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Abstract

Kidney cancers account for an estimated 140,000 global deaths annually. Accord-

ing to the Canadian Cancer Society, an estimated 6,600 Canadians were diagnosed

with kidney cancer, and 1,900 Canadians died from it in 2017. Computed tomog-

raphy (CT) imaging plays a vital role in kidney cancer detection, prognosis, and

treatment response assessment. Automated CT-based cancer analysis is benefit-

ing from unprecedented advancements in machine learning techniques and wide

availability of high-performance computers.

Typically, kidney cancer analysis requires a challenging pipeline of (a) kidney

localization in the CT scan and general assessment of kidney functionality, (b)

tumor detection within the kidney, and (c) cancer analysis.

In this thesis, we developed deep learning techniques for automatic kidney lo-

calization, segmentation-free volume estimation, cancer detection, as well as CT

features-based gene mutation detection, renal cell carcinoma (RCC) grading, and

staging. Our convolutional neural network (CNN)-based kidney localization ap-

proach produces a kidney bounding box in CT, while our CNN-based direct kid-

ney volume estimation approach skips the intermediate segmentation step that is

often used for volume estimation at the cost of additional computational overhead.

We also proposed a novel collage CNN technique to detect pathological kidneys,

where we introduced a unique image augmentation procedure within a multiple

instance learning framework. We further proposed a multiple instance decision

aggregated CNN approach for automatic detection of gene mutations and a learn-

able image histogram-based deep neural network (ImHistNet) approach for RCC

grading and staging. These approaches could be alternatives to renal biopsy-based

whole-genome sequencing, RCC grading, and staging, respectively.
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Our automatic kidney localization approach reduced the mean kidney bound-

ary localization error to 2.19 mm, which is 23% better than that of recent literature.

We also achieved a mean total kidney volume estimation accuracy of 95.2%. Fur-

ther, we showed a pathological vs. healthy kidney classification accuracy of 98%

using our novel collage CNN approach. In our kidney cancer analysis works, our

multiple-instance CNN demonstrated an approximately 94% accuracy in kidney-

wise mutation detection. Also, our novel ImHistNet demonstrated 80% and 83%

accuracies in RCC grading and staging, respectively.
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Lay Summary

In this thesis, we developed several supervised learning-based techniques for kid-

ney cancer analysis from the computed tomography (CT) images. Our methods are

mostly convolutional neural network-based. These methods are capable of

1. localizing kidneys in the 3D CT volume,

2. assessing the kidney functionality via estimating the total kidney volume in

a segmentation-free fashion,

3. detecting the presence of tumor in kidneys using novel collage image rep-

resentation that allows using sparsely annotated volume data in the multiple

instance learning framework,

4. detecting mutated genes by learning the CT-image features, and

5. determining renal cell carcinoma grades and stages by learning the CT tex-

tural features.
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Preface

A part of the research presented herein involves using human data, accessed from

the Vancouver General Hospital, which was approved by the UBC Clinical Re-

search Ethics Board (CREB), certificate numbers: H15-00237. This thesis is pri-

marily based on the following articles, resulting from the collaboration of multiple

researchers.

We published a part of the studies described in chapter 3 in:

[P1] Hussain M.A., Amir-Khalili A., Hamarneh G., and Abugharbieh R., Segmentation-

free Kidney Localization and Volume Estimation Using Aggregated Orthogonal

Decision CNN, In: Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI), pp. 612–620, Quebec-city, Canada, 2017. [1].

We are preparing a part of the studies described in chapter 3 as a journal:

[UP1] Hussain M.A., Hamarneh G., and Garbi R., Segmentation-free Kidney Lo-

calization and Volume Estimation Using Mask-RCNN and FCN, IEEE Transaction

on Medical Imaging. [Under Preparation]

We published some part of the studies described in chapter 4 in:

[P2] Hussain M.A., Hamarneh G., O’Connell T.W., Mohammed M.F., and Abughar-

bieh R., Segmentation-Free Estimation of Kidney Volumes in CT with Dual Re-

gression Forests, In: 7th International Workshop on Machine Learning in Medical

Imaging (MLMI), pp. 156–163, 2016. [2], and

[P1] Hussain M.A., Amir-Khalili A., Hamarneh G., and Abugharbieh R., Segmentation-
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free Kidney Localization and Volume Estimation Using Aggregated Orthogonal

Decision CNN, In: Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI), pp. 612–620, Quebec-city, Canada, 2017. [1]

A of the part of the studies described in chapter 4 is under preparation to submit in

UP1.

We published the studies described in chapter 5 in:

[P3] Hussain M.A., Amir-Khalili A., Hamarneh G., and Abugharbieh R., Collage

CNN for Renal Cell Carcinoma Detection from CT, In: 8th International Workshop

on Machine Learning in Medical Imaging (MLMI), pp. 229–237, Quebec-city,

Canada, 2017. [3]

We published the studies described in chapter 6 in:

[P4] Hussain M.A., Hamarneh G., and Garbi R., Noninvasive Determination of

Gene Mutations in Clear Cell Renal Cell Carcinoma using Multiple Instance De-

cisions Aggregated CNN, In: Medical Image Computing and Computer Assisted

Intervention (MICCAI), pp. 657–665, 2018. [4]

We published the studies described in chapter 7 in:

[P5] Hussain M.A., Hamarneh G., and Garbi R., ImHistNet: Learnable Image

Histogram Based DNN with Application to Noninvasive Determination of Carci-

noma Grades in CT Scans, In: Medical Image Computing and Computer Assisted

Intervention (MICCAI), pp. 130–138, Shenzhen-China, 2019. [5] (Received the
MICCAI Graduate Student Travel Award)

[P6] Hussain M.A., Hamarneh G., and Garbi R., Renal Cell Carcinoma Staging

with Learnable Image Histogram-based Deep Neural Network, In: 10th Interna-

tional Workshop on Machine Learning in Medical Imaging (MLMI), pp. 533–540,

Shenzhen-China, 2019. [6]

An extended version of P5 and P6 (chapter 7) is under preparation as a journal

draft:
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[UP2] Hussain M.A., Hamarneh G., and Garbi R., ImHistNet: Deep Radiomics

with Learnable Image Histograms for Renal Carcinoma Staging and Grading, Med-

ical Image Analysis. [Under Preparation]

All published articles were revised and edited by all co-authors. In P1-P6, as

the primary author, I was the main contributor to the majority of writing effort,

ideation, design, implementation, and testing of the proposed methodology under

the supervision of Prof. Rafeef Garbi. I also presented the oral presentation for P3

and the poster presentations P1, P2, P4, P5, P6 conference papers. In all papers,

Prof. Ghassan Hamarneh helped immensely with his valuable input on developing

the original idea, improving the methodology, experimental design, and writing

the paper. In P1 and P2, Dr. Timothy W. O’Connell and Dr. Mohammed F. Mo-

hammed provided the ground truth delineation of the kidney.
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Chapter 1

Introduction

1.1 Background
Worldwide Cancer Statistics: Cancer is the second leading cause of death world-

wide behind cardiovascular diseases (Fig. 1.1) [8]. In 2018, there were 18.1 million

new cases of cancer worldwide that resulted in 9.6 million deaths [9]. About 40%

of cancer cases occur in the abdominal organs, e.g., kidneys, liver, prostate, stom-

ach, etc [9]. The Canadian Cancer Society projected that 220,400 Canadians would

develop cancer, and 82,100 would die of it in 2019 [10]. This society also projected

that about 1 in 2 Canadians would develop cancer in their lifetime, and about 1 in

4 Canadians will die of it [10].

Kidney Cancer Statistics: Kidney cancer is the 16th most common cancer world-

wide. About 403,262 new kidney cancer cases were recorded and about 175,098

patients died of it globally in 2018 [9]. The Canadian Cancer Society [10] has

projected about 1,900 deaths among Canadians due to kidney cancer in 2019.

1.1.1 Thesis Motivation

Socioeconomic Burden of Kidney Cancer: Kidney cancer often turns into the End

stage renal disease (ESRD) [11] that typically results in kidney failure. Even though

kidney cancer is the 16th most common, its economic burden goes well beyond

the incident rate [12]. Kidney failure is a significant concern to patients, their
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Figure 1.1: A chart showing share of deaths by cause.1

caregivers, and payers. It incurs high health care costs annually to manage the

clinical complexities of patients with kidney diseases, including costs associated

with the detection and management of kidney cancer treatment, and simultaneous

management of comorbid conditions (e.g., diabetes, congestive heart failure, and

hypertension). In the United States, annual medical costs per patient with ESRD

often varies up to $180,000 [12]. Besides, kidney diseases result in significant

productivity losses for both patients and their caregivers in terms of absenteeism,

presenteeism (i.e., attending work while ill), and premature death of patients [12].

Importance of Early Tumor Detection: Despite a rapid increase in the number of

patients with kidney cancer worldwide, mostly due to incidental diagnosis [13],

recent developments in early detection, personalized medicine, novel treatment ap-

proaches, active surveillance, robot-assisted nephron-sparing surgical techniques,

and minimally invasive procedures, such as thermal ablation, have raised hope of

significantly improving kidney cancer survival [14]. For example, in the United

1Reproduced from [8] under the creative commons license for free use.
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States, 5-year relative survival rates at diagnosis increased from 50% in 1975-77

to 57% in 1987-89 and reached 73% in 2003-09 [15]. Therefore, to improve the

current kidney patient survival rate, revolutionizing the early cancer detection and

prognosis system may be critical in the heterogeneous clinical setting [15].

Importance of Medical Imaging in Oncology: Recently, clinical oncology man-

agement including screening, diagnosis, treatment planning, and therapy monitor-

ing has been revolutionized and accelerated by the explosive growth of medical

imaging technologies [16]. Noninvasive medical images contain valuable infor-

mation that can be extracted and utilized through computer-assisted interpretation.

This process is referred to as ‘radiomics,’ which is a rapidly-emerging field of

a study aiming to extract quantitative disease-specific data from medical images

for use in clinical decision support [17]. In the context of clinical oncology, ob-

tained information from the standard imaging modalities such as Computed tomog-

raphy (CT), Magnetic resonance imaging (MRI), and Positron emission tomogra-

phy (PET) scans are much more abundant, and radiomics aim to extract these high

throughput quantitative features, covering the fields of texture, advanced shape

modeling, and heterogeneity.

The Aim of this Thesis: Even though radiomics has immense potential to improve

knowledge in tumor biology and guide the management of patients at bedside [16],

kidney cancer prognosis, and prediction from volumetric medical images remains

a labor-intensive and challenging pipeline of works as:

• Kidney localization in the 3D medical images and general assessment (e.g.,

volumetric analysis) of the kidney health,

• Detection of the malignant tumors (if any) in the kidney,

• Cancerous tumor analysis via determining mutated genes, tumor grading,

tumor staging, etc.

Very often, one or more of the above-stated steps are performed manually via

visual inspections [18], though several model-based image analysis techniques

(i.e., level-set, active contour, graph cut, etc.) have also been traditionally used

alongside [19]. However, these algorithms often require user interaction, are sen-
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sitive to parameter settings, and involves heavy computation during clinical appli-

cation. In contrast, a variety of Machine learning (ML) techniques [20] have also

been widely applied to medical images throughout the last two decades to make

the computer-aided kidney localization, segmentation and analysis tasks more fea-

sible in the clinical environment. ML approaches enabled a shift from systems

that are entirely designed by humans to systems that are trained by computers us-

ing example data from which feature vectors are extracted. Then computer algo-

rithms determine the optimal decision boundary in the high-dimensional feature

space. However, this process is still done by human researchers, and these human-

engineered features are referred to as ‘hand-crafted features,’ which often does not

optimally represent the task-specific discriminating image features. Therefore, a

logical next step is to let computers learn the features that optimally represent the

data for a specific task. This concept forms the basis of deep learning models,

which contain many layers that transform input data to outputs while learning in-

creasingly higher-level features [20]. The most successful type of model for image

analysis to date is Convolutional neural network (CNN).

However, there are still a large number of challenges remaining in the context

of kidney cancer research using different machine learning techniques, which re-

quire task-specific model designing and application. Therefore, the objective of

this thesis is to develop novel machine learning approaches for volumetric medical

images (e.g., CT, MRI, PET, etc.) that would make kidney cancer analysis more

rapid and reproducible in the clinical environment. Although we would test the

developed methods in this thesis on volumetric CT data, their applications are ex-

tendable to other modalities too.

Potential Clinical Impact: The primary aim of this thesis is to address several tech-

nical challenges associated with the current clinical image-based kidney cancer de-

tection and analysis procedures. The scope of this thesis did not allow for extensive

clinical studies, though we validated each component of this thesis on clinical data.

Therefore, we mainly focus on discussing the technical contributions in this thesis.

However, our works have great potential to impact patient care in clinical settings.

This thesis presents a comprehensive working pipeline for kidney health analysis,

starting from kidney localization in volumetric medical images to kidney cancer
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analysis for treatment planning. We discuss in detail of this thesis’ contributions

in section 1.4. Briefly, our accurate and automatic kidney localization approaches

may accelerate rapid kidney health analysis in clinical settings via presenting the

background removed region-of-interest around kidneys on the point-of-care com-

puter monitor, saving the time of clinicians in searching for kidneys in the image

volume. Also, our segmentation-free and fast total kidney volume estimation ap-

proach may provide surrogate renal information, which can help clinicians to iden-

tify kidneys with reduced functionality. As we mentioned earlier that clinicians

diagnose most kidney tumors incidentally nowadays, our novel collage CNN ap-

proach can be beneficial in identifying pathological kidneys in a patient, who might

have primarily concerned with other diseases. Also, our image features-based non-

invasive gene mutation detection, and RCC grading and staging approaches may

significantly reduce the laboratory test-based diagnosis time and expenses. These

methods may also help physicians in rapid treatment planning, which might be a

crucial lifesaver for a patient. Besides, although we validated our methods in this

thesis on kidneys, we expect these procedures to be easily transferable and practical

for other human abdominal organs, e.g., liver, prostate, heart.

1.1.2 Renal Imaging

Different cross-sectional medical imaging such as contrast-enhanced ultrasound,

CT, MRI, single-photon emission computed tomography, and PET have revolu-

tionized the way of renal mass characterization (i.e., virtual biopsy) as well as the

detection of metastatic disease, prognostication, and response assessment in pa-

tients with advanced kidney cancer [21]. Despite the availability of several imaging

modalities, CT is often a popular choice because of its discriminatory contrast vari-

ability in the kidney based on the cancer types, grades, and stages [21]. CT is con-

sidered the gold standard for the characterization of renal tumors [22]. Although

ultrasound imaging is more easily accessible than CT, imaging the retroperitoneum

with ultrasound is a challenging task due to anatomic hurdles to sound wave trans-

mission. Positioning an ultrasound probe in a suitable place to image a kidney is

critical as ribs may cause posterior acoustic shadowing and often prevent accurate

visualization of the renal unit beneath that rib [23]. Besides, kidney stones of 5
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Figure 1.2: An image showing the kidney and its tumor in the abdominal CT
volume.

mm or larger usually produce a posterior acoustic shadow [23]. On the other hand,

MRI machines are available to a lesser extent in clinical settings than CT [24].

Thus, CT is often the first choice of imaging for the evaluation of a renal tumor.

For this reason, we validated the proposed methods in this thesis on CT data, but

these methods are also applicable to MRI data.

A CT scan helps to assess the tumors and other lesions (see Fig. 1.2) in a kidney.

It also helps to detect and analyze obstructions such as calcification, abscesses,

polycystic kidney disease as well as congenital anomalies, mainly when another

type of examination like X-rays or physical exams is not conclusive. CT scans of

the kidney may be used to evaluate the retroperitoneum (i.e., the back portion of

the abdomen behind the peritoneal membrane) and also may be used to assist in

needle placement in kidney biopsies. After the radical nephrectomy (i.e., removal

of a kidney by surgery), CT scans may be used to locate abnormal masses in the

space where the organ used to be. CT scans of the kidneys may also be performed
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after kidney transplantation to evaluate the size and location of the new kidney to

the bladder.

Often CT scanning is performed with “contrast” agent. Contrast refers to a

chemical substance taken by mouth or injected into an intravenous (IV) line that

causes the particular organ or tissue under the study to be seen more clearly. Con-

trast examinations often require the patient to fast for a certain period just before

the scanning procedure. CT scans of the kidneys provide more detailed informa-

tion about the organs than standard X-rays, resulting in the availability of more

information related to the injuries and diseases of the kidneys.

1.1.3 Challenges in Kidney Cancer Detection and Analysis in CT

Kidney Localization: Accurate localization of kidneys in the 3D CT images is cru-

cial as it is a start point for many automatic kidney analysis tasks, such as kidney

segmentation and lesion detection [25]. Appropriate initial estimation of kidney

position and extent can largely improve the performance of the subsequent treat-

ment procedures such as thermal ablation [14]. Kidney localization allows dis-

carding most of the non-relevant information and focuses on regions that are more

likely to contain the tumor cells. Moreover, kidney localization is also important

for efficient data retrieval and visual navigation of CT scans [25]. ML-based ap-

proaches show better kidney Region-of-interest (ROI) boundary wall localization

accuracy compared to the traditional model-based approaches. However, the lo-

calization errors by these ML-based state-of-the-art methods are still greater than

7 mm, which may hinder the precise application of minimally invasive treatment

procedures. For example, the precise application of thermal ablation like radio-

frequency ablation (RFA) and cryoablation (CA) is suitable for patients who can-

not undergo surgery because of comorbid illnesses [26]. These procedures are also

suitable for those who have contralateral recurrences or a hereditary precancerous

condition [26]. Since thermal ablation also targets to destroy at least 5 mm (up to

10 mm) thick seemingly normal tissue by the boundary of the tumor [27], inaccu-

rate localization of kidney may lead to destroying normal tissues in the adjacent

organs. Therefore, the first challenge we would address in this thesis is:

• Challenge 1: Reducing kidney localization error in the range of conventional
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spatial resolution of modern CT scanners (0.5∼0.6 mm) [28] by using an

image-based deep supervised learning approach.

Segmentation-free Kidney Volume Estimation: ‘Total kidney volume’ is an impor-

tant biomarker in the clinical diagnosis of various renal diseases [29]. For exam-

ple, it plays an essential role in the follow-up evaluation of kidney transplants [30].

Most existing methods for volume estimation rely on error-prone kidney segmen-

tation as a prerequisite step, which has various limitations such as initialization-

sensitivity and computationally-expensive optimization. Therefore, the second

challenge we would address in this thesis is:

• Challenge 2: Developing a computationally inexpensive and robust kidney

volume estimation approach, leveraging the image-based supervised learn-

ing that would bypass the segmentation procedure.

Pathological Kidney Detection: Image-based supervised learning requires a large

number of annotated image data. Thus, the annotation burden to generate enough

training data directly affects efficient supervised learning. The lack of sufficient an-

notation leads to sparse-labeled 3D datasets. ‘Image labeling’ is the process of rec-

ognizing different entities in an image. When a database has multi-dimensional im-

age data having several objects of interest in those, however, labels are not present

for an object for all the dimensions, we call it sparsely labeled data. Although

Multiple-instance learning (MIL) [31] has shown promise in natural images for

sparsely labeled data, and there are a few usages of this approach on medical data

[32–34], it is yet to investigate from the image-based kidney cancer investigation

perspective fully. Often kidneys are labeled as pathological, but there is no delin-

eation of the tumor in the kidney. This scenario makes it quite difficult to use 2D

slices to train a 2D CNN. On the other hand, the obvious solution to this problem

is using 3D CNN. However, it poses two-fold challenges: (1) it drastically reduces

the number of training samples. And (2) 3D CNNs are considerably more diffi-

cult to train as they contain significantly more parameters and necessitate the use

of expensive GPUs with larger memory and require a lot more time to converge.

Further, the inference time of a 3D CNN is high when running in a conventional

point-of-care computer. Therefore, the third challenge we would address in this

thesis is:
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• Challenge 3: Tackling the sparse annotation problem in image-based super-

vised learning for pathological kidney detection.

Noninvasive Determination of Gene Mutation: Knowledge of the genetic make-up

of a patient’s kidney clear cell renal cell carcinoma (ccRCC) has a great prognostic

value, which is helpful for treatment planning [18, 35]. Recent works [36, 37] have

shown correlations between mutations in genes and different ccRCC features seen

in CT images. Robust image feature identification is typically performed by expert

radiologists, relying on human visual inspection. However, this process is difficult,

time-consuming, and suffers from high intra/inter-observer variability. Therefore,

the fourth challenge we would address in this thesis is:

• Challenge 4: Resolving the gene mutation detection problem in an auto-

matic and noninvasive way via leveraging the CT-based tumor features.

Noninvasive Determination of RCC Grade: For RCC treatment planning, both

RCC ‘grade’ and ‘stage’ provide critical information on the severity of renal can-

cer. Cancer grading is the way of classifying the cancer cells in the histopathologic

images. The pathologist provides cancer a grade based on (a) how different they

look from healthy cells, (b) how quickly they are growing and dividing, and (c) how

likely they are to spread. Low-grade cancer cells are usually well-differentiated,

and the tumors are slow-growing. In contrast, high-grade cancer cells are usually

poorly differentiated or undifferentiated, and the tumors are faster growing.

The ‘grade’ of a ccRCC is one of the important prognostic predictors of 5-

year survival of a patient. Radiologists use invasive percutaneous renal biopsy

for ccRCC grading; however, inter-observer reproducibility of grades assigned

by pathologists ranges from 31.3% to 97% [38]. Recent studies [39–42] pro-

posed several ML approaches for automatic noninvasive ccRCC grading, but using

hand-engineered CT ‘textural’ features. These features include histogram, gray-

level co-occurrence matrices (GLCM), gray level run length matrix (GLRLM),

gray level size zone matrix (GLSZM), etc., which are known as statistical context

features [43]. On the other hand, classical CNN approaches learn features auto-

matically and tend to outperform hand-engineered features-based ML approaches.

