SWARMING MOTILITY IN *PSEUDOMONAS AERUGINOSA*: A COMPLEX ADAPTATION WITH IMPLICATIONS FOR ANTIBIOTIC RESISTANCE AND VIRULENCE

by

Shannon Coleman

B.Sc., The University of British Columbia, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(MICROBIOLOGY AND IMMUNOLOGY)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2020

© Shannon Coleman, 2020

The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Swarming motility in *Pseudomonas aeruginosa*: a complex adaptation with implications for antibiotic resistance and virulence

submitted by	Shannon Coleman	in partial fulfillment of the requirements for
the degree of	Doctor of Philosophy	
in	Microbiology and Immunology	
Examining Co	mmittee:	
Robert E.W. H	Iancock, Microbiology and Immun	ology
Supervisor		
~~r		
Charles Thom	pson, Microbiology and Immunolo	gy
	ommittee Member	<i>67</i>
J		
Rachel Fernan	dez, Microbiology and Immunolog	V
University Exa		
Natalie Strvna	dka, Biochemistry and Molecular I	Biology
University Exa	*	
Additional Sur	pervisory Committee Members:	
J. Thomas Bea	tty, Microbiology and Immunolog	у
	ommittee Member	
- •		

Michael Murphy, Microbiology and Immunology Supervisory Committee Member

Abstract

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that possesses intrinsic antibiotic resistance. Highly adaptable, P. aeruginosa is capable of different forms of motility, including swarming, swimming, twitching and surfing. Swarming motility is a multicellular movement of cells across semisolid surfaces that is associated with complex adaptations including adaptive antibiotic resistance. Here a disc diffusion assay showed that swarming bacteria were resistant to multiple antibiotics, including aminoglycosides, β -lactams, chloramphenicol, ciprofloxacin, macrolides, tetracycline, and trimethoprim. RNA-Seq of swarming cells showed the dysregulation of 1,581 genes, including 104 regulatory factors, upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Forty-one mutants resistant to tobramycin under swarming conditions were found, including *prtN*, a regulator of pyocin, and *wbpW*, involved in LPS biosynthesis. RNA-Seq of swarming cells treated with tobramycin revealed the upregulation of the multidrug efflux pump mexXY. To investigate the role of swarming in vivo, a screen for swarming-specific mutants was performed, revealing *ptsP*, a regulator of carbon and nitrogen metabolism. The $\Delta ptsP$ mutant was deficient specifically in swarming but not swimming or twitching motility. Interestingly, $\Delta ptsP$ also had greatly reduced organ invasion in a mouse infection model, suggesting a likely role for swarming in vivo. Besides ptsP, small RNAs also regulated swarming motility, typically via post-transcriptional means. A screen of sRNA overexpressing strains revealed an sRNA, PA0805.1 that influenced diverse bacterial behaviours including swarming, swimming, twitching, cytotoxicity, adherence and tobramycin resistance. RNA-Seq and proteomics uncovered a broad regulatory profile with 1,121 differentially expressed genes and 925 proteins, including 118 regulatory factors, downregulated pilus genes, upregulated adherence and virulence factors, and upregulated multidrug efflux systems including mexXY and mexGHI-opmD. Another sRNA, PA2952.1, when overexpressed influenced swarming, swimming, and tobramycin, gentamicin and trimethoprim resistance. Transcriptomics and proteomics showed differential abundance of 784 genes and 445 proteins, encompassing 82 regulatory factors, downregulated pili, dysregulated flagellar genes, upregulated mexGHI-opmD and the upregulated arn operon involved in LPS modification. Overall this thesis has shown that swarming motility is a complex adaptation conferring multiple antibiotic resistance, that is regulated by sRNAs and coupled to virulence adaptations in vivo.

Lay Summary

Antibiotic resistance is a rising global health threat with several contributing causes. One of these is adaptive resistance that is triggered by and dependent on specific growth conditions, such as during multicellular movement over a surface, termed swarming motility. In *Pseudomonas aeruginosa*, I showed that swarming bacteria were resistant to multiple antibiotics. More than a thousand genes were dysregulated under swarming conditions. The resistance of swarming cells to tobramycin was dependent on 41 of these genes. By generating a specific swarming-defective mutant in a regulator of carbon and nitrogen metabolism, I demonstrated reduced virulence in an infection model, indicating that swarming was important for infections. I also showed that swarming was regulated by a novel element, small RNAs that typically affect the production of proteins in cells. I showed specific elements had massive and diverse impacts on cellular behaviour, gene expression and protein abundance.

Preface

This thesis is an original intellectual product of the author, Shannon Coleman, with the guidance and mentorship of Dr. Robert (Bob) Hancock. Dr. Hancock was responsible for the original conceptualization, while I designed experiments using his advice. I performed the majority of all experiments in this thesis, with exceptions noted below. I analyzed all the data, with the exception of initial differential analyses of RNA-Seq and proteomics data, which were analyzed by the bioinformaticists and proteomics collaborators named below. I drafted all of the manuscripts, with help from collaborators for their specific sections in the Materials & Methods. Dr. Hancock and I both edited the manuscripts extensively.

The American Society of Microbiology (ASM) states: "Authors in ASM journals retain the right to republish discrete portions of his/her article in any other publication (including print, CD-ROM, and other electronic formats) of which he or she is author or editor, provided that proper credit is given to the original ASM publication. ASM authors also retain the right to reuse the full article in his/her dissertation or thesis."

Chapter 2:

Sections of Chapter 2 were derived from the three manuscripts listed for Chapters 3, 4, and 5.

Chapter 3:

A version of Chapter 3 has been published. **Coleman SR**, Blimkie T, Falsafi R, Hancock REW. Multidrug adaptive resistance of *Pseudomonas aeruginosa* swarming cells. *Antimicrob. Agents Chemother*. 2020, **64**:e01999-19.

Reza Falsafi depleted ribosomal RNA and prepared RNA-Seq libraries for all experiments in this thesis. Travis Blimkie analyzed the RNA-Seq data in Chapter 3, uploaded it to GEO, and wrote methods for the RNA-Seq analysis.

Chapter 4:

A version of Chapter 4 is currently in revision. **Coleman SR**, Smith ML, Spicer V, Lao Y, Mookherjee N, Hancock REW. Overexpression of the small RNA PA0805.1 in *Pseudomonas aeruginosa* modulates the expression of a large set of genes and proteins, resulting in altered motility, cytotoxicity and tobramycin resistance.

Dr. Maren Smith analyzed the RNA-Seq data in Chapter 4 and helped me to upload it to GEO. Dr. Neeloffer Mookherjee assisted with experimental design for the proteomics experiments in Chapter 4 and also edited the manuscripts based on these studies. Ying Lao lysed bacterial pellets, prepared samples for proteomics, acquired mass spectrometry data, and wrote methods for the

proteomics. Victor Spicer performed the differential analysis of proteins for Chapter 4, uploaded data to MassIVE, and wrote methods for the proteomics analysis.

Chapter 5:

A version of Chapter 5 is currently being prepared for publication. **Coleman SR**, Smith ML, Spicer V, Lao Y, Taylor P, Mookherjee N, Hancock REW. The small RNAs PA2952.1 and *prrH* as regulators of virulence, motility and iron metabolism in *Pseudomonas aeruginosa*.

Dr. Maren Smith analyzed the RNA-Seq data in Chapter 5 and helped me to upload it to GEO. Dr. Neeloffer Mookherjee assisted with experimental design for the proteomics experiments in Chapter 5. Ying Lao lysed bacterial pellets, prepared samples for proteomics, acquired mass spectrometry data, and wrote methods for the proteomics. Victor Spicer performed the differential analysis of proteins for Chapter 5, and wrote methods for the proteomics analysis. Dr. Patrick Taylor was involved in experimental design and initial investigations of small RNAs.

Chapter 6:

Dr. Daniel Pletzer performed the *in vivo* work in Chapter 6, wrote methods for the *in vivo* work, and also assisted with troubleshooting and experimental design.

Other publications arising from work presented in this thesis:

1. Pletzer D, Coleman SR, Hancock REW. Anti-biofilm peptides as a new weapon in antimicrobial warfare. *Curr. Opin. Microbiol.* 2016, **33**:35–40.

This review was written by Dr. Daniel Pletzer and I and edited by Dr. Hancock.

Ethics statements

Animal experiments were performed in accordance with The Canadian Council on Animal Care (CCAC) guidelines and were approved by the University of British Columbia Animal Care Committee (certificate number A14-0363). Mice used in this study were female outbred CD-1. All animals were purchased from Charles River Laboratories (Wilmington, MA), were 7 weeks of age, and weighed about 25 ± 3 g at the time of the experiments. Isoflurane (1 to 3%) was used to anesthetize the mice. Mice were euthanized with carbon dioxide. The use of all bacterial strains presented in this thesis was approved by UBC Risk Management Services under the UBC Biosafety Permit Number B14-0207 and B14-0208.

Table of Contents

Abstract		iii
Lay Summary		iv
Preface		v
Table of Conte	nts	vii
List of Tables.		X
List of Figures		xii
List of Abbrev	iations	xiv
Acknowledgen	nents	xvi
Chapter 1: Int	roduction	
1.1 Pse	eudomonas aeruginosa	
1.1.1	A diverse opportunistic pathogen	
1.1.2	An arsenal of virulence factors	1
1.1.3	Progression of chronic CF lung infections	
1.2 Bac	cterial motility	
1.2.1	Swarming motility	
1.2.2	Other forms of motility	6
1.3 An	tibiotic resistance	7
1.3.1	Mechanism of resistance to specific antibiotics	7
1.3.2	Acquired resistance	9
1.3.3	Adaptive resistance	9
1.3.4	Antibiotics used to treat P. aeruginosa infections	9
1.4 Sm	all RNAs	9
1.4.1	Mechanisms of regulation by sRNAs	
1.4.2	Known sRNAs in P. aeruginosa	
1.4.3	Uncharacterized sRNAs in P. aeruginosa	
1.5 Hy	pothesis and Objectives	
1.5.1	Objectives	
-	terials and Methods	
2.1 Bac	cterial strains and growth conditions	
2.1.1	Growth curves	
	tility assays	
2.2.1	Swarming	
2.2.2	Swimming	
2.2.3	Twitching	
2.2.4	Disc diffusion assay	
2.2.5	Agar dilution assay	
2.2.6	Six well plate assays	
	ner phenotypic assays	
2.3.1	Biofilm formation	
2.3.2	Adherence	
2.3.3	Cytotoxicity	
2.3.4	Outer membrane permeabilization assay	
2.3.5	Pyoverdine assay	
	tibiotic susceptibility assays	
2.4.1	Minimal inhibitory concentration (MIC)	
2.4.2	Kill curves	
2.5 RN	A-Seq	

	2.5.	1 Conditions used	10
	2.5.		
	2.5.		
		Proteomics	
	2.6		
	2.6.		
	2.6.2	$\partial \langle \rangle = \partial \langle \rangle$	
	2.6.3		
	2.6.4		
	2.7	Murine infection abscess model	
	2.8	qRT-PCR	
	2.9	DNA manipulation	
	2.9.1		
		2 Complementation and overexpression strains	
		3 Transformation of <i>P. aeruginosa</i>	
	2.	.9.3.1 Electroporation	29
	2.	.9.3.2 Conjugation	
	2.10	In silico sRNA target prediction	29
	2.11	Statistical analysis	29
	2.12	Data availability	30
Cha	pter 3:	Swarming motility and antibiotic resistance	31
	3.1	Introduction	
	3.2	Swarming cells were resistant to multiple antibiotic classes	31
	3.3	Swarming motility is a complex adaptation accompanied by many changes in	
	expres	sion of resistome genes	
	3.4	Multiple factors contributed to swarming-mediated antibiotic resistance	
	3.5	A mutant in $wbpW$ was resistant to tobramycin and had decreased membra	
	permea	ability	
	3.6	Mutation of <i>prtN</i> induced resistance to tobramycin and trimethoprim	
	3.7	Antibiotic susceptibility was affected by growth conditions	
	3.8	Subinhibitory tobramycin treatment under swarming conditions	
	3.9	Comparison of RNA-Seq experiments	
	3.10	Discussion	
Cha		Influence of the sRNA PA0805.1 on motility and virulence	
Ciiu	4.1	Introduction	
	4.2	Overexpression of PA0805.1 resulted in decreased motility	
	4.3	Overexpression of PA0805.1 resulted in increased cytotoxicity against HBE cells a	
		sed tobramycin resistance	
	4.4	Overexpression of PA0805.1 resulted in broad protein and transcriptional change	
		ing 118 regulatory factors	-
	4.5	The multidrug efflux genes <i>mexXY</i> and <i>mexGHI-opmD</i> were upregulated in	
		05.1 overexpression strain	
	4.6	Adherence factors were dysregulated in the PA0805.1 overexpression strain	
	4.7	Additional virulence factors were upregulated in the PA0805.1 overexpression strain	
	-1 ./	Additional virulence factors were upregulated in the PA0805.1 Overexpression su	
	4.8	Comparison of RNA-Seq and proteomics	
	4.8 4.9	In silico sRNA target prediction	
		In its native state, PA0805.1 contributed to tobramycin susceptibility under swarmi	
	4.10		<u> </u>
	conditi	ions	03

4.1	1 Discussion	63
Chapter	\cdot 5: The sRNAs PA2952.1 and <i>prrH</i> as regulators of virulence, motility and iron	n
metabol	ism	66
5.1	Introduction	66
5.2	Phenotypic screens of sRNA overexpression strains	66
5.3	sRNA <i>prrH</i> played a role in cytotoxicity and pyoverdine production	
5.4	Overexpression of sRNAs altered antibiotic susceptibility under swarming cond	litions
5.5 alte	Overexpression of PA2952.1 resulted in broad transcriptional changes incl red expression of 82 regulatory factors	
5.6	Pili and flagellar genes were dysregulated in the PA2952.1 overexpression strai	
5.7	Upregulation of <i>mexGHI-opmD</i> and the <i>arn</i> operon might lead to aminogly	
	stance in the PA2952.1 overexpression strain	
5.8	DNA biosynthetic pathways were dysregulated	
5.9		
5.10		
5.1		
	11.1 Comparison with swarm vs. swim RNA-Seq	
	.11.2 Comparison of RNA-Seq and proteomics data for the PA0805.1 and PA2	
	verexpressing strains	
5.12		
	6: The role of swarming <i>in vivo</i>	
6.1	Introduction	
6.2	The host defense peptide 1018 specifically inhibited swarming motility	
6.3	Screen of swarming-deficient mutants	
6.4	A mutant in <i>ptsP</i> was specifically inhibited for swarming motility	
6.5	The swarming-deficient mutant $\Delta ptsP$ had reduced virulence in vivo	
6.6	Discussion	
Chapter	· 7: Conclusion	89
7.1	Summary of thesis work	
7.2	Applications	91
7.3	Future directions	91
Referen	ces	93
	ix A Supplementary Figures	
Append	ix B Supplementary Tables	113
B.1	PA14 RNA-Seq data	113
	PAO1 RNA-Seq and proteomic data	
B.3	Other Supplementary Tables	254

List of Tables

Table 2-1. Amount of antibiotic used in the disc diffusion assay
Table 2-2. Parameters for cocultures optimized for the PA14 and PAO1 strains
Table 2-3. Number of biological replicates per RNA-Seq experiment
Table 2-4. Comparisons and media used for qRT-PCR experiments
Table 2-5. Primers used for qRT-PCR
Table 2-6. Primers used for cloning. 26
Table 2-7. Cloning strategies and restriction enzymes used. 28
Table 2-8. Methods of transformation used in this thesis, including vectors and antibiotic
concentrations
Table 3-1. Selected results from swarm vs. swim RNA-Seq comparisons. These revealed 104
dysregulated transcriptional regulators, and dysregulated efflux and β -lactamase genes.
Cutoffs used were $FC \ge 1.5$ and $padj \le 0.05$
Table 3-2. Genes dysregulated under swarming conditions that matched with the known resistome
revealed 26 tobramycin resistance mutants. PA14 transposon mutants in selected genes were
tested for altered tobramycin susceptibility under swarming conditions using the agar dilution
method (inhibitory concentrations shown in µg/ml of tobramycin, along with images of
swarming colonies at 1 µg/ml). Evidence of dysregulation came from swarm vs. swim RNA-
Seq (superscript 1) or tobramycin RNA-Seq (superscript 2). Selected genes were also
confirmed by qRT-PCR from (Overhage et al. 2008) (superscript 3), Additional mutants in
genes showing no evidence of dysregulation (gmd and rmd) but belonging to operons
containing dysregulated genes were also tested. 17 additional mutants are described in Table
A3
Table 3-3. Selected genes that were differentially expressed upon tobramycin treatment under
swarming conditions
Table 4-1. Selected genes of interest with differential expression in the PA0805.1 overexpression
strain as compared to EV by RNA-Seq and/or proteomics. Categories of interest include
regulators, multidrug efflux, motility, LPS biosynthesis, type VI secretion and other virulence
factors. Cutoffs used were p/padj ≤ 0.05 and for RNA-Seq, FC ≥ 1.5
Table 4-2. The MexGHI-OpmD operon was upregulated in the PA0805.1 overexpression strain
when compared to EV strain by qRT-PCR. Bacteria were harvested from BM2 glycerol swarm
plates with 1% arabinose and 0.1% CAA. $n = 3$
Table 4-3. sRNA targets predicted in silico that were confirmed for PA0805.1 by RNA-Seq or
proteomics as well as their FC, p-values (padj/p) and predictive methods
Table 5-1. Selected differential expressed genes/proteins in the PA2952.1 overexpression strain as
compared to WT EV by RNA-Seq and/or proteomics. Loci shown in bold showed differences
uniquely in the proteome. Cutoffs used were p/padj ≤ 0.05 and for RNA-Seq, FC ≥ 1.5 72
Table 5-2. The mexGHI-opmD operon was modestly upregulated in the PA2952.1 overexpression
strain when compared to WT EV by qRT-PCR. Bacteria were harvested from BM2 glycerol
swarm plates with 1% arabinose and 0.1% CAA. $n = 3$
Table 5-3. sRNA targets predicted in silico that were confirmed for PA2952.1 by RNA-Seq or
proteomics as well as their FC, p-values (padj/p) and predictive methods
Table 6-1. Candidate swarming-deficient mutants. Numbers shown are percent of WT. Numbers
shown in bold are less than 70% of WT or significantly greater than 100% of WT. The allele
numbers 1553 and 1946 designate the position (bp) of the transposon insertion for the two
<i>ptsP</i> mutants. $n \ge 3$
Table 6-2. Virulence factors were not dysregulated in the $\Delta ptsP$ mutant. $n = 3$
Table A1. Compilation of all PA14 RNA-Seq data reported in this thesis

Table A2. Compilation of all PAO1 RNA-Seq and proteomic data reported in this thesis 163
Table A3. 17 additional resistome genes with corresponding mutants showing tobramycin
resistance under swarming conditions. Evidence of dysregulation comes from swarm vs swim
RNA-Seq. PA14 transposon mutants in selected genes were tested for altered tobramycin
susceptibility under swarming conditions using the agar dilution method (inhibitory
concentrations shown in μ g/ml of tobramycin, along with images of swarming colonies at 1
μg/ml)
Table A4. Swarming inhibitory concentrations (µg/ml) of PA14 mutants on BM2 swarm plates at
0.5% agar. $n \ge 3$
Table A5. Standard MIC (μ g/ml) of PA14 mutants in liquid media. $n = 3$
Table A6. Tobramycin MIC (μ g/ml) in LB for additional selected PA14 mutants. $n = 3$ 255
Table A7. Tobramycin MIC (μ g/ml) in BM2 glucose with 0.1% CAA and no (NH ₄) ₂ SO ₄ . $n = 3$.
Table A8. sRNA targets predicted in silico for PA0805.1
Table A9. MIC (μ g/ml) assessed by the standard broth microdilution assay in BM2 glycerol 0.1%
CAA with no $(NH_4)_2$ SO ₄ . $n \ge 3$
Table A10. sRNA targets predicted in silico for PA2952.1256

List of Figures

Figure 3-1. Swarming bacteria exhibited heightened resistance to most antibiotic classes. Top panels: Zone of inhibition assay using 0.3% agar for swimming, 0.4% for swarming and 1.5%
for spread plate with different antibiotics. Statistically significant differences were determined
by ANOVA. Lower panels: Zone of inhibition assay for PA14 WT using tobramycin discs.
Arrows indicate position of inoculation. $n \ge 3$
Figure 3-2. Tobramycin kill curve showing that swarming cells survived better than swimming
cells in the presence of tobramycin. $n = 3$
Figure 3-3. Antibiotic susceptibility of PA14 mutants under swarming conditions using the disc
diffusion method at 0.5% agar. Statistically significant differences were determined by paired
t test. $n \ge 4$
Figure 3-4. Agar dilution method for determining the swarming inhibitory concentration (IC) of
PA14 mutants at 0.5% agar. A) tobramycin swarming IC = 1 μ g/ml B) trimethoprim IC = 10
$\mu g/ml C$) tobramycin. $n \ge 3$
Figure 3-5. Complementation of swarming antibiotic susceptibility phenotypes for A) $prtN$ B)
<i>wbpW</i> . All strains were transformed with either the respective empty vector (WT and mutants)
or a vector with insert (complemented (+) strains). $n \ge 3$
and treated where indicated with a) NPN and b) tobramycin. $n = 3$
Figure 4-1. Motility assays revealed that overexpression of PA0805.1 was generally anti-motility.
1% arabinose was used to induce expression and statistically significant differences were determined using primed Student's t text $n \ge 2$
determined using paired Student's t test. $n \ge 3$
Figure 4-2. Cytotoxicity assay of the PA0805.1 overexpression strain revealed that induction of
PA0805.1 led to increased cytotoxicity against HBE cells. Statistically significant differences
were determined using paired Student's t test. $n \ge 3$
Figure 4-3. PA0805.1 overexpression led to swarming-dependent tobramycin resistance as
assessed in BM2 glucose swarm plates with no arabinose and supplemented where indicated
with tobramycin at 1 μ g/ml. $n = 3$
Figure 4-4. Proposed model for how the overexpression of PA0805.1 dysregulated many genes,
resulting in altered phenotypes. Connecting arrows represent direct or indirect regulation. 60
Figure 4-5. The PA0805.1 overexpression strain demonstrated increased adherence to polystyrene
plates in 90% LB with 5% arabinose. Statistically significant differences were determined
using Student's paired t test. $n \ge 3$
Figure 4-6. A deletion mutant of PA0805.1 was supersusceptible to tobramycin as assessed in
BM2 glucose swarming agar with no arabinose. The deletion mutant was complemented with
a chromosomal insertion of the sRNA PA0805.1. Tobramycin was incorporated into the agar
where indicated at 1 μ g/ml. $n = 3$
Figure 5-1. Motility screen of sRNA overexpression strains revealed that overexpression of certain
sRNAs altered motility. 1% Arabinose was used to induce expression and statistically
significant differences from WT EV were determined using one-way ANOVA. $n \ge 3$ 68
Figure 5-2. Overexpression of certain sRNAs led to partial reductions in swarming (top row) and
swimming (bottom row) motilities. $n \ge 3$
Figure 5-3. Cytotoxicity phenotypes of sRNA overexpression strains in the absence of arabinose.
A) overexpression of PA2952.1 compared to WT EV. B) deletion and overexpression of <i>prrH</i> .
Statistically significant differences were determined by unpaired t test (A) or one-way
ANOVA (B). $n \ge 3$
Figure 5-4. A deletion mutant $\Delta prrH$ had increased production of pyoverdine. $n = 3$
Figure 5-5. Antibiotic susceptibility phenotypes were affected by sRNAs under swarming

conditions. A. The strain overexpressing PA2952.1 showed resistance to tobramycin and gentamicin in BM2 glucose swarm plates with no arabinose, supplemented where indicated with 1 µg/ml antibiotic. $n = 3$. B. Overexpression of PA2952.1 induced susceptibility to trimethoprim in BM2 glycerol swarm plates. Trimethoprim is included where indicated at 10 µg/ml. $n \ge 3$. C. The PA14sr120 overexpression strain was resistant to tobramycin in BM2 glyceose swarm plates with no arabinose. Tobramycin is included where indicated at 1 µg/ml. $n \ge 3$. D. Overexpression of PA1091.1b increased susceptibility to trimethoprim in BM2 glycerol swarm plates. Trimethoprim is included where indicated at 10 µg/ml. $n \ge 3$. D. Overexpression of PA1091.1b increased susceptibility to trimethoprim in BM2 glycerol swarm plates. Trimethoprim is included where indicated at 10 µg/ml. $n \ge 3$
 (b). n≥3
•

List of Abbreviations

 $\Delta\Delta CT$ – comparative cycle threshold method 1D - one-dimensional 2YT - yeast extract and tryptone media 3-O-C12 - N-(3-oxododecanoyl)-L-homoserine lactone AGC – automatic gain control ANOVA - analysis of variance ASM – American Society of Microbiology BM2 – basal medium 2 bp – basepair C4-HSL – N-butanoyl-L-homoserine lactone CAA - Casamino acids CCAC - Canadian Council on Animal Care cf. – Latin: confer/conferatur (compare) CF - cystic fibrosis CFU - colony forming units CGS – Canada Graduate Scholarship CIHR - Canadian Institutes for Health Research CPA – common polysaccharide antigen CRISPR – clusters of regularly interspaced short palindromic repeats CRP - catabolite repressor protein DE – differentially expressed DMEM - Dulbecco's Modified Eagle Medium DNA - deoxyribonucleic acid EDTA - ethylenediaminetetraacetic acid e.g. – Latin *exempli gratia* (for example) EPS – extracellular polymeric substance EV - empty vector FBS - fetal bovine serum FC – fold change GAF - domain found in cGMP-PDEs, adenylyl cyclases, and E. coli fh1A gDNA - genomic DNA GEO – Gene Expression Omnibus h – hour HBE – human bronchial epithelial cells HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid HHQ-4-hydroxy-2-heptylquinoline IC - inhibitory concentration *i.e.* – Latin: *id est* (in other words) LB – Luria-Bertani broth LC-MS - liquid chromatography-mass spectrometry LC/MS/MS – liquid chromatography with tandem mass spectrometry LDH – lactate dehydrogenase LPS - lipopolysaccharide Mbp – mega basepairs MDR - multidrug resistant MEM - Minimum Essential Medium MGF - mascot generic format

MIC - minimal inhibitory concentration min – minute mRNA – messenger RNA ms – millisecond m/z – mass per charge number NPN – N-phenyl-1-naphthylamine OSA – O-specific antigen p – probability value padj - adjusted p value PBS – phosphate buffered saline PCR - polymerase chain reaction PG – peptidoglycan PPM – parts per million PQS – 2-heptyl-3,4-dihydroxyquinoline PTM - post-translational modification qRT-PCR – quantitative reverse transcriptase PCR QS – quorum sensing RF - radio frequency RNA - ribonucleic acid RND - Resistance-Nodulation-Cell Division **RPMI** – Roswell Park Memorial Institute rRNA – ribosomal RNA s - secondSCFM - synthetic cystic fibrosis sputum media SD - standard deviation SDS – sodium dodecyl sulfate SP3 - single-pot solid-phase-enhanced sample preparation sRNA - small RNA T1SS – type I secretion system T2SS – type II secretion system T3SS – type III secretion system T5SS – type V secretion system T6SS – type VI secretion system TE – Tris-EDTA TMT – tandem mass tag Tn – transposon TOB - tobramycin Tris – tris (hydroxymethyl) aminomethane tRNA – transfer RNA UNTR - untreated vs. – versus WT – wild type WT EV – wild type empty vector

Acknowledgements

I thank my supervisor Dr. Robert Hancock for his advice, patience and support throughout my degree. My thesis committee was also supportive and encouraging and included Drs. J. Thomas Beatty, Michael Murphy, and Charles Thompson.

Research reported in this thesis was supported by a grant from the Canadian Institutes for Health Research FDN-154287 and the Cystic Fibrosis (CF) Canada Award Number 3177. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Canadian Institutes for Health Research. I was the recipient of CIHR Frederick Banting and Charles Best Canada Graduate Scholarship Master's (CGS-M, 141534) and Doctoral Awards (CGS-D, 146221), and a Four Year Fellowship for PhD students from UBC. My supervisor Dr. Robert Hancock holds a Canada Research Chair in Health and Genomics and a UBC Killam Professorship.

I also thank all lab members for their help throughout the years, particularly Dr. Susan Farmer, Manjeet Bains and Reza Falsafi for lab management, Drs. Mike Trimble, Daniel Pletzer, Evan Haney and Amy Lee for scholarly discussions, and other residents of room 235 for assistance with daily tasks and troubleshooting, including Dr. Evelyn Sun, Lauren Wilkinson, Corrie Belanger, Melanie Dostert, Noushin Akhoundsadegh and Morgan Alford. Dr. Amy Lee and Reza Falsafi were also very helpful in coordinating and executing RNA-Seq projects in the lab. Special thanks to Dr. Daniel Pletzer for performing *in vivo* work in Chapter 6 and for advice about the project.

In addition I also thank collaborators for assistance with proteomics: Dr. Neeloffer Mookherjee, Ying Lao and Victor Spicer. I also enjoyed collaborating with Martha Liu from the Gaynor lab on the *Bacillus* project.

Special thanks are owed to my parents, Chris and Judy Coleman, who have provided moral and nutritional support throughout my years of education, and my brothers Jonathan and Daniel.

Chapter 1: Introduction

1.1 Pseudomonas aeruginosa

Pseudomonas aeruginosa is a Gram-negative rod-shaped γ -proteobacterium. As a facultative anaerobe with a large (5-7 Mbp) genome, *P. aeruginosa* thrives in a variety of environments, including soil, freshwater ecosystems, and is an opportunistic pathogen of plants and animals (Chatterjee et al., 2017; Curran et al., 2018; Moradali et al., 2017).

1.1.1 A diverse opportunistic pathogen

P. aeruginosa infects a wide range of living organisms, including plants such as lettuce, Arabidopsis and sweet basil (Starkey & Rahme, 2019; Walker et al., 2004). In animals, P. aeruginosa is a pathogen of invertebrates, including Drosophila (D'Argenio et al., 2001) and Caenorhabditis elegans (An et al., 1999), as well as vertebrates such as dogs, cats, cattle (Haenni et al., 2017), fish (Clatworthy et al., 2009) and mice (Pletzer et al., 2018). Importantly, P. aeruginosa is also an opportunistic pathogen of humans, and able to colonize numerous niches within the host, contributing to a variety of diseases including cystic fibrosis (CF), pneumonia, burn wound infections, bloodstream infections, keratitis, nosocomial infections, urinary tract infections, ear infections and more (Davies, 2002; Mittal et al., 2009; Moore & Flaws, 2011). Patients at increased risk of infection with P. aeruginosa include those who have CF, burn wounds, or use mechanical ventilators (Moore & Flaws, 2011). P. aeruginosa is particularly problematic in the human lung, where it causes major complications in diseases such as CF and pneumonia. P. aeruginosa is one of the most common CF pathogens, and up to 60% of patients are colonized by Pseudomonas by age 30 (Surette, 2014; Davies, 2002; Murray et al., 2007; Marshall et al., 2016). Despite the aggressive use of antibiotics, P. aeruginosa infections in CF are difficult to clear and almost always become chronic (Davies, 2002; Murray et al., 2007).

1.1.2 An arsenal of virulence factors

P. aeruginosa possesses numerous virulence factors that enable the bacterium to colonize and invade its host. Alkaline protease and heme acquisition factor are secreted by type I secretion systems (T1SS); the two type II secretion systems (T2SS) (Xcp and Hxc) secrete a variety of toxins, and hydrolytic enzymes including proteases, lipases, phospholipases, and alkaline phosphatases, etc.; the T3SS injects the four strain-dependent toxins ExoS, ExoT, ExoU and ExoY directly into the eukaryotic cell; the type V secretion system (T5SS) secretes a few lipases and proteases that each have an autotransporter domain for their own individual secretion; and the type VI secretion systems (T6SS) are thought to be more involved in interspecies competition (Filloux, 2011), although they can also function to inhibit eukaryotic cell function (Berni et al., 2019).

In addition to secretion systems, *P. aeruginosa* also employs extracellular appendages for both motility and attachment, allowing for dissemination and virulence in the host. These include a single polar flagellum per cell (a long, flexible filament that rotates to propel the bacterium), multiple pili (contractile rods that are major adherence factors and drag the cell over surfaces in a process termed twitching) and several other adherence factors that aid in colonization and biofilm formation. Biofilms are surface-associated aggregates of bacteria held together by an extracellular matrix comprised of polysaccharides, proteins and DNA. They represent a complex adaptive growth state, are associated with major transcriptional reprogramming, and are adaptively resistant (10- to 1000-fold) to multiple antibiotics (Jefferson, 2004). Biofilms are the major cause of infections (65%) and are associated with chronic infections throughout the body and on implanted medical devices and prosthetics.

QS systems also play a role in bacterial virulence. *P. aeruginosa* synthesizes the autoinducer molecules N-butanoyl-L-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-Lhomoserine lactone (3-O-C12), and the quinolones 4-hydroxy-2-alkylquinoline (HAQ), 4hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3,4-dihydroxyquinoline (PQS) (Kim et al., 2010). As bacterial density increases, the levels of these auto-inducers build, so that they can be used to sense the surrounding population. Each auto-inducer binds to a global transcriptional regulator (RhIR, LasR or PqsR/MvfR), so that specific programs can be initiated once sufficient density (and concentration of autoinducer) is reached. The QS systems are interconnected with LasR at the top of the hierarchy (Lee & Zhang, 2014).

In order to survive *in vivo*, bacteria must also be able to extract iron, which is tightly sequestered by the host. *P. aeruginosa* produces several siderophores for this purpose, including pyoverdine and pyochelin. Its genome also encodes receptors to reuptake the siderophores once they have bound iron. The siderophore pyoverdine and the phenazine pyocyanin give *Pseudomonas* cultures their distinctive blue-green colour. In addition, pyocyanin and pyochelin also have redox activity and can modulate host functions including cilia movement (Britigan et al., 1992; Kanthakumar et al., 1993).

Once bacteria establish an infection, they are able to form a biofilm to enable them to persist in the host and resist antimicrobial treatment. Adherence factors such as the type IV pili and flagella are involved in surface sensing and initial attachment. *P. aeruginosa* produces three exopolysaccharides that aid in biofilm formation and protection from the host, pel, psl and alginate,

and the latter two are the major components of biofilm matrix in this organism. Additionally, *P. aeruginosa* also synthesizes lipopolysaccharide (LPS), which forms the outer monolayer of the outer membrane, is a major antigen, and through the membrane-proximal lipid A portion can elicit a strong inflammatory response in the host by interacting with Toll-like receptor 4.

1.1.3 Progression of chronic CF lung infections

CF is an autosomal recessive genetic disease resulting from mutations in the CF transmembrane conductance regulator (CFTR) gene (Bhagirath et al., 2016). CFTR is an important protein involved in both ion transport and signaling, and mutations in CFTR cause the accumulation of thick mucus in the lung, and also affect other organs such as the pancreas (Bhagirath et al., 2016). The CF lung is susceptible to polymicrobial infection and patients continually struggle in this regard. CF epithelial cells have decreased phagocytosis of *P. aeruginosa*, and the thick mucus impairs ciliary beating (Bhagirath et al., 2016). Infections with *P. aeruginosa* are especially concerning since progression of *P. aeruginosa* infections is associated with poor patient outcomes and disease severity (Lee et al., 2003; Sanders, 2014). The presence of *P. aeruginosa* is associated with increased morbidity: the risk of death was 2.6 times higher in those infected with *P. aeruginosa* than those without (Bhagirath et al., 2016).

Research has shown that as *P. aeruginosa* lung infections progress over time, clinical isolates in chronic, cf. acute, infections tend to lose motility and lipopolysaccharide O-antigen as well as certain virulence factors such as type III secretion system (T3SS) and quorum sensing (QS), while overproducing the polysaccharide alginate and undergoing hypermutation (Figure 1-1) (Hancock et al., 1983; Winstanley et al., 2016). Overall, in chronic infections bacteria become more senescent, evade the immune system and resist antibiotic treatment (Bhagirath et al., 2016); whereas motility is thought to be more important for initial colonization in acute infections and is associated with the production of virulence factors (Overhage et al., 2008). Eventually, the *P. aeruginosa* bacterial burden increases to a point of no return and biofilm formation genes are expressed while the host produces antibodies against *P. aeruginosa* and more polymorphonuclear leukocytes are recruited (Bhagirath et al., 2016). Chronic inflammation eventually leads to irreversible loss of lung function (Bhagirath et al., 2016).

Current therapies for CF largely rely on antibiotic treatment, which is ineffective in the long term due to mechanisms of antibiotic resistance. Other therapies also include oxygen therapy, bronchodilation, airway clearance, anti-inflammatory medication and CFTR modulation (Bhagirath et al., 2016). Gene therapies are being developed but thus far showed little efficacy in

clinical trials (Yan et al., 2019). Life expectancy of CF patients has increased over the years and is about 40-50 years, depending on factors such as location, sex and CFTR genotype (Keogh et al., 2018; Stephenson et al., 2018).

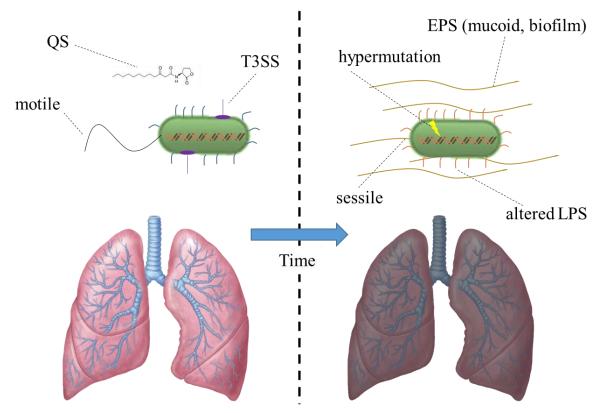


Figure 1-1. Characteristic features of the progression from acute (left) to chronic (right) lung infections. EPS, extracellular polymeric substance.

1.2 Bacterial motility

Motility is a critical behaviour for many bacteria, such as *P. aeruginosa*, as a means to seek out and rapidly colonize new niches, both in the environment and *in vivo*. Motility takes on many different forms, and can be observed at both macroscopic (Figure 1-2) and microscopic levels.

1.2.1 Swarming motility

Swarming motility is a complex and multicellular adaptation used for surface translocation. Many rod-shaped bacteria such as *Bacillus, Escherichia coli, Salmonella, Serratia, Proteus mirabilis, Vibrio* and *Pseudomonas* can swarm, as can the spiral-shaped *Rhodospirillum* (Kearns, 2010). General features of swarming motility include a requirement for flagella, production of a surfactant and elongation of the cells undergoing swarming. These features vary from species to species, since some species are peritrichously flagellated; whereas *P. aeruginosa* can aquire an extra polar flagellum (Kearns, 2010). The degree of cellular elongation also varies, as well as the specific surfactant produced. Soft agar, representing decreased medium viscosity (compared to standard solid plates with 1.5 or 2% agar), is usually required for swarming, although some species, such as *P. mirabilis* and *Vibrio parahaemolyticus*, can swarm even on hard agar (Verstraeten et al., 2008). Lastly, the macroscopic pattern produced by swarming colonies varies considerably depending on the strain and ranges from dendritic to terraced to circular or vortex-shaped (Kearns, 2010).

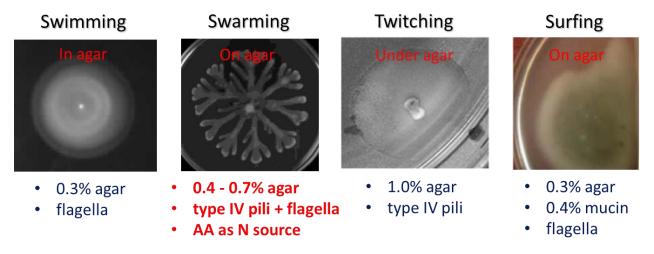


Figure 1-2. Different forms of motility in *P. aeruginosa*.

In *P. aeruginosa*, swarming occurs on lower-viscosity surfaces (0.4-0.7% agar) with amino acids as the nitrogen source. Interestingly, ammonium as a nitrogen source inhibits swarming in *P. aeruginosa*. It is a collective (so-called social) behaviour and cells inoculated onto a swarming plate can take at least several hours to build up sufficient density to initiate swarming, depending on the medium and inoculum. Prior to tendril formation, a clear layer can be seen expanding from the colony, representing the surfactant rhamnolipid (product of *rhlABC*), which is used to help the bacteria spread. Once swarming initiates, bacteria raft together and move rapidly, propelling the swarm front forward. On a macroscopic level, tendrils bud from the central colony, branching occasionally, and can fill a 10 cm dish overnight. Tendrils commonly avoid touching one another, a phenomenon known as contact inhibition that is mediated in part by rhamnolipids (Caiazza et al., 2016). Pattern formation is strain-dependent, with PA14 typically forming large, well-separated tendrils, and PAO1 forming solar flare patterns, or thinner, closely-spaced tendrils, depending on the medium.

In *P. aeruginosa*, swarming is unusual in that it relies on both flagella and type IV pili (Köhler et al., 2000). Mutants in pili and related genes have deficiencies in swarming motility (Köhler et al., 2000; Yeung et al., 2009), although the basis for this is unclear. It is possible that the pilus is involved in surface sensing (Köhler et al., 2000), or possibly in intercellular rafting

and/or branching (Anyan et al., 2014).

Swarming in *P. aeruginosa* is dependent on QS, with mutants in *rhlIR* being completely deficient for swarming, and mutants in *lasIR* showing partial reductions in swarming (Köhler et al., 2000). RhlR and LasR are global transcriptional regulators, and in addition to *rhlABC* and *lasAB* regulate many other virulence factors and biofilm formation (Medina et al., 2003; Mukherjee et al., 2017; Ueda et al., 2009). A screen of the strain PA14 transposon insertion mutant library (Liberati et al., 2006) revealed 233 mutants with altered swarming, including 35 mutants in transcriptional regulators (Yeung et al., 2009). Of the 233 mutants, only 4 were hyperswarmers; the rest had either complete or partial defects in swarming motility (Yeung et al., 2009).

1.2.2 Other forms of motility

Unlike most other forms of motility, swimming is not associated with surfaces but rather occurs in liquid or low viscosity (e.g. 0.25-0.3% agar) environments. Bacteria use the flagellum and chemotactic machinery to move toward attractants or away from repellants. A widespread paradigm in *E. coli* is that rotation of the flagellum is occasionally reversed, causing the bacterium to tumble and allowing for reorientation (run-and-tumble). However, given that *P. aeruginosa* usually only has a single polar flagellum, cells reorient during a "pause" phase, or a "run-reverse-turn" paradigm by Brownian motion, and the polar flagellum spends equal time in the clockwise and counterclockwise phases (Qian et al., 2013). The pause phase allows time for the cells to turn, and pause duration is positively correlated with angle size (Qian et al., 2013). Free-swimming cells can exhibit different trajectories, including helical behaviour, which is rare in bacteria (Vater et al., 2014).

Twitching motility occurs on surfaces or at interfaces such as between a layer of agar and a Petri dish. Extension and retraction of the type IV pilus allows the cell to slowly drag itself forward. Interestingly, like swarming, twitching cells also form rafts that migrate *en masse* and form concentric rings (Semmler et al., 1999), suggesting that these two forms of motility may share some commonalities. Bacteria are normally oriented horizontal to the surface, but interestingly the type IV pilus can also mediate "walking motility," where the cells can be seen moving in an upright vertical position (Conrad et al., 2011).

Surfing motility is another complex adaptive surface motility unique in its dependence on the presence of surface-wetting agents such as mucin (Yeung et al., 2012). It is also dependent on the presence of flagella, QS systems, and confers adaptive resistance to multiple antibiotics (Yeung et al., 2012; Sun et al., 2018a). Multiple studies have shown it to be largely distinct from swarming

both in transcriptional changes and genes required for surfing (Sun et al., 2018a; Sun et al., 2019; Yeung et al., 2012). Surfing motility was demonstrated in species other than *P. aeruginosa* although the dependence on QS varied in different species (Sun et al., 2018b).

Sliding motility is a passive surface motility that relies on colony expansion and surfactant production to propagate cells across a surface (Murray & Kazmierczak, 2008). Neither flagella nor type IV pili are required for this motility, in fact the presence of pili inhibits sliding motility, suggesting that cellular appendages can, under certain circumstances, create drag and slow down motility (Murray & Kazmierczak, 2008).

1.3 Antibiotic resistance

Antibiotic resistance is a growing global threat to public health. Bacterial populations are highly capable of acquiring drug resistance over time due to a number of different factors. First, their short generation time enables resistant subpopulations to rapidly dominate in the face of selective pressure (such as treatment of patients with antibiotics). Second, bacteria possess multiple systems for the uptake and exchange of foreign DNA, such as conjugation and transduction. Third, free-living bacteria are extremely versatile and can respond to different environmental stresses with massive changes in gene expression leading to adaptive resistance.

All of these factors combined with the overuse of antibiotics, particularly as a growthpromoting agent in livestock, and the lack of development of new drug classes, has led to a crisis whereby simple infections are now once again life-threatening in the case of multidrug-resistant (MDR) bacteria. The Centre for Disease Control and Prevention declared in 2013 that we are now in a "post-antibiotic era" (Ventola, 2015). *P. aeruginosa*, specifically, is on the World Health Organization's list for critical development of new antibiotics (WHO, 2017), and 13% of *P. aeruginosa* infections in 2014 were MDR (Ventola, 2015). It is therefore critical to learn more about antibiotic resistance as well as develop new antimicrobial drugs.

1.3.1 Mechanism of resistance to specific antibiotics

Two mechanisms that confer resistance to multiple antibiotic classes are multidrug efflux and decreased membrane permeability. *P. aeruginosa* possesses a suite of multidrug efflux pumps that export from the cell many small molecules (often with diverse chemical natures and including multiple antibiotic classes and other toxic chemicals). *P. aeruginosa* is also known for its low outer membrane permeability, which is 12-100 times less than that of *E. coli* (Breidenstein et al., 2011; Fernández & Hancock, 2012).

Many antibiotics target the bacterial ribosome, including aminoglycosides, tetracycline,

macrolides and chloramphenicol. Chloramphenicol inhibits peptidyl transferase activity; macrolides bind to 23S RNA; tetracyclines inhibit binding of aminoacyl-transfer (t)RNA to the bacterial ribosomal A-site; and aminoglycosides bind to the 30S subunit causing mismatches (Lambert, 2012). Specific mechanisms of resistance to ribosome-targeting antibiotics include plasmid-borne or chromosomal enzymes that modify aminoglycosides by adenylation, phosphorylation or acetylation (Walsh & Wencewicz, 2016). The bacterial ribosome may also be modified either by mutation or methylation of rRNA to reduce affinity to antibiotics (Walsh & Wencewicz, 2016).

 β -lactams target the cell wall, specifically peptidoglycan (PG) synthesis. β -lactams possess a reactive four-member ring that inhibits transpeptidation. A common mechanism of resistance to β -lactams is the production of β -lactamases, enzymes that inactivate the antibiotic. Penicillin binding proteins including transpeptidases can also be mutated or replaced by drug-insensitive forms (Walsh & Wencewicz, 2016).

Fluoroquinolones, such as ciprofloxacin or norfloxacin, target DNA gyrase and topoisomerase IV, enzymes that regulate the supercoiled state of DNA (Redgrave et al., 2014). Besides efflux, bacteria commonly become resistant to fluoroquinolones as a result of point mutations in topoisomerases that decrease the fluoroquinolone-binding affinity of the target protein (Redgrave et al., 2014).

Trimethoprim inhibits dihydrofolate reductase, depleting the cell of tetrahydrofolate, a onecarbon donor for a number of important metabolites in the cell including the nucleotide thymidylate (Sangurdekar et al., 2011). Structural gene mutations (i.e. in dihydrofolate reductase) are a common mechanism of trimethoprim resistance (Walsh & Wencewicz, 2016).

Polymyxin B is a nonribosomal lipopeptide with positive charge. It binds to the negatively charged LPS and disrupts the bacterial outer membrane although its specific mechanism against cells has not been clearly demonstrated (Breidenstein et al., 2011). Mechanisms of resistance include modification of LPS to a less negative form by addition of 4-amino-4-deoxyarabinose or phosphatidylethanolamine (Walsh & Wencewicz, 2016). In *P. aeruginosa*, the *arnBCADTEF* operon is involved in aminoarabinosylation of LPS and is regulated by several different two-component systems, including PhoPQ, PmrAB, ParRS and CprRS (Barrow & Kwon, 2009; Fernández et al., 2010, 2012). The *arnBCADTEF* operon also confers resistance to cationic peptides and aminoglycosides (Breidenstein et al., 2011).

1.3.2 Acquired resistance

Antibiotic resistance can be acquired either horizontally or vertically. Resistance genes acquired vertically (mutationally) may emerge slowly, but the existence of hypermutator strains can speed the process (Breidenstein et al., 2011). In contrast, horizontal acquisition is rapid and can occur by diverse means, including conjugation, transduction, or transformation. Mobile DNA elements include plasmids, transposons, integrons, prophages and resistance islands (Breidenstein et al., 2011).

1.3.3 Adaptive resistance

Environmental conditions, specific growth states and/or antibiotics or other stresses can reversibly induce the differential expression of many genes, leading to adaptive antibiotic resistance. Conditions known to induce adaptive resistance include anaerobiosis, altered pH or temperature, low concentrations of divalent cations, and subinhibitory concentrations of antibiotics or other toxic compounds (Breidenstein et al., 2011; Fernández et al., 2010). Additionally, adaptive resistance also results from defined growth states such as biofilm formation and swarming and surfing motility. When the conditions that trigger adaptive resistance no longer exist, bacteria revert to a susceptible state.

1.3.4 Antibiotics used to treat *P. aeruginosa* infections

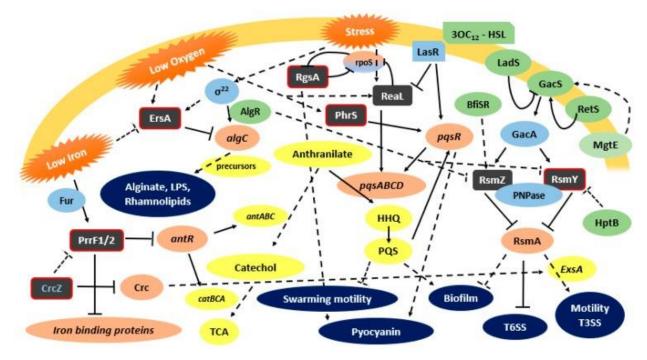
Clinically relevant antibiotic classes for *P. aeruginosa* infections include amnioglycosides, β -lactams, fluoroquinolones and lipopeptides (Tümmler, 2019). Some of the more toxic drugs such as polymyxin B and colistin are reserved for last resort (Tümmler, 2019). Two antibiotics from different classes are often prescribed for severe cases, such as piperacillin or ceftazidime and an aminoglycoside (Tümmler, 2019). To overcome β -lactam resistance, cephalosporin- β -lactamase inhibitor combinations are sometimes used, such as ceftazidime-avibactam and ceftolozane-tazobactam (Tümmler, 2019). For CF infections, aerosolized antibiotics may be used, such as tobramycin, colistin, liposomal amikacin, or liposomal ciprofloxacin (Tümmler, 2019). Drugs such as ciprofloxacin, meropenem, tobramycin, gentamicin and amikacin can be encapsulated into liposomes or loaded into nanoparticles in order to improve penetration of antimicrobials in burn wounds or chronic lung infections (Tümmler, 2019). The macrolide azithromycin has also proved useful in treating chronic lung infections, and even helps to reduce neutrophilic inflammation and improve lung function (Bhagirath et al., 2016; Tümmler, 2019).

1.4 Small RNAs

In bacteria, small inhibitory RNAs (sRNA) are short (40-500 bp) untranslated sequences

that are distinct from other forms of RNA such as mRNA, tRNA and rRNA. The purpose of sRNAs is to provide post-transcriptional regulation in order to alter protein abundance as needed. sRNAs may be intergenic or overlapping with other genes. In addition, sRNAs are also characterized as cis or trans. Cis-encoded sRNAs overlap with their target mRNA and have high sequence similarity; whereas trans-encoded sRNAs are encoded distant from their targets and utilize imperfect base-pairing (Li et al., 2012).

1.4.1 Mechanisms of regulation by sRNAs


There are several different ways that sRNAs can regulate a target. First, sRNAs can bind to mRNAs and block the ribosome binding site, leading to inhibition of translation (Waters & Storz, 2009). Second, sRNAs can bind to a different region of the mRNA, causing unmasking of the ribosome binding site, leading to increased translation (Li et al., 2012; Storz et al., 2004). Third, sRNAs can interact directly with proteins in order to sequester or alter their activity (Gottesman & Storz, 2011; Li et al., 2012; Pita et al., 2018). Last, sRNA binding to an mRNA can also initiate degradation of the mRNA, or alternatively stabilize mRNA (Pita et al., 2018; Prévost et al., 2011). sRNA-mRNA interactions often require the chaperone Hfq for stabilization (Gottesman & Storz, 2011). Additionally, *Pseudomonas* possesses other more selective RNA-binding proteins such as RsmA and Crc.

1.4.2 Known sRNAs in *P. aeruginosa*

The global transcriptional regulator GacA, part of the two-component system GacAS, induces the expression of two sRNAs, *rsmY* and *rsmZ* (Figure 1-3) (Pita et al., 2018). *rsmY* and *rsmZ*, in turn, sequester the post-transcriptional regulator RsmA from its target mRNA (Janssen et al., 2018; Pita et al., 2018). RsmA has diverse downstream effects, since it directly inhibits the translation of regulons involved in chronic infection, including T6SS, QS, biofilm formation and iron homeostasis; whereas it indirectly and positively regulates genes involved in acute lifestyles, such as T3SS, type IV pili, and virulence programs regulated by Vfr (Pita et al., 2018). Interestingly, *rsmY* and *rsmZ* can be indirectly regulated by alternative regulators such as HptB, AlgR and BfiSR; whereas the polynucleotide phosphorylase PNPase directly regulates *rsmY* and *rsmZ* by increasing their stability (Pita et al., 2018).

The two tandem and highly homologous *prrF* sRNAs, *prrF1* and *prrF2*, are involved in iron homeostasis and virulence *in vivo*, and use the RNA-binding protein Hfq (Djapgne et al., 2018; Pita et al., 2018; Wilderman et al., 2004). The entire region can also be transcribed as a whole, referred to as *prrH* (Djapgne et al., 2018; Pita et al., 2018). In iron-replete conditions, the

repressor Fur binds iron and represses *prrH*; whereas *prrH* represses or spares the use of iron under iron-limiting conditions (Pita et al., 2018). Interestingly, *prrH* also represses the expression of AntR, a positive regulator of genes that convert anthranilate into catechol (Djapgne et al., 2018; Pita et al., 2018). When AntR is repressed, then anthranilate is instead channeled into the PQS system, resulting in the increased expression of virulence factors (Pita et al., 2018). The sRNA *crcZ* competes with *prrH* for binding to Hfq, and can act as a sponge to sequester Hfq, since *crcZ* has a higher affinity for Hfq than does *prrH* (Pita et al., 2018; Sonnleitner et al., 2017).

Figure 1-3. Known sRNAs and their involvement in the regulation of virulence factors. Reproduced from reference (Pita et al., 2018), this figure is licensed under CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

The *crcZ* sRNA is expressed under the control of the global two-component regulatory CbrAB system (Sonnleitner et al., 2009), involved in carbon and nitrogen metabolism, antibiotic resistance and virulence (Yeung et al., 2011). Initially, *crcZ* was thought to bind to Crc to influence carbon catabolite repression (Sonnleitner et al., 2009), but a subsequent study showed that Crc had no RNA binding activity, whereas *crcZ* bound to Hfq with high affinity (Sonnleitner & Bläsi, 2014). Instead, Crc acts in concert with Hfq by stabilizing Hfq-RNA interactions by a mechanism that is not currently fully understood (Kavita et al., 2018).

The sRNA *phrS* activates PqsR and downstream QS pathways by an unusual mechanism (Sonnleitner et al., 2011). The *pqsR* mRNA has secondary structure that restricts translation to a moderate level under aerobic conditions (Sonnleitner et al., 2011). Under anaerobic conditions, an

oxygen-responsive regulator Anr is activated and increases levels of *phrS*. Then *phrS* binds to *pqsR* mRNA, and its secondary structure is rearranged, enhancing transcription from an upstream open reading frame which contributes to increased translation of *pqsR* (Sonnleitner et al., 2011). In turn, this leads to increased levels of PQS and pyocyanin (Sonnleitner et al., 2011). Interestingly, *phrS* was recently identified as a regulator of the CRISPR-Cas system (Lin et al., 2019).

The *ersA* sRNA is Hfq-dependent and involved in envelope stress response, repressing translation of the bifunctional enzyme AlgC (Pita et al., 2018). AlgC is involved in the synthesis of polysaccharides including alginate, psl, pel, LPS and rhamnolipids (Pita et al., 2018). The porin OprD, involved in the uptake of peptides and carbapenems, is also repressed by *ersA*, leading to an additional role in antibiotic resistance (Pita et al., 2018).

The sRNA *nrsZ* is induced upon nitrogen-limitation by the two-component system NtrBC in concert with RpoN (Wenner et al., 2014). Subsequently *nrsZ* post-transcriptionally activates RhIA, which is required for rhamnolipid production (Wenner et al., 2014). A mutant in *nrsZ* was unable to produce rhamnolipids or swarm (Wenner et al., 2014). This is interesting since nitrogen limitation is a feature known to enhance swarming motility in *P. aeruginosa* (Köhler et al., 2000).

In contrast, a deletion mutant in the sRNA *rgsA* led to an increase in swarming motility (Lu et al., 2016). It was found that *rgsA* directly regulates the global transcriptional regulator Fis and the acyl carrier protein AcpP (Lu et al., 2016). This sRNA is under direct control of RpoS, and indirect control of GacAS (Lu et al., 2016); however, *rgsA* also negatively regulates RpoS in an intricate regulatory loop (Lu et al., 2018).

Other recently characterized sRNAs include *srbA*, *reaL*, *pesA* and *phrD*. sRNA *srbA* is involved in biofilm formation and pathogenicity in a *C. elegans* infection model (Taylor et al., 2017). sRNA *reaL* is involved in pathogenicity in a *Galleria mellonella* infection model and links the Las and PQS QS systems (Pita et al., 2018). Interestingly, *reaL* also negatively regulates swarming motility and influences biofilm formation and pyocyanin production (Carloni et al., 2017). sRNA *pesA* is encoded on a pathogenicity island and present in strain PA14 but not PAO1 (Pita et al., 2018), and involved in pathogenicity against CF bronchial cells and also in regulating the expression of S-type pyocins (Pita et al., 2018). sRNA *phrD* was shown to positively influence the QS regulator RhlR (Malgaonkar & Nair, 2019). Overexpression of *phrD* results in increased production of rhamnolipids and pyocyanin (Malgaonkar & Nair, 2019).

1.4.3 Uncharacterized sRNAs in *P. aeruginosa*

Several studies have investigated the transcription of sRNAs on a genome-wide scale in P.

aeruginosa. A study in 2012 on strain PAO1 identified more than 500 novel intergenic sRNAs (Gómez-Lozano et al., 2012). Strain PA14 was also studied, revealing 165 intergenic sRNAs as well as 380 *cis*-antisense RNAs (Wurtzel et al., 2012). In another study, the expression of 31 intergenic sRNAs was confirmed by qRT-PCR and expression was shown to be differential during swarming and/or biofilm formation (Gill et al., 2018). Another 2012 study looked for sRNAs in strains PA14 and PAO1, identifying 150 novel sRNA candidates, and validating expression of 52 sRNAs by Northern blot (Ferrara et al., 2012). Of these, 13 sRNAs showed strain specificity, with 11 unique to PA14 and 2 unique to PAO1 (Ferrara et al., 2012). This supports the idea that sRNAs are rapidly evolving (Gómez-Lozano et al., 2015). Lastly, a study in 2014 identified 232 antisense RNAs, and comparison of their results with two other studies revealed little overlap, suggesting that expression of some sRNAs may be strongly dependent on specific conditions (Gómez-Lozano et al., 2014).

Hundreds of sRNAs have therefore been identified and await further characterization. This represents a large field awaiting further exploration.

1.5 Hypothesis and Objectives

I hypothesize that swarming motility is a complex adaptation regulated by sRNAs that is coupled to antibiotic resistance and virulence in acute *in vivo* infections.

1.5.1 Objectives

- 1. Investigate the antibiotic resistance of swarming cells by determining wild type (WT) susceptibility to different antibiotics under swarming conditions, as well as screening selected mutants to uncover mechanistic detail.
 - a. Approach: The antibiotic susceptibility of PA14 WT was compared between three growth conditions: swimming, swarming and spread plates using the disc diffusion assay with various antibiotics. Next, resistome mutants in genes dysregulated under swarming conditions (from RNA-Seq and qRT-PCR data) were screened for differential susceptibility vs. WT under swarming conditions. I expected that PA14 would be more resistant under swarming conditions to at least some antibiotics, and that specific mutants would reveal the underlying mechanism(s) behind this phenomenon.
- 2. Examine the role of sRNA species in the regulation of swarming motility by creating overexpression strains and screening for relevant phenotypes.
 - a. Approach: Fifteen sRNA species dysregulated under swarming conditions (Gill et al., 2018) were cloned and overexpressed in PAO1 WT and screened in relevant assays such

as motility, adherence and cytotoxicity. Two sRNAs with interesting phenotypes in the overexpression strains were selected to identify targets by RNA-Seq and proteomics, make deletion mutants and study in further detail.

- 3. Study the interconnection of swarming motility with other behaviours such as biofilm formation, other forms of motility, and cytotoxicity to discover a swarming-specific mutant to enable investigation of the role of swarming *in vivo*.
 - a. Approach: Previously identified swarming-deficient mutants (Yeung et al., 2009) were screened for swimming, twitching, biofilm formation, cytotoxicity and growth. The mutant with minimal effects on phenotypes other than swarming was selected to test in an acute *in vivo* mouse model and was expected to show reduced virulence.

Chapter 2: Materials and Methods

2.1 Bacterial strains and growth conditions

P. aeruginosa strains UCBPP-PA14 and PAO1 H103 and transposon mutants from the PA14 Harvard library (Liberati et al., 2006) were routinely grown in Luria-Bertani broth (LB) and BM2 minimal medium (62 mM potassium phosphate buffer, pH 7, 0.5 mM MgSO₄, 10 μ M FeSO₄, carbon and nitrogen sources as indicated). The deletion mutant $\Delta prrH$ ($\Delta prrF1-2$) was obtained from reference (Wilderman et al., 2004). Gentamicin at 30 μ g/ml was included in streak plates for PA14 transposon mutants. LB overnight cultures were diluted 1/50 and grown to mid-log phase (OD_{600nm} of 0.3 to 0.6) to initiate motility studies.

2.1.1 Growth curves

Overnight cultures were diluted to a final OD_{600nm} of 0.05 in the indicated medium and seeded in 96 well round-bottom plates at 100 µl/well. They were incubated at 37°C with shaking at frequency 567 cpm (3 mm) in the synergy H1 microplate reader and the OD_{600nm} was read every 30 min. Media recipes used were:

- Synthetic cystic fibrosis sputum media (SCFM) without NH₄Cl modified from (Palmer et al., 2007) as follows: 1.3 mM NaH₂PO₄, 1.25 mM Na₂HPO₄, 0.348 mM KNO₃, 1.114 g/L KCl, 3.03 g/L NaCl, 10 mM MOPS, 0.827 mM L-aspartate, 1.072 mM L-threonine, 1.446 mM L-serine, 1.549 mM L-glutamate HCl, 1.661 mM Lproline, 1.203 mM L-glycine, 1.78 mM L-alanine, 0.16 mM L-cysteine HCl, 1.117 mM L-valine, 0.633 mM L-methionine, 1.12 mM L-isoleucine, 1.609 mM Lleucine, 0.802 mM L-tyrosine, 0.53 mM L-phenylalanine, 0.676 mM L-ornithine HCl, 2.128 mM L-lysine, 0.519 mM L-histidine, 0.013 mM L-tryptophan, 0.306 mM L-arginine, 1.754 mM CaCl₂, 0.606 mM MgCl₂, 3.6 µM FeSO₄, 3 mM Dglucose, 9.3 mM L-lactate (sodium lactate).
- 2. RPMI supplemented with 5% Mueller-Hinton Broth.
- BM2 glycerol (no (NH₄)₂SO₄, 0.4% glycerol (wt/vol), 0.1% Casamino acids (CAA) (wt/vol), and 1% arabinose (wt/vol)).
- 4. BM2 glucose (no (NH₄)₂SO₄, 0.4% glucose (wt/vol), 0.1% CAA (wt/vol)).
- 5. LB.

2.2 Motility assays

For direct comparisons between swarming, swimming and spread plate conditions, all plates were composed of the same medium, excepting agar concentration. All plates were stab

(swim and twitch) or spot (swarm) inoculated with 1.5 μ l of mid-log phase bacteria, except for spread plates, which were spread with 10⁶ cfu per plate (final OD_{600nm} 1.3 x 10⁻³). Bacteria were always inoculated at the same distance from the disc or another spot inoculum by using a stencil pattern drawn on the bottom of all plates. After inoculation, plates were incubated 15-20 h at 37°C and imaged on the ChemiDocTM Touch Imaging System (Biorad).

2.2.1 Swarming

Swarming was generally assayed on BM2 with 0.4% glucose, 0.1% CAA and 0.5% agar (wt/vol), unless otherwise indicated. For strains overexpressing sRNAs on the plasmid pHERD20T, 0.4% glycerol was often substituted as the carbon source (unless otherwise indicated), since glucose represses expression from the P_{BAD} promoter (Qiu et al., 2008). Plates were poured to contain 25 ml medium each, and solidified and dried for 1 h prior to use.

2.2.2 Swimming

Swimming was generally assayed in BM2 glucose with 0.25 or 0.3% agar (wt/vol), using 0.4% glucose and 0.1% CAA as the nitrogen source for direct comparisons with swarming (as indicated). For strains overexpressing sRNAs on the plasmid pHERD20T, 20 mM potassium succinate pH 7.0 was substituted as the carbon source and 7 mM (NH₄)₂SO₄ as the nitrogen source (unless otherwise indicated). Plates were poured to contain 25 ml medium each, and solidified for 1 h prior to use.

2.2.3 Twitching

Twitching plates were composed of 10 ml of LB with 1% agar and dried overnight. Bacteria were stab inoculated to the bottom of the plate, incubated overnight at 37°C, and one extra day at room temperature before visualization on the ChemiDoc[™] Touch Imaging System (Biorad).

2.2.4 Disc diffusion assay

Discs were impregnated with the amount of antibiotic indicated in Table 2-1 and allowed to dry briefly before being placed in the centre of a BM2 glucose agar plate with 0.3, 0.4, 0.5 or 1.5% agar. For swarming and swimming, bacteria were spot inoculated at a distance of 19 mm from the edge of the disc; for the 1.5% agar plates, bacteria (10^6 cfu) were spread onto the surface of the plate prior to adding the disc. After overnight incubation, the zone of inhibition, representing the closest distance between the edge of the disc and visible bacterial growth, was measured using a ruler. Statistically significant differences were determined by ANOVA using GraphPad Prism.

Table 2-1. Amount of antibiotic used in the disc diffusion assay.

Antibiotic	Amount (µg)	
Amikacin	125	

Antibiotic	Amount (µg)
Azithromycin	300
Chloramphenicol	300
Ciprofloxacin	1
Erythromycin	4000
Gentamicin	80
Meropenem	0.7
Piperacillin	32
Polymyxin B	400
Tetracycline	80
Tobramycin	80
Trimethoprim	250

2.2.5 Agar dilution assay

Antibiotics were incorporated into BM2 swarming agar (0.5% agar) at varying concentrations. After overnight incubation, the minimal concentration that completely inhibited swarming tendril formation was reported as the swarming inhibitory concentration (IC).

2.2.6 Six well plate assays

Motility assays performed using 10 cm dishes were modified to a six well format for Figure 6-1 with the following specifications: swarming (BM2 glucose, 0.1% CAA, 0.5% agar at 4 ml/well), swimming (BM2 glucose, 7 mM (NH₄)₂SO₄, 0.25% agar at 4 ml/well) and twitching (LB, 1% agar at 1.5 ml/well).

2.3 Other phenotypic assays

2.3.1 Biofilm formation

Overnight cultures were diluted 1/100 in $\frac{1}{4}$ LB (5 g/L) and seeded at 100 µl/well in 96 well polystyrene round-bottom plates. After incubating for 24 h at 37°C, the media was discarded and plates were rinsed three times with dH₂O. Crystal violet (105 µl of 0.1%) was added and incubated with shaking for 20 min at room temperature, then the plates were rinsed three times with dH₂O and the crystal violet was solubilized by adding 110 µl 70% (vol/vol) ethanol and shaking for 20 min at room temperature. Then the absorbance at 595 nm was read in an Epoch plate reader (BioTek).

2.3.2 Adherence

Overnight cultures were diluted to a final OD_{600nm} of 0.03 in 90% LB supplemented with 5% arabinose (wt/vol) and seeded at 100 µl/well in 96 well flat-bottom polystyrene plates. After incubating for 4 h at 37°C, unattached cells were removed by discarding the media and rinsing three times with dH₂O. Crystal violet (105 µl of 0.1%) was added and incubated with shaking for

20 min at room temperature, then the plates were rinsed three times with dH_2O and the crystal violet was solubilized by adding 110 µl 70% (vol/vol) ethanol and shaking for 20 min at room temperature. Then the absorbance at 595 nm was read in an Epoch plate reader (BioTek).

2.3.3 Cytotoxicity

Human bronchial epithelial 16HBE14o- cells (HBE) between passage 14 and 40 were grown in Minimum Essential Medium with Earle's Salts (1X) (MEM) (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco), 2 mM L-glutamine (Gibco) and 1% penicillinstreptomycin (Gibco). After cells reached 80-100% confluency, they were washed once with phosphate buffered saline pH 7.4 (1X) (PBS) (Gibco), trypsinized with 0.25% Trypsin-EDTA (Gibco) and diluted in medium before counting. HBE were seeded at 2 x 10⁴ cells/well at 200 μ l/well in a 96 well plate and grown again to confluency (2-3 days). Then the medium was changed to MEM or DMEM (Gibco), as indicated in Table 2-2, 1-2 h prior to infection. Next, bacterial cultures were prepared by pelleting overnight cultures, washing once with PBS and resuspending in the medium indicated in Table 2-2. Bacteria were diluted in the same medium. Next, the medium of the HBEs was removed and replaced with a suspension containing the bacterial inoculum described in Table 2-2, followed by monitoring the release of lactate dehydrogenase (LDH) as an indicator of cytotoxicity as described below. Cells treated with 2% Triton®-X-100 (vol/vol) (Fisher Scientific) in the respective media were used as a positive control for the LDH assay.

Strain	Medium	Inoculum (cfu/ml)	MOI	Time (h)
PA14	MEM, 1% FBS, 2 mM L- glutamine	7.5 x 10 ⁵	7.5	4
PAO1	DMEM, no glucose, 1% FBS, 1% sodium pyruvate, ± 1% arabinose	3 x 10 ⁵	3	16

Plates were centrifuged for 5 min at 1000 rpm in the Eppendorf centrifuge 5810 R (15 amp version) and 50 µl supernatant were removed and mixed with 50 µl solution as indicated in the Cytotoxicity Detection Kit (Roche) assessing release of LDH (1/100 catalyst/reaction mixture), and incubated for 10 min at room temperature in the dark. Then the absorbance at 492 and 900 nm was read in the Epoch plate reader (BioTek). Next, the absorbance at 900 nm was subtracted from the absorbance at 492 nm. % cytotoxicity was calculated by subtracting bacteria and HBE alone controls from coculture values, and then normalizing to the Triton-X control.

2.3.4 Outer membrane permeabilization assay

Outer membrane permeability was assessed using the fluorescent dye N-phenyl-1naphthylamine (NPN) as described previously (Schurek et al., 2008) with minor modifications. Briefly, cells were harvested from antibiotic-free BM2 glucose swarm plates (0.5% agar) and resuspended in 5 mM HEPES pH 7.0 supplemented with 5 μ M carbonyl cyanide *m*-chlorophenyl hydrazone, then diluted to an OD_{600nm} of 0.5. Fluorescence was monitored in the PerkinElmer Fluorescence Spectrometer LS 55 at an excitation wavelength of 350 nm and emission wavelength of 420 nm. NPN was added at a final concentration of 10 μ M, then tobramycin was added at a final concentration of 40 μ g/ml.

2.3.5 **Pyoverdine assay**

Bacteria were grown overnight in Casamino acid medium (0.5% CAA, 0.1 mM MgSO₄, 7 mM potassium phosphate buffer, pH 7.0). Turbid cultures were pelleted and the supernatant collected in a fresh tube. Next, 5 μ l of supernatant was mixed with 995 μ l 10 mM Tris pH 6.8. Then the fluorescence was monitored on the PerkinElmer Fluorescence Spectrometer 168 LS 55 with excitation wavelength 405 nm and scanning the emission spectrum from 400-700 nm. The fluorescence emission was corrected by subtracting the values for a blank buffer control.

2.4 Antibiotic susceptibility assays

2.4.1 Minimal inhibitory concentration (MIC)

Bacteria were seeded at 5 x 10^5 cfu/ml (final OD_{600nm} 6.7 x 10^{-5}) in a twofold concentration gradient of antibiotic in either LB or BM2 0.1% CAA, no (NH₄)₂SO₄, with glucose or glycerol as indicated, at 100 µl/well in 96 well polystyrene round-bottom plates. After incubating for 24 h at 37°C, the minimal concentration to inhibit visible bacterial growth was reported as the MIC.

2.4.2 Kill curves

Bacteria were harvested from antibiotic-free swim (0.3% agar) and swarm (0.5% agar) BM2 glucose plates and resuspended in 62 mM potassium phosphate buffer, pH 7.0 and diluted to a final OD_{600nm} of 0.025 in 10 ml 62 mM potassium phosphate buffer. Cells were then treated with 20 µg/ml tobramycin with aeration at room temperature, and aliquots were periodically taken for serial dilution in PBS pH 7.4 for colony enumeration on LB plates.

2.5 RNA-Seq

2.5.1 Conditions used

Bacteria were harvested from the edge (2-3 mm) of swarm fronts or from colonies swimming within agar using the conditions as follows. Swarm (0.5% agar) vs. swim (0.25% agar)

RNA-Seq was performed using PA14 WT in BM2 glucose 0.1% CAA supplemented with 1.4 mM (NH₄)₂SO₄ to inhibit swarming in swim plates. Tobramycin vs. untreated RNA-Seq was done using PA14 WT swarming in BM2 glucose 0.5% agar \pm 0.5 µg/ml tobramycin. Both PA0805.1 and PA2952.1 RNA-Seq and proteomics were performed at the same time under swarming conditions using overexpression strains compared to EV in BM2 glycerol 0.5% agar and 1% arabinose to induce expression.

2.5.2 RNA isolation

Harvested bacteria were transferred to RNAprotect Bacteria Reagent (Qiagen), pelleted and stored at -80°C. For the swim samples, most of the agar was removed from the pellets by pipetting. Swim pellets were lysed by resuspension in 6 mg/ml lysozyme dissolved in Tris-EDTA (TE) buffer pH 8.0 (Thermo Fisher), supplemented with 5 U β -agarase I (NEB) to digest remaining agar in the swim pellets. Swarm pellets were resuspended in lysozyme-TE without agarase. RNA isolation then proceeded according to the manufacturer's instructions using the RNeasy Mini Kit (Qiagen). Eluted RNA was further purified with the TURBO DNA-free kit (Thermo Fisher). The quality and quantity of RNA was confirmed using the Bioanalyzer instrument. The number of biological replicates for each experiment are indicated in Table 2-1.

Table 2-3. Number of biological replicates per RNA-Seq experiment.

Experiment	No. replicates		No. independent
	Test condition	Control condition	RNA-Seq runs
Swarm vs. swim	5	6	2
TOB vs. UNTR	3	3	1
PA0805.1 vs. EV	5	5	2
PA2952.1 vs. EV	5	5	2

2.5.3 RNA-Seq and identification of differentially expressed (DE) genes

RNA samples were depleted of rRNA using the RiboZero Bacteria Kit (Illumina), and libraries were prepared using the KAPA Stranded Total RNA Kit (KAPA Biosystems). Sequencing was done on an Illumina HiSeq2500 by the University of British Columbia Sequencing and Bioinformatics Consortium. Sequence quality was determined using FastQC v0.11.8 and MultiQC v1.7. Reads were mapped to the *P. aeruginosa* UCBPP-PA14 or PAO1 reference genome obtained from the Pseudomonas Genome Database (www.pseudomonas.com) using the alignment program STAR v2.6.1a. Counts were generated using v0.11.2 of the HTSeq count function.

For the experiment involving a subinhibitory concentration of tobramycin, in addition to the 3 untreated swarming controls specifically obtained for this experiment, the swarming samples

from the "swarm vs. swim" experiment described herein were also included when performing all downstream analyses for the subinhibitory-tobramycin experiment, bringing the total number of samples for this experiment to 11, 8 untreated swarming controls and 3 tobramycin-treated swarming samples.

Experiment date was included in the design formula to control for any potential batch effects. DE genes were determined using the package DESeq2 v1.20.0, in R v3.5.3, with thresholds of adjusted p-value ≤ 0.05 and absolute fold change ≥ 1.5 . All lists of DE genes are available in Tables A1 and A2.

2.6 **Proteomics**

2.6.1 Protein digestion and quantification

Bacteria harvested in Section 2.5.1 were washed three times with PBS pH 7.4 and stored as a pellet at -80°C. Bacterial cell pellets were resuspended in lysis buffer (100 mM HEPES (pH 8.5), 4% SDS, 1X Halt protease inhibitor cocktail (Thermo Fisher Scientific). The cells were sonicated three times for 15 s per cycle with 1 min cooling on ice between each cycle. The insoluble cellular debris was removed by centrifugation at 17,000 g for 10 min. Protein concentration was determined using the Pierce detergent compatible Bradford assay kit (Thermo Fisher Scientific). All protein samples were processed and handled using single-pot solid-phase-enhanced sample preparation (SP3) protocol described below. Prior to SP3 treatment, two types of carboxylatemodified SeraMag Speed beads (GE Life Sciences) were combined in a ratio of 1:1 (vol/vol), rinsed, and reconstituted in water at a concentration of 20 µg solids per µl. Initially, 200 µg of lysate was reduced with 10 mM (final concentration) dithiothreitol for 30 min at 60°C followed by alkylation using 50 mM (final concentration) iodoacetamide for 45 min in the dark at room temperature. After that, 20 µl of the prepared bead mix was added to the lysate and samples were adjusted to pH 7 using HEPES buffer. To promote protein binding to the beads, acetonitrile was added to a final concentration of 70% (vol/vol) and samples were incubated at room temperature on a tube rotator for 18 min. Subsequently, beads were immobilized on a magnetic rack for 1 min. The supernatant was discarded and the pellet was rinsed twice with 200 μ l of 70% ethanol and once with 200 µl of 100% acetonitrile while on the magnetic rack. Rinsed beads were resuspended in 65 µl of 50 mM HEPES buffer (pH 8) supplemented with trypsin/Lys-C mix (Promega) at an enzyme-to-protein ratio of 1:25 (wt/wt) and incubated for 16 h at 37°C. After overnight digestion, supernatant containing peptides was transferred into a fresh tube and subsequently measured for peptide vield using Pierce Quantitative Fluorometric Peptide Assay (Thermo Fisher Scientific).

2.6.2 Tandem mass tag (TMT) labeling

Representative samples containing 85 μ g of peptides were adjusted to the same concentration using 50 mM HEPES (pH 8) and labeled with 10-plex TMT reagents (Thermo Fisher Scientific). The TMT10 reporter channels were sequentially assigned in increasing reporter mass as TMT0-TMT9. Four TMT10 channels (TMT0-TMT3) were assigned to samples from the EV strain, three channels (TMT4-TMT6) to the PA2952.1 strain, and three channels (TMT7-TMT9) to the PA0805.1 strain. In short, 0.8 mg of each TMT channel was first dissolved in 41 μ l of DMSO before adding to the corresponding peptide digests. The labeling reaction was incubated at room temperature for 60 min. Following incubation, samples were quenched for 15 min with the addition of 8 μ l of 5% hydroxylamine. Finally, labeled samples were mixed at equal volume and desalted using SOLA HRP SPE cartridge (Thermo Fisher Scientific) prior to LC/MS/MS.

2.6.3 Mass spectrometry data acquisition

Analysis of TMT labeled peptide digests was carried out on an Orbitrap Q Exactive HF-X instrument (Thermo Fisher Scientific, Bremen, Germany). The peptide mixture was resuspended in 0.1% formic acid prior to injection. The sample was introduced using an Easy-nLC 1000 system (Thermo Fisher Scientific) at 2 µg per injection. Mobile phase A was 0.1% (vol/vol) formic acid and mobile phase B was 0.1% (vol/vol) formic acid in 80% acetonitrile (LC-MS grade). Gradient separation of peptides was performed on a C18 (Luna C18(2), 3 µm particle size (Phenomenex, Torrance, CA)) column packed in-house in Pico-Frit (100 µm X 30 cm) capillaries (New Objective, Woburn, MA). Peptide separation used the following gradient: 3 - 5% increase of phase B over 4 min, 5 - 7% over 3 min, 7 - 25% over 197 min, 25 - 60% over 25 min, 60 - 90% over 1 min, with final elution of 90% B for 10 min at a flow rate of 300 nL/min.

Data acquisition on the Orbitrap Q Exactive HF-X instrument was configured for datadependent method using the full MS/DD–MS/MS setup in a positive mode. Spray voltage was set to 1.85 kV, funnel RF level at 40, and heated capillary at 275°C. Survey scans covering the mass range of 350–1500 m/z were acquired at a resolution of 120,000 (at m/z 200), with a maximum ion injection time of 60 ms, and an automatic gain control (AGC) target value of 3e6. For MS2 scan triggering, up to 20 most abundant ions were selected for fragmentation at 32% normalized collision energy, with intensity threshold kept at 5.7e4. AGC target value for fragment spectra was set at 1E5, which were acquired at a resolution of 45,000, with a maximum ion injection time of 88 ms and an isolation width set at 0.7 m/z. Dynamic exclusion of previously selected masses was enabled for 30 s, charge state filtering was limited to 2–6, peptide match was set to preferred, and isotope exclusion was on.

2.6.4 Identification and differential analysis of proteins

A January 2019 reference database of *P. aeruginosa* PAO1 (taxon 208964) was downloaded from uniprot (www.uniprot.org). The 1D LC-MS run was converted into an MGF file using the Proteome Discoverer bundled tool, and was searched against the PAO1 database using X!tandem (cyclone 2012.10.01.1). Peptide identification settings were standard for the instrument: single missed cleavage tryptic peptides were permitted, with a parent and fragment mass tolerance of 10 PPM. A fixed post-translational modification of C+57.021 was applied, and variable PTMs including N-terminal acetylation, deamidation, phosphorylation and oxidation were permitted. Peptide assignment into source proteins was managed by X!tandem.

Peptide level TMT10 reporter tags intensities were integrated across window of ± 3 mDa each, and corrected for isotopic overlap between channels using the supplied batch-specific correction matrix. Protein level quantitation required at least two unique peptides of expectation values $\log(e) \leq -1.5$ each, yielding highly confident protein assignments of at least $\log(e) \leq -3$. The sum of peptide level TMT10 reporter tag intensities for each protein was converted into a \log_2 scale for simplified differential analysis. Protein expression values across each TMT10 reporter channel were normalized into a common scale (mean=0, SD=1).

Differential analyses between normalized sample populations (PA0805.1 vs. EV and PA2952.1 vs. EV) were conducted using the Welch T-test function in Excel between population averages. The p-scores were not subjected to multiple-testing corrections, and any differences with p<0.05 were considered candidates for biological exploration. Differences between normalized population means were scaled back into a log_2 scale by multiplying them by an average system-wide SD of 2.26.

2.7 Murine infection abscess model

Bacterial strains were tested *in vivo* by injecting bacteria subdermally to form a cutaneous abscess (Pletzer et al., 2017). *P. aeruginosa* PA14 was grown to an OD_{600nm} of 1.0 in 2YT broth, subsequently washed twice with sterile PBS, and further adjusted to 5×10^8 CFU/ml. A 50 µl bacterial suspension was injected subdermally into the right side of the dorsum. One hour post infection, mice were either treated with 14 mg/kg 1018 (dissolved in 5% dextrose), or dextrose alone. After 16-18 h, mice were euthanized, organs harvested, and homogenized in 1 ml sterile PBS using a Mini-Beadbeater-96 (Biospec products) for 5 min. Bacterial counts were determined by serial dilution and experiments were performed at least 3 times independently with 3 to 5

animals per group. These studies were performed in collaboration with Dr. Daniel Pletzer at UBC.

2.8 qRT-PCR

Cells were harvested from a variety of conditions as described in Table 2-4. For cultures grown in BM2, $(NH_4)_2SO_4$ was omitted and 0.1% CAA was used as the nitrogen source. RNA was isolated and DNase digested as described in the RNA-Seq section, but omitting the use of agarase, and quantified on a NanoDrop® Spectrophotometer ND-1000. RNA was then diluted to 1 ng/µl and 5 µl were used in a total reaction volume of 25 µl. The qScript One-Step SYBR Green RT-qPCR (Quantabio) was used and samples were run on the LightCycler® 96 (Roche). Cq values were normalized to the housekeeping gene *rpoD* using the $\Delta\Delta$ CT method. *rpoD* routinely served as an appropriate housekeeping gene, except in the swarm vs. swim experiment (Section 4.10), where 16S was used instead. Primers used for qRT-PCR are described in Table 2-5.

Comparison	Medium	Section
Swarm vs. planktonic (Overhage et al., 2008)	BM2 glucose, $\pm 0.5\%$ agar	Chapter 3
Swarm vs. swim	BM2 glucose, 0.5 vs. 0.3% agar	4.10
PA0805.1 vs. EV	BM2 glycerol, 1% arabinose, 0.5% agar	4.5
PA0805.1 induced vs. uninduced	BM2 glycerol, 0.5% agar \pm 0.5% arabinose	4.2
PA2952.1 vs. EV	BM2 glycerol, 1% arabinose, 0.5% agar	Chapter 5
$\Delta ptsP \text{ EV vs. WT EV} \\ \Delta ptsP^+ \text{ vs. WT EV}$	LB planktonic	Chapter 6

Table 2-5. Primers used for qRT-PCR.

Name	Sequence (5' -> 3')
16S F	GGCAGGCCTAACACATGCAA
16S R	TTATCCCCCACTACCAGGCA
<i>aprA</i> F	TCCAAGCTGGTGTTCTCGGT
<i>aprA</i> R	AGCGCCTTCTCGTTGAGGTT
gmd F	GAGATGTTCGGCCTGATCCA
gmd R	ACGGTGATCCAGTGGCCATA
lasA F	GACGAACTGTTCCTCTACGGTC
lasA R	CCAGGTATTCGCTCTTGTCG
<i>mexG</i> F	ACTCGCTCGAAAGCAACTGG
mexG R	AGGCTGGCCTGATAGTCGAA
<i>mexH</i> F	ATCCGTCTCAAGGCGCAGTT
mexH R	TTGTCCAGCTGTTCCTGCGA
<i>mexI</i> F	ATCACCGTCACCACCGAGTA
mexI R	AAAGGTAGTCGATGCCCTCC

Name	Sequence (5' -> 3')
opmD F	TACAGCCGCAGCATCGAACA
opmD R	CCGAACAGGTCGATTTCCCA
PA0805.1 qF	TGGTATTGCGGGACGCC
PA0805.1 qR	ACTCTTCTGAAGCAATCCCCTG
PA3670 F	AGGATTCGCCTGCAGGTGAT
PA3670 R	CTGCTGCAGGGGAATTCCTT
PA3836 F	GGCTACGAAGACGGCAAGAA
PA3836 R	CTTGTCGCCGATGAACTTGC
PA5542 F	GCCGCCGATCTCTATGAACT
PA5542 R	TGGTCCCCTTGTGGATAACC
pchF F	GATGACTGCGTACTGCACTGCT
pchF R	CCATTGCGGATCGAGATAGC
pcrG F	AATACACCGAAGACACCCTGCG
pcrG R	TTGCCACATTTCCGCCAGCA
prtN F	CGTGGAATTGGTCTACCGCA
prtN R	CCAGGGCCTTGCTGAAGTTT
<i>ptsP</i> qF	CTCAACACGCTGCGCAAGAT
ptsP qR	TGGGTACCCATGGCTTCCTT
<i>rhlR</i> F	CGCGTCGAACTTCTTCTGGAT
<i>rhlR</i> R	GCAAGAGTTCCGGGGGAAATC
<i>rmd</i> F	CTCTCCGGTTTCGTAGGCAA
rmd R	CAGCAGATCGTAACGATGCG
<i>rpoD</i> F	TCACGCACGCAGAGTTGCAT
rpoD R	AAGCTGGTGCCCAAGCAGTT
<i>vfr</i> F	TAGACAAGCTGCTCGCACAC
vfr R	GAAATCACCGCTGTTGAGGT
wbpWF	CGAGAAACCCGATGAGGAAACC
wbpWR	GTCGAGGCCGTGAAACAGAA
wbpX F	GACCAACTGGTCTTGCTGGA
wbpX R	TAGATCACCGAGACGATGCC
wbpZ F	CGGTTTTTCCCTGAGCGTGT
wbpZ R	GGAAATGCACCAGGTCCATG
wzm F	GGCTATCGTGGCTTCGTTCT
wzm R	ATCGACAGCGGATTGAGCAC
wzt F	GAGGAAATCCAGGCGCTGAT
wzt R	ATCTGCATGCCGCTGGAGTA

2.9 DNA manipulation

2.9.1 Deletion mutants

Deletion mutants of PA0805.1 and *ptsP* were constructed using previously described methods with minor modifications (Pletzer et al., 2014). Briefly, PAO1 WT genomic DNA was PCR-amplified using the primers PA0805.1 A1 and A2, and PA0805.1 B1 and B2 described in Table 2-6. PA14 WT gDNA was amplified with primers *ptsP* A1 and A2, and *ptsP* B1 and B2 (Table 2-6). After gel extraction of the fragments, a fusion PCR was performed using primers PA0805.1 A1 and B2, and *ptsP* A1 and B2. The PCR products were then TOPO cloned as described in Section 2.9.2, digested with *BamHI* and *XbaI*, cloned into the vector pEX18Gm, transformed into the *E. coli* donor strain ST18 (an auxotroph for 5-aminolevulinic acid) and conjugated into PAO1 or PA14 WT using LB agar plates with 50 μ g/ml 5-aminolevulinic acid. After, *P. aeruginosa* conjugants were selected on gentamicin 30 μ g/ml and then counterselected at least three times with LB 5% sucrose. The deletion mutants were confirmed by lack of growth on gentamicin and PCR of the deleted region.

Name	Sequence (5' -> 3')
PA0730.1 F	GACTCTAGACGATGGGAACGCGGCGA
PA0730.1 R	CTCGGTACCGTCCCTTTCCTTCCCGGCAT
PA0805.1 A1	CTCGGATCCTCTGAGTGGAGTACGGGAGA
PA0805.1 A2	CGAAAGATATACAATCCGGGAAAGCGTGAAAGTAAAGGAACAT
PA0805.1 B1	ATGTTCCTTTACTTTCACGCTTTCCCGGATTGTATATCTTTCG
PA0805.1 B2	GACTCTAGAGAAGGATGGGAACAGGTCG
PA0805.1 F	GACTCTAGAATGGAGCAGCGTATATTGC
PA0805.1 R	CTCGGTACCCTGCGTACCAAACTGAAAGTC
PA0958.1 F	GACTCTAGACTTGGCGATAGTTGAGGTTCC
PA0958.1 R	CTCGGTACCGTTTGCTTTCAAACAGAATAGCCT
PA1091.1 F	CTCGGTACCAACTTCCACCCTCTGCCG
PA1091.1 R	GACTCTAGAGGTGATTTCCTCCAAAGGACC
PA14sr120 F	CTCGGTACCATGGAGCAGCGTATATTGC
PA14sr120 R	GACTCTAGATAGTACCTGAACTGCCAGC
PA2461.1 F	GACTCTAGATCTTCAGCTCAGACACAGGTT
PA2461.1 R	CTCGGTACCCTTAGAGGAAGGTCCATTCAAACA
PA2461.3 F	GACTCTAGACTGTACCGCGAGCCCC
PA2461.3 R	CTCGGTACCCAACGCTGGAGTATCATCCACT
PA2952.1 F	CTCGGTACCGCCCGTATCTTGACCGGAT
PA2952.1 R	GACTCTAGATAGCTGCATGGGCAGGTC
PA2952.1W F	CTCGGTACCATAAGGATGTCGCCAGACAGG

Table 2-6. Primers used for	cloning.
-----------------------------	----------

Name	Sequence (5' -> 3')
PA2952.1W R	GACTCTAGAGAGCGGGGCGCATTAT
PA3159.1 F	CTCGGTACCCACCCGCGATTGCC
PA3159.1 R	GACTCTAGATAGTTATTGAAGTGGTGATGCGT
PA4539.1 F	GACTCTAGAGCCGCCAGACCGAACG
PA4539.1 R	CTCGGTACCGCGGAAAAGCTGGATGCATGG
PA4656.1 F	CTCGGTACCATTCCGGCGTTATCCTGTGA
PA4656.1 R	GACTCTAGACCTCTCTGGTTGTGTAGCGT
PA5078.1 F	GACTCTAGACGTCCGTGAACATGAATTACT
PA5078.1 R	CTCGGTACCCTGTACAGGACAGGCCG
PA5304.1 F	GACTCTAGACAGTATAGGAAGAGGCAGGCA
PA5304.1 R	CTCGGTACCAGGCTCCGCGAGCGCTCTGG
prrH F	GGATCCAACTGGTCGCGAGAT
prrH R	TCTAGAAGGAAGGGCGCGAGG
prtN F	GGATCCATGCAGCCAACCATCGCC
prtN R	TCTAGATCAGGATGCGATGCTGTCC,
ptsP A1	CTCGGATCCCGATGGTTTTCGCCCGAATG
ptsP A2	TCCGGCGCGCGGGAAAGCTCGGGGCCTTGTCTCCGTGTT
ptsP B1	AACACGGAGACAAGGCCCCGAGCTTTCCCGCGCGCGGA
ptsP B2	GACTCTAGACCTCGCAGTATTCCGGGCTT
ptsP F	GGATCCATGCTCAACACGCTGCGCAAGA
ptsP R	TCTAGATCAGGGCTGGACGGTAGC
rsmY F	CTCGGTACCGTCAGGACATTGCGCAGGAA
rsmY R	GACTCTAGAAAAACCCCGCCTTTTGGGC
<i>srbA</i> F	CTCGGTACCATCAGGGGCTCTGAAACGAC
<i>srbA</i> R	GACTCTAGATCAAGAAATGTATTGGTTGAGCACC
wbpWF	GGATCCATGCTGATTCCCGTGGTGC
wbpWR	TCTAGATCAGACCACCCTGCCGTA.

2.9.2 Complementation and overexpression strains

PA14 and PAO1 WT gDNA was isolated as specified in the Qiagen DNeasy Blood and Tissue kit protocol. 80-300 ng was PCR amplified using the primers described in Table 2-6. PCR products were then cloned using one of two cloning strategies as described in Table 2-7. PCR products cloned via the TOPO strategy were gel-extracted with the GeneJet Gel Extraction Kit (Thermo Fisher) and TOPO cloned (Invitrogen). TOPO reactions were transformed into TOP10 *E. coli* and selected with 50 μ g/ml kanamycin (TOPO). Plasmid was subsequently isolated according to the Thermo Fisher kit and digested with the restriction endonucleases indicated in Table 2-7. This allowed the sRNAs to be cloned in two different orientations, termed a and b, and

other constructs to be cloned in one specific orientation. After the fragments were gel-extracted, they were ligated into similarly digested vectors with T4 DNA ligase (Thermo Scientific), transformed into TOP10 *E. coli*, and selected with antibiotic as indicated. PCR products cloned via the direct strategy were PCR purified using the PCR purification kit (Thermo), then digested with the restriction enzymes indicated in Table 2-7. Next, digested fragments were gel extracted and ligated as described above, then transformed into TOP10 *E. coli* and selected with antibiotic as indicated in Table 2-7. Plasmid sequences were confirmed by Sanger sequencing at the Sequencing and Bioinformatics Consortium at UBC.

PCR	Cloning	g Enzymes Final Voc		Vector	Antibiotic
product	strategy	used	product	vector	(µg/ml)
PA0730.1	Direct	KpnI XbaI	PA0730.1	pHERD20T	Ampicillin 100
		KpnI XbaI	PA0805.1a	pHERD20T	Ampicillin 100
PA0805.1	TOPO	EcoDI Vnul	PA0805.1	pHERD20T	Ampicillin 100
		EcoRI KpnI	PA0603.1	pUC18miniTn7Tp	Trimethoprim 50
ΔPA0805.1	TOPO	BamHI XbaI	ΔPA0805.1	pEX18Gm	Gentamicin 15
PA0958.1	Direct	KpnI XbaI	PA0958.1	pHERD20T	Ampicillin 100
PA1091.1	TOPO	KpnI XbaI	PA1091.1a	pHERD20T	Ampicillin 100
FA1091.1	TOPO	HindIII XbaI	PA1091.1b	pHERD20T	Ampicillin 100
PA2461.1	Direct	KpnI XbaI	PA2461.1	pHERD20T	Ampicillin 100
PA2461.3	Direct	KpnI XbaI	PA2461.3	pHERD20T	Ampicillin 100
PA2952.1	Direct	KpnI XbaI	PA2952.1	pHERD20T	Ampicillin 100
PA2952.1W	Direct	KpnI XbaI	PA2952.1W	pHERD20T	Ampicillin 100
PA3159.1	TOPO	KpnI XbaI	PA3159.1a	pHERD20T	Ampicillin 100
PA5159.1	TOPO	EcoRI KpnI	PA3159.1b	pHERD20T	Ampicillin 100
PA4539.1	Direct	KpnI XbaI	PA4539.1	pHERD20T	Ampicillin 100
PA4656.1	TOPO	KpnI XbaI	PA4656.1a	pHERD20T	Ampicillin 100
FA4030.1	TOPO	EcoRI KpnI	PA4656.1b	pHERD20T	Ampicillin 100
PA5078.1	Direct	KpnI XbaI	PA5078.1	pHERD20T	Ampicillin 100
PA5304.1	Direct	KpnI XbaI	PA5304.1	pHERD20T	Ampicillin 100
PA14sr120	Direct	KpnI XbaI	PA14sr120	pHERD20T	Ampicillin 100
prrH	TOPO	EcoRI XbaI	prrH	pHERD20T	Ampicillin 100
prtN	TOPO	SacI XbaI	prtN	pHERD20T	Ampicillin 100
ptsP	TOPO	BamHI XbaI	ptsP	pBBR1mcs5	Gentamicin 10
$\Delta ptsP$	TOPO	BamHI XbaI	$\Delta ptsP$	pEX18Gm	Gentamicin 15
rsmY	Direct	KpnI XbaI	rsmY	pHERD20T	Ampicillin 100
srbA	Direct	KpnI XbaI	srbA	pHERD20T	Ampicillin 100
wbpW	TOPO	BamHI XbaI	wbpW	pBBR1mcs2	Kanamycin 50

 Table 2-7. Cloning strategies and restriction enzymes used.

