by the considered sources 

of uncertainty and LCCA method. 

While the aforementioned optimization-based methods should theoretically lead to near optimal 

solutions that achieve the objective of minimizing life-cycle costs, there are two major limitations. 

First, by excluding several relevant sources of uncertainty, these approaches are susceptible to 

selecting management policies that are unable to react to future conditions that deviate from the 

predicted expectations. The computational power required for these methods limit the uncertainties 

that can be considered. This is due to the “curse of dimensionality”, in which the state space grows 

as the problem becomes more complex (Tack and Chou 2002). Optimization-based LCCA that 

utilize Markov models (i.e., model-based approaches) also require transitional probabilities in 
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order to move from one state to the other. A state in a pavement management system model could 

be the pavement condition in a system in a point of time, before or after a rehabilitation action has 

been selected (Guillaumot et al. 2003). Typically, these are derived from empirical data that may 

differ between agencies; an agency would be unable to benefit from an LCCA that does not 

accurately use its system’s data, which is another limitation (Ravirala and Grivas 1995; Guillaumot 

et al. 2003). These enforce restrictive assumptions and/or constraints, such as the specification of 

factors (i.e., pavement deterioration) (Powell 2009). Durango-Cohen (2004) and Medury and 

Madanat (2013) have explored the benefits of adapting a model-free reinforcement learning 

algorithm, which will be further discussed in future chapters. 
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Table 1. Summary of existing LCCA studies and uncertainties 

Study 
Considered Sources of Uncertainty  Method 

Traffic 
Maintenance 

Intensity 
Maintenance Timing 

and Deterioration 
Cost  Non-Optimization Optimization 

Mamlouk et al. (2000)        

Tighe (2001)        

Reigle and Zaniewski 
(2002) 

     
  

Salem et al. (2003)        

Durango-Cohen (2004)        

Huang et al. (2004)        

Kuhn and Madanat (2005)        

Jawad and Ozbay (2006)        

Li and Madanu (2009)        

Kuhn (2009)        

Zhang et al. (2010)        

Irfan et al. (2012)         

Guo et al. (2012)        

Harvey et al. (2012)        

Swei et al. (2015)        

Guo et al. (2019)        

Santos et al. (2019)        
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2.3 Limitations and Contribution 

Gaps in the pavement LCCA include the inability to consider many relevant sources of 

uncertainty in optimization-based approaches and the limited number of alternatives available 

in probabilistic LCCA studies. Most existing optimization-based approaches also face the 

challenge of requiring a model to navigate from one pavement condition to the next. These 

models are dependent on a pavement’s location, in which weather conditions, traffic rates and 

other factors affect pavement deterioration. Thus, optimization-based models provide sub-

optimal results to agencies with different parameters. 

To address the need for a LCCA model that: (a) considers many relevant sources of uncertainty, 

(b) explores the available decision space succinctly and, (c) adapts easily to different model 

formulations, a new optimization-based approach for the life-cycle planning of pavement 

infrastructure is presented. Specifically, this study implements several important sources of 

uncertainty into a model-free reinforcement learning (RL) algorithm to efficiently determine 

the long-term cost of alternative pavement construction and design choices and their timings. 

Unlike previous model-based approaches, the proposed model-free RL algorithm can 

determine an optimal investment strategy without the need to predefine the evolution of 

pavement degradation, traffic volume, construction costs, or other uncertain factors. Rather, 

the agent (i.e., decision-maker) iteratively learns the rewards of its actions through direct 

interactions with the modeling environment.  

The proposed RL framework is highly generalizable and flexible; it not only accommodates 

numerous sources of uncertainty, but also does so without imposing restrictions on how such 

uncertainties must be modeled. This freedom of structure brings tremendous practical value to 

the approach in the pavement management community. Since planning agencies differ in their 
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assumptions around relevant LCCA inputs (e.g., pavement degradation), this framework can 

support many transportation agencies. The importance of this approach is subsequently 

highlighted through a realistic case study, demonstrating that the model-free RL algorithm 

leads to the selection of a design and construction policy that significantly reduces life-cycle 

costs. The previously mentioned limitations and gaps in the literature motivate the creation of 

a new, optimization based LCCA and LCA that incorporate several sources of uncertainty and 

their possible structures. The design of this tool feeds into Chapter 3 and 4, which discuss 

deterioration modeling and its results, and reinforcement learning, respectively. 
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Chapter 3. Deterioration Modeling 

As mentioned in Chapter 1, transportation agencies increasingly rely on pavement 

management systems (PMS) to guide their maintenance and design decisions (Torres-Machi 

et al. 2018; Wang et al. 2018). A major benefit of PMS frameworks is that they allow agencies 

to be proactive, rather than reactive, around infrastructure maintenance (Ng et al. 2011; Su et 

al. 2017). By being proactive, decision-makers are able to reduce the long-term maintenance 

cost and enhance the sustainability and safety of their own assets. Taking a proactive approach 

around maintenance decisions necessitates that an agency regularly procures infrastructure 

condition information and subsequently uses relevant statistical methods to estimate pavement 

performance (i.e., deterioration) models (Karlaftis and Badr 2015; Hong and Prozzi 2010). A 

low-fidelity deterioration model will lead to the selection of a sub-optimal construction design 

and maintenance schedule (Swei et al. 2018). 

Deterioration mechanisms in pavements include cracking, faulting and rutting (Jang et al. 

2017) and appropriate maintenance treatments are dependent on how these mechanisms evolve 

(Swei et al. 2016). Roughness is one of the major factors that influences a pavement’s ride 

quality (Jiang and Li 2005). Thus, planning agencies will usually focus on an infrastructure’s 

composite condition indices or specific distress measures, such as the international roughness 

index (IRI) that specifically measures roughness, as it is easier for agencies to collect (Chen et 

al. 2016; Park et al. 2007; Lea and Harvey 2004). 

The IRI, expressed as a ratio, “represents the cumulative displacement of the axle with respect 

to the frame of a reference quarter-car per unit distance traveled over the pavement profile at 

a constant speed of 80.5 km/h (50 mi/h)” (Dalla Rose et al. 2017). The IRI was developed by 
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the World Bank and has been used to evaluate ride quality, evaluate the environmental impact 

of pavement conditions and estimate vehicle operating costs. As the pavement age increases, 

the condition decreases and the IRI number increases (Jiang and Li 2005). Most transportation 

agencies use IRI to measure pavement performance in their PMS; for this reason, this chapter 

focuses on applying its methods towards the development of deterioration models for 

pavement roughness (a continuous condition indicator) given: (a) its ubiquitous use in project-

level and network-level tools and, (b) the methods employed can still easily extend to other 

distress mechanisms.  

Over the last several decades, there has been considerable progress towards improving the 

deterioration models underlying existing PMS tools. While these models are discussed at 

greater length in the following section, these approaches are briefly distilled here to motivate 

this work. Previous studies have deployed various statistical approaches to predict pavement 

performance for both discrete, ordinal measures (e.g., Madanat et al.1995) and continuous 

indicators (e.g., Hong and Prozzi 2010) of pavement condition. Discrete, ordinal measures 

refer to measurements that have a relative ordering, such as 1 for “poor condition” and 9 for 

“excellent condition” (Madanat et al. 1995).  

Since variation in pavement performance across facilities is, at least partially, explained by 

factors such as pavement age and exposed traffic volume, these methods will oftentimes 

account for these covariates via their model specification. The remaining unexplained variation 

in pavement deterioration is subsequently treated as aleatory. For the remainder of this thesis, 

the unexplained variation specifically in pavement deterioration across time will be referred to 

as aleatory uncertainty. 
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Correct measures of aleatory uncertainty are paramount to enhance the utility of a PMS and 

ensure that the planning community derives statistically robust deterioration models. Measures 

of aleatory uncertainty are tremendously important for pavement engineers, who use them 

within reliability analysis frameworks to assess the probability of failure within a given time 

horizon (Thyagarajan et al. 2011).  In addition, LCC (Salem et al. 2003; Mishalani and Gong 

2008; Ng et al. 2011; Pittenger et al. 2011) and LCA (Noshadravan et al. 2013) frameworks 

require these estimates to compute the probabilistic cost and/or environmental impacts of 

alternative investments. Furthermore, incorrect measures of aleatory uncertainty have non-

trivial effects on the distribution for parametric estimates, which are paramount for statistical 

inference (Altman and Bland 2005). Simply put, correctly measuring aleatory uncertainty is 

invaluable for deriving high-fidelity pavement performance models and PMS frameworks. 

Accurately estimating the aleatory uncertainty underlying pavement performance models, 

however, requires that researchers account for a second source of uncertainty in their statistical 

analysis: the measured condition of a facility. While agencies may have access to field 

measurements of distress for their individual assets, the true distress of each facility is generally 

an unknown quantity due to the inherent errors arising from measurement technology, 

inspectors, data processing, and other possible circumstances (Kobayashi et al. 2012). 

Discretized ordinal measures of pavement condition that are embedded in Markov decision 

process (MDP) PMS frameworks are, furthermore, latent in nature. In other words, the 

measured condition of a facility is unknown and is simply inferred through direct 

measurements of distress indicators (e.g., cracking) (Madanat et al. 1995). These realities have 

motivated an important body of literature that has emerged over the last 30 years around the 

estimation of infrastructure performance models given the uncertainty in condition 
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assessments. These methods have primarily been applied to discrete, ordinal measures of 

infrastructure condition (Ben-Akiva and Ramaswamy 1993; Kobayashi et al. 2012; Madanat 

et al. 1997; Madanat et al. 1995). A much smaller number of studies (namely Chu and 

Durango-Cohen 2007, Chu and Durango-Cohen 2008a, and Chu and Durango-Cohen 2008b), 

have focused on accounting for measurement errors for continuous condition metrics (e.g., 

pavement roughness) through state-space models.  

