
Improving the Performance of Silicon Photonic Optical
Resonator-based Sensors for Biomedical Applications

by

Enxiao Luan

B.A.Sc., Harbin Institute of Technology, 2013

M.A.Sc., Harbin Institute of Technology, 2015

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Biomedical Engineering)

The University of British Columbia

(Vancouver)

March 2020

c© Enxiao Luan, 2020



The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Improving the Performance of Silicon Photonic Optical Resonator-based
Sensors for Biomedical Applications

submitted by Enxiao Luan in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Biomedical Engineering.

Examining Committee:

Karen C. Cheung, Biomedical Engineering
Co-Supervisor

Lukas Chrostowski, Electrical and Computer Engineering
Co-Supervisor

Shuo Tang, Electrical and Computer Engineering
Supervisory Committee Member

Robin Turner, Electrical and Computer Engineering
Supervisory Committee Member

Michael O. Wolf, Chemistry
University Examiner

Mu Chiao, Mechanical Engineering
University Examiner

ii



Abstract

Silicon photonic biosensors show great potential for applications in medical di-

agnostics and healthcare services. Near-infrared transparency and high refrac-

tive index of silicon allow us to build compact and ef�cient circuits leveraging

CMOS foundries, which provide low-cost mass production and enable the integra-

tion of the optoelectronic components on the same chip. Although silicon photonic

biosensors have proven performances close to today's gold standard diagnostics,

many applications still require higher multiplexing, as well as more sensitive, reli-

able and quantitative measurements. This dissertation is based on theoretical and

experimental studies of silicon photonic sensing architectures in terms of sensor

performance improvement and unit-cost reduction.

Speci�cally, two novel sub-wavelength grating-based (SWG) waveguide con-

�gurations are presented to improve the sensitivity. Leveraging the advantage of

SWG metamaterials, the substrate-overetch (SOE) and multi-box SWG devices

present a largely extended modal size and surface contact area, which gives 10-

time enhanced sensitivity compared to the conventional devices. In addition, by

employing the Bragg grating as the sensing architecture, the multi-box SWG-based

grating con�guration achieves a lower detection limit compared to the microring

resonator (MRR) counterpart and demonstrates the capability for monitoring small

molecule interactions.

Replacing the laser with a broadband source can provide a lower-cost solu-

tion for the optical system. Therefore, two cost-effective broadband light source-

based sensing implementations are proposed and demonstrated with acceptable

sensitivities. The �rst implementation uses cascaded MRRs for index monitor-

ing, where the analyte variation is converted to the photocurrent change as the
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readout. The second implementation uses a phase-shifted Bragg grating-based

symmetrical Mach-Zehnder interferometer, where the analyte variation maps the

intensity change at the resonant wavelength. Furthermore, a system-level inte-

gration of active silicon photonic sensors using Fan-Out Wafer-Level-Packaging

(FOWLP) is proposed in the dissertation, which can reduce the die size down to

1 mm2 while simplifying the micro�uidic and optical integration. Leveraging the

CMOS foundries and the proposed FOWLP technique, the unit cost of each pack-

aged sensing die can be reduced to several dollars.
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Lay Summary

Advanced diagnostic technologies allow people to evaluate processes and events

that occurred in vivo. However, in developing countries, medical diagnostics can

be expensive and not universal. The key goal of this dissertation is to develop op-

tical sensing architectures to improve diagnostic sensitivity, accuracy, robustness,

and economy.

This dissertation has the following contributions: (1) In terms of performance

enhancement, two types of sub-wavelength grating-based sensors have been de-

veloped, including the substrate-overetch con�guration and the multi-box con�g-

uration, both of which present an improved sensitivity compared to conventional

counterparts. (2) In terms of cost control and reduction, two sensing systems lever-

aging the low-cost broad-band source have been designed and demonstrated, and

a system-level integration technique has been developed for low-cost multiplexed

biosensors.
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Chapter 1

Introduction 1

1.1 Motivation

Medical diagnostics have come to play a critical role in healthcare by providing

early detection and diagnosis of disease [1], improving timely and appropriate care

[2], protecting the safety of medical products such as blood for transfusion [3], and

reducing healthcare costs [4]. Most diagnostic systems have been designed to meet

the requirements of well-funded clinical laboratories in highly regulated environ-

ments, but do not address the need of the majority of patients and caretakers in the

developing world with inadequate healthcare facilities and clinical laboratories [5].