However, classical CNN focuses on non-statistical context features like object
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edges and shapes [44], and tend to put less emphasis on the statistical textural fea-

tures [45], thus fails to determine the ccRCC grade. Therefore, the fifth challenge

we would address in this thesis is:

• Challenge 5: Designing a deep neural network framework to learn powerful

and discriminatory statistical radiological image features for accurate RCC

grading.

Noninvasive Determination of RCC Stage: Staging is the way of classifying cancer

based on the extent of cancer in the body. The stage is often based on the (a) size

of the tumor, (b) whether cancer has spread (metastasized) to other parts of the

body, and (c) where it has spread. Clinicians use the grade and stage of cancer, as

well as other factors, to help plan treatment, estimate how cancer might respond

to treatment, and give a prognosis. Knowledge of RCC ‘stage’ is vital for proper

treatment planning and considered one of the important prognostic predictors of

cancer-specific survival [46]. Clinical guidelines require clinicians to assign cancer

stages before initiating any treatment [47]. For accurate staging of RCC before

treatment planning, contrast-enhanced abdominal CT is considered essential [48].

Although tumor staging is believed to be dependent on the tumor size, Bradley

et al. [49] suggested using CT image-based textural features to improve tumor

staging. However, to our knowledge, there is no automatic CT image-based RCC

staging approach present in the literature. Therefore, the sixth challenge we would

address in this thesis is:

• Challenge 6: Investigating the potential of using CT textural features in a

deep neural network for automatic and accurate RCC staging.

1.2 State-of-the-art
As we already discussed in section 1.1.1 that kidney cancer prognosis and predic-

tion from volumetric medical images typically require a pipeline of works. Those

are (a) kidney localization in the 3D medical images and general assessment of the

kidney health, (b) detection of a malignant tumor (if any) in the kidney, and (c)

kidney tumor analysis via determining mutated genes, tumor grading, tumor stag-

ing, etc. For years, medical imaging scientists have developed a large number of
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model-based as well as ML-based approaches to tackle the above-stated working

pipeline. In the following sections, we note some of the new methods from the

literature related to the above steps.

1.2.1 Kidney Localization

Kidneys are often manually localized in the 3D CT data in the clinical settings [50–

52]. Recently, several automatic kidney localization approaches have been pro-

posed in the literature [53–57]. In Table 1.1, we list the most recent and relevant

kidney localization-related literature. First, we discuss several conventional model-

based approaches for automatic kidney localization. Yan et al. [53] proposed an

improved connected component labeling algorithm based on intensity value to ex-

tract estimated kidney position. Li et al. [54] used nonlinear diffusion filtering and

statistical shape model for kidney localization. Chen et al. [55] used the oriented

active appearance model to localize the kidney in the 3D CT data. Xiang et al. [56]

used a strategic combination of the Generalized Hough Transform and Active Ap-

pearance Model for kidney localization. Jin et al. [57] used a combination of 3D

Generalized Hough Transform and 3D Active Appearance Models for kidney lo-

calization. Although these traditional methods show promising results, building a

realistic model of kidney shape variability and balancing the influence of the model

on the resulting segmentation are non-trivial tasks.

To overcome the limitations of the traditional methods mentioned above, sev-

eral methods have been proposed based on supervised learning [58–65]. For ex-

ample, Criminisi et al. [58, 59] proposed regression-forest-based anatomy localiza-

tion methods that predict the boundary wall locations of a tight ROI encompassing

a particular organ. Cuingnet et al. [60] fine-tuned the technique in [59] by using

an additional regression forest, which improved the kidney localization accuracy

by ∼60%. Gauriau et al. [61] used an extended cascade of regression-forests to

estimate the confidence map of an organ, and the prediction was thresholded to get

the final organ bounding box. Recently, Samarakoon et al. [63] proposed a light

regression forest that uses fewer nodes than regular regression forests to localize

different organs in the CT scans. Zhou et al. [62] used ensemble learning-based

multiple 2D detectors, and their outputs are combined using a collaborative major-
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ity voting in 3D to accomplish the robust kidney localization. In their subsequent

works [64, 65], they localized kidney in CT images using template matching, hand-

crafted features, and local binary patterns.

Recently, deep learning using CNN has become a popular choice as it directly

learns from the raw image data, while reducing the semantic gap created by hand-

crafted features and time required on designing features [66]. Several kidney local-

ization methods using deep learning have also been proposed in the literature for

the CT images. For example. Humpire et al. [66, 67] proposed a CNN-based ap-

proach to detect six organs, including kidneys. They trained three separate CNNs

for classification of images taken from three orthogonal directions, where the rat-

ing of a slice is performed based on the presence or absence of a particular organ

cross-section in that slice. The 3D organ bounding box is then generated by com-

bining the classified-labels of orthogonal images. Similarly, Lu et al. [68] proposed

a right-kidney localization method using a cross-sectional fusion of CNN and Fully

convolutional networks (FCN). Xu et al. [25] proposed a 3D region proposal net-

work for eleven body organs localization, including the kidney.

However, as we discussed in section 1.1.3 that the mean kidney ROI bound-

ary localization errors by the state-of-the-art methods are still greater than 7 mm.

Higher kidney localization error often makes it difficult to apply different mini-

mally invasive treatment procedures. For example, higher kidney localization error

may hinder the more precise application of minimally invasive thermal ablation

like radio-frequency ablation (RFA) and cryoablation (CA). RFA and CA are suit-

able for patients who cannot undergo surgery because of comorbid illnesses [26].

These procedures are also useful for patients who have contralateral recurrences or

a hereditary precancerous condition [26].

1.2.2 Kidney Functionality Analysis

Chronic kidney disease (CKD) refers to the reduced or absent functionality of kid-

neys for more than three months, which is a major risk factor for death world-

wide [12]. In 2011, about 620,000 patients in the United States received treatment

for ESRD either by receiving dialysis or by receiving kidney transplantation [29].

ESRD is the final stage of different CKDs, e.g., Autosomal dominant polycystic
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Table 1.1: List of some recent kidney localization approaches. Here, conven-
tional model-based approaches are denoted by category-1 (C1), classical
machine learning approaches are denoted by C2, and (3) deep learning
approaches are denoted by C3.

Authors Methodology C1 C2 C3
Yan et al. [53] Connected component labeling algorithm X
Li et al. [54] Kidney statistical shape model X
Chen et al. [55] Oriented active appearance model X
Xiang et al. [56] 2D Hough transform + 2D active appearance model X
Jin et al. [57] 3D Hough transform + 3D active appearance model X
Criminisi et al. [58] Regression forest X
Criminisi et al. [59] Regression forest X
Cuingnet et al. [60] Regression forest X
Gauriau et al. [61] Cascaded regression forests X
Samarakoon et al. [63] Light regression forest X
Zhou et al. [62] Ensemble learning + majority voting X
Zhou et al. [65] 3D GrabCut + contect-based image retrieval X X
Zhou et al. [64] ML-based template machine + Hough transform X X
Humpire et al. [67] 3 CNN for each orthogonal direction X
Humpire et al. [66] 3 CNN for each orthogonal direction X
Lu et al. [68] CNN + FCN X
Hussain et al. [1] Orthogonal decision aggregated CNN X
Xu et al. [25] 3D region proposal network X

kidney disease (ADPKD), renal artery atherosclerosis (RAS), which are associated

with the change of kidney volume. However, detection of CKDs are complicated;

multiple tests such as the estimated glomerular filtration rate (eGFR) and serum

albumin-to-creatinine ratio may not detect early disease and be unreliable in detect-

ing disease and tracking its progression [29]. Also, it is known that serum albumin-

to-creatinine ratio and eGFR values typically do not change until the fourth or fifth

decade of life [69]. Recent works [29, 30] have suggested kidney volume as the

potential surrogate marker for renal function and is thus useful for predicting and

tracking the progression of different CKDs. The total kidney volume (TKV) has

become the gold-standard image biomarker for the ADPKD and RAS progression

at the early stages of this disease [30]. Besides, the renal volumetry has recently

emerged as the most suitable alternative for evaluating the split renal function in

kidney donors as well as the best biomarker in follow-up evaluation of kidney trans-

plants [29]. The Canadian Society of Nephrology held a symposium on the topic
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of TKV as a biomarker for disease severity and progression in ADPKD in April

2015. It is reported in [69] that in the majority of ADPKD patients, kidney vol-

ume increases over time, and this is attributed to an increase in cyst volume. They

supported their argument by reporting a study on 241 ADPKD patients, where the

estimated mean TKV of the patients was 1076mL, and the total cyst volume was

534mL. In contrast, the mean volume of normal kidneys is 196mL. Consequently,

the estimation of the ‘volume’ of a kidney has become the primary objective in

various clinical analyses of the kidney. The frequency of TKV measurements usu-

ally depends on the intended use of the information, and it has been reported that

intervals of 6 months between TKV measurements may be sufficient to determine

a more than 50% reduction in volume progression following drug treatment [69].

A patient is classified as having the rapidly progressive disease if the TKV increase

more than 5% per year [69].

Kidney volume from 3D CT data is typically estimated using different segmen-

tation methods. We can broadly categorize these segmentation methods into two

groups based on the use of any prior kidney localization step. Some methods use

manual/(semi)automatic kidney localization before segmentation [51, 53–55, 60],

while some methods directly perform segmentation without using a prior local-

ization step [50, 52, 70–83]. Although both types of methods are available in the

literature, often, methods of the first category are preferred in the clinical environ-

ment. Because kidney localization not only facilitates better segmentation/volume-

estimation but also can improve and speed up other algorithms such as lesion de-

tection and registration [66].

Similar to the kidney localization approaches, we describe the kidney segmen-

tation approaches by splitting into traditional approaches, classical machine learn-

ing approaches, and deep learning approaches. We list some of those methods

in Table 1.2. As an instance of a traditional approach, Yan et al. [53] proposed

a region growing approach based on a multi-scale mathematical morphology and

labeling algorithm to extract the fine kidney regions. Li et al. [54] employed an op-

timal surface search algorithm for kidney segmentation. Chen et al. [55] used shape

constrained Graph-cut methods for renal cortex segmentation. Dai et al. [50] pro-

posed a fast GrowCut algorithm to segment the kidney in the 3D CT data. Khalifa

et al. [51] used a geometric deformable model guided by a special stochastic speed
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relationship for kidney segmentation. Skalski et al. [52] proposed a kidney segmen-

tation method based on the active contour in the level set framework. Wieclawek et

al. [83] presented a 3D marker-controlled watershed transform for fully automated

CT kidney segmentation. Wolz et al. [71, 72] used a hierarchical atlas registration

and target specific priors from an atlas database for kidney segmentation.

Recently, several hand-crafted features-based ML approaches have also been

proposed for kidney segmentation in the CT data [60, 62, 64, 65, 74, 77, 82, 84].

Zhou et al. [62, 64, 65] used template matching, hand-crafted features, and local

binary patterns for kidney segmentation. Cuingnet et al. [60] used a combination of

regression forest and template deformation to segment kidneys. Glocker et al. [84]

used a joint classification-regression forest scheme to segment different abdominal

organs, including kidneys. Khalifa et al. [77] developed a 3D kidney segmentation

framework integrating CT appearance features, higher-order appearance models,

and adaptive shape model features into a random forest classification model. Hris-

tova et al. [74] used a pipeline of intensity thresholding, nearest neighbor search,

k-means tree, and median filtering for kidney segmentation. Zhao et al. [82] used

CT features like intensity, texture, and context from the image and subsequently

used regression forest for voxel-level classification to segment kidney.

Several deep learning-based approaches for kidney segmentation have also

been proposed in the literature [73, 75, 76, 78, 80, 85, 86]. Chen et al. [73] proposed

a 3D FCN based method for automatic multi-organ segmentation in dual-energy

CT. Using dense V-network FCN, Gibson et al. [75] introduced a multi-organ seg-

mentation approach on abdominal CT images. Valindria et al. [76] investigated

the effectiveness of learning from multiple modalities for organ segmentation and

shown effectiveness on kidney segmentation. Thong et al. [85] showed promising

kidney segmentation performance using CNN. Similarly, using a multi-task 3D

CNN, Keshwani et al. [80] proposed an ADPK segmentation approach. Sharma et

al. [86] used the automated segmentation of ADPKs using FCN. Groza et al. [78]

demonstrated a comparison of several CNN-based approaches to perform the seg-

mentation of kidneys and shown that the foveal fully convolutional network is the

most suitable deep architecture.

However, as we discussed in section 1.1.3 that most of the existing methods

for kidney volume estimation rely on kidney segmentation as an intermediate step,
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Table 1.2: List of some recent kidney segmentation approaches. Here also,
conventional model-based approaches are denoted by C1, classical ma-
chine learning approaches are denoted by C2, and (3) deep learning ap-
proaches are denoted by C3.

Authors Methodology C1 C2 C3
Yan et al. [53] Region growing X
Li et al. [54] Optimal surface search X
Chen et al. [55] Shape constrained Graph-cut X
Dai et al. [50] Fast GrowCut X
Khalifa et al. [51] Geometric deformable model X
Skalski et al. [52] Active contour X
Wieclawek et al. [83] 3D marker-controlled watershed transform X
Wolz et al. [71] Hierarchical atlas registration + target prior X
Wolz et al. [72] Hierarchical atlas registration + target prior X
Zhou et al. [62] Ensemble learning + majority voting X
Zhou et al. [65] 3D GrabCut + contect-based image retrieval X X
Zhou et al. [64] ML-based template machine + Hough transform X X
Cuingnet et al. [60] Regression forest + template deformation X
Glocker et al. [84] Joint classification-regression forest X
Khalifa et al. [77] Appearance models + shape model + random forests X X
Hristova et al. [74] Nearest neighbour + k-means X X
Zhao et al. [82] Regression forest X
Chen et al. [73] 3D FCN X
Gibson et al. [75] Dense V-network FCN X
Valindria et al. [76] CNN X
Thong et al. [85] CNN X
Keshwani et al. [80] Multi-task 3D CNN X
Sharma et al. [86] FCN X
Groza et al. [78] Foveal FCN X

which has various limitations such as initialization-sensitivity and computationally-

expensive optimization. Moreover, producing a more accurate kidney volume in

the clinical environment would require using 2D/3D deep models that necessitate

computers with larger memory. However, the point-of-care machines in a typical

clinical setting are often not capable of running such a heavy computation. Besides,

the inference run-time for the deep 3D models (e.g., 3D UNet [87], VNet [88]) for

segmentation is often very long and significantly dependent on the machine’s com-

putation capability.
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1.2.3 Pathological Kidney Detection

Generally, patients with renal tumors present clinical symptoms like flank pain,

gross haematuria, or a palpable abdominal mass. Nevertheless, the detection rate of

renal tumors has significantly increased due to the widespread use of various types

of abdominal imaging, including ultrasonography, CT, and MRI. Typically, tumor

analysis is accomplished with CT, which allows for assessment of local invasive-

ness, lymph node involvement, or other metastases. Nonetheless, more than 50%

of kidney tumors are currently detected incidentally [13]. This tumor detection

is typically carried out by radiologists through manual observation of abdominal

image data. Although a good number of studies have been carried out on kidney

localization as discussed in Sections 1.2.1 and 1.2.2, to the best of our knowledge,

there has been no study to date that focused on automatic discrimination between

healthy vs. renal cell carcinoma kidneys. A few studies [80, 86] performed ADPK

segmentation, while very recently, several approaches using a different variant of

3D UNet [87] and VNet [88] have been proposed for kidney and kidney tumor seg-

mentation using KiTS challenge database [89]. However, often these methods fail

to detect and segment smaller kidney tumors. Besides, these methods require sub-

stantial computation resources, e.g., a graphics processing unit (GPU) with larger

memory, which is not always available in the clinical environment.

On the other hand, medical image analysis has enjoyed significant performance

improvements through the use of various ML algorithms over the past few years.

Most of these algorithms are fully supervised, requiring a large number of an-

notated datasets for model learning and prediction accuracy analysis. Unlike 2D

single- or three-channel data (e.g., gray-scale or color images), which are most

commonly used in computer vision tasks, 3D medical data presents different sets

of challenges for ML approaches. For example, tissue abnormalities such as tu-

mors, cancers, nodules, stones, etc. are most often localized within a small region

of anatomy and do not span the whole image volume. Localization and analysis of

abnormal tissue are thus typically carried out on the 2D image slices. For example,

the staging of kidney tumors is done through slice-based tumor analysis and man-

ual boundary tracing. However, image tags or labels (e.g., healthy, cancerous, etc.)

are mostly assigned per image volume or per-patient basis. Therefore, all slices of
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an image are by default labeled with a single tag, though not all slices may contain

the abnormal tissue. This scenario makes ‘single-instance’ ML approaches, espe-

cially deep learning ones such as CNN, challenging to train on the 2D slices, as the

input slice often does not correspond to the assigned volume-based label. A typical

solution for this problem is to use the full 3D image volume as a single-instance

for learning. However, 3D CNNs are considerably more challenging to train as

they contain significantly more parameters and consequently require many more

training samples, necessitate the use of expensive GPUs with an extensive mem-

ory, and require a lot more time to converge. Moreover, in a typical clinical setting,

point-of-care computers are often not equipped with enough computation power in

terms of GPU, CPU and memory to run state-of-the-art 3D CNN models [87, 88]

for inference.

An alternative approach to single-instance learning is MIL [31]. MIL is a vari-

ation of weakly supervised learning wherein the learner receives a set of labeled

bags, or ensembles, each containing multiple instances. Learner assigns a class to

each bag even if some of the cases are not members of that class. Using this MIL

approach, the objective of our kidney tumor detection application can be formu-

lated such that a labeled bag corresponds to a labeled CT volume, and the consti-

tuting instances within the bag correspond to the CT’s 2D slices, some of which

may contain tumors while many may not. This reformulation allows us to cor-

rectly incorporate volume-based labels within an easy to train 2D slice-based CNN

framework. In the context of deep learning on medical images, the mutual benefits

of MIL combined with the classification power of 2D CNNs have been recently

demonstrated in a few applications. For example, mammogram classification for

breast cancer detection [32], identifying anatomical body parts [34], colon cancer

classification based on histopathology images [90], and classification of sizeable

2D microscopy images [33]. To the best of our knowledge, such an approach has

not been explicitly implemented on 3D kidney data, and a novel representation

of volumetric CT data is necessary to extend such techniques for the detection of

kidney tumors in CT data.
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1.2.4 Gene Mutation Detection

Renal cell carcinomas (RCC) are a common group of chemotherapy-resistant dis-

eases among kidney cancer that accounted for an estimated 62,000 new patients and

14,000 deaths in the United States in 2015 alone [91]. North America and Europe

have recently reported the highest numbers of new cases of RCC in the world [92].

The most common histologic subtype of RCC is clear cell RCC (ccRCC), which is

known to be a genetically heterogeneous disease [36]. Recent studies [18, 93] have

identified several mutations in genes associated with ccRCC. For example, the von

Hippel-Lindau (VHL) tumor suppressor gene, BRCA1-associated protein 1 (BAP1)

gene, Polybromo 1 (PBRM1) gene, and SET domain containing 2 (SETD2) gene

have been identified as the most commonly mutated genes in ccRCC [18].

Traditionally, ccRCC underlying gene mutations are identified by genome se-

quencing of the ccRCC of the kidney samples after invasive nephrectomy or kidney

biopsy [18]. This identification of genetic mutations is clinically important be-

cause advanced stages of ccRCC and poor patient survival are associated with the

VHL, PBRM1, BAP1, SETD2, and Lysine (K)-specific demethylase 5C (KDM5C)

gene mutations [18, 35]. Therefore, knowledge of the genetic make-up of a pa-

tient’s kidney ccRCC has a great prognostic value that is helpful for treatment

planning [18, 35]. Recent work [36, 37] shown correlations between mutations in

genes and different ccRCC features seen in CT images. For example, an associ-

ation between well-defined tumor margin, nodular enhancement, and intratumoral

vascularity with the VHL mutation has been reported [37]. Ill-defined tumor mar-

gin and renal vein invasion were also reported to be associated with the BAP1

mutation [36], whereas PBRM1 and SETD2 mutations are mostly seen in solid

(non-cystic) ccRCC cases [37]. This correlation opens a new field of study, ‘Ra-

diogenomics’ [36, 37]. In Radiogenomics, radiological imaging data is used as a

noninvasive determinant of the mutational status. It integrates genetic and radiomic

information. From a methodological point of view, radiogenomics takes advan-

tage of non-conventional data analysis techniques that reveal meaningful informa-

tion for decision-support in cancer diagnosis and treatment [94]. Radiogenomics

requires robust image feature identification, which is typically performed by ex-

pert radiologists. However, relying on human visual inspection is laborious, time-
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consuming, and suffers from high intra/inter-observer variability. Recently, Kocak

et al. [95] determined PBRM1 mutation using CT texture features in neural net-

work and regression forests.

However, an image-based comprehensive deep supervised learning approach

is yet to be investigated and designed for more accurate and automatic ‘multiple’

gene mutation detection.

