
Shortest Paths in Line Arrangements

by

Anton Likhtarov

B.Sc., The University of British Columbia, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

April 2020

c© Anton Likhtarov, 2020



The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Shortest Paths in Line Arrangements

submitted by Anton Likhtarov in partial fulfillment of the requirements for the
degree of Master of Science in Computer Science.

Examining Committee:

William Evans, Associate Professor, Department of Computer Science, UBC
Supervisor

David Kirkpatrick, Professor Emeritus, Department of Computer Science, UBC
Supervisory Committee Member

ii



Abstract

The problem of finding a shortest Euclidean path in an arrangement of lines be-

tween two points in the arrangement has been extensively studied; however, the

best known exact solution takes quadratic time, and it’s not known if a subquadratic

time algorithm exists. While I did not succeed in improving these bounds, I exam-

ined instead the problem of efficiently finding the approximate shortest path where

the runtime depends on the bound of the relative error in the path length. I present

an algorithm for computing this approximate shortest path. The algorithm uses the

geometric structure of the arrangement; I show that certain lines are never used

by the shortest path, while other lines could be ignored without making the path

much longer. My work includes a number of lemmas that provide simple proofs

for related problems (such as shortest path in two intersecting pencils of lines), and

could have applications in future work on this problem.
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Lay Summary

Imagine a city where every street is a straight line that extends to infinity in both

directions. It is not known in general how quickly one can find the shortest possible

route from one intersection to another in such a city.

I present a general method of finding a good enough route between two inter-

sections that’s in a certain sense guaranteed to not take too many calculations to

find. I also present a number of new geometric theorems that will help to think

about this problem in a new way, potentially leading to new discoveries in the

future.
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Preface

This thesis is original, unpublished, independent work by the author, Anton Likhtarov.
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Chapter 1

Introduction

The shortest distance between two
points is not a very interesting journey.

— Rube Goldberg

1.1 Shortest paths in line arrangements
We consider the problem of finding a shortest path (using the Euclidean metric) in

an arrangement of lines on a plane between two points in the arrangement.

Given a finite set of lines A = {li} on a plane and two points S, T on some

lines in A , the SHORTEST-PATH problem is the problem of finding the shortest

possible path p from S to T along the lines in A .

Given also a real number ε < 1, the APPROXIMATE-SHORTEST-PATH problem

is the problem of finding a path from S to T along the lines in A with length that

is at most (1+ ε) times the length of p.

While these problems have been studied for some time, it’s still an open prob-

lem to establish tight bounds on time complexity. The best known solution for

SHORTEST-PATH has the time complexity O(n2), while the best known lower

bound is Ω(n logn).

While we didn’t succeed in improving these bounds, our contributions are:

1. We show a new approach for exploring the shortest path geometry, proving

the novel Circle Lemma, and exploring the connections to Urquhart’s The-
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orem. We use these techniques to demonstrate a simple, geometric proof

of the Pencil Lemma (the existing proofs due to Kavitha [13] and Hart [11]

involve full parameterization and complicated algebraic manipulations).

2. We present an algorithm for the APPROXIMATE-SHORTEST-PATH problem

with the time complexity of O(n logn+ ε−3 log(ε−1)n).

1.2 History and related work
The earliest known treatment of this problem is by Davis in 1948 [4]. He shows

that certain lines will never be used by the shortest path.

To obtain the naive upper bound, we could construct the entire O(n2) arrange-

ment and then use Dijkstra’s shortest path algorithm for an overall time complexity

of O(n2 logn). To improve on this, Henzinger et al. show how to construct the

shortest path in planar graphs in O(n) time, bringing the overall time complexity

down to O(n2)[12]. In addition, an approach called “topological peeling”[2, 3] re-

duces the space complexity to O(n). As far as we can tell, this is the best currently

known solution.

On the other hand, the best known lower bound of Ω(n logn) follows from

the reduction from the CONVEX-HULL-SIZE-VERIFICATION problem (“given n

points on a plane, is their convex hull of size n?”), which is known to be Ω(n logn)

[15].

Some restricted versions of the problem have also been studied. If the lines

are restricted to only k unique orientations, the shortest path can be found in time

O(n+k2)[6]. If the arrangement is formed by two intersecting pencils of lines and

we’re interested in the shortest path between the corners of the resulting “grid”,

the path is trivial and can be found in O(n) time [11, 13]. It’s interesting to note

that even this seemingly much simpler variant of the problem has been open for

some time, and when eventually solved both proofs involve full parameterization

and complicated algebraic manipulations. One of our contributions is a simple

geometric proof which we call the Pencil Lemma.

The APPROXIMATE-SHORTEST-PATH can be solved in O(n logn) if ε = 1 (that

is, we want a factor of 2 approximation) [1].

2



Finally, Hart gives a short overview for an approximation algorithm with time

complexity of O(n logn + (min{n,ε−2})ε−1 log(ε−1))[10], though the complete

algorithm and proof was never published. We build on some of the ideas in this

overview paper and present a complete approximation algorithm.

3



Chapter 2

Exploring the arrangement
geometry

2.1 Definitions and observations
We assume that no line contains both S and T ; otherwise the shortest path is triv-

ially found in O(n) time.

We fix a coordinate system so that S = (−1,0) and T = (1,0).

We use the notation d(A,B) for the length of the segment AB, and d(A,B,C) as

a shortcut for d(A,B)+d(B,C) (similarly for any larger number of terms).

Every line l induces a partition on the plane l∪ l+∪ l− where l+ and l− are the

open half-planes defined by l. A line l that separates S from T (that is, S and T are

in different half-planes defined by l) is called a cross line; every other line is called

an exterior line.

For every exterior line b, take the closed half-plane defined by b that contains

both S and T . The intersection of these half-planes is a convex, possibly unbounded

region that we denote Hull(S,T ). An exterior line that has a nonempty intersection

with Hull(S,T ) is called a boundary line.

It’s easy to see that if a shortest path intersects a line, the intersection is a closed

segment or a point. The shortest path will intersect every cross line, and will never

leave Hull(S,T ). Thus we can ignore any non-boundary exterior lines.

A path is said to visit a line if it intersects with it. A path travels on a line if the

4



intersection is a positive length segment and not just a point.

We will often need to explicitly state the direction that a path is travelling along

a given line. It’s trivial to see that a shortest path will only travel on lines on the up-

per boundary of Hull(S,T ) in the clockwise direction from S to T —otherwise the

path would self-intersect, and we could obtain a shorter path. Similarly, a short-

est path will only travel on lines on the lower boundary in the counterclockwise

direction from S to T .

The shortest path can travel on a cross line in either direction. To make the

discussion clear, we replace each cross line with two coincident directed lines: an

up-line with the positive y-direction of travel and a down-line with the negative

y-direction of travel.

Now that we have partitioned the arrangement into a set of upper boundary,

lower boundary, up-, and down-lines, the possible direction of travel on each line

is unique.

Observation 2.1.1. If a shortest path travels consecutively on lines x and then y,

1. x is an upper boundary or an up-line if and only if y is an upper boundary

or a down-line.

2. x is a lower boundary or a down-line if and only if y is a lower boundary or

an up-line.

Proof. Sketch. In each case, the negation would have the path cross some line

twice. For example, if x and y were both down-lines, then p would either have to

cross x again after travelling on y or would have already crossed y before travelling

on x.

Finally, we have some notation to help us talk about line angles. An up-line a is

said to be steeper than an up-line b if the angle that the directed line a makes with

the directed line
−→
ST is larger than the angle that b makes with

−→
ST . We write b < a

(b is less steep or shallower than a). We have a similar definition for down-lines.

Intuitively, the path would often prefer a shallower line to get across Hull(S,T )

faster.

