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Abstract

Technical complications occurring during the data acquisition process can

impact the quality of the cytometry data and its analysis results. Clogs

can cause spikes in the data sets in the time domain. Other issues, such

as changing machine acquisition speed, can result in a shift in means of

the populations analyzed. The outliers can potentially bias the downstream

analysis if left unchecked and as such should be identified and removed. To

address this need, I developed flowCut is an R package for automated detec-

tion of anomaly events and flagging of files for flow cytometry experiments.

Results are on par with manual analysis, and it outperforms the existing

approaches in data quality control. flowCut has the highest F1 scores in

two types of evaluations used in this study and has zero crash rate on all

files tested.

I also studied the bone marrow regeneration pattern of acute myeloid

leukemia patients after chemotherapy by applying state of the art automated

methods. I identified cell populations and biomarkers that are uniquely

present in relapsed patients when comparing to normal bone marrow data.

I also identified cell populations that have different regeneration dynamics

between relapsed and non-relapsed patients.
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Lay Summary

Flow cytometry is used widely in clinics and research for measuring blood

cells. Its primary purpose is to quantify cell population compositions for

diagnosis or studying immunological characteristics of diseases. Technical

issues of cytometers during data acquisition can result in an inaccurate mea-

surement of cells, which can cause an erroneous analysis of cell populations.

My research focused on developing a data quality assessment tool and com-

paring the performance of current approaches. I also used several state of the

art automated data analysis methods to identify cell populations in acute

myeloid leukemia patients who relapsed after undergoing chemotherapy.
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Preface

The flowCut tool (included in Chapter 2) was written by Justin Meskas and

myself. The tool was written in R programming language and is available

at

https://github.com/jmeskas/flowCut

My significant contribution to the package was writing the function for iden-

tifying and removal of outlier events based on the density of summed mea-

sures (section 2.2.2). I wrote the preliminary quality checking step. I was

involved in testing the tools and optimizing parameters in section 2.3. Sibyl

Drissler was also engaged in tool testing. Contents in chapters 2-3 are part

of a paper to be submitted.

Project in chapter 4 was a collaboration between the department of lab-

oratory medicine, Institute of Biomedicine, Sahlgrenska Academy at Uni-

versity of Gothenburg. Patients’ data were collected from multiple medical

centers in Gothenburg, Copenhagen, Israel, and Umea by Linda Fogelstrand,

who is the head of the department of laboratory medicine at the University

of Gothenburg.
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Chapter 1

Introduction

Flow cytometry is a technique for studying the physical and chemical char-

acteristics of cells using light-emitting antibodies. Cells stained with anti-

bodies have light-emitting fluorophores attached to them. Each cell type

has some antigens on them. Biologists design antibodies that specifically

bind to these antigens. Stained cells then flow past one or multiple laser

light sources in ideally a single file manner[6]. The emitted light from the

cells, which is proportional to the antigen density, can be converted to elec-

tric signals and analyzed on a 2D plot. The light signals consist of three

types: forward scattering, side scattering, and fluorescence emission signals.

Forward scattering and side scattering measure the physical attributes of

the cells, whereas fluorescence signal measures the functional characteristics

of cells[6]. For example, T cells will present CD3 antigens, and B cells will

present CD19 antigens.

One critical step in flow cytometry data analysis is partitioning cells

into types based on marker expressions. The cells of the same type are

grouped and selected on a 2D plot with a bounded area called gate. We can

identify subtypes of the selected cells with the addition of new markers. For

example, T cells can have CD4+ T cells and CD8+ T cells subtypes and can
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1.1. R/Bioconductor

be gated on CD4 and CD8 markers. Traditionally, the process of identifying

cell populations is done manually. Researchers analyze two parameters at a

time through visual inspection. The typical process starts by first removing

dead cells and doublets. From live singlets cells, researchers can go down a

path of finding targeted cell populations by following a specific partitioning

(gating) strategy. The gating strategy indicates the sequence of markers to

be analyzed to reach the target cell types.

Yet, manual analysis has many problems. Individual analysts can in-

troduce subjectivity and bias into the gating analysis[12]. The presence

of subjectivity makes cross center comparative studies difficult and hinders

reproducible research. Besides, recent instrumental advances and reagents

expansion allow for measuring tens of surface and intracellular markers si-

multaneously, and allow for the generation of 20-dimensional data. Tra-

ditional manual analysis of two markers at a time cannot cope with the

amount of data received. Manual analysis is time-consuming and can be

ineffective at analyzing high dimensional data [12].

There has been a surge in the production of computational tools for flow

cytometry analysis in the past decade to address the challenges of manual

analysis.

1.1 R/Bioconductor

More than 50 computational approaches are available for the analysis of flow

cytometry data [3, 17], with a majority of the tools developed and released

as free, open-source tools using R programming language [19]. These tools

2



1.1. R/Bioconductor

have been developed for high throughput workflows, and are not generally

amenable to graphical user interface and manual interaction with individ-

ual files during the analysis process. However, they can be integrated into

commercial tools FlowJo [FlowJo Bioinformatics Inc., Ashland OR] that are

familiar to users.

A majority of the approaches have been released through the Biocon-

ductor repository [20], which enforces strict requirements on cross-platform

compatibility and functional documentation. Each package generally ad-

dresses one single step in the analysis pipeline, allowing users to substitute

new approaches to the same challenge as the field advances.

The required core infrastructure widely used by other packages provided

by the flowCore R/Bioconductor package [9] implements a computation-

ally efficient data structure for reading and saving FCM data and provides

systematic FCS file parsing. The flowCore infrastructure encourages new

algorithms development and the use of combinations of tools in complex

workflows [9].

The workflow involved in this study includes data compensation, trans-

formation, quality control, automated gating, and biomarker identification.

Compensation and transformation Data needs to be properly com-

pensated, transformed, and normalized to ensure the accuracy of any sub-

sequent gating analysis. Compensation is necessary to correctly account

for the contribution of each fluorochrome to each channel in conditions of

spectral overlap [17]. A well-used transformation facilitates population gat-

ing, visualization, and downstream analysis. The often-used transformation

3



1.2. Data quality assessment

methods that handle negative values and display normally distributed cell

types are logicle, hyperlog, and arcsine [11].