1.2.5 Renal Cell Carcinoma Grading

The biological aggressiveness of ccRCC affects the prognosis and treatment plan-

ning [96]. The ‘grade’ of a ccRCC is one of the important prognostic predictors of

5-year survival where higher-grade tumors have an elevated risk of postoperative

recurrence [41]. Although the 4-tiered Fuhrman grading system (FGS) [97] is used

for ccRCC grading, in current clinical practice, pathologists prefer a simplified 2-

tiered FGS that reduces variability and improves the reproducibility of the tumor

grade [38, 41, 96]. The 2-tier FGS, which divides grades to low grade (Fuhrman

I/II) and high grade (Fuhrman III/IV), was shown to be as effective as 4-tiered

FGS in predicting cancer-specific mortality in a study population of 2,415 ccRCC

patients [98].

Clinicians use invasive percutaneous renal biopsy for ccRCC FGS [38]. How-

ever, inter-observer reproducibility of grades assigned by pathologists ranges from

31.3% to 97% [38]. Oh et al. [39] tried to assess the correlation between the CT

features and Fuhrman grade of ccRCC, where ccRCCs were retrospectively re-

viewed in consensus by two radiologists. Using logistic regression, they showed

a threshold tumor size of 36 mm to predict (AUC: 70%) the high Fuhrman grade.

Recently, Sasaguri et al. [40] suggested that RCCs can be characterized and graded

based on CT textural features. Ding et al. [38] employed logistic regression on

both non-textural features, e.g., pseudo capsule, round mass, as well as textural

ones, e.g., histogram, gray-level co-occurrence matrices (GLCM), gray level run

length matrix (GLRLM), and reported that textural features better discriminated

high from low-grade ccRCC. Shu et al. [41] also employed logistic regression on

CT textural features, e.g., GLCM, GLRLM, gray level size zone matrix (GLSZM),

and achieved an FGS accuracy of 77%. Huhdanpaa et al. [42] used histogram
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analysis of the peak tumor enhancement, tumor heterogeneity, and percent contrast

washout in CT. They reported these parameters to be statistically different between

low and high-grade ccRCC.

Current textural feature identification and quantification nonetheless faces two

main challenges: it requires (1) ccRCC segmentation in CT, and (2) manual feature

engineering. To our knowledge, there is no automatic ccRCC segmentation method

present for CT. On the other hand, manual tumor segmentation relying on human

visual inspection for feature identification is difficult, time-consuming, and suffers

from high intra/inter-observer variability [4].

Avoiding sophisticated manual feature engineering, supervised deep learning

using CNN has exploded in popularity for automatic feature learning, classifica-

tion, as well as localization and dense labeling. In a classical CNN, the learned

features in the first layer typically capture low-level features such as edges. The

second layer detects motifs by spotting particular arrangements of edges. The third

layer assembles motifs into larger combinations representing parts of objects, and

subsequent layers detect objects as combinations of these parts [44]. These fea-

tures are non-statistical context features [43] and the classical CNN tends to put

less emphasis on the diffused statistical textural features that are often important

for medical imaging applications, e.g., tumor characterization and analysis. This

is also evident from [38, 41, 42] that CT intensity-based statistical features are im-

portant for ccRCC grading. In an attempt to learn statistical textural features via

CNNs, Andrearczyk et al. [45] proposed deploying a global average pooling over

each feature map of the last convolution layer of a conventional CNN to make the

model object-shape unaware. However, the pooling still operates on the learned

object-edge/motifs that do not capture complex and subtle textural variation in the

input image. Therefore, it is still a research question to designing a novel image-

based deep neural network architecture, which would be able to learn image ‘tex-

tural’ features for automatic ccRCC grading from CT images.

1.2.6 Renal Cell Carcinoma Staging

Clinical RCC staging is vital for proper treatment planning and thus considered

one of the important prognostic predictors of cancer-specific survival [46]. The
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American Joint Committee on Cancer (AJCC)/Union for International Cancer Con-

trol (UICC) specifies the criteria for tumor-node-metastasis (TNM) staging of each

cancer depending on the primary tumor size (TX, T0-4); number and location of

lymph node involvement (NX, N1-2); and metastatic nature, i.e., tumor spreading

to other organs (M0-1) [47, 48]. Clinical guidelines require clinicians to assign

TNM stages before initiating any treatment [47].

Table 1.3: Staging of RCC (AJCC TNM classification of tumors).

Anatomical Stages TNM Stages
Stage I T1 (Tumor ≤7 cm) N0 M0
Stage II T2 (Tumor >7 cm but limited to kidney) N0 M0
Stage III T1-2, T3 (Tumour extends up to Gerota’s fascia) N1, Any M0
Stage IV T4, Any (Tumour invades beyond Gerota’s fascia) Any M0-1

AJCC TNM is currently a manual process that includes two separate staging

processes, performed before treatment planning and during/after surgery, to re-

flect the time-sensitive staging mechanism [48]. ‘Clinical’ staging is performed

before treatment by expert radiologists via physical examination, CT image mea-

surements, and tumor biopsies. Clinically determined TNM stages (e.g., T or M)

are designated with prefix ‘c’ (i.e., cT and cM). ‘Pathological’ staging, on the other

hand, is based on the resected tumor pathology results either during or after surgery

[47] and designated with prefix ‘p’ (i.e., pT and pM). Accurate clinical staging

(i.e., cT, cM) of RCC is vital for appropriate management decisions [49]. Partial

nephrectomy (PN), also known as nephron-sparing surgery, is typically preferred

for T1 and T2 tumors [48]. After studying 7,138 patients with T1 kidney cancer,

Tan et al. [99] suggested that treatment with PN was associated with improved sur-

vival. In a similar study on pT2 tumor patients, Janssen et al. [46] showed that pa-

tients having PN had a significantly longer overall survival. Radical nephrectomy

(RN), which refers to complete removal of the kidney with/without the removal of

the adrenal gland and neighboring lymph node, is generally reserved for T3 and T4

tumors [49].

However, the pre-surgery clinical tumor staging often suffers from misclas-

sification errors. For example, in a recent study, Bradley et al. [49] reported 23
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disagreement cases between cT and pT stages of 90 patients. The study further in-

dicated that five patients were misclassified with cT3 but later down-staged to pT2,

while six patients were misclassified with cT2 but later up-staged to pT3 for the

same patient cohort (∼12%). In another study on 1,250 patients who underwent

nephrectomy, Shah et al. [100] reported 11% (140 patients) upstaging of tumors

from cT1 to pT3. Besides, there was tumor recurrence in 44 patients (31.4% of the

pT3 promoted cases), where most of these patients initially had PN. These alarm-

ing findings suggest that PN is associated with better survival in low stage tumors

(T1 and T2), while RN is associated with reduced recurrence in high stage (T3

and T4) tumors. However, high stage tumors (T3-4) are often misclassified as the

low stage (T1-2) in the clinical staging phase. Also, we see in the rows 1-3 of

Table 1.3 that the tumor classifying criterion is not well defined for stages T1, T2,

and T3. Therefore, radiologists often use the TNM description to assign an overall

‘Anatomical stage’ from 1 to 4 using the Roman numerals I, II, III, and IV [48],

see Table 1.3.

For accurate staging of RCC before treatment planning, contrast-enhanced ab-

dominal CT is considered essential [48]. Although tumor staging is believed to

be dependent on the tumor size, by studying the pT stages of 94 kidney samples,

Bradley et al. [49] argued that stages > T3 do not always correlate with tumor size.

This study further suggested using CT image-based textural features to improve

tumor staging, like in Furhman tumor grading. However, to our knowledge, there

is no automatic CT image-based RCC staging approach present in the literature.

1.3 Thesis Contributions
Our main technical contributions in this thesis are summarized as follows:

• We address the challenge of reducing the kidney localization error in the

CT volumes by using novel DNN approaches. First, we discuss a practical

deep CNN-based approach (localization approach 1) for tight kidney ROI

localization. Here, we aggregated orthogonal 2D slice-based probabilities of

containing kidney cross-sections into a voxel-based decision that ultimately

predicts whether an interrogated voxel sits inside or outside of a kidney ROI.

Also, we discuss a second deep learning approach that further improves the
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automatic kidney localization performance than that by the localization ap-

proach 1. This method uses an effective CNN-guided Region convolutional

neural network (RCNN) approach for efficient kidney localization in CT im-

ages.

• We propose three segmentation free ML-based approaches for total kidney

volume estimation. First, we present a novel kidney volume estimation ap-

proach for 3D CT images with dual regression forests that skipped the seg-

mentation step. Also, we present two methods that use a CNN and FCN,

respectively, to predict slice-based cross-sectional kidney areas followed by

integration over these values across axial kidney span to produce the volume.

• We propose a novel DNN approach in the MIL framework for efficiently

learning from the sparsely labeled 2D data, which is, at the same time, com-

putationally inexpensive both in training and inference. In this work, we

propose a novel collage image representation for the CNN framework for

pathological kidney classification.

• We propose a novel DNN approach that can efficiently learn CT-based ccRCC

features for automatic determination of mutated genes. We develop a CNN

approach that automatically determines the ccRCC image features. Then

the binary decisions (i.e., presence/absence of a mutation) for all the ccRCC

slices in a particular kidney sample are aggregated into a robust singular de-

cision that ultimately determines whether an interrogated kidney sample has

undergone a specific mutation or not.

• We propose a novel DNN architecture that specifically learns image ‘textu-

ral’ features for automatic RCC grading and staging. We present a learnable

image histogram (LIH) layer within a DNN framework capable of learning

complex and subtle task-specific textural features from raw images directly,

adhering to the classical input-output mapping of a CNN.

1.4 Thesis Organization
In addition to this introductory chapter, this thesis includes seven chapters. The

final chapter discusses the conclusions and directions for future work.
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Chapter 3

Chapter 4

Chapter 5 

Chapter 6 

Chapter 7 

Kidney  
Localization

Pathological Kidney 
Detection 

General Assessment  
of Kidney Health

Fuhrman Kidney  
Cancer Grading 

Kidney Cancer 
Staging

Gene Mutation  
Detection 

Kidney Cancer Analysis

3D CT Data

Treatment Planning

[P1, UP1]

[P1, P2, UP1]

[P3]

[P4]

[P5, P6, UP2]

Challenge 1: Improving the accuracy 
of kidney localization in CT images 

 

Challenge 2: Developing a 
segmentation-free approach for 
total kidney volume estimation 

 

Challenge 3: Overcoming the sparse 
annotation problem in 2D image-
based supervised learning 

 

Challenge 4: Resolving the gene 
mutation detection problem in an 
automatic and non-invasive way

Challenge 5: Designing powerful 
and discriminatory radiological 
image features in the DNN 
framework for RCC grading

Challenge 6: Investigating if we can 
design powerful and discriminatory 
radiological image features to do 
RCC staging

Figure 1.3: A flowchart of our kidney cancer analysis working pipeline with
component-wise associated challenges, publications and chapter num-
bers that discuss the technical contributions of this thesis.

We show an overview of chapters 3 to 7 in the flowchart in Fig. 1.3. It also

shows relevant publications associated with each of the research questions.

Chapter 3 presents our kidney localization approaches that address the first
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research challenge of this thesis.

In chapter 4, we present our segmentation free ML-based approaches for total

kidney volume estimation that address the second research challenge.

Later, in chapter 5, we present our pathological kidney detecting DNN ap-

proach in the MIL framework that efficiently learns from the sparsely annotated

data. This approach addresses the third research challenge in this thesis.

Chapter 6 presents our novel DNN approach that efficiently learns CT-based

ccRCC features for automatic determination of mutated genes. This approach ad-

dresses the fourth research challenge in this thesis.

Finally, in chapter 7, we discuss our learnable image histogram-based DNN

approach that specifically learns CT ‘textural’ features for automatic RCC grading

and staging. This approach addresses our fifth and sixth research challenges in this

thesis.
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Chapter 2

Data and Experimental Setup

2.1 Private Database
We accessed abdominal CT scans from 100 patients from the Picture archiving and

communication system (PACS) of the Vancouver General Hospital (VGH), Van-

couver, BC, Canada, with all ethics review board approvals in place. Appendix ??
shows the ethics certificate of this study. We show a few examples of CT slices

from the VGH patient pool in Fig. 2.1. These data were collected using the CT

scanner Siemens SOMATOM Definition Flash (Siemens Healthcare GmbH, Erlan-

gen, Germany). Two expert radiologists at VGH performed the kidney delineation

to produce the ground truth using medical image viewing software OsiriX MD. We

show a summary of these data in Table 2.1:

2.2 Public Database 1
We also obtained access to 267 patients’ CT scans from The Cancer Genome Atlas

Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) database [101]. These data

were collected in multiple institutions across the United States by different types of

CT scanners. We show a few examples of CT slices from the TCGA-KIRC patient

pool in Fig. 2.2. We also collected clinical information about these patients from

the same database. We collected the corresponding gene mutation information

from the cBioPortal for Cancer Genomics [35] database. We show a summary of
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Figure 2.1: Examples of kidney data from our VGH patient pool.

these data in Table 2.2:

2.3 Public Database 2
We also obtained access to 210 patients’ CT scans from the 2019 Kidney Tumor

Segmentation (KiTS) Challenge database [102]. Patients who underwent partial

or radical nephrectomy for one or more kidney tumors at the University of Min-

nesota Medical Center between 2010 and 2018 were candidates for inclusion in

this database. We show a few examples of CT slices from the KiTS patient pool in

Fig. 2.3. We also collected the kidney segmentation data from the same database.

A summary of these data is shown in Table 2.3:

2.4 Strategies to Overcome the Effects of Limited Data
Typically, the performance of a supervised deep model increases logarithmically

with the volume of training data size [103]. However, while both computation

power and model capacity has continued to grow, datasets to train these models

have remained stagnant [103]. This scenario is especially true for medical imaging

28



Table 2.1: Summary of relevant and available information of the CT data
from VGH.

Items Descriptions
Modality CT
Pixel Dimensions Axial: 1.5 ∼ 3 mm

Coronal: 0.5820 ∼ 0.9766 mm
Sagittal: 0.5820 ∼ 0.9766 mm

Contrast Agent Used 45 cases
Total Patients 100
Number of Males 50
Number of Females 50
Age Mean: 56.71±15.81 Y

Minimum Age: 19 Y
Maximum Age: 89 Y

Number of Pathological Kidneys 12 kidneys in 12 patients

data and gets worse by the annotation burden of large 3D datasets. In this thesis,

we also faced a similar problem, where our datasets are reasonably smaller and

often lack appropriate annotations. To tackle this problem, we adopted the fol-

lowing procedures to generate effective and scalable performance by our proposed

methods:

• We always pre-trained our deep models, wherever useful, using the Ima-

geNet challenge database [104].

• In a seminal work, Yosinski et al. [105] reported that the first three layers

in a CNN contain generic and reusable features. Beyond the third layer, the

features gradually become more specific to the source data set. Therefore,

during the fine-tuning of the pre-trained models on our medical images, we

chose local learning rates very carefully. We chose small learning rates for

the first few layers, while comparatively larger for the deep layers.

• We increased the volume of our medical imaging data via various types of

augmentations.

• To make our deep model generalized to avoid over-fitting, we adopted regu-

larization in the form of Dropouts [106]. We also kept an eye on the training
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Figure 2.2: Examples of kidney data from our TCIA-KIRC patient pool.

and validation losses during model training to prevent over-fitting.

• To avoid the problem of class-imbalance in our datasets, we often adopted

class-wise different but carefully calculated overlaps among patches.
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Table 2.2: Summary of relevant and available information of the CT data
from the TCGA-KIRC.

Items Descriptions
Modality CT/MR
Pixel Dimensions Axial: 1.5 ∼ 7.5 mm

Coronal: 0.29 ∼ 1.87 mm
Sagittal: 0.29 ∼ 1.87 mm

Total Patients 267
Number of Males 176
Number of Females 91
Age Mean: 60.28±12.04 Y

Minimum Age: 27 Y
Maximum Age: 89 Y

Race White: 241
Black or African American: 22
Asian: 3

Pathological Kidneys Either one or both kidneys in all patients
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Figure 2.3: Examples of kidney data from our KiTS patient pool.
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Table 2.3: Summary of relevant and available information of the CT data
from the KiTS.

Items Descriptions
Modality CT
Pixel Dimensions Axial: 3 mm (spacing was uniformed across cases)

Coronal: 0.7816 mm (spacing was uniformed across cases)
Sagittal: 0.7816 mm (spacing was uniformed across cases)

Total Patients 210
Contrast Agent Used in all cases
Number of Males Not available
Number of Females Not available
Age Mean: Not available

Minimum Age: Not available
Maximum Age: Not available

Pathological Kidneys Either one or both kidneys in all patients
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Chapter 3

Kidney ROI Localization

3.1 Aggregated Orthogonal Decision CNN for Kidney
Localization

In this section, we present a CNN-based approach that addressed the challenge

of automatic kidney localization in the CT image. We originally published the

methodology presented in this section (3.1) in Hussain et al. [1]. This method used

an effective deep CNN-based approach for tight kidney ROI localization. Here, we

aggregated the probabilities of containing 2D kidney cross-sections into a voxel-

based decision that ultimately predicts whether an interrogated voxel sits inside or

outside of a kidney ROI.

3.1.1 Orthogonal Decision CNN for Kidney Localization

We use a deep CNN to predict the locations of six walls of the tight ROI boundary

around a kidney by aggregating individual probabilities associated with three inter-

secting orthogonal (axial, coronal, and sagittal) image slices (Fig. 3.1). The CNN

has eleven layers excluding the input. It has five convolutional layers, three fully

connected layers, two softmax layers, and one additive layer. All but the last three

layers contain trainable weights. The input is a 256×256 pixel image slice, either

from the axial, coronal or sagittal directions, sampled from the initially generated

local kidney-containing volumes. At first, we pre-train this single CNN (from layer
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Figure 3.1: Orthogonal decision aggregated CNN for kidney localization.

1 to layer 8) using the ImageNet Challenge dataset [104]. Then we fine-tune this

pre-trained model using our dataset containing a mix of equal numbers of 3D or-

thogonal image slices. CNN uses convolutional layers for sequentially learning the

high-level non-linear spatial image features (e.g., object edges, intensity variations,

orientations of objects, etc.). Subsequent fully connected layers prepare these fea-

tures for optimal classification of the object (e.g., kidney cross-section) present in

the image. In our case, five convolutional layers followed by three fully connected

layers make a reasonable decision on orthogonal image slices if they include kid-

ney cross-sections or not. During testing, we feed three different orthogonal image

slices parallelly to this CNN, and acquired the probabilities for each slice of being

a kidney slice or not at the softmax layer, S1 (Fig. 3.1). These individual probabil-

ities from the three orthogonal image slices are added class-wise (i.e., containing

kidney cross-section [class: 1] or not [class: 0]) in the additive layer, shown as ∑P1

and ∑P0 in Fig. 3.1. We then use a second softmax layer S2 with ∑P1 and ∑P0

as inputs. This layer decides whether the voxel where the three orthogonal input

slices intersect is inside or outside the tight kidney ROI. The second softmax layer

S2 is included to remove any potential miss-classification by the first softmax layer

S1. We consider the voxels having probability (∈ [0,1]) > 0.5 at S2 to be inside

the kidney ROI. Finally, we record the locations of six boundary walls (two in each
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orthogonal direction) of this ROI from the maximum span of the distribution of

these voxels (with probability > 0.5) along with three orthogonal directions.

3.1.2 Experimental Setup and Data Acquisition

Figure 3.2: Example kidney data from our patient pool demonstrating data
variability, ranging from normal to pathological.

We used 100 patients’ CT scans from our VGH patient pool (discussed in sec-

tion 2.1). We were able to use a total of 200 kidney samples (both left and right

kidneys) from which we used 120 samples (from 60 randomly chosen patients) for

training, 20 samples from 10 randomly chosen patients for validation, and the rest

is unseen. Our dataset included 12 pathological kidney samples (with endo- and

exophytic tumors), and our training and test data contained 6 cases, each. The CNN

was implemented using Caffe [107]. The base learning rate for CNN pre-training

was set to 0.01 and was decreased by a factor of 0.1 to 0.0001 over 25,000 itera-

tions. During fine-tuning, the base learning rate was set to 0.001 and was decreased

by a factor of 0.1 to 0.0001 over 20,000 iterations.

3.1.3 Data Pre-processing

Before training the CNN, we did some basic pre-processing of the data. We pro-

grammed an automatic routine for ‘abdominal’ CT that separates the left and right

kidneys. Since the left and right kidneys always fall in the separate half volumes,

the routine simply divided the abdominal CT volume medially along the left-right

direction. The routine also discarded a few slices in the pelvic region from an im-

age (where applicable). However, this step was optional and only carried out on

slices beyond ∼ 52 cm (4 times the typical kidney length ∼ 13 cm) from the chest
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Table 3.1: Comparison of mean kidney ROI boundary localization error
(mm) and mean kidney ROI centroid localization error (mm) in terms
of Euclidean distance. Not reported values are shown with (-).

Methods Boundary Error (mm) Centroid Error (mm)
Left Right Left Right

Cascaded RF [60] 7.00±10.0 7.00±6.00 11.0±18.0 10.0±12.0
RF1 [58] 17.3±16.5 18.5±18.0 - -
RF2 [59] 13.6±12.5 16.1±15.5 - -
CS-(CNN+FCN) [68] - - - 7.80±9.40
Proposed Method 6.23±6.06 5.92±6.55 7.91±4.99 7.69±4.23

side of the image. Finally, our pre-processing routine re-sized the medially sepa-

rated CT volumes to generate fixed resolution cubic volumes (e.g., 256×256×256

voxel in our case) using either interpolation or decimation, as needed.

3.1.4 Validation on Kidney Data

We provide results of our proposed kidney localization on 3D kidney data to en-

able direct comparisons with those obtained by recently reported kidney localiza-

tion [58–60, 68]. Since the recently published methods we use for comparison are

mostly either RF-based or deep CNN-based, reproduce their results are impossible

without access to the code and data on which they tested. However, the type of data

these methods used is similar to ours in terms of resolution and imaging modality.