2.9.3 Transformation of *P. aeruginosa*

P. aeruginosa strains were transformed either by electroporation or conjugation as described in Table 2-8. This was due to the observation that certain vectors transformed more

efficiently via conjugation. Note that for comparisons between WT, mutants, complementation and overexpression strains, the same method of transformation was always used, and WT and mutants were also always transformed with EV to rule out any effect of the vector.

2.9.3.1 Electroporation

Electrocompetent *P. aeruginosa* were transformed with both EV and vector with insert according to Choi et al. (Choi et al., 2006). Transformants were selected with antibiotic as indicated in Table 2-8 and confirmed to carry the correct plasmid.

2.9.3.2 Conjugation

Strains were transformed by conjugation using previously described methods with minor modifications (Pletzer et al., 2014). The plasmid of interest was transformed into the *E. coli* donor strain ST18 (an auxotroph for 5-aminolevulinic acid) and conjugated into the *P. aeruginosa* strain of interest using LB agar plates with 50 μ g/ml 5-aminolevulinic acid. After, conjugants were selected with antibiotic as indicated in Table 2-8 and confirmed to carry the correct plasmid.

Table 2-8. Methods of transformation used in this thesis, including vectors and antibiotic concentrations.

Strain	Mutant	Method	Vector	Antibiotic (µg/ml)
PA14	WT	Electroporation	pBBR1mcs2	Kanamycin 250
PA14	WT	Electroporation	pHERD20T	Carbenicillin 300
PA14	WT	Conjugation	pBBR1mcs5	Gentamicin 30
PA14	prtN	Electroporation	pHERD20T	Carbenicillin 300
PA14	wbpW	Electroporation	pBBR1mcs2	Kanamycin 250
PA14	$\Delta ptsP$	Conjugation	pBBR1mcs5	Gentamicin 30
PAO1	WT	Electroporation	pHERD20T	Carbenicillin 300
PAO1	ΔPA0805.1	Conjugation	pUC18miniTn7Tp pTNS3	Trimethoprim 250
PAO1	$\Delta prrH$	Electroporation	pHERD20T	Carbenicillin 300

2.10 In silico sRNA target prediction

sRNA targets were predicted using three tools: IntaRNA2 (Busch et al., 2008), RNAPredator (Eggenhofer et al., 2011), and TargetRNA2 (Tjaden et al., 2006). For IntaRNA2 and TargetRNA2, input parameters were adjusted to 75 nucleotides up and downstream, and a minimum of 7 basepairs in the seed sequence was used. Cutoffs used were top 100 and $p \le 0.05$ for IntaRNA2, $p \le 0.05$ for TargetRNA2, and top 100 for RNAPredator. Only targets predicted by more than one tool were considered.

2.11 Statistical analysis

All experiments were repeated independently with at least three biological replicates.

Experiments performed in 96 well plates additionally used at least two technical replicates per biological replicate. Unless otherwise specified, mean \pm standard error was reported or depicted in graphs. Statistical tests (Student's t-test or ANOVA) were performed in GraphPad Prism, with a p value of 0.05 being considered significant and the p values are indicated by * (0.01 \leq 0.05), ** (0.001 \leq 0.001), *** (0.0001 \leq 0.001), and **** (p \leq 0.0001).

2.12 Data availability

RNA-Seq data was deposited in Gene Expression Omnibus (GEO) under accession numbers GSE121504 (swarm vs. swim), GSE137676 (tobramycin vs. untreated), GSE137738 (PA0805.1 vs. EV), and GSE146765 (PA2952.1 vs. EV). Proteomics data was deposited in MassIVE under the index number MSV000084373 (PA0805.1 vs. EV).

Chapter 3: Swarming motility and antibiotic resistance

3.1 Introduction

When *P. aeruginosa* undergoes swarming motility, adaptive antibiotic resistance is triggered (Lai et al. 2009; Overhage et al. 2008). To date this has only been investigated in a limited fashion; research presented in this chapter provides an in-depth investigation of this phenomenon.

Swarming motility in *P. aeruginosa* is a rapid, coordinated, surface-associated movement that occurs under semi-viscous, nitrogen-limiting conditions (Overhage et al., 2008). Importantly, these conditions have some similarities with the mucosal surfaces of the human lung (Yeung et al., 2009); therefore, understanding how swarming in *P. aeruginosa* leads to multiple-antibiotic adaptive resistance is relevant to our understanding of lung infections and the limitations of antibiotic therapy in this situation. Features of the lung environment that are likely to support swarming include increased glucose levels in the diseased lung (Baker et al., 2007; Gill et al., 2016), amino acids as the main nitrogen source, sufficient levels of magnesium (Palmer et al., 2007), and a humid and viscous environment. Swarming is thought to have clinical relevance particularly in the acute or initial infection of lungs, since strains isolated from chronic infections tend to lose motility over time (Winstanley et al., 2016). Thus swarming can allow for rapid colonization in the lung and the establishment of infection, and is also important in the initial formation of biofilms (O'May & Tufenkji, 2011), which are a common problem in infections due to their ability to persist and resist antimicrobial treatment.

In the swarm state, *P. aeruginosa* conditionally increases its resistance to several antibiotics (Lai et al., 2009; Overhage et al., 2008). This resistance is not dependent on prior antibiotic exposure and also occurs in other swarming species such as *Salmonella* sp. (Butler et al., 2010), *E. coli* and *Bacillus subtilis* (Lai et al., 2009).

Little is known about the genetic mechanisms that result in adaptive antibiotic resistance in *P. aeruginosa* swarming motility. Therefore, after confirming and extending the observation that *P. aeruginosa* exhibits resistance in the swarm state, RNA-Seq and qRT-PCR were performed on swarming cells and swarming cells treated with tobramycin, and mutants in genes dysregulated under swarming conditions were selected and tested for altered antibiotic susceptibility under swarming conditions.

3.2 Swarming cells were resistant to multiple antibiotic classes

To confirm and extend the observation that *P. aeruginosa* exhibits resistance in the swarming state (Lai et al., 2009; Overhage et al., 2008), BM2 glucose agar plates solidified with

varying concentrations of agar (allowing for different modes of growth) were inoculated with midlog phase *P. aeruginosa* PA14 (Figure 3-1, Figure A1). After overnight incubation, the zone of inhibition around antibiotic discs (i.e. the closest approach of motile cells to the antibiotic disc) was measured as an indicator of resistance. PA14 swarming cells on 0.4% agar were significantly more resistant to aminoglycosides (amikacin, gentamicin, kanamycin, and tobramycin) and β lactams (ceftazidime, meropenem, and piperacillin) when compared to the control swim and spread plates (Figure 3-1, top panels). Swarming cells were also significantly more resistant to chloramphenicol, ciprofloxacin, tetracycline and trimethoprim. For the macrolides, erythromycin and azithromycin, swarming cells were significantly more resistant to polymyxin B (Figure 3-1, top panels). Resistance of swarming cells was more readily observable at 0.4% agar since this condition permitted better swarming (Figure 3-1). However, similar trends were observed for swarming at 0.5% agar (Figure A1).

To confirm these results by a different method, cells were harvested from antibiotic-free swimming and swarming plates and subjected to tobramycin treatment. Swarming cells were killed more slowly, showing approximately 100-fold better survival than swimming cells after 300 min (Figure 3-2).

3.3 Swarming motility is a complex adaptation accompanied by many changes in the expression of resistome genes

Due to the complexity of these resistance data and to enable an understanding of the global changes accompanying swarming motility, I first characterized the global gene expression changes accompanying swarming motility. Previous studies analyzing global gene expression changes were performed using microarrays with planktonic (broth culture grown cells) as a control; this had identified the dysregulation of 417 genes including 18 regulators (Overhage et al., 2008). Here I improved this analysis by comparing swarming to swimming cells taken from plate cultures (varying only in the agar concentration), and utilizing the more accurate method of RNA-Seq.

The comparison of swarming vs. swimming by RNA-Seq resulted in the differential expression of 1,581 genes (753 downregulated and 828 upregulated) (Table A1). This was a substantial portion, 28%, of the *P. aeruginosa* genome, showing that swarming is a distinct and complex adaptation.

The dysregulated genes included 104 transcriptional regulators, two-component systems and sigma factors (Table 3-1). There were several regulators of nitrogen metabolism such as *nirQ*,

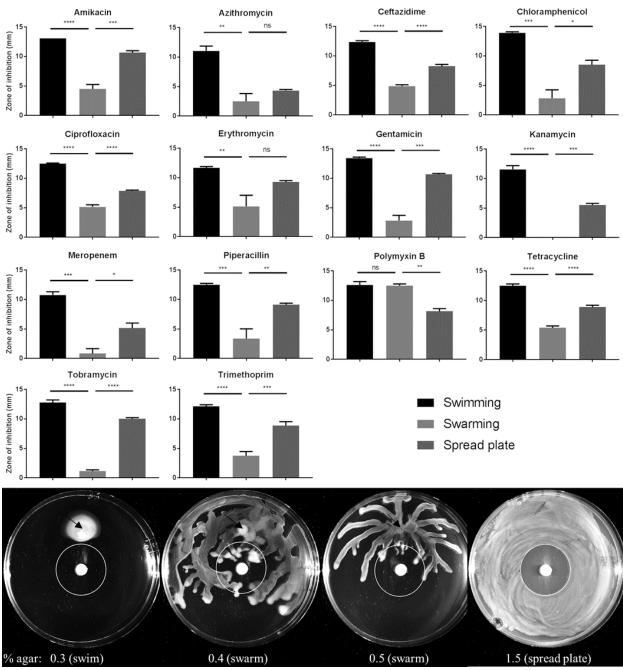


Figure 3-1. Swarming bacteria exhibited heightened resistance to most antibiotic classes. Top panels: Zone of inhibition assay using 0.3% agar for swimming, 0.4% for swarming and 1.5% for spread plate with different antibiotics. Statistically significant differences were determined by ANOVA. Lower panels: Zone of inhibition assay for PA14 WT using tobramycin discs. Arrows indicate position of inoculation. p values (*) are described in Section 2.11. $n \ge 3$.

nirG, *nosR*, and *hutR*. Other interesting regulators included BfiS, a two-component sensor involved in biofilm formation (Petrova & Sauer, 2010), PchR, a regulator of ferripyochelin receptor gene (Heinrichs & Poole, 1996), VqsR, a global regulator of QS and virulence (Liang et al., 2012a), and AlgR, which is involved in coordinating alginate and rhamnolipid production, and

Tobramycin kill curve

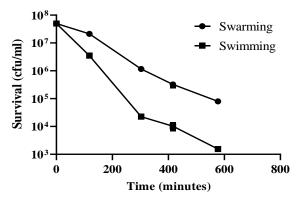


Figure 3-2. Tobramycin kill curve showing that swarming cells survived better than swimming cells in the presence of tobramycin. n = 3.

swarming and twitching motilities (Okkotsu et al., 2013). The dysregulated sigma factors included *hasI, femI, fiuI, foxI, fpvI, pvdS, rpoS, vreI*, PA1351, PA2050, PA2093, and PA4896.

Table 3-1. Selected results from swarm vs. swim RNA-Seq comparisons. These revealed 104 dysregulated transcriptional regulators, and dysregulated efflux and β -lactamase genes. Cutoffs used were fold change (FC) \geq 1.5 and adjusted p value (padj) \leq 0.05.

Locus Tag	PAO1	Name	Product Name	padj	FC
Transcriptio	nal regul	ators, tw	o-component systems and sigma factors		
PA14_00600	PA0048		transcriptional regulator	9.1E-06	1.7
PA14_00680	PA0056		LysR family transcriptional regulator	2.0E-03	1.5
PA14_02250	PA0178		two-component sensor	5.2E-09	1.6
PA14_02260	PA0179		two-component response regulator	4.4E-07	1.5
PA14_02390	PA0191		transcriptional regulator	3.4E-08	-2.0
PA14_02870	PA0233		transcriptional regulator	1.9E-08	1.5
PA14_03070	PA0248		transcriptional regulator	9.0E-06	1.6
PA14_03580	PA0275		transcriptional regulator	9.8E-07	1.5
PA14_04820	PA0367	laoR	TetR family transcriptional regulator	4.4E-14	1.6
PA14_06170	PA0471	fiuR	transmembrane sensor	1.0E-04	1.7
PA14_06180	PA0472	fiuI	RNA polymerase sigma factor	3.0E-05	1.5
PA14_06690	PA0513	nirG	transcriptional regulator	1.8E-13	-3.2
PA14_06710	PA0515		transcriptional regulator	5.4E-13	-3.4
PA14_06770	PA0520	nirQ	regulatory protein	4.6E-21	-2.9
PA14_06970	PA0535		Cro/CI family transcriptional regulator	2.5E-09	-1.6
PA14_07110	PA0547		ArsR family transcriptional regulator	8.7E-27	1.7
PA14_09260	PA4227	pchR	transcriptional regulator	5.6E-28	3.8
PA14_09680	PA4197	bfiS	two-component sensor	5.4E-09	-1.7
PA14_09790	PA4182		transcriptional regulator	1.3E-13	-1.5
PA14_10530	PA4132		GntR family transcriptional regulator	2.0E-28	-1.5
PA14_10660	PA4120		transcriptional regulator	7.9E-05	1.9
PA14_10940	PA4094		AraC family transcriptional regulator	2.0E-06	1.6

PA14_20780PA3346hsbRtwo-component response regulator2.6E-201.6PA14_23190PA3174hutRtranscriptional regulator1.1E-12-2.2PA14_23590PA3133sawRtranscriptional regulator5.2E-11-2.1PA14_24710PA3045rocA2two-component response regulator9.1E-11-2.5PA14_24720PA3044rocsS2two-component sensor5.2E-14-2.1PA14_25800PA2957TetR family transcriptional regulator3.5E-13-1.5PA14_26300PA2917AraC family transcriptional regulator3.2E-192.0PA14_26860PA2879LysR family transcriptional regulator3.2E-192.0PA14_30580PA2571signal transduction histidine kinase7.2E-091.5PA14_3060PA2519xylStranscriptional regulator3.6E-081.8PA14_32710PA2468foxlECF subfamily RNA polymerase sigma-70 factor5.8E-051.8PA14_32720PA2467foxRtransmembrane sensor1.7E-041.5PA14_332400PA2488transcriptional regulator3.5E-091.6PA14_33440PA2417LysR family transcriptional regulator3.5E-091.6PA14_33840PA2383transcriptional regulator3.5E-091.6PA14_33840PA2383transcriptional regulator3.5E-091.6PA14_33840PA2383transcriptional regulator3.5E-091.6PA14_33840PA2383transcriptio	Locus Tag	PAO1	Name	Product Name	padj	FC
PA14_13000PA3932transcriptional regulator $1.2E-14$ -2.7 PA14_13150PA3921transcriptional regulator $1.6E-14$ 1.5 PA14_15240PA3776LysR family transcriptional regulator $1.3E-03$ -1.6 PA14_15290PA3771transcriptional regulator $7.9E-06$ 1.9 PA14_1580PA3757nagRGntR family transcriptional regulator $2.9E-05$ -1.5 PA14_16790PA3678mexLTetR family transcriptional regulator $6.8E-15$ 1.5 PA14_17380PA3630gfnRglutathione-dependent formaldehyde neutralization regulator $7.1E-11$ 1.8 PA14_17480PA3622rpoSRNA polymerase sigma factor $1.9E-11$ 1.6 PA14_17540PA3616recombination regulator RecX $6.3E-06$ -2.0 PA14_19380PA3458transcriptional regulator $3.8E-08$ 1.8 PA14_20230PA3310haslRNA polymerase ECF-subfamily sigma-70 factor $3.6E-06$ -2.0 PA14_20780PA3346hsbRtwo-component response regulator $2.6E-20$ 1.6 PA14_23190PA3174hutRtranscriptional regulator $5.2E-11$ -2.7 PA14_24710PA3045rocA2two-component response regulator $5.2E-11$ -2.1 PA14_24710PA3045rocA2two-component sensor $5.2E-14$ -2.1 PA14_24700PA3044rocS2two-component sensor $5.2E-14$ -2.1 PA14_25800PA2571Sign	PA14_11120	PA4080		response regulator	6.9E-08	1.5
PA14_13150PA3921transcriptional regulator1.6E-141.5PA14_15240PA3776LysR family transcriptional regulator1.3E-03-1.6PA14_15290PA3771transcriptional regulator7.9E-061.9PA14_1580PA3757nagRGntR family transcriptional regulator2.9E-05-1.5PA14_16790PA3678mexLTetR family transcriptional regulator6.8E-151.5PA14_17380PA3630gfnRglutathione-dependent formaldehyde neutralization regulator7.1E-111.8PA14_17480PA3622rpoSRNA polymerase sigma factor1.9E-111.6PA14_17380PA3636gfnRrecombination regulator RecX6.3E-10-1.6PA14_19380PA3458transcriptional regulator3.8E-081.8PA14_19990PA3410hasIRNA polymerase ECF-subfamily sigma-70 factor3.6E-06-2.0PA14_2030PA3391nosRregulatory protein2.1E-37-17.2PA14_23190PA3174hutRtranscriptional regulator5.2E-11-2.1PA14_2310PA3456two-component response regulator5.2E-11-2.1PA14_2310PA3457rocx2two-component response regulator5.2E-11-2.1PA14_24710PA3045rocx2two-component response regulator5.2E-14-2.1PA14_24720PA3044rocx52two-component regulator3.2E-192.0PA14_25800PA2571Signal transcriptional regulator3.2E-19	PA14_12140	PA3995		transcriptional regulator	1.3E-09	1.7
PA14_15240PA3776LysR family transcriptional regulator1.3E-03-1.6PA14_15290PA3771transcriptional regulator7.9E-061.9PA14_15830PA3757 $nagR$ GntR family transcriptional regulator2.9E-05-1.5PA14_16790PA3678 $mexL$ TetR family transcriptional regulator6.8E-151.5PA14_17380PA3630 $gfnR$ $neutralization regulator7.1E-111.8PA14_17480PA3622rpoSRNA polymerase sigma factor1.9E-111.6PA14_19380PA3458transcriptional regulator3.8E-081.8PA14_19990PA3410haslRNA polymerase ECF-subfamily sigma-70factor3.6E-06-2.0PA14_20230PA3341haslRNA polymerase regulator2.6E-201.6PA14_20780PA3346hsbRtwo-component response regulator2.6E-201.6PA14_23190PA3174hutRtranscriptional regulator5.2E-11-2.1PA14_24710PA3045rocA2two-component response regulator9.1E-11-2.5PA14_25800PA2957TetR family transcriptional regulator3.5E-13-1.5PA14_26300PA2977AraC family transcriptional regulator3.5E-192.0PA14_23500PA2571Signal transduction histidine kinase7.2E-091.5PA14_26300PA2571Signal transcriptional regulator3.5E-13-1.5PA14_26400PA2879LuxR family transcriptional regulator3.5E-191.$	PA14_13000	PA3932		transcriptional regulator	1.2E-14	-2.7
PA14_15290PA3771transcriptional regulator7.9E-061.9PA14_15830PA3757 $nagR$ GntR family transcriptional regulator2.9E-05-1.5PA14_16790PA3678 $mexL$ TetR family transcriptional regulator6.8E-151.5PA14_17380PA3630 $gfnR$ glutathione-dependent formaldehyde neutralization regulator7.1E-111.8PA14_17480PA3622 $rpoS$ RNA polymerase sigma factor1.9E-111.6PA14_17540PA3616recombination regulator RecX6.3E-10-1.6PA14_19380PA3458transcriptional regulator3.8E-081.8PA14_19990PA3410haslRNA polymerase ECF-subfamily sigma-70 factor3.6E-06-2.0PA14_20230PA3341haslRNA polymerase ECF-subfamily sigma-70 factor3.6E-06-2.0PA14_2030PA3454two-component response regulator2.6E-201.6PA14_23190PA3174hutRtranscriptional regulator1.1E-12-2.2PA14_24710PA3045rocA2two-component response regulator5.2E-11-2.1PA14_25800PA2957TetR family transcriptional regulator3.5E-13-1.5PA14_26800PA2879LysR family transcriptional regulator3.2E-192.0PA14_30540PA2571signal transduction histidine kinase7.2E-041.5PA14_30540PA2591 $vqsR$ LuxR family transcriptional regulator3.6E-081.8PA14_32700PA2468foxI <td>PA14_13150</td> <td>PA3921</td> <td></td> <td>transcriptional regulator</td> <td>1.6E-14</td> <td>1.5</td>	PA14_13150	PA3921		transcriptional regulator	1.6E-14	1.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PA14_15240	PA3776		LysR family transcriptional regulator	1.3E-03	-1.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PA14_15290	PA3771		transcriptional regulator	7.9E-06	1.9
PA14_17380PA3630gfnRglutathione-dependent formaldehyde neutralization regulator7.1E-111.8PA14_17480PA3622 $rpoS$ RNA polymerase sigma factor1.9E-111.6PA14_17540PA3616recombination regulator RecX6.3E-10-1.6PA14_19380PA3458transcriptional regulator3.8E-081.8PA14_19990PA3410has1RNA polymerase ECF-subfamily sigma-70 factor3.6E-06-2.0PA14_20230PA3391nosRregulatory protein2.1E-37-17.2PA14_20780PA3426hsbRtwo-component response regulator2.6E-201.6PA14_23190PA3174hutRtranscriptional regulator1.1E-12-2.2PA14_23590PA3133sawRtranscriptional regulator5.2E-11-2.1PA14_24710PA3045 $rocA2$ two-component response regulator9.1E-11-2.5PA14_24720PA3044 $rocsS2$ two-component sensor5.2E-14-2.1PA14_25800PA2977TetR family transcriptional regulator3.5E-13-1.5PA14_26860PA2879LysR family transcriptional regulator3.2E-991.0PA14_30840PA2571signal transduction histidine kinase7.2E-091.5PA14_3260PA2488transcriptional regulator3.6E-081.8PA14_3260PA2488transcriptional regulator5.8E-051.8PA14_32200PA2467foxRtranscriptional regulator5.8E-051.8 <tr< td=""><td></td><td></td><td>nagR</td><td>GntR family transcriptional regulator</td><td>2.9E-05</td><td>-1.5</td></tr<>			nagR	GntR family transcriptional regulator	2.9E-05	-1.5
PA14_1780PA3630gmkneutralization regulator7.1E-111.8PA14_1780PA3622 $rpoS$ RNA polymerase sigma factor1.9E-111.6PA14_17540PA3616recombination regulator RecX6.3E-10-1.6PA14_19980PA3458transcriptional regulator3.8E-081.8PA14_19990PA3410hasIRNA polymerase ECF-subfamily sigma-70 factor3.6E-06-2.0PA14_20230PA3391nosRregulatory protein2.1E-37-17.2PA14_20780PA346hsbRtwo-component response regulator2.6E-201.6PA14_23190PA3174hutRtranscriptional regulator1.1E-12-2.2PA14_23590PA3133sawRtranscriptional regulator5.2E-11-2.1PA14_24710PA3045rocA2two-component response regulator9.1E-11-2.5PA14_24720PA3044rocsS2two-component sensor5.2E-14-2.1PA14_25800PA2957TetR family transcriptional regulator3.5E-13-1.5PA14_26800PA2979LysR family transcriptional regulator3.2E-192.0PA14_30840PA2571signal transduction histidine kinase7.2E-091.5PA14_32460PA2488transcriptional regulator7.7E-041.5PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor5.8E-051.8PA14_32720PA2467foxRtranscriptional regulator7.7E-041.5PA14				TetR family transcriptional regulator	6.8E-15	1.5
PA14_17480PA3622 $rpoS$ RNA polymerase sigma factor1.9E-111.6PA14_17540PA3616recombination regulator RecX $6.3E-10$ -1.6 PA14_19380PA3458transcriptional regulator $3.8E-08$ 1.8 PA14_19990PA3410hasIRNA polymerase ECF-subfamily sigma-70 factor $3.6E-06$ -2.0 PA14_20230PA3391nosRregulatory protein $2.1E-37$ -17.2 PA14_20780PA346hsbRtwo-component response regulator $2.6E-20$ 1.6 PA14_23190PA3174hutRtranscriptional regulator $1.1E-12$ -2.2 PA14_23590PA3133sawRtranscriptional regulator $5.2E-11$ -2.1 PA14_24710PA3045rocA2two-component response regulator $9.1E-11$ -2.5 PA14_24720PA3044rocsS2two-component sensor $5.2E-14$ -2.1 PA14_25800PA2957TetR family transcriptional regulator $3.5E-13$ -1.5 PA14_2680PA2917AraC family transcriptional regulator $3.2E-19$ 2.0 PA14_30840PA2571signal transduction histidine kinase $7.2E-09$ 1.5 PA14_32060PA2488transcriptional regulator $7.7E-04$ 1.5 PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8 PA14_32720PA2467foxRtranscriptional regulator $7.7E-04$ 1.5 PA14_3260PA2426pvdSextracytoplas	PA14_17380	PA3630	gfnR		7.1E-11	1.8
PA14_17540PA3616recombination regulator RecX $6.3E-10$ -1.6 PA14_19380PA3458transcriptional regulator $3.8E-08$ 1.8 PA14_19990PA3410hasIRNA polymerase ECF-subfamily sigma-70 factor $3.6E-06$ -2.0 PA14_20230PA3391nosRregulatory protein $2.1E-37$ -17.2 PA14_20780PA346hsbRtwo-component response regulator $2.6E-20$ 1.6 PA14_23190PA3174hutRtranscriptional regulator $1.1E-12$ -2.2 PA14_23590PA3133sawRtranscriptional regulator $5.2E-11$ -2.1 PA14_24710PA3045rocA2two-component response regulator $9.1E-11$ -2.5 PA14_24720PA3044rocsS2two-component response regulator $3.5E-13$ -1.5 PA14_2630PA2957TetR family transcriptional regulator $3.2E-19$ 2.0 PA14_26860PA2879LysR family transcriptional regulator $3.2E-19$ 2.0 PA14_30840PA2571signal transduction histidine kinase $7.2E-09$ 1.5 PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8 PA14_32720PA2467foxRtranscriptional regulator $3.5E-09$ 1.5 PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8 PA14_32600PA2426pvdSextracytoplasmic-function sigma-70 factor $9.7E-07$ 2.0	PA14_17480	PA3622	rpoS		1.9E-11	1.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					6.3E-10	-1.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PA14_19380	PA3458			3.8E-08	1.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PA14_19990	PA3410	hasI	RNA polymerase ECF-subfamily sigma-70	3.6E-06	-2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PA14_20230	PA3391	nosR	regulatory protein	2.1E-37	-17.2
PA14_23190PA3174hutRtranscriptional regulator1.1E-12-2.2PA14_23590PA3133sawRtranscriptional regulator5.2E-11-2.1PA14_24710PA3045rocA2two-component response regulator9.1E-11-2.5PA14_24720PA3044rocsS2two-component sensor5.2E-14-2.1PA14_25800PA2957TetR family transcriptional regulator3.5E-13-1.5PA14_26330PA2917AraC family transcriptional regulator3.2E-192.0PA14_30580PA2591vqsRLuxR family transcriptional regulator3.2E-211.6PA14_30840PA2571signal transduction histidine kinase7.2E-091.5PA14_3060PA2519xylStranscriptional regulator3.6E-081.8PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor5.8E-051.8PA14_33260PA2426pvdSextracytoplasmic-function sigma-70 factor9.7E-072.0PA14_33840PA2477LysR family transcriptional regulator3.5E-091.6PA14_33840PA2483transmembrane sensor1.7E-041.5PA14_33840PA2467foxRtranscriptional regulator3.5E-091.6PA14_33840PA2483transcriptional regulator3.5E-091.6PA14_33840PA2483transcriptional regulator3.5E-091.6PA14_33840PA2483fpvIRNA polymerase sigma factor1.8E-332.2PA14_33840	PA14_20780	PA3346	hsbR		2.6E-20	1.6
PA14_24710PA3045 $rocA2$ two-component response regulator9.1E-11-2.5PA14_24720PA3044 $rocsS2$ two-component sensor5.2E-14-2.1PA14_25800PA2957TetR family transcriptional regulator3.5E-13-1.5PA14_26330PA2917AraC family transcriptional regulator4.4E-18-2.3PA14_26860PA2879LysR family transcriptional regulator3.2E-192.0PA14_30580PA2591 $vqsR$ LuxR family transcriptional regulator2.5E-211.6PA14_30840PA2571signal transduction histidine kinase7.2E-091.5PA14_32060PA2519 $xylS$ transcriptional regulator3.6E-081.8PA14_32460PA2488transcriptional regulator7.7E-041.5PA14_32710PA2468 $foxI$ ECF subfamily RNA polymerase sigma-70 factor5.8E-051.8PA14_32720PA2467 $foxR$ transmembrane sensor1.7E-041.5PA14_33260PA2426 $pvdS$ extracytoplasmic-function sigma-70 factor9.7E-072.0PA14_33440PA2417LysR family transcriptional regulator3.5E-091.6PA14_33840PA2387 $fpvI$ RNA polymerase sigma factor1.8E-332.2PA14_33840PA2383transcriptional regulator3.5E-091.6	PA14_23190	PA3174	hutR		1.1E-12	-2.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PA14_23590	PA3133	sawR	transcriptional regulator	5.2E-11	-2.1
PA14_25800PA2957TetR family transcriptional regulator $3.5E-13$ -1.5 PA14_2630PA2917AraC family transcriptional regulator $4.4E-18$ -2.3 PA14_26860PA2879LysR family transcriptional regulator $3.2E-19$ 2.0 PA14_30580PA2591 $vqsR$ LuxR family transcriptional regulator $3.2E-19$ 2.0 PA14_3060PA2571signal transduction histidine kinase $7.2E-09$ 1.5 PA14_32060PA2519 $xylS$ transcriptional regulator $3.6E-08$ 1.8 PA14_32460PA2488transcriptional regulator $7.7E-04$ 1.5 PA14_32710PA2468 $foxI$ ECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8 PA14_32720PA2467 $foxR$ transmembrane sensor $1.7E-04$ 1.5 PA14_33260PA2417LysR family transcriptional regulator $3.5E-09$ 1.6 PA14_33800PA2487 $fpvI$ RNA polymerase sigma factor $1.8E-33$ 2.2 PA14_33840PA2383transcriptional regulator $3.5E-09$ 1.6	PA14_24710	PA3045	rocA2		9.1E-11	-2.5
PA14_26330PA2917AraC family transcriptional regulator $4.4E-18$ -2.3 PA14_26860PA2879LysR family transcriptional regulator $3.2E-19$ 2.0 PA14_30580PA2591 $vqsR$ LuxR family transcriptional regulator $2.5E-21$ 1.6 PA14_30840PA2571signal transduction histidine kinase $7.2E-09$ 1.5 PA14_32060PA2519 $xylS$ transcriptional regulator $3.6E-08$ 1.8 PA14_32460PA2488transcriptional regulator $7.7E-04$ 1.5 PA14_32710PA2468 $foxI$ ECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8 PA14_32720PA2467 $foxR$ transmembrane sensor $1.7E-04$ 1.5 PA14_33260PA2426 $pvdS$ extracytoplasmic-function sigma-70 factor $9.7E-07$ 2.0 PA14_33800PA2387 $fpvI$ RNA polymerase sigma factor $1.8E-33$ 2.2 PA14_33840PA2383transcriptional regulator $3.5E-09$ 1.6	PA14_24720	PA3044	rocsS2	two-component sensor	5.2E-14	-2.1
PA14_26330PA2917AraC family transcriptional regulator $4.4E-18$ -2.3 PA14_26860PA2879LysR family transcriptional regulator $3.2E-19$ 2.0 PA14_30580PA2591 $vqsR$ LuxR family transcriptional regulator $2.5E-21$ 1.6 PA14_30840PA2571signal transduction histidine kinase $7.2E-09$ 1.5 PA14_32060PA2519 $xylS$ transcriptional regulator $3.6E-08$ 1.8 PA14_32460PA2488transcriptional regulator $7.7E-04$ 1.5 PA14_32710PA2468 $foxI$ ECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8 PA14_32720PA2467 $foxR$ transmembrane sensor $1.7E-04$ 1.5 PA14_33260PA2426 $pvdS$ extracytoplasmic-function sigma-70 factor $9.7E-07$ 2.0 PA14_33800PA2387 $fpvI$ RNA polymerase sigma factor $1.8E-33$ 2.2 PA14_33840PA2383transcriptional regulator $3.5E-09$ 1.6	PA14_25800	PA2957		TetR family transcriptional regulator	3.5E-13	-1.5
PA14_26860PA2879LysR family transcriptional regulator $3.2E-19$ 2.0 PA14_30580PA2591 $vqsR$ LuxR family transcriptional regulator $2.5E-21$ 1.6 PA14_30840PA2571signal transduction histidine kinase $7.2E-09$ 1.5 PA14_32060PA2519 $xylS$ transcriptional regulator $3.6E-08$ 1.8 PA14_32460PA2488transcriptional regulator $7.7E-04$ 1.5 PA14_32710PA2468 $foxI$ ECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8 PA14_32720PA2467 $foxR$ transmembrane sensor $1.7E-04$ 1.5 PA14_33260PA2426 $pvdS$ extracytoplasmic-function sigma-70 factor $9.7E-07$ 2.0 PA14_33800PA2387 $fpvI$ RNA polymerase sigma factor $1.8E-33$ 2.2 PA14_33840PA2383transcriptional regulator $3.5E-17$ 2.9	PA14_26330	PA2917			4.4E-18	-2.3
PA14_30580PA2591 $vqsR$ LuxR family transcriptional regulator2.5E-211.6PA14_30840PA2571signal transduction histidine kinase $7.2E-09$ 1.5PA14_32060PA2519 $xylS$ transcriptional regulator $3.6E-08$ 1.8PA14_32460PA2488transcriptional regulator $7.7E-04$ 1.5PA14_32710PA2468 $foxI$ ECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8PA14_32720PA2467 $foxR$ transmembrane sensor $1.7E-04$ 1.5PA14_33260PA2426 $pvdS$ extracytoplasmic-function sigma-70 factor $9.7E-07$ 2.0PA14_33440PA2417LysR family transcriptional regulator $3.5E-09$ 1.6PA14_33840PA2383fpvIRNA polymerase sigma factor $1.8E-33$ 2.2PA14_33840PA2383transcriptional regulator $4.3E-17$ 2.9	PA14_26860	PA2879			3.2E-19	2.0
PA14_30840PA2571signal transduction histidine kinase7.2E-091.5PA14_32060PA2519xylStranscriptional regulator $3.6E-08$ 1.8 PA14_32460PA2488transcriptional regulator $7.7E-04$ 1.5 PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor $5.8E-05$ 1.8 PA14_32720PA2467foxRtransmembrane sensor $1.7E-04$ 1.5 PA14_33260PA2426pvdSextracytoplasmic-function sigma-70 factor $9.7E-07$ 2.0 PA14_33440PA2417LysR family transcriptional regulator $3.5E-09$ 1.6 PA14_33800PA2387fpvIRNA polymerase sigma factor $1.8E-33$ 2.2 PA14_33840PA2383transcriptional regulator $4.3E-17$ 2.9	PA14_30580	PA2591	vqsR		2.5E-21	1.6
PA14_32460PA2488transcriptional regulator7.7E-041.5PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor5.8E-051.8PA14_32720PA2467foxRtransmembrane sensor1.7E-041.5PA14_33260PA2426pvdSextracytoplasmic-function sigma-70 factor9.7E-072.0PA14_33440PA2417LysR family transcriptional regulator3.5E-091.6PA14_33800PA2387fpvIRNA polymerase sigma factor1.8E-332.2PA14_33840PA2383transcriptional regulator4.3E-172.9					7.2E-09	1.5
PA14_32460PA2488transcriptional regulator7.7E-041.5PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor5.8E-051.8PA14_32720PA2467foxRtransmembrane sensor1.7E-041.5PA14_33260PA2426pvdSextracytoplasmic-function sigma-70 factor9.7E-072.0PA14_33440PA2417LysR family transcriptional regulator3.5E-091.6PA14_33800PA2387fpvIRNA polymerase sigma factor1.8E-332.2PA14_33840PA2383transcriptional regulator4.3E-172.9	PA14_32060	PA2519	xylS	transcriptional regulator	3.6E-08	1.8
PA14_32710PA2468foxIECF subfamily RNA polymerase sigma-70 factor5.8E-051.8PA14_32720PA2467foxRtransmembrane sensor1.7E-041.5PA14_33260PA2426pvdSextracytoplasmic-function sigma-70 factor9.7E-072.0PA14_33440PA2417LysR family transcriptional regulator3.5E-091.6PA14_33800PA2387fpvIRNA polymerase sigma factor1.8E-332.2PA14_33840PA2383transcriptional regulator4.3E-172.9	PA14_32460	PA2488	2		7.7E-04	
PA14_33260PA2426 <i>pvdS</i> extracytoplasmic-function sigma-70 factor9.7E-072.0PA14_33440PA2417LysR family transcriptional regulator3.5E-091.6PA14_33800PA2387 <i>fpvI</i> RNA polymerase sigma factor1.8E-332.2PA14_33840PA2383transcriptional regulator4.3E-172.9	PA14_32710	PA2468	foxI		5.8E-05	1.8
PA14_33440PA2417LysR family transcriptional regulator3.5E-091.6PA14_33800PA2387fpvIRNA polymerase sigma factor1.8E-332.2PA14_33840PA2383transcriptional regulator4.3E-172.9	PA14_32720	PA2467	foxR	transmembrane sensor	1.7E-04	1.5
PA14_33800PA2387fpvIRNA polymerase sigma factor1.8E-332.2PA14_33840PA2383transcriptional regulator4.3E-172.9	PA14_33260	PA2426	pvdS	extracytoplasmic-function sigma-70 factor	9.7E-07	2.0
PA14_33840PA2383transcriptional regulator4.3E-172.9	PA14_33440	PA2417		LysR family transcriptional regulator	3.5E-09	1.6
	PA14_33800	PA2387	fpvI	RNA polymerase sigma factor	1.8E-33	2.2
					4.3E-17	2.9
[1.7E-04] $[1.7E-04]$ $[1.7E-04]$ $[1.7E-04]$ $[1.7E-04]$	PA14_34440	PA2337	mtlR	transcriptional regulator	1.7E-04	1.5
PA14_34660 PA2320 gntR transcriptional regulator 1.3E-19 1.6	PA14_34660	PA2320	gntR	transcriptional regulator	1.3E-19	1.6
PA14_34730PA2312XRE family transcriptional regulator3.5E-15-3.0	PA14_34730	PA2312			3.5E-15	-3.0
PA14_34820 PA2304 ambC regulatory protein 2.7E-20 3.5			ambC		2.7E-20	3.5
PA14_34830 PA2303 <i>ambD</i> regulatory protein 1.2E-30 3.6					1 1	
PA14_34880 PA2299 GntR family transcriptional regulator 7.2E-14 2.0						
PA14_35250 PA2267 LysR family transcriptional regulator 1.5E-06 1.6						
PA14_35370 PA2259 <i>ptxS</i> transcriptional regulator 1.3E-08 -2.1			ptxS		+ +	

Locus Tag	PAO1	Name	Product Name	padj	FC
PA14_35380	PA2258	<i>ptxR</i>	transcriptional regulator	1.7E-13	2.4
PA14_36300	PA2196		TetR family transcriptional regulator	5.0E-10	1.6
PA14_36420	PA2177		sensor/response regulator hybrid	3.7E-18	2.3
PA14_36990	PA2133		cyclic-guanylate-specific phosphodiesterase	4.8E-03	-1.9
PA14_37140	PA2121		LysR family transcriptional regulator	4.0E-03	1.6
PA14_37420	PA2094		transmembrane sensor protein	7.9E-13	3.7
PA14_37430	PA2093		RNA polymerase sigma factor	2.4E-07	2.5
PA14_37580	PA2082	kynR	leucine-responsive regulatory protein	1.6E-04	1.5
PA14_37980	PA2051		Fe ²⁺ -dicitrate sensor, membrane protein	5.8E-08	-3.3
PA14_37990	PA2050		RNA polymerase sigma factor	1.5E-13	-4.5
PA14_38250	PA2032		transcriptional regulator	8.7E-18	1.6
PA14_39800	PA1912	femI	ECF subfamily RNA polymerase sigma-70 factor	2.6E-03	-1.6
PA14_39980	PA1898	qscR	transcriptional regulator	2.7E-07	1.7
PA14_42390	PA1713	exsA	transcriptional regulator	1.3E-24	2.7
PA14_45250	PA1484		transcriptional regulator	5.6E-05	1.5
PA14_45950	PA1431	rsaL	regulatory protein	2.1E-74	3.0
PA14_46290	PA1403		TetR family transcriptional regulator	4.2E-07	2.0
PA14_46810	PA1351		RNA polymerase ECF-subfamily sigma-70 factor	1.7E-10	1.9
PA14_47390	PA1301		transmembrane sensor	2.4E-03	1.6
PA14_48160	PA1243		sensor/response regulator hybrid	1.4E-40	3.2
PA14_48830	PA1196	ddaR	transcriptional regulator	2.7E-07	1.6
PA14_49170	PA1180	phoQ	two-component sensor	4.7E-16	-2.0
PA14_49180	PA1179	phoP	two-component response regulator	5.5E-14	-1.8
PA14_49790	PA1128		transcriptional regulator	1.9E-05	1.7
PA14_53410	PA0839		transcriptional regulator	2.7E-04	-1.5
PA14_53720	PA0816		transcriptional regulator	2.1E-10	1.8
PA14_55160	PA0707	toxR	transcriptional regulator	2.4E-17	5.5
PA14_55550	PA0675	vreI	ECF subfamily RNA polymerase sigma-70 factor	8.4E-10	-2.6
PA14_55780	PA4293	pprA	two-component sensor	8.6E-18	2.5
PA14_57140	PA4396		two-component response regulator	1.5E-17	1.6
PA14_58380	PA4499	psdR	transcriptional regulator	7.2E-10	-1.6
PA14_58510	PA4508		AsnC family transcriptional regulator	7.7E-06	-1.6
PA14_61620	PA4659		MerR family transcriptional regulator	2.0E-11	-1.9
PA14_63280	PA4787		transcriptional regulator	1.6E-13	1.6
PA14_64050	PA4843	gcbA	two-component response regulator	2.1E-48	-1.9
PA14_64500	PA4878	brlR	transcriptional regulator	1.6E-13	-1.8
PA14_64690	PA4895		transmembrane sensor	3.3E-06	-1.8
PA14_64700	PA4896		RNA polymerase sigma factor	1.3E-05	-1.9
PA14_66850			TetR family transcriptional regulator	1.1E-09	1.7
PA14_69470	PA5261	algR	alginate biosynthesis regulatory protein	2.3E-12	1.6

Locus Tag	PAO1	Name	Product Name	padj	FC				
PA14_71170	PA5389	cdhR	AraC family transcriptional regulator	1.1E-03	1.6				
PA14_71750	PA5437		LysR family transcriptional regulator	2.5E-79	-3.3				
PA14_72380	PA5483	algB	two-component response regulator	2.3E-11	1.9				
PA14_72390	PA5484	kinB	two-component sensor	1.4E-16	1.9				
Multidrug efflux and β-lactamases									
PA14_01940	PA0156	triA	Resistance-Nodulation-Cell Division (RND) efflux membrane fusion protein	6.6E-12	1.6				
PA14_09500	PA4208	opmD	outer membrane protein	1.3E-22	1.8				
PA14_09520	PA4207	mexI	RND efflux transporter	2.0E-23	1.6				
PA14_18760	PA3523	mexP	RND efflux membrane fusion protein	3.1E-10	-4.0				
PA14_18780	PA3522	mexQ	RND efflux transporter	1.5E-31	-3.4				
PA14_18790	PA3521	opmE	outer membrane efflux protein	1.2E-12	-3.3				
PA14_32390	PA2494	mexF	RND multidrug efflux transporter	3.6E-14	-2.0				
PA14_32400	PA2493	mexE	RND multidrug efflux membrane fusion protein	4.2E-11	-1.9				
PA14_38395	PA2019	mexX	periplasmic multidrug efflux lipoprotein	3.4E-07	-1.8				
PA14_38410	PA2018	mexY	multidrug efflux protein	2.1E-06	-1.6				
PA14_41280	PA1797		beta-lactamase	2.8E-11	2.0				
PA14_44520	PA1541		drug efflux transporter	1.5E-10	-5.6				
PA14_44530	PA1540		multidrug efflux system protein MdtI	6.7E-05	-2.4				
PA14_45910	PA1435		RND efflux membrane fusion protein	1.1E-02	-1.6				
PA14_48240	PA1238		outer membrane component of multidrug efflux pump	4.3E-02	1.7				
PA14_54700	PA0740	sdsA1	beta-lactamase	1.5E-03	-1.5				

RNA-Seq of swarm vs. swim cells also revealed the downregulation of 55 ribosomal genes and other related translation factors (Table A1). This was of interest since the ribosome is the target of tobramycin. Interestingly, these genes included *fusA1* and *rplU*, which are involved in tobramycin resistance of CF clinical isolates (López-Causapé et al., 2018). The ribosome modulation factor *rmf*, which induces the dimerization of 70S subunits into an inactive form (Izutsu et al., 2001), was upregulated 1.8-fold.

A search was made for multidrug efflux transporters and β -lactamases, and 16 genes were found, both up and downregulated (Table 3-1). Since the upregulated genes were not strongly induced, it seems unlikely that efflux or β -lactamase production is a major mechanism of the resistance intrinsic to swarm cells, although I show below that multidrug efflux could be induced upon tobramycin treatment.

RNA-Seq also revealed the upregulation of several pilus-related genes and rhamnosyltransferase 2 *rhlC* (Table A1). This is consistent with the requirement of pili and rhamnolipids for swarming motility in *P. aeruginosa*, and the observation that a mutant in *rcpA*

was unable to swarm (Yeung et al., 2009).

Swarm cells also upregulated numerous genes in the type I, II and III secretion systems (Table A1) including genes encoding virulence factors such as exotoxin A, exoenzyme S and Y, phospholipase PlcB and elastases LasA and LasB. Many T6SS genes were also upregulated although certain T6SS genes were downregulated (hcpC and vgrG4a,b) (Table A1). Lastly, many pyoverdine, pyochelin and phenazine genes were also upregulated under swarming conditions (Table A1). This confirms previous studies indicating that swarming cells exhibit broad enhancement of virulence potential (Overhage et al., 2008).

3.4 Multiple factors contributed to swarming-mediated antibiotic resistance

Having confirmed that swarming cells were resistant to multiple antibiotics, I sought to elucidate the mechanism(s) of swarming-mediated antibiotic resistance by testing mutants for swarming in the presence of antibiotic. Tobramycin was selected as the antibiotic of interest since swarming cells were strongly resistant (Figure 3-1). RNA-Seq data were analyzed to identify genes corresponding to the resistome (i.e. those genes that affect antibiotic resistance under standard growth conditions) (Alvarez-Ortega et al., 2010; Brazas et al., 2007; Breidenstein et al., 2008; Dötsch et al., 2009; Fajardo et al., 2008; Schurek et al., 2008) that were dysregulated under swarming conditions. Mutants in these genes, as well as some in operons of interest that did not initially appear in the list of dysregulated genes, were screened for altered tobramycin susceptibility under swarming-mediated antibiotic resistance if it was downregulated and the corresponding mutant was resistant under swarming conditions (i.e. decreased expression of the gene in question led to resistance). Conversely if the gene was upregulated, and the corresponding mutant was supersusceptible under swarming conditions this might also indicate a role in adaptive resistance, but this did not occur here (Table 3-2, Table A3). Mutants showing

Table 3-2. Genes dysregulated under swarming conditions that matched with the known resistome revealed 26 tobramycin resistance mutants. PA14 transposon mutants in selected genes were tested for altered tobramycin susceptibility under swarming conditions using the agar dilution method (inhibitory concentrations shown in μ g/ml of tobramycin, along with images of swarming colonies at 1 μ g/ml). Evidence of dysregulation came from swarm vs. swim RNA-Seq (superscript 1) or tobramycin RNA-Seq (superscript 2). Selected genes were also confirmed by qRT-PCR from (Overhage et al., 2008) (superscript 3), Additional mutants in genes showing no evidence of dysregulation (*gmd* and *rmd*) but belonging to operons containing dysregulated genes were also tested. 17 additional mutants are described in Table A3.

LocusTag	PAO1	Name	Product Name	Fold change	inhi	rming bitory ntration
PA14 WT					1	
PA14_00830 ²	PA0071	tagR1	hypothetical protein	-1.8	≥2	×
PA14_07950 ³	PA0610	prtN	transcriptional regulator PrtN	-2.6	2	Win
PA14_08070 ¹	PA0622	gpFI	phage tail sheath protein	-8.1	2	L'ANNE
PA14_082201	PA0634		phage tail assembly chaperone-like	-6.1	2	×
PA14_08300 ¹	PA0641	JF1	phage-related protein, tail component	-5.0	2	*
PA14_443801	PA1553	ccoO	cbb3-type cytochrome c oxidase subunit II	-1.7	1-2 <i>^a</i>	
PA14_370601	PA2128	cupA1	fimbrial subunit	-4.6	2	- AL
PA14_370401	PA2129	cupA2	chaperone	-4.7	2	Site .
PA14_370301	PA2130	cupA3	usher	-3.5	2	*
PA14_369901	PA2133		cyclic-guanylate-specific phosphodiesterase	-1.9	2	X
PA14_33630 ²	PA2400	pvdJ	peptide synthetase	-8.9	≥2	No.
PA14_202001	PA3392	nosZ	nitrous-oxide reductase	-16.5	1-2 ^a	
PA14_201901	PA3393	nosD	copper ABC transporter periplasmic substrate- binding protein	-16.0	2	*
PA14_201801	PA3394	nosF	ATP/GTP binding protein	-18.6	2	Nr.
PA14_16890 ³	PA3670		auxiliary component of ABC transporter	-1.9	2	4-
PA14_14390 ³	PA3836		ABC-type transport protein, periplasmic c	-2.5	2	No.
PA14_66950 ²	PA5067	hisE	phosphoribosyl-ATP pyrophosphatase	-1.8	≥2	浙东
PA14_71910 ³	PA5447	wbpZ	glycosyltransferase	-1.8	2	-ME
PA14_71930 ³	PA5449	wbpX	glycosyltransferase	-2.4	2	X
PA14_71940 ³	PA5450	wzt	ABC subunit of A-band LPS efflux transporter	-2.0	2	*
PA14_71960 ³	PA5451	wzm	membrane subunit of A-band LPS efflux transporter	-1.9	2	A.
PA14_71970 ³	PA5452	wbpW	phosphomannose isomerase/GDP-mannose	-7.4	2	×
PA14_71990 ³	PA5453	gmd	GDP-mannose 4,6-dehydratase	-1.4	2	×
PA14_72000 ³	PA5454	rmd	oxidoreductase	-1.3	2	*
PA14_729601	PA5530		MFS dicarboxylate transporter	-11.7	2	深
PA14_73090 ³	PA5542		Pseudomonas imipenem beta-lactamase PIB-1	-14.2	2	3/1

^{*a*} Two mutants showed minimal swarming at tobramycin 1 µg/ml but grew better than WT at 2 µg/ml.

deficiencies in swarming motility in the absence of antibiotic were excluded from testing as they would appear supersusceptible due to their lack of swarming ability, rather than true susceptibility.

A comprehensive description of the resistome under planktonic conditions has been published, with mutations in 135 genes leading to adaptive resistance to tobramycin (Schurek et al., 2008). Interestingly, there were a moderate number of overlaps with the genes identified here as being likely involved in adaptive resistance, prominently including genes involved in membrane energization (ccoO, cytochrome c oxidase), LPS biosynthesis genes (wbpW and its operon wbpZrmd), nitrous oxide metabolism where the nosZDF genes were 16.0 to 18.6 fold downregulated, and a major facilitator superfamily transporter, PA5530, that mediates α -ketoglutarate transport (Lundgren et al., 2014). In addition to these there were some novel resistome genes previously described as being involved in susceptibility/resistance to other antibiotics including a large phage/pyocin operon (PA0613-PA0641), which has been implicated in susceptibility to ciprofloxacin (Brazas & Hancock, 2005). Similarly a cup fimbriae biosynthesis operon (cupA1-3) was identified that includes a cyclic-GMP phosphodiesterase previously implicated in regulation of flagella, chemotaxis, type III secretion, and a TolC-like efflux protein (PA2133/fcsR; (Rossello et al., 2017)). CupA1 (implicated in ceftazidime susceptibility) was identified from the resistome study (Alvarez-Ortega et al., 2010); whereas CupA3 (β-lactam and ciprofloxacin resistance) was identified in other studies (Dötsch et al., 2009). Other genes included PA3670, a component of an ABC transport system, that was implicated in susceptibility to β-lactams, levofloxacin and trimethoprim-sulfamethoxazole (identified from (Dötsch et al., 2009)). PA3836, another ABC transport protein involved in ciprofloxacin resistance was identified in (Breidenstein et al., 2008). Lastly, a carbapenemase-expressing gene (PA5542 (Fajardo et al., 2014)), the mutant in which was supersusceptible to β -lactams, was identified from (Fajardo et al., 2008). Thus resistance under swarming conditions involved both canonical/known tobramycin resistance genes, as well as novel genes.

Two mutants *prtN* and *wbpW* were selected for study in greater detail, since they represented larger gene groups (the pyocins and LPS biosynthetic operon) with a uniform direction of regulation and phenotype. PrtN was of particular interest since it is a regulator and could potentially affect the expression of many genes. The antibiotic susceptibility phenotypes of *prtN* and *wbpW* were confirmed using both the disc diffusion and agar dilution methods (Figure 3-3, Figure 3-4) and their appropriate dysregulation of gene expression under swarming conditions was confirmed using qRT-PCR (*i.e. prtN* and *wbpW* were downregulated by 2.6 ± 0.8 and 7.4 ± 2.8 fold).

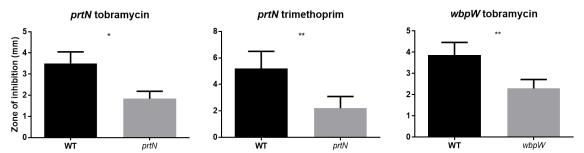


Figure 3-3. Antibiotic susceptibility of PA14 mutants under swarming conditions using the disc diffusion method at 0.5% agar. Statistically significant differences were determined by paired t test. $n \ge 4$.

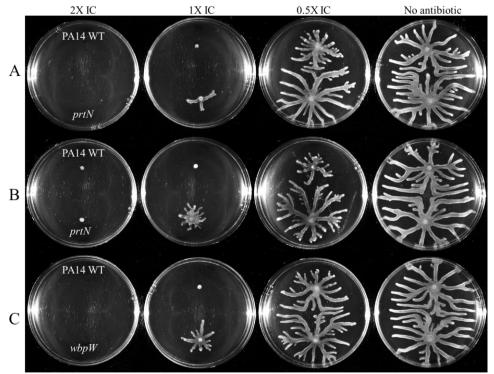


Figure 3-4. Agar dilution method for determining the swarming inhibitory concentration (IC) of PA14 mutants at 0.5% agar. A) tobramycin swarming IC = 1 μ g/ml B) trimethoprim IC = 10 μ g/ml C) tobramycin. $n \ge 3$.

3.5 A mutant in *wbpW* was resistant to tobramycin and had decreased membrane permeability

Under swarming conditions, a mutant in wbpW, GDP-mannose pyrophosphorylase, an enzyme involved in common polysaccharide antigen (CPA) synthesis, was twofold more resistant to tobramycin (Figure 3-3, Figure 3-4, Table 3-2, Table A4). There are two forms of O antigen in *P. aeruginosa* LPS termed CPA and O-specific antigen (OSA). The mutant in wbpW was complemented to normal susceptibility by reintroducing wbpW in a low copy plasmid (Figure 3-5B). We have previously shown in *P. aeruginosa* that polycationic aminoglycosides, such as

tobramycin, are taken up across the outer membrane via the self-promoted uptake system (Hancock et al., 1981). The concept of self-promoted uptake is that polycationic antibiotics interact with divalent cation binding sites on outer membrane surface LPS, causing disruption of these sites (since they are more bulky than the native divalent cations Mg^{2+} and Ca^{2+}) and thus promote the uptake of the polycationic antibiotic. This membrane disruption can be probed using the fluorophor 1-N-phenyl-napthylamine (NPN). NPN is a dye that is normally excluded by wild type *P. aeruginosa* and is weakly fluorescent in aqueous media but fluoresces strongly when it enters the hydrophobic interior of the outer membrane (Schurek et al., 2008); thus its uptake into bacterial membranes is an indicator of membrane permeabilization by tobramycin. In the NPN assay, after addition of tobramycin, the *wbpW* mutant had decreased membrane permeabilization, consistent with its reduced susceptibility, and this was complemented in the *wbpW*⁺ strain (Figure 3-6) and is thus the likely cause of tobramycin resistance.

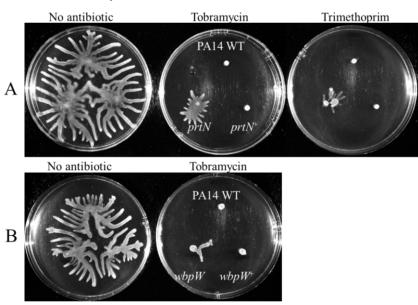


Figure 3-5. Complementation of swarming antibiotic susceptibility phenotypes for A) *prtN* B) *wbpW*. All strains were transformed with either the respective empty vector (WT and mutants) or a vector with insert (complemented (+) strains). $n \ge 3$.

3.6 Mutation of *prtN* induced resistance to tobramycin and trimethoprim

The mutant in the gene *prtN*, the positive regulator of pyocin, showed partial resistance to both tobramycin and trimethoprim under swarming conditions (Figure 3-3, Figure 3-4, Table 3-2, Table A4). Antibiotic susceptibility was restored by reintroducing *prtN* in an arabinose-inducible construct (pHERD20T) (Figure 3-5A). Success with other vectors was limited due to lack of plasmid stability when *prtN* was constitutively expressed (data not shown). These results indicated that swarming cells might increase antibiotic resistance by downregulating a process regulated by

PrtN, such as the biologically costly production of pyocins, also termed genotoxic stress (Penterman et al., 2014). Consistent with the latter explanation, mutants in several genes downstream of, and regulated by PrtN, namely PA0613-PA0641, were also tested for antibiotic susceptibility under swarming conditions and found to be resistant to tobramycin, although unlike *prtN* no significant differences were observed in trimethoprim susceptibility (Table 3-2, Table A3 and data not shown).

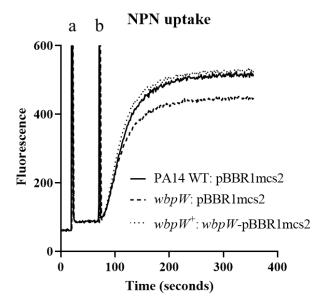


Figure 3-6. A *wbpW* mutant had reduced membrane permeabilization. Swarm cells were harvested and treated where indicated with a) NPN and b) tobramycin. n = 3.

3.7 Antibiotic susceptibility was affected by growth conditions

The mutants were also assayed under standard broth dilution MIC conditions in the rich medium LB and the minimal medium BM2 glucose (Table A5). In contrast to their effect on susceptibility under swarming conditions, the mutants showed little difference in MIC compared to wild type, with the exception of *prtN* that was two-fold more resistant to trimethoprim in LB. This indicated that growth conditions had an important effect on antibiotic resistance and suggests that standard screening methods might miss such phenotypes.

The tobramycin resistance phenotype was much more pronounced under swarming conditions (Table 3-2, Figure 3-3, Figure 3-4) compared to standard MICs (Table A5). When tested in a standard MIC, the *prtN* and *wbpW* mutants showed no increase in MIC (Table A5). Other representative mutants were also tested but showed no difference under standard MIC conditions (Table A6). Nevertheless, some of the genes in Table 3-2 likely do play a role beyond the swarming condition, since they were previously shown to be part of the tobramycin resistome (including *ccoO*, *wbpW* and its operon *wbpZ-rmd*, *nosZDF* and PA5530) (Schurek et al., 2008). It seems

possible that some genes may confer resistance specifically under swarming conditions, whereas others may confer resistance under multiple conditions.

3.8 Subinhibitory tobramycin treatment under swarming conditions

Swarming bacteria treated with the subinhibitory tobramycin dose of 0.5 µg/ml were compared to untreated swarm cells by RNA-Seq, since this was relevant to the increased resistance of cells swarming in the presence of tobramycin. Differential expression analysis revealed 224 genes, 186 of which were downregulated (Table A1). The downregulated genes included many virulence factors, particularly in T3SS and pyoverdine genes (Table A1), indicating a secondary benefit of tobramycin treatment, even in the absence of killing. Amongst the upregulated genes was the efflux pump *mexXY*, a known mechanism of aminoglycoside resistance (Table 3-3) (Aires et al., 1999). Eight ribosomal proteins and translation factors were also downregulated (*efp, infA, infC, rplU, rpmB, rpsG, rpsS*, and PA5492), as well as four genes in an LPS biosynthetic operon (*wzz, wbpA, wbpI*, and *wbpL*) (Table 3-3). Since pyocins were already implicated in swarming-mediated antibiotic resistance, it was interesting that the genes *tolAR*, which are involved in the uptake of pyocin AR41, were downregulated (Table 3-3) (Dennis et al., 1996).

Table 3-3. Selected genes that	were differentially	expressed upon	tobramycin treatment
under swarming conditions.			

LocusTag	PAO1	Name	Product Name	padj	FC
PA14_08810	PA4267	rpsG	30S ribosomal protein S7	2.1E-02	-1.7
PA14_08890	PA4259	rpsS	30S ribosomal protein S19	2.8E-02	-1.8
PA14_23360	PA3160	WZZ	O-antigen chain length regulator	6.9E-03	-1.8
PA14_23370	PA3148	wbpI	putative UDP-N-acetylglucosamine 2-epimerase	2.6E-02	-1.7
PA14_23380	PA3159	wbpA	UDP-N-acetyl-D-mannosaminuronate dehydrogenase	1.8E-02	-2.1
PA14_23460	PA3145	wbpL	putative group 4 glycosyl transferase	2.7E-02	-1.8
PA14_27210	PA2851	efp	elongation factor P	2.0E-02	-1.6
PA14_28660	PA2743	infC	translation initiation factor IF-3	1.3E-02	-1.9
PA14_30240	PA2619	infA	translation initiation factor IF-1	3.5E-03	-1.5
PA14_38380	PA2020	mexZ	putative transcriptional regulator	2.8E-02	1.6
PA14_38395	PA2019	mexX	periplasmic multidrug efflux lipoprotein precursor	3.5E-22	8.5
PA14_38410	PA2018	mexY	multidrug efflux protein	1.3E-36	8.0
PA14_38430	PA2016	liuR	regulatory gene of gnyRDBHAL cluster, GnyR	7.8E-03	-2.3
PA14_41575	PA1776	sigX	RNA polyermase sigma factor	1.4E-02	-1.6
PA14_42390	PA1713	exsA	transcriptional regulator	1.5E-07	-2.4
PA14_42460	PA1707	pcrH	regulatory protein	2.7E-02	-1.8
PA14_45950	PA1431	rsaL	regulatory protein	1.7E-02	-1.8
PA14_51730	PA0971	tolA	membrane transport protein	2.4E-03	-1.6
PA14_51740	PA0970	tolR	membrane transport protein	1.8E-02	-1.5

LocusTag	PAO1	Name	Product Name	padj	FC
PA14_52570	PA0905	rsmA	carbon storage regulator	8.8E-03	-1.9
PA14_55160	PA0707	toxR	transcriptional regulator	5.8E-05	-4.4
PA14_56070	PA4315	mvaT	transcriptional regulator, P16 subunit	2.6E-02	-1.5
PA14_60460	PA4568	rplU	50S ribosomal protein L21	4.0E-02	-1.6
PA14_70190	PA5316	rpmB	50S ribosomal protein L28	1.6E-02	-1.6
PA14_72210	PA5471	armZ	hypothetical protein	2.3E-19	3.4
PA14_72480	PA5492		ribosome biogenesis GTP-binding protein YsxC	3.9E-02	-1.6

Dysregulated transcriptional regulators included two regulators of virulence factor production (*exsA* and *toxR*), *mexZ*, the repressor of *mexXY* (Matsuo et al., 2004), *liuR*, a regulator of the leucine/isovalerate utilization pathway (Díaz-Pérez et al., 2018), *sigX*, an extracytoplasmic function sigma factor involved in the regulation of the major porin OprF, antibiotic resistance, T3SS, swarming motility, biofilm formation and carbon catabolite repression (Blanka et al., 2014; Fléchard et al., 2018; Gicquel et al., 2013), *rsaL*, a repressor of virulence gene expression and QS (De Kievit et al., 1999; Rampioni et al., 2006), *mvaT*, a global regulator of QS, virulence and swarming motility (Diggle et al., 2002), and *rsmA*, a post-transcriptional regulator of multidrug efflux, motility, QS, T6SS and virulence (Allsopp et al., 2017; Burrowes et al., 2006; Mulcahy et al., 2008) (Table 3-3). Interestingly, the *mexXY* operon has been shown to be upregulated in a SigX mutant, along with the repressor *mexZ*, providing more evidence that upregulation of *mexXY* can be independent of *mexZ* (Blanka et al., 2014).

Resistome mutants were also tested from the tobramycin vs. untreated RNA-Seq. Although some mutants could not be tested due to deficiencies in swarming motility, it was shown that mutants in *tagR1* (a type VI secretion protein (HSI-I) with a sulfatase-modifying domain associated with the outer membrane (Casabona et al., 2013; Winsor et al., 2011)), *pvdJ* (peptide synthetase of pyoverdine) and *hisE* (involved in histidine biosynthesis (Winsor et al., 2011)) were resistant to tobramycin under swarming conditions and downregulated upon tobramycin treatment (Table 3-2). Interestingly, PvdQ, an acylase of the QS molecule 3-oxo-C12-HSL, also involved in pyoverdine synthesis, has already been shown to play a role in the antibiotic resistance of swarming cells (Wang et al., 2013). The mechanism of PvdQ-mediated resistance is via decreased membrane permeability (Wang et al., 2013).

3.9 Comparison of RNA-Seq experiments

The two RNA-Seq experiments were also compared to determine what degree of overlap existed. Nintey genes were found in common between the two experiments (Figure A2). While this represented a substantial portion of the total genes dysregulated upon tobramycin treatment,

the majority of the 90 genes were oppositely regulated (Figure A3), with 51 genes that were downregulated upon tobramycin treatment but upregulated in swarm vs. swim. These 51 genes included iron acquisition factors (pyoverdine and phenazine) as well as T3SS genes. This indicates that the response to subinhibitory tobramycin was distinct from the swarm vs. swim comparison.

3.10 Discussion

In this study, 41 mutants were characterized as tobramycin resistant under swarming conditions. This lends support to a previous study that showed that the tobramycin resistome is quite large (135 genes) with many mutants (including 57 in energy metabolism) showing low level resistance (Schurek et al., 2008). Not all genes overlapped between this prior study and the current investigation, indicating that there may be distinct mechanisms of resistance in swarm cells as compared to broth-grown cells.

One mutant demonstrating complementable tobramycin and trimethoprim resistance and equivalent downregulation in the wild type under swarming conditions was in the *prtN* gene, that encodes a positive regulator of pyocin production under control of the *prtR* repressor. Under UV stress, RecA causes the autocleavage of PrtR, leading to the expression of *prtN* and production of pyocins (Matsui et al., 1993). A lysis cassette is also induced, including holin-like and lysozyme-like genes that cause cell lysis and the release of pyocin (Penterman et al., 2014). Interestingly, a mutation inactivating the catalytic activity of PrtR resulted in increased resistance to aminoglycosides, ciprofloxacin, and UV stress (Penterman et al., 2014), which was attributed to effects on genotoxic stress, while mutants in the phage tail-like bacteriocins regulated by *prtRN* were resistant to ciprofloxacin (Brazas & Hancock, 2005; Breidenstein et al., 2008). In other studies, a mutant in *prtN* was found to be resistant to piperacillin, cefotaxime and trimethoprim-sulfamethoxazole (Dötsch et al., 2009).

Overall, the downregulation of the phage-tail like bacteriocins in the cluster of genes from PA0613-PA0641 was a striking feature observed in the transcriptome of swarming cells ((Overhage et al., 2008) and the RNA-Seq study reported here). Mutating the positive regulator for these genes, *prtN*, resulted in resistance to both tobramycin and trimethoprim under swarming conditions, an effect consistent with the multiple resistance of the catalytically inactive (autocleavage-resistant) repressor *prtR* mutant (Penterman et al., 2014). Though pyocins play a role in intra- and interspecies competition, activation of these genes clearly incurs negative consequences for the cell. Furthermore, self-killing activity in a portion of the community with damaged DNA may be beneficial to the population as a whole (Chang et al., 2005).

Trimethoprim inhibits dihydrofolate reductase, depleting the cell of tetrahydrofolate, a onecarbon donor for a number of important metabolites in the cell including the nucleotide thymidylate (Sangurdekar et al., 2011). Therefore, as a consequence of trimethoprim treatment, DNA synthesis is inhibited and the DNA damage response is induced (Sangurdekar et al., 2011). Since the DNA damage response also leads to the activation of PrtN and induction of pyocin genes (Matsui et al., 1993; Penterman et al., 2014), it would seem reasonable that a mutant in *prtN* is resistant to trimethoprim. An association between aminoglycoside resistance and the regulation of pyocins has previously been shown (Penterman et al., 2014), although the mechanism for this is less clear. It is also possible that other genes regulated by *prtN* might be responsible.

Another interesting mutant was in the gene encoding WbpW, which catalyzes the conversion of mannose-1-phosphate to GDP-D-mannose (Byrd et al., 2015). Interestingly, GDP-D-mannose can be used in the synthesis of alginate, but is also utilized by Rmd for the synthesis of CPA LPS (Byrd et al., 2015). Mutants in genes involved in the synthesis of LPS have previously been shown to lead to tobramycin resistance, due to the reduced ability of tobramycin to cross the outer membrane via self-promoted uptake (Schurek et al., 2008). The resistance of the *wbpW* mutant was complemented by reintroducing *wbpW* in a low copy number plasmid (Figure 3-5B), and furthermore the *wbpW* mutant had reduced membrane permeability (Figure 3-6).

While *wbpW* was downregulated, low levels of expression could allow for a reduced amount of CPA LPS, rather than a complete deficiency. Mutants in *wbpW* also have reduced but not completely absent CPA LPS due to the presence of two *wbpW* homologs that are bifunctional enzymes (*algA* and *pslB*) (King et al., 2009). Over time, strains unable to produce O antigen come to predominate in the lungs of cystic fibrosis patients (Hancock et al., 1983), suggesting that LPS alterations might be one mechanism by which *P. aeruginosa* evades host recognition and adaptive immune responses. In addition, it has been shown that lipid A modifications are common and constitute a mechanism of immune evasion (Cigana et al., 2009). In another study, the loss of OSA was associated with increased T3SS activity (facilitating acute infections), while loss of any O antigen resulted in increased lung damage *in vivo* (Augustin et al., 2007). Together these studies suggest that a reduction in CPA LPS might be beneficial to *P. aeruginosa* persistence *in vivo*.

The two RNA-Seq experiments (swarm vs. swim and tobramycin vs. untreated) also showed that there is an important distinction between the inherent resistance of swarm cells and the inducible response of swarm cells to the antibiotic tobramycin. In the absence of antibiotic, more than 1,500 genes were dysregulated, and antibiotic resistance is likely a cumulative effect of many different genes, although multidrug efflux did not appear to play a major role, as found in another study (Lai et al., 2009). In contrast, in the presence of tobramycin, fewer genes were dysregulated but an obvious mechanism of tobramycin resistance emerged in the overexpression of *mexXY*. Thus it appears there are genetic factors that enable swarming cells to resist antibiotics in the native swarming state, but also specific and distinct mechanisms of resistance that are induced upon antibiotic exposure. Perhaps a key role of swarming-mediated resistance genes is to allow sufficient time for more established mechanisms, such as multidrug efflux, to take effect.

Upon tobramycin treatment, downregulation of the genes *wzz*, *wbpA*, *wbpI*, and *wbpL* (Table 3-3) could also contribute to tobramycin resistance, although these genes were not identified in resistome studies (Schurek et al., 2008). As these genes, like *wbpW*, are involved in LPS biosynthesis, the resulting alterations in LPS could potentially result in tobramycin resistance. However, the mutant in *wzz* was not resistant to tobramycin, and mutants in *wbpAIL* were either not available or deficient for swarming motility (data not shown), therefore firm conclusions could not be drawn.

In both the absence and presence of tobramycin, ribosomal proteins and translation factors were downregulated under swarming conditions (Table 3-3, Table A1). Since aminoglycosides, as well as many other antibiotic classes including macrolides, chloramphenicol and tetracycline, target the bacterial ribosome, a decrease in translational activity could confer some level of resistance. However, since ribosomes are encoded by essential genes, this hypothesis is difficult to test.

During swarming motility, many genes are dysregulated, resulting in a hardy, multiple antibiotic-resistant phenotype associated with increased virulence factor production and iron scavenging. Downregulation of pyocin genes could allow swarming cells to circumvent harmful agents, leading to greater resilience in the face of antibiotic treatment. Downregulation of *wbpW* could result in reduced uptake of tobramycin. Upon treatment with tobramycin, the multidrug efflux pump MexXY was strongly upregulated. The combination of these factors, plus other asystemudetermined resistance factors, results in a state of (reversible) multiple antibiotic resistance during swarming motility in *P. aeruginosa*.

Chapter 4: Influence of the sRNA PA0805.1 on motility and virulence

4.1 Introduction

Swarming motility is a highly regulated process and previous studies have shown that 18 regulators are dysregulated under swarming conditions (Overhage et al., 2008), while mutants in 35 regulators have alterations in swarming motility (Yeung et al., 2009). However, alternative means of regulation have not been well investigated, including post-transcriptional and translational regulation, and the modification or degradation of proteins.

sRNAs are non-coding RNA species involved in post-transcriptional regulation, and are rapidly evolving (Gómez-Lozano et al., 2015). sRNAs can be classified in two categories: cis and trans-encoded. In many bacterial species, the RNA chaperone Hfq is required to stabilize sRNA-mRNA interactions (Gottesman & Storz, 2011), although *Pseudomonas* exhibits other more selective RNA-binding proteins such as Crc and RsmA. Interestingly, prior to 2012 only 44 sRNAs had been identified in *P. aeruginosa* (Gómez-Lozano et al., 2015), but subsequent RNA-Seq studies have identified hundreds of potential intergenic sRNAs (Gómez-Lozano et al., 2012; Wurtzel et al., 2012). Nevertheless, few of these novel sRNAs have been characterized, leaving a large field to be explored.

Prior research in our lab identified 20 sRNA species that were dysregulated under swarming conditions (Gill et al., 2018). One of these, sRNA PA0805.1, overlapping previously-identified sRNAs pant89 (Gómez-Lozano et al., 2012) and PA14sr119/120 (Wurtzel et al., 2012), was studied here in detail by genetic manipulation, phenotypic screens and omic comparisons.

4.2 Overexpression of PA0805.1 resulted in decreased motility

Specific qRT-PCR analysis demonstrated that the transcript for PA0805.1 was upregulated in swarming motility clones, cf. swimming cells by 5.0 ± 1.7 fold. In contrast, it was downregulated in biofilm cells by -4.8 ± -3.8 fold (Gill et al., 2018). Since biofilms are considered a sedentary lifestyle typical of chronic infections while swarming is considered more typical of acute infections, this ~25-fold difference in expression levels indicated that sRNA PA0805.1 had the potential to discriminate or even act as a switch between chronic and acute modes of infection. To investigate this further I overexpressed sRNA PA0805.1, since sRNAs often act in a suppressive manner. The PA0805.1 gene was cloned and inserted after the *araC* promoter in the arabinoseinducible pHERD20T vector, and transformed into PAO1 H103 WT. PA0805.1 was overexpressed after induction with arabinose by 28.1 ± 1.9 fold under swarming conditions (BM2 glycerol). At the time of the assay, arabinose was added to induce expression. Motility assays showed that PA0805.1 overexpression had anti-motility effects resulting in partial reductions in each of swarming (reduced to $59\pm6\%$ of EV), swimming ($51\pm10\%$) and twitching ($61\pm3\%$) motility (Figure 4-1).

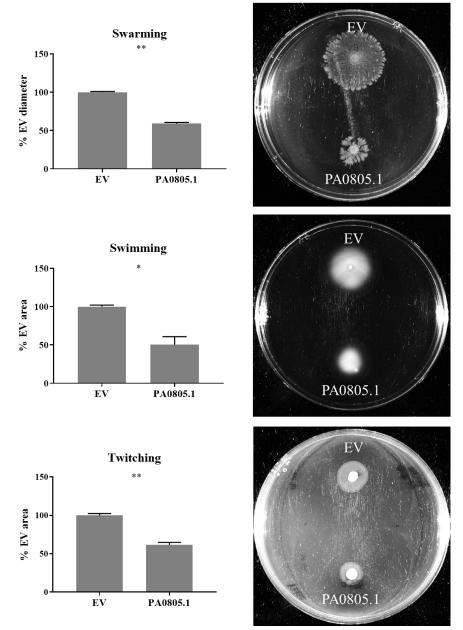


Figure 4-1. Motility assays revealed that overexpression of PA0805.1 was generally antimotility. 1% arabinose was used to induce expression and statistically significant differences were determined using paired Student's t test. $n \ge 3$.

4.3 Overexpression of PA0805.1 resulted in increased cytotoxicity against HBE cells and increased tobramycin resistance

The PA0805.1 overexpression strain was also tested for cytotoxicity against HBE cells

(Figure 4-2). Similar to the motility assays, overexpression of PA0805.1 resulted in a consistent and statistically significant phenotype, with an increase of 15% in cytotoxicity as compared to the EV strain. Growth curves performed in BM2 glycerol with 1% arabinose showed little difference between strains (Figure A4). Interestingly the PA0805.1 overexpression strain was resistant to tobramycin even in the absence of arabinose under swarming conditions (Figure 4-3). In the presence of arabinose, the anti-motility effect of PA0805.1 made it difficult to assess any antibiotic phenotypes under swarming conditions. MIC assays performed in the equivalent medium in microtitre trays showed little difference (Table A7).

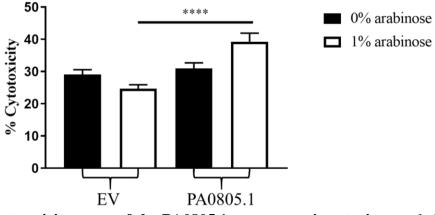


Figure 4-2. Cytotoxicity assay of the PA0805.1 overexpression strain revealed that induction of PA0805.1 led to increased cytotoxicity against HBE cells. Statistically significant differences were determined using paired Student's t test. $n \ge 3$.

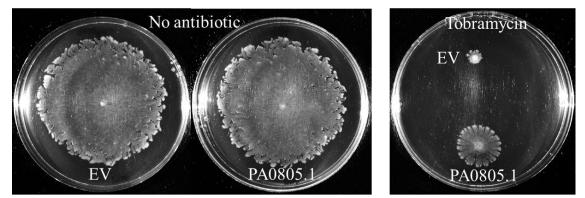


Figure 4-3. PA0805.1 overexpression led to swarming-dependent tobramycin resistance as assessed in BM2 glucose swarm plates with no arabinose and supplemented where indicated with tobramycin at 1 μ g/ml. n = 3.

4.4 Overexpression of PA0805.1 resulted in broad protein and transcriptional changes

including 118 regulatory factors

To investigate these phenotypes further, I performed proteomics and RNA-Seq under

swarming conditions in the presence of arabinose compared to the EV control. Proteomics identified 925 proteins with significantly different abundance in the PA0805.1 overexpression strain vs. EV, including 435 with increased abundance, and 490 with decreased abundance (Table A2). In addition, there were 1121 DE genes revealed by RNA-Seq, with 401 downregulated and 720 upregulated. Amongst the DE genes and proteins with differential abundance, 118 transcriptional regulators, two-component systems, sigma and anti-sigma factors were found (Table 4-1). Of these, 42 were found uniquely in the proteome and the equivalent genes did not demonstrate a change in transcription (shown with **bold** locus tag in Table 4-1). These changes thus might explain in part the rather substantial transcriptional dysregulation observed. These regulators were of particular interest since the mechanism of sRNA regulation is posttranscriptional, and therefore they would provide candidates for direct sRNA regulation. Many important regulators involved in diverse processes such as virulence, antimicrobial resistance, QS, and carbon metabolism were represented on the list of regulators dysregulated at the level of protein expression, including CbrB, LasR, MvaT, ParS, PsrA, RpoN, and Vfr. Other regulators with altered protein expression that were upstream of the widespread changes in motility, adherence and virulence factors described below, included FleQ, PilS, AlgU, and AlgB (Figure 4-4). Interestingly there were also three amino acid biosynthetic regulators, ArgR, BkdR and CysB. Table 4-1. Selected genes of interest with differential expression in the PA0805.1 overexpression strain as compared to EV by RNA-Seq and/or proteomics. Categories of interest include regulators, multidrug efflux, motility, LPS biosynthesis, type VI secretion and other virulence factors. Cutoffs

Locus	Name	Duodu et Nome	RN	A-Seq	Proteomics	
Tag	Tag	Product Name		padj	FC	р
Transcrip	tional re	egulators, two-component systems, sigma an	d anti-	sigma fa	ctors	
PA0150		anti-sigma factor	-1.71	2.9E-02		
PA0178		probable two-component sensor	1.83	8.5E-06		
PA0179		probable two-component response regulator	2.02	2.0E-06		
PA0268		probable transcriptional regulator	1.52	3.0E-03		
PA0416	chpD	probable transcriptional regulator	-1.96	9.0E-07		
PA0471	fiuR	regulatory protein	-1.80	4.6E-04		
PA0472	fiuI	regulatory protein	-2.03	4.2E-04		
PA0479		probable transcriptional regulator	1.57	2.5E-04		
PA0535		probable transcriptional regulator	-1.69	1.2E-03		
PA0612	ptrB	repressor	2.52	6.3E-04		
PA0652	vfr	transcriptional regulator			-1.17	3.9E-04
PA0757		probable two-component sensor	-1.53	9.9E-04		
PA0762	algU	sigma factor			1.23	9.5E-03
PA0763	mucA	anti-sigma factor	1.68	5.7E-05		

used were p/padj ≤ 0.05 and for RNA-Seq, FC ≥ 1.5 .

Locus	NT	ama Braduat Nama	RNA-Seq		Proteomics		
Tag	Name	Product Name	FC	padj	FC	р	
PA0893	argR	transcriptional regulator			1.17	3.8E-03	
PA0929		two-component response regulator	-1.68	1.9E-03			
PA0930		two-component sensor	-1.61	1.5E-02			
PA0942		probable transcriptional regulator	1.54	1.2E-03			
PA0964	pmpR	pqsR-mediated PQS regulator	-1.64	8.6E-08	-1.18	3.2E-04	
PA1097	fleQ	transcriptional regulator			1.18	5.0E-03	
PA1099	fleR	two-component response regulator	1.52	3.9E-08			
PA1136		probable transcriptional regulator	1.75	1.4E-04			
PA1157		probable two-component response regulator			1.17	5.5E-04	
PA1315		probable transcriptional regulator			1.08	2.5E-02	
PA1363		ECF sigma factor	-1.69	2.4E-03			
PA1397		probable two-component response regulator	-1.68	5.3E-05			
PA1430	lasR	transcriptional regulator			-1.28	4.9E-02	
PA1431	rsaL	regulatory protein	1.70	6.8E-04	1.25		
PA1490		probable transcriptional regulator			1.16	2.3E-02	
PA1504		probable transcriptional regulator			-1.15	1.7E-03	
PA1619		probable transcriptional regulator	-1.50	1.8E-03			
PA1705	pcrG	regulator in type III secretion	-9.28	5.4E-12			
PA1707	pcrH	regulatory protein	-8.60	4.9E-26			
PA1713	exsA	transcriptional regulator	-4.77	6.3E-62			
PA1754	cysB	transcriptional regulator			1.21	3.2E-02	
PA1785	nasT	regulatory protein	1.76	3.3E-02	-1.26	1.3E-04	
PA1798	parS	two-component sensor			1.17	2.3E-02	
PA1859		probable transcriptional regulator	1.55	5.8E-04			
PA1945		probable transcriptional regulator	1.53	3.6E-03			
PA2082	kynR	regulatory protein			1.18	5.2E-03	
PA2126	cgrC	CupA gene regulator C	2.18	1.2E-05			
PA2126.1	cgrB	CupA gene regulator B	1.78	7.6E-03			
PA2127	cgrA	CupA gene regulator A	1.80	4.3E-06			
PA2177		probable sensor/response regulator hybrid	1.77	2.5E-04			
PA2227	vqsM	AraC-type transcriptional regulator	1.77	3.3E-06			
PA2246	<i>bkdR</i>	transcriptional regulator			1.06	2.1E-02	
PA2258	<i>ptxR</i>	transcriptional regulator	2.15	1.2E-05			
PA2259	ptxS	transcriptional regulator	1.82	1.6E-04			
PA2273	soxR	regulatory protein	2.38	1.5E-09			
PA2276		probable transcriptional regulator	3.41	2.8E-38	1.27	9.3E-04	
PA2277	arsR	regulatory protein	2.28	1.9E-06			
PA2376		probable transcriptional regulator	1.56	1.4E-03			
PA2388	fpvR	regulatory protein			-1.30	1.2E-02	
PA2467	foxR	anti-sigma factor	-1.62	1.3E-02			
PA2523	czcR	regulatory protein		4.9E-08			
PA2524	czcS	regulatory protein	2.24	1.2E-04			
PA2571		probable two-component sensor		3.1E-06			
PA2572		probable two-component response regulator		8.1E-06	1.29	1.4E-02	
PA2577		probable transcriptional regulator	1.70	3.4E-05	-		

Locus	Name	Product Name	RN	A-Seq	Proteomics		
Tag	name	Froduct Name	FC	padj	FC	р	
PA2696		probable transcriptional regulator	1.53	4.5E-03			
PA2846		probable transcriptional regulator	1.64	7.3E-03			
PA2849	ohrR	regulatory protein	1.63	2.2E-05	1.11	2.8E-02	
PA2889	atvR	atypical virulence-related response regulator	1.55	7.7E-04			
PA3006	psrA	transcriptional regulator			1.09	3.4E-02	
PA3007	lexA	repressor protein	1.84	5.6E-23	1.10	6.1E-03	
PA3034		probable transcriptional regulator			-1.10	1.8E-02	
PA3122		probable transcriptional regulator			1.17	3.0E-03	
PA3174	hutR	regulatory protein	-1.66	1.8E-02			
PA3225		transcriptional regulator			1.14	1.6E-02	
PA3271		probable two-component sensor			1.09	1.9E-02	
PA3341		probable transcriptional regulator			1.23	4.2E-03	
PA3346	hsbR	HptB-dependent secretion and biofilm	1.78	3.6E-09		1.2E-02	
PA3347	hsbA	regulator HptB-dependent secretion and biofilm anti anti-sigma factor	1.66	4.9E-05			
PA3477	rhlR	transcriptional regulator	1.77	1.9E-05	1.17	1.9E-02	
PA3622	rpoS	sigma factor	1.75	1.4E-09	1.17	5.1E-03	
PA3689	-	probable transcriptional regulator			1.06	2.4E-02	
PA3702	wspR	regulatory protein			-1.08	1.4E-02	
PA3899	fecI	regulatory protein	-1.73	1.3E-02			
PA3946	rocS1	two-component sensor	1.74	4.3E-07			
PA3947	rocR	regulatory protein	1.57	7.5E-06			
PA4070		probable transcriptional regulator	1.52	3.3E-02			
PA4074		probable transcriptional regulator	2.20	2.7E-03			
PA4080		probable response regulator	1.54	5.3E-04			
PA4101	<i>bfmR</i>	regulatory protein			-1.16	5.8E-03	
PA4157		probable transcriptional regulator				4.5E-02	
PA4203	nmoR	regulatory protein	1.50	4.6E-02			
PA4288		probable transcriptional regulator	2.20	1.9E-07			
PA4293	pprA	two-component sensor	2.22	5.0E-16	1.31	3.8E-03	
PA4296	pprB	two-component response regulator	1.82	6.4E-07	1.12	1.1E-03	
PA4315	mvaT	transcriptional regulator MvaT, P16 subunit				2.6E-02	
PA4367	bifA	regulatory protein				2.6E-02	
PA4396	5	two-component response regulator	-2.15	4.8E-11			
PA4462	rpoN	RNA polymerase sigma-54 factor			1.16	3.2E-02	
PA4464	<i>ptsN</i>	nitrogen regulatory IIA protein	1.74	1.6E-10			
PA4493	roxR	regulatory protein			1.26	2.5E-02	
PA4546	pilS	two-component sensor			1.28		
PA4600	nfxB	transcriptional regulator			1.25		
PA4601	morA	motility regulator	-1.54	1.2E-12			
PA4659		probable transcriptional regulator			1.13	1.8E-02	
PA4726	cbrB	two-component response regulator				2.5E-04	
PA4769		probable transcriptional regulator				2.8E-02	
PA4778	cueR	regulatory protein				6.5E-03	
1111770	cherr		1		/	5/	

Locus	Norra	Droduct Norro	RNA-Seq		Proteomics	
Tag	Name	Product Name	FC	padj	FC	р
PA4787		probable transcriptional regulator			-1.11	8.5E-03
PA4843	gcbA	regulatory protein	-1.97	4.4E-18		
PA4886		probable two-component sensor	-1.65	2.3E-02		
PA4916	nrtR	Nudix-related transcriptional regulator		1.8E-08	1.18	4.6E-03
PA5117	typA	regulatory protein	-1.56	2.3E-05		
PA5199	amgS	regulatory protein				9.3E-03
PA5200	amgR	regulatory protein			-1.22	1.8E-02
PA5261	algR	alginate biosynthesis regulatory protein	1.57	1.4E-05		
PA5274	rnk	nucleoside diphosphate kinase regulator	-1.53	1.5E-05		
PA5293		probable transcriptional regulator				3.7E-02
PA5301	pauR	regulatory protein				1.7E-02
PA5344	oxyR	regulatory protein			-1.04	4.5E-02
PA5356	glcC	transcriptional regulator	1.74	7.2E-07		
PA5380	gbdR	regulatory protein	1.58	2.5E-02		
PA5483	algB	two-component response regulator			1.17	1.4E-02
PA5484	kinB	regulatory protein			1.23	2.6E-03
Multidrug			•	1		
PA0426	mexB	RND multidrug efflux transporter			1.15	1.4E-02
PA2018	mexY	RND multidrug efflux transporter	1.79	6.5E-04		
PA2019	mexX	RND multidrug efflux membrane fusion protein	1.91	4.9E-07	1.53	5.4E-04
PA2020	mexZ	negative transcriptional regulator				4.3E-02
PA2491	mexS	probable transcriptional regulator			-1.25	2.0E-03
PA2493	mexE	RND multidrug efflux membrane fusion			1.11	1.2E-02
	meal	protein precursor				
PA3677	mexJ	efflux transporter				3.7E-02
PA4205	mexG	hypothetical protein	1.76	2.0E-14	1.59	9.1E-05
PA4206	mexH	probable RND efflux membrane fusion protein	1.71	7.2E-13		
PA4207	mexI	probable RND efflux transporter				1.3E-03
PA4208	opmD	probable outer membrane protein precursor			1.14	4.4E-02
PA4374	mexV	RND multidrug efflux membrane fusion protein			1.16	1.1E-02
Motility ar		ed genes	1	1	n	
PA0020	tsaP	T4P secretin-associated protein	-1.97	6.8E-11		
PA0395	pilT	twitching motility protein				1.4E-03
PA0396	pilU	twitching motility protein				3.9E-04
PA0408	pilG	twitching motility protein		2.8E-17		2.5E-03
PA0409	pilH	twitching motility protein		2.2E-29		
PA0410	pilI	twitching motility protein		1.1E-16		
PA0411	pilJ	twitching motility protein		4.3E-24	-1.49	4.8E-05
PA0412	pilK	methyltransferase	-2.40	2.3E-19		
PA0413	chpA	pilus related chemotactic signal transduction system component	-2.44	1.9E-33	-1.24	3.8E-06
PA0414	chpB	probable methylesterase	-2.31	3.1E-24		

Locus	Name	Droduct Norma	RN	A-Seq	Proteomics		
Tag		Product Name	FC	padj	FC	р	
PA0415	chpC	probable chemotaxis protein	-2.18	2.0E-13			
PA0417	chpE	probable chemotaxis protein	-2.77	7.8E-04			
PA0499		probable pili assembly chaperone	1.87	3.1E-03			
PA1077	flgB	flagellar basal-body rod protein	1.66	5.3E-11			
PA1078	flgC	flagellar basal-body rod protein	1.70	5.1E-10			
PA1079	flgD	flagellar basal-body rod modification protein	1.56	8.1E-09			
PA1080	flgE	flagellar hook protein	1.58	9.5E-11			
PA1081	flgF	flagellar basal-body rod protein	1.65	5.1E-11			
PA1082	flgG	flagellar basal-body rod protein	1.57	4.5E-07			
PA1083	flgH	flagellar L-ring protein precursor			1.15	2.5E-02	
PA1084	flgI	flagellar P-ring protein precursor	1.53	1.6E-08			
PA1085	flgJ	flagellar protein	1.54	2.4E-06			
PA1092	fliC	flagellin type B	1.55	4.7E-06			
PA1094	fliD	flagellar capping protein	1.53	4.9E-06			
PA1100	fliE	flagellar hook-basal body complex protein	1.76	6.3E-08			
PA1101	fliF	flagella M-ring outer membrane protein precursor	1.52	3.5E-11			
PA1103		probable flagellar assembly protein			1.22	2.8E-02	
PA1130	rhlC	rhamnosyltransferase 2	1.56	5.8E-04			
PA1452	flhA	flagellar biosynthesis protein			1.28	1.3E-02	
PA1461	motD	flagellar motor protein			1.12	6.9E-03	
PA1822	fimL	hypothetical protein			-1.13	1.1E-02	
PA3350	v	hypothetical protein	1.62	3.1E-15	1.17	4.2E-03	
PA3351	flgM	flagellar anti-sigma factor	1.52	1.2E-07			
PA3478	rhlB	rhamnosyltransferase chain B	2.39	3.0E-04			
PA3479	rhlA	rhamnosyltransferase chain A	2.55	1.1E-04			
PA3526	motY	flagellar motor protein	1.60	2.3E-07			
PA4085	cupB2	chaperone	1.52	3.7E-02			
PA4294		hypothetical protein	2.32	1.4E-20			
PA4295	fppA	Flp prepilin peptidase A	1.68	9.8E-05			
PA4297	tadG	putative Tad-like Flp pilus-assembly	1.53	1.1E-02			
PA4298		hypothetical protein	2.25	1.9E-07			
PA4299	tadD	Flp pilus assembly lipoprotein	1.89	1.4E-06	1.23	3.0E-03	
PA4300	tadC	Flp pilus assembly protein TadC	1.78	1.2E-05	1.29	8.1E-03	
PA4301	tadB	Flp pilus assembly protein	1.95	1.5E-06			
PA4302	tadA	ATPase	1.93	2.8E-08	1.20	5.0E-02	
PA4303	tadZ	pilus assembly protein	2.09	5.3E-11	1.22	1.4E-02	
PA4304	rcpA	secretin	1.97	1.3E-10	<u> </u>		
PA4305	rcpC	Flp pilus assembly protein	2.12	8.4E-10			
PA4306	flp	type IVb pilin	1.84	1.4E-03			
PA4525	pilA	type 4 fimbrial precursor	-1.64	2.0E-04	-1.30	3.4E-03	
PA4527	pilC	type 4 fimbrial biogenesis protein (put. pseudogene)				7.2E-04	
PA4528	pilD	type 4 prepilin peptidase	-1.84	1.1E-08			
PA4550	fimU	type 4 fimbrial biogenesis protein		2.0E-06	-1.11	4.9E-02	

Locus	NT.		RN	A-Seq	Prot	eomics
Tag	Name	Product Name	FC	padj	FC	р
PA4551	pilV	type 4 fimbrial biogenesis protein	-1.99	9.3E-07	-1.10	1.7E-02
PA4552	pilW	type 4 fimbrial biogenesis protein	-1.72	9.2E-08	-1.22	2.4E-03
PA4553	pilX	type 4 fimbrial biogenesis protein	-1.63	1.4E-04		
PA4554	pilY1	type 4 fimbrial biogenesis protein	-1.59	9.6E-08		
PA4555	pilY2	type 4 fimbrial biogenesis protein	-1.51	6.9E-05	-1.34	7.3E-03
PA4556	pilE	type 4 fimbrial biogenesis protein			-1.64	9.4E-03
PA4648	cupE1	pilin subunit	2.56	2.7E-16		
PA4649	cupE2	pilin subunit	2.06	1.8E-12		
PA4650	cupE3	pilin subunit	1.91	1.9E-06		
PA4651	cupE4	pilin assembly chaperone	2.00	5.2E-20	1.28	1.3E-03
PA4652	cupE5	fimbrial usher protein	1.66	1.7E-07		
PA4653	cupE6	adhesin-like protein	1.69	1.1E-06		
PA4953	motB	chemotaxis protein			-1.20	3.2E-03
PA4959	fimX	diguanylate cyclase/phosphodiesterase	-1.54	2.7E-07		
PA5040	pilQ	type 4 fimbrial biogenesis outer membrane protein	-1.63	8.0E-11	-1.38	4.7E-03
PA5041	pilP	type 4 fimbrial biogenesis protein	-1.70	1.2E-08		
PA5042	pilO	type 4 fimbrial biogenesis protein	-1.67	2.6E-12	-1.26	9.0E-04
PA5043	pilN	type 4 fimbrial biogenesis protein	-1.70	2.1E-10	1.77	6.6E-04
PA5044	pilM	type 4 fimbrial biogenesis protein	-1.53	1.5E-10	-1.27	5.6E-03
LPS biosy	nthesis					
PA3141	wbpM	nucleotide sugar epimerase/dehydratase			1.25	8.3E-03
PA3145	wbpL	glycosyltransferase			1.17	5.7E-03
PA3147	wbpJ	probable glycosyl transferase			1.14	1.8E-03
PA3148	wbpI	UDP-N-acetylglucosamine 2-epimerase			1.23	7.0E-04
PA3150	wbpG	LPS biosynthesis protein			1.13	2.0E-02
PA3151	hisF2	imidazoleglycerol-phosphate synthase, cyclase subunit			1.13	1.1E-02
PA3152	hisH2	glutamine amidotransferase			1.08	1.8E-02
PA3155	wbpE	UDP-2-acetamido-2-dideoxy-d-ribo-hex-3- uluronic acid transaminase	1.53	4.8E-11		
PA3156	wbpD	UDP-2-acetamido-3-amino-2,3-dideoxy-d- glucuronic acid N-acetyltransferase			1.18	4.3E-04
PA3158	wbpB	UDP-2-acetamido-2-deoxy-d-glucuronic acid 3-dehydrogenase			1.14	5.7E-04
PA3159	wbpA	UDP-N-acetyl-d-glucosamine 6- Dehydrogenase			1.21	6.2E-05
PA3160	WZZ.	O-antigen chain length regulator			1.27	2.3E-02
PA4378	warB	lipopolysaccharide kinase	1.94	5.4E-04		
PA5448	wbpY	glycosyltransferase	-1.56	1.2E-03		
PA5449	wbpX	glycosyltransferase	-1.62	3.8E-09		
PA5452	wbpW	phosphomannose isomerase/GDP-mannose			-1.13	3.0E-02
PA5453	gmd	GDP-mannose 4,6-dehydratase				3.1E-02
PA5454	rmd	oxidoreductase			-1.25	4.1E-03
Type VI se	cretion	system				

Locus	Nome	Droduct Nome	RN	A-Seq	Proteomics		
Tag	Name	Product Name	FC	padj	FC	р	
PA0070	tagQ1	type VI secretion-associated lipoprotein			1.22	2.2E-02	
PA0071	tagR1	FGE-sulfatase domain-containing protein			1.37	1.8E-03	
PA0075	pppA	serine/threonine protein phosphatase			1.45	1.1E-02	
PA0076	tagF1	type VI secretion-associated protein	1.56	1.5E-02			
PA0077	icmF1	type VI secretion protein			1.37	4.7E-04	
PA0078	tssL1	type VI secretion system protein	1.59	1.3E-03	1.31	5.6E-03	
PA0079	tssK1	type VI secretion protein	1.58	1.4E-04	1.40	3.1E-03	
PA0080	tssJ1	type VI secretion protein	1.51	1.7E-07			
PA0082	tssA1	type VI secretion protein	1.52	4.1E-05	1.48	2.7E-03	
PA0083	tssB1	type VI secretion protein	1.72	2.8E-06			
PA0084	tssC1	type VI secretion protein	1.58	5.7E-04	1.52	4.7E-03	
PA0085	hcp1	type VI secretion system effector	1.74	3.9E-05	2.14	4.5E-04	
PA0086	tagJ1	type VI secretion system	1.74	1.6E-04			
PA0087	tssE1	type VI secretion system lysozyme-like protein	1.92	1.7E-04			
PA0088	tssF1	type VI secretion protein	1.58	3.7E-03			
PA0090	clpV1	chaperone	1.59	1.5E-03	1.54	3.4E-03	
PA0091	vgrG1	type VI secretion system tip protein	1.52	6.0E-03	1.23		
PA0094	eagT6	chaperone				4.7E-04	
PA0095		type VI secretion protein	1.57	4.4E-09			
PA0096		hypothetical protein	2.11	1.4E-06			
PA0097		hypothetical protein	1.63	2.0E-07			
PA0098		hypothetical protein	1.67	6.2E-04			
PA0099		type VI effector protein	1.57	6.4E-06			
PA0100	1	hypothetical protein	1.52	2.0E-06	1.29	4.4E-04	
PA1659	hsiF2	type VI secretion system lysozyme-like protein	1.61	1.3E-04			
PA1661	hsiH2	type VI secretion protein	1.53	8.1E-03			
PA1666	lip2	type VI secretion system lipoprotein			1.33	1.8E-04	
PA2361	icmF3	type VI secretion protein	1.52	1.6E-05			
PA2362	dotU3	type VI secretion protein	1.89	1.1E-05			
PA2363	hsiJ3	type VI secretion protein	1.71	1.8E-09			
PA2364	lip3	type VI secretion protein	1.55	7.4E-05			
PA2365	hsiB3	type VI secretion protein	1.86	7.4E-09			
PA2366	hsiC3	type VI secretion protein	1.88	1.8E-07			
PA2367	hcp3	type VI secretion system effector	1.76	2.2E-06			
PA2368	hsiF3	type VI secretion protein	1.68	3.1E-03			
PA2369	hsiG3	type VI secretion protein	1.92	3.2E-11			
PA2370	hsiH3	type VI secretion protein	2.20	1.9E-06			
PA2371	clpV3	type VI secretion system ATPase	1.65	9.5E-07			
PA2372		hypothetical protein	1.69	1.4E-05			
PA2373	vgrG3	type VI secretion protein	1.68	4.7E-07			
PA3486	vgrG4 b	type VI secretion protein	1.69	6.9E-04			
PA5266	vgrG6	type VI secretion protein	1.89	7.3E-04			

Locus	Nama	Due du et Norme	RN	A-Seq	Pro	teomics
Tag	Name	Product Name	FC	padj	FC	р
Other viru	lence fa	ictors		• • •		
PA0051	<i>phzH</i>	potential phenazine-modifying enzyme	2.53	9.4E-13		
PA0122	rahU	hemolysin	2.30	3.0E-07	2.04	1.4E-02
PA1871	lasA	LasA protease precursor	1.68	2.0E-04		
PA1899	phzA2	probable phenazine biosynthesis protein	1.70	2.6E-08		
PA1900	phzB2	probable phenazine biosynthesis protein	1.95	3.0E-10	1.25	4.3E-02
PA1901	phzC2	phenazine biosynthesis protein	1.85	2.2E-06	1.44	4.5E-03
PA1903	phzE2	phenazine biosynthesis protein	1.24	7.2E-04		
PA1905	phzG2	probable pyridoxamine 5'-phosphate oxidase	1.53	2.7E-05	1.16	9.7E-03
PA2231	pslA	undecaprenyl-phosphate glucose phosphotransferase	1.85	1.3E-09	1.29	2.2E-03
PA2232	pslB	mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase	1.80	8.7E-12	1.34	6.5E-03
PA2233	pslC	putative glycosyl transferase	1.58	5.4E-09	1.14	4.5E-02
PA2234	pslD	polysaccharide export protein	1.71	4.9E-18	1.29	5.6E-03
PA2235	pslE	psl exopolysaccharide biosynthesis	1.68	2.6E-09	1.19	4.8E-03
PA2236	pslF	glycosyl transferase	1.62	1.4E-07		
PA2237	pslG	beta-xylosidase	1.52	1.4E-14	1.19	4.1E-03
PA2238	pslH	glycosyl transferase	1.71	1.1E-06	1.28	1.8E-03
PA2239	pslI	psl exopolysaccharide biosynthesis	1.55	7.4E-05	1.13	4.6E-02
PA2243	pslM	hypothetical protein	1.73	5.1E-03		
PA2244	pslN	hypothetical protein	1.88	8.2E-03		
PA2570	lecA	galactose-binding lectin	7.32	2.4E-08	2.41	3.4E-03
PA3361	lecB	fucose-binding lectin PA-IIL	2.86	1,2E-07		
PA3540	algD	GDP-mannose 6-dehydrogenase	7.13	2.9E-09		
PA3541	alg8	alginate biosynthesis protein	2.79	4.7E-05		
PA3542	alg44	alginate biosynthesis protein	2.11	2.7E-02		
PA3544	algE	alginate production outer membrane protein	2.73	1.8E-04		
PA3545	algG	alginate-c5-mannuronan-epimerase	2.41	9.7E-05		
PA3547	algL	poly(beta-d-mannuronate) lyase precursor	2.03	3.5E-02		
PA3548	algI	alginate o-acetyltransferase	1.80	3.9E-02		
PA3550	algF	alginate o-acetyltransferase	1.74	4.7E-02		
PA3551	algA	phosphomannose isomerase / GDP-D- mannose pyrophosphorylase	1.82	1.3E-03		
PA3724	lasB	elastase	1.64	1.7E-07		
PA4175	piv	protease IV	1.86	1.7E-05		
PA4212	phzC1	phenazine biosynthesis protein			1.44	4.5E-03
PA4213	phzD1	phenazine biosynthesis protein	1.20	1.4E-03		
PA4214	phzE1	phenazine biosynthesis protein	1.24	7.2E-04		

4.5 The multidrug efflux genes *mexXY* and *mexGHI-opmD* were upregulated in the

PA0805.1 overexpression strain

Related to the tobramycin phenotype, the multidrug efflux pump *mexXY*, a known efflux

pump mediating resistance to aminoglycosides (Aires et al., 1999), was upregulated (Table 4-1). Interestingly, the repressor of *mexXY*, *mexZ* (Matsuo et al., 2004), was also upregulated in the proteomics dataset, yet clearly this was not sufficient to repress production of *mexXY* (Table 4-1). In addition, the multidrug efflux genes *mexGH* were upregulated by 1.7-1.8 fold in the RNA-Seq data, which could contribute to tobramycin resistance, since aminoglycosides are a substrate of the MexGHI-OpmD pump (Table 4-1) (Aendekerk et al., 2005). Proteomics and qRT-PCR indeed showed that the whole *mexGHI-opmD* operon was upregulated (Table 4-1, Table 4-2). Additionally, there were several other upregulated efflux genes, including *mexB*, *mexE*, *mexJ* and *mexV* (Table 4-1). MexS, a negative regulator of *mexEF-oprN* (Uwate et al., 2013), was downregulated in the proteomics (Table 4-1). Furthermore, *czcR*, a response regulator involved in heavy metal resistance, was also upregulated by 2.3 fold (Table 4-1). Moreover, genes in the *wbp* (PA5448-PA5454) LPS biosynthetic operon were downregulated, and in other studies we showed these can also lead to tobramycin resistance (Table 4-1) (Schurek et al., 2008). In contrast, genes in a different LPS biosynthetic operon (PA3141-PA3160) were upregulated (Table 4-1).

