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Abstract

Developmental Dysplasia of the Hip is one of the most common congenital dis-

orders. Misdiagnosis leads to financial consequences and reduced quality of life.

The current standard diagnostic technique involves imaging the hip with ultrasound

and extracting metrics such as the α angle. This has been shown to be unreliable

due to human error in probe positioning, leading to misdiagnosis. 3D ultrasound,

being more robust to errors in probe positioning, has been introduced as a more

reliable alternative. In this thesis, we aim to further improve the image process-

ing techniques of the 3D ultrasound-based system, addressing three components:

segmentation, metrics extraction, and adequacy classification.

Segmentation in 3D is prohibitively slow when performed manually and in-

troduces human error. Previous work introduced automatic segmentation tech-

niques, but our observations indicate lack of accuracy and robustness with these

techniques. We propose to use deep Convolutional Neural Network (CNN)s for

improving the segmentation accuracy and consequently the reproducibility and

robustness of dysplasia measurement. We show that 3D-U-Net achieves higher

agreement with human labels compared to the state-of-the-art. For pelvis bone

surface segmentation, we report mean DSC of 85% with 3D-U-Net vs. 26% with

CSPS. For femoral head segmentation, we report mean CED Error of 1.42mm with

3D-U-Net vs. 3.90mm with the Random Forest Classifier.

We implement methods for extracting α3D, FHC3D, and OCR dysplasia metrics

using the improved segmentation. On a clinical set of 42 hips, we report inter-

exam, intra-sonographer intraclass correlation coefficients of 87%, 84%, and 74%

for these three metrics, respectively, beating the state-of-the-art. Qualitative obser-

vations show improved robustness and reduced failure rates.
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Previous work had explored automatic adequacy classification of hip 3D ul-

trasound, to provide clinicians with rapid point-of-care feedback on the quality of

the scan. We revisit the originally proposed adequacy criteria, and show that these

criteria can be improved. Further, we show that 3D CNNs can be used to automate

this task. Our best model shows good agreement with human labels, achieving an

AROC of 84%.

Ultimately, we aim to incorporate these models into a fully automatic, accurate,

reliable, and robust system for hip dysplasia diagnosis.
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Lay Summary

The human hip is roughly a ball-and-socket joint. Some babies are born with hip

dysplasia, which means the socket is less rounded than normal and the ball is less

stable, which can lead to trouble walking and other problems. Ultrasound is used

to scan the newborn baby for hip dysplasia, but doctors can still make mistakes

using ultrasound. We would like to avoid mistakes, as mistakes lead to wasteful

and potentially risky treatment options. In this thesis, we use 3-dimensional ul-

trasound and modern artificial intelligence techniques to assist clinicians in better

diagnosing for hip dysplasia and making fewer mistakes.
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guidance from Dr. Mulpuri. All technical work including coding, training and test-

vi



ing of neural networks, clinical evaluations, and statistical analyses was done by
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Chapter 1

Introduction

Developmental Dysplasia of the Hip (DDH) is one of the most common congenital

disorders affecting newborns [7, 16, 31, 42, 70, 71]. Accurate and early clinical

diagnosis is key for effective treatment of DDH [78]. Current clinical practice

for diagnosis usually involves Ultrasound (US) imaging of the newborn hip and

manual delineation of anatomical landmarks. Despite its widely-accepted clini-

cal use, there has been significant towards the low reliability of this 2D-US-based

technique [32, 48, 66], which has recently motivated research towards using 3-

dimensional (3D) US and automatic image processing as a more reproducible alter-

native to the current clinical practices. This thesis focuses on improving the image

processing techniques to improve the reproducibility and robustness of 3D-US for

measuring DDH.

1.1 Developmental Dysplasia of the Hip

1.1.1 Epidemiology

DDH is one of the most common congenital defects seen in newborns, with preva-

lence up to 2.85% [31], and incidence up to 7.6% in some populations [42]. Left

untreated, DDH can lead to serious consequences including limping, leg length

discrepancy, pain, and disability. Of particular note, DDH in infancy is a major risk

factor in the development of early-onset osteoarthritis [10, 24, 25, 50, 69].
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1.1.2 Diagnosis: Standard Clinical Practice

Due to the cartilaginous composition of the newborn hip (younger than 6 months),

which is not easily resolved with X-ray, US is currently the clinical standard imag-

ing modality for diagnosing DDH in newborns. In British Columbia, US exami-

nation is usually performed only if the infant is suspected of having DDH due to

risk factors including: having been born breech; having been born with C-section;

being female; and having a family history of DDH. US is usually performed in ad-

dition to a clinical examination that involves examining for leg length discrepancy;

looking for hip folds; and applying the Barlow and Ortolani Tests to feel for dis-

location clicks. X-ray is used for infants over 6 months of age, after the bone has

begun to ossify.

Graf Ultrasound Technique

US-based testing was first popularized and standardized by Graf [12], who de-

scribed the technique in detail. According to Graf, the newborn is placed in the

lateral position, the hip is flexed, and the probe is positioned coronally at the hip

joint. In this position, the sonographer would then look for the standard plane

by navigating towards well-defined anatomical landmarks as shown in figure 1.1.

When the sonographer identifies the standard plane, a 2D image is acquired. The

sonographer then manually delineates salient anatomical landmarks and extracts

two DDH measures: the α and β angles. The α angle is the angle between the

ilium and acetabulum lines-of-best-fit, and measures the shallowness of the hip

socket as shown in figure 1.2. A lower α angle indicates increased DDH severity.