For instance, the enzyme-linked immunosorbent assay (ELISA), which has been

the gold-standard method in biomarker detection and validated for more than 40

years, can obtain an ultra-low detection limit (� 1 pM) [6]. However, this method

is based on a label-based approach that delays results, adds to costs due to spe-

cialized reagent requirements, and needs complex micro-evaluations using large,

automated analyzers. Therefore, highly sensitive, fast and economical techniques

of analysis are desired for both developing and developed countries for point-of-

care (POC) diagnostic applications to improve access to cost-effective healthcare

technologies.

1Parts of the chapter have been published: E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, L.
Chrostowski, “Silicon Photonic Biosensors Using Label-Free Detection,”Sensors, vol. 18, no. 10,
p. 3519, 2018.c of the authors, licensee MDPI. Reprinted with permission.
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The development of practical biosensors is one of the most promising ap-

proaches to satisfy the growing demand for effective medical diagnostic technolo-

gies [7]. Since the �rst oxygen electrode biosensor demonstrated by Clark in 1956

[8], scientists and engineers have made signi�cant progress in the �eld of biosens-

ing techniques, which has subsequently been adopted into clinical practice. By

2020, the global biosensors market size is anticipated to reach USD 21.17 billion,

among which optical biosensors are identi�ed as the most lucrative technology seg-

ment. This represents just a fraction of the estimated USD 72 billion worldwide

markets for in vitro diagnostics (IVD). There are a variety of techniques that have

been successfully employed for optical measurements, such as emission, absorp-

tion, �uorescence, refractometry, and polarimetry [9]. Evanescent �eld detection

is the primary detection principle of many optical biosensors [9]. Due to the sen-

sitivity to changes in the local refractive index (RI) within the evanescent �eld

surrounding the device, evanescent �eld biosensors such as Surface Plasmon Res-

onance (SPR) or planar waveguide-based sensors have attracted growing interest

for sensitive, real-time, and label-free biomolecular detection [10].

Surface plasmon resonance (SPR) is a physical phenomenon that describes the

photons energy absorption at a glass/metal interface when incident light enters the

interface of two media with different refractive indices at a critical angle. The in-

cident photon energy is absorbed when the photon frequency matches the natural

oscillation of surface electrons and causes resonance, thus making the re�ected

light intensity attenuation within a certain angle. Any molecules adsorbing at the

metal surface changes resonant conditions and alters the resonance angle, which

can be applied for analytes detection and quanti�cation. Although SPR has been

successfully applied to solve various analytical tasks for more than 30 years and

exploited in well-developed commercial devices with impressing sensor perfor-

mance down to 10� 7 RIU [11], several drawbacks still exist that limit its potential

beyond research settings. Due to the complexity of the plasmonic systems integra-

tion, SPR has not been realized as a highly-parallelized, portable, low-cost clinical

assay [12]. Because of the exponential decay of the surface plasmon from the gold

surface, the sensing range of SPR is limited, which is poorly suited for large-size

targets, such as bacteria and cells. These targets usually place the majority of the

index change outside of the range of the evanescent �eld [12]. In addition, the rel-
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evant path lengths that light can interact with the analyte in the SPR is only twice

of the thin metal layer (� 10 nm).

Silicon photonic integrated circuits (PICs) technology is one of the most promis-

ing solutions for the next-generation evanescent �eld sensors. Due to the compati-

bility with complementary metal-oxide semiconductor (CMOS) foundry processes,

silicon PICs can be manufactured with great ef�ciency at high volume. Moreover,

the high refractive index contrast between silicon and silicon dioxide, or other sur-

rounding media, enables the development of miniaturized compact sensing devices,

with the additional possibility of fabricating multiple sensors on one single chip [9].

Meanwhile, silicon photonics are excellent transducers for continuous and quan-

titative label-free biosensing [13, 14], which can directly respond to af�nity in-

teractions between analyte and receptor molecules in real-time. Hence, numerous

silicon photonic sensing devices, such as Mach-Zehnder interferometers (MZIs)

[15, 16], microring resonators (MRRs) [17, 18], microdisk resonators [19, 20],

Bragg grating resonators [21, 22], and one-dimensional (1D) or two-dimensional

(2D) photonic crystals (PHCs) [23, 24] have been developed over the past decades

for biosensing diagnostic applications. Compared to SPR, light can travel in planar

resonators with thousand times of roundtrips, which provides a radically increased

interaction length on the order of meters, even the ring is only 20� m in radius.