1.2 Data quality assessment

One goal of data quality control is to assess the stability of signal acquisition

over experimental time. We can visually check the signal stability by plot-

ting fluorescence channels against time. A stable signal acquisition shows

a consistent distribution of fluorescence intensity values over time. This is

the expected behavior based on the assumption that cells from a heteroge-

neous sample are randomly measured at any time point [16]. Changes in

fluorescence intensity values in the time domain are indicative of technical

variability. Abnormal events can possess a unique space/cluster in a 2D di-

mension [16] and potentially get mislabeled as biologically significant events.

Therefore, these events should be removed or flagged before passing to the

gating analysis.

The manual inspection process can be time-consuming and subjective

[7]. For removing spikes, users need to zoom in on the time channel to

identify the boundaries of slivers accurately. Even so, the actual placement

of boundaries can still be subjective. It is therefore necessary to develop

automated methods that could remove human subjectivity and speed up the

quality control process. The current approaches addressing this problem are

flowClean [7] and flowAI[15].

4



1.2. Data quality assessment

1.2.1 Current Approaches

flowClean detects the abnormal changes in the compositions of cell popu-

lations over time. It partitions each marker into a high or low expression

using median values and tracks the representation of resulting 2Q pheno-

types across equally split time bins [7]. flowAI detects changes in means

and variances of fluorescence intensity in the time domain [16].

Both flowClean and flowAI utilize some versions of ”multiple change

points detection” algorithm implemented by the ”changepoint” package [10].

Specifically, flowClean uses ”pruned exact linear time (PELT)” algorithm,

and flowAI ”binary segmentation”.

Binary segmentation Binary segmentation is a computationally fast ap-

proximation algorithm that repeatedly splits data into two groups at a time

by repeating the single change point test over the split data sets until no

change points are found in any part of the data [10].

Pruned exact linear time PELT uses dynamic programming and prun-

ing to produce the exact segmentation. It is computed based on the as-

sumption that the number of change points increases linearly as the data

set grows [10]. Namely, change points will spread throughout the entire data

rather than confined to one portion.

A common problem with flowClean is it has a long run time, average 1-4

minutes per file, and often misses anomalies 1.1. flowAI, on the other hand,

is very fast, 3-5 seconds per file, due to the efficiency of binary segmentation.

5



1.2. Data quality assessment

However, it tends to be overly intolerant, removing large portions of normal

regions, as shown in Fig 1.1.

Killick et al. (2014) note that both PELT and binary segmentation can

be overly sensitive. In a normally distributed data set with three constructed

change points, the PELT algorithm reported six change points while binary

segmentation reported four [10]. We noted that flowAI, which uses binary

segmentation, tends to be more sensitive than flowClean. The underreport-

ing of change points by flowClean could be due to challenges in the analysis

of phenotype compositions.

Figure 1.1: Quality control by flowClean (left) and flowAI (right) on the
same file. The colored regions are fluorescence intensity signals. Red is the
most dense, followed by yellow, green, and purple. Black are the removed
regions.
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1.3. My Research

1.3 My Research

Despite the current efforts of flowAI and flowClean, the challenge in data

quality control remains. My research focused on developing a tool that ad-

dresses the ongoing problem more effectively. I hypothesized that a segment-

wise statistical analysis could effectively identify outlier events. To prove

this, I compared the performance of all three algorithms. In chapter 2, I

described the algorithm development. Chapter 3 detailed the method and

results for evaluating all three algorithms. In chapter 4, I covered the process

and outcomes of using current tools for biomarker discovery.
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Chapter 2

flowCut - a data quality

control tool

2.1 Workflow

As shown in Fig 2.1, we start with already processed FCS files, which are

files after compensation and transformation. flowCut first checks the quality

of the time channel, flagging files with repeated time intervals or having a

majority of events occurring in a short burst of time, usually at the beginning

of a file. This step is to catch a problem that can potentially crash the

algorithm. Second, flowCut removes low-density sections, which are regions

with less than 1% of the range of data. Third, we begin data segmentation

and score calculation for each segment. We then check if the scores are

below a specific trigger threshold. If it is, then the files are up to standard.

Otherwise, the bad data trigger flowCut to remove them based on a score

distribution. After this, flowCut does a second quality control check and

flags files with remaining problematic regions.

8



2.2. Methodology

Figure 2.1: The figure summarizes workflow of flowCut algorithm. Overall,
flowCut does a maximum of three quality checks. The first one pertains to
the time channel. The second and third are checking the stability of the
fluorescence signals.
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2.2. Methodology

2.2 Methodology

We hypothesized that abnormal events are statistically different than the

normal events in the fluorescence versus time analysis. Naturally, we track

the statistics of the time domain data to find abnormalities.

Standard score

In statistics, the standard score, also called Z score, is the signed fractional

number of standard deviation and is used to study the deviation of data

points from the mean value. We adapt from this concept and used absolute

Z scores 2.1 for this purpose as we are only interested in the differences from

the mean but not the direction.

|Z| = |x− µ
σ
| (2.1)

2.2.1 Segmentation and calculate Z scores

We divided each fluorescence channel into equally populated segments, with

500 events per segment for a typical FCS file (less than 20MB in size). Fig

2.2 shows a two-channel (Alexa Fluor 488-A and APC-A) FCS file that is

divided into 11 segments. We calculated eight statistical measures for each

segment according to equation 2.1. Because we use absolute Z scores, the

differences calculated are all accumulative. Segments with high Z scores

indicate substantial deviations from the mean.

10



2.2. Methodology

Figure 2.2: The top and bottom lines in the top two plots represent 98th
and 2nd percentiles. The differences between these two lines define the
range of data. The lines in the middle are the segments’ means. Pink is
before cleaning. Brown is after cleaning. flowCut divides a two-channel
FCS file into 11 segments. It calculates eight statistical measures, including
5th, 20th, 80th, 95th percentiles, median, mean, standard deviation, and
the third moment for skewness. Summing eight statistics across all channels
results in a vector. Each element in the vector represents one segment. The
most significantly different sections are in dark blue.
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2.2. Methodology

2.2.2 Removal of abnormal events

The removal of outlier segments is based on the density distribution of the

score vector, shown in Fig 2.3. We want to find a data dependant threshold

that separates outliers from normal cells. Any segments with values higher

than this threshold are outliers for removal. To do this, we adapted the

deGate function in the flowDensity R package [14]. The deGate function

returns a gate line on a 1D density profile. The original purpose was to sep-

arate cell populations. We utilized it in our outlier detection methodology.