5



2.2 General position
For the simplicity of the argument, we assume that the arrangement given is in

general position. By this we mean that no two lines are parallel; no three lines

intersect at a single point; and S and T belong to exactly one line.

Note that any arrangement can be perturbed slightly to be in general position

without changing the sequence of lines visited by a shortest path (with perhaps

the exception of adding a small segment of travel next to S or T if they happen to

intersect more than one line). Unfortunately it is not known if we can compute this

perturbation quickly—the problem of finding if any three lines intersect at a point

belongs to a class of “n2-hard problems”[7, 14].

We believe that the argument can be adapted to drop the general position re-

quirement, but we did not attempt to do so.

2.3 Urquhart’s theorem and related lemmas
The following curious theorem has direct application to the problems we’re con-

sidering.

D A

BB′

C ′

C

Figure 2.1: Urquhart’s theorem.

Theorem 2.3.1 (Stronger version of Urquhart’s Theorem [8]). If
←−→
ABB′1 and

←−→
AC′C

are straight lines with
←→
BC and

←−→
B′C′ intersecting at D then

1. d(A,B,D) = d(A,C′,D) if and only if d(A,B′,D) = d(A,C,D), and

2. d(A,B,D)< d(A,C′,D) if and only if d(A,B′,D)< d(A,C,D).
1We use

←→
AB for the line through the points A and B;

−→
AB for the directed line through A and B with

the direction of travel from A towards B; and AB for the closed line segment from A to B.

6



Pedoe attributes the theorem to L. M. Urquhart who “discovered it when con-

sidering some of the fundamental concepts of the theory of special relativity” [17],

though it appears that the history of the theorem and its proofs go back much fur-

ther [5, 16]. Hajja has published two proofs of the theorem with some discussion

of its history [8, 9].

2.3.1 Pencil Lemma

The SHORTEST-PATH problem remained open even for the special case where the

arrangement is formed by two intersecting pencils of lines (see Figure 2.2) until

solved by Kavitha [13] and independently by Hart in 2003 [11].

S

T

Figure 2.2: An S–T path on two intersecting pencils of lines. The shortest
path would not use interior intersections.

It turns out that the shortest path never uses the interior of the “distorted grid”

in this case, and it’s sufficient to prove the case for the intersecting pencils of two

and three lines. We refer to this base case as the Pencil Lemma.

We’re aware of two existing proofs. Kavitha [13] parameterizes the lengths of

certain paths through the coordinates of the line intersections and differentiates the

resulting functions to show that certain path length relationships must hold. Hart’s

approach [11] is similar but uses angles and trigonometry for the parameterization

instead; it also uses Mathematica to simplify the resulting expressions. Neither

approach seems to provide any geometric insight into the problem.

We present a simpler geometric proof that only uses Urquhart’s Theorem and

the triangle inequality.

7



Lemma 2.3.2 (Nested Ellipse Lemma). For
←−→
PXY a straight line with X 6= Y and

Q /∈←−→PXY, if d(Z,Q,X)≤ d(Z,P,X) then d(Z,Q,Y )< d(Z,P,Y ).

Alternatively, the ellipse with foci Z and X is contained within the ellipse with

foci Z and Y if the ellipses coincide at P (see Figure 2.3).

Q

Z

X

P

Y

Figure 2.3: Nested Ellipse Lemma.

Proof.

d(Z,P,Y ) = d(Z,P,X ,Y )

≥ d(Z,Q,X ,Y )

> d(Z,Q,Y ) by the triangle inequality.

Lemma 2.3.3 (Pencil Lemma). Fix points S and T . For all points P, Q, and U ∈
←→
PS, a shortest S–T path on the arrangement {←→PS,

←→
PT,
←→
QS,
←→
QT,
←→
QU} does not use

the segment UV, where V =
←→
PT ∩←→QU, provided that no two lines are parallel.

Proof. Let A =
←→
PS∩←→QT and B =

←→
PT ∩←→QS.

If U /∈ SA then the path that uses UV would double-cross a line, and the re-

sult holds, so assume U ∈ SA. The three possible paths from S to T have lengths

d(S,A,T ), d(S,B,T ), and d(S,U,V,T ).

We show that min{d(S,A,T ), d(S,B,T )} < d(S,U,V,T ). It suffices to show

that if d(S,U,V,T ) ≤ d(S,B,T ) then d(S,A,T ) < d(S,U,V,T ), or equivalently if

d(S,U,V ) ≤ d(S,B,V ) then d(U,A,T ) < d(U,V,T )—in other words, if the path

8



P
S

Q

B

V

U
A

T

Figure 2.4: Pencil Lemma. The path shown cannot be shortest in the arrange-
ment.

that uses UV is better than the path through B then the path through A must be

better still.

P

S

V

U

Q

T

Figure 2.5: Three nested ellipses through P. The ellipse with foci at S and V
is inside the ellipse with foci at S and T , which is inside the ellipse with
foci at T and U .

Assume d(S,U,V )≤ d(S,B,V ).

By Theorem 2.3.1, d(S,Q,V )≤ d(S,P,V ).

By Lemma 2.3.2, taking X =V , Y = T , and Z = S, d(S,Q,T )< d(S,P,T ).

By Lemma 2.3.2 again, taking X = S, Y =U , and Z =T , d(U,Q,T )< d(U,P,T ).

Finally, by Theorem 2.3.1, d(U,A,T )< d(U,V,T ).

Intuitively, there are three nested ellipses through P (see Figure 2.5), so it fol-

lows that if Q is inside the innermost ellipse, it must also be inside the outermost

9



ellipse and the result follows.

2.3.2 Quadrilateral Lemma

We’ll make use of the following simple geometric lemma, which is closely related

to Urquhart’s Theorem. Using this lemma, we show that a given shortest path

cannot travel on some line segments in the arrangement since there would be a

way to shorten the path.

Lemma 2.3.4. Let a, b, and c be three lines tangent to a circle C so that b∩ c and

C are in different half-planes defined by a.

Let P = a∩b, Q = b∩ c, and R = a∩ c.

Let x be a line so that U = x∩a ∈ PR and V = x∩ c ∈ RQ.

1. If x is tangent to C then d(U,P,Q) = d(U,V,Q).

2. If x crosses C then d(U,P,Q)> d(U,V,Q).

3. If x does not cross C then d(U,P,Q)< d(U,V,Q).

C
a

b

c

P

Q

R

x

U

V

Figure 2.6: Lemma 2.3.4.

Proof. Case 1. x is tangent to C .

Let A, B, C, X be the points where a, b, c, and x respectively coincide with C

(see Figure 2.7).

10



P

Q

R

U

V

B

X

A

C

Figure 2.7: Case 1: x is tangent to C .

We have:

d(C,Q) = d(B,Q) d(C,V ) = d(X ,V )

d(A,P) = d(B,P) d(A,U) = d(X ,U)

d(C,Q) = d(C,V,Q) = d(X ,V,Q) = d(X ,U,V,Q) = d(A,U,V,Q)

d(B,Q) = d(B,P,Q) = d(A,P,Q) = d(A,U,P,Q)

So d(A,U,V,Q) = d(A,U,P,Q), and thus d(U,V,Q) = d(U,P,Q).

Case 2. x crosses C (see Figure 2.8).

P

Q

R

U

V

B

A

C

x

V ′

Figure 2.8: Case 2: x crosses C .

Let
←→
UV ′ be the line through U tangent to C that does not coincide with a.

By Case 1, d(U,P,Q) = d(U,V ′,Q) = d(U,V ′,V,Q)> d(U,V,Q) (by the triangle

inequality).

Case 3. x does not cross C .
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As in Case 2, Let
←→
UV ′ be the line through U tangent to C that does not coincide

with a. By Case 1, d(U,P,Q) = d(U,V ′,Q) < d(U,V,V ′,Q) = d(U,V,Q) (by the

triangle inequality).

