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Abstract 

 

Globally, the agriculture sector is constantly being challenged by multiple climate change-

induced stresses while agricultural activities are responsible for a large portion of global 

greenhouse gas emissions. At the same time, agroecosystems have a sizable potential to mitigate 

climate change through the sequestration of atmospheric carbon-dioxide as soil organic carbon 

(SOC); a key soil quality parameter that can also enhance climate change adaptation. Although 

the dual benefits of SOC are well established, intensive agricultural production and associated 

land use/land cover (LULC) changes continue to drive large declines in SOC. Alternatively, 

sustainable LULC practices can potentially reverse this trend and improve SOC stocks.   Digital 

soil mapping (DSM) using remote sensing can help elucidate SOC dynamics associated with 

LULC change and agricultural management practices by producing spatially explicit information 

on SOC at the field- and landscape-scales. In this research, I developed and applied innovative 

DSM techniques to study the spatiotemporal changes in SOC and related soil properties in the 

Lower Fraser Valley (LFV), one of the most intensive agriculture regions of British Columbia, 

Canada. At the field-scale, I evaluated various sampling strategies for DSM using unmanned 

aerial vehicle imagery, mid-infrared spectroscopy and geostatistical models to identify the most 

cost-effective approach. At the landscape-scale, using Landsat satellite imagery and machine 

learning tools, I produced maps of soil workability thresholds (WT) for the agricultural lands in 

Delta and then, assessed the SOC dynamics across the entire LFV since 1984. My analysis 

identified that 40% of Delta’s agricultural lands had a WT of <30%, making them extremely 

vulnerable to the shifting precipitation patterns expected for the region. In addition, 61% of LFV 

lost SOC, 12% of the region gained SOC, while 27% remained unchanged between 1984 and 
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2018. Areas that lost the most SOC were those that had experienced changes in LULC; however, 

I concluded the majority of SOC loss occurred due to agricultural practices. The dissertation 

contributes to devising cost-effective approaches to quantify and monitor changes in SOC at the 

field- and landscape-scales that can help in the development of effective agricultural climate 

change mitigation and adaptation strategies. 
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Lay Summary 

 

Agricultural producers have the potential to enhance their climate change mitigation and 

adaptation capacity through the sequestration of atmospheric carbon dioxide as soil organic 

carbon. In this dissertation, I sought to improve the understanding of soil organic carbon 

dynamics at the field- and landscape-scales in the Lower Fraser Valley of British Columbia using 

remote sensing-based digital soil mapping techniques. At the field-scale, I identified the 

geospatial statistical approach that provides the most cost-effective mapping of soil properties.  

At the landscape-scale, I observed an overall decline in soil organic carbon in most parts of the 

region. This research provides baseline information on the status of soil organic carbon and the 

rate of changes since 1984. The dissertation contributes to devising cost-effective strategies to 

monitor changes in soil organic carbon for enhancing climate change mitigation and adaptation 

in agricultural landscapes.  
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Chapter 1: Introduction 

 

1.1 Background 

1.1.1 Soil organic carbon  

The agricultural sector, globally, has severely altered the Earth’s natural landscape through land 

use change and intensive agricultural practices. At the same time, agriculture is being challenged 

by multifaceted climate change-induced stresses. Of major concern is the massive reductions in 

soil organic carbon (SOC) (Lal, 2004; Sanderman et al., 2017), which impairs agricultural 

productivity and contributes to climate-forcing greenhouse gas (GHG) emissions (Paustian et al., 

2016). As such, reversing this trend by sequestering carbon in agricultural soil has been 

identified as a key solution to reduce climate change-induced stresses and improve food 

production in the coming decades (Minasny et al., 2017; Rumpel et al., 2018).  

 

Globally, the carbon associated with the SOC is larger than carbon stored in terrestrial vegetation 

and the atmosphere combined (Stockmann et al., 2013). SOC is a  critical component of soil 

quality and provides resilience in agricultural systems against climatic perturbations, such as 

droughts or excessive rainfall (Kononova, 2013). SOC enhances nutrient cycling, improves soil 

water retention, and influences drainage – all of which are essential for agricultural productivity. 

However, since the widespread adoption of agriculture to produce food, a sizable amount of SOC 

has been lost to the atmosphere through land cover change. Land use/land cover (LULC) 

changes from natural ecosystems (e.g. prairies, wetlands, and forests) to intensive agriculture can 

result in a 20-60% loss of SOC (Lal, 2004). Improved land management practices, nevertheless, 

can prevent or reverse these losses and mitigate GHG emissions. Management practices like 
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conservation or no-tillage, winter cover cropping, crop rotations, maintaining perennial grass 

margins and hedgerows, agroforestry or shifting from annual crops to perennial crops can 

substantially reduce GHG emission from agricultural lands and remove atmospheric CO2 by 

sequestering carbon in the soil (Lal et al., 2015; MacHmuller et al., 2015).  Although there has 

been substantial work to quantify the impacts of LULC change and agricultural management on 

SOC, there are still major gaps in our understanding of the impacts of many types of change in 

LULC or management practices and how these vary across environmental conditions.  

 

Researchers have observed contrasting effects of global climate change on SOC and it is unclear 

how LULC change and agricultural management will interact with rising temperatures and 

atmospheric CO2 concentrations. For example, Crowther et al. (2016) reported negative impacts 

of global warming on global SOC stock, while other research has suggested that higher soil 

microbial activity and plant productivity in warming conditions may result in increased SOC 

stocks (Koven et al., 2015; Todd-Brown et al., 2014). Thus, understanding SOC dynamics in 

response to changes in LULC and agricultural management, in the context of climate change is 

critically important for identifying effective SOC management.  

 

1.1.2 Climate change, agricultural LULC, and SOC in the Lower Fraser Valley 

The GHG emissions in the province of British Columbia (BC) increased by 17% between 1990 

and 2015 mainly as a result of increased methane from livestock and nitrous oxide from fertilizer 

and manure use, making BC one of the top five GHG emitting provinces of Canada in 2015 

(Environment and Climate Change Canada, 2017).  Although the agriculture sector in BC has 

been estimated to be responsible for 3% of the provincial emissions (BC MOEnvironment, 
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2014), these figures, however, do not account for changes in SOC either from LULC change or 

management practices. Additionally, climate models have predicted considerable changes in 

temperature and precipitation patterns across the province. For example, in the Lower Fraser 

Valley (LFV), which is one of the most agriculturally intensive regions of BC, a 1.8ºC increase 

in annual average temperature and 7% rise in annual precipitation was predicted by 2050s (BC 

Agriculture & Food Climate Action Initiative, 2015). Much of this precipitation is expected to 

occur in the form of rain during the winter, spring, and autumn causing issues for agricultural 

drainage management in the wet season and most importantly having an impact on the shoulder 

seasons when planting and harvest operations are reliant on dry soil. Furthermore, summers are 

expected to become hotter and drier. As a result, effective soil management in this region has 

become increasingly challenging for farmers. Soil properties can be highly spatially 

heterogeneous, and some are also changing rapidly over time, which in turn makes 

characterizing soil properties challenging. Knowing precise and spatially explicit information of 

various soil properties across a farm field could enable, for example, more effective site-specific 

management of fertilizer applications, or the installation of drainage infrastructure, which in turn 

could lead to increased SOC. Moreover, the precision management of SOC at individual farm 

fields may provide greater benefits in terms of region-wide climate change mitigation. 

 

Currently, the LFV of BC is one of the most intensive agricultural regions in the province and is 

responsible for more than 50% of the province’s annual gross farm receipts (Crawford and 

MacNair, 2012).  The LFV; however, was once dominated by coastal rain forest and wetlands 

and beginning in the late 1800s has seen large scale LULC change to agricultural production 

(Boyle et al., 1997). Particularly, over the past few decades, the LFV has experienced substantial 
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agricultural expansion and consequent LULC changes. The conversion from ecosystems such as 

forests, wetlands, and grasslands to high input, heavily mechanized agricultural production has 

likely caused a severe decline in SOC. If these losses in SOC are taken into consideration, the 

estimation of provincial agricultural GHG emissions could be substantially higher than what is 

currently estimated (i.e. 3% of the total provincial emissions), which has serious implications for 

managing provincial GHG emissions as well as the long-term productivity of the soil. Loss of 

SOC is a prime concern for soil productivity because of its contribution to the formation of soil 

aggregates and associated influences on the soil structure and related properties (such as bulk 

density, water retention, and water movement) (Merante et al., 2017). As a result, the decline in 

SOC will adversely affect key soil functions including reducing the soils’ capacity of 

ameliorating excessive rain derived drainage issues in wet periods and enhancing water holding 

capacity during dry periods. With the predicted changes in climate conditions, these effects on 

soil functioning may have significant consequences on agricultural productivity in the LFV.  

 

While understanding the relationship between LULC change and SOC dynamics is critical for 

developing effective management strategies to maintain SOC, the rate, direction, and magnitude 

of the SOC change are still not clearly understood in the LFV. Previous research conducted by 

Boyle & Lavkulich (1997) investigated the carbon pool dynamics in the LFV from 1827 to 1990 

using land use maps, air photographs, and previously published data. They estimated a total loss 

of SOC was 125 Mt from 1827 to 1990. This was a well-reasoned estimate of SOC losses in the 

LFV, yet the analysis had some important limitations. This research did not specifically focus on 

the SOC dynamics rather it focused on the changes in biomass carbon and made assumptions 

about the relative changes in SOC associated with the above-ground carbon. Moreover, since 
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1990, there have been considerable changes in both LULC and agricultural management in the 

LFV and the associated impacts on SOC are unknown. An alternative approach to using 

historical land use maps, based on analysis of archived time-series remote sensing data (e.g. 

Landsat satellite imagery) and digital soil mapping (DSM), could better fill important gaps in our 

understanding of LULC change, agricultural management, and SOC dynamics in the LFV. While 

this approach would not be able to capture the changes occurred before 1972 (when the satellite 

data came on-line), this time-series remote sensing-based change analysis could be far higher 

resolution and more accurate. 

 

 As explained above, changes in SOC directly impact several fundamental soil functions, 

especially the capability of the soil to provide efficient drainage during wet seasons. This key 

soil function has important implications for some of LFV’s highly productive low-lying 

agricultural lands characterized by fine-textured soil and poor drainage. Heavy rainfall in the 

shoulder seasons is resulting in overly saturated soils and delaying the field preparation and 

harvesting with heavy machinery in these agricultural lands (Neufeld et al., 2017). The use of 

heavy farm machinery during such soil conditions may cause soil compaction and degrade soil 

structure. Rainfall thus can restrict the number of days these soils are workable with heavy 

machinery without negatively impacting soil quality. Prior site-specific knowledge of the 

optimum soil water content for working the soil could be of value for planning the timing of 

farm management activities to minimize damage to soil structure. Such information, however, is 

not currently available for the LFV.  Soil maps of the region developed in the 1980s describe a 

drainage class, but given that workability is a function of drainage, soil texture, and soil organic 

matter, these maps have limited utility to describe soil organic matter changes with time.  
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Furthermore, these maps are categorical with a spatial resolution that generally precludes field 

management decisions. Provided that the optimum water content is highly reliant on soil organic 

matter, which is largely determined by SOC (Obour et al., 2017), the DSM technique can be 

applied to develop high-resolution maps of areas with the greatest potential for soil moisture 

related compaction.  Hence, understanding SOC dynamics will also help develop climate change 

adaptation strategies in areas with poor drainage.      

 

1.1.3 Modeling spatial and temporal dynamics of SOC and related soil properties 

Due to their highly heterogeneous nature, soil properties are challenging to quantify and evaluate 

in spatial and temporal contexts. For dynamic soil properties (e.g. SOC, total nitrogen), the 

primary modeling approach for spatial and temporal assessment has been reliant on mechanistic 

models (e.g. Century, DNDC).  These types of models have been the mainstay for modeling past 

and future SOC dynamics in agricultural landscapes across the globe. However, these models are 

data-intensive and for accurate prediction, requiring a large amount of historical input data, 

which are expensive to gather and often not available. As a result, such modeling efforts use a 

large number of assumptions or use datasets which may not be at a fine enough scale to make 

accurate or relevant predictions for heterogeneous soil properties (Grinand et al., 2017). A 

pragmatic alternative could be ‘scorpan’ based DSM models, proposed by Minasny et al. (2013), 

which produce static-empirical prediction based on locally calibrated models using remote 

sensing data. According to ‘scorpan’, soil class or attribute that will be modeled is a function of 

soil (i.e. other or previously measured soil properties), climate (i.e. climate variables), organisms 

(i.e. LULC), relief (i.e. topographic attributes), parent material (i.e. geological materials on 

which soil formed), age (i.e. time factor), and spatial or geographic position. Incorporation of 



7 

 

remote sensing derived environmental variables reduces the cost of analysis and allows the DSM 

model to account for the spatiotemporal variation in the soil landscape. Although the DSM 

approach has been widely used for mapping soil properties at a single time-step (McBratney et 

al., 2003), this practical approach has not been utilized with full potential for assessing 

spatiotemporal dynamics of SOC in heterogeneous agricultural landscapes (Yigini and Panagos, 

2016). Moreover, integration of the outputs from locally calibrated high spatial resolution land 

use change model and downscaled climate prediction may enhance the capability of the DSM 

models for the spatiotemporal projection of SOC dynamics, but such integration has not been 

recognized or undertaken in the literature. Modeling other related soil properties, like optimum 

soil water content using remote sensing and DSM has also not been explored, although such 

modeling can be of critical value for agricultural soil management in areas with poor drainage.  

 

As reported in various DSM studies, integration of remote sensing imagery reduces the overall 

cost of analysis for mapping various soil properties, however, the cost largely depends on the 

type and spatial resolution of the remote sensing data in use (McBratney et al., 2003; Mulder et 

al., 2011). Understanding the variation in soil properties at both field- and landscape-scales is 

important for efficient management and decision-making since the field-scale variation is mainly 

attributed to agricultural management practices while the landscape-scale variation may involve 

both LULC changes and management practices. Accurate soil mapping at field-scale requires 

high spatial resolution remote sensing imagery (i.e. ≤5 m spatial resolution) to capture the large 

variability in soil properties (Malone et al., 2013a; Minasny and McBratney, 2016). Although 

remotely sensed satellite imagery with the high spatial resolution is relatively expensive, images 

acquired using unmanned aerial vehicles (UAV) can be an effective alternative for field-scale 
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DSM. Recently, UAV imagery has gained popularity for agroecological monitoring due to its 

high spatial resolution, cost-effectiveness, and flexibility of image acquisition (Mogili and 

Deepak, 2018; Tsouros et al., 2019). Although having these practical benefits, the cost-

effectiveness and accuracy of field-scale DSM models using UAV imagery has remained unclear 

and warrants further research to enhance the utility of UAV imagery in DSM. At a landscape-

scale, however, acquiring UAV data is not yet cost-effective and requires the use of satellite 

imagery. Landsat satellite imagery, for example, has a spatial resolution of 30 m, 16 days revisit 

time, and a data archive at those resolutions from 1984 (poorer spatial resolution and slightly 

longer temporal resolution since 1972) has been shown to be an effective solution for accurate 

mapping of different soil properties at landscape-scale, especially for assessing the 

spatiotemporal dynamics. Thus, incorporation of time-series Landsat imagery in static-empirical 

‘scorpan’ based DSM model can provide an innovative approach for modeling the changes in 

dynamic soil properties, like SOC across space and time.       

 

Regardless of the type of imagery or the spatial scale, a key challenge that must be first 

addressed by any digital soil methodology is to identify the optimum number of point samples 

and modeling strategy required for predicting the continuous soil surfaces with the desired 

accuracy and cost. In heterogeneous agricultural lands, capturing the spatial variability is critical 

for producing accurate soil maps at both field- and landscape-scales. Increasing the number of 

samples improves the accuracy of the models but it also increases the cost and effort required for 

field data collection and analysis.  Developing a sampling strategy that deals with this trade-off 

between accuracy and cost is largely dependent on the type of laboratory analysis used for soil 

samples and the type of DSM model. Standard laboratory analysis (SLA) is the conventional and 
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the most accurate approach for soil sample analysis, however, SLA can be a substantial portion 

of the cost of DSM. In contrast, mid-infrared spectroscopy (MIRS), which predicts soil data 

based on the spectral responses of SLA samples, provides a cost-effective alternative (Nocita et 

al., 2015) and has recently been widely used in DSM research. Although MIRS is not as accurate 

as SLA, it can substantially increase the number of soil samples utilized for DSM at an 

equivalent cost, thus potentially improving model accuracy. Although MIRS is widely adopted 

there have been a few studies comparing DSM outcomes derived using the SLA and MIRS soil 

dataset for investigating the trade-offs in accuracy and cost of DSM. In addition, there has been 

little validation of DSM models based on MIRS using an independent set of SLA samples. Most 

DSM studies using the MIRS dataset validate the model performance against another set of 

MIRS data, which incorporates more uncertainties in the predicted digital soil maps. 

Furthermore, DSM researchers use a large number of modeling techniques, including 

generalized linear models, classification and regression trees, neural networks, fuzzy systems, 

and geostatistics to analyze point soil data and produce digital soil maps (McBratney et al., 

2003). The most widely used DSM techniques are decision tree models and geostatistical 

models, both of which have been subdivided into a few other categories. Thus, selecting a single 

model from this large number of available options is challenging. Comparative studies using the 

most commonly used models and investigating for the accuracy at different scales from field to 

landscape may provide valuable information for future DSM research.      

 

1.2 Research objectives 

There are important knowledge gaps related to SOC dynamics and associated soil properties 

under changes in LULC and climate conditions in the LFV and there is a need to establish new 
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and cost-effective tools to address these gaps.  Therefore, in my dissertation, I sought to develop 

innovative DSM using remote sensing approaches to model SOC and other related soil properties 

for enhancing climate change mitigation and adaptation in the LFV. The specific research 

objectives of my dissertation were to: 

 

1) Evaluate the cost and accuracy of geostatistical modeling technique at varying 

sampling efforts of SLA and MIRS for DSM at the field-scale 

2) Compare two machine learning approaches for DSM of SOC and clay (CL) to predict 

a soil workability threshold (WT) at the landscape-scale  

3) Assess the spatiotemporal dynamics of SOC in response to historical changes in 

LULC, agricultural management, and climate conditions 

 

Each of these objectives will be presented as an individual chapter of my dissertation. Through 

addressing these objectives, I intended to develop innovative and cost-effective tools for 

mapping different soil properties at the field- and landscape-scales for enhanced agricultural 

climate change mitigation and adaptation.   

 

1.3 Overview of the dissertation 

I have organized this dissertation into five chapters.  I have presented an overall introduction 

here in Chapter 1 followed by three separate research papers presented as individual chapters that 

addressed each of the specific research objectives mentioned above. In Chapter 5, I presented my 

general conclusions. Figure 1 shows the outline of the dissertation chapters. 
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Figure 1: Outline of the dissertation chapters 

 

In Chapter 2 of my dissertation, I evaluated different sampling strategies and analysis techniques 

for high spatial resolution mapping of a suite of soil properties at the field-scale. I compared 

between the sampling efforts of SLA and MIRS to identify the most effective sampling efforts at 

which model accuracy and cost of analysis were optimized. This chapter provides cost-effective 

strategies for precision agricultural management which is highly important for efficient fertilizer 



12 

 

application, organic matter management, drainage and salinity management, all of which 

contribute to both climate change mitigation and adaptation at a farm level.  

 

In Chapter 3, I compared two machine learning models, random forest and generalized boosted 

regression model for predicting soil properties at landscape-scale. To do this I utilized multi-

temporal Landsat satellite imagery to capture seasonal variation across the agricultural landscape 

of Delta, BC and predicted maps of SOC and clay using the machine learning models. I applied 

multiple pedotransfer functions to these predicted maps to produce maps of soil plasticity limits 

and identify spatially explicit values for optimum soil water content as a threshold for 

workability. The outcomes of this chapter will help inform effective soil management strategies 

under expected shifting precipitation patterns and enhance climate change adaptation capability 

across the agricultural landscape. 

 

In Chapter 4, I applied time-series Landsat satellite images and machine learning models to 

assess spatiotemporal interactions between SOC, LULC, and climate change (1984 – 2018) in 

the LFV. I employed a static-empirical approach and calibrated a SOC model using a field 

dataset I collected in 2018 and then, predicted SOC for the previous years (i.e. 1984, 1990, 1999, 

and 2009) by updating the dynamic environmental variables. I also used the same Landsat 

imagery for producing LULC maps for each time step through a combined pixel- and object-

based approach. I then evaluated the spatiotemporal relationship between SOC, LULC change, 

agricultural management, and climatic variables. The results of this analysis identify potential 

areas and management strategies for SOC sequestration which provides benefits for both climate 

change mitigation and adaptation across the LFV. 
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Figure 2 shows schematically the field data collection, analysis, and overall outcomes of the 

research. Field data collection included soil sampling and collecting ground truth information on 

LULC types. 

 

 

Figure 2: Schematic diagram showing data collection, analysis, and outcomes of research 

DGPS, LULC, and SOC refer to Differential Global Positioning System, land use/land cover, 

soil organic carbon, respectively 
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Chapter 2: Evaluating sampling efforts of standard laboratory analysis and 

mid-infrared spectroscopy for cost-effective digital soil mapping at field-scale 

 

2.1 Chapter introduction 

Digital soil mapping (DSM) is increasingly being used for managing and monitoring a wide 

range of soil-derived ecosystem services, including the provisioning of food, fiber and fuel, 

carbon sequestration and nutrient cycling. DSM combines information from sparsely populated 

point soil data with geospatial data, such as remotely sensed imagery, to provide continuous 

predictions of soil properties (Lagacherie, 2008; Li and Heap, 2011). DSM produces seamless 

spatial interpolation of point soil information at scales ranging from broad global maps to fine 

scale maps of individual farm fields (Grunwald et al., 2011; Malone et al., 2017). Detailed 

knowledge of soil properties at different scales can help land managers to make spatially explicit 

management decisions (Cruz-Cárdenas et al., 2014). Given that soil properties exhibit high 

spatial heterogeneity, mapping at finer spatial scales may be critical to meet specific farm 

management objectives, especially for precision agriculture (Malone et al., 2013; Suk Lee and 

Ehsani, 2015). 

 

Fine scale DSM requires closely spaced point information  (Hengl et al., 2004); however, there is 

no consensus regarding the sampling effort required for the optimum performance of the spatial 

prediction of soil properties (Brungard and Boettinger, 2010; Ließ, 2015). The number of 

samples, sample spacings, and the actual locations of the samples are all factors related to the 

sampling effort that influence the prediction process (Zhu and Lin, 2010). Enhancing the 
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sampling effort by adding more samples will improve the accuracy of the predicted output, but 

this also increases the time, cost, and data processing required. Most sampling designs for DSM 

either aim to achieve a well-distributed spatial coverage of the area or to capture the spatial 

variations of the feature space (Minasny and McBratney, 2006). A number of studies on 

precision agriculture have explored this at the field-scale and (Kerry et al., 2010) found that a 

sampling interval of 100-120 m can provide adequate spatial coverage and precise soil 

management of a farm field. In order to achieve a well-distributed spatial coverage, the sampling 

effort may be increased but this does not necessarily result in accurate predictions. Alternatively, 

an optimum sampling effort may be obtained where the spatial variations of the study site can be 

effectively captured (Brungard and Boettinger, 2010). After reaching the optimum number of 

samples, increasing the number of samples will not improve the prediction capability of the 

model; rather, additional samples will result in diminishing returns in terms of improved 

accuracy of the model. Thus, a spatially optimized sampling effort will provide the most benefits 

in terms of both prediction accuracy and sampling investments.   

 

The efficacy of the sampling design is likely dependent on the statistical model used for 

predicting the soil properties. Many studies have suggested that geospatial environmental 

variables are important for capturing spatial variations and improving the prediction accuracy of 

the models (Li et al., 2015). Kriging with external drift (KED) is one of the commonly used 

hybrid geostatistical models which assumes that the value at any given point is spatially 

dependent on the values of the neighboring points but the variation trend or drift is determined 

externally as a linear function of a group of ancillary environmental variables (Keskin and 

Grunwald, 2018; Wackernagel, 2003). KED, a straightforward approach where the trend and 
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residuals are estimated as part of a single system, has been successfully used for a number of 

DSM studies where it obtained similar or better accuracies than simpler kriging models, like 

ordinary kriging (Li, 2010)  or more complex and newer hybrid models, like regression kriging 

(Santra et al., 2017). Thus, KED can be used as an effective technique for predicting a suite of 

soil properties. The outcomes of KED prediction derived using various sampling designs can 

then be compared to identify the most effective sampling effort. 

 

Standard laboratory analysis (SLA) of the soil samples can be a substantial portion of the overall 

DSM expense. Recent advances in soil analysis using mid-infrared spectroscopy (MIRS) have 

shown promise to reduce costs compared to SLA (Nocita et al., 2015). MIRS can produce fast 

and relatively inexpensive predictions of soil properties, that, although they are improving, are 

not as accurate as SLA as they are derived from SLA predictions (Viscarra Rossel et al., 2006). 

Larger sampling efforts, in general, better explain the spatial variability of the soil properties 

across a study site (Brus and Heuvelink, 2007). Thus, MIRS techniques, which allow the 

addition of more sample points for a given budget, may make up for their reduced accuracy 

when producing predictive DSMs. Although MIRS techniques have recently been successfully 

used for landscape-scale DSMs (Cobo et al., 2010; Vågen et al., 2016; Winowiecki et al., 2016), 

its performance in conjunction with field-scale DSM for a suite of soil properties is less clear. At 

the field-scale, soil properties exhibit fine resolution spatial variations requiring a large set of soil 

data to produce accurate predictive maps. In precision agriculture, the use of visible- and near-

infrared spectroscopy for on-the-go proximal soil sensing is widely used, however, use of MIRS 

is not common because of the high cost and lack of availability of portable MIRS instruments 

(Ge et al., 2011; Viscarra Rossel et al., 2006). Producing high resolution field-scale DSM using 
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laboratory-based MIRS data could be an effective alternative to current proximal sensing 

approaches and/or demonstrate the utility of developing portable MIRS technology. However, 

there is a need to understand the trade-offs in accuracy and costs between using relatively more 

accurate, but more expensive SLA datasets and using comparatively less accurate, but less 

expensive MIRS datasets for DSM.  