We manipulated the deGate function so that it always returns a gate line

that lies on the right side of the density distribution because we are only

interested in removing the cells that are most different.

Figure 2.3: Density of summed Z scores. Outlier segments lie on the right
side of the distribution and are separated from the rest by a natural cutoff
line. Segments with scores higher than the cutoff will be removed.

The shape of the density profile of each marker can vary naturally. We

12



2.3. Parameters

allow natural variations of the data as long as they pass the quality control

check. Otherwise, we define the cutoff line to minimize overcutting and

undercutting. I developed a set of rules for finding an ideal cutoff line 2.1.

Table 2.1: Algorithms for finding cutoff lines based on density distribution

1. flowCut first finds all the peaks (p = 1, 2, ...n) in the density distribu-
tion.

2. if p = 1, it uses deGate function to find a natural point along the
upstream of the density distribution to remove significantly different
segments.

3. if p >= 2, flowCut checks each peak and calculates the valley height
between the adjacent peaks, if it is less than 1% of the maximum
peak, flowCut ignores the lower peak. If there are still more than 2
peaks left and the population to be removed is less than or equal to
a user specified amount, flowCut removes the significantly different
population.

2.3 Parameters

2.3.1 Quality control parameters

flowCut uses three thresholds to determine if a file passes or fails a quality

control check, namely, the maximum allowable mean range, the average of

this range across all channels, and the maximum continuous jump between

adjacent segments. Fig 2.4 shows the maximum allowable mean range and

maximum one-step jump. If any of the parameters calculated is higher than

a threshold value, flowCut starts the cleaning process. The user can adjust

the stringency of the algorithm and all by changing these parameters.

13



2.3. Parameters

Figure 2.4: An example file shows the range and mean of data before and
after cleaning. The data before cleaning is bounded by 98th and 2nd per-
centile indicated by yellow (before cleaning) or dark brown (after cleaning)
lines. The pink line in the middle is the connected segments means before
cleaning. The maximum range of these means is the first number on top.
The second number is this range after cleaning. The number in the bracket
indicates the maximum one-step change after cleaning.

2.3.2 Cutoff line parameters

Users can set two parameters, one that defines the maximum percentage

of events for removal, one that sets the thresholds to be generally higher

or lower. These two parameters can wiggle the cutoff line on the density

distribution.

Maximum percentage of removal The default value is 30%. If the

outlier populations in Fig 2.3 exceeds this amount, then the cutoff line will

14



2.3. Parameters

be moved further to the right, and nothing will be removed.

Maximum valley height See Fig 2.5. It sets the maximum height of

the tail on the distribution, defaulted to be 10% of the tallest peak. This

parameter determines how aggressive the cutting will be. If a user sets

a value larger than the default, then the user allows for generally more

aggressive cutting. In this case, the height of the valley is higher, and the

cutoff line has a smaller value. Smaller threshold values allow the removal

of more segments. For less aggressive cutting, the parameter will be lower,

and the cutoff line moves further to the right. However, this could mean an

insufficient removal of abnormal events, and the file is not likely to pass the

second quality control check.

15



2.3. Parameters

(a)

(b) (c)

Figure 2.5: By default, the threshold is placed at the valley with a height
of approximately 10% of the tallest peak, shown in a) and b). If users are
to decrease this value, the threshold is moving further to the right and is at
the second valley. In this case, fewer segments will be removed c).
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Chapter 3

Algorithms Comparison

I evaluated the performance of all three algorithms against manual analysis

for selected files. I obtained these files from a public repository, FlowRepos-

itory [22].

3.1 Method

3.1.1 Selection of files for evaluation

I followed the following protocol when selecting files for evaluation:

• Randomly download 1071 files from FlowRepository.

• Eliminate corrupt files (83) that cannot be read, compensated, or

transformed.

• Eliminate files crashed by any of the algorithms (145).

• Keep any that required cleaning by visual inspection (50) or identi-

fied with problematic regions by at least two algorithms (5). If a file

had no visually identifiable regions and only got cleaned by only one

algorithm, it was put aside and not counted toward the evaluation.

17



3.1. Method

3.1.2 Manual vs algorithm analysis

For each of the selected 55 files, I visually identified problematic regions,

then ran each algorithm on these files with their default settings. Examples

are shown in Fig 3.1.

Manual analysis procedure I plotted each marker channel versus time

and visually identified problematic regions. Each removal region had two

boundaries. I created a spreadsheet for storing boundaries for each of the 55

files. Each row (file) has a series of an even number of boundaries that define

the regions for cutting. For example, if there are four numbers, the first and

second numbers are the beginning and end of the first region removed. And

the third and fourth numbers are the beginning and end of the second region

removed. See Appendix A.

3.1.3 F1 score as a measure for comparison

F1 score, in equation 3.1, is the harmonic mean of precision and recall.

F1 score was used for judging algorithms’ performance in FlowCAP studies

[1, 2, 5]. We borrowed the idea here in this evaluation.

F1 =
2

1
recall + 1

precision

= 2 ∗ precision ∗ recall
precision+ recall

(3.1)

The data selected by an algorithm can contain some portions of true

positives and false positives. And the non-selected regions include some false

negatives and true negatives. Precision is the proportion of events selected

by the algorithm that are true positives, that is, overlapping with manually

18



3.1. Method

Figure 3.1: 5 exemplary files of raw data, manual analysis, flowCut, flowAI,
and flowClean analysis are shown.

chosen regions. Recall is the proportions of cells selected by the manual

analysis, which are also identified by the algorithm. I used the results of

the manual gating as the standard for computing the F1 scores. Manual

analysis took approximately 5-10 minutes per file.

3.1.4 File based evaluation

Noting that manual analysis can be subjective, I subdivided the 55 files into

three categories based on the subjective confidence of the manual analysis,

shown in Fig 3.2. The first category includes 17 files that have removal

regions with clearly defined boundaries such as discontinuity, low density

regions, and large spikes. The second category has 35 files that have fuzzy

boundaries for removal regions. Examples include small spikes, boundaries

19



3.1. Method

in fluorescence drifting regions. This category also includes files that have

overlapping problematic regions detected by at least two algorithms but not

by manual analysis. The third category has three files in which manual

analysis is arbitrary. The files look abnormal, but the regions for removal

are not clear. For example, the first category three file in Fig 3.2 contains

three shifting regions with different means. It is unclear which region(s)

should be removed. Category three files contain no region of truth and are

eliminated from the evaluation. For the remaining 52 files, I calculated F1

scores for categories one and two files for each algorithm. We subsequently

calculated F1 score for random removing, with the percentage of removal

similar to that of the manual removal, as a baseline for comparison.