2.4 Circle Lemma
The Circle Lemma shows that travelling along any cross line imposes significant

restrictions on any other lines crossed by the shortest path.

Lemma 2.4.1 (Circle Lemma). Let C be the unique circle tangent to lines a, b,

and c that lies in the half-plane defined by a that does not contain b∩ c.

If b separates S from T and the shortest path from S to T travels consecutively

on a, b, and c, then the arrangement contains no lines that intersect both C and

the shortest path from S to T .

C

a

b

c

T
P

Q

R

x

Z

Figure 2.9: Circle Lemma. No line intersects both C and the shortest path. S
is not shown, but is somewhere within the shaded area.

Proof. We first establish some common notation and then prove the lemma in mul-

tiple parts.

Let P = a∩b, Q = b∩ c, R = a∩ c. Suppose for the sake of contradiction that

there’s a line x that intersects both C and the shortest path from S to T at a point Z

(see Figure 2.9).

Part 1. Z is located in the shortest subpath from S to Q.

12



We first observe that Z must be inside the same quadrant defined by the lines b

and c that contains the circle C ; in all other cases the supposed shortest path from

S to Q would double cross some line which is a contradiction.

Z

a

b

c

C

P

R

Q

Ux

V

W

Figure 2.10: First case: Z ∈4PQR.

First, consider the case where Z ∈4PQR (see Figure 2.10).

Let V = a∩ x and W = c∩ x. It must be that W ∈ RQ, otherwise x would have

crossed the shortest path twice, which is a contradiction. It follows that V ∈ RP

since x crosses C .

If δ is the length of the shortest subpath from Z to Q, we have

d(Q,W,V )< d(Q,P,V )≤ δ +d(Z,V ) (by Lemma 2.3.4)

d(Q,W,Z,V ) = d(Q,W,V )< δ +d(Z,V )

d(Q,W,Z)< δ ,

which is a contradiction.

The other case is where Z /∈4PQR (see Figure 2.11).

Let d be the line on which the shortest path arrives at U , and V ∈ d be some

point so that VU is part of the shortest path.

Let W = d ∩ c. It must be that W ∈ RQ, otherwise d would have crosses the

shortest path twice.

Note also that d does not cross C since otherwise d(U,W,Q)< d(U,P,Q) (by

Lemma 2.3.4), which would be a contradiction.

13



a

b

c

C

P

R

Q

U

V

W

C′

d

Figure 2.11: Second case: Z /∈4PQR. Z is located within the shaded area.

We apply the Circle Lemma by induction on the number of line segments in

the shortest path, considering the shortest path from S′ = Z to T ′ = Q, and taking

a′ = d, b′ = a (which separates Z from Q), and c′ = b. Since the shortest path from

Z to Q has at least one segment fewer than the shortest path from S to T and is

finite, the induction must eventually end in the first case of the proof.

Let C ′ be the circle in the inductive step. We have that no line through Z

crosses C ′. As a corollary, Z is located in the bounded region defined by the lines

a, b, and the circle C ′.

Any line through Z that crosses C must also cross C ′, since C and C ′ share

the tangents a and b, and C contacts these tangents at points that are further away

from P than C ′ does (by virtue of another tangent d of C ′ not crossing C ).

So no lines through Z can cross C .

Part 2. Z is located in the shortest subpath from Q to T .

Since b separates S from T and the shortest path cannot cross a or b twice,

Z must be in the quadrant defined by a and b that is opposite of the quadrant

containing C .

Consider first the case where Z ∈ c or Z is in the same half-plane defined by c

as the circle C (see Figure 2.12).

Let W = x∩ a. Note that W /∈ RP, otherwise x would cross PQ, which is part
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a

b

c
P

R

Q

ZC
x

V

d

W

Figure 2.12: Case one: Z above c.

of the shortest path, a contradiction. Let d be the unique tangent line of C through

Z that intersects PQ, and let V = d∩PQ (d might not exist in the arrangement).

Let δ be the length of the shortest subpath from P to Z. By Lemma 2.3.4,

d(P,W,Z)< d(P,V,Z)≤ δ , which is a contradiction.

The other case is where Z is in the half-plane defined by c that does not contain

the circle C . Let d be the line on which the path leaves c. We have two subcases.

C
a

b

c

d

P

Q
V

Z

R

C′

Figure 2.13: Case two: d intersects b above, induction.

First, consider the case where d∩b is in the same half-plane defined by c as the

15



circle C (see Figure 2.13). Note that d does not cross C since otherwise we would

have (by Lemma 2.3.4) d(P,a∩d,V )< d(P,Q,V ), a contradiction.

We apply the Circle Lemma by induction on the number of line segments in

the shortest path, considering the shortest path from S′ = P to T ′ = Z, and taking

a′ = b, b′ = c (which separates P from Z), and c′ = d. Since the shortest path from

P to Z has at least one segment fewer than the shortest path from S to T and is

finite, the induction must eventually end in one of the other cases of the proof.

Let C ′ be the circle in the inductive step. We have that no line through Z

crosses C ′.

Since Z is in the quadrant defined by b and c that is opposite to the quadrant

containing C and C ′, any line through Z that crosses C must also cross C ′, because

C and C ′ share the tangents b and c, and C ′ contacts these tangents at points that

are further away from Q than C does (by virtue of another tangent d of C ′ not

crossing C ).

So no lines through Z cross C in this case.

For the final case we have d ∩ b in the half-plane defined by c that does not

contain the circle C (see Figure 2.14).

C
a

b

c

d

P

Q

V

R

C′x

Z

Figure 2.14: Case three: d intersects b below. Z can only appear in the shaded
region, any line through Z that crosses C would also cross C ′.

16



We again apply the Circle Lemma by induction, considering the reversed short-

est path from Z to P, and taking a′ = d, b′ = c (which separates P from Z), and

c′ = b. In this case, we’re guaranteed to end up in the Part 1 of the proof.

We get that in the inductive step no lines through Z cross the unique circle C ′

tangent to lines d, c, and b that lies in the half-plane defined by d that does not

contain Q. We also get that the subpath from P to Z does not cross C ′, so Z must

be in the bounded region defined by the lines b, c, and the circle C ′. Since b and

c are tangent to both C and C ′, it follows that any line through Z that crosses C

must also cross C ′.

Therefore no lines through Z cross C and this completes the proof.

2.5 Phantom-line Lemma
This lemma allows us to conclude that the shortest path does not travel on certain

line segments that are surrounded by “better” lines on each side.

Lemma 2.5.1 (Phantom-line Lemma). Let a, b, and c be three directed lines so

that the shortest path from S to T travels through points A ∈ a and C ∈ c so that C

is to the right of a and A is to the left of c.

If b separates S from T and A from C, and b makes a positive angle with both

a and c then the shortest path does not travel along b in the direction of the line

(note: the shortest path may travel along a or c with or against the respective

directions).

a b

c

A

C

S

T

Figure 2.15: Phantom-line Lemma: the shortest path does not travel along b
in its direction.

Proof. Suppose that the shortest path p does travel along a line segment XY ∈ b.
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XY must be to the right of a and to the left of c in its entirety, otherwise the path

would double cross either a or c.

Let x be the line on which the shortest path arrives at X and y be the line on

which the shortest path leaves Y .

Since b separates S from T , the shortest path travels along x and y on opposite

sides of b. We will introduce a new line b′ to the arrangement which is initially

coincident with b (the “phantom line” of the lemma’s name). We will translate b′

in steps, always maintaining (1) b′ separates S from T and A from C; (2) using b′

makes for a shorter path; and (3) after every step the shortest path (with b′) has

fewer segments in it, allowing us to use induction.

a b

c

x
X

y

Y

b′

X ′

Y ′

Figure 2.16: Translating the phantom line b′.