 

To address this research need, we conducted a study to produce digital maps of a suite of soil 

properties on a farm field in British Columbia at 5 m resolution using various approaches. The 

specific objectives of this study were to: (1) compare a range of equivalent sampling efforts 

(based on their cost for fieldwork and lab analysis) of SLA and MIRS in terms of their relative 

accuracy for predicting a suite of soil properties, including sand, silt, clay, pH, salinity, soil 

organic matter (SOM), and total nitrogen (TN) and (2) assess the trade-offs between cost and 

accuracy to determine the most effective sampling effort for producing predictive maps of these 

soil properties.  

 

2.2 Materials and methods 

To develop DSMs of selected soil properties for a farm field in western Fraser Valley of British 

Columbia, we used a combination of methods (Figure 3). We sampled soils using a grid design, 

then analyzed them using two different lab analysis approaches. We also applied multiple 

statistical and geostatistical tools to evaluate a range of sampling efforts (by pseudo-sampling from 

the full dataset) and the resulting DSM predictions for the soil properties.  
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Figure 3: Flowchart showing the methods utilized for producing digital soil maps (DSM) in 

this study 

UAV refers to the unmanned aerial vehicle; R2, CCC, RMSE, and nRMSE refer to the 

coefficient of determination, Lin’s concordance correlation coefficient, root mean square error, 

and normalized root-mean-square error respectively. 

2 
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2.2.1 Study Site 

The study site was a 54-hectare agricultural field near the City of Delta, British Columbia, 

Canada (49.08 N, 123.06 W), about 25 km south of the City of Vancouver (Figure 4). The field 

had known salinity and drainage problems at the time of sampling and was used for organic 

vegetable production. The study site was located on Rego Gleysol and Orthic Humic Gleysol 

(Umbric Gleysol) formed predominantly from fluvial parent materials. The study site is in the 

Fraser River delta and close to the ocean with elevation ranges from 1.25 to 1.70 meters above 

mean sea level. This area is characterized by a humid maritime climate with a mean annual 

temperature of 11.1º C and a mean annual precipitation of 928 mm based on 30-year climate 

records (Environment Canada, 2019).  

 

2.2.2 Soil Sampling and Analysis 

After reviewing the existing soil map (Luttmerding, 1981) and conducting preliminary field 

observations, a 40 x 40 m grid was developed for soil sampling (Figure 4). In 2015, a total of 308 

points were sampled at the 0-15 cm depth across the field. All 308 sample locations were 

recorded with a GNSS Pro 6H Differential Global Positioning System (DGPS) (Trimble Inc., 

Sunnyvale, California, USA) with post-processing accuracy ranging from 10 - 50 cm. We 

derived a sub-sample set of the original 308 locations to use for SLA, and these were generally 

120 m apart (compared to the original 40 x 40 m grid) but differed to a limited extent for some 

locations due to field edges. We included a few additional randomly selected grid locations for 

SLA analysis so that we achieve an equivalent cost for both SLA and MIRS. In total, 62 of the 

308 original samples were retained for the SLA dataset.  
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All 308 samples were air-dried and sieved to <2 mm. The 62 SLA samples were sent to the 

Technical Service Laboratory of British Columbia Ministry of Environment for particle size 

analysis using the hydrometer method and for soil organic carbon (SOC) and TN using the 

combustion elemental analysis with a Vario EL Cube Elemental Analyzer (Elementar, 

Langenselbold, Germany). Separate aliquots of the subset of SLA samples were also analyzed at 

the University of British Columbia lab facility to measure pH in a 1:1 soil-water ratio, and 

electrical conductivity (EC) in a 1:2 soil-water ratio using an Oakton PC 700 pH/conductivity 

meter. A conversion factor of 5 was applied to compare our EC values with the values measured 

using a more typical and expensive ‘saturated paste’ method (Hanlon et al., 1993). The full 308 

sample set was then analyzed with MIRS using a TENSOR 37 spectrometer (Bruker Instruments, 

Ettlingen, Germany). For MIRS analysis, the samples were prepared by oven drying at 105°C 

before grinding with a ball-mill. We then analyzed three 1g subsamples of each soil sample and 

recorded the MIRS spectral response. Later, we calibrated and validated the recorded spectra 

using the OPUS v7.2 Spectroscopy Software and Partial Least Squares Regression (PLSR) 

model where the SLA dataset served as the calibration (70%) and validation (30%) data. We 

performed a log ratio transformation of the texture data to achieve a combined composition of 

100% for sand%, silt%, and clay% after PLSR prediction. We used isometric log ratio 

transformation for this purpose (Niang et al., 2014). We used the ‘compositions’ package (van 

den Boogaart and Tolosana-Delgado, 2008) within the R software (version 3.3.2, R Core Team, 

2018) for log transformation. Finally, we multiplied the SOC data by 1.72 to compute SOM. 
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Figure 4: Location map of the study site (49.08 N, 123.06 W)  

Map shows the standard laboratory analysis (SLA, n = 62) and mid-infrared spectroscopy 

(MIRS, n = 308) sample points following a 40 x 40 m grid. The SLA samples were also analyzed 

with MIRS. 
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2.2.3 Environmental Covariates 

A total of 14 environmental covariates were utilized for this study (Table 1). A 5 m spatial 

resolution digital elevation model (DEM) was created using the point elevation data (n = 308) 

collected with the DGPS unit. We used the hydrologically correct DEM interpolation tool in 

ArcGIS 10.5 software for producing the DEM (Childs, 2004; Hutchinson, 1993). A group of 

topographic covariates was generated from this DEM using SAGA 2.1.2 software based on the 

work of Behrens et al. (2010), Lacoste et al. (2014), and Malone et al. (2009). The first and 

second derivatives, namely aspect, slope, multiresolution index of valley bottom flatness 

(MRVBF), multiresolution index of the ridge top flatness (MRRTF), positive and negative 

topographic openness, valley depth, terrain ruggedness index (TRI), total curvature, and total 

wetness index (TWI) were derived from the DEM.  

 

In July 2016, an unmanned aerial vehicle (UAV) was flown over the study site to capture images 

in the visible bands (red-green-blue: RGB) of the electromagnetic spectrum. We used a DJI 

Matrice UAV which had a Zenmuse X3 CMOS sensor of 12.4 megapixels and a 20 mm focal 

length. The flight altitude was 30 m above ground level capturing images of 2 cm spatial 

resolution. We processed the images and resampled to derive two covariates at 5 m resolution 

from this RGB imagery – the green band reflectance was used directly and another covariate 

(averaged RGB band reflectance) was generated by averaging the reflectance of the three bands 

for each pixel (Amini et al., 2005; Levin et al., 2005). These two covariates were selected to 

utilize the variation in soil and vegetation color. The historic polygon-based soil map, developed 

in 1981 and comprised of only 3 soil classes (Luttmerding, 1981), was used to derive a raster 

layer of clay content at 5 m resolution to use as an additional covariate. The polygon map 
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consisted of single-component map units for our study site. We extracted values from the 

polygon soil map using the 40 x 40 m sampling grid and then, utilized Inverse Distance 

Weighting (IDW) interpolation to produce a raster surface. 

 

Table 1: Environmental covariates used for digital soil mapping in this study 

Environmental 

Covariate Type 
Input Representative Data Source Data 

Terrain 

Digital elevation model (DEM) 

Digital 

Elevation 

Model 

Aspect 

Slope 

Multiresolution index of valley bottom flatness (MRVBF) 

Multiresolution index of the ridge top flatness (MRRTF) 

Positive topographic openness 

Negative topographic openness 

Valley depth 

Terrain ruggedness index (TRI) 

Total curvature 

Total wetness index (TWI) 

Vegetation & 

Management 

Green band reflectance 
Unmanned 

aerial vehicle 

image 
Averaged RGB band reflectance 

Soil type Clay raster surface 
Historic soil 

map 

 

 

2.2.4 Sampling Efforts and Conditioned Latin Hypercube Sampling 

We used the Conditioned Latin Hypercube Sampling (cLHS) technique to develop several 

sampling efforts for both MIRS (n=308) and SLA (n=62) datasets using 10 - 90% of the total 

data points in 10% increments (Table 2). cLHS is a stratified random sampling technique that 

selects locations representing the spatial variability of the multiple input environmental 

covariates (Minasny and McBratney, 2006). The ‘clhs’ package (Roudier, 2014) within the R 
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software (version 3.3.2, R Core Team, 2018) was used to design all sampling efforts. We utilized 

the environmental covariates listed in Table 1 for cLHS analysis. Sampling and analysis costs of 

each soil sample for both SLA and MIRS analyses were determined based on the cost of the 

external laboratory analyses, labor, and materials. The costs for SLA analyses, including the field 

sampling, were ~40 C$/sample whereas the cost of MIRS analysis including the field sampling 

was ~8 C$/sample. All laboratory fees are expressed on a cost-recovery basis.  

 

Table 2: Number of samples and total cost of various equivalent sampling efforts of 

standard laboratory analysis (SLA) and mid-infrared spectroscopy (MIRS) 

Sampling 

effort 

Number 

of SLA 

samples 

Number of SLA 

samples/hectare 

Number of 

MIRS 

samples 

Number of 

MIRS 

samples/hectare 

Total cost 

(C$) 

100% 62 1.15 308 5.70 2464 

90% 56 1.04 277 5.13 2216 

80% 50 0.93 246 4.56 1968 

70% 43 0.80 216 4.00 1728 

60% 37 0.69 185 3.43 1480 

50% 31 0.57 154 2.85 1232 

40% 25 0.46 123 2.28 984 

30% 19 0.35 92 1.70 736 

20% 12 0.22 62 1.15 496 

10% 6 0.11 31 0.57 248 

 

 

2.2.5 Prediction and Mapping  

We used kriging with external drift (KED) to scale from point data to a continuous map of the 

entire field. The prediction using KED is based on the spatial correlation between the data points 

as well as the spatial information derived by the auxiliary environmental variables. As the name 

suggests, the drift is defined externally by the environmental variables rather than as a function 
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of the coordinates of the data points (Wackernagel, 2003). In KED, prediction at an unknown 

location is derived by the (Equation 1) and (Equation 2) (Hengl, 2007):  

 

ẑ(s0) = ∑ wi
n
1=1 (s0). z(si) (Equation 1) 

For 

∑ wi
n
1=1 (s0). qk(si) = qk(s0);  k = 1, 2, ……, p (Equation 2) 

 

Where ẑ(s0) is the target soil property predicted at location s0, qk’s are the environmental 

covariates, p is the number of environmental covariates. For kriging, it is critical to determine the 

spatial autocorrelation of the input data, i.e. semivariance which increases with distance. The 

distance where it stabilizes within the study area extent determines the range of the spatial 

autocorrelation (Malone et al., 2013b). We used the ‘gstat’ package for R software (Pebesma and 

Heuvelink, 2016) to perform KED interpolations. The KED model used the environmental 

covariates listed in Table 1. However, we performed a Pearson correlation analysis to evaluate 

the relationship between the target soil property and environmental covariates. Then, in KED 

prediction, we only included the variables which are highly correlated (r ≥ 0.20 or r ≤ -0.20) with 

the target soil property. For example, sand content of the soil appeared to have meaningful 

correlation with averaged RGB band reflectance (r = 0.21), clay raster surface (r = -0.46), DEM 

(r = -0.22), MRRTF (r = 0.54), MRVBF (r = -0.43), and valley depth (r = -0.26). Thus, we only 

included these six variables in the KED model for predicting the sand content.  
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Training and testing of the prediction models: We built and assessed the KED models 

separately for all the sampling efforts derived from the SLA and MIRS datasets. We randomly 

separated 25% (n=16) samples from the ‘100% sampling effort’ of the SLA dataset and utilized 

them for independent validation of all 20 models. Given the small sample size of the validation 

data set, this was repeated five times using a new set of randomly selected validation data for 

each iteration. We then reported the mean and standard deviation of the accuracy metrics for the 

five iterations.   

 

We used four error indices for measuring the model performance: (i) the coefficient of 

determination (R2); (ii) the Lin’s concordance correlation coefficient (CCC); (iii) the root mean 

square error (RMSE); and (iv) the normalized root-mean-square error (nRMSE), where RMSE is 

normalized by dividing by the range of the observed data (Shen et al., 2016). (Equation 3), 

(Equation 4), (Equation 5), and (Equation 6) below describe these accuracy measures. 

 

R2 =
(∑ (Yi − X)(Xi − X ))²n

i=1

∑ (Yi − Y )²n
i=1 ∑ (Xi − X )²n

i=1

 
(Equation 3) 

CCC =
2ρ𝜎𝑥𝜎𝑦

σx
2 +  σy

2 + ( X − Y)
2 

(Equation 4) 

RMSE = √
∑ (Yi − Xi)

n
i=1

n
 (Equation 5) 

nRMSE =
1

Z
√

∑ (Yi−Xi)n
i=1

n
   (Equation 6) 
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In (Equation 3), (Equation 4), (Equation 5), and (Equation 6), X and Y represent measured and 

predicted values, respectively; n is the number of samples; Xi and Yi are the paired ith values from 

the measured and predicted data, respectively; X and Y are the mean of the predicted and 

observed data, respectively; ρ is the Pearson correlation coefficient between the measured and 

predicted values; σx and σy are the corresponding variances of the measured and predicted 

values; Z is the difference between the maximum and minimum values of the observed data. 

 

2.3 Results and Discussion 

2.3.1 Summary of Soil Properties and Prediction Using MIRS 

There was considerable variability in different soil properties across the study site (Table 3). The 

soil was dominated by silt and relatively high clay content. The soil pH was within the optimum 

tolerance range of the cultivated crops, but the soil salinity (determined by EC) was relatively 

high. While the mean EC values below the 4 dS/m threshold were identified for crop production 

in this region (Bertrand, 1991), EC values determined in our study were as high as 16.9 dS/m. 

The SOM and TN were with the optimum ranges for vegetable production. The skewness of the 

data indicated close to a normal distribution for most of the soil properties, except for EC. 

Kriging interpolation, in general, does not perform well for highly skewed data (Ouyang et al., 

2003) and thus, normality transformations were performed if data became highly skewed with 

different cLHS selections of sampling efforts. Appendix A  included the full dataset for all the 

soil properties.  
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Table 3: Summary statistics of different soil properties 

Statistics of sand, silt, clay, pH, electrical conductivity (EC), soil organic matter (SOM), and 

total nitrogen (TN) from the 0-15 cm depth for standard laboratory analysis (SLA) and mid-

infrared spectroscopy (MIRS). CV refers to the coefficient of variation. The MIRS prediction 

accuracy derived from the SLA using partial least square regression is illustrated by the 

coefficient of determination (R2) and root mean square error (RMSE). 

  
Soil 

property 

SLA analyzed samples  

(n=62) 

MIRS analyzed samples 

(n=308) 

MIRS prediction accuracy 

Mean CV Skewness Mean CV Skewness MIRS - R² MIRS - RMSE 

Sand (%) 33.2 0.37 0.02 37.1 0.31 0.25 0.79 8.43 

Silt (%) 50.4 0.19 0.08 47.6 0.20 -0.01 0.78 6.57 

Clay (%) 16.4 0.27 0.73 15.1 0.26 0.85 0.78 2.72 

pH 5.5 0.05 0.52 5.6 0.05 0.39 0.71 0.42 

EC (dS/m) 2.23 1.07 2.02 5.05 0.72 0.69 0.69 3.13 

SOM (%) 5.4 0.20 -1.07 5.1 0.18 -1.02 0.87 0.46 

TN (%) 0.28 0.21 -0.91 0.26 0.19 -0.61 0.88 0.04 

 

Models derived from SLA and MIRS spectra using the PLSR were fairly accurate for some soil 

properties, but not all (Table 3) highlighting the difference between SLA and MIRS data. The 

best predictions were attained for SOM and TN with R2 values nearing 90%, while the pH and 

EC were predicted with lower accuracies (R2 around 70%). Prediction accuracies for sand, silt, 

and clay were intermediate with R2 values of nearly 80% and fell within or close to the range of 

R2 values reported by other studies using MIRS and PLSR. For example, Masserschmidt et al. 

(1999) achieved R2 of >90% for SOM and Janik and Skjemstad (1995) reported an R2 of 88% for 

N. Our findings were consistent with others who reported, consistently lower prediction 

accuracies for pH and EC. Janik et al. (1998) predicted EC with an R2 of 23%, while Janik and 

Skjemstad (1995) found R2 of 72% for predicting pH using the same techniques. In addition, 



29 

 

Janik et al. (1998) predicted sand, silt, and clay with an R2 of 88%, which is close to the accuracy 

we achieved in our study. While the reduction in accuracy due to modeling MIRS spectra is 

clear, particularly for some soil properties (i.e. up to 30% reduction), the cost savings for the 

differences in accuracy are large. In the present study, MIRS enabled about 5 times the amount 

of sampling for an equivalent cost. 

 

2.3.2 Semivariogram – The Analysis of Spatial Autocorrelation 

The semivariogram analysis was used to compute the experimental variograms (EV), which 

identified the spatial structure of the data to be used for prediction. It was observed that the 

spatial structure weakens with decreasing sampling efforts (e.g. from 60% to 20% sampling 

effort). At the minimum sampling efforts (i.e. 10%, 20%, and 30%) there were limited to no 

spatial patterns, even after short separation distances, especially for the variograms of the SLA 

dataset.   

 

As the spatial structure of the data changed with varying sampling efforts, the shape and 

structure of the EVs also differed. It was evident that the variograms were considerably different 

from each other for the varying intensities of sampling effort, with clear differences between the 

60-100% and 20-40% sampling efforts. An example of how the EVs differed for various 

sampling efforts of the MIRS for TN is shown in Figure 5. The maximum range of spatial 

autocorrelation was observed at the 100% sampling effort as 300 m. The range remained close to 

300 m with the decreasing sampling intensities until it reached 60% sampling effort but 

subsequently, the range declined significantly. Moreover, the nugget effect representing the 

measurement errors or microscale variation causing a discontinuity in the EV near the origin 
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(0,0) becomes larger with decreasing sample efforts. The higher nugget effect may result from 

the sparse sample distribution at the decreased sampling effort and consequent decline in spatial 

autocorrelation (Robinson and Metternicht, 2006). The decline of the spatial structure can be 

further realized if the nugget-to-sill ratios (N/S) are compared where N/S <0.25 indicates strong 

spatial dependence and N/S ranging between 0.25 to 0.75 refers to moderate spatial dependence, 

and finally, N/S >0.75 represents weak spatial dependence indicating poor or meaningless 

kriging prediction (Cambardella et al., 1994; Duffera et al., 2007). For the example demonstrated 

in Figure 5, the N/S ratio ranged between 0.25 to 0.49 for the sampling efforts of 60% to 100%, 

indicating strong to moderate spatial dependence. However, at 40% sampling effort, the ratio 

declined to 0.81, which refers to poor spatial dependence, and at 20% sampling effort there was 

no spatial autocorrelation as observed by the level straight line of EV (Liu et al., 2006). Similar 

results were observed for the other soil properties for which 50% to 60% sampling efforts were 

found as the optimum mark after which the spatial autocorrelation declined substantially.  

 

We also observed that the variance decreased or flattened out with the increasing lag distance 

and thus, at some reduced sampling efforts, EV could not be constructed (Kerry and Oliver, 

2007). In the case of SLA sampling efforts, which comprise 80% fewer samples than its MIRS 

counterpart, poor spatial autocorrelation and variograms were detected even at higher sampling 

efforts.  
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Figure 5: Experimental semivariograms of total soil nitrogen at different sampling efforts  

Predicted using kriging with an external drift model. Data obtained by mid-infrared spectroscopy 

 

Figure 6 displays examples of DSM for the study field at 5 m resolution of sand% and organic 

carbon% produced with SLA and MIRS datasets at 60% sampling effort. DSMs produced with 

the MIRS dataset provided a more detailed representation of the surface compared to the DSMs 

produced with the SLA dataset. MIRS DSMs showed clearly different patterns of soil property 

distribution than the SLA DSMs. In the MIRS DSMs, a greater range of values was predicted 

and there were fewer fine scale isolated patches of distinct values compared to the SLA DSMs. 

We also observed higher kriging prediction variance and edge effects for the SLA DSMs. Some 

linear features that were exhibited in the maps represent wide drainage ditches separating 

different field plots or the farm access roads.    

 

100% sampling effort 

80% sampling effort 

60% sampling effort 

40% sampling effort 

20% sampling effort 
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Figure 6: Examples of digital soil maps for the study field  

Map shows sand% produced with (a) standard laboratory analysis (SLA) or (b) mid-infrared 

spectroscopy (MIRS) and organic matter% (c) with SLA or (d) with MIRS at 5 m resolution 

 

2.3.3 Assessment of Model Performance 

Comparing Equivalent Sampling Efforts of SLA and MIRS 

When comparing the SLA and MIRS sampling efforts for predicting the digital soil maps, our 

analysis showed that the pattern of prediction accuracy differed widely across the soil properties 

and there was a clear difference in performance between SLA and MIRS (Figure 7 and Figure 8). 

It was evident that MIRS always performed better than SLA at an equivalent sampling effort but 

the differences in accuracy decreased as the sampling efforts got smaller. For example, the 

difference in R2 of sand prediction ranged from 0.45 to 0.52 for the 40% to 100% sampling 

d c 

b a 
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efforts of SLA and MIRS while the difference was as low as 0.14 for <40% sampling efforts. We 

also observed that accuracy measures, i.e. R2, CCC, and nRMSE were not always in agreement 

when SLA and MIRS were compared for a specific model. In terms of R2, the pH model for the 

MIRS dataset at 100% sampling effort, for instance, was 69% better than the output using the 

SLA dataset. However, the same prediction output was only 35% and 18% better when nRMSE 

and CCC values, respectively, were compared.  

 

Despite the lower lab accuracy as explained in section 2.3.1, the overall performance of the 

MIRS dataset was substantially better than that of the SLA dataset for each equivalent sampling 

effort. In our analysis, the MIRS dataset had about 5 times more samples than its SLA 

counterpart for the same cost, thus capturing more of the spatial variability across the study site 

and producing stronger prediction performances. If equivalent sampling densities (i.e. number of 

samples), however, were compared instead of the sampling efforts, we might obtain different 

results. For example, both SLA-100% and MIRS-20% sampling efforts had a total of 62 samples 

and from the results, it was clear that SLA-100% performed better than MIRS-20% sampling 

efforts for all the soil properties. This might be due to the prediction inaccuracies that occurred 

during producing the MIRS dataset as explained in section 3.1. Yet, our analysis illustrated that 

the spatial variability was not effectively captured with such a small number of samples (i.e. 

n=62), resulting in weak prediction performances.   

 

Our findings are similar to several previous studies that also confirmed that the use of the MIRS 

technique allowed them to utilize more sample points for DSM and the additional points helped 

them acquire better prediction accuracies without increasing the cost of analysis. A recent 
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regional-scale study conducted in south-west Germany, using MIRS and kriging interpolation, 

generated SOM map with high accuracy as indicated by the overall similarity of 48 – 69% with 

the existing digital map (Mirzaeitalarposhti et al. 2017). Mirzaeitalarposhti et al. (2017) also 

concluded that the use of MIRS significantly reduced the cost of their research as 90% of the 

samples were analyzed with the MIRS technique although no cost comparison with SLA was 

provided. Another study by World Agroforestry Center reported that MIRS analysis of SOC data 

reduced the cost by 70% as compared to that of traditional chemical analysis in their African soil 

information project (Nocita et al., 2015).  O’Rourke and Holden (2011) found spectroscopic 

analysis was 10 times more cost-effective than SLA. In our analysis, the MIRS dataset was 5 

times more cost-effective than the SLA dataset.  The low cost for MIRS enabled the use of far 

more data points than SLA for DSM for an equivalent sampling effort, clearly resulting in better 

prediction accuracies for all the soil properties. 
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Figure 7: Model assessment of the prediction of sand, silt, and clay  

At various equivalent sampling efforts of standard laboratory analysis (SLA) and mid-infrared 

spectroscopy (MIRS) datasets using kriging with external drift. Means and standard deviation 

(error bars) of the iterative analysis of the coefficient of determination (R2), Lin’s concordance 

correlation coefficient (CCC), and normalized root mean square error (nRMSE) are shown.    



36 

 

 

Figure 8: Model assessment of the prediction of soil pH, electrical conductivity (EC), soil 

organic matter (SOM) and total nitrogen (TN)  

At various sampling efforts of standard laboratory analysis (SLA) and mid-infrared spectroscopy 

(MIRS) datasets using kriging with external drift. Means and standard deviation (error bars) of 

the iterative analysis of the coefficient of determination (R2), Lin’s concordance correlation 

coefficient (CCC), and normalized root mean square error (nRMSE) are shown.    

 

Trade-offs between Cost and Accuracy of the Predictive Models 

The results of the model assessment described above clearly show that the relationship between 

sampling efforts and prediction accuracy was generally non-linear for most of the soil properties 

(Figure 7 and Figure 8). With decreasing sampling efforts, the prediction accuracy declined 
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exponentially for most soil properties regardless of methodology or accuracy metric. In a few 

cases, the decline was sharper and more linear, e.g. the decline in CCC of silt prediction between 

50% and 20% of SLA sampling efforts (Figure 7), and the decline in R2 of pH prediction 

between 50% and 10% of MIRS sampling efforts (Figure 8).  