Therefore, we conservatively use their reported accuracy values for comparison,

rather than using our implementation of their models.

In Table 3.1, we present kidney boundary and centroid localization perfor-

mance comparisons of cascaded RF-based [60], single RF-based (RF1 [58] and

RF2 [59]), cross-sectional (CS) fusion of CNN and FCN-based [68], and our pro-

posed method. The centroid of a kidney is the approximate mid-point of the kidney,

which can be inferred directly by a supervised learning model or can be estimated

from the estimated six kidney boundary walls. We estimate the mean kidney wall
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error Emean for all the test samples as:

Emean =
1

6N

N

∑
1
|GL−PL|+ |GR−PR|+ |GA−PA|+ |GP−PP|+ |GS−PS|+ |GI−PI|,

(3.1)

where N is the total number of test kidney samples, G represents ground truth

and P represents the predicted wall location in mm, and the subscripts L, R, A, P,

S, and I denote the left, right, anterior, posterior, superior and inferior directions,

respectively.

The cascaded RF method used the RF1 [58] for coarse localization of both

left and right kidneys, then fine-tuned these locations using an additional RF per

left/right kidney. Even then, its centroid localization errors and boundary local-

ization errors were higher than those of the proposed method. The RF2 [59] was

an incremental work over the RF1 [58], and both use regression-forests for dif-

ferent anatomy localization. Both methods exhibited higher boundary localization

errors than those of the cascaded RF and proposed methods and did not report

any centroid localization accuracy. The recently proposed CS-(CNN+FCN) [68]

method reported significantly better kidney centroid localization performance than

the cascaded RF [60]. However, this method was only validated on the right kid-

neys and did not report the kidney boundary localization accuracy. As evident from

the quantitative results, compared to all these recent methods, the proposed method

demonstrates better performance in both kidney boundary and centroid localization

by producing the lowest localization errors in all categories.

3.1.5 Discussion

In this section, we discussed a deep learning approach for human kidney local-

ization. This method enabled a clinical approach for kidney localization in the

raw abdominal CT data. We formulated an effective deep CNN-based method for

kidney ROI localization, which aggregates 2D orthogonal slice-based kidney can-

didacy decisions. Our deep CNN better captured the rich and complex variability

in kidney anatomy and outperformed the hand-engineered feature representations

used in [59, 60]. Our experimental results demonstrated the best kidney ROI local-

ization performance compared to that of recent literature [58–60, 68].
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Figure 3.3: Example CT data from our patient pool demonstrating RCNN
performance on kidney bounding box localization. The RCNN correctly
localized the kidney in (a) and (b), but produced false-positive kidney
bounding boxes in (c)-(e), where the kidney was absent.

3.2 CNN Guided Mask-RCNN for Kidney Localization
Typically, medical imaging scientists treat organ localization in an image as a de-

tection problem [108], and most of the kidney localization approaches discussed

in section 1.2.1 achieved organ detection by performing an initial regression or

classification step. Region-based convolutional neural network (RCNN) [109] has

recently emerged as a promising approach in computer vision that solves the lo-

calization problem by operating within the “recognition using regions” paradigm.

RCNN is quite capable of directly predicting 2D bounding boxes around the ob-

jects of interest in an image. However, the effectiveness of using RCNN for organ

localization in 3D medical images are often error-prone. In our own experience,

we found that RCNN often produces false-positive bounding boxes around image

objects that are similar looking to the organ of interest. For example, Fig. 3.3 shows

localization obtained using RCNN, which demonstrates several false-positive kid-

ney bounding box localization results. We believe a possible cause of such false

positives could be the fact that a typical RCNN network gets optimized on local

region proposals. Thus it always looks for an object or a set of objects in a test

image via analyzing local regions only. Hence, an RCNN network lacks the global

context, which is especially important in the medical image data.

In this section, we discuss a deep learning approach that further improves the

automatic kidney localization performance than that mentioned in section 3.1. The

method presented in this chapter uses an effective CNN-guided RCNN approach

for efficient kidney localization in volumetric CT images. Briefly, we construct a

deep learning architecture comprising three steps: Firstly, we use ResNet-50 [110],

38



S-CNN Mask-RCNN Mask-RCNN

Se
lec

te
d 

Ro
ug

h 
Sp

an

L: Left P: PosteriorI: Inferior

I
L

P

IP

L

X1

X2
Y1

Y2

Z1

Z2

Y1
Y2

ResNet - 50 Finetuned as Backbone
NetworkTrained as classifier

Figure 3.4: Schematic diagram of the proposed selection CNN guided Mask-
RCNN for efficient kidney localization in the volumetric CT images.

which call S-CNN, detects an approximate span of 2D axial slices encompassing

the target kidney. Secondly, we feed axial slices from the S-CNN identified span

region to a Mask-RCNN [7] to get the 2D kidney bounding box lying on the axial

plane. Finally, we use the same Mask-RCNN to detect the 2D kidney bounding

box in the 2D sagittal slices, which we take strictly inside the organ span estimated

by the Mask-RCNN in the previous step. Since RCNN typically produces false-

positive kidney bounding boxes in those slices that do not contain the kidney, the

CNN pipeline of our method controls the choice of slices (fed to the RCNNs) by

extracting those from the kidney containing region only. Thus, the main novelties

of the proposed localization method lie (1) in operating the localization problem

within the “recognition using regions” paradigm, and (2) in the cascaded CNN

architecture that extracts better 3D bounding box estimates with almost no false

positives. Note that we use the same ResNet-50 as S-CNN as well as the backbone

network in Mask-RCNN. Also, note that we extract the kidney region from the

masks as it covers the kidney cross-section more tightly than the predicted object

boundary.

3.2.1 Kidney Span Detection using S-CNN

We use the S-CNN (ResNet-50) to classify 2D axial slices that enable a rough

detection of the kidney span along the axial direction (see Fig. 3.4). The initial slice

classification labels (i.e., 0: kidney absent, 1: kidney present) may contain a few
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Figure 3.5: Block diagram of the Mask-RCNN [7] used in the proposed
method.

false positives and false negatives. To remove those, we perform a moving average

over the label values along the axial direction with a moving window size of 12 cm

as a typical kidney length is approximately 12 cm [111]. Then we normalize the

average values and estimate the organ span from the range of values ≥ 0.75. Since

this is a rough estimation of a kidney span, we empirically choose the threshold

value of 0.75. This approximate span could be bigger than the actual kidney span.

If the estimated span comes out smaller than a typical kidney length, we take extra

slices into the span in the superior and inferior directions. This S-CNN (ResNet-

50) network was pre-trained on the ImageNet dataset, and we fine-tune the network

weights on our kidney dataset. Although the S-CNN aims to detect approximate

kidney span in the axial direction, we fine-tune this network using cross-sectional

2D slices from all three orthogonal directions. For details of this network structure

and function, we refer readers to [110].

3.2.2 Bounding Box Detection in the Coronal-Sagittal Direction

In this stage, we use a Mask-RCNN [7] to detect the 2D kidney bounding box

along the coronal and sagittal directions (see Fig. 3.4 and 3.5). The input to the

Mask-RCNN is the 2D axial slices strictly taken from the inside of the selected

span by S-CNN. The Mask-RCNN is capable of classification, bounding box gen-

eration, and instance segmentation of an object in an image. It comprises two

stages: (1) the first stage generates proposals about the regions where there might

be an object based on the input image. (2) the second stage predicts the class of

the object, refines the bounding box, and generates a mask in the pixel level of the
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object based on the first stage proposal. Both stages are connected to the backbone

structure, which is a feature pyramid network (FPN) style deep neural network. It

consists of a bottom-up pathway, a top-bottom pathway, and lateral connections.

The bottom-up pathway can be any CNN, which extracts features from raw images.

The top-bottom pathway generates a feature pyramid map that is similar in size to

the bottom-up pathway. Lateral connections are convolution and adding operations

between two corresponding levels of the two pathways. A region proposal network

(RPN) works on the FPN feature map to propose an object region. A pooling layer

(ROI-align) then works on the proposed regions to extract a fixed-length feature

vector. Then each feature vector is fed into a sequence of fully connected layers

or convolution layers that finally branch into three sibling output layers: an ob-

ject bounding box layer, an object classification layer, and an object masking layer.

This entails the use of a multitask loss function L = Lcls+Lbbox+Lmask, where Lcls,

Lbbox and Lmask are the class loss, bounding box loss and mask loss, respectively.

As a ‘backbone’ network of the Mask-RCNN, we use the ResNet-50 [110], which

we fine-tune from S-CNN. For fine-tuning, we use a kidney containing 2D slices

from all three orthogonal directions. During inference, we restrict the Mask-RCNN

to produce a single bounding box and kidney mask per slice. Although the Mask-

RCNN produces a 2D bounding box around a kidney cross-section, in most of the

cases, it does not tightly encompass a kidney cross-section. Rather gaps are seen

between the predicted boundary line and the actual kidney boundary. Therefore, we

use the predicted kidney mask to generate the rectangular kidney bounding box. Fi-

nally, we find the sagittal and coronal edges of a bounding box, which is the Union

set of all the axial bounding box, by X1 = min(x1), X2 = max(x2), Y1 = min(y1)

and Y2 = max(y2), where min and max are the minimum and maximum operators,

respectively, and X1, X2 and Y1, Y2 are the Union box edges along the coronal and

sagittal directions, respectively (see Mask-RCNN output in Fig. 3.4). Note that

finding the rough kidney span along the axial direction by the initial S-CNN is

important for this stage, as false-positive bounding boxes may corrupt these esti-

mates.
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3.2.3 Bounding Box Detection in the Axial-Sagittal Direction

In this final detection stage, we use the same Mask-RCNN. The input to the Mask-

RCNN in this stage is the 2D sagittal slices strictly taken from the inside of the

selected span X1 and X2 in the previous step (see Fig. 3.4). In this stage, the Mask-

RCNN detects the kidney bounding box along with the sagittal and coronal di-

rections. This stage updates the estimated axial kidney span in the previous step.

Finally, we find the axial edges of a Union bounding box, which is the Union of all

the sagittal bounding boxes, by Z1 = min(z1) and Z2 = max(z2), where z1 and z2

are the edges along the axial directions (see Fig. 3.4). Lastly, we combine the final

predicted spans in the second and third stages by the Mask-RCNN to produce the

3D bounding box around the kidney (see Fig. 3.4).

3.2.4 Experimental Setup and Data Acquisition

We used 100 patients’ CT scans from our VGH patient pool (discussed in sec-

tion 2.1). Our data provided a total of 200 kidney samples (both left and right

kidneys) among which we used 130 samples (from 65 randomly chosen patients)

for training, 20 samples (from 10 randomly chosen patients) for validation, and

the remaining 50 samples for testing. Our dataset included 12 pathological kidney

samples (with endo- and exophytic tumors), and our training and test data con-

tained six pathological cases, each. We also used 210 patients’ CT scans from

our KiTS patient pool (discussed in section 2.3). We used 160 randomly chosen

patients’ data for training, 15 randomly chosen patients’ data for validation, and

the remaining 35 patients data (70 kidney samples) for testing. We implemented

the S-CNN with Caffe [107], and Mask-RCNN with the TensorFlow codes pro-

vided in [112]. Our training was performed on a workstation with Intel 4.0 GHz

i7 processor, an Nvidia Titan Xp GPU with 12 GB of VRAM, and 32 GB of host

memory.

3.2.5 Data Pre-processing

Before training the CNN, we did some basic pre-processing of the data. We pro-

grammed an automatic routine for ‘abdominal’ CT that separates the left and right

kidneys. Since the left and right kidneys always fall in the separate half volumes,
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Table 3.2: Comparison of mean kidney bounding wall localization error
(mm).

Methods Short Wall Error (mm)
Name Left Kidney Right Kidney

Criminisi et al. 2010 [58] M-1 17.3±16.5 18.5±18.0
Cuingnet et al. 2012 [60] M-2 7.00±10.0 7.00±6.00
Criminisi et al. 2013 [59] M-3 13.6±12.5 16.1±15.5
Gauriau et al. 2015 [61] M-4 5.5±4.0 5.6±3.0
Hussain et al. 2017 [1] M-5 6.19±6.02 5.86±6.40
Samarakoon et al. 2017 [63] M-6 11.52±9.60 10.98±9.60
Humpire et al. 2018 [66] M-7 2.67±7.18 3.03±9.30
Xu et al. 2019 [25] M-8 4.31±4.18 3.89±3.47
Proposed Method (on KiTS data) - 2.06±4.39 3.18±14.02
Proposed Method (on VGH data) - 1.93±1.21 2.45±1.75

the routine simply divided the abdominal CT volume medially along the left-right

direction.

3.2.6 Validation on Kidney Data

We quantitatively compared the performance of our proposed kidney localization

method with those reported in recent kidney localization approaches [1, 25, 58–

61, 63, 66] in Table 3.2. Our bounding box has six walls, and for a particular kidney

sample, we used the mean of the Euclidean distance errors between the estimated

and ground-truth locations for all six walls. Please note that each method was

independently implemented and tested on different CT databases (none of previous

methods implementations were available as publicly shared code). However, the

type of data these methods used is very similar to ours in terms of resolution, area

scanned, and scan quality. Therefore, our comparisons are conservative, and rather

than using our implementation of the other contrasting methods, we compare to

each authors’ best self-reported accuracy values. Here also, we use Eq. 3.1 to

estimate mean kidney ROI boundary wall localization error.

Table 3.2 compares our kidney boundary localization performance to those

of the methods proposed by Cuingnet et al. 2012 [60] (M-2), Criminisi et al.

2010 [58] (M-1) and Criminisi et al. 2013 [59] (M-3), Gauriau et al. 2015 [61] (M-
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4), Hussain et al. 2017 [1] (M-5), Samarakoon et al. 2017 [63] (M-6), Humpire et

al. 2018 [66] (M-7), and Xu et al. 2019 [25] (M-8). The M-2 method used the M-1

method for coarse localization of both left and right kidneys, then fine-tuned these

locations using an additional RF per left/right kidney. Nonetheless, their resultant

boundary localization errors remained higher than those of our proposed method.

The M-3 method was an incremental work over the M-1, and both used RFs for

various organ localization tasks. Both M-1 and M-2 methods exhibited higher

boundary localization errors than those of the M-2 and proposed methods. The

M-4 method used an extended cascade of RFs to estimate the confidence map of

an organ, and the prediction was thresholded to obtain a final organ bounding box.

The mean error by this method is worse than that of the proposed method. The M-

5 method (our previous method discussed in section 3.1) used a deep CNN-based

method for kidney 3D bounding box localization, which aggregates 2D orthogonal

slice-based kidney candidacy decisions. This method also showed worse bound-

ary localization performance than that of the proposed method. The M-6 method

proposed a light RF consisting of less number of nodes than regular RF to localize

different organs in the CT scans. However, its kidney bounding wall localization

errors are too high. The closest performer to our proposed method was M-7, where

the wall localization errors were comparably lower than those by other techniques.

However, the standard deviation of the bounding wall estimation by this method is

higher than that of the proposed method tested on the VGH data for both the left

and right kidney. The M-8 method used a 3D region proposal network to detect

eleven abdominal organs, including the left and right kidneys. This method showed

the fourth-best performance after the M-7 method. Then we show the results by

our proposed method on the KiTS data. Although KiTS datasets contain tumors in

the kidney, our method performs better in mean kidney boundary wall localization

than the other techniques. However, we observe a higher standard deviation for

the right kidneys. It happened because some of the right kidneys in this dataset

have large tumors in the upper pole, thus confusing boundary estimation. Finally,

we can see in the Table 3.2 that the mean wall localization error for both the left

and right kidneys are the lowest for the proposed method on the VGH data. Note

that we also tested the performance of the proposed method by changing the image

orientation and found almost no difference in the 3D bounding box localization
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Figure 3.6: Box-plot of wall distance error (mm) per wall side of the kidney
by the proposed method on the KiTS data.

accuracy.

In Fig. 3.6, we show the box plot of the wall distance errors (mm) by the pro-

posed method in the superior, inferior, anterior, posterior, left, and right directions

of a kidney in the KiTS dataset. This figure further supports the mean error reported

in Table 3.2. We also see in this figure that the errors in the superior-inferior di-

rection are comparatively higher than those in the anterior-posterior, and left-right

directions. As we explained above, it happened because some of the right kidneys

in this dataset have large tumors in the upper pole.

We also show the box plot of the wall distance errors (mm) for kidneys in

the VGH data in Fig. 3.7. This figure also supports the mean error reported in

Table 3.2. Here also, we see that the errors in the superior-inferior direction are

comparatively higher than those in the anterior-posterior and left-right directions.

In this case, the possible explanation could be that the slice thickness is higher in

the axial direction than in the coronal and sagittal directions.
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Figure 3.7: Box-plot of wall distance error (mm) per wall side of the kidney
by the proposed method on the VGH data.

3.2.7 Discussion

In this section, we discussed a deep learning approach for kidney localization. This

method enabled a clinical approach for kidney localization in the raw abdominal

CT data. Our contribution comprises a novel 3-step CNN-based architecture that

reduces false positives in organ bounding boxes of the targeted organ. Our Mask-

RCNN in the second stage operates strictly on our S-CNN selected slices. Sim-

ilarly, the Mask-RCNN in the third stage operates strictly on the sagittal slices

falling inside the span estimated in the second stage. As a result, the mean bound-

ing box error proved to be very low compared to current methods. Our experimen-

tal results demonstrated a 23% increase in kidney boundary localization accuracy

compared to those of recent literature.

3.3 Summary
In this chapter, we discussed two deep learning approaches for human kidney lo-

calization in the volumetric medical images. The first method, discussed in sec-

tion 3.1, was one of the successful deep learning approaches in the literature for
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both kidney localization. That method aggregates 2D orthogonal slice-based kid-

ney candidacy decisions. Later, we developed another deep learning approach that

further improves the automatic kidney localization performance than that discussed

in section 3.1. We discussed this method in section 3.2 that uses an effective CNN-

guided Mask-RCNN approach for efficient kidney localization in the volumetric

CT images. On the VGH patient data, the CNN-guided Mask-RCNN approach

showed the lowest mean kidney ROI boundary localization error. This error is also

the lowest among other comparing methods, thought the state-of-the-art methods

were validated on different datasets. Overall our proposed methods showed ro-

bust kidney ROI localization performance; however, it sometimes produces higher

boundary localization error in the kidney superior wall (see Fig. 3.6). We empiri-

cally observed that this higher boundary localization error occurs when there is a

large tumor in the upper pole of the kidney.
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Chapter 4

Segmentation-free Kidney
Volume Estimation

4.1 Dual-regression Forests for Volume Estimation
Accurate estimation of kidney volume is essential for clinical diagnosis and thera-

peutic decisions related to different chronic kidney diseases (CKD). The abnormal

volume of a kidney often related to the presence of a tumor or cancer in it [30].

Existing kidney volume estimation methods rely on an intermediate computation-

ally expensive segmentation step. In this chapter, we discuss a novel method for

direct estimation of kidney volumes for 3D CT images with dual regression forests

that skipped the segmentation step. We originally published this work in Hussain

et al. [2]. After the determination of kidney locations by using any of the methods

in chapter 3 within the 3D abdominal CT images, our method used dual regression

forests, one for predicting the anatomical area in a particular image plane, and an-

other one for boosting the results by removing outliers from the initially estimated

areas. We adopted a smaller subpatch-based approach to increase the number of

observations, which ultimately improve the results.

This novel segmentation-free kidney volume estimation technique is divided

into three steps as shown in Fig. 4.1. In section 4.1.1, we discuss the 2D image

patch representation. Then, in section 4.1.2, we discuss the training of regression

forests and the subsequent prediction of kidney areas. Finally, in section 4.1.3,
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we discuss the estimation of kidney volumes based on the predictions by the dual

regression forests.
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Figure 4.1: Flowchart showing different components of the proposed
method.
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Figure 4.2: Illustration of (a) the representation of our 2D image patch con-
taining kidney, and (b) the formation of feature vectors from its sub-
patches.

We divide each image patch into square subpatches (Fig. 4.2(a)). Then, to

obtain the prediction of the kidney area for each of the sub-patches, we train a

regression forest with these sub-patches as observations. We use various features
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Fi for each subpatch p: (1) the sum of image intensities ∑p I; (2) sum of non-

overlapped binned intensities ∑p Ib, where b stands for different bin numbers and

min(I)≤ Ib ≤max(I); (3) entropy E =−∑h× log2(h), where h are the histogram

counts of I; (4) sum of image intensity ranges ∑p R, which is (max value - min

value) in a 3× 3 pixel neighborhood around the corresponding pixel; (5) sum of

standard deviations ∑p SD, where SD is estimated in a 3× 3 neighborhood pixels

around the corresponding pixel; and (6) axially aligned distances DE , DW , DN and

DS of the interrogated subpatch center from the east, west, north and south bound-

aries of the 2D image patch, respectively (Fig. 4.2(a)). Features (3)-(5) capture the

texture information in a subpatch.

4.1.2 Dual-regression Forests for Kidney Area Prediction

Regression forest 1 (Fig. 4.1) learns the correspondence between input features

and kidney areas for training subpatches, and then predicts organ areas in unseen

subpatches. For feature matrix v = (F1,F2, ...,Fd), where Fi is a feature vector

(Fig. 4.2(b)) and d is the total number of features, forest 1 learns to associate ob-

servations Fi(r,s), (i = 1, ..,d) with a continuous scalar value yk(r,s) which is the

estimated organ area in the corresponding subpatch pk
r,s. Here, k is the patch in-

dex, and r and s are the subpatch indices along the posterior-anterior (P-A) and

right-left (R-L) directions, respectively. The distribution of estimated kidney area

values D(ỹ) vs. subpatches for an kidney sample (kidney) is shown in Fig. 4.3(b).