Figure 4-4. Proposed model for how the overexpression of PA0805.1 dysregulated many genes, resulting in altered phenotypes. Connecting arrows represent direct or indirect regulation.

Table 4-2. The MexGHI-OpmD operon was upregulated in the PA0805.1 overexpression strain when compared to EV strain by qRT-PCR. Bacteria were harvested from BM2 glycerol swarm plates with 1% arabinose and 0.1% CAA. n = 3.

Gene	Fold change
mexG	2.1 ± 0.1
mexH	2.0 ± 0.2

Gene	Fold change
mexI	1.9 ± 0.1
opmD	2.1 ± 0.4

4.6 Adherence factors were dysregulated in the PA0805.1 overexpression strain

Amongst the DE genes were a number of genes that could explain the anti-motility effect. Downregulation of the diguanylate cyclase FimX and PilGH could cause the downregulation of twitching motility proteins PilIJKTU and the type 4 fimbrial biogenesis proteins PilACD, PilMNOPQ, PilEVWX, and PilY1-2 (Table 4-1) (Jain et al., 2017). Downregulation of these genes could lead to reductions in twitching and/or swarming motility (Figure 4-1, Table 4-1) (Yeung et al., 2009). Aside from pilus-related genes, all other adherence factors were upregulated, including the *cupA* gene regulators *cgrABC*, but not the *cupA* operon (Table 4-1). Regulators *rocS1* and *rocR* were also upregulated (Table 4-1), which can lead to the production of CupB and CupC fimbriae (Kulasekara et al., 2005). The upregulated genes also included *cupE1-6*, *cupB2*, *tadABCDGZ*, and *flp* (Table 4-1). Lastly, the transcriptional regulator FleQ was also upregulated, along with downstream genes *flgBCDEFGHIJ*, *fliCDEF* and *flhA*. Consistent with this, an adherence assay was performed showing that the overexpression strain PA0805.1 had increased adherence (Figure 4-5). Collectively the overexpression of these adherence factors and their regulators could influence the reduced motility seen for this strain.

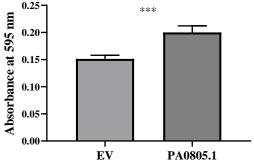


Figure 4-5. The PA0805.1 overexpression strain demonstrated increased adherence to polystyrene plates in 90% LB with 5% arabinose. Statistically significant differences were determined using Student's paired t test. $n \ge 3$.

4.7 Additional virulence factors were upregulated in the PA0805.1 overexpression strain

PA0805.1 also had an increased cytotoxicity against HBE cells (Figure 4-2). Amongst the upregulated DE genes were *lasAB* and *piv* which are cytotoxic proteases. Other upregulated virulence factors were T6SS genes, *rahU*, alginate and phenazine biosynthetic genes, *pslABCDEFGHIMN*, and *rhlABC* (Table 4-1, Table A2). In contrast, certain pyochelin, T1SS and

T3SS genes were downregulated (Table A2). Several global regulators implicated in virulence could account for these changes, such as CbrB, LasR, MvaT, and Vfr, but specifically the sigma factor AlgU, the two-component response regulator AlgB, and the transcriptional regulators PcrGH and ExsA are likely to be involved in regulating alginate and T3SS genes.

4.8 Comparison of RNA-Seq and proteomics

Comparison of the transcriptional and proteomic response revealed considerable overlap, with 243 genes and the encoded proteins identified to be differentially expressed by both methods (Figure A2). Of the 243 common gene and protein candidates, there was a good correlation in the direction of fold change (Figure A3, $R^2 = 0.73$), with 233 genes similarly down- (quadrant III, 90 genes), or up- (quadrant I, 143 genes) regulated, while 10 were regulated in opposite fashions (quadrants II and IV). This might relate in part to the differing abilities of the two methods since RNA-Seq was more sensitive and identified transcription from 5194 genes while proteomics identified only 2366 proteins. It is worth noting that transcripts for extracellular proteins were more likely detected in the RNA-Seq data since wash steps were employed prior to proteomics. Conversely, since sRNAs act by post-transcriptional regulation, it was expected that there would be changes in protein abundance with no corresponding difference in RNA transcript levels, while a single translationally dysregulated regulatory protein might control the expression of hundreds of genes.

4.9 In silico sRNA target prediction

Three *in silico* sRNA target prediction tools, IntaRNA2, RNAPredator and TargetRNA2 were used to predict sRNA targets for PA0805.1 (Table A8). Of the fourteen predicted targets, four were validated *in vitro*, in showing changes in either RNA or protein abundance (Table 4-3). These genes included *aprF*, the first gene in the operon encoding the T1SS for alkaline protease; *mep72*, a metzincin protease; PA3840, a putative rRNA methyl transferase; and PA5187, a probable acyl-CoA dehydrogenase (Table 4-3).

Locus	Nomo	Product Name	RN	A-Seq	Prot	eomics	Predicted by
Tag	Name	r rouuct maine	FC	padj	FC	р	Fredicted by
PA1248	aprE	alkaline protease secretion outer			1 1 2	4.6E-03	RNAPredator,
FA1240	apri	membrane protein AprF precursor			-1.10	4.0E-03	IntaRNA2
PA2783	man 72	Mep72	2 15	9.2E-05			RNAPredator,
FA2703	mep72	Mep72	-2.43	9.2E-03			IntaRNA2
PA3840		conserved hypothetical protein	1 97	2.6E-07			RNAPredator,
r A3640		conserved hypothetical protein	-1.0/	2.0E-07			IntaRNA2

Table 4-3. sRNA targets predicted *in silico* that were confirmed for PA0805.1 by RNA-Seq or proteomics as well as their FC, p-values (padj/p) and predictive methods.

Locus	Nomo	Product Name	RNA-Seq		Prot	eomics	Predicted by
Tag	Name	Frouuct Maine	FC	padj	FC	р	Fredicted by
PA5187		probable acyl-CoA dehydrogenase			1.11	3.5E-03	TargetRNA2, IntaRNA2

4.10 In its native state, PA0805.1 contributed to tobramycin susceptibility under swarming conditions

As mentioned above, PA0805.1 was upregulated by 5.0 ± 1.7 fold under swarming vs. swimming conditions (BM2 glucose). A deletion mutant of PA0805.1 was constructed, and showed no dramatic motility phenotype, but was supersusceptible to tobramycin under swarming conditions, and when complemented substantially restored tobramycin resistance (Figure 4-6). These data were consistent with the positive regulation of tobramycin resistance but negative regulation of motility.

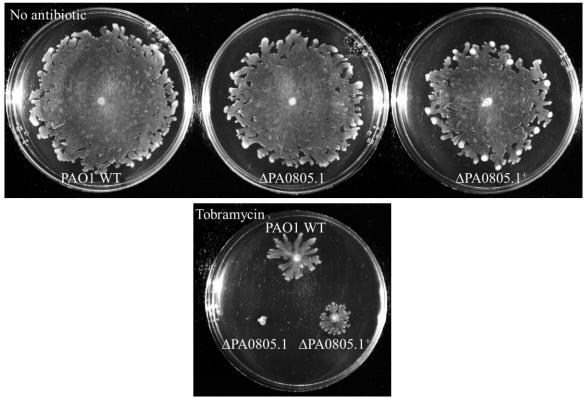


Figure 4-6. A deletion mutant of PA0805.1 was supersusceptible to tobramycin as assessed in BM2 glucose swarming agar with no arabinose. The deletion mutant was complemented with a chromosomal insertion of the sRNA PA0805.1. Tobramycin was incorporated into the agar where indicated at 1 μ g/ml. n = 3.

4.11 Discussion

Here I demonstrated that the overexpression of sRNA PA0805.1 led to a wide range of phenotypic changes including reduced swarming, swimming and twitching motility, as well as

increased adherence, cytotoxicity, and tobramycin resistance. In contrast to this situation, few phenotypes were observed for the deletion mutant Δ PA0805.1. This was likely due to the fact that sRNAs usually act by inhibiting translation of target mRNA; hence overexpression is more likely to have an effect than deletion. As expected, the tobramycin phenotype of the deletion mutant (TOB supersusceptible, Figure 4-6) was the opposite of that of the overexpression strain (TOB resistant) under conditions of low expression (using glucose to inhibit expression from the P_{BAD} promoter of pHERD20T) (Figure 4-3). The tobramycin phenotype was difficult to observe in the overexpression strain at higher levels of expression (*i.e.* with arabinose) due to the inhibition of swarming motility.

The differential expression of many global transcriptional regulators in the proteomics data was intriguing and suggests a prospective key global regulatory role for the sRNA PA0805.1 in influencing other regulators (Figure 4-4). For example, regulators with altered expression when this sRNA was overexpressed included LasR, a global regulator in *P. aeruginosa* that controls QS, virulence factor production, and motility (Kiratisin et al., 2002; Köhler et al., 2000), RpoN, an alternative sigma factor σ 54 that regulates virulence factors and pathogenicity in plants and animals as well as nitrogen metabolism (Hendrickson et al., 2001), MvaT, another global regulator of virulence that influences swarming motility and QS (Diggle et al., 2002), Vfr, a homolog of the *E. coli* catabolite repressor protein (CRP) that regulates virulence factor production (Fuchs et al., 2010; Rojo, 2010; Suh et al., 2015), and CbrB, a global response regulator, part of the two-component system CbrAB that regulates carbon and nitrogen metabolism, as well as antibiotic resistance, virulence, biofilm formation and swarming motility (Abdou et al., 2011; Yeung et al., 2011).

Here it was shown that overexpressing the sRNA PA0805.1 resulted in broad transcriptional and proteomic changes, most likely through a hierarchical regulatory cascade (Figure 4-4). Forty-two transcriptional regulators, two-component systems, sigma and anti-sigma factors were dysregulated at the proteomic level and 118 overall, likely explaining the extensive downstream effects. For example, type IV pili and its equivalent chemosensory system (ChpA-E) were downregulated, which would lead to decreased swarming and twitching motility, although certain other adherence factors were upregulated. Conversely, many flagellar genes were mildly upregulated but the decreased expression of particular regulators such as *lasR* and *cbrB* might explain decreased swimming and swarming. Furthermore, there is a connection between swimming and twitching, since the two-component PilRS system controls flagellar genes and

swimming motility (Kilmury & Burrows, 2018). Since PilS had altered protein abundance (Table 4-1), PilS may have affected swimming motility. In addition, many virulence factors, including the genes encoding the cytotoxic proteases *lasAB* and *piv* were upregulated, likely resulting in the observed increased cytotoxicity. Lastly, several multidrug efflux systems were upregulated, importantly including *mexXY* and *mexGHI-opmD*, which might contribute to tobramycin resistance. The sRNA PA0805.1 thus modulates important adaptations in *P. aeruginosa*, including motility, virulence and antibiotic resistance.

Chapter 5: The sRNAs PA2952.1 and *prrH* as regulators of virulence, motility and iron metabolism

5.1 Introduction

Coupling a large genome with a high percentage of transcriptional regulators (roughly 10%), *P. aeruginosa* has considerable potential to adapt to different conditions such as surface motility and antibiotic treatment. In addition, hundreds of regulatory sRNAs have been predicted, interspersed throughout the genome (Gómez-Lozano et al., 2012; Wurtzel et al., 2012). These non-coding regulatory elements allow for rapid regulation typically through post-transcriptional modification (Kavita et al., 2018). An exception to this is the ability of some sRNAs to influence degradation or increase stability of mRNAs (Pita et al., 2018; Prévost et al., 2011).

A 2018 study examined the expression of intergenic sRNAs and found 31 species to be differentially expressed under swarming and/or biofilm conditions (Gill et al., 2018). Most of the 20 sRNAs dysregulated under swarming conditions were previously uncharacterized, except for *prrH*, *rsmY* and *srbA*. A previous study showed that deleting *srbA* had an effect on biofilm formation and virulence in a *C. elegans* infection model (Taylor et al., 2017).

The sRNAs *rsmY* and *rsmZ* are induced by GacA, a global transcriptional regulator part of the two-component system GacAS, and partially redundant (Kay et al., 2006; Pita et al., 2018). After induction, *rsmY* and *rsmZ* sequester the post-transcriptional regulator RsmA from its target mRNA, causing diverse downstream effects on chronic and acute lifestyles (Janssen et al., 2018; Pita et al., 2018). Both *rsmY* and *rsmZ* can also be (in)directly regulated by AlgR, BfiSR, HptB, and PNPase.

sRNA *prrH* has also been shown to be dysregulated under swarming conditions (Gill et al., 2018). As mentioned in the Introduction, *prrH* is regulated by Fur and controls iron metabolism and virulence traits. It also competes with *crcZ* for binding to Hfq, since *crcZ* has higher affinity for Hfq than does *prrH* (Pita et al., 2018; Sonnleitner et al., 2017).

Here we probed the role of sRNAs in adaptive behaviours in *P. aeruginosa*, by cloning and overexpressing sRNAs dysregulated under swarming conditions. The overexpressing strains were examined in phenotypic assays for differences in motility, cytotoxicity and adherence. Next, RNA-Seq and proteomics were performed to investigate the effects mediated by the sRNA PA2952.1.

5.2 Phenotypic screens of sRNA overexpression strains

sRNA species previously show to be dysregulated under swarming conditions (Gill et al., 2018) were cloned to enable overexpression since sRNAs often have inhibitory functions. To

determine which region or orientation might result in a phenotype, some of these sRNAs were cloned in two orientations (PA0805.1 and PA0805.1a; PA1091.1a and b; PA3159.1a and b; and PA4656.1a and b), or different regions were cloned (PA2952.1W, overlapping version of PA2952.1; and PA14sr120, shorter version of PA0805.1) (Gill et al., 2018; Gómez-Lozano et al., 2012; Wurtzel et al., 2012). PA14sr120 was predicted from the PA14 genome (Wurtzel et al., 2012) in the same relative orientation as the construct for PA0805.1, but shorter than predicted in PAO1. A total of 21 constructs were made in the arabinose-inducible pHERD20T vector and transformed into PAO1 H103 WT by electroporation. One of these, PA0805.1, was described previously in Chapter 4.

At the time of the assay, arabinose was added to induce sRNA expression. Overexpression strains were confirmed to have no growth defects (Figure A4 and data not shown). Next, overexpression strains were screened for swarming, swimming, and twitching (Figure 5-1). Strains were also screened for adherence to polystyrene, but showed little difference in this assay (Figure A5).

Swarming and swimming motilities correlated well for some strains in these experiments (Figure 5-1). The overexpression strain PA14sr120 showed swarming and swimming motility that was reduced to $81\pm6\%$ and $65\pm2\%$ of the wild type (WT) containing the empty cloning vector (EV). The PA2952.1 overexpressing strain had motility reduced to 69 ± 3 and $43\pm4\%$ for swarming and swimming respectively. The PA1091.1b overexpressing strain showed a reduction to $80\pm2\%$ in swarming motility. Interestingly, overexpression of *prrH* resulted in substantially reduced swimming (to $28\pm3\%$ of the WT EV control) but no change in swarming motility (Figure 5-1). Overexpression strains were also screened for twitching motility but showed no significant differences (Figure 5-1). Sample colonies showing partial reductions in motility are shown in Figure 5-2.

The sRNA overexpression strains were also screened for cytotoxicity against human bronchial epithelial cells (HBE), with and without arabinose. Few significant differences were found amongst the strains (data not shown), except for PA2952.1 and *prrH*. In the absence of arabinose, PA2952.1 had cytotoxicity reduced by 36.4% of WT levels; however the PA2952.1 overexpressing strain when compared to WT EV with 1% arabinose was not significantly different (Figure 5-3A, Figure A6a).

5.3 sRNA *prrH* played a role in cytotoxicity and pyoverdine production

The sRNA prrH, encompassing the two adjacent and highly homologous sRNAs prrF1

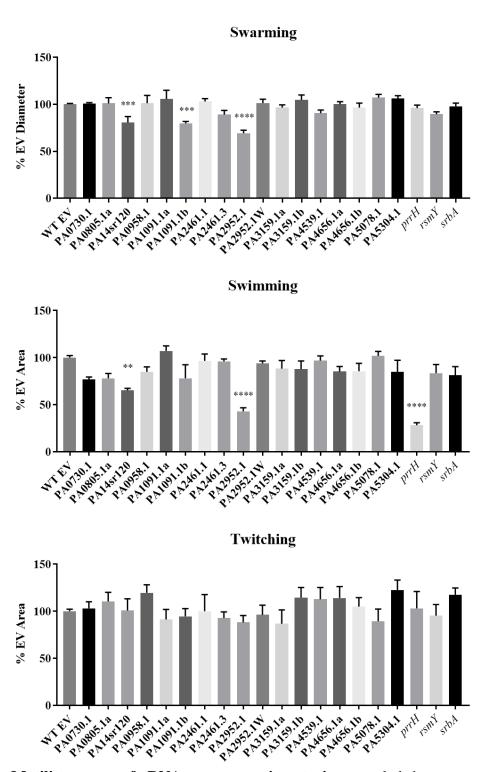
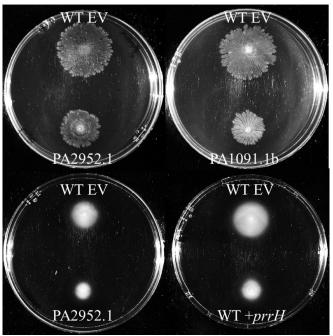
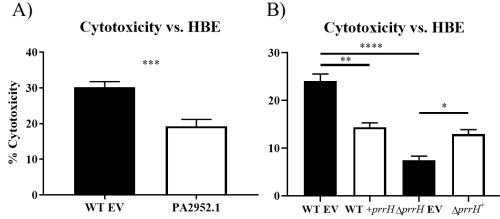


Figure 5-1. Motility screen of sRNA overexpression strains revealed that overexpression of certain sRNAs altered motility. 1% Arabinose was used to induce expression and statistically significant differences from WT EV were determined using one-way ANOVA. $n \ge 3$.

and *prrF2* (Wilderman et al., 2004), also played a role in cytotoxicity (Figure 5-3B). When *prrH* was overexpressed at low levels (0% arabinose), the cytotoxicity of WT +*prrH* was reduced by 40.2% of WT levels. In the absence of arabinose, a deletion mutant $\Delta prrH$ had even lower levels 68

of cytotoxicity (reduced by 68.9%), which was partially complemented (to 53.7% of WT levels) when the sRNA was reintroduced on the uninduced pHERD20T plasmid (Figure 5-3B). Interestingly, in the presence of arabinose, these phenotypes were minimized. With arabinose, only the change in cytotoxicity due to deletion in $\Delta prrH$ was significantly different and could not be complemented by overexpression of *prrH* (Figure A6b).

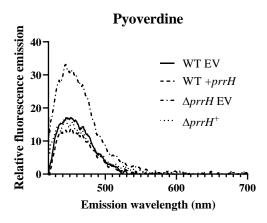

Figure 5-2. Overexpression of certain sRNAs led to partial reductions in swarming (top row) and swimming (bottom row) motilities. $n \ge 3$.

Figure 5-3. Cytotoxicity phenotypes of sRNA overexpression strains in the absence of arabinose. A) overexpression of PA2952.1 compared to WT EV. B) deletion and overexpression of *prrH*. Statistically significant differences were determined by unpaired t test (A) or one-way ANOVA (B). $n \ge 3$.

The deletion mutant $\Delta prrH$ also produced >2-fold increased levels of pyoverdine (Figure

5-4). This phenotype was restored to WT levels by complementation. The strain overexpressing *prrH* however showed no difference from the WT EV isolate (Figure 5-4).

Figure 5-4. A deletion mutant $\triangle prrH$ had increased production of pyoverdine. n = 3.

5.4 Overexpression of sRNAs altered antibiotic susceptibility under swarming conditions

The sRNA PA2952.1, which inhibited swarming and swimming (Figure 5-2), also showed altered antibiotic susceptibility under swarming conditions. PA2952.1 overexpression at low levels led to resistance to both tobramycin and gentamicin (Figure 5-5A). This modest resistance phenotype could not be observed at higher levels of expression, in part due to the inhibitory effect of PA2952.1 on swarming motility. In contrast, at higher levels of expression, increased susceptibility to trimethoprim was observed under swarming conditions (Figure 5-5B). No major differences in MIC to either antibiotic were observed in standard microdilution assays (Table A9), however, subinhibitory concentrations of trimethoprim specifically inhibited the growth of the PA2952.1 overexpression strain in the presence of 1% arabinose (Figure A7).

Overexpression of the sRNA PA14sr120 at low levels resulted in resistance to tobramycin under swarming conditions (Figure 5-5C). Similar to the observations made for PA2952.1, overexpression of PA1091.1b at high levels resulted in increased trimethoprim susceptibility under swarming conditions (Figure 5-5D).

5.5 Overexpression of PA2952.1 resulted in broad transcriptional changes including altered expression of 82 regulatory factors

The sRNA PA2952.1 was selected for study in greater detail due to its broad phenotypic effects and lack of prior studies. To determine which genes or proteins caused the above-described phenotypic changes, RNA-Seq and proteomics were performed on the WT strain overexpressing PA2952.1 compared to that with the WT EV control, by harvesting bacteria from the edges of swarming colonies grown with 1% arabinose. Substantial transcriptional and proteomic changes

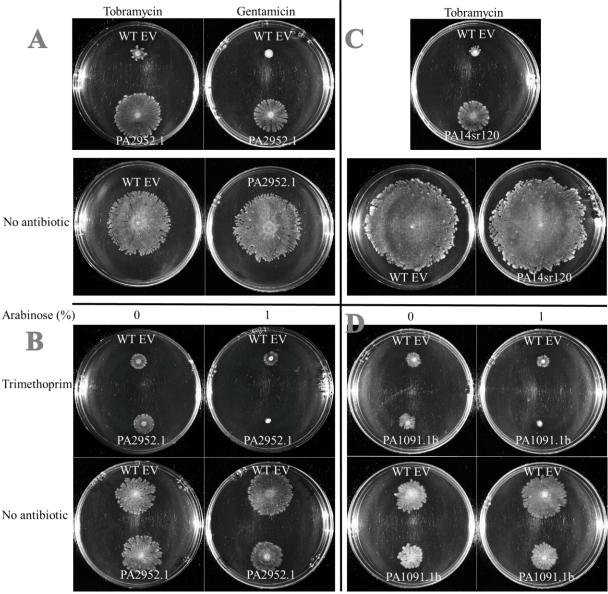


Figure 5-5. Antibiotic susceptibility phenotypes were affected by sRNAs under swarming conditions. A. The strain overexpressing PA2952.1 showed resistance to tobramycin and gentamicin in BM2 glucose swarm plates with no arabinose, supplemented where indicated with 1 µg/ml antibiotic. n = 3. B. Overexpression of PA2952.1 induced susceptibility to trimethoprim in BM2 glycerol swarm plates. Trimethoprim is included where indicated at 10 µg/ml. $n \ge 3$. C. The PA14sr120 overexpression strain was resistant to tobramycin in BM2 glucose swarm plates with no arabinose. Tobramycin is included where indicated at 1 µg/ml. $n \ge 3$. D. Overexpression of PA1091.1b increased susceptibility to trimethoprim in BM2 glycerol swarm plates. Trimethoprim is included where indicated at 1 µg/ml. $n \ge 3$. D. Overexpression of PA1091.1b increased susceptibility to trimethoprim in BM2 glycerol swarm plates. Trimethoprim is included where indicated at 10 µg/ml. $n \ge 3$.

were observed, encompassing 446 proteins with differential abundance and 784 DE genes in the RNA-Seq (Table A2). Of these, 339 genes were downregulated and 445 were upregulated; while

221 proteins had decreased abundance and 225 were increased (Table A2). There was a large number (82 genes/proteins) of regulatory factors (transcriptional regulators, two-component systems, sigma and anti-sigma factors) found amongst these genes, which might have accounted for the large transcriptional changes observed (Table 5-1). Amongst the 82 regulatory factors, 27 factors showed changes only in the proteomics dataset (shown with **bold** locus tag in Table 5-1) and thus might represent potential post-transcriptional sRNA targets.

Table 5-1. Selected differential expressed genes/proteins in the PA2952.1 overexpression strain as compared to WT EV by RNA-Seq and/or proteomics. Loci shown in **bold** showed differences uniquely in the proteome. Cutoffs used were p/padj ≤ 0.05 and for RNA-Seq, FC ≥ 1.5 .

Locus	Nama	Ducduct None	RN	A Seq	Prot	teomics
Tag	Name	Product Name	FC	padj	FC	р
Transcrij	otional 1	regulators, two-component systems and sigma b	factors	S		
PA0048		probable transcriptional regulator		2.0E-02		
PA0155	pcaR	transcriptional regulator	1.84	5.5E-14		
PA0217		probable transcriptional regulator	1.57	1.8E-03		
PA0243		probable transcriptional regulator			1.10	1.1E-02
PA0403	pyrR	transcriptional regulator	1.59	1.8E-04		
PA0463	creB	two-component response regulator	1.81	2.4E-13		
PA0472	fiuI	probable sigma-70 factor, ECF subfamily	1.94	5.0E-05		
PA0528		probable transcriptional regulator	1.78	1.9E-08		
PA0652	vfr	transcriptional regulator			-1.11	2.2E-03
PA0828		probable transcriptional regulator	-2.01	2.0E-02		
PA0877		probable transcriptional regulator	-1.51	2.6E-02		
PA0964	pmpR	pqsR-mediated PQS regulator			-1.08	2.7E-02
PA1157		probable two-component response regulator			1.10	6.5E-03
PA1179	phoP	two-component response regulator	-1.51	6.1E-21		
PA1223		probable transcriptional regulator	-1.56	3.7E-03		
PA1261	lhpR	transcriptional regulator	1.96	2.3E-03		
PA1285		probable transcriptional regulator	1.66	5.1E-07		
PA1290		probable transcriptional regulator			1.30	1.1E-02
PA1315		probable transcriptional regulator			1.09	3.3E-02
PA1328		probable transcriptional regulator	1.65	5.1E-06		
PA1399		probable transcriptional regulator	1.62	7.5E-03		
PA1431	rsaL	regulatory protein	1.98	8.0E-08		
PA1627		probable transcriptional regulator	2.21	1.4E-08		
PA1707	pcrH	regulatory protein	-1.88	1.7E-04		
PA1714	exsD	probable transcriptional regulator			-1.29	3.2E-02
PA1785	nasT	regulatory protein			-1.11	7.0E-03
PA1836		probable transcriptional regulator	-1.51	2.5E-03		
PA1911	femR	sigma factor regulator	1.93	1.5E-02		
PA1912	femI	ECF sigma factor	1.88	1.5E-03		

Locus	Name	Product Name	RN	A Seq	Prot	eomics
Tag	Thame	Froduct Mame	FC	padj	FC	р
PA1949	rbsR	ribose operon repressor			1.07	1.6E-02
PA1980	eraR	response regulator	-1.81	1.1E-02		
PA2082	kynR	probable transcriptional regulator			1.12	8.0E-03
PA2126	cgrC	cupA gene regulator C	1.74	8.5E-05		
PA2126.1	cgrB	cupA gene regulator B	2.33	2.4E-07		
PA2276		probable transcriptional regulator			1.13	4.3E-03
PA2337	mtlR	transcriptional regulator	1.60	9.3E-04		
PA2426	pvdS	sigma factor	2.07	2.0E-02		
PA2467	foxR	anti-sigma factor	2.11	6.2E-07		
PA2486	<i>ptrC</i>	Pseudomonas type III repressor gene C	2.89	2.6E-13		
PA2491	mexS	Transcriptional regulator			-1.18	5.9E-03
PA2511	antR	Transcriptional regulator	1.67	2.7E-03		
PA2663	ppyR	psl and pyoverdine operon regulator	2.14	1.5E-04		
PA2665	fhpR	transcriptional activator of <i>P. aeruginosa</i> flavohemoglobin			1.07	1.7E-02
PA2848		probable transcriptional regulator	1.56	1.3E-02		
PA2882		probable two-component sensor	2.31	5.0E-03		
PA2895	sbrR	anti-sigma factor	1.52	2.2E-05		
PA2896	sbrI	probable sigma-70 factor, ECF subfamily	1.50	1.6E-06		
PA2917		probable transcriptional regulator	1.65	1.0E-06		
PA2931	cifR	putative transcriptional regulator	-1.59	1.9E-03		
PA3006	psrA	transcriptional regulator			1.14	1.6E-02
PA3122		probable transcriptional regulator			1.11	7.9E-03
PA3220		probable transcriptional regulator	1.54	2.2E-04		
PA3341		probable transcriptional regulator			1.13	2.0E-03
PA3458		probable transcriptional regulator	-1.50	6.2E-03		
PA3583	glpR	glycerol-3-phosphate regulon repressor			1.06	1.3E-03
PA3622	rpoS	sigma factor			1.13	1.1E-02
PA3689		probable transcriptional regulator			1.10	3.0E-04
PA3757	nagR	transcriptional regulator of N-acetylglucosamine catabolism operon	1.52	2.6E-03		
PA3878	narX	two-component sensor	1.57	1.1E-07		
PA3899	fecI	probable sigma-70 factor, ECF subfamily	1.62	7.4E-03		
PA4057	nrdR	transcriptional repressor	-1.54	2.6E-06		
PA4070		probable transcriptional regulator	1.98	1.1E-05		
PA4293	pprA	two-component sensor			1.18	2.5E-02
PA4296	pprB	two-component response regulator			1.08	2.0E-02
PA4493	roxR	response regulator			1.17	2.8E-02
PA4546	pilS	two-component sensor			1.09	3.5E-02
PA4726	cbrB	two-component response regulator	1.51	4.4E-25	-1.13	8.9E-04
PA4764	fur	ferric uptake regulation protein			1.08	3.1E-02

Locus	Name	Product Name	RN	A Seq	Prot	eomics
Tag			FC	padj	FC	р
PA4777	pmrB	two-component regulator system signal sensor kinase	1.54	5.4E-03		
PA4778	cueR	probable transcriptional regulator			-1.14	3.1E-02
PA4784		probable transcriptional regulator	1.53	2.0E-05		
PA4914	amaR	transcriptional regulator	1.62	1.5E-05		
PA5029		probable transcriptional regulator	1.54	2.5E-05		
PA5124	ntrB	two-component sensor	1.72	6.6E-06		
PA5189		probable transcriptional regulator	1.59	3.6E-05		
PA5261	algR	alginate biosynthesis regulatory protein	1.58	5.2E-08		
PA5288	glnK	nitrogen regulatory protein P-II 2	1.58	4.5E-04		
PA5293		probable transcriptional regulator			1.07	4.5E-02
PA5356	glcC	transcriptional regulator	2.19	1.1E-18		
PA5403		probable transcriptional regulator	1.70	1.1E-03		
PA5484	kinB	two-component sensor			1.10	6.5E-03
PA5499	zur	zinc uptake regulator	2.27	6.3E-06		
Motility a	nd rela	ated genes				
PA0396	pilU	twitching motility protein			-1.12	3.6E-03
PA0408	pilG	twitching motility protein			-1.33	4.9E-02
PA0411	pilJ	twitching motility protein			-1.32	1.6E-04
PA0413	chpA	component of chemotactic signal transduction system			-1.17	2.3E-05
PA0415	chpC	probable chemotaxis protein	-1.56	3.3E-06		
PA1083	flgH	flagellar L-ring protein precursor			1.12	4.9E-02
PA1088		hypothetical protein			1.09	1.9E-02
PA1100	fliE	flagellar hook-basal body complex protein	-1.55	1.6E-06		
PA1442		conserved hypothetical protein	-1.52	1.0E-09		
PA1445	fliO	flagellar protein			-1.05	3.6E-02
PA1461	motD	flagellar motor protein			1.11	1.3E-02
PA4525	pilA	type 4 fimbrial precursor	-2.86	7.2E-24		
PA4527	pilC	still frameshift type 4 fimbrial biogenesis protein (putative pseudogene)			-1.09	6.1E-03
PA4552	pilW	type 4 fimbrial biogenesis protein			-1.09	4.8E-02
PA4554	pilY1	type 4 fimbrial biogenesis protein			-1.15	4.9E-02
PA5043	pilN	type 4 fimbrial biogenesis protein			1.38	9.1E-03
Multidru	g efflux	and LPS modification				
PA2494	mexF	RND multidrug efflux transporter	1.66	2.7E-02		
PA2525	ортВ	outer membrane efflux protein			1.67	3.0E-02
PA2528	muxA	probable RND efflux membrane fusion protein			-1.10	6.5E-03
PA3522	mexQ	efflux pump membrane transporter	-1.63	1.8E-02		
PA3676	<i>mexK</i>	probable RND efflux transporter			1.12	4.6E-02
PA4205	mexG	hypothetical protein			1.24	1.2E-03
PA4206	mexH	probable RND efflux membrane fusion protein				3.4E-02

Locus	Name	Product Name	RN	A Seq	Prot	eomics
Tag	Ivanie	r rouuet maine	FC	padj	FC	р
		precursor				
PA4374	mexV	RND multidrug efflux membrane fusion protein	2.89	2.2E-18	1.11	2.8E-02
PA3552	arnB	UDP-4-amino-4-deoxy-L-arabinose	2.06	1.8E-04		
1 A3332	umb	oxoglutarate aminotransferase	2.00	1.0L-04		
PA3553	arnC	undecaprenyl-phosphate 4-deoxy-4-formamido- L-arabinose transferase	2.48	3.1E-08		
PA3554	arnA	bifunctional polymyxin resistance protein	1.61	9.4E-03		
PA3556	arnT	inner membrane L-Ara4N transferase	1.71	1.5E-03		
PA3558	arnF	probable 4-amino-4-deoxy-L-arabinose- phosphoundecaprenol flippase subunit	2.45	1.0E-05		
PA3559		probable nucleotide sugar dehydrogenase	1.97	3.8E-04		
DNA synt	thesis					
PA0143	nuh	purine nucleosidase			-1.09	5.9E-03
PA0196	pntB	pyridine nucleotide transhydrogenase, beta subunit			1.10	4.8E-02
PA0342	thyA	thymidylate synthase			-1.05	3.5E-02
PA0357	<i>mutM</i>	formamidopyrimidine-DNA glycosylase			-1.11	1.5E-02
PA0441	dht	dihydropyrimidinase	2.10	1.9E-02		
PA0582	folB	dihydroneopterin aldolase	-2.32	5.3E-13		
PA3438	folE1	GTP cyclohydrolase I precursor			-1.20	4.3E-03
PA3640	dnaE	DNA polymerase III, alpha chain			-1.08	3.0E-02
PA4645		probable purine/pyrimidine phosphoribosyl transferase			-1.11	6.1E-04
PA4946	mutL	DNA mismatch repair protein			-1.07	2.9E-02
PA4964	parC	topoisomerase IV subunit A			-1.12	2.8E-03
PA4967	parE	topoisomerase IV subunit B			-1.10	7.9E-04
PA5345	recG	ATP-dependent DNA helicase			-1.14	2.4E-03
PA5443	uvrD	DNA helicase II			-1.11	2.3E-02
PA5493	polA	DNA polymerase I			-1.08	1.5E-03
PA5541	<i>pyrQ</i>	dihydroorotase	6.74	7.7E-04		
Virulence	e factor	s				
PA0071	tagR1	FGE-sulfatase domain-containing protein			1.13	4.6E-02
PA0075	pppA	serine/threonine protein phosphatase			1.17	1.8E-02
PA0077	icmF1	type VI secretion protein			1.15	2.2E-02
PA0078	tssL1	type VI secretion system protein			1.19	1.6E-02
PA0079	tssK1	type VI secretion protein			1.18	2.4E-02
PA0081	fhal	type VI secretion protein	1.51	9.1E-11		
PA0082	tssA1	type VI secretion protein			1.39	6.8E-03
PA1694	pscQ	translocation protein in type III secretion	-2.28	1.2E-03		
PA1700	pcr2	type III secretion chaperone	-3.32	9.0E-03		
PA1703	pcrD	type III secretory apparatus protein	-1.59	2.0E-06		
PA1706	pcrV	type III secretion protein	-1.61	9.4E-04		

Locus	Name	Product Name	RN	A Seq	Prot	teomics
Tag	manne	Froduct Name	FC	padj	FC	р
PA1708	popB	translocator protein	-2.16	8.9E-11		
PA1709	popD	translocator outer membrane protein precursor	-1.79	1.5E-06		
PA1710	exsC	exoenzyme S synthesis protein C precursor.	-1.73	2.4E-08		
PA1712	exsB	exoenzyme S synthesis protein B	-1.76	3.1E-10		
PA1715	pscB	type III export apparatus protein		3.2E-04		
PA1717	pscD	type III export protein	-2.22	9.0E-05		
PA1719	pscF	type III export protein	-1.59	3.0E-03		
PA1720	pscG	type III export protein	-1.71	6.4E-03		
PA1722	pscI	type III export protein	-2.15	3.5E-04		
PA1723	pscJ	type III export protein	-1.74	4.1E-06		
PA2191	exoY	adenylate cyclase	-2.04	6.6E-07		
PA2231	pslA	undecaprenyl-phosphate glucose phosphotransferase			1.21	3.2E-02
PA2232	pslB	mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase			1.19	3.2E-02
PA2238	pslH	glycosyl transferase			1.12	4.0E-02
PA2244	pslN	hypothetical protein	1.68	8.8E-03		
PA3841	exoS	exoenzyme S	-1.53	5.3E-06		
Cell divis	ion	<u>_</u>				•
PA0373	ftsY	signal recognition particle receptor			-1.07	2.0E-02
PA1528	zipA	cell division protein			1.07	3.3E-02
PA3243	minC	cell division inhibitor			-1.05	1.9E-02
PA3245	minE	cell division topological specificity factor	-1.73	3.9E-20		
PA4003	pbpA	penicillin-binding protein 2			-1.04	5.0E-02
PA4020	mpl	UDP-N-acetylmuramate:L-alanyl-gamma-D- glutamyl-meso-diaminopimelate ligase			-1.11	3.2E-03
PA4407	ftsZ	cell division protein			1.14	2.0E-02
PA4408	ftsA	cell division protein			1.10	7.4E-03
PA4411	murC	UDP-N-acetylmuramatealanine ligase			1.12	9.2E-04
PA4414	murD	UDP-N-acetylmuramoylalanineD-glutamate ligase			1.08	1.4E-02
PA4416	murF	UDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6- diaminopimelateD-alanyl-D-alanyl ligase			1.11	2.8E-02
PA4417	murE	UDP-N-acetylmuramoylalanyl-D-glutamate-2, 6- diaminopimelate ligase			1.09	1.1E-02
PA4418	ftsI	penicillin-binding protein 3			1.12	4.3E-02
PA5538	amiA	N-acetylmuramoyl-L-alanine amidase	4.63	4.7E-04		
PA5562	spoOJ	chromosome partitioning protein			1.08	6.2E-03
PA5563	soj	chromosome partitioning protein				3.9E-02
Iron and	v		1			
PA0470	fiuA	ferrichrome receptor	4.33	2.3E-23		

Locus	Name	Product Name		RNA Seq		Proteomics	
Tag	Ivame	Froduct Mame	FC	padj	FC	р	
PA3621	fdxA	ferredoxin I	-2.13	3.1E-09			
PA3812	iscA	probable iron-binding protein	-1.56	1.0E-08			
PA4235	ftnA	bacterial ferritin			1.11	7.1E-03	
PA4358	feoB	ferrous iron transport protein B	1.59	1.8E-02			
PA4655	hemH	ferrochelatase	1.57	8.1E-12			
PA4688	hitB	iron (III)-transport system permease			-1.07	2.7E-02	
PA4880		probable bacterioferritin	2.72	1.1E-10			
PA5500	znuC	zinc transport protein	2.34	9.5E-08			

These 27 regulatory factors that were altered only at the proteomic level included several global regulators including Fur, that regulates iron acquisition, metabolism, virulence and the response to toxic oxygen radicals (Hassett et al., 1996; Pasqua et al., 2017), RpoS, a stationary sigma factor involved in the stress response and antibiotic tolerance (Murakami et al., 2005; Suh et al., 1999), the two-component system PprAB, that regulates biofilm formation, drug susceptibility and virulence (de Bentzmann et al., 2012), PmpR, a regulator of the PQS QS system, T3SS, swarming and biofilm formation (Liang et al., 2008; Liang et al., 2012b), PsrA, a regulator of PQS, T3SS, antimicrobial peptide resistance, swarming and biofilm formation (Gooderham et al., 2008; Kojic et al., 2005; Shen et al., 2006; Wells et al., 2017), Vfr, a regulator of virulence factors and homolog of the *E. coli* catabolite repressor protein (Fuchs et al., 2010; Rojo, 2010; Suh et al., 2015), PilS, a two-component sensor that regulates both twitching and swimming motilities (Kilmury & Burrows, 2018), and KinB, a two-component sensor that regulates alginate production, virulence, and motility (Chand et al., 2012; Damron et al., 2012; Damron et al., 2009). Other regulators not unique to the proteome included *algR*, *cbrB*, *glnK*, *ntrB*, *phoP*, *pmrB*, *pvdS*, *rsaL* and *sbrIR* (Table 5-1).

Comparison of the RNA-Seq and proteomics data revealed an overlap of 50 genes/proteins (Figure A2), indicative of significant post-transcriptional modulation. Nevertheless, genes within the same operon were often regulated in the same direction in both RNA-Seq and proteomics (Table 5-1), suggesting there may be more similarities between the two data sets than immediately evident.

5.6 Pili and flagellar genes were dysregulated in the PA2952.1 overexpression strain

Overexpression of PA2952.1 led to partial reductions in both swarming and swimming motilities (Figure 5-2). Motility genes dysregulated in the RNA-Seq and proteomics could explain this effect (Table 5-1). Pili genes were generally downregulated, including *pilAC*, *pilW*, *pilY1*,

pilUGJ and the accompanying chemotactic genes *chpAC* (Table 5-1). The type IV pilus plays a role in swarming motility in *P. aeruginosa* (Köhler et al., 2000), and mutants in *pilC*, *pilJ*, *pilW* and *pilY1* all have deficient swarming ability (Yeung et al., 2009). Flagellar genes were also dysregulated, and the downregulated *fliE*, *fliO* and PA1442 could contribute to decreases in both swarming and swimming motilities (Table 5-1). Other genes required for swarming that were downregulated in the PA2952.1 overexpression strain, were PA0591, PA0837 (*slyD*), PA0894, PA1827, PA2023 (*galU*), PA2445, PA2630, PA3091, PA3386, PA4005, PA4505, PA4616, PA4775 (*greA*), PA4778 (*cueR*), PA4851, PA5078 (*opgG*), PA5134 (*ctpA*), PA5232, PA5315 (*rpmG*), and PA5345 (*recG*); collectively these could have exerted a multigenic influence to decrease swarming.

5.7 Upregulation of *mexGHI-opmD* and the *arn* operon might lead to aminoglycoside resistance in the PA2952.1 overexpression strain

Related to the aminoglycoside resistance phenotype (Figure 5-5A), efflux proteins MexGH demonstrated increased abundance in the proteome (Table 5-1), while qRT-PCR revealed a modest upregulation of the entire operon (Table 5-2). The *mexGHI-opmD* efflux pump was previously shown to be involved in aminoglycoside efflux (Aendekerk et al., 2005). Similarly, MexS, a negative regulator of efflux (Uwate et al., 2013), had decreased abundance in the proteome (Table 5-2).

Table 5-2. The *mexGHI-opmD* operon was modestly upregulated in the PA2952.1 overexpression strain when compared to WT EV by qRT-PCR. Bacteria were harvested from BM2 glycerol swarm plates with 1% arabinose and 0.1% CAA. n = 3.

Gene	Fold change
mexG	1.7 ± 0.2
mexH	1.7 ± 0.2
mexI	1.8 ± 0.3
opmD	1.8 ± 0.5

A dysregulation of LPS biosynthetic genes was also observed (Table A2), and this might be important due to the role of LPS in self-promoted uptake of aminoglycosides and swarmingdependent adaptive resistance to tobramycin (Chapter 3). In addition, *arnBCATF* were upregulated (Table 5-1). These genes are involved in the aminoarabinosylation of LPS to a more positively charged form, resulting in resistance to both aminoglycosides and cationic antimicrobial peptides (Breidenstein et al., 2011). The *arn* operon is regulated by several different two-component systems; in this case the PmrAB system may be implicated (Barrow & Kwon, 2009), since *pmrB* was also upregulated (Table 5-1). Furthermore, 40 ribosomal and related genes were modestly downregulated (Table A2), which may also be a contributing factor, since the ribosome is the target of aminoglycosides.

5.8 DNA biosynthetic pathways were dysregulated

Genes involved in DNA synthesis, including those involved in pyrimidine metabolism, were dysregulated (Table 5-1). These genes were generally mildly downregulated, with the exception of *pntB*, *dht*, and *pyrQ* that were upregulated (Table 5-1). This could contribute to the increased susceptibility to trimethoprim observed in the PA2952.1 overexpression strain (Figure 5-5B), since trimethoprim inhibits the enzyme dihydrofolate reductase, causing a decrease in the levels of tetrahydrofolate (Sangurdekar et al., 2011). Tetrahydrofolate plays a role as a carbon donor in nucleic acid and amino acid biosynthesis, importantly also enabling production of the nucleotide thymidylate (Sangurdekar et al., 2011). Therefore if DNA synthesis was already partly inhibited (Table 5-1), adding trimethoprim could further sensitize the cells.

5.9 Virulence, cell division, and metal uptake pathways were dysregulated

Although significant differences were only observed in cytotoxicity of the overexpression strain in the absence of arabinose (Figure 5-3A), numerous virulence factors were dysregulated. Genes in T6SS and T1SS were dysregulated, while the T3SS, including its regulators, *exsD* and *pcrH*, and effectors, *exoY* and *exoS*, were all downregulated (Table 5-1 and Table A2). Similarly a repressor of T3SS, *ptrC*, was upregulated (Table 5-1) (Jin et al., 2011). Additionally, phenazine, psl and pyoverdine genes were generally upregulated, except for *phzG1*, and three alginate biosynthetic genes were dysregulated (Table 5-1 and Table A2). Interestingly, *algR*, *pvdS* and *ppyR*, regulators of alginate, pyoverdine and psl, were also upregulated (Attila et al., 2008; Hunt et al., 2002; Okkotsu et al., 2013).

Genes involved in cell division also showed a mild dysregulation, particularly at the protein level (Table 5-1). Interestingly, genes involved in iron, zinc and copper acquisition were also dysregulated, including the regulators *fur*, *zur* and *cueR* (Table 5-1).

5.10 In silico sRNA target prediction

The three tools IntaRNA2, RNAPredator and TargetRNA2 were used to predict sRNA targets (Table A10). Of the fourteen predicted targets, four were validated *in vitro*, showing changes in either transcript or protein abundance (Table 5-3). This included the methionine aminopeptidase *map*, the tRNA methyltransferase *trmU*, the probable TetR type transcriptional regulator PA0828 and PA2459 (Table 5-3).

Table 5-3. sRNA targets predicted *in silico* that were confirmed for PA2952.1 by RNA-Seq or proteomics as well as their FC, p-values (padj/p) and predictive methods.

Locus	Name	Product Name	RN	A-Seq	Proteomics		Predicted by
Tag	Maine	r rouuct maine	FC	padj	FC	р	r reulcieu by
PA0828		probable transcriptional	2.01	2.0E-02			RNAPredator,
F A0626		regulator	-2.01	2.0E-02			TargetRNA2
PA2459		hypothetical protein	1 97	6.2E-04			RNAPredator,
FA2439		nypometical protein	-1.07	0.2E-04			TargetRNA2
PA2626	trmU	tRNA methyltransferase			-1.05	2.4E-02	IntaRNA2, RNAPredator
PA3657	man	methionine			1 1 2	2 6E 02	IntaRNA2, RNAPredator
I A3037	тар	aminopeptidase			1.12 5.0E-05	intaixinA2, iXINAFICUATOI	

5.11 Comparison of PA2952.1 omics data with previous datasets

To look for consistent themes, the differentially expressed RNA-Seq and proteomics datasets from the PA2952.1 overexpressing strain compared to those for the empty vector were compared with the above-described datasets.

5.11.1 Comparison with swarm vs. swim RNA-Seq

Comparison of RNA-Seq from swarm vs. swim with differentially expressed genes from the PA2952.1 overexpressing strain, showed an overlap of 288 genes (Figure A2). There were some similarities in the datasets, since 220 genes were regulated in the same direction in both datasets; whereas only 68 genes were oppositely regulated (Figure A3). Similarly-regulated genes included those encoding ribosomal proteins, pyoverdine biosynthesis enzymes, and regulators such as AlgR, FoxR, PhoP, PtrC, PpyR, PvdS, and SbrR.

5.11.2 Comparison of RNA-Seq and proteomics data for the PA0805.1 and PA2952.1 overexpressing strains

Although dozens to hundreds of unique genes and proteins were identified, comparison of the PA0805.1 and PA2952.1 overexpression strains omics datasets revealed striking commonalities (Figure A2, Figure A3). The PA0805.1-overexpression vs. PA2952.1-overexpression proteomics comparison was the most similar, with all of the common 363 commonly dysregulated proteins showing the same direction of regulation. Comparison of the two RNA-Seq experiments for the PA0805.1 and PA2952.1 overexpression strains also revealed considerable similarities, with 220 of the 258 commonly dysregulated genes showing the same direction of regulation. This indicates that while there were many unique genes and proteins, there were also prominent commonalities between PA0805.1 and PA2952.1, suggesting there was a relationship between the effects mediated by the two sRNAs.

5.12 Discussion

Here I probed the role of sRNAs in motility and other adaptive processes. A total of 21 constructs were made featuring sRNAs dysregulated during swarming or biofilm formation and functions were identified for five of these (including PA0805.1) when cloned to enable overexpression, since this enhances the known inhibitory functions of sRNAs. In contrast, in this study, no phenotypes were observed for the overexpression of *rsmY*. This may be due to redundancy with *rsmZ*; for instance, when *rsmY* was overexpressed, *rsmZ* could have been downregulated to cancel out any effects (Kay et al., 2006). I also did not observe a phenotype for *srbA*, but this may be because the sRNA was overexpressed rather than deleted.

Two of these sRNAs, *prrH* and PA2952.1, are related by an interconnection with Fur, the ferric uptake regulator, a transcriptional repressor that can also function as an activator (Wilderman et al., 2004). Under iron-depleted conditions, the expression of *prrH* is highly induced (Wilderman et al., 2004), while it is 163-fold upregulated under swarming conditions (Gill et al., 2018). Results presented here indicated that *prrH* was involved in both cytotoxicity (Figure 5-3B) and the production of pyoverdine (Figure 5-4), and that overexpression of *prrH* led to a reduction in swimming motility (Figure 5-2). Similarly, in the PA2952.1 overexpression strain, Fur had increased abundance in the proteome, iron acquisition and virulence factors were dysregulated, and swimming motility was decreased to a similar extent (Table 5-1, Figure 5-2).

Other interesting regulators with altered abundance in the PA2952.1 overexpression strain included AlgR, a regulator of alginate, swarming, twitching and rhamnolipid production (Okkotsu et al., 2013), GlnK and NtrB, two regulators of nitrogen metabolism, PhoP, a two-component sensor involved in antimicrobial resistance and virulence (Gellatly et al., 2012; Macfarlene et al., 2000), PvdS, a sigma factor controlled by Fur that regulates pyoverdine and exotoxin A (Hunt et al., 2002), RsaL, a regulator of QS and virulence (De Kievit et al., 1999; Lee & Zhang, 2014), and SbrIR, a sigma-anti-sigma factor pair that controls swarming motility and biofilm formation (McGuffie et al., 2016) (Table 5-1).

Upon overexpression of the sRNA PA2952.1, hundreds of genes and proteins showed significant changes in abundance (Table A2), accompanied by several phenotypic differences (Figure 5-2, Figure 5-5A and B) indicating that this has the hallmarks of a global regulatory system. A model was proposed to account for this surprisingly large amount of dysregulation (Figure 5-6). In a hierarchical fashion, overexpression of PA2952.1 directly or indirectly led to alterations in 82 regulatory factors, which then in turn influenced the expression of downstream genes (Figure 5-6).

For example, AlgR that was affected by PA2952.1 could in turn influence alginate, ExsD, PcrH and PtrC influence T3SS, Fur influence iron uptake, PilS influence type IV pili and flagella, PmrB influence the *arn* operon, and PvdS and PpyR influence pyoverdine and psl biosynthesis (Figure 5-6). This might also influence additional downstream genes without an obvious regulator, or genes with multiple potential regulators, and further experimentation would be required to determine the exact pathway. Downregulation of pili and certain flagellar genes, as well as genes required for swarming, would then lead to decreases in swarming and swimming motilities, upregulation of *mexGHI-opmD* and the *arn* operon to mediate aminoglycoside resistance, and downregulation of certain genes involved in DNA synthesis to influence trimethoprim susceptibility. Overall, this highlights a potential key role for the sRNA PA2952.1 in modulating gene expression and controlling bacterial lifestyles, and demonstrates that predictive programs that usually indicate a very modest number of target genes have the potential to dramatically underestimate actual targets.

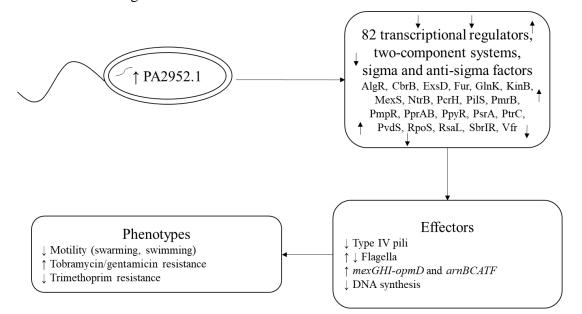


Figure 5-6. Proposed model for how the overexpression of PA2952.1 dysregulates many genes, resulting in altered phenotypes. Connecting arrows represent direct or indirect regulation.

Chapter 6: The role of swarming in vivo

6.1 Introduction

Standard drug testing and development is typically performed using planktonic bacterial cultures. While convenient and standardized, the planktonic, rapidly-dividing bacterium is not necessarily reflective of the growth state *in vivo*. Biofilms, for example, are associated with two-thirds of all infections (Boisvert et al., 2016). Bacteria may also exist as motile surface-associated communities within the host; therefore drug development and treatment strategies may be better informed by considering alternative growth states. Indeed, some recent research has focused on the use of peptides to specifically target biofilms (Pletzer et al., 2016), and these compounds show efficacy in treating recalcitrant abscess infections *in vivo* (Pletzer et al., 2018).

It is interesting to consider whether compounds that specifically target swarming motility (or target both swarming and biofilms) may also exist, and whether the use of such compounds could help to prevent the dissemination of bacteria *in vivo*. Peptide 1037, a derivative of the human cathelicidin LL-37, was already shown to inhibit swarming motility, as well as biofilm formation (de la Fuente-Núñez et al., 2012). Peptide 1018, a cationic peptide derived from bactenecin (de la Fuente-Núñez et al., 2016), was previously shown to act against biofilms at low concentrations (de la Fuente-Núñez et al., 2014), as well as having beneficial immunomodulatory effects (Achtman et al., 2012; Rivas-Santiago et al., 2013; Wieczorek et al., 2010). Therefore, the effect of 1018 on swarming motility was investigated in greater detail.

Swarming tends to correlate with other bacterial behaviours such as biofilm formation (Caiazza et al., 2007). In addition, the flagella also powers swimming motility, whereas the type IV pilus is also used for twitching; thus, there are also overlaps between these three forms of motility. It was therefore necessary to find a mutant specific for swarming motility so that the effects of other behaviours could be ruled out in an *in vivo* model.

6.2 The host defense peptide 1018 specifically inhibited swarming motility

In contrast to the resistance of swarming cells to most tested antibiotic classes (Chapter 3), swarming motility was inhibited at low concentrations of the host defense peptide 1018 (Figure 6-1). This effect appeared to be specific to swarming motility, since swimming and twitching were unaffected at the same concentrations of 1018 (up to $20 \mu g/ml$).

PA14 WT 1018 treatment

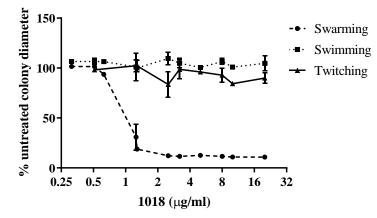
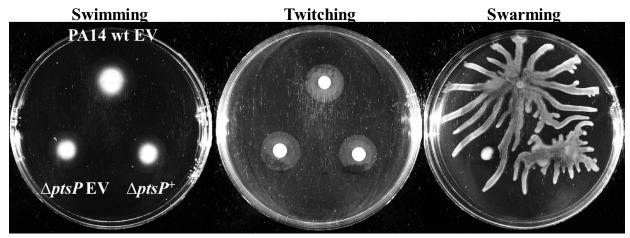


Figure 6-1. Peptide 1018 specifically inhibited swarming motility. $n \ge 3$.

6.3 Screen of swarming-deficient mutants

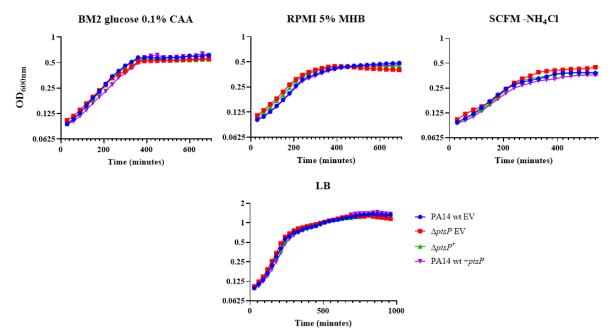
Next, I sought to find a mutant that would reflect the specificity of 1018 treatment (inhibited swarming but not swimming or twitching). The 233 previously-identified PA14 transposon insertion mutants (Yeung et al., 2009) were initially screened for swarming and swimming motility in BM2 glucose (swarming: 0.5% agar and 0.1% CAA; swimming: 0.25% agar and 7 mM (NH₄)₂SO₄). A list of initial candidates was then generated using cutoffs of less than 50% WT swarming and greater than 70% WT swimming. These mutants were then screened for other relevant phenotypes including twitching, biofilm formation, and cytotoxicity (Table 6-1).

Amongst these mutants, twitching motility generally did not vary from WT, but biofilm formation was often either decreased or increased. Cytotoxicity tended to be modestly decreased in these mutants, which may correlate with the observation that swarm cells overexpress virulence factors (Chapter 3). Moving forward, the mutant in *ptsP* was selected as the best candidate.


Table 6-1. Candidate swarming-deficient mutants. Numbers shown are percent of WT. Numbers shown in **bold** are less than 70% of WT or significantly greater than 100% of WT. The allele numbers 1553 and 1946 designate the position (bp) of the transposon insertion for the two *ptsP* mutants. $n \ge 3$.

Tn mutant	Function	Swarm	Swim	Twitch	Biofilm	Cytotox- icity
dsbM	protein-disulfide isomerase	2.2±0.4	78.6 ± 5.7	83.0±11.8	285.4±19	103.3 ± 6.5
ybeB	conserved hypothetical protein	2.9±1.0	82.1±8.2	34.2±2.9	22.7±3.5	49.8±5.3
epd	D-erythrose 4-phosphate dehydrogenase	3.1±1.7	101.3±3.3	101.0±2.0	212.5±20	78.5±11.1
ampG	permease for AmpC beta- lactamase expression	7.7±0.9	99.6±2.9	104.7±7.8	29.0±3.8	3.0±1.0

Tn mutant	Function	Swarm	Swim	Twitch	Biofilm	Cytotox- icity
ptsP (1553)	phosphoenolpyruvate-protein phosphotransferase	10.4±1.1	86.0±4.6	107.3±13. 9	82.2±3.8	57.9±4.2
PA14_590 60	hypothetical protein	11.1±4.0	95.7±6.2	77.6±7.1	99.1±10.3	13.1±5.3
ptsP (1946)	phosphoenolpyruvate-protein phosphotransferase	11.9±1.2	76.6±3.8	108.3±5.9	75.1±4.4	59.4±5.8
PA14_171 60	intergenic PA14_17150- 17170	18.0±2.0	97.2±2.9	79.6±1.6	30.9±8.6	63.2±4.7
miaA	tRNA delta(2)- isopentenylpyrophosphate transferase	28.7±1.8	92.6±2.5	53.7±6.5	73.4±6.7	13.1±5.9
surE	stationary phase survival protein	34.6±3.1	89.4±6.5	89.0±6.7	86.1±6.4	58.4±8.8


6.4 A mutant in *ptsP* was specifically inhibited for swarming motility

A deletion mutant $\Delta ptsP$ was generated and complemented. Motility assays confirmed that the mutant had greatly reduced swarming motility, but relatively normal levels of swimming and twitching (Figure 6-2). The complemented strain $\Delta ptsP^+$ had substantially restored swarming motility and normal levels of swimming and twitching.

Figure 6-2. The $\Delta ptsP$ **mutant had deficient swarming ability** but relatively normal swimming and twitching motility. $n \ge 3$.

To confirm that the $\Delta ptsP$ mutant had no growth deficiencies, growth curves were performed in four different media: liquid swarming media (BM2 glucose), LB, and two host-like media, SCFM and RPMI. In these four media, the $\Delta ptsP$ mutant grew no differently from WT (Figure 6-3).

Figure 6-3. Growth curves for the $\Delta ptsP$ mutant in four different media. n = 3.

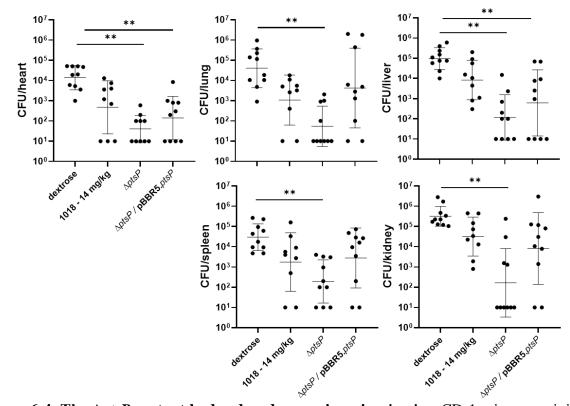
To confirm that *ptsP* had no effect on the production of virulence factors, qRT-PCR was performed on the $\Delta ptsP$ mutant. No significant dysregulation was observed for *aprA* (the T1SS alkaline metalloproteinase), *lasA* (T2SS cytotoxic protease), *pchF* (pyochelin synthetase), *pcrG* (a regulator in T3SS), *rhlR* (QS regulator) or *vfr* (regulator of virulence factors) (Table 6-2). As expected, *ptsP* was strongly downregulated in the $\Delta ptsP$ mutant, and somewhat overexpressed in the complemented $\Delta ptsP^+$ strain. Cytotoxicity was also investigated, and although the cytotoxicity of $\Delta ptsP$ was significantly decreased compared to WT, this amounted to a minor difference (~0.15 absorbance values) that was partially restored by complementation (Figure A8). In any case, the swarming phenotype (Figure 6-2) was much more dramatic than the cytotoxicity phenotype.

Table 6-2. Virulence factors were not dysregulated in the $\Delta ptsP$ mutant. n = 3.

Gene	$\Delta ptsP$ EV vs. WT EV	$\Delta ptsP^+$ vs. WT EV
aprA	-1.6 ± 0.2	1.0 ± 0.3
lasA	1.6 ± 1.0	3.8 ± 1.5
pchF	1.1 ± 0.2	1.4 ± 0.4
ptsP	-413.7 ± 124.0	23.6 ± 11.9
pcrG	1.1 ± 0.3	-1.5 ± 0.3
rhlR	-1.5 ± 0.1	-1.1 ± 0.1
vfr	-1.3 ± 0.0	-1.4 ± 0.2

6.5 The swarming-deficient mutant $\Delta ptsP$ had reduced virulence *in vivo*

Having confirmed that the mutant $\Delta ptsP$ was specifically deficient for swarming motility, we sought to test the mutant *in vivo* in the cutaneous abscess model, to determine whether the lack


of swarming had an effect on virulence. Mutant and complemented strains (2.5 x 10^7 CFU) were injected subdermally into the back of mice, and after incubation overnight, mice were sacrificed and internal organs were harvested and plated for CFUs. The wild type was widely disseminated amongst the organs (heart, kidney, liver, lung, and spleen) (Figure 6-4). In contrast, far fewer CFU/organ were recovered for the $\Delta ptsP$ mutant, which could be due to its deficiency in swarming motility. On average, more CFU/organ were recovered for the complemented strain $\Delta ptsP^+$ than the mutant $\Delta ptsP$, although the difference did not always reach statistical significance. Mice treated with 1018 had an intermediate level of CFU/organ recovered, showing that 1018 was able to reduce dissemination in the host.

6.6 Discussion

In this study, the $\Delta ptsP$ mutant was shown to have greatly reduced swarming ability, and organ invasion *in vivo*, while maintaining normal levels of swimming and twitching. PtsP is a phosphoenolpyruvate-protein phosphotransferase involved in the regulation of carbon and nitrogen metabolism. The equivalent of enzyme I Ntr (EI^{Ntr}), PtsP is a cytoplasmic enzyme involved in a phosphorelay that regulates carbon and nitrogen source utilization (Higa & Edelstein, 2001; Reizer et al., 1999; Velázquez et al., 2007). PtsP has an N-terminal GAF sensor domain and is thought to function primarily as a regulator rather than directly participating in the phosphorylation (or translocation) of carbohydrates (Mavrodi et al., 2006; Reizer et al., 1999). The *ptsP* mutant has been identified in several screens for virulence factors in plants (Mavrodi et al., 2006; Rahme et al., 2016, 2019), *C. elegans* (Feinbaum et al., 2012; Tan et al., 1999) and mammals (Higa & Edelstein, 2001), although little is known about why *ptsP* is a virulence factor. I suggest here it may be due to the swarming deficiency of the $\Delta ptsP$ mutant.

The $\Delta ptsP$ mutant was substantially but incompletely complemented by reintroducing *ptsP* on a plasmid. There might be valid reasons for the lack of full complementation; in this case it is possible that *ptsP* was expressed too highly in the $\Delta ptsP^+$ strain (Table 6-2), and that overexpression of this gene actually inhibits swarming. Furthermore, *ptsP* is part of a three-gene operon between *rppH* and PA0388, and the lack of the other two genes on the complementation plasmid may reflect a requirement for the complete operon for full restoration of wild type phenotype.

A question for future exploration is why *ptsP* is required for swarming. Since it is possible the $\Delta ptsP$ mutant may have deficient levels of certain metabolites, attempts were made to restore swarming of the $\Delta ptsP$ mutant by adding carbon sources such as pyruvate or citrate. Addition of

Figure 6-4. The $\Delta ptsP$ mutant had reduced organ invasion *in vivo*. CD-1 mice were injected with 2.5 x 10⁷ CFU to form a cutaneous abscess. After 16-18 h, organs were harvested, homogenized and plated for CFU counting.

pyruvate enhanced swarming of both wild type and the mutant; whereas citrate inhibited wild type swarming at concentrations greater than 25 mM (data not shown); therefore firm conclusions could not be drawn. It may be that the strong dependency of swarming on medium components such as carbon and nitrogen sources affected the ability of the $\Delta ptsP$ mutant to swarm since its lack would impact on the sugars that can be readily metabolized by *Pseudomonas*. There may be other more subtle consequences, since e.g. *ptsP* in *P. putida* affects production of polyhydroxyalkanoates (Velázquez et al., 2007) that are precursors of rhamnolipid (Déziel et al., 2003).

In conclusion, peptide 1018 inhibited swarming motility at low concentrations that had no effect on swimming or twitching. A corresponding mutant $\Delta ptsP$ was found by phenotypic screening that was also specifically inhibited for swarming, but not swimming or twitching. Testing of $\Delta ptsP$ in vivo revealed a greatly reduced organ invasion by this mutant. This indicates that swarming may play a role in bacterial dissemination *in vivo*.

Chapter 7: Conclusion

7.1 Summary of thesis work

Here I have shown that swarming motility in the opportunistic pathogen *P. aeruginosa* is a distinct and complex adaptation. RNA-Seq comparing the transcriptome of swarming vs. swimming cells revealed that swarming cells overexpress numerous virulence and iron acquisition factors, while modestly downregulating ribosomal proteins (total 1,581 DE genes) (Chapter 3). Antibiotic susceptibility testing showed that swarming bacteria were also adaptively resistant to many antibiotic classes, including aminoglycosides, β-lactams, macrolides, chloramphenicol, ciprofloxacin, tetracycline and trimethoprim. An exception to this was the lipopeptide polymyxin B, to which swarming cells were not resistant. I focused on the aminoglycoside tobramycin and performed mutant screens, discovering that mutants in the LPS biosynthetic gene wbpW and phage-related pyocins and their regulator *prtN* were resistant to tobramycin under swarming conditions. Membrane permeability assays confirmed that the mutant in wbpW had reduced membrane permeabilization to tobramycin. In total, I found 41 mutants that were resistant to tobramycin under swarming conditions, indicating that swarming-mediated antibiotic resistance is a multigenic phenomenon. I also treated swarming cells with subinhibitory tobramycin and used RNA-Seq to discover that the multidrug efflux pump MexXY was upregulated. To date, this is the first time that efflux has been demonstrated as a mechanism of resistance for swarming cells, since previous mutant studies failed to find an association, possibly due to the presence of redundant efflux systems (Lai et al., 2009). This study also advances the field by employing RNA-Seq to more accurately describe the transcriptome of swarming cells, including 104 dysregulated regulatory factors and the genes corresponding to the 41 mutants that were resistant to tobramycin under swarming conditions, whereas relatively little was previously known concerning specific mechanisms of antibiotic resistance in swarming cells.

Similar to polymyxin B, I found that swarm cells displayed susceptibility to the cationic peptide 1018 (Chapter 6). Tendril formation was completely inhibited at concentrations greater than 2 µg/ml, while swimming and twitching proceeded normally up to 20 µg/ml. This suggests that 1018 may have specific anti-swarming properties and could be used to target swarming cells in cases where antibiotics may be less effective. To investigate this further, I identified a swarming-specific mutant in *ptsP*. *In vivo* testing in an acute murine infection model revealed that 1018 treatment reduced bacterial dissemination in internal organs, and the $\Delta ptsP$ mutant was recovered at even lower rates from organs. This is an interesting finding in the field of swarming motility,

since to date little has been done to directly investigate the role of swarming in vivo.

To learn more about the regulation of swarming motility, in addition to transcriptional regulators, I studied sRNAs dysregulated under swarming conditions by overexpressing them and screening for phenotypes (Chapters 4 and 5). The screens revealed a strain overexpressing the sRNA, PA0805.1, that possessed numerous phenotypes, including reduced motility (swarming, swimming and twitching), and increased adherence, cytotoxicity and tobramycin resistance (Chapter 4). RNA-Seq and proteomics revealed broad transcriptomic and proteomic changes, including 118 regulatory factors, downregulated pilus genes, upregulated adherence and virulence factors, and upregulated multidrug efflux systems (total 1,121 DE genes and 925 DE proteins), suggestive of a hierarchical network. A deletion mutant Δ PA0805.1 was also constructed and was supersusceptible to tobramycin under swarming conditions.

Another sRNA overexpressing strain, PA2952.1, was studied and showed to have reductions in swarming and swimming but not twitching (Chapter 5). Overexpression of this sRNA also led to resistance to tobramycin and gentamicin, and supersusceptibility to trimethoprim. Transcriptomic and proteomic approaches uncovered 784 DE genes and 445 proteins with differential abundance. This included downregulated pili genes, dysregulated flagellar genes, upregulated multidrug efflux genes *mexGH*, upregulated LPS modification operon *arnBCATF*, and dysregulated DNA synthesis genes.

The large transcriptomes of the sRNAs PA0805.1 and PA2952.1 are relatively unprecedented for sRNAs (Chapters 4 and 5). The transcriptomes of mutants in the RNA-binding proteins Hfq and Rsm also indicate hundreds of differentially expressed genes (Romero et al., 2018; Sonnleitner et al., 2018), consistent with the conclusion that PA0805.1 and PA2952.1 might serve key regulatory functions in *P. aeruginosa*.

The sRNA *prrH* was also studied and shown to be involved in the production of the siderophore pyoverdine and cytotoxicity against HBE cells, a new addition to its previously described phenotypes (Chapter 5). In addition, overexpression of *prrH* led to reduced swimming motility. Two other sRNAs, PA14sr120 (a short version of PA0805.1) and PA1091.1b, were also shown to be involved in tobramycin resistance and trimethoprim susceptibility, respectively. These studies contribute to the field by providing phenotypic characterization of more than a dozen sRNAs, most of which were previously completely uncharacterized.

Therefore, swarming motility is a behaviour conferring antibiotic resistance (but inhibited by 1018) that is regulated by sRNAs and likely plays a role in invasiveness *in vivo*.

7.2 Applications

These studies provide insights into the reasons behind observations that standard antimicrobial susceptibility testing does not always accurately predict *in vivo* efficacy (Ersoy et al., 2017). It shows that bacteria may enter a state of reduced drug susceptibility due to their growth as multicellular communities, such as swarming colonies or as shown by others, biofilms. Research in this thesis shows that lipopeptides or cationic peptides may be more effective against swarming bacteria than other antimicrobial agents; in particular, peptide 1018 already shows promise as an anti-swarming agent. Efflux pump inhibitors in combination with other antimicrobial drugs (Wang et al., 2016) may be another potential venue for investigation, based on RNA-Seq results of subinhibitory tobramycin treatment, which showed that MexXY was upregulated. If swarm cells have decreased outer membrane permeability, then agents that increase membrane permeability may be useful as well (Vaara, 1992).

sRNAs also have potential applications as therapeutics, since they are relatively easy to synthesize and customize, and could be used to reverse specific drug resistance mechanisms (Chan et al., 2017; Di Noto et al., 2019). Potential delivery systems include nanoparticles, phages, extracellular vesicles, liposomes and the CRISPR-Cas system (Di Noto et al., 2019). sRNAs themselves, or a complementary RNA to silence the sRNA, may have use in modifying bacterial behaviour. Swarming and motility-inhibitory sRNAs could have benefits in acute infections, and PA2952.1 could be used in conjunction with trimethoprim, to which cells are sensitized. Conversely, an anti-sense version of PA0805.1 could be used to sequester PA0805.1, decrease expression of virulence factors, efflux pumps, and bacterial adhesion, leading to improved patient outcomes. Inhibiting *prrH* is another intriguing possibility, since bacteria may have difficulty surviving in the iron-depleted host environment without appropriate regulation of iron acquisition and utilization. In fact, mutants in Fur are conditionally essential (Pasqua et al., 2017), and decreased virulence could be another added benefit.

7.3 Future directions

In this study, resistome genes were mined from the literature and used in combination with RNA-Seq and qRT-PCR data to identify initial candidates. Future work could include a comprehensive mutant library screen, or a Tn-Seq (transposon sequencing) library screen, in order to determine if any other candidates may be present at a genome-wide scale. Tn-Seq would provide additional information about mutants that survived or were eliminated, and also the relative abundance or fitness of different mutants. Tn-Seq data could be compared back to data generated

in this thesis to provide additional support. This could be done on swarming colonies in the presence and absence of tobramycin. Luminescent reporter strains could also be constructed for key swarming regulators in order to assess expression *in vivo*.

Antimicrobial agents could be developed to specifically inhibit swarming motility by screening drugs in the swarming agar dilution assay, or this assay could be added as an additional step during drug screening and development to better inform on the response of bacteria grown under different conditions. The swarming assay can be modified to allow more high throughput methods, such as the 6 well format (Section 2.2.6), or a 96 well stamp on large square plates (Yeung et al., 2009). Such anti-swarming agents could then be tested alone or in combination with conventional antibiotics, to investigate potential synergistic effects.

The mechanism by which 1018 inhibits swarming motility is another question for further research. Some research has already been done to address this question, including a mutant library screen and RNA-Seq of 1018-treated swarming colonies (Wilkinson, 2018), but further in-depth characterization of mutants or Tn-Seq could provide more mechanistic detail. Likewise, the mechanism causing inhibition of swarming in the $\Delta ptsP$ mutant is unclear and could be addressed by further characterization of the mutant, possibly by RNA-Seq.

Further screening of sRNAs could be performed to find an ideal sRNA that would modify bacterial behaviour as desired. Computer modeling approaches could come into play, and predictions could be easily tested since nucleic acids are inexpensive to synthesize and easy to manipulate. In addition, combinations of sRNAs could be used to achieve a desired effect. It would be interesting to transform multiple sRNAs into one strain and overexpress them simultaneously to observe cumulative effects.

Further characterization of the sRNAs PA0805.1 and PA2952.1 could also clarify specific sRNA targets by experimental approaches such as (G)RIL-Seq (Han et al., 2016; Melamed et al., 2018), where sRNAs are ligated to target mRNAs and then sequenced. It seems likely that PA0805.1 and PA2952.1 would have many targets, given the extensive downstream effects, and it would clarify the mechanism to validate targets experimentally.

In conclusion, swarming motility in *P. aeruginosa* is intricately regulated by both transcriptional regulators and sRNAs to give rise to antibiotic resistance and virulence *in vivo*.