3.1.5 Problem based evaluation

To analyze the problem-based performance of each algorithm, I categorized

manual identified regions into four distinctive problem types, as shown in

Fig 3.3. Each type has its unique characteristics. I evaluated algorithms’

performance on dealing with these four types of problems by calculating F1

scores for all regions of each type. A single file can contain multiple types of

issues. I calculated F1 scores for each of the identified problematic regions

and clean regions, and their proportions in a file.

20



3.2. Result

Figure 3.2: Files are divided into three categories based on confidence
in manual analysis. From category three to one there is an increase in
confidence levels for manual analysis. Category one (17 files) problematic
regions contain distinctive discontinuity, large spikes regions. Category two
(34 files) problematic region contain small spikes, intensity shifting regions.
Category three (3 files) problematic regions are hard to defined, therefore,
no manual analysis is performed on these files.

3.2 Result

3.2.1 File based evaluation results

flowCut has the highest F1, precision, and recall score, as shown in table

3.1. Run time is a close second to flowAI. flowAI removes most events for

category two files yet has a low F1, indicating that it’s removing a large

amount of false positives. flowClean has overall lowest F1 scores, and its

run time is several magnitudes longer than that of flowAI and flowCut.
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Figure 3.3: Categorizing problematic regions into four types. Two examples
of each category are shown.

Table 3.1: F1 scores, precision, recall, run times, and percentages of removal
of each algorithm were calculated for 17 category one and 35 category two
FlowRepository exemplary files for three algorithms and a random removal.
Computed on an Intel Xeon E5-2630 CPU with 128 GB RAM.

Category One:
F1 scores Precision Recall Run times (s) % removed

flowCut 0.79 0.75 0.90 4.8 14.0%
flowAI 0.42 0.43 0.68 3.7 7.9%

flowClean 0.32 0.30 0.44 54.5 4.6%
random 0.16 0.16 0.16 - 15.6%

Category Two:
F1 scores Precision Recall Run times (s) % removed

flowCut 0.5 0.5 0.71 7.18 7.5%
flowAI 0.18 0.3 0.23 4.4 10.0%

flowClean 0.15 0.16 0.33 190.25 1.01%
random 0.12 0.12 0.12 - 12.0%

Category Three files Although I eliminated category three files from

score calculation, it is necessary to see how each algorithm deals with these

files. As shown in Fig 3.4, flowCut flagged two files to users. The flagging
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contains information of why a file fails quality check. flowCut flagging has

four letters of either T or F, checking 1) if the events are monotonically

increasing with time, 2) abrupt changes in fluorescence, 3) large gradual shift

of fluorescence signals in 3) all channels and 4) one channel. For category

three first file, flowCut indicated a large gradual change of fluorescence in

one channel. The second file had both abrupt and large gradual changes

of fluorescence in one channel. The third file failed the time test with a

fraudulent time channel, as described in section 2.1. flowAI detected some

problems in the second file, but the removal regions can not be verified by

manual at this stage. flowClean identified no problems in the first file, and

couldn’t process the second and third files due to too few cells to calculate

phenotypes compositions. Note, these files did not crash flowClean.

3.2.2 Problem based evaluation results

Table 3.2 shows the mean F1 scores for each problematic type with their nor-

malized percentage of events in a file. The normalized proportions is the sum

of all regions by type, divided by the total number of files (52). I calculated a

weighted F1 score for each algorithm according to
∑5

i=problemtypemeanF1×

normalizedPercentages. flowCut was 0.93, flowAI 0.86, flowAI 0.83 (Table

3.2).

3.3 Impact on Gating Analysis

We reproduced the gating of TCM CD8 T cells, CD45RA-CDR7+ from the

published paper [4] with and without using flowCut. The data that had
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Figure 3.4: Documenting how each algorithm deals with category three
files. flowCut flagged first two files to users, and did not process the third
file due to time test issues. flowAI detected no problematic regions in the
first and third. However, only flowAI detected some regions in the second
file. flowClean detected no problematic regions in the first file, and could
not process the 2nd and 3rd file.

Percentage of events flowCut flowAI flowClean

Shift 7.23% 0.67 0.40 0.20
Spike 2.60% 0.63 0.33 0.02

Low Density 1.72% 0.67 0.28 0.20
Discontinuity 0.98% 0.93 0.32 0.00

Clean 87.47% 0.96 0.93 0.93

Weighted F1 - 0.93 0.86 0.83

Table 3.2: Mean F1 scores of four types of problematic regions, mean per-
centage of events and the weighted F1 scores for all three algorithms

proper data quality control showed an increased proportion of the targeted

cell population after gating (Fig 3.5 c). Gating on the outlier events (Fig
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(a) (b) (c) (d)

Figure 3.5: (a) shows fluorescence drifting (Similarly for CCR7 - not shown).
(a)-(d) show the difference between (b) not using and (c) using flowCut. (d)
shows only the gated events between the middle two grey vertical lines in
(a).

3.5 d) showed the outliers events lie mostly on the bottom left quadrant,

indicating that they were biasing the gating to that region.

3.4 Algorithm Robustness

Out of 988 files from FlowRepository, a total of 114 files (11.5%) crashed

flowClean, and 65 (6.6%) files crashed flowAI. Overall, a total of 145 files

crashed either flowClean or flowAI. 0 files crashed flowCut. As of October

2019, I ran flowCut on all 117,115 FlowRepository files. It has 0% crash

rate.

3.5 Conclusion

Data cleaned by flowCut improves the downstream gating. flowCut allows

users to check the quality of the cleaning and to adjust the stringency of

the algorithm if needed. Compared to existing methods, flowCut identified

outlier events more accurately and did not fail to process any file.
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Chapter 4

Biomarker Discovery in

Minimal Residual Disease

4.1 Background

Patients with acute myeloid leukemia (AML) who underwent chemotherapy

can sometimes relapse. The goal of this study is to examine the bone marrow

regeneration pattern for characteristics that could associate with recurrence.