 

We found that the prediction accuracies significantly improved up to the 50% to 60% sampling 

efforts of both SLA and MIRS and after this point, the accuracy did not equally improve. Similar 

results were obtained by Simbahan and Dobermann (2006) when they tested the prediction 

accuracy of a regression kriging model for SOC using sample sizes of 50, 100, 150, and 200 and 

found that RMSE of prediction did not improve or minimally improved after reaching the sample 

size of 100. However, as we already mentioned, predictions using the MIRS datasets were more 

accurate than the predictions using the SLA datasets at equivalent sampling efforts. While data 

points were added with the increasing sampling efforts, the spatial autocorrelation was captured 

at the 50% to 60% sampling effort, which resulted in the most effective prediction performance 

in terms of both the prediction accuracy and cost. For example, the CCC values of sand 

prediction using the MIRS dataset were improved by 184% between 10% and 60% sampling 

efforts, whereas between 60% and 100% sampling efforts accuracy only improved by 4%. This 

4% improvement in accuracy for CCC between the 60% and 100% sampling efforts cost 984 C$; 

i.e. 246 C$/1% accuracy improvement. In contrast, an investment of only 7 C$/1% accuracy 

improvement of CCC was required between 10% and 60% sapling efforts. For a dynamic soil 

property such as pH, the prediction using MIRS dataset required an investment of 4 C$/1% 

improvement of CCC between 10% and 50% sampling efforts, whereas the investment was 93 

C$/1% improvement between 50% and 100% sampling efforts. Mapping using the full dataset of 
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308 points with SLA would have cost 12,320 C$, whereas the total cost of the full MIRS dataset 

was only 2,464 C$, highlighting the cost efficiency of using the MIRS technique. Although the 

investment for 1% accuracy improvement varies for different soil properties, it was clear that the 

model performance was most cost-effective at the 50% to 60% sampling efforts considering the 

high incremental cost and the unequal gain in the prediction accuracy above 60%.  

 

Thus, applying the cLHS sample selection technique and sampling at an intensity of 2-3 samples 

per hectare (i.e. 50-60% data points of the initial sampling effort derived from a 40 x 40 m grid) 

provided the most effective sample design for DSM for our study field in terms of the accuracy 

of the KED model and costs. This sampling density is substantially different than that 

determined by Kerry et al. (2010) for a study field in Wallingford, England. Using a 30 x 30 m 

sampling grid for their analysis, they reported that spatial variability was captured most 

effectively at the 100-120 m sampling interval (i.e. 0.7-1 sample per hectare). Although our 

sampling intensity was higher than in Wallingford, this may not be the most effective intensity in 

all cases as soil property, environmental conditions, and management strategy vary from site to 

site. While it is unlikely that farmers would sample at such high density by hand frequently, our 

analysis demonstrates the intensity of sampling that could be employed to calibrate hand-held or 

tractor-mounted MIRS techniques.   

 

2.4 Chapter conclusions 

Identifying an effective sampling effort is critical for maximizing the accuracy and minimizing 

the cost of DSM models. We compared 20 different sampling efforts derived from the datasets of 

standard laboratory analysis (SLA) and mid-infrared spectroscopy (MIRS) for producing digital 
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maps of a suite of soil properties including sand, silt, clay, pH, EC, SOM and TN. We 

determined that at an equivalent sampling effort the MIRS dataset produced more accurate maps 

of selected soil properties as compared to the maps predicted by SLA datasets, although the 

prediction accuracy varied across the soil properties and by accuracy metric (e.g. R2, CCC, and 

nRMSE). Our analysis showed that the cost per improvement in accuracy with increasing 

sampling efforts was optimized at the 50-60% sampling effort. Thus, a sampling density of 2-3 

samples per hectare, selected using a spatial sample selection technique (e.g. cLHS), and 

analyzed using MIRS in the lab was the most cost-effective approach for the production of 

accurate DSMs for our study field. However, these findings may vary for mapping in other crop 

fields with different soils, topography or management history. Hence, further analysis should 

explore how these findings may differ based on soil type, environmental covariates, or field 

management. 
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Chapter 3: Mapping soil organic carbon and clay using remote sensing to 

predict soil workability for enhanced climate change adaptation 

 

3.1 Chapter introduction 

Agricultural production worldwide has become highly mechanized to reduce labor, increase 

efficiency and to meet the demand of the growing global population. Mechanized farming 

operations often must be done under a narrow range of weather conditions to avoid adverse 

impacts because soil conditions at the time of mechanized operation determine the level of 

degradation of soil structure.  This is becoming more challenging as weather patterns are rapidly 

shifting and becoming more unpredictable in many parts of the world (Chipanshi et al., 2018). 

Excessive precipitation, for example, can cause poor soil trafficability, restricting the use of farm 

equipment during critical times of the growing season (Kolberg et al., 2019; Servadio et al., 

2016). Soil trafficability is a condition at which a soil provides sufficient tire-traction for the 

farm vehicles without causing the soil structural deformation (Earl, 1997). The use of farm 

machinery when trafficable conditions are not optimal destroys soil structure and leads to soil 

compaction (Müller et al., 2011). This is of particular concern in humid regions where 

precipitation can cause soil saturation during certain parts of the year, resulting in considerable 

delays in field preparation or harvesting which may shorten growing season and potentially 

reduce crop yields. Therefore, the shifting precipitation patterns, projected by various climate 

models (Fischer and Knutti, 2016), will likely reduce the number of days when agricultural soils 

are workable with heavy equipment without causing soil degradation (Tomasek et al., 2017). 

Site-specific optimum water content information for soil workability could be of value for 
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scheduling farm management operations as well as evaluating the impacts of changing climatic 

conditions and developing associated adaptation strategies.    

 

In the literature, a soil workability threshold (WT) is defined as the optimum soil water content 

at which mechanical tillage operations lead to a maximum number of soil aggregates (Dexter and 

Bird, 2001; Müller et al., 2011). WT is a combination of soil trafficability and the capacity of 

soil to be operated without causing substantial damage to its structure (Earl, 1997). WT depends 

on a number of soil properties, including texture, soil organic carbon (SOC), bulk density (Obour 

et al., 2017). The soil bulk density can increase as a result of overburden pressure imparted to the 

soil by machinery, while the WT is mainly controlled by the balance of precipitation, drainage, 

and evapotranspiration. However, both bulk density and WT are strongly related to SOC and soil 

texture (Gupta and Larson, 1979). Given these relationships, many previous studies proposed 

methodologies to estimate WT using these two key soil properties. For example, Dexter and Bird 

(2001) applied SOC and texture data and the water retention characteristics of the soil to 

determine WT, while some authors, like Kretschmer (1996) and Mueller et al. (1990) proposed 

the use of consistency limits of cohesive soils for this purpose. Additionally, Bueno et al. (2006), 

Mapfumo and Chanasyk (1998), Rounsevell (1993), and Rutledge and Russell (1971) found that 

WT is highly correlated to 95-99% of the soil water content at field capacity for different soil 

types.  

 

Determination of WT using soil consistency is mainly based on the Atterberg’s plasticity limits – 

lower plastic limit (LPL) and upper plastic limit (UPL) (Campbell, 1991). Soil exhibits liquid 

behavior and can freely flow at the water content above UPL, but it shows friability and breaks 
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apart under pressure at the water content below LPL (Keller and Dexter, 2012). Soil needs to be 

at this friable stage during mechanical operation for optimum tillage; hence, determining this 

threshold is critical (Keller et al., 2007; Mueller et al., 2003). Since WT is certainly associated 

with the soil water content at LPL, the estimation of WT using the plasticity limits has been 

widely used for different soil types (Mueller et al., 2003; Smedema, 1993). The applications of 

this technique may not be effective for non-cohesive sandy soils; however, it is of value for 

cohesive, clay-rich soils that often have poor drainage (Dexter and Bird, 2001). Furthermore, 

there are well-established pedotransfer functions (PTFs) that can determine LPL and UPL from 

the soil texture and SOC data. For example, Kværnø et al. (2007) validated PTFs derived LPL 

and UPL values against field measurements achieving R2 from 0.94 to 0.97. While the PTFs are 

extensively utilized, the most direct way of measuring LPL and UPL is from the remoulded soil 

at the laboratory (Obour et al., 2017). However, these PTFs can provide a considerable 

advantage in terms of time and cost-effectiveness when landscape-scale spatial variability of WT 

is of interest.  

 

Given that soil properties are highly heterogeneous, spatially explicit and landscape-scale 

information on WT would be helpful for designing effective climate-adaptive management 

strategies. Yet, such information is not widely available to agricultural producers except in some 

selected regions. Mueller et al. (2003) demonstrated that available soil survey data and PTFs can 

be combined to assess the landscape-scale spatial variability of WT.  Kværnø et al. (2007) 

presented a Norwegian case study where they examined the nature and extent of variability in 

soil texture, SOC, and WT within various soil map units using the approach described by 

Mueller et al. (2003). But the mapping of WT at the landscape-scale, using advanced digital soil 
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mapping (DSM) of SOC and clay (CL) that integrates remote sensing (RS) and machine learning 

(ML) techniques (e.g. random forest and generalized boosted regression model), is still limited 

and needs further development. Advanced DSM is currently being used widely for predictive 

mapping of different soil properties with high accuracies (Heung et al., 2016; McBratney et al., 

2003). Hence, landscape-scale mapping of WT using these state-of-the-art tools coupled with the 

PTFs of plasticity limits can provide particular benefits for devising regional soil management 

strategies to enhance adaption to changing climatic conditions. It is, however, unclear how 

effectively PTFs may be used for developing DSMs of WT and what modeling approach is best 

suited for these types of data. 

 

To address these research gaps, the specific objectives of this study were to (1) produce maps of 

SOC and CL using advanced RS technique and two ML models including random forest (RF) 

and generalized boosted regression model (GBM), (2) compare the outcomes of the ML models 

for mapping SOC and CL, and (3) generate landscape-scale map of WT based on the PTFs 

described in Mueller et al. (2003). We conducted the study in the highly intensive agricultural 

landscape of Delta, British Columbia, Canada, where a combination of the soils with moderate to 

fine texture, poor natural drainage, and increasing spring and fall precipitation has amplified 

concerns for soil workability.   

 

3.2 Methods 

Our approach in this study included a combination of field sampling and geospatial analysis 

using DSM and RS techniques, and Figure 9 shows the steps involved in our analysis.  
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Figure 9: Schematic diagram showing the steps of producing the maps of soil organic 

carbon (SOC), clay (CL), and the workability threshold  

R2, RMSE, and CCC refer to the coefficient of determination, root mean square error, and 

concordance correlation coefficient, respectively 

 

 

3.2.1 Study area 

The study area represents the agricultural landscape within the City of Delta (49.08 N, 123.06 

W), British Columbia, Canada and contains an area of 120 km2 (Figure 10). Our analysis was 
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restricted to land within the British Columbia’s Agricultural Land Reserve.  The study area is in 

the Fraser River delta and close to the ocean with an average elevation of 10 m above mean sea 

level. This area comprises a mild, humid climate with a mean annual temperature of 11.1ºC and 

mean annual precipitation of 1189 mm based on 30-year climate records (Environment Canada, 

2019). The area is characterized by highly fertile, silty clay loam to silt loam soil with known 

issues of poor drainage. Delta is one of the most productive agricultural regions of British 

Columbia and produces a major share of the province’s vegetable and blueberry crops. For the 

vegetable crops grown in the region, trafficability, is a major concern as a number of mechanized 

operations are required for preparation of the crop in the spring including disking, tillage, 

forming beds, nutrient applications, and planting.  In that fall, heavy equipment is again used for 

operations like harvest, disking, tillage and sowing of cover crops.  Trafficability is not as much 

of a problem for blueberry production, as mechanized operations of mowing grasses alleyways 

and harvesting are done during typically dry summers.  During the winter, however, farmers do 

use heavy equipment to assist with pruning operations.  
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Figure 10: Map showing the fields sampled across the study area  

At each field, 4 plots (P1, P2, P3, and P4) were sampled and 4 sub-samples (a, b, c, and d) were 

composited at each plot to get a representative sample from an area of 900 m2 (an area covered by 

a Landsat satellite image pixel) 

British 

 

a b 

c 

d 

P1 

30 m 
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3.2.2 Soil sampling and laboratory analysis 

Across the study area, we collected a total of 310 soil samples at the 0–15 cm depth (Table 4) 

that were representative of different land use types (i.e., various annual and perennial crops, 

grassland, and hedgerow). At each sampling plot, we collected 4 samples (Figure 10) from an 

area roughly covering the area of a Landsat image pixel (i.e., 900 m2). The soils from these 4 

samples were composited to get a representative sample for that plot, while the center of the plot 

was recorded with a GNSS Pro 6H Differential Global Positioning System (DGPS) (Trimble 

Inc., Sunnyvale, California, USA) with post-processing accuracy varying from 10 - 50 cm.  

 

We sent 25% of the samples (n = 75) to the Technical Service Laboratory of British Columbia 

Ministry of Environment for determination of SOC using the combustion elemental analysis with 

a Vario EL Cube Elemental Analyzer (Elementar, Langenselbold, Germany) and for soil clay 

(CL) using the hydrometer method (Kroetsch and Wang, 2007). We also analyzed all the 

samples (n = 310) in the TENSOR 37 spectrometer (Bruker Instruments, Ettlingen, Germany) 

using mid-infrared spectroscopy where the data from the standard laboratory analysis were 

utilized for calibration and validation in a Partial least square regression (PLSR) model.  
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Table 4: Total number of soil samples collected at 0-15 cm depth for various land use types 

 

Land use type Number of samples 

Annual crop 193 

Perennial crop (blueberry) 60 

Grassland 37 

Hedgerow 20 

Total 310 

 

 

3.2.3 Environmental variables for predicting SOC and CL 

Topographic indices: We used the provincial 25 m Terrain Resource Information Management 

(TRIM) digital elevation model (BC TRIM, 2012) to derive a suite of topographic indices. We 

resampled the digital elevation model to 30 m.  SAGA 2.1.2 software was then utilized to 

produce analytical hill shading (AHS), aspect, catchment area (CA), channel network base level 

(CNBL), closed depressions (CD), convergence index (CI), cross sectional curvature (CSC), 

longitudinal curvature (LC), slope-length factor (LS), multiresolution index of the ridge top 

flatness (MRRTF), multiresolution index of valley bottom flatness (MRVBF), negative 

topographic openness (NOpen), positive topographic openness (POpen),  relative slope position 

(RSP), slope, terrain ruggedness index (TRI), total wetness index (TWI),  valley depth (VD), and 

total curvature (TC) from the DEM. The details of the computation of these indices are described 

here: http://www.saga-gis.org/saga_tool_doc/2.1.3/a2z.html. Behrens et al.  (2010), Lacoste et al. 

http://www.saga-gis.org/saga_tool_doc/2.1.3/a2z.html
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(2014), and Schillaci et al. (2017) utilized some or all these topographic indices for producing 

DSM at different scales.  

 

Existing soil survey and agricultural land use inventory: We used the existing detailed 

Canadian soil survey (1981) information and the data from British Columbia Ministry of 

Agriculture’s agricultural land use inventory (2010) to derive environmental predictors. We 

extracted sand%, silt%, clay%, and cation exchange capacity (CEC) from the polygon-based soil 

survey map using a 30 m grid and produced raster layers for each of the soil properties using 

inverse distance weighting (IDW) interpolation. In the case of multi-component map units, we 

used the dominant (i.e., covering >50% of the unit area) category and assigned values 

accordingly; however, there were only a few cases with multi-component map units. The data 

from agricultural land use inventory (ALUI) represents detail land use information of every crop 

field within the agricultural land reserve in the study area (BC Ministry of Agriculture, 2016). 

This polygon dataset was directly rasterized to produce the ALUI covariate at 30 m spatial 

resolution.  

 

Landsat image-derived indices: We downloaded the Landsat 8 Level-2 surface reflectance 

images (Path 47, Row 26) for 2016 from the United States Geological Survey Earth Explorer 

data warehouse. Four Landsat scenes captured on the dates May 31, July 02, July 18 and August 

19 of 2016 were used in this study to capture the seasonal variability of the agricultural 

landscape. Acquiring images with minimum or no cloud cover was a significant challenge and 

limited the choice during the image selection process. We derived a suite of soil and vegetation 

indices (Table 5) and several image textural variables, including homogeneity (Homo), contrast 
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(Cont), and dissimilarity (Diss) of the images. These indices were developed for each of the four 

images of 2016. To produce the textural variables, we used the grey level co-occurrence matrix 

(GLCM) (Clausi, 2002) and derived the textural variables for the Near-Infrared (B5), Short-wave 

Infrared-1 (B6), and Short-wave Infrared-2 (B7) bands of the Landsat images. We applied the 

‘glcm’ package in R to generate these textural variables (Zvoleff, 2016).  

 

Table 5: List of soil and vegetation indices 

In the formula, R, B, NIR, SWIR1, SWIR2 refer to the red, blue, near-infrared, short wave 

infrared-1, short wave infrared-2 bands of Landsat 8 satellite imagery, respectively, while L 

refers to canopy background adjustment factor 

 
Soil and vegetation indices Formula References 

Normalized Difference Vegetation Index (NDVI) (NIR – R) / (NIR + R) Rouse et al. (1974) 

Soil Adjusted Vegetation Index (SAVI)  (1+L) (NIR – R) / (NIR+R+L), L=0.5 Huete (1988) 

Normalized Difference Moisture Index (NDMI) (NIR – SWIR1) / (NIR + SWIR1) Hunt Jr & Rock (1989) 

Soil Brightness Index (SBI)  √((R)2 + (NIR)2) Elvidge & Lyon (1985) 

Normalized Difference Tillage Index (NDTI)  (SWIR1–SWIR2) / (SWIR1 + SWIR2) Van Deventer et al. (1997) 

Clay Minerals Ratio (CMR) SWIR1 / SWIR2 Carranza & Hale (2002) 

Bare Soil Index (BSI)  ((SWIR1 + R) – (NIR + B)) / 

((SWIR1+R) + (NIR + B)) * 100 + 100 

Rikimaru et al. (2002) 

 

3.2.4 RF and GBM for predicting SOC and CL 

We then used two ML models – RF (Breiman, 2001) and GBM (Friedman, 2001) to predict SOC 

and CL. These decision tree-based ensemble models are comprised of a number of nodes and 

leaves where the nodes perform an ‘if-then’ statement based on the inferred relationships 

between the dependent variables and a set of predictor variables. The leaves represent the ‘end-

nodes’ where a decision is made for the prediction (Bui and Moran, 2001; Heung et al., 2014). In 
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RF and GBM, outputs from an ensemble of decision trees are combined to improve the 

prediction accuracy and thus, they are being utilized for predicting complex soil-landscape where 

the prediction is usually dependent on a large number of variables (Heung et al., 2016; Schillaci 

et al., 2017). RF and GBM models have their own procedures for measuring the variable 

importance (VI). RF calculates the percent increase in mean square error (%IncMSE) of 

prediction by removing the variables one by one from the model and accordingly, determines the 

importance of each of the variables (Breiman, 2001). On the other hand, GBM measures the 

‘relative importance’ score for each variable based on the empirical improvement of the model 

attained by splitting on a variable at the nodes and averaging over all boosted trees (Friedman, 

2001).  In this study, we used the ‘randomForest’ (Brieman et al., 2015) and ‘gbm’ (Ridgeway, 

2015) packages in R to implement these models. We used 70% of the field data (n=310) for 

training the models, while the rest of the data were applied for accuracy assessment. We utilized 

coefficient of determination (R2), concordance correlation coefficient (CCC), root mean square 

error (RMSE), and normalized root mean square error (nRMSE) to assess the accuracy of the 

predicted outputs. nRMSE is the RMSE value normalized by dividing by the difference between 

the maximum and minimum values of the observed data (Shen et al., 2016). (Equation 3), 

(Equation 4), (Equation 5), and (Equation 6) described these accuracy measures in section 2.2.5. 

Between the two models, the most accurate prediction of SOC and CL were used in the 

subsequent step for estimating WT. 

 

3.2.5 Prediction and validation of WT 

In this study, we used a series of PTFs for predicting WT. At first, we determined the UPL and 

LPL using (Equation 7) and (Equation 8) where the SOC and CL maps produced were used as 
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the inputs. (Equation 7) and (Equation 8) were modified after Olson (1975) considering that SOC 

comprises 50% of the total organic matter in the soil (Pribyl, 2010). Although the conventional 

method considers that SOC constitutes 58% of the total organic matter or a conversion factor of 

1.72 (Van Bemmelen, 1890), recent studies have reported stronger theoretical and empirical 

evidence in support of using a conversion factor of 50% or 2 (Kätterer et al., 2011; Pasley et al., 

2020; Pribyl, 2010; Tammeorg et al., 2014). Using an independent field validation, we also 

observed a stronger correlation with our modeled data when a conversion factor of 2 was used. 

The maps of UPL and LPL were then applied to (Equation 9) to predict WT which is the 

maximum soil water content that provides optimum workability (Kværnø et al., 2007; Mueller et 

al., 2003). In all equations, the soil water content is represented as gravimetric %.    

UPL = 11.9 + 0.92 x CL% + 0.08 x SOC% (after Olson, 1975) (Equation 7) 

LPL = 7.15 + 0.199 x CL% + 1.957 x SOC% (after Olson, 1975) (Equation 8) 

WT = LPL - 0.15 x (UPL - LPL) (Kretschmer, 1996; Mueller et al., 2003) (Equation 9) 

 

To validate the prediction of WT, we collected an additional set of soil samples from 22 

locations across the study area using a Conditioned Latin Hypercube Sampling technique 

(Minasny and McBratney, 2006) which selected stratified random sampling locations based on 

the spatial variability of the topography and soil types of the study area. The samples were 

collected as undisturbed cores at 0-7.5 cm depth and analyzed in the lab to determine the soil 

water content at field capacity at -10 kPa. We herein used -10 kPa matric potential for field 

capacity since our PTF of WT is assumed to be equal to the water content at this matric potential 

(Kværnø et al., 2007). We used Richard’s Pressure Plate Apparatus (Richards and Fireman, 
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1943) for this purpose. The samples were completely hydrated, weighed, placed inside the 

pressure plate chamber, and allowed to equilibrate at -10 kPa pressure. We then oven-dried the 

samples at 105ºC for 48 hours and weighed again. We determined the soil bulk density from the 

mass of oven-dried soils and the volume of the sampling core. Particle density was also 

calculated using the mass of oven-dried soils and the total volume of soil particles. We then 

calculated the porosity of soil using (Equation 10). Finally, the soil water content at -10 kPa (or 

at field capacity) was determined by applying (Equation 11). 

Porosity of soil = (1 - 
Bulk density

Particle density
)x 100 (Equation 10) 

Soil water content at -10 kPa = Water lost at -10 kPa x  
Porosity of Soil

Total water lost
 (Equation 11) 

 

Thereafter, we extracted the WT values of these 22 locations from the predicted map and tested 

for the accuracy measures described in section 2.2.5 (i.e., R2, CCC, RMSE, and nRMSE). 

 

3.3 Results and Discussion 

3.3.1 Summary of soil properties from the field plot data 

The SOC and CL in the study area varied substantially as would be expected in a region where 

land use is very heterogeneous and texture is influenced by the dynamics of the large adjacent 

river (Table 6). The range of SOC values in the sampled field plots may be attributed to the 

variable nutrient and soil management practices in these fields, the types of crop (i.e., annual vs. 

perennial crops) and non-production perennial vegetation (i.e., hedgerow, grass margin) scattered 

in and around the field. On the other hand, the range of the CL content was much larger than that 

of SOC, with plots closer to the river exhibiting higher CL content. 
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Table 6: Summary statistics for soil organic carbon (SOC) and clay (CL) 

 

Soil Property Minimum Maximum Mean Standard Deviation Range 

SOC (%) 0.58 4.76 2.82 0.78 4.18 

CL (%) 6 29 18.81 7.82 27 

 

3.3.2 Selection of environmental variables for RF and GBM models 

Of the 80 environmental variables derived from multiple sources, including topography (i.e., 

digital elevation model), soil survey and ALUI, and Landsat imagery, our analysis identified 

between 29 and 41 variables of high importance depending on the modeling approach. We ran 

the models for both SOC and CL with including all the environmental variables and then, 

identified the top predictors based on a threshold value of 5 for %IncMSE in RF and a threshold 

value of 1 of relative importance score in GBM. This process reduced the number of variables by 

35-50% depending on the soil property and the type of model (Figure 11 and Figure 12). Overall, 

the topographic variables and soil survey and ALUI variables were found to be stronger 

predictors than the Landsat variables based on the VI scores for both models. It is also important 

to note that the Landsat indices, derived from the images of pre-growing and post-harvest 

seasons, when soils were left without cover, explained more variance predictors than the indices 

developed from the growing season images. The CEC was found to be the most dominant 

predictor for SOC in both models, while the multiresolution index of the ridge top flatness 

(MRRTF) and land use types from ALUI were the most important variables for predicting CL 

using RF and GBM models, respectively. We also performed a Pearson correlation analysis on 

the selected variables presented in Figure 11 and Figure 12 and removed any variable from the 

final model if it had a correlation coefficient value of ≥80% with another variable.  
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Figure 11: Most important environmental variables in random forest model  

a) for predicting soil organic carbon, b) for predicting clay. See section 3.2.3 for the full name of 

the variables. 

a) 

b) 
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Figure 12: Most important environmental variables in generalized boosted regression 

model  

a) for predicting soil organic carbon, b) for predicting clay. See section 2.3 for the full name of 

the variables 

a) 

b) 
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3.3.3 Assessment of the performance of RF and GBM models  

In our study, both ML models performed reasonably well, but there were important differences 

in their accuracy metrics depending on the soil property. Both RF and GBM models predicted 

CL more accurately than SOC, although the differences were minor (Table 7). We found that RF 

outperformed GBM for both SOC and CL for all accuracy metrics (i.e., R2, CCC, and nRMSE). 

However, the differences between the models were more obvious when R2 values were 

compared for both SOC and CL. The nRMSE and CCC of predictions were somewhat close to 

each other, especially for SOC. The R2 and CCC of SOC prediction using RF were 38% and 

12% higher, respectively than those using GBM, while the nRMSE was 14% less with the RF 

model. We found similar results for the prediction of CL where the differences in R2, CCC, and 

nRMSE were 51%, 26%, and 25%, respectively between the outcomes of RF and GBM models. 

We also tested the model accuracy when including all the 80 variables for all cases to test if 

discarded variables had any effect on the model performance. We found that the model 

accuracies were not impacted, except the R2 and CCC of RF-CL prediction were decreased by 

3% and 2%.  