We continuously translate b′ towards x∩y. Note that as long as b′ doesn’t cross

x∩ y or any vertices of the path, using b′ instead of b results in a shorter path. Let

X ′ = x∩b′ and Y ′ = y∩b′ (see Figure 2.16).

One of the following will happen as we’re translating b′:

1. b′ intersects a vertex Z on the shortest path (see Figure 2.17). If the path visits

Z after leaving X′Y ′, we can obtain a shorter path p′ by replacing the subpath

from X ′ to Z with X′Z and using x∩z as the new direction of translation for b′,

where z is the line on which the path leaves Z. Similarly, if Z is visited before

arriving at X′Y ′, we replace the subpath from Z to Y ′ with ZY ′ and translate

towards z∩y. The new path has fewer line segments, and the argument must

eventually terminate in one of the other cases. (Note: we cannot use a more

straightforward induction. While applying the lemma by induction tells us

that there’s a shorter path in the new arrangement that does not travel along

b′ in the direction of the line, it could travel along b′ in the opposite direction,

which would not allow us to conclude that the same shortest path exists in
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the original arrangement.)

a
c

x

X ′
y

Y ′

b′

Z

a
b

x

X ′

b′

Z⇒

z

Figure 2.17: b′ intersects Z. Note that the direction of translation can change:
z∩ x is on the opposite side of b′ compared to x∩ y.

2. b′ intersects x∩ y. In this case travel on b′ has shrunk to a single point. We

obtained a shorter path that does not rely on b′, which is a contradiction.

3. X′Y ′ intersects a (see Figure 2.18). Since b (and thus b′) makes a positive

angle with a, we must have Y ′ ∈ a happen first as we’re translating b′. We

replace the path from A to Y ′ with AY ′ to obtain a shorter path that does not

use b′, a contradiction.

a
c

x
X ′

y

Y ′

A

b′

Figure 2.18: Y ′ lies on a.

4. X′Y ′ intersects c (see Figure 2.19). Since b (and thus b′) makes a positive

angle with c, we must have X ′ ∈ c happen first as we’re translating b′. We

replace the path from X ′ to C with X′C to obtain a shorter path that does not

use b′, a contradiction.

2.6 Two-lines Lemma
The following lemma allows us to only consider arrangements where no two up-

lines (or down-lines) intersect within Hull(S,T ).
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a
c

x

X ′
y

Y ′
C

Figure 2.19: X ′ lies on c.

Lemma 2.6.1 (Two-lines Lemma). If a < b are two up-lines (down-lines) that

intersect within Hull(S,T ), then no shortest path travels on b.

Note that the condition that a and b intersect within Hull(S,T ) is required since

it is possible to construct a counterexample if a∩b 6∈ Hull(S,T ) (see Figure 2.20).

S T

Hull(S, T )
a

b

Figure 2.20: A counterexample where a∩b /∈ Hull(S,T ).

Proof. We will prove the lemma for down-lines; the proof for up-lines is similar.

Suppose, for the sake of contradiction, that there is a shortest path p that travels

on b. Let BE be the segment of travel on b. We must have a∩b /∈ BE, otherwise the

path would double-cross a, so there are two possibilities: either p visits a before

BE—that is, BE and T are in the same half-plane defined by a (see Figure 2.21);

or p visits a after BE—that is, BE and S are in the same half-plane defined by a.

In the second case, consider the rotation of the arrangement through π , with S

and T swapped; the direction of travel along p is reversed and a and b are down-

lines in the rotated arrangement. p visits a before BE in the rotated arrangement,

so we have reduced this case to the first one (see Figure 2.22).

So we assume that p visits a before BE.
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S T

a
b

Figure 2.21: p visits a before travelling on b.

S T

a
b

S
T

a

b

Figure 2.22: If p travels on b before visiting a then rotating the arrangement
and reversing the shortest path direction reduces to the first case.

We further assume that b is the last down-line that p travels on so that b in-

tersects one or more down-lines a′ where a′ < b, a′ ∩ b ∈ Hull(S,T ), and p vis-

its a′ before travelling on b, and we let a be the last a′ that p travels on. Let

Q = a∩b ∈ Hull(S,T ), and let A be the point at which p leaves a.

Let x be the line on which p travels after leaving b. Note that since E = x∩b ∈
BQ, x cannot be a boundary line, otherwise Q /∈ Hull(S,T ), so x is an up-line.

Let y be the line on which p travels after leaving x. Note that y must exist: if p

arrives directly to T on x, then T is at an intersection of x and the boundary, which

we disallow by the general position assumption.

Finally, let z be the line on which the path arrives to b (so that z∩b = B). Let

e=
−→
AB (which might not exist in the arrangement). Let further C = e∩y, D= a∩x,

F = x∩ y, Z = z∩ y.

Consider first the case where z≤ e.

Claim 1. y∩a ∈ DQ.

Proof. Let y′ =
←→
FQ, C′ = e∩ y′, and Z′ = z∩ y′ (see Figure 2.23).

By Lemma 2.3.3 we have

min{d(A,D,F),d(A,C′,F)}< d(A,B,E,F)
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b

a

x

y

z
B

A

e

TS

C

D

E

F

Q

y′

C ′

Z

Z ′

Figure 2.23: First case: z≤ e. y∩a /∈ DQ leads to a contradiction.

Note also that d(A,B,E,F) ≤ δ where δ is the length of the actual subpath

from A to F .

It can’t be that d(A,D,F) < d(A,B,E,F) since then shortest path would have

travelled on AD and DF, so we must have d(A,C′,F) < d(A,B,E,F) and thus

d(B,C′,F)< d(B,E,F).

Since by assumption z≤ e, we also have d(B,Z′,F)≤ d(B,C′,F).

If y∩ a /∈ DQ then also d(B,Z,F) < d(B,Z′,F), so the path travelling on BZ

and ZF would be shorter than p which travels on BE and EF, a contradiction.

By Observation 2.1.1, since x is an up-line, y is either an upper boundary or a

down-line. Since y∩a ∈ DQ and Q ∈ Hull(S,T ), y cannot be a boundary line. So

y must be a down-line.

Note that we have p travelling on y after visiting b, b< y, and b∩y∈Hull(S,T ).

This contradicts the assumption we made that b was the last line with these prop-

erties visited by p.

Consider now the case where z > e (see Figure 2.24). Let w be the line on

which p travels before arriving to z. Note that w 6= a, otherwise we would have

z = e.

By Observation 2.1.1, and the fact that the travel on both w and z intersects the
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b a

z

B

A

e

TS
Q

w

Figure 2.24: Second case: z > e.

interior of4ABQ, we conclude that w is a down-line and z is an up-line; otherwise,

if z is an upper boundary line then A /∈Hull(S,T ), and if w is a lower boundary line

then either A /∈ Hull(S,T ) or Q /∈ Hull(S,T ).

Note also that we must have w∩a∈ AQ and w∩b /∈ BQ —otherwise we would

have w∩b ∈ Hull(S,T ) and w < b, and we would have chosen w over a since the

path travels on w after visiting a.

Consider the shortest subpath from S to B, and note that w∩a ∈Hull(S,B). By

induction on the number of segments in the shortest path, we have that the subpath

would not travel on w, a contradiction.
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Chapter 3

The (1+ ε) approximation
algorithm

3.1 Overview
We present a high level summary of the algorithm steps here. The algorithm works

by ignoring certain lines and intersections for the purpose of finding the shortest

path. The resulting graph is small enough to make a dent in the time complexity,

while at the same time we take care to ignore lines and intersections that could

have made the shortest path only moderately shorter.