Immunophenotyping by flow cytometry is capable of detecting 1 leukemia

cells in 10,000 normal cells [23], making it an ideal method for monitoring

minimal residual disease. When choosing tools to study cell markers, I

consulted FlowCAP studies [1, 2, 5] in which a list of currently available

algorithms are evaluated against manual for their ability to find significant

populations that correctly predict HIV patients’ disease progression status.

flowDensity[13] (both supervised and unsupervised), flowType and Rchy-

Optimyx [18] pipeline stood out as the co-best method.

flowDensity can be used in both supervised and unsupervised ways. In

a supervised fashion, it automates the manual gating process by using cus-

tomized one-dimensional density thresholds for each cell population to mimic
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experts’ hierarchical gating order. Unlike manual gating, where the place-

ment of gate boundaries is inherently subjective, thresholds are adjusted in

a data-dependent manner for each sample.

When used in the unsupervised method, gating thresholds are adjusted

in a completely automated fashion per marker, removing customization.

FlowReMI [24], the other best method identified in FlowCAP studies, used

unsupervised flowDensity for marker partitioning. Since human interven-

tion is removed from unsupervised gating analysis, experts might not find

partitioning of some markers agreeable.

4.2 Study Design

4.2.1 Data

We obtained blood data of AML patients (both relapsed and non-relapsed)

at three time points after chemotherapy for five tubes. Each tube has differ-

ent set of markers. The three time points of interest are: day 22, last before

2nd induction, last before consolidation. To increase statistical power, I did

random sampling so that each group at each time point contains 20 samples.

There are an additional 20 normal samples for each tube. For supervised

gating, the starting population for analysis is singlets. For the unsupervised

method, the starting population is CD45+SSC-. The CD45+SSC- popula-

tion was identified using k-means clustering by flowPeaks package [8].
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Markers

Tube1 CD56, CD13, CD34,CD117, CD33, CD11b, HLADR, CD45
Tube2 CD36,CD64,CD34,CD117,CD33,CD14,HLADR,CD45
Tube3 CD15,NG2,CD34,CD117,CD2,CD19,HLADR,CD45
Tube4 CD7,CD96,CD34,CD117,CD123,CD38,HLADR,CD45
Tube5 CD99,CD11a,CD34,CD117,CD133,CD4,HLADR,CD45

Normal Day22
Last before

2nd ind
Last before

cons

Tube1 20 normal
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed

Tube2 20 normal
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed

Tube3 20 normal
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed

Tube4 20 normal
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed

Tube5 20 normal
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed
20 relapsed

20 non-relapsed

Table 4.1: Blood data for AML patients

4.2.2 Supervised Gating

Supervised gating requires users to have some prior experimental expecta-

tion, for example, if a user wants to replicate an existing manual process

to target cell populations of interest in a specific way. In our case, we

will require biologists to have some preexisting knowledge regarding the re-

generation pattern of bone marrow and design a gating strategy to find

populations that are likely to be interesting, i.e., differentiating between the

relapsed and non-relapsed group. It requires expertise and efforts to come

up with a gating strategy. We only obtained a gating strategy for tube 1.

The goal was analyzing the end populations to see if any are significantly

different among the two groups of patients at each time point.
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4.2.3 Unsupervised Gating and analysis pipeline

Unsupervised gating can substantially increase the scale of analysis. Com-

bined with flowType and RchyOptimyx, we can examine all possible pop-

ulations defined by the markers by removing the time-limiting step of cus-

tomization for each tube. The supervised analysis was limited to one tube.

However, unsupervised analysis can be applied to all tubes.

4.3 Results

4.3.1 Supervised Analysis Results

I wrote the automated gating pipeline, in Fig 4.1 according to the gating

strategy provided. The gates were mostly determined by 1D density dis-

tribution of each marker. This was implemented by flowDensity[14] pack-

age. However, three gates required rotation of the axis to some degree to

find proper separation. These gates are singlets gates, HLADR mast cells

gates, CD13+B CD33- gates, singlets monocyte-derived cells high SSC, cor-

responding to gates 2,3,4,11 in Fig 4.1.

Subsequent comparisons of the cell proportions across three time points

show no significant difference (significant when p < 0.05) among the two

groups of patients.

4.3.2 Unsupervised Analysis Results

There were no significant populations between relapsed and non-relapsed

groups based on t-tests analysis for all five tubes across all three time points.
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4.3. Results

Figure 4.1: Automated gating pipeline according to tube one gating strategy

However, when comparing the two groups with healthy bone marrow indi-

vidually, there were significantly different populations. A portion of these

populations overlap, as illustrated in Fig4.3. I assumed that the overlapped

regions are variations due to time differences, not patients’ disease status.

While we are interested in non-overlap cell populations in both relapsed

versus normal and non-relapsed versus normal comparisons, I only reported
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4.3. Results

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Cell counts across days for patients with two disease status
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4.3. Results

here the cell populations that are exclusively different between relapsed and

normal.

Figure 4.3: A Venn diagram generated for tube 2 last before 2nd induction
illustrates the regions of interested cell populations, i.e. the non-overlapping
regions of significant populations identified for relapsed vs normal (17) and
non-relapsed vs normal (11).

flowDensity sets threshold for each marker into high, low expression

based on a 1D density profile. flowType then reports cell counts for 3Q

phenotypes, where Q is the number of markers. Each marker has three

possible outcomes: high, low expression or don’t care. For reported cell

populations, we only allow flowType to go down two levels in gating analy-

sis, that is, representing each population with a maximum of four markers

combination. Due to the limitation of not using a gating strategy, thresholds
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are set based on one single starting population. If unsupervised gating goes

more than two levels, the density profile might be entirely different from the

starting population, making it difficult to transfer the thresholds and verify

the validity of the end population.

Optimization

The cell types returned by flowType can be redundantly represented, i.e.,

with uninformative markers. Uninformative markers are those that do not

substantially increase the significance of the biomarkers associated with an

external outcome. Marker significance can be best visualized on RchyOp-

timyx plot, as shown in Fig 4.4. CD64-HLADR- is the most significant

biomarkers with the least number of markers used.