References

- Abdou, L., Chou, H. T., Haas, D., & Lu, C.-D. (2011). Promoter recognition and activation by the global response regulator CbrB in *Pseudomonas aeruginosa*. *Journal of Bacteriology*, *193*(11), 2784–2792. https://doi.org/10.1128/JB.00164-11
- Achtman, A. A. H., Pilat, S., Law, C. W. C., Lynn, D. J. D., Janot, L., Mayer, M. L. M., ... Schofield, L. (2012). Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria. *Science Translational Medicine*, 4(135), 135ra64. https://doi.org/10.1126/scitranslmed.3003515
- Aendekerk, S., Diggle, S. P., Song, Z., Høiby, N., Cornelis, P., Williams, P., & Cámara, M. (2005). The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in *Pseudomonas aeruginosa* via 4-quinolone-dependent cell-tocell communication. *Microbiology*, 151(4), 1113–1125. https://doi.org/10.1099/mic.0.27631-0
- Aires, J. R., Köhler, T., Nikaido, H., & Plésiat, P. (1999). Involvement of an active efflux system in the natural resistance of *Pseudomonas aeruginosa* to aminoglycosides. *Antimicrobial Agents and Chemotherapy*, 43(11), 2624–2628. https://doi.org/10.1128/AAC.43.11.2624
- Allsopp, L. P., Wood, T. E., Howard, S. A., Maggiorelli, F., Nolan, L. M., Wettstadt, S., & Filloux, A. (2017). RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in *Pseudomonas aeruginosa*. *Proceedings of the National Academy of Sciences of the United States of America*, 114(29), 7707–7712. https://doi.org/10.1073/pnas.1700286114
- Alvarez-Ortega, C., Wiegand, I., Olivares, J., Hancock, R. E. W., & Martínez, J. L. (2010). Genetic determinants involved in the susceptibility of *Pseudomonas aeruginosa* to β-lactam antibiotics. *Antimicrobial Agents and Chemotherapy*, 54(10), 4159–4167. https://doi.org/10.1128/AAC.00257-10
- An, M.-W., Mahajan-Miklos, S., & Ausubel, F. M. (1999). Killing of *Caenorhabditis elegans* by *Pseudomonas aeruginosa* used to model mammalian bacterial pathogenesis. *Proceedings of the National Academy of Sciences of the United States of America*, 96, 715–720. https://doi.org/10.1073/pnas.96.2.715
- Anyan, M. E., Amiri, A., Harvey, C. W., Tierra, G., Morales-Soto, N., Driscoll, C. M., ... Shrout, J. D. (2014). Type IV pili interactions promote intercellular association and moderate swarming of *Pseudomonas aeruginosa*. *Proceedings of the National Academy of Sciences of the United States of America*, 111(50), 18013–18018. https://doi.org/10.1073/pnas.1414661111
- Attila, C., Ueda, A., & Wood, T. K. (2008). PA2663 (PpyR) increases biofilm formation in *Pseudomonas aeruginosa* PAO1 through the *psl* operon and stimulates virulence and quorum-sensing phenotypes. *Applied Microbiology and Biotechnology*, 78(2), 293–307. https://doi.org/10.1007/s00253-007-1308-y
- Augustin, D. K., Song, Y., Baek, M. S., Sawa, Y., Singh, G., Taylor, B., ... Lynch, S. V. (2007). Presence or absence of lipopolysaccharide O antigens affects type III secretion by *Pseudomonas aeruginosa. Journal of Bacteriology*, 189(6), 2203–2209. https://doi.org/10.1128/JB.01839-06
- Baker, E. H., Clark, N., Brennan, A. L., Fisher, D. A., Gyi, K. M., Hodson, M. E., ... Wood, D. M. (2007). Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. *Journal of Applied Physiology*, *102*(5), 1969–1975. https://doi.org/10.1152/japplphysiol.01425.2006
- Barrow, K., & Kwon, D. H. (2009). Alterations in two-component regulatory systems of *phoPQ* and *pmrAB* are associated with polymyxin B resistance in clinical isolates of *Pseudomonas*

aeruginosa. Antimicrobial Agents and Chemotherapy, *53*(12), 5150–5154. https://doi.org/10.1128/AAC.00893-09

- Berni, B., Soscia, C., Djermoun, S., Ize, B., & Bleves, S. (2019). A type VI secretion system trans-kingdom effector is required for the delivery of a novel antibacterial toxin in *Pseudomonas aeruginosa. Frontiers in Microbiology*, 10, 1218. https://doi.org/10.3389/fmicb.2019.01218
- Bhagirath, A. Y., Li, Y., Somayajula, D., Dadashi, M., Badr, S., & Duan, K. (2016). Cystic fibrosis lung environment and *Pseudomonas aeruginosa* infection. *BMC Pulmonary Medicine*, 16, 174. https://doi.org/10.1186/s12890-016-0339-5
- Blanka, A., Schulz, S., Eckweiler, D., Franke, R., Bielecka, A., Nicolai, T., ... Häussler, S. (2014). Identification of the alternative sigma factor SigX regulon and its implications for *Pseudomonas aeruginosa* pathogenicity. *Journal of Bacteriology*, *196*(2), 345–356. https://doi.org/10.1128/JB.01034-13
- Boisvert, A. A., Cheng, M. P., Sheppard, D. C., & Nguyen, D. (2016). Microbial biofilms in pulmonary and critical care diseases. *Annals of the American Thoracic Society*, 13(9), 1615–1623. https://doi.org/10.1513/AnnalsATS.201603-194FR
- Brazas, M. D., Breidenstein, E. B. M., Overhage, J., & Hancock, R. E. W. (2007). Role of Lon, an ATP-dependent protease homolog, in resistance of *Pseudomonas aeruginosa* to ciprofloxacin. *Antimicrobial Agents and Chemotherapy*, 51(12), 4276–4283. https://doi.org/10.1128/AAC.00830-07
- Brazas, M. D., & Hancock, R. E. W. (2005). Ciprofloxacin induction of a susceptibility determinant in *Pseudomonas aeruginosa*. *Antimicrobial Agents and Chemotherapy*, 49(8), 3222–3227. https://doi.org/10.1128/AAC.49.8.3222
- Breidenstein, E. B. M., de la Fuente-Núñez, C., & Hancock, R. E. W. (2011). *Pseudomonas aeruginosa*: all roads lead to resistance. *Trends in Microbiology*, *19*(8), 419–426. https://doi.org/10.1016/j.tim.2011.04.005
- Breidenstein, E. B. M., Khaira, B. K., Wiegand, I., Overhage, J., & Hancock, R. E. W. (2008). Complex ciprofloxacin resistome revealed by screening a *Pseudomonas aeruginosa* mutant library for altered susceptibility. *Antimicrobial Agents and Chemotherapy*, 52(12), 4486– 4491. https://doi.org/10.1128/AAC.00222-08
- Britigan, B. E., Roeder, T. L., Rasmussen, G. T., Shasby, D. M., Mccormick, M. L., & Cox, C. D. (1992). Interaction of the *Pseudomonas aeruginosa* secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. *Journal of Clinical Investigation*, 90, 2187–2196. https://doi.org/10.1172/JCI116104
- Burrowes, E., Baysse, C., Adams, C., & O'Gara, F. (2006). Influence of the regulatory protein RsmA on cellular functions in *Pseudomonas aeruginosa* PAO1, as revealed by transcriptome analysis. *Microbiology*, 152(2), 405–418. https://doi.org/10.1099/mic.0.28324-0
- Busch, A., Richter, A. S., & Backofen, R. (2008). IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. *Bioinformatics*, 24(24), 2849–2856. https://doi.org/10.1093/bioinformatics/btn544
- Butler, M. T., Wang, Q., & Harshey, R. M. (2010). Cell density and mobility protect swarming bacteria against antibiotics. *Proceedings of the National Academy of Sciences of the United States of America*, 107(8), 3776–3781. https://doi.org/10.1073/pnas.0910934107
- Byrd, M. S., Sadovskaya, I., Vinogradov, E., Lu, H., Sprinkle, A. B., Richardson, S. H., ... Wozniak, D. J. (2015). Genetic and biochemical analyses of the *Pseudomonas aeruginosa* psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in psl and LPS production. *Mol Microbiol*, 73(4), 622–638. https://doi.org/10.1111/j.1365-

2958.2009.06795.x.Genetic

- Caiazza, N. C., Merritt, J. H., Brothers, K. M., & O'Toole, G. A. (2007). Inverse regulation of biofilm formation and swarming motility by *Pseudomonas aeruginosa* PA14. *Journal of Bacteriology*, 189(9), 3603–3612. https://doi.org/10.1128/JB.01685-06
- Caiazza, N. C., Shanks, R. M. Q., & O'Toole, G. (2016). Rhamnolipids modulate swarming motility patterns of *Pseudomonas aeruginosa*. *Journal of Bacteriology*, 187(21), 7351– 7361. https://doi.org/10.1128/JB.187.21.7351
- Carloni, S., Macchi, R., Sattin, S., Ferrara, S., & Bertoni, G. (2017). The small RNA ReaL: a novel regulatory element embedded in the *Pseudomonas aeruginosa* quorum sensing networks. *Environmental Microbiology*, 19(10), 4220–4237. https://doi.org/10.1111/1462-2920.13886
- Casabona, M. G., Silverman, J. M., Sall, K. M., Boyer, F., Couté, Y., Poirel, J., ... Attree, I. (2013). An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in *Pseudomonas aeruginosa*. *Environmental Microbiology*, 15(2), 471–486. https://doi.org/10.1111/j.1462-2920.2012.02816.x
- Chan, H., Ho, J., Liu, X., Zhang, L., Hei Wong, S., Chan, M. T., & Kk Wu, W. (2017). Potentital and use of bacterial small RNAs to combat drug resistance: a systematic review. *Infection and Drug Resistance*, *10*, 521–532. https://doi.org/10.2147/IDR.S148444
- Chand, N. S., Clatworthy, A. E., & Hung, D. T. (2012). The two-component sensor KinB acts as a phosphatase to regulate *Pseudomonas aeruginosa* virulence. *Journal of Bacteriology*, 194(23), 6537–6547. https://doi.org/10.1128/JB.01168-12
- Chang, W., Small, D. A., Toghrol, F., & Bentley, W. E. (2005). Microarray analysis of *Pseudomonas aeruginosa* reveals induction of pyocin genes in response to hydrogen peroxide. *BMC Genomics*, 6, 115. https://doi.org/10.1186/1471-2164-6-115
- Chatterjee, P., Davis, E., Yu, F., James, S., Wildschutte, J. H., Wiegmann, D. D., ... Wildschutte, H. (2017). Environmental Pseudomonads inhibit cystic fibrosis patient-derived *Pseudomonas aeruginosa. Applied and Environmental Microbiology*, 83(2), 1–13. https://doi.org/10.1128/AEM.02701-16
- Choi, K., Kumar, A., & Schweizer, H. P. (2006). A 10-min method for preparation of highly electrocompetent *Pseudomonas aeruginosa* cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. *Journal of Microbiological Methods*, 64, 391–397. https://doi.org/10.1016/j.mimet.2005.06.001
- Cigana, C., Curcuru, L., Leone., M. R., Ierano, T., Lore, N. I., Bianconi, I., ... Bragonzi, A. (2009). *Pseudomonas aeruginosa* exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. *PLoS ONE*, 4(12), e8439. https://doi.org/10.1371/journal.pone.0008439
- Clatworthy, A. E., Lee, J. S.-W., Leibman, M., Kostun, Z., Davidson, A. J., & Hung, D. T. (2009). *Pseudomonas aeruginosa* infection of zebrafish involves both host and pathogen determinants. *Infection and Immunity*, 77(4), 1293–1303. https://doi.org/10.1128/IAI.01181-08
- Conrad, J. C., Gibiansky, M. L., Jin, F., Gordon, V. D., Motto, D. A., Mathewson, M. A., ... Wong, G. C. L. (2011). Flagella and pili-mediated near-surface single-cell motility mechanisms in *P. aeruginosa. Biophysical Journal*, 100(7), 1608–1616. https://doi.org/10.1016/j.bpj.2011.02.020
- Curran, C. S., Bolig, T., & Torabi-Parizi, P. (2018). Mechanisms and targeted therapies for *Pseudomonas aeruginosa* lung infection. *American Journal of Respiratory and Critical Care Medicine*, 197(6), 708–727. https://doi.org/10.1164/rccm.201705-1043SO

- D'Argenio, D. A., Gallagher, L. A., Berg, C. A., & Manoil, C. (2001). *Drosophila* as a model host for *Pseudomonas aeruginosa* infection. *Journal of Bacteriology*, *183*(4), 1466–1471. https://doi.org/10.1128/JB.183.4.1466
- Damron, F. H., Owings, J. P., Okkotsu, Y., Varga, J. J., Schurr, J. R., Goldberg, J. B., ... Yu, H. D. (2012). Analysis of the *Pseudomonas aeruginosa* regulon controlled by the sensor kinase KinB and sigma factor RpoN. *Journal of Bacteriology*, 194(6), 1317–1330. https://doi.org/10.1128/JB.06105-11
- Damron, F. H., Qiu, D., & Hongwei, D. Y. (2009). The *Pseudomonas aeruginosa* sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. *Journal of Bacteriology*, 191(7), 2285–2295. https://doi.org/10.1128/JB.01490-08
- Davies, J. C. (2002). *Pseudomonas aeruginosa* in cystic fibrosis: pathogenesis and persistence. *Paediatric Respiratory Reviews*, *3*, 128–134. https://doi.org/10.1016/S1526-0550(02)00003-3
- de Bentzmann, S., Giraud, C., Bernard, C. S., Calderon, V., Ewald, F., Plésiat, P., ... Bordi, C. (2012). Unique biofilm signature, drug susceptibility and decreased virulence in *Drosophila* through the *Pseudomonas aeruginosa* two-component system PprAB. *PLoS Pathogens*, 8(11), e1003052. https://doi.org/10.1371/journal.ppat.1003052
- De Kievit, T., Seed, P. C., Nezezon, J., Passador, L., & Iglewski, B. H. (1999). RsaL, a novel repressor of virulence gene expression in *Pseudomonas aeruginosa*. *Journal of Bacteriology*, *181*(7), 2175–2184.
- de la Fuente-Núñez, C., Cardoso, M. H., de Souza Cândido, E., Franco, O. L., & Hancock, R. E. W. (2016). Synthetic antibiofilm peptides. *Biochimica et Biophysica Acta Biomembranes*, 1858(5), 1061–1069. https://doi.org/10.1016/j.bbamem.2015.12.015
- de la Fuente-Núñez, C., Korolik, V., Bains, M., Nguyen, U., Breidenstein, E. B., Horsman, S., ... Hancock, R. (2012). Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. *Antimicrobial Agents and Chemotherapy*, 56(5), 2696– 2704. https://doi.org/10.1128/AAC.00064-12
- de la Fuente-Núñez, C., Reffuveille, F., Haney, E. F., Straus, S. K., & Hancock, R. E. W. (2014). Broad-spectrum anti-biofilm peptide that targets a cellular stress response. *PLoS Pathogens*, *10*(5), e1004152. https://doi.org/10.1371/journal.ppat.1004152
- Dennis, J. J., Lafontaine, E. R., & Sokol, P. A. (1996). Identification and characterization of the tolQRA genes of Pseudomonas aeruginosa. Journal of Bacteriology, 178(24), 7059–7068. https://doi.org/10.1128/jb.178.24.7059-7068.1996
- Déziel, E., Lépine, F., Milot, S., & Villemur, R. (2003). *rhlA* is required for the production of a novel biosurfactant promoting swarming motility in *Pseudomonas aeruginosa*: 3-(3hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. *Microbiology*, 149(8), 2005–2013. https://doi.org/10.1099/mic.0.26154-0
- Di Noto, G. P., Molina, M. C., & Quiroga, C. (2019). Insights into non-coding RNAs as novel antimicrobial drugs. *Frontiers in Genetics*, *10*, 1–7. https://doi.org/10.3389/fgene.2019.00057
- Díaz-Pérez, A. L., Núñez, C., Meza Carmen, V., & Campos-García, J. (2018). The expression of the genes involved in leucine catabolism of *Pseudomonas aeruginosa* is controlled by the transcriptional regulator LiuR and by the CbrAB/Crc system. *Research in Microbiology*, 169(6), 324–334. https://doi.org/10.1016/j.resmic.2018.05.004
- Diggle, S. P., Winzer, K., Lazdunski, A., Williams, P., & Cámara, M. (2002). Advancing the quorum in *Pseudomonas aeruginosa*: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. *Journal of Bacteriology*, *184*(10), 2576–2586. https://doi.org/10.1128/JB.184.10.2576

- Djapgne, L., Panja, S., Brewer, L. K., Gans, J. H., Kane, M. A., Woodson, S. A., & Oglesby-Sherrouse, A. G. (2018). The *Pseudomonas aeruginosa* PrrF1 and PrrF2 small regulatory RNAs promote 2-alkyl-4-quinolone production through redundant regulation of the *antR* mRNA. *Journal of Bacteriology*, 200(10), 1–17.
- Dötsch, A., Becker, T., Pommerenke, C., Magnowska, Z., Jänsch, L., & Häussler, S. (2009). Genomewide identification of genetic determinants of antimicrobial drug resistance in *Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy*, 53(6), 2522–2531. https://doi.org/10.1128/AAC.00035-09
- Eggenhofer, F., Tafer, H., Stadler, P. F., & Hofacker, I. L. (2011). RNApredator: fast accessibility-based prediction of sRNA targets. *Nucleic Acids Research*, *39*, 149–154. https://doi.org/10.1093/nar/gkr467
- Ersoy, S., Meithoff, D., Barnes V, L., Tripp, G., House, J., Marth, J., ... Mahan, M. (2017). Correcting a fundamental flaw in the paradigm for antimicrobial susceptibility testing. *EBioMedicine*, 20, 173–181. https://doi.org/10.1016/j.ebiom.2017.05.026
- Fajardo, A., Hernando-Amado, S., Oliver, A., Ball, G., Filloux, A., & Martinez, J. L. (2014). Characterization of a novel Zn²⁺-dependent intrinsic imipenemase from *Pseudomonas* aeruginosa. Journal of Antimicrobial Chemotherapy, 69(11), 2972–2978. https://doi.org/10.1093/jac/dku267
- Fajardo, A., Martínez-Martín, N., Mercadillo, M., Galán, J. C., Ghysels, B., Matthijs, S., ... Martínez, J. L. (2008). The neglected intrinsic resistome of bacterial pathogens. *PLoS ONE*, 3(2), 1–6. https://doi.org/10.1371/journal.pone.0001619
- Feinbaum, R. L., Urbach, J. M., Liberati, N. T., Djonovic, S., Adonizio, A., Carvunis, A. R., & Ausubel, F. M. (2012). Genome-wide identification of *Pseudomonas aeruginosa* virulencerelated genes using a *Caenorhabditis elegans* infection model. *PLoS Pathogens*, 8(7), 11. https://doi.org/10.1371/journal.ppat.1002813
- Fernández, L., Gooderham, W. J., Bains, M., McPhee, J. B., Wiegand, I., & Hancock, R. E. W. (2010). Adaptive resistance to the "last hope" antibiotics polymyxin B and colistin in *Pseudomonas aeruginosa* is mediated by the novel two-component regulatory system ParR-ParS. *Antimicrobial Agents and Chemotherapy*, 54(8), 3372–3382. https://doi.org/10.1128/AAC.00242-10
- Fernández, L., & Hancock, R. E. W. (2012). Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. *Clinical Microbiology Reviews*, 25(4), 661–681. https://doi.org/10.1128/CMR.00043-12
- Fernández, L., Jenssen, H., Bains, M., Wiegand, I., Gooderham, W. J., & Hancock, R. E. W. (2012). The two-component system CprRS senses cationic peptides and triggers adaptive resistance in *Pseudomonas aeruginosa* independently of ParRS. *Antimicrobial Agents and Chemotherapy*, 56(12), 6212–6222. https://doi.org/10.1128/AAC.01530-12
- Ferrara, S., Brugnoli, M., De Bonis, A., Righetti, F., Delvillani, F., Dehò, G., ... Bertoni, G. (2012). Comparative profiling of *Pseudomonas aeruginosa* strains reveals differential expression of novel unique and conserved small RNAs. *PLoS ONE*, 7(5), e36553. https://doi.org/10.1371/journal.pone.0036553
- Filloux, A. (2011). Protein secretion systems in *Pseudomonas aeruginosa*: An essay on diversity, evolution, and function. *Frontiers in Microbiology*, 2, 1–21. https://doi.org/10.3389/fmicb.2011.00155
- Fléchard, M., Duchesne, R., Tahrioui, A., Bouffartigues, E., Depayras, S., Hardouin, J., ... Chevalier, S. (2018). The absence of SigX results in impaired carbon metabolism and membrane fluidity in *Pseudomonas aeruginosa*. *Scientific Reports*, 8(1), 1–13. https://doi.org/10.1038/s41598-018-35503-3

- Fuchs, E. L., Brutinel, E. D., Jones, A. K., Fulcher, N. B., Urbanowski, M. L., Yahr, T. L., & Wolfgang, M. C. (2010). The *Pseudomonas aeruginosa* Vfr regulator controls global virulence factor expression through cyclic AMP-dependent and -independent mechanisms. *Journal of Bacteriology*, 192(14), 3553–3564. https://doi.org/10.1128/JB.00363-10
- Gellatly, S. L., Needham, B., Madera, L., Trent, M. S., & Hancock, R. E. W. (2012). The *Pseudomonas aeruginosa* PhoP-PhoQ two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation. *Infection and Immunity*, 80(9), 3122–3131. https://doi.org/10.1128/IAI.00382-12
- Gicquel, G., Bouffartigues, E., Bains, M., Oxaran, V., Rosay, T., Lesouhaitier, O., ... Chevalier, S. (2013). The extra-cytoplasmic function sigma factor SigX modulates biofilm and virulence-related properties in *Pseudomonas aeruginosa*. *PLoS ONE*, 8(11), 1–15. https://doi.org/10.1371/journal.pone.0080407
- Gill, E. E., Chan, L. S., Winsor, G. L., Dobson, N., Lo, R., Ho Sui, S. J., ... Brinkman, F. S. L. (2018). High-throughput detection of RNA processing in bacteria. *BMC Genomics*, 19(1), 223. https://doi.org/10.1186/s12864-018-4538-8
- Gill, S. K., Hui, K., Farne, H., Garnett, J. P., Baines, D. L., Moore, L. S. P., ... Tregoning, J. S. (2016). Increased airway glucose increases airway bacterial load in hyperglycaemia. *Scientific Reports*, 8(6), 27636. https://doi.org/10.1038/srep27636
- Gómez-Lozano, M., Marvig, R. L., Molin, S., & Long, K. S. (2012). Genome-wide identification of novel small RNAs in *Pseudomonas aeruginosa*. *Environmental Microbiology*, 14(8), 2006–2016. https://doi.org/10.1111/j.1462-2920.2012.02759.x
- Gómez-Lozano, M., Marvig, R. L., Molina-Santiago, C., Tribelli, P. M., Ramos, J. L., & Molin, S. (2015). Diversity of small RNAs expressed in *Pseudomonas* species. *Environmental Microbiology Reports*, 7(2), 227–236. https://doi.org/10.1111/1758-2229.12233
- Gómez-Lozano, M., Marvig, R. L., Tulstrup, M. V. L., & Molin, S. (2014). Expression of antisense small RNAs in response to stress in *Pseudomonas aeruginosa*. *BMC Genomics*, 15(1), 1–11. https://doi.org/10.1186/1471-2164-15-783
- Gooderham, W. J., Bains, M., Mcphee, J. B., Wiegand, I., & Hancock, R. E. W. (2008). Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in *Pseudomonas aeruginosa. Journal of Bacteriology*, *190*(16), 5624–5634. https://doi.org/10.1128/JB.00594-08
- Gottesman, S., & Storz, G. (2011). Bacterial small RNA regulators: versatile roles and rapidly evolving variations. *Cold Spring Harbor Perspectives in Biology*, *3*(12), a003798. https://doi.org/10.1101/cshperspect.a003798.
- Haenni, M., Bour, M., Châtre, P., Madec, J.-Y., Plésiat, P., & Jeannot, K. (2017). Resistance of animal strains of *Pseudomonas aeruginosa* to carbapenems. *Frontiers in Microbiology*, 8, 1–10. https://doi.org/10.3389/fmicb.2017.01847
- Han, K., Tjaden, B., & Lory, S. (2016). GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by *in vivo* proximity ligation. *Nature Microbiology*, 2. https://doi.org/10.1038/nmicrobiol.2016.239
- Hancock, R. E. W., Mutharia, L. M., Chan, L., Darveau, R. P., Speert, D. P., & Pier, G. B. (1983). *Pseudomonas aeruginosa* isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. *Infection and Immunity*, 42(1), 170–177.
- Hancock, R. E. W., Raffle, V. J., & Nicas, T. I. (1981). Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in *Pseudomonas aeruginosa*. Antimicrobial Agents and Chemotherapy, 19(5), 777–785. https://doi.org/10.1128/AAC.19.5.777

- Hassett, D. J., Sokol, P. A., Howell, M. L., Ma, J. U. F., Schweizer, H. T., Ochsner, U., & Vasil, M. L. (1996). Ferric uptake regulator (Fur) mutants of *Pseudomonas aeruginosa* demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. *Journal of Bacteriology*, *178*(14), 3996–4003. https://doi.org/10.1128/jb.178.14.3996-4003.1996
- Heinrichs, D. E., & Poole, K. (1996). PchR, a regulator of ferripyochelin receptor gene (*fptA*) expression in *Pseudomonas aeruginosa*, functions both as an activator and as a repressor. *Journal of Bacteriology*, 178(9), 2586–2592. https://doi.org/10.1128/jb.178.9.2586-2592.1996
- Hendrickson, E. L., Mahajan-Miklos, S., Rahme, L. G., & Ausubel, F. M. (2001). Differential roles of the *Pseudomonas aeruginosa* PA14 *rpoN* gene in pathogenicity in plants, nematodes, insects, and mice. *Journal of Bacteriology*, *183*(24), 7126–7134. https://doi.org/10.1128/JB.183.24.7126
- Higa, F., & Edelstein, P. H. (2001). Potential virulence role of the *Legionella pneumophila ptsP* ortholog. *Infection and Immunity*, 69(8), 4782–4789. https://doi.org/10.1128/IAI.69.8.4782-4789.2001
- Hunt, T. A., Peng, W. T., Loubens, I., & Storey, D. G. (2002). The *Pseudomonas aeruginosa* alternative sigma factor PvdS controls exotoxin A expression and is expressed in lung infections associated with cystic fibrosis. *Microbiology*, 148(10), 3183–3193. https://doi.org/10.1099/00221287-148-10-3183
- Izutsu, K., Wada, A., & Wada, C. (2001). Expression of ribosome modulation factor (RMF) in *Escherichia coli* requires ppGpp. *Genes to Cells*, 6(8), 665–676. https://doi.org/10.1046/j.1365-2443.2001.00457.x
- Jain, R., Sliusarenko, O., & Kazmierczak, B. I. (2017). Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly. *PLoS Pathogens*, *13*(8), e1006594.
- Janssen, K. H., Diaz, M. R., Golden, M., Graham, J. W., Sanders, W., Wolfgang, M. C., & Yahr, T. L. (2018). Functional analyses of the RsmY and RsmZ small noncoding regulatory RNAs in *Pseudomonas aeruginosa*. *Journal of Bacteriology*, 200(11), 1–15. https://doi.org/10.1128/JB.00736-17
- Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? *FEMS Microbiology Letters*, 236(2), 163–173. https://doi.org/10.1016/j.femsle.2004.06.005
- Jin, Y., Yang, H., Qiao, M., & Jin, S. (2011). MexT regulates the type III secretion system through MexS and PtrC in *Pseudomonas aeruginosa*. *Journal of Bacteriology*, 193(2), 399– 410. https://doi.org/10.1128/JB.01079-10
- Kanthakumar, K., Taylor, G., Tsang, K. W. T., Cundell, D. R., Rutman, A., Smith, S., ... Wilson, R. (1993). Mechanisms of action of *Pseudomonas aeruginosa* pyocyanin on human ciliary beat in vitro. *Infection and Immunity*, 61(7), 2848–2853.
- Kavita, K., de Mets, F., & Gottesman, S. (2018). New aspects of RNA-based regulation by Hfq and its partner sRNAs. *Current Opinion in Microbiology*, 42, 53–61. https://doi.org/10.1016/j.mib.2017.10.014
- Kay, E., Humair, B., Dénervaud, V., Riedel, K., Spahr, S., Eberl, L., ... Haas, D. (2006). Two GacA-dependent small RNAs modulate the quorum-sensing response in *Pseudomonas aeruginosa*. *Journal of Bacteriology*, *188*(16), 6026–6033. https://doi.org/10.1128/JB.00409-06
- Kearns, D. B. (2010). A field guide to bacterial swarming motility. *Nature Reviews*, 8(9), 634–644. https://doi.org/10.1038/nrmicro2405
- Keogh, R. H., Szczesniak, R., Taylor-Robinson, D., & Bilton, D. (2018). Up-to-date and

projected estimates of survival for people with cystic fibrosis using baseline characteristics: A longitudinal study using UK patient registry data. *Journal of Cystic Fibrosis*, *17*(2), 218–227. https://doi.org/10.1016/j.jcf.2017.11.019

- Kilmury, S. L. N., & Burrows, L. L. (2018). The *Pseudomonas aeruginosa* two-component system PilSR regulates both twitching and swimming motilities. *MBio*, 9(4), e01310-18. https://doi.org/10.1128/mBio.01310-18
- Kim, K., Kim, Y. U., Koh, B. H., Hwang, S. S., Kim, S., Lépine, F., ... Lee, G. R. (2010). HHQ and PQS, two *Pseudomonas aeruginosa* quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-κB pathway. *Immunology*, *129*, 578– 588. https://doi.org/10.1111/j.1365-2567.2009.03160.x
- King, J. D., Kocíncová, D., Westman, E. L., & Lam, J. S. (2009). Lipopolysaccharide biosynthesis in *Pseudomonas aeruginosa*. *Innate Immunity*, 15(5), 261–312. https://doi.org/10.1177/1753425909106436
- Kiratisin, P., Tucker, K. D., & Passador, L. (2002). LasR, a transcriptional activator of *Pseudomonas aeruginosa* virulence genes, functions as a multimer. *Journal of Bacteriology*, 184(17), 4912–4919. https://doi.org/10.1128/JB.184.17.4912-4919.2002
- Köhler, T., Curty, L. K., Barja, F., van Delden, C., & Pechère, J.-C. (2000). Swarming of *Pseudomonas aeruginosa* is dependent on cell-to-cell signaling and requires flagella and pili. *Journal of Bacteriology*, 182(21), 5990–5996. https://doi.org/10.1128/jb.182.21.5990-5996.2000
- Kojic, M., Jovcic, B., Vindigni, A., Odreman, F., & Venturi, V. (2005). Novel target genes of PsrA transcriptional regulator of *Pseudomonas aeruginosa*. *FEMS Microbiology Letters*, 246(2), 175–181. https://doi.org/10.1016/j.femsle.2005.04.003
- Kulasekara, H. D., Ventre, I., Kulasekara, B. R., Lazdunski, A., Filloux, A., & Lory, S. (2005). A novel two-component system controls the expression of *Pseudomonas aeruginosa* fimbrial *cup* genes. *Molecular Microbiology*, 55(2), 368–380. https://doi.org/10.1111/j.1365-2958.2004.04402.x
- Lai, S., Tremblay, J., & Déziel, E. (2009). Swarming motility: a multicellular behaviour conferring antimicrobial resistance. *Environmental Microbiology*, 11(1), 126–136. https://doi.org/10.1111/j.1462-2920.2008.01747.x
- Lambert, T. (2012). Antibiotics that affect the ribosome. *OIE Revue Scientifique et Technique*, *31*(1), 57–64. https://doi.org/10.20506/rst.31.1.2095
- Lee, J., & Zhang, L. (2014). The hierarchy quorum sensing network in *Pseudomonas* aeruginosa. Protein and Cell, 6(1), 26–41. https://doi.org/10.1007/s13238-014-0100-x
- Lee, T. W. R., Brownlee, K. G., Conway, S. P., Denton, M., & Littlewood, J. M. (2003). Evaluation of a new definition for chronic *Pseudomonas aeruginosa* infection in cystic fibrosis patients. *Journal of Cystic Fibrosis*, 2, 29–34. https://doi.org/10.1016/S1569-1993(02)00141-8
- Li, W., Ying, X., Lu, Q., & Chen, L. (2012). Predicting sRNAs and their targets in bacteria. *Genomics, Proteomics and Bioinformatics, 10*(5), 276–284. https://doi.org/10.1016/j.gpb.2012.09.004
- Liang, H., Deng, X., Ji, Q., Sun, F., Shen, T., & He, C. (2012). The *Pseudomonas aeruginosa* global regulator VqsR directly inhibits QscR to control quorum-sensing and virulence gene expression. *Journal of Bacteriology*, 194(12), 3098–3108. https://doi.org/10.1128/JB.06679-11
- Liang, H. H., Kong, W. N., Shen, T., Duan, J. L., & Duan, K. M. (2012). The effect of *pmpR* on the type III secretion system in *Pseudomonas aeruginosa*. *Chinese Science Bulletin*, *57*(19), 2413–2418. https://doi.org/10.1007/s11434-011-4941-x

- Liang, H., Li, N., Dong, Z., Surette, M. G., & Duan, K. (2008). The YebC family protein PA0964 negatively regulates the *Pseudomonas aeruginosa* quinolone signal system and pyocyanin production. *Journal of Bacteriology*, *190*(18), 6217–6227. https://doi.org/10.1128/JB.00428-08
- Liberati, N. T., Urbach, J. M., Miyata, S., Lee, D. G., Drenkard, E., Wu, G., ... Ausubel, F. M. (2006). An ordered, nonredundant library of *Pseudomonas aeruginosa* strain PA14 transposon insertion mutants. *Proceedings of the National Academy of Sciences of the United States of America*, 103(8), 2833–2838. https://doi.org/10.1073/pnas.0511100103
- Lin, P., Pu, Q., Wu, Q., Zhou, C., Wang, B., Schettler, J., ... Wu, M. (2019). High-throughput screen reveals sRNAs regulating crRNA biogenesis by targeting CRISPR leader to repress Rho termination. *Nature Communications*, 10(1), 3728. https://doi.org/10.1038/s41467-019-11695-8
- López-Causapé, C., Rubio, R., Cabot, G., & Oliver, A. (2018). Evolution of the *Pseudomonas* aeruginosa aminoglycoside mutational resistome in vitro and in the cystic fibrosis setting. Antimicrobial Agents and Chemotherapy, 62(4), e02583-17. https://doi.org/10.1128/AAC.02583-17
- Lu, P., Wang, Y., Hu, Y., & Chen, S. (2018). RgsA, an RpoS-dependent sRNA, negatively regulates *rpoS* expression in *Pseudomonas aeruginosa*. *Microbiology*, 164, 716–724. https://doi.org/10.1099/mic.0.000632
- Lu, P., Wang, Y., Zhang, Y., Hu, Y., Thompson, K. M., & Chen, S. (2016). RpoS-dependent sRNA RgsA regulates Fis and AcpP in *Pseudomonas aeruginosa*. *Molecular Microbiology*, 102(2), 244–259. https://doi.org/10.1111/mmi.13458
- Lundgren, B. R., Villegas-Peñaranda, L. R., Harris, J. R., Mottern, A. M., Dunn, D. M., Boddy, C. N., & Nomura, C. T. (2014). Genetic analysis of the assimilation of C5-dicarboxylic acids in *Pseudomonas aeruginosa* PAO1. *Journal of Bacteriology*, *196*(14), 2543–2551. https://doi.org/10.1128/JB.01615-14
- Macfarlene, E. L. A., Kwasnicka, A., & Hancock, R. E. W. (2000). Role of *Pseudomonas* aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides. *Microbiology*, 146(10), 2543–2554. https://doi.org/10.1099/00221287-146-10-2543
- Malgaonkar, A., & Nair, M. (2019). Quorum sensing in *Pseudomonas aeruginosa* mediated by RhlR is regulated by a small RNA PhrD. *Scientific Reports*, 9(1), 1–11. https://doi.org/10.1038/s41598-018-36488-9
- Marshall, B., Faro, A., Elbert, A., Fink, A., Sewall, A., Leoffler, D., ... Rizvi, S. (2016). 2016 Patient Registry Annual Data Report. Bethesda, Maryland.
- Matsui, H., Sano, Y., Ishihara, H., & Shinomiya, T. (1993). Regulation of pyocin genes in *Pseudomonas aeruginosa* by positive (*prtN*) and negative (*prtR*) regulatory genes. *Journal of Bacteriology*, *175*(5), 1257–1263. https://doi.org/10.1128/jb.175.5.1257-1263.1993
- Matsuo, Y., Eda, S., Gotoh, N., Yoshihara, E., & Nakae, T. (2004). MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. FEMS Microbiology Letters, 238(1), 23–28. https://doi.org/10.1016/j.femsle.2004.07.010
- Mavrodi, O. V., Mavrodi, D. V., Weller, D. M., & Thomashow, L. S. (2006). Role of *ptsP*, orfT, and sss recombinase genes in root colonization by *Pseudomonas fluorescens* Q8r1-96. *Applied and Environmental Microbiology*, 72(11), 7111–7122. https://doi.org/10.1128/AEM.01215-06
- McGuffie, B. A., Vallet-Gely, I., & Dove, S. L. (2016). σ factor and anti-σ factor that control swarming motility and biofilm formation in *Pseudomonas aeruginosa. Journal of*

Bacteriology, 198(5), 755-765. https://doi.org/10.1128/JB.00784-15

- Medina, G., Juárez, K., Valderrama, B., & Soberón-Chávez, G. (2003). Mechanism of *Pseudomonas aeruginosa* RhlR transcriptional regulation of the *rhlAB* promoter. *Journal of Bacteriology*, 185(20), 5976–5983. https://doi.org/10.1128/JB.185.20.5976-5983.2003
- Melamed, S., Faigenbaum-Romm, R., Peer, A., Reiss, N., Shechter, O., Bar, A., ... Margalit, H. (2018). Mapping the small RNA interactome in bacteria using RIL-seq. *Nature Protocols*, 13(1), 1–33. https://doi.org/10.1038/nprot.2017.115
- Mittal, R., Aggarwal, S., Sharma, S., Chhibber, S., & Harjai, K. (2009). Urinary tract infections caused by *Pseudomonas aeruginosa*: a minireview. *Journal of Infection and Public Health*, 2(3), 101–111. https://doi.org/10.1016/j.jiph.2009.08.003
- Moore, N. M., & Flaws, M. L. (2011). Introduction: *Pseudomonas aeruginosa. Clinical Laboratory Science*, 24(1), 41–42. https://doi.org/10.29074/ascls.24.1.41
- Moradali, M. F., Ghods, S., & Rehm, B. H. A. (2017). Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7, 39. https://doi.org/10.3389/fcimb.2017.00039
- Mukherjee, S., Moustafa, D., Smith, C. D., Goldberg, J. B., & Bassler, B. L. (2017). The RhlR quorum-sensing receptor controls *Pseudomonas aeruginosa* pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. *PLoS Pathogens*, 13(7), 1–25. https://doi.org/10.1371/journal.ppat.1006504
- Mulcahy, H., O'Callaghan, J., O'Grady, E. P., Maciá, M. D., Borrell, N., Gómez, C., ... O'Gara, F. (2008). *Pseudomonas aeruginosa* RsmA plays an important role during murine infection by influencing colonization, virulence, persistence, and pulmonary inflammation. *Infection and Immunity*, 76(2), 632–638. https://doi.org/10.1128/IAI.01132-07
- Murakami, K., Ono, T., Viducic, D., Kayama, S., Mori, M., Hirota, K., ... Miyake, Y. (2005). Role for *rpoS* gene of *Pseudomonas aeruginosa* in antibiotic tolerance. *FEMS Microbiology Letters*, 242(1), 161–167. https://doi.org/10.1016/j.femsle.2004.11.005
- Murray, T. S., Egan, M., & Kazmierczak, B. I. (2007). Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Current Opinion in Pediatrics, 19(1), 83–88. https://doi.org/10.1097/MOP.0b013e3280123a5d
- Murray, T. S., & Kazmierczak, B. I. (2008). *Pseudomonas aeruginosa* exhibits sliding motility in the absence of type IV pili and flagella. *Journal of Bacteriology*, *190*(8), 2700–2708. https://doi.org/10.1128/JB.01620-07
- O'May, C., & Tufenkji, N. (2011). The swarming motility of *Pseudomonas aeruginosa* is blocked by cranberry proanthocyanidins and other tannin-containing materials. *Applied and Environmental Microbiology*, 77(9), 3061–3067. https://doi.org/10.1128/AEM.02677-10
- Okkotsu, Y., Tieku, P., Fitzsimmons, L. F., Churchill, M. E., & Schurr, M. J. (2013). *Pseudomonas aeruginosa* AlgR phosphorylation modulates rhamnolipid production and motility. *Journal of Bacteriology*, 195(24), 5499–5515. https://doi.org/10.1128/JB.00726-13
- Overhage, J., Bains, M., Brazas, M. D., & Hancock, R. E. W. (2008). Swarming of *Pseudomonas* aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. *Journal of Bacteriology*, 190(8), 2671–2679. https://doi.org/10.1128/JB.01659-07
- Palmer, K. L., Aye, L. M., & Whiteley, M. (2007). Nutritional cues control *Pseudomonas* aeruginosa multicellular behavior in cystic fibrosis sputum. Journal of Bacteriology, 189(22), 8079–8087. https://doi.org/10.1128/JB.01138-07
- Pasqua, M., Visaggio, D., Lo Sciuto, A., Genah, S., Banin, E., Visca, P., & Imperi, F. (2017). Ferric uptake regulator Fur is conditionally essential in *Pseudomonas aeruginosa*. *Journal of Bacteriology*, 199(22), e00472-17. https://doi.org/10.1128/JB.00472-17

- Penterman, J., Singh, P. K., & Walker, G. C. (2014). Biological cost of pyocin production during the SOS response in *Pseudomonas aeruginosa*. *Journal of Bacteriology*, *196*(18), 3351– 3359. https://doi.org/10.1128/JB.01889-14
- Petrova, O. E., & Sauer, K. (2010). The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA *rsmZ* through CafA. *Journal of Bacteriology*, *192*(20), 5275–5288. https://doi.org/10.1128/JB.00387-10
- Pita, T., Feliciano, J. R., & Leitão, J. H. (2018). Small noncoding regulatory RNAs from *Pseudomonas aeruginosa* and *Burkholderia cepacia* complex. *International Journal of Molecular Sciences*, 19(12), 1–21. https://doi.org/10.3390/ijms19123759
- Pletzer, D., Coleman, S. R., & Hancock, R. E. W. (2016). Anti-biofilm peptides as a new weapon in antimicrobial warfare. *Current Opinion in Microbiology*, 33, 35–40. https://doi.org/10.1016/j.mib.2016.05.016
- Pletzer, D., Lafon, C., Braun, Y., Köhler, T., Page, M. G. P., Mourez, M., & Weingart, H. (2014). High-throughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in *Pseudomonas aeruginosa*. *PLoS ONE*, 9(10). https://doi.org/10.1371/journal.pone.0111311
- Pletzer, D., Mansour, S. C., & Hancock, R. E. W. (2018). Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. *PLoS Pathogens*, *14*(6), e100708. https://doi.org/10.1371/journal.ppat.1007084
- Pletzer, D., Mansour, S. C., Wuerth, K., Rahanjam, N., & Hancock, R. E. W. (2017). New mouse model for chronic infections by gram-negative bacteria enabling the study of anti-infective efficacy and host-microbe interactions. *MBio*, 8(1), 1–16. https://doi.org/10.1128/mBio.00140-17
- Prévost, K., Desnoyers, G., Jacques, J. F., Lavoie, F., & Massé, E. (2011). Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. *Genes* and Development, 25(4), 385–396. https://doi.org/10.1101/gad.2001711
- Qian, C., Ching Wong, C., Swarup, S., & Chiama, K. H. (2013). Bacterial tethering analysis reveals a "run-reverse-turn" mechanism for *Pseudomonas* species motility. *Applied and Environmental Microbiology*, 79(15), 4734–4743. https://doi.org/10.1128/AEM.01027-13
- Qiu, D., Damron, F. H., Mima, T., Schweizer, H. P., & Yu, H. D. (2008). P_{BAD}-based shuttle vectors for functional analysis of toxic and highly regulated genes in *Pseudomonas* and *Burkholderia* spp. and other bacteria. *Applied and Environmental Microbiology*, 74(23), 7422–7426. https://doi.org/10.1128/AEM.01369-08
- Rahme, L. G., Ausubel, F. M., Cao, H., Drenkard, E., Boyan, C., Lau, G. W., ... Tompkinst, R. G. (2016). Plants and animals share functionally common bacterial virulence factors. *Proceedings of the National Academy of Sciences of the United States of America*, 97(16), 8815–8821. https://doi.org/10.1073/pnas.97.16.8815
- Rahme, L. G., Tan, M., Le, L., Wong, S. M., Ronald, G., Calderwood, S. B., & Ausubel, F. M. (2019). Use of model plant hosts to identify *Pseudomonas aeruginosa* virulence factors. *Proceedings of the National Academy of Sciences of the United States of America*, 94(24), 13245–13250. https://doi.org/10.1073/pnas.94.24.13245
- Rampioni, G., Bertani, I., Zennaro, E., Polticelli, F., Venturi, V., & Leoni, L. (2006). The quorum-sensing negative regulator RsaL of *Pseudomonas aeruginosa* binds to the *lasI* promoter. *Journal of Bacteriology*, *188*(2), 815–819. https://doi.org/10.1128/JB.188.2.815-819.2006
- Redgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. V. (2014). Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. *Trends in*

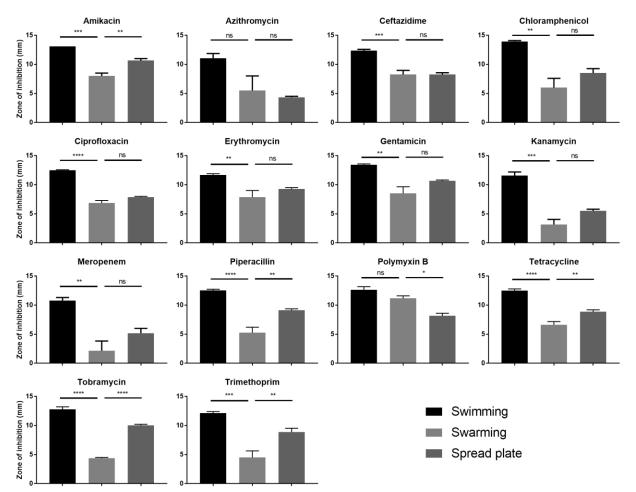
Microbiology, 22(8), 438-445. https://doi.org/10.1016/j.tim.2014.04.007

- Reizer, J., Reizer, A., Lagrou, M. J., Folger, K. R., Stover, C. K., & Saier, M. H. (1999). Novel phosphotransferase systems revealed by bacterial genome analysis: The complete repertoire of *pts* genes in *Pseudomonas aeruginosa*. *Journal of Molecular Microbiology and Biotechnology*, 1(2), 289–293.
- Rivas-Santiago, B., Castañeda-Delgado, J. E., Rivas Santiago, C. E., Waldbrook, M., González-Curiel, I., León-Contreras, J. C., ... Hernandez-Pando, R. (2013). Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against *Mycobacterium tuberculosis* infections in animal models. *PLoS ONE*, 8(3), e59119. https://doi.org/10.1371/journal.pone.0059119
- Rojo, F. (2010). Carbon catabolite repression in *Pseudomonas*: optimizing metabolic versatility and interactions with the environment. *FEMS Microbiology Reviews*, *34*(5), 658–684. https://doi.org/10.1111/j.1574-6976.2010.00218.x
- Romero, M., Silistre, H., Lovelock, L., Wright, V. J., Chan, K. G., Hong, K. W., ... Heeb, S. (2018). Genome-wide mapping of the RNA targets of the *Pseudomonas aeruginosa* riboregulatory protein RsmN. *Nucleic Acids Research*, 46(13), 6823–6840. https://doi.org/10.1093/nar/gky324
- Rossello, J., Lima, A., Gil, M., Duarte, J. R., Correa, A., Carvalho, P. C., ... Durán, R. (2017). The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in *Pseudomonas aeruginosa* by a phosphodiesterase independent mechanism. *Scientific Reports*, 7(1), 1–14. https://doi.org/10.1038/s41598-017-09926-3
- Sanders, D. B. (2014). Phenotypes that matter: *Pseudomonas aeruginosa* and progression of cystic fibrosis lung disease. *American Journal of Respiratory and Critical Care Medicine*, 190(3), 245–246.
- Sangurdekar, D. P., Zhang, Z., & Khodursky, A. B. (2011). The association of DNA damage response and nucleotide level modulation with the antibacterial mechanism of the antifolate drug trimethoprim. *BMC Genomics*, *12*, 583. https://doi.org/10.1186/1471-2164-12-583.
- Schurek, K. N., Marr, A. K., Taylor, P. K., Wiegand, I., Semenec, L., Khaira, B. K., & Hancock, R. E. W. (2008). Novel genetic determinants of low-level aminoglycoside resistance in *Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy*, 52(12), 4213–4219. https://doi.org/10.1128/AAC.00507-08
- Semmler, A. B. T., Whitchurch, C. B., & Mattick, J. S. (1999). A re-examination of twitching motility in *Pseudomonas aeruginosa*. *Microbiology*, 145, 2863–2873. https://doi.org/10.1099/00221287-145-10-2863
- Shen, D. K., Filopon, D., Kuhn, L., Polack, B., & Toussaint, B. (2006). PsrA is a positive transcriptional regulator of the type III secretion system in *Pseudomonas aeruginosa*. *Infection and Immunity*, 74(2), 1121–1129. https://doi.org/10.1128/IAI.74.2.1121-1129.2006
- Sonnleitner, E., Abdou, L., & Haas, D. (2009). Small RNA as global regulator of carbon catabolite repression in *Pseudomonas aeruginosa*. *Proceedings of the National Academy of Sciences of the United States of America*, 106(51), 21866–21871. https://doi.org/10.1073/pnas.pnas.0910308106
- Sonnleitner, E., & Bläsi, U. (2014). Regulation of Hfq by the RNA CrcZ in *Pseudomonas aeruginosa* carbon catabolite repression. *PLoS Genetics*, *10*(6), e1004440. https://doi.org/10.1371/journal.pgen.1004440
- Sonnleitner, E., Gonzalez, N., Sorger-Domenigg, T., Heeb, S., Richter, A. S., Backofen, R., ... Bläsi, U. (2011). The small RNA PhrS stimulates synthesis of the *Pseudomonas aeruginosa*

quinolone signal. *Molecular Microbiology*, 80(4), 868–885. https://doi.org/10.1111/j.1365-2958.2011.07620.x

- Sonnleitner, E., Prindl, K., & Bläsi, U. (2017). The *Pseudomonas aeruginosa* CrcZ RNA interferes with Hfq-mediated riboregulation. *PLoS ONE*, *12*(7), 1–15. https://doi.org/10.1371/journal.pone.0180887
- Sonnleitner, E., Wulf, A., Campagne, S., Pei, X., Wolfinger, M., Forlani, G., ... Bläsi, U. (2018). Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfqdependent translational regulation in *Pseudomonas aeruginosa*. *Nucleic Acids Research*, 46(3), 1470–1485.
- Starkey, M., & Rahme, L. G. (2019). Modeling *Pseudomonas aeruginosa* pathogenesis in plant hosts. *Nature Protocols*, 4(2), 117–124. https://doi.org/10.1038/nprot.2008.224.Modeling
- Stephenson, A. L., Sykes, J., Stanojevic, S., Fink, A., Elbert, A., & Goss, C. H. (2018). Survival comparison of patients with cystic fibrosis in Canada and the United States: a populationbased cohort study. *Annals of Internal Medicine*, 166(8), 537–546. https://doi.org/10.7326/M16-0858.Survival
- Storz, G., Opdyke, J. A., & Zhang, A. (2004). Controlling mRNA stability and translation with small, noncoding RNAs. *Current Opinion in Microbiology*, 7(2), 140–144. https://doi.org/10.1016/j.mib.2004.02.015
- Suh, S.-J., Runyen-Janekcy, L. J., Maleniak, T. C., Hager, P., MacGregor, C. H., Zielinski-Mozny, N. A., ... West, S. E. (2015). Effect of vfr mutation on global gene expression and catabolite repression control of *Pseudomonas aeruginosa*. *Microbiology*, 148(5), 1561– 1569. https://doi.org/10.1099/00221287-148-5-1561
- Suh, S. J., Silo-Suh, L., Woods, D. E., Hassett, D. J., West, S. E. H., & Ohman, D. E. (1999). Effect of *rpoS* mutation on the stress response and expression of virulence factors in *Pseudomonas aeruginosa. Journal of Bacteriology*, 181(13), 3890–3897.
- Sun, E., Gill, E. E., Falsafi, R., Yeung, A., Liu, S., & Hancock, R. E. W. (2018). Broad-spectrum adaptive antibiotic resistance associated with *Pseudomonas aeruginosa* mucin-dependent surfing motility. *Antimicrobial Agents and Chemotherapy*, 62(9), 1–12. https://doi.org/10.1128/AAC.00848-18
- Sun, E., Liu, S., & Hancock, R. E. W. (2018). Surfing motility: A conserved yet diverse adaptation among motile bacteria. *Journal of Bacteriology*, 200(23). https://doi.org/10.1128/JB.00394-18
- Surette, M. G. (2014). The cystic fibrosis lung microbiome. *Annals of the American Thoracic Society*, *11*(SUPPL. 1), 61–65. https://doi.org/10.1513/AnnalsATS.201306-159MG
- Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G., & Ausubel, F. M. (1999). *Pseudomonas aeruginosa* killing of *Caenorhabditis elegans* used to identify *P. aeruginosa* virulence factors. *Proceedings of the National Academy of Sciences of the United States of America*, 96(5), 2408–2413. https://doi.org/10.1073/pnas.96.5.2408
- Taylor, P. K., Van Kessel, A. T. M., Colavita, A., Hancock, R. E. W., & Mah, T.-F. (2017). A novel small RNA is important for biofilm formation and pathogenicity in *Pseudomonas* aeruginosa. PLoS ONE, 12(8), e0182582. https://doi.org/10.1371/journal.pone.0182582
- Tjaden, B., Goodwin, S. S., Opdyke, J. A., Guillier, M., Fu, D. X., Gottesman, S., & Storz, G. (2006). Target prediction for small, noncoding RNAs in bacteria. *Nucleic Acids Research*, 34(9), 2791–2802. https://doi.org/10.1093/nar/gkl356
- Tümmler, B. (2019). Emerging therapies against infections with *Pseudomonas aeruginosa*. *F1000Research*, 8, 1371. https://doi.org/10.12688/f1000research.19509.1
- Ueda, A., Attila, C., Whiteley, M., & Wood, T. K. (2009). Uracil influences quorum sensing and biofilm formation in *Pseudomonas aeruginosa* and fluorouracil is an antagonist. *Microbial*

Biotechnology, 2(1), 62–74. https://doi.org/10.1111/j.1751-7915.2008.00060.x


- Uwate, M., Ichise, Y., Shirai, A., Omasa, T., Nakae, T., & Maseda, H. (2013). Two routes of MexS-MexT-mediated regulation of MexEF-OprN and MexAB-OprM efflux pump expression in *Pseudomonas aeruginosa*. *Microbiology and Immunology*, 57(4), 263–272. https://doi.org/10.1111/1348-0421.12032
- Vaara, M. (1992). Agents that increase the permeability of the outer membrane. *Microbiological Reviews*, *56*(3), 395–411.
- Vater, S., Weiße, S., Maleschlijski, S., Lotz, C., Kochitzki, F., Schwartz, T., ... Rosenhahn, A. (2014). Swimming behavior of *Pseudomonas aerugionsa* studied by holographic 3D tracking. *PLoS ONE*, 9(1), e87765. https://doi.org/10.1371/journal.pone.0087765
- Velázquez, F., Pflüger, K., Cases, I., De Eugenio, L. I., & De Lorenzo, V. (2007). The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in *Pseudomonas putida*. *Journal of Bacteriology*, *189*(12), 4529– 4533. https://doi.org/10.1128/JB.00033-07
- Ventola, C. L. (2015). Antibiotic resistance crisis. *Pharmacy and Therapeutics*, 40(4), 561–564. https://doi.org/10.24911/ijmdc.51-1549060699
- Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., & Michiels, J. (2008). Living on a surface: swarming and biofilm formation. *Trends in Microbiology*, *16*(10), 496–506. https://doi.org/10.1016/j.tim.2008.07.004
- Walker, T. S., Bais, H. P., Déziel, E., Schweizer, H. P., Rahme, L. G., Fall, R., & Vivanco, J. M. (2004). *Pseudomonas aeruginosa*-plant root interactions. Pathogenicity, biofilm formation, and root exudation. *Plant Physiology*, 134, 320–331. https://doi.org/10.1104/pp.103.027888.such
- Walsh, C., & Wencewicz, T. (2016). Antibiotics: challenges, mechanisms, opportunities. Washington, DC: ASM Press. Retrieved from https://doi.org/10.1093/labmed/lmw070
- Wang, L., Zhang, C., Gong, F., Li, H., Xie, X., Xia, C., ... Song, J. (2013). Influence of *Pseudomonas aeruginosa pvdQ* gene on altering antibiotic susceptibility under swarming conditions. *Current Microbiology*, 66(2), 152–161. https://doi.org/10.1007/s00284-012-0217-1
- Wang, Y., Venter, H., & Ma, S. (2016). Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. *Curr Drug Targets*, *17*(6), 702–719.
- Waters, L. S., & Storz, G. (2009). Regulatory RNAs in bacteria. *Cell*, *136*(4), 615–628. https://doi.org/10.1016/j.cell.2009.01.043.Regulatory
- Wells, G., Palethorpe, S., & Pesci, E. C. (2017). PsrA controls the synthesis of the *Pseudomonas* aeruginosa quinolone signal via repression of the FadE homolog, PA0506. *PLoS ONE*, 12(12), 1–18. https://doi.org/10.1371/journal.pone.0189331
- Wenner, N., Maes, A., Cotado-Sampayo, M., & Lapouge, K. (2014). NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates *Pseudomonas aeruginosa* PAO1 virulence. *Environmental Microbiology*, 16(4), 1053–1068. https://doi.org/10.1111/1462-2920.12272
- WHO. (2017). Global priority list of antibiotic resistant bacteria to guide research, discovery, and development of new antibiotics. Retrieved from https://www.cell.com/biophysj/fulltext/S0006-3495(11)00237-2
- Wieczorek, M., Jenssen, H., Kindrachuk, J., Scott, W. R. P., Elliott, M., Hilpert, K., ... Straus, S. K. (2010). Structural studies of a peptide with immune modulating and direct antimicrobial activity. *Chemistry and Biology*, 17(9), 970–980. https://doi.org/10.1016/j.chembiol.2010.07.007
- Wilderman, P. J., Sowa, N. A., FitzGerald, D. J., FitzGerald, P. C., Gottesman, S., Ochsner, U.

A., & Vasil, M. L. (2004). Identification of tandem duplicate regulatory small RNAs in *Pseudomonas aeruginosa* involved in iron homeostasis. *Proceedings of the National Academy of Sciences of the United States of America*, *101*(26), 9792–9797. https://doi.org/10.1073/pnas.0403423101

Wilkinson, L. (2018). Master's thesis. University of British Columbia.

- Winsor, G. L., Lam, D. K. W., Fleming, L., Lo, R., Whiteside, M. D., Yu, N. Y., ... Brinkman, F. S. L. (2011). Pseudomonas genome database: improved comparative analysis and population genomics capability for *Pseudomonas* genomes. *Nucleic Acids Research*, 39(Jan), 596–600. https://doi.org/10.1093/nar/gkq869
- Winstanley, C., O'Brien, S., & Brockhurst, M. A. (2016). *Pseudomonas aeruginosa* evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. *Trends in Microbiology*, 24(5), 327–337. https://doi.org/10.1016/j.tim.2016.01.008
- Wurtzel, O., Yoder-Himes, D. R., Han, K., Dandekar, A. A., Edelheit, S., Greenberg, E. P., ... Lory, S. (2012). The single-nucleotide resolution transcriptome of *Pseudomonas aeruginosa* grown in body temperature. *PLoS Pathogens*, 8(9), e1002945. https://doi.org/10.1371/journal.ppat.1002945
- Yan, Z., McCray, P. B., & Engelhardt, J. F. (2019). Advances in gene therapy for cystic fibrosis lung disease. *Human Molecular Genetics*, 28(R1), R88–R94. https://doi.org/10.1093/hmg/ddz139
- Yeung, A. T. Y., Bains, M., & Hancock, R. E. W. (2011). The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in *Pseudomonas* aeruginosa. Journal of Bacteriology, 193(4), 918–931. https://doi.org/10.1128/JB.00911-10
- Yeung, A. T. Y., Parayno, A., & Hancock, R. E. W. (2012). Mucin promotes rapid surface motility in *Pseudomonas aeruginosa*. *MBio*, 3(3), e00073-12. https://doi.org/10.1128/mBio.00073-12.Editor
- Yeung, A. T. Y., Torfs, E. C. W., Jamshidi, F., Bains, M., Wiegand, I., Hancock, R. E. W., & Overhage, J. (2009). Swarming of *Pseudomonas aeruginosa* is controlled by a broad spectrum of transcriptional regulators, including MetR. *Journal of Bacteriology*, 191(18), 5592–5602. https://doi.org/10.1128/JB.00157-09

Appendices

Appendix A Supplementary Figures

Figure A1. Disc diffusion assay for PA14 WT performed at a higher agar concentration. Agar concentrations were: 0.5% (swarming), cf. 0.3% (swimming), and 1.5% (spread plate). $n \ge 3$.

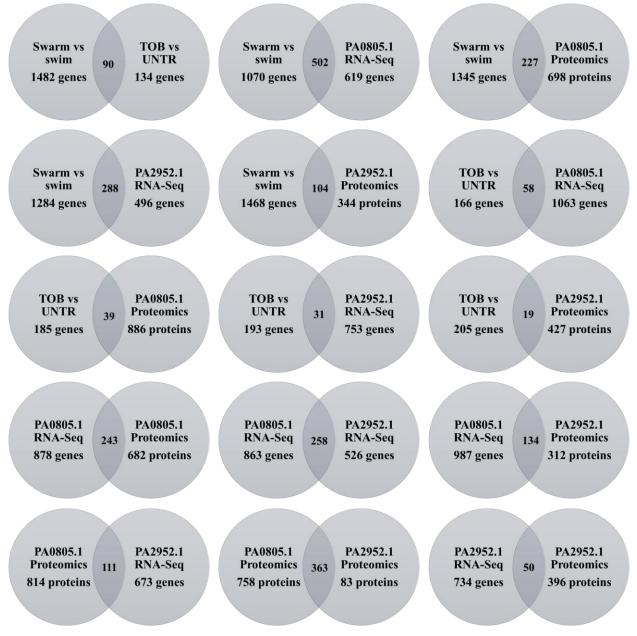
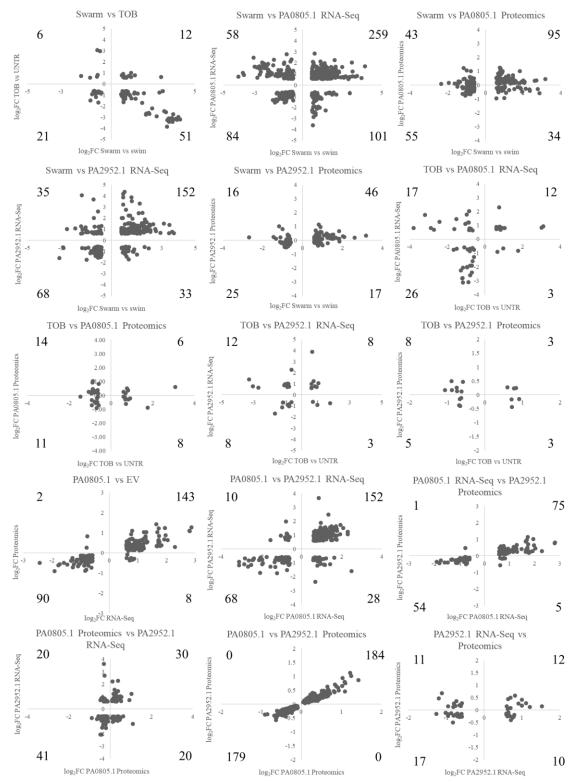



Figure A2. Venn diagrams showing common and unique genes for omic comparisons.

Figure A3. Scatterplots showing correlations of common genes for omic comparisons. Numbers in the four corners of each graph show the number of genes/proteins found in each quadrant.

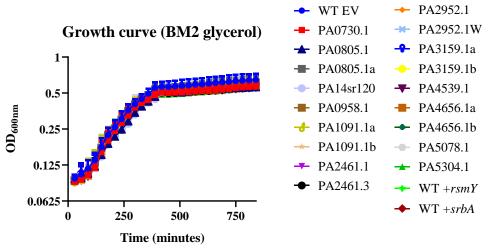


Figure A4. Growth curves of sRNA overexpression strains in BM2 glycerol with 1% arabinose showed little difference compared to EV. $n \ge 3$.

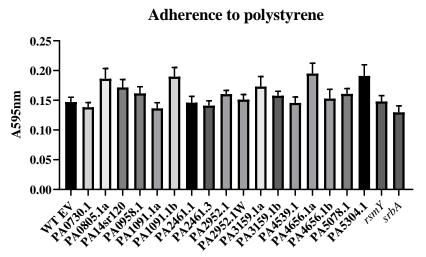
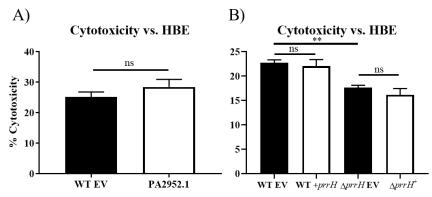



Figure A5. Adherence of sRNA overexpression strains to polystyrene plates. Statistically significant differences were determined using one-way ANOVA. $n \ge 3$.

Figure A6. Cytotoxicity phenotypes of sRNA overexpression strains with 1% arabinose. a) overexpression of PA2952.1 compared to WT EV. b) deletion and overexpression of *prrH*. Statistically significant differences were determined by unpaired t test (a) or one-way ANOVA (b). $n \ge 3$.

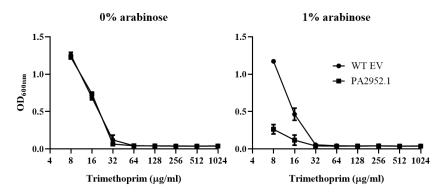


Figure A7. Subinhibitory trimethoprim inhibited the growth of the PA2952.1 overexpression strain in standard MICs in BM2 glycerol with 1% arabinose. n = 3.

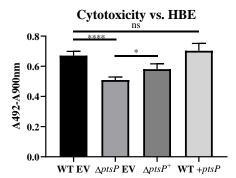


Figure A8. Cytotoxicity phenotype of the $\Delta ptsP$ mutant. Statistically significant differences were determined by ANOVA. $n \ge 3$.

Appendix B Supplementary Tables

B.1 PA14 RNA-Seq data

Dict	D 111	.			rm vs.		B vs.
PAO1	PA14	Name	Product Name		vim		NTR
				FC	padj	FC	padj
PA0007	PA14_00080		hypothetical protein	1.93	1.9E-22		
PA0013	PA14_00140		conserved hypothetical protein	-1.92	2.9E-22		
PA0026	PA14_00300	plcB	phospholipase C, PlcB	1.87	8.9E-19		
PA0027	PA14_00310		hypothetical protein	2.81	1.0E-28		
PA0028	PA14_00320		hypothetical protein	3.45	3.2E-38		
PA0038	PA14_00470		hypothetical protein	1.77	4.3E-13		
PA0039	PA14_00480		hypothetical protein	2.28	9.1E-38		
	PA14_00520		hypothetical protein			-2.11	8.5E-03
PA0044	PA14_00560	exoT	exoenzyme T			-1.93	4.3E-03
PA0045	PA14_00570		hypothetical protein	-2.21	5.1E-41	-1.85	1.5E-02
PA0046	PA14_00580		hypothetical protein	-2.07	7.4E-38		
PA0047	PA14_00590		hypothetical protein	-2.32	3.5E-39		
PA0048	PA14_00600		probable transcriptional regulator	1.66	9.1E-06		
PA0050	PA14_00630		hypothetical protein	-1.97	5.0E-13		
PA0051	PA14_00640	phzH	potential phenazine-modifying enzyme	-1.85	4.7E-05		
PA0052	PA14_00650		hypothetical protein	2.25	9.3E-16		
PA0056	PA14_00680		probable transcriptional regulator	1.53	2.0E-03		
PA0057	PA14_00690		hypothetical protein	-1.80	1.2E-09		
PA0059	PA14_00710	osmC	osmotically inducible protein OsmC	2.84	6.4E-22		
PA0060	PA14_00720		conserved hypothetical protein	2.41	6.7E-29		
PA0062	PA14_00740		hypothetical protein	1.52	4.1E-05		
PA0071	PA14_00830	tagR1	TagR1			-1.83	8.1E-03
PA0073	PA14_00860	tagT1	TagT1	1.81	4.2E-06		
PA0074	PA14_00875	ppkA	serine/threonine protein kinase PpkA	1.62	2.7E-10		
PA0075	PA14_00890	pppA	РррА	1.50	1.2E-05		
PA0076	PA14_00900	tagF1	TagF1	1.50	5.4E-08		
	PA14_00925	tssL1	TssL1	1.56	1.0E-09	1.77	4.1E-02
PA0098	PA14_01190		hypothetical protein	1.51	2.8E-04		
PA0099	PA14_01200		type VI effector protein	1.62	3.3E-08		
PA0100	PA14_01220		hypothetical protein	1.58	7.2E-09		
PA0101	PA14_01230		hypothetical protein	1.56	9.9E-06		
PA0105	PA14_01290	coxB	cytochrome c oxidase, subunit II	3.16	1.6E-33		

Table A1. Compilation of all PA14 RNA-Seq data reported in this thesis.

PA0106	PA14_01300	coxA	cytochrome c oxidase, subunit I	6.55	1.2E-33		
-	PA14_01310	00.01	conserved hypothetical protein	8.87	1.1E-26		
	PA14_01320	coIII	cytochrome c oxidase, subunit III	7.91	1.7E-29	1.58	1.8E-02
	PA14_01330	com	hypothetical protein	1.76	5.8E-07	1.50	1.01 02
	PA14_01340		hypothetical protein	6.13	2.3E-29		
-	PA14_01350		hypothetical protein	6.28	2.3E-17		
	PA14 01360		hypothetical protein	7.42	2.1E-27		
	 PA14_01380		probable cytochrome c oxidase assembly factor	7.52	1.2E-19		
PA0114	PA14_01390	senC	SenC	-1.68	2.1E-14		
PA0122	PA14_01490	rahU	rahU	1.71	4.4E-18	-1.82	7.8E-03
PA0128	PA14_01560		conserved hypothetical protein	-1.67	1.2E-12		
PA0132	PA14_01620	bauA	Beta-alanine:pyruvate transaminase	-2.26	1.1E-15		
PA0141	PA14_01730		conserved hypothetical protein	2.46	1.4E-15		
PA0142	PA14_01750		hypothetical protein	-1.87	5.6E-12		
PA0144	PA14_01780		hypothetical protein			1.65	1.8E-04
PA0151	PA14_01870		probable TonB-dependent receptor	-1.58	9.0E-05		
PA0153	PA14_01900	рсаН	protocatechuate 3,4-dioxygenase, beta subunit	3.01	1.1E-12		
PA0154	PA14_01910	pcaG	protocatechuate 3,4-dioxygenase, alpha subunit	3.56	2.9E-12		
PA0156	PA14_01940	triA	Resistance-Nodulation-Cell Division (RND) triclosan efflux membrane fusion protein, TriA	1.64	6.6E-12		
	PA14_02050		probable gamma- glutamyltranspeptidase	-1.60	1.9E-08		
PA0165	PA14_02060		hypothetical protein	-2.20	1.9E-22		
PA0166	PA14_02070		probable transporter	-1.84	2.9E-02		
	PA14_02110	siaD	SiaD	-2.53	6.3E-20		
PA0170	PA14_02130		hypothetical protein	-3.14	6.7E-20		
PA0171	PA14_02140		hypothetical protein	-2.98	1.7E-14		
PA0172	PA14_02150	siaA	SiaA	-2.74	4.9E-48		
PA0173	PA14_02180		probable methylesterase	2.80	1.7E-15		
PA0174	PA14_02190		conserved hypothetical protein	2.52	3.5E-13		
PA0175	PA14_02200		probable chemotaxis protein methyltransferase	1.92	3.8E-11		
PA0176	PA14_02220	aer2	aerotaxis transducer Aer2	1.74	1.8E-13		
PA0177	PA14_02230		probable purine-binding chemotaxis protein	1.73	7.0E-09		
PA0178	PA14_02250		probable two-component sensor	1.60	5.2E-09		
PA0179	PA14_02260		probable two-component response regulator	1.51	4.4E-07		

			probable permease of ABC				
	PA14_02340		transporter	-1.56	5.0E-02		
	PA14_02360		hypothetical protein	-1.62	2.0E-04		
	PA14_02390		probable transcriptional regulator	-1.96	3.4E-08		
PA0193	PA14_02410		hypothetical protein	-3.63	8.6E-07		
PA0195	PA14_02450	pntAA	putative NAD(P) transhydrogenase, subunit alpha part 1	-1.98	5.1E-04		
PA0195 .1	PA14_02470	pntAB	putative NAD(P) transhydrogenase, subunit alpha part 2	-1.65	2.5E-02		
PA0197	PA14_02490	tonB2	hypothetical protein	-2.98	3.7E-07		
PA0198	PA14_02500	exbB1	transport protein ExbB	-1.54	1.1E-02		
PA0200	PA14_02520		hypothetical protein	1.56	5.7E-03	-2.06	4.1E-02
PA0201	PA14_02530		hypothetical protein	-2.96	6.1E-27		
PA0209	PA14_02560		conserved hypothetical protein	2.01	1.2E-03		
PA0210	PA14_02570	mdcC	malonate decarboxylase subunit delta	2.46	4.5E-03		
PA0211	PA14_02580	mdcD	malonate decarboxylase beta subunit	2.07	2.9E-05		
PA0212	PA14_02590	mdcE	malonate decarboxylase gamma subunit	2.48	5.7E-07		
PA0213	PA14_02610		hypothetical protein	2.40	7.9E-05		
PA0214	PA14_02620		probable acyl transferase	2.81	1.4E-09		
PA0216	PA14_02640		malonate transporter MadM	1.90	1.4E-05		
	PA14_02700		probable aminotransferase	1.62	1.8E-02		
PA0222	PA14_02720		hypothetical protein	1.72	3.5E-02		
	PA14_02730		probable dihydrodipicolinate synthetase	1.61	1.2E-03		
PA0226	PA14_02760		probable CoA transferase, subunit A	1.74	2.8E-11		
PA0227	PA14_02770		probable CoA transferase, subunit B	2.27	1.1E-16		
PA0228	PA14_02790	pcaF	beta-ketoadipyl CoA thiolase PcaF	2.45	5.3E-15		
PA0229	PA14_02810	pcaT	dicarboxylic acid transporter PcaT	2.71	1.1E-15		
PA0230	PA14_02830		3-carboxy-cis,cis-muconate cycloisomerase	2.26	2.3E-19		
PA0231	PA14_02840	pcaD	beta-ketoadipate enol-lactone hydrolase	2.14	3.4E-16		
PA0232	PA14_02850	pcaC	gamma-carboxymuconolactone decarboxylase	2.44	1.1E-19		
PA0233	PA14_02870		probable transcriptional regulator	1.51	1.9E-08		
PA0234	PA14_02890		hypothetical protein	-1.91	7.1E-05		
PA0235	PA14_02900	рсаК	4-hydroxybenzoate transporter PcaK	1.51	2.9E-03		
PA0240	PA14_02980		probable porin	2.19	1.1E-08		
PA0241	PA14_02990		probable major facilitator superfamily (MFS) transporter	2.19	1.3E-09		
PA0242	PA14_03000		hypothetical protein	4.08	2.6E-29		

DA0248	PA14_03070		probable transcriptional regulator	1.65	9.0E-06		
	PA14_03070 PA14_03240	hanC		-2.17	9.0E-00 4.2E-04		
		hcpC	secreted protein Hcp		4.2E-04		
	PA14_03240	hcpA	secreted protein Hcp	-2.17			
	PA14_03240	hcpB	secreted protein Hcp	-2.17	4.2E-04	150	2.05.02
PA0979	PA14_03290		conserved hypothetical protein	2.02	((E 09	-1.56	2.9E-02
	PA14_03390		hypothetical protein	-2.02	6.6E-08		
DA 02 (0	PA14_03400		hypothetical protein	-4.31	1.7E-13		
	PA14_03490		conserved hypothetical protein	1.64	2.1E-05		
	PA14_03510		hypothetical protein	2.22	1.1E-18		
	PA14_03520		hypothetical protein	2.04	3.0E-13		
	PA14_03580		probable transcriptional regulator	1.52	9.8E-07		
	PA14_03610		conserved hypothetical protein	-2.66	1.1E-38		
<u> </u>	PA14_03620		hypothetical protein	-2.40	4.4E-08		
	PA14_03650	cysA	sulfate transport protein CysA	-2.23	7.2E-15		
PA0281	PA14_03670	cysW	sulfate transport protein CysW	-2.85	5.2E-22	-1.67	2.6E-02
PA0282	PA14_03680	cysT	sulfate transport protein CysT	-2.97	1.7E-21		
PA0283	PA14_03700	sbp	sulfate-binding protein precursor	-3.23	2.8E-23	-1.86	5.3E-03
PA0284	PA14_03710		hypothetical protein	-2.86	1.0E-15		
PA0286	PA14_03730	desA	delta-9 fatty acid desaturase, DesA	-1.68	5.8E-14		
PA0287	PA14_03760	gpuP	sodium:solute symporter	-3.14	3.4E-16		
PA0288	PA14_03770	gpuA	3-guanidinopropionase	-2.49	1.2E-11		
PA0291	PA14_03800	oprE	Anaerobically-induced outer membrane porin OprE precursor	-2.74	3.4E-69		
PA0297	PA14_03870	spuA	probable glutamine amidotransferase	-1.72	9.3E-10		
	PA14_04180	carO	calcium-regulated OB-fold protein CarO	-1.86	3.0E-11		
PA0324	PA14_04230		probable permease of ABC transporter	-1.96	4.1E-02		
PA0328	PA14_04290	aaaA	arginine-specific autotransporter of Pseudomonas aeruginosa, AaaA	-1.56	2.8E-12		
PA0340	PA14_04440		conserved hypothetical protein	-1.76	1.6E-14		
PA0341	PA14_04460	lgt	prolipoprotein diacylglyceryl transferase	-1.65	2.9E-21		
PA0344	PA14_04510		hypothetical protein	2.10	5.4E-18		
PA0345	PA14_04520		hypothetical protein	1.84	1.8E-16		
PA0346	PA14_04530		hypothetical protein	1.95	5.9E-09		
PA0352	PA14_04610		probable transporter	-1.67	5.6E-17		
	PA14_04650	pfpI	protease PfpI	3.49	1.3E-23		
	 PA14_04710	1 1 1	hypothetical protein	-2.72	7.2E-38		
PA0364	PA14_04780	laoA	LaoA	2.06	5.7E-12		
	PA14_04790	laoB	LaoB	1.86	1.3E-14		

PA0366	PA14_04810	laoC	LaoC	1.99	1.9E-16		
	 PA14_04820	laoR	LaoR	1.62	4.4E-14		
	PA14_05010		conserved hypothetical protein	-1.85	7.9E-13		
	PA14_05030		hypothetical protein	-1.55	6.0E-07		
PA0386	PA14_05040		probable oxidase	-1.53	3.0E-06		
PA0389	PA14_05070		hypothetical protein	-1.50	1.6E-14		
PA0390	PA14_05080	metX	homoserine O-acetyltransferase	-1.61	1.3E-21		
PA0409	PA14_05330	pilH	twitching motility protein PilH			-1.51	2.7E-02
PA0413	PA14_05390	chpA	component of chemotactic signal transduction system	1.67	3.3E-41		
PA0414	PA14_05400	chpB	probable methylesterase	1.71	1.1E-21		
PA0422	PA14_05500		conserved hypothetical protein	-2.73	3.3E-51		
PA0433	PA14_05630		hypothetical protein	2.72	6.0E-10		
PA0434	PA14_05640		hypothetical protein	3.27	8.2E-05		
PA0435	PA14_05650		hypothetical protein	2.46	5.5E-05		
PA0443	PA14_05790		probable transporter	-1.90	1.0E-02		
PA0450	PA14_05870		probable phosphate transporter	-1.52	2.9E-03		
PA0451	PA14_05880		conserved hypothetical protein	1.64	2.5E-06	1.90	1.4E-02
PA0459	PA14_06000		probable ClpA/B protease ATP binding subunit	1.86	2.0E-10		
PA0471	PA14_06170	fiuR	FiuR	1.68	1.0E-04		
PA0472	PA14_06180	fiuI	FiuI	1.54	3.0E-05		
PA0480	PA14_06270		hydrolase	2.49	7.5E-08		
PA0484	PA14_06310		conserved hypothetical protein	1.74	5.5E-11		
PA0485	PA14_06320		conserved hypothetical protein	-1.57	2.7E-07		
PA0490	PA14_06390		hypothetical protein	1.62	1.0E-07		
PA0506	PA14_06600		probable acyl-CoA dehydrogenase	-1.67	4.0E-20		
PA0509	PA14_06650	nirN	NirN	-3.32	1.2E-19		
PA0510	PA14_06660	nirE	NirE	-2.91	2.1E-11		
PA0511	PA14_06670	nirJ	heme d1 biosynthesis protein NirJ	-3.19	4.9E-18		
PA0512	PA14_06680	nirH	hypothetical protein	-2.69	1.2E-11		
PA0513	PA14_06690	nirG	transcriptional regulator	-3.19	1.8E-13		
PA0514	PA14_06700	nirL	heme d1 biosynthesis protein NirL	-2.92	9.1E-12		
PA0515	PA14_06710		transcriptional regulator	-3.38	5.4E-13		
PA0516	PA14_06720	nirF	heme d1 biosynthesis protein NirF	-3.37	2.7E-16		
PA0517	PA14_06730	nirC	c-type cytochrome	-3.30	5.1E-23		
PA0518	PA14_06740	nirM	cytochrome c-551 precursor	-4.27	1.4E-35		
PA0519	PA14_06750	nirS	nitrite reductase precursor	-4.52	7.5E-27		
PA0520	PA14_06770	nirQ	regulatory protein NirQ	-2.93	4.6E-21		
PA0521	PA14_06790		cytochrome c oxidase subunit	-5.78	1.2E-23		

PA0523 PA14_06810 norC nitric-oxide reductase subunit C -13.47 8.4E-28 PA0524 PA14_06830 norB nitric-oxide reductase subunit B -13.04 2.0E-31 PA0525 PA14_06860 probable dinitrification protein NorD -13.77 2.6E-31 PA0525 PA14_06960 pauB1 FAD-dependent oxidoreductase -4.68 3.4E-94 PA0535 PA14_06970 probable transcriptional regulator -1.64 2.5E-09 PA0546 PA14_07050 hypothetical protein 1.76 2.0E-06 PA0547 PA14_070700 metK methionine adenosyltransferase 1.78 2.3E-38 PA0551 PA14_07300 hypothetical protein 1.51 2.1E-16 PA0552 PA14_07300 hypothetical protein 2.18 3.6E-13 PA0567 PA14_07400 hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0567 PA14_07400 hypothetical protein -2.03 1.2E-16 1.50 2.5E-02 PA14_07480 reverse transcriptase	DA 0500	DA14 06000		1 1 1 1	10.20	2.05.26		<u> </u>
PA0524 PA14_06830 norB nitric-oxide reductase subunit B -13.04 2.0E-32 PA0525 PA14_06840 probable dinitrification protein NorD -13.77 2.6E-31 PA0526 PA14_06860 hypothetical protein -1.52 4.1E-05 PA0533 PA14_06960 pauBI FAD-dependent oxidoreductase -4.68 3.4E-94 PA0534 PA14_07050 hypothetical protein 1.76 2.0E-06 2.3E-38 PA0547 PA14_07100 hypothetical protein 1.78 2.3E-38 2.3E-38 PA0547 PA14_07200 hypothetical protein 1.74 8.7E-27 PA0547 PA0547 PA14_07300 hypothetical protein 2.18 1.6E-13 2.02-02 PA0572 PA14_07430 hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07480 reverse transcriptase -1.52 2.0E-02 2.0E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 2.0E-02 2.0E-02 2.0E-02 2.0E-02			9	hypothetical protein	-10.38	3.8E-26		
PA0525 PA14_06840 probable dinitrification protein NorD -1.3.77 2.6E-31 PA0526 PA14_06860 hypothetical protein -1.52 4.1E-05 PA0534 PA14_06960 pauBl FAD-dependent oxidoreductase -4.68 3.4E-94 PA0535 PA14_07050 hypothetical protein 1.76 2.0E-06 PA0543 PA14_07090 methionine adenosyltransferase 1.78 2.3E-38 PA0547 PA14_07100 probable transcriptional regulator 1.74 8.7E-27 PA0553 PA14_07300 hypothetical protein 1.51 2.1E-16 PA0557 PA14_07370 conserved hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07360 hypothetical protein -2.03 1.2E-16 -1.50 2.5E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 PA14_0780 reverse transcriptase -1.51 5.7E-08 -1.72 4.1E-02 PA0602 PA14_07930 probable binding protein component of ABC transporter -1.85								
PA0526 PA14_06860 hypothetical protein -1.52 4.1E-05 PA0533 PA14_06960 pauB1 FAD-dependent oxidoreductase -4.68 3.4E-94 PA0535 PA14_07050 hypothetical protein 1.76 2.0E-06 PA0547 PA14_07050 hypothetical protein 1.78 2.3E-38 PA0547 PA14_0710 probable transcriptional regulator 1.74 8.7E-27 PA0553 PA14_07200 hypothetical protein 1.51 2.1E-16 PA0561 PA14_07300 hypothetical protein 2.46 4.5E-23 PA0572 PA14_07300 hypothetical protein 2.46 4.5E-23 PA0457 PA14_07360 hypothetical protein -2.03 1.2E-16 -1.50 2.5E-02 PA14_07460 hypothetical protein -2.03 1.2E-16 -1.50 2.5E-02 PA0602 PA14_07850 probable binding protein component of ABC transporter -1.55 4.9E-13 PA0607 PA14_07930 probable phosphoglycolate phosphatas-epinnerase -1.55 5.7E-08			norB					
PA0534 PA14_06960 pauB/ FAD-dependent oxidoreductase -4.68 3.4E-94 PA0535 PA14_06970 probable transcriptional regulator -1.64 2.5E-09 PA0543 PA14_07050 methionine adenosyltransferase 1.78 2.3E-38 PA0547 PA14_070700 metK methionine adenosyltransferase 1.74 8.7E-27 PA0547 PA14_07300 hypothetical protein 1.51 2.1E-16 1.74 PA0572 PA14_07300 hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07430 hypothetical protein 2.26 4.5E-23 1.52 2.0E-02 PA0572 PA14_07480 reverse transcriptase -1.52 2.0E-02 1.2E+16 -1.50 2.5E-02 PA0602 PA14_07850 probable binding protein component -1.65 4.9E-13 1.84 5.2E-19 PA0602 PA14_07930 rpresor.PtrB -4.54 6.4E-41 1.2E-63 PA0612 PA14_07970 ptrB repressor.PtrB								
PA0535 PA14_06970 probable transcriptional regulator -1.64 2.5E-09 PA0543 PA14_07050 hypothetical protein 1.76 2.0E-06								
PA0543 PA14_07050 hypothetical protein 1.76 2.0E-06 PA0546 PA14_07100 metK methionine adenosyltransferase 1.78 2.3E-38 PA0547 PA14_07100 probable transcriptional regulator 1.74 8.7E-27 PA0553 PA14_07300 hypothetical protein 1.51 2.1E-16 PA0561 PA0561 PA14_07370 conserved hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07400 hypothetical protein -2.03 1.2E-16 -1.50 2.5E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 -1.52 2.0E-02 PA0602 PA14_07850 probable binding protein component of ABC transporter 1.84 5.2E-19 -1.52 2.0E-02 PA0608 PA14_07970 <i>trpe</i> ribulose-phosphate 3-epimerase -1.65 4.9E-13 -1.72 4.1E-02 PA0612 PA14_07970 <i>ptrB</i> repressor, PtrB -4.54 6.4E-41 -1.72 4.1E-02 PA0613 PA14_			pauB1	_				
PA0546 PA14_07090 metK methionine adenosyltransferase 1.78 2.3E-38 PA0547 PA14_07110 probable transcriptional regulator 1.74 8.7E-27 PA0553 PA14_07300 hypothetical protein 1.51 2.1E-16 PA0567 PA14_07300 hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07430 hypothetical protein 2.26 4.4E-02 4.4E-02 PA0572 PA14_07430 hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07480 reverse transcriptase -1.52 2.0E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 PA0607 PA14_07970 probable binding protein component of ABC transporter 1.84 5.2E-19 PA0602 PA14_07930 probable phosphoglycolate pA14_07990 +1.72 4.1E-02 PA0612				· · · ·				
PA0547 PA14_07110 probable transcriptional regulator 1.74 8.7E-27 PA0553 PA14_07200 hypothetical protein 1.51 2.1E-16 PA0561 PA14_07300 hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0567 PA14_07430 hypothetical protein 2.46 4.5E-23 4.4E-02 PA0572 PA14_07460 hypothetical protein 2.03 1.2E-16 1.50 2.5E-02 PA14_07460 hypothetical protein -2.03 1.2E-16 1.50 2.5E-02 PA14_07460 reverse transcriptase -1.52 2.0E-02 2.0E-02 PA0602 PA14_07910 rpe ribulose-phosphate 3-epimerase -1.65 4.9E-13 PA0608 PA14_07970 pre ribulose-phosphates -1.51 5.7E-08 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 -4.54 PA0613 PA14_07990 hypothetical protein -4.50 4.8E-47 -4.1E-02	-							
PA0553 PA14_07200 hypothetical protein 1.51 2.1E-16 PA0561 PA14_07300 hypothetical protein -1.58 1.6E-13 PA0567 PA14_07370 conserved hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07430 hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07430 hypothetical protein 2.03 1.2E-16 -1.50 2.5E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 -1.52 2.0E-02 PA0607 PA14_07850 probable binding protein component of ABC transporter 1.84 5.2E-19 -1.52 2.0E-02 PA0607 PA14_07930 probable phosphoglycolate of ABC transporter -1.51 5.7E-08 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 PA0613 PA14_07990 hypothetical protein -3.61 1.6E-81 PA0616 PA14_08000			metK					
PA0561 PA14_07300 hypothetical protein -1.58 1.6E-13 PA0567 PA14_07370 conserved hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07430 hypothetical protein 2.46 4.5E-23 PA14_07480 reverse transcriptase -1.52 2.0E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 PA0602 PA14_07850 probable binding protein component of ABC transporter 1.84 5.2E-19 PA0607 PA14_07910 rpe ribulose-phosphate 3-epimerase -1.65 4.9E-13 PA0608 PA14_07970 ptr ribulose-phosphate 3-epimerase -1.51 5.7E-08 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.454 6.4E-41 - PA0613 PA14_07980 hypothetical protein -4.50 4.8E-47 - PA0614 PA14_08000 hypothetical protein -3.61 1.6E-81 - PA0617 PA14_08000				· · ·				
PA0567 PA14_07370 conserved hypothetical protein 2.28 7.7E-12 2.03 4.4E-02 PA0572 PA14_07430 hypothetical protein 2.46 4.5E-23 1 PA14_07460 hypothetical protein -2.03 1.2E-16 -1.50 2.5E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 PA0602 PA14_07980 probable binding protein component of ABC transporter 1.84 5.2E-19 PA0608 PA14_07910 <i>rpe</i> ribulose-phosphate 3-epimerase -1.65 4.9E-13 PA0608 PA14_07970 <i>ptrB</i> repressor, PtrB -4.54 6.4E-41 -1.72 4.1E-02 PA0612 PA14_07980 hypothetical protein -4.34 2.1E-63 -1.72 4.1E-02 PA0613 PA14_07990 hypothetical protein -2.61 9.5E-48 -1.72 4.1E-02 PA0614 PA14_07990 hypothetical protein -2.61 9.5E-48 -1.65 1.8E-63 -1.61 1.6E-81 -1.62 -1.61 1.61 -1.62	-							
PA0572 PA14_07430 hypothetical protein 2.46 4.5E-23 PA14_07460 hypothetical protein -2.03 1.2E-16 -1.50 2.5E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 PA0602 PA14_07850 probable binding protein component of ABC transporter 1.84 5.2E-19 PA0607 PA14_07910 rpe ribulose-phosphate 3-epimerase -1.65 4.9E-13 PA0608 PA14_07970 rpe ribulose-phosphate3-epimerase -1.65 4.9E-13 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 PA0613 PA14_07980 hypothetical protein -4.34 2.1E-63 PA0614 PA14_07990 hypothetical protein -4.50 4.8E-47 PA0615 PA14_08000 hypothetical protein -2.61 9.5E-48 PA0617 PA14_08010 hypothetical protein -5.28 1.8E-63 1.66-81 PA0618 PA14_08030 probable bacteriophage protein -5.28 1.66 1.8E-13								
PA14_07460 hypothetical protein -2.03 1.2E-16 -1.50 2.5E-02 PA14_07480 reverse transcriptase -1.52 2.0E-02 PA0602 PA14_07850 probable binding protein component of ABC transporter 1.84 5.2E-19 -1.52 2.0E-02 PA0607 PA14_07910 rpe ribulose-phosphate 3-epimerase -1.65 4.9E-13 -1.72 4.1E-02 PA0608 PA14_07970 preb repressor, PtrB -4.54 6.4E-41 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 -1.72 4.1E-02 PA0613 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 -1.72 4.1E-02 PA0613 PA14_07980 hypothetical protein -4.34 2.1E-63 -1.72 4.1E-02 PA0614 PA14_07990 hypothetical protein -4.50 4.8E-47 -1.72 4.1E-02 PA0615 PA14_08000 hypothetical protein -3.61 1.6E-81 -1.66 <t< td=""><td></td><td></td><td></td><td></td><td>2.28</td><td>7.7E-12</td><td>2.03</td><td>4.4E-02</td></t<>					2.28	7.7E-12	2.03	4.4E-02
PA14_07480 reverse transcriptase -1.52 2.0E-02 PA0602 PA14_07850 probable binding protein component of ABC transporter 1.84 5.2E-19 - PA0607 PA14_07910 rpe ribulose-phosphate 3-epimerase -1.65 4.9E-13 - PA0608 PA14_07930 probable phosphoglycolate phosphatase -1.51 5.7E-08 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 - PA0613 PA14_07990 hypothetical protein -4.34 2.1E-63 - PA0615 PA14_07990 hypothetical protein -4.50 4.8E-47 - PA0616 PA14_08000 hypothetical protein -4.82 1.8E-63 - PA0617 PA14_08020 probable bacteriophage protein -5.28 1.8E-106 - PA0619 PA14_08030 probable bacteriophage protein -5.82 3.8E-79 - PA0620 PA14_08050 probable bacteriophage protein -5.82 3.8E-79 -	PA0572				2.46			
PA0602 PA14_07850 probable binding protein component of ABC transporter 1.84 5.2E-19 PA0607 PA14_07910 rpe ribulose-phosphate 3-epimerase -1.65 4.9E-13 PA0608 PA14_07930 probable phosphoglycolate phosphatase -1.51 5.7E-08 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 - PA0613 PA14_07980 hypothetical protein -4.34 2.1E-63 - PA0614 PA14_07990 hypothetical protein -4.50 4.8E-47 - PA0615 PA14_08000 hypothetical protein -2.61 9.5E-48 - PA0616 PA14_08000 hypothetical protein -3.61 1.6E-81 - PA0617 PA14_08020 probable bacteriophage protein -5.28 1.8E-63 - PA0619 PA14_08030 probable bacteriophage protein -5.28 1.8E-79 - PA0620 PA14_08050 probable bacteriophage protein -5.82 3.8E-79 -		PA14_07460		hypothetical protein	-2.03	1.2E-16	-1.50	2.5E-02
PA0002 PA14_07830 of ABC transporter 1.84 5.2E-19 PA0607 PA14_07910 rpe ribulose-phosphate 3-epimerase -1.65 4.9E-13 PA0608 PA14_07930 probable phosphoglycolate phosphatase -1.51 5.7E-08 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 11.84 PA0613 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 11.84 PA0613 PA14_07990 hypothetical protein -4.34 2.1E-63 11.82 PA0614 PA14_07990 hypothetical protein -4.50 4.8E-47 11.84 PA0615 PA14_08000 hypothetical protein -3.61 1.6E-81 11.82 PA0616 PA14_08010 hypothetical protein -3.61 1.6E-81 11.66 PA0618 PA14_08030 probable bacteriophage protein -5.28 1.8E-63 11.66 PA0619 PA14_08040 probable bacteriophage protein -5.82 3.8E-79 11.66 PA0620 PA14_08050 probable bacteriophage protein <td< td=""><td></td><td>PA14_07480</td><td></td><td>reverse transcriptase</td><td></td><td></td><td>-1.52</td><td>2.0E-02</td></td<>		PA14_07480		reverse transcriptase			-1.52	2.0E-02
PA0607 PA14_07910 rpe ribulose-phosphate 3-epimerase -1.65 4.9E-13 PA0608 PA14_07930 probable phosphoglycolate phosphatase -1.51 5.7E-08 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 PA0613 PA14_07980 hypothetical protein -4.34 2.1E-63 PA0614 PA14_07990 hypothetical protein -4.50 4.8E-47 PA0615 PA14_08000 hypothetical protein -2.61 9.5E-48 PA0616 PA14_08000 hypothetical protein -3.61 1.6E-81 PA0617 PA14_08020 probable bacteriophage protein -4.82 1.8E-63 PA0619 PA14_08030 probable bacteriophage protein -5.28 1.8E-106 PA0620 PA14_08040 probable bacteriophage protein -5.28 1.8E-106 PA0621 PA14_08060 conserved hypothetical protein -3.92 1.0E-24	PA0602	PA14_07850			1.84	5.2E-19		
PA0608 PA14_07930 probable phosphoglycolate phosphatase -1.51 5.7E-08 -1.72 4.1E-02 PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 1 PA0613 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 1 PA0613 PA14_07980 hypothetical protein -4.34 2.1E-63 1 PA0614 PA14_07990 hypothetical protein -4.50 4.8E-47 1 PA0615 PA14_08000 hypothetical protein -2.61 9.5E-48 1 PA0616 PA14_08010 hypothetical protein -3.61 1.6E-81 1 PA0617 PA14_08020 probable bacteriophage protein -5.28 1.8E-63 1 PA0619 PA14_08040 probable bacteriophage protein -5.28 1.8E-106 1 PA0620 PA14_08050 probable bacteriophage protein -4.09 1.5E-106 PA0621 PA14_08070 probable bacteriophage protein -8.13 290 1 P	PA0607	PA14 07910	rne	1	-1.65	4.9E-13		
PA0612 PA14_07970 ptrB repressor, PtrB -4.54 6.4E-41 PA0613 PA14_07980 hypothetical protein -4.34 2.1E-63 PA0614 PA14_07990 hypothetical protein -4.34 2.1E-63 PA0615 PA14_08000 hypothetical protein -4.50 4.8E-47 PA0616 PA14_08000 hypothetical protein -2.61 9.5E-48 PA0617 PA14_08010 hypothetical protein -3.61 1.6E-81 PA0618 PA14_08020 probable bacteriophage protein -5.28 1.8E- PA0619 PA14_08030 probable bacteriophage protein -5.82 3.8E-79 PA0620 PA14_08050 probable bacteriophage protein -4.09 1.5E- PA0621 PA14_08050 probable bacteriophage protein -4.09 1.5E- PA0622 PA14_08060 conserved hypothetical protein -3.92 1.0E-24 PA0623 PA14_08070 probable bacteriophage protein -8.13 290 PA0623 PA14_08090 probable bacteriophage protein -6.43 1.1E- PA0624 PA14_0810			ipe	probable phosphoglycolate			-1.72	4.1E-02
PA0613PA14_07980hypothetical protein-4.342.1E-63PA0614PA14_07990hypothetical protein-4.504.8E-47PA0615PA14_08000hypothetical protein-2.619.5E-48PA0616PA14_08010hypothetical protein-3.611.6E-81PA0617PA14_08020probable bacteriophage protein-4.821.8E-63PA0618PA14_08030probable bacteriophage protein-5.281.8E-PA0619PA14_08030probable bacteriophage protein-5.823.8E-79PA0620PA14_08050probable bacteriophage protein-4.091.5E-PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-3.921.0E-24PA0623PA14_08070probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E-PA0625PA14_08100hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-6.951.1E-	PA0612	PA14 07970	<i>ptrB</i>		-4.54	6.4E-41		
PA0614PA14_07990hypothetical protein-4.504.8E-47PA0615PA14_08000hypothetical protein-2.619.5E-48PA0616PA14_08010hypothetical protein-3.611.6E-81PA0617PA14_08020probable bacteriophage protein-4.821.8E-63PA0618PA14_08030probable bacteriophage protein-5.281.06PA0619PA14_08040probable bacteriophage protein-5.823.8E-79PA0620PA14_08050probable bacteriophage protein-5.823.8E-79PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-8.131.2E-290PA0623PA14_08090probable bacteriophage protein-7.416.1E-21PA0624PA14_08100hypothetical protein-6.431.1E-110PA0625PA14_08110hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-6.951.8E-56			1	*				
PA0615PA14_08000hypothetical protein-2.619.5E-48PA0616PA14_08010hypothetical protein-3.611.6E-81PA0617PA14_08020probable bacteriophage protein-4.821.8E-63PA0618PA14_08030probable bacteriophage protein-5.281.6EPA0619PA14_08040probable bacteriophage protein-5.823.8E-79PA0620PA14_08050probable bacteriophage protein-5.823.8E-79PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-8.131.2E- 290PA0623PA14_08090probable bacteriophage protein-6.431.1E- 110PA0624PA14_08100hypothetical protein-6.431.1E- 110PA0625PA14_08100hypothetical protein-6.951.8E-56PA0625PA14_08100hypothetical protein-6.951.8E-56								
PA0616PA14_08010hypothetical protein-3.611.6E-81PA0617PA14_08020probable bacteriophage protein-4.821.8E-63PA0618PA14_08030probable bacteriophage protein-5.281.06PA0619PA14_08040probable bacteriophage protein-5.823.8E-79PA0620PA14_08050probable bacteriophage protein-5.823.8E-79PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-8.131.2E- 290PA0623PA14_08090probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E- 110PA14_08110hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-6.951.1E-								
PA0617PA14_08020probable bacteriophage protein-4.821.8E-63PA0618PA14_08030probable bacteriophage protein-5.281.06PA0619PA14_08040probable bacteriophage protein-5.823.8E-79PA0620PA14_08050probable bacteriophage protein-4.091.5E- 1.36PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-8.13290PA0623PA14_08090probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E- 110PA14_08110hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-6.951.1E-	-							
PA0618PA14_08030probable bacteriophage protein-5.281.8E- 106PA0619PA14_08040probable bacteriophage protein-5.823.8E-79PA0620PA14_08050probable bacteriophage protein-4.091.5E- 136PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-8.13290PA0623PA14_08070probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E- 110PA14_08110hypothetical protein-6.951.8E-56PA0625PA 14_08120hypothetical protein-5.42								
PA0619PA14_08040probable bacteriophage protein-5.823.8E-79PA0620PA14_08050probable bacteriophage protein-4.091.5E- 136PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-8.131.2E- 290PA0623PA14_08090probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E- 110PA0625PA14_08120hypothetical protein-6.951.8E-56						1.8E-		
PA0620PA14_08050probable bacteriophage protein-4.091.5E- 1.36PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-8.131.2E- 290PA0623PA14_08090probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E- 110PA0625PA14_08110hypothetical protein-6.951.8E-56	PA0619	PA14 08040		probable bacteriophage protein	-5.82			
PA0621PA14_08060conserved hypothetical protein-3.921.0E-24PA0622PA14_08070probable bacteriophage protein-8.131.2E- 290PA0623PA14_08090probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E- 110PA14_08110hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-5.421.1E-								
PA0622PA14_08070probable bacteriophage protein-8.131.2E- 290PA0623PA14_08090probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E- 110PA14_08110hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-5.421.1E-	PA0621	PA14_08060		conserved hypothetical protein	-3.92			
PA0623PA14_08090probable bacteriophage protein-7.416.1E- 221PA0624PA14_08100hypothetical protein-6.431.1E- 110PA14_08110hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-5.421.1E- 1.1E-						1.2E-		
PA0624PA14_08100hypothetical protein-6.431.1E- 110PA14_08110hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-5.421.1E-	PA0623	PA14_08090		probable bacteriophage protein	-7.41	6.1E-		
PA14_08110hypothetical protein-6.951.8E-56PA0625PA14_08120hypothetical protein-5.421.1E-	PA0624	PA14_08100		hypothetical protein	-6.43	1.1E-		
PA0625 PA14_08120 hypothetical protein _5.42 1.1E-		PA14_08110		hypothetical protein	-6.95	1.8E-56		
	PA0625							

	PA14_08840 PA14_08850	rpsJ rplC	30S ribosomal protein S10 50S ribosomal protein L3	-1.64 -1.79	2.6E-15 6.9E-20		
PA4265	PA14_08830	tufA	elongation factor Tu	-1.51	7.4E-16		
PA4267	PA14_08810	rpsG	30S ribosomal protein S7	-1.58	8.0E-13	-1.67	2.1E-02
PA4268	PA14_08790	rpsL	30S ribosomal protein S12	-1.53	3.0E-10		
PA4270	PA14_08760	rpoB	DNA-directed RNA polymerase beta chain	-1.62	7.5E-17		
PA4277	PA14_08680	tuf B	elongation factor Tu	-1.60	1.6E-26		
	PA14_08820	fusA1	elongation factor G	-1.62	1.0E-15		
	 PA14_08640		hypothetical protein	-1.67	5.2E-11		
	PA14_08630		pantothenate kinase	-1.68	8.7E-15		
PA4280	PA14_08620	birA	proenzyme BirA bifunctional protein	-1.70	2.7E-25		
PA0654	PA14_08390	speD	S-adenosylmethionine decarboxylase	-2.78	2.2E-86		
PA0650	PA14_08350	trpD	anthranilate phosphoribosyltransferase			-1.51	4.1E-02
PA0646	PA14_08310		hypothetical protein	-1.68	2.1E-15		
	PA14_08300		probable bacteriophage protein	-5.05	2.1E- 284		
PA0640	PA14_08280		probable bacteriophage protein	-5.06	9.1E-84		
	PA14_08270		conserved hypothetical protein	-6.13	5.2E- 122		
PA0638	PA14_08260		probable bacteriophage protein	-5.43	6.9E- 104		
PA0637	PA14_08250		conserved hypothetical protein	-5.24	6.9E-46		
PA0636	PA14_08240		hypothetical protein	-5.63	2.9E- 172		
PA0635	PA14_08230		hypothetical protein	-6.78	9.9E- 127		
PA0634	PA14_08220		hypothetical protein	-6.08	1.7E- 136		
PA0633	PA14_08210		hypothetical protein	-6.66	2.8E- 231		
	 PA14_08200		hypothetical protein	-8.56	1.0E-41		
PA0631	PA14_08190		hypothetical protein	-8.11	5.8E-29		
	PA14_08180		hypothetical protein	-6.29	1.1E-42		
PA0629	PA14_08160		conserved hypothetical protein	-6.46	7.3E-69		
	PA14_08150		conserved hypothetical protein	-5.15	4.8E- 133		
PA0627	PA14_08140		conserved hypothetical protein	-4.31	6.1E-27		
PA0626	PA14_08130		hypothetical protein	-4.62	2.9E- 108		

DA 40.00	DA14 000 CO	10	500 1 1 1	1.01	5 05 20		
	PA14_08860	rplD	50S ribosomal protein L4	-1.91	5.0E-29		
	PA14_08870	rplW	50S ribosomal protein L23	-1.93	1.1E-23		
-	PA14_08880	rplB	50S ribosomal protein L2	-1.96	2.0E-25		
	PA14_08890	rpsS	30S ribosomal protein S19	-1.95	5.2E-26	-1.78	2.8E-02
-	PA14_08900	rplV	50S ribosomal protein L22	-1.88	5.2E-19		
	PA14_08910	rpsC	30S ribosomal protein S3	-1.88	8.1E-24		
	PA14_08920	rplP	50S ribosomal protein L16	-1.88	6.8E-23		
PA4255	PA14_08930	rpmC	50S ribosomal protein L29	-1.76	5.3E-18		
PA4254	PA14_08940	rpsQ	30S ribosomal protein S17	-1.88	3.6E-26		
PA4253	PA14_08950	rplN	50S ribosomal protein L14	-1.78	4.2E-27		
PA4252	PA14_08960	rplX	50S ribosomal protein L24	-1.72	8.5E-27		
PA4251	PA14_08970	rplE	50S ribosomal protein L5	-1.60	1.8E-28		
PA4250	PA14_08980	rpsN	30S ribosomal protein S14	-1.58	2.6E-30		
PA4249	PA14_08990	rpsH	30S ribosomal protein S8	-1.66	5.4E-12		
PA4248	PA14_09000	rplF	50S ribosomal protein L6	-1.73	3.4E-14		
PA4247	PA14_09010	rplR	50S ribosomal protein L18	-1.71	5.8E-12		
PA4246	PA14_09020	rpsE	30S ribosomal protein S5	-1.78	1.5E-15		
PA4245	PA14_09030	rpmD	50S ribosomal protein L30	-1.80	3.5E-13		
PA4244	PA14_09040	rplO	50S ribosomal protein L15	-1.70	1.2E-15		
PA4243	PA14_09050	secY	secretion protein SecY	-1.54	1.1E-08		
PA4241	PA14_09080	rpsM	30S ribosomal protein S13	-1.61	3.0E-12		
PA4240	PA14_09090	rpsK	30S ribosomal protein S11	-1.75	2.8E-26		
PA4239	PA14_09100	rpsD	30S ribosomal protein S4	-1.66	6.1E-17		
PA4238	PA14_09115	rpoA	DNA-directed RNA polymerase alpha chain	-1.56	1.8E-16		
PA4232	PA14_09200	ssb	single-stranded DNA-binding protein	-1.59	1.3E-30		
PA4231	PA14_09210	pchA	salicylate biosynthesis isochorismate synthase	8.11	8.0E-51		
PA4230	PA14_09220	pchB	salicylate biosynthesis protein PchB	7.32	8.6E-36	-1.65	2.3E-02
PA4229	PA14_09230	pchC	pyochelin biosynthetic protein PchC	5.03	5.8E-26		
PA4228	PA14_09240	pchD	pyochelin biosynthesis protein PchD	5.12	1.2E-29		
PA4227	PA14_09260	pchR	transcriptional regulator PchR	3.79	5.6E-28		
PA4226	PA14_09270	pchE	dihydroaeruginoic acid synthetase	5.77	2.5E-41		
PA4225	PA14_09280	pchF	pyochelin synthetase	6.85	1.9E-56		
PA4224	PA14_09290	pchG	pyochelin biosynthetic protein PchG	7.94	8.9E-55		
PA4223	PA14_09300	-	probable ATP-binding component of ABC transporter	7.87	3.8E-63		
PA4222	PA14_09320		probable ATP-binding component of ABC transporter	9.07	3.9E-78		
PA4221	PA14_09340	fptA	Fe(III)-pyochelin outer membrane receptor precursor	3.88	1.8E-25	-1.73	7.9E-03