However, due to extensive variation in kidney shapes, sizes and orientations across

subjects, we observed that non-zero volumes are predicted for areas devoid of kid-

ney tissue (Figs. 4.3(a) and (b)). These false positives are removed using a spa-

tial filter (Fig. 4.3(c)) having an extent (or bandwidth) equal to a spatial kidney

span measure (along superior-inferior direction). This important span parameter

is learned by forest 2. For training forest 2, we rearrange (i.e., negligible extra

computations) the feature vectors as F̂k
i = ∑

a×b
m=1 Fk

i (m), where a and b are the total

number of subpatches along the P-A and R-L directions, respectively. We define

a unit step function U(ũ) whose spatial bandwidth is equivalent to the span ũ pre-

dicted by forest 2 for a particular kidney sample (Fig. 4.3(c)). We approximate

the most probable kidney span in the false positives-corrupted D by calculating the

50



cross-correlation between D and U defined as ρ(l) =∑
Q
q=1 D(q) ·U(q+ l), where Q

is the total number of subpatches in an investigated ROI containing kidney. The lag

corresponding to the maximum of ρ(l), lmax = argmaxl{ρ(l)} is then used to align

U with D. Finally, an element-wise multiplication D ·U generates the filtered area

distribution (D f ), where almost all of the false positives are removed (Fig. 4.3(d)).

Note that although we use subpatches, we are not labeling every pixel, as done for

classification-based segmentation in [60, 84, 113], but rather inferring a scalar area

for every subpatch.
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Figure 4.3: (a) A schematic diagram showing an example investigated ROI
and its most likely kidney-area vs. subpatches distribution. (b) A typi-
cal distribution of predicted kidney-area vs. subpatches (red), overlaid
on the actual kidney-area vs. subpatches (deep blue). Predicted areas in-
clude false-positive outliers as shown with the light-blue dashed-boxes.
(c) An example plot of a predicted kidney span. (d) The final distribu-
tion of the filtered kidney-area vs. subpatches, overlaid on the actual
kidney-area vs. subpatches where most of the outliers are removed.

4.1.3 3D Volume Estimation from 2D Area Estimates

Some subpatches completely lie inside the organ cross-section, and we expect the

predicted kidney areas for those subpatches to be the maximum, SA (area of a sub-

patch). However, we observed that almost no predicted-subpatch-area (by forest 1)

reaches this obvious maximum value of SA. On the other hand, there are few false

positives still left inside the filtered area distribution D f . So, we choose an empir-

ical threshold g and fine-tune D f as: D f (p) = 0, if D f (p) < g, and D f (p) = SA,

if SA−D f (p) < g. Finally, we estimate the volume of a kidney by integrating the

areas in D f in the axial direction.
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Table 4.1: A comparison of volume estimation accuracies, estimation speeds,
and requirements of extra-time for parameter optimization during the ex-
ecution for different types of methods. Execution time is the MATLAB
run-time on Intel Xeon CPU E3 @ 3.20GHz with 16 GB RAM.

Method Methods Per Sample Mean Volume
Types Run-time Error (%)

1
Seg

Intensity Threshold 1.10±0.06 67.57±114.10
2 3D Active Contour [114] 70.10±10.19 55.91±98.17
3 Manual Ellipsoid Fit [115] ∼180 14.20±13.56
4

Seg-free
Single Reg. + 2D Patch [116] 1.57±0.07 36.14±20.86

5 Single Reg. + 2D Subpatch 1.88±0.12 16.88±10.82
6 Single Reg. + 3D Subpatch 1.02±0.04 26.88±20.11
7 Dual Regression 3.75±0.23 9.97±8.69

4.1.4 Experimental Setup and Data Acquisition

We used abdominal CT images of 45 patients from our VGH patient pool (dis-

cussed in section 2.1). We used a total of 90 kidney samples (both left and right

kidneys), among which we used 46 samples (from 23 randomly chosen patients)

for training, and the rest is unseen. We calculated the ground truth kidney volumes

(referred to as ‘actual volumes’) from kidney delineations performed by expert ra-

diologists. We used a leave-one-kidney-sample-out cross-validation approach on

the training set only to choose suitable tree and leaf sizes. We use a small size of

5×5 pixels for a subpatch so that we have more training samples. Also, the smaller

subpatch helps to incur smaller-valued false positives in D f , which can be easily re-

moved by simple thresholding with g. We also use g = SA/5 throughout the paper.

Nowadays, the available public CT data are acquired with intensity-standardized

CT machines, where intensity for the same organ does not vary significantly across

CT machines manufactured by different companies. Also, kidney intensity typi-

cally falls within the range of [-150, 300]HU. Therefore, we expect that our choice

of g value would work for other CT datasets.

4.1.5 Validation on Kidney Data

We provide comparative results of our proposed method with those obtained by

four generic approaches: two segmentation algorithms, a naı̈ve manual method,

and three forests-based approaches. But first, we show the performance of the
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Figure 4.4: Scatter plot showing the volume correlations between the actual
and proposed dual regression-based estimates.

proposed method visually in Fig. 4.4, where we illustrate the correlation between

the actual and estimated kidney volumes. This figure shows that, aside from few

exceptions, almost all of the estimates are close to their corresponding ground truth

measurements.

We also show the performance comparison of the execution time, volume es-

timation accuracy, and extra-time requirements for parameter optimization for dif-

ferent methods in Table 4.1. We see in Table 4.1: rows 1 & 2 that we had to use

extra-time for kidney-sample-wise parameter optimization for both segmentation-

based approaches. It is sometimes possible to find optimal settings of param-

eters for energy-minimizing segmentation methods via cross-validation. How-

ever, the pursuit of optimal parameters is computationally expensive and near in-

feasible. We also see in row 1 that the estimated mean volume error for the in-

tensity thresholding-based method is the highest. It cannot differentiate between

two different organs if the intensities associated with these organs fall inside the

same user-defined or automatically chosen range. On the other hand, the 3D ac-

tive contours-based method [114] produces a kidney surface that leaks through the
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weaker boundaries, even with the best empirical parameter configuration. As a re-

sult, the mean volume error performance is poor (Table 4.1: row 2). Moreover, it

is time inefficient, as well.

Then we consider a manual approach that is typically used by the radiologists

in the clinical settings. They obtain three principal axes on a kidney, which corre-

spond to a 3D ellipsoid that approximates that particular kidney. In Table 4.1: row

3, we see that the estimated mean volume error (computed by expert radiologists)

for this approach is approximately 15% with high standard deviations. Besides, it

takes around 3 minutes per kidney sample.

Finally, we consider four segmentation-free approaches using regression forests.

The first approach [116] uses a single forest + 2D patch, and the corresponding

mean volume error performance is poor, as seen in row 4. This approach works

well for cardiac bi-ventricles but fails for a kidney since kidney sizes, shapes,

and orientations vary more extensively across subjects. Subsequently, we adopt

an efficient approach to learning using image subpatches (5× 5 pixels). This

subpatch-based approach improves the mean volume error performance than that

of the patch-based method (see rows 4 & 5). However, false-positive estimates still

corrupt these subpatch-based results. We also tested using 3D subpatches (5×5×2

voxels). Since CT axial resolution is lower than those of the coronal and sagittal,

5×5×2 closely resembles a cube shape. However, we see in row 6 that the cor-

responding mean volume error is worse than those of 2D subpatches (row 5). We

suspect that this poor performance may be a result of the reduced number of train-

ing samples. The proposed method (dual regression+2D subpatch) combines the

2D subpatch-based area prediction and patch-based kidney span prediction, which

ultimately results in the best mean volume error performance. While the mean ac-

curacy of the forest 2-based kidney span prediction is approximately 95.5% alone,

the Table (row 7) depicts that the mean volume error by the proposed method falls

below 10%, with the cost of a prediction time of ∼4 sec per kidney sample, which

we can further accelerate via a GPU-implementation. Besides, we performed the

Student t-test between the actual and estimated volumes, and the estimated p value

is 0.8170, which fails to reject the Null hypothesis. Therefore, the ground truth and

estimated kidney volumes do not statistically differ.
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4.1.6 Discussion

In this section, we discussed an effective method for segmentation-free estimation

of kidney volumes from 3D CT images. We formulated our volume estimation

problem as a 2D subpatch learning-based regression problem and were able to skip

the problematic segmentation step. Though kidney shapes, sizes, and orientations

vary extensively across subjects, we addressed this challenge by adopting a dual

regression forest formulation. We train it by making use of the same extracted

image features, and their combined predictions resulted in satisfactory kidney vol-

ume estimates. Our experimental results showed that the proposed method could

estimate kidney volumes with high correlations of 89% with those obtained manu-

ally by expert radiologists and reported the mean volume estimation error of 10%.

However, this approach used hand-engineered features that may be difficult to de-

sign in the clinical environment optimally. An alternate solution could be using a

CNN approach that would learn features automatically from subpatches. However,

the features used in this dual-regression approach are statistical in nature. On the

other hand, CNN relies mostly on non-statistical object appearance features [43].

Therefore, a conventional CNN would fail to learn anything from a 5×5 subpatch,

and our experiment supported our hypothesis. That is why we omitted to report

any CNN-based performance on subpatches.
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4.2 Deep Supervised Learning for Volume Estimation
In the previous section, we discussed a dual regression forests-based segmentation-

free kidney volume estimation approach using hand-engineered features. However,

hand-engineered features are often difficult to design in the clinical environment

optimally. Therefore, in this section, we discuss a couple of deep supervised learn-

ing approaches for segmentation-free kidney volume estimation. We published the

first part of this work (discussed in section 4.2.1) in Hussain et al. [1], which uses

a deep CNN to predict slice-based cross-sectional kidney areas followed by inte-

gration over these values across axial kidney span to produce the volume estimate.

The second approach discussed in section 4.2.2 uses a deep FCN instead of deep

CNN to predict more accurate slice-based cross-sectional kidney areas than that in

section 4.2.1. In our both approaches, discussed in section 4.2.1 and section 4.2.2,

we tried to choose the simplest networks possible to predict accurate kidney cross-

sectional areas. We increased the depth of the networks gradually as well as chose

the filter sizes and strides iteratively to improve the training and validation accuracy

during network training.

4.2.1 Regression CNN for Volume Estimation

In chapter 3, we estimated the kidney encompassing tight ROI. Typically, kidney

shape and appearance vary across patients (Fig. 3.2). Training our CNN requires

2D image patches of consistent size. Also, the patch size needs to be universal so

that it always contains the kidney cross-sections. Therefore, to generate training

data, we choose a patch size of 120×120 pixel, making sure that the cross-section

of the initially estimated kidney ROI is at the center of it. We also ensure that

there is enough free space around a kidney cross-section. The ratio between the

number of pixels fall inside a kidney cross-section to the total number of pixels in

the image patch (120× 120 pixel) is considered as the output variable (label) for

that particular image patch.

We estimate the cross-sectional area of a kidney in each slice using a deep CNN

shown in Fig. 4.5. The CNN performs regression and has seven layers, excluding

the input. It has four convolutional layers, three fully connected layers, and one

Euclidean loss layer. We also use dropout layers along with the first two fully
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Figure 4.5: Segmentation-free kidney volume estimation using deep CNN.

connected layers to avoid over-fitting. As mentioned earlier, the input is a 120×
120 pixel image patch, and the output is the ratio of kidney pixels to the total image

size. We train the CNN by minimizing the Euclidean loss between the desired and

predicted values. After training the CNN model, we deploy the model to predict

the kidney area in a particular image patch. Finally, we estimate the volume of a

specific kidney by integrating the predicted areas in all of its image patches in the

axial direction.

4.2.2 Regression FCN for Volume Estimation

To generate training data for the FCN shown in Fig. 4.6, we choose a patch size

of 128× 128 pixel. The ratio between the number of pixels fall inside a kidney

cross-section to the total number of pixels in the image patch (128×128 pixel) is

considered as the output variable (label) for that particular image patch.

Figure 4.6: Segmentation-free kidney area estimation using deep FCN.
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We estimate the cross-sectional area of a kidney in each slice using an FCN

shown in Fig. 4.6. The FCN performs regression and has six layers, excluding the

input. It has five convolutional layers, one fully connected layer (only to generate

single activation), and one Euclidean loss layer. We also use the dropout layer with

the last convolution layer (containing flatten activation) to avoid over-fitting. As

mentioned earlier, the input is a 128×128 pixel image patch, and the output is the

ratio of kidney pixels to the total image size. We train the FCN by minimizing the

Euclidean loss between the desired and predicted values. After training the FCN

model, we deploy the model to predict the kidney area in a particular image patch.

Finally, we estimate the volume of a specific kidney by integrating the predicted

areas in all of its image patches in the axial direction.

4.2.3 Experimental Setup and Data Acquisition

We used 100 patients’ CT scans from our VGH patient pool (discussed in sec-

tion 2.1). We were able to use a total of 200 kidney samples (both left and right

kidneys) from which we used 120 samples (from 60 randomly chosen patients)

were used for training, 20 samples from 10 randomly chosen patients for valida-

tion, and the rest is unseen. Our dataset included 12 pathological kidney samples

(with endo- and exophytic tumors), and our training and test data contained 6 cases,

each. We also used 210 patients’ CT scans from our KiTS patient pool (discussed in

section 2.3). We used 160 randomly chosen patients’ data for training, 15 randomly

chosen patients’ data for validation, and the remaining 35 patients data (70 kidney

samples) for testing. We implemented both neural networks using Caffe [107]. We

set the base learning rate for training to 0.01 and decreased by a factor of 0.1 to

0.0001 over 15,000 iterations. Since we performed experiments in sections 4.2.1

and 4.2.2 separately, we discuss their results separately in sections 4.2.4 and 4.2.5,

respectively.

4.2.4 Results Comparison to CNN-based Approach

Table 4.2 shows quantitative comparative results of our direct volume estimation

module (including the localization step) with those obtained by a manual ellip-

soid fitting method, two segmentation-based methods, and two segmentation-free
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regression-forest-based methods. We use the mean volume errors by [115, 116]

reported in [2] for comparison. For the manual approach [115], we see in Ta-

ble 4.2 that the estimated mean volume error for this approach is approximately

14% with high standard deviation. Then we consider two segmentation-based

methods [60, 117]. These methods reported their volume estimation accuracy in

terms of the Dice similarity coefficient (DSC), which does not relate linearly to

the percentage of volume error. Since segmentation-free methods do not perform

any voxel classification, DSC cannot be calculated for these methods. Therefore,

it is difficult to directly compare DSC performance to the percentage of volume

estimation error. However, [60] used 2 regression forests (RF), an ellipsoid fitting

and subsequent template deformation for kidney segmentation. Even then, authors

in [60] admitted that this method did not correctly detect/segment about 20% of left

and 20% of right kidneys (DSC < 0.9, non-correctness criterion in [60]), and failed

on about 10% left and 10% right kidneys (DSC < 0.65, failing criterion in [60]).

But our method successfully estimated volumes for all our kidney samples and

achieved a mean volume error of 7%. Moreover, authors in [60] mentioned that the

RF-based voxel classification was uncertain and the subsequent deformation step

relies on the initial kidney shape. Due to this drawback, [60] is likely to fail on

pathological kidneys. Crucially, authors in [60] did not include the truncated (tu-

mor removal during partial nephrectomy) kidneys (16% of their data) in their eval-

uation. For a similar reason, the multi-atlas image registration-based method [117]

was evaluated only on 22 kidney samples out of 28, because 6 samples contained

tumors. In addition, the test dataset size in [117] was very small (22 vs. 60 in our

dataset). In contrast, our dataset includes 12 pathological kidney samples, where

our training and test data contained 6 cases, each. As the results show, our method

does not fail for any kidney and thus, suggests it is less sensitive to kidney trun-

cation or tumors. Finally, we consider two RF-based segmentation-free kidney

volume estimation approaches [2, 116]. For the single RF-based method [116], we

see that the corresponding volume estimation error is worse than those of the dual

RF and proposed methods as seen in Table 4.2. Using smaller 2D patches and the

dual RF, [2] outperformed [116] but still shows a higher volume estimation error

than the proposed method likely due to the use of non-optimal hand-engineered

features. The last row of Table 4.2 reports the mean error of our proposed method
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Table 4.2: Volume estimation accuracies compared to state-of-the-
art methods. Not reported values are shown with (-).

Method Methods Kidney Mean Volume Mean Dice
Types Samples Error (%) Index
Manual Ellipsoid Fit [115] 44 14.20±13.56 -

Seg
RF+Template [60] 358 - 0.752±0.222 †

Atlas-based [117] 22 - 0.952±0.018

Seg-free
Single RF [116] 44 36.14±20.86 -
Dual RF [2] 44 9.97±8.69 -
Proposed Method 60 7.16±8.91 -

† Estimated from reported Dice quartile values (in [60]) using the method in
[118].

around 7%, which is the lowest among all three segmentation-free methods.

4.2.5 Results Comparison to FCN-based Approach

We provide comparative results of our proposed method with those obtained by

three generic approaches: a manual clinical method, two regression forest-based

approaches, and three deep learning approaches. But first, we show the perfor-

mance of the proposed method visually in Figs. 4.7 and 4.8, where we illustrate

the correlation between the actual and estimated kidney volumes for the VGH and

KiTS data, respectively. These figures show that almost all of the estimates are

close to their corresponding ground truth measurements.

We also show the quantitative comparative results of our segmentation-free vol-

ume estimation approach in Table 4.3. Note that most of the state-of-the-art kidney

volume estimation approaches are segmentation-based, and they report their ac-

curacy in terms of the Dice similarity coefficient (DSC), which does not relate

linearly to the percentage of volume error. Since segmentation-free methods do

not perform any voxel classification, we cannot calculate DSC for these methods.

Therefore, it is difficult to directly compare DSC performance to the percentage

of volume estimation error. Therefore, we emphasize the performance comparison

mostly concerning the state-of-the-art segmentation-free methods. First, we con-

sider a manual approach [115], which is typically used by the radiologists in the

clinical settings. The experts obtain three major axes on a kidney, which corre-

spond to a 3D ellipsoid that approximates that particular kidney. In Table 4.3: row
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Figure 4.7: Scatter plot showing the volume correlations between the actual
and proposed FCN-based estimates for the VGH data. Correlation co-
efficient = 0.9714.
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Figure 4.8: Scatter plot showing the volume correlations between the actual
and proposed FCN-based estimates for the KiTS data. Correlation co-
efficient = 0.9645.
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1, we see that the estimated mean volume error (computed by expert radiologists)

for this approach is approximately 15% with high standard deviations. Also, it

takes around 3 min per kidney sample. Next, we consider two regression forest-

based approaches [2, 116] used for segmentation-free kidney volume estimation.

The method in [116] used a single regression forest, and the corresponding volume

estimation error is the worst among the comparing methods (see Table 4.3: row 2).

On the other hand, using dual regression forests, our initial work [2] shows better

volume estimation accuracy than that by [116] (see Table 4.3: row 3). Later, we

used a CNN-based approach [1] for segmentation-free kidney volume estimation.

It showed better volume estimation accuracy as CNN better captured the rich and

complex variability in the kidney anatomy and outperformed the hand-engineered

feature representations in [2, 116] (see Table 4.3: row 4). In this work, we further

improve the volume estimation accuracy using a comparatively deeper network

than that in [1]. Besides, this network utilized fully convolution layers except for

the layer before the loss layer to accumulate the network activation as a single

value. We see that the FCN approach shows the best volume estimation perfor-

mance among all the methods on the VGH data (see Table 4.3: row 5). To check

the performance of a network with a fully connected layer instead of a convolu-

tion layer of a similar dimension, we replaced the final convolution layer (of size

1×1×1096) with a fully connected layer of equal size (i.e., 1096×1). This change

makes the FCN a CNN, which predicts worse kidney cross-sectional area estimates

than that by the FCN (see Table 4.3: row 6). We infer that the FCN performs better

than CNN because of the better feature correspondence among convolution layers,

i.e., preservation of the spatial context throughout the network. In contrast, a fully

connecting layer typically learns a completely new set of weights based on the ac-

tivation of the previous layer. Finally, we show the volume estimation performance

of the proposed FCN approach on the KiTS data in Table 4.3: row 7. Since almost

all the kidney samples in this dataset contain tumors of various sizes and shapes,

the volume estimation error is slightly higher than that for the VGH data (row 5).

Since we cannot estimate the DSC for the segmentation-free volume estimates,

we visually demonstrate the comparison of the mean distribution of the ground

truth and estimated kidney cross-sectional area in Figs. 4.9 and 4.10 for the VGH

and KiTS data, respectively. Our FCN predicts the ratio between the kidney cross-
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Table 4.3: Volume estimation accuracy compared to state-of-the-art compet-
ing methods.

Method Type Methods Test Mean Volume
Samples Error (%)

Manual Ellipsoid Fitting Zakhari et al. 2014 [115] 44 14.20±13.56
Regression Forest Zhen et al. 2014 [116] 44 36.14±20.86
(Seg-free) Hussain et al. 2016 [2] 44 9.97±8.69
Deep Learning Hussain et al. 2017 [1] 60 8.05±8.91
(Seg-free) Proposed with FCN (VGH Data) 60 4.80±3.89

Proposed with FC Layer (VGH Data) 60 5.92±4.50
Proposed with FCN (KiTS Data) 70 7.26±6.80

sectional area and the 2D ROI area. So, in Figs. 4.9 and 4.10, we plot the mean

kidney area to the ROI area ratio for all the test kidney samples along the axial

direction. Since kidney span along the axial direction varies across kidneys, we

re-sample all the kidney spans to 25 slices to make those consistent across all the

samples. We can see in Figs. 4.9 and 4.10 that the mean and standard deviations of

the kidney area to ROI area ratio by the proposed method follows the same trend as

the ground truth. Besides, we performed the Student t-test on both samples, and the

estimated p values are 0.775 and 0.6442 for the VGH and KiTS data, respectively.