It has been reported that silicon photonic sensors had achieved sensitivities

close to the clinical relevance sensing in complex media [25], and plenty of silicon-

based architectures had been successfully applied for the detection of cell se-

cretions [26], virus [27], protein biomarkers [10], and nucleic acids successfully

[28, 29]. Table 1.1 shows the comparison of the analysis time and the detection

limit for different biosensors. Among them, MRR-based silicon photonic sen-

sors show competitive detection limits (in picomoles) and analysis time. However,

many clinical diagnostic tests still require a cost-effective sensing system with a

lower detection limit and a robust and high sensitivity. The motivation of my re-

search is to develop the laboratory-based sensing system for the use in clinically-

relevant applications through enhancing the sensor performance and reducing the

cost of silicon photonic sensors.
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Table 1.1: Fluidic detection limits by different types of biosensors (LFA =
lateral �ow assay, PSA = prostate speci�c antigen, IFA = immuno�uores-
cent assay, IgG = Immunoglobulin G, IL-2 = human cytokine interleukin-
2).

Catagory Description Detection condition Analysis time Detection limit
LFA PSA test Clinical serum samples 30 min 15.8 pM [30]
IFA ELISA Serum samples 60 min 0.1 pM [6]
SPR Labelled detection p53 cDNA samples 120 min 1.4 fM [31]

Label-free detection IgG solutions 20 min 0.2� M [32]
MRR Labelled detection IL-2 solutions 45 min 6.5 pM [26]

Label-free detection Lectins from Aurelia 20 min 10 pM [33]

1.2 Theory and structures

1.2.1 Evanescent �eld sensing principle

Leveraging the silicon-on-insulator (SOI) platform, silicon photonic biosensors

rely on near-infrared light con�ned in nanometer-scale silicon wires (known as

waveguides) to sense molecular interaction events. The portion of the electrical

�eld of light travelling outside of the waveguide is referred to as the evanescent

�eld, which can interact with the surrounding volume to create an external RI

sensitive region (Figure 1.1(a)). When target molecules bind to receptors at the

waveguide surface, the accumulation of molecules with a different refractive in-

dex changes the external RI and perturbs the evanescent �eld, which then further

in�uences the behavior of the guided light in the waveguide [25]. By monitoring

the coupling and/or propagation properties of the output light, analytes of interest

can be detected in real-time (Figure 1.1(b)) [34]. Since the evanescent �eld decays

exponentially with a decay length ranging from a few tens to a few hundreds of

nanometers into the bulk medium, the sensing signal of an analyte captured within

the decay length shows a signi�cant difference compared to the signal of an ana-

lyte �oating far away from the surface [14]. Thus, based on the response of the

evanescent �eld sensor, we can distinguish the target molecules immobilized on

the surface (surface sensing) from those remaining in bulk solution (bulk sensing),

as presented in Figure 1.1(c).

4



Figure 1.1: Principle of the evanescent �eld detection for a silicon photonic
biosensor. (a) The evanescent �eld (dashed lines) around the waveg-
uide is sensitive to the RI change caused by biological binding events
at the waveguide surface. (b) Optical transmission spectra of the sensor
before (blue curve) and after (red curve) the analyte interaction, result-
ing in a wavelength shift (Dl ). (c) Sensorgrams of the sensor in bulk
(blue curve) and surface (red curve), where the signals are recorded as
a function of time.

Several �gures of merit are widely used for the evaluation of sensor perfor-

mance, such as selectivity, reproducibility, stability, sensitivity, and resolution (de-

tection limit). Selectivity describes the ability of a sensor to detect a target analyte

in a sample containing other admixtures, which is the main consideration for the

bioreceptor selection; reproducibility is the ability to generate identical responses

for repetitive experimental setups, which provides high reliability and robustness

for the signal; stability refers to the degree of susceptibility to ambient disturbances

around the sensing system, which can affect the precision and accuracy of the sen-

sor [35]. Sensitivity (S) and detection limit (DL) are two performance criteria we

would like to focus on in this dissertation since they have a stronger correlation

with their sensor geometries. In evanescent �eld-based sensors, sensitivity is de-
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termined by the strength of interactions between matter and the fraction of light

in solution or at the surface [14]. According to the status of target molecules,

two speci�c types of sensitivities are de�ned in biosensing applications: (1) bulk

sensitivity (Sbulk), which takes into account RI changes of the waveguide entire

cladding, and (2) surface sensitivity (Ssurf), which assesses RI changes within the