PA4220	PA14_09350		hypothetical protein	3.90	1.7E-46		
	PA14_09370	ampO	AmpO	3.67	5.2E-26		
	PA14_09380	ampP	AmpP	4.41	2.8E-30		
	PA14_09400	ph _z S	flavin-containing monooxygenase	2.28	3.1E-16		
	PA14_09410	-	probable pyridoxamine 5'-phosphate oxidase	2.41	9.7E-13		
PA4216	PA14_09410	phzG1	probable pyridoxamine 5'-phosphate oxidase	2.41	9.7E-13		
PA1903	PA14_09440	phzE2	phenazine biosynthesis protein PhzE	2.53	3.4E-21		
PA4214	PA14_09440	phzE1	phenazine biosynthesis protein PhzE	2.53	3.4E-21		
PA1902	PA14_09450	phzD2	phenazine biosynthesis protein PhzD	2.37	3.9E-13		
PA4213	PA14_09450	phzD1	phenazine biosynthesis protein PhzD	2.37	3.9E-13		
	PA14_09460	phzC1	phenazine biosynthesis protein PhzC	2.23	3.2E-10		
PA4211	PA14_09470	phzB1	probable phenazine biosynthesis protein	2.15	3.4E-08		
PA4209	PA14_09490	phzM	probable phenazine-specific methyltransferase	1.82	1.1E-08	-1.52	2.8E-02
PA4208	PA14_09500	opmD	probable outer membrane protein precursor	1.77	1.3E-22		
PA4207	PA14_09520	mexI	probable Resistance-Nodulation-Cell Division (RND) efflux transporter	1.59	2.0E-23		
PA4204	PA14_09550	ppgL	periplasmic gluconolactonase, PpgL	1.90	3.0E-12		
PA4198	PA14_09660		probable AMP-binding enzyme	-1.91	7.1E-08		
PA4197	PA14_09680	bfiS	BfiS	-1.71	5.4E-09		
PA4189	PA14_09710		probable aldehyde dehydrogenase	1.74	1.4E-03		
PA4187	PA14_09740		probable major facilitator superfamily (MFS) transporter	1.83	1.2E-02		
PA4182	PA14_09790		hypothetical protein	-1.54	1.3E-13		
PA4181	PA14_09810		hypothetical protein	-2.04	9.5E-19		
PA4179	PA14_09850		probable porin	-2.13	4.4E-04		
PA4178	PA14_09870	eftM	SAM-dependent methyltransferase, EftM	-3.07	3.0E-25		
PA4177	PA14_09880		hypothetical protein	2.37	4.6E-08		
PA4175	PA14_09900	piv	protease IV	2.36	1.5E-13		
PA4172	PA14_09930		probable nuclease	3.09	5.6E-27		
PA4171	PA14_09940		probable protease	2.92	4.8E-25		
PA4168	PA14_09970	fpvB	second ferric pyoverdine receptor FpvB			-2.35	1.4E-02
PA4167	PA14_09980		probable oxidoreductase	-2.45	1.1E-03		
PA4166	PA14_09990		probable acetyltransferase	-2.48	5.5E-11		
	PA14_10090		LysR family transcriptional regulator	1.57	3.4E-06		
PA4152	PA14_10240		probable hydrolase	2.12	3.3E-03		

			angleshie outer membrane matein				
PA4144	PA14_10330		probable outer membrane protein precursor	2.04	4.0E-07		
PA4143	PA14_10340		probable toxin transporter	2.10	4.0E-08		
PA4142	PA14_10350		probable secretion protein	2.68	7.3E-14		
PA4141	PA14_10360		hypothetical protein	2.33	3.8E-13	-2.38	5.0E-07
PA4140	PA14_10370		hypothetical protein	-3.81	1.7E-26		
PA4139	PA14_10380		hypothetical protein	-2.86	1.9E-39		
PA4138	PA14_10420	tyrS	tyrosyl-tRNA synthetase	-2.05	3.6E-14		
PA4137	PA14_10440		probable porin	-2.20	1.6E-08		
PA4134	PA14_10490		hypothetical protein	-1.89	8.3E-49		
PA4133	PA14_10500		cytochrome c oxidase subunit (cbb3- type)	-1.97	1.2E-75	-1.68	2.0E-12
PA4132	PA14_10530		conserved hypothetical protein	-1.50	2.0E-28		
PA4131	PA14_10540		probable iron-sulfur protein	-1.89	7.4E-56		
PA4120	PA14_10660		probable transcriptional regulator	1.87	7.9E-05		
PA4119	PA14_10670	aph	aminoglycoside 3'- phosphotransferase type IIb	-1.52	2.6E-09		
PA4116	PA14_10710	bphO	heme oxygenase, BphO	-1.72	1.1E-21		
PA4113	PA14_10750		probable major facilitator superfamily (MFS) transporter	-1.88	5.8E-14		
	PA14_10830		LysR family transcriptional regulator	1.77	1.3E-09		
PA4094	PA14_10940		probable transcriptional regulator	1.63	2.0E-06		
PA4086	PA14_11060	cupB1	probable fimbrial subunit CupB1	1.96	1.5E-06		
PA4080	PA14_11120		probable response regulator	1.55	6.9E-08		
PA4078	PA14_11140		probable nonribosomal peptide synthetase	1.79	2.0E-10		
PA4070	PA14_11240		probable transcriptional regulator	1.58	1.5E-02		
PA4063	PA14_11320		hypothetical protein	1.62	4.9E-04		
	PA14_11340		probable thioredoxin	-1.73	4.0E-34		
PA4052	PA14_11450	nusB	NusB protein	-1.52	8.0E-10		
PA4031	PA14_11690	рра	inorganic pyrophosphatase	-1.81	9.4E-52		
PA4029	PA14_11720		conserved hypothetical protein	-1.55	2.4E-08		
PA4017	PA14_11890		conserved hypothetical protein	1.51	3.1E-09		
PA4009	PA14_11980		hypothetical protein	1.69	1.7E-04		
PA3995	PA14_12140		probable transcriptional regulator	1.66	1.3E-09		
PA3990	PA14_12180		conserved hypothetical protein	-1.79	8.0E-12		
PA3986	PA14_12260		hypothetical protein	1.69	2.0E-10		
PA3979	PA14_12360		hypothetical protein	-1.74	2.2E-10		
PA3960	PA14_12640		hypothetical protein	-1.81	6.5E-05		
PA3959	PA14_12650		hypothetical protein	-1.64	7.1E-07		
PA3957	PA14_12680		probable short-chain dehydrogenase	1.68	1.7E-09		

PA3952	PA14_12740		hypothetical protein			2.06	1.9E-02
			probable periplasmic taurine-binding				
PA3938	PA14_12920		protein precursor	-3.89	3.6E-31	-2.40	9.4E-05
PA3937	PA14_12940		probable ATP-binding component of ABC taurine transporter	-2.34	7.0E-11		
PA3936	PA14_12960		probable permease of ABC taurine transporter	-2.48	2.6E-11		
PA3935	PA14_12970	tauD	taurine dioxygenase	-2.03	5.6E-08		
PA3932	PA14_13000		probable transcriptional regulator	-2.66	1.2E-14		
PA3931	PA14_13010		conserved hypothetical protein	-4.30	9.8E-34		
PA3923	PA14_13130		hypothetical protein	2.00	3.3E-11		
PA3922	PA14_13140		conserved hypothetical protein	2.25	4.5E-18		
PA3921	PA14_13150		probable transcriptional regulator	1.52	1.6E-14		
PA3920	PA14_13170		probable metal transporting P-type ATPase	-3.87	6.3E-30		
PA3915	PA14_13260	moaB 1	molybdopterin biosynthetic protein B1	-2.36	1.4E-14		
PA3914	PA14_13280	moeA 1	molybdenum cofactor biosynthetic protein A1	-4.00	1.0E-17		
PA3913	PA14_13290		probable protease	-1.77	2.8E-10		
PA3911	PA14_13320		conserved hypothetical protein	-1.55	3.4E-04		
PA3901	PA14_13430	fecA	Fe(III) dicitrate transport protein FecA	-1.55	6.0E-04		
PA3891	PA14_13580	opuC A	OpuC ABC transporter, ATP-binding protein, OpuCA	2.27	2.7E-16		
PA3890	PA14_13590	opuC B	OpuC ABC transporter, permease protein, OpuCB	2.40	1.1E-13		
PA3889	PA14_13600	opuC C	OpuC ABC transporter, periplasmic substrate-binding protein, OpuCC	2.55	1.8E-19		
PA3888	PA14_13610	opuC D	OpuC ABC transporter, permease protein, OpuCD	2.68	1.6E-15		
	PA14_13630		hypothetical protein	2.41	6.5E-14		
PA3886	PA14_13650		hypothetical protein			1.66	2.8E-02
PA3877	PA14_13750	narK1	nitrite extrusion protein 1	-5.91	7.1E-31		
PA3876	PA14_13770	narK2	nitrite extrusion protein 2	-5.68	3.0E-17		
PA3875	PA14_13780	narG	respiratory nitrate reductase alpha chain	-6.18	1.5E-68		
PA3874	PA14_13800	narH	respiratory nitrate reductase beta chain	-3.53	2.0E-24		
PA3873	PA14_13810	narJ	respiratory nitrate reductase delta chain	-5.30	2.7E-18		
PA3872	PA14_13830	narI	respiratory nitrate reductase gamma chain	-3.25	1.7E-12		

			probable peptidyl-prolyl cis-trans				
PA3871	PA14_13840		isomerase, PpiC-type	-3.06	4.3E-17		
PA3870	PA14_13850	moaA 1	molybdopterin biosynthetic protein A1	-1.78	7.8E-05		
	PA14_13920		hypothetical protein	2.11	4.9E-04		
PA3866	PA14_13940		Pyocin S4			-3.09	2.6E-05
PA3865 .1	PA14_13950		hypothetical protein			-1.92	7.8E-03
PA3865	PA14_13990		probable amino acid binding protein	-1.85	7.5E-20		
PA3863	PA14_14010	dauA	FAD-dependent catabolic D-arginine dehydrogenase, DauA	-1.68	5.1E-10		
PA3862	PA14_14020	dauB	NAD(P)H-dependent anabolic L- arginine dehydrogenase, DauB	-1.99	1.3E-14		
PA3842	PA14_14330	spcS	specific Pseudomonas chaperone for ExoS, SpcS	1.61	8.0E-04		
PA3840	PA14_14340		conserved hypothetical protein	-1.74	5.7E-09		
	PA14_14540		hypothetical protein	-2.41	4.1E-10		
	PA14_14550		hypothetical protein	-3.78	8.8E-81		
	PA14_14560		hypothetical protein	-2.58	3.8E-16		
PA3818	PA14_14680		extragenic suppressor protein SuhB	-1.75	1.4E-19		
PA3815	PA14_14710	iscR	IscR	-1.81	1.6E-20		
PA3814	PA14_14730	iscS	L-cysteine desulfurase (pyridoxal phosphate-dependent)	-1.89	2.6E-24		
PA3813	PA14_14740	iscU	probable iron-binding protein IscU	-1.73	6.6E-26		
PA3812	PA14_14750	iscA	probable iron-binding protein IscA	-1.63	1.1E-15		
PA3811	PA14_14770	hscB	heat shock protein HscB	-1.77	2.7E-15		
PA3810	PA14_14780	hscA	heat shock protein HscA	-1.77	7.5E-17		
PA3809	PA14_14800	fdx2	ferredoxin [2Fe-2S]	-1.57	3.4E-11		
PA3808	PA14_14810		conserved hypothetical protein	-1.58	1.5E-11		
PA3795	PA14_14990		probable oxidoreductase	1.98	2.5E-18		
PA3791	PA14_15050		hypothetical protein	1.53	5.3E-04		
PA3790	PA14_15070	oprC	Putative copper transport outer membrane porin OprC precursor	4.24	4.1E-12		
PA3789	PA14_15080		hypothetical protein	2.56	3.8E-13		
PA3788	PA14_15090		hypothetical protein	1.68	2.1E-08		
	PA14_15140		hypothetical protein	1.71	6.7E-03		
	PA14_15240		probable transcriptional regulator	-1.63	1.3E-03		
PA3775	PA14_15250		hypothetical protein	1.91	2.7E-02		
PA3771	PA14_15290		probable transcriptional regulator	1.93	7.9E-06		
	PA14_15510	traJ	conjugal transfer relaxosome component TraJ			-1.90	3.4E-02
	PA14_15520	trbJ	conjugal transfer protein TrbJ	-1.77	2.1E-11		

	PA14_15530		entry/exclusion protein TrbK	-2.20	3.2E-04		
	PA14_15560		hypothetical protein	-2.20	5.2L-04	-1.82	2.9E-02
	PA14_15570					-1.82	2.9E-02 1.6E-02
	PA14_15570		hypothetical protein Type II restriction enzyme,			-1.95	1.0E-02
	PA14_15580		methylase subunit			-1.52	1.3E-02
PA3766	PA14_15700		probable aromatic amino acid transporter	-1.73	1.4E-08		
PA3762	PA14_15770		hypothetical protein	2.24	1.9E-16		
1 A3702	1714_13770		Transcriptional regulator of N-	2.24	1.7L-10		
PA3757	PA14_15830	nagR	Acetylglucosamine catabolism operon	-1.50	2.9E-05		
PA3745	PA14_15970	rpsP	30S ribosomal protein S16	-1.51	6.3E-08		
	PA14_15990	trmD	tRNA (guanine-N1)- methyltransferase	-1.54	6.9E-09		
PA3742	PA14_16000	rplS	50S ribosomal protein L19	-1.55	4.8E-12		
	PA14_16010		hypothetical protein	-1.66	2.2E-08		
PA3734	PA14_16100		hypothetical protein	2.05	5.3E-09		
	PA14_16110		hypothetical protein	1.95	3.5E-20		
PA3726	PA14_16210		conserved hypothetical protein	-1.58	4.0E-12		
	PA14_16220	recJ	single-stranded-DNA-specific exonuclease RecJ	-1.57	1.7E-12		
PA3724	PA14_16250	lasB	elastase LasB	2.32	1.2E-29		
PA3723	PA14_16260		probable FMN oxidoreductase	1.62	1.1E-11		
	PA14_16270		hypothetical protein	-2.16	8.0E-31		
PA3719	PA14_16300	armR	antirepressor for MexR, ArmR	1.61	2.3E-03		
PA3716	PA14_16330		hypothetical protein	-1.78	7.4E-64		
PA3713	PA14_16360	spdH	spermidine dehydrogenase, SpdH	-1.96	7.1E-25		
PA3703	PA14_16480	wspF	probable methylesterase	1.54	3.8E-20		
PA3692	PA14_16630	<i>lptF</i>	Lipotoxon F, LptF	2.30	5.4E-23		
PA3691	PA14_16640		hypothetical protein	2.54	9.9E-31		
PA3687	PA14_16690	ррс	phosphoenolpyruvate carboxylase	1.58	1.7E-12		
PA3678	PA14_16790	mexL	MexL	1.52	6.8E-15		
PA3671	PA14_16880		probable permease of ABC transporter	1.56	7.4E-03		
PA3670	PA14_16890		hypothetical protein	1.78	7.6E-06		
PA3669	PA14_16910		hypothetical protein	1.97	4.8E-12		
	PA14_16990		hypothetical protein	-2.90	8.4E-28		
PA3656	PA14_17060	rpsB	30S ribosomal protein S2	-1.52	5.0E-16		
PA3655	PA14_17070	tsf	elongation factor Ts	-1.59	1.1E-16		
	PA14_17080	<i>pyrH</i>	uridylate kinase	-1.77	1.1E-17		
	PA14_17100	frr	ribosome recycling factor	-1.55	4.3E-22		

PA3641	PA14_17250		probable amino acid permease	-2.01	4.1E-32		
			glutathione-dependent formaldehyde				
PA3630	PA14_17380	gfnR	neutralization regulator GfnR	1.82	7.1E-11		
PA3622	PA14_17480	rpoS	sigma factor RpoS	1.58	1.9E-11		
PA3617	PA14_17530	recA	RecA protein	-1.76	2.5E-41		
PA3616	PA14_17540		conserved hypothetical protein	-1.62	6.3E-10		
PA3615	PA14_17550		hypothetical protein	1.69	7.4E-16		
PA3614	PA14_17570		hypothetical protein	1.63	1.8E-08		
PA3613	PA14_17580		hypothetical protein	1.81	7.1E-09		
PA3612	PA14_17590		conserved hypothetical protein			-2.14	2.3E-02
PA3610	PA14_17610	potD	polyamine transport protein PotD	-3.65	3.1E-63		
PA3609	PA14_17620	potC	polyamine transport protein PotC	-3.06	6.7E-17		
PA3608	PA14_17630	potB	polyamine transport protein PotB	-2.40	8.0E-14		
PA3607	PA14_17640	potA	polyamine transport protein PotA	-3.21	3.5E-45		
PA3588	PA14_17730		probable porin	1.50	4.6E-02		
PA3598	PA14_17730		conserved hypothetical protein	2.31	1.2E-19		
PA3586	PA14_17910		probable hydrolase	1.71	1.1E-02		
PA3580	PA14_17990		conserved hypothetical protein			-1.73	2.8E-02
	PA14_18070		periplasmic metal-binding protein	-3.68	1.1E-19		
PA3567	PA14_18160		probable oxidoreductase	-1.55	3.1E-06		
PA3566	PA14_18180		conserved hypothetical protein	-2.00	4.8E-08		
PA3562	PA14_18250	fruI	phosphotransferase system transporter enzyme I, FruI	-1.51	2.0E-03		
PA3558	PA14_18310	arnF	ArnF	-1.51	7.3E-04		
PA3556	PA14_18330	arnT	inner membrane L-Ara4N transferase ArnT	-1.64	5.4E-11		
PA3543	PA14_18520	algK	alginate biosynthetic protein AlgK precursor			-3.18	4.2E-02
PA3532	PA14_18660		hypothetical protein	-1.83	8.0E-15		
PA3531	PA14_18670	bfrB	bacterioferritin	-2.02	1.5E-15	-1.62	3.9E-03
PA3530	PA14_18680	bfd	bacterioferritin-associated ferredoxin Bfd	1.97	3.9E-12	-1.83	1.5E-02
PA3526	PA14_18720	motY	MotY	-1.67	6.1E-22		
PA3523	PA14_18760	mexP	RND efflux membrane fusion protein	-4.03	3.1E-10		
PA3522	PA14_18780	mexQ	MexQ	-3.38	1.5E-31		
PA3521	PA14_18790	<i>opmE</i>	outer membrane efflux protein	-3.31	1.2E-12		
PA3520	PA14_18800		hypothetical protein	-2.56	6.8E-12		
PA3519	PA14_18810		hypothetical protein	-4.75	1.6E-21		
PA3518	PA14_18820		hypothetical protein	-10.19	1.1E-45		
PA3517	PA14_18830		probable lyase	-4.79	1.8E-32		

PA3516	PA14_18850		probable lyase	-5.62	8.6E-29		
	PA14_18860		hypothetical protein	-2.00	8.1E-08		
	PA14_18960	tli5	Tli5	-1.62	9.2E-05		
	PA14_18970	tle5	Tle5	-1.68	2.9E-13		
	PA14_18985	vgrG4 b	VgrG4b	-1.71	2.2E-09		
PA3474	PA14_19150		conserved hypothetical protein	-1.77	2.5E-09		
-	PA14_19160		hypothetical protein	-1.62	2.9E-08		
PA3466	PA14_19290		probable ATP-dependent RNA helicase	-1.63	3.9E-19	-1.60	3.0E-02
PA3465	PA14_19310		conserved hypothetical protein	1.97	2.9E-12		
PA3461	PA14_19350		conserved hypothetical protein	2.85	2.2E-26		
PA3460	PA14_19360		probable acetyltransferase	2.68	4.6E-24		
PA3459	PA14_19370		probable glutamine amidotransferase	2.85	1.2E-35		
PA3458	PA14_19380		probable transcriptional regulator	1.83	3.8E-08		
PA3453	PA14_19450		conserved hypothetical protein	-1.63	1.3E-20		
PA3450	PA14_19490	lsfA	1-Cys peroxiredoxin LsfA	-2.37	9.7E-15	-2.75	7.8E-06
PA3449	PA14_19500		conserved hypothetical protein	-6.73	2.1E-32		
PA3448	PA14_19510		probable permease of ABC transporter	-3.84	3.5E-14		
PA3447	PA14_19520		probable ATP-binding component of ABC transporter	-3.70	8.0E-10		
PA3446	PA14_19530		conserved hypothetical protein	-4.76	1.4E-31		
PA3445	PA14_19540		hypothetical protein	-4.06	2.9E-32		
PA3444	PA14_19560		alkanesulfonate monooxygenase	-3.02	3.3E-14		
PA3443	PA14_19570		probable permease of ABC transporter	-2.48	3.0E-09		
	PA14_19580		aliphatic sulfonates transport ATP- binding subunit	-2.12	1.1E-09		
PA3436	PA14_19650		hypothetical protein			2.06	1.8E-05
PA3432	PA14_19680		hypothetical protein	1.82	9.2E-06		
PA3431	PA14_19690		conserved hypothetical protein	2.22	1.2E-11		
PA3419	PA14_19860		hypothetical protein	1.64	4.6E-09	1.63	1.0E-02
PA3415	PA14_19920		probable dihydrolipoamide acetyltransferase	-1.53	3.1E-02		
	PA14_19930		hypothetical protein	-1.70	5.7E-03		
PA3414	PA14_19940		hypothetical protein	-1.94	3.2E-21		
PA3413	PA14_19950		conserved hypothetical protein	-1.59	2.0E-12		
PA3412	PA14_19960		hypothetical protein	2.39	1.6E-04		
PA3411	PA14_19970		hypothetical protein	-1.71	4.4E-03		
PA3410	PA14_19990	hasI	HasI	-2.00	3.6E-06		

PA3407	PA14_20020	hasAp	heme acquisition protein HasAp	7.33	4.6E-11		
	PA14_20030	hasD	transport protein HasD	1.74	1.8E-03		
	PA14_20040	hasE	metalloprotease secretion protein	1.76	6.0E-03		
	PA14_20050		outer membrane protein	1.63	2.0E-02		
	 PA14_20060		hypothetical protein	1.71	4.7E-07		
PA3396	 PA14_20150	nosL	NosL protein	-12.77	1.3E-29		
	PA14_20170	nosY	NosY protein	-15.62	1.1E-48		
PA3394	PA14_20180	nosF	NosF protein	-18.65	5.8E-59		
PA3393	PA14_20190	nosD	copper ABC transporter periplasmic substrate-binding protein	-16.02	3.4E-36		
PA3392	PA14_20200	nosZ	nitrous-oxide reductase precursor	-16.52	8.6E-33		
PA3391	PA14_20230	nosR	regulatory protein NosR	-17.19	2.1E-37		
PA3389	PA14_20240		probable ring-cleaving dioxygenase	-2.05	1.9E-04		
PA3388	PA14_20260		conserved hypothetical protein	-1.74	2.7E-08		
PA3387	PA14_20270	rhlG	beta-ketoacyl reductase	-1.79	3.2E-05		
PA3384	PA14_20300	phnC	ATP-binding component of ABC phosphonate transporter	1.96	8.8E-05		
PA3378	PA14_20380		hypothetical protein	1.57	4.2E-02		
PA3376	PA14_20400		phosphonate C-P lyase system protein PhnK	1.99	7.9E-03		
PA3371	PA14_20460		hypothetical protein	3.75	4.3E-20		
PA3370	PA14_20470		hypothetical protein	3.85	2.5E-21		
PA3369	PA14_20480		hypothetical protein	3.46	1.1E-16		
PA2457	PA14_20510		hypothetical protein			-1.88	1.2E-02
PA2458	PA14_20520		hypothetical protein			-2.26	2.9E-03
	PA14_20530		hypothetical protein	1.71	6.1E-18	-1.86	1.2E-02
PA3354	PA14_20690		hypothetical protein	1.54	3.7E-06		
PA3346	PA14_20780	hsbR	HptB-dependent secretion and biofilm regulator HsbR	1.60	2.6E-20		
PA3337	PA14_20890	rfaD	ADP-L-glycero-D-mannoheptose 6- epimerase	1.64	2.9E-06		
PA3336	PA14_20900		probable major facilitator superfamily (MFS) transporter	2.02	2.2E-07		
PA3335	PA14_20920		hypothetical protein	2.01	4.6E-09		
PA3334	PA14_20940	аср3	Acp3	2.04	9.0E-09		
PA3333	PA14_20950	fabH2	3-oxoacyl-[acyl-carrier-protein] synthase III	1.68	4.6E-05		
PA3332	PA14_20960		conserved hypothetical protein	1.58	4.6E-04		
PA3331	PA14_20970		cytochrome P450	1.76	2.7E-07		
PA3330	PA14_20980		probable short chain dehydrogenase	1.72	1.5E-08		
PA3329	PA14_21000		hypothetical protein	1.68	6.2E-06		

			probable FAD-dependent				
	PA14_21010		monooxygenase	1.74	2.2E-06		
	PA14_21220		conserved hypothetical protein	1.63	1.6E-05		
	PA14_21260		hypothetical protein			-2.30	7.8E-03
PA3298	PA14_21380		hypothetical protein	-2.19	9.5E-06		
PA3295	PA14_21440		probable HIT family protein	-1.53	5.0E-23		
PA3294	PA14_21450	vgrG4 a	VgrG4a	-1.63	5.2E-13		
PA3293	PA14_21460		hypothetical protein	-1.81	2.4E-08		
PA3292	PA14_21470		hypothetical protein	-1.75	3.1E-06		
PA3291	PA14_21480	tli1	Tli1	-1.65	1.7E-04		
PA3290	PA14_21490	tle1	Tle1			-1.64	2.5E-02
PA3284	PA14_21570		hypothetical protein	-6.08	7.9E-75		
PA3283	PA14_21580		conserved hypothetical protein	-7.25	8.8E- 180		
PA3282	PA14_21590		hypothetical protein	-7.40	5.9E-80		
PA3281	PA14_21600		hypothetical protein	-7.11	5.1E-57		
PA3280	PA14_21610	oprO	Pyrophosphate-specific outer membrane porin OprO precursor	-5.72	2.1E-47		
PA3276	PA14_21650		hypothetical protein	-1.58	4.3E-06		
PA3275	PA14_21660		conserved hypothetical protein	-1.55	9.9E-05		
PA3274	PA14_21670		hypothetical protein	3.69	1.2E-18		
PA3268	PA14_21730		probable TonB-dependent receptor	-1.50	7.1E-03		
PA3266	PA14_21760	capB	cold acclimation protein B	-2.09	1.0E-06		
	PA14_21830		hypothetical protein	2.38	3.2E-48		
PA3248	PA14_21980		Uncharacterized protein	1.53	8.4E-06		
PA3246	PA14_22000	rluA	pseudouridine synthase RluA	-1.54	1.8E-12		
	PA14_22090		hypothetical protein			-2.30	1.9E-02
	PA14_22160		hypothetical protein	-2.23	3.5E-04		
	PA14_22190		hypothetical protein			-1.62	1.6E-02
	PA14_22250		hypothetical protein	-1.72	9.3E-03		
	PA14_22260		hypothetical protein	-2.01	2.5E-02		
	PA14_22280		pirin-related protein			-1.98	4.6E-02
PA3235	PA14_22340		conserved hypothetical protein	2.50	1.0E-05		
PA3234	PA14_22350		probable sodium:solute symporter	2.62	3.7E-04		
PA3233	PA14_22370		hypothetical protein	2.12	2.3E-10		
PA3232	PA14_22380		probable nuclease	2.13	1.3E-08		
PA3231	PA14_22400		hypothetical protein	3.46	1.9E-27		
PA3228	PA14_22440		probable ATP-binding/permease fusion ABC transporter	1.50	1.6E-10		
PA3222	PA14_22560		hypothetical protein			1.96	2.6E-02

PA3221	PA14_22570	csaA	CsaA protein	-1.69	9.9E-12		
-	PA14_22650	cstu i	hypothetical protein	1.50	3.9E-14		
	PA14_22740		hypothetical protein	-1.50	1.9E-06		
	PA14_22890	gapA	glyceraldehyde 3-phosphate dehydrogenase	1.83	5.8E-28		
PA3188	PA14_23000		probable permease of ABC sugar transporter	1.53	1.6E-07		
PA3187	PA14_23010		probable ATP-binding component of ABC transporter	1.67	1.8E-11		
PA3186	PA14_23030	oprB	Glucose/carbohydrate outer membrane porin OprB precursor	2.04	6.3E-21		
	PA14_23080	pgl	6-phosphogluconolactonase			1.62	7.8E-04
PA3179	PA14_23110		conserved hypothetical protein	-2.53	1.2E-56		
PA3175	PA14_23170	hutE	HutE	-2.14	2.4E-08		
PA3174	PA14_23190	hutR	HutR	-2.16	1.1E-12		
PA3160	PA14_23360	WZZ	O-antigen chain length regulator			-1.84	6.9E-03
PA3148	PA14_23370	wbpI	UDP-N-acetylglucosamine 2- epimerase WbpI			-1.68	2.6E-02
PA3159	PA14_23380	wbpA	UDP-N-acetyl-d-glucosamine 6- Dehydrogenase			-2.08	1.8E-02
	PA14_23390	orfE	polysaccharide biosynthesis protein			-2.88	1.6E-02
	PA14_23400		hypothetical protein			-1.78	1.2E-02
	PA14_23410	orfJ	glycosyl transferase family protein			-3.45	2.0E-02
	PA14_23430	hepP	НерР			-1.54	2.8E-02
PA3145	PA14_23460	wbpL	glycosyltransferase WbpL			-1.77	2.7E-02
PA3133	PA14_23590	sawR	SawR	-2.06	5.2E-11		
PA3132	PA14_23610		probable hydrolase	-1.58	2.9E-06		
PA3128	PA14_23650		probable short-chain dehydrogenase	1.54	7.5E-06		
PA3126	PA14_23680	ibpA	heat-shock protein IbpA	-5.30	1.9E-50		
	PA14_23750		3-isopropylmalate dehydratase large subunit	1.67	7.9E-09		
PA3120	PA14_23760	leuD	3-isopropylmalate dehydratase small subunit	1.75	2.6E-12		
PA3119	PA14_23770		conserved hypothetical protein	1.54	1.1E-07		
PA3104	PA14_23980	xcpP	secretion protein XcpP			-1.82	7.8E-03
PA3096	PA14_24080	xcpY	general secretion pathway protein L	1.51	1.0E-13		
PA3095	PA14_24100	xcpZ	general secretion pathway protein M	1.67	2.6E-26		
	 PA14_24180		hypothetical protein	1.90	5.5E-27		
	 PA14_24420		hypothetical protein			1.58	2.2E-02
	 PA14_24500	pelC	lipoprotein	-1.66	1.6E-02		
PA3060	PA14_24530	pelE	hypothetical protein	-1.70	1.6E-04		

PA3057	PA14_24570		hypothetical protein	2.16	2.8E-04		
-	PA14_24650	rmf	ribosome modulation factor	1.82	8.6E-13		
	PA14_24700	ing	conserved hypothetical protein	-1.91	1.0E-30		
	PA14_24710	rocA2	Two-component response regulator, RocA2	-2.45	9.1E-11		
PA3044	PA14_24720	rocsS2	Two-component sensor RocS2	-2.09	5.2E-14		
	 PA14_24740		hypothetical protein	1.98	2.6E-14		
	PA14_24760		hypothetical protein	1.93	2.5E-12		
PA3040	PA14_24770		conserved hypothetical protein	1.89	1.3E-16		
	PA14_24790	opdQ	OpdQ	1.68	1.6E-02		
PA3037	PA14_24810		hypothetical protein	-2.07	1.6E-02		
PA3036	PA14_24820		hypothetical protein	-1.89	2.2E-03		
PA3035	PA14_24830		probable glutathione S-transferase	-1.51	3.0E-02		
PA3032	PA14_24860	snrl	cytochrome c Snr1	1.74	2.5E-06		
PA3024	PA14_24960		probable carbohydrate kinase	1.61	1.3E-12		
PA3023	PA14_24970		conserved hypothetical protein	2.20	1.9E-20		
PA3017	PA14_25040		conserved hypothetical protein			1.61	5.9E-03
PA3014	PA14_25080	faoA	fatty-acid oxidation complex alpha- subunit	-1.85	1.5E-77		
PA3013	PA14_25090	faoB	fatty-acid oxidation complex beta- subunit	-1.65	3.0E-47		
PA3008	PA14_25150		hypothetical protein	-1.94	6.1E-27		
PA3007	PA14_25160	lexA	repressor protein LexA	-1.81	6.9E-39		
PA3001	PA14_25250		probable glyceraldehyde-3-phosphate dehydrogenase	-1.50	1.6E-12		
PA2957	PA14_25800		probable transcriptional regulator	-1.52	3.5E-13		
PA2953	PA14_25840		electron transfer flavoprotein- ubiquinone oxidoreductase	-1.61	2.6E-45		
	PA14_25920		precorrin-3 methylase	1.75	1.3E-19		
PA2944	PA14_25970	cobN	cobalamin biosynthetic protein CobN	1.52	1.3E-24		
PA2943	PA14_25980		phospho-2-dehydro-3- deoxyheptonate aldolase	-1.60	2.0E-08		
PA2939	PA14_26020		probable aminopeptidase	1.68	5.9E-05		
PA2936	PA14_26070		hypothetical protein	-3.86	1.9E-12		
PA2934	PA14_26090	cif	CFTR inhibitory factor, Cif	-10.75	1.6E-38		
PA2933	PA14_26110		MFS transporter	-9.30	2.1E-27		
PA2932	PA14_26130	morB	morphinone reductase	-6.49	2.3E-19		
PA2929	PA14_26160		hypothetical protein	-1.69	1.0E-02		
PA2927	PA14_26190		hypothetical protein	1.54	3.1E-10		
PA2917	PA14_26330		probable transcriptional regulator	-2.27	4.4E-18		
PA2916	PA14_26340		hypothetical protein	-4.59	6.5E-15		

PA2915	PA14_26350		hypothetical protein	1.56	8.3E-09		
			probable permease of ABC				
PA2914	PA14_26360		transporter	2.28	1.1E-13		
PA2913	PA14_26390		hypothetical protein	2.20	3.3E-14		
			probable ATP-binding component of	2.05	150 11		
PA2912	PA14_26400		ABC transporter	2.05	1.5E-11		
PA2911	PA14_26420		probable TonB-dependent receptor	1.76	1.3E-15		
PA2906	PA14_26485		probable oxidoreductase	1.64	1.1E-21		
PA2905	PA14_26500	cobH	precorrin isomerase CobH	1.67	1.6E-13		
PA2904	PA14_26510	cobI	precorrin-2 methyltransferase CobI	1.63	3.2E-20		
PA2903	PA14_26530	cobJ	precorrin-3 methylase CobJ	1.72	2.4E-41		
PA2895	PA14_26610	sbrR	SbrR	1.54	7.2E-12		
PA2892	PA14_26650	atuG	GCase, alpha-subunit (biotin- containing)	1.88	3.8E-04		
PA2891	PA14_26670	atuF	geranyl-CoA carboxylase, alpha- subunit (biotin-containing)	1.74	5.4E-08		
PA2889	PA14_26700	atvR	atypical virulence-related response regulator AtvR	1.61	2.1E-04		
PA2888	PA14_26720	atuC	geranyl-CoA carboxylase, beta- subunit	1.72	6.5E-08		
PA2887	PA14_26730	atuB	putative dehydrogenase involved in catabolism of citronellol	1.52	3.6E-03		
PA2884	PA14_26770		hypothetical protein	1.50	7.8E-11		
PA2883	PA14_26780		hypothetical protein	2.55	9.5E-28		
PA2879	PA14_26860		probable transcriptional regulator	1.99	3.2E-19		
PA2874	PA14_26920		hypothetical protein	1.90	7.1E-14		
PA2873	PA14_26930	tgpA	transglutaminase protein A, TgpA	1.74	3.3E-16		
PA2869	PA14_26980		hypothetical protein	-1.70	1.6E-06		
PA2863	PA14_27090	lipH	lipase modulator protein	2.59	2.9E-07		
PA2862	PA14_27100	lipA	lactonizing lipase precursor	2.18	2.0E-06		
PA2855	PA14_27170		hypothetical protein	-1.53	2.3E-07		
PA2851	PA14_27210	efp	translation elongation factor P			-1.59	2.0E-02
PA2850	PA14_27220	ohr	organic hydroperoxide resistance protein	-2.23	2.7E-14		
PA2840	PA14_27370		probable ATP-dependent RNA helicase	-2.75	1.7E-13		
PA2839	PA14_27390		conserved hypothetical protein	-1.67	5.1E-05		
PA2831	PA14_27470		conserved hypothetical protein	-1.92	4.3E-51		
PA2830	PA14_27480	htpX	heat shock protein HtpX	-1.95	2.1E-27		
PA2829	PA14_27490		hypothetical protein	-1.60	8.5E-09		
PA2826	PA14_27520		probable glutathione peroxidase	-1.53	7.8E-07		
	PA14_27650		hypothetical protein	1.85	7.2E-03		

PA2817 PA14_27710 hypothetical protein 1.65 9.88-10 PA2817 PA14_27730 probable acyl-CoA dehydrogenase 2.23 1.5E-24 PA2794 PA14_27990 pseudaminidase -2.07 2.0E-02 PA2790 PA14_28030 hypothetical protein -1.58 1.5E-08 PA2790 PA14_28100 hypothetical protein -1.72 5.3E-05 PA2779 PA14_28150 hypothetical protein 1.73 3.1E-05 PA2777 PA14_28170 conserved hypothetical protein 3.50 1.8E-29 PA2776 PA14_28180 pauB3 FAD-dependent oxidoreductase -1.57 3.6E-10 PA2770 PA14_28280 hypothetical protein -1.57 3.6E-10 - PA2769 PA14_28300 hypothetical protein -1.57 3.6E-10 - PA14_2830 hypothetical protein -1.57 3.6E-10 - - PA2761 PA14_28300 hypothetical protein 2.06 - -1.58 4.9E-02 PA275		PA14_27700		transcriptional regulator	-2.19	1.4E-05		
PA2815 PA14_27730 probable acyl-CoA dehydrogenase 2.23 1.5E-24 PA2794 PA14_27990 pseudaminidase -2.07 2.0E-02 PA2790 PA14_28030 hypothetical protein -1.58 1.5E-08 PA2780 PA14_28100 hypothetical protein 1.72 5.3E-04 PA2779 PA14_28150 hypothetical protein 1.73 3.1E-05 PA2777 PA14_28150 hypothetical protein 3.50 1.8E-29 PA2776 PA14_28180 paub3 FAD-dependent oxidoreductase 1.52 9.5E-08 PA2776 PA14_28280 hypothetical protein -1.57 1.6E-17 PA2762 PA14_2830 hypothetical protein -1.57 3.6E-10 PA2762 PA14_2830 hypothetical protein -1.63 8.49E-02 PA2762 PA14_2830 hypothetical protein 2.31 5.8E-17 PA14_2850 conserved hypothetical protein 2.38 5.8E-17 PA14_2850 hypothetical protein 2.59 2.3E-15	DA 2917							
PA2794 PA14_27990 pseudaminidase -2.07 2.0F-02 PA2790 PA14_28030 hypothetical protein -1.58 1.5E-08 - PA2786 PA14_28070 hypothetical protein -1.78 3.5E-04 - PA2778 PA14_28140 hypothetical protein 1.73 3.1E-05 - PA2776 PA14_28180 pauB3 FAD-dependent oxidoreductase -1.52 9.5E-08 PA2776 PA14_28180 pauB3 FAD-dependent oxidoreductase -1.57 1.6E-17 PA2769 PA14_28300 hypothetical protein -1.57 1.6E-17 PA2769 PA14_28300 hypothetical protein -1.57 3.6E-10 PA2761 PA14_28300 hypothetical protein -1.57 3.6E-17 PA2761 PA14_28300 hypothetical protein -1.57 3.6E-17 PA2761 PA14_28300 hypothetical protein 2.31 5.8E-17 PA2751 PA14_28530 conserved hypothetical protein 2.51 5.8E-17 PA2745								
PA2790 PA14_28030 hypothetical protein -1.58 1.5E-08 PA2786 PA14_28070 hypothetical protein -1.82 3.5E-04 PA2778 PA14_28150 hypothetical protein 1.73 3.1E-05 PA2777 PA14_28150 conserved hypothetical protein 3.1E-05 PA2777 PA14_28180 pauB3 FAD-dependent oxidoreductase -1.52 9.5E-08 PA2770 PA14_28280 hypothetical protein -1.57 1.6E-17 PA2769 PA14_2830 hypothetical protein -1.67 3.0E-07 PA14_2830 hypothetical protein 2.06 6.8E-03 PA2762 PA14_2830 hypothetical protein 2.06 6.8E-10 PA2762 PA14_2830 hypothetical protein 2.07 8.2E-17 PA2762 PA14_2830 conserved hypothetical protein 2.31 5.8E-17 PA2761 PA14_2850 conserved hypothetical protein 2.31 5.8E-17 PA14_2850 hypothetical protein 1.50 2.2E-13 PA2741 P					2.23	1.3E-24	2.07	2.0E.02
PA2786 PA14_28070 hypothetical protein -1.82 3.5E-04 PA2779 PA14_28140 hypothetical protein 1.72 5.3E-05 PA2778 PA14_28150 hypothetical protein 1.73 3.1E-05 PA2778 PA14_28150 conserved hypothetical protein 3.50 1.8E-29 PA2776 PA14_28180 pauB3 FAD-dependent oxidoreductase -1.52 9.5E-08 PA2770 PA14_28200 hypothetical protein -1.57 1.6E-17 PA2761 PA14_28300 hypothetical protein -1.57 3.0E-07 PA2761 PA14_28300 hypothetical protein -1.67 3.0E-07 PA2752 PA14_28300 hypothetical protein 2.31 5.8E-17 PA2751 PA14_28520 hypothetical protein 2.31 5.8E-17 PA2751 PA14_28530 conserved hypothetical protein 2.48 4.0E-14 PA2751 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2747 PA14_28600 hypothetical protein 1.52<				* · · · · · · · · · · · · · · · · · · ·	1 50	1 5 5 09	-2.07	2.0E-02
PA2779 PA14_28140 hypothetical protein 1.72 5.3E-05 PA2778 PA14_28150 hypothetical protein 1.73 3.1E-05 PA2777 PA14_28170 conserved hypothetical protein 3.50 1.8E-29 PA2776 PA14_28180 pauB3 FAD-dependent oxidoreductase -1.57 1.6E-17 PA2770 PA14_28280 hypothetical protein -1.57 1.6E-17 PA2769 PA14_28300 hypothetical protein -1.67 3.0E-07 PA2761 PA14_28300 hypothetical protein -1.67 3.0E-07 PA2751 PA14_28300 hypothetical protein 2.31 5.8E-17 PA14_28490 conserved hypothetical protein 2.31 5.8E-17 PA14_28400 hypothetical protein 2.48 4.0E-14 PA2751 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2745 PA14_28600 hypothetical protein 1.52 1.3E-04 PA2745 PA14_28600 inf/C translation initation factor IF-3 -1.91								
PA2778 PA14_28150 hypothetical protein 1.73 3.1E-05 PA2777 PA14_28170 conserved hypothetical protein 3.50 1.8E-29 PA2776 PA14_28170 conserved hypothetical protein 3.50 1.8E-29 PA2776 PA14_28280 hypothetical protein -1.57 3.6E-10 PA2769 PA14_28230 hypothetical protein -1.57 3.6E-10 PA14_2830 hypothetical protein -1.67 3.0E-07 PA2761 PA14_28300 hypothetical protein 2.06 6.8E-03 PA2761 PA14_28300 hypothetical protein 2.08 2.2E-13 PA2751 PA14_2850 hypothetical protein 2.08 2.2E-13 PA2740 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2745 PA14_28600 hypothetical protein 1.52 1.3E-04 PA2745 PA14_28600 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28600 infC translatin initiation factor IF-3								
PA2777 PA14_28170 conserved hypothetical protein 3.50 1.8E-29 PA2776 PA14_28180 pauB3 FAD-dependent oxidoreductase -1.52 9.5E-08 PA2770 PA14_28280 hypothetical protein -1.57 1.6E-17 PA2769 PA14_28280 hypothetical protein -1.57 3.6E-10 PA14_2830 hypothetical protein -1.67 3.0E-07 PA2761 PA14_28300 hypothetical protein 2.06 6.8E-03 PA2761 PA14_28300 hypothetical protein 2.07 PA2761 PA14_2830 hypothetical protein 2.31 5.8E-17 PA14_28520 hypothetical protein 2.48 4.9E-02 PA2751 PA14_28520 hypothetical protein 2.48 4.0E-14 PA2747 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2745 PA2745 PA14_28600 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2745 PA14_28600 infC translation factor IF-3 -1.77 1.2E-17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
PA2776 PA14_28180 pauB3 FAD-dependent oxidoreductase -1.52 9.5E-08 PA2770 PA14_28280 hypothetical protein -1.57 1.6E-17 PA2769 PA14_28290 hypothetical protein -1.57 3.6E-10 PA14_2830 hypothetical protein 2.06 6.8E-03 PA2761 PA14_28300 hypothetical protein -1.67 3.0E-07 PA2761 PA14_28490 conserved hypothetical protein 2.31 5.8E-17 PA14_28520 hypothetical protein 2.08 2.2E-13 1.58 PA2751 PA14_28500 hypothetical protein 2.48 4.0E-14 PA2747 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2745 PA14_28630 probable hydrolase 1.58 3.1E-08 PA2740 PA14_28600 infC translation initiation factor IF-3 -1.77 1.2E-17 PA2740 PA14_28600 phers alpha-subunit -1.70 7.2E-23 -1.91 1.3E-02 PA2743 PA14_2886								
PA2770 PA14_28280 hypothetical protein -1.57 1.6E-17 PA2769 PA14_28390 hypothetical protein -1.57 3.6E-10 PA14_28330 hypothetical protein 2.06 6.8E-03 PA2762 PA14_28380 hypothetical protein -1.67 3.0E-07 PA2761 PA14_28390 hypothetical protein -1.68 4.9E-02 PA2751 PA14_28520 hypothetical protein 2.31 5.8E-17 PA14_28500 conserved hypothetical protein 2.08 2.2E-13 PA2751 PA14_28500 hypothetical protein 2.59 2.3E-15 PA2746 PA14_28600 hypothetical protein 1.58 3.1E-08 PA2745 PA14_28600 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28600 infC translation factor IF-3 -1.91 1.2E-17 PA2740 PA14_28600 infC translation factor IF-3 -1.70 7.2E-23 PA14_28860 pherylalanyl-t			D2					
PA2769 PA14_28290 hypothetical protein -1.57 3.6E-10 PA14_28330 hypothetical protein 2.06 6.8E-03	-		раивз	*				
PA14_28330 hypothetical protein 2.06 6.8E-03 PA2762 PA14_28380 hypothetical protein -1.67 3.0E-07 PA2761 PA14_28390 hypothetical protein -1.67 3.0E-07 PA2754 PA14_28390 hypothetical protein 2.31 5.8E-17 PA14_28520 hypothetical protein 2.08 2.2E-13 PA2751 PA14_28500 conserved hypothetical protein 2.48 4.0E-14 PA2747 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2745 PA14_28600 hypothetical protein 1.58 3.1E-08 PA2745 PA14_28600 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28600 infC translation initiation factor IF-3 -1.77 1.2E-17 PA2740 PA14_28600 phers alpha-subunit -1.70 7.2E-23 PA14_28700 hypothetical protein 1.87 1.4E-08 -1.70 7.2E-23 PA14_28800 helicase 1.59								
PA2762 PA14_28380 hypothetical protein -1.67 3.0E-07 PA2761 PA14_28390 hypothetical protein -1.58 4.9E-02 PA2754 PA14_28490 conserved hypothetical protein 2.31 5.8E-17 PA14_28520 hypothetical protein 2.08 2.2E-13 PA2751 PA14_28530 conserved hypothetical protein 2.48 4.0E-14 PA2747 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2745 PA14_28600 hypothetical protein 1.52 1.3E-04 PA2745 PA14_28600 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28600 infC translation initiation factor IF-3 -1.77 1.2E-17 PA2739 PA14_28710 pher phenylalanyl-tRNA synthetase, beta subunit -1.70 7.2E-23 PA14_28700 pher phenylalanyl-tRNA synthetase, beta subunit -1.70 7.2E-23 PA14_28800 hypothetical protein 1.87 1.4E-08 PA14_28840 helicase<	PA2/69							
PA2761 PA14_28390 hypothetical protein -1.58 4.9E-02 PA2754 PA14_28490 conserved hypothetical protein 2.31 5.8E-17 - PA14_28520 hypothetical protein 2.08 2.2E-13 - - PA2751 PA14_28530 conserved hypothetical protein 2.48 4.0E-14 - PA2747 PA14_28600 hypothetical protein 2.59 2.3E-15 - PA2746 PA14_28600 hypothetical protein 1.52 1.3E-04 - PA2745 PA14_28600 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28600 infC translation initiation factor IF-3 -1.77 1.2E-17 PA2739 PA14_28710 phe7 phenylalanyl-tRNA synthetase, alpha-subunit -1.70 7.2E-23 - PA14_28700 hypothetical protein 1.87 1.4E-08 - - PA14_28800 hypothetical protein 1.69 3.0E-12 - - PA14_28800 h	D 4 07 (0	—						
PA2754 PA14_28490 conserved hypothetical protein 2.31 5.8E-17 PA14_28520 hypothetical protein 2.08 2.2E-13 PA2751 PA14_28530 conserved hypothetical protein 2.48 4.0E-14 PA2747 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2746 PA14_28620 hypothetical protein 1.52 1.3E-04 PA2745 PA14_28630 probable hydrolase 1.58 3.1E-08 PA2743 PA14_28600 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28690 phes phenylalanyl-tRNA synthetase, alpha-subunit -1.77 1.2E-17 PA2739 PA14_28710 pher phenylalanyl-tRNA synthetase, beta subunit -1.70 7.2E-23 PA14_28760 hypothetical protein 1.87 1.4E-08 -1.52 3.0E-02 PA14_28870 hypothetical protein 1.69 3.0E-15 -1.52 3.0E-02 PA14_28870 hypothetical protein 1.69 3.0E-12 -1.52 3		—			-1.67	3.0E-07	1 50	4.05.00
PA14_28520hypothetical protein2.082.2E-13PA2751PA14_28530conserved hypothetical protein2.484.0E-14PA2747PA14_28600hypothetical protein2.592.3E-15PA2746PA14_28620hypothetical protein1.521.3E-04PA2745PA14_28630probable hydrolase1.583.1E-08PA2743PA14_28660infCtranslation initiation factor IF-3-1.911.3E-02PA2740PA14_28690pheSphenylalanyl-tRNA synthetase, alpha-subunit-1.771.2E-17PA2739PA14_28710pheTphenylalanyl-tRNA synthetase, subunit-1.707.2E-23PA14_28760hypothetical protein1.871.4E-08PA14_28800hypothetical protein1.778.0E-151.52PA14_28800hypothetical protein1.693.0E-121.52PA14_28800hypothetical protein1.693.0E-121.56PA14_28900hypothetical protein1.693.0E-121.56PA14_28900hypothetical protein1.763.7E-041.56PA2717PA14_28900hypothetical protein1.693.0E-121.56PA2717PA14_2890Fe2+-dicitrate sensor-1.948.7E-04PA2717PA14_28900hypothetical protein1.673.7E-08PA2708PA14_2910hypothetical protein2.081.7E-03PA2709PA14_29210hypothetical protein2.081.7E-03PA2700PA14_29210						5 OF 15	-1.58	4.9E-02
PA2751 PA14_28530 conserved hypothetical protein 2.48 4.0E-14 PA2747 PA14_28600 hypothetical protein 2.59 2.3E-15 PA2746 PA14_28620 hypothetical protein 1.52 1.3E-04 PA2745 PA14_28630 probable hydrolase 1.58 3.1E-08 PA2743 PA14_28660 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28690 pheS phenylalanyl-tRNA synthetase, alpha-subunit -1.77 1.2E-17 PA2739 PA14_28710 pheT phenylalanyl-tRNA synthetase, beta subunit -1.70 7.2E-23 PA14_28760 hypothetical protein 1.87 1.4E-08 PA14_28800 hypothetical protein 1.87 1.4E-08 PA14_28800 hypothetical protein 1.77 8.0E-15 PA14_28800 hypothetical protein 1.69 3.0E-12 PA2721 PA14_28900 hypothetical protein 1.67 3.7E-04 PA2721 PA14_28900	PA2754							
PA2747PA14_28600hypothetical protein2.592.3E-15PA2746PA14_28620hypothetical protein1.521.3E-04PA2745PA14_28630probable hydrolase1.583.1E-08PA2743PA14_28660infCtranslation initiation factor IF-3-1.911.3E-02PA2740PA14_28690pheSphenylalanyl-tRNA synthetase, alpha-subunit-1.771.2E-17PA2739PA14_28710pheTphenylalanyl-tRNA synthetase, beta subunit-1.707.2E-23PA14_28760hypothetical protein1.871.4E-08PA14_28840helicase1.594.4E-15-1.52PA14_28870hypothetical protein1.693.0E-12PA2712PA14_2890Fe2+-dicitrate sensor-1.948.7E-04PA2717PA14_2900cpochloroperoxidase precursor1.673.7E-08PA2712PA14_2910hypothetical protein-1.782.1E-07PA2700PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29210probable major facilitator superfamily (MFS) transporter-2.813.7E-13								
PA2746 PA14_28620 hypothetical protein 1.52 1.3E-04 PA2745 PA14_28630 probable hydrolase 1.58 3.1E-08 PA2743 PA14_28660 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28690 pheS phenylalanyl-tRNA synthetase, alpha-subunit -1.77 1.2E-17 PA2739 PA14_28710 pheT phenylalanyl-tRNA synthetase, beta subunit -1.70 7.2E-23 PA14_28760 hypothetical protein 1.87 1.4E-08 PA14_28840 helicase 1.59 4.4E-15 -1.52 3.0E-02 PA14_28870 hypothetical protein 1.77 8.0E-15 1.59 4.4E-15 -1.52 3.0E-02 PA14_28870 hypothetical protein 1.69 3.0E-12 1.59 1.428980 1.59 4.4E-15 -1.52 3.0E-02 PA2712 PA14_28960 hypothetical protein 1.56 7.8E-05 1.59 4.4E-15 -1.52 3.0E-12 1.59 4.4E-15 -1.70 7.2E-23				** *				
PA2745 PA14_28630 probable hydrolase 1.58 3.1E-08 PA2743 PA14_28660 infC translation initiation factor IF-3 -1.91 1.3E-02 PA2740 PA14_28690 pheS phenylalanyl-tRNA synthetase, alpha-subunit -1.77 1.2E-17 PA2739 PA14_28710 pheT phenylalanyl-tRNA synthetase, beta subunit -1.70 7.2E-23 PA14_28700 hypothetical protein 1.87 1.4E-08 - PA14_28840 hypothetical protein 1.77 8.0E-15 - PA14_28870 hypothetical protein 1.77 8.0E-15 - PA2717 PA14_28870 hypothetical protein 1.69 3.0E-12 - PA2717 PA14_2890 Fe2+-dicitrate sensor -1.94 8.7E-04 - PA2717 PA14_29020 cpo chloroperoxidase precursor 1.67 3.7E-08 - PA2712 PA14_29070 hypothetical protein -1.78 2.1E-07 - PA2701 PA14_29200 cpo chloroperoxidase precursor 1.67 3.7E-08 - PA2701 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
PA2743PA14_28660infCtranslation initiation factor IF-3-1.911.3E-02PA2740PA14_28690pheSphenylalanyl-tRNA synthetase, alpha-subunit-1.771.2E-171PA2739PA14_28710pheTphenylalanyl-tRNA synthetase, beta subunit-1.707.2E-231PA2739PA14_28760hypothetical protein1.871.4E-081PA14_28860hypothetical protein1.871.4E-081PA14_28870hypothetical protein1.778.0E-151.523.0E-02PA14_28870hypothetical protein1.693.0E-121PA2721PA14_2890Fe2+-dicitrate sensor-1.948.7E-04PA2717PA14_29020cpochloroperoxidase precursor1.673.7E-08PA2701PA14_2910hypothetical protein2.081.7E-031PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-031PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13								
PA2740PA14_28690 $pheS$ phenylalanyl-tRNA synthetase, alpha-subunit-1.771.2E-17PA2739PA14_28710 $pheT$ phenylalanyl-tRNA synthetase, beta subunit-1.707.2E-23PA14_28760hypothetical protein1.871.4E-08PA14_28840helicase1.594.4E-15-1.52PA14_28850hypothetical protein1.778.0E-15PA14_28870hypothetical protein1.693.0E-12PA2721PA14_28960hypothetical protein1.567.8E-05PA14_28980Fe2+-dicitrate sensor-1.948.7E-04PA2717PA14_29020cpochloroperoxidase precursor1.673.7E-08PA2708PA14_2910hypothetical protein2.434.2E-31PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2688PA14_29350 $pfeA$ Ferric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13				i v	1.58	3.1E-08		
PA2740 PA14_28000 phe3 alpha-subunit -1.77 1.2E-17 PA2739 PA14_28710 phe7 phenylalanyl-tRNA synthetase, beta subunit -1.70 7.2E-23 PA14_28760 hypothetical protein 1.87 1.4E-08 PA14_28840 helicase 1.59 4.4E-15 -1.52 3.0E-02 PA14_28870 hypothetical protein 1.77 8.0E-15 1.59 4.4E-15 -1.52 3.0E-02 PA14_28870 hypothetical protein 1.69 3.0E-12 1.59 4.4E-15 -1.52 3.0E-02 PA2721 PA14_28870 hypothetical protein 1.69 3.0E-12 1.59 1.4E-08 1.59 1.4E-05 1.50	PA2743	PA14_28660	infC				-1.91	1.3E-02
PA2739 PA14_28710 <i>phe1</i> subunit -1.70 7.2E-23 PA14_28760 hypothetical protein 1.87 1.4E-08 PA14_28840 helicase 1.59 4.4E-15 -1.52 3.0E-02 PA14_28850 hypothetical protein 1.77 8.0E-15 1.59 1.4E-08 PA14_28870 hypothetical protein 1.69 3.0E-12 1.59 1.4E-08 PA2721 PA14_28960 hypothetical protein 1.69 3.0E-12 1.56 PA2721 PA14_28980 Fe2+-dicitrate sensor -1.94 8.7E-04 1.56 PA2717 PA14_29020 cpo chloroperoxidase precursor 1.67 3.7E-08 1.7E-03 PA2701 PA14_29070 hypothetical protein -1.78 2.1E-07 1.7E-03 PA2701 PA14_29210 probable major facilitator 2.08 1.7E-03 1.7E-03 PA2700 PA14_29220 opdB proline porin OpdB 1.76 1.3E-02 1.3E-02 PA2688 PA14_29350 <i>pfeA</i> Ferric enterobactin receptor, outer membrane protein PfeA precursor -2.81 3.7E-13 <td>PA2740</td> <td>PA14_28690</td> <td>pheS</td> <td></td> <td>-1.77</td> <td>1.2E-17</td> <td></td> <td></td>	PA2740	PA14_28690	pheS		-1.77	1.2E-17		
PA14_28840 helicase 1.59 4.4E-15 -1.52 3.0E-02 PA14_28850 hypothetical protein 1.77 8.0E-15 1.77 8.0E-15 1.69 3.0E-02 PA14_28870 hypothetical protein 1.69 3.0E-12 1.69 3.0E-12 1.69 1.69 3.0E-12 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.67 1.67 1.69 1.67 1.69 1.67	PA2739	PA14_28710	pheT		-1.70	7.2E-23		
PA14_28850 hypothetical protein 1.77 8.0E-15 PA14_28870 hypothetical protein 1.69 3.0E-12 PA2721 PA14_28960 hypothetical protein 1.69 3.0E-12 PA2721 PA14_28960 hypothetical protein 1.56 7.8E-05 PA14_28980 Fe2+-dicitrate sensor -1.94 8.7E-04 PA2717 PA14_29020 cpo chloroperoxidase precursor 1.67 3.7E-08 PA2712 PA14_29070 hypothetical protein -1.78 2.1E-07 PA2708 PA14_29120 hypothetical protein 2.43 4.2E-31 PA2701 PA14_29210 probable major facilitator 2.08 1.7E-03 PA2700 PA14_29220 opdB proline porin OpdB 1.76 1.3E-02 PA2688 PA14_29350 pfeA Ferric enterobactin receptor, outer membrane protein PfeA precursor -2.81 3.7E-13		PA14_28760		hypothetical protein	1.87	1.4E-08		
PA14_28870hypothetical protein1.693.0E-12PA2721PA14_28960hypothetical protein1.567.8E-05PA14_28980Fe2+-dicitrate sensor-1.948.7E-04PA2717PA14_29020cpochloroperoxidase precursor1.673.7E-08PA2712PA14_29070hypothetical protein-1.782.1E-07PA2708PA14_29120hypothetical protein2.434.2E-31PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13		PA14_28840		helicase	1.59	4.4E-15	-1.52	3.0E-02
PA2721PA14_28960hypothetical protein1.567.8E-05PA14_28980Fe2+-dicitrate sensor-1.948.7E-04PA2717PA14_29020cpochloroperoxidase precursor1.673.7E-08PA2712PA14_29070hypothetical protein-1.782.1E-07PA2708PA14_29120hypothetical protein2.434.2E-31PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13		PA14_28850		hypothetical protein	1.77	8.0E-15		
PA14_28980Fe2+-dicitrate sensor-1.948.7E-04PA2717PA14_29020cpochloroperoxidase precursor1.673.7E-08PA2712PA14_29070hypothetical protein-1.782.1E-07PA2708PA14_29120hypothetical protein2.434.2E-31PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13		PA14_28870		hypothetical protein	1.69	3.0E-12		
PA2717PA14_29020cpochloroperoxidase precursor1.673.7E-08PA2712PA14_29070hypothetical protein-1.782.1E-07PA2708PA14_29120hypothetical protein2.434.2E-31PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13	PA2721	PA14_28960		hypothetical protein	1.56	7.8E-05		
PA2712PA14_29070hypothetical protein-1.782.1E-07PA2708PA14_29120hypothetical protein2.434.2E-31PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13		PA14_28980		Fe2+-dicitrate sensor	-1.94	8.7E-04		
PA2708PA14_29120hypothetical protein2.434.2E-31PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13	PA2717	PA14_29020	сро	chloroperoxidase precursor	1.67	3.7E-08		
PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13	PA2712	PA14_29070		hypothetical protein	-1.78	2.1E-07		
PA2701PA14_29210probable major facilitator superfamily (MFS) transporter2.081.7E-03PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13	PA2708	PA14_29120		hypothetical protein	2.43	4.2E-31		
PA2700PA14_29220opdBproline porin OpdB1.761.3E-02PA2688PA14_29350pfeAFerric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13	PA2701	PA14_29210		1 5	2.08	1.7E-03		
PA2688PA14_29350 <i>pfeA</i> Ferric enterobactin receptor, outer membrane protein PfeA precursor-2.813.7E-13	PA2700	PA14_29220	opdB		1.76	1.3E-02		
	PA2688	PA14_29350	pfeA	1	-2.81	3.7E-13		
	PA2677	PA14_29490			1.52	1.1E-03		

PA2672	PA14_29540		type II secretion system protein	2.06	1.3E-02		
-	PA14_29560		hypothetical protein	1.69	1.1E-03		
	PA14_29600		probable 6-pyruvoyl tetrahydrobiopterin synthase	-1.79	5.2E-10	-1.70	1.9E-02
PA2663	PA14_29650	ppyR	psl and pyoverdine operon regulator, PpyR	1.61	4.5E-02		
PA2653	PA14_29770		probable transporter	-2.70	3.6E-45		
PA2652	PA14_29800		methyl-accepting chemotaxis protein	-2.24	1.1E-48		
PA2650	PA14_29830		conserved hypothetical protein	-1.59	2.2E-08		
PA2630	PA14_30100		conserved hypothetical protein	-1.86	1.2E-21		
PA2629	PA14_30110	purB	adenylosuccinate lyase	-1.85	9.3E-17		
PA2625	PA14_30160		conserved hypothetical protein	-1.76	7.6E-09		
PA2624	PA14_30180	idh	isocitrate dehydrogenase	-1.70	7.2E-13		
PA2622	PA14_30200	cspD	cold-shock protein CspD	1.55	1.5E-08		
PA2621	PA14_30210	clpS	ClpS			-1.56	2.9E-02
PA2619	PA14_30240	infA	initiation factor			-1.54	3.5E-03
PA2600	PA14_30460		hypothetical protein	-1.57	8.9E-06		
PA2598	PA14_30490		hypothetical protein	-1.53	5.4E-04		
PA2594	PA14_30550		conserved hypothetical protein	-2.82	5.7E-17		
PA2591	PA14_30580	vqsR	VqsR	1.58	2.5E-21		
PA2587	PA14_30630	pqsH	probable FAD-dependent monooxygenase	1.72	2.9E-32		
PA2582	PA14_30710		hypothetical protein			-1.51	1.8E-02
PA2579	PA14_30750	kynA	L-Tryptophan:oxygen 2,3- oxidoreductase (decyclizing) KynA	-1.56	2.0E-12		
PA2575	PA14_30800		hypothetical protein	-2.06	6.4E-22		
PA2573	PA14_30820		probable chemotaxis transducer	1.94	3.4E-17		
PA2571	PA14_30840		probable two-component sensor	1.53	7.2E-09		
	PA14_30850		TrbI-like protein	1.67	1.2E-02		
	PA14_30860		TrbG-like protein	2.14	3.5E-02		
	PA14_30880		conjugal transfer protein TrbL	2.61	1.5E-02		
	PA14_30970		transcriptional regulator	1.63	7.0E-16		
	PA14_31270		hypothetical protein	2.05	2.1E-07		
PA2570	PA14_31290	lecA	LecA	1.69	1.2E-05		
PA2569	PA14_31300		hypothetical protein	2.07	1.5E-16		
	PA14_31340		hypothetical protein	-2.02	4.5E-02		
PA2566	PA14_31350		conserved hypothetical protein	2.41	8.1E-45		
PA2565	PA14_31360		hypothetical protein	1.89	2.3E-17		
PA2564	PA14_31370		hypothetical protein	1.55	4.4E-11		
PA2563	PA14_31380		probable sulfate transporter	-2.17	2.1E-10		
PA2562	PA14_31390		hypothetical protein	1.86	1.5E-09		

PA2561	PA14_31400	<i>ctpH</i>	CtpH	-1.77	8.0E-13		
	PA14_31430	- T	hypothetical protein	1.70	1.8E-08		
PA2550	 PA14_31580		probable acyl-CoA dehydrogenase	-1.66	1.4E-03		
	 PA14_31820		probable aminotransferase	2.58	1.9E-10		
PA2519	PA14_32060	xylS	transcriptional regulator XylS	1.84	3.6E-08		
	PA14_32130	xylL	1,6-dihydroxycyclohexa-2,4-diene-1- carboxylate dehydrogenase	1.94	1.5E-02		
PA2504	PA14_32280		hypothetical protein	1.71	2.0E-15		
PA2502	PA14_32300		hypothetical protein	-1.80	4.5E-20		
PA2500	PA14_32330		probable major facilitator superfamily (MFS) transporter	1.81	8.3E-08		
PA2499	PA14_32340		probable deaminase	2.01	1.1E-02		
PA2494	PA14_32390	mexF	Resistance-Nodulation-Cell Division (RND) multidrug efflux transporter MexF	-2.00	3.6E-14		
PA2493	PA14_32400	mexE	Resistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexE precursor	-1.87	4.2E-11		
PA2488	PA14_32460		probable transcriptional regulator	1.52	7.7E-04		
PA2486	PA14_32480	ptrC	Pseudomonas type III repressor gene C, PtrC	2.02	6.3E-10		
PA2485	PA14_32490		hypothetical protein	1.99	3.7E-07		
PA2483	PA14_32520		conserved hypothetical protein	-1.60	1.1E-09		
PA2468	PA14_32710	foxI	ECF sigma factor FoxI	1.77	5.8E-05		
PA2467	PA14_32720	foxR	Anti-sigma factor FoxR	1.51	1.7E-04		
PA2465	PA14_32750		hypothetical protein	-2.52	4.5E-08		
PA2463	PA14_32780		hypothetical protein	-1.70	7.8E-06		
	PA14_32820		hypothetical protein			-2.29	4.1E-02
PA2458	PA14_32830		hypothetical protein			-2.08	2.0E-02
PA2453	PA14_32890		hypothetical protein	-1.82	2.0E-11		
PA2452	PA14_32905		hypothetical protein	8.95	1.9E-16	-5.32	1.2E-06
PA2451	PA14_32905		hypothetical protein	8.95	1.9E-16		
PA2448	PA14_32950		hypothetical protein	1.78	8.3E-12		
PA2441	PA14_33050		hypothetical protein	-2.27	4.3E-09		
PA2440	PA14_33060		hypothetical protein	-2.35	1.0E-11		
PA2438	PA14_33080		hypothetical protein	1.53	4.8E-06		
PA2435	PA14_33130		probable cation-transporting P-type ATPase	1.56	2.7E-14		
PA2434	PA14_33150		hypothetical protein	1.79	9.2E-13		
PA2433	PA14_33160		hypothetical protein	3.98	7.6E-49		
PA2430	PA14_33220		conserved hypothetical protein	1.56	1.7E-04		

PA2428	PA14_33240		hypothetical protein	1.55	4.1E-02		
	PA14_33250		hypothetical protein	17.56	3.4E-57		
	PA14_33260	pvdS	sigma factor PvdS	2.03	9.7E-07		
	PA14_33270	<i>pvdG</i>	protein PvdG	10.22	6.2E-18	-9.38	2.7E-02
PA2424	PA14_33280	pvdL	PvdL	14.65	5.9E-25		4.1E-02
	PA14_33330		hypothetical protein			-1.93	1.4E-02
	PA14_33360		hypothetical protein	1.74	2.5E-02		
PA2422	PA14_33370		hypothetical protein	1.83	4.1E-02		
PA2419	PA14_33420		probable hydrolase	1.64	7.8E-03		
PA2417	PA14_33440		probable transcriptional regulator	1.63	3.5E-09		
PA2415	PA14_33460		hypothetical protein	3.43	8.0E-21		
PA2414	PA14_33480		L-sorbosone dehydrogenase	3.26	4.4E-57		
PA2413	PA14_33500	pvdH	L-2,4-diaminobutyrate:2- ketoglutarate 4-aminotransferase, PvdH	13.14	6.1E-19	-6.51	2.9E-02
PA2412	PA14_33510		conserved hypothetical protein	10.03	1.9E-16	-13.92	1.0E-02
PA2411	PA14_33520		probable thioesterase	10.76	7.8E-19		
PA2410	PA14_33530	fpvF	FpvF	4.23	1.9E-18	-6.66	7.3E-04
PA2409	PA14_33540	fpvE	ABC transporter permease	4.29	8.7E-18	-6.20	1.8E-02
PA2408	PA14_33550	fpvD	ABC transporter ATP-binding protein	5.11	8.0E-31		
PA2407	PA14_33560	fpvC	FpvC	4.85	1.1E-19	-6.32	2.0E-02
PA2406	PA14_33570	fpvK	hypothetical protein	6.00	8.9E-28		
PA2405	PA14_33580	fpvJ	hypothetical protein	5.33	3.6E-15		
PA2404	PA14_33590	fpvH	hypothetical protein	6.68	4.1E-30		
PA2403	PA14_33600	fpvG	FpvG	4.72	2.4E-23	-5.89	9.6E-03
PA2402	PA14_33610		probable non-ribosomal peptide synthetase	13.25	6.1E-32	-8.95	2.0E-02
PA2400	PA14_33630	pvdJ	PvdJ	17.29	4.0E-50	-8.89	9.6E-03
PA2399	PA14_33650	pvdD	pyoverdine synthetase D	16.10	2.1E-35	-7.77	8.5E-03
PA2398	PA14_33680	fpvA	ferripyoverdine receptor	6.55	7.7E-15	-7.29	1.9E-03
PA2397	PA14_33690	pvdE	pyoverdine biosynthesis protein PvdE	10.94	3.2E-19	-9.69	8.5E-03
PA2396	PA14_33700	pvdF	pyoverdine synthetase F	9.65	1.4E-24	-5.65	3.0E-02
PA2395	PA14_33710	pvdO	protein PvdO	12.72	4.6E-11	-10.49	2.5E-02
PA2394	PA14_33720	pvdN	protein PvdN	12.07	3.5E-13	-9.75	1.9E-02
PA2393	PA14_33730		putative dipeptidase	12.25	1.3E-12	-8.28	3.5E-02
PA2392	PA14_33740	pvdP	PvdP	10.99	8.5E-21	-10.46	2.1E-02
PA2391	PA14_33750	opmQ	probable outer membrane protein precursor	3.59	1.7E-22	-3.18	2.5E-02
PA2390	PA14_33760	pvdT	PvdT	3.28	2.4E-21		

PA2389	PA14_33770	pvdR	PvdR	3.49	7.8E-20		
	PA14_33800	fpvI	FpvI	2.16	1.8E-33		
	PA14_33810	pvdA	L-ornithine N5-oxygenase	11.76	1.3E-19	-8.77	1.0E-02
	PA14_33820	pvdQ	3-oxo-C12-homoserine lactone acylase PvdQ	10.86	2.7E-18		3.6E-02
PA2384	PA14_33830		hypothetical protein	15.30	1.5E-20	-9.14	1.3E-02
	PA14_33840		probable transcriptional regulator	2.86	4.3E-17		
PA2381	PA14_33870		hypothetical protein	-2.29	1.5E-11		
PA2380	PA14_33880		hypothetical protein			-1.67	7.9E-03
PA2378	PA14_33900		probable aldehyde dehydrogenase			1.51	4.8E-03
PA2377	PA14_33910		hypothetical protein	7.94	1.3E-10		
PA2374	PA14_33940	tseF	TseF	2.45	7.4E-10		
PA2373	PA14_33960	vgrG3	VgrG3	2.87	1.6E-08		
	PA14_33970		hypothetical protein	2.18	1.1E-12	-2.02	9.6E-03
	PA14_33980		hypothetical protein	4.74	1.2E-20		
PA2371	PA14_33990	clpV3	ClpV3	5.36	7.2E-47		
PA2370	PA14_34000	hsiH3	HsiH3	4.38	6.6E-16		
PA2369	PA14_34010	hsiG3	HsiG3	3.95	3.5E-22		
PA2368	PA14_34020	hsiF3	HsiF3	4.63	1.1E-08		
PA2367	PA14_34030	hcp3	Нср3	3.05	1.2E-12		
PA2366	PA14_34050	hsiC3	HsiC3	3.09	1.9E-21		
PA2365	PA14_34070	hsiB3	HsiB3	2.26	5.1E-14		
PA2364	PA14_34080	lip3	Lip3	2.32	1.0E-11		
PA2363	PA14_34100	hsiJ3	HsiJ3	2.30	2.5E-18		
PA2362	PA14_34110	dot U3	DotU3	1.93	9.0E-07		
PA2361	PA14_34130	icmF3	IcmF3	2.27	1.1E-19		
PA2360	PA14_34140	hsiA3	hypothetical protein	2.79	4.1E-19		
	PA14_34150	sfa3	probable transcriptional regulator	-1.97	1.5E-07		
PA2356	PA14_34190	msuD	methanesulfonate sulfonatase MsuD	-1.58	2.2E-02		
	PA14_34290		DszA family monooxygenase	-2.21	8.3E-03		
PA2346	PA14_34320		DszC family monooxygenase	-1.66	3.4E-02		
PA2342	PA14_34360	mtlD	mannitol dehydrogenase	1.74	2.1E-02		
PA2338	PA14_34420		probable binding protein component of ABC maltose/mannitol transporter	1.51	4.6E-03		
PA2337	PA14_34440	mtlR	transcriptional regulator MtlR	1.53	1.7E-04		
PA2331	PA14_34460		hypothetical protein	-1.89	2.9E-11	-2.21	1.3E-02
PA2330	PA14_34490		hypothetical protein	-1.72	3.2E-08		
	PA14_34500		probable ATP-binding component of ABC transporter	-1.70	6.4E-06	-3.14	2.7E-03
	PA14_34510		hypothetical protein	-1.74	2.9E-12		
PA2324	PA14_34580		hypothetical protein	-1.61	6.0E-06		

PA2313 PA14_34720 hype PA2312 PA14_34730 XRE family PA2311 PA14_34740 hype PA2310 PA14_34750 taurine ca	ional regulator GntR1.59othetical protein-2.52transcriptional regulator-3.04othetical protein-3.01table-3.01			
PA2312 PA14_34730 XRE family PA2311 PA14_34740 hype PA2310 PA14_34750 taurine ca	transcriptional regulator -3.04 othetical protein -3.01			
PA2311 PA14_34740 hype PA2310 PA14_34750 taurine ca ABC transr	othetical protein -3.01			
PA2310 PA14_34750 taurine ca	1	2.5E-09		
ABC transr	tabolism dioxygenase -2.95			
PA2309 PA14_34770	porter substrate-binding protein -1.89			
PA2305 PA14_34810 ambB	AmbB 2.66	3.6E-41		
PA2304 PA14_34820 ambC	AmbC 3.48	2.7E-20		
PA2303 PA14_34830 ambD	AmbD 3.59	1.2E-30		
PA2302 PA14_34840 ambE	AmbE 4.17	1.5E-86		
PA2301 PA14_34850 hype	othetical protein 2.44	1.9E-37		
PA2300 PA14_34870 chiC	chitinase 1.96	2.1E-16		
PA2299 PA14_34880 probable tr	anscriptional regulator 1.99	7.2E-14		
PA2298 PA14_34900 probab	ble oxidoreductase 1.61	3.6E-11		
PA2288 PA14_35000 hype	othetical protein -1.58	5.5E-07		
PA2283 PA14_35050 hype	othetical protein -1.94	4.1E-03		
PA2275 PA14_35150 probable alco	ohol dehydrogenase (Zn- dependent) -2.01	4.7E-06		
PA2272 PA14_35190 <i>pbpC</i> penicillin	n-binding protein 3A 1.90	2.8E-20		
PA2268 PA14_35240 hype	othetical protein -8.85	9.2E-43		
PA2267 PA14_35250 probable tr	anscriptional regulator 1.63	1.5E-06		
PA2266 PA14_35270 probable c	ytochrome c precursor -2.40	1.2E-12	1.52	2.3E-02
PA2265 PA14_35290 glucon	ate dehydrogenase -2.74	1.4E-16		
PA2264 PA14_35300 conserved	hypothetical protein -2.66	1.3E-13		
	ole 2-hydroxyacid ehydrogenase -2.64	5.4E-11		
PA2262 PA14_35330 probable 2-k	etogluconate transporter -3.07	7.9E-15		
PA2261 PA14_35340 probable 2	-ketogluconate kinase -3.29	3.5E-15		
PA2260 PA14_35360 hype	othetical protein -3.50	2.8E-13	1.68	1.8E-02
PA2259 PA14_35370 ptxS transcrip	tional regulator PtxS -2.14	1.3E-08		
PA2258 PA14_35380 ptxR transcrip	tional regulator PtxR 2.38	1.7E-13		
PA2245 PA14_35550 pslO hype	othetical protein 4.24	5.3E-07		
PA2244 PA14_35570 pslN hype	othetical protein 3.85	2.5E-26		
PA2235 PA14_35690 pslE	PslE -1.53	3.1E-04		
PA14_35740	transposase 1.72	2.9E-20		
PA14_35750 tpnA	repressor protein 2.16	2.8E-09		
PA14_35760 hype	othetical protein 1.78	4.5E-17	-2.45	3.7E-03
PA14_35780 hype	othetical protein		-1.62	1.2E-02
PA14_35800 hype	othetical protein 1.60	2.7E-15		
PA14_35830 <i>tnpT</i> coint	egrate resolution protein		-1.84	1.7E-02

			Т				
	PA14_35940		acyl-CoA synthetase	1.64	2.5E-02		
	 PA14_35950		dehydrogenase	1.76	3.3E-02		
	 PA14_36010		hypothetical protein	1.64	3.9E-06		
PA2204	PA14_36200		probable binding protein component of ABC transporter	-2.10	4.2E-11	-1.57	3.2E-02
PA2203	PA14_36220		probable amino acid permease	-2.95	5.3E-18		
PA2202	PA14_36230		amino acid ABC transporter permease	-2.66	1.2E-16		
PA2196	PA14_36300		TetR family transcriptional regulator	1.56	5.0E-10		
PA2195	PA14_36310	hcnC	hydrogen cyanide synthase HcnC	2.10	2.8E-16		
PA2194	PA14_36320	hcnB	hydrogen cyanide synthase HcnB	1.87	2.1E-13		
PA2193	PA14_36330	hcnA	hydrogen cyanide synthase HcnA	1.72	1.5E-08		
PA2191	PA14_36345	exoY	adenylate cyclase ExoY	1.70	2.2E-06	-1.73	2.7E-02
PA2189	PA14_36350		hypothetical protein	2.88	8.4E-07		
PA2187	PA14_36360		hypothetical protein	3.74	1.9E-07		
PA2181	PA14_36370		hypothetical protein	4.84	2.1E-15		
PA2180	PA14_36375		hypothetical protein	4.06	1.9E-39		
PA2179	PA14_36390		hypothetical protein	4.27	6.5E-23		
	PA14_36400		hypothetical protein	1.79	1.9E-02		
PA2178	PA14_36410		hypothetical protein	3.68	5.5E-09		
PA2177	PA14_36420		probable sensor/response regulator hybrid	2.34	3.7E-18		
PA2176	PA14_36450		hypothetical protein	3.87	1.0E-27		
PA2175	PA14_36460		hypothetical protein	4.34	1.0E-28		
PA2174	PA14_36470		hypothetical protein	1.85	2.9E-06		
	PA14_36480		hypothetical protein	3.73	8.5E-17		
PA2173	PA14_36490		hypothetical protein	4.27	6.6E-21		
PA2172	PA14_36500		hypothetical protein	3.50	1.2E-33		
PA2171	PA14_36520		hypothetical protein	2.74	4.4E-21		
PA2169	PA14_36530		hypothetical protein	2.34	2.0E-09		
PA2168	PA14_36540		hypothetical protein	4.63	3.4E-19		
PA2167	PA14_36550		hypothetical protein	4.03	1.3E-35		
PA2166	PA14_36560		hypothetical protein	5.06	7.3E-36		
PA2165	PA14_36570		probable glycogen synthase	4.33	1.0E-55		
PA2164	PA14_36580		probable glycosyl hydrolase	4.00	5.2E-53		
PA2163	PA14_36590		hypothetical protein	4.06	2.0E-43		
PA2162	PA14_36605		probable glycosyl hydrolase	3.17	1.7E-22		
PA2161	PA14_36620		hypothetical protein	2.44	4.0E-07		
PA2160	PA14_36630		probable glycosyl hydrolase	1.96	1.2E-04		
PA2159	PA14_36650		conserved hypothetical protein	2.53	1.4E-13		

			probable alcohol dehydrogenase (Zn-				
PA2158	PA14_36660		dependent)	2.75	2.1E-14		
PA2157	PA14_36670		hypothetical protein	2.94	5.3E-11		
PA2156	PA14_36680		conserved hypothetical protein	2.50	1.1E-05		
PA2155	PA14_36690		probable phospholipase	2.51	2.0E-08		
PA2154	PA14_36700		conserved hypothetical protein	1.97	1.0E-02		
PA2153	PA14_36710	glgB	1,4-alpha-glucan branching enzyme	2.98	7.6E-20		
PA2152	PA14_36730		probable trehalose synthase	3.75	3.9E-72		
PA2151	PA14_36740		conserved hypothetical protein	4.52	3.1E-50		
PA2150	PA14_36760		conserved hypothetical protein	3.94	1.1E-26		
PA2149	PA14_36770		hypothetical protein	4.84	6.1E-10		
PA2148	PA14_36780		conserved hypothetical protein	3.83	3.1E-16		
	PA14_36790		hypothetical protein	3.50	7.4E-08		
PA2147	PA14_36810	katE	catalase HPII	2.91	4.0E-24		
PA2146	PA14_36820		conserved hypothetical protein	2.61	1.3E-12	-1.80	1.9E-02
PA2145	PA14_36830		hypothetical protein	2.26	8.5E-07		
PA2144	PA14_36840	glgP	glycogen phosphorylase	3.89	3.7E-51		
PA2143	PA14_36850		hypothetical protein	3.58	3.4E-32		
PA2142	PA14_36870		probable short-chain dehydrogenase	3.86	6.3E-18		
PA2141	PA14_36880		hypothetical protein	4.95	2.1E-07		
PA2140	PA14_36890		probable metallothionein	8.66	3.5E-04		
PA2170	PA14_36900		hypothetical protein	5.62	2.7E-06		
PA2138	PA14_36910	ligD	Multifunctional non-homologous end	3.43	7.4E-17		
I A2130	1A14_30910	ligD	joining protein LigD	5.45			
	PA14_36920		hypothetical protein	3.25	5.6E-18		
	PA14_36930		hypothetical protein	3.91	6.5E-05		
	PA14_36960		probable transporter	2.75	1.3E-14		
PA2134	PA14_36980		hypothetical protein	2.66	5.0E-17		
PA2133	PA14_36990		Cyclic-guanylate-specific phosphodiesterase	-1.95	4.7E-03		
PA2132	PA14_37000	cupA5	chaperone CupA5	-4.71	1.4E-05		
PA2131	PA14_37010	cupA4	fimbrial subunit CupA4	-5.04	9.0E-10		
PA2130	PA14_37030	cupA3	usher	-3.54	3.7E-17		
PA2129	PA14_37040	cupA2	chaperone CupA2	-4.66	2.1E-23		
PA2128	PA14_37060	cupA1	fimbrial subunit CupA1	-4.55	7.1E-80		
PA2121	PA14_37140		probable transcriptional regulator	1.60	4.0E-03		
PA2118	PA14_37190	ada	O6-methylguanine-DNA methyltransferase	1.72	4.9E-10		
PA2108	PA14_37340		probable decarboxylase	2.97	1.2E-16		
	PA14_37350		hypothetical protein	5.03	1.6E-14		
PA2099	PA14_37360		probable short-chain dehydrogenase	1.57	3.8E-02		

PA2004	PA14_37420		transmembrane sensor protein	3.73	7.9E-13
			probable sigma-70 factor, ECF		
PA2093	PA14_37430		subfamily	2.53	2.4E-07
PA2092	PA14_37440		MFS transporter	3.49	6.1E-13
PA2091	PA14_37460		permease	2.94	3.3E-09
PA2090	PA14_37470		flavin-dependent oxidoreductase	3.33	3.0E-12
PA2089	PA14_37490		hypothetical protein	2.59	1.4E-18
	PA14_37510		hypothetical protein	3.55	1.9E-13
PA2087	PA14_37520		hypothetical protein	3.24	4.1E-07
PA2086	PA14_37530		hydrolase	3.08	1.4E-08
PA2085	PA14_37550		ring-hydroxylating dioxygenase small subunit	2.74	9.5E-05
PA2084	PA14_37560		probable asparagine synthetase	2.32	2.2E-07
	PA14_37580	kynR	KynR	1.52	1.6E-04
PA2081	PA14_37590	kynB	kynurenine formamidase, KynB	1.51	4.1E-06
	PA14_37610	kynU	kynureninase KynU	1.53	5.9E-06
PA2079	PA14_37630		probable amino acid permease	1.81	1.1E-07
	PA14_37670		hypothetical protein	1.86	2.4E-04
PA2072	PA14_37690		conserved hypothetical protein	1.68	8.2E-17
PA2071	PA14_37710	fusA2	elongation factor G	1.78	4.4E-26
	PA14_37770		probable hydrolase	1.57	2.8E-18
PA2063	PA14_37820		hypothetical protein	-1.54	9.2E-12
PA2061	PA14_37840	sppD	ABC transporter ATP-binding protein, SppD	1.59	4.2E-03
PA2051	PA14_37980		Fe2+-dicitrate sensor, membrane protein	-3.32	5.8E-08
PA2050	PA14_37990		RNA polymerase sigma factor	-4.51	1.5E-13
PA2046	PA14_38050		hypothetical protein	3.02	9.0E-14
PA2042	PA14_38110		probable transporter (membrane subunit)	-1.78	9.3E-27
PA2041	PA14_38130		Amino acid permease	-2.04	1.0E-12
PA2040	PA14_38140	pauA4	Glutamylpolyamine synthetase	-1.53	8.6E-08
PA2039	PA14_38160		hypothetical protein	-2.18	6.0E-17
PA2038	PA14_38170		hypothetical protein	-2.06	8.4E-11
PA2034	PA14_38210		hypothetical protein	1.59	1.4E-02
PA2033	PA14_38220		hypothetical protein	1.70	6.5E-04
PA2032	PA14_38250		probable transcriptional regulator	1.60	8.7E-18
PA2031	PA14_38260		hypothetical protein	1.77	2.3E-08
PA2030	PA14_38270		hypothetical protein	1.66	7.1E-09
PA2027	PA14_38310		hypothetical protein	1.88	4.3E-03
PA2021	PA14_38370		hypothetical protein	3.71	1.9E-13

PA14_38380	mexZ	MexZ			1.63	2.8E-02
		Resistance-Nodulation-Cell Division				
PA14_38395	mexX		-1.78	3.4E-07	8.54	3.5E-22
		fusion protein MexX precursor				
		Resistance-Nodulation-Cell Division				
PA14_38410	mexY	(RND) multidrug efflux transporter	-1.59	2.1E-06	8.04	1.3E-36
	liuR	regulator of liu genes			-2.29	7.8E-03
PA14_38770	pqqH	РадН	2.17	4.3E-17		
PA14_38780	pqqE		1.56	3.3E-07		
PA14 38790	naaD	pyrroloquinoline quinone	1 95	1 2E-06		
1111_30790	PYYD		1.95	1.21 00		
PA14_38800	pqqC	pyrroloquinoline quinone biosynthesis protein C	1.79	2.2E-09		
PA14_38820	pqqB	pyrroloquinoline quinone biosynthesis protein B	1.74	7.9E-09		
PA14_38860	exaA	quinoprotein ethanol dehydrogenase	1.71	1.6E-02		
PA14_39010	pqqF	pyrroloquinoline quinone biosynthesis protein F	1.56	1.7E-05		
PA14_39130		probable ATP-binding component of	-1.71	6.2E-10		
ΡΔ1/ 39180		_	-1.63	1 3E-09		
	hacA			-		
	jupr	*		-		
			-1.52	J.2L-02	1.63	1.9E-02
-			1 65	5 6E 18	-1.03	1.9E-02
PA14_39320			3.24	2.0E-43		
PA14_39530		containing subunit	3.38	6.6E-31		
PA14_39540		probable ferredoxin	3.15	1.3E-24		
PA14_39560		probable chemotaxis transducer	1.52	2.8E-05		
		5-				
PA14_39590	metE	methyltetrahydropteroyltriglutamate- homocysteine S-methyltransferase	-1.73	2.8E-12		
PA14 39660			2.23	1.0E-08		
 PA14_39690	nrdD	class III (anaerobic) ribonucleoside-	2.75	3.2E-23		
PA14 39700		· · ·	3 17	3 7E-10		
I AIT_37700			5.17	5.71-10		
PA14_39710	nrdG	triphosphate reductase activating	4.24	8.1E-07		
	PA14_38410 PA14_38430 PA14_38770 PA14_38780 PA14_38780 PA14_38790 PA14_38800 PA14_38800 PA14_38800 PA14_39130 PA14_39130 PA14_39130 PA14_39130 PA14_39130 PA14_39470 PA14_39470 PA14_39500 PA14_39500 PA14_39500 PA14_39500 PA14_39500 PA14_39500 PA14_39500 PA14_39500 PA14_39500 PA14_39500 PA14_39500	PA14_38395mexXPA14_38410mexYPA14_38430liuRPA14_38770pqqHPA14_38780pqqCPA14_38790pqqCPA14_38800pqqCPA14_38800exaAPA14_39100pqqFPA14_39130pqqFPA14_39130pqqFPA14_39130pqqFPA14_39130fapFPA14_39130fapFPA14_39130japPA14_39130japPA14_39130japPA14_39500japPA14_39500japPA14_39500japPA14_39500japPA14_39500japPA14_39500japPA14_39500japPA14_39500japPA14_39500metEPA14_39500metEPA14_39500japPA14_39500japPA14_39500metEPA14_39500japPA14_39500 <td>PA14_38395mexXResistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexX precursorPA14_38410mexYResistance-Nodulation-Cell Division (RND) multidrug efflux transporter MexYPA14_38430liuRregulator of liu genesPA14_38770pqqHPqqHPA14_38780pqqZpyrroloquinoline quinone biosynthesis protein EPA14_38790pqqQpyrroloquinoline quinone biosynthesis protein DPA14_38800pqqCpyrroloquinoline quinone biosynthesis protein DPA14_38800pqqQpyrroloquinoline quinone biosynthesis protein CPA14_38800pqqQpyrroloquinoline quinone biosynthesis protein BPA14_38800pqqFpyrroloquinoline quinone biosynthesis protein BPA14_39100pqqFpyrroloquinoline quinone biosynthesis protein FPA14_39130probable ATP-binding component of ABC transporterPA14_39130probable ATP-binding component of ABC transporterPA14_3914hypothetical proteinPA14_3950hypothetical proteinPA14_3950probable hydroxylase large subunitPA14_3950probable hydroxylase large subunitPA14_3950probable hydroxylase large subunitPA14_3950metEferredoxinPA14_3950metE5-PA14_3950metE5-PA14_3950metE5-PA14_3960metE5-PA14_3960hypothetical proteinPA14_3960hypothetical proteinPA14_3960hypothetical p</td> <td>PA14_38395mexXResistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexX precursor-1.78PA14_38410mexY(RND) multidrug efflux transporter MexY-1.59PA14_38430liuRregulator of liu genes-1.59PA14_38770pqqHPqqH2.17PA14_38780pqqEpytroloquinoline quinone biosynthesis protein E1.56PA14_38790pqqQpytroloquinoline quinone biosynthesis protein D1.95PA14_38800pqqCpytroloquinoline quinone biosynthesis protein C1.79PA14_38800pqqZpytroloquinoline quinone biosynthesis protein B1.74PA14_38800pqqZpytroloquinoline quinone biosynthesis protein B1.74PA14_38800pqqZpytroloquinoline quinone biosynthesis protein F1.56PA14_39100pqqFpytroloquinoline quinone biosynthesis protein F1.56PA14_39130probable ATP-binding component of ABC transporter-1.71PA14_39130probable ATP-binding component of ABC transporter-1.71PA14_39120hypothetical protein-1.52PA14_3920hypothetical protein-1.52PA14_3950probable hydroxylase large subunit3.24PA14_3950probable hydroxylase large subunit3.38PA14_3950metEmethyltetrahydopteroyltriglutamate- homocysteine S-methyltransferase-1.73PA14_3950nrdDclass III (anaerobic) ribonucleoside- triphosphate reductase activating2.75PA14_3960<</td> <td>PA14_38395mexXResistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexX precursor MexY precursor-1.78$3.4E-07$PA14_38410mexYResistance-Nodulation-Cell Division (RND) multidrug efflux transporter MexY-1.59$2.1E-06$PA14_38430liuRregulator of liu genesPA14_38770pqqHPqqH2.17$4.3E-17$PA14_38780pqqEpytroloquinoline quinone biosynthesis protein D1.95$1.2E-06$PA14_38790pqqQpytroloquinoline quinone biosynthesis protein D1.95$1.2E-06$PA14_38800pqqCpytroloquinoline quinone biosynthesis protein D1.79$2.2E-09$PA14_38800pqqCpytroloquinoline quinone biosynthesis protein B1.74$7.9E-09$PA14_38800pqqFpytroloquinoline quinone biosynthesis protein B1.74$7.9E-09$PA14_39130pqgFpytroloquinoline quinone biosynthesis protein F1.56$1.7E-05$PA14_39130probable ATP-binding component of ABC transporter$-1.71$$6.2E-10$PA14_39130hypothetical protein$-1.63$$1.3E-09$PA14_39130hypothetical protein$-1.52$$3.2E-02$PA14_39130hypothetical protein$-1.52$$3.2E-02$PA14_39130hypothetical protein$-1.52$$3.2E-02$PA14_39130hypothetical protein$-1.63$$1.3E-09$PA14_39130hypothetical protein$-1.52$$3.2E-02$PA14_39130</td> <td>PA14_38395mexXResistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexX precursor-1.78$3.4E-07$$8.54$PA14_38410mexYResistance-Nodulation-Cell Division (RND) multidrug efflux transporter MexY-1.59$2.1E-06$$8.04$PA14_38770pqqHPqqH2.17$4.3E-17$$4.3E-17$PA14_38780pqqEpyrroloquinoline quinone biosynthesis protein E$1.56$$3.3E-07$PA14_38700pqqCpyrroloquinoline quinone biosynthesis protein D$1.95$$1.2E-06$PA14_38800pqqCpyrroloquinoline quinone biosynthesis protein C$1.79$$2.2E-09$PA14_38800pqqCpyrroloquinoline quinone biosynthesis protein B$1.74$$7.9E-09$PA14_38800pqqFpyrroloquinoline quinone biosynthesis protein F$1.56$$1.7E-05$PA14_39010pqqFpyrroloquinoline quinone biosynthesis protein F$1.56$$1.7E-05$PA14_3910pqqFpyrroloquinoline quinone biosynthesis protein F$1.56$$1.7E-05$PA14_3910pqqFpyroloquinoline quinone biosynthesis protein F$1.56$$1.7E-05$PA14_3910pqqFpyroloquinoline quinone biosynthesis protein F$1.56$$1.7E-05$PA14_3910pqqFpyroloquinoline quinone biosynthesis protein$1.56$$1.7E-05$PA14_3910hypothetical protein$-1.63$$1.3E-09$PA14_3920hypothetical protein$3.38$$6.6E-31$PA14_39500hypothetical pr</td>	PA14_38395mexXResistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexX precursorPA14_38410mexYResistance-Nodulation-Cell Division (RND) multidrug efflux transporter MexYPA14_38430liuRregulator of liu genesPA14_38770pqqHPqqHPA14_38780pqqZpyrroloquinoline quinone biosynthesis protein EPA14_38790pqqQpyrroloquinoline quinone biosynthesis protein DPA14_38800pqqCpyrroloquinoline quinone biosynthesis protein DPA14_38800pqqQpyrroloquinoline quinone biosynthesis protein CPA14_38800pqqQpyrroloquinoline quinone biosynthesis protein BPA14_38800pqqFpyrroloquinoline quinone biosynthesis protein BPA14_39100pqqFpyrroloquinoline quinone biosynthesis protein FPA14_39130probable ATP-binding component of ABC transporterPA14_39130probable ATP-binding component of ABC transporterPA14_3914hypothetical proteinPA14_3950hypothetical proteinPA14_3950probable hydroxylase large subunitPA14_3950probable hydroxylase large subunitPA14_3950probable hydroxylase large subunitPA14_3950metEferredoxinPA14_3950metE5-PA14_3950metE5-PA14_3950metE5-PA14_3960metE5-PA14_3960hypothetical proteinPA14_3960hypothetical proteinPA14_3960hypothetical p	PA14_38395mexXResistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexX precursor-1.78PA14_38410mexY(RND) multidrug efflux transporter MexY-1.59PA14_38430liuRregulator of liu genes-1.59PA14_38770pqqHPqqH2.17PA14_38780pqqEpytroloquinoline quinone biosynthesis protein E1.56PA14_38790pqqQpytroloquinoline quinone biosynthesis protein D1.95PA14_38800pqqCpytroloquinoline quinone biosynthesis protein C1.79PA14_38800pqqZpytroloquinoline quinone biosynthesis protein B1.74PA14_38800pqqZpytroloquinoline quinone biosynthesis protein B1.74PA14_38800pqqZpytroloquinoline quinone biosynthesis protein F1.56PA14_39100pqqFpytroloquinoline quinone biosynthesis protein F1.56PA14_39130probable ATP-binding component of ABC transporter-1.71PA14_39130probable ATP-binding component of ABC transporter-1.71PA14_39120hypothetical protein-1.52PA14_3920hypothetical protein-1.52PA14_3950probable hydroxylase large subunit3.24PA14_3950probable hydroxylase large subunit3.38PA14_3950metEmethyltetrahydopteroyltriglutamate- homocysteine S-methyltransferase-1.73PA14_3950nrdDclass III (anaerobic) ribonucleoside- triphosphate reductase activating2.75PA14_3960<	PA14_38395mexXResistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexX precursor MexY precursor-1.78 $3.4E-07$ PA14_38410mexYResistance-Nodulation-Cell Division (RND) multidrug efflux transporter MexY-1.59 $2.1E-06$ PA14_38430liuRregulator of liu genesPA14_38770pqqHPqqH2.17 $4.3E-17$ PA14_38780pqqEpytroloquinoline quinone biosynthesis protein D1.95 $1.2E-06$ PA14_38790pqqQpytroloquinoline quinone biosynthesis protein D1.95 $1.2E-06$ PA14_38800pqqCpytroloquinoline quinone biosynthesis protein D1.79 $2.2E-09$ PA14_38800pqqCpytroloquinoline quinone biosynthesis protein B1.74 $7.9E-09$ PA14_38800pqqFpytroloquinoline quinone biosynthesis protein B1.74 $7.9E-09$ PA14_39130pqgFpytroloquinoline quinone biosynthesis protein F1.56 $1.7E-05$ PA14_39130probable ATP-binding component of ABC transporter -1.71 $6.2E-10$ PA14_39130hypothetical protein -1.63 $1.3E-09$ PA14_39130hypothetical protein -1.52 $3.2E-02$ PA14_39130hypothetical protein -1.52 $3.2E-02$ PA14_39130hypothetical protein -1.52 $3.2E-02$ PA14_39130hypothetical protein -1.63 $1.3E-09$ PA14_39130hypothetical protein -1.52 $3.2E-02$ PA14_39130	PA14_38395mexXResistance-Nodulation-Cell Division (RND) multidrug efflux membrane fusion protein MexX precursor-1.78 $3.4E-07$ 8.54 PA14_38410mexYResistance-Nodulation-Cell Division (RND) multidrug efflux transporter MexY-1.59 $2.1E-06$ 8.04 PA14_38770pqqHPqqH2.17 $4.3E-17$ $4.3E-17$ PA14_38780pqqEpyrroloquinoline quinone biosynthesis protein E 1.56 $3.3E-07$ PA14_38700pqqCpyrroloquinoline quinone biosynthesis protein D 1.95 $1.2E-06$ PA14_38800pqqCpyrroloquinoline quinone biosynthesis protein C 1.79 $2.2E-09$ PA14_38800pqqCpyrroloquinoline quinone biosynthesis protein B 1.74 $7.9E-09$ PA14_38800pqqFpyrroloquinoline quinone biosynthesis protein F 1.56 $1.7E-05$ PA14_39010pqqFpyrroloquinoline quinone biosynthesis protein F 1.56 $1.7E-05$ PA14_3910pqqFpyrroloquinoline quinone biosynthesis protein F 1.56 $1.7E-05$ PA14_3910pqqFpyroloquinoline quinone biosynthesis protein F 1.56 $1.7E-05$ PA14_3910pqqFpyroloquinoline quinone biosynthesis protein F 1.56 $1.7E-05$ PA14_3910pqqFpyroloquinoline quinone biosynthesis protein 1.56 $1.7E-05$ PA14_3910hypothetical protein -1.63 $1.3E-09$ PA14_3920hypothetical protein 3.38 $6.6E-31$ PA14_39500hypothetical pr