The focus of this chapter is on continuous condition indicators given that modern technologies 

and the state-of-the-art are allowing agencies to access this type of information more widely 

(Bridgelall 2014; Dennis et al. 2014). In particular, practitioners are transitioning to 

AASHTO’s mechanistic-empirical pavement design guide (MEPDG) to: (a) model pavement 

performance and, (b) incorporate those predictions within their decision-support tools for 

continuous distress indicators (e.g., pavement roughness) (Li et al. 2011). The implementation 

of mechanistic-empirical approaches by practitioners will frequently rely on ordinary least 

squares (OLS) to estimate deterioration models for panel data, unfortunately ignoring the 

effects of measurement uncertainty (Li et al. 2011). The increasing availability of regularly 

procured, continuous condition data for infrastructure assets, the growing reliance on 

continuous distress indictors to manage paving assets, and the prevailing use of least squares 

in practice situate the research well to enhance pavement management practice. In particular, 

the proposed methodology will allow decision-makers to better estimate the aleatory 

uncertainty underlying their PMS tools, including risk-based LCA and LCCA models, leading 

to the selection of improved design, construction, and maintenance strategies.  

This proposed methodology involves the development an iterative reweighted least squares 

(IRLS) approach for performance panel data. IRLS is an iterative approach to find an optimal 
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solution, where a weighted least square problem is solved in every step. The goal of this method 

when applied to this research is to calculate the variance of aleatory uncertainty. A solution is 

reached when the absolute difference between the estimate of aleatory variance in the current 

iteration and the previous iteration is less than a user-defined threshold. By calculating the 

variance of aleatory uncertainty, measurement uncertainty is captured as well. The current 

method, which includes OLS, is unable to deconvolve these two uncertainties as the variance 

of degradation uncertainty may have unequal scatter, due to varying sample sizes. OLS 

assumes that the scatter of data points is equal; the error variance is assumed to be constant. 

However, IRLS can handle unequal scattering of variance as the method does not assumed the 

weights of the data points are equal, which is an assumption made if scattering is equal. By 

using IRLS to obtain a more accurate measure of the variance that underlies pavement 

deterioration uncertainty, a more effective rehabilitation policy can be applied that may reduce 

rehabilitation frequency.  

3.1 Existing Pavement Degradation Models 

A transition probability matrix defines the probability of a change in the distress level of a 

facility between year t, Dt, and t+1, Dt+1. The transition probability matrix will typically be 

defined by s discretized distress levels, and it is assumed that between years a pavement can 

only transition with nonzero probability, p, to its current condition, d, and one condition worst, 

d+1 (Madanat and Ibrahim 1995): 
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P(𝐷𝐷𝑡𝑡+1|𝐷𝐷𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑝𝑝1,1 𝑝𝑝1,2 0

0 𝑝𝑝2,2 ⋱
0 0 ⋱

0 0 0
0 0 0

𝑝𝑝𝑑𝑑,𝑑𝑑+1 0 0
0 0 0
0 0 0
0 0 0

𝑝𝑝𝑑𝑑,𝑑𝑑 ⋱ 0
0 ⋱ 𝑝𝑝𝑠𝑠−1,𝑠𝑠
0 0 𝑝𝑝𝑠𝑠𝑠𝑠 ⎦

⎥
⎥
⎥
⎥
⎤

 (2) 

The important advantage of modeling pavement deterioration as both discrete and Markovian 

is that it supports solving the optimal maintenance schedule for a facility via dynamic 

programming (Madanat 1993). Dynamic programming requires transitional probabilities to 

move from one state to the other. Early state-based approaches would account for 

heterogeneity (the performance difference between different facilities) in pavement 

deterioration across facilities by first classifying facilities into groups with similar 

characteristics (e.g., exposed traffic volume) and subsequently estimating a separate transition 

probability matrix for each grouping (Carnahan et al. 1987). More recent state-based research, 

however, has employed advanced econometric and statistical analyses to deal with this issue. 

These methods for state-based models include approaches such as ordered probit (Madanat et 

al. 1995; Madanat et al. 1997) and Poisson regression coupled with its negative binomial 

extension (Madanat and Ibrahim 1995). These state-based methods, conceptually, overlap with 

the time-based models, where the latter type of models aims to estimate the probabilistic time 

that it takes for a facility to enter and subsequently leave each discrete condition level. For 

time-based models, hazard rate functions have been successfully estimated (e.g., Mishalani 

and Madanat 2002) that explicitly account for the heterogeneity across infrastructure facilities. 

It is important to note that the state-based and time-based methods are directly related; a state-

based transition probability matrix can be determined from the hazard rate functions for a time-

based model (Mishalani and Madanat 2002). 
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There has also been tremendous progress within the pavement management community around 

modeling the performance of continuous distress indicators such as rutting, longitudinal and 

transverse cracking, pavement roughness and other measures. These performance models are 

frequently classified into three types: empirical, mechanistic, and mechanistic-empirical 

(Prozzi and Madanat 2003). Empirical models generally rely on panel data, where pavement 

performance is described via a series of explanatory factors based solely on statistical 

considerations. Mechanistic models, on the other hand, are derived from response functions 

that characterize the relationship between performance and material design. More recently, 

research has emphasized mechanistic-empirical (ME) performance models to integrate the 

statistical rigor underlying the empirical methods with the mechanistic approach (Prozzi and 

Madanat 2003; Li et al. 2011). While the ME approach has gained traction amongst researchers 

and practitioners, both it and the purely empirical methods require the utilization of sound 

statistical approaches. 

The estimation of continuous performance models within the existing literature frequently 

relies on least squares and its application to panel data (Aguiar-Moya et al. 2011). While 

practitioners will typically use ordinary least squares to estimate a pavement performance 

model, variants of least squares including generalized least squares (GLS) and 2-stage least 

squares (2SLS) have been implemented by researchers to deal with its shortcomings (Aguiar-

Moya et al. 2011; Meegoda and Gao 2014; Hong and Prozzi 2013). Reasons for implementing 

GLS and 2SLS include the need to account for random effects as well as endogeneity in 

pavement performance models. In other instances, maximum likelihood methods have been 

applied to estimate deterioration models for pavements (Hong and Prozzi 2010; Hong and 

Prozzi 2013). While the above discussion is inherently limited and does not fully cover the 
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scope and breath of research in this domain, it does highlight the need for statistically sound 

approaches to estimate performance models for both discrete and continuous condition 

measures. Despite their differences, the previously discussed approaches provide pavement 

engineers a mechanism to capture the aleatory uncertainty underlying the deterioration of 

pavement facilities. Pavement engineers and researchers have successfully embedded these 

estimates of aleatory uncertainty within their project-level (Noshadravan et al. 2013; Swei et 

al. 2013; Zhang et al. 2012) and network-level (Sathaye and Madanat 2012; Medury and 

Madanat 2013) decision-support tools to derive cost-effective and environmentally sustainable 

resource allocation policies. The importance of these aleatory uncertainty measures is of 

particular significance given that agencies are now frequently leveraging probabilistic, 

reliability-based methods to guide their pavement investment decisions (Harvey et al. 2012). 

The estimation of aleatory uncertainty and, furthermore, the ability to generate robust 

parametric models requires the explicit consideration of uncertainty in facility condition 

assessments. While the models used in practice may frequently ignore this concern, there is a 

rich and important body of literature around measurement errors (e.g., Humplick 1992) and 

latent distress measures (e.g., Ben-Akiva and Ramaswamy 1993) and their incorporation 

within performance models dating back 30 years. Studies centered on discretized, ordinal 

measures of pavement distress have accounted for the latent nature of infrastructure 

performance via approaches such as simultaneous equation (Ben-Akiva and Ramaswamy 

1993) and ordered-probit (Madanat et al. 1995; Madanat et al. 1997) models. A much smaller 

group of studies (Chu and Durango-Cohen 2007; Chu and Durango-Cohen 2008a; Chu and 

Durango-Cohen 2008b), have accounted for measurement errors for continuous distress 

indicators via state-space models. In this regard, the presented work is differentiated from the 
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latter group of studies by demonstrating that a GLS approach for continuous infrastructure 

condition data, which aligns well with the least squares approach used in practice and amongst 

researchers, can address concerns around measurement error. In the following section, the 

proposed approach is highlighted, and the case study application is briefly described. 

3.2 Methodology 

As shown by previous research (Swei et al. 2018), pavement deterioration generally follows 

the below structural model: 

 Δ𝐷𝐷𝑡𝑡 = 𝑓𝑓(𝐙𝐙𝒕𝒕−𝟏𝟏) + ε𝑡𝑡 (2) 

Δ is the first difference operator, Dt is the true condition of a pavement facility in year t, Z is a 

vector composed of k attributes (e.g., exposed traffic volume) that helps explain some of the 

variation in pavement performance across time, and εt is an error term that captures the aleatory 

uncertainty in the evolution of pavement distress. It is assumed that the random error term is 

unbiased and follows a Gaussian distribution with a variance of σ2
a. Practitioners will 

traditionally specify the above model per OLS regression with the root mean square error 

(RMSE) used to attribute all of the variance in the residuals to the aleatory uncertainty term. 