The approach borrows ideas from the overview paper by Hart [10], in particular

the overall high level approach of constructing the unimodal sequence of angles and

the insight that further elimination of lines by making the angles get exponentially

small allows for an asymptotic reduction in running time while keeping the error

in the path small. The full algorithm was never published so we don’t know how

Hart tackled some of the issues we cover here (in particular the approximation on

the critical triangle). As far as we know the Circle Lemma and its application here

is novel.

The subsequent sections fill in the details, prove that the algorithm is correct

(that is, if the shortest path uses the lines or intersections that the algorithm ig-

nores, it would be shorter by a factor of at most (1+ ε)), and show that the time

complexity is O(n logn+ ε−3 log(ε−1)n).
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1. Partition the arrangement A into the set E of exterior lines and the set C of

cross lines (that is, the lines that cross ST).

2. Construct the set of up-lines U and the set of down-lines D by constructing

the two directed lines for every line in C.

3. Construct Hull(S,T ) by intersecting the half-planes defined by the lines in E

(this can be done e.g. using the CONVEX-HULL algorithm in the dual plane).

Construct two ordered sets of boundary lines BU (the upper boundary) and

BL (the lower boundary) by taking those lines in E that define the upper and

the lower chains of Hull(S,T ) respectively.

4. Remove certain cross lines from U and D by constructing the simple subar-

rangement (see Section 3.2).

5. Remove cross line to cross line intersections within:

upper and lower quadrants (see Section 3.5);

the exponential subarrangement with ε ′= 3
√

1+ ε−1 (see Section 3.6.1);

and the critical S and T triangles, taking the same ε ′ as above for both

(see Section 3.7).

6. Construct the resulting arrangement graph. Note that the graph is directed

and acyclic, except for the trivial subgraphs around S and T (see Section 3.3).

7. Use topological sort to find the shortest path.

Note that we have three approximation steps applied one after another (expo-

nential subarrangement and the two critical triangles) for a factor of (1+ ε ′) each.

The total approximation factor is (1+ ε ′)3 = (1+ ε) as desired.

3.2 Simple arrangements
An arrangement of lines A containing points S and T is simple if

1. Every exterior line is a boundary line—no lines are outside Hull(S,T ).
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S T S T

S T S T

uc

dc

Figure 3.1: Top row: an arrangement and its simple subarrangement. Bottom
row: up-lines and down-lines of the simple subarrangement.

2. No two up-lines (down-lines) intersect within Hull(S,T ).

We define a total order on all up-lines (down-lines): a <∗ b iff any path from

S to T that does not leave Hull(S,T ) crosses a before b. We label the up-

lines {u1,u2, . . . ,un}where i< j ⇐⇒ ui <∗ u j. Similarly for the down-lines

{d1,d2, . . . ,dm}.

3. There’s a unimodal ordering of steepness for all up-lines (down-lines). That

is, u1 > u2 > .. . > uc−1 > uc < uc+1 < .. . < un (similarly for down-lines).

We call the shallowest up-line uc the critical up-line (similarly for the critical

down-line).

Note: the c in uc and dc is used for convenience and not meant as a specific

index (which would imply that uc and dc are at exactly the same position in

their respective lists).

Any arrangement A has a simple subarrangement constructed by the following

procedure:

1. Discard the lines outside of Hull(S,T ).

2. Order the up-lines by the intersections along the lower boundary to obtain
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the list {u1,u2, . . . ,un}. We will construct the new set of up-lines U starting

with {uc}:

For every ui in the sequence (uc−1,uc−2, . . . ,u1):

Discard from U any lines {uk|ui < uk}; then add ui to U .

For every ui in the sequence (uc+1,uc+2, . . . ,un):

Discard from U any lines {uk|k > c;ui < uk}; then add ui to U .

3. Construct the new set of down-lines in a similar fashion.

Note that we can construct the simple subarrangement in time O(n logn) which

is dominated by the time required to construct Hull(S,T ) and to order the intersec-

tions with the boundary; if we use a stack to construct U , we would only ever

discard lines from the top of the stack for a total of O(n).

The fact that it’s easy to construct and the following result allow us to look

exclusively at simple arrangements:

Theorem 3.2.1. If As is a simple subarrangement of A and p is a shortest path in

As, then p is a shortest path in A .

Proof. We show that no lines removed in the construction of the subarrangement

would have been used by the shortest path.

The lines outside of Hull(S,T ) are not used by the shortest path.

Consider a line uk discarded from U during the construction procedure because

ui < uk for some i < k < c. If ui∩uk ∈ Hull(S,T ) then the shortest path would not

travel on uk by Lemma 2.6.1. Otherwise the shortest path would not travel on uk

by Lemma 2.5.1, as any segment of travel on uk would be located between two less

steep lines: ui and uc.

The proof for the case c < k < i and for the down-lines is similar.

3.3 Cycles in simple arrangements
It’s possible for the directed graph induced by a simple arrangement to contain

cycles in it (see Figure 3.2) if an up-line and a down-line cross at an angle larger
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S

d1

u1

T

Figure 3.2: A possible cycle between two cross lines and the boundary.

than π . Note that the shortest path would not use the intersection between these

two lines by Observation 2.1.1.

Due to the unimodal ordering of line angles, these “retrograde” regions are

contiguous, are located adjacent to S or T and are easy to compute (see Figure 3.3).

Since we can ignore the interior intersections for the purpose of finding the shortest

path, the subgraph contains O(n) vertices (all of them on the boundary), and the

shortest path to each vertex is found in O(n logn).

S

d1

d2 d3

u3

u2

u1

Figure 3.3: The retrograde region around S and the unused cross line inter-
sections.
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3.4 Arrangement quadrants
It’s useful to partition Hull(S,T ) into regions formed by the lines uc and dc

1 (see

Figure 3.4). The region below dc and above uc is called the S quadrant; the region

above dc and below uc is called the T quadrant. The region above both lines is

called the upper quadrant, while the region below both lines is called the lower

quadrant.

It is easy to compute the shortest path in the upper and lower quadrants: we

show that the shortest path does not turn from one cross line to another.

The S and T quadrants require additional approximation steps, detailed below.

S T
dc

ucS
T

Upper

Lower

Figure 3.4: Arrangement quadrants.

3.5 Upper and lower quadrants
Theorem 3.5.1. A shortest path p in a simple arrangement does not turn from

one cross line to another after leaving dc and before arriving to uc (that is, in the

upper quadrant) or after leaving uc and before arriving to dc (that is, in the lower

quadrant).

Proof. Suppose, without loss of generality, that p leaves dc, turns at a point Q from

a cross line b to a cross line c, and then arrives at uc. Let a be the line on which p

arrives at b and d be the line on which p leaves c. Let A = a∩ b, B = c∩ d, and

P = a∩d.
1uc and dc might not intersect within Hull(S,T ), in which case the upper or lower quadrant could

be empty.
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Case 1. b is an up-line and c is a down-line (see Figure 3.5).

Q
a

b

c

d

uc

dc

A
B

P

Figure 3.5: Case 1. Eliminating travel on b and c results in a shorter path.

It must be that a < c since if a > c then also a > dc and by Lemma 2.5.1 the

shortest path would not travel on a.

Similarly, it must be that d < b.

Consider the quadrilateral AQBP. Since a < c and d < b we have d(A,P,B)<

d(A,Q,B), so we obtained a shorter path, a contradiction.

Case 2. b is a down-line and c is an up-line. Let C = d ∩ uc and D = b∩ uc.

By Case 1, we must conclude that d is a boundary line—otherwise the path would

make a cross line to cross line turn at B. Let U be the point at which the path arrives

at uc; it must be that U ∈ DC.

Consider the quadrilateral QBCD. If d > b then d(Q,D,U) < d(Q,B,U) ≤
|pQU | where pQU is the actual subpath from Q to U , so we must conclude that

d < b (see Figure 3.6).

By a similar argument we conclude that a < c.