	PA14_39720		amino acid oxidase	1.99	4.3E-03		
	PA14_39720 PA14_39780		conserved hypothetical protein	2.83	4.3E-03		
	PA14_39780 PA14_39790		hypothetical protein	-3.09	4.5E-25		
	PA14_39790 PA14_39800	femI		-1.59	4.3E-23 2.6E-03		
		v	ECF sigma factor, FemI	-1.59	2.0E-03		
	PA14_39820	femA	ferric-mycobactin receptor, FemA	1.77			
	PA14_39860	h-C2	hypothetical protein		7.2E-06		
	PA14_39880			3.26	7.2E-24		
	PA14_39945			2.38	2.0E-17		
PA4212	PA14_39945	pnz,C1		2.38	2.0E-17		
PA1900	PA14_39960	phzB2	probable phenazine biosynthesis protein	2.43	4.0E-16		
			probable phenazine biosynthesis				
PA1899	PA14_39970	phzA2	protein	2.62	9.3E-20	-1.67	9.8E-06
PA1898	PA14_39980	qscR	quorum-sensing control repressor	1.73	2.7E-07		
	PA14_39990	1.	hypothetical protein	1.50	3.3E-04		
	 PA14_40010		hypothetical protein	1.79	2.4E-07		
	 PA14_40020		hypothetical protein	1.79	4.0E-08	-2.12	2.0E-02
	 PA14_40030		hypothetical protein	1.89	1.7E-12		2.1E-02
	PA14_40040		hypothetical protein	1.88	1.2E-10		
	 PA14_40050		hypothetical protein	1.68	7.5E-08		
	PA14_40060		hypothetical protein	1.94	1.9E-08		
PA1889	PA14_40080		hypothetical protein	1.52	9.5E-08		
PA1882	PA14_40170		probable transporter	-1.99	5.9E-06		
PA1879	PA14_40210		hypothetical protein	-1.51	1.6E-03		
PA1878	PA14_40220		hypothetical protein	-2.25	3.1E-19		
PA1877	PA14_40230		probable secretion protein	2.10	2.2E-14		
PA1876	PA14_40240		probable ATP-binding/permease fusion ABC transporter	2.03	2.8E-16		
PA1875	PA14_40250		probable outer membrane protein precursor	2.29	5.4E-24		
PA1874	PA14_40260		hypothetical protein	2.17	5.0E-18		
	PA14_40290	lasA	LasA protease precursor	5.84	1.2E-82		
	PA14 40430		hypothetical protein	1.54	4.0E-07		
	PA14_40560		hypothetical protein	1.75	4.7E-13		
	 PA14_40630	nfuA	NfuA	-1.70	1.3E-33		
	 PA14_40650	tsi l	Tsi1	-1.51	3.5E-05		
	 PA14_40750	pvdD	pyoverdine synthetase D	2.02	5.5E-15		
	 PA14_40770	cysI	sulfite reductase	-1.93	9.3E-22		
	 PA14_40780	- ·	hypothetical protein	-1.75	2.8E-13		
1.110011							
	PA14_40940		conserved hypothetical protein	-2.07	2.9E-15		

PA1803	PA14_41220	lon	Lon protease	-1.63	1.1E-25		
	 PA14_41240	clpP	ClpP	-1.51	3.7E-18		
	 PA14_41280	1	hypothetical protein	1.98	2.8E-11		
	 PA14_41290		hypothetical protein	2.31	2.5E-03		
	PA14_41300		hypothetical protein	-1.69	3.7E-09		
PA1786	PA14_41480	nasS	NasS	-1.75	7.6E-10	1.78	2.8E-04
PA1776	PA14_41575	sigX	ECF sigma factor SigX			-1.59	1.4E-02
PA1768	PA14_41690		hypothetical protein			-1.85	1.6E-02
PA1757	PA14_41830	thrH	homoserine kinase	-1.67	1.0E-17		
PA1755	PA14_41860		hypothetical protein	-1.60	1.7E-06		
PA1751	PA14_41910		hypothetical protein	1.52	3.6E-07		
PA1748	PA14_41950		probable enoyl-CoA hydratase/isomerase	-1.84	3.2E-27		
PA1747	PA14_41960		hypothetical protein	-2.33	5.4E-05		
PA1745	PA14_41980		hypothetical protein	1.92	1.2E-11		
PA1733	PA14_42130		conserved hypothetical protein	1.87	1.8E-14		
PA1732	PA14_42140		conserved hypothetical protein	1.72	7.1E-09	1.52	2.4E-02
PA1731	PA14_42150		conserved hypothetical protein	1.92	2.1E-15		
PA1730	PA14_42160		conserved hypothetical protein	1.98	1.5E-28		
PA1725	PA14_42250	pscL	type III export protein PscL	2.14	1.4E-14	-1.93	2.5E-02
PA1724	PA14_42260	pscK	type III export protein PscK	1.74	9.9E-06		
PA1723	PA14_42270	pscJ	type III export protein PscJ	1.62	8.1E-08		
PA1722	PA14_42280	pscI	type III export protein PscI	1.60	1.3E-05		
PA1721	PA14_42290	pscH	type III export protein PscH	1.61	2.3E-05		
PA1720	PA14_42300	pscG	type III export protein PscG	1.62	2.3E-08		
PA1719	PA14_42310	pscF	type III export protein PscF	1.54	1.0E-05		
PA1717	PA14_42340	pscD	type III export protein PscD	1.78	2.6E-07		
PA1716	PA14_42350	pscC	Type III secretion outer membrane protein PscC precursor	1.70	2.0E-07	-1.62	2.6E-02
PA1715	PA14_42360	pscB	type III export apparatus protein	1.76	9.4E-07		
PA1714	PA14_42380	exsD	ExsD	2.01	1.3E-15	-1.61	1.3E-02
PA1713	PA14_42390	exsA	transcriptional regulator ExsA	2.73	1.3E-24	-2.43	1.5E-07
PA1712	PA14_42400	exsB	exoenzyme S synthesis protein B	1.88	8.8E-10		
PA1711	PA14_42410	exsE	ExsE	1.84	1.1E-13		
PA1710	PA14_42430	exsC	ExsC, exoenzyme S synthesis protein C precursor.	1.84	3.1E-12		
PA1709	PA14_42440	popD	Translocator outer membrane protein PopD precursor			-1.72	1.0E-02
PA1708	PA14_42450	рорВ	translocator protein PopB			-2.32	8.7E-06
PA1707	PA14_42460	pcrH	regulatory protein PcrH			-1.84	2.7E-02
PA1706	PA14_42470	pcrV	type III secretion protein PcrV			-2.27	2.7E-04

PA1703	PA14_42500	pcrD	type III secretory apparatus protein PcrD			-2.24	2.7E-04
PA1698	PA14_42550	popN	Type III secretion outer membrane			-2.24	5.6E-03
I A1090	TA14_42330	popre	protein PopN precursor			-2.24	J.0E-03
PA1696	PA14_42580	pscO	translocation protein in type III secretion	1.58	3.5E-03		
PA1690	PA14_42660	pscU	translocation protein in type III secretion	1.53	5.6E-04		
PA1673	PA14_42860		hypothetical protein	1.84	6.9E-08		
PA1672	PA14_42870		hypothetical protein	1.51	1.3E-10		
PA5266	PA14_43080	vgrG1 4	VgrG14	-1.61	1.0E-02		
	PA14_43090	tap	Тар	-1.62	2.3E-03		
PA1649	 PA14_43180	1	probable short-chain dehydrogenase	-1.99	1.2E-04		
-	 PA14_43520		hypothetical protein			1.88	1.8E-02
PA1608	 PA14_43710		probable chemotaxis transducer	-1.93	1.6E-18		
	PA14_43730		hypothetical protein	2.98	1.4E-12		
	 PA14_43740		hypothetical protein	2.47	4.1E-12		
	 PA14_43830		conserved hypothetical protein	-1.55	1.1E-03		
-	PA14_43850	htpG	heat shock protein HtpG	-2.67	2.6E-10		
	 PA14_44070	gltA	citrate synthase			-1.63	3.7E-02
	 PA14_44090	0	Fe-S-cluster oxidoreductase	-1.51	4.7E-05		
PA1577	 PA14_44110		hypothetical protein	-1.96	8.4E-08		
	 PA14_44140		conserved hypothetical protein	-1.65	2.6E-15		
-	 PA14_44170		hypothetical protein	1.87	7.2E-15	1.53	3.4E-02
	 PA14_44230		hypothetical protein	-1.80	3.3E-02		
PA1566	 PA14_44240	pauA3	Glutamylpolyamine synthetase	-1.82	5.3E-03		
	PA14_44260	*	FAD-dependent oxidoreductase	-1.55	1.9E-03		
	PA14_44290	-	aconitate hydratase 1	1.72	3.4E-11		
	PA14_44350		Cytochrome c oxidase, cbb3-type, CcoO subunit	1.72	1.1E-05		
PA1555	PA14_44360	ccoP2	Cytochrome c oxidase, cbb3-type, CcoP subunit	1.73	1.8E-06		
PA1554	PA14_44370	ccoN1	Cytochrome c oxidase, cbb3-type, CcoN subunit	-1.85	3.8E-26		
PA1553	PA14_44380	ccoO1	Cytochrome c oxidase, cbb3-type, CcoO subunit	-1.75	4.7E-25		
PA1552 .1	PA14_44390	ccoQ1	Cytochrome c oxidase, cbb3-type, CcoQ subunit	-1.64	1.3E-16		
PA1552	PA14_44400	ccoP1	Cytochrome c oxidase, cbb3-type, CcoP subunit	-1.65	4.1E-21		
PA1551	PA14_44420		probable ferredoxin	-1.58	1.7E-11		

	PA14_46510		hypothetical protein	1.83	2.2E-19		
	PA14_46460		hypothetical protein			-1.79	9.5E-03
PA1403	PA14_46290		probable transcriptional regulator	2.02	4.2E-07		
PA1404	PA14_46280		hypothetical protein	3.39	4.7E-27		
PA1408	PA14_46240		hypothetical protein	2.28	4.3E-16	1.57	2.8E-02
PA1423	PA14_46030	bdlA	BdlA	-1.62	8.6E-06		
PA1425	PA14_46010		probable ATP-binding component of ABC transporter	-1.71	8.2E-10		
PA1428	PA14_45980		conserved hypothetical protein	-2.40	1.5E-12		
PA1429	PA14_45970		probable cation-transporting P-type ATPase	1.82	7.6E-16		
PA1431	PA14_45950	rsaL	regulatory protein RsaL	3.01	2.1E-74	-1.77	1.7E-02
	PA14_45910		Division (RND) efflux membrane fusion protein precursor	-1.57	1.1E-02		
FA1439	FA14_43830		probable Resistance-Nodulation-Cell	-1.09	2.3E-13		
	PA14_43230 PA14_45850		conserved hypothetical protein	-1.69	2.5E-15		
	PA14_45250	-	transporter probable transcriptional regulator	1.54	5.6E-05		
	PA14_45110	cysP	sulfate-binding protein of ABC	-1.68	9.4E-26	-1.55	1.3E-02
	PA14_45100	muiA	mucoidy inhibitor gene A	-1.76	3.1E-12		
	PA14_45000	gcl	glyoxylate carboligase	-1.79	3.9E-03	1.50	5.7 1 02
	PA14_44900 PA14_44910	a tplE	type 6 PGAP1-like effector, TplE				3.7E-02
	PA14_44890 PA14_44900	hcpA vgrG2	VgrG2a	-1.03	1.0E-02	-1.74	1.4E-02
	PA14_44890 PA14_44890	hcpC	secreted protein Hcp	-1.65	1.6E-02		
	PA14_44850 PA14_44890		secreted protein Hcp	1.54 -1.65	7.9E-06 1.6E-02		
	PA14_44740	xdhB alc	xanthine dehydrogenase allantoicase	1.83	9.0E-07		
	PA14_44710	xdhA	xanthine dehydrogenase	1.82	8.4E-05		
	PA14_44700	alkB2	alkane-1-monooxygenase 2	1.83	1.7E-04		
	PA14_44570	11 0.0	probable short-chain dehydrogenase	-1.74	6.7E-04		
	PA14_44560		probable flavin-containing monooxygenase	-1.91	7.7E-07		
PA1540	PA14_44530		multidrug efflux system protein MdtI	-2.40	6.7E-05		
	PA14_44520		drug efflux transporter	-5.57	1.5E-10		
PA1542	PA14_44510		hypothetical protein	-2.57	2.9E-19		
PA1543	PA14_44500	apt	adenine phosphoribosyltransferase	-1.52	2.1E-17		
PA1545	PA14_44480		hypothetical protein			-1.78	3.0E-02
PA1547	PA14_44460		hypothetical protein	-1.53	9.2E-06		
PA1549	PA14_44440		probable cation-transporting P-type ATPase	-1.54	6.9E-12		

	PA14_46520		hypothetical protein	1.79	4.0E-08		
	PA14_46530		hypothetical protein	1.85	1.2E-12		
	PA14_46540		hypothetical protein	2.21	1.2E-12 1.8E-28		
	PA14_46550		ribonuclease	1.82	3.5E-18		
PA1356	PA14_46750		hypothetical protein	2.68	2.5E-19		
-	PA14_46760		hypothetical protein	1.97	5.1E-04		
			probable sigma-70 factor, ECF				
	PA14_46810		subfamily	1.90	1.7E-10		
	PA14_46820		hypothetical protein	1.86	8.1E-11		
	PA14_46830		conserved hypothetical protein	1.63	3.2E-05		
PA1348	PA14_46840		hypothetical protein	2.40	6.4E-16		
	PA14_46860		hypothetical protein	1.85	2.7E-04		
PA1343	PA14_46900		hypothetical protein	-1.64	2.7E-06		
PA1330	PA14_47060		probable short-chain dehydrogenase	1.75	3.0E-04		
PA1324	PA14_47120		hypothetical protein	2.26	1.1E-19		
PA1323	PA14_47130		hypothetical protein	2.35	3.2E-20		
PA1321	PA14_47150	суоЕ	cytochrome o ubiquinol oxidase protein CyoE	1.88	6.0E-09		
PA1320	PA14_47160	cyoD	cytochrome o ubiquinol oxidase subunit IV	1.88	4.4E-05		
PA1317	PA14_47210	cyoA	cytochrome o ubiquinol oxidase subunit II			-1.69	6.0E-04
PA1316	PA14_47230		probable major facilitator superfamily (MFS) transporter	-1.56	5.9E-03		
PA1314	PA14_47250		hypothetical protein	1.55	1.9E-02		
PA1311	PA14_47280	phnX	2-phosphonoacetaldehyde hydrolase	1.61	8.8E-04		
PA1302	PA14_47380		probable heme utilization protein precursor	-1.54	1.7E-04		
PA1301	PA14_47390		probable transmembrane sensor	1.55	2.4E-03		
PA1299	PA14_47410		conserved hypothetical protein	-1.74	5.1E-13		
PA1296	PA14_47440		probable 2-hydroxyacid dehydrogenase	-1.51	2.8E-03		
PA1291	PA14_47510		hypothetical protein	2.20	1.1E-08		
PA1288	PA14_47540		probable outer membrane protein precursor	-1.68	2.7E-38		
PA1286	PA14_47560		probable major facilitator superfamily (MFS) transporter	-1.79	7.3E-05		
	PA14_47650	cobV	cobalamin (5'-phosphate) synthase	1.53	1.2E-10		
PA1262	PA14_47900		MFS transporter	-2.14	2.5E-04		
PA1260	PA14_47920	lhpP	ABC transporter periplasmic-binding protein, LhpP	-3.12	2.1E-05		
PA1256	PA14_47960	lhpO	ABC transporter ATP-binding	-2.09	7.5E-03		

			protein, LhpO				
PA1255	PA14_47970	lhpK	D-hydroxyproline epimerase, LhpK	-2.11	2.9E-04		
	PA14_48000	lhpC	delta1-pyrroline-4-hydroxy-2- carboxylate deaminase, LphC	-6.19	1.7E-13		
PA1253	PA14_48010	lhpG	semialdehyde dehydrogenase	-2.04	4.5E-04		
-	PA14_48020	dpkA	DpkA	1.91	1.5E-10		
	PA14_48040	aprI	alkaline proteinase inhibitor AprI	2.39	9.1E-55		
	PA14_48060	aprA	alkaline metalloproteinase precursor	8.45	1.9E- 102	-1.54	1.8E-05
PA1248	PA14_48090	aprF	Alkaline protease secretion outer membrane protein AprF precursor	3.70	1.1E-64		
PA1247	PA14_48100	aprE	alkaline protease secretion protein AprE	3.60	2.4E-88		
	PA14_48115	aprD	alkaline protease secretion protein AprD	3.12	8.0E-65		
PA1245	PA14_48140	aprX	AprX	3.39	6.1E-98		
PA1243	PA14_48160		probable sensor/response regulator hybrid	3.15	1.4E-40		
PA1242	PA14_48170	sprP	SprP	2.30	3.9E-26		
PA1240	PA14_48200		probable enoyl-CoA hydratase/isomerase	3.08	2.1E-13		
PA1239	PA14_48210		hypothetical protein	1.91	1.3E-03		
PA1238	PA14_48240		outer membrane component of multidrug efflux pump	1.69	4.3E-02		
PA1221	PA14_48530		hypothetical protein	2.24	3.0E-14		
PA1220	PA14_48540		hypothetical protein	2.72	1.1E-18		
PA1219	PA14_48550		hypothetical protein	2.28	2.1E-08		
PA1218	PA14_48560		hypothetical protein	2.90	5.3E-17		
PA1217	PA14_48570		probable 2-isopropylmalate synthase	2.91	1.0E-11		
PA1216	PA14_48590		hypothetical protein	3.29	6.3E-22		
PA1215	PA14_48600		hypothetical protein	2.75	1.1E-19		
PA1214	PA14_48610		hypothetical protein	3.55	3.5E-26		
PA1213	PA14_48620		hypothetical protein	3.36	2.1E-22		
PA1212	PA14_48630		probable major facilitator superfamily (MFS) transporter	3.14	8.2E-15		
PA1211	PA14_48640		hypothetical protein	3.41	1.9E-19		
	PA14_48780		conserved hypothetical protein	1.82	1.8E-25	1.58	3.0E-02
-	PA14_48800		conserved hypothetical protein			-1.63	1.3E-02
	 PA14_48830	ddaR	transcriptional regulator DdaR	1.59	2.7E-07		
PA0727	PA14_48890		hypothetical protein from bacteriophage Pf1	1.61	4.5E-03		
	PA14_49020	pf5r	Pf5 repressor C			-1.70	1.3E-02

	PA14_49030		hypothetical protein			-1.50	1.9E-02
PA1190	PA14_49050		conserved hypothetical protein	2.07	1.2E-07	1.70	4.3E-03
	PA14_49130	dctA	C4-dicarboxylate transport protein	-4.42	1.1E-05	1170	
	PA14_49170	phoQ	two-component sensor PhoQ	-2.02	4.7E-16		
	PA14_49180	phoP	two-component response regulator PhoP	-1.80	5.5E-14		
PA1178	PA14_49200	oprH	PhoP/Q and low Mg2+ inducible outer membrane protein H1 precursor	-1.84	5.8E-30		
	PA14_49210	napE	periplasmic nitrate reductase protein NapE	1.74	6.5E-06		
PA1176	PA14_49220	napF	ferredoxin protein NapF	1.70	1.1E-09		
PA1175	PA14_49230	napD	NapD protein of periplasmic nitrate reductase	1.66	2.4E-06		
PA1174	PA14_49250	napA	periplasmic nitrate reductase protein NapA	1.67	1.6E-10		
PA1173	PA14_49260	napB	cytochrome c-type protein NapB precursor	1.52	5.0E-03		
PA1172	PA14_49270	napC	cytochrome c-type protein NapC	1.75	1.1E-06		
PA1169	PA14_49300		probable lipoxygenase	-1.56	3.8E-05		
PA1168	PA14_49310		hypothetical protein	-1.93	5.2E-09	-1.77	9.6E-03
PA1164	PA14_49350		conserved hypothetical protein			-1.52	2.4E-02
PA1159	PA14_49410		probable cold-shock protein	2.14	5.5E-44		
	PA14_49480		hypothetical protein			-2.26	4.3E-03
	PA14_49510	pyoS3 I	immunity protein S3I structural gene			-1.82	1.9E-04
	PA14_49520	pyoS3 A	pyocin killing protein	1.66	2.0E-07	-3.07	2.6E-11
PA1148	PA14_49560	toxA	exotoxin A precursor	2.71	7.5E-03		
PA1137	PA14_49690		probable oxidoreductase	-11.61	2.0E- 105		
PA1134	PA14_49720		hypothetical protein	4.00	1.3E-17		
PA1132	PA14_49740		hypothetical protein	-1.56	6.7E-18		
PA1130	PA14_49760	rhlC	rhamnosyltransferase 2	1.85	2.6E-16		
PA1129	PA14_49780	fosA	fosfomycin resistance protein, FosA	1.87	9.8E-04		
PA1128	PA14_49790		probable transcriptional regulator	1.66	1.9E-05		
PA1127	PA14_49800		probable oxidoreductase	1.80	4.2E-21		
PA1123	PA14_49850		hypothetical protein	-1.55	1.5E-05		
PA1116	PA14_49930		hypothetical protein	-2.09	1.1E-20		
PA1114	PA14_49960		hypothetical protein	1.55	6.0E-05		
	PA14_50000		hypothetical protein	-1.61	2.1E-04		
PA1112	PA14_50010		conserved hypothetical protein	1.59	2.5E-09		
PA1111	PA14_50020		hypothetical protein	2.85	5.1E-18		

PA1006	PA14_50240		hypothetical protein	-1.55	1.8E-12		
	PA14_30240 PA14_50250		hypothetical protein	-1.52	8.9E-12		
	PA14_50250 PA14_50270	fliD	flagellar capping protein FliD	-1.65	2.7E-25		
	PA14_50280	jnD	hypothetical protein	-2.32	2.7E-25 2.7E-26		
	PA14_50290	fliC	flagellin type B	-2.32	3.5E-30		
	PA14_50610	jue	probable short-chain dehydrogenase	1.79	9.1E-05		
	PA14_50720	shaB	ShaB	-1.64	8.3E-09		
1 A1055	1A14_30720	snub	probable outer membrane protein	-1.04	0.3L-09		
PA1041	PA14_50880		procursor	1.73	2.6E-07		
PA1034	PA14_50950		hypothetical protein			-1.53	2.1E-02
PA1028	PA14_51040	amaA	L-Pipecolate oxidase	1.87	1.7E-06		
DA 1027	DA14 51050	D	delta1-Piperideine-6-carboxylate	1 70	2 25 07		
PA1027	PA14_51050	amaB	dehydrogenase	1.72	3.3E-07		
PA1024	PA14_51080		NADH:quinone reductase	1.61	5.1E-04		
PA1020	PA14_51120		probable acyl-CoA dehydrogenase	1.72	1.7E-04		
PA0990	PA14_51490		conserved hypothetical protein	2.68	9.5E-14		
	PA14_51520	spcU	SpcU	2.03	2.0E-18		
	PA14_51530	exoU	ExoU	1.91	4.8E-15		
	PA14_51590		hypothetical protein	1.57	3.1E-04		
PA0978	PA14_51630		conserved hypothetical protein	1.78	4.9E-02		
PA0976	PA14_51670		conserved hypothetical protein	-2.36	9.8E-25		
PA0975	PA14_51680		probable radical activating enzyme	-2.19	2.5E-27		
PA0971	PA14_51730	tolA	TolA protein			-1.62	2.4E-03
PA0970	PA14_51740	tolR	TolR protein			-1.53	1.8E-02
PA0968	PA14_51770		conserved hypothetical protein			-1.70	1.1E-02
PA0945	PA14_52040	purM	phosphoribosylaminoimidazole synthetase	-1.57	4.3E-24		
PA0937	PA14_52140		conserved hypothetical protein			-1.93	1.7E-02
	PA14 52330		hypothetical protein	-1.93	3.8E-20		
	 PA14_52340		hypothetical protein	-1.67	2.0E-07		
	PA14 52420		conserved hypothetical protein	-1.83	2.7E-14		
	 PA14_52430		conserved hypothetical protein	-2.18	2.2E-20		
	PA14_52440		hypothetical protein	-2.45	1.9E-18		
	 PA14_52460	mgtE	MgtE	-1.86	1.1E-57		
	 PA14_52480	alpE	AlpE	-4.05	3.1E-34		
	PA14_52490	alpD	AlpD	-4.47	2.0E-37		
	PA14_52500	alpC	AlpC	-4.18	2.7E-12		
	PA14_52510	alpB	AlpB	-2.72	5.0E-06		
	 PA14_52520	alpA	lysis phenotype activator, AlpA	-1.74	5.1E-06		
	 PA14_52570	rsmA	RsmA			-1.88	8.8E-03
	PA14_52800	acsA	acetyl-coenzyme A synthetase	2.29	3.9E-04		

			probable C4-dicarboxylate-binding				
PA0884	PA14_52840		periplasmic protein	1.89	6.6E-03		
PA0866	PA14_53050	aroP2	aromatic amino acid transport protein AroP2	-1.79	1.3E-27		
PA0861	PA14_53140	rbdA	RbDA	1.61	5.3E-18		
PA0853	PA14_53230		probable oxidoreductase	1.61	3.2E-10		
PA0852	PA14_53250	cbpD	chitin-binding protein CbpD precursor	1.53	5.0E-11		
PA0843	PA14_53370	plcR	phospholipase accessory protein PlcR precursor	1.71	8.8E-05		
PA0840	PA14_53400		probable oxidoreductase	-2.10	3.2E-05		
PA0839	PA14_53410		probable transcriptional regulator	-1.53	2.7E-04		
PA0837	PA14_53430	slyD	peptidyl-prolyl cis-trans isomerase SlyD	-1.77	5.8E-19		
	PA14_53590					-2.18	7.2E-03
	PA14_53600					-1.91	1.8E-02
PA0826	PA14_53620		hypothetical protein	-1.62	2.9E-02		
PA0820	PA14_53670		hypothetical protein			-1.97	1.5E-02
	PA14_53680			-1.95	1.8E-02		
PA0816	PA14_53720		probable transcriptional regulator	1.82	2.1E-10		
PA0814	PA14_53740		conserved hypothetical protein	1.67	7.2E-03		
PA0807	PA14_53820	ampD h3	AmpDh3	-2.02	5.0E-48		
PA0802	PA14_53870		hypothetical protein	1.92	8.8E-08		
PA0801	PA14_53880		hypothetical protein	1.52	6.6E-06		
PA0800	PA14_53890		hypothetical protein	1.55	9.5E-03		
PA0798	PA14_53910	pmtA	phospholipid methyltransferase	1.81	3.0E-12		
PA0792	PA14_54000	prpD	propionate catabolic protein PrpD	2.01	1.4E-17		
PA0781	PA14_54180		hypothetical protein	1.63	1.6E-02		
PA0779	PA14_54210	asrA	AsrA	-4.20	8.4E-36		
PA0778	PA14_54220	icp	inhibitor of cysteine peptidase	-2.36	4.1E-25		
PA0777	PA14_54230		hypothetical protein	-1.60	3.7E-07		
PA0755	PA14_54520	opdH	cis-aconitate porin OpdH	3.23	1.2E-25		
PA0754	PA14_54540		hypothetical protein	3.09	4.4E-23		
PA0753	PA14_54550		hypothetical protein	4.58	7.9E-11		
PA0752	PA14_54570		conserved hypothetical protein	3.09	4.3E-19		
	PA14_54580		conserved hypothetical protein	2.77	1.4E-12		
PA0747	PA14_54620		probable aldehyde dehydrogenase	1.61	2.2E-06		
PA0746	PA14_54630		probable acyl-CoA dehydrogenase	1.58	2.5E-05		
PA0745	PA14_54640	dspI	DspI	1.75	2.7E-08		
PA0744	PA14_54660		probable enoyl-CoA	1.87	2.8E-10		

			hydratase/isomerase				
PA0743	PA14_54670		probable 3-hydroxyisobutyrate dehydrogenase	1.99	1.2E-17		
PA0740	PA14_54700	sdsA1	SDS hydrolase SdsA1	-1.54	1.5E-03		
	PA14_54750		hypothetical protein	1.79	1.5E-05		
PA0732	PA14_54810		hypothetical protein	1.84	2.9E-12		
	PA14_54850		hypothetical protein			-1.53	2.2E-03
	PA14_55000		ABC transporter periplasmic protein	-1.52	1.1E-02		
	PA14_55040		ferric enterobactin transporter ATP- binding protein	-1.55	3.2E-02		
	PA14_55060		hypothetical protein			-1.79	3.2E-02
PA0709	PA14_55140		hypothetical protein	1.88	2.5E-02		
PA0707	PA14_55160	toxR	transcriptional regulator ToxR	5.47	2.4E-17	-4.44	5.8E-05
PA0699	PA14_55280		peptidyl-prolyl cis-trans isomerase, PpiC-type	1.56	2.6E-02		
PA0698	PA14_55290		hypothetical protein	2.10	1.6E-02		
PA0675	PA14_55550	vreI	ECF subfamily RNA polymerase sigma-70 factor	-2.57	8.4E-10		
PA0674	PA14_55560	vreA	VreA	-1.74	2.0E-06		
PA0672	PA14_55580	hemO	heme oxygenase			-2.82	9.8E-05
PA0671	PA14_55590		hypothetical protein	-2.74	8.4E-06		
PA0670	PA14_55600		hypothetical protein	-1.78	2.3E-05		
PA4290	PA14_55710		probable chemotaxis transducer	1.98	1.0E-04		
PA4292	PA14_55760		probable phosphate transporter	-1.57	2.6E-07		
PA4293	PA14_55770	pprA	two-component sensor PprA	2.54	8.6E-18		
PA4294	PA14_55780		hypothetical protein	2.21	2.5E-17		
PA4299	PA14_55820	tadD	TadD	2.58	1.3E-19		
PA4298	PA14_55840		hypothetical protein	2.43	2.9E-06		
PA4300	PA14_55850	tadC	TadC	2.67	2.7E-11	1.77	2.1E-02
PA4301	PA14_55860	tadB	TadB	2.41	5.1E-17		
PA4302	PA14_55880	tadA	TadA ATPase	2.27	5.3E-14		
PA4303	PA14_55890	tadZ	TadZ	2.23	3.3E-13		
PA4304	PA14_55900	rcpA	RcpA	2.20	2.3E-13		
PA4305	PA14_55920	rcpC	RcpC	2.16	1.7E-14		
PA4306	PA14_55930	flp	Type IVb pilin, Flp	1.84	4.1E-25		
PA4309	PA14_55980	pctA	chemotactic transducer PctA	-1.50	3.7E-16		
PA4310	PA14_56000	pctB	chemotactic transducer PctB	-1.86	5.1E-25		
PA4311	PA14_56010		conserved hypothetical protein	2.17	2.1E-21		
PA4312	PA14_56030		conserved hypothetical protein	1.71	6.0E-22		
-	PA14_56040		hypothetical protein	1.70	3.1E-16		
PA4316	PA14_56070	sbcB	exodeoxyribonuclease I			-1.51	2.6E-02

PA4328	PA14_56210		hypothetical protein	1.61	2.9E-06		
	PA14_56280		probable fumarase	-1.63	1.5E-25		
-	PA14_56340		hypothetical protein	2.18	1.3E-20		
	PA14_56360		conserved hypothetical protein	1.93	3.5E-12		
	PA14_56370		hypothetical protein	2.22	7.3E-20		
	PA14_56380		hypothetical protein	2.04	2.4E-11		
	PA14_56420		probable hydrolase	2.98	7.4E-41		
	PA14_56480		hypothetical protein	3.30	3.0E-30		
	PA14_56520		hypothetical protein	2.68	1.7E-12		
	PA14_56540		hypothetical protein	1.89	3.1E-18		
	PA14_56550		conserved hypothetical protein	2.05	6.1E-11		
-	 PA14_56640	руеM	PyeM	-1.55	1.6E-04		
	PA14_56660	1 2	conserved hypothetical protein	1.68	1.1E-08		
	PA14_56690		hypothetical protein			-2.76	6.0E-04
PA4362	PA14_56720		hypothetical protein	1.50	3.0E-07		
PA4366	PA14_56730	sodB	superoxide dismutase			1.62	3.5E-02
PA4364	PA14_56750		hypothetical protein	-4.36	1.1E-35		
PA4365	PA14_56770	lysE	Lysine efflux permease	-4.66	1.9E-35		
PA4370	PA14_56810	icmP	Insulin-cleaving metalloproteinase outer membrane protein precursor	1.74	1.9E-10		
PA4371	PA14_56830		hypothetical protein			-1.75	1.2E-02
PA4385	PA14_56990	groEL	GroEL protein	-1.76	7.6E-04		
PA4386	PA14_57010	groES	GroES protein	-2.19	2.5E-04		
PA4388	PA14_57020		hypothetical protein			1.52	3.0E-02
PA4387	PA14_57030		conserved hypothetical protein	-3.22	1.8E-51		
PA4390	PA14_57050		hypothetical protein	1.86	1.3E-17		
	PA14_57130		two-component response regulator	1.60	1.5E-17		
PA4397	PA14_57140	panE	ketopantoate reductase	-1.52	9.8E-15		
PA4398	PA14_57160		two-component sensor	-1.78	1.2E-28		
PA4409	PA14_57290	ftsQ	cell division protein FtsQ			-1.96	7.8E-03
PA4417	PA14_57390	murE	UDP-N-acetylmuramoylalanyl-D- glutamate-2, 6-diaminopimelate ligase			-1.54	4.5E-02
PA4430	PA14_57540		probable cytochrome b	-1.55	1.3E-22		
	 PA14_57560		probable iron-sulfur protein	-1.52	8.8E-23		
PA4433	PA14_57580	rplM	50S ribosomal protein L13	-1.55	2.7E-18		
PA4434	PA14_57590		probable oxidoreductase	1.61	2.2E-20		
PA4442	PA14_57690	cysN	ATP sulfurylase GTP-binding subunit/APS kinase	-1.95	1.1E-16		
PA4443	PA14_57710	cysD	ATP sulfurylase small subunit	-2.04	4.2E-23		
PA4448	PA14_57770	hisD	histidinol dehydrogenase	-1.51	9.6E-13		

DA1152	PA14_57820		conserved hypothetical protein			-1.55	1.3E-02
	PA14_57980			1.72	1 6E 02	-1.55	1.5E-02
	_	17.6	hypothetical protein		1.6E-03	0.10	2 45 02
	PA14_57990		superoxide dismutase	1.78	1.6E-02		3.4E-02
	PA14_58000	fumC1	fumarate hydratase	1.66	1.8E-02	-2.48	3.4E-02
	PA14_58010		hypothetical protein	1.54	1.8E-02		
PA44/5	PA14_58070		conserved hypothetical protein	-1.60	1.4E-18		
PA4498	PA14_58360	mdpA	metallo-dipeptidase aeruginosa, MdpA	-1.92	9.8E-17		
PA4499	PA14_58375	psdR	Pseudomonas dipeptide regulator, PdsR	-1.60	7.2E-10		
PA4500	PA14_58380	dppA3	probable binding protein component of ABC transporter	-1.50	1.7E-17		
PA4501	PA14_58390	opdD	Glycine-glutamate dipeptide porin OpdP	-1.79	4.5E-25		
PA4502	PA14_58410	dppA4	probable binding protein component of ABC transporter	-1.73	9.6E-25		
PA4503	PA14_58420	dppB	dipeptide ABC transporter permease DppB	-1.59	1.4E-23		
PA4504	PA14_58440	dppC	dipeptide ABC transporter permease DppC	-1.67	2.1E-17		
PA4505	PA14_58450	dppD	dipeptide ABC transporter ATP- binding protein DppD	-1.67	3.7E-12		
PA4507	PA14_58490		hypothetical protein	-2.07	3.2E-21		
PA4511	PA14_58500		conserved hypothetical protein			2.11	1.4E-03
PA4508	PA14_58510		probable transcriptional regulator	-1.57	7.7E-06		
PA4519	PA14_58610	speC	ornithine decarboxylase	-2.16	3.2E-84		
PA4518	PA14_58620		hypothetical protein	-2.03	1.0E-19		
PA4523	PA14_58670		hypothetical protein	1.56	2.2E-42		
PA4542	PA14_58900	clpB	ClpB protein	-2.80	1.1E-22		
	PA14_59120		hypothetical protein	1.78	1.4E-03		
	PA14_59160	crpP	CrpP	1.56	2.0E-02		
	PA14_59190		hypothetical protein	1.68	2.4E-09		
PA0985	PA14_59220	pyoS5	pyocin S5			-2.88	2.6E-09
	PA14_59230		colicin immunity protein	2.48	2.7E-16		
	 PA14_59240	pilL2	type IV B pilus protein	-2.15	1.3E-05		
	PA14_59380		hypothetical protein			-1.61	2.7E-02
	 PA14_59410	1	hypothetical protein	2.08	1.4E-03		
	 PA14_59440		hypothetical protein	-1.57	3.9E-02		
	 PA14_59480	1	hypothetical protein	-1.67	6.9E-04		
	 PA14_59490	1	hypothetical protein	-2.03	7.3E-03		
	 PA14_59510		hypothetical protein	-2.09	2.4E-02		
	 PA14_59520	1	hypothetical protein	-3.12	4.4E-04		

	PA14_59550		hypothetical protein	-1.73	7 5E-09	-1 65	2.6E-02
	PA14_59560		transposase	-2.40	1.2E-09	1.05	2.01 02
	PA14_59570		transposase	-5.75	4.5E-12		
	PA14_59770	rcsB	two component response regulator	1.67	7.1E-09		
	PA14_59840	1050	hypothetical protein	1.07	7.1L 07	-2.50	4.1E-02
	PA14_59845		hypothetical protein			-3.33	4.7E-02
	PA14_60040		hypothetical protein			-1.75	3.9E-02
PA1935	PA14_60080		hypothetical protein	1.52	2.1E-18	1.75	5.71 02
111755	PA14_60090		hypothetical protein	1.52	2.12 10	-1 52	2.1E-02
	PA14_60140		xerD-like integrase	-1.60	5.5E-07	1.02	2.12 02
PA4552	PA14_60280	pilW	type 4 fimbrial biogenesis protein PilW	1.59	8.9E-17		
PA4556	PA14_60310	pilE	type 4 fimbrial biogenesis protein PilE			-1.89	1.7E-02
PA4557	PA14_60320	lytB	LytB protein			-1.98	1.4E-02
PA4563	PA14_60390	rpsT	30S ribosomal protein S20	-1.65	9.8E-17		
PA4566	PA14_60420	obg	GTP-binding protein Obg	-1.69	5.1E-11		
PA4569	PA14_60460	ispB	octaprenyl-diphosphate synthase			-1.56	4.0E-02
PA4572	PA14_60490	fklB	peptidyl-prolyl cis-trans isomerase FklB	-2.33	1.1E-47		
PA4577	PA14_60560		hypothetical protein	1.58	4.0E-04		
PA4582	PA14_60630		conserved hypothetical protein	-1.79	1.2E-07		
PA4602	PA14_60870	glyA3	serine hydroxymethyltransferase	-2.04	3.1E-33		
PA4607	PA14_60950		hypothetical protein	1.90	3.4E-06		
PA4610	PA14_61000		hypothetical protein	-1.59	2.9E-03		
PA4612	PA14_61020		conserved hypothetical protein	-3.58	1.4E-14		
PA4613	PA14_61040	katB	catalase	-6.37	2.2E-29		
PA4624	PA14_61150	cdrB	cyclic diguanylate-regulated TPS partner B, CdrB	-1.98	1.9E-24		
PA4623	PA14_61180			-1.71	3.8E-03		
PA4625	PA14_61190	cdrA	cyclic diguanylate-regulated TPS partner A, CdrA	-2.22	4.9E-24		
PA4628	PA14_61220	lysP	lysine-specific permease	-1.71	1.5E-16		
PA4629	PA14_61250		hypothetical protein	-1.79	3.3E-09		
PA4630	PA14_61270		hypothetical protein	-1.72	3.5E-06		
PA4633	PA14_61290		probable chemotaxis transducer	-1.65	1.3E-22		
PA4635	PA14_61330		conserved hypothetical protein		1.6E-22		
	PA14_61340		hypothetical protein		1.2E-04		
	PA14_61380		hypothetical protein			-1.97	1.3E-02
PA4644	PA14_61440		hypothetical protein	-1.86	1.1E-16		
PA4645	PA14_61450		probable purine/pyrimidine	-1.77	1.8E-25		

			phosphoribosyl transferase				
PA4646	PA14_61460	ирр	uracil phosphoribosyltransferase	-1.52	2.4E-12		
	PA14_61560		probable major facilitator superfamily (MFS) transporter	-2.11	4.0E-10		
PA4658	PA14_61600		hypothetical protein	-1.69	2.4E-08		
PA4660	PA14_61610	phr	deoxyribodipyrimidine photolyase	-2.00	1.0E-11		
PA4659	PA14_61620		probable transcriptional regulator	-1.91	2.0E-11		
PA4661	PA14_61640	pagL	Lipid A 3-O-deacylase	2.26	3.7E-22		
PA4670	PA14_61750	prs	ribose-phosphate pyrophosphokinase			-1.72	2.1E-05
PA4671	PA14_61770		probable ribosomal protein L25	-1.64	3.0E-31		
PA4672	PA14_61780		peptidyl-tRNA hydrolase	-1.51	3.3E-10		
PA4673	PA14_61790		conserved hypothetical protein	-1.52	3.4E-16		
	PA14_61845	higB	HigB			-2.32	1.5E-02
PA4680	PA14_61910		hypothetical protein	1.65	1.7E-02		
PA4688	PA14_62000	hitB	iron (III)-transport system permease HitB	1.56	4.0E-12		
PA4689	PA14_62010		hypothetical protein	-1.51	4.7E-17		
PA4692	PA14_62020		conserved hypothetical protein	-1.93	4.8E-18		
	PA14_62030		paraquat-inducible protein A-like protein	-1.52	3.5E-12		
PA4691	PA14_62100		hypothetical protein	-1.86	1.1E-10		
PA4714	PA14_62350		conserved hypothetical protein	-2.08	6.3E-30		
PA4719	PA14_62420		probable transporter	-1.67	3.2E-16		
PA4720	PA14_62440	trmA	tRNA (uracil-5-)-methyltransferase	-1.54	8.0E-11		
PA4731	PA14_62590	panD	aspartate 1-decarboxylase precursor	-2.08	2.3E-46		
PA4738	PA14_62670		conserved hypothetical protein	2.46	1.4E-16		
PA4739	PA14_62680		conserved hypothetical protein	2.34	1.0E-12		
PA4740	PA14_62690	pnp	polyribonucleotide nucleotidyltransferase	-1.91	2.0E-17		
PA4743	PA14_62730	rbfA	ribosome-binding factor A	-1.93	3.2E-17		
PA4744	PA14_62740	infB	translation initiation factor IF-2	-1.79	1.1E-18		
PA4745	PA14_62760	nusA	N utilization substance protein A	-1.85	5.2E-18		
PA4746	PA14_62770		conserved hypothetical protein	-1.61	1.0E-08		
PA4752	PA14_62860	ftsJ	cell division protein FtsJ	-1.56	7.4E-12		
PA4753	PA14_62870		conserved hypothetical protein	-1.56	1.1E-10		
PA4757	PA14_62910		conserved hypothetical protein	-1.55	1.3E-08		
PA4758	PA14_62920	carA	carbamoyl-phosphate synthase small chain	-1.58	1.4E-15		
PA4759	PA14_62930	dapB	dihydrodipicolinate reductase	-2.68	2.1E-12		
PA4760	PA14_62940	dnaJ	DnaJ protein	-3.53	5.0E-20		
PA4761	PA14_62960	dnaK	DnaK protein	-5.83	5.7E-34		

PA4762	PA14_62970	grpE	heat shock protein GrpE	-5.86	3.4E-36		
	PA14_62990	recN	DNA repair protein RecN	-1.85	5.0E-29		
	PA14_63220	10011	probable acyl-CoA thiolase	1.71	4.4E-09		
-	PA14_63230		conserved hypothetical protein	-1.76	2.2E-10		
	PA14_63250		probable short-chain dehydrogenase	2.03	8.4E-21		
	PA14_63270		probable transcriptional regulator	1.64	1.6E-13	1.59	4.6E-02
-	PA14_63290		hypothetical protein	1.54	2.4E-05	1.07	
	PA14_63330		conserved hypothetical protein	2.63	1.2E-14		
	PA14_63530	selA	L-seryl-tRNA(ser) selenium transferase	2.00		1.71	3.3E-04
PA4810	PA14_63550	fdnI	nitrate-inducible formate dehydrogenase, gamma subunit			1.62	7.4E-04
PA4811	PA14_63570	fdnH	nitrate-inducible formate dehydrogenase, beta subunit			1.69	4.1E-04
PA4813	PA14_63620	lipC	lipase LipC	1.84	1.4E-04		
	PA14_63660	-	hypothetical protein	-3.70	1.5E-97		
PA4817	PA14_63680		hypothetical protein	-2.02	6.5E-07		
PA4822	PA14_63750		hypothetical protein	-3.41	5.2E-23		
PA4823	PA14_63770		hypothetical protein	-4.27	2.2E-04		
PA4824	PA14_63780		hypothetical protein	-6.15	7.6E-25		
PA4825	PA14_63800	mgtA	Mg(2+) transport ATPase, P-type 2	-8.53	4.6E-92		
PA4839	PA14_63850	speA	arginine decarboxylase (ADC)	-2.23	5.5E-70		
PA4832	PA14_63890		probable short-chain dehydrogenase	1.69	8.2E-04		
PA4833	PA14_63900		conserved hypothetical protein	1.51	6.9E-08		
PA4835	PA14_63920	cntM	CntM	1.61	2.9E-04		
PA4836	PA14_63940	cntL	CntL	2.33	5.6E-07		
PA4837	PA14_63960	cntO	CntO	1.73	1.1E-04		
PA4840	PA14_63990		conserved hypothetical protein	-1.73	1.2E-27		
PA4843	PA14_64030	gcbA	GcbA	-1.93	2.1E-48		
PA4844	PA14_64060	ctpL	CtpL	-2.06	1.8E-06		
PA4850	PA14_64120	prmA	ribosomal protein L11 methyltransferase	-1.59	6.7E-20		
PA4870	PA14_64410		conserved hypothetical protein	-1.84	4.7E-08		
PA4873	PA14_64440		probable heat-shock protein	-2.65	2.9E-26		
PA4876	PA14_64470	osmE	osmotically inducible lipoprotein OsmE	2.88	8.9E-30		
PA4877	PA14_64480		hypothetical protein	2.95	1.2E-29		
PA4878	PA14_64490	brlR	BrlR	-1.83	1.6E-13		
PA4879	PA14_64500		conserved hypothetical protein	1.63	1.0E-09		
PA4880	PA14_64510		probable bacterioferritin	1.74	7.2E-06		
PA4881	PA14_64530		hypothetical protein	-1.51	1.5E-02		

PA4888	PA14_64590	desB	acyl-CoA delta-9-desaturase, DesB	1.56	1.3E-03		
-	PA14_64610		probable oxidoreductase	1.69	1.5E-05	-1.71	2.9E-02
	 PA14_64660	ureF	urease accessory protein UreF	-1.70	2.9E-03		
	PA14_64670		probable aldehyde dehydrogenase	1.52	2.5E-09		
	PA14_64680		hypothetical protein	-1.55	1.1E-03		
PA4895	PA14_64690		transmembrane sensor	-1.82	3.3E-06		
PA4896	PA14_64700		probable sigma-70 factor, ECF subfamily	-1.93	1.3E-05		
PA4897	PA14_64710		TonB-dependent receptor	-2.83	7.8E-11		
PA4900	PA14_64750		probable major facilitator superfamily (MFS) transporter	1.77	6.3E-10		
PA4905	PA14_64810	vanB	vanillate O-demethylase	1.87	1.1E-02		
PA4908	PA14_64840		hypothetical protein	1.73	6.6E-05		
PA4909	PA14_64850		probable ATP-binding component of ABC transporter	1.73	1.7E-06		
PA4910	PA14_64860		branched chain amino acid ABC transporter ATP binding protein	1.59	2.5E-05		
PA4913	PA14_64890		probable binding protein component of ABC transporter	1.82	2.0E-18		
PA4915	PA14_64900		probable chemotaxis transducer	2.30	9.6E-40		
PA4925	PA14_65030		conserved hypothetical protein	2.42	7.0E-27		
PA4928	PA14_65060		conserved hypothetical protein			1.63	1.4E-02
PA4931	PA14_65110	dnaB	replicative DNA helicase	-1.97	4.3E-22		
PA4932	PA14_65130	rplI	50S ribosomal protein L9	-1.74	1.1E-19		
PA4933	PA14_65150		hypothetical protein	-1.78	8.7E-18		
PA4934	PA14_65160	rpsR	30S ribosomal protein S18	-1.79	1.1E-16		
PA4935	PA14_65170	rpsF	30S ribosomal protein S6	-1.79	4.8E-20		
PA4978	PA14_65810		hypothetical protein	1.54	9.3E-04		
	PA14_66350		probable acyl-CoA dehydrogenase	-1.96	2.3E-07		
PA5024	PA14_66410		conserved hypothetical protein	-3.11	2.1E-28		
PA5025	PA14_66420	metY	homocysteine synthase	-1.58	3.0E-04		
PA5027	PA14_66440		hypothetical protein	1.50	8.8E-04	-1.86	1.9E-02
PA5034	PA14_66540	hemE	uroporphyrinogen decarboxylase	-1.97	1.2E-29		
PA5042	PA14_66630	pilO	type 4 fimbrial biogenesis protein PilO			-1.90	9.6E-03
PA5043	PA14_66640	pilN	type 4 fimbrial biogenesis protein PilN			-1.50	3.0E-02
PA5046	PA14_66670		malic enzyme	-1.52	2.7E-17		
PA5049	PA14_66700	rpmE	50S ribosomal protein L31	-1.60	2.0E-11		
PA5053	PA14_66760	hslV	heat shock protein HslV	-4.88	2.8E-59		
PA5054	PA14_66770	hslU	heat shock protein HslU	-5.13	2.5E-32		

PA5055	PA14_66790		hypothetical protein	-3.73	1.8E-33		
		1 62	poly(3-hydroxyalkanoic acid)				
PA5058	PA14_66830	phaC2	synthase 2	1.54	4.6E-07		
PA5059	PA14_66840		probable transcriptional regulator	1.72	1.1E-09		
PA5062	PA14_66880		conserved hypothetical protein			-2.07	8.1E-03
PA5068	PA14_66950	tatA	translocation protein TatA			-1.80	3.7E-02
PA5069	PA14_66960	tatB	translocation protein TatB			-1.53	4.9E-02
PA5072	PA14_66990		probable chemotaxis transducer	-2.02	2.8E-40		
PA5074	PA14_67010		probable ATP-binding component of ABC transporter	-1.59	1.1E-19		
PA5075	PA14_67030		probable permease of ABC transporter	-1.77	7.5E-30		
PA5076	PA14_67040		probable binding protein component of ABC transporter	-1.97	2.4E-69		
	PA14_67180	tli5b4	type VI secretion lipase immunity protein, Tli5b4			-1.83	2.0E-02
	PA14_67210	tli5b4	type VI secretion lipase immunity protein, Tli5b4			-2.74	1.8E-04
PA5091	PA14_67230	hutG	N-formylglutamate amidohydrolase	-1.51	5.0E-09		
PA5093	PA14_67250		probable histidine/phenylalanine ammonia-lyase	-1.51	6.8E-10		
PA5094	PA14_67260		probable ATP-binding component of ABC transporter	-1.57	5.1E-10		
PA5095	PA14_67270		probable permease of ABC transporter	-1.56	2.6E-07		
PA5096	PA14_67280		probable binding protein component of ABC transporter	-1.87	1.5E-17		
	PA14_67300	hutH	histidine ammonia-lyase	-2.29	2.6E-25		
	PA14_67310		probable amino acid permease	-2.04	1.3E-23		
	PA14_67320		probable transporter	-2.23	7.9E-31		
	PA14_67340		urocanase	-2.17	1.1E-41		
	PA14_67350	puuR	PuuR	-2.08	4.4E-16		
	PA14_67380		hypothetical protein	-2.92	2.9E-14		
	PA14_67400		conserved hypothetical protein	-1.78	8.4E-21		
	PA14_67410	hutC	histidine utilization repressor HutC	-1.98	2.7E-27		
	PA14_67420		conserved hypothetical protein	-1.61	3.0E-22		
	PA14_67440	blc	outer membrane lipoprotein Blc			-1.71	7.3E-06
	PA14_67490	gloA3	lactoylglutathione lyase	1.52	4.1E-12		
	PA14_67530	typA	regulatory protein TypA	-1.84	6.7E-13		
	PA14_67620		hypothetical protein	-1.94	9.7E-12		
	PA14_68000		probable short-chain dehydrogenase	1.56	4.6E-09		
PA5159	PA14_68120		multidrug resistance protein	1.56	5.1E-08		

PA5170	PA14_68260	arcD	arginine/ornithine antiporter	2.38	3.4E-12		
-	PA14_68300	arcA	arginine deiminase	1.78	2.2E-05		
	PA14_68330		ornithine carbamoyltransferase, catabolic	2.32	1.6E-08		
PA5173	PA14_68340	arcC	carbamate kinase	2.76	4.3E-16		
PA5181	PA14_68400		probable oxidoreductase	-4.22	3.3E- 161		
PA5180	PA14_68430		conserved hypothetical protein	-3.48	2.4E-48		
PA5194	PA14_68610		hypothetical protein	-1.93	2.6E-35		
PA5196	PA14_68630		hypothetical protein			-2.27	4.1E-02
PA5203	PA14_68720	gshA	glutamatecysteine ligase	-1.60	2.4E-40		
PA5208	PA14_68770		conserved hypothetical protein	1.82	7.0E-13		
PA5207	PA14_68780		probable phosphate transporter	1.50	1.5E-05		
PA5212	PA14_68820		hypothetical protein	1.87	2.5E-11		
PA5213	PA14_68840	gcvP1	glycine cleavage system protein P1	1.57	1.8E-15		
PA5220	PA14_68930		hypothetical protein	1.82	2.2E-17		
PA5244	PA14_69240		conserved hypothetical protein	-1.56	1.7E-10		
	PA14_69350		hypothetical protein			-1.65	4.2E-02
PA5261	PA14_69450	algR	alginate biosynthesis regulatory protein AlgR	1.58	2.3E-12		
PA5262	PA14_69470	fimS	FimS	1.92	5.2E-19		
PA5266	PA14_69550	vgrG6	VgrG6	-1.54	4.1E-02		
PA0263	PA14_69560	hcpC	secreted protein Hcp	-1.61	4.3E-04		
PA5267	PA14_69560	hcpB	secreted protein Hcp	-1.61	4.3E-04		
PA5284	PA14_69760		hypothetical protein	-1.53	1.1E-04		
PA5288	PA14_69795	glnK	nitrogen regulatory protein P-II 2			1.52	2.0E-02
PA5311	PA14_70120		probable major facilitator superfamily (MFS) transporter	-2.56	4.3E-23		
PA5313	PA14_70140	gabT2	Transaminase	-1.74	8.2E-21		
PA5314	PA14_70170		hypothetical protein	-1.56	4.6E-07		
PA5317	PA14_70190	dppA5	probable binding protein component of ABC dipeptide transporter			-1.60	1.6E-02
PA5319	PA14_70200	radC	DNA repair protein RadC	1.67	6.0E-16		
PA5325	PA14_70300	sphA	SphA	-1.61	1.3E-02		
PA5328	PA14_70340	sphB	SphB	-2.33	9.1E-04		
PA5334	PA14_70400	rph	ribonuclease PH	-1.55	1.8E-23		
PA5352	PA14_70650		conserved hypothetical protein	2.46	9.4E-03		
PA5353	PA14_70670	glcF	glycolate oxidase subunit GlcF	2.18	1.2E-03		
PA5357	PA14_70720		hypothetical protein	-1.96	2.6E-16		
PA5359	PA14_70730		hypothetical protein	1.67	3.0E-07		
PA5368	PA14_70830	pstC	membrane protein component of	-1.81	4.8E-23	1.63	3.4E-02

			ABC phosphate transporter				
			phosphate ABC transporter,				
PA5369	PA14_70850	pstS	periplasmic phosphate-binding	-1.72	2.3E-22		
			protein, PstS				
PA5381	PA14_71080		hypothetical protein	1.65	8.5E-04		
PA5383	PA14_71100		hypothetical protein	-2.49	2.5E-10		
PA5389	PA14_71170	cdhR	CdhR, transcriptional regulator	1.59	1.1E-03		
PA5406	PA14_71360		hypothetical protein	-2.80	9.5E-16		
PA5407	PA14_71370		hypothetical protein	-3.33	8.4E-24		
PA5411	PA14_71420	gbcB	GbcB	1.58	2.6E-02		
PA5421	PA14_71560	fdhA	glutathione-independent formaldehyde dehydrogenase	2.01	1.2E-08		
PA5425	PA14_71590	purK	phosphoribosylaminoimidazole carboxylase	-1.53	1.3E-10		
PA5426	PA14_71600	purE	phosphoribosylaminoimidazole carboxylase, catalytic subunit	-1.55	9.0E-10		
PA5427	PA14_71620	adhA	alcohol dehydrogenase	1.53	3.9E-04		
PA5432	PA14_71690		probable acetyltransferase	1.53	4.1E-03		
PA5433	PA14_71700		conserved hypothetical protein	1.65	1.1E-04		
PA5437	PA14_71740		probable transcriptional regulator	-3.30	2.5E-79		
PA5447	PA14_71900	wbpZ	glycosyltransferase WbpZ			-1.60	9.0E-03
PA5471	PA14_72110	armZ	ArmZ	-3.42	5.8E-24		
PA5470	PA14_72200		probable peptide chain release factor	-3.97	4.2E-26		
PA5472	PA14_72210		hypothetical protein			3.40	2.3E-19
PA5473	PA14_72220		conserved hypothetical protein	1.79	3.7E-14		
PA5474	PA14_72230		probable metalloprotease	1.54	5.1E-23		
PA5475	PA14_72250		hypothetical protein	1.52	3.3E-04		
PA5478	PA14_72300		conserved hypothetical protein	-1.56	1.1E-13	-1.75	2.0E-02
PA5479	PA14_72320	gltP	proton-glutamate symporter	-1.63	2.3E-15		
PA5481	PA14_72340		hypothetical protein	3.32	1.9E-21		
PA5483	PA14_72360	algB	two-component response regulator AlgB	1.91	2.3E-11		
PA5482	PA14_72370		hypothetical protein	2.87	6.3E-17		
PA5484	PA14_72380	kinB	KinB	1.89	1.4E-16		
PA5493	PA14_72480	polA	DNA polymerase I			-1.55	3.9E-02
	PA14_72510	-	class II (cobalamin-dependent) ribonucleotide-diphosphate reductase subunit, NrdJb	1.52	2.9E-06		
PA5503	PA14_72600		probable ATP-binding component of ABC transporter	-1.66	5.1E-16		
PA5504	PA14_72620		D-methionine ABC transporter membrane protein	-1.63	7.1E-18		

PA5505	PA14_72630		probable TonB-dependent receptor	-1.50	2.2E-24		
PA5520	PA14_72820		hypothetical protein		1.8E-09		
	PA14_72830		hypothetical protein		1.0E-03		
PA5528	PA14_72920		hypothetical protein	-1.62	4.1E-24		
PA5530	PA14_72940		C5-dicarboxylate transporter	-11.70	1.4E-56		
PA5532	PA14_72970		hypothetical protein			-1.88	1.7E-02
PA5533	PA14_72990		hypothetical protein	-1.61	9.9E-08		
PA5534	PA14_73000		hypothetical protein	1.61	2.2E-03		
PA5535	PA14_73010		conserved hypothetical protein	1.54	2.3E-04		
PA5538	PA14_73040	amiA	N-acetylmuramoyl-L-alanine amidase	2.05	7.5E-05		
PA5540	PA14_73060		hypothetical protein	2.39	5.6E-04		
PA5541	PA14_73070	<i>pyrQ</i>	dihydroorotase	1.81	3.0E-03		
PA5543	PA14_73100		hypothetical protein	1.71	6.5E-04		
PA5546	PA14_73120		conserved hypothetical protein	1.64	5.8E-16		
PA5548	PA14_73160		probable major facilitator superfamily (MFS) transporter	-2.01	4.1E-08		
PA5556	PA14_73250	atpA	ATP synthase alpha chain	-1.52	1.1E-16		
PA5558	PA14_73280	atpF	ATP synthase B chain			-1.62	2.0E-02
PA5566	PA14_73390		hypothetical protein	-2.20	5.5E-05		

B.2 PAO1 RNA-Seq and proteomic data

PAO1	Name	Product Name	EV	805.1 vs. RNA- Seq		0805.1 teomics	EV	952.1 vs. 7 RNA- Seq		2952.1 teomics
			FC	padj	FC	р	FC	padj	FC	р
PA0001	dnaA	chromosomal replication initiator protein DnaA			1.1	1.1E-02				
PA0005	<i>lptA</i>	lysophosphatidic acid acyltransferase, LptA			1.17	2.0E-03				
PA0006		conserved hypothetical protein					-1.6	6.5E-09		
PA0007		hypothetical protein	1.9	1.5E-14	1.18	7.3E-03				
PA0010	tag	DNA-3-methyladenine glycosidase I					-1.7	1.1E-06		
PA0011	htrB1	acyltransferase HtrB1			1.08	4.3E-03				
PA0019	def	polypeptide deformylase			-1.12	2.0E-04			-1.05	4.8E-03
PA0020	tsaP	T4P secretin-associated protein TsaP	-2.0	6.8E-11	-1.35	1.0E-03			-1.22	2.9E-03
PA0022		conserved hypothetical protein					-1.8	2.9E-08		
PA0024	hemF	coproporphyrinogen III oxidase, aerobic			-1.1	2.3E-03			-1.1	2.6E-03
PA0025	aroE	shikimate dehydrogenase			-1.07	1.5E-02				
PA0033	hptC	Histidine phosphotransfer protein HptC					1.7	2.7E-03		
PA0035	trpA	tryptophan synthase alpha chain							1.1	2.0E-02
PA0038		hypothetical protein	1.6	1.1E-03			-1.7	5.1E-05		
PA0044	exoT	exoenzyme T	-4.1	1.2E-26						
PA0045		hypothetical protein	-1.6	1.3E-02						
PA0046		hypothetical protein	-1.6	1.9E-02			-2.0	1.8E-04		
PA0047		hypothetical protein	-2.0	5.3E-03			-2.0	2.7E-03		
PA0048		probable transcriptional regulator					-1.6	2.0E-02		
PA0050		hypothetical protein	2.7	7.1E-14			-2.2	4.4E-11		
PA0051	phzH	potential phenazine- modifying enzyme	2.5	9.4E-13						
PA0052		hypothetical protein	2.0	2.2E-06						

 Table A2. Compilation of all PAO1 RNA-Seq and proteomic data reported in this thesis.

PA0054		conserved hypothetical protein					14.0	7.0E-14		
PA0057		hypothetical protein			1.2	6.5E-03				
PA0059	osmC	osmotically inducible protein OsmC	1.6	3.4E-03			2.2	9.3E-12		
PA0062		hypothetical protein					2.2	7.1E-10		
PA0064		hypothetical protein			1.19	8.6E-03				
PA0066		conserved hypothetical protein					-1.6	6.1E-05		
PA0070	tagQ1	TagQ1			1.22	2.2E-02				
PA0071	tagR1	TagR1			1.37	1.8E-03			1.13	4.6E-02
PA0075	рррА	PppA			1.45	1.1E-02			1.17	1.8E-02
PA0076	tagF1	TagF1	1.6	1.5E-02						
PA0077	icmF1	IcmF1			1.37	4.7E-04			1.15	2.2E-02
PA0078	tssL1	TssL1	1.6	1.3E-03	1.31	5.6E-03			1.19	1.6E-02
PA0079	tssK1	TssK1	1.6	1.4E-04	1.4	3.1E-03			1.18	2.4E-02
PA0080	tssJ1	TssJ1	1.5	1.7E-07						
PA0081	fhal	Fha1					1.5	9.1E-11		
PA0082	tssA1	TssA1	1.5	4.1E-05	1.48	2.7E-03			1.39	6.8E-03
PA0083	tssB1	TssB1	1.7	2.8E-06			-1.8	2.7E-09		
PA0084	tssC1	TssC1	1.6	5.7E-04	1.52	4.7E-03			1.25	2.8E-02
PA0085	hcp1	Hcp1	1.7	3.9E-05	2.14	4.5E-04	-2.3	1.3E-14	1.38	1.1E-02
PA0086	tagJl	TagJ1	1.7	1.6E-04			-1.8	6.7E-07		
PA0087	tssE1	TssE1	1.9	1.7E-04						
PA0088	tssF1	TssF1	1.6	3.7E-03						
PA0090	clpV1	ClpV1	1.6	1.5E-03	1.54	3.4E-03	-1.5	7.3E-04	1.21	4.1E-02
PA0091	vgrG1	VgrG1	1.5	6.0E-03	1.23	2.4E-04			1.16	1.1E-03
PA0094	eagT6	EagT6			1.38	4.7E-04				
PA0095		vgrG1b	1.6	4.4E-09						
PA0096		hypothetical protein	2.1	1.4E-06			-1.7	5.8E-04		
PA0097		hypothetical protein	1.6	2.0E-07			-1.6	5.3E-08		
PA0098		hypothetical protein	1.7	6.2E-04						
PA0099		type VI effector protein	1.6	6.4E-06						
PA0100		hypothetical protein	1.5	2.0E-06	1.29	4.4E-04	-1.6	1.0E-09	1.14	2.3E-03
PA0102		probable carbonic anhydrase	1.9	1.4E-09	1.18	2.0E-03			1.24	2.3E-03
PA0103		probable sulfate transporter	2.5	9.0E-07						

PA0104		hypothetical protain	2.0	1.9E-05						
PA0104		hypothetical protein cytochrome c oxidase,	2.0	1.9E-03						
PA0105	coxB	subunit II	1.9	1.1E-09	1.16	5.8E-05			1.14	1.9E-02
PA0106	coxA	cytochrome c oxidase, subunit I	1.8	4.2E-11	1.29	6.5E-03				
PA0107		conserved hypothetical protein	1.8	3.1E-12						
PA0108	coIII	cytochrome c oxidase, subunit III	1.7	1.4E-12						
PA0109		hypothetical protein	2.0	1.7E-05						
PA0110		hypothetical protein	1.6	2.6E-06	1.27	6.9E-04	2.0	9.6E-17	1.13	1.3E-02
PA0111		hypothetical protein					1.8	1.5E-09		
PA0112		hypothetical protein	1.5	8.0E-04						
PA0113		probable cytochrome c oxidase assembly factor	1.7	6.1E-07			1.6	5.5E-08		
PA0114	senC	SenC			1.16	1.2E-02	1.5	7.9E-08		
PA0118		hypothetical protein			1.2	4.2E-02	2.1	9.4E-18		
PA0122	rahU	rahU	2.3	3.0E-07	2.04	1.4E-02				
PA0125		hypothetical protein					-3.0	9.6E-10		
PA0127		hypothetical protein	1.6	2.9E-05	1.37	1.5E-02				
PA0128		conserved hypothetical protein					-1.9	1.8E-13		
PA0132	bauA	Beta-alanine:pyruvate transaminase	1.6	3.3E-03						
PA0134		probable guanine deaminase	1.6	3.1E-04						
PA0136		probable ATP-binding component of ABC transporter	2.3	7.4E-03						
PA0137		probable permease of ABC transporter	2.0	3.0E-02			2.6	1.6E-04		
PA0138		probable permease of ABC transporter	2.0	4.8E-03						
PA0143	nuh	purine nucleosidase Nuh			-1.2	9.8E-04			-1.09	5.9E-03
PA0144		hypothetical protein			-1.52	2.6E-02			-1.36	2.5E-02
PA0145		hypothetical protein	1.9	7.2E-05						
PA0147		probable oxidoreductase	1.7	3.6E-02			1.6	3.3E-02		
PA0150		anti-sigma factor	-1.7	2.9E-02						
PA0153	рсаН	protocatechuate 3,4- dioxygenase, beta subunit	2.4	3.3E-09						

		anoto opto physica 2.4								
PA0154	pcaG	protocatechuate 3,4- dioxygenase, alpha subunit	2.4	8.4E-06	2.04	8.1E-06			1.57	1.5E-04
PA0155	pcaR	transcriptional regulator PcaR					1.8	5.5E-14		
PA0156	triA	Resistance-Nodulation- Cell Division (RND) triclosan efflux membrane fusion protein, TriA			1.49	2.7E-02				
PA0158	triC	Resistance-Nodulation- Cell Division (RND) triclosan efflux transporter, TriC			1.16	2.4E-04				
PA0161		hypothetical protein					-1.7	4.9E-05		
PA0165		hypothetical protein					1.6	9.0E-07		
PA0166		probable transporter	2.4	1.6E-02						
PA0171		hypothetical protein	1.8	1.5E-03						
PA0173		probable methylesterase	1.7	8.3E-04						
PA0174		conserved hypothetical protein	1.6	4.5E-04	1.24	1.6E-02				
PA0175		probable chemotaxis protein methyltransferase	1.9	2.3E-05			1.6	5.8E-04		
PA0176	aer2	aerotaxis transducer Aer2	1.9	4.0E-05						
PA0177		probable purine-binding chemotaxis protein	1.8	3.1E-04	1.24	1.4E-02	1.5	1.7E-03		
PA0178		probable two-component sensor	1.8	8.5E-06						
PA0179		probable two-component response regulator	2.0	2.0E-06						
PA0180	cttP	chemotactic transducer for trichloroethylene [positive chemotaxis], CttP	2.3	3.2E-11	1.27	1.5E-02				
PA0182		probable short-chain dehydrogenase					-1.7	1.2E-03	1.12	9.8E-03
PA0187		hypothetical protein	5.1	5.2E-06						
PA0188		hypothetical protein	4.4	1.0E-06						
PA0190		probable acid phosphatase					4.4	2.9E-16		
PA0196	pntB	pyridine nucleotide transhydrogenase, beta subunit			1.08	2.6E-02			1.1	4.8E-02
PA0200		hypothetical protein	2.2	4.2E-04			1.9	2.4E-04		
PA0201		hypothetical protein					-1.7	2.8E-02		

PA0211	mdcD	malonate decarboxylase					-1.5	2.0E-02		
		beta subunit								
PA0216		malonate transporter MadM					-1.6	6.0E-03		
PA0217		probable transcriptional regulator					1.6	1.8E-03		
PA0219		probable aldehyde dehydrogenase					1.9	1.1E-04		
PA0222		hypothetical protein	-1.7	8.5E-03						
PA0223		probable dihydrodipicolinate synthetase	1.9	1.9E-04						
PA0224		probable aldolase	2.7	8.3E-07						
PA0226		probable CoA transferase, subunit A	3.3	3.0E-13	1.43	5.7E-04			1.4	5.1E-03
PA0227		probable CoA transferase, subunit B	3.7	2.2E-20						
PA0228	pcaF	beta-ketoadipyl CoA thiolase PcaF	3.2	3.0E-17	1.26	8.5E-03			1.3	4.1E-03
PA0229	pcaT	dicarboxylic acid transporter PcaT	2.2	9.1E-06						
PA0230	рсаВ	3-carboxy-cis,cis- muconate cycloisomerase	1.7	7.5E-06						
PA0231	pcaD	beta-ketoadipate enol- lactone hydrolase					1.6	2.2E-05		
PA0232	pcaC	gamma- carboxymuconolactone decarboxylase	1.5	8.2E-03						
PA0237		probable oxidoreductase	2.3	1.1E-03						
PA0238		hypothetical protein	2.2	7.4E-03						
PA0240		probable porin	1.9	2.7E-02			2.9	2.6E-06		
PA0241		probable major facilitator superfamily (MFS) transporter	4.5	3.5E-22						
PA0242		hypothetical protein	4.9	3.0E-17	1.22	4.6E-03			1.22	4.2E-03
PA0243		probable transcriptional regulator							1.1	1.1E-02
PA0244		hypothetical protein	6.4	2.5E-21						
PA0245	aroQ2	3-dehydroquinate dehydratase	3.4	3.2E-11			1.6	2.8E-03		
PA0246		probable major facilitator superfamily (MFS) transporter					-1.5	6.8E-03		

PA0247	pobA	p-hydroxybenzoate hydroxylase	1.6	2.6E-02						
PA0254	hudA	HudA	1.5	1.0E-03						
PA0258		hypothetical protein					-1.6	2.3E-05		
PA0259	tla3	type 6 lipase adaptor, Tla3			1.57	4.8E-04			1.55	1.2E-04
PA0265	davD	glutaric semialdehyde dehydrogenase			-1.13	4.9E-02				
PA0268		probable transcriptional regulator	1.5	3.0E-03						
PA0274		hypothetical protein	-1.5	2.8E-02						
PA0277		conserved hypothetical protein			1.22	8.5E-03				
PA0278		hypothetical protein					-2.2	1.1E-02		
PA0281	cysW	sulfate transport protein CysW	-1.7	2.2E-03						
PA0282	cysT	sulfate transport protein CysT	-1.6	2.6E-03						
PA0283	sbp	sulfate-binding protein precursor	-1.6	1.3E-05						
PA0290		hypothetical protein					1.5	3.7E-05		
PA0292	aguA	agmatine deiminase			1.18	6.5E-03			1.12	3.4E-02
PA0293	aguB	N-carbamoylputrescine amidohydrolase	3.9	4.1E-30	1.83	8.0E-06			1.56	8.7E-05
PA0295		probable periplasmic polyamine binding protein	-2.1	4.8E-14						
PA0299	spuC	Polyamine:pyruvate transaminase			-1.26	8.2E-03	-1.5	2.5E-27	-1.18	2.2E-02
PA0300	spuD	polyamine transport protein			-1.25	2.3E-02			-1.16	4.1E-02
PA0301	spuE	polyamine transport protein			-1.26	7.6E-04			-1.11	1.4E-02
PA0302	spuF	polyamine transport protein PotG			-1.28	3.3E-04			-1.17	9.1E-03
PA0307		hypothetical protein					-1.6	1.8E-02		
PA0317		D-2-hydroxyglutarate dehydrogenase					-1.5	7.6E-14		
PA0322		probable transporter					1.6	6.7E-03		
PA0328	aaaA	arginine-specific autotransporter of Pseudomonas aeruginosa, AaaA			-1.33	2.5E-04			-1.23	4.0E-03

PA0329		conserved hypothetical			1.38	2.1E-02				
		protein								
PA0330	rpiA	ribose 5-phosphate isomerase			-1.39	3.6E-03				
PA0331	ilvA1	threonine dehydratase, biosynthetic			-1.19	2.8E-04			-1.15	3.2E-04
PA0334		probable major facilitator superfamily (MFS) transporter	-1.7	2.9E-02						
PA0336	rppH	RNA pyrophosphohydrolase, RppH			-1.07	4.9E-02				
PA0337	ptsP	phosphoenolpyruvate- protein phosphotransferase PtsP			-1.14	3.6E-03				
PA0340		conserved hypothetical protein	-1.8	4.0E-04						
PA0341	lgt	prolipoprotein diacylglyceryl transferase	-1.7	9.1E-06						
PA0342	thyA	thymidylate synthase							-1.05	3.5E-02
PA0345		hypothetical protein					1.5	3.7E-06		
PA0346		hypothetical protein	-1.8	1.6E-03						
PA0350	folA	dihydrofolate reductase	-1.5	4.9E-04						
PA0352	-	probable transporter	-1.7	5.9E-05						
PA0353	ilvD	dihydroxy-acid dehydratase			-1.07	3.4E-03				
PA0356		hypothetical protein	-1.6	3.7E-06			-1.6	3.6E-08		
PA0357	mutM	formamidopyrimidine- DNA glycosylase			-1.14	2.1E-02			-1.11	1.5E-02
PA0358		hypothetical protein	-1.5	6.0E-04						
PA0359		hypothetical protein	-2.1	1.3E-21	-1.59	1.3E-03			-1.33	1.8E-02
PA0364	laoA	LaoA			-1.09	4.4E-02				
PA0371		hypothetical protein			-1.2	1.7E-03				
PA0373	ftsY	signal recognition particle receptor FtsY			-1.14	3.5E-03			-1.07	2.0E-02
PA0381	thiG	thiamine biosynthesis protein, thiazole moiety			-1.09	2.1E-02				
PA0382	micA	DNA mismatch repair protein MicA	-1.9	4.1E-06						
PA0383		conserved hypothetical protein	-1.8	6.5E-06						
PA0385		hypothetical protein	-1.5	3.3E-03						

PA0386		probable oxidase	-1.9	6.5E-06						
PA0387		conserved hypothetical protein			-1.48	2.0E-02				
PA0388		hypothetical protein					1.7	8.6E-20	-1.15	2.9E-02
PA0389		hypothetical protein	-1.7	6.4E-06						
PA0390	metX	homoserine O- acetyltransferase	-1.6	2.3E-04						
PA0391		hypothetical protein	-2.2	5.7E-09						
PA0393	proC	pyrroline-5-carboxylate reductase			-1.15	1.1E-02			-1.09	4.1E-02
PA0395	pilT	twitching motility protein PilT			-1.13	1.4E-03				
PA0396	pilU	twitching motility protein PilU			-1.15	3.9E-04			-1.12	3.6E-03
PA0398		hypothetical protein					-1.6	5.2E-07		
PA0399		cystathionine beta- synthase					-1.6	3.0E-15		
PA0400		probable cystathionine gamma-lyase			-1.23	4.8E-04				
PA0403	pyrR	transcriptional regulator PyrR					1.6	1.8E-04		
PA0406	tonB3	TonB3	-1.9	2.3E-07						
PA0408	pilG	twitching motility protein PilG	-2.1	2.8E-17	-1.52	2.5E-03			-1.33	4.9E-02
PA0409	pilH	twitching motility protein PilH	-2.4	2.2E-29	-1.64	1.2E-02				
PA0410	pilI	twitching motility protein Pill	-2.4	1.1E-16	-1.48	6.8E-04				
PA0411	pilJ	twitching motility protein PilJ	-2.8	4.3E-24	-1.49	4.8E-05			-1.32	1.6E-04
PA0412	pilK	methyltransferase PilK	-2.4	2.3E-19						
PA0413	chpA	component of chemotactic signal transduction system	-2.4	1.9E-33	-1.24	3.8E-06			-1.17	2.3E-05
PA0414	chpB	probable methylesterase	-2.3	3.1E-24						
PA0415	chpC	probable chemotaxis protein	-2.2	2.0E-13			-1.6	3.3E-06		
PA0416	chpD	probable transcriptional regulator	-2.0	9.0E-07						
PA0417	chpE	probable chemotaxis protein	-2.8	7.8E-04						
PA0419		conserved hypothetical protein	-1.5	2.2E-03						

		adenosylmethionine-8-								
PA0420	bioA	amino-7-oxononanoate aminotransferase							-1.1	1.4E-02
PA0421		hypothetical protein			-1.16	1.3E-04			-1.1	1.3E-03
PA0422		conserved hypothetical protein			1.22	7.9E-04			1.18	1.9E-02
PA0426	mexB	Resistance-Nodulation- Cell Division (RND) multidrug efflux transporter MexB			1.15	1.4E-02				
PA0429		hypothetical protein			1.21	9.7E-03				
PA0432	sahH	S-adenosyl-L- homocysteine hydrolase			-1.12	8.4E-03				
PA0437	codA	cytosine deaminase	-1.6	3.6E-06						
PA0439		probable oxidoreductase	5.0	9.4E-07						
PA0440		probable oxidoreductase	3.7	1.1E-05						
PA0441	dht	dihydropyrimidinase	5.0	1.2E-05			2.1	1.9E-02		
PA0443		probable transporter	3.3	3.6E-05			1.7	4.5E-02		
PA0444		N-carbamoyl-beta-alanine amidohydrolase	2.5	6.2E-05						
PA0447	gcdH	glutaryl-CoA dehydrogenase			-1.07	3.9E-02			-1.06	3.1E-02
PA0451		conserved hypothetical protein	1.7	1.9E-05			1.6	3.1E-06		
PA0452		probable stomatin-like protein	1.6	4.1E-02						
PA0453		hypothetical protein					1.6	4.2E-03		
PA0454		conserved hypothetical protein			-1.15	1.8E-02				
PA0455	dbpA	RNA helicase DbpA			1.13	3.1E-02			1.18	1.7E-02
PA0457 .1		hypothetical membrane protein					2.0	1.6E-04		
PA0459		probable ClpA/B protease ATP binding subunit	1.7	3.3E-04	1.89	9.0E-04			1.51	1.7E-03
PA0460		hypothetical protein	1.6	1.2E-04						
PA0463	creB	two-component response regulator CreB					1.8	2.4E-13		
PA0470	fiuA	Ferrichrome receptor FiuA					4.3	2.3E-23		
PA0471	fiuR	FiuR	-1.8	4.6E-04						
PA0472	fiuI	FiuI	-2.0	4.2E-04			1.9	5.0E-05		
PA0473		probable glutathione S- transferase							1.06	3.4E-02

PA0476		probable permease	2.4	1.4E-03			2.0	2.0E-03		
PA0479		probable transcriptional regulator	1.6	2.5E-04			2.0			
PA0482	glcB	malate synthase G			1.15	1.6E-02			1 14	2.9E-02
PA0483	SICD	probable acetyltransferase	1.9	2.1E-08		1.0E 02	1.6	2.6E-06	1.1 1	2.71 02
		conserved hypothetical			1.23	1.112-02	1.0	2.01-00		
PA0484		protein	2.1	1.7E-07						
PA0493		probable biotin-requiring					-2.2	1.0E-02		
1 10473		enzyme					-2.2	1.0L-02		
PA0496		conserved hypothetical					-1.7	1.9E-03		
DA 0407		protein	1.7	7 45 04						
PA0497		hypothetical protein	1.5	7.4E-04						
PA0498		hypothetical protein	1.9	1.5E-05						
PA0499		probable pili assembly chaperone	1.9	3.1E-03						
PA0502		probable biotin biosynthesis protein bioH			-1.14	3.9E-02				
PA0505		hypothetical protein					2.2	1.0E-13		
PA0506		probable acyl-CoA dehydrogenase	1.8	2.7E-08					1.09	2.7E-03
PA0508		probable acyl-CoA dehydrogenase			1.09	1.3E-02				
PA0510	nirE	NirE					2.3	3.4E-03		
PA0514	nirL	heme d1 biosynthesis protein NirL					2.0	4.3E-02		
PA0523	norC	nitric-oxide reductase subunit C	2.2	2.9E-02						
PA0524	norB	nitric-oxide reductase subunit B	1.9	1.5E-02						
PA0528		probable transcriptional regulator					1.8	1.9E-08		
PA0529		conserved hypothetical protein					-1.5	5.8E-03		
PA0530		probable class III pyridoxal phosphate- dependent aminotransferase	1.6	3.6E-02						
PA0532		hypothetical protein					10.7	1.1E-27		
PA0535		probable transcriptional regulator	-1.7	1.2E-03						
PA0540		hypothetical protein					-1.7	1.4E-04		

PA0542		conserved hypothetical protein			-1.11	2.8E-03	-1.8	6.5E-13	-1.1	3.3E-02
PA0543		hypothetical protein	1.5	2.7E-02						
PA0545		hypothetical protein					-1.8	1.6E-05		
PA0546	metK	methionine adenosyltransferase			1.24	1.4E-02			1.16	2.6E-02
PA0548	tktA	transketolase			-1.04	3.7E-02				
PA0552	pgk	phosphoglycerate kinase					-1.6	3.2E-10		
PA0555	fda	fructose-1,6-bisphosphate aldolase			-1.16	4.1E-02				
PA0556		hypothetical protein	-1.6	4.5E-03						
PA0557		hypothetical protein					2.7	5.2E-20		
PA0559		conserved hypothetical protein	-1.5	3.6E-05						
PA0563		conserved hypothetical protein					-1.6	7.7E-08		
PA0568		hypothetical protein					-1.6	6.2E-05		
PA0575		conserved hypothetical protein					2.3	2.3E-14		
PA0578		conserved hypothetical protein	-1.5	3.6E-04						
PA0579	rpsU	30S ribosomal protein S21	-1.5	3.6E-04			-2.2	3.2E-17		
PA0582	folB	dihydroneopterin aldolase					-2.3	5.3E-13		
PA0586		conserved hypothetical protein	1.7	2.2E-05	1.15	4.4E-02				
PA0587		conserved hypothetical protein	1.7	2.7E-06	1.17	2.7E-02				
PA0588		conserved hypothetical protein	1.8	2.3E-06	1.25	3.1E-02				
PA0589		conserved hypothetical protein					1.7	4.0E-14		
PA0590	apaH	bis(5'-nucleosyl)- tetraphosphatase			-1.07	3.1E-02				
PA0591		conserved hypothetical protein			1.13	2.0E-02	-1.9	3.9E-15	1.11	9.6E-03
PA0594	surA	peptidyl-prolyl cis-trans isomerase SurA			-1.14	7.6E-03				
PA0595	lptD	LPS-assembly protein LptD			-1.06	3.1E-02				
PA0599		hypothetical protein			1.35	1.7E-02				

		probable binding protein								
PA0602		component of ABC	-2.5	1.0E-11	-1.32	3.1E-04	-1.9	8.4E-09	-1.18	6.7E-03
		transporter								
PA0604	agtB	AgtB			-1.18	4.5E-03	-1.7	3.2E-17		
PA0607	rpe	ribulose-phosphate 3- epimerase	-1.5	3.3E-04						
PA0608		probable phosphoglycolate phosphatase	-1.7	1.9E-06						
PA0609	trpE	anthranilate synthetase component I							1.04	3.0E-02
PA0612	ptr B	repressor, PtrB	2.5	6.3E-04						
PA0613		hypothetical protein	1.8	8.6E-05						
PA0614		hypothetical protein	3.8	1.2E-11			2.1	4.1E-06		
PA0615		hypothetical protein	2.3	2.4E-08			-1.6	9.5E-04		
PA0616		hypothetical protein	3.6	2.0E-24						
PA0617		probable bacteriophage protein	3.4	1.0E-16						
PA0618		probable bacteriophage protein	3.7	7.0E-18						
PA0619		probable bacteriophage protein	4.2	3.5E-24						
PA0620		probable bacteriophage protein	2.3	2.1E-17						
PA0621		conserved hypothetical protein	2.0	5.2E-08						
PA0622		probable bacteriophage protein	3.3	2.2E-21						
PA0623		probable bacteriophage protein	3.1	1.7E-15			-1.6	6.9E-04		
PA0624		hypothetical protein	3.2	8.7E-12						
PA0625		hypothetical protein	3.0	1.4E-28						
PA0626		hypothetical protein	2.0	1.8E-07						
PA0627		conserved hypothetical protein	2.3	5.7E-04						
PA0628		conserved hypothetical protein	3.2	2.5E-11						
PA0629		conserved hypothetical protein	3.3	1.3E-09						
PA0630		hypothetical protein	3.1	1.1E-04			2.0	2.7E-03		
PA0632		hypothetical protein	5.6	1.9E-05			-3.0	5.3E-03		
PA0633		hypothetical protein	2.9	6.2E-21						
PA0634		hypothetical protein	3.1	3.8E-19						

PA0635		hypothetical protein	3.2	1.9E-14						
PA0636		hypothetical protein	3.5	9.1E-39						
PA0637		conserved hypothetical protein	3.8	2.4E-08						
PA0638		probable bacteriophage protein	3.9	1.5E-17						
PA0639		conserved hypothetical protein	3.0	8.4E-10						
PA0640		probable bacteriophage protein	3.4	4.5E-24						
PA0641		probable bacteriophage protein	3.0	3.6E-36						
PA0642		hypothetical protein	1.9	4.8E-05						
PA0643		hypothetical protein	1.9	1.8E-09						
PA0644		hypothetical protein	1.6	1.2E-03			-1.6	7.9E-04		
PA0648		hypothetical protein					-1.5	5.4E-06		
PA0649	trpG	anthranilate synthase component II			-1.08	3.6E-02				
PA0651	trpC	indole-3-glycerol- phosphate synthase							1.08	1.2E-02
PA0652	vfr	transcriptional regulator Vfr			-1.17	3.9E-04			-1.11	2.2E-03
PA0654	speD	S-adenosylmethionine decarboxylase proenzyme	-1.7	1.0E-04						
PA0658		probable short-chain dehydrogenase					1.6	2.7E-10		
PA0660		hypothetical protein			1.11	3.7E-02				
PA0662	argC	N-acetyl-gamma-glutamyl- phosphate reductase					-1.7	9.5E-17		
PA0663		hypothetical protein			-1.08	1.1E-02				
PA0664		hypothetical protein	-1.6	8.8E-06			-1.5	3.8E-07		
PA0665		conserved hypothetical protein					-1.6	9.7E-18		
PA0669		probable DNA polymerase alpha chain	1.6	3.5E-05						
PA0670		hypothetical protein	1.9	8.3E-03						
PA0671		hypothetical protein	1.9	2.6E-02						
PA0672	hemO	heme oxygenase	-1.6	3.0E-02						
PA0688	lapA	low-molecular-weight alkaline phosphatase A, LapA					2.2	2.6E-05		
PA0704		probable amidase			-1.18	3.3E-03				

		alpha-1,6-								
PA0705	migA	rhamnosyltransferase MigA							-1.12	4.6E-02
PA0709		hypothetical protein	1.6	4.1E-02						
PA0718		hypothetical protein of bacteriophage Pf1	1.7	2.4E-02						
PA0719		hypothetical protein of bacteriophage Pf1	1.6	1.9E-02						
PA0722		hypothetical protein of bacteriophage Pf1					1.8	1.3E-05		
PA0723	coaB	coat protein B of bacteriophage Pf1					1.5	2.0E-06		
PA0729		hypothetical protein			1.11	5.9E-03				
PA0730		probable transferase	2.2	4.9E-04			2.0	2.0E-04		
PA0732		hypothetical protein	1.6	4.5E-04						
PA0733		probable pseudouridylate synthase					3.7	5.8E-21		
PA0735		hypothetical protein			1.41	1.1E-03			1.2	1.0E-03
PA0737		hypothetical protein	2.0	1.4E-03			2.0	1.1E-04		
PA0738		conserved hypothetical protein	2.0	1.0E-02			2.5	4.6E-06		
PA0741		conserved hypothetical protein	1.8	2.7E-07						
PA0743		probable 3- hydroxyisobutyrate dehydrogenase	2.6	1.5E-60						
PA0744		probable enoyl-CoA hydratase/isomerase	3.2	7.6E- 174	2.05	1.8E-05			1.93	6.7E-05
PA0745	dspI	DspI	3.3	3.9E-54	2.33	8.4E-06			2.19	2.2E-05
PA0746		probable acyl-CoA dehydrogenase	3.4	3.4E-88	1.8	3.0E-05			1.63	9.8E-05
PA0747		probable aldehyde dehydrogenase	4.1	3.4E-80	1.56	2.2E-06			1.36	9.6E-05
PA0751		conserved hypothetical protein	-1.7	2.8E-03						
PA0752		conserved hypothetical protein	-1.6	4.5E-04						
PA0754		hypothetical protein					5.4	2.0E-21		
PA0755	opdH	cis-aconitate porin OpdH	-1.6	1.8E-03						
PA0757		probable two-component sensor	-1.5	9.9E-04						

PA0760		conserved hypothetical protein					-2.1	1.4E-12		
PA0762	algU	sigma factor AlgU			1.23	9.5E-03				
PA0763	mucA	anti-sigma factor MucA	1.7	5.7E-05						
PA0767	lepA	GTP-binding protein LepA							-1.04	3.3E-02
PA0768	lepB	signal peptidase I			1.06	2.6E-02				
PA0769		hypothetical protein			-1.16	6.5E-03			-1.08	4.1E-02
PA0774		conserved hypothetical protein	-1.9	9.6E-06						
PA0775		conserved hypothetical protein	-1.7	5.2E-08	-1.14	2.1E-02				
PA0776		hypothetical protein					1.5	2.7E-03		
PA0777		hypothetical protein	-1.6	1.2E-02						
PA0778	icp	inhibitor of cysteine peptidase			-1.09	1.1E-02				
PA0781		hypothetical protein					14.6	3.2E-08		
PA0782	putA	proline dehydrogenase PutA	-1.9	1.7E-06	-1.17	2.1E-02				
PA0783	putP	sodium/proline symporter PutP	-2.5	6.7E-09	-1.19	3.0E-02			-1.18	2.0E-02
PA0788		hypothetical protein					1.6	4.8E-03		
PA0789		probable amino acid permease	-2.0	5.7E-07	-1.23	3.9E-03	-1.6	1.2E-04	-1.19	6.2E-03
PA0799		probable helicase	-1.6	5.1E-08						
PA0801		hypothetical protein	-1.9	4.3E-06						
PA0805		hypothetical protein					-1.6	4.0E-04		
PA0806		hypothetical protein	1.7	1.7E-02						
PA0807	ampD h3	AmpDh3	2.2	8.3E-07			2.3	1.5E-11		
PA0808		hypothetical protein	1.9	4.0E-03						
PA0812		hypothetical protein					1.6	1.2E-02		
PA0813		hypothetical protein	1.5	2.4E-02						
PA0819		hypothetical protein	1.9	2.3E-02						
PA0820		hypothetical protein	3.4	5.4E-50						
PA0826		hypothetical protein	2.1	3.2E-09						
PA0826		translated portion of					3654	1.1E-		
.1		tmRNA gene ssrA					99.3	175		
PA0828		probable transcriptional regulator					-2.0	2.0E-02		
PA0830		hypothetical protein	2.6	1.2E-14						