This assumption, however, only holds true if changes in pavement condition between years, 

ΔDt, are fully known. In reality, practitioners will estimate Equation 2 using the sample average 

of multiple distress measurements for an individual segment in years t and t-1. Assuming that 

the measured condition of a facility is normally distributed, it is well known that the underlying 

distribution for the sample average follows: 
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𝐷𝐷�𝑡𝑡 ~ 𝑁𝑁�𝐷𝐷𝑡𝑡 ,

𝜎𝜎𝑚𝑚2 𝑡𝑡
𝑘𝑘𝑡𝑡

� (3a) 

 
𝐷𝐷�𝑡𝑡−1 ~ 𝑁𝑁�𝐷𝐷𝑡𝑡 ,

𝜎𝜎𝑚𝑚2 𝑡𝑡−1
𝑘𝑘𝑡𝑡−1

� (3b) 

In other words, while the sample mean is equal to the population mean, its underlying variance 

is the ratio of: (1) the variance in the measured condition of a facility, σ2
m, in year t and t-1 and, 

(2) the number of measurements, k, for each time period. Equation 3a and Equation 3b can 

alternatively be written as: 

 
𝐷𝐷�𝑡𝑡 = 𝐷𝐷𝑡𝑡 + 𝑢𝑢𝑡𝑡 ;  𝑢𝑢𝑡𝑡 ~ 𝑁𝑁�0 ,

𝜎𝜎𝑚𝑚2 𝑡𝑡
𝑘𝑘𝑡𝑡

� (4a) 

 
𝐷𝐷�𝑡𝑡−1 = 𝐷𝐷𝑡𝑡−1 + 𝑢𝑢𝑡𝑡−1 ;  𝑢𝑢𝑡𝑡−1 ~ 𝑁𝑁�0 ,

𝜎𝜎𝑚𝑚2 𝑡𝑡−1
𝑘𝑘𝑡𝑡−1

� (4b) 

If the true condition for a single pavement facility is probabilistic and, furthermore, a model is 

estimated using the average condition rating for a facility, then Equation 2 should actually be: 

 Δ𝐷𝐷�𝑡𝑡 = 𝑓𝑓(𝐙𝐙𝒕𝒕−𝟏𝟏) + ε𝑡𝑡 (5a) 

 𝐷𝐷𝑡𝑡 + 𝑢𝑢𝑡𝑡 − 𝐷𝐷𝑡𝑡−1 − 𝑢𝑢𝑡𝑡−1 = 𝑓𝑓(𝐙𝐙𝒕𝒕−𝟏𝟏) + ε𝑡𝑡 (5b) 

 Δ𝐷𝐷𝑡𝑡 = 𝑓𝑓(𝐙𝐙𝒕𝒕−𝟏𝟏) + ε𝑡𝑡 − 𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑡𝑡−1 (5c) 

Equation 5c highlights a fundamental flaw underlying several performance models for 

continuous distress indicators found in practice. Specifically, there are in fact two sources of 

variance in addition the aleatory uncertainty: (1) the measured condition of a facility in year t-
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1 and, (2) the measured condition of that same facility in year t. While measurement errors in 

the explanatory factors, Z, would cause downward bias in a parameterized model (Hutcheon 

et al. 2010), since the expectation of the error terms εt, ut, and ut-1 is equal to zero, then inflation 

in the variance (and its effect on the standard errors) for the above model is the main concern. 

Because the uncertainty around the measured condition for a facility between years should be 

uncorrelated with one another and, furthermore, field measurements should have no effect on 

the pavement deterioration process, then the resulting variance for Equation 5 should simply 

be the summation of the variance for the individual error terms: 

 
𝜎𝜎Δ𝐷𝐷�𝑡𝑡
2 =

𝜎𝜎𝑚𝑚2 𝑡𝑡
𝑘𝑘𝑡𝑡

+
𝜎𝜎𝑚𝑚2 𝑡𝑡−1
𝑘𝑘𝑡𝑡−1

+ 𝜎𝜎𝑎𝑎2 (6) 

Per Equation 6, pavement engineers can reduce the variance underlying a specified 

deterioration model via three mechanisms. First, they can leverage improved field 

measurement technology to evaluate the condition of a facility (Rada et al. 1997). 

Alternatively, municipalities and planning agencies may prefer to leverage connected vehicles 

(Dennis et al. 2014), providing decision-makers with a larger sample size of measurements. 

Finally, planners can use alternative model structures to better capture the seemingly aleatory 

uncertainty around pavement deterioration via relevant explanatory factors.  

Having briefly described the fundamental issue underlying existing pavement deterioration 

models for a single facility, the approach is synthesized to estimate pavement performance 

using available panel data. Unlike Equation 2, panel data provide pavement engineers with 

important information around the performance of many facilities across time: 
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 Δ𝐷𝐷�𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝐙𝐙𝑖𝑖,𝑡𝑡−1� + ε𝑖𝑖𝑖𝑖 (7) 

The only difference between Equation 2 and Equation 7 is the introduction of the variable i to 

index the individual pavement facilities. It can generally be assumed that the aleatory 

uncertainty term is independent and identically distributed across space and time (as is the 

typical assumption for regression models) with variance σ2
a . Conversely, the measurement 

variance terms, σ2
mit

 and σ2
mi,t-1

, for facility i in year t and t-1 across the full panel dataset may 

vary due to improvements in infrastructure condition assessment technologies and/or external 

factors (e.g., inclement weather). Under these two realistic assumptions, the underlying 

variance for the individual samples of a specified model would be:  

 
𝜎𝜎Δ𝐷𝐷�𝑖𝑖𝑖𝑖
2 =

𝜎𝜎𝑚𝑚2 𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖

+
𝜎𝜎𝑚𝑚2 𝑖𝑖,𝑡𝑡−1
𝑘𝑘𝑖𝑖,𝑡𝑡−1

+ 𝜎𝜎𝑎𝑎2 (8) 

where kit and ki,t-1 are the number of measured samples for facility i in year t and t-1. Because 

both the fidelity of the asset condition measurements as well as the sample size used to estimate 

a facility’s condition can vary across a sample set, the underlying variance of Equation 8 will 

not be homoscedastic, or having an equal scatter, a requirement for OLS regression.  

To deal with this issue, which affects the standard errors of a parameterized model, and 

ultimately estimate the aleatory uncertainty term that enters project-level and network-level 

tools, an innovative, iterative reweighted least squares (IRLS) approach is highlighted in 

Algorithm 1. Suppose that a planning agency has collected pavement performance measures 

across n facilities from year t0 through year T. A weighted least squares (WLS) approach will 
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search for some vector of parameters, β, that minimizes the weighted sum of squared residuals 

for a model: 

 
arg min

𝛃𝛃
��𝑤𝑤𝑖𝑖𝑖𝑖(E[Δ𝐷𝐷�𝑖𝑖𝑖𝑖|𝛃𝛃] − Δ𝐷𝐷�𝑖𝑖𝑖𝑖)2

𝑇𝑇

𝑡𝑡=𝑡𝑡0

𝑛𝑛

𝑖𝑖=1

 (9) 

where wit is the individual weight placed on facility i in year t. In the case that the residuals for 

Equation 7 exhibit heteroscedasticity, or an unequal scatter, an OLS solution (in which the 

weights are equal to one for all observations) is no longer the maximum likelihood estimate 

for a regression model and, therefore, is inefficient (Mills 2014). To achieve the 

heteroscedastic maximum likelihood estimate and recover efficiency, the weights for the 

individual data points are usually set equal to the inverse of their variance (Mills 2014):  

 𝑤𝑤𝑖𝑖𝑖𝑖 ∝ 1
𝜎𝜎Δ𝐷𝐷�𝑖𝑖𝑖𝑖
2�  (10) 

If the selected weights for each data point is set directly proportional to the inverse of its 

variance, then one would expect for a large sample set that the expectation of the weighted 

sum of squared residuals would be:  

 
E ���𝑤𝑤𝑖𝑖𝑖𝑖(E[Δ𝐷𝐷�𝑖𝑖𝑖𝑖|𝛃𝛃] − Δ𝐷𝐷�𝑖𝑖𝑖𝑖)2

𝑇𝑇

𝑡𝑡=𝑡𝑡0

𝑛𝑛

𝑖𝑖=1

� = 𝑛𝑛(𝑇𝑇 − 𝑡𝑡0 + 1) (11) 

Based on the previous discussion, Algorithm 1 presents an innovative technique to characterize 

the aleatory uncertainty underlying a pavement deterioration model. Algorithm 1 initializes by 

setting the weight for each individual sample, w
0
it, equal to the inverse of the measurement 
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uncertainty terms in year t and t-1 for facility i. The weighted least squares problem is 

subsequently solved to derive a first estimate of the parameter vector, β0. Of course, the initial 

estimate of β0 will not be the finalized vector of parameter estimates as the initial weighting 

assumes that the variance for the aleatory uncertainty term is equal to zero. By utilizing the 

relationship in Equation 11, σ2
a is initially optimized, σ2

a(0), by searching for a value that 

minimizes the absolute difference between the actual weighted sum of squared residuals and 

its expected value. To expedite the optimization process, values of σ2
a(0) are assumed to be 

bounded between zero (i.e., zero variance) and an upper bound limit, σ2
b. The upper bound 

value is simply the solution for the OLS problem, which assumes that all of the variance in the 

residuals is attributed to aleatory uncertainty. Once initialized, Algorithm 1 enters a loop that: 

(1) updates the weights, (2) solves for the parameter vector that minimize the WLS problem, 

and, (3) generates a new set of weights to meet the result of Equation 11. When the absolute 

difference in the estimate of σ
2
a between iteration j and j-1, σ2

a( j) and σ2
a( j-1), are less than some 

value δ, the model immediately exists the loop under the assumption that the estimates of σ2
a 

and β have stabilized. Although this algorithm does not detail any diagnostic tests, it is ensured 

that some of the important assumptions (e.g., measurement uncertainty is Gaussian distributed) 

underlying the discussion are met. 
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Algorithm 1. Proposed IRLS to estimate σ2
a and β. 