In tables 4.2, 4.3, 4.4, I summarized the resulting optimized biomarkers

with associated p values and cell proportions across time points day22, last

before 2nd induction and last before consolidation, respectively. Only a

maximum of 10 populations for each day each tube are reported here.
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4.3. Results

Figure 4.4: A RchyOptimyx plot lists all possible marker combinations
for an end population. The biomarkers are colored by p-value. The most
significant biomarkers are in red. The thickness of the arrow indicates the
amount of increase of −log10Pvalue .
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Table 4.2: Day 22 Biomarkers, their associated p-values, adjusted p-values, and the mean proportions in the
relapsed, non-relapsed and normal cohorts

Phenotype P Value
P Value

adjusted

Proportions

relapsed

Proportions

non-relapsed

Proportions

normal

Tube 1

CD13-CD34-HLADR+ 1.3e-05 0.021 1.70e-01 0.20 0.520

CD56+CD34-CD117+CD33+ 1.4e-05 0.022 2.4e-03 0.0038 0.015

CD13-CD34-CD33+CD11B- 2.4e-05 0.040 5.7e-02 0.066 0.23

FSC-A+CD117-CD11B-HLADR- 1.5e-05 0.024 2.1e-01 0.19 0.062

CD13-CD117-CD11B-HLADR- 1.0e-05 0.017 2.1e-01 0.21 0.059

CD56-CD13-CD34-HLADR+ 7.5e-06 0.012 1.6e-01 0.18 0.503

CD56+CD34-CD117+HLADR+ 1.8e-05 0.030 2.4e-03 0.0031 0.014

CD13-CD117+CD33-HLADR+ 1.5e-05 0.025 7.0e-03 0.017 0.037

Tube 3

CD15+CD117+ 2.6e-07 4.2e-04 0.047 0.065 0.16

CD34-CD117+ 2.1e-05 3.4e-02 0.066 0.12 0.1935
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FSC-A+CD19- 8.3e-06 1.3e-02 0.45 0.52 0.93

CD15+CD19- 1.7e-08 2.8e-05 0.19 0.26 0.56

NG2-CD19- 3.5e-06 5.7e-03 0.41 0.55 0.90

CD117-CD19+ 2.5e-05 3.9e-02 0.44 0.25 0.037

FSC-A+CD34-CD117+ 1.9e-05 3.1e-02 0.061 0.11 0.18

FSC-A+CD34-CD2- 1.0e-05 1.6e-02 0.35 0.43 0.77

CD15+CD117+CD2- 3.0e-10 5.0e-07 0.029 0.050 0.16

CD34-CD117+CD2- 2.2e-05 3.4e-02 0.059 0.089 0.18

Tube 4

FSC-A+CD7- 3.3e-06 5.1e-03 0.56 0.58 0.93

FSC-A+CD96- 3.1e-05 4.5e-02 0.66 0.70 0.92

CD117+CD123+ 1.9e-05 2.8e-02 0.027 0.019 0.012

FSC-A+CD38- 2.2e-05 3.2e-02 0.37 0.53 0.93

CD96-CD38- 5.4e-07 8.4e-04 0.30 0.56 0.91

CD123-CD38- 3.6e-07 5.5e-04 0.25 0.52 0.88

CD96-CD38+ 2.3e-05 3.4e-02 0.58 0.34 0.04436
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CD117-CD38+ 2.9e-05 4.2e-02 0.52 0.31 0.033

CD123-CD38+ 2.6e-05 3.9e-02 0.56 0.34 0.037

CD7-HLADR- 3.2e-05 4.7e-02 0.4 0.35 0.093

Table 4.3: Last before 2nd induction biomarkers, their associated p-values, adjusted p-values, and the mean
proportions in the relapsed, non-relapsed and normal cohorts

Phenotype P Value
P Value

adjusted

Proportions

relapsed

Proportions

non-relapsed

Proportions

normal

Tube 1

CD34-CD117- 2.8e-06 0.0046 0.82 0.80 0.63

FSC-A+CD34-CD117- 3.5e-06 0.0057 0.81 0.79 0.62

CD56-CD34-CD117- 8.4e-06 0.013 0.78 0.76 0.61

CD56+CD13-CD117+ 1.0e-06 0.0016 0.0031 0.0046 0.012

CD56-CD117-HLADR+ 5.8e-06 0.0095 0.73 0.70 0.54

CD34-CD117-HLADR+ 9.8e-06 0.015 0.73 0.70 0.54

CD56-CD117+HLADR+ 1.2e-06 0.0020 0.12 0.14 0.2737
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CD56+CD13+CD117+CD11B- 2.7e-05 0.044 0.00063 0.0010 0.013

Tube 2

CD36+CD64+ 3.3e-06 0.0055 0.60 0.59 0.42

CD36+CD33+ 4.1e-06 0.0068 0.69 0.68 0.50

CD36-CD117-CD33+ 1.8e-05 0.029 0.045 0.049 0.10

CD36-CD117+CD33+ 2.5e-05 0.040 0.11 0.11 0.21

CD64+CD117+CD14+ 2.5e-05 0.041 0.012 0.012 0.0015

Tube 3

CD117- 6.9e-06 1.1e-02 0.83 0.78 0.65

CD117+ 6.9e-06 1.1e-02 0.17 0.22 0.35

CD117+CD2- 4.8e-06 7.8e-03 0.16 0.21 0.33

CD117+CD19- 7.6e-06 1.2e-02 0.16 0.21 0.33

Tube 4

CD7+CD117+ 1.5e-06 2.4e-03 0.0097 0.013 0.018

FSC-A+CD7+CD117- 9.6e-06 1.6e-02 0.039 0.042 0.027

CD7+CD96-CD117+ 3.1e-08 5.3e-05 0.0043 0.0072 0.01138
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CD7+CD34-CD117+ 4.4e-09 7.5e-06 0.0048 0.0066 0.012

CD7+CD117+CD123- 4.0e-07 6.6e-04 0.0086 0.011 0.017

CD7+CD117+CD38- 1.7e-06 2.8e-03 0.0075 0.0097 0.015

CD96-CD117+CD38+ 1.0e-05 1.7e-02 0.0061 0.00915 0.013

CD7+CD96-CD34-CD117+ 5.9e-10 9.9e-07 0.0022 0.0035 0.0071

CD7+CD96-CD117+CD123- 5.4e-09 9.1e-06 0.0035 0.0061 0.010

Tube 5

CD34-CD4-HLADR+ 9.5e-06 0.016 0.076 0.090 0.13

Table 4.4: Last before consolidation biomarkers, their associated p-values, adjusted p-values, and the mean pro-
portions in the relapsed, non-relapsed and normal cohorts