PA0834		conserved hypothetical protein	-1.6	3.8E-05						
PA0836	ackA	acetate kinase							-1.05	4.8E-02
PA0837	slyD	peptidyl-prolyl cis-trans isomerase SlyD			-1.45	1.4E-02	-1.5	5.3E-09		
PA0840		probable oxidoreductase	-1.6	3.7E-03	-1.13	2.4E-02	-1.9	8.8E-06		
PA0843	plcR	phospholipase accessory protein PlcR precursor					1.6	3.5E-03		
PA0846		probable sulfate uptake protein					-1.5	3.4E-08		
PA0850		hypothetical protein					2.0	3.1E-05		
PA0856		hypothetical protein					1.7	7.0E-11		
PA0861	rbdA	RbDA			1.13	5.0E-02				
PA0863		probable oxidoreductase			1.1	1.5E-03			1.11	6.2E-03
PA0865	hpd	4-hydroxyphenylpyruvate dioxygenase			-1.25	5.6E-03				
PA0866	aroP2	aromatic amino acid transport protein AroP2	-1.9	1.5E-08			-1.9	7.6E-12		
PA0868		conserved hypothetical protein					-2.0	1.3E-07		
PA0869	pbpG	D-alanyl-D-alanine- endopeptidase			-1.14	4.6E-02				
PA0877		probable transcriptional regulator					-1.5	2.6E-02		
PA0888	aotJ	arginine/ornithine binding protein AotJ			-1.22	2.4E-04				
PA0889	aotQ	arginine/ornithine transport protein AotQ			-1.13	2.0E-03			-1.1	8.2E-03
PA0892	aotP	arginine/ornithine transport protein AotP			-1.13	2.3E-03	-1.5	1.4E-07	-1.12	1.8E-02
PA0893	argR	transcriptional regulator ArgR			1.17	3.8E-03				
PA0894		hypothetical protein					-1.8	2.1E-02		
PA0895	aruC	N2-Succinylornithine 5- aminotransferase (SOAT) = N2-acetylornithine 5- aminotransferase (ACOAT)			-1.15	3.2E-02				
PA0897	aruG	subunit II of arginine N2- succinyltransferase = ornithine N2- succinyltransferase			-1.14	3.5E-02				

PA0898	aruD	N-Succinylglutamate 5- semialdehyde dehydrogenase	-1.5	5.4E-04						
PA0900		hypothetical protein			-1 38	9.9E-03	1.6	1.9E-08	-1 32	1 8E-02
PA0902		hypothetical protein				3.9E-02	1.0	1.72 00	1.52	1.01 02
PA0907	alpA	lysis phenotype activator, AlpA	1.6	1.4E-02	1.12	5.71 02				
PA0908	alpB	AlpB	2.2	2.1E-02			1.7	4.9E-02		
PA0909	alpC	AlpC	2.2	1.9E-02						
PA0910	alpD	AlpD	2.7	7.3E-05						
PA0911	alpE	AlpE	2.0	4.0E-03						
PA0913		MgtE			-1.1	2.1E-02				
PA0914	0	hypothetical protein	-1.6	2.7E-02						
PA0916		conserved hypothetical protein			-1.12	1.9E-02				
PA0918		cytochrome b561			1.3	1.1E-03				
PA0919		alanyl- phosphatidylglycerol hydrolase			1.18	2.0E-02				
PA0920		alanyl- phosphatidylglycerol synthase			1.2	5.4E-03			1.12	3.4E-02
PA0921		hypothetical protein					-2.0	1.0E-08		
PA0927	ldhA	D-lactate dehydrogenase (fermentative)			1.19	1.2E-03			1.1	4.5E-02
PA0929		two-component response regulator	-1.7	1.9E-03						
PA0930		two-component sensor	-1.6	1.5E-02						
PA0932	cysM	cysteine synthase B			1.13	2.2E-03			1.04	4.0E-02
PA0936	lpxO2	lipopolysaccharide biosynthetic protein LpxO2			1.13	9.8E-03				
PA0938	wzz2	Wzz2			1.25	5.1E-03				
PA0939		hypothetical protein	1.9	1.8E-02						
PA0940		hypothetical protein	1.6	6.6E-03						
PA0941		hypothetical protein	1.6	1.2E-02	-1.3	6.6E-04			-1.13	4.2E-03
PA0942		probable transcriptional regulator	1.5	1.2E-03						
PA0945	purM	phosphoribosylaminoimida zole synthetase			-1.08	2.6E-02				
PA0946		hypothetical protein			-1.14	1.7E-02				

PA0947		conserved hypothetical					-1.6	4.8E-06		
1 A0747		protein					-1.0	4.01-00		
PA0950		probable arsenate reductase			-1.27	4.7E-02	-2.4	2.1E-20		
PA0952		hypothetical protein	-2.5	4.7E-08			-2.5	3.4E-10		
PA0953		probable thioredoxin			1.07	6.2E-03				
PA0956	proS	prolyl-tRNA synthetase							1.06	2.5E-02
PA0958	oprD	Basic amino acid, basic peptide and imipenem outer membrane porin OprD precursor			-1.41	1.5E-03			-1.2	1.2E-02
PA0959		hypothetical protein	1.8	1.3E-06	1.1	5.7E-03			1.09	1.9E-02
PA0962	dps	DNA-binding protein from starved cells, Dps			1.18	2.4E-02				
PA0963	aspS	aspartyl-tRNA synthetase	-1.6	2.8E-09	-1.21	2.2E-03			-1.19	3.6E-03
PA0964	pmpR	pqsR-mediated PQS regulator, PmpR	-1.6	8.6E-08	-1.18	3.2E-04			-1.08	2.7E-02
PA0972	tolB	TolB protein			1.11	3.8E-03			1.08	3.5E-02
PA0973	oprL	Peptidoglycan associated lipoprotein OprL precursor					-1.5	1.5E-07		
PA0979		conserved hypothetical protein					-1.6	4.3E-02		
PA0980		hypothetical protein					-2.3	2.2E-03		
PA0981		hypothetical protein					-1.6	1.7E-04		
PA0982		hypothetical protein	1.6	7.5E-05						
PA0983		conserved hypothetical protein	1.6	1.3E-03						
PA0985	pyoS5	pyocin S5	2.8	1.1E-23						
PA0986		conserved hypothetical protein	1.9	8.3E-03						
PA0988		hypothetical protein					1.7	2.9E-15		
PA0990		conserved hypothetical protein	1.6	2.0E-04			1.8	1.2E-08		
PA0999	pqsD	3-oxoacyl-[acyl-carrier- protein] synthase III			1.08	3.6E-02				
PA1005		conserved hypothetical protein			-1.12	3.9E-04				
PA1006		Protein PA1006					-1.7	6.8E-04		
PA1007		conserved hypothetical protein	-1.9	9.3E-06			-1.6	1.3E-04		
PA1008	bcp	bacterioferritin comigratory protein			-1.08	5.0E-02				

PA1009		hypothetical protein					1.6	1.2E-06		
PA1010	dapA	dihydrodipicolinate synthase			-1.28	3.9E-02				
PA1011		hypothetical protein			-1.1	8.1E-03				
PA1012		conserved hypothetical protein	-1.6	6.4E-07						
PA1013	purC	phosphoribosylaminoimida zole-succinocarboxamide synthase			-1.09	4.7E-02				
PA1023		probable short-chain dehydrogenase			-1.09	1.0E-02				
PA1026		hypothetical protein	-1.6	3.3E-05			-1.8	3.6E-07	-1.17	1.4E-02
PA1032	quiP	QuiP			-1.13	1.5E-02				
PA1033		probable glutathione S- transferase			-1.22	6.7E-04			-1.18	1.6E-04
PA1036		hypothetical protein			-1.22	2.9E-03				
PA1038		hypothetical protein					1.8	8.0E-05		
PA1041		probable outer membrane protein precursor	1.5	5.7E-03						
PA1042		conserved hypothetical protein					-1.7	2.8E-05		
PA1043		hypothetical protein			-1.46	4.1E-03			-1.24	3.8E-02
PA1044		hypothetical protein					-2.0	4.2E-03		
PA1048		probable outer membrane protein precursor	1.9	1.5E-06	1.44	2.4E-02	1.6	1.2E-04	1.35	2.8E-02
PA1049	pdxH	pyridoxine 5'-phosphate oxidase	1.5	8.9E-05						
PA1052		conserved hypothetical protein			-1.1	1.3E-02				
PA1058	shaE	ShaE	1.7	2.9E-02						
PA1063		hypothetical protein					-1.9	2.7E-07		
PA1069		hypothetical protein			1.1	4.5E-02				
PA1070	braG	branched-chain amino acid transport protein BraG			1.21	1.6E-03				
PA1071	braF	branched-chain amino acid transport protein BraF			1.27	2.7E-02				
PA1074	braC	branched-chain amino acid transport protein BraC			-1.16	6.4E-03				
PA1077	flgB	flagellar basal-body rod protein FlgB	1.7	5.3E-11						
PA1078	flgC	flagellar basal-body rod protein FlgC	1.7	5.1E-10						

									1	1
PA1079	flgD	flagellar basal-body rod modification protein FlgD	1.6	8.1E-09						
PA1080	flgE	flagellar hook protein FlgE	1.6	9.5E-11						
PA1081	flgF	flagellar basal-body rod protein FlgF	1.7	5.1E-11						
PA1082	flgG	flagellar basal-body rod protein FlgG	1.6	4.5E-07						
PA1083	flgH	flagellar L-ring protein precursor FlgH			1.15	2.5E-02			1.12	4.9E-02
PA1084	flgI	flagellar P-ring protein precursor FlgI	1.5	1.6E-08						
PA1085	flgJ	flagellar protein FlgJ	1.5	2.4E-06						
PA1088		hypothetical protein							1.09	1.9E-02
PA1092	fliC	flagellin type B	1.6	4.7E-06						
PA1094	fliD	flagellar capping protein FliD	1.5	4.9E-06						
PA1097	fleQ	transcriptional regulator FleQ			1.18	5.0E-03				
PA1099	fleR	two-component response regulator	1.5	3.9E-08						
PA1100	fliE	flagellar hook-basal body complex protein FliE	1.8	6.3E-08			-1.6	1.6E-06		
PA1101	fliF	Flagella M-ring outer membrane protein precursor	1.5	3.5E-11						
PA1103		probable flagellar assembly protein			1.22	2.8E-02				
PA1106		hypothetical protein					1.7	8.0E-11		
PA1111		hypothetical protein	1.9	1.0E-03			1.7	6.9E-04		
PA1116		hypothetical protein	-1.7	3.4E-06					-1.15	6.4E-03
PA1117		hypothetical protein					-1.5	1.4E-04		
PA1118		hypothetical protein	1.8	3.1E-04						
PA1119	yfiB	YfiB			1.24	1.5E-02	1.6	2.4E-16		
PA1126		hypothetical protein			1.27	1.6E-02			1.18	9.1E-03
PA1127		probable oxidoreductase	1.6	1.9E-28	1.23	1.5E-02			1.31	4.2E-03
PA1130	rhlC	rhamnosyltransferase 2	1.6	5.8E-04						
PA1136		probable transcriptional regulator	1.8	1.4E-04						
PA1144		probable major facilitator superfamily (MFS) transporter	2.0	1.2E-02						

PA1150	pys2	pyocin S2	1.6	2.5E-05						
PA1152		hypothetical protein					-1.6	2.5E-05		
PA1157		probable two-component response regulator			1.17	5.5E-04			1.1	6.5E-03
PA1159		probable cold-shock protein			-1.44	2.4E-02				
PA1161	rrmA	rRNA methyltransferase			-1.11	9.6E-03				
PA1162	dapE	succinyl-diaminopimelate desuccinylase			-1.33	3.5E-04			-1.19	5.5E-03
PA1166		hypothetical protein	1.8	2.2E-06						
PA1167		hypothetical protein					1.5	1.2E-04		
PA1168		hypothetical protein	2.2	5.7E-06						
PA1169		probable lipoxygenase					-2.8	3.6E-10		
PA1171	sltB2	SltB2			1.07	1.6E-02				
PA1172	napC	cytochrome c-type protein NapC	1.9	1.2E-06	1.32	2.2E-03				
PA1173	napB	cytochrome c-type protein NapB precursor	1.8	2.5E-05			1.8	1.5E-06		
PA1174	napA	periplasmic nitrate reductase protein NapA	1.9	2.7E-08						
PA1175	napD	NapD protein of periplasmic nitrate reductase	1.9	9.7E-05						
PA1176	napF	ferredoxin protein NapF	2.1	3.1E-06			1.8	4.2E-06		
PA1177	napE	periplasmic nitrate reductase protein NapE	2.3	3.2E-05			-2.2	1.0E-06		
PA1178	oprH	PhoP/Q and low Mg2+ inducible outer membrane protein H1 precursor					1.5	5.2E-09		
PA1179	phoP	two-component response regulator PhoP					-1.5	6.1E-21		
PA1185		probable glutathione S- transferase					1.7	3.2E-02		
PA1190		conserved hypothetical protein	1.9	1.9E-03						
PA1192		conserved hypothetical protein			-1.34	1.1E-02				
PA1203		hypothetical protein					1.5	1.5E-05		
PA1204		NAD(P)H quinone oxidoreductase			-1.25	5.3E-04				
PA1205		conserved hypothetical protein			-1.11	1.4E-02				

DA 100C								1	1.00	
PA1206		hypothetical protein							-1.09	2.2E-02
PA1213		hypothetical protein					1.7	4.9E-09		
PA1214		hypothetical protein	1.6	5.2E-05					1.08	3.9E-02
PA1215		hypothetical protein							1.07	4.1E-02
PA1216		hypothetical protein			-1.09	1.2E-02				
PA1217		probable 2- isopropylmalate synthase	1.5	2.4E-05					1.08	8.3E-03
PA1218		hypothetical protein	1.5	1.9E-04	-1.19	1.4E-02				
PA1219		hypothetical protein	1.6	1.1E-05						
PA1220		hypothetical protein	1.6	4.6E-06	1.14	1.4E-02	1.6	6.2E-09		
PA1221		hypothetical protein	1.7	4.1E-07						
PA1222		probable membrane-bound lytic murein transglycolase A	-1.6	4.1E-08						
PA1223		probable transcriptional regulator					-1.6	3.7E-03		
PA1227		hypothetical protein					-1.5	3.5E-02		
PA1228		hypothetical protein	-3.4	1.7E-12						
PA1234		hypothetical protein	-1.5	7.5E-03						
PA1239		hypothetical protein	2.8	1.5E-04						
PA1240		probable enoyl-CoA hydratase/isomerase	2.0	6.1E-05						
PA1244		hypothetical protein			-1.34	1.9E-02	1.8	2.3E-16		
PA1246	aprD	alkaline protease secretion protein AprD					1.6	1.8E-10		
PA1247	aprE	alkaline protease secretion protein AprE			-1.12	5.4E-03			-1.06	4.4E-02
PA1248	aprF	Alkaline protease secretion outer membrane protein AprF precursor			-1.18	4.6E-03				
PA1250	aprI	alkaline proteinase inhibitor AprI			-1.25	1.0E-02			-1.15	2.5E-02
PA1254	lhpC	delta1-pyrroline-4- hydroxy-2-carboxylate deaminase, LphC	2.3	2.3E-03						
PA1255	lhpK	D-hydroxyproline epimerase, LhpK	2.0	9.7E-04						
PA1256	lhpO	ABC transporter ATP- binding protein, LhpO	1.8	2.4E-02			12.8	2.5E-39		
PA1259	lhpH	LhpH	2.1	4.9E-03						

		ABC transporter								
PA1260	lhpP	periplasmic-binding protein, LhpP	2.1	1.8E-04	1.09	3.5E-02				
PA1261	lhpR	Transcriptional regulator, LhpR					2.0	2.3E-03		
PA1263		hypothetical protein					1.5	7.0E-07		
PA1271		probable tonB-dependent receptor	-1.6	1.3E-04	-1.27	2.0E-02				
PA1272	cobO	cob(I)alamin adenosyltransferase	-1.6	4.5E-05	-1.16	8.6E-03			-1.16	1.3E-02
PA1273	cobB	cobyrinic acid a,c-diamide synthase	-1.8	1.3E-05						
PA1274		conserved hypothetical protein	-1.8	1.0E-02			-1.9	2.2E-03		
PA1275	cobD	cobalamin biosynthetic protein CobD	-1.6	1.2E-02						
PA1276	cobC	cobalamin biosynthetic protein CobC	-1.7	1.0E-02						
PA1277	cobQ	cobyric acid synthase	-1.9	1.0E-05						
PA1278	cobP	cobinamide kinase	-2.0	1.4E-05						
PA1279	cobU	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	-1.7	4.9E-04			-1.5	3.0E-03		
PA1280		hypothetical protein	-2.4	7.7E-04						
PA1281	cobV	cobalamin (5'-phosphate) synthase	-1.7	4.3E-03						
PA1285		probable transcriptional regulator					1.7	5.1E-07		
PA1287		probable glutathione peroxidase				2.1E-02				
PA1289		hypothetical protein	2.4	1.0E-06			1.6	1.5E-03		
PA1290		probable transcriptional regulator							1.3	1.1E-02
PA1292		probable 3- mercaptopyruvate sulfurtransferase			-1.12	1.8E-03				
PA1307		conserved hypothetical protein	-1.5	3.8E-08						
PA1308		hypothetical protein	-1.7	6.4E-06						
PA1315		probable transcriptional regulator			1.08	2.5E-02			1.09	3.3E-02
PA1320	cyoD	cytochrome o ubiquinol oxidase subunit IV					-2.8	8.4E-04		

		probable TonB-dependent								
PA1322		receptor	2.0	1.3E-04						
PA1324		hypothetical protein			1.3	1.5E-02	2.7	2.6E-13		
PA1325		conserved hypothetical protein	-1.8	2.1E-08	-1.54	1.5E-02				
PA1326	ilvA2	threonine dehydratase, biosynthetic	-2.0	6.1E-06	-1.44	9.3E-03				
PA1328		probable transcriptional regulator					1.7	5.1E-06		
PA1337	ansB	glutaminase-asparaginase							-1.08	3.9E-02
PA1338	ggt	gamma- glutamyltranspeptidase precursor			-1.39	8.0E-03				
PA1341	aatQ	AatQ							-1.05	4.9E-02
PA1342	aatJ	AatJ			-1.1	3.8E-02				
PA1348		hypothetical protein	1.9	6.4E-05						
PA1349		conserved hypothetical protein	1.7	1.4E-02						
PA1350		hypothetical protein	1.7	5.4E-03						
PA1356		hypothetical protein	1.7	7.1E-03			1.6	2.4E-03		
PA1357		conserved hypothetical protein			-1.26	2.6E-04			-1.18	2.4E-03
PA1358		hypothetical protein					1.7	3.7E-10		
PA1360		conserved hypothetical protein					-1.7	4.7E-02		
PA1363		ECF sigma factor	-1.7	2.4E-03						
PA1364		probable transmembrane sensor	-1.9	1.3E-02						
PA1365		probable siderophore receptor	-1.5	1.6E-03						
PA1371		hypothetical protein			1.43	3.3E-03				
PA1372		hypothetical protein	1.5	9.0E-06	1.2	5.2E-04			1.19	6.0E-04
PA1375	<i>pdxB</i>	erythronate-4-phosphate dehydrogenase			-1.08	1.5E-02			-1.11	4.2E-03
PA1376	aceK	isocitrate dehydrogenase kinase/phosphatase			-1.14	2.5E-02			-1.13	3.6E-02
PA1383		hypothetical protein	1.6	1.3E-08	1.6	1.9E-07			1.27	8.4E-05
PA1384	galE	UDP-glucose 4-epimerase	1.7	1.5E-03						
PA1385		probable glycosyl transferase	2.0	1.2E-06						

PA1386		probable ATP-binding component of ABC	1.8	1.2E-09						
D + 4 0 0 T		transporter								
PA1387		hypothetical protein	1.7	1.3E-07						
PA1388		hypothetical protein	1.5	8.6E-03						
PA1397		probable two-component response regulator	-1.7	5.3E-05						
PA1398		hypothetical protein			-1.12	7.2E-03				
PA1399		probable transcriptional regulator					1.6	7.5E-03		
PA1405		probable helicase	-1.7	4.9E-04						
PA1408		hypothetical protein					14.8	3.0E-30		
PA1411		hypothetical protein	-1.5	2.1E-02						
PA1414		hypothetical protein	2.2	8.3E-04			-2.2	4.4E-05		
PA1415		hypothetical protein					1.6	1.0E-08		
PA1423	bdlA	BdlA	1.9	1.4E-06						
PA1429		probable cation- transporting P-type ATPase	1.6	8.2E-03						
PA1430	lasR	transcriptional regulator LasR			-1.28	4.9E-02				
PA1431	rsaL	regulatory protein RsaL	1.7	6.8E-04	1.25	8.3E-03	2.0	8.0E-08		
PA1442		conserved hypothetical protein					-1.5	1.0E-09		
PA1445	fliO	flagellar protein FliO							-1.05	3.6E-02
PA1450		conserved hypothetical protein					-2.1	1.6E-06		
PA1451		conserved hypothetical protein					-1.9	6.4E-07		
PA1452	flhA	flagellar biosynthesis protein FlhA			1.28	1.3E-02				
PA1461	motD	MotD			1.12	6.9E-03			1.11	1.3E-02
PA1462		probable plasmid partitioning protein			1.1	4.4E-03			1.05	3.3E-03
PA1471		hypothetical protein	1.6	6.8E-03			2.3	5.1E-10		
PA1474		hypothetical protein	1.5	5.7E-06						
PA1478		hypothetical protein	-2.3	1.3E-03			-1.7	3.3E-02		
PA1483	сусН	cytochrome c-type biogenesis protein							-1.07	3.3E-02
PA1487		probable carbohydrate kinase	1.6	2.5E-03						

				1	1			T	1	1
PA1488		hypothetical protein	1.6	6.4E-03						
PA1489		hypothetical protein	1.6	7.9E-04						
PA1490		probable transcriptional regulator			1.16	2.3E-02				
PA1491		probable transporter	1.5	2.9E-02						
PA1492		hypothetical protein	1.7	3.9E-02						
PA1493	cysP	sulfate-binding protein of ABC transporter			1.22	2.4E-02			1.33	3.7E-03
PA1502	gcl	glyoxylate carboligase	2.8	3.1E-06						
PA1503		hypothetical protein					1.6	4.8E-02		
PA1504		probable transcriptional regulator			-1.15	1.7E-03				
PA1507		probable transporter	1.7	1.5E-04						
PA1509	tplEi	immunity protein, TplEi	1.5	1.6E-06						
PA1510	tplE	type 6 PGAP1-like effector, TplE	1.5	1.1E-09						
PA1512	hcpA	secreted protein Hcp					1.6	1.4E-02		
PA1513		hypothetical protein	1.5	2.9E-04	1.3	8.8E-03				
PA1514		ureidoglycolate hydrolaseYbbT	1.6	2.5E-02						
PA1515	alc	allantoicase	1.9	1.3E-05						
PA1516		hypothetical protein	1.7	2.4E-03	-1.2	3.1E-02	1.5	3.8E-03		
PA1517		conserved hypothetical protein	2.1	4.9E-07	1.1	2.8E-02	1.7	8.9E-06		
PA1518		conserved hypothetical protein	1.5	5.6E-05						
PA1519		probable transporter	1.6	1.9E-02			2.5	5.0E-09		
PA1523	xdhB	xanthine dehydrogenase			1.16	2.4E-02				
PA1524	xdhA	xanthine dehydrogenase	1.6	9.2E-04			1.6	2.0E-05		
PA1527		conserved hypothetical protein			-1.12	8.0E-04			-1.09	3.2E-03
PA1528	zipA	cell division protein ZipA			1.08	2.8E-02			1.07	3.3E-02
PA1530		hypothetical protein			1.44	1.7E-02			1.37	5.0E-03
PA1531		hypothetical protein					1.6	1.0E-06		
PA1532	dnaX	DNA polymerase subunits gamma and tau			-1.2	1.6E-02				
PA1538		probable flavin-containing monooxygenase	1.7	7.7E-04						
PA1545		hypothetical protein	1.6	1.2E-04						

				1				1		
PA1546	hemN	oxygen-independent coproporphyrinogen III oxidase	2.3	6.0E-06	1.41	4.4E-02				
PA1552	ccoP1	Cytochrome c oxidase, cbb3-type, CcoP subunit	-1.6	5.2E-08	-1.31	4.2E-05			-1.36	6.1E-07
PA1552 .1	ccoQ1	Cytochrome c oxidase, cbb3-type, CcoQ subunit	-1.8	2.8E-10						
PA1553	ccoO1	Cytochrome c oxidase, cbb3-type, CcoO subunit	-1.7	3.0E-10	-1.55	8.3E-04	-1.8	1.5E-17	-1.41	1.4E-02
PA1554	ccoN1	Cytochrome c oxidase, cbb3-type, CcoN subunit	-1.6	7.3E-10					-1.12	4.9E-02
PA1555	ccoP2	Cytochrome c oxidase, cbb3-type, CcoP subunit	1.9	3.8E-02	1.45	4.1E-02				
PA1555 .1	ccoQ2	Cytochrome c oxidase, cbb3-type, CcoQ subunit			-1.55	3.7E-03			-1.49	5.3E-03
PA1556	ccoO2	Cytochrome c oxidase, cbb3-type, CcoO subunit	2.1	2.6E-02						
PA1557	ccoN2	Cytochrome c oxidase, cbb3-type, CcoN subunit	2.1	3.5E-02						
PA1559		hypothetical protein					1.9	3.9E-02		
PA1561	aer	aerotaxis receptor Aer			1.25	1.4E-02				
PA1571		hypothetical protein					1.5	1.1E-02		
PA1574		conserved hypothetical protein	-1.6	4.4E-05	-1.15	3.6E-03			-1.1	3.3E-02
PA1577		hypothetical protein	-1.6	3.4E-02						
PA1581	sdhC	succinate dehydrogenase (C subunit)	-1.6	5.6E-07	-1.1	3.3E-02	-2.0	2.5E-18		
PA1582	sdhD	succinate dehydrogenase (D subunit)	-1.6	2.0E-04	-1.18	3.9E-02	1.7	1.0E-06	-1.24	2.2E-02
PA1583	sdhA	succinate dehydrogenase (A subunit)	-1.6	1.4E-06	-1.25	3.9E-06			-1.17	1.4E-04
PA1584	sdhB	succinate dehydrogenase (B subunit)			-1.2	3.0E-03			-1.16	9.0E-03
PA1585	sucA	2-oxoglutarate dehydrogenase (E1 subunit)							-1.1	4.1E-02
PA1586	sucB	dihydrolipoamide succinyltransferase (E2 subunit)			-1.24	7.3E-04	-1.5	1.4E-12	-1.14	3.1E-03
PA1587	lpd	dihydrolipoamide dehydrogenase Lpd			-1.19	7.8E-04				
PA1588	sucC	succinyl-CoA synthetase beta chain	-1.5	5.3E-06	-1.14	2.3E-02				

PA1589	sucD	succinyl-CoA synthetase alpha chain			-1.39	5.5E-04			-1.15	2.0E-02
PA1591		hypothetical protein	-1.7	9.3E-04						
PA1592		hypothetical protein	1.9	2.5E-04			2.2	6.6E-08		
PA1594		hypothetical protein							1.29	1.2E-02
PA1602		probable oxidoreductase	1.5	4.5E-02						
PA1606		hypothetical protein	1.8	8.2E-03			1.6	1.0E-02		
PA1608		probable chemotaxis transducer			1.1	2.8E-02				
PA1614	gpsA	glycerol-3-phosphate dehydrogenase, biosynthetic			-1.11	1.3E-02			-1.11	2.4E-03
PA1616		conserved hypothetical protein					1.7	2.2E-10		
PA1618		conserved hypothetical protein			-1.1	1.8E-02			-1.08	2.1E-02
PA1619		probable transcriptional regulator	-1.5	1.8E-03						
PA1621		probable hydrolase	3.3	7.0E-50	1.54	5.1E-04			1.23	6.4E-03
PA1622		probable hydrolase	3.3	3.4E-32						
PA1624		hypothetical protein			-1.15	5.9E-03			-1.11	2.3E-02
PA1627		probable transcriptional regulator					2.2	1.4E-08		
PA1638		conserved hypothetical protein	-1.5	1.2E-02						
PA1642	selD	selenophosphate synthetase			-1.15	8.9E-03				
PA1643		conserved hypothetical protein			1.07	3.8E-02				
PA1652		hypothetical protein					-1.8	4.5E-02		
PA1659	hsiF2	HsiF2	1.6	1.3E-04						
PA1661	hsiH2	HsiH2	1.5	8.1E-03			-1.8	6.7E-05		
PA1664	orfX	OrfX					-2.3	6.1E-03		
PA1666	lip2	Lip2			1.33	1.8E-04	-1.8	2.5E-05	1.09	1.5E-02
PA1669	icmF2	IcmF2					-1.8	1.4E-07		
PA1670	stp1	Stp1					-1.6	5.0E-03		
PA1673		hypothetical protein	2.2	4.3E-03	1.34	3.4E-02				
PA1676		hypothetical protein					-2.0	3.1E-05		
PA1678		probable DNA methylase					-1.6	7.1E-06		
PA1681	aroC	chorismate synthase			-1.18	4.5E-05			-1.08	2.4E-03

PA1682		probable MFS metabolite transporter	-1.7	3.7E-03						
PA1683		probable sugar aldolase			-1.1	4.7E-02				
PA1685	masA	enolase-phosphatase E-1	-1.5	7.1E-05						
PA1687	speE	spermidine synthase	-1.9	2.0E-06	-1.1	1.3E-02				
PA1688		hypothetical protein	-1.5	1.5E-06						
PA1689		conserved hypothetical protein	-1.7	1.5E-07	-1.31	5.1E-06			-1.16	8.4E-05
PA1690	pscU	translocation protein in type III secretion	-4.7	7.7E-09						
PA1691	pscT	translocation protein in type III secretion	-3.5	2.0E-04						
PA1692		probable translocation protein in type III secretion	-4.5	3.5E-05						
PA1693	pscR	translocation protein in type III secretion	-2.3	4.9E-09						
PA1694	pscQ	translocation protein in type III secretion	-8.6	5.6E-12			-2.3	1.2E-03		
PA1695	pscP	translocation protein in type III secretion	-7.8	6.7E-18						
PA1696	pscO	translocation protein in type III secretion	-12.2	2.4E-11						
PA1697		ATP synthase in type III secretion system	-9.1	2.3E-42						
PA1698	popN	Type III secretion outer membrane protein PopN precursor	-8.7	1.0E-32						
PA1699	pcrl	Pcr1	-5.4	7.3E-09						
PA1700	pcr2	Pcr2	-4.2	1.1E-03			-3.3	9.0E-03		
PA1701	pcr3	Pcr3	-7.7	1.9E-06						
PA1703	pcrD	type III secretory apparatus protein PcrD	-4.2	3.8E-40			-1.6	2.0E-06		
PA1705	pcrG	regulator in type III secretion	-9.3	5.4E-12						
PA1706	pcrV	type III secretion protein PcrV	-7.0	1.2E-32			-1.6	9.4E-04		
PA1707	pcrH	regulatory protein PcrH	-8.6	4.9E-26			-1.9	1.7E-04		
PA1708	popB	translocator protein PopB	-7.2	1.7E-48			-2.2	8.9E-11		
PA1709	popD	Translocator outer membrane protein PopD precursor	-6.1	9.0E-41			-1.8	1.5E-06		

		E		1	1				1	
PA1710	exsC	ExsC, exoenzyme S synthesis protein C precursor.	-3.9	1.8E-37			-1.7	2.4E-08		
PA1711	exsE	ExsE	-4.0	2.3E-16						
PA1712	exsB	exoenzyme S synthesis protein B	-4.3	1.3E-48			-1.8	3.1E-10		
PA1713	exsA	transcriptional regulator ExsA	-4.8	6.3E-62						
PA1714	exsD	ExsD	-3.8	8.1E-34	-1.87	8.1E-04			-1.29	3.2E-02
PA1715	pscB	type III export apparatus protein	-6.3	3.4E-11			-2.4	3.2E-04		
PA1716	pscC	Type III secretion outer membrane protein PscC precursor	-5.3	7.5E-47						
PA1717	pscD	type III export protein PscD	-5.7	1.3E-14			-2.2	9.0E-05		
PA1718	pscE	type III export protein PscE	-6.5	2.9E-08						
PA1719	pscF	type III export protein PscF	-5.2	1.9E-20			-1.6	3.0E-03		
PA1720	pscG	type III export protein PscG	-5.3	8.6E-14			-1.7	6.4E-03		
PA1721	pscH	type III export protein PscH	-7.2	2.5E-09						
PA1722	pscI	type III export protein PscI	-3.9	2.7E-09			-2.2	3.5E-04		
PA1723	pscJ	type III export protein PscJ	-5.4	3.4E-34	-1.41	4.2E-03	-1.7	4.1E-06		
PA1724	pscK	type III export protein PscK	-2.6	2.4E-03						
PA1725	pscL	type III export protein PscL	-4.0	4.6E-20						
PA1726	bglX	periplasmic beta- glucosidase			-1.16	3.7E-02				
PA1728		hypothetical protein	2.3	4.5E-05						
PA1729		conserved hypothetical protein	1.9	2.5E-05						
PA1730		conserved hypothetical protein	1.9	2.8E-03			1.5	1.9E-02		
PA1731		conserved hypothetical protein	1.8	9.0E-03			1.7	2.3E-03		
PA1732		conserved hypothetical protein	1.6	2.8E-02			2.0	2.0E-04		
PA1733		conserved hypothetical protein	1.7	9.2E-03	-1.22	3.8E-02	1.8	4.8E-04		

PA1740		hypothetical protein	1.9	2.6E-02			1			
PA1745		hypothetical protein	1.7	4.3E-06		3.3E-03	1.7	2.9E-08		
PA1745		hypothetical protein	2.3	4.3E-00		5.5E-05	1./	2.91-08		
PA1751		hypothetical protein	2.5	2.512-05			-1.6	1.4E-04		
PA1752		hypothetical protein			1 1 5	1.2E-02	-1.0	1. 4 L-0 4		
FAI752		conserved hypothetical			-1.15	1.2E-02				
PA1753		protein	1.6	7.2E-10						
PA1754	cysB	transcriptional regulator CysB			1.21	3.2E-02				
PA1755		hypothetical protein			-1.28	1.3E-03				
PA1757	thrH	homoserine kinase			-1.23	4.6E-03			-1.17	2.8E-02
PA1768		hypothetical protein			1.91	3.6E-04	1.6	1.1E-05	1.41	6.3E-04
PA1769		conserved hypothetical protein			-1.06	3.5E-02				
PA1770	ppsA	phosphoenolpyruvate synthase			-1.09	6.1E-04			-1.05	1.3E-02
PA1771	estX	EstX	-1.7	1.4E-05						
PA1773	cmaX	CmaX protein			1.28	5.2E-03			1.21	2.2E-02
PA1775	cmpX	conserved cytoplasmic membrane protein, CmpX protein			1.2	3.8E-04				
PA1777	oprF	Major porin and structural outer membrane porin OprF precursor			1.34	1.1E-02				
PA1781	nirB	assimilatory nitrite reductase large subunit	1.5	3.9E-03	-1.06	1.7E-02			-1.09	2.7E-03
PA1782		probable serine/threonine- protein kinase					1.8	4.4E-04		
PA1784		hypothetical protein	2.4	1.5E-04			2.2	4.7E-05		
PA1785	nasT	NasT	1.8	3.3E-02	-1.26	1.3E-04			-1.11	7.0E-03
PA1786	nasS	NasS	1.8	1.9E-02	-1.22	3.4E-02	1.7	1.2E-02		
PA1787	acnB	aconitate hydratase 2			-1.13	8.9E-04			-1.06	5.9E-03
PA1792		conserved hypothetical protein	-1.7	1.5E-06						
PA1793	ppiB	peptidyl-prolyl cis-trans isomerase B	-1.5	3.2E-05	-1.31	3.8E-03				
PA1797		hypothetical protein	2.9	2.6E-02			2.8	1.0E-02		
PA1798	parS	two-component sensor, ParS			1.17	2.3E-02				
PA1800	tig	trigger factor					-1.5	6.3E-07		
PA1802	clpX	ClpX			-1.12	1.1E-02				

PA1807		NppD			-1.08	4.6E-02				
PA1810	nppA2	NppA2			-1.07	2.0E-02				
PA1813		probable hydroxyacylglutathione hydrolase			-1.09	1.6E-02			-1.06	8.0E-03
PA1821		probable enoyl-CoA hydratase/isomerase			-1.09	3.7E-02				
PA1822	fimL	hypothetical protein			-1.13	1.1E-02				
PA1823	nudC	NudC					-1.6	1.9E-08		
PA1824		conserved hypothetical protein					-1.8	8.0E-03		
PA1827		probable short-chain dehydrogenase					-1.9	1.1E-02		
PA1831		hypothetical protein			1.1	3.8E-02				
PA1832		probable protease			1.11	1.1E-02				
PA1835		hypothetical protein	1.7	5.1E-05						
PA1836		probable transcriptional regulator					-1.5	2.5E-03		
PA1837		hypothetical protein			-1.21	1.1E-03				
PA1840		hypothetical protein					-2.3	5.8E-14		
PA1844	tse1	Tse1			1.63	1.2E-02				
PA1845	tsi l	Tsi1	1.5	1.4E-02						
PA1847	nfuA	NfuA					1.6	2.8E-18		
PA1852		hypothetical protein					1.7	3.2E-06		
PA1858	str	streptomycin 3"- phosphotransferase					1.6	5.1E-04		
PA1859		probable transcriptional regulator	1.6	5.8E-04						
PA1868	xqhA	secretion protein XqhA	-2.1	4.8E-05						
PA1870		hypothetical protein	1.7	3.2E-04						
PA1871	lasA	LasA protease precursor	1.7	2.0E-04						
PA1873		hypothetical protein	1.5	2.2E-02						
PA1874		hypothetical protein	2.3	4.2E-52						
PA1875		probable outer membrane protein precursor	2.3	3.5E-45						
PA1876		probable ATP- binding/permease fusion ABC transporter	2.2	4.2E-42	1.11	1.4E-02				
PA1877		probable secretion protein	2.1	6.1E-35	1.53	2.2E-05			1.28	3.5E-03
PA1878		hypothetical protein	3.8	1.3E-51	2.37	3.7E-05			2.02	3.7E-06

PA1879		hypothetical protein	2.5	3.4E-10						
PA1880		probable oxidoreductase	3.3			1.6E-04			1 33	5.4E-04
PA1881		probable oxidoreductase	3.1	2.0E-27		1.0E 01 1.1E-02				4.5E-02
PA1882		probable transporter	1.6	2.0E 27 2.4E-02	1.20	1.112 02			1.10	1.512 02
PA1885		conserved hypothetical protein	1.6	1.2E-02			2.3	5.1E-09		
PA1887		hypothetical protein	1.7	2.9E-02						
PA1888		hypothetical protein	2.2	1.1E-03			1.8	5.5E-03		
PA1889		hypothetical protein	1.6	2.2E-03						
PA1892		hypothetical protein			-1.29	1.7E-02				
PA1893		hypothetical protein			-1.11	4.6E-02				
PA1896		hypothetical protein			-1.2	7.9E-04			-1.07	2.6E-02
PA1897		hypothetical protein			-1.9	4.0E-02				
PA1899	phzA2	probable phenazine biosynthesis protein	1.7	2.6E-08					1.1	4.7E-02
PA1900	phzB2	probable phenazine biosynthesis protein	2.0	3.0E-10	1.25	4.3E-02				
PA1901	phzC2	phenazine biosynthesis protein PhzC	1.9	2.2E-06	1.44	4.5E-03			1.31	2.4E-03
PA1903	phzE2	phenazine biosynthesis protein PhzE			1.24	7.2E-04			1.17	2.9E-04
PA1905	phzG2	probable pyridoxamine 5'- phosphate oxidase	1.5	2.7E-05	1.16	9.7E-03				
PA1911	femR	sigma factor regulator, FemR					1.9	1.5E-02		
PA1912	femI	ECF sigma factor, FemI					1.9	1.5E-03		
PA1914		conserved hypothetical protein	1.8	2.9E-08						
PA1920	nrdD	class III (anaerobic) ribonucleoside- triphosphate reductase subunit, NrdD					1.7	1.0E-02		
PA1921		hypothetical protein					2.2	9.0E-06		
PA1922		probable TonB-dependent receptor					8.4	2.6E-04		
PA1923		hypothetical protein					5.7	4.3E-07		
PA1926		Uncharacterized protein	-1.7	2.8E-08						
PA1927	metE	5- methyltetrahydropteroyltri glutamate-homocysteine S- methyltransferase	2.5	1.6E-09	1.46	3.9E-03				

PA1929		hypothetical protein					1.6	8.8E-03		
PA1930		probable chemotaxis transducer	1.6	6.8E-03			1.7	3.9E-04		
PA1931		probable ferredoxin					1.7	1.7E-03		
PA1932		probable hydroxylase molybdopterin-containing subunit	1.8	2.2E-03			2.5	8.1E-10		
PA1933		probable hydroxylase large subunit	1.5	5.6E-03			1.7	9.2E-06		
PA1937		conserved hypothetical protein					-1.8	3.4E-02		
PA1938		conserved hypothetical protein	1.7	3.4E-02						
PA1943		hypothetical protein					1.6	2.9E-06		
PA1944		hypothetical protein	1.6	4.5E-07	1.15	1.4E-03				
PA1945		probable transcriptional regulator	1.5	3.6E-03						
PA1946	rbsB	binding protein component precursor of ABC ribose transporter	1.6	9.6E-08	1.17	9.6E-04			1.11	5.4E-03
PA1949	rbsR	ribose operon repressor RbsR							1.07	1.6E-02
PA1957		hypothetical protein					1.6	7.1E-04		
PA1960		hypothetical protein					-1.6	1.1E-03		
PA1964		probable ATP-binding component of ABC transporter	-1.9	3.6E-06	-1.28	9.6E-03			-1.17	4.3E-02
PA1965		hypothetical protein					-1.7	3.5E-04		
PA1967		hypothetical protein	1.8	2.6E-05						
PA1969		hypothetical protein			-1.2	1.8E-02				
PA1980	eraR	response regulator EraR					-1.8	1.1E-02		
PA1982	exaA	quinoprotein ethanol dehydrogenase							-1.31	3.8E-02
PA1986	pqqB	pyrroloquinoline quinone biosynthesis protein B					1.5	3.2E-05		
PA1987	pqqC	pyrroloquinoline quinone biosynthesis protein C					-1.6	7.4E-06	-1.21	1.8E-04
PA1994		hypothetical protein					1.7	2.9E-08		
PA1995		hypothetical protein					1.5	4.7E-06		
PA1996	ppiC1	peptidyl-prolyl cis-trans isomerase C1					2.5	1.2E-17		

D A 2 000	110	dehydrocarnitine CoA	1.6	1 05 02						
PA2000	dchB	transferase, DchB	-1.6	1.8E-03						
PA2001	atoB	acetyl-CoA acetyltransferase			-1.17	9.9E-03				
PA2002		conserved hypothetical protein	-1.6	2.6E-04			-1.6	6.4E-06		
PA2003	bdhA	3-hydroxybutyrate dehydrogenase			1.19	3.4E-03				
PA2011	liuE	3-hydroxy-3- methylglutaryl-CoA lyase			-1.12	2.4E-02				
PA2018	mexY	Resistance-Nodulation- Cell Division (RND) multidrug efflux transporter MexY	1.8	6.5E-04						
PA2019	mexX	Resistance-Nodulation- Cell Division (RND) multidrug efflux membrane fusion protein MexX precursor	1.9	4.9E-07	1.53	5.4E-04				
PA2020	mexZ	MexZ			1.13	4.3E-02				
PA2021		hypothetical protein	2.3	2.1E-03						
PA2022		probable nucleotide sugar dehydrogenase	1.8	4.0E-03						
PA2023	galU	UTPglucose-1-phosphate uridylyltransferase			-1.13	2.4E-02			-1.12	7.2E-03
PA2024		probable ring-cleaving dioxygenase	1.7	9.7E-03			1.5	1.3E-02		
PA2031		hypothetical protein					-2.4	3.9E-20		
PA2035		probable decarboxylase	1.8	5.0E-06						
PA2036		hypothetical protein	1.9	1.5E-04			-2.1	1.2E-05		
PA2038		hypothetical protein	-2.8	4.7E-03						
PA2039		hypothetical protein	-2.9	5.2E-08						
PA2044		hypothetical protein			-1.22	2.4E-04			-1.11	3.0E-04
PA2046		hypothetical protein					2.0	5.8E-04		
PA2047	cmrA	chloramphenicol resistance activator CmrA	1.9	5.5E-11	1.25	1.9E-03				
PA2048		hypothetical protein	2.6	2.3E-20			2.4	6.9E-26		
PA2052	cynS	cyanate lyase					2.0	1.1E-05		
PA2064	рсоВ	copper resistance protein B precursor	1.8	5.7E-03						
PA2065	pcoA	copper resistance protein A precursor	1.8	5.7E-05						

PA2066		hypothetical protein	1.7	7.4E-07						
PA2067		probable hydrolase	1.7	7.2E-08						
PA2068		probable major facilitator superfamily (MFS) transporter	1.8	2.7E-09						
PA2069		probable carbamoyl transferase	1.8	7.6E-09	1.17	2.2E-03			1.15	1.1E-02
PA2071	fusA2	elongation factor G	1.6	1.4E-03						
PA2072		conserved hypothetical protein	1.7	1.1E-04	1.16	1.4E-02			1.13	3.3E-02
PA2081	kynB	kynurenine formamidase, KynB					1.6	1.1E-09		
PA2082	kynR	KynR			1.18	5.2E-03			1.12	8.0E-03
PA2087		hypothetical protein					9.9	2.7E-09		
PA2097		probable flavin-binding monooxygenase	3.5	7.8E-27	1.31	8.2E-03			1.18	3.9E-02
PA2098		probable esterase/deacetylase	3.5	1.2E-05						
PA2099		probable short-chain dehydrogenase	4.4	4.2E-09						
PA2101		conserved hypothetical protein	2.2	4.6E-05						
PA2102		hypothetical protein	1.6	8.8E-05						
PA2103		probable molybdopterin biosynthesis protein MoeB	1.8	3.5E-11						
PA2104		probable cysteine synthase	1.5	4.8E-05						
PA2107		hypothetical protein					1.9	1.6E-02		
PA2108		probable decarboxylase	2.0	4.3E-04						
PA2110		hypothetical protein	-1.6	4.5E-02						
PA2112		conserved hypothetical protein	-1.9	3.0E-03						
PA2113	opdO	pyroglutamate porin OpdO	-2.2	7.0E-05						
PA2114		probable major facilitator superfamily (MFS) transporter	-1.9	8.0E-08						
PA2119		alcohol dehydrogenase (Zn-dependent)	1.9	1.3E-02	1.2	2.9E-02				
PA2122		hypothetical protein					1.9	1.7E-06		
PA2126	cgrC	cupA gene regulator C, CgrC	2.2	1.2E-05			1.7	8.5E-05		
PA2126 .1	cgrB	cupA gene regulator B, CgrB	1.8	7.6E-03			2.3	2.4E-07		

PA2127	cgrA	cupA gene regulator A, CgrA	1.8	4.3E-06						
PA2134		hypothetical protein	2.8	2.2E-05			2.6	2.1E-06		
PA2135		probable transporter	1.8	4.2E-02			2.1	8.0E-04		
PA2136		hypothetical protein	2.5	1.6E-02						
PA2137		hypothetical protein	1.9	9.4E-03						
PA2138	ligD	Multifunctional non- homologous end joining protein LigD	1.6	4.7E-02						
PA2139		hypothetical protein	3.8	3.6E-03			3.3	2.3E-04		
PA2140		probable metallothionein	4.2	5.1E-04			2.8	1.2E-03		
PA2141		hypothetical protein	2.3	1.5E-02			2.5	5.0E-04		
PA2142		probable short-chain dehydrogenase	2.3	9.1E-04	1.17	4.0E-02				
PA2143		hypothetical protein	2.5	1.0E-04			5.6	1.8E-20		
PA2144	glgP	glycogen phosphorylase	2.1	3.0E-04	1.21	4.0E-02	2.4	1.4E-07		
PA2145		hypothetical protein	2.7	1.2E-06						
PA2146		conserved hypothetical protein	4.0	6.3E-05						
PA2147	katE	catalase HPII	2.8	6.8E-09			2.0	3.0E-06	1.33	7.7E-03
PA2148		conserved hypothetical protein	2.9	6.5E-07			1.6	7.3E-03		
PA2149		hypothetical protein	2.4	1.1E-03			2.7	3.5E-06		
PA2150		conserved hypothetical protein	2.2	6.3E-04			1.9	8.1E-04		
PA2151		conserved hypothetical protein	1.8	7.7E-03			2.3	1.8E-06		
PA2152		probable trehalose synthase	2.2	3.0E-04	1.19	1.9E-02	2.4	1.2E-06		
PA2153	glgB	1,4-alpha-glucan branching enzyme	2.1	2.1E-03			2.4	8.8E-06		
PA2154		conserved hypothetical protein	2.6	8.9E-04			2.0	2.4E-03		
PA2155		probable phospholipase	3.4	1.5E-06			2.5	9.6E-06		
PA2156		conserved hypothetical protein	3.4	5.0E-04			2.8	2.4E-04		
PA2157		hypothetical protein	3.1	1.0E-06			2.5	5.9E-07		
PA2158		probable alcohol dehydrogenase (Zn- dependent)	3.1	2.1E-06			2.0	4.7E-04		

PA2159		conserved hypothetical protein	2.9	5.7E-06			2.6	8.4E-07	
PA2160		probable glycosyl hydrolase	2.8	1.0E-05			1.9	1.3E-03	
PA2161		hypothetical protein	2.4	1.7E-03			2.4	1.1E-04	
PA2162		probable glycosyl hydrolase	2.5	8.7E-05			2.1	1.1E-04	
PA2163		hypothetical protein	2.6	1.0E-05			2.1	5.5E-05	
PA2164		probable glycosyl hydrolase	2.2	4.8E-05	1.27	2.4E-02	2.0	1.7E-05	
PA2165		probable glycogen synthase	2.4	3.7E-06			2.0	1.5E-05	
PA2167		hypothetical protein	2.0	9.5E-04			1.9	2.0E-04	
PA2168		hypothetical protein	2.2	8.3E-03			2.4	2.4E-04	
PA2169		hypothetical protein	3.7	6.4E-05					
PA2170		hypothetical protein	3.2	7.4E-06			2.7	6.3E-07	
PA2171		hypothetical protein	3.4	6.2E-05	1.46	3.7E-02	2.0	1.1E-02	
PA2172		hypothetical protein	3.2	1.4E-07			2.9	3.2E-09	
PA2173		hypothetical protein	2.8	2.8E-05			3.1	1.4E-08	
PA2174		hypothetical protein	1.7	1.6E-02			1.6	1.8E-02	
PA2175		hypothetical protein					1.8	1.9E-02	
PA2176		hypothetical protein	1.8	8.8E-03			2.2	1.9E-05	
PA2177		probable sensor/response regulator hybrid	1.8	2.5E-04					
PA2178		hypothetical protein					2.5	8.3E-03	
PA2179		hypothetical protein	3.2	4.1E-05			1.9	6.1E-03	
PA2180		hypothetical protein	2.0	1.2E-03			2.3	5.4E-07	
PA2181		hypothetical protein	2.4	4.2E-03					
PA2182		hypothetical protein	1.8	2.2E-03					
PA2183		hypothetical protein	2.3	1.0E-02					
PA2184		conserved hypothetical protein	2.4	1.6E-04			2.4	4.6E-06	
PA2185	katN	non-heme catalase KatN	1.9	6.0E-03			1.8	2.0E-03	
PA2186		hypothetical protein					3.7	4.8E-07	
PA2187		hypothetical protein	2.7	3.5E-04			3.0	1.1E-06	
PA2188		probable alcohol dehydrogenase (Zn- dependent)					1.7	3.2E-02	
PA2189		hypothetical protein	2.9	7.6E-04					

PA2190		conserved hypothetical protein	2.4	4.2E-04			2.4	1.1E-05		
PA2191	exoY	adenylate cyclase ExoY	-3.8	1.2E-17			-2.0	6.6E-07		
PA2192		conserved hypothetical protein	1.9	3.4E-03			1.6	1.1E-02		
PA2194	hcnB	hydrogen cyanide synthase HcnB			1.26	2.7E-02				
PA2198		hypothetical protein					2.0	4.7E-15		
PA2199		probable dehydrogenase			1.11	2.0E-02				
PA2205		hypothetical protein	1.5	2.5E-02						
PA2221		conserved hypothetical protein	1.6	3.3E-02						
PA2222		hypothetical protein	3.8	9.6E-27	1.6	1.7E-04			1.23	1.5E-02
PA2223		hypothetical protein	2.1	1.2E-17	1.52	1.9E-02				
PA2224		hypothetical protein	2.2	1.4E-09						
PA2225		hypothetical protein	2.1	9.7E-06						
PA2226	qsrO	QsrO	2.1	8.1E-10						
PA2227	vqsM	AraC-type transcriptional regulator VqsM	1.8	3.3E-06						
PA2228		hypothetical protein	1.7	9.9E-09						
PA2229		conserved hypothetical protein	1.6	1.3E-03						
PA2231	pslA	PslA	1.9	1.3E-09	1.29	2.2E-03			1.21	3.2E-02
PA2232	pslB	PslB	1.8	8.7E-12	1.34	6.5E-03			1.19	3.2E-02
PA2233	pslC	PslC	1.6	5.4E-09	1.14	4.5E-02				
PA2234	pslD	PslD	1.7	4.9E-18	1.29	5.6E-03				
PA2235	pslE	PslE	1.7	2.6E-09	1.19	4.8E-03				
PA2236	pslF	PslF	1.6	1.4E-07						
PA2237	pslG	PslG	1.5	1.4E-14	1.19	4.1E-03				
PA2238	pslH	PslH	1.7	1.1E-06	1.28	1.8E-03			1.12	4.0E-02
PA2239	pslI	PslI	1.6	7.4E-05	1.13	4.6E-02				
PA2243	pslM	hypothetical protein	1.7	5.1E-03						
PA2244	pslN	hypothetical protein	1.9	8.2E-03			1.7	8.8E-03		
PA2246	bkdR	transcriptional regulator BkdR			1.06	2.1E-02				
PA2253	ansA	L-asparaginase I					1.7	3.6E-06		
PA2258	<i>ptxR</i>	transcriptional regulator PtxR	2.2	1.2E-05						
PA2259	ptxS	transcriptional regulator PtxS	1.8	1.6E-04						

PA2260		hypothetical protein	5.0	8.7E-04			2.4	2.6E-02		
PA2261		probable 2-ketogluconate kinase	1.8	4.7E-02			2.0	6.6E-03		
PA2262		probable 2-ketogluconate transporter	2.0	2.0E-02						
PA2263		probable 2-hydroxyacid dehydrogenase	1.8	1.9E-02			1.6	2.0E-02		
PA2265		gluconate dehydrogenase			1.09	6.6E-03				
PA2269		conserved hypothetical protein	1.6	2.2E-02						
PA2273	soxR	SoxR	2.4	1.5E-09						
PA2275		probable alcohol dehydrogenase (Zn- dependent)	7.0	5.8E-79	2.12	9.8E-07			1.75	9.1E-06
PA2276		probable transcriptional regulator	3.4	2.8E-38	1.27	9.3E-04			1.13	4.3E-03
PA2277	arsR	ArsR protein	2.3	1.9E-06						
PA2295		probable permease of ABC transporter	1.6	2.7E-02			-5.2	1.6E-20		
PA2300	chiC	chitinase	1.7	9.2E-07	1.28	3.0E-02				
PA2302	ambE	AmbE	1.6	4.8E-10	1.13	1.1E-02				
PA2303	ambD	AmbD	1.7	1.2E-07						
PA2304	ambC	AmbC	1.8	3.1E-12	1.12	1.0E-04			1.08	8.6E-04
PA2305	ambB	AmbB	1.6	3.8E-12						
PA2325		hypothetical protein					2.5	2.9E-03		
PA2328		hypothetical protein					6.1	2.7E-31		
PA2337	mtlR	transcriptional regulator MtlR					1.6	9.3E-04		
PA2338		probable binding protein component of ABC maltose/mannitol transporter	-1.8	1.1E-05						
PA2339		probable binding-protein- dependent maltose/mannitol transport protein	-2.1	1.9E-02						
PA2344	mtlZ	fructokinase	-1.8	4.3E-02						
PA2352		probable glycerophosphoryl diester phosphodiesterase	-2.4	5.4E-10			-1.5	8.0E-04		
PA2356	msuD	methanesulfonate sulfonatase MsuD	2.3	6.8E-03			1.8	1.4E-02		

PA2357	msuE	NADH-dependent FMN reductase MsuE	2.3	2.2E-03			2.9	1.9E-07		
PA2358		hypothetical protein	2.9	8.0E-03			2.2	1.8E-02		
PA2361	icmF3	IcmF3	1.5	1.6E-05						
PA2362	dotU3	DotU3	1.9	1.1E-05			-2.0	1.4E-06		
PA2363	hsiJ3	HsiJ3	1.7	1.8E-09						
PA2364	lip3	Lip3	1.6	7.4E-05						
PA2365	hsiB3	HsiB3	1.9	7.4E-09						
PA2366	hsiC3	HsiC3	1.9	1.8E-07						
PA2367	hcp3	Нср3	1.8	2.2E-06						
PA2368	hsiF3	HsiF3	1.7	3.1E-03			-1.6	2.3E-03		
PA2369	hsiG3	HsiG3	1.9	3.2E-11						
PA2370	hsiH3	HsiH3	2.2	1.9E-06						
PA2371	clpV3	ClpV3	1.7	9.5E-07						
PA2372		hypothetical protein	1.7	1.4E-05						
PA2373	vgrG3	VgrG3	1.7	4.7E-07			1.5	4.9E-07		
PA2374	tseF	TseF	1.7	5.2E-06						
PA2376		probable transcriptional regulator	1.6	1.4E-03						
PA2377		hypothetical protein	1.7	3.1E-02						
PA2378		probable aldehyde dehydrogenase	1.8	2.5E-16	1.2	3.9E-03			1.2	1.0E-02
PA2379		probable oxidoreductase	1.8	1.5E-11	1.17	1.3E-02			1.27	1.5E-02
PA2381		hypothetical protein	2.0	9.8E-05						
PA2382	lldA	L-lactate dehydrogenase			-1.2	3.4E-02			-1.22	3.2E-02
PA2384		hypothetical protein	3.3	3.6E-04						
PA2388	fpvR	FpvR			-1.3	1.2E-02				
PA2390	pvdT	PvdT	-1.6	5.0E-03						
PA2391	opmQ	probable outer membrane protein precursor	-1.7	1.1E-02						
PA2393		putative dipeptidase					1.7	2.9E-02		
PA2397	pvdE	pyoverdine biosynthesis protein PvdE					2.6	6.6E-04		
PA2398	fpvA	ferripyoverdine receptor	1.7	4.8E-04						
PA2411		probable thioesterase	1.8	4.1E-03			1.6	1.3E-02		
PA2412		conserved hypothetical protein	1.7	4.9E-02						

PA2413	pvdH	L-2,4-diaminobutyrate:2- ketoglutarate 4- aminotransferase, PvdH	1.6	3.1E-02			1.6	1.4E-02		
PA2414		L-sorbosone dehydrogenase	2.1	5.4E-05			1.5	7.6E-03		
PA2415		hypothetical protein	2.2	6.7E-04						
PA2416	treA	periplasmic trehalase precursor	2.1	5.9E-04			2.2	5.1E-06		
PA2423		hypothetical protein					2.0	6.3E-12		
PA2426	pvdS	sigma factor PvdS					2.1	2.0E-02		
PA2433		hypothetical protein	2.0	9.5E-04			3.7	2.3E-16		
PA2435		probable cation- transporting P-type ATPase					1.7	3.9E-05		
PA2436		hypothetical protein	-2.2	8.6E-10	-1.32	1.1E-02			-1.34	4.5E-03
PA2437		hypothetical protein					2.7	2.9E-07		
PA2439		hypothetical protein					1.9	1.1E-02		
PA2442	gcvT2	glycine cleavage system protein T2			-1.16	9.9E-03				
PA2444	glyA2	serine hydroxymethyltransferase	-1.7	6.4E-03	-1.27	2.6E-03	-1.9	2.3E-04		
PA2445	gcvP2	glycine cleavage system protein P2	-1.6	6.3E-05						
PA2446	gcvH2	glycine cleavage system protein H2			-1.26	4.5E-02	-1.9	4.7E-06		
PA2452		hypothetical protein	2.4	1.4E-03						
PA2453		hypothetical protein	-2.0	4.1E-06			-1.5	2.5E-03		
PA2455		hypothetical protein					-1.6	3.9E-03		
PA2459		hypothetical protein					-1.9	6.2E-04		
PA2464		hypothetical protein					-1.7	2.3E-06		
PA2467	foxR	Anti-sigma factor FoxR	-1.6	1.3E-02			2.1	6.2E-07		
PA2476	dsbG	thiol:disulfide interchange protein DsbG							-1.1	1.1E-02
PA2483		conserved hypothetical protein	1.7	6.2E-12	1.29	4.3E-05			1.24	1.8E-04
PA2485		hypothetical protein	1.7	1.4E-03						
PA2486	ptrC	Pseudomonas type III repressor gene C, PtrC	2.2	1.2E-05			2.9	2.6E-13		
PA2491	mexS	MexS			-1.25	2.0E-03			-1.18	5.9E-03
PA2493	mexE	Resistance-Nodulation- Cell Division (RND)			1.11	1.2E-02				

		multidaya offluy								
		multidrug efflux membrane fusion protein								
		MexE precursor								
PA2494	mexF	Resistance-Nodulation- Cell Division (RND) multidrug efflux transporter MexF					1.7	2.7E-02		
PA2504		hypothetical protein	1.8	2.2E-03			1.7	2.9E-04		
PA2507	catA	catechol 1,2-dioxygenase			-1.45	2.0E-03				
PA2508	catC	muconolactone delta- isomerase					1.8	1.5E-05		
PA2511	antR	AntR					1.7	2.7E-03		
PA2512	antA	anthranilate dioxygenase large subunit			-1.21	5.2E-03				
PA2513	antB	anthranilate dioxygenase small subunit			-1.63	4.7E-03				
PA2514	antC	anthranilate dioxygenase reductase			-1.35	3.8E-03				
PA2523	czcR	CzcR	2.3	4.9E-08						
PA2524	czcS	CzcS	2.2	1.2E-04						
PA2525	opmB	OpmB							1.67	3.0E-02
PA2528	muxA	MuxA			-1.11	2.3E-03			-1.1	6.5E-03
PA2529		hypothetical protein							-1.15	4.6E-02
PA2532	tpx	thiol peroxidase			-1.16	2.4E-03				
PA2535		probable oxidoreductase			-1.07	3.6E-02			-1.09	3.4E-02
PA2544		hypothetical protein			1.14	2.0E-02				
PA2545	xthA	exodeoxyribonuclease III			-1.15	8.2E-03			-1.13	1.3E-02
PA2546		probable ring-cleaving dioxygenase	1.6	2.5E-02	1.49	5.2E-03				
PA2552		probable acyl-CoA dehydrogenase			-1.08	3.1E-03				
PA2553		probable acyl-CoA thiolase			-1.31	1.3E-02	-1.5	6.2E-07		
PA2554		probable short-chain dehydrogenase	-1.7	2.5E-05					-1.05	4.1E-02
PA2555		probable AMP-binding enzyme			-1.14	3.8E-02				
PA2560		hypothetical protein	1.9	1.0E-21			1.7	5.5E-20		
PA2562		hypothetical protein	2.1	3.8E-06	1.36	4.8E-02				
PA2564		hypothetical protein	3.0	4.3E-08						
PA2565		hypothetical protein	2.7	9.5E-06						

PA2566		conserved hypothetical protein	3.2	4.1E-09						
PA2569		hypothetical protein	2.2	2.2E-07						
PA2570	lecA	LecA	7.3	2.4E-08	2.41	3.4E-03				
PA2571		probable two-component sensor	2.0	3.1E-06						
PA2572		probable two-component response regulator	1.9	8.1E-06	1.29	1.4E-02				
PA2573		probable chemotaxis transducer	2.0	3.0E-06	1.25	1.1E-03				
PA2574	alkB1	alkane-1-monooxygenase	1.6	1.5E-03						
PA2575		hypothetical protein					1.5	1.1E-13		
PA2576		hypothetical protein					-1.5	3.6E-02		
PA2577		probable transcriptional regulator	1.7	3.4E-05						
PA2581		hypothetical protein			1.28	1.1E-03				
PA2584	pgsA	CDP-diacylglycerol glycerol-3-phosphate 3- phosphatidyltransferase			1.23	1.2E-02				
PA2592		probable periplasmic spermidine/putrescine- binding protein			1.08	1.3E-02				
PA2594		conserved hypothetical protein			-1.06	6.7E-03				
PA2596		conserved hypothetical protein					-2.3	6.5E-03		
PA2612	serS	seryl-tRNA synthetase			-1.11	1.0E-02				
PA2615	ftsK	cell division protein FtsK			-1.05	2.5E-02				
PA2617	aat	leucyl/phenylalanyl-tRNA- protein transferase			1.09	4.4E-02				
PA2618		hypothetical protein	1.6	1.5E-04						
PA2620	clpA	ATP-binding protease component ClpA	1.6	4.8E-06	1.16	1.1E-02				
PA2622	cspD	cold-shock protein CspD	1.8	1.5E-05	1.25	6.0E-03				
PA2623	icd	isocitrate dehydrogenase			1.12	3.6E-02				
PA2626	trmU	tRNA methyltransferase							-1.05	2.4E-02
PA2629	purB	adenylosuccinate lyase	-1.7	4.8E-07	-1.18	2.2E-03			-1.1	1.7E-02
PA2630		conserved hypothetical protein	-2.1	1.1E-06			-1.5	1.4E-03		
PA2634	aceA	isocitrate lyase AceA			-1.14	3.1E-03				

PA2639	nuoD	NADH dehydrogenase I			1.15	9.0E-05			1.08	1.7E-03
PA2642	nuoG	chain C,D NADH dehydrogenase I			1 16	3.3E-03				
1 A2042	nuoo	chain G			1.10	5.51-05				
PA2647	nuoL	NADH dehydrogenase I chain L			1.22	2.2E-04			1.13	6.4E-03
PA2653		probable transporter	-1.8	7.6E-04						
PA2660		hypothetical protein			-1.1	1.3E-03			-1.06	7.6E-03
PA2663	ppyR	psl and pyoverdine operon regulator, PpyR					2.1	1.5E-04		
PA2664	fhp	flavohemoprotein	1.7	1.1E-02					-1.11	4.9E-02
PA2665	fhpR	Transcriptional activator of P. aeruginosa flavohemoglobin, FhpR							1.07	1.7E-02
PA2682		conserved hypothetical protein	-1.8	3.8E-04	-1.79	3.9E-04			-1.28	2.8E-02
PA2696		probable transcriptional regulator	1.5	4.5E-03						
PA2697		hypothetical protein	1.9	5.2E-03						
PA2698		probable hydrolase			1.23	2.6E-04			1.19	3.2E-03
PA2699		hypothetical protein	1.7	2.5E-05						
PA2700	opdB	proline porin OpdB					1.7	2.1E-05		
PA2706		hypothetical protein					1.5	1.0E-07		
PA2708		hypothetical protein					1.6	3.1E-03		
PA2709	cysK	cysteine synthase A			-1.2	3.9E-03			-1.13	3.6E-02
PA2712		hypothetical protein					-1.7	3.1E-02		
PA2713		conserved hypothetical protein					2.1	1.4E-16		
PA2715		probable ferredoxin					2.1	1.9E-03		
PA2719		hypothetical protein					1.7	6.3E-10		
PA2721		hypothetical protein			-1.13	4.7E-02				
PA2725		probable chaperone			1.19	1.1E-02				
PA2730		hypothetical protein			1.04	4.2E-02			1.05	1.9E-02
PA2734		hypothetical protein			1.11	5.0E-02				
PA2737		conserved hypothetical protein					1.5	4.3E-30		
PA2743	infC	translation initiation factor IF-3			1.09	3.3E-02				
PA2744	thrS	threonyl-tRNA synthetase			-1.06	4.6E-02				
PA2746		hypothetical protein	2.9	3.6E-09			2.0	5.6E-06		

PA2753 hypothetical protein protein 2.4 4.4E-03 Image: conserved hypothetical protein 1.9 1.3E-04 Image: conserved hypothetical protein 1.19 1.3E-04 Image: conserved hypothetical protein 1.17 1.7E-03 PA2755 eco in precursor 1.26 9.7E-05 1.17 1.7E-03 PA2750 hypothetical protein 3.3 1.4E-19 1.8 3.2E-02 PA2750 hypothetical protein 3.3 1.4E-19 1.8 3.2E-02 PA2760 oprQ OptQ 1.6 3.0E-03 1.11 1.12 PA2770 hypothetical protein 3.0 6.1E-11 1.4 1.8E-03 -1.31 7.1E-05 PA2770 hypothetical protein 1.13 4.1E-04 1.1 1.4E-03 PA2770 hypothetical protein 1.8 3.8E-09 1.42 6.9E-03 1.1 1.4E-03 PA2776 pauB3 FAD-dependent 1.42 6.9E-03 1.1 1.4E-03 PA2778 hypothetical protein 1.6 4	PA2747		hypothetical protein					1.6	2.2E-03		
PA2754 Conserved hypothetical protein 1.9 1.3E-04 Image: Marcol Science Sci	PA2753		VI I	2.4	4.4E-03						
PA2756hypothetical proteinImage: second secon	PA2754		conserved hypothetical								
PA2757 hypothetical protein	PA2755	eco	ecotin precursor			1.26	9.7E-05			1.17	1.7E-03
PA2759 hypothetical protein 3.3 1.4E-19 PA2760 oprQ OprQ -1.6 3.0E-03	PA2756		hypothetical protein					-1.8	3.9E-12		
PA2760 oprQ -1.6 3.0E-03 Image: Constraint of the second s	PA2757		hypothetical protein					-1.8	3.2E-02		
PA2761 hypothetical protein -3.0 6.1E-11 -1.4 1.8E-03 -1.31 7.1E-04 PA2763 hypothetical protein -2.3 1.7E-05 -1.31 7.1E-04 PA2770 hypothetical protein 1.13 4.1E-04 1.1 1.4E-03 PA2770 hypothetical protein 1.13 4.1E-04 1.1 1.4E-03 PA2771 diguanylate cyclase with a self-blocked 1-site, Desbis 1.8 3.8E-09 -	PA2759		hypothetical protein	3.3	1.4E-19						
PA2763 hypothetical protein -2.3 1.7E-05 PA2770 hypothetical protein 1.13 4.1E-04 1.1 1.4E-03 PA2771 diguanylate cyclase with a self-blocked I-site, Dcsbis 1.8 3.8E-09 1.42 6.9E-03 1.4 <t< td=""><td>PA2760</td><td>oprQ</td><td>OprQ</td><td>-1.6</td><td>3.0E-03</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	PA2760	oprQ	OprQ	-1.6	3.0E-03						
PA2770hypothetical protein1.134.1E-041.11.4E-03PA2771diguanylate cyclase with a self-blocked I-site, Dcsbis1.83.8E-091.426.9E-031.41.4PA2776pauB3FAD-dependent oxidoreductase1.64.6E-031.426.9E-031.41.4PA2777conserved hypothetical protein1.64.6E-031.426.9E-031.41.4PA2777hypothetical protein1.64.6E-031.426.9E-031.41.4PA2778hypothetical protein1.53.3E-031.61.61.6PA2781hypothetical protein1.64.0E-041.11.41.4PA2782banlbiofilm-associated metzincin Inhibitor, BamI-1.82.8E-041.11.65.2E-03PA2783mep72Mep72-2.59.2E-05-1.85.2E-031.61.082.9E-03PA2783probable chemotaxis transducer1.76.3E-031.082.9E-031.082.9E-03PA2790hypothetical protein1.64.9E-041.11.082.9E-03PA2793hypothetical protein1.64.9E-041.11.082.9E-03PA2794hypothetical protein1.71.2E-041.041.082.9E-03PA2795hypothetical protein1.71.2E-041.041.052.9E-03PA2800vacJVacJ-1.411.1E-021.052.41.4E-12 <t< td=""><td>PA2761</td><td></td><td>hypothetical protein</td><td>-3.0</td><td>6.1E-11</td><td>-1.4</td><td>1.8E-03</td><td></td><td></td><td>-1.31</td><td>7.1E-04</td></t<>	PA2761		hypothetical protein	-3.0	6.1E-11	-1.4	1.8E-03			-1.31	7.1E-04
PA2771digunylate cyclase with a self-blocked I-site, Dcsbis1.83.8E-09Image: Conserved hypothetical proteinPA2776pauB3FAD-dependent oxidoreductase1.426.9E-03Image: Conserved hypothetical proteinPA2777conserved hypothetical protein1.64.6E-03Image: Conserved hypothetical proteinImage: Conserved hypothetical proteinPA2778hypothetical protein1.53.3E-03Image: Conserved hypothetical proteinImage: Conserved hypothetical pro	PA2763		hypothetical protein					-2.3	1.7E-05		
FA2/71self-blocked I-site, Dcsbis1.83.8E-09IIIIIIPA2776pauB3FAD-dependent oxidoreductase1.64.6E-031.426.9E-03IIIIPA2777conserved hypothetical protein1.64.6E-03IIIIIIIPA2777hypothetical protein1.53.3E-03IIIIIIIPA2779hypothetical protein1.64.0E-04IIIIIIIPA2781hypothetical protein1.64.0E-04III<	PA2770		hypothetical protein			1.13	4.1E-04			1.1	1.4E-03
PA2176pauB3oxidoreductase1.426.9E-03IIIPA2777conserved hypothetical protein1.64.6E-03IIIIIPA2778hypothetical protein1.53.3E-03IIIIPA2779hypothetical protein1.53.3E-03IIIIPA2781hypothetical protein1.64.0E-04IIIIPA2782bamIbiofilm-associated metzincin Inhibitor, BamI-1.82.8E-04IIIIPA2783mep72Mep72-2.59.2E-05I-1.85.2E-03IIPA2788probable chemotaxis transducer1.76.3E-03IIIIIPA2790hypothetical protein1.64.9E-04IIIIIIIPA2793hypothetical protein1.64.9E-04II	PA2771			1.8	3.8E-09						
PA2777 protein 1.6 4.0E-03 Image: Conserved hypothetical protein 1.18 4.0E-02 Image: Conserved hypothetical protein PA2778 hypothetical protein 1.5 3.3E-03 Image: Conserved hypothetical protein 1.6 4.0E-04 Image: Conserved hypothetical protein Image: Conserved hypothetical protein 1.6 4.0E-04 Image: Conserved hypothetical protein Image: Conserved hypothetical protein </td <td>PA2776</td> <td>pauB3</td> <td>-</td> <td></td> <td></td> <td>1.42</td> <td>6.9E-03</td> <td></td> <td></td> <td></td> <td></td>	PA2776	pauB3	-			1.42	6.9E-03				
PA2779hypothetical protein1.53.3E-03Image: constraint of the second s	PA2777		• 1	1.6	4.6E-03						
PA2781hypothetical protein biofilm-associated metzincin Inhibitor, BamI1.64.0E-04Image: Conserved hypothetical proteinPA2782bamIbiofilm-associated metzincin Inhibitor, BamI-1.82.8E-04Image: Conserved hypothetical protein-1.85.2E-03PA2783mep72Mep72-2.59.2E-05Image: Conserved hypothetical protein1.64.9E-04Image: Conserved hypothetical proteinPA2793hypothetical protein1.64.9E-04Image: Conserved hypothetical protein1.14.3E-03Image: Conserved hypothetical proteinPA2826probable glutathione peroxidase1.11.8E-03Image: Conserved hypothetical protein1.136.3E-04Image: Conserved hypothetical proteinPA2828probable glutathione peroxidase1.069.1E-03Image: Conserved hypothetical protein1.069.1E-03Image: Conserved hypothetical proteinPA2828probable glutathione peroxidaseImage: Conserved hypothetical proteinImage: Conserved hyp	PA2778		hypothetical protein			1.18	4.0E-02				
PA2782bamlbiofilm-associated metzincin Inhibitor, Baml-1.82.8E-04PA2783 $mep72$ Mep72-2.59.2E-05-1.85.2E-03PA2788probable chemotaxis transducer1.7 $6.3E-03$ -1.85.2E-03PA2790hypothetical protein1.6 $4.9E-04$ PA2793hypothetical protein1.6 $4.9E-04$ PA2797hypothetical protein1.1 $4.3E-03$ 1.082.9E-03PA2799hypothetical protein1.7 $1.2E-04$ PA2800 $vacJ$ VacJ-1.41 $1.1E-02$ PA2816hypothetical protein2.1 $1.8E-02$ PA2823conserved hypothetical protein-1.34 $6.3E-04$ PA2826probable glutathione peroxidase1.06 $9.1E-03$ 1.05 $3.7E-03$ PA2828probable aminotransferase-1.24 $1.8E-03$ -1.11 $2.0E-02$	PA2779		hypothetical protein	1.5	3.3E-03						
PA2782baml metzincin Inhibitor, Baml-1.82.8E-04Image: Conserved hypothetical protein probable glutathione probable chemotaxis transducer-1.82.8E-04Image: Conserved hypothetical protein protein-1.85.2E-03Image: Conserved hypothetical protein proteinPA2783mep72Mep72-2.59.2E-05Image: Conserved hypothetical protein protein1.76.3E-03Image: Conserved hypothetical proteinImage: Conserved hypothetical protein protein1.14.3E-03Image: Conserved hypothetical protein proteinImage: Conserved hypotheti	PA2781		hypothetical protein	1.6	4.0E-04						
PA2788probable chemotaxis transducer1.76.3E-03IIIPA2790hypothetical protein1.64.9E-04IIPA2793hypothetical protein1.64.9E-04IIPA2793hypothetical protein1.14.3E-03IIPA2797hypothetical protein1.71.2E-04IIPA2799hypothetical protein1.71.2E-04IIPA2800vacJVacJ-1.411.1E-02IPA2816hypothetical protein2.11.8E-02IIPA2819hypothetical protein2.11.8E-02IIPA2823conserved hypothetical protein-1.346.3E-04IIPA2826probable glutathione peroxidase1.069.1E-031.053.7E-03PA2828probable aminotransferase-1.241.8E-03-1.112.0E-02	PA2782	bamI		-1.8	2.8E-04						
PA27881.76.3E-031.66.3E-031.76.3E-03PA2790hypothetical protein1.64.9E-04111PA2793hypothetical protein1.164.9E-04111PA2797hypothetical protein1.14.3E-031.082.9E-03PA2799hypothetical protein1.71.2E-04111PA2800vacJVacJ1-1.411.1E-021PA2816hypothetical protein2.11.8E-0211PA2823conserved hypothetical protein2.11.8E-0211PA2826probable glutathione peroxidase1.069.1E-031.053.7E-03PA2828probable aminotransferase-1.241.8E-03-1.112.0E-02	PA2783	mep72	Mep72	-2.5	9.2E-05			-1.8	5.2E-03		
PA2793hypothetical protein1.256.4E-03IPA2797hypothetical protein1.14.3E-031.082.9E-03PA2799hypothetical protein1.71.2E-04IIPA2800vacJVacJ-1.411.1E-02IIPA2816hypothetical protein2.11.8E-02IIPA2819hypothetical protein2.11.8E-02IIPA2823conserved hypothetical protein-1.346.3E-04IIPA2826probable glutathione peroxidase1.069.1E-031.053.7E-03PA2828probable aminotransferase-1.241.8E-03-1.112.0E-02	PA2788		1	1.7	6.3E-03						
PA2797hypothetical protein1.14.3E-031.082.9E-03PA2799hypothetical protein1.71.2E-04 </td <td>PA2790</td> <td></td> <td>hypothetical protein</td> <td>1.6</td> <td>4.9E-04</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	PA2790		hypothetical protein	1.6	4.9E-04						
PA2799hypothetical protein1.71.2E-04Image: conserved hypothetical proteinPA2800vacJVacJ-1.411.1E-02Image: conserved hypothetical proteinPA2816hypothetical protein2.11.8E-02Image: conserved hypothetical proteinPA2823conserved hypothetical protein-1.346.3E-04Image: conserved hypothetical proteinPA2826probable glutathione peroxidase1.069.1E-031.053.7E-03PA2828probable aminotransferase-1.241.8E-03-1.112.0E-02	PA2793		hypothetical protein			1.25	6.4E-03				
PA2800vacJVacJ-1.411.1E-02PA2816hypothetical protein2.11.8E-022.41.4E-12PA2819hypothetical protein2.11.8E-02PA2823conserved hypothetical protein-1.346.3E-04PA2826probable glutathione peroxidase1.069.1E-031.053.7E-03PA2828probable aminotransferase-1.241.8E-03-1.112.0E-02	PA2797		hypothetical protein			1.1	4.3E-03			1.08	2.9E-03
PA2816hypothetical proteinImage: second secon	PA2799		hypothetical protein	1.7	1.2E-04						
PA2819hypothetical protein2.11.8E-02Image: conserved hypothetical proteinPA2823conserved hypothetical protein-1.346.3E-04Image: conserved hypothetical proteinPA2826probable glutathione peroxidase1.069.1E-031.053.7E-03PA2828probable aminotransferase-1.241.8E-03-1.112.0E-02	PA2800	vacJ	VacJ			-1.41	1.1E-02				
PA2823conserved hypothetical protein-1.346.3E-04Image: conserved hypothetical proteinPA2826probable glutathione peroxidase1.069.1E-031.053.7E-03PA2828probable aminotransferase-1.241.8E-03-1.112.0E-02	PA2816		hypothetical protein					2.4	1.4E-12		
PA2823protein-1.346.3E-04PA2826probable glutathione peroxidase1.069.1E-031.053.7E-03PA2828probable aminotransferase-1.241.8E-03-1.112.0E-02	PA2819		hypothetical protein	2.1	1.8E-02						
PA2820 peroxidase 1.00 9.1E-03 1.03 5.7E-03 PA2828 probable aminotransferase -1.24 1.8E-03 -1.11 2.0E-02	PA2823		protein			-1.34	6.3E-04				
	PA2826					1.06	9.1E-03			1.05	3.7E-03
PA2829 hypothetical protein -2.2 2.8E-04	PA2828		probable aminotransferase			-1.24	1.8E-03			-1.11	2.0E-02
	PA2829		hypothetical protein	-2.2	2.8E-04						

PA2830	htpX	heat shock protein HtpX			1.18	1.3E-02				
PA2840		probable ATP-dependent RNA helicase	-2.0	1.7E-08						
PA2843		probable aldolase			-1.08	1.3E-02			-1.08	2.1E-02
PA2846		probable transcriptional regulator	1.6	7.3E-03						
PA2848		probable transcriptional regulator					1.6	1.3E-02		
PA2849	ohrR	OhrR	1.6	2.2E-05	1.11	2.8E-02				
PA2850	ohr	organic hydroperoxide resistance protein			1.36	2.0E-03				
PA2851	efp	translation elongation factor P	-1.6	2.4E-05	-1.16	3.2E-03			-1.11	2.2E-02
PA2853	oprI	Outer membrane lipoprotein OprI precursor			1.34	2.8E-02				
PA2857		probable ATP-binding component of ABC transporter			1.15	5.8E-04			1.12	7.9E-03
PA2859	greB	transcription elongation factor GreB					-1.6	7.0E-06		
PA2864		conserved hypothetical protein	1.5	1.1E-03						
PA2869		hypothetical protein			2.04	9.7E-03	2.3	2.6E-15		
PA2870		diguanylate cyclase					1.7	1.5E-06		
PA2873	tgpA	transglutaminase protein A, TgpA	-1.9	2.8E-07						
PA2874		hypothetical protein	-2.2	1.5E-05						
PA2876	pyrF	orotidine 5'-phosphate decarboxylase			-1.19	2.3E-02				
PA2878		hypothetical protein	2.7	6.6E-03						
PA2882		probable two-component sensor					2.3	5.0E-03		
PA2885	atuR	putative repressor of atu genes			-1.17	2.7E-02				
PA2886	atuA	expressed protein with apparent function in citronellol catabolism	1.8	6.7E-09						
PA2887	atu B	putative dehydrogenase involved in catabolism of citronellol	1.7	7.3E-04						
PA2888	atuC	geranyl-CoA carboxylase, beta-subunit	1.6	3.0E-04						

PA2896sbrI1.5PA2900probable outer membrane protein precursor-1.1PA2901hypothetical protein-1.6PA2902hypothetical protein-1.6PA2903cobJprecorrin-3 methylase CobJ-1.58.2E-03-1.174.8E-02	2.2E-05 1.6E-06 3.3E-06	-1.16	2.9E-03
PA2896sbrISbrI1.5PA2900probable outer membrane protein precursor-1.11.1E-02PA2901hypothetical protein-1.61.1E-04PA2902hypothetical protein-1.61.1E-04PA2903cobJprecorrin-3 methylase CobJ-1.58.2E-03PA2904cobJprecorrin-21.83.9E.08	1.6E-06	-1.16	2.9E-03
PA2900probable outer membrane protein precursor-1.11.1E-02PA2901hypothetical protein-1.61.1E-04PA2902hypothetical protein-1.61.1E-04PA2903cobJprecorrin-3 methylase CobJ-1.58.2E-03PA2904cobJprecorrin-21.83.9E-08		-1.16	2.9E-03
PA2900Iprotein precursor-1.11.1E-02PA2901hypothetical protein-1.61.1E-04Image: color state s		-1.16	2.9E-03
PA2902 hypothetical protein -1.19 8.7E-04 PA2903 cobJ precorrin-3 methylase -1.5 8.2E-03 -1.17 4.8E-02 PA2904 cobJ precorrin-2 1.8 3.9E-08 1.6 3		-1.16	2.9E-03
PA2903 cobJ precorrin-3 methylase CobJ -1.5 8.2E-03 -1.17 4.8E-02 PA2904 cobJ precorrin-2 1.8 3.9E 0.8 1.6 3		-1.16	2.9E-03
PA2903 cobJ -1.5 8.2E-03 -1.17 4.8E-02 PA2904 cobJ precorrin-2 1.8 3.9E-08 1.6 3	3.3E-06		
	3.3E-06		
PA2905cobHprecorrin isomerase CobH-1.62.1E-03			
PA2907cobLprecorrin-6y-dependent methyltransferase CobL-1.53.2E-03	1		
PA2908cbiDcobalamin biosynthetic protein CbiD-1.58.1E-03			
PA2911 probable TonB-dependent receptor -2.4 2.8E-19			
PA2912 probable ATP-binding component of ABC transporter -2.2 1.9E-05			
PA2913 hypothetical protein -2.1 6.8E-04			
PA2914 probable permease of ABC -2.3 3.5E-03			
regulator	1.0E-06		
PA2918probable short-chain dehydrogenase-1.247.5E-041.58.	3.4E-04	-1.14	1.9E-03
PA2920 probable chemotaxis transducer 1.5 9.4E-03			
PA2928hypothetical protein2.97.9E-19			
PA2929 hypothetical protein 4.5 6.2E-45	_		
PA2931 <i>cifR</i> CifR -1.6 1.	.9E-03		
PA2932 morB morphinone reductase 2.0 2.8E-02			
	4.7E-05		
PA2938 probable transporter 1.8 1.3E-04			
PA2939 probable aminopeptidase 2.3 3.7E-24 1.59 1.5E-03		1.44	1.2E-02
PA2944 <i>cobN</i> cobalamin biosynthetic protein CobN -1.15 2.9E-02		-1.13	2.4E-02
PA2948 <i>cobM</i> precorrin-3 methylase -1.6 1.5E-05			

PA2949		esterase			-1.1	4.9E-02				
PA2950	pfm	Pfm			-1.1	1.4E-02				
PA2952	<i>etfB</i>	electron transfer flavoprotein beta-subunit			1.07	5.2E-03			1.09	1.0E-03
PA2953		electron transfer flavoprotein-ubiquinone oxidoreductase							1.07	4.4E-03
PA2958		hypothetical protein	1.5	6.1E-05			1.5	6.0E-07		
PA2962	tmk	thymidylate kinase			-1.11	9.8E-03				
PA2965	fabF1	beta-ketoacyl-acyl carrier protein synthase II			-1.16	1.9E-02				
PA2967	fabG	3-oxoacyl-[acyl-carrier- protein] reductase							1.07	1.0E-02
PA2968	fabD	malonyl-CoA-[acyl- carrier-protein] transacylase			-1.17	1.7E-02				
PA2973		probable peptidase	-1.6	9.1E-11	-1.18	9.7E-03			-1.17	9.9E-03
PA2974		probable hydrolase	-1.6	2.0E-06						
PA2975	rluC	ribosomal large subunit pseudouridine synthase C			-1.17	4.4E-03			-1.13	1.3E-02
PA2977	murB	UDP-N- acetylpyruvoylglucosamin e reductase	-1.6	9.3E-05						
PA2978	ptpA	phosphotyrosine protein phosphatase	-1.6	2.4E-04			-1.6	1.0E-05		
PA2981	lpxK	tetraacyldisaccharide 4*- kinase	-1.7	1.6E-04						
PA2982		conserved hypothetical protein	-2.0	1.3E-09						
PA2983		probable tolQ-type transport protein	-2.2	6.1E-10	-1.27	5.9E-04	-1.6	4.8E-06	-1.2	6.7E-03
PA2985		hypothetical protein					1.8	7.9E-15		
PA2986	lolC	lipoprotein localization protein LolC					-2.5	7.4E-17		
PA2988	lolE	lipoprotein localization protein LolE	-1.6	2.4E-06						
PA2989		hypothetical protein			-1.13	2.6E-02				
PA2994	nqrF	Na+-translocating NADH:quinone oxidoreductase, subunit Nqr6			-1.14	1.5E-02	-1.5	1.2E-07		
PA2996	nqrD	Na+-translocating NADH:uniquinone					-1.8	4.3E-13		

		oxidoreductase subunit								
PA2997	nqrC	Nqr4 Na+-translocating NADH:ubiquinone oxidoreductase subunit Nrq3			-1.27	4.5E-03				
PA2998	nqrB	Na+-translocating NADH:ubiquinone oxidoreductase subunit Nrq2	-1.5	9.1E-08	-1.2	4.3E-03				
PA2999	nqrA	Na+-translocating NADH:ubiquinone oxidoreductase subunit Nrq1			-1.18	1.3E-02				
PA3000	aroP1	aromatic amino acid transport protein AroP1	-1.8	2.2E-05						
PA3001		probable glyceraldehyde- 3-phosphate dehydrogenase			-1.09	2.6E-02				
PA3003		hypothetical protein			-1.21	1.1E-02				
PA3004		5-methylthioadenosine phosphorylase MtnP			-1.16	4.2E-02				
PA3005	nagZ	beta-N-acetyl-D- glucosaminidase			-1.14	3.6E-02				
PA3006	psrA	transcriptional regulator PsrA			1.09	3.4E-02			1.14	1.6E-02
PA3007	lexA	repressor protein LexA	1.8	5.6E-23	1.1	6.1E-03				
PA3008		hypothetical protein	1.5	3.7E-07						
PA3013	faoB	fatty-acid oxidation complex beta-subunit			-1.06	2.1E-02				
PA3018		hypothetical protein					-1.6	1.8E-03		
PA3019		probable ATP-binding component of ABC transporter			-1.11	4.2E-02				
PA3022		hypothetical protein			-1.21	7.9E-03			-1.17	3.0E-02
PA3028	moeA 2	molybdenum cofactor biosynthesis protein A2			1.17	1.2E-02				
PA3032	snrl	cytochrome c Snr1	2.3	4.3E-08	1.41	1.9E-02	2.0	2.3E-08		
PA3033		hypothetical protein					-1.9	2.0E-04		
PA3034		probable transcriptional regulator			-1.1	1.8E-02				
PA3038	opdQ	OpdQ							-1.05	4.0E-02
PA3039		probable transporter	1.6	1.5E-03						

PA3040		conserved hypothetical protein	1.5	3.3E-03	1.37	2.3E-02				
PA3041		hypothetical protein	1.6	5.3E-04			1.8	1.0E-07	1.49	1.6E-02
PA3042		hypothetical protein					2.0	1.5E-11		
PA3063	pelB	PelB	1.7	2.3E-02						
PA3066		hypothetical protein					-1.6	6.7E-03		
PA3069		hypothetical protein					1.6	1.5E-07		
PA3071		hypothetical protein	-1.9	5.2E-07						
PA3073		hypothetical protein	-1.6	9.5E-03						
PA3076		hypothetical protein			-1.3	1.2E-02			-1.21	9.0E-03
PA3078	cprS	CprS	-1.5	1.3E-03						
PA3079		hypothetical protein	-1.7	4.2E-07	1.2	1.4E-02				
PA3080		hypothetical protein	-1.9	1.5E-07	-1.19	1.6E-02				
PA3081		conserved hypothetical protein	-2.0	3.8E-08	-1.11	3.0E-02				
PA3082	gbt	glycine betaine transmethylase	-2.4	6.2E-11	-1.29	4.1E-03				
PA3083	pepN	aminopeptidase N			-1.14	2.1E-04			-1.1	5.2E-03
PA3091		hypothetical protein	-1.6	1.1E-12	-1.2	4.8E-03			-1.16	1.3E-02
PA3093		hypothetical protein			1.31	5.6E-05			1.17	1.0E-03
PA3095	xcpZ	general secretion pathway protein M			1.16	8.8E-03				
PA3097	хсрХ	general secretion pathway protein K			1.07	3.0E-02				
PA3102	xcpS	general secretion pathway protein F			1.1	1.1E-02			1.09	1.8E-02
PA3103	xcpR	general secretion pathway protein E			1.13	5.7E-03				
PA3104	xcpP	secretion protein XcpP					2.0	7.0E-18		
PA3112	accD	acetyl-CoA carboxylase beta subunit			-1.09	3.0E-02	-1.6	2.5E-10		
PA3114	truA	tRNA-pseudouridine synthase I			-1.18	5.1E-03				
PA3116		probable aspartate- semialdehyde dehydrogenase					2.7	1.4E-12		
PA3120	leuD	3-isopropylmalate dehydratase small subunit			-1.19	2.1E-02				
PA3122		probable transcriptional regulator			1.17	3.0E-03			1.11	7.9E-03