These statistical tests fail to reject the Null hypothesis. Therefore, the ground truth

and estimated kidney area to ROI area ratio do not statistically differ.

Our proposed FCN for segmentation-free kidney volume estimation is also

very light in terms of the number of trainable parameters (∼94,000). In contrast,

one of the recent and popular segmentation-based organ volume estimation ap-

proach, 3D U-Net [87], has ∼19,070,000 trainable parameters, which is approxi-

mately 200x more than that of our proposed FCN approach.

4.2.6 Discussion

In this section, we discussed two deep learning approaches for segmentation-free

kidney volume estimation from the raw abdominal CT data. We formulated our

volume estimation problem as a 2D image patch-based regression problem and

were able to skip the often problematic segmentation step. Our deep neural net-
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Figure 4.9: Distribution of kidney cross-sectional areas for the VGH data
along the axial direction.

works better captured the rich and complex variability in kidney anatomy and out-

performed the hand-engineered feature representations used in [2, 59, 60]. Further,

we showed that an FCN performs better than a CNN of a similar size in a regres-

sion problem. Our experimental results demonstrated a 40% increase in volume

estimation accuracy compared to those of the recent literature.

4.3 Summary
In this chapter, we discussed three ML-based methods for segmentation-free kid-

ney volume estimation, which bypasses the intermediate segmentation approach.

All of these approaches estimate the 3D kidney volume via estimating 2D slice-

based kidney cross-sectional area estimation. The use of 2D slices enables us-

ing more training data, which in turn makes the supervised model more robust on

the test data. Besides, all of these methods are very light in terms of the num-

ber of trainable parameters. In fact, our most successful segmentation-free volume

estimation approach (discussed in section 4.2.2), i.e., FCN-based approach, has
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Figure 4.10: Distribution of kidney cross-sectional areas for the KiTS data
along the axial direction.

around 200x less number of trainable parameters than one of the state-of-the-art

segmentation approach 3D U-Net [87]. Thus our methods are more suitable for

using a clinical environment where substantial computational resources are often

not available. However, our segmentation-free volume estimation approach tends

to perform worse when a kidney has a tumor(s). We also observe this phenomenon

from the performance of the FCN approach on the KiTS data shown in Table 4.3.

Therefore, more training data with pathological kidneys are required to make our

model more robust.
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Chapter 5

Collage CNN for Pathological
Kidney Detection in CT

Tissue abnormalities such as tumors, cancers, nodules, stones, etc. are most often

localized within a small region of anatomy and do not span the whole image vol-

ume. Localization and analysis of abnormal tissue are thus typically carried out

on the 2D image slices. For example, the staging of kidney tumors often requires

slice-based tumor analysis and manual boundary tracing. However, assignments

of image tags or labels (e.g., healthy, cancerous, etc.) are mostly per image vol-

ume or per-patient basis. Therefore, all slices of an image are by default labeled

with a single tag, though not all slices may contain the abnormal tissue. This sce-

nario makes ‘single-instance’ ML approaches, especially deep learning ones such

as CNN, challenging to train on the 2D slices, as the input slice often does not

correspond to the assigned volume-based label. In this chapter, we discuss a CNN

based kidney classification method that makes use of a novel collage image rep-

resentation. The image slices in a 3D volume are rearranged side-by-side into a

virtual extended 2D image slice, which in turn correctly corresponds to the single

available label for that dataset. Our proposed collage also allowed for data aug-

mentation by a random reshuffling of the locations of axial image slices within the

collage. We originally published this work in Hussain et al. [3].
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5.1 Collage Representation of 3D Image Data

(a) (b)

(e)(d)(c)

Non-shuffled 1-Ch Collage Representation of 3D Data

:
:

3D Image Volume

:
:

3D Image Volume

Non-shuffled 3-Ch Collage Representation of 3D Data

(f)

Non-shuffled Shuffled instance - 1 Shuffled instance - 2 Shuffled instance - 3

Figure 5.1: Schematic diagrams showing the non-shuffled (a) 1-channel and
(b) 3-channels 2D collage representations of a 3D image volume. (c)
An example 1-channel 2D collage image slice (512×512 pixels) con-
taining 64 individual (non-shuffled) axial slices (64×64 pixels) of an
actual kidney CT volume. The axially top and bottom slices (two cor-
ner slices in (c)) are colored to locate those in the randomly shuffled
collages in (d)-(f).

Typically, tumors grow in different regions of the kidney and are clinically

scored based on their CT slice-based image features. For example, tumor size, mar-

gin, composition, necrosis, growth pattern (endophytic or exophytic), calcification,

etc., [36]. Of course, not all kidney slices necessarily contain tumors. Nonethe-

less, clinical labels (healthy/pathological) are normally recorded on a kidney- or a

patient-basis. Therefore, it is not possible to use slice-based inputs in the training of

a CNN because the volume-based label does not apply to all constituent axial slices.

To address this challenge, we propose a novel approach where we rearranged the

slices within the 3D image into an extended 2D image collage (Fig. 5.1). In a non-

shuffled collage representation, each consecutive image slice (for 1-channel) or, a
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Figure 5.2: The architecture of our collage deep convolutional neural net-
work for pathological vs. healthy kidney classification. See Fig. 5.1
for the input image representation.

group of n consecutive image slices (for n-channels, where n > 1) along a particu-

lar direction are sequentially placed on a 2D plane, which is schematically shown

for a 1-channel and a 3-channels (n = 3) image in Fig. 5.1(a) and (b), respectively.

Note that we opt to keep the collage dimension square (i.e., 512×512 pixels) in

this experiment; however, it is not a necessity. This collage not only ensures mean-

ingful correspondence to the volume’s single label but also allows for invaluable

data augmentation by a simple random reshuffling of image slices as well as by

rotation and flipping. We show a non-shuffled 2D image collage representing an

actual kidney CT data and its shuffle-based three augmented collages in Fig. 5.1(c)

and (d)-(f), respectively. Our collage representation enables CNN to look at all

the image slices of the 3D volume at once. At the same time, the volume-based

label corresponds correctly to that particular collage. Shuffling-based augmenta-

tion further enables multiplying the number of training data and also introduces

variations in the input collage. Our collage CNN can efficiently learn the discrim-

inatory features from all the constituent shuffled and non-shuffled images in the

collage without requiring any adjacency information preserved in the longitudinal

direction. In a crucial case of keeping longitudinal adjacency information, we can

increase the value of n in the collage.

Note that we prepare our CNN input data in a process shown in Fig. 5.1(b),

where we set n = 3. The resulting dimension of a single CNN input data is
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512×512×3 pixels, and the output was either 0 (healthy) or 1 (pathological).

5.2 Collage CNN for Kidney Classification
Our proposed CNN has seven layers excluding the input. All of these layers, except

the 5th layer (concatenation layer), contained trainable weights.

Layer C1 is a convolutional layer that filters the input image with 24 kernels

of size 4×4×3. Since we used collage-based image representation, we needed to

carefully design our filter sizes and strides in a way that the convolutional (Cx) and

max pooling (Px) filters do not overlap between two adjacent slices. To achieve

this, we chose each edge size of the convolution filter to equal the stride in a par-

ticular layer. For example, the edge size of the convolution filter and the stride in

the C1 layer were 4 and 4, respectively (Fig. 5.2). We chose a small convolutional

filter size, which tends to achieve better classification accuracy, as demonstrated

in [119]. Layer C2 is the second convolutional layer with forty-eight 4×4×24

kernels applied to the output of C1. Unlike C1, we used a max-pooling (P2) of

4×4×48 windows in this layer to reduce the image size to 8×8 from 32×32.

The output of C2 is connected to a fully connected layer (F3), which contains

96 units. Similarly, a layer F4 comprises 96 units and is fully connected to F3.

We concatenated the units of F3 and F4 into CT5 to reduce possible information

loss. This bypassing connection is typically known for better classification accu-

racy [120]. Note that the CT5 layer did not have any trainable weights.

The CT5 layer is connected to an F5 layer having two units. These units are

connected to a softmax layer (S), which produces the relative probabilities for back-

propagation and classification.

5.3 Experimental Setup and Data Acquisition
Our clinical dataset consisted of 160 kidney scans of 160 patients accessed from

our TCGA-KIRC patient pool (discussed in section 2.2). We used 80 healthy kid-

ney samples from 80 patients who had one healthy kidney. The 80 pathological

kidney samples used were from another 80 patient scans. Of the 80 healthy and

80 carcinoma scans, we randomly chose 45 and 10 cases from each set to use for

training and validation, respectively, and the remaining 25 for testing. We trained
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our network by minimizing the softmax loss between the desired and predicted la-

bels. We used an optimization method called Adam [121]. All the parameters for

this solver were set to the suggested default values, i.e., β1 = 0.9, β2 = 0.999, and

ε = 10−8. We also employed a unit dropout (Dx) that drops 50% of units in both

F4 and CT5 layers and used a weight decay of 0.005. The base learning rate was

set to 0.01 and was decreased by a factor of 0.1 to 0.0001 over 25000 iterations

with a batch of 32 images processed at each iteration.

5.4 Validation on Kidney Data

Decision Boundary
Pathological
Healthy

Kidney Samples
1

Figure 5.3: Scatter plot showing the actual vs. predicted labels by the collage
image-based and 3D CNNs.

We provide the classification accuracy results of our proposed collage image-

based CNN as a bar plot in Fig. 5.3. We also compare our performance to that

of a 3D CNN on the same plot. For the 3D CNN, we replaced the collage input

(512×512×3 pixels) with the full 3D volume (64×64×64 pixels) of the kidney

and performed 3D convolutions with a filter size of 4×4×64 with stride 4. For a

fair comparison, we chose the 3D volume dimension as 64×64×64 pixels, since

each constituent axial slice in the collage was of 64×64 pixels. Other layer con-

figurations remained the same as in Fig. 5.2. Both CNNs were implemented using

Caffe [107]. The pre-processing of the data, visualizations, and comparisons were

done in MATLAB using the MatCaffe interface. Before generating the collage

representation of the input data, we ensured a uniform voxel spacing in the image

volume of all axial, coronal, and sagittal planes using interpolation. We manually

defined the kidney ROI (sub)volume within the CT data in such a way that leaves
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an approximately 25% background area framing a kidney. Before training, both

the training and testing datasets were standardized.

In our experiments, we augmented the number of training samples by a factor

of 40 by flipping and rotating the image slices as well as by random reshuffling the

slice location within the collage. This augmentation process enabled by our new

image representation yielded a total of 4,400 2D image collages for training.

As demonstrated in Fig. 5.3, our proposed method succeeded in all but only

one case out of 50 tested kidney samples, resulting in a classification accuracy of

98%. In comparison, the 3D convolution-based CNN failed in eight cases resulting

in an accuracy of 80%.

Our preliminary results suggest that our proposed collage image representation

may offer significant advantages for deep CNN-based classification tasks on 3D

data. Our collage representation allows the convolution kernel to slide over all the

axial 2D slices in a 3D volume, which is impossible in case of a 3D CNN. The

training time of the collage CNN was approximately 5 hours (on our primary ma-

chine), while the 3D CNN took nearly 7 hours to converge. We also augmented

the 3D data by using data rotation and flipping before feeding to the 3D CNN,

and we expect the performance of the 3D CNN to be better than our collage CNN.

But because of the better augmentation capability of the collage representation, it

performed better compared to the 3D CNN in our experiment. Thus, the collage

representation seems best suited in the insufficient annotated medical data sce-

nario. It is worth noting that to improve the classification accuracy by the 3D CNN

approach, one may have to increase the convolution kernel size and decrease the

stride size to capture more features from the image volume. However, this would

drastically increase the number of trainable weights, which would necessitate the

use of expensive GPUs with large memory, and would cost more time to converge.

It is worth mentioning that there are some other potential ways of using deep

learning approaches on the sparsely annotated data. One approach could be the 3D

CNN that we use to compare our results within this chapter. This special type of

3D CNN uses 2D filters applied to all slices. However, our results showed that this

approach is not as effective as our collage CNN approach. Another approach could

be weight sharing in the axial direction for 3D CNN. However, tumors are often

very small compared to the actual kidney. Therefore, sharing weights along the
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axial direction may result in the loss of tumor information. Thus the network could

be ineffective in detecting pathological kidneys. For the same reason, we believe

that a simple MIL approach with prediction averaging would not be effecting for

pathological kidney detection.

We further like to mention that our proposed collage CNN is very light in terms

of the number of trainable parameters (∼39,168). In contrast, one of the recent and

popular 3D CNN, 3D U-Net [87], has ∼19,070,000 trainable parameters, which is

approximately 487x more than that of our proposed collage CNN approach.

5.5 Summary
In this chapter, we discussed a novel collage image representation within a CNN

based classification scheme to enable deep learning from sparsely labeled 3D datasets.

We applied our proposed method on CT abdominal scans from the TCIA database

to discriminate healthy from cancerous kidneys containing renal cell carcinoma.

Our method enables efficient 2D slice-based learning in the absence of slice-based

labels. Also, the proposed collage inherently allows for easy data augmentation

through a random reshuffling of the locations of image slices within the collage,

thus facilitating more effective training of the implicit relationship between bag la-

bels and feature representation in weekly supervised ML settings. We showed our

approach to be impressively effective (98% classification accuracy) on weakly la-

beled data on a small-sized database of 160 kidney CTs outperforming 3D CNNs.

However, the latter’s performance could potentially be better with a significant in-

crease in labeled data as well as computation cost.

72



Chapter 6

Gene Mutations Detection in
Kidney ccRCC

In this chapter, we discuss a deep CNN approach that addresses the challenge of

automatic mutation detection in kidney ccRCC. Our method is a variant of the

conventional MIL approach, where we use multiple instances for robust binary

classification while using single instances for training CNN to facilitate a higher

number and variation of training data. The CNN automatically learns the ccRCC

image features, and the aggregation of binary decisions (i.e., presence/absence of

a mutation) for all the ccRCC slices in a particular kidney sample ultimately de-

termines whether an interrogated kidney sample has undergone a certain mutation

or not. The frequency of occurrence of various mutations in ccRCC varies signifi-

cantly, e.g., VHL, PBRM1, BAP1, SETD2, and KDM5C were found in 76%, 43%,

14%, 14% and 8% of kidney samples of our dataset, respectively. In this study, we

consider the four most prevalent gene mutations (i.e., VHL, PBRM1, BAP1, and

SETD2). We achieve this via four multiple instance decision aggregation CNNs.

However, our approach is directly extendable to more mutation types depending

on the availability of sufficient training data. We originally published this work in

Hussain et al. [4].
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6.1 Multiple Instance Decision Aggregation for Mutation
Detection

a b c d

e f g h
Figure 6.1: Illustration of CT features of ccRCC seen in the data of this study.

(a) Cystic tumor architecture, (b) calcification, (c) exophytic tumor, (d)
endophytic tumor, (e) necrosis, (f) ill-defined tumor margin, (g) nodular
enhancement, and (h) renal vein invasion. Arrow indicates a feature of
interest in each image.

Typically, ccRCC grows in different regions of the kidney and is clinically

scored based on their CT slice-based image features. For example, size, margin

(well- or ill-defined), composition (solid or cystic), necrosis, growth pattern (en-

dophytic or exophytic), calcification, etc. [36]. We show some of these features

in our dataset in Fig. 6.1. Recent work [36, 37] shown correlations between mu-

tations in genes and different ccRCC features seen in CT images. For example,

an association between well-defined tumor margin, nodular enhancement, and in-

tratumoral vascularity with the VHL mutation has been reported [37]. Ill-defined

tumor margin and renal vein invasion were also reported to be associated with the

BAP1 mutation [36], whereas PBRM1 and SETD2 mutations are mostly seen in

solid (non-cystic) ccRCC cases [37]. We propose to learn these features from the

CT images using four different CNNs: VHL-CNN, PBRM1-CNN, SETD2-CNN,
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and BAP1-CNN, each for one of the four mutations (VHL, PBRM1, SETD2, and

BAP1). Using a separate CNN per-mutation alleviates the problem of data imbal-

ance among mutation types, given that the mutations are not mutually exclusive.

For a particular CNN targeting to detect a particular gene (say, ‘x’) mutation, we

used two sets of data for training: one set with x-mutation present, and another set

with x-mutation absent but may or may not have other mutations present.

6.1.1 CNN Architecture

All the CNNs in this study (i.e., VHL-CNN, PBRM1-CNN, SETD2-CNN, and

BAP1-CNN) have similar configurations, but we train those separately (Fig. 6.2).

Each CNN has twelve layers excluding the input: five convolutional (Conv) layers;

three fully connected (FC) layers; one softmax layer; one average pooling layer;

and two thresholding layers. All but the last three layers contain trainable weights.

The input is the 227×227×3 pixel image slice containing the kidney+ccRCC. We

train these CNNs (layers 1–9) using a balanced dataset for each mutation case

separately (i.e., a particular mutation-present and absent). During training, we fed

images to the CNNs in a randomly shuffled single instance fashion. Typically,

Conv layers are known for sequentially learning the high-level non-linear spatial

image features (e.g., ccRCC size, orientation, edge variation, etc.). We used five

Conv layers as the 5th Conv layer typically grabs an entire object (e.g., ccRCC

shape) in an image even if there are a significant pose variation [122]. Subsequent

FC layers prepare those features for the optimal classification of an interrogated

image. In our case, we deployed three FC layers to decide on the learned features

from the 3-ch images to decide if a particular gene mutation is probable or not. The

number of FC layers plays a vital role as the overall depth of the model is important

for obtaining good performance [122], and we achieve optimal performance with

three FC layers. Layers 10, 11, and 12 (i.e., two thresholding and one average

pooling layers) of the CNNs are used during the testing phase and do not contain

any trainable weights.
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Figure 6.2: Multiple instance decisions aggregated CNN for gene mutation
detection.

6.1.2 Mutation Detection

After all the CNNs are trained (from layer 1 to 9), we use the full configuration

(from layer 1 to 12) in the testing phase. Although we use only ccRCC containing

kidney slices during training and validation, often not all the ccRCC cross-sections

contains the discriminating features for proper mutation detection. Therefore, our

trained CNN (from layer 1 to 9) often miss-classifies the interrogated image slice

based on the probability estimated at layer 9 (i.e., softmax layer). To address this

miss-classification by our CNNs, we adopt a multiple instance decision aggregation

procedure. In this procedure, we feed all the candidate image slices of a particular

kidney to the trained CNN and accumulate the slice-wise binary classification la-

bels (0 or 1) at layer 10 (the thresholding layer). We fed these labels into a N×1

average pooling layer, where N is the total number of 3-channel axial slices of an

interrogated kidney. Finally, we fed the estimated average (Eavg) at layer 11 to the

second thresholding layer (layer 12), where Eavg ≥ 0.5 indicates the presence of

the mutation in that kidney, and no-mutation otherwise (see Fig. 6.2).
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6.2 Experimental Setup and Data Acquisition
We used 160 patients’ CT scans from our TCGA-KIRC patient pool (discussed

in section 2.2). In this dataset, 138 scans contained at least one mutated gene

because of ccRCC. For example, 105 patients had VHL, 60 patients had PBRM1,

20 patients had SETD2, and 20 patients had BAP1 mutations. Besides, some of

the patients had multiple types of mutations. However, nine patients had CT scans

acquired after nephrectomy and, therefore, those patients’ data were not usable for

this study. We show the number of kidney samples used in the training, validation,

and testing stages in Table 6.1. During training, validation, and testing, we use only

those slices of the kidney that contain ccRCC as our CNNs aim to learn ccRCC

features. We train all the networks by minimizing the softmax loss between the

expected and detected labels (1: mutation present and 0: mutation absent). We used

the Adam optimization method [123]. All the parameters for this solver were set to

the suggested (by [123]) default values, i.e., β1 = 0.9, β2 = 0.999 and ε = 10−8.

We also employed a Dropout unit (Dx) that dropped 50% of units in both F6 and F7

layers (Fig. 6.2) and used a weight decay of 0.005. The base learning rate for CNN

pre-training was set to 0.01 and was decreased by a factor of 0.1 to 0.0001 over

25,000 iterations. During fine-tuning, the base learning rate was set to 0.001 and

was decreased by a factor of 0.1 to 0.0001 over 20,000 iterations with a batch of

256 images processed at each iteration. We performed the training on a workstation

with Intel 4.0 GHz Core-i7 processor, an Nvidia GeForce Titan Xp GPU with 12

GB of VRAM, and 32 GB of RAM.

Table 6.1: The number of kidney samples used in training, validation, and
testing per-mutation case. An acronym used: xM: ‘x’ type mutation.

Genes # Training Samples # Validation Samples # Test Samples
(x) xM-Present xM-Absent xM-Present xM-Absent xM-Present xM-Absent
VHL 74 74 10 10 15 15
PBRM1 35 35 6 6 10 10
SETD2 11 11 3 3 5 5
BAP1 10 10 3 3 4 4
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6.3 Data Pre-processing
We form a 3-channel image from each scalar-valued CT slice by generating channel

intensities [I, I-50, I-100] Hounsfield Unit (HU), where I represents the original in-

tensities in a CT image slice tightly encompassing a kidney+ccRCC cross-section

(Fig. 6.1), whereas I-50 and I-100 represent two variants of I with different HU

values. We add these variations in channel intensity values as similar ccRCC fea-

tures may have different X-ray attenuation properties across patients [36]. Also,

contrast-shifting produces an augmented version of the original image without

changing the tumor shape features. We resized all the image data by resampling

into a size of 227×227×3 pixels. We augmented the number of training sam-

ples by a factor of 24 by flipping and rotating the 3-ch image slices as well as

by re-ordering the three channels in each image. We normalized the training and

validation data before training by subtracting the image mean and dividing by the

image standard-deviation.