Phenotype P Value
P Value

adjusted

Proportions

relapsed

Proportions

non-relapsed

Proportions

normal

Tube 2

CD64-HLADR- 1.6e-05 0.027 0.052 0.050 0.11

CD36+CD34-CD117+CD33+ 8.5e-06 0.014 0.014 0.014 0.02039
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Tube 3

CD15- 8.2e-06 0.013 0.67 0.68 0.42

CD15+ 8.2e-06 0.013 0.32 0.31 0.57

FSC-A+CD15- 1.4e-05 0.022 0.65 0.67 0.41

FSC-A+CD15+ 7.8e-06 0.013 0.32 0.31 0.56

CD15+CD34- 2.4e-05 0.037 0.31 0.30 0.53

CD15-CD2- 6.2e-06 0.010 0.62 0.63 0.38

CD15+CD2- 8.8e-06 0.014 0.32 0.31 0.57

CD15+CD19- 7.1e-06 0.011 0.31 0.30 0.56

Tube 4

CD7-CD123+ 1.0e-05 0.016 0.051 0.060 0.078

CD34-CD123+ 1.7e-05 0.028 0.051 0.060 0.077

CD7-CD96+CD34- 3.0e-05 0.049 0.017 0.018 0.025

FSC-A+CD96-CD123- 2.4e-05 0.039 0.87 0.86 0.84

CD7-CD34-CD123+ 4.5e-06 0.0075 0.041 0.051 0.070
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CD96-CD34-CD123+ 2.0e-05 0.033 0.050 0.060 0.076

Tube 5

CD4- 8.8e-06 0.014 0.19 0.20 0.30

CD4+ 8.8e-06 0.014 0.80 0.75 0.69

FSC-A+CD4- 1.8e-05 0.030 0.18 0.23 0.29

CD99-CD4- 1.2e-05 0.020 0.16 0.21 0.28

CD34-CD4- 3.5e-06 0.0058 0.13 0.18 0.22

CD133-CD4- 3.0e-06 0.0051 0.14 0.20 0.26

FSC-A+CD4+ 6.2e-06 0.010 0.79 0.74 0.68

CD99-CD4+ 5.1e-06 0.0085 0.79 0.73 0.67

CD117-CD4+ 4.8e-06 0.0079 0.72 0.68 0.55

FSC-A+CD99-CD4+ 3.7e-06 0.0062 0.78 0.72 0.66

We can validate the populations by plotting the gating with thresholds set by flowDensity. In Fig 4.5, I show

the gating of one biomarker from each tube.
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Figure 4.5: An example of gated population from tube 1-5, shown in a-e respectively, using unsupervised method.
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4.3.3 Regeneration Dynamic

I compared the regeneration dynamics between relapsed and non-relapsed

patients by fitting a linear regression model for each group. Slope com-

parison was done using the ”contrast” function in ”emmeans” package [21].

Here I show significantly different linear patterns in Fig 4.6.

I made slope comparisons for all 38 = 6561 cell populations. For a large

number of comparisons, there would be some significance due to chance. To

reduce chance occurrence, I lowered the p-value to 0.02 and reported only

the cell populations with the smallest p-value in each tube in Fig 4.6.

4.4 Conclusion

In this study, I discovered novel biomarkers through the unsupervised anal-

ysis. When time points were analyzed separately, these novel biomarkers

have significantly (adjusted pvalue < 0.05) different proportions in the re-

lapsed patients (n=20) compared to the healthy cohort (n=20). However,

these populations were not significantly different between the relapsed and

the non-relapsed patients.

When analyzing the changes of cell populations over time, I discov-

ered populations with differential dynamics between the relapsed and non-

relapsed patients.
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(a) (b) (c)

(d) (e)

Figure 4.6: One example of a linear model from each tube is shown.
Red represents relapsed patients model. Blue represents non-relapsed
patients model. a-c corresponds to tubes 1-5, respectively. Coeffi-
cients between two groups of patients have pV alue < 0.02. Specif-
ically, (a) CD13+CD34+CD33-CD11B+ has a p value of 0.0035,(b)
CD36-CD34+CD117- 0.0024,(c) CD15-NG2+CD34+CD2- 0.00028, (d)
CD96+CD34-CD38-HLADR- 0.017,(e) CD34+CD117-HLADR- 0.0018.
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Chapter 5

Discussion

5.1 Data quality control study

In this thesis, I presented a new and effective approach to data quality con-

trol in the processing pipeline. I concluded that flowCut could successfully

replace the current methods as a new state of the art algorithm for address-

ing data quality issues caused by technical variability. I provided strong evi-

dence that flowCut improves the accuracy of the subsequent gating analysis.

Overall, my research has contributed to the improvement of a crucial com-

ponent in the automated analysis pipeline, which, in turn, helps to achieve

the goal of resolving bottleneck issues in the field of flow cytometry.

FlowCAP studies had significant meanings in the field of flow cytome-

try. They not only identified the best algorithms for automated analysis but

also established a method for evaluating and quantitatively comparing algo-

rithms. This method influenced the study design of the comparative study

included in this thesis. A key feature was using manual analysis as the truth,

which could have both advantages and limitations. One advantage was that

the manual analysis created a standard, without which the comparative

study cannot occur. Another benefit was manual analysis is intuitive, with

easy-to-follow procedures that do not require strong expertise. However, a
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major limitation was the subjectivity presented in the manual analysis. The

subjectivity lied not only in the boundary placements for removal regions

but also in defining the removal regions. For example, some users might

not find some small spikes require removal, while others do. In addressing

these limitations, I created categories based on the degree of subjectivity

and evaluated each category separately. Algorithms had low F1 scores when

subjectivity was high, as seen with category two files. This was intuitive, as

the manual regions now contained some proportions of clean data. I chose

the removal boundaries to be aggressive, i.e., removing as much bad data as

necessary. However, it is worth evaluating the less aggressive cutting, that

is, calculating F1 scores with narrower boundaries. This could potentially

improve the overall F1 scores for category two files of all three algorithms,

but the ranking of the algorithms might stay the same.