Initialize: 
Step1: Set the initial weights (w0

it) for each measurement: 𝑤𝑤𝑖𝑖𝑖𝑖0 = 1
𝜎𝜎𝑚𝑚2 𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖

+
𝜎𝜎𝑚𝑚2 𝑖𝑖,𝑡𝑡−1
𝑘𝑘𝑖𝑖,𝑡𝑡−1

 

Step 2: Solve for the vector β0: arg min
𝛃𝛃0

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖0(E[Δ𝐷𝐷�𝑖𝑖𝑖𝑖|𝛃𝛃0] − Δ𝐷𝐷�𝑖𝑖𝑖𝑖)2𝑇𝑇
𝑡𝑡=𝑡𝑡0

𝑛𝑛
𝑖𝑖=1  

Step 3: Generate a first estimate of the aleatory uncertainty term: 
a. Bound the feasible aleatory variance, σ2

b , by the variance for the OLS solution  
b. Solve the below optimization problem: 

min ����
1

𝜎𝜎𝑚𝑚2 𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖

+
𝜎𝜎𝑚𝑚2 𝑖𝑖𝑖𝑖−1
𝑘𝑘𝑖𝑖𝑖𝑖−1

+ 𝜎𝜎𝑎𝑎2(0)
(E[Δ𝐷𝐷�𝑖𝑖𝑖𝑖|𝛃𝛃0] − Δ𝐷𝐷�𝑖𝑖𝑖𝑖)2

𝑇𝑇

𝑡𝑡=𝑡𝑡0

𝑛𝑛

𝑖𝑖=1

− 𝑛𝑛(𝑇𝑇 − 𝑡𝑡0 + 1)�� 

subject to 0 ≤  𝜎𝜎𝑎𝑎2(0) ≤ 𝜎𝜎𝑏𝑏2 
For j = 1 to J 

Step 1: Reset the weights for each measurement as: 𝑤𝑤𝑖𝑖𝑖𝑖
𝑗𝑗 = 1

𝜎𝜎𝑚𝑚2 𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖

+
𝜎𝜎𝑚𝑚2 𝑖𝑖𝑖𝑖−1
𝑘𝑘𝑖𝑖𝑖𝑖−1

+𝜎𝜎𝑎𝑎2(𝑗𝑗−1)
 

Step 2: Solve for the parameters βj per: arg min
𝛽𝛽𝑗𝑗

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑗𝑗 �E�Δ𝐷𝐷�𝑖𝑖𝑖𝑖|β𝑗𝑗� − Δ𝐷𝐷�𝑖𝑖𝑖𝑖�

2𝑇𝑇
𝑡𝑡=𝑡𝑡0

𝑛𝑛
𝑖𝑖=1  

Step 3: Solve the below optimization problem: 

min ����
1

𝜎𝜎𝑚𝑚2 𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖

+
𝜎𝜎𝑚𝑚2 𝑖𝑖𝑖𝑖−1
𝑘𝑘𝑖𝑖𝑖𝑖−1

+ 𝜎𝜎𝑎𝑎2(𝑗𝑗)
(E[Δ𝐷𝐷�𝑖𝑖𝑖𝑖|𝛃𝛃𝒋𝒋] − Δ𝐷𝐷�𝑖𝑖𝑖𝑖)2

𝑇𝑇

𝑡𝑡=𝑡𝑡0

𝑛𝑛

𝑖𝑖=1

− 𝑛𝑛(𝑇𝑇 − 𝑡𝑡0 + 1)�� 

subject to 0 ≤  𝜎𝜎𝑎𝑎2(𝑗𝑗) ≤ 𝜎𝜎𝑏𝑏2 
Step 4: If |𝜎𝜎𝑎𝑎2(𝑗𝑗)-𝜎𝜎𝑎𝑎2(𝑗𝑗 − 1)| < δ Then β = βj And 𝜎𝜎𝑎𝑎2 = 𝜎𝜎𝑎𝑎2(𝑗𝑗) Break 

Next j 

3.3 Case Study Analysis 

This study applies its methodology to pavement condition information collected as part of the 

FHWA Long-Term Pavement Performance (LTPP) program (FHWA 2018). Since 1991, the 

FHWA has funded and managed the program, which has collected and stored pavement 

performance data for over 2,500 test sections throughout North America. This database 

includes over 140,000 individual field measurements of pavement IRI from pavement 

segments in the United States and certain areas in Canada. Because these test sections are 
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exposed to a broad range of climactic regions, traffic volumes, and other relevant factors, the 

dataset facilitates the ability to capture some of the explanatory uncertainty underlying 

pavement performance (Swei et al. 2018). Although FHWA has tracked and collected 

pavement condition information for a range of relevant distress mechanisms, the methodology 

is specifically applied to model the IRI of asphalt concrete (AC) pavements due to its 

ubiquitous use within project and network-level decision-support tools. However, the value of 

Algorithm 1 is likely greater for other pavement distress mechanisms that are typically subject 

to much higher levels of measurement uncertainty (Schwartz 2007). 

Based on the findings of several previous research efforts (Lee et al. 1993; Swei et al. 2018; 

Yang et al. 2005), this research assumes that a reasonable amount of the variation in pavement 

deterioration across time can be explained by the following model structure: 

 Δ𝐷𝐷�𝑖𝑖𝑖𝑖 = 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1
𝛼𝛼1 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

𝛼𝛼1 𝑆𝑆𝑆𝑆𝑡𝑡−1
𝛼𝛼3  (12) 

where β, α1, α2, and α3 are parameter estimates that quantify the effect of AADTT, pavement 

age, and the facility’s structural number (SN) on pavement deterioration. While more complex 

models exist, this research has selected a parsimonious model structure that considers some of 

the most important drivers of variation in pavement performance across facilities and, 

furthermore, includes the types of explanatory variables typically stored within most PMS 

databases for state DOTs and municipalities (Lea and Harvey 2004). Of course, the described 

methodology could easily accommodate a broader set of explanatory factors and quantify its 

effect on the aleatory uncertainty term. Within the LTPP database, this study uses consecutive 

field measurements plus or minus one month. It also ignores extreme outliers (i.e., absolute 
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changes in IRI are greater than 0.5 m/km with low measurement error) that may arise due to 

unreported changes activities that could affect the condition of a pavement facility.  

3.4 Results 

This study begins its analysis by first evaluating the degree to which measurement uncertainty 

is pervasive within the LTPP dataset. Figure 2 presents a histogram of the standard error (i.e., 

σmit
/k0.5

it per Equation 8) of the mean IRI condition for each pavement facility stored within the 

LTPP database. This histogram has been slightly truncated, excluding the 1% of pavement 

facilities with a standard error greater that 0.093 meters per kilometer (i.e., 5.9 inches per mile). 

Over 97% of the LTPP sections include exactly five field measurements per site visit and, 

therefore, kit and ki,t-1 as defined by Equation 9 are, for the most part, uniform across this study. 

The average standard error across all facilities is 0.012 meters per kilometer (0.76 inches per 

mile), implying that, on average, the 95% confidence interval around a pavement’s true 

condition is +/- 0.024 meters per kilometer (+/- 1.5 inches per mile). While that may not seem 

like much uncertainty, it is important to note that: (a) the average change in mean IRI across 

the entire dataset is only 0.04 meters per kilometer (2.5 inches per mile) and, (b) in over 40% 

of instances, the standard error around the condition of a facility in either year t or t-1 is greater 

than the mean change in IRI. As a result, it is fair to say that the consideration of measurement 

uncertainty is important when deriving a performance model. 
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Figure 2. Histogram of standard error of mean IRI condition (meters per kilometer) for 

99% of pavement facilities (excluding those with a standard error greater than 0.093 

meters per kilometer) stored within the LTPP database 

Figure 3 subsequently plots the average standard error of measured IRI across time. While 

there have been tremendous improvements to the underlying pavement deterioration models 

used in practice over the last 20-30 years, there has been no demonstrable shift in the 

performance of condition assessments conducted as part of the LTPP program. In fact, a simple 

linear regression comparing the average measurement uncertainty (i.e., standard error) across 

time suggests that there has been, if anything, a statistically significant increase in 

measurement uncertainty across time at the 10% level. Finally, there is very little correlation 

between measurement uncertainty and our relevant regressors as well as the mean condition of 

a facility in its levels; the absolute value of Pearson’s correlation coefficient between the 

standard error measurement of a pavement facility’s condition and these factors never exceeds 

0.06. 
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Figure 3. Average standard error of mean IRI condition (meters per kilometer) of 

paving facilities across time 

Table 2 presents the parameterized estimates for the proposed IRLS approach and the 

traditional OLS regression technique (with pavement condition in units of meters per 

kilometer). For this case study, the threshold value, δ, that terminates Algorithm 1 has been set 

to 10-6. Despite this low tolerance, the model converges to an optimal solution within just four 

iterations. The optimal solution is defined as a solution where the absolute difference between 

the actual weighted sum of squared residuals and its expected value is less than the threshold 

value. For both models, if the t-statistic for α1, α2 and/or α3 is unable to reject the null hypothesis 

that it is equal to zero, then that variable is logarithmically transformed per Tukey’s ladder of 

powers. The underlying reasoning for this transformation is the following limit: 



 
 

37 
 

 
𝑙𝑙𝑙𝑙𝑙𝑙
α→0

xa − 1
a

= 𝑙𝑙𝑙𝑙 x (13) 

Table 2. Estimate of Equation 12 using (a) the proposed IRLS approach and (b) the 

typical OLS regression approach. In the case that a given AADTT, Age, or SN are 

logarithmically transformed, it is denoted via an “LN”. T-statistics are listed in 

parentheses  

Parameter Proposed IRLS Traditional OLS 

β 
3.134*10-3 

(3.22) 
3.218*10-3 

(3.08) 

α1 LN LN 

α2 LN LN 

α3 
-0.429 
(-2.08) 

-0.457 
(-2.11) 

σ2
a  5.785*10-3 6.702*10-3 

Sample Size 1450 

Model Structure: Δ𝐷𝐷�𝑖𝑖𝑖𝑖 = 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1
𝛼𝛼1 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

𝛼𝛼1 𝑆𝑆𝑆𝑆𝑡𝑡−1
𝛼𝛼3  

Note: if α1, α2 or α3 are statistically insignificant at the 10%, 
the relevant regressor is logarithmically transformed 

As can be noted from Table 2, both the proposed IRLS and traditional OLS models are unable 

to reject the null hypothesis that α2 and α3 are equal to zero. While the parameter estimates 

slightly differ between the two models, both estimates suggest that there is a statistically 

significant upward trend in year-over-year pavement distress across time (as expected). What 

does differ considerably across the two models, however, is the estimated variance of the 

aleatory uncertainty term. By applying Algorithm 1, the underlying variance of this term is 

14% lower than the estimate generated from an OLS approach that does not account for the 

effects of measurement uncertainty. This relative effect is likely to be even more important 

should: (a) a more elaborate pavement performance model be estimated that incorporates a 

broader set of explanatory factors or, (b) a model be estimated with “noisier” measurement 
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data. The latter statement will likely be the case for other pavement distress mechanisms and 

for data procured by local municipalities who rely on manual field measurements of pavement 

condition. 