�rst few tens to hundreds of nanometers above the surface [25]. For the bulk sen-

sitivity, it is de�ned as the slope of wavelength (or phase) shift versus the change

of refractive index unit (RIU), and the shift is described by [36]:

Dl
l

(or)
Df
f

= K �
Dn�uid

ng
�

¶neff

¶n�uid
; (1.1)

wherel is the wavelength andf is the phase of the input light,K is the sensor

structural constant (varies depending on the con�guration of the sensor),n�uid is the

RI of the analyte, andneff andng are the mode's effective and group indices. From

Equation 1.1, the wavelength (or phase) shift is mainly contributed by the shift in

the solution's RI (Dn�uid ), the dispersion (ng) of the material and waveguide, and

the mode's effective index change (¶neff/¶n�uid ) caused by the slight change of the

mode pro�le [36]. The bulk sensitivity is de�ned as:

Sbulk =
Dl (or) Df

Dn�uid
: (1.2)

As for the surface sensitivity, the de�nition is slightly different from the bulk one

by replacing the solution's RI (n�uid ) with the thickness of a homogeneous adlayer

on the surface (tadlayer). Therefore, the expressions for the wavelength (or phase)

shift and surface sensitivity are [37]:

Dl
l

(or)
Df
f

= K �
Dtadlayer

ng
�

¶neff

¶tadlayer
; (1.3)

Ssurf =
Dl (or) Df

Dtadlayer
; (1.4)

respectively. From Equation 1.3 and 1.4,¶neff/¶tadlayer is highly dependent on the

refractive index of the adlayer material: a high RI analyte can lead to a signi�cant

effective index variation and wavelength shift even with a thin adlayer at the sur-
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face. Thus, surface sensitivity is usually de�ned for a speci�c molecule of interest

and is not suitable for a general comparison among sensors operated with different

biosensing assays.

The detection limit (DL) is typically speci�ed as the minimum RI (or small-

est mass) change necessary to cause a detectable change in the output signal, and

de�ned as follows:

DL =
3s
S

(1.5)

wheres is the system noise �oor, andS is the bulk or surface sensitivity. Since

s depends on the experimental setup and readout instrumentation, this DL is also

regarded as the system detection limit (sDL). For an evanescent �eld label-free

biosensor, DL can be speci�ed in three units: (1) DL in units of refractive index

units (RIU) aims to characterize the sensing capability in bulk solution, which

offers a rough comparison among different sensors, (2) DL in units of pg/mm2 and

(3) in units of ng/mL aim to characterize the sensing capability at sensor surface by

using surface mass density and sample concentration, respectively [14]. Due to the

correlation among these DLs, the sensing capability of optical biosensors based on

different bioassays can be investigated and compared.

1.2.2 Interferometer based biosensors

Interferometer-based biosensors constitute one of the most sensitive integrated-

optic approaches by combining two very sensitive methods: waveguiding and inter-

ferometry techniques [38]. In a conventional interferometric biosensor, the guided

light is split by a Y-junction into two single-mode waveguide paths, one of which

containing the sample is regarded as a sensing arm, and the other one is used as a

reference arm. The evanescent �eld of the sensing arm interacts with the sample

and senses the RI change at the surface, resulting in an optical phase shift. After a

certain distance, the beams recombine again and cause a constructive or destructive

interference at the output (as shown in Figure 1.2(c)), where the intensity modula-

tion corresponds to the RI difference between sample and reference arms.

Young and Mach-Zehnder interferometers are the most common formats for

interferometric sensing techniques [34, 38, 39]. Although both of these interfer-

ometers utilize Y-junctions to split the coherent, single-mode and polarized light at
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Figure 1.2: Interferometric biosensors. (a) Illustration of a typical Mach-
Zehnder interferometer. The light is split into two arms (sensing and
reference) and recombined at the output by on-chip Y-junctions. The
degree of interference is proportional to the RI variation taking place
on the sensing arm. (b) Illustration of a classic Young interferometer.
Rather than using Y-junctions to rejoin the split beams, the light is pro-
jected from two closely spaced secondary sources onto a CCD camera,
resulting in an interference pattern. (c) Measured interferogram of a typ-
ical MZI device after normalization by eliminating the insertion loss.

the input, the output recombination of Young interferometers (YIs) is not realized

like MZIs (Figure 1.2(a)) by another on-chip Y-junction. Instead, the interference

light in YIs is projected on a screen or CCD camera in an off-chip way, as shown

in Figure 1.2(b).