Now as in the first case, considering the quadrilateral AQBP we see that d(A,P,B)<

d(A,Q,B) and we have a contradiction (see Figure 3.7).

3.6 S and T quadrants

3.6.1 Exponential subarrangements

Any simple arrangement A has an exponential subarrangement Aε defined below.
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uc

dc
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D

U

Figure 3.6: Case 2. If d > b, QD and DU give a shorter path.

Q

b

c

d

uc

dc

B
P

a

A

Figure 3.7: Case 2. If d < b and a < c, AP and PB give a shorter path.

Let A be a simple arrangement. As before, let the up-lines be labeled as

{u1,u2, . . . ,un} where i < j ⇐⇒ ui <∗ u j with uc the critical up-line. Similarly

for the down-lines and dc.

Let σi (τi) be the angle that the directed line ui makes with the line through S

(line through T ) considered as a directed line with a positive y-coordinate travel. If

ui makes a negative angle with the line through S (line through T ), then the shortest

path would not use it by Lemma 2.5.1, so we assume that σi,τi ∈ (0,π). Note that

for steep up-lines, σi and τi are small. We will use the notation ∠ui = σi.

Aε is constructed by the following procedure:

1. Construct the new set of up-lines Uε starting with {uc}:

For every ui in the sequence (uc−1,uc−2, . . . ,u1):
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S T S T

Figure 3.8: A simple arrangement and its exponential subarrangement. Note
that the removed cross lines can still be used as bridge segments to jump
from boundary to boundary, but not to other cross lines.

Let u j be the last up-line added to Uε . Add ui to Uε if i = 1 or

σ j/σi−1 > 1+ ε/2.

For every ui in the sequence (uc+1,uc+2, . . . ,un):

Let u j be the last up-line added to Uε . Add ui to Uε if i = n or

τ j/τi+1 > 1+ ε/2.

2. Construct the new set of down-lines in a similar fashion.

3. Augment Aε with a set of bridge segments. For every up-line and down-line

in A not already included, we include the line segment connecting the lower

boundary to the upper. The shortest path is not allowed to turn from a cross

line to a bridge segment or vice versa, or from one bridge segment to another.

Another way to view an exponential subarrangement is as keeping all the lines

in the arrangement and removing some cross line to cross line intersections (we

call these cross lines bridge segments).

It’s easy to see that we can construct Aε in time O(n logn), the time needed to

order the lines by σi and τi. The intention is to get rid of lines that are close to each

other and have similar angles. We show that this does not significantly increase the

length of the shortest path.

3.6.2 Line sequences

It will help for the discussion below to develop a language when we talk about the

sequence of line types traversed by a shortest path.
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We will use the symbols u, d, U, D to refer to an arbitrary up-, down-, upper

boundary, and lower boundary line respectively. If we need to label a specific line,

we will use u1,d2, etc.

A sequence of symbols is valid if it follows the following rules:

1. u or U can be immediately followed by d or U

2. d or D can be immediately followed by u or D

For example, udDDuUUdu is a valid sequence, while uddUD is not.

We can identify any shortest path p with a string of the above symbols corre-

sponding to each line that p travels on in order from S to T . By Observation 2.1.1,

any shortest path will map to a valid sequence.

A valid sequence is exact if no u is immediately followed by d and vice versa.

For example, dDDuUUd is an exact sequence, while dDDudDu is valid but not ex-

act. Paths that map to exact sequences travel along the boundary or cross Hull(S,T )

using bridge segments without turning from one cross line to another. Any such

path would be completely preserved in an exponential subarrangement, thus the

name.

An upper subsequence of a given sequence is the subsequence of all u and U

elements with their relative order preserved. Similarly, a lower subsequence is the

subsequence of all d and D elements. A reordering is the sequence obtained by

concatenating the upper subsequence with the lower subsequence. For example,

a sequence U1d2D3D4u5U6U7d8 has an upper subsequence U1u5U6U7 and a lower

subsequence d2D3D4d8; its reordering is the sequence U1u5U6U7d2D3D4d8.

We will talk about the reordering of a path in the sense of taking the individual

line segments that the path travels on and reordering them into another contiguous

poly-line (by translating the line segments while preserving the angles) according

to the path’s sequence reordering. Note that a path reordering creates a poly-line

from the original path’s starting to its ending point of the same length as the original

path.

Finally we have an observation about the line angles in the sequence which

mirrors the unimodal angle ordering in simple arrangements.
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Observation 3.6.1. Let p be a shortest path in a simple arrangement. If p travels

on an up-line u j before reaching uc, then for all i < j in the upper subsequence of

p, li > u j (li could be an upper boundary line or an up-line).

Similarly for the down-lines.

Proof. If there’s a line li < u j where i < j then by Lemma 2.5.1 the path would not

have travelled on u j (any travel segment is between the shallower lines li and uc),

so it must be that li > u j.

3.6.3 Error-wedge Lemma

We will make use of the following lemma, which allows us to approximate shortest

path segments with travel on two lines:

α

β

A

B

C

Figure 3.9: Error-wedge Lemma.

Lemma 3.6.2 (Error-wedge Lemma). Let 4ABC be a triangle with α = ∠BAC

and β = ∠ABC. If α/β < ε/2 then d(A,B,C)< (1+ ε)d(A,C).

Proof. First, we need the fact that f (β ) = β (cos(β )+1)
sin(β ) < 2 for β ∈ (0,π). We omit

full details, but this is easily shown since limβ→0+ f (β ) = 2, limβ→π− f (β ) = 0,

and d
dβ

f (β )< 0 for 0 < β < π .

Using further the fact that d(A,B) = d(A,C)cos(α)+ d(B,C)cos(β ), as well

as the law of sines d(A,C)sin(α) = d(B,C)sin(β ), we have
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d(A,B,C)

d(A,C)
=

d(A,C)cos(α)+d(B,C)cos(β )+d(B,C)

d(A,C)
=

d(A,C)cos(α)+d(B,C)(cos(β )+1)
d(A,C)

=

d(A,C)cos(α)+d(A,C) sin(α)
sin(β ) (cos(β )+1)

d(A,C)
=

cos(α)+
sin(α)

sin(β )
(cos(β )+1) =

cos(α)+
sin(α)

β

(
β (cos(β )+1)

sin(β )

)
<

1+
α

β

(
β (cos(β )+1)

sin(β )

)
<

1+
α

β
2 <

1+ ε

3.6.4 (1+ ε) approximation

Lemma 3.6.3. Given a simple arrangement A , let Aε be its exponential subar-

rangement, and P a point on an up-line, down-line, or a boundary line in the S

quadrant of Aε . If p is a shortest S–P path in A and q is a shortest S–P path in

Aε , then |q|< (1+ ε)|p|.

Proof. We prove this by induction on (nu,nd)—the number of up-lines and down-

lines in Aε respectively that any shortest S–P path will intersect.

Without loss of generality, let P be a point on a down-line or an upper boundary

line dk in Aε .

Let um be the last up-line in Aε crossed by p (we take the boundary line through

S to be um if no such up-line exists). Let um+1 be the next up-line in Aε , which

must exist and um > um+1 ≥ uc since P is in the S quadrant and p does not cross uc.
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Let U be the point where p leaves um and let p′ be the U–P subpath of p.

By induction, the S–U subpath is well-approximated, so it’s sufficient to show

that the U–P subpath is also well-approximated. We assume that p′ travels on at

least two lines—otherwise the single line must be um or an upper boundary line by

Observation 2.1.1, and we apply induction by removing dk.

Consider the maximal contiguous exact suffix s of p′ ending at P, excluding

any initial u or d in the suffix. By construction, every line in s is in Aε since we

keep all boundary lines and bridge segments.