6.4 Validation on Kidney Data
We compare the mutation detection performance by a wide range of methods. At

first, we tested the performance using a single instance (SI)-based random forest

(RF) approach, where hand-engineered image features were used. In a typical SI-

based classification approach, the class-label is decided from the maximum among

the predicted class-probabilities [124]. Similarly, in our SI-based approaches, the

presence or absence of a certain mutation is decided from the maximum among

the estimated probabilities associated with all the ccRCC image slices in a partic-

ular kidney. Then we demonstrate the effectiveness of automatic feature learning

compared to the hand-engineered features generation using the CNN approach. Af-

terward, we show the effect of incorporating augmented data in the training dataset

and compared the mutation detection performance for three different types of aug-

mentation (i.e., image flipping+rotation, 3-ch re-ordering, and those combined).

Finally, we demonstrated the effectiveness of using multiple instance decision ag-

gregations in our proposed method.

In Table 6.2, we estimated the overall mutation prediction errors by the VHL-
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Table 6.2: Automatic gene mutation detection performance of different
methods. We use acronyms as M: mutation, x: one of VHL/P-
BRM1/SETD2/BAP1, Aug: augmentation, SI: single instance, MI: mul-
tiple instances, 3ch: 3-channel data with augmentation by channel re-
ordering, F: augmentation by flipping, and R: augmentation by rotation.

Methods Genes # Test Samples # Correct Detection Overall Error Mean Error
x M-present M-absent M-present M-absent OEx (%) ME (%)

Random VHL 15 15 5 7 60

53.75
Forest PBRM1 10 10 4 5 55
(SI+1ch) SETD2 5 5 2 3 50
No Aug BAP1 4 4 2 2 50
x-CNN VHL 15 15 7 8 50

41.88
(SI+1ch) PBRM1 10 10 6 6 40
No Aug SETD2 5 5 3 3 40

BAP1 4 4 2 3 37.50
VHL 15 15 12 9 30

29.38
x-CNN PBRM1 10 10 4 7 45
(SI+3ch) SETD2 5 3 4 4 30

BAP1 4 4 3 4 12.5
x-CNN VHL 15 15 11 13 20

21.88
(SI+1ch PBRM1 10 10 8 7 25
+F+R) SETD2 5 5 3 4 30

BAP1 4 4 4 3 12.50
x-CNN VHL 15 15 15 11 13.33

13.96
(SI+3ch PBRM1 10 10 9 9 10
+F+R) SETD2 5 5 5 3 20

BAP1 4 4 3 3 12.50
Proposed VHL 15 15 14 13 10

6.25(MI+3ch PBRM1 10 10 9 10 5
+F+R) SETD2 5 5 5 4 10

BAP1 4 4 4 4 0

CNN, PBRM1-CNN, SETD2-CNN, and BAP1-CNN as:

OEx = 100
(

1−CMP +CMA

TMP +TMA

)
%, (6.1)

where, OE stands for overall error (shown in the second last column of Table 6.2), x

represents either of the four mutations (i.e., VHL or PBRM1 or SETD2 or BAP1),

CMP denotes the correct number of predictions for x-mutation presence, CMA de-

notes the correct number of predictions for x-mutation absence, TMP denotes the

total number of test cases for x-mutation presence, and TMA denotes the total num-
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ber of test cases for x-mutation absence. We also report the mean error (ME) for

each of the comparing methods in the last column of Table 6.2 by combining the

individual errors (i.e., OEx) as:

ME =
OEV HL +OEPBRM1 +OESET D2 +OEBAP1

4
. (6.2)

In row 1 of the comparison Table 6.2, we show results of a traditional RF ap-

proach with hand-engineered image features proved to be useful in anatomy clas-

sification task [124]: histogram of the oriented gradient, Haar features, and local

binary patterns. Here, we did not augment any manually transformed data to the

training samples. We trained four RFs for the four different mutation cases, and

as we see in Table 6.2, the resulting mean detection error was the highest (∼54%)

among all contrasted methods. Row 2 shows the results of a deep CNN (namely, x-

CNN, where x: VHL/PBRM1/SETD2/BAP1 (see Fig. 6.2)) approach with no data

augmentation. Since the CNN learns the image features automatically, it may have

helped this CNN method perform better (mean error ∼42%) than that of the hand-

engineered features-based RF approach. Row 3 shows results for x-CNN, where

we used data augmentation by deploying 3-ch data and re-ordering of channels (see

section 6.3). We fed these data to x-CNN, and we can see how the SI-based mu-

tation detection performance by this approach (mean error ∼29%) outperformed

that with no data augmentation. Thus, including channels with different intensity

ranges, mimicking the tumor intensity variation across patients, have shown a pos-

itive impact on the mutation detection task. Row 4 shows results for x-CNN with

a different augmentation process, which deploys the flipping and rotating of the

1-ch training samples. This approach (mean error ∼22%) outperformed that with

3-ch augmentation. So it is clear that the flipping+rotation-based augmentation in-

troduced more variation in the training data than that by the 3-ch augmentation,

resulting in a better generalization of the model. In the method shown in row 5,

we combined the flipping+rotation augmentation with the 3-ch re-ordering aug-

mentation. The performance of the x-CNN with these data was better in mutation

detection (mean error ∼14%) than that of flipping+rotation or 3-ch augmentation

alone (see Table 6.2). Finally, row 6 demonstrates the results of our proposed

method, where we used flipping, rotation, and 3-ch re-ordering augmentations.
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Also, binary classification was performed based on the multiple instance decisions

aggregation. We see in the Table 6.2 that the mean mutation detection error by our

method is ∼6%, which is the lowest tested. Also, detection errors for individual

mutation cases were small and in the range of 10%. Thus, our multiple instance

decision aggregation procedure made our CNN models more robust on SI-based

miss-classification.

6.5 Summary
In this chapter, we discussed a multiple instance decision aggregation-based deep

CNN approach for automatic mutation detection in kidney ccRCC. We have shown

how our approach automatically learned discriminating ccRCC features from CT

images and aggregated the binary decisions on the mutation-presence/absence for

all the ccRCC slices in a particular kidney sample. This aggregation produced

a robust decision on the presence of a certain mutation in an interrogated kid-

ney sample. Also, our multiple instance decision aggregation approach achieved

better accuracy in mutation detection than that of a typical single instance-based

approach. On the other hand, better performance by conventional MIL approaches

is subject to the availability of a sufficient number of data. At the same time, in

applications such as ours, there are usually very few data samples for some of the

mutation cases. Therefore, an end-to-end MIL approach will most likely fail for

those mutation cases with few data samples. However, this chapter included several

meaningful comparisons to highlight the effects of different augmentation, pooling

schemes, etc. within the context of insufficient data. We believe that these compar-

isons provide more interesting findings and appear to be suitable for ccRCC Ra-

diomics, where the learned mutations would aid in better ccRCC diagnosis, prog-

nosis, and treatment response assessment. Our experimental results demonstrated

an approximately 94% accuracy in kidney-wise mutation detection.

An image-based noninvasive gene mutation detection method has a promising

clinical implication. Although the biopsy-based diagnosis is an inseparable part of

the clinical workflow, it often requires considerable time in the process of perform-

ing the biopsy and subsequent radiological analysis. Our image-based noninvasive

approach can be effective in such a scenario. While a patient waits for the biopsy
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conduction and results, an image-based approach can help physicians to diagnose

ahead and prepare the treatment plan. The biopsy results can confirm the decision.

Our proposed method showed promising results in noninvasive gene mutation

detection. However, we had to train four separate CNNs because of the lack of

adequate data for the PBRM1, BAP1, and SETD2 mutation cases. A multitasking

CNN often leverages the complementary features of the different objects of inter-

est, which makes the model more robust on the classification task. Therefore, we

plan to investigate using a multitasking CNN for gene mutation detection if we get

access to more dataset in the future.
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Chapter 7

ImHistNet for RCC Grades and
Stages Detection in CT

In this chapter, we discuss the ImHistNet, a Deep neural network (DNN) for an

end to end texture-based image classification. Our ImHistNet approach makes the

following contributions: (1) we propose a learnable image histogram (LIH) layer

within a DNN framework. It is capable of learning complex and subtle task-specific

textural features from raw images directly, adhering to the classical input-output

mapping of a CNN. (2) We remove the requirement for fine pre-segmentation of the

RCC as the proposed learnable image histogram can stratify tumor and background

textures well, thus enabling the model to focus specifically on the tumor texture.

And (3) we demonstrate ImHistNet’s capabilities by performing automatic RCC

grade classification for the 2-tiered FGS as well as automatic categorization of RCC

into anatomical stage low (I/II) and high (III/IV) on an extended clinical dataset

from real patients. Note that it is an important finding of our experiment that the

RCC stages correlate with the CT textural features, which is, to our knowledge, not

investigated to date. We originally published these works in two parts in Hussain

et al. [5] and Hussain et al. [6].
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Figure 7.1: The architecture of our learnable image histogram using CNN
layers.

7.1 Learnable Image Histogram
Our proposed learnable image histogram (LIH) stratifies the pixel values in an

image x in different learnable and possibly overlapping intervals (bins of width wb)

with arbitrary learnable means (bin centers βb). The feature value hb(x) : b ∈B→
R, corresponding to the pixels in x that fall in the bth bin, is estimated as:

hb(x) = Φ{Hb(x)}= Φ{max(0,1−|x−βb|× w̃b)}, (7.1)

where B is the set of all bins, Φ is the global pooling operator, Hb(x) is the piece-

wise linear basis function that accumulates positive votes from the pixels in x that

fall in the bth bin of interval [βb−wb/2,βb +wb/2], and w̃b is the learnable weight

related to the width wb of the bth bin: w̃b = 2/wb. Any pixel may vote for multiple

bins with different Hb(x) since there could be an overlap between adjacent bins in

our learnable histogram. The final |B|× 1 feature values from the learned image

histogram are obtained using a global pooling Φ over each Hb(x) separately. This

pooling can be a ‘non-zero elements count’, which matches the convention of a

traditional histogram, or can be an ‘average’ or ‘max’ pooling, depending on the

task-specific requirement. The linear basis function Hb(x) of the LIH is piece-

wise differentiable and can back-propagate (BP) errors to update βb and w̃b during

84



1

0

0.5

1

0

0.5

Raw Image Patch LIH Generated Patch 1

LIH Generated Patch 2 LIH Generated Patch 3 LIH Generated Patch 4

Intensity Distribution of LIH Generated Patches

𝑤"#$%&'( )

(a) (b)

𝑤"#$%&'( * 𝑤"#$%&'( +

𝑤"#$%&'( ,

X X X X𝛽"#$%&'( * 𝛽"#$%&'( ) 𝛽"#$%&'( + 𝛽"#$%&'( ,

Normalized Intensity Distribution

Figure 7.2: Illustration of LIH generated image patches with variable inten-
sity distribution. (a) Raw CT image patch (x) of size 64×64 pixels and
four randomly selected image patches [HB(x)] before the global pooling
in Fig. 7.1. (b) Corresponding intensity distributions of patches 1-4 in
(a) are shown with Histogram of variable bin centers βb and widths wb.

training. The gradients of βb and w̃b for a loss L are estimated as:

∂L

∂βb
=


w̃b if Hb(x)> 0 and x−βb > 0,

−w̃b if Hb(x)> 0 and x−βb < 0,

0 otherwise.

(7.2)

∂L

∂ w̃b
=

|x−βb| if Hb(x)> 0,

0 otherwise.
(7.3)

7.2 Design of LIH using CNN Layers
The proposed LIH is implemented using CNN layers as illustrated in Fig. 7.1. The

input of LIH can be a 2D or vectorized 1D image, and the output is a |B|×1 his-

togram feature vector. The operation x−βb for a bin centered at βb is equivalent to

convolving the input by a 1×1 kernel with fixed weight of 1 (i.e., with no updating

by BP) and a learnable bias term βb (‘Conv 1’ in Fig. 7.1). A total of B = |B| num-

ber of similar convolution kernels are used for a set of B bins. Then an absolute

value layer produces |x−βb|. This is followed by a set of convolutions (‘Conv 2’
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in Fig. 7.1) with a total of B separate (non-shared across channels) learnable 1×1

kernels and a fixed bias of 1 (i.e., no updating by BP) to model the operation of

1− |x−βb| × w̃b. We use the rectified linear unit (ReLU) to model the max(0, ·)
operator in Eq. 7.1. The final |B|× 1 feature values hb(x) are obtained by global

pooling over each feature map Hb(x) separately.

In Fig. 7.2(a), we show an example raw CT image patch x and corresponding

LIH generated image patches randomly selected from the feature maps of Hb(x)

(see Fig. 7.1). We also show the intensity distributions of the selected patches

in Fig. 7.2(a) in terms of histogram in Fig. 7.2(b), where we can observe the

learned histogram of variable bin centers βb and bin widths wb. We also observe

in Fig. 7.2(b) that the learned wb for different feature maps in Hb(x) have overlaps

among those.

7.3 ImHistNet Classifier Architecture
The classification network comprises ten layers: the LIH layer, five (F1-F5) fully

connected layers (FCLs), one softmax layer, one average pooling (AP) layer, and

two thresholding layers (see Fig. 7.3). The first seven layers contain trainable

weights. The input is a 64×64 pixel image patch extracted from the kidney+ccRCC

slices. During training, we fed randomly shuffled image patches individually to the

network. The LIH layer learns the variables βb and w̃b to extract characteristic tex-

tural features from image patches. In implementing the proposed ImHistNet, we

chose B = 128 and ‘average’ pooling at Hb(x). We set subsequent FCL (F1-F5)

size to 4096×1. The number of FCLs plays a vital role as the overall depth of the

model is important for good performance [122]. Empirically, we achieved good

performance with five FCL layers. Layers 8, 9, and 10 of the ImHistNet are used

during the testing phase and do not contain any trainable weights.

7.4 RCC Grade and Stage Classification
After training ImHistNet (layers 1 to 7) by estimating errors at layer 7 (i.e., Soft-

max layer), we used the full configuration (from layer 1 to 10) in the testing phase.

Although we used patches from only RCC-containing kidney slices during train-

ing and validation, not all the RCC cross-sections contained discriminant features
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Figure 7.3: Multiple instance decisions aggregated ImHistNet for grade clas-
sification.

for proper grade identification. Thus our trained network may miss-classify the

interrogated image patch. To reduce such miss-classification, we adopt a similar

multiple instance decision aggregation procedure proposed by Hussain et al. [4].

In this approach, we feed randomly shuffled single image patches as inputs to the

model during training. During inference, we feed all candidate image patches of

a particular kidney to the trained network and accumulate the patch-wise binary

classification labels (0 or 1) at layer 8 (the thresholding layer). We then feed these

labels into a P×1 average pooling layer, where P is the total number of patches of

an interrogated kidney. Finally, we feed the estimated average (Eavg) from layer 9

to the second thresholding layer (layer 10), where Eavg≥ 0.5 indicates the Fuhrman

low or stage low, and Eavg < 0.5 indicates Fuhrman high or stage high (see Fig. 7.3).

7.5 Experimental Setup and Data Acquisition
We used CT scans of 159 patients from our TCGA-KIRC patient pool (discussed

in section 2.2). These patients were diagnosed with clear cell RCC, of which

64 were graded Fuhrman low (I/II), and 95 were graded Fuhrman high (III/IV).

Also, 99 patients were staged low (I-II), and 60 were staged high (III-IV) in the

same cohort. We divided the dataset for training/validation/testing as 44/5/15 and

75/5/15 for Fuhrman low and Fuhrman high, respectively. For anatomical stag-

ing, we divided the dataset for training/validation/testing as 81/3/15 and 42/3/15

for stage low and stage high, respectively. Note that typical tumor radiomic anal-

ysis comprises [125]: (i) 3D imaging, (ii) tumor detection and/or segmentation,

(iii) tumor phenotype quantification, and (iv) data integration (i.e., phenotype +

genotype + clinical + proteomic) and analysis. Our approach falls under step-iii.

The input data to our method are thus 2D image patches of size 64×64 pixels,
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taken from kidney+RCC (i.e., both mutually inclusively present) bounding boxes.

We do not require any fine pre-segmentation of the RCC rather only assume a kid-

ney+RCC bounding box, generated in step-ii. Given data imbalance where samples

for Fuhrman low are fewer than for Fuhrman high and stage high are fewer than

for stage low, we allowed more overlap among adjacent patches for the Fuhrman

low and stage high dataset. We calculated the amount of overlap to balance the

samples from both cohorts.

We trained two separate ImHistNets for Fuhrman grading and anatomical stag-

ing of RCC. We implemented our networks in Caffe [107] and trained by mini-

mizing the binary cross-entropy loss between the ground truth and predicted labels

(1: Fuhrman low/stage low, and 0: Fuhrman high/stage high). We used Stochastic

gradient descent for updating parameters. We employed a Dropout unit (Dx) that

drops 20%, 30%, and 40% of units in F2, F3, and F4 layers, respectively (Fig. 7.3)

and used a weight decay of 0.005. The base learning rate was set to 0.001 and was

decreased by a factor of 0.1 to 0.0001 over 250,000 iterations with a batch of 128

patches. We performed the training on a workstation with Intel 4.0 GHz Core-i7

processor, an Nvidia GeForce Titan Xp GPU with 12 GB of VRAM, and 32 GB of

RAM.

7.6 Validation on Kidney Data

7.6.1 RCC Fuhrman Grade Classification

We compared our RCC grade classification performance in terms of accuracy (%)

to a wide range of methods. Note that for all our implementations, we trained

models with shuffled single image patches, and used multiple instance decision

aggregations per kidney during inference. We fixed our patch size to 64×64 pixels

across all contrasted methods.

First, we use ResNet-50 [110] with transfer learning in order to test the perfor-

mance of conventional CNN (see Table 7.1). Here, we used the full kidney+RCC

slices as well as patches as inputs. As we mentioned in section 1.2.5 that a clas-

sical CNN typically fails to capture textural features, it has become evident from

the results in Table 7.1 where such CNNs performed poorly in learning the textural
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Table 7.1: Automatic RCC Fuhrman grade classification performance by
conventional CNN. NTS: Number of test samples.

Methods NTS Accuracy
Full image+ResNet-50 30 53%
Patch+ResNet-50 30 50%

features of RCC.

Table 7.2: Automatic RCC Fuhrman grade classification performance by
hand-engineered features-based conventional machine learning ap-
proaches. SVM: support vector machines, xFCV: x-fold cross-validation,
LxOCV: leave-x-out cross-validation, ‘-’: Not reported.

Methods NTS Accuracy
Patch+Histogram (128 bins)+SVM 30 56%
Patch+Histogram (256 bins)+SVM 30 63%
Shu et al. [41] (5FCV on 260 samples) - 77%
Fei et al. [126] (L1OCV on 90 samples) - 70%

Next, to evaluate the performance of hand-engineered features-based conven-

tional machine learning approaches, we tested support vector machine (SVM) em-

ploying the conventional image histogram of 128 and 256 bins as shown in Ta-

ble 7.2. We also compared two state-of-the-art methods [41, 126] where we quote

the authors’ best self-reported performances. These methods mostly relied on the

RCC textural features and used classical predictive models, e.g., logistic regression.

Here, the method by Shu et al. [41] performed the best with 77% classification ac-

curacy (see Table 7.2).

Then, we cross-examine the performance of hand-engineered features with

deep neural network (DNN) and the LIH features with SVM in Table 7.3. To con-

trast the performance of a SVM against a DNN, we fed the conventional histogram

(128 and 256 bins) features to a DNN of 5 FCL with weight sizes (4096×1)-

(4096×1)-(4096×1)-(4096×1)-(2×1). We choose this FCL configuration as our

ImHistNet contains the same. Next, to evaluate the hand-engineered features against
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Table 7.3: Automatic RCC Fuhrman grade classification performance by
hand-engineered features with deep learning and LIH features with con-
ventional machine learning approaches. AP: Average pooling.

Methods NTS Accuracy
Patch+Histogram (128 bins)+5 FCL 30 50%
Patch+Histogram (256 bins)+5 FCL 30 50%
Patch+LIH (128 bins)+AP+SVM 30 60%

LIH features, we used LIH features to train an SVM. We see in Table 7.3 that the

SVM with LIH features outperformed the SVM with conventional histogram fea-

tures (see Table 7.2).

Table 7.4: Automatic RCC Fuhrman grade classification performance by
combined ImHistNet and conventional CNN.

Methods NTS Accuracy
Patch+LIH (128 bins)+AP+5 FCL ‖ AlexNet 30 53%
Full Image+LIH (128 bins)+AP ‖ AlexNet 30 50%

To evaluate the performance of a DNN, combining a conventional CNN and the

ImHistNet, we added a CNN of AlexNet [127] equivalent configuration in parallel

to the ImHistNet. The last FCLs of size 4096×1 in both networks were concate-

nated and the total network was trained end-to-end. We implemented two such

approaches using the full kidney+RCC images, as well as the patches as inputs. To

use patches as inputs to the AlexNet, we up-sampled those to a size of 227× 227

pixels. We observed in Table 7.4 that the classical CNN affect the performance of

the proposed ImHistNet negatively, i.e., results were worse than those by ImHist-

Net (see Table 7.5).