 

That the RF model performed better than GF in our study is consistent with Wang et al. (2018) 

who mapped SOC in a semi-arid rangeland of Australia, predicting SOC with R2 values ranging 

between 0.42 and 0.48 and CCC values ranging from 0.56 to 0.62 for various sets of 

environmental variables, compared with values for R2 (0.55) and CCC (0.7) for RF in the present 

study. In contrast, the study by Yang et al. (2016) reported that GBM performed better than RF 

for modeling SOC in an alpine ecosystem, especially in the areas with greater vegetation cover.  
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Table 7: Accuracy of prediction of soil organic carbon (SOC) and clay (CL)  

Using random forest (RF) and generalized boosted regression model (GBM). R2, CCC, and 

nRMSE represent the coefficient of determination, concordance correlation coefficient, and 

normalized root mean square error (nRMSE) respectively 

 

Model Accuracy metrics SOC CL 

RF 

 

R² 0.55 0.62 

CCC 0.70 0.72 

nRMSE 0.12 0.15 

GBM 

 

R² 0.39 0.41 

CCC 0.55 0.63 

nRMSE 0.14 0.20 

 

Landscape-scale prediction of CL using these techniques is relatively sparse in literature, but our 

findings support the results of Chagas et al. (2016) who predicted CL with RF and obtained an 

R2 of 0.56, which is slightly lower than what we were able to achieve in this study. Our results 

did differ from those of Sindayihebura et al. (2017) who demonstrated that GBM better predicted 

CL across Burundi’s central plateau in Africa. Such differences in the performance of these ML 

models in various studies have been mainly attributed to the dissimilarities in landscapes and 

environmental conditions, the scale of prediction, and the type and quality of environmental 

variables used (Were et al., 2015). Therefore, selecting a single ML model as the best method for 

predicting landscape-scale soil properties is difficult, and largely site and case dependent (Ließ et 

al., 2016). In our study, the RF model likely outperformed GBM because of the RF model’s 

simple parameterization and reduced susceptibility to overfitting as well as greater descriptive 
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power that enables the model to decipher the complex and hierarchical relationships between the 

environmental variables and the target soil properties (Wang et al., 2018).  

 

We also examined the influence of each variable category on the prediction accuracy of the 

models where the results reported in Table 7 were used as the benchmark for comparison (Figure 

13). The topographic variables were the most important category of predictors in our study, 

regardless of model or soil property. However, they showed significantly stronger predictive 

capability for some cases of GBM as compared to RF. For example, when topographic variables 

were included in the GBM model, the R2 of SOC prediction was improved by 56% whereas the 

improvement was 32% for RF. Similarly, R2 of CL prediction was improved by 105% for GBM 

and by 27% for RF when the topographical variables were included. The second most important 

predictor category was the soil survey and ALUI variables followed by the Landsat variables. 

We also observed that Landsat variables were more influential for RF predictions than those of 

GBM. For instance, the R2, CCC, and nRMSE of the RF prediction of SOC was improved by 

15%, 7%, and 15%, respectively when Landsat variables were added to the model, but the 

improvements were 3%, 2%, 6%, respectively when modeled with GBM. We obtained similar 

results for the prediction of CL. 
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Figure 13: Improvement (%) in model accuracy  

In terms of R2 (coefficient of determination), CCC (concordance correlation coefficient), and 

nRMSE (root mean square error) for the topographic, soil survey & ALUI, and Landsat variables 

using both random forest (RF) and generalized boosted regression (GBM) models for predicting 

soil organic carbon (SOC) and clay (CL) 

 

As mentioned above, the performance of the ML models is highly dependent on-site 

characteristics, and the predictive capability of the environmental variables differs from case to 

case. For instance, the strong performance of soil and vegetation information derived from 

Landsat variables was reported by Chagas et al. (2016) and Grinand et al. (2017) for predicting 

CL and SOC, respectively using the RF model whereas Grimm et al. (2008) and Schillaci et al. 
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(2017) found topographic indices along with the soil survey and land use data as the most 

important predictors of SOC in their studies using both RF and GBM models. The findings of the 

latter two examples agree with our results. The topography of a site is related to the erosion and 

deposition of soil materials (Cavazzi et al., 2013); hence, it was expected that topographic 

variables would have a strong correlation with the target soil properties. In addition, the soil 

survey data used in our study captured the inherent characteristics of the soil-landscape and a 

much greater distribution of field-based data than in our study. Although these data were 

collected almost 40 years ago, soil texture is unlikely to change and changes in SOC are likely to 

have been correlated with land use. The agricultural land use data informed the model about the 

agricultural practices of the study area.  This would likely be even more useful if we had data on 

land use changes over time. A study by Schillaci et al. (2017) found that incorporating multiple 

Landsat images spanning the whole season was more effective for predicting soil properties at 

landscape-scale, but we did not observe a strong predictive influence for the Landsat variables, 

even after including a large number of indices derived from four Landsat images representing the 

whole growing season. Kheir et al. (2010) reported that the removal of the Landsat variables 

increased the overall accuracy of their predictions.  However, in our case, Landsat variables 

improved the accuracy of the models by 6 to 15% (Figure 13); although the improvement was 

not large, Landsat variable including contributed to model performance.  

 

Even though the variable selection process substantially reduced the number of the variables and 

satisfactory predictions were obtained using them, we attempted to assess the model performance 

with even fewer variables so that we can identify the key predictors and minimize the analysis 

effort. To accomplish this, we ran the models including only two top predictors from each 
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category. For instance, the RF-SOC model only included MRVBF, CNBL, CEC, Clay%, SAVI 

pre-growing, and SBI harvest as the predictor variables. We then compared the outcomes of 

these reduced models with the results of the full model as shown in Table 7. Interestingly, we 

achieved relatively similar accuracies for both RF and GBM models, with some variation 

depending on the soil property and accuracy metric. The accuracy remained the same for all the 

metrics of the RF-SOC model; however, the accuracy of the RF-CL model decreased by 20%, 

7%, and 34% in terms of R2, CCC, and nRMSE, respectively. On the other hand, for the GBM 

model, the results did not change substantially for either soil property, where R2 of the 

predictions decreased by 5% and 9% for SOC and CL, respectively. These findings somewhat 

agree with the results obtained by Wang et al. (2018) where prediction accuracies for SOC 

remained unchanged or slightly improved when a more parsimonious model was used, although 

their variable selection approach was more complex compared with ours. Based on these results, 

we conclude that identifying only a few key environmental covariates based on the variable 

importance scores for a specific geographical area can improve the accuracy of digital soil maps. 

This may substantially reduce the analysis effort for producing the additional covariates.  

 

3.3.4 Spatial distribution of SOC and CL 

Given that the RF model performed better than GBM, it was used to predict the SOC and CL for 

the entire study area at a 30 m spatial resolution. The SOC content in our study area varied from 

1.5 to 4.5% (Figure 14). Although there were several patches of crop fields with a higher 

concentration of SOC distributed across the area; generally, the fields in the north-eastern region 

had the highest concentration of SOC. This region of the study area borders Burns Bog, which is 

a unique ombrotrophic raised peat bog in the Fraser River Delta (Hebda et al., 2000). Moreover, 
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this region was dominated by perennial highbush blueberry production which is known for 

sequestering carbon in the soil (Nemeth et al., 2017). Together, the historic bog ecosystem 

followed by a perennial cropping system resulted in a high SOC of this small region of the study 

area. Fields dominated by intensive annual crop production exhibited lower SOC concentration. 

In addition, the fields with lower SOC, especially on Westham Island have known issues of soil 

salinity (Lussier et al., 2019). High salinity reduces crop production resulting in inputs of organic 

matter and in turn, lower SOC concentrations (Rietz and Haynes, 2003).  

 

The study area is characterized by CL content that ranged between 8 and 29% (Figure 15), where 

the western half of Delta was dominated by fields with higher CL. However, the highest CL 

values were observed in the fields adjacent to the river which deposited a large amount of fine 

sediments on those fields over the course of soil formation. Although Clay% from the soil survey 

data was one of the strongest predictors of SOC in the RF model, the CL and SOC were 

inversely correlated in our maps with a Pearson correlation coefficient of -0.19. Numerous 

studies have reported the opposite trend, showing the chemical adsorption of carbon onto the 

surface of clay minerals led to greater SOC in clay-rich soils than in coarse-textured ones 

(Johannes et al., 2017; Singh et al., 2018). In our study area, the fields with higher CL are also 

characterized by poor drainage, which in combination with intensive tillage, often destroys soil 

structure, compaction, and increased soil erosion (Müller et al., 2011), causing loss of SOC 

(Lilly et al., 2018). Thus, the observed reverse relationship between CL and SOC suggests that 

intensive tillage is most likely resulting in SOC losses across the study region. Our maps will 

provide a base-line for long-term monitoring across the region and enable tracking of future 

changes in SOC.   
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Figure 14: Soil organic carbon map of the study area predicted using random forest model 

 

 

Figure 15: Clay map of the study area predicted using random forest model 
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3.3.5 Distribution of WT and accuracy of prediction 

The prediction of WT for agricultural land in Delta resulted in higher than standard accuracy 

when validated with independent soil samples analyzed for field capacity at -10 kPa. The 

validation of the predicted WT map (Figure 16) resulted in R2 of 0.59, CCC of 0.70, and nRMSE 

of 0.15. The WT ranged from 20 to 42% across the study area, where fields with high SOC 

and/or low CL exhibited high WT, and vice versa. Although we have found no other studies that 

have used advanced DSM to predict WT, Kværnø et al. (2007) produced a map of WT using 

simple kriging of the estimated values from soil map units; however, they concluded that their 

WT map did not capture the differences between soil types, especially at the boundaries between 

two or more soil units. Our map of WT is a substantial improvement in this regard as it 

effectively captured the variation in soil properties in a more continuous manner across the study 

area.   

 

Figure 16: Soil workability (WT) map of the study area  

WT values represent the optimum gravimetric soil water content (%) above which soil may be 

degraded with any mechanical operation 
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The WT map highlights that a substantial portion of the crop fields in Delta will likely face 

serious challenges due to poor workable conditions especially during the wet part of the year 

(i.e., spring and fall).  Our map showed that 40% of the crop fields in Delta had a WT <30% 

(category-1), while 59% had a WT ranging from 30-40% (category-2), and 1% had WT >40% 

(category-3). Based on a study by Neufeld et al. (2017), which tracked soil water content (at 0 – 

15 cm depth) across 26 fields in Delta with both heavy tillage and no-tillage practices, category-2 

and -3 fields would have been workable by April 11th in the typical spring conditions of 2016, 

while fields in category-1 would be workable only a week later. Alternatively, in the unusually 

wet spring of 2017, fields in category-2 and -3 would not have been workable until May 15th and 

category-1 fields at least two weeks later. This pattern could also be observed in the fall of 2016 

where category 1 fields were workable only until September 15th while category 2-3 fields could 

have been workable for another month. Wet conditions in the spring and the fall could result in 

large differences in the number of workable days between category-1 fields and those in 

category-2 and -3. This situation is expected to become more challenging in the coming years as 

climate models predicted a 7% increase in precipitation for the region by 2050 occurring mainly 

in the spring and fall (BC Agriculture & Food Climate Action Initiative, 2015). Adapting to this 

shifting precipitation pattern will likely require substantial investment at the farm level to 

enhance SOC or install drainage infrastructure field with low WT and at the regional level to 

improve water conveyance.  

 

 

3.4 Chapter conclusions 

Producing spatially explicit information on soil workability is critical for effective management 

and climate change adaptation in agricultural lands. We combined advanced remote sensing and 
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machine learning tools with existing PTFs to produce a digital map of WT for an intensive 

agricultural landscape in Delta, British Columbia, Canada. We predicted SOC and CL across the 

landscape using RF and GBM models and found that RF was the best approach for both soil 

properties. Combining the digital maps of SOC and CL using a number of PTFs to produce a 

map of WT did not result in much reduction in accuracy. The WT map identified that 40% of the 

crop fields in the study area had a WT <30%, a threshold that will likely result in substantially 

fewer workable days than the other fields in the region. Our analysis demonstrates an effective 

approach to spatially predict WT across a heterogeneous agricultural landscape. These results 

can be used to formulate efficient farming strategies in the study area for more effective climate 

change adaptation. However, results may vary depending on the soil type, climate, and 

agricultural management practices; thus, future analysis should focus on validating the 

methodology in other geographical contexts. 

 

 

 

 

 

 

 

 



68 

 

Chapter 4: Tracking changes in soil organic carbon across the heterogeneous 

agricultural landscape of the Lower Fraser Valley of British Columbia 

 

4.1 Chapter introduction 

Given soil organic carbon (SOC) is the largest pool of carbon in the terrestrial biosphere, its 

management has important implications for the concentration of carbon dioxide (CO2) in the 

atmosphere and the rate of climate change (Stockmann et al., 2013). The fate of SOC is largely 

the responsibility of agricultural producers who currently manage 38.4% of the global land area 

(FAO, 2011). To date, it is estimated the nearly 136 Gt of CO2  have been lost to the atmosphere 

because of the conversion of natural ecosystems to agricultural production and subsequently 

intensive high-input, mechanized, management,  particularly soil tillage (Lal, 2004).  The 

agricultural sector also contributes a substantial portion of non-CO2 climate-forcing global 

greenhouse gas (GHG) emissions (11.2± 0.4% of total emissions in 2010) (Edenhofer, 2014; 

Tubiello et al., 2015). Agriculture thus could play a critical role in mitigating climate change by 

reducing GHG emissions and returning previously emitted atmospheric CO2 to the soil through 

sustainable or regenerative land use practices (Minasny et al., 2017).  

 

Conservation management practices such as reduced tillage, increased crop diversity, grassland 

rotations, cover cropping, increased organic inputs or changing land use from annual to perennial 

cropping, restoration of marginal or degraded lands to forest patches or boundary hedgerow have 

been shown to sequester atmospheric CO2 in the soil. Changing from conventional, high input 

agricultural management practices have been shown to sequester 0.37 to 3.67 Mg of CO2 per 
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hectare per year in temperate agroecosystems (Conant, et al., 2001; Paustian et al., 2016) while 

land use change has been shown to sequester 1.1 to 2.49 Mg of CO2 per hectare per year globally 

(Deng et al., 2016).  In some situations, the rate of SOC change has been observed to be much 

lower than the reported means and others, much higher (Zhang et al., 2015; Zomer et al., 2017) 

and this variation has largely been attributed to the differences in LULC or the implementation 

of land management and/or due to the soil type and climate (Minasny et al., 2017; Stockmann et 

al., 2015).  

 

Given that SOC dynamics is a microbially mediated process, soil moisture and temperature also 

play an important role in determining sequestration or loss.  While we have a relatively clear 

understanding of current SOC dynamics in relation to changes in moisture and temperature (Ise 

and Moorcroft, 2006; Sierra et al., 2015), the nuances presented by feedbacks from C inputs 

from agricultural management and plants coupled with elevated CO2 make predicting responses 

to a changing climate complicated and challenging.  A recent study by Crowther et al. (2016) 

showed that the global stock of SOC was negatively impacted by global warming. Some other 

studies, however, suggested the opposite, that SOC may increase under the warming condition 

because of higher soil microbial activity and plant productivity (Koven et al., 2015; Todd-Brown 

et al., 2014). Thus, tracking changes in SOC in the context of changes in management, LULC, 

and climatic conditions is critical for improving our understanding of SOC dynamics and the 

capacity to support practices most likely to increase SOC sequestration and reduce GHG 

emission from agricultural soil. 
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Until now, the primary approach for estimating SOC dynamics has been to use process-based 

models. However, the outcomes of such models may involve substantial uncertainties due to the 

complex biogeochemical processes and the spatiotemporal variation of environmental factors 

(e.g. topography, soil type, LULC, climate, etc.) responsible for the production and 

decomposition of SOC (Huang et al., 2019; Todd-Brown et al., 2014). All of these parameters 

need to be accurately represented in process-based models for meaningful estimation of SOC and 

thus, such modeling approaches become significantly data-intensive and often limited by the 

availability of accurate input data (Grinand et al., 2017). Static-empirical models, however, 

which use a space-for-time substitution method (Pickett, 1989) may provide a practical 

alternative to process-based models by establishing an empirical and spatially explicit 

relationship between SOC and the environmental driving factors for the current time and then, 

predict for past or future time step based on this relationship (Adhikari et al., 2019).  

 

Minasny et al. (2013) proposed a static-empirical approach, called ‘scorpan’ for digital mapping 

of soil properties. The ‘scorpan’ approach produces a spatially explicit prediction of soil 

properties using the factors of climate, organisms (including management and LULC), 

topography, parent materials, time, space and other soil attributes (McBratney et al., 2003). Since 

the factors, like topography and parent materials, are static over time, any temporal changes in 

the dynamic factors, like climate and LULC should be reflected in the locally calibrated SOC 

empirical model. Although promising, this pragmatic modeling approach has only recently been 

employed for a few regions for predicting SOC for the past and future time steps, e.g. Adhikari et 

al. (2019), Huang et al. (2019), Yigini and Panagos (2016). These studies relied on dynamic 

environmental variables with a spatial resolution ranging from 100 to 1000 m and applied 
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existing LULC data derived from national or continental scale models. As a result, SOC maps 

produced in these studies might not be fine enough to derive effective SOC enhancing strategies 

for highly heterogeneous agricultural landscapes where the effects of management and LULC on 

SOC are likely to be prominent.    

 

Capturing seasonal variation (caused by annual crops) and diversity of vegetation types (i.e. 

annual and perennial crops, and other non-productive vegetation patches) are crucial for effective 

SOC estimation in heterogeneous agricultural landscapes. Deriving historical LULC maps and 

different soil and vegetation indices from the analysis of time series Landsat satellite imagery (30 

m spatial resolution) can effectively detect the heterogeneity of such landscapes (Schmidt et al., 

2016; Xu et al., 2018). Additionally, downscaling of the modeled climate data at the same 

resolution can provide a fine scale representation of climatic variability across the landscape. 

Yet, such addition of time series analysis of Landsat satellite data and high-resolution 

downscaling of climate data has not been reported in the literature for static-empirical modeling 

of SOC for heterogeneous agricultural landscapes.  

 

In this study, we employed the static-empirical ‘scorpan’ modeling technique in a heterogeneous 

agricultural landscape in the Lower Fraser Valley (LFV), British Columbia, Canada to assess the 

spatiotemporal changes in SOC under LULC change and climate variability.  The LFV provides 

an important case study for such analysis as it is representative of highly heterogeneous and 

fragmented agricultural landscapes and that have been farmed with increasing intensity in recent 

decades. In addition to the conversion of forests, grasslands, and wetlands to agriculture and 

urban development, the LFV has seen shifts from primarily annual production to perennial crop 
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production along with the adoption of some of the conservation agricultural practices, like 

perennial grassland rotations, and the establishment of woody perennials on farm edges and 

along waterways. Thus, there is a need to understand how these shifts in LULC or management 

practices impacted the SOC dynamics in the LFV. In this connection, the specific objectives of 

this study were to – (1) produce LULC maps (30 m) of multiple time steps from 1984 to 2018 

using Landsat satellite imagery, (2) generate SOC maps (30 m) of the same time steps using the 

static-empirical ‘scorpan’ based digital soil mapping (DSM) technique, and (3) using these 

products, evaluate the impact of changing LULC and climate on SOC across the landscape. 

 

4.2 Methods 

4.2.1 Study area 

The study area, LFV represents the lower part of Fraser Valley (122° 40' 32.23" W, 49° 11' 

19.33" N) in southwestern British Columbia, Canada and contains an area of 3031 km2 (Figure 

17). The LFV comprises a large elevation gradient from 0 m close to the Pacific Ocean to ~1400 

m near the coastal mountain range. The region is characterized by a mild, humid maritime 

climate with a mean annual temperature of 11.1ºC and mean annual precipitation of 1189 mm 

based on the 30-year climate records (Environment Canada, 2019). Soils in the area were 

developed on glacial and post-glacial floodplains. The LFV is one of the most productive 

agricultural regions of British Columbia, responsible for >50% of the gross annual farm receipts 

of the province (Crawford and MacNair, 2012). To define the study area, we delineated a 

watershed from the provincial Terrain Resource Information Management (TRIM) digital 

elevation model (BC TRIM, 2012). Within this watershed, we constrained our analysis to the 

low-lying areas dominated by the agricultural lands. We then manually edited the eastern 
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boundary to ensure that our study area extent completely captured the provincial agricultural 

reserve lands.  

 

4.2.2 LULC change analysis 

Based on the existing literature and initial reconnaissance survey, we identified seven LULC 

classes that likely have a strong connection with the SOC dynamics in LFV. Table 8 describes 

each of these seven classes, including annual crop (AC), perennial crop (PC), grassland (GL), 

forest/forest patches (FFP), built-up/bare land (BUBL), water, and wetland (WL). According to 

Yang (2010), the LFV experienced a shift from annual to perennial cropping after 1990 with a 

substantial change around 2000. Thus, we selected images that ensured that there was a gap of at 

least 5 years but no more than10 years to capture the LULC changes and images where cloud 

cover was <10% for the entire scene. Based on these constraints we produced LULC maps of 5 

different time steps – 1984, 1990, 1999, 2009, and 2018.  
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Figure 17: Map showing the study area with the location of soil samples  

Upper panel shows the study area with the calibration and validation sample locations of 1984 

and 2018. The background map of the upper panel shows the Terrain Resource Information 

Management (TRIM) digital elevation model (BC TRIM, 2012). Lower panel shows the 

sampling scheme where at each plot (i.e. P1, P2, P3, and P4), 4 sub-samples (a, b, c, and d) were 

composited to get a representative sample from an area of 900 m2 - an area covered by a Landsat 

satellite image pixel (shown in the grid overlay). P5 plots were only sampled when there were 

field margins with perennial vegetation, e.g. hedgerow, grass margin, or riparian buffer. At P5 

plots, samples were composited from a rectangular strip covering ~900 m2 area depending on the 

length and width of the field margin.   

British Columbia 

High : 1605 

Low : 0 

Elevation (m) 
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We used Landsat 8 Operational Land Imager (for 2018) and Landsat 4-5 Thematic Mapper (for 

the previous years) surface reflectance images for LULC mapping. The images (Path 47, Row 

26) were downloaded from the United States Geological Survey (USGS) Earth Explorer data 

warehouse.  The images were acquired in the summer of each year within a period of 15 days in 

June or July. We used a hybrid change detection technique for our analysis which combined both 

pixel and image-based approaches. First, we derived the tasseled cap transformation (TCT) 

indices – brightness, greenness, and wetness for all images. We then performed an image 

segmentation on the 2018 TCT images to conduct an object-based image analysis (Blaschke et 

al., 2014; Paul et al., 2018). The image segments derived from the 2018 imagery were trained 

with the ground truth information collected from the field and Google Earth high spatial 

resolution imagery. While collecting the ground truth data (n = 650), we ensured that a minimum 

of 70 segments was sampled for each LULC type. We used 70% of the ground truth data for 

each LULC type for training the model and 30% for independent validation. Thereafter, we used 

a Random Forest (RF) model (Breiman, 2001), a decision tree-based machine learning model to 

perform the classification and produce a LULC map of 2018. For accuracy analysis, we used the 

validation data to derive an error matrix and calculate the user’s, producer’s, and overall 

accuracies and Kappa coefficient. Paul et al. (2018) provided a detail explanation of these 

accuracy measures. 

 

Classifying each image back in time and then comparing classifications is not recommended as 

errors in each classification compound when comparing time periods (Wulder et al., 2018), 

rather mapped disturbances can be integrated into the 2018 land cover product, to provide land 

cover change information to the previous time steps. Therefore, we applied the technique 
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described in Arnett et al. (2014) to generate the disturbance index (DI) for each of the previous 

time steps. The DI of time step 2 (TS2) was subtracted from time step 1 (TS1) to produce a 

univariate difference image where near-zero values would denote no change, positive value 

would indicate vegetation loss, and negative value would refer to vegetation increase (Arnett et 

al., 2014; Healey et al., 2005). We then trained the difference images from each time step to 

determine the threshold of ‘change’ and ‘no-change’ by on-screen sampling from the Landsat 

imagery and Google Earth imagery. We applied the training samples (n = 600; 200 for ‘change’ 

and 400 for ‘no change’) to derive the change maps showing the changes that occurred between 

TS1 and TS2 using an RF model. For verification, we then collected 120 random samples from 

each of the produced maps – 40 for ‘change’ and 80 for ‘no change’ and validated the maps 

using the accuracy measures - user’s, producer’s, and overall accuracies (Arnett et al., 2014). 

The change maps were then used as a mask to extract the tasseled cap indices for the pixels that 

were changed between TS1 and TS2. Using the tasseled cap information, the changed areas of 

1984, 1990, 1999, and 2009 were then classified with the validated model of 2018. However, the 

unchanged areas of a specific year were assigned with LULC information of the subsequent time 

step, for example, the unchanged areas of 2009 were assigned the LULC types of 2018. Both 

outcomes were combined to produce a LULC map of that specific year and then, all five LULC 

maps for 1984, 1990, 1999, 2009, and 2018 were used for pixel by pixel change analysis.  
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Table 8: Description of the land use/land cover (LULC) types included in the study 

 

LULC type Description 

Annual crop (AC) Fields with annual crops, including vegetable, grains, and forages 

that are planted, harvested and typically tilled each production 

season. These fields may or may not have wintertime cover 

crops. 

Perennial crop (PC) Fields with perennial crops, that remain in the ground for more 

than one year, including berries and tree fruit. 

Grassland (GL) Managed and unmanaged grass and shrublands including both 

grazing land and natural meadows or parkland. 

Forest/forest patch (FFP) Lands with dense forest or tree patches within the built-up or 

agricultural areas.  

Built-up/bare land (BUBL) Built-up class mainly refers to urban settlement and road. 

Farmhouses and barns within the cropland areas are also 

included in the built-up class. Bare lands within the cropland 

areas primarily include fallow land and within forested areas, 

they refer to forest clear cut. 