In case of an MZI sensor, the output intensity (Iout) is a periodically oscillating

function of the phase change difference (Df ) of the beams from two arms with the

following expression [40]:

Iout = Isen+ Iref + 2
p

IsenIrefcos(Df + Df 0) (1.6)

whereIsen and Iref are the intensity of the light passing through the sensing and
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reference arms of the MZI, respectively, andDf 0 is the initial phase difference

due to the unbalance of the two arms. The phase change difference caused by the

variation of the effective index (Dneff) at the wavelengthl is calculated as:

Df =
2p
l

DneffL (1.7)

whereL is the effective detection length of the sensing arm. The sensitivity of in-

terferometric sensors is de�ned as the change in phase caused by the change in the

RIU of the cladding above the sensing arm. According to Equation 1.7, a longer

interaction length (L) in the sensing arm can increase the sensitivity [41]. How-

ever, due to the cosine-dependent intensity function of the interferometric curve,

the intensity response is non-linear: a higher signal change at the quadrature point

is observed than the one near the curve extreme of the cosine function. Moreover,

false-positive signals occur when input source �uctuations or temperature varia-

tions happen, which strongly in�uence the reliability of the interferometric sensor,

especially with long sensing arms [42]. Thus, additional modulation approaches

are usually needed to tune the phase difference between the arms for interferome-

ter sensors.

1.2.3 Resonant microcavity based biosensors

Optical microcavity resonators have been investigated as an emerging sensing tech-

nology due to their potential for highly-compact sensing arrays. In a microcavity

resonator structure, incident light propagating in an input waveguide or tapered

�ber is coupled into the microcavity via the evanescent �eld. Then, coupled light

passes through the cavity in the form of whispering gallery modes (WGMs) or

circulating waveguide modes with multiple round-trips, resulting in optical inter-

ference at speci�c wavelengths of light, as shown in Figure 1.3(d) by the resonant

condition:

l =
2pr � neff

m
(1.8)

wherel is the resonant wavelength,r is the radius of the resonator,neff is the

resonator effective refractive index, andm is an integer. The positions of resonant

peaks are related to the RI near the resonator surface and shift due to the change
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of neff, which can be monitored by scanning the wavelength or by measuring the

intensity at a single wavelength.

Unlike interferometric biosensors, the interaction of light and analyte is no

longer determined by the length of the sensing waveguide, but rather by the char-

acteristic time of the energy stored inside the resonator, which is evaluated by the

quality factor (Q) [14]. Q describes the photon lifetime in the resonator and rep-

resents the number of oscillations before the energy has decayed to 37% (1/e).

Therefore,Q incorporates the distributed loss of a resonator and is approximated

by dividing the resonant wavelength by its full width at half maximum (FWHM)

[36]:

Q = w
e

¶e=¶t
=

2png � 4:34
l � a (dB/m)

�
l

Dl FWHM
(1.9)

wherew is the resonant frequency,e is the energy of the resonant mode,ng is the

group index,a is the total distributed loss in the resonator, andDl FWHM is the

FWHM bandwidth of the resonance peak. A higherQ indicates that light stays

in the resonator longer and interacts more with the analyte. Moreover, White et

al. have proved that having a highQ is advantageous in reducing the noise of the

sensor (3s ), which further improves the DL [43]. As mentioned before, the DL

(or sDL) relies much on the measurement system, including curve �tting methods

and limitations from light sources or detectors, which makes it dif�cult to have

an objective comparison between sensors with different assays and experimental

systems [44]. As a consequence, intrinsic detection limit (iDL) was introduced as a

substitute for resonant sensors, which is only dependent on intrinsic characteristics,

i.e., the resonance linewidth, and de�ned by [45]:

iDL =
l

Q� S
(1.10)

wherel , Q, andSare the sensor resonant wavelength, quality factor, and sensitiv-

ity, respectively. By replacingSwith Sbulk or Ssurf, the bulk or surface iDL can be

represented.
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Figure 1.3: Planar resonant microcavity biosensors. (a) Illustration of a con-
ventional MRR sensor. By using a bus waveguide, guided light is cou-
pled into the resonator at a frequency corresponding to the resonant con-
dition. (b) Illustration of a microdisk resonator sensor. (c) Illustration
of a microtoroid resonator sensor. (d) Measured transmission spectrum
of a conventional MRR device after normalization.