To add more confidence in the results of this study, I suggest replicating

the current research by multiple people or labs and comparing the results.

It would be valuable to replicate any stage of the entire protocol, from file

selection to F1 score calculation.

5.2 Biomarker discovery study

In chapter 4, I documented the automated method for identifying biomarkers

associated with an external clinical outcome.

Cell population identification Supervised analysis was most on par

with experts’ knowledge. However, it was limited by the time required to
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customize the pipeline. It also requires strong expertise for providing gating

strategies. The customization process, including coding, verifying, and re-

vising, lasted for 3 weeks for one tube. Once we verified the gating results,

we can be confident that the subsequent analysis was accurate. We don’t

need to back gate to check the validity of the gates as the gates are already

established during the customization process following experts’ guidance.

Although supervised analysis required significant upfront effort, it offered

highly accurate analysis. In this study, the supervised analysis was con-

strained to one tube. It is worth attempting such analysis when gating

strategies for other tubes are provided.

On the other hand, unsupervised cell population identification analysis

was fast and scalable to all tubes. The marker thresholds were identified

on 1D density distribution on CD45+SSC- cells. However, due to the elim-

ination of human interventions in gating analysis, biologists might not find

some gates agreeable, which can affect the legitimacy of the subsequent

biomarkers discovered.

Biomarker discovery Biomarker discovery is done in an unsupervised

manner by examining all possible marker combinations. In this study, the

pipeline I used is the unsupervised cell population identification and unsu-

pervised biomarker analysis.

For trade-off between accuracy and depth, I only let the gating analysis

go down two levels as the density distribution of the starting population can

be entirely different from the two or more levels down, making the gating

thresholds not transferable. In other words, the thresholds found on density
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distribution on CD45+SSC- cells might not make sense if placed on a small

subset of these cells, especially when evaluating against multiple markers.

Each population is represented by a maximum of 4 markers. This can be

limiting as we are examining only the tip of an iceberg. For example, tube 4

contains leukemia stem cell markers CD34, CD38 (CD34+CD38-). However,

in the last two days, only CD34 is present in some populations. There was

a potential of discovering more of these cell types if we increased the depth

of analysis. One other limitation is the lengthy verification process to check

the validity of the significant populations. In this study, I had examined

the gating of around 14-30 biomarkers per tube, which was 39% (117/300)

of all generated biomarkers after optimization. With increased depth of

analysis, we can create an even more substantial amount of biomarkers to

be examined.

For future direction, experts can set up a simple gating strategy where

marker thresholds can be found easily without much customization. Rely-

ing on a gating strategy can effectively increase the depth and accuracy of

subsequent analysis and reduce the lengthy validation effort.

We can investigate the unique roles of the biomarkers reported in AML

patients, especially in those who relapsed after chemotherapy. The au-

tomated data analysis documented here can be one potential method for

characterizing MRD regeneration patterns, which contributes to our under-

standing of the disease prognosis.
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Table A.1: Manual gates for 52 files. Every two numbers correspond to one removal region

Files Gates

Tphe0994300600 F7 R.fcs 0 2500 12000 200000

003.fcs 0 1000

100 111 SEB.fcs 225 300

100 111 vehicle.fcs 115 150

125 114 Pre 6b.fcs 150 200

15 24.fcs 3000 6000 8500 10000

2151 074 BA20120228 020.fcs 300 450

2151 074 BA20120228 021.fcs 0 1000

2nd grouphigh amylose maize 6 006.fcs 2500 4500

7c MA+.fcs 5325 6150

9407 2 1 NKR.fcs 0 14800

BDL aLFA1.fcs copy 7600 10000

TH004 TH004 mg.fcs 0 30000

TS01 14 P7.fcs 7 18 21 2356
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TS01 25 P5.fcs 0 16

TS16 406 P7.fcs 85 87

TS21 802 P2.fcs 0 28 81 82 96 96.5 97.5 98.5

TS27 937 P4.fcs 78.5 79.5 83.7 84.3 96 97 99 110

TS27 952 P2.fcs 0 11 23 26 54 56 78.5 79.5

VD TH003.fcs 0 1500

Macrophages.fcs 10000 30000

Macrophages + Leishmania + oATP.fcs 13800 30000

Macrophages + oATP.fcs 11000 15000

9399 2 1 NKR.fcs 2000 3000

9399 2 4 NKR.fcs 2200 2400 3400 3600 9200 9400

9606 3 9 NKR.fcs 16000 18000 30000 34000 55000 70000

binding assay dilution 6 007.fcs 0 1500

Fig4 Algae chlorination.fcs 0 6000

PBL 7wk M5.fcs 15500 30000

PBMC HuKCD20014.fcs 0 25057
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TS05 121 P6.fcs 0 20

TS06 137 P3.fcs 0 20 82 87 95 100

TS06 144 P5.fcs 0 3 7 11

TS14 351 P6.fcs 0 22

2 dias Infectado 5.fcs 20000 30000

13523 17012011 NS F01.fcs 0 100

50uM ALLNAsy48h.fcs 0 600 1100 1800 3200 3650 4500 4800

6A liver 3d WT.fcs 0 4000

ah20130417 dilution Tube 025 surface Sup 2.fcs 0 325

B3 C.reinhardtii H2O2 5mM stained.fcs 210 300

D33 C.reinhardtii preloaded.fcs 190 260

GDC0941CQ D10 D10.fcs 0 20 760 1500

IL220 pepstim1 1501.fcs(1) 0 800 28500 30000

Macrophages + Leismania.fcs 12000 30000

Paciente AH18 Isotipos.fcs 62.5 67.5 115 120 330 335

PBMC Tphe PROP10813 P4 35 T48B E08.fcs 0 800 1400 1500 1750 185058
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Phytoplankton shallow sample.fcs 15000 20000

Specimen 001 B6 LSK.fcs 1600 4000

TS04 92 P6.fcs 3.5 5 10.5 11 97.5 98.5

TS21 813 P5.fcs 50 52 58.5 60 92.5 94.5

Unstained SPL C3 C03.fcs 0 350 500 570 4750 4850

UR414 24 Direct ex vivo 1502.fcs 7250 7380 19150 19200 24000 26000
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