Water Natural and human-made water areas. 

Wetland (WL) All types of wetlands.  

 

4.2.3 Soil sampling and laboratory analysis for SOC measurement 

We sampled 309 plots representing different LULC types (Table 9) across the study area and 

collected soil at the 0–15 cm depth. The AC samples included plots of annual vegetable and 
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cereal crops, grassland fallows, and winter cover crops. Samples from perennial field margins, 

e.g. hedgerow, riparian buffers, and grass margins were collected in both AC and PC fields. 

Additionally, GL samples had plots from both managed and unmanaged grasslands. At each 

sampling plot, we collected a representative sample by compositing soils from four sub-sample 

locations that would fit within a Landsat image pixel (i.e., 900 m2) (Figure 17). Each sampling 

plot was established in a homogenous LULC.  To maintain a homogenous LULC, we followed a 

different protocol while sampling from the perennial field margins due to their limited width. For 

field margins, we again collected a composite sample from four sub-plots, but the configuration 

was linear to fit within a rectangular strip covering an area of ~900 m2 (in some cases the area 

varied slightly depending on the length and width of the field margin).  Thus, Landsat images of 

30 m spatial resolution comprised of pixels that could encompass both field margin and in-field 

areas of either AC or PC (Figure 17). Given that SOC in the field margins is typically higher 

than that of in-field areas, the 30 m resolution mixed-LULC pixels averaged out the SOC 

content.  

 

We recorded the center of each plot with a GNSS Pro 6H Differential Global Positioning System 

(DGPS) (Trimble Inc., Sunnyvale, California, USA) with post-processing accuracy varying from 

10 - 50 cm. Out of the total, 25% of the samples (n = 75) were selected randomly within depths 

and LULC and sent to the Technical Service Laboratory of British Columbia Ministry of 

Environment. Samples were analyzed for total carbon using combustion elemental analysis (at 

950º C) with a Flash 2000 Elemental Analyzer (Thermo Fisher Scientific, 2010) and inorganic 

carbon using Primacs SNC-100 TN/TC Analyzer (Skalar Analytical, 2019). For both analyses, 

soil samples were first dried, ground, sieved to a <2mm particle size and then again finely 
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ground prior to analysis. SOC was then determined by subtracting inorganic carbon from total 

carbon. We also analyzed all the samples (n = 309) using mid-infrared spectroscopy with a 

TENSOR 37 spectrometer (Bruker Instruments, Ettlingen, Germany). We then utilized the 

spectra for predicting SOC with a partial least square regression (PLSR) model where the data 

from elemental measurement were used for calibration and validation. 

Table 9: Total number of soil samples collected at 0-15 cm depth for various land use/land 

cover (LULC) types 

 

LULC type Number of samples 

Annual Crop (AC) 132 

Perennial Crop (PC) 100 

Grassland (GL) 52 

Forest/forest patch (FFP) 15 

Wetland (WL) 10 

Total 309 

  

4.2.4 Environmental covariates for DSM 

Topographic indices: In our analysis, a suite of topographic indices was generated from the 

provincial 25 m Terrain Resource Information Management (TRIM) digital elevation model 

(DEM) (BC TRIM, 2012) using SAGA 2.1.2 software. We resampled the DEM to 30 m and 

derived the indices – analytical hill-shading (AHS), aspect, catchment area (CA), channel 

network base level (CNBL), closed depressions (CD), convergence index (CI), cross-sectional 

curvature (CSC), longitudinal curvature (LC), slope-length factor (LS), multiresolution index of 

the ridge top flatness (MRRTF), multiresolution index of valley bottom flatness (MRVBF), 
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negative topographic openness (NOpen), positive topographic openness (POpen),  relative slope 

position (RSP), slope, terrain ruggedness index (TRI), total wetness index (TWI),  valley depth 

(VD), and total curvature (TC). The description of the computation of these indices can be found 

here: http://www.saga-gis.org/saga_tool_doc/2.1.3/a2z.html. Paul et al. (2019a) and Schillaci et 

al. (2017) applied some or all these topographic indices for DSM at different scales. 

 

Existing soil survey information: We extracted data from the existing detailed Canadian soil 

survey (AAFC, 2015) to derive environmental predictors for sand, silt, clay, organic carbon, and 

cation exchange capacity (CEC). We utilized a 30 m grid to extract data for each of these soil 

properties and produced raster layers using inverse distance weighting (IDW) interpolation. In 

the case of multi-component map units, the dominant category covering >50% of the unit area 

was used and assigned values accordingly.  

 

Soil, vegetation, and image textural indices from Landsat imagery: We used three Landsat 

scenes captured in pre-growing (April/May), growing (June/July), and post-growing (September) 

seasons for each of the years in the time-series to detect the seasonal variability of the 

agricultural landscape. We utilized the images described in section 2.2 for the growing season. 

For the other two seasons, we downloaded images from the USGS data warehouse as mentioned 

in section 2.2. A group of soil and vegetation indices (Table 10) and several image textural 

indices, including homogeneity (Homo), contrast (Cont), and dissimilarity (Diss) were derived 

from each of the Landsat images. We applied the grey level co-occurrence matrix (GLCM) to 

produce the textural indices (Clausi, 2002) for the Near Infrared, Short-wave Infrared-1, and 

Short-wave Infrared-2 bands of the Landsat images.  

http://www.saga-gis.org/saga_tool_doc/2.1.3/a2z.html


81 

 

Climate data: We included three climate variables – mean annual temperature (MAT), mean 

annual precipitation (MAP), and annual heat moisture index (= (MAT+10)/(MAP/1000)) for all 

study years. The climate data were collected and downscaled using the ClimateBC software 

which uses data from multiple sources, including PRISM, ANUSPLIN, and other global 

circulation models from Intergovernmental Panel on Climate Change (T. Wang et al., 2016). 

ClimateBC performs local downscaling of the climate variables based on the latitude, longitude, 

and elevation and generates a raster dataset at the resolution of the DEM which is 30 m for our 

case.  

Table 10: Soil and vegetation indices used for predicting soil organic carbon  

R, B, NIR, SWIR1, SWIR2 indicate red, blue, near infra-red, short wave infrared-1, short wave 

infrared-2 bands of Landsat satellite imagery, respectively, while L refers to canopy background 

adjustment factor 

 
Soil and vegetation indices Formula References 

Normalized Difference Vegetation Index (NDVI) (NIR – R) / (NIR + R) Rouse et al. (1974) 

Soil Adjusted Vegetation Index (SAVI)  (1+L) (NIR – R) / (NIR+R+L), L=0.5 Huete (1988) 

Normalized Difference Moisture Index (NDMI) (NIR – SWIR1) / (NIR + SWIR1) Hunt Jr & Rock (1989) 

Soil Brightness Index (SBI)  √((R)2 + (NIR)2) Elvidge & Lyon (1985) 

Normalized Difference Tillage Index (NDTI)  (SWIR1–SWIR2) / (SWIR1 + SWIR2) Van Deventer et al. (1997) 

Clay Minerals Ratio (CMR) SWIR1 / SWIR2 Carranza & Hale (2002) 

Bare Soil Index (BSI)  ((SWIR1 + R) – (NIR + B)) / 

((SWIR1+R) + (NIR + B)) * 100 + 100 

Rikimaru et al. (2002) 

 

4.2.5 SOC prediction and change analysis 

At first, we predicted a SOC map for 2018 with RF using the SOC field data described in section 

4.2.3 and environmental covariates explained in section 4.2.4. We applied 75% of the field data 

that were only analyzed with mid-infrared spectroscopy to calibrate the RF model. For model 
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validation, we used the field data derived from the elemental combustion method (the current 

best practice). We utilized RF’s variable importance (VI) measure for selecting the most 

influencing predictor variables. RF calculates the percent increase in mean square error 

(%IncMSE) of prediction by removing the variables one by one from the model and accordingly 

and this way, determines the importance of each variable (Breiman, 2001). We removed any 

variable from the model if it’s VI score was below the threshold of 5% IncMSE. Once the top 

variables were selected, we performed an independent validation of the prediction using the 30% 

of the field data that were set aside. We used the coefficient of determination (R2), concordance 

correlation coefficient (CCC), root mean square error (RMSE), and normalized root mean square 

error (nRMSE) to assess the accuracy of the predicted outputs as described in section 2.2.5. 

nRMSE is the normalized RMSE by the range of the observed data (Shen et al., 2016). We 

utilized this validated model to predict SOC for the rest of the years. The dynamic variables, i.e. 

Landsat and climate indices were updated for each prediction of 1984, 1990, 1999, and 2009 to 

capture the impacts of LULC and climate changes on SOC. We then validated the predicted map 

of 1984 with a set of archived soil samples collected in 1984. Because these soils were sampled 

by horizons and thus, were collected from inconsistent depth ranges and up to a maximum depth 

of 1 m, we needed to model SOC for 0-15 cm. Using mid-infrared spectroscopy, we re-analyzed 

a group of samples corresponding to different depth ranges and representing a total of 31 sites 

across the study area. We thereafter fitted a mass-preserving, continuous spline (Brendan P 

Malone et al., 2009) to predict SOC at 0 – 15 cm depth for all the sites. The spline predicted 

values were then applied for validating the map of 1984 using the same accuracy measures as 

before – i.e. R2, CCC, RMSE, and nRMSE.  
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Finally, the predicted maps of all years were utilized for identifying the changes in SOC from 

1984 to 2018 by pixel to pixel subtraction. We calculated the relative change in SOC (ΔSOC) in 

% using (Equation 12). We also calculated the relative changes in climatic variables, namely 

mean annual precipitation (ΔMAP), mean annual temperature (ΔMAT), and annual heat 

moisture index (ΔAHM). For example, (Equation 13) shows the calculation of ΔAHM. We then 

tested the pixel by pixel correlation between ΔSOC and the climatic variables to assess the 

impacts of climate changes on SOC. We applied the Pearson correlation coefficient for this 

purpose.  

 

ΔSOC = [
(𝐒𝐎𝐂 𝐨𝐟 𝐲𝐞𝐚𝐫 𝟐)−(𝐒𝐎𝐂 𝐨𝐟 𝐲𝐞𝐚𝐫 𝟏)

(𝐒𝐎𝐂 𝐨𝐟 𝐲𝐞𝐚𝐫 𝟏)
∗ 𝟏𝟎𝟎] (Equation 12) 

ΔAHM = [
(𝐀𝐇𝐌 𝐨𝐟 𝐲𝐞𝐚𝐫 𝟐)−(𝐀𝐇𝐌 𝐨𝐟 𝐲𝐞𝐚𝐫 𝟏)

(𝐀𝐇𝐌 𝐨𝐟 𝐲𝐞𝐚𝐫 𝟏)
∗ 𝟏𝟎𝟎] (Equation 13) 

We performed all of our analysis in R 3.6.0 (R Core Team, 2018) while we utilized a number R 

packages including ‘raster’ (Hijmans and Van Etten, 2016), ‘rgdal’ (Bivand and Keitt, n.d.), 

‘randomForest’ (Brieman et al., 2015), ‘glcm’ (Zvoleff, 2016) and ‘ggplot2’ (Wickham, 2016). 

We used ArcGIS 10.6 for map generation (ESRI ArcGIS, 2011).     

 

4.3 Results and Discussion 

4.3.1 Descriptive statistics of SOC for different LULC types 

The plot level data shows that SOC values varied substantially for different LULC types (Table 

11). We observed higher SOC values for WL, FFP, and PC although most of the high values of 

PC were attributed to the cranberry crop which is typically cultivated in organic peat soil. Higher 
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SOC values in AC class were mostly found in fields with woody vegetation in the non-

productive field margins, however, some of the AC fields we observed with high SOC values 

were likely due to large quantities of organic inputs and potentially the integration of cover 

crops. The SOC content in the GL soils also exhibited a wide variation of values, but our GL 

class included both managed and unmanaged GL and higher values were mainly observed in the 

unmanaged GL within the parks. For WL, the lower SOC values were detected in the degraded 

WL areas which had been under pressure from the adjoining urban development and agricultural 

production. The WL within the protected parks and bogs exhibited substantially higher SOC 

values. The highest SOC values for non-organic soils were collected from FFP, with the lower 

end of these SOC values found in the forest patches.     

 

Table 11: Plot level descriptive statistics  

Statistics showing soil organic carbon (g/kg) for different land use/land cover (LULC) types 

 

LULC type Minimum Maximum Mean 

Standard 

deviation 

Annual crop (AC) 10.10 68.20 22.30 10.20 

Perennial crop (PC) – without cranberry 9.30 73.90 26.60 16.10 

Perennial crop (PC) – only cranberry 120.10 526.50 302.90 113.80 

Grassland (GL) 9.10 115.50 24.60 21.30 

Forest/forest patch (FFP) 2.00 171.90 80.80 79.40 

Wetland (WL) 18.40 496.50 230.20 184.00 
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4.3.2 LULC changes from 1984 to 2018 

Although we observed variable accuracies for different LULC classes in 2018 (Table 12), the 

changes between different years were consistently predicted with high accuracies (Table 13). 

The overall accuracy and kappa coefficient of the 2018 LULC classification were 0.81 and 0.77 

respectively while the overall accuracies of the change analysis ranged from 0.89 to 0.94. The 

accuracy of our change analysis was close to the outcomes of Arnett et al. (2014) who used a 

similar technique based on disturbance index for change analysis of a forested landscape 

achieving overall accuracies ranging from 0.83 to 0.97. For individual classification, our 

prediction accuracy was relatively low for AC, GL, and WL due to their spectral similarities, 

especially for the cultivated grasslands (Eggen et al., 2016). In contrast, the prediction of FFP 

and water yielded the highest accuracies because of their distinct spectral signature and unique 

pattern on the landscape which is clearly distinguishable from the other LULC types (Paneque-

Gálvez et al., 2013).      

Table 12: Accuracy assessment of 2018 land use/land cover (LULC) classification 

 

LULC Type User's accuracy Producer's accuracy Overall accuracy 

Annual Crop (AC) 0.78 0.76 

0.81 Perennial Crop (PC) 0.80 0.86 

Grassland (GL) 0.74 0.68 

Forest/Forest Patch (FFP) 0.86 0.89 Kappa coefficient 

Built-up/bare land (BUBL) 0.78 0.75 

0.77 Water  0.95 0.95 

Wetland (WL) 0.73 0.83 
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Table 13: Accuracy assessment of land use/land cover change detection 

 

Year 

Change 

class 

User's accuracy Producer's accuracy Overall accuracy 

1984-1990 

Change 0.93 0.90 

0.94 

No change 0.95 0.96 

1990-1999 

Change 0.88 0.85 

0.91 

No change 0.93 0.94 

1999-2009 

Change 0.95 0.86 

0.93 

No change 0.93 0.96 

2009-2018 

Change 0.85 0.83 

0.89 

No change 0.91 0.92 

 

Our study did not detect large areas of LULC changes during the study period – 1984 to 2018 

showing consistently dominant LULC categories were FFP and built-up/bare land (BUBL) 

followed by a relatively even distribution of agricultural production types (Figure 18). We 

observed a gradual increase in BUBL from 1984 to 2018, 117.62 km2 (14.70%) in total. During 

this period, FFP declined by 128.19 km2 (13.75%) mainly due to conversion to BUBL and 

agricultural production. These findings support the results of Shupe (2013) who studied the 

LULC dynamics in the LFV (1966-2011) using the historical dataset from Canada Land Use 

Monitoring Program (CLUMP) for the years 1966, 1976 and 1986 and unsupervised 

classification of Landsat imagery for the years 1993, 2000, and 2011. Shupe (2013) documented 

that the most significant conversion of forests to BUBL occurred in the rural areas east of the 

City of Vancouver. We also observed a similar pattern, however, the conversion of forest to 
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BUBL was much lower in our analysis than that reported by Shupe (2013). It is likely that much 

of the forest loss reported in Shupe’s study occurred before 1984. In addition, our BUBL class 

includes the bare lands within forested and cultivated areas, thus a portion of the increase in 

BUBL may be attributed to forest clear-cutting and agricultural production. Our pixel by pixel 

change analysis suggested that bare lands in the cultivated areas primarily refer to the annual 

crops that were bare at the time the image was captured but was likely not a change in land use.  

 

Changes in the agricultural production area from 1984 to 2018 were relatively small.  We 

detected a decrease in AC by 28.86 km2 (8.45%) and GL by 17.50 km2 (5.75%) but an increase in 

PC by 65.49 km2 (30.43%). By 2018, we observed ~32% of the agricultural lands were occupied 

by PC. This finding is consistent with that of the agricultural land use inventory of Metro 

Vancouver (ALUI, 2016), which covers a slightly smaller area than our study area. This 

inventory reported that ~35% of the total agriculture land was used for perennial crop production 

(i.e. berries, nursery, and tree fruit) in 2016 (ALUI, 2016). Although the area of water body 

remained the same throughout the study period, we observed a decline of WL by 23.56 km2 

(24.89%). WL was found to be primarily converted to PC and BUBL. These results showing a 

reduction in the WL area agree with the findings of Wilson (2010) who reported a total decline 

of 13.6 km2 of WL area between 1989 and 2009; our analysis detected a decline of 16.86 km2 

between 1990 and 2009. Similar to our observations, Wilson (2010) also described that the major 

portion of the WL loss was due to conversion to berry production or other agricultural uses.       
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Figure 18: Land use/land cover (LULC) maps of 1984 and 2018 and the change over that 

period for the Lower Fraser Valley 

 

LULC 1984 

LULC 2018 

Change detection (1984 – 2018) 
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4.3.3 Accuracy and variable importance for SOC prediction 

We achieved variable accuracies for the independent validation of the predicted maps of SOC in 

1984 and 2018 (Table 14). When we tested the accuracy of 2018 prediction for two cases, i.e. 

with and without Landsat indices, we found that accuracy was reduced by 8.35% for R2, 11.09% 

for CCC, and 9.40% for nRMSE when all Landsat indices were removed from the prediction. In 

addition, the predicted map became extremely grainy and patchy in some parts of the region 

without the Landsat indices. Thus, for smooth, continuous prediction of SOC with higher 

accuracy, we kept all categories of environmental predictors, including topographic, soil survey, 

Landsat, and climate variables in the final map generation. Initially, we had a total of 86 

variables but by using the threshold of variable important (VI) score (i.e. 5% IncMSE) in RF, we 

removed the less influential variables and the final model only included 22 variables in total 

(Figure 19). The historic soil survey variables became the strongest predictors with VI score of 

12-19%. The VI scores of topographic predictors ranged from 5-10% while climate variables had 

a VI score of 5-7%. The VI score of Landsat indices ranged from 5-11% including several 

variables derived from the images of pre- and post-seasons when bare soils were exposed. Our 

analysis indicating small differences in the contribution of the various types of environmental 

predictors was consistent with some studies and not others. For instance, Grinand et al. (2017) 

reported that Landsat indices were the most important predictors for SOC but Schillaci et al. 

(2017) found topographic variables were the strongest predictors. Grimm et al. (2008), based on 

their study in Barro Colorado Island, determined that information from existing soil maps or 

surveys had little influence on the SOC dynamics rather terrain attributes and current biomass 

information were stronger predictors of SOC; the opposite of our findings. Based on the 

evidence to date we can conclude that predictor importance is highly reliant on the particular 
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environmental conditions of the study site, particularly the topography and no consensus can be 

reached on the best predictors of SOC (Were et al., 2015).          

 

The accuracy of the final 2018 map (Figure 20) was fairly high relative to other studies of SOC.  

Alternatively, the accuracy of the 1984 prediction was substantially lower than the prediction of 

2018. There might be several reasons for the relatively low accuracy of the 1984 prediction. The 

first, soil sampling in 1984 followed different protocols where samples were taken by soil 

horizon from soil pits thus the sampling depths were not consistent with our sampling in 2018. 

To account for this, we used spline prediction to determine the SOC value at 0-15 cm depth 

which likely introduced an element of error in the 1984 validation dataset.  The second reason, in 

2018, we collected a composite sample from an area covering that of a Landsat image pixel (i.e. 

900 m2) but in 1984, samples were collected from a single point location and although the X, Y 

coordinates were recorded, the type of GPS might also contribute to the associated error. As a 

result, part of the discrepancy between the predicted values and the validation data is likely due 

to spatial location and scale mismatch. Despite these issues, the accuracy of the SOC map of 

1984 was similar to the SOC prediction of others using archived soil samples. Huang et al. 

(2019), for example, found R2 and CCC of 0.48 and 0.67 using a similar validation approach for 

SOC values extracted from archived soil samples collected between 1980 and 2002 for a study in 

Wisconsin, USA. Alternatively, S. Wang et al. (2016) using the historical soil survey dataset 

from a study area in China for SOC prediction in1990, yielded an R2 of only 0.43, by applying 

10-fold cross-validation instead of a more rigorous independent validation as we performed. 
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Table 14: Accuracy of soil organic carbon (SOC) prediction for 2018 and 1984.  

R2, CCC, nRMSE refer to the coefficient of determination, concordance correlation coefficient, 

and normalized root mean square error respectively 

 

Accuracy 

Metrics 

2018 

1984 
With Landsat indices Without Landsat indices 

R2 0.670 0.614 0.459 

CCC 0.757 0.673 0.584 

nRMSE 0.117 0.128 0.183 

 

 

Figure 19: Variable importance of random forest model for predicting SOC in 2018  

Different colors represent four categories of environmental variables. See section 4.2.4 for the 

full names of the variables. 
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Figure 20: Distribution of soil organic carbon (SOC)  

Across the Lower Fraser Valley in 2018. SOC was not predicted in the built-up/bare land and 

water areas. 

 

 

4.3.4 Distribution of SOC across the LFV and changes in SOC (1984 – 2018) 

The predicted maps showed that the distribution of SOC across the LFV was fairly similar 

between 1984 and 2018 with higher SOC values concentrated in the WL and cranberry fields in 

the western and north-central parts of the area. High SOC values distributed along the course of 

Fraser River were mainly in WL and forested soils. The forests in the southeastern corner of 

LFV also had higher concentrations of SOC. Low SOC values were observed in croplands; with 

the lowest values in the croplands in the southwestern and northeastern parts of the valley.  

 

As expected, WL that had not had any change from 1984 to 2018 (i.e. WL-no change; Figure 

21a) had the highest predicted mean SOC with 167.88±69.70 g/kg (i.e. mean ± standard 

deviation).  This was followed by FFP-no change, with 114.34±42.31 g/kg. AC-no change fields 

had far lower SOC with 58.27±44.32 g/kg in 2018 while GL-no change was 73.82±48.65 g/kg 
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and PC-no change was 83.37±59.82 g/kg. The large differences between wildland land covers 

and agricultural land uses suggest that LULC types are a key determinant of the SOC variability 

across a landscape. Such large differences in SOC between cultivated and uncultivated areas 

were also reported in other studies (Priyanka, 2018; Wu et al., 2009). For example, in a 

landscape-level study in southwestern Yunnan province of China, Liu et al. (2015) observed 

nearly twice the SOC, at 0-20 cm depth, in forested lands with SOC ranging from 30 to 60 g/kg 

while cropland and grassland SOC ranged from 10 to 20 g/kg.  

 

Differences in SOC for some LULC classes were even more dramatic when their changes in land 

use were considered (Figure 21a). For example, AC-no change and AC-from FFP had similar 

predicted mean SOC in 2018 but it was about 75% higher for AC-to/from GL which indicates 

AC and GL rotations. Conversely, the predicted mean SOC of GL-from FFP was 20% higher 

than that of GL-no change in 2018. Similarly, we observed notable variation in the predicted 

mean SOC of different PC fields with PC-no change having the lowest and PC-from WL having 

the highest mean values. FFP-no change and FF-to/from clear cut (CC), however, did not exhibit 

much variation and their predicted mean SOC differed only by 1%.   
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Figure 21: a) SOC in 2018; b) ΔSOC from 1984 to 2018  

Boxplots showing the first quartile, median (bar), third quartile, and mean (circles) of soil 

organic carbon (SOC) content in 2018 and relative changes in SOC (ΔSOC) from 1984 to 2018 

for different land use/land cover changes 

 

In the LFV, SOC dynamics from 1984 to 2018 were highly variable with some areas gaining 

SOC, some with substantial loss, and others with no change. While there was a wide variation in 

mean SOC change associated with specific LULC conversion, there was also a great deal of 

variability within each LULC type or change class (Figure 21b). Overall, we observed a decline 

in the predicted mean SOC for all LULC conditions regardless of whether there were changed or 

not. From 1984 to 2018, the largest declines were in AC-no change and AC-from FFP with mean 

ΔSOC of -32.27% and -39.07% respectively. Conversely, FFP-no change had the lowest decline 

in SOC with mean ΔSOC of -2.92% followed by AC-to/from GL with -3.49%. The conversion 

of FFP to different agricultural practices had large decreases in SOC with the highest decline for 

a) b) 
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changes to AC (mean ΔSOC of -39.07%), followed by PC (-16.18%) and GL (-15.29%). The 

SOC decrease for the conversion of other LULC to PC was relatively low compared to the 

decrease associated with the changes of other LULC to AC. The changes from WL to PC were 

mainly due to the conversion to cranberry production and despite the intensive agricultural 

production, we observed only minimal SOC loss for this change class (i.e. PC-from WL) with 

mean ΔSOC of -4.51%.  

 

Interestingly, we detected large SOC losses for all agricultural practices that had not changed 

since 1984, with mean ΔSOC ranging from -24.84% to -32.27%. The decline in AC and GL are 

likely due to intensive management practices, such as heavy tillage (Guo and Gifford, 2002; 

Haddaway et al., 2017). We did, however, also observe similar losses of SOC in PC-no change 

where there is minimal annual soil disturbance through tillage.  Losses in these perennial systems 

may not be comparable to AC because of the relatively small biomass or C amendment inputs 

compared to what is typical for AC (Nemeth et al., 2017). In PC, there may be substantial 

applications of nitrogen, which may be leading to microbial respiration and loss of SOC (Paal et 

al., 2011). Another possible explanation for SOC losses across the agricultural land uses could be 

due to changes in soil drainage conditions.  Our study area receives a large amount of rainfall 

during the winter and many farmers have installed tile drainage to improve soil trafficability at 

the beginning and end of the production season for AC fields and to keep the water table from 

saturating roots in PC fields (Neufeld et al., 2017).  Improved drainage can result in greater 

microbial access to oxygen during these periods which could be leading to an increase in the 

oxidation of carbon and the large decline in SOC (Baker et al., 2007; Schaufler et al., 2010). 
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Many of these drainage systems may have been installed prior to 1984 but continue to contribute 

to SOC loss (Lalonde and Hughes-Games, 1997).  