 

Figure 4. Q-Q plot comparing the distribution of the weighted residuals (y-axis) to a 

standard normal distribution (x-axis) 

Following the estimation of Table 2, it was evaluated whether the assigned weights for the 

proposed methodology recovered efficiency. Beyond testing for heteroscedasticity in the 

weighted residuals, it is also inspected whether the weighted residuals using this technique 

followed a standard normal distribution with mean of zero (i.e., unbiased) and unit variance. 

As a reminder, this result would be expected to be the case, given that the weights for each 

individual measurement should, theoretically, be equal to the inverse of its variance. However, 
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if either: (a) the aleatory uncertainty term is not constant across facilities and time or, (b) the 

underlying error terms are not Gaussian distributed, then the theory underlying this study no 

longer applies and weighted errors would not follow a standard normal distribution. Figure 4 

presents a quantile-quantile (Q-Q) plot comparing the distribution of the weighted residuals 

relative to a standard normal distribution. These two distributions match up incredibly well 

(even in terms of their tails), indicating that what is being observed in practice corroborates the 

theory underlying the proposed methodology. 

3.5 Contributions 

The importance of collecting correct measures of aleatory uncertainty, which is due to random 

variability, is that it will improve the overall fidelity of risk-based LCA and LCCA tools, 

leading to the selection of improved design, construction, and maintenance strategies. 

Pavement deterioration is an important component of an effective PMS. This measurement 

allows agencies to decide on when their systems need to be maintained. However, pavement 

deterioration data consist of uncertainties such as aleatory uncertainty and measurement 

uncertainty, which is caused by measurement equipment and other factors As transportation 

agencies have limited fiscal resources for pavement management, a construction design and 

maintenance schedule that specifically relates to the current state of a pavement segment are 

imperative. While methods such as OLS capture uncertainty present in degradation 

measurements, it is unable to capture the uncertainty caused by measurement uncertainty. 

IRLS, the method presented in this chapter, provides a method to deconvolve aleatory and 

measurement uncertainty. In the future, this can improve the statistical inference underlying 

current parametric methods. By: (a) characterizing measurement variation with state-of-the-art 

condition procurement tools and, (b) leveraging sampling theory, other researchers can 
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evaluate the potential merits of low-accuracy, high-frequency measurements to determine the 

true condition of a pavement asset. 

This research ultimately presents a fairly intuitive approach based on sampling theory, which 

will allow agencies to more easily integrate the consideration of measurement errors in 

practice. Furthermore, a previous study (Swei et al. 2018) suggests that panel data for 

pavements are difference-stationary (i.e., the dataset exhibits stationarity once differenced). 

This reality represents a second, important deviation of this approach relative to the previous 

models for continuous distress indicators and is accounted for in this chapter via the final model 

specification. The resulting performance models should allow agencies to better address an 

important shortcoming in existing decision-support tools. In doing so, this research will help 

planning agencies generate more robust resource allocation policies and improve their 

processes for statistical inference when evaluating a parametric model. Finally, by 

decomposing measurement and aleatory uncertainty, a tertiary contribution emerges: the 

ability to support parallel research within the connected vehicle space (Bridgelall 2014; Dennis 

et al. 2014). 

The conclusions and limitations of this study can be found in Chapter 5. Chapter 4 discusses 

RL and applies this model into an LCCA to optimize costs. 
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Chapter 4. Reinforcement Learning 

Reinforcement learning (RL) is a type of machine learning that involves an intelligent program, 

known as agents, navigating through an environment that may be known or unknown, in order 

to achieve a given objective (Nandy and Biswas 2018). While machine learning interacts with 

data via training datasets, reinforcement learning obtains information through the environment. 

It can also alter the environment and its responses, based on the sequences of actions taken by 

the agent (Saito et al. 2018). Agents receive feedback from the environment with every action 

taken. This may be positive feedback, known as rewards, or negative feedback, known as 

penalties, depending on how the selected action affects the agent’s “distance” from an 

objective (Nandy and Biswas 2018). The goal of reinforcement learning is to maximize the 

objective, or increase the rewards received, which is done by choosing actions to move to the 

next state. A state is defined as the minimum information needed in order to make an informed 

decision (Powell 2009) while the decision variable characterizes the decision-maker’s 

available “actions” at any point in time. For example, if the goal of an agent is to reach the end 

of a maze with the fewest possible actions, the objective would be to maximize the points that 

an agent can earn from the environment. Positive feedback could include a point when an agent 

goes towards the goal and negative feedback could include a partial point deducted when an 

agent makes counterproductive actions (i.e., going to a previously visited state). Through trial 

and error and simulations, the agent would find the optimal path. 

Popular applications of reinforcement learning include learning in games such as 

backgammon, learning in robotics and operations research problems such as vehicle routing 

and maintenance problems (Szepesvári 2010). There are many types of reinforcement learning 

algorithms, differentiating in the way the value function is updated; off-policy and on-policy 
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(Singh et al. 2000). Off-policy algorithms can update estimated value functions based on 

possible actions, not necessarily the action that had been chosen by the agent. On-policy 

algorithms only update the estimated value function based on the actions executed by the agent. 

This means for an on-policy algorithm to converge; it is highly dependent on the learning 

policy. Reinforcement learning algorithms can also be model-based or model-free. Model-

based algorithms (i.e., value iteration) learn the model of the system with a policy and value 

function while model-free, e.g., Temporal Difference (TD) learn a value function of policy 

without modeling the system (Doya et al. 2002). 

While probabilistic PMS tools that implement several sources of uncertainty exist, as 

highlighted in Chapter 2, they are unable to consider multiple rehabilitation alternatives. The 

alternative is to use an optimization-based tool that will evaluate alternatives in order to 

achieve the chosen objective. However, these optimization-based tools are restrictive in their 

model structures. For example, deterioration models are depicted differently for various 

agencies, as factors such as location, traffic vary. These tools are also computationally 

intensive due to the number of input parameters and uncertainties involved, which makes it 

unrealistic to use for large-scale pavement networks. 

For this application, Q-learning, a model-free RL approach, was used to solve this problem. 

Q-learning is an intuitive approach to learn an optimal policy, which has been utilized in games 

as well as pavement approaches in Durango-Cohen (2004). A Q-table, consisting of a column 

for each action available to the agent and a row for every state the agent can be, stores the 

learned rewards/costs for different state-action pairs. For every state, there is a “cost-to-go” to 

the following state depending on the action chosen. Because the optimization problem is based 

on cost minimization, the optimal policy for a given state is the action with the lowest value. 
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The table updates based on the Bellman equation, which considers the cost provided by the 

action, a learning rate (the percentage of the cost calculated that is stored in the Q-table) and 

minimum future reward value stored in the next state-action pair (Even-Dar and Mansour 

2003). Over runs, the algorithm begins to converge as every feasible state-action pair is 

explored and an optimal policy is reached. 

4.1 RL Approaches in Relevant Applications  

Chapter 2 discussed non-optimization and optimization applications in pavement management; 

the focus of this section is methods that utilize reinforcement learning. In the context of 

pavement LCCA, only Medury and Madanat (2013) and Durango-Cohen (2004) have 

examined the benefits of a model-free approach. In the case of Medury and Madanat (2013), 

their model-free RL algorithm incorporates network-based constraints into pavement 

management systems; although network considerations are of value for city-wide and/or state-

wide LCCAs, more refined project-specific analyses are beneficial for critical, high cost 

infrastructures such as bridges, tunnels, and interstate highways. The case study by Medury 

and Madanat (2013) for a relatively small network demonstrates the potential feasibility and 

utility of a model-free approach, but it only accounts for one source of uncertainty (pavement 

deterioration). This fact makes it difficult to generalize the ability of model-free, optimization-

based approaches to improve decision-making for infrastructure management in the presence 

of many possible sources of uncertainty. Durango-Cohen (2004) applies multiple 

reinforcement learning methods such as state-action-reward-state-action (SARSA) and Q-

learning to determine an optimal management policy for pavement projects subject to 

uncertainty in deterioration. However, because: (a) pavement deterioration uncertainty is 

idealized as Markovian and, (b) the paper does not account for other possible sources of 
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variation, it is difficult to glean insights around the applicability of these approaches to more 

realistic problems faced by practitioners at the project level. 