1.2.4 Photonic crystal based biosensors

A photonic crystal (PHC) waveguide consists of periodically repeating arrays of

dielectric structures, forming periodic variations in the refractive index. The peri-

odicity is on the order of the optical wavelength and stops a range of wavelengths

propagating through the PhC, resulting in a photonic bandgap on the transmission

(or re�ection) spectrum presented in Figure 1.4(d). By introducing a defect into the

PHC structure, a defect mode at a particular wavelength is formed and resonantly

con�ned in the defect region, which leads to a sharp peak within the bandgap.

Due to the strong optical con�nement, light is concentrated in a minimal volume

near the defect, enabling an intense light-matter interaction area. A tiny volume of

analytes immobilized surrounding the defect can induce a noticeable shift of the

resonance wavelength and provide a measurable response. Hence, in the past ten

years, PHC based biosensors are regarded as a promising and novel technology
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that has gained much attention [46–48].

The periodicity of a PHC structure can vary from one-dimensional (1D), two-

dimensional (2D) to three-dimensional (3D). One-dimensional PHCs are the most

straightforward architecture analyzed by Lord Rayleigh as early as 1887. These

structures consist of different material layers with high and low refractive indices

alternatively (Figure 1.4(a)) and are usually fabricated by layer-by-layer deposi-

tion, spin coating, or photolithography methods [49]. In 1987, Yablonovitch [50]

and John [51] reported the detailed research on PHCs separately, proposing the

concept of photonic bandgaps in 2D and 3D structures. 2D and 3D PHCs ex-

hibit their periodicity in two and three spatial directions, as shown in Figure 1.4(b)

and 1.4(c), which need complex manufacturing techniques like photolithography,

etching, and particle self-assembly, etc [49]. Although the complexity of the man-

ufacturing process of 1D PHC devices is low, a well-collimated beam is usually

required for sensing approaches, especially for highQ devices, which needs the

sensing area to be relatively large, compared to 2D or 3D ones [52].

1.2.5 Bragg grating based biosensors

The Bragg grating, a fundamental component for the purpose of wavelength se-

lection, has been investigated for use in optical communications, such as �lters,

semiconductor lasers and �bers for a long time [53], and recently into biosensing

applications [21, 54]. Similar to 1D photonic crystals, a Bragg grating is a struc-

ture with a periodic modulation of the effective RI in the propagation direction of

the optical mode, as shown in Figure 1.5. By alternating the material with differ-

ent indices or physical dimensions (known as the corrugation) of the waveguide,

the desired index modulation is achieved. A re�ection of the guided light occurs

at each index-changed boundary, as presented in Figure 1.5(a), and the repeated

modulations of the effective index multiply the distributed re�ection, resulting in

a stop band at one speci�c wavelength in the transmission spectrum, where light

is strongly re�ected. The center wavelength of the stop band, namely the Bragg

wavelength, is given as:

l = 2Lneff (1.11)
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Figure 1.4: Illustration of photonic crystals in (a) 1D, (b) 2D, (c) 3D con-
formations. Insert: Schematic representation of each format showing
the periodic arrangements, different colors represent materials with dif-
ferent indices. (d) Measured transmission spectrum of a uniform PHC
device after normalization.

whereL is the period, andneff is the average effective index of Bragg gratings.

If a phase-shifted cavity is introduced in the middle of the gratings, as illustrated

in Figure 1.5(b), a narrow resonant transmission peak will appear within the stop

band [55], which can be utilized for RI change monitoring.

1.2.6 Performance comparison

Figure 1.6 summarizes the simulated transmission spectra of previously described

optical con�gurations in the �eld of silicon photonic biosensors. As a concept

illustration, we only consider the intrinsic losses in each device. As shown in

Figure 1.6, MZI (blue curve) and MRR (red curve) sensors present periodic spectra.

The spacing between optical wavelengths of two consecutive transmitted optical
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