 

Altogether, 42% of the total land area in 2018 (excluding BUBL and water) was agriculture that 

had not changed since 1984 (Figure 22). Thus, the SOC decline in these LULC classes had a 

significant influence on the overall SOC dynamics across the region. Alternatively, the FFP-no 

change, which had minimal SOC loss, was similar in area, accounting for 44% of the study area. 

Therefore, conserving these FFP areas and/or managing them carefully are highly important for 

maintaining SOC stock across the LFV. Although mean values indicated SOC losses for each of 

the LULC types and change classes, it is also important to recognize that for each of these we 

observed a great deal of variability. For all LULC types and change classes, we also observed 

large increases in SOC in some parts of the landscape over the study period. In the agricultural 

lands, the positive ΔSOC may be attributed to various conservation management practices (e.g. 

the application of organic amendments, crop rotations, winter cover cropping, and establishment 

of perennial vegetation in field margins). Additionally, the transition of LULC from AC to PC or 

AC to GL resulted in some of the highest positive ΔSOC values we observed (51% and 38% 

respectively). It is possible that some of these extreme positive values may represent the outcome 

of longer duration of LULC change impacts as it usually takes time to exhibit a net positive 

increase than losses (Poeplau et al., 2011; Xiong et al., 2014). Hence, some of these LULC types 

or change classes may ultimately show a net gain in SOC in the future based on the type of 

conversion or specific management practices employed. 
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Figure 22: Proportion of different land use/land cover (LULC) change classes in 2018  

LULC change classes affecting soil organic carbon dynamics in 2018. Total area excludes built-

up/bare land and water classes 

 

 

Our findings on the impacts of different LULC changes on SOC are in agreement with various 

local and global scale meta-analysis which reported decreases in SOC for conversion of FFP to 

crop production and increase in SOC for AC to PC conversions and rotations of AC and fallow 

or GL (Poeplau et al., 2011; Stockmann et al., 2013; Vaccari et al., 2012). For example, Bruun et 

al. (2015) reported a SOC decline of 20-40% after 20 years following the conversion of FFP to 

AC while Chen et al. (2007) documented 19% and 34% increase in SOC for the conversion of 

AC to fallow and perennial tree fruit production respectively over a study period of  27 years. A 

Canadian study found that changes from AC to PC increased SOC by 44% at a long-term study 

site in Breton, Alberta (VandenBygaart et al., 2010)– this value matches with some of the 

% of total area 
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positive ΔSOC we observed in our analysis for AC to PC conversion (Figure 21b). Many of 

these studies also investigated the impacts of other LULC changes and management on SOC that 

were not possible to detect given our approach.  For example, increases in SOC were detected by 

Del Galdo et al. (2003) of 23% after 20 years following the conversion of AC to FFP, Chen et al. 

(2007) found the conversion of AC to permanent GL resulted in 102% after 27 years, and 

Dimassi et al. (2013) found the transition from heavy tillage to no-tillage practices resulted in a 

53% increase after 20 years.    

 

We detected variable and increasing rates of SOC change between different time periods in the 

LFV (Figure 23a). The mean annual rate of relative change (ΔSOC%/year) for the entire period 

was -0.41%/year, ranging from -2.18%/year in some parts of the study area to 1.94%/year in 

others. The highest rate of decline happened during 2009-2018 and 1999-2009 with mean rates 

of -1.03%/year and -0.54%/year respectively. The SOC decline during 1984-1990 and 1990-

1999 was relatively minimal with mean rates of only -0.06% and -0.10% respectively. The 

variation in SOC decline between different time periods was likely associated with shifting crops 

or agricultural management practices given that much of the landscape had no LULC change. 

Areas with the most change, however, would have been driven by LULC change (Figure 24). 

Our study area falls within two census divisions of Statistics Canada – partly in Metro 

Vancouver and partly in Fraser Valley Regional District. From the agricultural census data, we 

identified some shifts in crop production with increasing and decreasing trends in the acreage of 

various crops between different years from 1996 and 2016 (Statistics Canada, 2016) which likely 

had connections with the variability we observed in SOC decline. For instance, there was a 

decline of 13-54% in seeded and natural pasture areas at different years during this period. At the 
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same time, there was an 80-91% increase in more tillage intensive field crop (i.e. grains, 

potatoes, field peas, etc.) acreage in both census divisions during the same period. These shifts in 

crop production may have a substantial influence on the SOC decline in our study area. In 

addition, the census data reported increases in the acreage of perennial fruit, berry and nut 

production by 135% and 53% in Metro Vancouver and Fraser Valley Regional District 

respectively – which might be associated with the SOC gain that we captured in some parts of 

the study area. The absolute SOC loss in the LFV during 1984 – 2018 was detected as high as 

126 g/kg, however, in most parts, SOC loss ranged from 10 to 60 g/kg (Figure 24). Overall, the 

SOC remained unchanged in 27% of the area, declined in 61% and increased in 12%. Assuming 

bulk density did not change during the study period and taking the mean of bulk density samples 

(n = 309) collected in 2018, we estimated a total loss of 5.8 Mt of SOC or 0.56 ton of SOC per 

hectare per year in the LFV from 1984 to 2018. This loss of SOC could be attributed to either as 

oxidation to the atmosphere as CO2 or movement to the rivers or ocean due to soil erosion. 

However, our low-lying study area is characterized by more or less uniform topography with 

80% of the area having a slope of <5%. Thus, it is likely that SOC loss due to soil erosion was 

minimal and SOC was mostly lost to the atmosphere.   
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Figure 23: Rate of change in a) ΔSOC and b) ΔAHM between different time periods  

Boxplots showing the first quartile, median (bar), third quartile, and mean (circles) of the annual 

rate of relative change in soil organic carbon (ΔSOC%/year) and an annual rate of relative 

change in annual heat-moisture index (ΔAHM%/year) between different time periods 

  

It is unlikely that the variability in ΔSOC we observed was related to climate variability (Figure 

23b). As explained above, climate variables did not perform as strongly as the other 

environmental variables for predicting SOC in the LFV using the RF model. Given the small rate 

of relative change in ΔAHM from 1984 to 2018, which varied between 0.19%/year and 

1.44%/year, we observed a poor correlation between ΔSOC and ΔAHM when pixel by pixel 

changes were analyzed in a linear regression model (data not shown). These results were 

consistent with Adhikari et al. (2019), who used a similar DSM approach to study future SOC 

changes across Wisconsin, USA and found that SOC was also highly influenced by LULC and 

parent material characteristics and not by climate change in 2050.  Another researcher in the 

same study area by Huang et al. (2019) assessed the historical SOC changes and attributed the 

improved SOC between 1980 and 2002 to sustainable LULC management. Bui et al. (2009) 

suggested that climate variability may play a critical role in SOC changes at larger regional to 

ΔSOC%/year 

a) 

ΔAHM%/year 

b) 
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continental scales. The impacts of climate change may not have been evident given our study 

period only spanned 34 years and the extent of the study area was small enough, and level 

enough, to maintain a relatively consistent temperature and precipitation patterns.  

 

Although our study provided a baseline for landscape-scale SOC estimation in the LFV and 

changes since 1984, integration of more detail information on agricultural management practices 

could help identify more specifically which management practices are driving SOC change. 

Landscape-wide information on tillage practices, fertilizer application, winter cover cropping, 

etc. could enhance the prediction process of SOC, but this information was not available at a 

spatial resolution relevant for our study area. Longer-term historical data or larger spatial extents 

could capture greater variability and thus more effectively simulate the impacts of LULC and 

climate change on SOC. Finally, although our static-empirical modeling approach performed for 

our study as well or better than in different parts of the world (Bonfatti et al., 2016; Reyes Rojas 

et al., 2018; Yigini and Panagos, 2016), it is unclear how this approach compares to process-

based models or how this data-limited approach would perform for predicting SOC changes 

when climatic change is more dramatic.      
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Figure 24: Absolute changes in soil organic carbon (SOC) from 1984 to 2018 

The built-up/bare land and water area extent displayed in the map is for 2018 

 

 

4.4 Chapter conclusions 

Spatiotemporal analysis of SOC dynamics in response to changes in LULC, temperature, and 

precipitation could be an important tool for developing effective climate change mitigation and 

adaptation strategies for agricultural landscapes. Using remote sensing, digital soil mapping, and 

machine learning to establish a ‘scorpan’ based static-empirical SOC model, we predicted and 

assessed the SOC dynamics in the LFV from 1984 to 2018. During the study period, we detected 

SOC loss in 61% of the study area while SOC gain and no change were observed in 12% and 

27% of the study area respectively. Over the 34-year time period, SOC across the region 
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declined at a rate of 0.41%/year. We identified sizable losses of SOC due to LULC changes, but 

the majority of the losses were attributed to consistent agricultural land uses. We found LULC 

type and change classes to be important predictors for SOC changes whereas climate variability 

had only a minor influence during this study period. This study demonstrates the efficacy of a 

simple and cost-effective methodology to monitor SOC changes at landscape-scale that can 

easily be updated by incorporating new data. Cost-effective monitoring of SOC at a landscape 

scale enables the identification of LULC and management strategies that maximize SOC as well 

as the possibility of developing regional incentive-based programs for C sequestration. 
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Chapter 5: General conclusion 

 

In this dissertation, I developed innovative approaches for DSM using remote sensing to monitor 

different soil properties at the field- and landscape-scales for enhancing climate change 

mitigation and adaptation in the LFV of BC. The research was intended to address three specific 

objectives: 

 

1) Evaluate the cost and accuracy of geostatistical modeling technique at varying 

sampling efforts of SLA and MIRS for DSM at the field-scale, 

2) Compare two machine learning approaches for DSM of SOC and clay (CL) to predict 

a soil workability threshold (WT) at the landscape-scale,  

3) Assess the spatiotemporal dynamics of SOC in response to historical changes in LULC 

and climate conditions. 

 

I addressed each objective as individual research chapters (chapters 2-4). In the following 

sections, I provide a summary and key research outcomes of each of these chapters, describe the 

limitation of the study, and identify future research needs.  

 

5.1 Synopsis of Chapter 2 

The research presented in Chapter 2 was conducted at a 54-ha field in Delta, BC where I 

compared different sampling efforts of DSM for predicting a suite of soil properties, including 

sand, silt, clay, pH, salinity, organic matter, and total nitrogen. This study utilized samples 

analyzed with standard laboratory analysis (SLA) and mid-infrared spectroscopy (MIRS) and 
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compared their efficacy for the prediction of the soil properties at equivalent sampling efforts. I 

employed Conditioned Latin Hypercube Sampling (cLHS) to generate a range of sampling 

efforts from the full SLA (n = 62) and MIRS (n = 308) datasets. I applied a group of 

environmental variables derived from a high-resolution digital elevation model, unmanned aerial 

vehicle imagery (UAV), and historical soil survey data. Kriging with external drift model was 

used for predicting the soil properties at 5 m resolution across the study field.  

 

In this study, DSM outputs were found most effective for model accuracy and cost at 50-60% of 

the full sampling effort. MIRS predictions of soil properties using a partial least square 

regression model introduced a sizable amount of error when compared with the SLA dataset. 

However, DSM outcomes using the MIRS dataset were more accurate than those using the SLA 

dataset at equivalent sampling efforts since MIRS enabled five times more samples and better 

captured the spatial variability across the study site. The prediction accuracy for digital soil maps 

varied across the soil properties. At the optimum sampling effort, the R2 of prediction ranged 

from 0.82 (for sand) to 0.45 (for total nitrogen). From this analysis, I concluded that spatially 

optimized sampling efforts and the use of the MIRS technique substantially improve the model 

accuracy and cost efficiency of field-scale DSM for multiple soil properties. The cost-effective 

DSM strategies identified in this chapter can be used for precision management of various soil 

properties at a farm level and will enhance mitigation and adaptation abilities of the producers.  

 

5.2 Synopsis of Chapter 3 

In Chapter 3, I presented landscape-scale mapping of SOC and CL to predict WT for the 

agricultural lands of Delta, BC, comprising an area of 120 km2, which has been facing significant 
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challenges due to the changing precipitation pattern and poor drainage. This study utilized multi-

temporal Landsat imagery for the year 2016 and two machine learning models, namely random 

forest (RF) and generalized boosted regression model (GBM) for mapping SOC and CL. I 

derived a suite of environmental covariates, including topographic indices from the digital 

elevation model, soil and vegetation indices from multiple Landsat images representing pre-, 

growing, and post-seasons, variables from existing soil survey and agricultural land use 

inventory for the mapping of SOC and CL. These maps were then applied to existing 

pedotransfer functions (PTFs) to predict WT across the landscape.       

 

The independent validation showed that the RF model outperformed GBM for predicting SOC 

and CL although both models performed reasonably well. The R2, CCC, and nRMSE of 

prediction using the RF model were 0.55, 0.70, and 0.12 for SOC, while they were 0.62, 0.72, 

and 0.15 for CL. Topographic indices were the strongest predictors for both models and for both 

SOC and CL, while Landsat and existing survey variables also had a notable contribution. The 

SOC and CL maps were spatially applied to several PTFs to estimate the plasticity limits of the 

soil and produce the WT map which was then tested against independent field samples of the soil 

water content at -10 kPa. The validation yielded an R2 of 0.59, CCC of 0.70, and nRMSE of 

0.15. My analysis showed that 40% of the fields in the study area had WT <30% and were 

particularly vulnerable to increased precipitation in the shoulder seasons, and subsequently, 

likely to have reduced workable days. My analysis demonstrated an effective approach for 

producing high-resolution WT maps that could be utilized for enhancing spatial prioritizations 

for field management or investments for climate change adaptation at the farm to regional scales 

in regions facing similar drainage challenges as Delta, BC.   
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5.3 Synopsis of Chapter 4 

In Chapter 4, I presented a spatiotemporal analysis of SOC in response to LULC change and 

climate change from 1984 to 2018 across the LFV, comprising an area of 3031 km2. The study 

utilized a static-empirical modeling approach and used time-series Landsat images and climate 

variables for the years 1984, 1990, 1999, 2009, and 2018 for tracking changes in SOC and 

LULC. For LULC change detection, I conducted a hybrid analysis, combining both pixel- and 

object-based approaches, of the Landsat imagery for each of the years using a RF model for 7 

LULC classes, namely annual crop (AC), perennial crop (PC), grassland (GL), forest/forest 

patches (FFP), built-up/bare land (BUBL), water, and wetland (WL). To predict SOC, an RF 

model was calibrated and validated for 2018 while Landsat indices, climate variables, 

topographic indices, and soil survey variables were used as environmental covariates. For 

predicting SOC for the rest of the years, the Landsat and climate variables were updated to 

represent the variation in those specific years, however, the static variables, i.e. topographic 

indices and soil survey variables (e.g. soil texture) remained unchanged. The prediction of SOC 

in 1984 was also validated using a set of archived soil samples.  

 

The LULC classification yielded an overall accuracy of 81% and a kappa coefficient of 0.77 for 

independent validation using the ground truth data of 2018. However, the accuracy varied for the 

individual LULC classes with relatively low accuracy observed for AC, GL, and WL while FFP 

and water classes were predicted with the highest accuracy. The accuracy of LULC changes 

between different years ranged from 0.89 to 0.94. My predictions of SOC in 2018 resulted in an 

R2 of 0.67, CCC of 0.76, and nRMSE of 0.12, while SOC prediction of 1984 yielded R2, CCC, 

and nRMSE of 0.46, 0.58, and 0.18, respectively.        
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My LULC analysis did not identify substantial changes during the study period – 1984 to 2018 in 

the LFV. The dominant LULC categories were FFP and BUBL while different types of 

agricultural production were evenly distributed. The area of AC declined by 8.45%, while PC 

observed an increase of 30.43%. In 2018, the predicted SOC content across the study area ranged 

from 10.62 g/kg to 371.56 g/kg. I measured a mean annual loss in SOC of 0.41%/year (median -

0.34%/year) across the landscape from 1984 to 2018. I detected SOC loss in 61% of the study 

area and gain in only 12%, while 27% remained unchanged. The largest losses in SOC were due 

to LULC changes, yet the majority of the SOC losses across the landscape were attributed to 

areas that were consistently in the same type of agricultural production. Overall, I observed a 

decline in the predicted mean SOC for all LULC conditions regardless of whether there were 

changed or not. Although SOC changes were strongly associated with LULC changes, climate 

variability did not have a strong effect on SOC changes. The outcomes of this study have 

provided a solid baseline for the SOC status of the LFV and showed a concerning rate of loss 

since 1984. The study also identified areas in the LFV where there is a substantial potential to 

sequester SOC by implementing supportive management strategies for enhancing climate change 

mitigation and adaptation. 
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5.4 Key research outcomes 

The research presented in this dissertation provided cost-effective methodologies for accurate 

mapping of a suite of soil properties at the field- and landscape-scales in the LFV. The key 

research findings include:  

 

• Chapter 2 

i. The integration of spatially optimized sample selection and MIRS techniques 

substantially reduced the sampling efforts needed for effective field-scale DSM of 

multiple soil properties. 

ii. Two to three samples per hectare (i.e. 50-60% data points of the initial sampling 

effort derived from a 40 x 40 m grid) were found to be optimal for accuracy of 

DSM models and the cost of analysis. 

 

• Chapter 3 

i. Random Forest model outperformed Generalized Boosted Regression model for 

predicting SOC and clay 

ii. 40% of the fields in the study area had WT <30% and were particularly 

vulnerable to increased precipitation in the shoulder seasons 

iii. WT map can be used for on-farm and regional agricultural management for 

effective climate change adaptation 
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• Chapter 4   

i. ‘Scorpan’ based static-empirical modeling predicted SOC changes (1984 – 2018) 

across the LFV with R2 as high as 0.67      

ii. 61% of the LFV area experienced SOC loss, 12% gained SOC, and 27% remained 

unchanged  

iii. The predicted mean annual loss in SOC was 0.41%/year (median -0.34%/year) 

from 1984 to 2018 

 

5.5 Limitations and future research 

While this research established and applied innovative DSM tools for evaluating and monitoring 

soil properties at the field- and landscape-scales, it had some methodological limitations and 

constraints for application. The field-scale analysis, presented in Chapter 2, was only conducted 

in one crop field. Thus, the findings of the field-scale analysis may differ in other fields with 

different soil and topographic characteristics. The optimum sampling effort that I identified can 

be different for soils with lesser or greater variabilities. Therefore, future analysis should 

replicate the study in multiple fields with variable site conditions and management history to 

assess how these outcomes may vary based on soil type, environmental predictors, or 

management practices. In addition, the UAV imagery I used in this analysis, only comprised of 

visible bands of the electromagnetic spectrum. Including imagery at different infrared bands 

could better capture the vegetation information (Knoth et al., 2013) and contribute to better 

prediction accuracy. Future research, thus, should incorporate UAV imagery beyond the visible 

bands.  
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The landscape-scale analysis in Chapter 3 produced a continuous map of WT for the agricultural 

lands in Delta, however, the PTFs used in this analysis were based on Atterberg’s plasticity 

limits, which are mainly suitable for high clay soils. Thus, the technique may not be tenable in 

agricultural lands dominated by coarse-textured sandy soil. Future research should validate the 

methodology in other locations with different soil texture or develop PTFs for variable soil 

conditions. Additionally, my analysis only incorporated maps of SOC and CL for predicting WT 

across the entire landscape where there was a lot of variation in agricultural management 

practices. As such, the future analysis may consider incorporating landscape-wide management 

information for better prediction of WT.    

 

In Chapter 4, my analysis produced a baseline for landscape-scale SOC estimation in the LFV 

and changes since 1984 in response to changes in LULC and climatic conditions. Although this 

analysis utilized a comprehensive geospatial dataset for predicting SOC, integration of more 

detail information on agricultural management practices (e.g. landscape-scale data on tillage 

practices, fertilizer application, winter cover cropping, etc.) could strengthen the outcomes of the 

research and specify the management practices responsible for SOC change. Nonetheless, such 

data was not available for the LFV at a spatial resolution appropriate for my analysis. Future 

research, therefore, should gather and incorporate long-term datasets on management practices to 

capture greater variability in SOC and identify the relationships between SOC changes with 

specific management practices. Furthermore, my analysis only utilized satellite imagery of 30 m 

spatial resolution, however, some agricultural LULC features may not be wide enough (< 10 m) 

to be clearly distinguishable at this resolution (e.g. perennial grass margin, hedgerow). These 

LULC types could have notably different SOC content than the neighboring crop fields. Thus, 
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future analysis should explore finer resolution satellite imagery to capture this variation which 

may result in a more accurate prediction of SOC. Finally, the static-empirical modeling approach 

performed for my study was an effective and practical alternative to the data-intensive process-

based modeling, but it is not evident yet how the data-limited static-empirical technique 

compares with the proven process-based modeling approach. Moreover, it would also be 

important to examine how static-empirical modeling performs in a condition with larger climate 

variability and greater topographic variation as well as for investigating SOC change over time in 

larger study areas, e.g. national or continental scales.  

 

 



113 

 

References 

 

AAFC, 2015. Detailed Soil Survey. Ottawa, Canada. 

Adhikari, K., Owens, P.R., Libohova, Z., Miller, D.M., Wills, S.A., Nemecek, J., 2019. 

Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use 

and climate change. Sci. Total Environ. 667, 833–845. 

ALUI, 2016. Agricultural Land Use Inventory - Metro Vancouver 2016. Abbosford, BC. 

Amini, M., Afyuni, M., Fathianpour, N., Khademi, H., Flühler, H., 2005. Continuous soil 

pollution mapping using fuzzy logic and spatial interpolation. Geoderma 124, 223–233. 

Arnett, J.T.T.R., Coops, N.C., Gergel, S.E., Falls, R.W., Baker, R.H., Arnett, J.T.T.R., Coops, 

N.C., Gergel, S.E., Falls, R.W., Arnett, J.T.T.R., Coops, N.C., Gergel, S.E., Falls, R.W., 

Baker, R.H., 2014. Detecting Stand-Replacing Disturbance using RapidEye Imagery : a 

Tasseled Cap Transformation and Modified Disturbance Index Detecting Stand-Replacing 

Disturbance using RapidEye Imagery : a Tasseled Cap Transformation and Modified 

Disturbance Index. Can. J. Remote Sens. 8992, 1–14. doi:10.1080/07038992.2014.899878 

Baker, J.M., Ochsner, T.E., Venterea, R.T., Griffis, T.J., 2007. Tillage and soil carbon 

sequestration—What do we really know? Agric. Ecosyst. Environ. 118, 1–5. 

BC Agriculture & Food Climate Action Initiative, 2015. BC Agriculture & Climate Change 

Regional Adaptation Strategies series - Fraser Valley. Victoria, BC. 

BC Ministry of Agriculture, 2016. Fraser Valley Regional District agricultural land use 

inventory, Summer 2011 – 2013. Abbosford, BC. 

BC TRIM, 2012. British Columbia Terrain Resource Information Mapping (TRIM) Digitial Map 

Products. Victoria, Canada. 



114 

 

BCMOEnvironment, 2014. British Columbia greenhouse gas inventory report 2012. British 

Columbia Ministry of Environment, Victoria, BC. 

Behrens, T., Zhu, A.X., Schmidt, K., Scholten, T., 2010. Multi-scale digital terrain analysis and 

feature selection for digital soil mapping. Geoderma 155, 175–185. 

doi:10.1016/j.geoderma.2009.07.010 

Bertrand, R., 1991. Soil Management Handbook for The Lower Fraser Valley, 2nd ed. B.C. 

Ministry of Agriculture, Fisheries and Food , Abbosford. 

Bivand, R., Keitt, T., n.d. Rowlingson B. rgdal: Bindings for the Geospatial Data Abstraction 

Library. R package version 0.9–1. 2014. 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van 

der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic Object-Based 

Image Analysis - Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87, 180–

191. doi:10.1016/j.isprsjprs.2013.09.014 

Bonfatti, B.R., Hartemink, A.E., Giasson, E., Tornquist, C.G., Adhikari, K., 2016. Digital 

mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma 261, 204–221. 

Boyle, A., Lavkulich, L., 1997. Carbon pool dynamics in the Lower Fraser Basin from 1827 to 

1990. Environ. Manage. 21, 443–455. doi:10.1007/s002679900041 

Boyle, A., Lavkulich, L., Schreier, H., Kiss, E., 1997. Changes in land cover and subsequent 

effects on Lower Fraser Basin ecosystems from 1827 to 1990. Environ. Manage. 21, 185–

196. doi:10.1007/s002679900017 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 

Brieman, L., Cutler, A., Liaw, A., Wiener, M., 2015. randomForest package. Repos. CRAN. 

Brungard, C.., Boettinger, J.., 2010. Conditioned latin hypercube sampling: optimal sample size 



115 

 

for digital soil mapping of arid rangelands in Utah, USA, in: Digital Soil Mapping. Springer 

Netherlands, pp. 67–75. doi:10.1007/978-90-481-8863-5_6 

Brus, D.J., Heuvelink, G.B.M., 2007. Optimization of sample patterns for universal kriging of 

environmental variables. Geoderma 138, 86–95. 

Bruun, T.B., Elberling, B., de Neergaard, A., Magid, J., 2015. Organic carbon dynamics in 

different soil types after conversion of forest to agriculture. L. Degrad. Dev. 26, 272–283. 

Bueno, J., Amiama, C., Hernanz, J.L., Pereira, J.M., 2006. Penetration resistance, soil water 

content, and workability of grasslands soils under two tillage systems. Trans. ASABE 49, 

875–882. 