Reinforcement learning approaches based on Q-learning algorithms have been leveraged in 

numerous construction and transportation applications; Ozan et al. (2015) propose a modified 

RL algorithm for optimizing signal timings in signalized networks, and their algorithm is able 

to optimize the solution regardless of different link flow conditions. To address the inadequacy 

of passenger inflow control in urban rail transit, Jiang et al. (2018) develop a novel Q-learning 

approach that significantly improves inflow volume while minimizing safety risks. In the 

automation of earth-moving machines, Dadhich et al. (2016) provide arguments in support of 

model-free RL methods over programming-based methods, where the value of reinforcement 

learning lies in its potential to adapt to variations in machine and material, as well as different 

performance metrics. Liu et al. (2020) successfully implement a multi-agent, Q-learning 

algorithm to reduce clash collisions in the planning of steel reinforcement in construction 

projects. Motivated by the unavoidable limitations of parametric models, Mao and Shen (2018) 

also demonstrate the advantages of reinforcement learning as a non-parametric, model-free 

method for finding an optimal routing policy. Mao and Shen (2018) address the deficiencies 

in parametric routing problems, such as the strong assumptions that must be made to allow for 

efficient solutions; they note that these assumptions may be difficult to validate in real 

networks, where distributions vary significantly. The shortcomings of such parametric models 

similarly exist in the context of pavement management and LCCA. Moreover, Mao and Shen 

(2018) emphasize the benefits of reinforcement learning: the learning agent relies purely on 

the statistical knowledge gathered through direct interactions with the environment, 

eliminating the need for prior knowledge of the transition and reward models. Therefore, 
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through numerous simulations, the entirely model-free algorithm efficiently learns the long-

term impact of its choices.  

 The advantage of using tabular Q-learning, which has been applied in the recently cited 

literature and is the approach used in this study, relative to function approximation techniques 

lies in its accessibility. Value function approximation methods, which may include the use of 

neural networks, are well-situated for large-scale problems in which it is either unnecessary or 

computationally infeasible to implement the tabular version of reinforcement learning (Mnih 

et al. 2015; Memarzadeh and Pozzi 2019). However, a drawback of these approaches is that 

they are both difficult to interpret and, furthermore, will not necessarily lead to improved 

decisions for the size of problems addressed in this study (Verma et al. 2018). Further 

information around the problem size is provided in the upcoming methodology section. As the 

goal of this research is to develop a tool that both improves asset management decisions and 

is accessible for practitioners, the priority is the interpretability of results in choosing to 

implement a Q-learning algorithm. 

In the following sections, the potential value of this approach for planning agencies is 

highlighted via three case studies that simultaneously considers three sources of uncertainty: 

pavement deterioration, traffic volume, and construction costs (both immediately and their 

evolution in the future).  

4.2 Methodology 

4.2.1 Q-learning Algorithm for the Optimization of Pavement LCCA 

Q-learning is a commonly used, model-free RL algorithm to efficiently determine optimal 

sequential decisions subject to uncertainty. In the context of pavement management systems, 

the decision variable may include available pavement designs, maintenance and rehabilitation, 
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and preservation treatments. Relevant information for the state variable could be a facility’s 

condition, structural design, exposed traffic volume, and/or other pertinent factors. By creating 

a modeling environment where relevant uncertainties are simulated, Q-learning allows the 

agent to: (a) learn the long-term rewards/costs of its actions, a, under different states, s, and, 

(b) develop a set of policies (i.e., decision-rules) to best achieve its objective.  

Algorithm 2 synthesizes the Q-learning algorithm used as part of this research, with further 

details provided in the case study section. The algorithm begins by assuming that no state-

action pair is preferable. Namely, it sets the cost of each state-action pair, Q0(st, at), across all 

available actions, A, and possible states, S, equal to zero from the beginning of the analysis to 

one year before the end of the analysis period, T–1 (Step 1). Once initialized, the algorithm 

enters a learning phase; over n iterations, it learns the optimal action for different possible 

states that the system could enter.  

For each iteration, i, and time period, t, actions are taken by the agent via two approaches: 

exploration or exploitation. The trade-off between exploration and exploitation is an important 

consideration in reinforcement learning; exploitation, the fundamental basis of reinforcement 

learning, refers to the selection of the optimal action based on previously acquired knowledge 

(Zhu et al. 2018). In this context, this refers to the action, at, with lowest anticipated cost based 

on the Q-table for the current state, st. Conversely, exploration concerns the search for new 

knowledge and potentially better actions, and it is essential for making sufficiently insightful 

and informed decisions (Zhu et al. 2018). A straight-forward approach to promote exploration 

is an ε-greedy policy, where the draw of a standard uniform random variable, u (Step 2), and 

the value of ε (ranging from zero to one) help determine the agent’s course of action. The first 

option is that a random action (i.e., exploration), ai
t, is selected from A with probability ε (Step 



 
 

47 
 

3a). Alternatively, with probability 1–ε, the algorithm selects the action with the minimum 

expected cost (i.e., exploitation) for the current state, si
t, based on the information learned up 

until simulation i–1, Qi–1(si
t, at) (Step 3b). Higher values of ε, therefore, lead to further 

exploration of the feasible state-action space (Tokic 2010). The RL algorithm sets ε equal to 

0.1 at the start of the analysis (i.e., t = 0) and 0.01 for all future years (i.e., t > 0). Exploration 

is emphasized at the start of the analysis given the importance of the initial decision; the value 

of ε for the 75-year analysis period case study is equivalent to not purely exploiting in future 

years across roughly 50% of the learning iterations. 

Algorithm 2. Pseudocode for Q-learning algorithm with an ε-greedy policy 

Step 1: Q0(st, at) = 0 Ɐ a ∈ A; Ɐ s ∈ S; Ɐ t = 0, 1, … , T–2, T–1 
For i = 1 to n 

For t = 0 to T–1 
Step 2: Generate u ~ unif(0, 1)  
Step 3a: If u < ε Then Select a random action, ai

t, where a ∈ A 
Step 3b: Else ai

t = arg min
𝑎𝑎 ∈ 𝐴𝐴

 Qi–1(si
t, at) 

Step 4: Simulate the next state of the system si
t +1 ~ f (si

t, at, ωi
t) where ω ∈ Ω 

Step 5: Compute updated cost of selected action qi
t = C(si

t, ai
t) + γ min

𝑎𝑎 ∈ 𝐴𝐴
 Qi–1(si

t +1, at+1) 

Step 6: Update Q-value Qi(si
t, ai

t) = ηqi
t + (1– η)Qi–1(si

t, ai
t) 

Next t 
Next i 

Once an action is selected, the algorithm simulates the evolution of the system in the next time 

period (Step 4), computes an updated cost for the selected action (Step 5), and updates the 

values in the Q-table (Step 6) before moving to the next iteration, i+1. The state of the system 

in the next time period, si
t +1, is a function of its previous state, the selected action, and any 

uncertainty, ωi
t, (e.g., future traffic volume) that becomes known at time t+1 (Step 4). As 

mentioned earlier, an important advantage of this approach is that the algorithm needs neither 

the form of the function, f, nor the underlying distribution of the sources of uncertainty, Ω, to 
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make an informed decision. Once the algorithm steps into the next time period, the updated 

cost of the previously selected action, qi
t, is easily computed as the sum of the immediate cost 

of the selected action for the given state, C(si
t, ai

t), and some discounted future cost, γ, using the 

estimated Q-values from simulation i–1 (Step 5). The Q-table updates its values using a 

learning rate, η, which is bounded between zero and one (Step 6). Specifically, the new 

estimate of Qi(si
t, ai

t) is a weighted sum of the cost of the selected action in simulation i, ηqi
t, 

and the previously estimated Q-value, (1– η)Qi–1(si
t, ai

t). For this study, η is set to 0.05, slightly 

below the 0.1 value frequently used in practice (Powell 2009). While using a lower learning 

rate may delay convergence in some applications, across the case studies convergence occurred 

in less than a minute with a fairly basic, 4-core personal computer.  

Once the learning algorithm converges on a finalized Q-table, it uses the stored values as of 

iteration n, Qn(sn
t, at), to generate a set of policies (i.e., decision-rules) that will guide its choices 

within a more traditional probabilistic LCCA model. As shown in Algorithm 3, over m Monte 

Carlo simulations, the algorithm takes an action, a
j
t, with the lowest associated Q-value, based 

on the Q-table (Step 1). Following the selection of an action, an updated LCC is computed at 

time t for simulation j, LCC( j, t), that accounts for the discounted cost of the selected action, 

γtC(s
j
t, a

j
t) (Step 2). The state of the system in the next time period, s

j
t+1, is simulated exactly as 

in Algorithm 2 until the end of the analysis period, T (Step 3). Finally, the algorithm stores the 

discounted LCC from simulation j before entering the next simulation, j+1 (Step 4). Both the 

Q-learning environment and the associated probabilistic LCCA model are programmed in 

Python. In the upcoming section, three specific case studies used to test and validate the value 

of the proposed approach are detailed, which are based on previously published work by Swei 

et al. (2015). 
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Algorithm 3. Pseudocode for probabilistic LCCA model with actions selected based on Q-table 

For j = 1 to m 
For t = 0 to T–1 

Step 1: Take an action based on the Q-table a
j
t = arg min

𝑎𝑎 ∈ 𝐴𝐴
 Qn(sn

t, at) 

Step 2: Compute simulation life-cycle cost LCC(j , t) = LCC(j , t–1) + γtC(s
j
t, a

j
t) 

Step 3: Simulate the next state of the system s
j
t +1 ~ f (s

j
t, at, ωj

t) where ω  ∈ Ω 
Next t 
Step 4: Output and store the simulated life-cycle cost for simulation j LCC(j, T–1)   

Next j 

4.3 Description of Case Studies 

As highlighted by researchers and practitioners, state departments of transportation (DOT) 

frequently design their pavements to a specified design life and reliability level (Swei et al. 

2015). For a major interstate highway, a typical design life may range from 20 to 30 years with 

a 90% reliability that the facility will not require maintenance beforehand (Swei et al. 2015). 

Within pavement LCCA, the design life for a facility will generally be much shorter than the 

analysis period (i.e., T in Algorithm 1 and Algorithm 2). Between the end of the design life 

and the analysis period, it is anticipated that the facility will require periodic maintenance and 

rehabilitation activities, although it is possible that the facility may also need to be 

reconstructed.  