To achieve optimum results from LIH, we varied the number of bins (64/128/256)

and FCLs of size 4096×1 (4/5/6), and the pooling types (AP/NZEC) with the LIH

layer and present results in Table 7.5. We see that ImHistNet with 128 bins, aver-

age pooling, and 5 FCL achieved the highest accuracy (80%) among all contrasted

methods shown in Tables 7.1-7.5. The closest performance to ImHistNet is shown
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Table 7.5: Automatic RCC Fuhrman grade classification performance of LIH
with a different number of bins, FCLs, and different types of pooling.
NZEC: Non-zero elements count.

Methods NTS Accuracy
Patch+LIH (128 bins)+NZEC+5 FCL 30 50%
Patch+LIH (128 bins)+AP+4 FCL 30 50%
Patch+LIH (128 bins)+AP+6 FCL 30 50%
Patch+LIH (64 bins)+AP+5 FCL 30 50%
Patch+LIH (256 bins)+AP+ 5 FCL 30 43%
ImHistNet [LIH (128 bins)+AP+5 FCL] 30 80%

by the method of Shu et al. [41] with 77% accuracy (see Table 7.2).

7.6.2 RCC Stage Classification

We also compared our RCC stage classification performance in terms of accu-

racy (%) to a wide range of methods in Table 7.6. To our knowledge, there is

no automatic and machine learning-based approach for RCC stage classification.

Therefore, we compare the RCC staging performance of different methods by im-

plementing those in our capacity. Similar to RCC grade classification, we trained

models with shuffled single image patches and used multiple instance decision ag-

gregations per kidney during inference. We fixed our patch size to 64×64 pixels

across all contrasted methods except for ResNet-50.

Table 7.6: Automatic RCC stage classification performance by different
methods.

Methods NTS Accuracy
Patch+Histogram (16 bins)+SVM 30 53%
Patch+Histogram (64 bins)+SVM 30 53%
Patch+Histogram (16 bins)+5 FCL 30 50%
Patch+Histogram (64 bins)+5 FCL 30 50%
Full Image+ResNet-50 [110] 30 60%
ImHistNet [LIH (128 bins)+AP+5 FCL] 30 83%

First, to compare the performance of ImHistNet to that of traditional hand-
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engineered feature-based machine learning approaches, we evaluated an SVM em-

ploying a conventional image histogram of 16 and 64 bins and Table 7.6 shows a

resulting poor performance at 53% accuracy for both the cases. Next, to contrast

the performance of SVM against DNN, we fed the conventional histogram (16

and 64 bins) features to a DNN of 5 FCL with weight sizes (4096×1)-(4096×1)-

(4096×1)-(4096×1)-(2×1). We chose this FCL configuration for fairer compar-

isons since our ImHistNet contains the same. Table 7.6 shows that the FCL with

conventional histogram performed the worst achieving a 50% accuracy. Next, we

used ResNet-50 [110] with transfer learning to test the performance of high per-

forming modern CNN (see Table 7.6). We used full kidney+RCC slices of size

224×224 pixels as input. As mentioned in section 1.2.5, a classical CNN typically

fails to capture textural features, which is evident from our results where ResNet-50

performed poorly in learning the textural features of RCC, resulting in 60% accu-

racy. Finally, we show the performance of our proposed method in Table 7.6 where

ImHistNet achieved the highest accuracy (83%) among all contrasted methods.

7.7 Summary
In this chapter, we discussed a learnable image histogram-based DNN framework

for end to end image classification. We demonstrated our approach to a cancer

grade and stage prediction task providing automatic 2-tiered FGS (Fuhrman low

and Fuhrman high) grade classification as well as stage low and stage high clas-

sification of RCC from CT scans. Our approach learns a histogram directly from

the image data and deploys it to extract representative discriminant textural im-

age features. We increased efficacy by using small image patches to increase the

number and variability of training samples, as well as address class imbalances

in the training data via overlap control. We also used multiple instance decision

aggregations to robustify binary classification further. Our proposed ImHistNet

outperformed current competing approaches for this task, including conventional

ML, deep learning, as well as manual human radiology experts. ImHistNet appears

well-suited for radiomic studies, where learned textural features using the learnable

image histogram may aid in better diagnosis.
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Similar to the previous chapter, an image-based RCC grading and staging has a

promising clinical implication. Although biopsy-based RCC grading is an insepa-

rable part of the clinical workflow, it often requires considerable time in the process

of performing the biopsy and subsequent radiological analysis. Our image-based

noninvasive approach can be effective in such a scenario. While a patient waits for

the biopsy conduction and results, an image-based approach can help physicians to

diagnose ahead and prepare the treatment plan. The biopsy results can confirm the

decision.

Our proposed ImHistNet efficiently stratifies the intensity spectrum into learn-

able bins. However, a random perturbation of the input image would lead to the

same histogram. In this process, the network loses the spatial context of the image

contents. Therefore, we plan to investigate a process to incorporate spatial texture

context via learning the co-occurrence statistics within the DNN framework.
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Chapter 8

Conclusions

Kidney cancer is the 7th most common cancer in men and the 10th most common

cancer in women [128], accounting for an estimated 140,000 global deaths annu-

ally [38]. Despite a rapid increase in the number of patients with kidney cancer

worldwide, recent developments in personalized medicine and novel treatment ap-

proaches have raised hope of significantly improving kidney cancer survival [14].

Medical imaging technologies, accelerated by the advent of modern machine learn-

ing techniques, now play a central role in clinical oncology. Automated CT-based

cancer analysis is also benefiting from unprecedented advancements in machine

learning techniques and wide availability of high-performance computers. How-

ever, there are still many challenges remaining in kidney cancer research using

different machine learning techniques.

8.1 Summary of Thesis Contributions
Typically, kidney cancer analysis requires a challenging pipeline of (a) kidney lo-

calization in the CT and primary assessment of the kidney health, (b) tumor de-

tection within the kidney, and (c) cancer analysis. In this thesis, we developed

machine learning techniques for automatic kidney localization, segmentation-free

volume estimation, cancer detection, as well as CT features-based gene mutation

detection, and cancer grading and staging. The main contributions of this thesis

(see Fig. 8.1) are summarized as follows:
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Chapter 3

Chapter 4

Chapter 5 

Chapter 6 

Chapter 7 

Kidney  
Localization

Pathological Kidney 
Detection 

General Assessment  
of Kidney Health

Fuhrman Kidney  
Cancer Grading 

Kidney Cancer 
Staging

Gene Mutation  
Detection 

Kidney Cancer Analysis

3D CT Data

Treatment Planning

[P1, UP1]

[P1, P2, UP1]

[P3]

[P4]

[P5, P6, UP2]

Challenge 1: Improving the accuracy 
of kidney localization in CT images 
Achieved a mean ROI boundary 
localization error: 2.19mm

Achieved a mean volume 
estimation accuracy: 95.2%

Achieved a pathological vs. healthy 
kidney classification accuracy: 98%  

Achieved a gene mutation 
detection accuracy: 93.75% 

Achieved a Fuhrman ccRCC 
grading accuracy: 80%  

Achieved a RCC staging accuracy: 
83%  

Challenge 2: Developing a 
segmentation-free approach for 
total kidney volume estimation 

 

Challenge 3: Overcoming the sparse 
annotation problem in 2D image-
based supervised learning 

 

Challenge 4: Resolving the gene 
mutation detection problem in an 
automatic and non-invasive way

Challenge 5: Designing powerful 
and discriminatory radiological 
image features in the DNN 
framework for RCC grading

Challenge 6: Investigating if we can 
design powerful and discriminatory 
radiological image features to do 
RCC staging

Figure 8.1: A flowchart of our kidney cancer analysis approach with
component-wise associated challenges, publications, achieved accuracy
and chapter numbers that discuss the technical contributions of this the-
sis.
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8.1.1 Kidney Localization in CT Volume

Chapter 3 presented two methods for automatic kidney localization in the CT im-

age. The first method used an effective deep CNN-based approach for tight kidney

ROI localization. The second approach further improved the automatic kidney

localization performance than that in the first approach, which used an effective

CNN-guided Mask-RCNN approach for efficient kidney localization in the volu-

metric CT images. Accurate kidney ROI localization is important as it helps to

achieve better performance in different kidney analysis tasks in the downstream of

our working pipeline. For example, we retrained our CNN-based segmentation-

free volume estimation network (discussed in section 4.2.1) with slices taken (a)

within the estimated tight ROI and (b) with ∼5mm free space around the kidney

cross-section. We observed that the volume estimation performance deteriorates

by approximately 1.5% when the ROI includes ∼5mm free space. A list of our

contributions in kidney localization are:

• We produced the 2D slice-level predictions of the presence or absence of

kidney cross-section using only a single deep CNN, which was pre-trained

on the ImageNet dataset and then fine-tuned on orthogonal 2D CT image

slices from all three directions (P1 [1]).

• To reduce the false positives and false negatives from the initial 2D pre-

dictions, we combined the 2D CNN-produced probabilities from all three

directions into voxel-level decisions, whether it is inside or outside a kidney

ROI (P1 [1]).

• We presented a second and improved kidney localization approach by adopt-

ing a CNN-guided Mask-RCNN approach (UP1).

• We tackled the challenge of reducing the false positive kidney cross-section

predictions by the Mask-RCNN via confining its operation only into a prospec-

tive kidney region (UP1).

• Rather than using the regression-based boundary wall predictions, which is

not tight enough around a kidney cross-section, we adopted to use the pre-

dicted kidney mask to know the kidney boundary. Although the kidney mask
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does not correspond to actual kidney contour, it is sufficient enough to pro-

vide tight boundary information (UP1).

• We reduced the mean kidney boundary localization error to 2.19 mm (UP1),

which is 23% better than those of recent literature.

8.1.2 Segmentation-free Kidney Volume Estimation

After the determination of kidney locations by using any of the methods in chap-

ter 3 within the 3D abdominal CT images, our methods discussed in chapters 4

estimated the kidney volume directly, without requiring the intermediate compu-

tationally expensive segmentation step. The first method in chapter 4 used dual

regression forests, while other methods in chapter 4 used deep CNN and deep FCN

for predicting the anatomical kidney area in a particular image plane. A list of our

contributions in kidney volume estimation are:

• We devised a segmentation-free volume estimation approach that bypasses

the computationally expensive segmentation step (P2 [2]).

• Our method used dual regression forests, one for predicting the anatomical

area in a particular image plane, and another one for boosting the results by

removing outliers from the initially estimated areas (P2 [2]).

• We adopted a smaller subpatch-based approach to increase the number of

observations, which ultimately improve the results (P2 [2]).

• We also presented two direct kidney volume estimation approaches, P1 [1]

and UP1, by using deep learning approaches that learns the image features

automatically and demonstrated better kidney volume estimation accuracy

than by P2 [2].

• The first method [1] used a deep CNN to predict slice-based cross-sectional

kidney areas followed by integration over these values across axial kidney

span to produce the volume estimate.

• The second approach (UP1) used a deep FCN instead of deep CNN to predict

more accurate slice-based cross-sectional kidney areas than that by [1].
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• We achieved a mean volume estimation accuracy of 95.2% (UP1), which is

40% better compared to those of the recent literature.

8.1.3 Pathological Kidney Detection

In chapter 5, we addressed the challenge of using sparsely labeled 2D data in 2D

deep learning approaches. Since tissue abnormalities such as tumors, cancers, nod-

ules, etc. are most often localized within a small region of anatomy, localization

and analysis of abnormal tissue are typically carried out on the 2D image slices.

However, image tags or labels (e.g., healthy, cancerous, etc.) are mostly assigned

per image volume or per-patient basis, creating 2D data labels sparse. A typical

solution of using sparely labeled data in deep learning is to use the full 3D im-

age volume as a single-instance for learning. However, 3D CNNs are considerably

more difficult to train and necessitate the use of expensive GPUs with extensive

memory and require a lot more time to converge. We brought a solution to this

problem in chapter 5 and our contributions are:

• We proposed a CNN based kidney classification method that makes use of a

novel collage image representation (P3 [3]).

• In the collage representation, the 2D image slices in a 3D volume are re-

arranged side-by-side into a virtual extended 2D image slice, which in turn

correctly corresponds to the single available label for that dataset (P3 [3]).

• Our proposed collage also allowed for data augmentation by a random reshuf-

fling of the locations of axial image slices within the collage (P3 [3]).

• We achieved a pathological vs. healthy kidney classification accuracy of

98% (P3 [3]).

8.1.4 Detection of Mutated Genes in ccRCC from CT Features

In chapter 6, we discuss a deep multiple instance decision aggregated CNN ap-

proach for detecting mutated genes out of the four mostly mutated genes, namely

VHL, PBRM1, BAP1, and SETD2, in the ccRCC cases. We have shown how our

approach automatically learned discriminating ccRCC features from CT images
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and aggregated the binary decisions on the mutation-presence/absence for all the

ccRCC slices in a particular kidney sample. A list of our contributions in chapter 6

are:

• We proposed a multiple instance decision aggregation-based deep CNN ap-

proach for automatic mutation detection in kidney ccRCC (P4 [4]).

• Our multiple instance decision aggregation approach achieved better accu-

racy in mutation detection than that of a typical single instance-based ap-

proach (P4 [4]).

• Our experimental results demonstrated an approximately 94% accuracy in

kidney-wise mutation detection (P4 [4]).

8.1.5 Learnable Image Histogram for RCC Grading and Staging

In chapter 7, we discuss a novel DNN approach [5, 6] that is capable of learn-

ing task-specific image-inherent textural features, unlike a conventional CNN ap-

proach. We made the bin-center and bin-width of a histogram variable. These are

learned with respect to an objective function during the model training. In this

way, the trained model can focus on a set of (number of bins) value ranges in the

intensity spectrum. Also, bins with variable bin-width and bin-centers can have

overlaps among them. A list of our contributions in chapter 7 are:

• We proposed a learnable image histogram (LIH) layer within a DNN frame-

work capable of learning complex and subtle task-specific textural features

from raw images directly, adhering to the classical input-output mapping of

a CNN (P5 [5], P6 [6], UP2).

• We removed the requirement for fine pre-segmentation of the RCC as the

proposed learnable image histogram can stratify tumor and background tex-

tures well, thus enabling the model to focus specifically on the tumor texture

(P5 [5], P6 [6], UP2).

• We demonstrated ImHistNet’s capabilities by performing automatic RCC

grade classification for the 2-tiered FGS (P5 [5], UP2).
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• We also demonstrated ImHistNet’s capability of automatic classification of

RCC into anatomical stage low (I/II) and high (III/IV) on an extended clini-

cal dataset from real patients (P6 [6], UP2).

8.2 Potential Impact in Clinical Settings
Although the primary aim of this thesis was to address different technical chal-

lenges associated with the current clinical practices of image-based kidney cancer

detection and analysis, we believe our works demonstrated considerable poten-

tials to be transferred in the clinical settings to improve patient care. In this the-

sis, we presented a comprehensive working pipeline for kidney cancer detection

and analysis, as visually shown in Fig. 8.1. We broke down this comprehensive

working pipeline into several working steps and addressed some critical techni-

cal challenges in each step via proposing novel supervised learning approaches

and data representations. We believe this whole working pipeline could be very

beneficial in clinical practices. For example, our accurate and automatic kidney

localization approaches may accelerate rapid kidney health analysis in clinical set-

tings via presenting the background removed region-of-interest around kidneys on

the point-of-care computer monitor, saving the time of clinicians in searching for

kidneys in the image volume. Further, our segmentation-free and fast total kidney

volume estimation approach may provide surrogate renal information, which can

help clinicians to identify kidneys with reduced functionality. Our novel collage

CNN approach can be beneficial in identifying pathological kidneys in a patient

who might have primarily concerned with other diseases. Last but not least, our

image features-based noninvasive gene mutation detection, and RCC grading and

staging approaches may significantly reduce the laboratory test-based diagnosis

time and expenses. These methods may also help physicians in rapid treatment

planning, which might be a crucial lifesaver for a patient. Besides, we expect our

proposed methods to be easily transferable and practical for analyzing other human

abdominal organs, e.g., liver, prostate, heart, etc.

100



8.3 Future Work
In this thesis, we developed novel supervised learning techniques for improved kid-

ney localization, segmentation-free kidney volume estimation, collage CNN-based

kidney cancer detection, CT tumor features-based gene mutation detection, and CT

textural features-based cancer grading and staging. Our investigations opened up

some new challenges and some potential future works in kidney cancer analysis:

8.3.1 Multi-staging of RCC Using Deep Learning

We discussed in chapter 1 that the American Joint Committee on Cancer (AJCC)

and Union for International Cancer Control (UICC) specified the criteria (see Ta-

ble 8.1) for tumor-node-metastasis (TNM) staging of each cancer depending on

the primary tumor size (TX, T0-4); number and location of lymph node involve-

ment (NX, N1-2); and metastatic nature, i.e., tumor spreading to other organs (M0-

1) [47, 48]. Clinical guidelines require clinicians to assign TNM stages before ini-

tiating any treatment [47], which is typically performed manually. In chapter 7,

we discussed a method of automatic ‘anatomical’ staging of RCC into low (stages

I/II) and high (stages III/IV). In the future, we plan to develop a method for the

automatic anatomical staging of RCC into four individual groups. However, one

of the challenges of doing so would be the lack of data for stages I and IV in the

publicly available databases like TCIA [101]. Therefore, we also plan to investi-

gate the feasibility of using 3D Generative Adversarial Network (GAN) to generate

artificial data for anatomical stages I and IV.

Table 8.1: Staging of RCC (AJCC/UICC TNM classification of tumors).

Anatomical Stages TNM Stages
Stage I T1 (Tumor ≤7 cm) N0 M0
Stage II T2 (Tumor >7 cm but limited to kidney) N0 M0
Stage III T1-2, T3 (Tumour extends up to Gerota’s fascia) N1, Any M0
Stage IV T4, Any (Tumour invades beyond Gerota’s fascia) Any M0-1
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8.3.2 Survival Analysis of the RCC Patients

Better characterization and understanding of RCC development and progression

lead to better diagnosis and clinical outcomes. Recent studies identified a signifi-

cantly increased mutation frequency of PBRM1 and KDM5C in tumors from male

patients and BAP1 from female patients [129]. Mutation of BAP1 had previously

been significantly associated with poorer overall survival; however, when stratified

by gender, mutation of BAP1 only significantly affected overall survival in female

patients [129]. In chapter 7, we showed that gene mutations could be identified

from the CT image-based ccRCC features. So, there should be a direct link be-

tween the CT image-based ccRCC features to the patient survival rate. Therefore,

in the future, we plan to investigate and develop deep learning-based techniques

for patient survival prediction and analysis.

8.3.3 Development of a Clinical Software

As we discussed in the previous section that the presented works in this thesis have

high potentials to aid in the clinical settings to improve patient care, we plan to

develop a clinical software using these thesis works. The software would take a

volumetric CT image as input, and would be able to extract the background re-

moved region-of-interest around kidneys, show total kidney volume estimate, and

identify the presence of any tumor in kidneys. We also expect this software would

be able to identify the mutated genes if ccRCC is suspected as well as would be

able to indicate the severity of the RCC by predicting its grade and stage from the

kidney radiomic analysis. This software would be auxiliary support for physicians

in rapid treatment planning.
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[24] T. J. van Oostenbrugge, J. J. Fütterer, and P. F. Mulders, “Diagnostic
imaging for solid renal tumors: A pictorial review,” Kidney Cancer,
no. Preprint, pp. 1–15, 2018. → page 6

[25] X. Xu, F. Zhou, B. Liu, D. Fu, and X. Bai, “Efficient multiple organ
localization in CT image using 3D region proposal network,” IEEE
Transactions on Medical Imaging, 2019. → pages 7, 12, 13, 43, 44

[26] M. Regier and F. Chun, “Thermal ablation of renal tumors: indications,
techniques and results,” Deutsches Ärzteblatt International, vol. 112,
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[79] W. Thong, S. Kadoury, N. Piché, and C. J. Pal, “Convolutional networks
for kidney segmentation in contrast-enhanced CT scans,” Computer
Methods in Biomechanics and Biomedical Engineering: Imaging &
Visualization, vol. 6, no. 3, pp. 277–282, 2018.

[80] D. Keshwani, Y. Kitamura, and Y. Li, “Computation of total kidney volume
from CT images in autosomal dominant polycystic kidney disease using
multi-task 3D convolutional neural networks,” in International Workshop
on Machine Learning in Medical Imaging, pp. 380–388, Springer, 2018. →
pages 15, 16, 17

[81] X. Liu, S. Guo, B. Yang, S. Ma, H. Zhang, J. Li, C. Sun, L. Jin, X. Li,
Q. Yang, et al., “Automatic organ segmentation for CT scans based on

112



super-pixel and convolutional neural networks,” Journal of Digital
Imaging, pp. 1–13, 2018.

[82] F. Zhao, P. Gao, H. Hu, X. He, Y. Hou, and X. He, “Efficient kidney
segmentation in micro-CT based on multi-atlas registration and random
forests,” IEEE Access, vol. 6, pp. 43712–43723, 2018. → pages 15, 16

[83] W. Wieclawek, “3D marker-controlled watershed for kidney segmentation
in clinical CT exams,” Biomedical Engineering Online, vol. 17, no. 1,
p. 26, 2018. → pages 14, 15, 16

[84] B. Glocker, O. Pauly, E. Konukoglu, and A. Criminisi, “Joint
classification-regression forests for spatially structured multi-object
segmentation,” Computer Vision–ECCV 2012, pp. 870–881, 2012. →
pages 15, 16, 51
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