Let Q be the point where p′ enters s. If s is nonempty, Q must lie on a boundary

line and by the inductive assumption we can well-approximate the shortest S–Q

path, which does not intersect dk and thus intersects fewer lines than the shortest

S–P path. So assume that s is empty—that is, Q = P.

Note that the assumption of travel on at least two lines and the fact that s is

empty implies that p′ ends with either ud or du.

If A has no up-lines between um and um+1 then u in the sequence must be um,

and the only possibility is that p′ travels on um followed by dk. We remove dk and

proceed by induction.

Otherwise, there’s at least one up-line between um and um+1 that we skipped

during the construction of Aε , and we must have σm+1/σm < 1+ ε/2.

U

P

dk

um

um+1

p′

R(p′)

XS

V

W

Figure 3.10: d(U,V,P)< (1+ ε)d(U,W,P)≤ (1+ ε)|p′|.

Consider the reordering of p′, and let X be the point at the end of the upper

subsequence in the reordering. We would like to show that (1) dk separates U from
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X , and that (2) all lines in the upper subsequence of p are more steep than um+1.

These two facts will allow the application of Lemma 3.6.2.

Since p′ ends with either ud or du, its upper subsequence ends with u, and its

lower subsequence ends with d. By Observation 3.6.1, we immediately have (2);

and, since all lines in its lower subsequence are steeper than dk, we have (1) by

convexity of the reordering.

Let V = um∩dk, and let W be the point where the reordering of p′ first crosses

dk. Since d(U,W,P) ≤ |p′| and WP ∈ dk, it’s sufficient to show that travel on

UV ∈ um followed by VW ∈ dk well-approximates p′.

Note that by (1) W must be within the upper subsequence of the reordering. By

(2) we have ∠VUW < σm+1−σm, and we have

∠VUW
∠UVW

<
σm+1−σm

σm +δk
<

σm+1−σm

σm
=

σm+1

σm
−1 <

ε

2

Finally by Lemma 3.6.2 we have d(U,V,W ) + d(W,P) < (1+ ε)d(U,W ) +

d(W,P)< (1+ ε)d(U,W,P)≤ (1+ ε)|p′|.

3.7 Approximation in the critical triangle
Let i and j be the largest indices so that ∠ui < min{π/4,ε/(12+ 6ε)∠uc} and

∠d j < min{π/4,ε/(12+6ε)∠dc}. We call the triangle defined by ui, d j, and s the

critical triangle and show that there’s a particularly simple approximation for the

part of the shortest path that traverses it.

Note that to get the full approximation we need to apply the lemma below

twice (for the critical triangle next to S and T ) for a total approximation factor of

(1+ ε)2. Taking this together with another factor of (1+ ε) from the exponential

subarrangement, we would use ε ′ = 3
√

1+ ε−1 in the complete algorithm instead.

Lemma 3.7.1. Given a unit circle U , let a, b, and c be three lines tangent to it so

that Q = a∩b is not in the same half-plane defined by c as U . Let P = a∩ c and

R = b∩ c. Let α = ∠PQR ∈ (0,π).

Then ∂ (4PQR)> (π−α)/2. (∂ (x) is the perimeter of x)

If α > π/2 then also ∂ (4PQR)< 3(π−α).
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P

Q
b

c

U

R
a

α

1

Figure 3.11: (π −α)/2 < ∂ (4PQR) < 3(π −α). The upper bound holds
only if α > π/2.

Proof. For the lower bound, using the Taylor series expansion, we have for 0 <

x < π/2:

sin(x)> x− x3/6

Let γ = (π−α)/2 < π/2.

∂ (4PQR) = 2tan(γ) = 2
sin(γ)
cos(γ)

>

2
γ− γ3/6

1
> γ = (π−α)/2

For the upper bound, using the Taylor series expansions again, we have for

0 < x < π/4

sin(x)< x− x3/6+ x5/5! < x+ x5/5!,

and

cos(x)> 1− x2/2 > 1− (π/4)2/2 > 17/25.

Let γ = (π−α)/2 < π/4.

∂ (4PQR) = 2tan(γ) = 2
sin(γ)
cos(γ)

<

2
γ + γ5/5!

17/25
< 2

2γ

17/25
= 100/17γ < 6γ = 3(π−α)

Corollary 3.7.1.1. Given a circle C , let a, b, and c be three lines tangent to it so
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that X = a∩ b is not in the same half-plane defined by c as C . Let Y = a∩ c and

Z = b∩ c.

Let further d and e be two lines also tangent to C so that Q = d ∩ e is not in

the same half-plane defined by c as C .

If ∠RQP> π/2 and (π−∠RQP)< ε(π−∠YXZ), then ∂ (4PQR)< 6ε∂ (4XYZ).

P

Q

d

b

c

C

R X

a

Y

Z

e

Figure 3.12: ∂ (4PQR)< 6ε∂ (4XYZ).

Proof. Since we’re only concerned about ratios, we can assume that C is a unit

circle without loss of generality.

By Lemma 3.7.1, ∂ (4PQR)< 3(π−∠RQP) and ∂ (4XYZ)> (π−∠YXZ)/2.

We have

∂ (4PQR)< 3(π−∠RQP)<

3ε(π−∠YXZ) = 6ε(π−∠YXZ)/2 <

6ε∂ (4XYZ)

Lemma 3.7.2 (Tangent-bound Lemma). Let E be a simple arrangement. If p is

a shortest path in E and q is a shortest path in E but with the restriction that no

turns are allowed between two cross lines within the critical triangle, then |q| <
(1+ ε)|p|.

Proof. If p doesn’t turn from a cross line to a cross line within the critical triangle

then we’re done.
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T

P

Q

d

u

c

uc

dc

s

C

A
R

B

Figure 3.13: p last turns at Q in the critical triangle.

Otherwise, let Q be the point at the last such turn when traversing p from S

towards T . Without loss of generality, let’s assume that p arrives at Q on an up-line

u and leaves Q on a down-line d, and also that p arrives to u on a line c (which

could be a down-line or a lower boundary line by Observation 2.1.1); let P = c∩u.

We would like to apply the Lemma 2.4.1 to the shortest path from S to T trav-

elling on the lines c, u (which is a cross line by assumption and thus separates S

from T ), and d. It must be that c > d since otherwise c < d > dc and the shortest

path would not use d by Lemma 2.5.1. So this fixes the circle in the Circle Lemma

definition to be the unique circle C tangent to c, u, and d that lies in the half-plane

defined by c that does not contain Q. Let also R = c∩d.

We have that s (the line through S) does not cross C .

So it must be that s intersects d within the closed segment RQ. Let A = s∩d ∈
RQ and B = s∩u.

We also get that no lines crossed by the shortest path after leaving Q cross

C —in particular, uc and dc do not cross C .

Let the approximate path q be the path obtained from p by replacing the exist-

ing subpath from S to Q with the two segments SA and AQ. Note that q does not

turn from a cross line to a cross line within the critical triangle. We claim that q

provides the required approximation.

Let u′c be a line parallel to uc and tangent to C (we choose the tangent that puts

uc and C in the different half-planes defined by u′c). We define d′c in a similar way.

Let V = u∩d′c, X = d′c∩u′c, Y = d′c∩ c, and Z = u′c∩ c (see Figure 3.14).
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T
P

Q

d

u

c

uc

dc
C

R
V

X

Y

Z

Figure 3.14: Parallel tangents.

Let δ = |q|− |p|. It’s sufficient to show that δ < ε|p|, which we prove in a few

steps:

1. δ ≤ ∂ (4PQR)

This follows from the facts that δ ≤ ∂ (4AQB) and ∂ (4AQB)≤ ∂ (4PQR)

(the perimeters are equal if s is tangent to C ).

P

Q

d

u

c

C

R V
X

s

α

Z

Y

Figure 3.15: ∂ (4PQR)< εd(Q,V,X).