Through three case studies, the proposed Q-learning algorithm approach is compared to 

traditional practice. Similar to the case studies described by Swei et al. (2015), a new 1 lane-

mile pavement facility is to be constructed for an interstate highway. The interstate highway 

experiences an initial AADTT of 8,000 vehicles. Uncertainty in the AADTT growth rate, g, is 

assumed to follow a Gaussian distribution, N(μ, σ), with mean, μ, of zero and standard 

deviation, σ, of 1%. Pavement deterioration, Dt, is assumed to follow the published model of 
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Swei et al. (2018), where probabilistic changes in the International Roughness Index (IRI) are 

a function of the pavement facility’s age, AADTT, and structural number (SN). IRI is only 

incorporated in this study given that it is a ubiquitous pavement distress measure used by both 

state DOTs and municipalities to guide their investment choices. Future research should 

evaluate the effects of including other pavement distress mechanisms (e.g., rutting, cracking) 

on the results of this study. The assumed IRI of the pavement following a major construction 

activity, IRIconstructed, is 1 m/km (63.6 in/mi). The maximum allowable IRI, IRImax, is 2.36 m/km 

(150 in/mi). Uncertainty in future construction costs are related to both current price levels 

(detailed in Table 3) and a price index, Pt, which captures cost growth over time. Based on a 

separate analysis of disaggregate bid price data (Oman Systems Inc. 2019), the price index is 

assumed to include: (1) a constant, 100, for the base year, P0, (2) a trend term of 0.014 that 

captures year-over-year average real price growth and (3) a residual εt, that depends on one 

lagged value of itself, εt-1, and a random error term with a mean of zero and standard deviation 

of 0.065. Should the condition of the facility be less than IRImax at the end of the analysis 

period, T, then the asset is assumed to have some positive residual value, Vsalvage, that is 

proportional to the cost of the last construction or maintenance activity, Clast. For simplicity, 

the assumption is that the asset depreciates linearly with pavement condition. Finally, the real 

discount rate used as part of the LCCA is 1.5%, consistent with the suggestion of Walls and 

Smith (1998) to use the current rates provided by the U.S. Office of Management and Budget. 

Table 3 provides further details on these inputs. 
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Table 3. Key inputs for the probabilistic LCCA model 

Variable Input Value 
AADTT 8,000 
g N(0, 0.01) 
Dt Dt = Dt–1 + 0.08 × ln age × ln AADTT × SN–2.5 + N(0, 0.05) 
IRIconstructed 1 m/km (63.6 in/mi) 
IRImax 2.36 m/km (150 in/mi) 
Pt ln Pt = 4.6 + 0.014t + εt ; εt = 0.06εt-1 + N(0, 0.065) 
Discount Rate 1.5% 
Vsalvage Clast × (IRI - IRImax) / (IRImax - IRIconstructed) 

Table 4 subsequently presents the available actions to the agent: five hot mix asphalt pavement 

construction designs, a pavement maintenance/overlay, and a choice to “do nothing”. The cost 

for each action is, again, based on bid data sourced from Oman Systems Inc. (2019). Costs are 

assumed to follow a log-normal distribution, Lognormal(μ, σ), which highlights the flexibility 

with which the non-parametric approach can consider varying structures of sources of 

uncertainty. Although the age and SN of a pavement facility are reset following a major 

reconstruction, both variables are assumed unchanged if the agent selects a 

maintenance/overlay or decides to “do nothing”. 

Table 4. Probabilistic cost and effect of different available actions 

Action Action Type Cost 
Age Post-

Decision 

SN Post-

Decision 

IRI Post-

Decision 

a1 New/Reconstruction 0.7 × Lognormal(12.46, 0.28) × Pt / P0 0 3. 43 IRIconstructed 

a2 New/Reconstruction 0.85 × Lognormal(12.46, 0.28) × Pt / P0 0 4.17 IRIconstructed 

a3 New/Reconstruction Lognormal(12.46, 0.28) × Pt / P0 0 4.9 IRIconstructed 

a4 New/Reconstruction 1.15 × Lognormal(12.46, 0.28) × Pt / P0 0 5.64 IRIconstructed 

a5 New/Reconstruction 1.3 × Lognormal(12.46, 0.28) × Pt / P0 0 6.37 IRIconstructed 

a6 Pavement Overlay Lognormal(11.1, 0.28) × Pt / P0 Aget–1 + 1 SNt–1 IRIconstructed 

a7 Do Nothing — Aget–1 + 1 SNt–1 — 
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To benchmark the performance of the proposed approach for pavement design and 

maintenance, the RL algorithm’s life-cycle cost is compared to a more traditional approach 

across three separate case studies. As highlighted by Swei et al. (2015), the traditional approach 

to pavement LCCA is that an initial construction action is selected with a specific probability 

of failure (frequently 10% for highway interstates) at the end of its design life. In all future 

instances, should the facility’s IRI exceed IRImax prior to T, a maintenance/rehabilitation 

activity (a6 in this problem) is applied to reset the pavement condition to IRIconstructed. As 

detailed in Table 5, three case studies have been selected from Swei et al. (2015) that utilize 

design lives and analysis periods representative of those found in practice. Specifically, action 

a1 has roughly a 10% probability of failure by Year 20, while action a3 has a 10% probability 

of requiring maintenance by Year 30 using the deterioration model and inputs in Table 3. Since 

this decision-making process appropriately reflects the conventional probabilistic LCCA 

models highlighted earlier in this paper, it serves as the reference for the proposed algorithm. 

Table 5. Design life and analysis period for case studies as well as initial action per the 

traditional LCCA approach 

Case Number Design Life Analysis Period Traditional Approach Initial Action 

1 20 Years 50 Years a1 

2 30 Years 50 Years a3 

3 30 Years 75 Years a3 

It is worth highlighting that, per the Q-learning algorithm used in this research, the agent can 

be in anywhere up to 360 states at any point in time. More specifically, the state space is 

discretized based on three potential pavement conditions (Dt < 0.8 IRImax, 0.8 IRImax < Dt < 

IRImax, Dt > IRImax), up to eight possible ages (<10, <20, <30, <40, <50, <60, <70, and <80), 
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five SN values (based on Table 4), and finally three different construction price levels (Pt < 

0.9 E[Pt], 0.9 E[Pt] < Pt < 1.1 E[Pt], and Pt >1.1 E[Pt]). In reality, however, the agent is 

typically operating in far fewer states; the most extreme example is at t = 0, where the agent 

can only be in one possible state given that no uncertain information has yet to enter the system. 

While some of the important model inputs (e.g., pavement deterioration) may vary across 

planning agencies, the described case study is representative of the types of problems found in 

practice. Future research, of course, should validate these findings by testing the proposed 

algorithm across a range of contexts. 

4.4 Case Study Results 

Figure 5 presents the estimated Q-value of the best action at t = 0 across the 100,000 learning 

iterations (i.e., Algorithm 2) for the 50-year (Case Number 1 and 2) and 75-year (Case Number 

3) analysis period problems. As illustrated, early iterations display growing anticipated life-

cycle costs as the agent learns both the immediate and long-term cost of their actions. After 

roughly 10,000 iterations for the 50-year analysis period problems and 25,000 iterations for 

Case Number 3, the Q-values have converged and stabilized, corresponding to approximately 

15 to 45 seconds of computational time on a 4-core personal computer. The delay in 

convergence for the 75-year analysis period problem is expected given its extended time 

horizon. 
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Figure 5. Minimum Q-value at starting period across all actions in learning 

environment (i.e., Algorithm 2) 

As discussed earlier, a Q-value combines the (expected) immediate and long-term cost 

(oftentimes referred to as “cost-to-go”) for a selected action. While the immediate cost of an 

action is fairly simple to determine, it is the learning of the cost-to-go function that is both 

complex and delays convergence in reinforcement learning. To further comment on the issue 

of convergence, Figure 6 and Figure 7 plot the estimated cost-to-go for each initial action for 

the 50-year and 75-year analysis period problems across the 100,000 learning iterations. As 

anticipated, the cost-to-go estimates monotonically decrease with a higher SN action. This 

outcome makes intuitive sense, as a higher structural capacity should require less maintenances 

in the future. Furthermore, when directly comparing similar actions in Figure 6 and Figure 7, 

it is clear that the cost-to-go values monotonically increase with the analysis period. Inherently, 

a longer analysis period leads to the inclusion of a larger number of future construction and 
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maintenance activities and, by extension, a higher life-cycle-cost, which explains the higher 

Q-values for the 75-year analysis period problem per Figure 5. Interestingly, actions a4 and a5 

have a negative cost-to-go estimate in Figure 6. This is because, for the 50-year analysis period 

case, the structural capacity of the two designs is large enough that, on average: (a) the facility 

never requires a maintenance and, (b) a positive residual value is applied at the end of the 

analysis. Across all cases and actions the cost-to-go estimates converge. 