PA3123		conserved hypothetical protein					1.6	1.8E-07		
PA3138	uvrB	excinuclease ABC subunit B			-1.21	1.3E-03			-1.09	2.8E-02
PA3139		probable amino acid aminotransferase			-1.19	1.1E-02				
PA3141	wbpM	nucleotide sugar epimerase/dehydratase WbpM			1.25	8.3E-03			1.16	1.5E-02
PA3142		integrase	1.8	1.3E-14						
PA3143		transposase	1.6	8.8E-13						
PA3144		transposase with Helix- turn-helix Hin domain	1.7	2.7E-11						
PA3145	wbpL	glycosyltransferase WbpL			1.17	5.7E-03				
PA3146	wbpK	WbpK							1.08	4.6E-02
PA3147	wbpJ	probable glycosyl transferase WbpJ			1.14	1.8E-03	-1.5	1.0E-04	1.14	3.4E-02
PA3148	wbpI	UDP-N-acetylglucosamine 2-epimerase WbpI			1.23	7.0E-04			1.2	6.3E-05
PA3150	wbpG	LPS biosynthesis protein WbpG			1.13	2.0E-02			1.15	5.8E-03
PA3151	hisF2	imidazoleglycerol- phosphate synthase, cyclase subunit			1.13	1.1E-02	-1.6	6.9E-05		
PA3152	hisH2	glutamine amidotransferase			1.08	1.8E-02				
PA3155	wbpE	UDP-2-acetamido-2- dideoxy-d-ribo-hex-3- uluronic acid transaminase, wbpE	1.5	4.8E-11						
PA3156	wbpD	UDP-2-acetamido-3- amino-2,3-dideoxy-d- glucuronic acid N- acetyltransferase, WbpD			1.18	4.3E-04				
PA3158	wbpB	UDP-2-acetamido-2- deoxy-d-glucuronic acid 3- dehydrogenase, WbpB			1.14	5.7E-04			1.1	1.6E-02
PA3159	wbpA	UDP-N-acetyl-d- glucosamine 6- Dehydrogenase			1.21	6.2E-05			1.13	4.8E-03
PA3160	WZZ	O-antigen chain length regulator			1.27	2.3E-02				

		integration host factor beta							1 70	
PA3161	himD	subunit					-2.2	2.0E-19	1.59	4.6E-02
PA3162	rpsA	30S ribosomal protein S1					-1.5	3.1E-06		
PA3167	serC	3-phosphoserine aminotransferase			-1.09	2.5E-02				
PA3169		5-methylthioribose-1- phosphate isomerase MtnA			-1.07	1.5E-03			-1.06	9.3E-03
PA3174	hutR	HutR	-1.7	1.8E-02						
PA3177		hypothetical protein	1.7	6.2E-05						
PA3178		hypothetical protein					-1.8	5.6E-08		
PA3179		conserved hypothetical protein			1.2	3.2E-05			1.08	1.0E-02
PA3181		2-keto-3-deoxy-6- phosphogluconate aldolase			-1.22	1.4E-02				
PA3182	pgl	6- phosphogluconolactonase			-1.17	1.7E-02				
PA3187		probable ATP-binding component of ABC transporter	-1.6	1.2E-02						
PA3188		probable permease of ABC sugar transporter	-1.7	7.4E-04			-1.7	3.8E-04		
PA3189		probable permease of ABC sugar transporter	-1.6	1.9E-02			-2.2	5.3E-07		
PA3190		probable binding protein component of ABC sugar transporter					-1.8	1.0E-07		
PA3202		conserved hypothetical protein			-1.36	1.4E-02				
PA3205		hypothetical protein	1.6	4.2E-07	1.17	3.9E-02				
PA3209		conserved hypothetical protein	-1.8	3.9E-02			-2.0	1.4E-02		
PA3210	trkH	potassium uptake protein TrkH	-1.7	8.3E-05						
PA3213		hypothetical protein			-1.14	7.4E-04			-1.1	7.8E-03
PA3214		hypothetical protein							-1.07	4.4E-02
PA3216		hypothetical protein					1.9	8.8E-14		
PA3220		probable transcriptional regulator					1.5	2.2E-04		
PA3221	csaA	CsaA protein	-2.0	6.9E-08	-1.21	1.3E-02	-1.7	3.7E-06	-1.14	2.9E-02
PA3222		hypothetical protein	-1.6	1.7E-02			-1.9	1.8E-04		
PA3224		hypothetical protein			-1.32	1.3E-04			-1.13	6.1E-03
PA3225		transcriptional regulator			1.14	1.6E-02				

	peptidyl-prolyl cis-trans								
ppiA				1.07	5.2E-03	1.6	3.7E-13	1.06	9.8E-04
	1			1.15	3.7E-04			1.08	3.6E-02
	ABC transporter								
	conserved hypothetical			11	4 8E-02	-21	8 1F-18		
	1			1.1	4.01 02	2.1	0.112 10		
		1.5	5.1E-05	1.14	1.4E-03				
minC								-1.05	1.9E-02
minE						-1.7	3.9E-20		
						1.0	1 75 05		
	transporter					1.8	1./E-05		
	probable oxidoreductase					-1.7	6.0E-13		
	hypothetical protein	1.6	2.8E-13			1.8	6.4E-33		
	probable peptidyl-prolyl								
	cis-trans isomerase, FkbP-							1.15	1.9E-02
	type								
						-1.8	3.2E-10		
	1								
						-2.2	1.6E-05		
сарВ	-	-1.5	1.1E-04	-1.67	3.2E-02				
		-2.6	5.1E-08						
		2.0	0.12.00						
	VI I			1.2	4.3E-03			1.12	3.3E-02
				1.09	1.9E-02				
		1 7	2 45 04			1 7	0.00.04		
		-1./	3.4E-04			-1.5	9.3E-04		
	1					8.5	1.0E-45		
		2.0	1 5E 09			2.4	2 2E 06		
	VI I	-2.9	1.3E-08			-2.4	2.2E-00		
		1.6	4.4E-03			-1.6	2.4E-03		
				_1 15	1 4E-03			-1.06	1.7E-02
<i>+1;1</i>				1.15	1.42 05	17	7 OF 04	1.00	1.712 02
1111		1.0	2.00.00			-1./	7.012-04		
		1.0	3.8E-02						
				-1.35	1.3E-02				
fadD2	CoA ligase			1.09	1.9E-02				
	minE	Isomerase Aprobable ATP-binding/permease fusion ABC transporterconserved hypothetical proteinconserved hypothetical proteinminCcell division inhibitor MinCminEcell division topological specificity factor MinEprobable permease of ABC transporterprobable permease of ABC transporterprobable permease of ABC transporterprobable permease of ABC transporterprobable pertidyl-prolyl cis-trans isomerase, FkbP- typeconserved hypothetical proteinprobable transportercapBcold acclimation protein B probable TonB-dependent receptorprobable two-component sensorprobable short-chain dehydrogenasehypothetical proteinprobable short-chain dehydrogenasehypothetical proteinprobable short-chain dehydrogenasehypothetical proteinprobable short-chain dehydrogenasehypothetical proteinprobable short-chain dehydrogenasehypothetical proteinprobable short-chain dehydrogenasehypothetical proteinthi1hypothetical proteinthi1hypothetical proteinbypothetical proteinbypothetical proteindehydrogenasehypothetical proteindehydrogenasehypothetical proteindehydrogenasehypothetical proteinfor dDPhypothetical proteinfor dDPhypothetical protein <td>ppIAisomerase Aprobable ATP- binding/permease fusion ABC transporterconserved hypothetical proteinconserved hypothetical proteinfincconserved hypothetical proteinminCcell division inhibitor MinCminEcell division topological specificity factor MinEprobable permease of ABC transporterprobable permease of ABC transporterprobable permease of ABC transporterprobable permease of ABC transporterprobable pertidyl-prolyl cis-trans isomerase, FkbP- typeconserved hypothetical proteinprobable transporterprobable two-component sensorprobable two-component sensorprobable short-chain dehydrogenasehypothetical protein-1.6hypothetical proteinprobable short-chain dehydrogenasehypothetical protein-2.9id hypothetical proteinprobable HIT family proteinprobable HIT family proteinprobable HIT family proteinprobable HIT family proteinproteinfadD2long-chain-</td> <td>pptAisomerase AImage: somerase Aprobable ATP- binding/permease fusion ABC transporterImage: somerase fusion ABC transporterconserved hypothetical protein1.5somerase fusion ABC transporter1.5conserved hypothetical protein1.5somerase fusion minC1.5cell division inhibitor MinCImage: somerase fusion fusionminEcell division topological specificity factor MinEImage: somerase fusion fusionminEcell division topological specificity factor MinEImage: somerase fusion fusionminEprobable permease of ABC transporterImage: somerase fusion fusionprobable permease of ABC transporterImage: somerase fusion fusionprobable pertidyl-prolyl cis-trans isomerase, FkbP- typeImage: somerase fusion fusionfusionprobable transporterImage: somerase fusion fusionprobable fusion protein probable transporterImage: somerase fusion fusionfusionprobable fusion receptorImage: somerase fusion fusionfusionprobable fusion fusionImage: somerase fusion fusionfusionprobable fusion fusionImage: somerase fusion fusionfusionprobable fusion fusionImage: somerase fusion fusionfusionfusionImage: somerase fusion fusionfusionfusionImage: somerase fusion fusionfusionfusionfusionfusionfusionImage: somerase fusion fusion<tr< td=""><td>pplAImage of the second se</td><td>pppIAPrisomerase AImage: Conserved hypothetical proteinImage: Conservet</td><td>pplAProbable ATP- isomerase AImage: Conserved hypothetical proteinImage: Conserved hypothetical probable permease of ABC transporterImage: Conserved hypothetical proteinImage: Conserved hypothetical protein</td><td>pppA1.10$3.2E-03$1.6$3.7E-13$probable ATP- binding/permease fusion ABC transporter1.15$3.7E-04$1.1$4.8E-02$$2.1$$8.1E-18$conserved hypothetical protein1.5$5.1E-05$$1.14$$1.4E-03$$2.1$$8.1E-18$conserved hypothetical protein1.5$5.1E-05$$1.14$$1.4E-03$$2.1$$8.1E-18$minCcell division inhibitor MinC1.5$5.1E-05$$1.14$$1.4E-03$$2.1$$8.1E-18$minEcell division topological specificity factor MinE1.6$2.8E-13$$2.1$$8.1E-18$probable permease of ABC transporter1.6$2.8E-13$$1.8$$1.7E-05$probable petidyl-prolyl cis-trans isomerase, FkbP- type1.6$2.8E-13$$1.8$$3.2E-10$probable transporter1.6$2.8E-13$$2.2$$2.1$$8.2E-10$probable transporter2.6$5.1E-08$$-1.8$$3.2E-10$probable transporter2.6$5.1E-08$$-1.8$$3.2E-10$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.7$1.5E-08$$-1.5$$9.3E-04$</td></tr<><td>pppAPrime isomerase AImage: binom isomerase AImage: binom isomeras</td></td>	ppIAisomerase Aprobable ATP- binding/permease fusion ABC transporterconserved hypothetical proteinconserved hypothetical proteinfincconserved hypothetical proteinminCcell division inhibitor MinCminEcell division topological specificity factor MinEprobable permease of ABC transporterprobable permease of ABC transporterprobable permease of ABC transporterprobable permease of ABC transporterprobable pertidyl-prolyl cis-trans isomerase, FkbP- typeconserved hypothetical proteinprobable transporterprobable two-component sensorprobable two-component sensorprobable short-chain dehydrogenasehypothetical protein-1.6hypothetical proteinprobable short-chain dehydrogenasehypothetical protein-2.9id hypothetical proteinprobable HIT family proteinprobable HIT family proteinprobable HIT family proteinprobable HIT family proteinproteinfadD2long-chain-	pptAisomerase AImage: somerase Aprobable ATP- binding/permease fusion ABC transporterImage: somerase fusion ABC transporterconserved hypothetical protein1.5somerase fusion ABC transporter1.5conserved hypothetical protein1.5somerase fusion minC1.5cell division inhibitor MinCImage: somerase fusion fusionminEcell division topological specificity factor MinEImage: somerase fusion fusionminEcell division topological specificity factor MinEImage: somerase fusion fusionminEprobable permease of ABC transporterImage: somerase fusion fusionprobable permease of ABC transporterImage: somerase fusion fusionprobable pertidyl-prolyl cis-trans isomerase, FkbP- typeImage: somerase fusion fusionfusionprobable transporterImage: somerase fusion fusionprobable fusion protein probable transporterImage: somerase fusion fusionfusionprobable fusion receptorImage: somerase fusion fusionfusionprobable fusion fusionImage: somerase fusion fusionfusionprobable fusion fusionImage: somerase fusion fusionfusionprobable fusion fusionImage: somerase fusion fusionfusionfusionImage: somerase fusion fusionfusionfusionImage: somerase fusion fusionfusionfusionfusionfusionfusionImage: somerase fusion fusion <tr< td=""><td>pplAImage of the second se</td><td>pppIAPrisomerase AImage: Conserved hypothetical proteinImage: Conservet</td><td>pplAProbable ATP- isomerase AImage: Conserved hypothetical proteinImage: Conserved hypothetical probable permease of ABC transporterImage: Conserved hypothetical proteinImage: Conserved hypothetical protein</td><td>pppA1.10$3.2E-03$1.6$3.7E-13$probable ATP- binding/permease fusion ABC transporter1.15$3.7E-04$1.1$4.8E-02$$2.1$$8.1E-18$conserved hypothetical protein1.5$5.1E-05$$1.14$$1.4E-03$$2.1$$8.1E-18$conserved hypothetical protein1.5$5.1E-05$$1.14$$1.4E-03$$2.1$$8.1E-18$minCcell division inhibitor MinC1.5$5.1E-05$$1.14$$1.4E-03$$2.1$$8.1E-18$minEcell division topological specificity factor MinE1.6$2.8E-13$$2.1$$8.1E-18$probable permease of ABC transporter1.6$2.8E-13$$1.8$$1.7E-05$probable petidyl-prolyl cis-trans isomerase, FkbP- type1.6$2.8E-13$$1.8$$3.2E-10$probable transporter1.6$2.8E-13$$2.2$$2.1$$8.2E-10$probable transporter2.6$5.1E-08$$-1.8$$3.2E-10$probable transporter2.6$5.1E-08$$-1.8$$3.2E-10$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.6$5.1E-08$$-1.5$$9.3E-04$probable transporter2.7$1.5E-08$$-1.5$$9.3E-04$</td></tr<> <td>pppAPrime isomerase AImage: binom isomerase AImage: binom isomeras</td>	pplAImage of the second se	pppIAPrisomerase AImage: Conserved hypothetical proteinImage: Conservet	pplAProbable ATP- isomerase AImage: Conserved hypothetical proteinImage: Conserved hypothetical probable permease of ABC transporterImage: Conserved hypothetical proteinImage: Conserved hypothetical protein	pppA1.10 $3.2E-03$ 1.6 $3.7E-13$ probable ATP- binding/permease fusion ABC transporter1.15 $3.7E-04$ 1.1 $4.8E-02$ 2.1 $8.1E-18$ conserved hypothetical protein1.5 $5.1E-05$ 1.14 $1.4E-03$ 2.1 $8.1E-18$ conserved hypothetical protein1.5 $5.1E-05$ 1.14 $1.4E-03$ 2.1 $8.1E-18$ minCcell division inhibitor MinC1.5 $5.1E-05$ 1.14 $1.4E-03$ 2.1 $8.1E-18$ minEcell division topological specificity factor MinE1.6 $2.8E-13$ 2.1 $8.1E-18$ probable permease of ABC transporter1.6 $2.8E-13$ 1.8 $1.7E-05$ probable petidyl-prolyl cis-trans isomerase, FkbP- type1.6 $2.8E-13$ 1.8 $3.2E-10$ probable transporter1.6 $2.8E-13$ 2.2 2.1 $8.2E-10$ probable transporter2.6 $5.1E-08$ -1.8 $3.2E-10$ probable transporter2.6 $5.1E-08$ -1.8 $3.2E-10$ probable transporter2.6 $5.1E-08$ -1.5 $9.3E-04$ probable transporter2.7 $1.5E-08$ -1.5 $9.3E-04$	pppAPrime isomerase AImage: binom isomerase AImage: binom isomeras

PA3307		hypothetical protein	1.6	8.7E-04						
PA3308	hepA	RNA helicase HepA	-1.7	1.5E-09	-1.22	2.9E-03			-1.16	8.8E-03
PA3310		conserved hypothetical protein	-1.5	2.3E-03						
PA3312		probable 3- hydroxyisobutyrate dehydrogenase					-1.7	8.6E-04		
PA3313		hypothetical protein			-1.15	3.0E-03				
PA3314		probable ATP-binding component of ABC transporter			1.31	2.6E-03			1.18	1.8E-02
PA3315		probable permease of ABC transporter					-1.8	7.1E-04		
PA3317		hypothetical protein			1.1	4.0E-02				
PA3319	plcN	non-hemolytic phospholipase C precursor	1.6	1.6E-03						
PA3324		probable short-chain dehydrogenase	1.5	4.0E-02						
PA3325		conserved hypothetical protein	1.6	2.9E-02						
PA3326	clpP2	ClpP2			1.38	1.3E-04			1.24	2.2E-03
PA3327		probable non-ribosomal peptide synthetase	1.6	9.1E-06						
PA3328		probable FAD-dependent monooxygenase	1.5	6.3E-05	1.15	2.6E-03			1.06	9.3E-04
PA3329		hypothetical protein			1.23	3.6E-02				
PA3330		probable short chain dehydrogenase			1.37	1.6E-02			1.23	1.9E-02
PA3332		conserved hypothetical protein			1.42	5.7E-03	-1.7	4.5E-09	1.28	3.7E-03
PA3333	fabH2	3-oxoacyl-[acyl-carrier- protein] synthase III			1.1	5.7E-03				
PA3334	аср3	Acp3					-3.3	6.5E-51		
PA3335		hypothetical protein			1.29	4.4E-02	-2.0	8.5E-18		
PA3336		probable major facilitator superfamily (MFS) transporter				3.2E-03	-1.8	6.9E-12		
PA3340		hypothetical protein	1.8	9.7E-08						
PA3341		probable transcriptional regulator			1.23	4.2E-03			1.13	2.0E-03

		HptB-dependent secretion						I		
PA3346	hsbR	and biofilm regulator HsbR	1.8	3.6E-09	1.22	1.2E-02				
PA3347	hsbA	HptB-dependent secretion and biofilm anti anti-sigma factor HsbA	1.7	4.9E-05						
PA3348		probable chemotaxis protein methyltransferase	1.5	5.3E-07						
PA3349		probable chemotaxis protein	1.6	3.3E-06	1.24	1.4E-02				
PA3350		hypothetical protein	1.6	3.1E-15	1.17	4.2E-03				
PA3351	flgM	FlgM	1.5	1.2E-07						
PA3352		hypothetical protein	1.5	2.7E-14						
PA3353		hypothetical protein			1.06	2.5E-02				
PA3354		hypothetical protein	1.6	2.5E-04						
PA3360		probable secretion protein	1.8	1.6E-02						
PA3361	lecB	fucose-binding lectin PA- IIL	2.9	1.2E-07						
PA3366	amiE	aliphatic amidase			-1.19	2.8E-02				
PA3367		hypothetical protein					-1.7	1.2E-02		
PA3369		hypothetical protein					1.7	2.9E-03		
PA3371		hypothetical protein					1.9	2.1E-04		
PA3372		conserved hypothetical protein					2.1	3.1E-08		
PA3374		conserved hypothetical protein					3.1	2.9E-08		
PA3384	phnC	ATP-binding component of ABC phosphonate transporter	2.0	6.5E-03						
PA3386		conserved hypothetical protein					-1.8	2.6E-04		
PA3392	nosZ	nitrous-oxide reductase precursor	1.7	3.5E-02						
PA3397	fprA	FprA			-1.13	7.8E-03			-1.09	3.2E-02
PA3415		probable dihydrolipoamide acetyltransferase	2.0	1.6E-03						
PA3416		probable pyruvate dehydrogenase E1 component, beta chain	2.0	1.7E-03						
PA3417		probable pyruvate dehydrogenase E1 component, alpha subunit	2.1	1.2E-03						

PA3418	ldh	leucine dehydrogenase	1.9	1.7E-04			1.6	2.9E-03		
PA3430		probable aldolase					1.6	3.2E-06		
PA3436		hypothetical protein	1.7	1.0E-02			2.1	2.0E-05		
PA3438	folE1	GTP cyclohydrolase I precursor			-1.31	2.9E-04			-1.2	4.3E-03
PA3440		conserved hypothetical protein			-1.29	5.0E-02	1.9	8.0E-15		
PA3441		probable molybdopterin- binding protein					-2.0	2.6E-02		
PA3451		hypothetical protein	2.2	1.8E-06						
PA3452	mqoA	malate:quinone oxidoreductase			1.11	9.6E-03				
PA3453		conserved hypothetical protein			-1.09	3.8E-02				
PA3454		probable acyl-CoA thiolase			-1.15	2.4E-02			-1.1	4.2E-02
PA3456		hypothetical protein							-1.15	1.4E-02
PA3458		probable transcriptional regulator					-1.5	6.2E-03		
PA3459		probable glutamine amidotransferase	1.6	3.2E-03			2.1	2.2E-08		
PA3460		probable acetyltransferase	1.6	7.4E-04			1.6	3.7E-05		
PA3461		conserved hypothetical protein					2.0	1.6E-08		
PA3466		probable ATP-dependent RNA helicase			-1.17	4.2E-03			-1.14	2.2E-04
PA3468		conserved hypothetical protein	-1.6	5.2E-06						
PA3471		probable malic enzyme							1.04	1.9E-02
PA3477	rhlR	transcriptional regulator RhlR	1.8	1.9E-05	1.17	1.9E-02				
PA3478	rhlB	rhamnosyltransferase chain B	2.4	3.0E-04						
PA3479	rhlA	rhamnosyltransferase chain A	2.6	1.1E-04						
PA3480		probable deoxycytidine triphosphate deaminase							1.05	3.2E-02
PA3482	metG	methionyl-tRNA synthetase			-1.1	1.6E-02			-1.08	3.3E-02
PA3486	vgrG4 b	VgrG4b	1.7	6.9E-04						
PA3496		hypothetical protein	1.5	7.9E-03			1.9	3.2E-07		

PA3498		probable oxidoreductase	3.3	1.9E-25					
PA3499		hypothetical protein	1.8	2.4E-02					
PA3512		probable permease of ABC transporter					1.6	2.7E-02	
PA3519		hypothetical protein	1.8	1.2E-04					
PA3520		hypothetical protein	2.6	6.8E-11					
PA3522	mexQ	MexQ					-1.6	1.8E-02	
PA3525	argG	argininosuccinate synthase			-1.11	3.9E-02			
PA3526	motY	MotY	1.6	2.3E-07					
PA3529		alkylhydroperoxide reductase C			-1.2	4.3E-02			
PA3538		probable ATP-binding component of ABC transporter			-1.22	5.4E-03			
PA3540	algD	GDP-mannose 6- dehydrogenase AlgD	7.1	2.9E-09					
PA3541	alg8	alginate biosynthesis protein Alg8	2.8	4.7E-05			1.6	3.8E-02	
PA3542	alg44	alginate biosynthesis protein Alg44	2.1	2.7E-02					
PA3543	algK	alginate biosynthetic protein AlgK precursor					-3.2	6.6E-10	
PA3544	algE	Alginate production outer membrane protein AlgE precursor	2.7	1.8E-04			1.9	2.3E-03	
PA3545	algG	alginate-c5-mannuronan- epimerase AlgG	2.4	9.7E-05					
PA3547	algL	poly(beta-d-mannuronate) lyase precursor AlgL	2.0	3.5E-02					
PA3548	algI	alginate o-acetyltransferase AlgI	1.8	3.9E-02					
PA3550	algF	alginate o-acetyltransferase AlgF	1.7	4.7E-02					
PA3551	algA	phosphomannose isomerase / guanosine 5'- diphospho-D-mannose pyrophosphorylase	1.8	1.3E-03					
PA3552	arnB	ArnB					2.1	1.8E-04	
PA3553	arnC	ArnC					2.5	3.1E-08	
PA3554	arnA	ArnA					1.6	9.4E-03	
PA3556	arnT	inner membrane L-Ara4N transferase ArnT					1.7	1.5E-03	

PA3558	arnF	ArnF					2.5	1.0E-05		
PA3559		probable nucleotide sugar dehydrogenase					2.0	3.8E-04		
PA3567		probable oxidoreductase			-1.13	1.0E-02				
PA3568		probable acetyl-coa synthetase			1.16	2.5E-02			1.14	2.7E-02
PA3570	mmsA	methylmalonate- semialdehyde dehydrogenase			1.16	1.1E-02			1.15	7.0E-03
PA3572		hypothetical protein	1.5	7.0E-03						
PA3573		probable major facilitator superfamily (MFS) transporter	-1.7	2.0E-04						
PA3574	nalD	NalD			1.12	5.6E-03				
PA3579		probable carbohydrate kinase			-1.11	1.3E-02				
PA3580		conserved hypothetical protein					1.7	1.5E-16		
PA3582	glpK	glycerol kinase			1.13	2.6E-02			1.12	2.2E-02
PA3583	glpR	glycerol-3-phosphate regulon repressor			1.06	2.0E-03			1.06	1.3E-03
PA3584	glpD	glycerol-3-phosphate dehydrogenase			1.12	7.7E-03			1.11	9.2E-03
PA3588		probable porin					1.9	5.2E-03		
PA3598		conserved hypothetical protein					1.9	1.5E-06		
PA3600		conserved hypothetical protein					5.1	6.6E-03		
PA3601		conserved hypothetical protein	3.3	8.8E-03			3.1	2.7E-03		
PA3602		conserved hypothetical protein					1.5	1.2E-07		
PA3603	dgkA	diacylglycerol kinase	-1.6	2.2E-05						
PA3607	potA	polyamine transport protein PotA	-2.4	1.7E-04						
PA3608	potB	polyamine transport protein PotB	-2.3	9.1E-03						
PA3609	potC	polyamine transport protein PotC	-2.7	4.3E-03						
PA3610	potD	polyamine transport protein PotD	-2.5	1.9E-08						
PA3611		hypothetical protein			-1.36	1.9E-04			-1.19	1.8E-02

PA3612		conserved hypothetical protein	-1.5	2.8E-04			1.8	5.2E-12		
PA3613		hypothetical protein	1.5	2.7E-03						
PA3614		hypothetical protein			1.13	2.8E-02				
PA3617	recA	RecA protein			1.09	3.4E-02				
PA3621	fdxA	ferredoxin I	-1.6	4.0E-03			-2.1	3.1E-09		
PA3622	rpoS	sigma factor RpoS	1.8	1.4E-09	1.17	5.1E-03			1.13	1.1E-02
PA3623		conserved hypothetical protein	1.7	2.2E-10	-1.2	1.0E-02				
PA3626		conserved hypothetical protein			-1.11	4.4E-02				
PA3629	adhC	alcohol dehydrogenase class III					-1.5	1.9E-18	1.12	2.4E-03
PA3632		conserved hypothetical protein					-1.7	4.9E-05		
PA3633	ygbP	4-diphosphocytidyl-2-C- methylerythritol synthase	-1.5	1.0E-05						
PA3636	kdsA	2-dehydro-3- deoxyphosphooctonate aldolase			-1.13	1.6E-03				
PA3637	pyrG	CTP synthase			-1.08	1.2E-02				
PA3638		conserved hypothetical protein					-1.6	7.0E-05		
PA3639	accA	acetyl-coenzyme A carboxylase carboxyl transferase (alpha subunit)			-1.05	4.4E-02				
PA3640	dnaE	DNA polymerase III, alpha chain							-1.08	3.0E-02
PA3641		probable amino acid permease	-1.9	3.7E-06	-1.2	8.1E-03	-1.6	5.5E-05	-1.11	4.4E-02
PA3646	lpxD	UDP-3-O-[3- hydroxylauroyl] glucosamine N- acyltransferase			1.09	1.7E-02				
PA3647		probable outer membrane protein precursor					-1.8	7.4E-17		
PA3648	opr86	outer membrane protein Opr86							-1.04	2.7E-02
PA3649	mucP	MucP			-1.15	7.2E-03	-2.0	2.8E-21	-1.08	2.8E-02
PA3651	cdsA	phosphatidate cytidylyltransferase					-1.6	7.8E-07		
PA3652	uppS	undecaprenyl pyrophosphate synthetase			-1.1	3.3E-02			-1.09	4.5E-02

PA3657	тар	methionine aminopeptidase			1.12	6.1E-04			1.12	3.6E-03
PA3661		hypothetical protein	2.6	7.0E-05						
PA3663		hypothetical protein					-1.7	2.9E-06		
PA3666	dapD	tetrahydrodipicolinate succinylase			-1.13	9.1E-03				
PA3675		hypothetical protein	-1.6	2.0E-04						
PA3676	mexK	MexK							1.12	4.6E-02
PA3677	mexJ	MexJ			1.15	3.7E-02				
PA3682		hypothetical protein			-1.06	3.9E-02				
PA3683		conserved hypothetical protein	-1.5	1.3E-04						
PA3684		hypothetical protein					3.2	7.1E-24		
PA3685	yeaZ	YeaZ	-1.6	6.0E-03						
PA3686	adk	adenylate kinase			-1.21	6.4E-04				
PA3687	ppc	phosphoenolpyruvate carboxylase			1.11	3.6E-02				
PA3689		probable transcriptional regulator			1.06	2.4E-02			1.1	3.0E-04
PA3691		hypothetical protein	1.7	2.5E-03	1.12	3.3E-02				
PA3692	lptF	Lipotoxon F, LptF	1.7	8.2E-04			2.1	7.2E-09		
PA3693		conserved hypothetical protein	-1.5	8.1E-05						
PA3694		hypothetical protein	-1.5	3.9E-02	-1.08	3.1E-03	-2.0	2.9E-04	-1.09	3.3E-04
PA3695		hypothetical protein	-1.5	2.2E-05						
PA3700	lysS	lysyl-tRNA synthetase	-1.6	3.7E-04						
PA3702	wspR	WspR			-1.08	1.4E-02				
PA3707	wspB	hypothetical protein			1.11	3.9E-02				
PA3708	wspA	probable chemotaxis transducer			1.11	1.5E-02				
PA3710		probable GMC-type oxidoreductase			-1.2	2.9E-02				
PA3713	spdH	spermidine dehydrogenase, SpdH	-1.8	4.6E-06	-1.42	8.0E-04			-1.18	2.1E-02
PA3718		probable major facilitator superfamily (MFS) transporter	1.7	1.5E-02						
PA3720		hypothetical protein					-1.5	3.5E-02		
PA3723		probable FMN oxidoreductase	1.6	4.0E-05						

PA3724	lasB	elastase LasB	1.6	1.7E-07						
		single-stranded-DNA-								
PA3725	recJ	specific exonuclease RecJ	-1.7	1.0E-06						
PA3726		conserved hypothetical protein	-1.5	7.6E-04						
PA3727		hypothetical protein			1.19	4.9E-02				
PA3728		hypothetical protein			1.37	2.1E-02				
PA3730		hypothetical protein					-1.7	2.6E-06		
PA3734		hypothetical protein	2.9	2.1E-06			1.6	2.2E-02		
PA3736	hom	homoserine dehydrogenase			-1.09	1.8E-03			-1.05	2.2E-03
PA3737	dsbC	thiol:disulfide interchange protein DsbC	-1.6	4.9E-08						
PA3738	xerD	integrase/recombinase XerD	-1.5	4.5E-05						
PA3741		hypothetical protein	-1.7	3.3E-03						
PA3742	rplS	50S ribosomal protein L19					-1.9	6.9E-18		
PA3744	rimM	16S rRNA processing protein					-1.6	3.7E-08		
PA3745	rpsP	30S ribosomal protein S16					-2.5	1.9E-33		
PA3746	ffh	signal recognition particle protein Ffh			-1.11	6.6E-03			-1.11	1.4E-02
PA3754		hypothetical protein			-1.15	1.2E-02				
PA3757	nagR	Transcriptional regulator of N-Acetylglucosamine catabolism operon					1.5	2.6E-03		
PA3758		probable N- acetylglucosamine-6- phosphate deacetylase					1.6	1.2E-04		
PA3759		probable aminotransferase					1.9	6.5E-07		
PA3760		N-Acetyl-D-Glucosamine phosphotransferase system transporter			-1.11	1.2E-02				
PA3763	purL	phosphoribosylformylglyci namidine synthase			-1.16	7.0E-04			-1.1	5.1E-03
PA3768		probable metallo- oxidoreductase			-1.19	2.6E-02			-1.15	3.6E-02
PA3769	guaA	GMP synthase	-1.6	3.1E-05						
PA3770	guaB	inosine-5'-monophosphate dehydrogenase	-1.5	3.2E-05	-1.2	7.7E-03				
PA3779		hypothetical protein			-1.27	4.6E-02				
PA3784		hypothetical protein	1.8	1.4E-02			-1.7	7.3E-03		

PA3785		conserved hypothetical protein	1.9	5.1E-03			-1.7	6.3E-03		
PA3786		hypothetical protein	1.6	1.1E-03			1.7	3.9E-07		
PA3787		conserved hypothetical protein					1.6	6.2E-09		
PA3788		hypothetical protein					1.7	8.2E-06		
PA3789		hypothetical protein					-1.8	6.6E-06		
PA3790	oprC	Putative copper transport outer membrane porin OprC precursor			1.19	8.7E-03			1.17	7.2E-04
PA3794		hypothetical protein					-1.6	2.3E-05		
PA3795		probable oxidoreductase					1.7	9.3E-11		
PA3807	ndk	nucleoside diphosphate kinase					-1.6	6.3E-09		
PA3808		conserved hypothetical protein					-1.6	4.0E-14		
PA3812	iscA	probable iron-binding protein IscA					-1.6	1.0E-08		
PA3816	cysE	O-acetylserine synthase							1.19	1.8E-02
PA3817		probable methyltransferase			1.39	2.1E-02				
PA3819		conserved hypothetical protein	1.9	7.8E-05	1.16	3.2E-02	2.2	1.6E-09	1.21	2.3E-02
PA3820	secF	secretion protein SecF	-1.7	4.8E-06			-1.5	4.4E-05		
PA3821	secD	secretion protein SecD	-1.7	8.6E-05						
PA3822		conserved hypothetical protein					-1.7	3.6E-09		
PA3823	tgt	queuine tRNA- ribosyltransferase	-2.0	2.0E-06					-1.1	2.0E-02
PA3824	queA	S-adenosylmethionine:trna ribosyltransferase- isomerase	-1.7	3.6E-04						
PA3827	<i>lptG</i>	Lipopolysaccharide export system permease protein LptG	-1.6	2.0E-04	-1.09	3.2E-02				
PA3835		hypothetical protein	1.9	5.7E-05						
PA3836		hypothetical protein			-1.42	5.2E-03				
PA3838		probable ATP-binding component of ABC transporter			-1.14	1.0E-02				
PA3840		conserved hypothetical protein	-1.9	2.6E-07						
PA3841	exoS	exoenzyme S	-4.1	1.2E-41			-1.5	5.3E-06		

DA 20 42	G	specific Pseudomonas	2.0	0.05.16						
PA3842	spcS	chaperone for ExoS, SpcS	-3.0	8.3E-16						
PA3843		hypothetical protein	-5.5	1.4E-19						
PA3846		hypothetical protein			-1.16	1.0E-02				
PA3847		conserved hypothetical protein					1.8	1.4E-09		
PA3849		conserved hypothetical protein			1.12	3.0E-02				
PA3850		hypothetical protein					1.8	2.9E-09		
PA3857	pcs	phosphatidylcholine synthase					1.6	2.8E-09		
PA3858		probable amino acid- binding protein			-1.21	1.2E-02				
PA3861	rhl	ATP-dependent RNA helicase RhlB	-1.6	8.9E-10						
PA3862	dauB	NAD(P)H-dependent anabolic L-arginine dehydrogenase, DauB			1.14	1.5E-02				
PA3865		probable amino acid binding protein	1.5	2.1E-12						
PA3865 .1		pyocin S4 immunity protein					-1.6	3.7E-06		
PA3866		Pyocin S4	1.7	1.9E-09						
PA3869		hypothetical protein					-1.7	7.0E-03		
PA3878	narX	two-component sensor NarX					1.6	1.1E-07		
PA3887	nhaP	Na+/H+ antiporter NhaP					-1.8	1.8E-14		
PA3888	opuC D	OpuC ABC transporter, permease protein, OpuCD					1.8	4.5E-06		
PA3890	opuC B	OpuC ABC transporter, permease protein, OpuCB					2.6	2.3E-10		
PA3891	opuC A	OpuC ABC transporter, ATP-binding protein, OpuCA					1.8	7.0E-08		
PA3896		probable 2-hydroxyacid dehydrogenase			-1.13	3.3E-03				
PA3897		hypothetical protein	-2.3	6.8E-03						
PA3899	fecI	FecI	-1.7	1.3E-02			1.6	7.4E-03		
PA3902		hypothetical protein					1.7	6.0E-08		
PA3903	prfC	peptide chain release factor 3	-1.6	6.2E-07	-1.15	1.5E-03			-1.12	6.4E-03
PA3904		hypothetical protein					-1.5	7.4E-07		

PA3908		hypothetical protein			1.34	1.8E-02	-1.6	1.9E-05		
PA3918	moaC	molybdopterin biosynthetic protein C			-1.08	9.7E-03			-1.06	3.5E-02
PA3919		conserved hypothetical protein	1.8	3.9E-04	1.1	3.6E-02				
PA3920		probable metal transporting P-type ATPase			1.13	4.5E-02				
PA3923		hypothetical protein			-1.14	2.1E-02				
PA3925		probable acyl-CoA thiolase			-1.21	2.4E-02				
PA3926		probable major facilitator superfamily (MFS) transporter					-2.0	3.1E-02		
PA3928		hypothetical protein					1.5	6.3E-07		
PA3946	rocS1	two-component sensor RocS1	1.7	4.3E-07						
PA3947	rocR	RocR	1.6	7.5E-06						
PA3950		probable ATP-dependent RNA helicase			-1.17	2.1E-03			-1.17	1.9E-03
PA3953		conserved hypothetical protein					2.0	3.0E-05		
PA3959		hypothetical protein	-1.9	1.2E-03						
PA3963		probable transporter					1.9	3.3E-09		
PA3967		hypothetical protein	-1.6	2.4E-03	-1.24	1.8E-02			-1.14	2.5E-02
PA3968		probable pseudouridine synthase					-1.5	1.7E-03		
PA3970	amn	AMP nucleosidase			-1.12	2.3E-04				
PA3975	thiD	phosphomethylpyrimidine kinase			-1.13	2.2E-03				
PA3977	hemL	glutamate-1-semialdehyde 2,1-aminomutase			-1.25	8.9E-03				
PA3979		hypothetical protein	-1.5	1.1E-04						
PA3982		conserved hypothetical protein					1.5	3.9E-11		
PA3983		conserved hypothetical protein			1.53	2.4E-05			1.21	9.2E-04
PA3984	lnt	apolipoprotein N- acyltransferase			-1.03	3.2E-02				
PA3986		hypothetical protein	2.0	4.4E-04						
PA3989	holA	DNA polymerase III, delta subunit			-1.21	2.0E-02				

PA3996	lis	lipoate synthase			-1.1	4.3E-02				
PA4000	rlpA	RlpA			-1.17	3.1E-03				
PA4003	pbpA	penicillin-binding protein 2	-1.7	3.6E-08					-1.04	5.0E-02
PA4004		conserved hypothetical protein	-1.6	5.0E-05						
PA4005		conserved hypothetical protein	-1.5	3.7E-07	-1.15	4.9E-03	-1.7	2.8E-14		
PA4006	nadD 1	nicotinate mononucleotide adenylyltransferase NadD1	-1.6	2.9E-06			1.6	2.3E-08		
PA4013		conserved hypothetical protein					-1.7	3.8E-04		
PA4014		hypothetical protein					-3.2	7.9E-06		
PA4017		conserved hypothetical protein							-1.1	2.2E-02
PA4019	ubiX	UbiX					-1.5	2.3E-03		
PA4020	mpl	UDP-N- acetylmuramate:L-alanyl- gamma-D-glutamyl-meso- diaminopimelate ligase			-1.2	1.9E-03			-1.11	3.2E-03
PA4024	eutB	ethanolamine ammonia- lyase large subunit			-1.22	2.3E-04	1.6	3.3E-09	-1.18	5.9E-04
PA4027		hypothetical protein					1.8	3.5E-05		
PA4030		conserved hypothetical protein	-1.6	1.2E-04						
PA4031	рра	inorganic pyrophosphatase	-1.5	9.2E-07						
PA4035		hypothetical protein			-1.16	1.8E-04			-1.1	8.0E-03
PA4042	xseB	exodeoxyribonuclease VII small subunit					-2.1	2.7E-08		
PA4044	dxs	1-deoxyxylulose-5- phosphate synthase			-1.13	9.5E-04			-1.1	9.4E-03
PA4045		conserved hypothetical protein					-1.6	2.8E-04		
PA4046		hypothetical protein			-1.15	1.1E-02			-1.1	4.8E-02
PA4048		hypothetical protein	-1.5	4.2E-04			-1.6	6.1E-06		
PA4050	pgpA	phosphatidylglycerophosp hatase A					-2.4	7.9E-10		
PA4051	thiL	thiamine monophosphate kinase	-1.6	3.0E-04						
PA4052	nusB	NusB protein			-1.1	2.2E-02			-1.08	2.7E-02

									1	
PA4054	ribB	GTP cyclohydrolase II / 3,4-dihydroxy-2-butanone 4-phosphate synthase	-1.8	3.1E-08	-1.15	4.9E-03			-1.09	3.6E-02
PA4055	ribC	riboflavin synthase alpha chain	-1.7	6.1E-06	-1.31	4.3E-03			-1.18	4.1E-02
PA4056	ribD	riboflavin-specific deaminase/reductase							-1.15	4.8E-02
PA4057	nrdR	NrdR					-1.5	2.6E-06		
PA4058		hypothetical protein					2.8	4.8E-25		
PA4063		hypothetical protein					18.6	2.1E-07		
PA4064		probable ATP-binding component of ABC transporter					7.3	5.2E-07		
PA4065		hypothetical protein					4.3	1.4E-03		
PA4066		hypothetical protein					2.9	9.4E-03		
PA4067	oprG	Outer membrane protein OprG precursor	1.7	2.6E-06	1.63	3.5E-02				
PA4068		probable epimerase			-1.13	1.2E-02			-1.08	2.9E-02
PA4070		probable transcriptional regulator	1.5	3.3E-02			2.0	1.1E-05		
PA4074		probable transcriptional regulator	2.2	2.7E-03						
PA4078		probable nonribosomal peptide synthetase	1.6	3.4E-03						
PA4080		probable response regulator	1.5	5.3E-04						
PA4081	cupB6	fimbrial subunit CupB6					-1.7	3.4E-02		
PA4085	cupB2	chaperone CupB2	1.5	3.7E-02						
PA4090		hypothetical protein			-1.25	2.4E-03	1.7	3.9E-09	-1.2	4.0E-03
PA4092	hpaC	4-hydroxyphenylacetate 3- monooxygenase small chain	2.3	4.7E-02						
PA4093		hypothetical protein					-3.3	1.1E-04		
PA4101	bfmR	BfmR			-1.16	5.8E-03				
PA4104		conserved hypothetical protein					3.9	1.3E-11		
PA4108		cyclic di-GMP phosphodiesterase					1.6	1.8E-06		
PA4119	aph	aminoglycoside 3'- phosphotransferase type IIb	-1.7	9.2E-04						

PA4121		conserved hypothetical	2.9	1.8E-03						
PA4122		protein conserved hypothetical protein	2.1	4.5E-02						
PA4123	hpcC	5-carboxy-2- hydroxymuconate semialdehyde dehydrogenase	1.5	4.4E-02						
PA4128		conserved hypothetical protein					3.3	3.6E-07		
PA4139		hypothetical protein	2.6	7.3E-17						
PA4140		hypothetical protein	2.2	3.8E-05						
PA4154		conserved hypothetical protein			1.41	3.5E-02				
PA4157		probable transcriptional regulator			1.06	4.5E-02				
PA4163		hypothetical protein			-1.2	1.2E-03			-1.09	1.7E-02
PA4164		hypothetical protein					-1.6	5.2E-07		
PA4170		hypothetical protein	1.6	8.5E-04						
PA4171		probable protease	1.6	1.2E-02	1.14	1.4E-02	1.9	1.1E-05		
PA4172		probable nuclease	1.8	1.4E-03			2.4	3.7E-10		
PA4175	piv	protease IV	1.9	1.7E-05						
PA4176	ppiC2	peptidyl-prolyl cis-trans isomerase C2			-1.13	1.2E-02	-1.7	1.9E-17		
PA4178	eftM	SAM-dependent methyltransferase , EftM	-1.6	2.5E-02						
PA4179		probable porin	-2.3	4.4E-03						
PA4181		hypothetical protein	-1.8	2.4E-03						
PA4203	nmoR	NmoR	1.5	4.6E-02						
PA4204	ppgL	periplasmic gluconolactonase, PpgL					1.7	3.7E-08		
PA4205	mexG	hypothetical protein	1.8	2.0E-14	1.59	9.1E-05			1.24	1.2E-03
PA4206	mexH	probable Resistance- Nodulation-Cell Division (RND) efflux membrane fusion protein precursor	1.7	7.2E-13	1.11	2.8E-02			1.07	3.4E-02
PA4207	mexI	probable Resistance- Nodulation-Cell Division (RND) efflux transporter			1.16	1.3E-03				
PA4208	opmD	probable outer membrane protein precursor			1.14	4.4E-02				

		phenazine biosynthesis								
PA4212	phzC1	protein PhzC			1.44	4.5E-03			1.31	2.4E-03
PA4213	phzD1	phenazine biosynthesis protein PhzD			1.2	1.4E-03			1.14	6.5E-04
PA4214	phzE1	phenazine biosynthesis protein PhzE			1.24	7.2E-04			1.17	2.9E-04
PA4216	phzG1	probable pyridoxamine 5'- phosphate oxidase					-2.0	1.5E-03		
PA4218	ampP	AmpP	-1.8	1.5E-05	-1.18	1.8E-02				
PA4219	ampO	AmpO	-1.8	4.3E-04						
PA4220		hypothetical protein	-1.6	8.3E-03			-1.5	4.2E-03		
PA4221	fptA	Fe(III)-pyochelin outer membrane receptor precursor	-1.6	1.4E-08	-1.37	1.1E-02				
PA4222		probable ATP-binding component of ABC transporter			1.39	3.1E-03			1.25	1.7E-02
PA4223		probable ATP-binding component of ABC transporter	-1.6	4.3E-05						
PA4225	pchF	pyochelin synthetase			-1.19	4.7E-02				
PA4228	pchD	pyochelin biosynthesis protein PchD			-1.31	1.7E-02				
PA4229	pchC	pyochelin biosynthetic protein PchC			-1.22	3.3E-02	1.7	8.9E-07		
PA4230	pchB	salicylate biosynthesis protein PchB			-1.48	4.7E-02				
PA4235	ftnA	bacterial ferritin			1.29	3.2E-04			1.11	7.1E-03
PA4236	katA	catalase	1.8	1.7E-08	1.33	4.6E-03			1.18	2.1E-03
PA4237	rplQ	50S ribosomal protein L17					-1.7	1.0E-08		
PA4238	rpoA	DNA-directed RNA polymerase alpha chain			1.1	3.2E-02	-1.7	1.1E-09		
PA4239	rpsD	30S ribosomal protein S4					-1.7	6.2E-11		
PA4241	rpsM	30S ribosomal protein S13					-1.7	4.1E-10		
PA4242	rpmJ	50S ribosomal protein L36					-1.9	1.3E-12		
PA4243	secY	secretion protein SecY					-1.6	9.0E-07		
PA4244	rplO	50S ribosomal protein L15					-1.6	2.4E-09		
PA4245	rpmD	50S ribosomal protein L30					-1.9	5.7E-14		
PA4246	rpsE	30S ribosomal protein S5					-1.5	1.3E-06		
PA4247	rplR	50S ribosomal protein L18					-1.5	2.0E-05		
PA4249	rpsH	30S ribosomal protein S8			-1.15	2.7E-02	-2.9	3.2E-42		

r					1				1	1
PA4250	rpsN	30S ribosomal protein S14						3.3E-07		
PA4252	rplX	50S ribosomal protein L24			-1.18	1.3E-02	-1.9	6.0E-15	-1.12	3.2E-02
PA4253	rplN	50S ribosomal protein L14					-2.1	1.9E-18		
PA4254	rpsQ	30S ribosomal protein S17					-2.0	3.8E-14		
PA4255	rpmC	50S ribosomal protein L29					-2.9	4.5E-24		
PA4256	rplP	50S ribosomal protein L16					-1.9	1.4E-13		
PA4258	rplV	50S ribosomal protein L22					-1.8	5.1E-13		
PA4260	rplB	50S ribosomal protein L2					-1.6	4.3E-08		
PA4261	rplW	50S ribosomal protein L23					-2.7	2.3E-30		
PA4262	rplD	50S ribosomal protein L4					-2.2	5.1E-22		
PA4263	rplC	50S ribosomal protein L3					-1.7	3.9E-09		
PA4264	rpsJ	30S ribosomal protein S10					-2.0	1.5E-19		
PA4265	tufA	elongation factor Tu					-1.8	1.9E-13		
PA4266	fusA1	elongation factor G					-1.9	1.1E-13		
PA4269	rpoC	DNA-directed RNA polymerase beta* chain					-1.6	6.0E-11		
PA4270	rpoB	DNA-directed RNA polymerase beta chain					-1.6	1.5E-10		
PA4271	rplL	50S ribosomal protein L7 / L12	-1.6	1.9E-04						
PA4272	rplJ	50S ribosomal protein L10	-1.7	4.2E-05			-1.5	7.2E-05		
PA4273	rplA	50S ribosomal protein L1					-1.7	6.3E-09		
PA4275	nusG	transcription antitermination protein NusG					-2.1	4.0E-19		
PA4278		hypothetical protein	1.9	5.6E-17			-1.6	2.3E-12		
PA4279		hypothetical protein	1.9	1.0E-09	1.46	4.8E-06			1.28	4.8E-06
PA4280	birA	BirA bifunctional protein	1.9	1.2E-07	1.3	1.4E-02	-1.5	2.1E-05		
PA4281	sbcD	exonuclease SbcD							1.11	3.8E-02
PA4288		probable transcriptional regulator	2.2	1.9E-07						
PA4290		probable chemotaxis transducer							1.06	4.8E-02
PA4292		probable phosphate transporter	-1.8	1.0E-07						
PA4293	pprA	two-component sensor PprA	2.2	5.0E-16	1.31	3.8E-03			1.18	2.5E-02
PA4294		hypothetical protein	2.3	1.4E-20						
PA4295	fppA	Flp prepilin peptidase A, FppA	1.7	9.8E-05						

PA4296	pprB	two-component response regulator, PprB	1.8	6.4E-07	1.12	1.1E-03			1.08	2.0E-02
PA4297	tadG	TadG	1.5	1.1E-02			2.4	7.6E-11		
PA4298		hypothetical protein	2.3	1.9E-07						
PA4299	tadD	TadD	1.9	1.4E-06	1.23	3.0E-03			1.14	1.2E-02
PA4300	tadC	TadC	1.8	1.2E-05	1.29	8.1E-03				
PA4301	tadB	TadB	2.0	1.5E-06						
PA4302	tadA	TadA ATPase	1.9	2.8E-08	1.2	5.0E-02				
PA4303	tadZ	TadZ	2.1	5.3E-11	1.22	1.4E-02				
PA4304	rcpA	RcpA	2.0	1.3E-10						
PA4305	rcpC	RcpC	2.1	8.4E-10						
PA4306	flp	Type IVb pilin, Flp	1.8	1.4E-03						
PA4308		conserved hypothetical protein			-1.08	3.4E-02				
PA4311		conserved hypothetical protein					4.7	2.5E-23		
PA4312		conserved hypothetical protein					1.9	4.3E-11		
PA4314	purU1	formyltetrahydrofolate deformylase			1.08	1.8E-02				
PA4315	mvaT	transcriptional regulator MvaT, P16 subunit			1.26	2.6E-02				
PA4319		conserved hypothetical protein					1.9	6.5E-06		
PA4320		hypothetical protein			1.18	2.2E-02				
PA4326		hypothetical protein	1.6	5.1E-05	1.43	1.3E-03	1.9	4.8E-12	1.2	2.0E-02
PA4328		hypothetical protein	1.7	7.6E-04						
PA4329	pykA	pyruvate kinase II			-1.11	2.2E-03			-1.08	8.3E-03
PA4333		probable fumarase			-1.14	1.1E-02				
PA4336		conserved hypothetical protein			-1.27	4.3E-02	1.7	1.5E-07		
PA4348		conserved hypothetical protein	1.6	4.8E-02						
PA4354		conserved hypothetical protein					1.6	7.4E-05		
PA4357		conserved hypothetical protein					1.9	2.5E-03		
PA4358	feoB	FeoB					1.6	1.8E-02		
PA4359		conserved hypothetical protein					2.6	2.7E-06		
PA4360		hypothetical protein			-1.06	2.8E-02				

PA4366	sodB	superoxide dismutase			-1.23	2.1E-04				
PA4367	bifA	BifA			-1.1	2.6E-02				
PA4370	icmP	Insulin-cleaving metalloproteinase outer membrane protein precursor	-1.7	6.1E-07	-1.26	2.5E-02			-1.23	2.1E-02
PA4371		hypothetical protein	-1.8	6.6E-04						
PA4372		hypothetical protein	-1.7	1.1E-05	-1.21	1.8E-02			-1.21	1.4E-02
PA4373		hypothetical protein	-1.7	3.7E-07						
PA4374	mexV	Resistance-Nodulation- Cell Division (RND) multidrug efflux membrane fusion protein MexV			1.16	1.1E-02	2.9	2.2E-18	1.11	2.8E-02
PA4377		hypothetical protein	1.9	5.4E-04						
PA4378	warB	WarB			-1.29	4.0E-02				
PA4385	groEL	GroEL protein							1.04	3.2E-02
PA4386	groES	GroES protein					-2.1	3.0E-23		
PA4388		hypothetical protein			-1.06	3.3E-02				
PA4395		conserved hypothetical protein			-1.12	3.6E-02				
PA4396		two-component response regulator	-2.2	4.8E-11						
PA4401		probable glutathione S- transferase			1.23	4.2E-03			1.13	4.5E-02
PA4402	argJ	glutamate N- acetyltransferase			-1.14	1.1E-03				
PA4404		hypothetical protein	-1.6	5.2E-06			-1.5	1.8E-06		
PA4407	ftsZ	cell division protein FtsZ			1.13	4.2E-02			1.14	2.0E-02
PA4408	ftsA	cell division protein FtsA			1.06	2.6E-02			1.1	7.4E-03
PA4411	murC	UDP-N-acetylmuramate alanine ligase			1.2	9.1E-04			1.12	9.2E-04
PA4414	murD	UDP-N- acetylmuramoylalanine D-glutamate ligase			1.11	9.5E-03			1.08	1.4E-02
PA4416	murF	UDP-N- acetylmuramoylalanyl-D- glutamyl-2, 6- diaminopimelateD- alanyl-D-alanyl ligase			1.15	7.0E-04			1.11	2.8E-02
PA4417	murE	UDP-N- acetylmuramoylalanyl-D-			1.12	2.6E-03			1.09	1.1E-02

		alutamata 2.6								
		glutamate-2, 6- diaminopimelate ligase								
		penicillin-binding protein								
PA4418	ftsI	3			1.13	2.9E-02			1.12	4.3E-02
PA4421		conserved hypothetical protein			1.2	1.7E-02				
PA4425		sedoheptulose 7-phosphate isomerase GmhA							1.07	4.7E-03
PA4428	sspA	stringent starvation protein A					-1.6	3.3E-06		
PA4429		probable cytochrome c1 precursor					-1.8	2.2E-12		
PA4430		probable cytochrome b					-1.7	8.4E-13		
PA4432	rpsI	30S ribosomal protein S9	-1.5	1.0E-03					-1.16	9.2E-03
PA4433	rplM	50S ribosomal protein L13	-1.6	3.5E-05						
PA4434		probable oxidoreductase			1.12	5.9E-03				
PA4435		probable acyl-CoA dehydrogenase	6.9	1.2E-65	2.15	2.9E-05			1.69	2.1E-05
PA4438		conserved hypothetical protein	-1.8	3.3E-08	-1.12	1.0E-02				
PA4440		hypothetical protein			-1.25	1.7E-02	-1.6	7.7E-09		
PA4441		hypothetical protein			-1.14	1.7E-02				
PA4443	cysD	ATP sulfurylase small subunit				3.9E-02				
PA4448	hisD	histidinol dehydrogenase			1.09	3.3E-02				
PA4452		conserved hypothetical protein			1.3	8.2E-04	4.8	9.6E-87		
PA4454		conserved hypothetical protein					-1.6	1.5E-12		
PA4456		probable ATP-binding component of ABC transporter			1.12	2.4E-03				
PA4460	<i>lptH</i>	LptH			1.07	3.7E-03	1.5	7.3E-10	1.02	1.2E-02
PA4462	*	RNA polymerase sigma-54 factor			1.16	3.2E-02				
PA4463		conserved hypothetical protein	1.7	4.3E-05	1.27	4.8E-03			1.24	4.8E-02
PA4464	ptsN	nitrogen regulatory IIA protein	1.7	1.6E-10						
PA4465		conserved hypothetical protein			1.12	2.6E-03			1.08	2.0E-02
PA4466		probable phosphoryl carrier protein			1.22	2.7E-03			1.14	1.8E-02

PA4467		hypothetical protein					2.0	3.0E-03		
PA4472	pmbA	PmbA protein			-1.44	3.1E-02				
PA4473		hypothetical protein					1.5	1.8E-06		
PA4474		conserved hypothetical protein			-1.08	2.2E-02				
PA4477	cafA	cytoplasmic axial filament protein			1.06	1.7E-02				
PA4491	magB	MagB			1.22	1.1E-02				
PA4493	roxR	RoxR			1.26	2.5E-02			1.17	2.8E-02
PA4496	dppA1	probable binding protein component of ABC transporter			-1.27	1.2E-03			-1.15	1.7E-02
PA4497	dppA2	probable binding protein component of ABC transporter			-1.21	1.1E-02	6.4	1.7E-16		
PA4500	dppA3	probable binding protein component of ABC transporter			-1.25	3.0E-03			-1.11	3.9E-02
PA4501	opdD	Glycine-glutamate dipeptide porin OpdP			-1.43	4.7E-06			-1.19	1.2E-04
PA4502	dppA4	probable binding protein component of ABC transporter			-1.52	9.6E-05			-1.18	2.1E-02
PA4503	dppB	dipeptide ABC transporter permease DppB			-1.35	4.8E-02				
PA4504	dppC	dipeptide ABC transporter permease DppC			-1.21	5.3E-03				
PA4505	dppD	dipeptide ABC transporter ATP-binding protein DppD			-1.13	3.9E-02			-1.12	3.8E-02
PA4506	dppF	dipeptide ABC transporter ATP-binding protein DppF			-1.11	9.9E-03				
PA4513		probable oxidoreductase	-1.8	3.0E-05						
PA4514		probable outer membrane receptor for iron transport	-1.6	5.9E-03	-1.35	5.8E-03				
PA4515		conserved hypothetical protein	-1.8	8.6E-07			1.8	3.1E-10		
PA4516		hypothetical protein	-1.7	6.0E-05			2.2	8.4E-15		
PA4518		hypothetical protein					-2.2	7.8E-06		
PA4519	speC	ornithine decarboxylase			1.4	5.5E-04			1.17	1.0E-02
PA4523		hypothetical protein			1.19	8.0E-03				

PA4524	nadC	nicotinate-nucleotide pyrophosphorylase			1.06	2.4E-02				
PA4525	pilA	type 4 fimbrial precursor PilA	-1.6	2.0E-04	-1.3	3.4E-03	-2.9	7.2E-24		
PA4527	pilC	still frameshift type 4 fimbrial biogenesis protein PilC (putative pseudogene)			-1.21	7.2E-04			-1.09	6.1E-03
PA4528	pilD	type 4 prepilin peptidase PilD	-1.8	1.1E-08						
PA4540		hypothetical protein					2.5	4.9E-03		
PA4542	clpB	ClpB protein			1.08	1.5E-03				
PA4545	comL	competence protein ComL	-1.5	1.5E-04						
PA4546	pilS	two-component sensor PilS			1.28	3.1E-03			1.09	3.5E-02
PA4548		probable D-amino acid oxidase	-1.7	2.0E-06	-1.22	2.4E-02	-1.6	6.6E-08		
PA4550	fimU	type 4 fimbrial biogenesis protein FimU	-1.7	2.0E-06	-1.11	4.9E-02				
PA4551	pilV	type 4 fimbrial biogenesis protein PilV	-2.0	9.3E-07	-1.1	1.7E-02				
PA4552	pilW	type 4 fimbrial biogenesis protein PilW	-1.7	9.2E-08	-1.22	2.4E-03			-1.09	4.8E-02
PA4553	pilX	type 4 fimbrial biogenesis protein PilX	-1.6	1.4E-04						
PA4554	pilY1	type 4 fimbrial biogenesis protein PilY1	-1.6	9.6E-08					-1.15	4.9E-02
PA4555	pilY2	type 4 fimbrial biogenesis protein PilY2	-1.5	6.9E-05	-1.34	7.3E-03				
PA4556	pilE	type 4 fimbrial biogenesis protein PilE			-1.64	9.4E-03				
PA4559	lspA	prolipoprotein signal peptidase					-1.5	1.3E-07		
PA4560	ileS	isoleucyl-tRNA synthetase			-1.15	1.3E-02				
PA4567	rpmA	50S ribosomal protein L27	-1.6	1.5E-06	-1.29	2.7E-02				
PA4568	rplU	50S ribosomal protein L21					-1.5	3.2E-05		
PA4570		hypothetical protein					-1.7	2.3E-02		
PA4571		probable cytochrome c	1.9	3.2E-05						
PA4572	fklB	peptidyl-prolyl cis-trans isomerase FklB			-1.54	2.4E-02				
PA4573		hypothetical protein	2.0	8.3E-04			1.6	1.3E-02		
PA4574		conserved hypothetical protein					-1.6	1.7E-04		

PA4576		probable ATP-dependent protease			-1.08	2.7E-03			-1.07	1.8E-02
PA4577		hypothetical protein	1.5	4.6E-02						
PA4579		hypothetical protein			-1.1	2.7E-03				
PA4583		conserved hypothetical protein	1.5	3.9E-05						
PA4585	rtcA	RNA 3'-terminal phosphate cyclase	1.7	1.1E-02						
PA4588	gdhA	glutamate dehydrogenase	1.5	1.8E-03	1.3	1.7E-02	-1.7	2.3E-07	1.19	3.2E-02
PA4590	pra	protein activator	1.6	1.4E-06						
PA4596	esrC	EsrC					1.7	8.3E-04		
PA4600	nfxB	transcriptional regulator NfxB			1.25	4.7E-02				
PA4601	morA	motility regulator	-1.5	1.2E-12						
PA4602	glyA3	serine hydroxymethyltransferase	-1.7	1.5E-08	-1.37	4.1E-04				
PA4604		conserved hypothetical protein							1.16	4.2E-02
PA4606		conserved hypothetical protein			1.19	7.6E-03				
PA4607		hypothetical protein	2.0	7.8E-08						
PA4608		hypothetical protein	2.1	1.4E-07	1.29	4.9E-02				
PA4609	radA	DNA repair protein RadA			1.06	4.4E-02				
PA4611		hypothetical protein	1.7	2.9E-03			1.6	9.9E-04		
PA4613	katB	catalase							1.16	1.7E-02
PA4616		probable c4-dicarboxylate- binding protein	-3.3	1.9E-10	-1.48	9.0E-04	-1.5	1.7E-02	-1.21	2.1E-02
PA4622		probable major facilitator superfamily (MFS) transporter	-1.9	1.9E-04						
PA4624	cdrB	cyclic diguanylate- regulated TPS partner B, CdrB	2.3	1.4E-31	1.25	1.7E-02				
PA4625	cdrA	cyclic diguanylate- regulated TPS partner A, CdrA	4.2	7.6E-58						
PA4627		conserved hypothetical protein			-1.16	2.4E-02				
PA4628	lysP	lysine-specific permease	-1.9	1.2E-05						
PA4632		hypothetical protein			-1.13	4.3E-02				
PA4633		probable chemotaxis transducer	1.6	1.7E-06	1.13	7.2E-03			1.09	2.7E-02

PA4636		hypothetical protein			-1.13	1.1E-04			-1.11	1.8E-04
PA4638		hypothetical protein					-2.9	7.5E-12		
PA4639		hypothetical protein					1.5	1.2E-12		
PA4640	mqoB	malate:quinone oxidoreductase			-1.07	2.8E-02				
PA4642		hypothetical protein			-1.26	1.7E-02	-1.8	5.9E-09		
PA4644		hypothetical protein			-1.19	3.2E-02				
PA4645		probable purine/pyrimidine phosphoribosyl transferase			-1.14	4.8E-05			-1.11	6.1E-04
PA4646	ирр	uracil phosphoribosyltransferase				5.5E-03				
PA4647	uraA	uracil permease			1.31	8.9E-03			1.22	2.3E-02
PA4648	_	Pilin subunit CupE1	2.6	2.7E-16			1.8	8.2E-10		
PA4649	cupE2	Pilin subunit CupE2	2.1	1.8E-12			1.9	4.2E-14		
PA4650	сирЕ3	Pilin subunit CupE3	1.9	1.9E-06			1.7	3.5E-06		
PA4651	cupE4	Pilin assembly chaperone CupE4	2.0	5.2E-20	1.28	1.3E-03			1.17	2.3E-02
PA4652	cupE5	Fimbrial usher protein CupE5	1.7	1.7E-07						
PA4653	сирЕб	Adhesin-like protein CupE6	1.7	1.1E-06			1.6	1.2E-07		
PA4655	hemH	ferrochelatase					1.6	8.1E-12		
PA4656		conserved hypothetical protein			1.09	1.9E-02				
PA4657		hypothetical protein					1.7	6.7E-07		
PA4658		hypothetical protein					1.6	2.2E-10		
PA4659		probable transcriptional regulator			1.13	1.8E-02				
PA4660	phr	deoxyribodipyrimidine photolyase			1.14	4.5E-02				
PA4661	pagL	Lipid A 3-O-deacylase			1.34	1.7E-02				
PA4668	lolB	lipoprotein localization protein LolB			-1.1	3.2E-02				
PA4669	ipk	isopentenyl monophosphate kinase					2.1	1.1E-15		
PA4671		probable ribosomal protein L25	-1.5	4.5E-04	-1.25	2.6E-02				
PA4672		peptidyl-tRNA hydrolase					-2.2	7.4E-14		
PA4675	chtA	ChtA	-1.7	7.8E-05						
PA4680		hypothetical protein					1.6	6.0E-03		
PA4683		hypothetical protein	-2.6	2.5E-18						

PA4686		hypothetical protein			-1.24	3.0E-02	12.3	9.0E-46		
PA4687	hitA	ferric iron-binding periplasmic protein HitA			-1.24	3.9E-03				
PA4688	hitB	iron (III)-transport system permease HitB	-1.7	7.3E-06					-1.07	2.7E-02
PA4689		hypothetical protein			1.08	1.5E-02				
PA4694	ilvC	ketol-acid reductoisomerase			1.07	4.0E-02			1.09	1.2E-02
PA4695	ilvH	acetolactate synthase isozyme III small subunit			1.07	1.0E-02			1.06	2.1E-02
PA4696	ilvI	acetolactate synthase large subunit			1.13	1.1E-02			1.1	3.4E-02
PA4698		hypothetical protein					-1.8	1.4E-08		
PA4702		hypothetical protein					2.3	7.1E-10		
PA4703		hypothetical protein	1.9	2.7E-07			1.7	3.4E-07		
PA4704	cbpA	cAMP-binding protein A			-1.13	3.1E-02			-1.11	6.3E-03
PA4708	phuT	Heme-transport protein, PhuT			-1.13	3.4E-02				
PA4715		probable aminotransferase			1.19	1.9E-03			1.2	2.0E-03
PA4719		probable transporter	-1.8	3.6E-09						
PA4720	trmA	tRNA (uracil-5-)- methyltransferase	-1.6	6.9E-08						
PA4722		probable aminotransferase			-1.15	1.4E-02			-1.07	1.3E-02
PA4724		probable aminoacyl- transfer RNA synthetase (class I)	-1.6	7.9E-06						
PA4726	cbrB	two-component response regulator CbrB			-1.24	2.5E-04	1.5	4.4E-25	-1.13	8.9E-04
PA4735		hypothetical protein			1.07	3.0E-02				
PA4741	rpsO	30S ribosomal protein S15			-1.12	3.4E-02	-1.7	1.5E-15		
PA4748	tpiA	triosephosphate isomerase			-1.08	4.5E-02	-1.7	8.2E-07		
PA4749	glmM	phosphoglucosamine mutase							1.09	2.3E-02
PA4751	ftsH	cell division protein FtsH			1.08	9.0E-03				
PA4755	greA	transcription elongation factor GreA					-1.8	8.5E-13		
PA4758	carA	carbamoyl-phosphate synthase small chain			-1.1	1.9E-02				
PA4763	recN	DNA repair protein RecN			1.12	1.5E-03				
PA4764	fur	ferric uptake regulation protein							1.08	3.1E-02

PA4768	smpB	SmpB protein			1.17	6.2E-03			1.15	1.4E-02
PA4769	1	probable transcriptional regulator			1.35	2.8E-02				
PA4771	lldD	L-lactate dehydrogenase			1.14	7.8E-04			1.04	1.2E-02
PA4774	speE2	SpeE2					1.8	1.0E-05		
PA4775		hypothetical protein					7.7	3.5E-49		
PA4777	pmrB	PmrB: two-component regulator system signal sensor kinase PmrB					1.5	5.4E-03		
PA4778	cueR	CueR			-1.17	6.5E-03			-1.14	3.1E-02
PA4780		conserved hypothetical protein							-1.16	3.6E-02
PA4781		cyclic di-GMP phosphodiesterase	1.6	2.0E-04			1.6	5.4E-06		
PA4782		hypothetical protein					-1.7	9.1E-04		
PA4784		probable transcriptional regulator					1.5	2.0E-05		
PA4787		probable transcriptional regulator			-1.11	8.5E-03				
PA4788		hypothetical protein					2.1	3.3E-13		
PA4793		hypothetical protein					1.7	6.9E-15		
PA4798		hypothetical protein			-1.2	2.0E-02	1.5	1.3E-03	-1.2	6.8E-03
PA4808	selA	L-seryl-tRNA(ser) selenium transferase			1.42	8.9E-04			1.18	4.2E-02
PA4809	fdhE	FdhE protein			-1.2	2.5E-02				
PA4810	fdnI	nitrate-inducible formate dehydrogenase, gamma subunit					-1.6	5.5E-08		
PA4817		hypothetical protein	-2.5	1.5E-04						
PA4822		hypothetical protein					17.1	2.3E-21		
PA4827		arylamine N- acetyltransferase			-1.09	9.1E-03	1.5	1.3E-04		
PA4828		conserved hypothetical protein			-1.22	1.1E-03				
PA4829	lpd3	dihydrolipoamide dehydrogenase 3			1.16	1.7E-03				
PA4830		hypothetical protein	1.8	1.4E-02						
PA4834	cntI	CntI					6.6	3.8E-03		
PA4835	<i>cntM</i>	CntM					9.4	1.9E-04		
PA4836	cntL	CntL					11.4	4.6E-05		
PA4837	cntO	CntO					21.0	1.6E-07		

PA4838		hypothetical protein					3.0	6.4E-06		
PA4843	gcbA	GcbA	-2.0	4.4E-18						
PA4844	ctpL	CtpL	-1.7	4.8E-02			4.0	1.8E-11		
PA4845	dipZ	thiol:disulfide interchange protein DipZ			1.05	2.4E-02				
PA4851		hypothetical protein			-1.12	2.9E-05			-1.11	7.2E-04
PA4855	purD	phosphoribosylamine glycine ligase	-1.5	2.0E-04	-1.09	1.6E-02				
PA4857	tspR	TspR					1.9	7.0E-05		
PA4858		conserved hypothetical protein			-1.36	8.7E-03			-1.14	3.7E-02
PA4861		probable ATP-binding component of ABC transporter			-1.16	4.2E-03	1.5	1.5E-02	-1.1	2.0E-02
PA4864	ureD	urease accessory protein					2.0	1.8E-14		
PA4865	ureA	urease gamma subunit					1.8	7.5E-08		
PA4868	ureC	urease alpha subunit			-1.21	1.1E-03			-1.12	4.2E-02
PA4869		hypothetical protein	-1.9	5.5E-08						
PA4872		hypothetical protein			-1.12	1.2E-02			-1.08	1.1E-02
PA4873		probable heat-shock protein	-2.0	1.3E-05						
PA4874		conserved hypothetical protein							-1.23	1.7E-02
PA4875		hypothetical protein					2.3	8.8E-18		
PA4876	osmE	osmotically inducible lipoprotein OsmE	1.8	6.5E-04						
PA4877		hypothetical protein	1.8	1.7E-03						
PA4879		conserved hypothetical protein					1.7	7.0E-08		
PA4880		probable bacterioferritin					2.7	1.1E-10		
PA4886		probable two-component sensor	-1.7	2.3E-02						
PA4887		probable major facilitator superfamily (MFS) transporter	-1.6	1.5E-03						
PA4888	desB	acyl-CoA delta-9- desaturase, DesB	-2.0	4.2E-05						
PA4891	ureE	urease accessory protein UreE					1.6	6.2E-03		
PA4892	ureF	urease accessory protein UreF					2.3	1.5E-10		

PA4893	ureG	urease accessory protein UreG			-1.52	7.0E-04			-1.3	7.5E-03
PA4894		hypothetical protein					1.6	1.4E-05		
PA4897		TonB-dependent receptor					1.7	2.6E-04		
PA4900		probable major facilitator superfamily (MFS) transporter	1.8	4.3E-03						
PA4904	vanA	vanillate O-demethylase oxygenase subunit	1.9	1.5E-02						
PA4907		probable short-chain dehydrogenase					1.5	1.2E-17		
PA4909		probable ATP-binding component of ABC transporter			-1.16	1.8E-02				
PA4910		branched chain amino acid ABC transporter ATP binding protein			-1.28	1.5E-02			-1.15	2.6E-02
PA4911		probable permease of ABC branched-chain amino acid transporter			-1.37	3.1E-02				
PA4914	amaR	transcriptional regulator, AmaR					1.6	1.5E-05		
PA4915		probable chemotaxis transducer	1.7	8.1E-05						
PA4916	nrtR	Nudix-related transcriptional regulator NrtR	1.6	1.8E-08	1.18	4.6E-03				
PA4917	nadD 2	nicotinate mononucleotide adenylyltransferase NadD2	1.6	1.1E-05			2.0	2.6E-15		
PA4922	azu	azurin precursor					1.8	6.1E-17		
PA4925		conserved hypothetical protein	2.1	4.1E-06	1.29	2.4E-02	1.6	2.8E-04		
PA4928		conserved hypothetical protein							-1.12	2.3E-02
PA4930	alr	biosynthetic alanine racemase			-1.22	2.0E-02			-1.1	4.8E-02
PA4931	dnaB	replicative DNA helicase			1.05	4.0E-02				
PA4932	rplI	50S ribosomal protein L9			-1.16	1.5E-02	-2.4	7.8E-18	-1.12	2.8E-02
PA4933		hypothetical protein	-1.6	2.3E-03			-1.8	4.2E-06		
PA4934	rpsR	30S ribosomal protein S18	-1.6	2.8E-05						
PA4935	rpsF	30S ribosomal protein S6	-1.6	6.4E-05						
PA4937	rnr	exoribonuclease RNase R			1.13	1.4E-03				

PA4938	nurA	adenylosuccinate			-1 09	1.9E-02				
1 // // // //	pun	synthetase			-1.07	1.7L-02				
PA4939		conserved hypothetical protein			-1.11	1.4E-03	1.6	7.5E-08	-1.07	7.0E-03
PA4940		conserved hypothetical protein					-1.9	1.7E-08		
PA4941	hflC	protease subunit HflC			1.11	9.5E-03				
PA4942	hflK	protease subunit HflK			1.34	4.8E-04			1.2	1.5E-03
PA4946	mutL	DNA mismatch repair protein MutL			-1.09	5.8E-03			-1.07	2.9E-02
PA4947	amiB	N-acetylmuramoyl-L- alanine amidase			-1.16	1.7E-03				
PA4952		conserved hypothetical protein			1.08	2.4E-02				
PA4953	motB	chemotaxis protein MotB			-1.2	3.2E-03				
PA4957	psd	phosphatidylserine decarboxylase	-1.5	1.1E-06						
PA4959	fimX	FimX	-1.5	2.7E-07						
PA4961		hypothetical protein			-1.15	3.1E-02				
PA4964	parC	topoisomerase IV subunit A			-1.12	4.2E-03			-1.12	2.8E-03
PA4965		hypothetical protein	-1.7	1.1E-04						
PA4966		hypothetical protein	-1.5	2.5E-05						
PA4967	parE	topoisomerase IV subunit B	-1.6	3.5E-07	-1.09	4.8E-03			-1.1	7.9E-04
PA4968		conserved hypothetical protein	-1.7	9.1E-09						
PA4969	cpdA	Cyclic AMP (cAMP) Phosphodiesterase, CpdA	-1.8	1.6E-08						
PA4972		hypothetical protein			-1.11	3.0E-02				
PA4974		probable outer membrane protein precursor			-1.22	2.5E-02				
PA4975		NAD(P)H quinone oxidoreductase					-1.6	2.9E-03		
PA4985		Uncharacterized protein	2.0	8.3E-11						
PA4986		probable oxidoreductase	1.9	9.1E-05						
PA4995		probable acyl-CoA dehydrogenase					-1.7	1.6E-05		
PA4999	waaL	O-antigen ligase, WaaL	-1.9	3.9E-08						
PA5002	dnpA	de-N-acetylase involved in persistence, DnpA	-1.6	2.5E-04						
PA5004	wapH	WapH			1.12	2.1E-03				

PA5007	wapG	WapG			1.07	4.9E-02				
PA5009	_	lipopolysaccharide kinase WaaP				3.9E-02				
PA5011	waaC	heptosyltransferase I							-1.07	3.0E-02
PA5012		heptosyltransferase II			-1.19	6.1E-05				
PA5014		glutamate-ammonia-ligase adenylyltransferase			1.11	1.1E-02				
PA5015	aceE	pyruvate dehydrogenase			1.08	4.0E-03			1.09	1.5E-03
PA5018	msrA	peptide methionine sulfoxide reductase			-1.13	4.2E-03				
PA5023		conserved hypothetical protein			1.17	1.6E-02				
PA5024		conserved hypothetical protein	-1.7	4.0E-03						
PA5027		hypothetical protein	2.3	2.4E-03			1.8	1.1E-02		
PA5029		probable transcriptional regulator					1.5	2.5E-05		
PA5030		probable major facilitator superfamily (MFS) transporter	1.5	1.3E-03						
PA5033		hypothetical protein	-1.7	3.5E-03						
PA5035	gltD	glutamate synthase small chain			1.04	3.4E-02				
PA5037		hypothetical protein			1.17	8.0E-03				
PA5040	pilQ	Type 4 fimbrial biogenesis outer membrane protein PilQ precursor	-1.6	8.0E-11	-1.38	4.7E-03				
PA5041	pilP	type 4 fimbrial biogenesis protein PilP	-1.7	1.2E-08						
PA5042	pilO	type 4 fimbrial biogenesis protein PilO	-1.7	2.6E-12	-1.26	9.0E-04				
PA5043	pilN	type 4 fimbrial biogenesis protein PilN	-1.7	2.1E-10	1.77	6.6E-04			1.38	9.1E-03
PA5044	pilM	type 4 fimbrial biogenesis protein PilM	-1.5	1.5E-10	-1.27	5.6E-03				
PA5049	rpmE	50S ribosomal protein L31					-1.6	7.7E-09		
PA5054	hslU	heat shock protein HslU			1.07	4.4E-02				
PA5057	phaD	poly(3-hydroxyalkanoic acid) depolymerase					1.5	5.8E-04		
PA5058	phaC2	poly(3-hydroxyalkanoic acid) synthase 2	1.8	7.2E-05			1.7	1.1E-05		

PA5060	phaF	polyhydroxyalkanoate synthesis protein PhaF	3.1	3.7E-37	2.69	2.9E-04			1.82	2.6E-03
PA5061		conserved hypothetical protein	1.6	6.9E-03					-1.49	3.8E-02
PA5063	ubiE	ubiquinone biosynthesis methyltransferase UbiE			1.08	1.1E-02				
PA5064		hypothetical protein			-1.18	3.7E-02				
PA5065	ubiB	ubiquinone biosynthetic protein UbiB			1.06	1.1E-03				
PA5071		conserved hypothetical protein	-1.8	2.4E-03						
PA5075		probable permease of ABC transporter			-1.19	4.1E-02	-1.5	1.5E-07		
PA5076		probable binding protein component of ABC transporter			-1.23	5.2E-04			-1.17	1.3E-03
PA5078	opgG	OpgG			-1.08	2.3E-03			-1.06	1.0E-02
PA5082	dguC	DguC			-1.08	2.4E-02				
PA5091	hutG	N-formylglutamate amidohydrolase			-1.2	4.4E-02				
PA5092	hutI	imidazolone-5-propionate hydrolase HutI			-1.1	2.6E-02				
PA5094		probable ATP-binding component of ABC transporter			-1.14	1.1E-02			-1.15	3.6E-03
PA5096		probable binding protein component of ABC transporter			-1.54	2.2E-04			-1.4	2.9E-05
PA5097		probable amino acid permease					-1.6	2.1E-04		
PA5098	hutH	histidine ammonia-lyase			-1.15	1.1E-02				
PA5100	hutU	urocanase			-1.12	1.5E-02			-1.07	4.7E-02
PA5101		hypothetical protein					1.5	3.6E-05		
PA5102		hypothetical protein	1.8	3.0E-02						
PA5106		conserved hypothetical protein	-1.5	1.2E-03						
PA5108		hypothetical protein					-2.5	1.4E-21		
PA5109		hypothetical protein			-1.21	3.2E-03				
PA5117	typA	regulatory protein TypA	-1.6	2.3E-05						
PA5118	thiI	thiazole biosynthesis protein ThiI	-1.6	7.4E-06						

PA5124	ntrB	two-component sensor NtrB					1.7	6.6E-06		
PA5128	secB	secretion protein SecB	-1.6	8.7E-05						
PA5129	grxC	GrxC					1.6	5.4E-05		
PA5130	-	conserved hypothetical protein			-1.13	1.5E-02				
PA5131	pgm	phosphoglycerate mutase			-1.08	4.0E-02				
PA5134	ctpA	carboxyl-terminal processing protease, CtpA			-1.13	2.1E-04			-1.11	5.3E-03
PA5135		conserved hypothetical protein	-1.6	4.9E-03						
PA5137		hypothetical protein	-2.2	4.8E-33	-1.26	3.2E-03			-1.25	2.4E-02
PA5138		hypothetical protein	-2.2	1.1E-17	-1.34	5.0E-04			-1.21	6.9E-03
PA5139		hypothetical protein	-3.5	2.6E-14	-1.53	2.5E-04			-1.36	2.6E-04
PA5140	hisF1	imidazoleglycerol- phosphate synthase, cyclase subunit	-1.5	9.7E-06	-1.17	1.9E-03				
PA5141	hisA	phosphoribosylformimino- 5-aminoimidazole carboxamide			-1.23	1.0E-02	-1.8	5.3E-09		
PA5146		hypothetical protein			-1.07	8.3E-04				
PA5148		conserved hypothetical protein					2.1	6.4E-14		
PA5152		probable ATP-binding component of ABC transporter			-1.13	4.6E-02				
PA5154		probable permease of ABC transporter	-1.6	5.6E-03			-1.6	6.8E-04		
PA5156		hypothetical protein					3.7	9.9E-05		
PA5164	rmlC	dTDP-4-dehydrorhamnose 3,5-epimerase			1.1	4.0E-02				
PA5165	dctB	DctB							1.07	4.6E-02
PA5166	dctD	DctD			1.13	1.1E-04				
PA5170	arcD	arginine/ornithine antiporter	2.5	1.1E-11	1.43	3.2E-03			1.18	3.9E-02
PA5171	arcA	arginine deiminase	2.4	7.3E-12	1.78	3.8E-03			1.35	2.0E-02
PA5172	arcB	ornithine carbamoyltransferase, catabolic	2.4	5.2E-12	1.62	4.3E-03			1.39	1.1E-02
PA5173	arcC	carbamate kinase	2.3	2.6E-11	1.65	6.1E-03			1.3	3.0E-02
PA5174		probable beta-ketoacyl synthase			-1.1	3.1E-04			-1.04	8.3E-04

PA5178		conserved hypothetical protein	1.6	1.0E-05	1.26	2.7E-02				
PA5180		conserved hypothetical protein					1.5	2.0E-04		
PA5182		hypothetical protein	1.8	1.1E-07			1.6	1.3E-07		
PA5187		probable acyl-CoA dehydrogenase			1.11	3.5E-03			1.1	1.5E-02
PA5189		probable transcriptional regulator					1.6	3.6E-05		
PA5192	pckA	phosphoenolpyruvate carboxykinase			-1.14	1.1E-02				
PA5193	yrfI	heat shock protein HSP33	-1.7	2.3E-12	-1.37	1.3E-03			-1.21	2.1E-02
PA5197	rimK	ribosomal protein S6 modification protein							-1.11	4.0E-02
PA5198		LD-carboxypeptidase			-1.07	3.8E-02				
PA5199	amgS	AmgS			-1.08	9.3E-03				
PA5200	amgR	AmgR			-1.22	1.8E-02				
PA5201		conserved hypothetical protein			-1.16	1.6E-02				
PA5202		hypothetical protein			-1.15	4.1E-02				
PA5204	argA	N-acetylglutamate synthase			-1.14	3.0E-02				
PA5210		probable secretion pathway ATPase			-1.15	6.6E-03			-1.15	6.8E-03
PA5212		hypothetical protein	1.6	1.3E-02			1.5	5.4E-03		
PA5213	gcvP1	glycine cleavage system protein P1	1.9	1.8E-06						
PA5214	gcvH1	glycine cleavage system protein H1			-1.32	4.1E-02				
PA5215	gcvT1	protein 11			-1.08	1.6E-02				
PA5216		probable permease of ABC iron transporter	-1.5	9.6E-04						
PA5227		conserved hypothetical protein					2.0	8.1E-18		
PA5228		conserved hypothetical protein			1.09	3.2E-03	4.7	5.7E- 234		
PA5229		conserved hypothetical protein					2.1	4.0E-16		
PA5232		conserved hypothetical protein			1.15	8.6E-03	-1.6	2.0E-25		
PA5239	rho	transcription termination factor Rho			-1.2	9.1E-03				

PA5241	ppx	exopolyphosphatase			1.1	1.8E-02			1.08	1.2E-03
PA5245	TT	conserved hypothetical protein				5.5E-03				
PA5248		hypothetical protein	-1.7	6.6E-08						
PA5252		probable ATP-binding component of ABC transporter							1.05	2.2E-02
PA5254		probable peptidyl-prolyl cis-trans isomerase, FkbP- type			-1.19	1.5E-02				
PA5257		hypothetical protein			1.08	2.5E-02				
PA5260	hemC	porphobilinogen deaminase							-1.06	1.6E-02
PA5261	algR	alginate biosynthesis regulatory protein AlgR	1.6	1.4E-05			1.6	5.2E-08		
PA5266	vgrG6	VgrG6	1.9	7.3E-04						
PA5269		hypothetical protein					-1.6	2.3E-07		
PA5271		hypothetical protein			-1.29	2.0E-02	-1.6	4.3E-13		
PA5274	rnk	nucleoside diphosphate kinase regulator	-1.5	1.5E-05	-1.26	3.5E-02				
PA5276	lppL	Lipopeptide LppL precursor					-3.4	3.9E-20		
PA5277	lysA	diaminopimelate decarboxylase			-1.11	4.9E-04				
PA5280	SSS	site-specific recombinase Sss	-1.6	1.4E-03						
PA5288	glnK	nitrogen regulatory protein P-II 2					1.6	4.5E-04		
PA5291	betT2	BetT2			1.18	7.6E-04	1.5	1.3E-08	1.11	2.1E-02
PA5293		probable transcriptional regulator			1.05	3.7E-02			1.07	4.5E-02
PA5296	rep	ATP-dependent DNA helicase Rep	-1.6	3.8E-05						
PA5298		xanthine phosphoribosyltransferase	-1.6	1.4E-06	-1.35	3.5E-03				
PA5301	pauR	PauR			-1.22	1.7E-02				
PA5306		conserved hypothetical protein			1.12	1.1E-02	2.3	2.5E-29	1.09	5.7E-03
PA5309	pauB4	FAD-dependent oxidoreductase			1.2	2.1E-02				
DA 5215	rnmC	50S ribosomal protein L33					-1.6	3.4E-07		

		Phosphopantothenoylcyste								
		ine synthase/(R)-4'-								
PA5320	coaC	phospho-N-			-1.21	4.0E-03				
		pantothenoylcysteine								
		decarboxylase								
PA5333		conserved hypothetical			1 1/	2.4E-02	_1.6	$1.7E_{-}04$		
1 13333		protein			1.14	2.4L-02	-1.0	1.72-04		
PA5344	oxyR	OxyR			-1.04	4.5E-02				
PA5345	recG	ATP-dependent DNA helicase RecG			-1.21	4.6E-04			-1.14	2.4E-03
PA5349	rubB	rubredoxin reductase			-1.1	6.5E-03				
PA5351	rubA1	Rubredoxin 1			-1.34	2.9E-02	-4.2	3.2E-63		
PA5354	glcE	glycolate oxidase subunit GlcE			1.05	1.3E-02				
PA5355	glcD	glycolate oxidase subunit GlcD					-1.6	7.9E-13		
PA5356	glcC	transcriptional regulator GlcC	1.7	7.2E-07			2.2	1.1E-18		
PA5359		hypothetical protein	1.8	2.2E-07						
		ATP-binding component								
PA5366	pstB	of ABC phosphate transporter			1.13	5.0E-04			1.07	5.1E-03
PA5376	cbcV	CbcV			-1.16	4.5E-02				
PA5378	cbcX	CbcX			-1.2	1.8E-02				
PA5380	gbdR	GbdR	1.6	2.5E-02						
PA5399	dgcB	DgcB, Dimethylglycine catabolism					1.9	2.6E-06		
PA5403		probable transcriptional regulator					1.7	1.1E-03		
PA5406		hypothetical protein	-2.3	2.4E-03			-3.4	3.7E-05		
PA5407		hypothetical protein	-2.9	3.5E-06			1.6	1.9E-02		
PA5413	ltaA	low specificity l-threonine aldolase			-1.1	2.5E-02				
PA5414		hypothetical protein			-1.19	1.8E-02	1.7	6.6E-08		
PA5424		conserved hypothetical protein					-2.0	1.8E-12		
PA5425	purK	phosphoribosylaminoimida zole carboxylase	-1.7	4.4E-08						
		phosphoribosylaminoimida								
PA5426	purE	zole carboxylase, catalytic subunit	-1.7	6.9E-08	-1.17	1.3E-02				
PA5427	adhA	alcohol dehydrogenase	2.0	4.6E-03	1.5	3.4E-02				

PA5429	aspA	aspartate ammonia-lyase					1.5	2.5E-03		
PA5434	mtr	tryptophan permease	-1.6	3.6E-04			1.5	2.51 05		
PA5435		probable transcarboxylase subunit	110						1.06	1.1E-03
PA5443	uvrD	DNA helicase II			-1.1	2.3E-02			-1.11	2.3E-02
PA5446		hypothetical protein	1.7	2.1E-05			-1.6	6.3E-06		
PA5448	wbpY	glycosyltransferase WbpY	-1.6	1.2E-03						
PA5449	wbpX	glycosyltransferase WbpX	-1.6	3.8E-09						
PA5452	wbpW	phosphomannose isomerase/GDP-mannose WbpW			-1.13	3.0E-02				
PA5453	gmd	GDP-mannose 4,6- dehydratase			-1.12	3.1E-02			-1.12	1.0E-02
PA5454	rmd	oxidoreductase Rmd			-1.25	4.1E-03				
PA5456		putative glycosyltransferase	-1.6	1.5E-05						
PA5457		methyltransferase	-1.5	6.5E-04						
PA5459		putative methyltransferase	-1.6	1.9E-06						
PA5460		hypothetical protein	2.2	6.6E-04						
PA5469		conserved hypothetical protein	-2.2	3.7E-03			-1.7	4.0E-02		
PA5471 .1		PA5471 leader peptide					-2.0	3.8E-05		
PA5472		hypothetical protein	-1.8	6.1E-07	-1.85	9.5E-03	-1.7	1.6E-07		
PA5473		conserved hypothetical protein					1.6	4.5E-06		
PA5474		probable metalloprotease			1.12	1.2E-02				
PA5475		hypothetical protein	2.8	1.8E-03						
PA5477		hypothetical protein					1.6	3.0E-10		
PA5479	gltP	proton-glutamate symporter	-1.6	7.1E-05						
PA5482		hypothetical protein					-2.5	5.5E-07		
PA5483	algB	two-component response regulator AlgB			1.17	1.4E-02				
PA5484	kinB	KinB			1.23	2.6E-03			1.1	6.5E-03
PA5485	ampD h2	AmpDh2			1.08	2.0E-02				
PA5487		hypothetical protein			1.17	5.6E-03			1.13	2.2E-02
PA5492		conserved hypothetical protein			1.21	2.6E-03			1.13	4.8E-03

PA5493	polA	DNA polymerase I			-1.08	1.6E-04			-1.08	1.5E-03
PA5495	thrB	homoserine kinase			-1.06	3.4E-03				
PA5496	nrdJb	class II (cobalamin- dependent) ribonucleotide- diphosphate reductase subunit, NrdJb	1.7	1.8E-03						
PA5497	nrdJa	class II (cobalamin- dependent) ribonucleotide- diphosphate reductase subunit, NrdJa	1.6	4.0E-03						
PA5499	zur	zinc uptake regulator, Zur					2.3	6.3E-06		
PA5500	znuC	zinc transport protein ZnuC					2.3	9.5E-08		
PA5502		hypothetical protein			-1.12	3.4E-02				
PA5503		probable ATP-binding component of ABC transporter	-1.7	1.8E-05	-1.11	3.3E-02				
PA5504		D-methionine ABC transporter membrane protein	-1.7	2.8E-07						
PA5519		conserved hypothetical protein			1.13	4.4E-02				
PA5520		hypothetical protein	1.6	7.7E-10						
PA5521		probable short-chain dehydrogenase	1.5	3.5E-09	1.19	1.1E-02			1.11	4.4E-02
PA5523		probable aminotransferase	1.6	7.8E-06	1.08	4.0E-02				
PA5526		hypothetical protein	1.8	6.3E-04						
PA5527		hypothetical protein	1.8	1.5E-04						
PA5528		hypothetical protein			1.2	8.1E-03			1.15	9.5E-03
PA5532		hypothetical protein					2.0	6.1E-16		
PA5534		hypothetical protein					4.1	2.3E-04		
PA5535		conserved hypothetical protein					4.0	3.3E-04		
PA5536	dksA2	DksA2					27.7	4.2E-06		
PA5538	amiA	N-acetylmuramoyl-L- alanine amidase					4.6	4.7E-04		
PA5539		hypothetical protein					15.7	3.6E-07		
PA5540		hypothetical protein					3.9	6.3E-03		
PA5541	pyrQ	dihydroorotase					6.7	7.7E-04		
PA5542	<u> </u>	Pseudomonas imipenem beta-lactamase PIB-1			1.15	2.8E-03			1.13	3.8E-03

PA5546		conserved hypothetical protein	1.5	2.0E-04						
PA5547		conserved hypothetical protein	3.3	2.9E-32						
PA5551		hypothetical protein			1.29	3.3E-02				
PA5552	glmU	glucosamine-1-phosphate acetyltransferase/N- acetylglucosamine-1- phosphate uridyltransferase			1.12	2.2E-02				
PA5553	atpC	ATP synthase epsilon chain			1.14	2.2E-02	-1.9	3.4E-12		
PA5554	atpD	ATP synthase beta chain					-1.8	3.0E-12		
PA5555	atpG	ATP synthase gamma chain			1.06	2.6E-02	-1.7	3.7E-09		
PA5556	atpA	ATP synthase alpha chain			1.1	1.9E-02	-1.6	2.3E-07		
PA5558	atpF	ATP synthase B chain			1.16	1.3E-02				
PA5559	atpE	atp synthase C chain					-1.9	1.2E-10		
PA5560	atpB	ATP synthase A chain			1.24	1.4E-03			1.24	1.4E-02
PA5562	spoOJ	chromosome partitioning protein Spo0J			1.12	5.7E-04			1.08	6.2E-03
PA5563	soj	chromosome partitioning protein Soj			1.13	1.8E-03			1.08	3.9E-02
PA5569	rnpA	ribonuclease P protein component			1.17	7.5E-05			1.08	8.2E-03
PA5570	rpmH	50S ribosomal protein L34			-1.38	9.9E-03	-4.2	1.6E-77		

B.3 Other Supplementary Tables

Table A3. 17 additional resistome genes with corresponding mutants showing tobramycin resistance under swarming conditions. Evidence of dysregulation comes from swarm vs. swim RNA-Seq. PA14 transposon mutants in selected genes were tested for altered tobramycin susceptibility under swarming conditions using the agar dilution method (inhibitory concentrations shown in μ g/ml of tobramycin, along with images of swarming colonies at 1 μ g/ml).

PA14	PAO1	Name	Product Name	Fold change	inhib	rming bitory tration
PA14 WT					1	0
PA14_07980	PA0613		hypothetical protein	-4.3	2	
PA14_08000	PA0615		hypothetical protein	-2.6	2	***
PA14_08010	PA0616	gpV	R2 pyocin membrane-piercing spike	-3.6	2	燕
PA14_08020	PA0617	gpW	bacteriophage protein	-4.8	2	 •••••
PA14_08030	PA0618		phage baseplate assembly protein	-5.3	2	No.
PA14_08050	PA0620		tail fiber protein	-4.1	2	P. W. Cart
PA14_08060	PA0621		tail fiber assembly protein	-3.9	2	N.C.
PA14_08090	PA0623	gpFII	phage tail tube protein	-7.4	2	
PA14_08100	PA0624		hypothetical protein	-6.4	2	
PA14_08120	PA0625		tail length determinator protein	-5.4	2	
PA14_08130	PA0626	gpU	phage P2-like protein	-4.6	2	C. C.
PA14_08180	PA0630		hypothetical protein	-6.3	2	No.
PA14_08230	PA0635		hypothetical protein	-6.8	2	-XK
PA14_08240	PA0636		Lambda phage tail tape-measure protein- like	-5.6	2	**
PA14_08260	PA0638		minor tail protein L	-5.4	2	*
PA14_08270	PA0639		hypothetical protein	-6.1	2	X
PA14_08280	PA0640		bacteriophage protein	-5.1	2	· ·

Fable A4. Swarming inhibitory concentrations (µg/ml) of PA14 mutants on BM2 swarm plate	es
at 0.5% agar. $n \ge 3$.	

	Stugin	Swarming inhibitory concentration (µg/ml)							
	Strain	Amikacin	Ceftazidime	Erythromycin	Tobramycin	Trimethoprim			
P	A14 WT	1-2	0.8	75	1	10			

prtN	1-2	0.8	75-150	2	20
wbpW	1-2	0.8	75	2	10

Table A5. Standard MIC (μ g/ml) of PA14 mutants in liquid media. n = 3.

Media	J	LB	BM2			
Strain	Tobramycin	Trimethoprim	Tobramycin	Trimethoprim		
PA14 WT	4-8	64-128	1-2	32-64		
prtN	4	128-256	1-2	32-64		
wbpW	4-8	64	2	32-64		

Table A6. Tobramycin MIC (μ g/ml) in LB for additional selected PA14 mutants. n = 3.

Strain	MIC (µg/ml)
PA14 WT	4-8
PA0613	4
PA0617	4
PA0624	4
PA0634	4-8
PA2128	4-8
PA3670	4
PA3836	4
PA5542	4-8

Table A7. Tobramycin MIC (μ g/ml) in BM2 glucose with 0.1% CAA and no (NH₄)₂SO₄. n = 3.

Strain	Plasmid	MIC
PAO1	pHERD20T (EV)	1-2
PAO1	PA0805.1	2
PAO1 WT	-	1-2
ΔPA0805.1	-	1-2
ΔPA0805.1 ⁺	Chromosomal insertion of PA0805.1	1-2

Table A8. sRNA targets predicted *in silico* for PA0805.1.

Locus	Name	Description	Predicted by	
PA0142		hypothetical protein	TargetRNA2, IntaRNA2	
PA0564		probable transcriptional regulator	TargetRNA2, IntaRNA2	
PA1248	aprF	alkaline protease secretion outer membrane protein AprF precursor	RNAPredator, IntaRNA2	
PA1644		conserved hypothetical protein	RNAPredator, IntaRNA2	
PA1912	femI	ECF sigma factor, FemI TargetRNA2, RNA		
PA2619	infA	initiation factor	RNAPredator, IntaRNA2	
PA2677	hplR	probable type II secretion protein	RNAPredator, IntaRNA2	
PA2783	mep72	Mep72	RNAPredator, IntaRNA2	

Locus	Name	Description	Predicted by	
PA3105	xcpQ	general secretion pathway protein D	RNAPredator, IntaRNA2	
PA3339	plpD	patatin-like protein, PlpD	TargetRNA2, IntaRNA2	
PA3840	ybiN	conserved hypothetical protein	RNAPredator, IntaRNA2	
PA4539		hypothetical protein	RNAPredator, IntaRNA2	
PA5157	marR	probable transcriptional regulator	TargetRNA2, RNAPredator	
PA5187		probable acyl-CoA dehydrogenase	TargetRNA2, IntaRNA2	

Table A9. MIC (μ g/ml) assessed by the standard broth microdilution assay in BM2 glycerol 0.1% CAA with no (NH₄)₂SO₄. *n* \ge 3.

	MIC (µg/ml)				
Strain	Tobramycin		Т	rimethoprin	n
% arabinose	0	0.3	0	0.3	1.0
WT EV	1	1-2	32-64	32-64	32-64
PA2952.1	2	2	32-64	32	16-32

Table A10. sRNA targets predicted in silico for PA2952.1.

Locus	Name	Description	Predicted by	
PA0625		hypothetical protein	RNAPredator, TargetRNA2	
PA0828		probable transcriptional regulator	RNAPredator, TargetRNA2	
PA1711	exsE	negative regulator of type III secretion	IntaRNA2, TargetRNA2	
PA1886	polB	DNA polymerase II	IntaRNA2, RNAPredator	
PA2459		hypothetical protein	RNAPredator, TargetRNA2	
PA2626	trmU	tRNA methyltransferase	IntaRNA2, RNAPredator	
PA2942		probable magnesium chelatase	IntaRNA2, RNAPredator	
PA3657	тар	methionine aminopeptidase	IntaRNA2, RNAPredator	