Bui, E., Henderson, B., Viergever, K., 2009. Using knowledge discovery with data mining from 

the Australian Soil Resource Information System database to inform soil carbon mapping in 

Australia. Global Biogeochem. Cycles 23. 

Bui, E., Moran, C., 2001. Disaggregation of polygons of surficial geology and soil maps using 

spatial modelling and legacy data. Geoderma 103, 79–94. 

Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., 

Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. 

Soc. Am. J. 58, 1501–1511. 

Campbell, D.J., 1991. Liquid and plastic limits, in: Smith, K., Mullins, C. (Eds.), Soil Analysis–

Physical Methods. Dekker Inc., New York, pp. 367–398. 

Carranza, E.J.M., Hale, M., 2002. Mineral imaging with Landsat Thematic Mapper data for 

hydrothermal alteration mapping in heavily vegetated terrane. Int. J. Remote Sens. 23, 

4827–4852. 

Cavazzi, S., Corstanje, R., Mayr, T., Hannam, J., Fealy, R., 2013. Are fine resolution digital 



116 

 

elevation models always the best choice in digital soil mapping? Geoderma 195, 111–121. 

Chagas, C., de Carvalho Junior, W., Bhering, S.B., Calderano Filho, B., 2016. Spatial prediction 

of soil surface texture in a semiarid region using random forest and multiple linear 

regressions. Catena 139, 232–240. 

Chen, L., Gong, J., Fu, B., Huang, Z., Huang, Y., Gui, L., 2007. Effect of land use conversion on 

soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecol. Res. 

22, 641–648. doi:10.1007/s11284-006-0065-1 

Childs, C., 2004. Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July-September 

3235, 569. 

Chipanshi, A., Fitzmaurice, J., De Jong, R., Bogdan, D., Lewis, M., Kroetsch, D., Lee, D., 2018. 

Assessment of soil trafficability across the agricultural region of the Canadian Prairies with 

the gridded climate data set. Soil Tillage Res. 184, 128–141. 

Clausi, D.A., 2002. An analysis of co-occurrence texture statistics as a function of grey level 

quantization. Can. J. Remote Sens. 28, 45–62. 

Cobo, J., Dercon, G., Yekeye, T., Chapungu, L., Kadzere, C., Murwira, A., Delve, R., Cadisch, 

G., 2010. Integration of mid-infrared spectroscopy and geostatistics in the assessment of 

soil spatial variability at landscape level. Geoderma 158, 398–411. 

doi:10.1016/j.geoderma.2010.06.013 

Conant, R.T., Paustian, K., Elliott, E.T., 2001. Grassland management and conversion into 

grassland: effects on soil carbon. Ecol. Appl. 11, 343–355. doi:10.1890/1051-

0761(2001)011[0343:GMACIG]2.0.CO;2 

Crawford, E., MacNair, E., 2012. BC Agriculture Climate Change Adaptation Risk & 

Opportunity Assessment Series - Fraser Valley & Metro Vancouver. British Columbia 



117 

 

Agriculture & Food Climate Action Initiative, Victoria, Canada. 

Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C., Machmuller, 

M.B., Snoek, B.L., Fang, S., Zhou, G., Allison, S.D., 2016. Quantifying global soil carbon 

losses in response to warming. Nature 540, 104. 

Cruz-Cárdenas, G., López-Mata, L., Ortiz-Solorio, C.A., Villaseñor, J.L., Ortiz, E., Silva, J.T., 

Estrada-Godoy, F., 2014. Interpolation of mexican soil properties at a scale of 1:1,000,000. 

Geoderma 213, 29–35. doi:10.1016/j.geoderma.2013.07.014 

Del Galdo, I., Six, J., Peressotti, A., Francesca Cotrufo, M., 2003. Assessing the impact of land‐

use change on soil C sequestration in agricultural soils by means of organic matter 

fractionation and stable C isotopes. Glob. Chang. Biol. 9, 1204–1213. 

Deng, L., Zhu, G. yu, Tang, Z. sheng, Shangguan, Z. ping, 2016. Global patterns of the effects of 

land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138. 

doi:10.1016/j.gecco.2015.12.004 

Dexter, A.R., Bird, N.R.A., 2001. Methods for predicting the optimum and the range of soil 

water contents for tillage based on the water retention curve. Soil Tillage Res. 57, 203–212. 

Dimassi, B., Cohan, J.-P., Labreuche, J., Mary, B., 2013. Changes in soil carbon and nitrogen 

following tillage conversion in a long-term experiment in Northern France. Agric. Ecosyst. 

Environ. 169, 12–20. 

Duffera, M., White, J.G., Weisz, R., 2007. Spatial variability of Southeastern US Coastal Plain 

soil physical properties: Implications for site-specific management. Geoderma 137, 327–

339. 

Earl, R., 1997. Prediction of trafficability and workability from soil moisture deficit. Soil Tillage 

Res. 40, 155–168. doi:10.1016/S0167-1987(96)01072-0 



118 

 

Edenhofer, O., 2014. Technical Summary In: Climate Change 2014: Mitigation of Climate 

Change. Contribution of Working Group III to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change. Technical Report. Cambridge University 

Press, Cambridge, United Kingdom and New York, NY, USA. 

Eggen, M., Ozdogan, M., Zaitchik, B., Simane, B., 2016. Land cover classification in complex 

and fragmented agricultural landscapes of the Ethiopian highlands. Remote Sens. 8, 1020. 

Elvidge, C.D., Lyon, R.J.P., 1985. Influence of rock-soil spectral variation on the assessment of 

green biomass. Remote Sens. Environ. 17, 265–279. 

Environment and Climate Change Canada, 2017. Canadian Environmental Sustainability 

Indicators Greenhouse Gas Emissions Greenhouse Gas Emissions. 

Environment Canada, 2019. Canadian Climate Normals 1981-2010 [WWW Document]. URL 

http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnNa

me&txtStationName=delta&searchMethod=contains&txtCentralLatMin=0&txtCentralLatS

ec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=766&dispBack=0 (accessed 

3.23.19). 

ESRI ArcGIS, 2011. Release 10. Redlands, CA Environ. Syst. Res. Inst. 

FAO, 2011. FAOSTAT Online Database. 

Fischer, E.M., Knutti, R., 2016. Observed heavy precipitation increase confirms theory and early 

models. Nat. Clim. Chang. 6, 986. 

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 

29, 1189–1232. 

Ge, Y., Thomasson, J.A., Sui, R., 2011. Remote sensing of soil properties in precision 

agriculture : A review. Front. Earth Sci. 5, 229–238. doi:10.1007/s11707-011-0175-0 



119 

 

Grimm, R., Behrens, T., Märker, M., Elsenbeer, H., 2008. Soil organic carbon concentrations 

and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis. 

Geoderma 146, 102–113. 

Grinand, C., Maire, G. Le, Vieilledent, G., Razakamanarivo, H., Razafimbelo, T., Bernoux, M., 

2017. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar 

using remote-sensing. Int. J. Appl. Earth Obs. Geoinf. 54, 1–14. 

doi:10.1016/j.jag.2016.09.002 

Grunwald, S., Thompson, J.A., Boettinger, J.L., 2011. Digital soil mapping and modeling at 

continental scales: Finding solutions for global issues. Soil Sci. Soc. Am. J. 75, 1201–1213. 

Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta analysis. Glob. 

Chang. Biol. 8, 345–360. 

Gupta, S.C., Larson, W.E., 1979. Estimating soil water retention characteristics from particle 

size distribution, organic matter percent, and bulk density. Water Resour. Res. 15, 1633–

1635. doi:10.1029/WR015i006p01633 

Haddaway, N.R., Hedlund, K., Jackson, L.E., Kätterer, T., Lugato, E., Thomsen, I.K., Jørgensen, 

H.B., Isberg, P.-E., 2017. How does tillage intensity affect soil organic carbon? A 

systematic review. Environ. Evid. 6, 30. 

Hanlon, E.A., McNeal, B.L., Kidder, G., 1993. Soil and container media electrical conductivity 

interpretations. Florida Cooperative Extension Service, Institute of Food and 

Agricultural …. 

Healey, S.P., Cohen, W.B., Zhiqiang, Y., Krankina, O.N., 2005. Comparison of Tasseled Cap-

based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 

97, 301–310. doi:10.1016/j.rse.2005.05.009 



120 

 

Hebda, R.J., Gustavson, K., Golinski, K., Calder, A.M., 2000. Burns Bog Ecosystem Review: 

Synthesis Report for Burns Bog, Fraser River Delta, South-western British Columbia, 

Canada. Environmental Assessment Office Victoria, BC. 

Hengl, T., 2007. A Practical guide to Geostatistical Mapping, Scientific and Technical Research 

series. doi:10.1016/0277-9390(86)90082-8 

Hengl, T., Heuvelink, G.B.M., Stein, A., 2004. A generic framework for spatial prediction of soil 

variables based on regression-kriging. Geoderma 120, 75–93. 

doi:10.1016/j.geoderma.2003.08.018 

Heung, B., Bulmer, C.E., Schmidt, M.G., 2014. Geoderma Predictive soil parent material 

mapping at a regional-scale : A Random Forest approach. Geoderma 214, 141–154. 

doi:10.1016/j.geoderma.2013.09.016 

Heung, B., Ho, H.C., Zhang, J., Knudby, A., Bulmer, C.E., Schmidt, M.G., 2016. An overview 

and comparison of machine-learning techniques for classification purposes in digital soil 

mapping. Geoderma 265, 62–77. 

Hijmans, R.J., Van Etten, J., 2016. raster: Geographic data analysis and modeling. R package 

version 2.5-8. Vienna, Austria R Found. Retrieved from https//CRAN. R-project. 

org/package= raster. 

Huang, J., Hartemink, A.E., Zhang, Y., 2019. Climate and Land-Use Change Effects on Soil 

Carbon Stocks over 150 Years in Wisconsin, USA. Remote Sens. 11, 1504. 

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–

309. 

Hunt Jr, E.R., Rock, B.N., 1989. Detection of changes in leaf water content using near-and 

middle-infrared reflectances. Remote Sens. Environ. 30, 43–54. 



121 

 

Hutchinson, M.F., 1993. Development of a continent-wide DEM with applications to terrain and 

climate analysis, in: Goodchild, M.F. (Ed.), Environmental Modeling with GIS. Oxford 

University Press, New York, pp. 392–399. 

Ise, T., Moorcroft, P.R., 2006. The global-scale temperature and moisture dependencies of soil 

organic carbon decomposition: an analysis using a mechanistic decomposition model. 

Biogeochemistry 80, 217–231. 

Janik, L.J., Merry, R.H., Skjemstad, J.O., 1998. Can mid infrared diffuse reflectance analysis 

replace soil extractions? Aust. J. Exp. Agric. 38, 681–696. 

Janik, L.J., Skjemstad, J.O., 1995. Characterization and analysis of soils using mid-infrared 

partial least-squares. 2. Correlations with some laboratory data. Soil Res. 33, 637–650. 

Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P.C., Boivin, P., 2017. Optimal 

organic carbon values for soil structure quality of arable soils. Does clay content matter? 

Geoderma 302, 14–21. 

Kätterer, T., Bolinder, M.A., Andrén, O., Kirchmann, H., Menichetti, L., 2011. Roots contribute 

more to refractory soil organic matter than above-ground crop residues, as revealed by a 

long-term field experiment. Agric. Ecosyst. Environ. 141, 184–192. 

Keller, T., Arvidsson, J., Dexter, A.R., 2007. Soil structures produced by tillage as affected by 

soil water content and the physical quality of soil. Soil Tillage Res. 92, 45–52. 

Keller, T., Dexter, A.R., 2012. Plastic limits of agricultural soils as functions of soil texture and 

organic matter content. Soil Res. 50, 7–17. 

Kerry, R., Oliver, M.A., 2007. Comparing sampling needs for variograms of soil properties 

computed by the method of moments and residual maximum likelihood. Geoderma 140, 

383–396. 



122 

 

Kerry, R., Oliver, M.A., Frogbrook, Z.L., 2010. Sampling in precision agriculture, in: 

Geostatistical Applications for Precision Agriculture. Springer, Dordrecht, pp. 35–63. 

Keskin, H., Grunwald, S., 2018. Regression kriging as a workhorse in the digital soil mapper’s 

toolbox. Geoderma 326, 22–41. 

Kheir, R.B., Greve, M.H., Bøcher, P.K., Greve, M.B., Larsen, R., McCloy, K., 2010. Predictive 

mapping of soil organic carbon in wet cultivated lands using classification-tree based 

models: The case study of Denmark. J. Environ. Manage. 91, 1150–1160. 

Knoth, C., Klein, B., Prinz, T., Kleinebecker, T., 2013. Unmanned aerial vehicles as innovative 

remote sensing platforms for high‐resolution infrared imagery to support restoration 

monitoring in cut‐over bogs. Appl. Veg. Sci. 16, 509–517. 

Kolberg, D., Persson, T., Mangerud, K., Riley, H., 2019. Impact of projected climate change on 

workability, attainable yield, profitability and farm mechanization in Norwegian spring 

cereals. Soil Tillage Res. 185, 122–138. 

Kononova, M.M., 2013. Soil organic matter: Its nature, its role in soil formation and in soil 

fertility. Elsevier. 

Koven, C.D., Chambers, J.Q., Georgiou, K., Knox, R., Negron-Juarez, R., Riley, W.J., Arora, 

V.K., Brovkin, V., Friedlingstein, P., Jones, C.D., 2015. Controls on terrestrial carbon 

feedbacks by productivity vs. turnover in the CMIP5 Earth System Models. Biogeosciences 

Discuss. 12, 5757–5801. 

Kretschmer, H., 1996. Koernung und Konsistenz, in: Blume, H.-P., Felix-Henningsen, P., 

Fischer, W.R., Frede, H.G., Horn, R., Stahr, K. (Eds.), Handbuch Der Bodenkunde. 

Ecomed. 

Kværnø, S.H., Haugen, L.E., Børresen, T., 2007. Variability in topsoil texture and carbon 



123 

 

content within soil map units and its implications in predicting soil water content for 

optimum workability. Soil Tillage Res. 95, 332–347. doi:10.1016/j.still.2007.02.001 

Lacoste, M., Minasny, B., McBratney, A., Michot, D., Viaud, V., Walter, C., 2014. High 

resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. 

Geoderma 213, 296–311. doi:10.1016/j.geoderma.2013.07.002 

Lagacherie, P., 2008. Digital soil mapping: A state of the art, in: Digital Soil Mapping with 

Limited Data. Springer Netherlands, Dordrecht, pp. 3–14. doi:10.1007/978-1-4020-8592-

5_1 

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. 

Science (80-. ). 304, 1623–7. doi:10.1126/science.1097396 

Lal, R., Negassa, W., Lorenz, K., 2015. Carbon sequestration in soil. Curr. Opin. Environ. 

Sustain. 15, 79–86. 

Lalonde, V., Hughes-Games, G.A., 1997. BC agricultural drainage manual. BC Ministry of 

Agriculture, Fisheries and Food, Victoria, Canada. 

Levin, N., Ben‐Dor, E., Singer, A., 2005. A digital camera as a tool to measure colour indices 

and related properties of sandy soils in semi‐arid environments. Int. J. Remote Sens. 26, 

5475–5492. 

Li, H., Webster, R., Shi, Z., 2015. Mapping soil salinity in the Yangtze delta: REML and 

universal kriging (E-BLUP) revisited. Geoderma 237–238, 71–77. 

doi:10.1016/j.geoderma.2014.08.008 

Li, J., Heap, A.D., 2011. A review of comparative studies of spatial interpolation methods in 

environmental sciences: Performance and impact factors. Ecol. Inform. 6, 228–241. 

doi:10.1016/j.ecoinf.2010.12.003 



124 

 

Li, Y., 2010. Can the spatial prediction of soil organic matter contents at various sampling scales 

be improved by using regression kriging with auxiliary information? Geoderma 159, 63–75. 

Ließ, M., 2015. Sampling for regression-based digital soil mapping: Closing the gap between 

statistical desires and operational applicability. Spat. Stat. 13, 106–122. 

doi:10.1016/j.spasta.2015.06.002 

Ließ, M., Schmidt, J., Glaser, B., 2016. Improving the spatial prediction of soil organic carbon 

stocks in a complex tropical mountain landscape by methodological specifications in 

machine learning approaches. PLoS One 11, e0153673. 

Lilly, A., Baggaley, N.J., Loades, K.W., McKenzie, B.M., Troldborg, M., 2018. Soil erosion and 

compaction in Scottish soils: adapting to a changing climate. Dundee. 

Liu, D., Wang, Z., Zhang, B., Song, K., Li, X., Li, J., Li, F., Duan, H., 2006. Spatial distribution 

of soil organic carbon and analysis of related factors in croplands of the black soil region, 

Northeast China. Agric. Ecosyst. Environ. 113, 73–81. 

Liu, S., An, N., Yang, J., Dong, S., Wang, C., Yin, Y., 2015. Prediction of soil organic matter 

variability associated with different land use types in mountainous landscape in 

southwestern Yunnan province, China. Catena 133, 137–144. 

doi:10.1016/j.catena.2015.05.010 

Lussier, J.M., Krzic, M., Smukler, S.M., Bomke, A.A., Bondar, D., 2019. Short-term effects of 

grassland set-asides on soil properties in the Fraser River delta of British Columbia. Can. J. 

Soil Sci. 99, 136–145. 

Luttmerding, H., 1981. Soils of the Langley-Vancouver map area. Kelowna. 

 

 



125 

 

MacHmuller, M.B., Kramer, M.G., Cyle, T.K., Hill, N., Hancock, D., Thompson, A., 2015. 

Emerging land use practices rapidly increase soil organic matter. Nat. Commun. 6. 

doi:10.1038/ncomms7995 

Malone, B., McBratney, A., Minasny, B., 2013a. Spatial Scaling for Digital Soil Mapping. Soil 

Sci. Soc. Am. J. 77, 890–902. doi:10.2136/sssaj2012.0419 

Malone, B., Minasny, B., McBratney, A., 2013b. Using R for Digital Soil Mapping. Springer. 

doi:10.1007/978-3-319-44327-0 

Malone, B. P., McBratney, A.B., Minasny, B., Laslett, G.M., 2009. Mapping continuous depth 

functions of soil carbon storage and available water capacity. Geoderma 154, 138–152. 

doi:10.1016/j.geoderma.2009.10.007 

Malone, Brendan P, McBratney, A.B., Minasny, B., Laslett, G.M., 2009. Mapping continuous 

depth functions of soil carbon storage and available water capacity. Geoderma 154, 138–

152. 

Malone, B.P., Styc, Q., Minasny, B., McBratney, A.B., 2017. Digital soil mapping of soil carbon 

at the farm scale: A spatial downscaling approach in consideration of measured and 

uncertain data. Geoderma 290, 91–99. doi:10.1016/J.GEODERMA.2016.12.008 

Mapfumo, E., Chanasyk, D.S., 1998. Guidelines for safe trafficking and cultivation, and 

resistance–density–moisture relations of three disturbed soils from Alberta. Soil Tillage 

Res. 46, 193–202. 

Masserschmidt, I., Cuelbas, C.J., Poppi, R.J., De Andrade, J.C., De Abreu, C.A., Davanzo, C.U., 

1999. Determination of organic matter in soils by FTIR/diffuse reflectance and multivariate 

calibration. J. Chemom. 13, 265–273. 

 



126 

 

McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping, 

Geoderma. doi:10.1016/S0016-7061(03)00223-4 

Merante, P., Dibari, C., Ferrise, R., Sánchez, B., Iglesias, A., Lesschen, J.P., Kuikman, P., 

Yeluripati, J., Smith, P., Bindi, M., 2017. Adopting soil organic carbon management 

practices in soils of varying quality: Implications and perspectives in Europe. Soil Tillage 

Res. 165, 95–106. doi:10.1016/J.STILL.2016.08.001 

Minasny, B., Malone, B.P., Mcbratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., 

Chaplot, V., Chen, Z., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B., Young, 

S., Mandal, B., Marchant, B.P., Martin, M., Mcconkey, B.G., Leatitia, V., Rourke, S.O., 

Richer-de-forges, A.C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., 

Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C., Vågen, T., Wesemael, B. Van, 

Winowiecki, L., Arrouays, D., Martin, M., Richer-de-forges, A.C., Mulder, V.L., 2017. Soil 

carbon 4 per mille. Geoderma 292, 59–86. doi:10.1016/j.geoderma.2017.01.002 

Minasny, B., McBratney, A.B., 2016. Digital soil mapping: A brief history and some lessons. 

Geoderma 264, 301–311. 

Minasny, B., McBratney, A.B., 2006. A conditioned Latin hypercube method for sampling in the 

presence of ancillary information. Comput. Geosci. 32, 1378–1388. 

doi:10.1016/j.cageo.2005.12.009 

Minasny, B., Mcbratney, A.B., Malone, B.P., Wheeler, I., 2013. Digital Mapping of Soil Carbon. 

Adv. Agron. 118. doi:10.1016/B978-0-12-405942-9.00001-3 

Mogili, U.M.R., Deepak, B., 2018. Review on application of drone systems in precision 

agriculture. Procedia Comput. Sci. 133, 502–509. 

Mueller, L., Schindler, U., Fausey, N.R., Lal, R., 2003. Comparison of methods for estimating 



127 

 

maximum soil water content for optimum workability. Soil Tillage Res. 72, 9–20. 

doi:10.1016/S0167-1987(03)00046-1 

Mueller, L., Tille, P., Kretschmer, H., 1990. Trafficability and workability of alluvial clay soils 

in response to drainage status. Soil Tillage Res. 16, 273–287. 

Mulder, V.L., De Bruin, S., Schaepman, M.E., Mayr, T.R., 2011. The use of remote sensing in 

soil and terrain mapping—A review. Geoderma 162, 1–19. 

Müller, L., Lipiec, J., Kornecki, T.S., Gebhardt, S., 2011. Trafficability and workability of soils, 

in: Encyclopedia of Agrophysics. Springer, pp. 912–924. 

Nemeth, D., Lambrinos, J.G., Strik, B.C., 2017. The effects of long-term management on 

patterns of carbon storage in a northern highbush blueberry production system. Sci. Total 

Environ. 579, 1084–1093. doi:10.1016/J.SCITOTENV.2016.11.077 

Neufeld, K., Paul, S., Smukler, S., 2017. Improving On-Farm Drainage Management to Reduce 

the Impacts of Climate Change in Delta, BC. Vancouver, Canada. 

Niang, M.A., Nolin, M.C., Jégo, G., Perron, I., 2014. Digital Mapping of soil texture using 

RADARSAT-2 polarimetric synthetic aperture radar data. Soil Sci. Soc. Am. J. 78, 673–

684. 

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann jj, M., Barth es, B., Ben 

Dor, E., Brown xx, D., Clairotte, M., Csorba, A., Dardenne jjjj, P., Demattê, J., Genot, V., 

Guerrero, C., Knadel xxx, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, 

J., Sakai jjjjjj, H., Soriano-Disla, J., Shepherd, K., Stenberg xxxx, B., Towett, E., Vargas, 

R., Wetterlind xxxx, J., Paulo, S., 2015. Soil Spectroscopy: An Alternative to Wet 

Chemistry for Soil Monitoring. Adv. Agron. 132, 139–159. 

doi:10.1016/bs.agron.2015.02.002 



128 

 

O’Rourke, S.M., Holden, N.M., 2011. Optical sensing and chemometric analysis of soil organic 

carbon–a cost effective alternative to conventional laboratory methods? Soil Use Manag. 

27, 143–155. 

Obour, P.B., Lamandé, M., Edwards, G., Sørensen, C.G., Munkholm, L.J., 2017. Predicting soil 

workability and fragmentation in tillage: a review. Soil Use Manag. 33, 288–298. 

Olson, G.O., 1975. Engineering characteristics of Ohio soil series. 

Ouyang, Y., Higman, J., Campbell, D., Davis, J., 2003. Three-dimensional kriging analysis of 

sediment mercury distribution: A case study. J. Am. Water Resour. Assoc. 39, 689–702. 

doi:10.1111/j.1752-1688.2003.tb03685.x 

Paal, T., Starast, M., Noormets-Šanski, M., Vool, E., Tasa, T., Karp, K., 2011. Influence of 

liming and fertilization on lowbush blueberry in harvested peat field condition. Sci. Hortic. 

(Amsterdam). 130, 157–163. 

Paneque-Gálvez, J., Mas, J.-F., Moré, G., Cristóbal, J., Orta-Martínez, M., Luz, A.C., Guèze, M., 

Macía, M.J., Reyes-García, V., 2013. Enhanced land use/cover classification of 

heterogeneous tropical landscapes using support vector machines and textural homogeneity. 

Int. J. Appl. Earth Obs. Geoinf. 23, 372–383. 

Pasley, H.R., Camberato, J.J., Cairns, J.E., Zaman-Allah, M., Das, B., Vyn, T.J., 2020. Nitrogen 

rate impacts on tropical maize nitrogen use efficiency and soil nitrogen depletion in eastern 

and southern Africa. Nutr. Cycl. Agroecosystems 1–12. 

Paul, S.S., Coops, N., Johnson, M., Krzic, M., Smukler, S., 2019. Evaluating sampling efforts of 

standard laboratory analysis and mid-infrared spectroscopy for cost effective digital soil 

mapping at field scale. Geoderma 356, 113925. 

Paul, S.S., Li, J., Wheate, R., Li, Y., 2018. Application of Object Oriented Image Classification 



129 

 

and Markov Chain Modeling for Land Use and Land Cover Change Analysis. J. Environ. 

Informatics 31, 30–40. doi:10.3808/jei.201700368 

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P., 2016. Climate-smart 

soils. Nature 532, 49–57. doi:10.1038/nature17174 

Pebesma, E., Heuvelink, G., 2016. Spatio-temporal interpolation using gstat. RFID J. 8, 204–

218. 

Pickett, S.T.A., 1989. Space-for-time substitution as an alternative to long-term studies, in: 

Long-Term Studies in Ecology. Springer, pp. 110–135. 

Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., Gensior, A., 

2011. Temporal dynamics of soil organic carbon after land-use change in the temperate 

zone - carbon response functions as a model approach. Glob. Chang. Biol. 17, 2415–2427. 

doi:10.1111/j.1365-2486.2011.02408.x 

Pribyl, D.W., 2010. A critical review of the conventional SOC to SOM conversion factor. 

Geoderma 156, 75–83. doi:10.1016/J.GEODERMA.2010.02.003 

Priyanka, K., 2018. Quantifying total and labile pools of soil organic carbon in cultivated and 

uncultivated soils in eastern India. Soil Res. 56, 413–420. 

R Core Team, 2018. R: A language and environment for statistical computing. 

Reyes Rojas, L.A., Adhikari, K., Ventura, S.J., 2018. Projecting soil organic carbon distribution 

in central Chile under future climate scenarios. J. Environ. Qual. 47, 735–745. 

Richards, L.A., Fireman, M., 1943. Pressure-plate apparatus for measuring moisture sorption and 

transmission by soils. Soil Sci. 56, 395–404. 

Ridgeway, G., 2015. The gbm package. Generalized boosted regression models (Documentation 

on the R Package ‘gbm’, version 1.6–3.). 



130 

 

Rietz, D.N., Haynes, R.J., 2003. Effects of irrigation-induced salinity and sodicity on soil 

microbial activity. Soil Biol. Biochem. 35, 845–854. 

Rikimaru, A., Roy, P.S., Miyatake, S., 2002. Tropical forest cover density mapping. Trop. Ecol. 

43, 39–47. 

Robinson, T.P., Metternicht, G., 2006. Testing the performance of spatial interpolation 

techniques for mapping soil properties. Comput. Electron. Agric. 50, 97–108. 

doi:10.1016/j.compag.2005.07.003 

Roudier, P., 2014. clhs-package Conditioned Latin Hypercube Sampling. 

Rounsevell, M.D.A., 1993. A review of soil workability models and their limitations in 

temperate regions. Soil use Manag. 9, 15–20. 

Rouse Jr, J., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation systems in the 

Great Plains with ERTS, in: NASA. Goddard Space Flight Center 3d ERTS-1 Symposium. 

NASA, United States, College Station, TX, pp. 309–317. 

Rumpel, C., Amiraslani, F., Koutika, L.-S., Smith, P., Whitehead, D., Wollenberg, E., 2018. Put 

more carbon in soils to meet Paris climate pledges. Nature 564, 32–34. 

Rutledge, P.L., Russell, D.G., 1971. Work day probabilities for tillage operations in Alberta. 

Edmonton. 

Sanderman, J., Hengl, T., Fiske, G.J., 2017. Soil carbon debt of 12,000 years of human land use. 

Proc. Natl. Acad. Sci. 114, 9575–9580. 

Santra, P., Kumar, M., Panwar, N., 2017. Digital soil mapping of sand content in arid western 

India through geostatistical approaches. Geoderma Reg. 9, 56–72. 

Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister‐Boltenstern, 

S., 2010. Greenhouse gas emissions from European soils under different land use: effects of 



131 

 

soil moisture and temperature. Eur. J. Soil Sci. 61, 683–696. 

Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappiè, M., Märker, M., Saia, S., 2017. 

Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The 

role of land use, soil texture, topographic indices and the influence of remote sensing data to 

modelling. Sci. Total Environ. 601–602, 821–832. doi:10.1016/j.scitotenv.2017.05.239 

Schmidt, M., Pringle, M., Devadas, R., Denham, R., Tindall, D., 2016. A framework for large-

area mapping of past and present cropping activity using seasonal Landsat images and time 

series metrics. Remote Sens. 8, 312. 

Servadio, P., Bergonzoli, S., Beni, C., 2016. Soil tillage systems and wheat yield under climate 

change scenarios. Agronomy 6, 43. 

Shen, W., Li, M., Huang, C., Wei, A., 2016. Quantifying Live Aboveground Biomass and Forest 

Disturbance of Mountainous Natural and Plantation Forests in Northern Guangdong, China, 

Based on Multi-Temporal Landsat, PALSAR and Field Plot Data Wenjuan. Remote Sens. 8, 

1–24. doi:10.3390/rs8070595 

Shupe, S., 2013. Land cover trends in Metro Vancouver, Canada over 45 years: mapping, 

analysis, and visualization, in: Buchroithner, M. (Ed.), Proceedings of the 26th International 

Cartographic Conference. International Cartographic Association, Dresden, Germany, pp. 

901–902. 

Sierra, C.A., Trumbore, S.E., Davidson, E.A., Vicca, S., Janssens, I., 2015. Sensitivity of 

decomposition rates of soil organic matter with respect to simultaneous changes in 

temperature and moisture. J. Adv. Model. Earth Syst. 7, 335–356. 

Simbahan, G.C., Dobermann, A., 2006. Sampling optimization based on secondary information 

and its utilization in soil carbon mapping. Geoderma 133, 345–362. 



132 

 

Sindayihebura, A., Ottoy, S., Dondeyne, S., Van Meirvenne, M., Van Orshoven, J., 2017. 

Comparing digital soil mapping techniques for organic carbon and clay content: Case study 

in Burundi’s central plateaus. Catena 156, 161–175. 

Singh, M., Sarkar, B., Sarkar, S., Churchman, J., Bolan, N., Mandal, S., Menon, M., 

Purakayastha, T.J., Beerling, D.J., 2018. Stabilization of soil organic carbon as influenced 

by clay mineralogy, in: Advances in Agronomy. Elsevier, pp. 33–84. 

Skalar Analytical, 2019. PrimacsSNC-100 TN/TC analyzer user manual. Skalar Analytical B.V., 

Breda, The Netherlands. 

Smedema, L.K., 1993. Drainage performance and soil management. Soil Technol. 6, 183–189. 

Statistics Canada, 2016. Census of Agriculture. Ottawa, Canada. 

Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., Jenkins, M., 

Minasny, B., McBratney, A.B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., 

Angers, D.A., Baldock, J., Bird, M., Brookes, P.C., Chenu, C., Jastrow, J.D., Lal, R., 

Lehmann, J., O’Donnell, A.G., Parton, W.J., Whitehead, D., Zimmermann, M., 2013. The 

knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. 

Ecosyst. Environ. 164, 80–99. 

Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L., 

Hong, S.Y., Rawlins, B.G., Field, D.J., 2015. Global soil organic carbon assessment. Glob. 

Food Sec. 6, 9–16. 

Suk Lee, W., Ehsani, R., 2015. Sensing systems for precision agriculture in Florida. Comput. 

Electron. Agric. 112, 2–9. doi:10.1016/j.compag.2014.11.005 

Tammeorg, P., Simojoki, A., Mäkelä, P., Stoddard, F.L., Alakukku, L., Helenius, J., 2014. Short-

term effects of biochar on soil properties and wheat yield formation with meat bone meal 



133 

 

and inorganic fertiliser on a boreal loamy sand. Agric. Ecosyst. Environ. 191, 108–116. 

Thermo Fisher Scientific, 2010. Flash 2000 elemental analyzer operating manual, D. ed. Thermo 

Fisher Scientific Inc, Cambridge, UK. 

Todd-Brown, K.E.O., Randerson, J.T., Hopkins, F., Arora, V., Hajima, T., Jones, C., 

Shevliakova, E., Tjiputra, J., Volodin, E., Wu, T., 2014. Changes in soil organic carbon 

storage predicted by Earth system models during the 21st century. Biogeosciences 11, 

2341–2356. 

Tomasek, B.J., Williams II, M.M., Davis, A.S., 2017. Changes in field workability and drought 

risk from projected climate change drive spatially variable risks in Illinois cropping 

systems. PLoS One 12, e0172301. 

Tsouros, D.C., Bibi, S., Sarigiannidis, P.G., 2019. A Review on UAV-Based Applications for 

Precision Agriculture. Information 10, 349. 

Tubiello, F.N., Salvatore, M., Ferrara, A.F., House, J., Federici, S., Rossi, S., Biancalani, R., 

Condor Golec, R.D., Jacobs, H., Flammini, A., Prosperi, P., Cardenas-Galindo, P., 

Schmidhuber, J., Sanz Sanchez, M.J., Srivastava, N., Smith, P., 2015. The Contribution of 

Agriculture, Forestry and other Land Use activities to Global Warming, 1990-2012. Glob. 

Chang. Biol. 21, 2655–2660. doi:10.1111/gcb.12865 

Vaccari, F.P., Lugato, E., Gioli, B., D’Acqui, L., Genesio, L., Toscano, P., Matese, A., Miglietta, 

F., 2012. Land use change and soil organic carbon dynamics in Mediterranean agro-

ecosystems: The case study of Pianosa Island. Geoderma 175–176, 29–36. 

doi:10.1016/j.geoderma.2012.01.021 

Vågen, T.-G., Winowiecki, L.A., Tondoh, J.E., Desta, L.T., Gumbricht, T., 2016. Mapping of 

soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 



134 

 

263, 216–225. doi:10.1016/j.geoderma.2015.06.023 

Van Bemmelen, J.M., 1890. Über die Bestimmung des Wassers, des Humus, des Schwefels, der 

in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans usw im Ackerboden. Die 

Landwirthschaftlichen Versuchs-Stationen 37, e290. 

van den Boogaart, K.G., Tolosana-Delgado, R., 2008. “Compositions”: a unified R package to 

analyze compositional data. Comput. Geosci. 34, 320–338. 

Van Deventer, A.P., Ward, A.D., Gowda, P.H., Lyon, J.G., 1997. Using Thematic Mapper data 

to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sensing 

63, 87–93. 

VandenBygaart, A.J., Bremer, E., McConkey, B.G., Janzen, H.H., Angers, D.A., Carter, M.R., 

Drury, C.F., Lafond, G.P., McKenzie, R.H., 2010. Soil organic carbon stocks on long-term 

agroecosystem experiments in Canada. Can. J. soil Sci. 90, 543–550. 

Viscarra Rossel, R.A., Walvoort, D.J.J., Mcbratney, A.B., Janik, L.J., Skjemstad, J.O., 2006. 

Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for 

simultaneous assessment of various soil properties. Geoderma 131, 59–75. 

doi:10.1016/j.geoderma.2005.03.007 

Wackernagel, H., 2003. Multivariate geostatistics: an introduction with applications, 3rd ed. 

Springer-Verlag, Berlin Heidelberg. 

Wang, B., Waters, C., Orgill, S., Cowie, A., Clark, A., Li Liu, D., Simpson, M., McGowen, I., 

Sides, T., 2018. Estimating soil organic carbon stocks using different modelling techniques 

in the semi-arid rangelands of eastern Australia. Ecol. Indic. 88, 425–438. 

doi:10.1016/J.ECOLIND.2018.01.049 

Wang, S., Wang, Q., Adhikari, K., Jia, S., Jin, X., 2016. Spatial-Temporal Changes of Soil 



135 

 

Organic Carbon Content in Wafangdian , China 11–14. doi:10.3390/su8111154 

Wang, T., Hamann, A., Spittlehouse, D., Carroll, C., 2016. Locally downscaled and spatially 

customizable climate data for historical and future periods for North America. PLoS One 

11, e0156720. 

Were, K., Bui, D.T., Dick, Ø.B., Singh, B.R., 2015. A comparative assessment of support vector 

regression, artificial neural networks, and random forests for predicting and mapping soil 

organic carbon stocks across an Afromontane landscape. Ecol. Indic. 52, 394–403. 

Wickham, H., 2016. ggplot2: elegant graphics for data analysis. Springer. 

Wilson, S., 2010. Natural capital in BC’s Lower Mainland: valuing the benefits from nature. 

Vancouver, Canada. 

Winowiecki, L., Vågen, T.-G., Huising, J., 2016. Effects of land cover on ecosystem services in 

Tanzania: A spatial assessment of soil organic carbon. Geoderma 263, 274–283. 

doi:10.1016/j.geoderma.2015.03.010 

Wu, H., Guo, Z., Gao, Q., Peng, C., 2009. Distribution of soil inorganic carbon storage and its 

changes due to agricultural land use activity in China. Agric. Ecosyst. Environ. 129, 413–

421. doi:10.1016/j.agee.2008.10.020 

Wulder, M.A., Coops, N.C., Roy, D.P., White, J.C., Hermosilla, T., 2018. Land cover 2.0. Int. J. 

Remote Sens. 39, 4254–4284. 

Xiong, X., Grunwald, S., Myers, D.B., Ross, C.W., Harris, W.G., Comerford, N.B., 2014. 

Interaction effects of climate and land use/land cover change on soil organic carbon 

sequestration. Sci. Total Environ. 493, 974–982. doi:10.1016/j.scitotenv.2014.06.088 

Xu, Y., Yu, L., Peng, D., Cai, X., Cheng, Y., Zhao, J., Zhao, Y., Feng, D., Hackman, K., Huang, 

X., 2018. Exploring the temporal density of Landsat observations for cropland mapping: 



136 

 

experiments from Egypt, Ethiopia, and South Africa. Int. J. Remote Sens. 39, 7328–7349. 

Yang, J., 2010. Economic analysis of blueberry investment in British Columbia. University of 

British Columbia. 

Yang, R., Zhang, G., Liu, F., Lu, Y., Yang, Fan, Yang, Fei, Yang, M., Zhao, Y., Li, D., 2016. 

Comparison of boosted regression tree and random forest models for mapping topsoil 

organic carbon concentration in an ... Ecol. Indic. 60, 870–878. 

doi:10.1016/j.ecolind.2015.08.036 

Yigini, Y., Panagos, P., 2016. Assessment of soil organic carbon stocks under future climate and 

land cover changes in Europe. Sci. Total Environ. 557–558, 838–850. 

doi:10.1016/j.scitotenv.2016.03.085 

Zhang, K., Dang, H., Zhang, Q., Cheng, X., 2015. Soil carbon dynamics following land-use 

change varied with temperature and precipitation gradients: Evidence from stable isotopes. 

Glob. Chang. Biol. 21, 2762–2772. doi:10.1111/gcb.12886 

Zhu, Q., Lin, H.S., 2010. Comparing ordinary kriging and regression kriging for soil properties 

in contrasting landscapes. Pedosphere 20, 594–606. doi:10.1016/S1002-0160(10)60049-5 

Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L. V., 2017. Global Sequestration Potential of 

Increased Organic Carbon in Cropland Soils. Sci. Rep. 7, 1–8. doi:10.1038/s41598-017-

15794-8 

Zvoleff, A., 2016. Package ‘glcm.’ 

 



137 

 

Appendices 

 

Appendix A    

Supplementary table for Chapter 2 

Sampl

ing 

efforts 

Soil 

proper

-ty 

Met-

rics  
SLA 

SLA 

SD 
MIRS 

MIRS 

SD 

Metric

s 
SLA 

SLA 

SD 
MIRS 

MIRS 

SD 

Metric

s (%) 
SLA 

SLA 

SD 
MIRS 

MIRS.

SD 

100% Sand R² 0.430 0.033 0.880 0.020 CCC 0.570 0.029 0.847 0.044 nRMSE 22.048 2.119 12.771 0.753 

90% Sand R² 0.410 0.024 0.870 0.030 CCC 0.570 0.029 0.836 0.029 nRMSE 22.849 1.130 12.909 1.221 

80% Sand R² 0.390 0.018 0.880 0.030 CCC 0.548 0.038 0.816 0.049 nRMSE 23.334 1.849 13.316 1.470 

70% Sand R² 0.360 0.028 0.850 0.042 CCC 0.551 0.025 0.823 0.052 nRMSE 23.261 2.735 13.870 3.053 

60% Sand R² 0.350 0.030 0.820 0.036 CCC 0.540 0.037 0.815 0.038 nRMSE 26.040 3.094 14.173 2.283 

50% Sand R² 0.270 0.040 0.710 0.036 CCC 0.460 0.030 0.770 0.042 nRMSE 28.271 2.873 14.937 1.912 

40% Sand R² 0.180 0.030 0.600 0.028 CCC 0.280 0.046 0.686 0.047 nRMSE 51.125 5.923 17.615 2.568 

30% Sand R² 0.070 0.029 0.390 0.016 CCC 0.060 0.038 0.538 0.044 nRMSE 73.630 4.892 22.077 2.739 

20% Sand R² 0.030 0.030 0.350 0.025 CCC 0.039 0.035 0.422 0.049 nRMSE 75.411 6.138 27.530 4.836 

10% Sand R² 0.004 0.003 0.150 0.038 CCC 0.002 0.002 0.286 0.036 nRMSE 80.693 5.302 44.801 3.882 

100% Silt R² 0.520 0.037 0.870 0.020 CCC 0.673 0.034 0.880 0.035 nRMSE 24.903 1.857 11.392 1.220 

90% Silt R² 0.490 0.026 0.830 0.034 CCC 0.665 0.030 0.860 0.027 nRMSE 25.432 2.119 13.037 1.813 

80% Silt R² 0.500 0.031 0.830 0.029 CCC 0.658 0.028 0.870 0.062 nRMSE 25.318 1.733 12.974 2.514 

70% Silt R² 0.460 0.028 0.840 0.027 CCC 0.651 0.043 0.830 0.032 nRMSE 26.631 3.025 13.752 1.376 

60% Silt R² 0.430 0.027 0.790 0.025 CCC 0.641 0.041 0.810 0.053 nRMSE 26.089 3.017 14.253 1.791 

50% Silt R² 0.410 0.018 0.710 0.032 CCC 0.612 0.057 0.770 0.046 nRMSE 28.305 4.931 15.179 2.823 

40% Silt R² 0.270 0.017 0.570 0.025 CCC 0.388 0.054 0.680 0.052 nRMSE 53.701 5.923 20.623 3.247 

30% Silt R² 0.130 0.016 0.500 0.026 CCC 0.160 0.035 0.650 0.033 nRMSE 62.417 4.451 22.827 5.346 

20% Silt R² 0.100 0.008 0.310 0.023 CCC 0.090 0.034 0.420 0.025 nRMSE 68.532 8.378 28.661 4.581 

10% Silt R² 0.070 0.002 0.200 0.017 CCC 0.028 0.011 0.390 0.021 nRMSE 93.572 5.404 43.172 5.591 

100% Clay R² 0.430 0.033 0.780 0.017 CCC 0.617 0.027 0.870 0.024 nRMSE 10.783 2.547 7.832 1.512 

90% Clay R² 0.390 0.037 0.760 0.023 CCC 0.604 0.025 0.860 0.016 nRMSE 11.935 2.059 8.015 2.063 

80% Clay R² 0.340 0.036 0.690 0.026 CCC 0.582 0.030 0.830 0.047 nRMSE 13.831 2.392 8.573 1.462 

70% Clay R² 0.350 0.041 0.660 0.017 CCC 0.535 0.038 0.810 0.023 nRMSE 14.552 1.586 9.117 1.647 

60% Clay R² 0.290 0.033 0.670 0.039 CCC 0.427 0.053 0.820 0.033 nRMSE 19.085 4.373 8.714 2.308 

50% Clay R² 0.220 0.025 0.620 0.016 CCC 0.382 0.039 0.780 0.029 nRMSE 26.972 3.813 8.937 3.015 

40% Clay R² 0.120 0.031 0.470 0.013 CCC 0.173 0.024 0.720 0.051 nRMSE 42.584 7.004 12.470 2.672 

30% Clay R² 0.070 0.010 0.280 0.018 CCC 0.118 0.032 0.530 0.052 nRMSE 46.446 6.191 13.179 4.661 

20% Clay R² 0.030 0.006 0.160 0.010 CCC 0.091 0.026 0.340 0.047 nRMSE 53.504 4.338 21.017 2.803 

10% Clay R² 0.007 0.007 0.050 0.008 CCC 0.022 0.019 0.210 0.051 nRMSE 54.730 7.074 26.749 3.152 

100% pH R² 0.338 0.015 0.532 0.027 CCC 0.484 0.016 0.607 0.009 nRMSE 14.463 1.518 11.043 1.582 

90% pH R² 0.314 0.018 0.536 0.014 CCC 0.464 0.013 0.572 0.018 nRMSE 14.861 2.500 11.364 0.834 
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80% pH R² 0.310 0.014 0.514 0.024 CCC 0.456 0.012 0.551 0.016 nRMSE 15.849 2.015 11.973 1.260 

70% pH R² 0.293 0.019 0.524 0.020 CCC 0.427 0.023 0.537 0.013 nRMSE 17.181 1.284 12.351 1.145 

60% pH R² 0.297 0.020 0.490 0.025 CCC 0.422 0.012 0.528 0.013 nRMSE 18.447 2.887 12.947 2.731 

50% pH R² 0.253 0.026 0.500 0.018 CCC 0.397 0.016 0.536 0.007 nRMSE 25.768 4.092 13.628 3.203 

40% pH R² 0.169 0.035 0.360 0.011 CCC 0.243 0.018 0.392 0.026 nRMSE 29.058 3.739 13.774 2.005 

30% pH R² 0.124 0.010 0.326 0.017 CCC 0.147 0.008 0.314 0.027 nRMSE 42.869 3.681 15.735 2.525 

20% pH R² 0.056 0.022 0.210 0.017 CCC 0.067 0.007 0.172 0.012 nRMSE 50.630 5.945 28.436 3.568 

10% pH R² 0.036 0.013 0.094 0.022 CCC 0.015 0.008 0.153 0.009 nRMSE 59.151 2.919 35.843 2.093 

100% EC R² 0.422 0.032 0.608 0.014 CCC 0.307 0.032 0.647 0.011 nRMSE 29.194 2.907 10.751 1.020 

90% EC R² 0.386 0.026 0.588 0.018 CCC 0.311 0.023 0.582 0.024 nRMSE 30.010 3.130 11.851 1.694 

80% EC R² 0.368 0.028 0.594 0.025 CCC 0.286 0.011 0.579 0.014 nRMSE 31.665 2.629 12.594 1.379 

70% EC R² 0.338 0.035 0.582 0.023 CCC 0.237 0.012 0.527 0.021 nRMSE 32.477 2.215 12.392 1.173 

60% EC R² 0.349 0.028 0.551 0.029 CCC 0.234 0.026 0.463 0.018 nRMSE 32.870 1.738 16.220 2.335 

50% EC R² 0.237 0.032 0.473 0.035 CCC 0.192 0.033 0.391 0.037 nRMSE 36.560 2.931 16.951 1.852 

40% EC R² 0.136 0.037 0.357 0.022 CCC 0.148 0.017 0.214 0.015 nRMSE 36.780 2.039 20.732 1.074 

30% EC R² 0.108 0.034 0.308 0.037 CCC 0.126 0.012 0.206 0.023 nRMSE 39.905 1.771 27.822 3.960 

20% EC R² 0.054 0.024 0.164 0.019 CCC 0.092 0.012 0.173 0.017 nRMSE 42.757 1.415 29.833 2.476 

10% EC R² 0.031 0.020 0.044 0.019 CCC 0.024 0.020 0.171 0.012 nRMSE 48.091 5.755 36.701 1.965 

100% SOM R² 0.472 0.029 0.572 0.034 CCC 0.627 0.022 0.804 0.011 nRMSE 9.233 0.992 8.371 1.663 

90% SOM R² 0.454 0.035 0.556 0.036 CCC 0.624 0.017 0.762 0.024 nRMSE 9.815 0.752 8.299 1.105 

80% SOM R² 0.456 0.038 0.568 0.025 CCC 0.621 0.016 0.716 0.014 nRMSE 11.458 0.846 8.861 1.048 

70% SOM R² 0.442 0.033 0.542 0.038 CCC 0.592 0.023 0.663 0.021 nRMSE 11.828 0.959 9.829 0.902 

60% SOM R² 0.437 0.026 0.511 0.031 CCC 0.562 0.016 0.651 0.018 nRMSE 12.676 1.311 10.884 0.893 

50% SOM R² 0.306 0.031 0.447 0.027 CCC 0.311 0.031 0.462 0.037 nRMSE 15.168 2.017 13.034 2.117 

40% SOM R² 0.128 0.021 0.258 0.018 CCC 0.206 0.011 0.313 0.015 nRMSE 21.209 3.894 13.790 2.067 

30% SOM R² 0.018 0.010 0.132 0.032 CCC 0.136 0.018 0.201 0.023 nRMSE 25.385 2.504 15.480 2.671 

20% SOM R² 0.006 0.005 0.154 0.029 CCC 0.072 0.016 0.187 0.017 nRMSE 33.633 2.900 17.713 1.332 

10% SOM R² 0.002 0.008 0.076 0.023 CCC 0.031 0.027 0.113 0.012 nRMSE 34.781 2.143 27.480 1.255 

100% TN R² 0.358 0.031 0.498 0.021 CCC 0.438 0.029 0.612 0.030 nRMSE 18.547 1.499 12.564 1.980 

90% TN R² 0.352 0.025 0.492 0.014 CCC 0.432 0.029 0.580 0.032 nRMSE 19.952 1.824 14.805 1.419 

80% TN R² 0.326 0.019 0.484 0.019 CCC 0.364 0.024 0.530 0.040 nRMSE 20.728 1.155 15.405 0.570 

70% TN R² 0.334 0.022 0.458 0.040 CCC 0.346 0.025 0.528 0.029 nRMSE 23.132 1.881 17.646 2.005 

60% TN R² 0.258 0.034 0.452 0.015 CCC 0.339 0.037 0.517 0.012 nRMSE 24.887 1.096 18.738 1.893 

50% TN R² 0.173 0.027 0.415 0.022 CCC 0.331 0.041 0.443 0.035 nRMSE 26.908 2.168 20.362 1.005 

40% TN R² 0.114 0.035 0.272 0.029 CCC 0.236 0.019 0.322 0.014 nRMSE 28.378 2.047 22.562 0.893 

30% TN R² 0.064 0.036 0.158 0.034 CCC 0.096 0.018 0.240 0.024 nRMSE 38.305 1.634 26.452 1.201 

20% TN R² 0.028 0.011 0.144 0.023 CCC 0.082 0.016 0.154 0.023 nRMSE 50.330 3.717 27.052 1.700 

10% TN R² 0.014 0.011 0.084 0.009 CCC 0.044 0.034 0.144 0.019 nRMSE 60.134 3.732 36.375 2.796 

 