Table 6 details the preferred initial action based on the finalized Q-table from Algorithm 2. In 

addition, it includes the Q-learning’s relative performance to the traditional approach via two 

metrics: (1) expected LCC, which was the objective underlying this analysis and, (2) value-at-

risk at 5%, one risk measure that corresponds to the 95th percentile of the cumulative 

distribution of LCC. While the preferred initial action for Case Number 1, 2, and 3 via the 

traditional approach is a1, a3, and a3, respectively, the Q-learning algorithm tends toward action 

a3 for Case Number 1 and 2 and a4 for Case Number 3. For all three cases, the expected LCC 

of the Q-learning algorithm are similar to the stabilized Q-values from Figure 5 of 

approximately $300,000 and $350,000 for an analysis period of 50 and 75-years, respectively, 

suggesting that Algorithm 2 provided a high-fidelity estimate of the long-term cost of the 

optimal action. Across all three case studies, the Q-learning algorithm outperforms the 

traditional approach, both in terms of expectation and value-at-risk, from as low as 2% to as 

high as 15%. Figure 8 plots the cumulative distribution of the probabilistic life-cycle cost for 

Case Number 1, the instance with the largest discrepancy in LCC between the Q-learning 

algorithm and the traditional approach. 
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Figure 6. Cost-to-go at starting period for each action in learning environment (i.e., 

Algorithm 1) for Case Number 1 and 2 

   

Figure 7. Cost-to-go at starting period for each action in learning environment (i.e., 

Algorithm 1) for Case Number 1 and 2 
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Table 6. Design life, analysis period for case studies and initial action per the traditional 

LCCA approach 

 Q-Learning 

Initial 

Action 

Expected LCC Value-at-Risk LCC 

Case 

Number 
Q-Learning Traditional 

Relative 

Difference 
Q-Learning Traditional 

Relative 

Difference 

1 a3 $297,000 $350,000 15% $422,000 $455,000 7% 

2 a3 $297,000 $305,000 3% $422,000 $450,000 6% 

3 a4 $356,000 $368,000 3% $515,000 $523,000 2% 

 

 

Figure 8. Probabilistic LCC of Q-learning and traditional LCC approaches per 

Algorithm 2 for Case Number 2 
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The reduction in life-cycle costs via the Q-learning algorithm is largely attributed to its ability 

to efficiently approximate the long-term cost of actions designed to maintain an infrastructure 

asset for an unknown future. Furthermore, it promotes proactive, rather than reactive, 

infrastructure management policies. More specifically, it leads to a set of decision-rules that 

can capture the advantages of performing a maintenance activity earlier than needed, for 

example, should prices be significantly suppressed.  

As is also clear from these case results, the value of the proposed RL algorithm is context 

specific and, depending on the decision rules (e.g., design life) and model inputs (e.g., 

pavement deterioration, discount rate) currently implemented by a planning agency, it does not 

necessarily guarantee significantly improved resource allocation policies. While this has been 

recognized throughout this work, decision-makers are, conversely, unable to comment on the 

overall fidelity of their current decision-rules without an optimization-based approach such as 

that presented in this thesis.  

4.5 Contributions 

The goal of this research has been to develop a management tool that can: (1) consider many 

uncertainties and possible structures that may vary depending on location, (2) generate 

alternatives to managing a system and, (3) significantly reduce life-cycle costs for agencies 

with limited budgets. The solution applied to solve this problem was Q-learning, a model-free 

approach. There are several contributions that stem from having a model-free RL approach for 

PMS. The first one is that the proposed approach can select a management policy that reduces 

life-cycle costs without imposing any assumptions about the structure of relevant uncertainties, 

e.g., deterioration needing to follow a Markov process. This is imperative in creating a tool 

that can be adapted by different transportation agencies with various climates, traffic volumes, 
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uncertainty structures (e.g., lognormal, Gaussian) and other factors that affect pavement 

deterioration. Model-free also allows for different constraints, such as the movement from state 

to state, and different objectives. The second contribution is the approach allows for multiple 

sources of uncertainty without computational repercussions. Some optimization-based 

approaches tend to suffer from the “curse of dimensionality”, where states grow exponentially 

when input parameters are added. Q-learning provides a computationally scalable solution, 

where convergence to an optimal policy is achieved in less than one minute on a 4-core 

computer. This allows for a tool that is proactive, allowing for uncertainty to prepare for an 

unknown future. As a result, this work effectively bridges the gap between theory and practice. 

As shown in the previous section, the RL approach used in this study was robust and led to 

decisions that, on average, significantly outperformed current techniques across all three cases. 

This is a positive outcome, suggesting that agencies can potentially leverage model-free, 

reinforcement learning approaches to reduce life-cycle costs and account for relevant 

uncertainties and risks.  

Chapter 5 summarizes the findings and future work as well as provide an overarching 

conclusion. 
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Chapter 5. Conclusion 

Transportation agencies have limited fiscal resources to manage their infrastructure assets. 

PMS is a tool that agencies rely on to manage their pavement systems. Infrastructure 

degradation models are an integral component of this decision-support tool used by 

practitioners to guide their investment choices. These frameworks are increasingly 

probabilistic, requiring the inclusion of high-fidelity estimates of the aleatory (i.e., random) 

uncertainty underlying the deterioration process. Unfortunately, because the measured 

condition of an infrastructure facility is uncertain due to equipment as well as varying sample 

sizes, conventional statistical techniques will overestimate the aleatory uncertainty underlying 

the pavement deterioration process. This flaw not only may lead to its misestimation but could 

also affect the statistical inference of empirical models as well as cause agencies to apply sub-

optimal pavement designs and maintenance actions to their systems. As an increasing number 

of agencies aim to introduce pavement management principles into practice via cost-effective 

condition assessments, the need to consider measurement uncertainty is likely to be an even 

more important consideration in the years ahead. 

The first objective of this thesis was to develop a pavement degradation model that is able to 

calculate the International Roughness Index (IRI) after accounting for both aleatory and 

measurement uncertainties. Aleatory uncertainty refers to the unexplained variation 

specifically in pavement deterioration across time while measurement uncertainty is due to the 

inherent errors arising from measurement technology, inspectors, data processing, and other 

possible circumstances (Kobayashi et al. 2012). Chapter 3 presented an innovative IRLS 

algorithm based on sampling theory to generate improved estimates of aleatory uncertainty. 

The algorithm deconvolves the effect of measurement uncertainty that the traditional OLS 
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approach is ill-equipped to handle, due to the unequal scatter that these degradation data points 

may have. Through a case study evaluating IRI data as part of FHWA’s LTPP program, a 

simple, parsimonious pavement deterioration model is estimated that accounts for the effects 

of pavement design, age, and exposed traffic. The new approach reduces the variance of the 

aleatory uncertainty term by 14%; this effect is likely to be even higher for: (a) other pavement 

distress mechanisms, (b) lower quality data frequently collected by municipal agencies, or, (c) 

in the case of a more complex deterioration model that considers a wider set of regressors. The 

importance in reducing this variance could potentially mean that less frequent and expensive 

maintenance actions occur, thus aiding agencies in managing their limited budgets. 

PMS also includes LCCA to determine cost-effective maintenance and construction strategies 

for infrastructure assets. As emphasized in Chapter 2, current probabilistic LCCA methods are 

fundamentally limited; approaches that incorporate numerous sources of uncertainty may only 

evaluate a few possible alternatives, or optimization-based methods may entirely limit the 

number of uncertain variables when searching for an optimal investment strategy. Furthermore, 

these methods are relatively rigid in the assumed structure of the sources of uncertainty.  

The second objective of this research was to develop a script that calculates the fiscal cost for 

a transportation agency to maintain a pavement section for a specified time period. The script 

accounts for various present and future uncertainties such as pavement degradation, price 

indices, the cost of construction and maintenance actions and traffic growth. The deterioration 

model mentioned previously should be embedded in the script in order to account for the 

uncertainty in deterioration modeling. The output of this script is a policy that minimizes the 

LCC of a pavement facility at the project level. Chapter 4 presented a novel RL approach for 

the management of paving assets. The model can simultaneously consider several sources of 
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uncertainty, e.g., deterioration, traffic volume, cost and find an optimal investment strategy. 

Because the algorithm is non-parametric and model-free, it provides planners with immense 

flexibility compared to existing approaches. Through three project-based case study, we 

highlight that the proposed algorithm can reduce expected life-cycle costs by up to 15% while 

also accounting for several relevant risks and their unique distributions.  

5.1 Future work 

Despite the contributions of these studies, there are several opportunities to extend this 

research. For the deterioration model, this study has hypothesized that this new approach may 

yield higher rewards across a range of situations such as those suggested in the previous 

section; future case studies should inevitably evaluate the validity of these claims. Second, 

further work is needed to test the degree to which the resource allocation policies generated 

from project-level and network-level tools would alter by using this new analytical approach. 

Finally, this study leverages some simple structural models to explain some of the variation in 

pavement performance across facilities; there is an obvious opportunity to test and embed more 

complex models within this new framework. More complex models are utilized in some 

transportation agencies and understanding how the variation can be calculated in these models 

allows for agencies to adapt the new approach in the PMS to make more cost-effective 

decisions. 

For the RL approach, although it contributes to bridging the gap between theory and practice, 

there still remains several opportunities to expand upon this research. First and foremost, the 

outcomes of these case studies would evidently differ depending on the considered distress 

mechanisms, possible additional constraints, etc. Future research should evaluate the 

implication of these possible considerations on the model results. In addition, while this work 
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has demonstrated immense value of RL for project-level LCCAs, future work should extend 

its applications to large-scale pavement networks. To achieve such a task, researchers may 

widen the scope of our RL algorithm with a deep RL approach. Given the success of deep 

reinforcement learning and deep Q-networks in a variety of transportation applications (Wang 

et al. 2018; Qi et al. 2019), it may be beneficial to explore its potential feasibility. Q-learning 

has also been known to be unsafe, as during the learning process, the algorithm may choose 

actions that are acceptable in a toy environment but disastrous in a real-world application 

(Dalal et al. 2018). It is important to explore the feasibility of applying safe RL practices to 

our algorithm (i.e. shielding, safe exploration) (Alshiekh et al. 2018; Memarzadeh and Pozzi 

2019).  

For a more holistic approach that considers global impacts of climate change, both 

environmental costs and user costs should be integrated into the objective function. As 

discussed in Chapter 1 and 2, LCA provide agencies with a method to calculate a GWP for a 

more sustainable pavement management approach. Future work should include a similar RL 

tool that is capable of providing an optimal policy to minimize GWP and a multi-objective 

approach to minimize agency, user and environmental costs. 

Furthermore, the case study only considers fairly elementary constraints; research 

advancements should characterize the effect of incorporating other constraints on the results 

of the case study. More advanced and granular degradation models, such as the one presented 

in Chapter 3, should be considered in future research to meet the requirements of transportation 

agencies. Finally, the goal of this tool is provide agencies to aid in managing their limited fiscal 

resources. Future work includes creating a tool that is available to the public to download and 

implement in their own systems. 
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