2. ∂ (4PQR)< εd(Q,V,X)

Proof. Since ∠RPQ = ∠u+α and ∠PRQ = ∠d−α , where α is the angle

between c and s, we have π −∠RQP = ∠PRQ+∠RPQ = ∠u+∠d (see

Figure 3.15).
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Similarly, π−∠YXZ = ∠uc +∠dc.

Since u and d are in the critical triangle, we have ∠u +∠d < ε/(12 +

6ε)(∠uc +∠ud) and ∠u+∠d < π/2. We have

π−∠RQP <
ε

12+6ε
(π−∠YXZ) ∠RQP > π/2

∂ (4PQR)<
ε

2+ ε
∂ (4XYZ) (By Corollary 3.7.1.1)

∂ (4XYZ)−∂ (4PQR) = 2d(Q,V,X)

2+ ε

ε
∂ (4PQR)−∂ (4PQR)< 2d(Q,V,X)

1
ε

∂ (4PQR)< d(Q,V,X)

3. d(Q,V,X)≤ |p|

This follows immediately from the following intuitively obvious claim:

Given a circle C , let b1 and b2 be the tangents of C through B. Let A be

a point in the region bounded by b1, b2, and C , and let a1 and a2 be the

tangents of C through A.

Let ACBD be the quadrilateral defined by the intersections of the four tan-

gents. Note that by Lemma 2.3.4, d(A,C,B) = d(A,D,B).

If p is a shortest A–B path that doesn’t travel on any lines that cross C then

|p| ≥ d(A,C,B) = d(A,D,B) (see Figure 3.16).

A

a1

C
C

B

b1

a2

b2

D

Figure 3.16: Any shortest A–B path that respects C must be at least as long
as d(A,C,B) = d(A,D,B).
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Proof. If A ∈ b1 or A ∈ b2, the result follows since d(A,C,B) = d(A,B), and

any shortest path is at least as long as d(A,B).

If p only travels on a single segment AB, then it must be that A∈ b1 or A∈ b2

(otherwise
←→
AB would cross C ), and the result follows as above.

Otherwise, let AX be the first segment of p. If this segment intersects b1 or

b2 we take X to be this point of intersection instead.

Let x1 and x2 be the tangents of C through X , and let XY BZ be the quadri-

lateral defined by the four tangents b1, b2, x1, and x2. By Lemma 2.3.4,

d(X ,Y,B) = d(X ,Z,B) (see Figure 3.17).

A

a1

C
C

B

b1

a2

b2

D

X

Y

Z

x1

x2

Figure 3.17: Induction step. d(A,X ,Y,B)≥ d(A,C,B).

By induction on the number of line segments in p, |p| = d(A,X)+ |pXB| ≥
d(A,X)+d(X ,Y,B) (note that the induction must terminate in the case above

when p crosses b1 or b2).

Since
←→
AX does not cross C , then either C ∈ YB or D∈ ZB. Since d(X ,Y,B) =

d(X ,Z,B), we can assume without loss of generality that C ∈ YB.

We have d(A,X) + d(X ,Y,B) = d(A,X) + d(X ,Y,C,B) = d(A,X ,Y,C) +

d(C,B)≥ d(A,C,B) by the triangle inequality.

Finally, putting the steps together we get δ < ε|p| and the shortest path is well-

approximated by q.

3.8 Running time
Ordering the lines by angle and choosing the lines that are part of the exponential

subarrangement can be done in O(n logn) time.
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The graph induced by the arrangement will contain O(n) edges, but we do not

need to consider turns between cross lines within the critical triangles or the upper

and lower regions so we can save on the number of vertices.

We will use ε ′ where (1+ ε ′)3 = (1+ ε) for the exponential subarrangement

and the critical triangle definitions to simplify the discussion.

Let’s first calculate the number of up-lines inside and outside the critical trian-

gle in the S quadrant. Suppose that the total number of up-lines in the S quadrant is

k and the critical triangle includes the lines u1, . . . , ui with ∠ui < x <∠ui+1, where

x = min{π/4,(ε ′/(12+6ε ′))∠uc}.
By the exponential subarrangement construction, ∠u j/∠u j−2 ≥ 1+ε ′/2 for all

3≤ j ≤ c. We have

∠u j

∠u j−2m
=

∠u j

∠u j−2
×

∠u j−2

∠u j−4
×·· ·×

∠u j−2m+2

∠u j−2m
≥ (1+ ε

′/2)m

∠ui < (ε ′/(12+6ε
′))∠uc

∠uc

∠ui
> 12/ε

′+6

∠uc

∠ui
≥ ∠uc

∠uc−2m
≥ (1+ ε

′/2)m > 12/ε
′+6

m >
log(12/ε ′+6)
log(1+ ε ′/2)

In other words, if m is at least this large, the remaining k−m lines are in the

critical triangle. In total, we have m2+2m(k−m) = 2mk−m2 vertices in the graph

in the S quadrant.

The T quadrant is similar, and the top and bottom quadrants do not contribute

any vertices. Asymptotically, since k = O(n), we get |V |= O(mn).

1. m = O(1/e′ log(1/e′))

Let φ ′= 1/ε ′, so that log(12/ε ′+6)/ log(1+ε ′/2)= log(12φ ′+6)/ log(1+
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1/(2φ ′)). If g(φ ′) = O( f (φ ′)) then there are C, φ ′0 so that for all φ ′ > φ ′o:

log(12φ ′+6)
log(1+1/(2φ ′))

<C f (φ ′)

log(12φ
′+6)<C f (φ ′) log(1+1/(2φ

′))

12φ
′+6 < eC f (φ ′) log(1+1/(2φ ′)) exponentiate

12φ
′+6 < φ

′Cφ ′ log(1+1/(2φ ′)) take f (x) = x logx

Using log(1+ x) = x− x2/2+ x3/3− . . .:

12φ
′+6 < φ

′Cφ ′(1/(2φ ′)−(1/(2φ ′))2/2+(1/(2φ ′))3/3−...)

12φ
′+6 < φ

′C(1/2−1/(2φ ′)+(1/(3·8φ ′2)−...)

Which holds for φ ′ and C sufficiently large to make the exponent greater than

one, so log(12φ ′+6)/ log(1+1/(2φ ′)) = O(φ ′ logφ ′).

2. 1/ε ′ = O(1/ 3
√

ε). Since ε ′ = 3
√

1+ ε−1, we have

φ
′ =

1
3
√

1+1/φ −1

φ
′ =

3
√

φ

3
√

φ +1− 3
√

φ
multiplying through by 3

√
φ

φ
′ = O( 3

√
φ)

3. It follows that m = O(ε−3 log(ε−1)).

Since the graph is directed and acyclic2, we can simply use the O(n) topological

sort to find the shortest path, and the overall time complexity is

O(n logn)+O(|V |) = O(n logn+mn) =

O
(
n logn+ ε

−3 log(ε−1)n
)

2except for the trivial subgraph, where the shortest path is also found in O(n logn)—see Sec-
tion 3.3
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Chapter 4

Future work

The problem and some of our proofs suggest a number of possible directions to

explore.

The Circle Lemma seems to be fundamental in understanding the problem.

We believe that other results, like the Phantom Lemma and the Two-lines Lemma

could be restated as corollaries of the Circle Lemma. The Circle Lemma reduces

the shortest path problem to a potentially simpler combinatorial problem of finding

if certain lines intersect certain circles.

The fact that the best known solution is O(n2) suggests a possibility that this

problem falls into a class of “3SUM-hard” problems [7][14]. It is also not known

if any of these problems can be solved in sub-O(n2) time.

Other avenues to explore is finding a sub-O(n2) exact solution on a restricted

problem (for example, with bounds on minimum differences between line angles

or distances between intersections in the arrangement), or a sub-O(n logn) approx-

imation.
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