Similarly, the β angle is the angle between the ilium and labrum lines-of-best-

fit. An increased β angle indicates increased DDH severity. Other measures have

since been proposed including Femoral Head Coverage (FHC) originally proposed

by Morin [47], which measures the percentage of the femoral head covered by the

bony acetabulum as shown in figure 1.3. A decreased FHC indicates increased DDH

severity. The normal to dysplastic ranges for the aforementioned DDH metrics are

summarized in table 1.1.
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Figure 1.1: Ultrasound anatomical landmarks in the standard plane described
by Graf [13]: 1) chondro-osseous junction; 2) femoral head; 3) synovial
fold; 4) joint capsule; 5) acetabular labrum; 6) hyaline cartilage; 7) bony
part of the acetabular roof; 8) bony rim: turning point from concavity to
convexity.
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Figure 1.2: Illustration of the α angle proposed by Graf.

Table 1.1: Ranges of key DDH metrics

Criterion, normal hip Criterion, dysplastic hip Range
α >60◦ <43◦ 17◦

FHC >55 % <40 % 15 %
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Figure 1.3: Illustration of Femoral Head Coverage proposed by Morin.

1.1.3 Treatment and Consequences of Misdiagnosis

If diagnosed early with DDH, most patients can be treated with the Pavlik Har-

ness. For more severe cases, surgical intervention may be required. Dysplastic

cases that were missed may require costly surgical interventions later in life. Over-

treatment and under-treatment may result due to misdiagnosis, both of which have

serious clinical and economic impacts on patients, their families, and society. We

summarize potential consequences of misdiagnosis in figure 1.4, and present the

following over-simplified discussion of costs only as a rough guide for the reader.

Importantly, we do not report proportions of False Negative (FN)s and False Posi-
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Figure 1.4: Simplified map showing socioeconomic consequences of DDH

misdiagnosis in newborns. (TP: True Positive, TN: True Negative, FP:
False Positive, FN: False Negative, OA: Osteoarthritis, THR: Total Hip
Replacement)

tive (FP)s, as most sources in the literature attempt to quantify these against unre-

liable ground truth measurements such as 2D-US, which we consider an unreliable

diagnostic measure as later explained. The analysis is further complicated by the

fact that 60%-80% of cases born with DDH will spontaneously resolve within 2-8

weeks after birth [2]. Therefore, we leave a more in-depth analysis for future work.

False Negatives and Consequences of Under-Treatment

Newborns with DDH who are missed by standard diagnosis soon after birth may be

detected in follow-up visits. As the Pavlik Harness loses efficacy 4 months after

birth [51], more costly surgical treatments may be required. Consequently, the ef-

fect of late detection has been estimated to increase the cost of treatment by 7 times
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due to late detection [78]. If completely undetected and untreated, DDH can lead to

more serious consequences later in life, including early development of osteoarthri-

tis, reduced quality of life, and opportunity costs. While it is difficult to quantify

opportunity costs, there is some evidence towards the cost of osteoarthritis as a

result of DDH. In a 2013 meta-analysis, Hoaglund reported an estimate that 10%

of all osteoarthritis patients also had DDH [27]. However, it is worth noting that

this is a conservative estimate and, in contrast, Nakamura [50] estimated that 88%

of 2000 consecutive osteoarthritis patients in Japan had DDH. Taking Hoaglund’s

conservative estimate of 10%, Price [60] estimated that DDH might be responsible

for about 25,000 hip replacements per year in the United States. At approximately

$50,000 per procedure [68], the direct financial impact of these hip replacements

is on the order of $1.25 billion per year in the United States alone.

False Positives and Consequences of Over-Treatment

Cases that are actually DDH negative but falsely identified as having DDH at birth

also incur costs, and suffer serious consequences due to secondary complications.

Direct costs include the cost of treatment with Pavlik Harness, reported to be on

the order of £600 in the United Kingdom [78]. Given the relatively low cost and

risk associated with use of the Pavlik Harness, erring towards over-treatment may

seem a tempting option, but there are secondary factors against over-treatment to

be considered. Avascular Necrosis, the death of bone tissues due to a lack of blood

supply, is the worst and most frequent complication associated with the Pavlik

Harness, reported in 1.35% to 10.9% of all infants undergoing treatment [40]. Even

at such low incidence rates, this is a serious consequence that potentially requires

very costly surgical treatment, and will cause much unnecessary suffering to the

patient. Other secondary complications of Pavlik Harness include nerve palsy [49],

skin rashes, and unnecessary psychological hardship on the parents [45].

1.1.4 Problem: Low Reliability of 2D Ultrasound for DDH Diagnosis

Although 2D-US is currently considered the clinical gold standard, there has been

much evidence towards its lack of reliability. In a 2018 meta-analysis [61, 66],

Quader reported extremely low inter-exam, inter-observer Intraclass Correlation
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Coefficient (ICC)s for α angle of 23%, for β angle of 19%, and for FHC of near

0%.

Sources of Variability

A major source of error in 2D-US-based diagnosis is ambiguous probe positioning.

In 2014, Jaremko showed by simulating US probe movement in three degrees-of-

freedom that the α angle can vary by as much as 19◦ over the range of acceptable

images (acceptable meaning it meets the definition of the standard plane) [32].

This is a very large range considering the 17◦ α angle range from extremely dys-

plastic at 43◦ to normal at 60◦ (see Figure 1.1). Consequently, a normal hip may

be incorrectly diagnosed as dysplastic and vice versa. So, it appears that the opera-

tor’s ability to identify the correct plane consistently is a major source of error and

perhaps partially explains the extremely low ICCs.

Further exacerbating the problem is lack of standardization in training. Current

clinical practice for diagnosing DDH with US involves identification of the standard

plane as originally described by Graf [12, 13]. This is a difficult task and even ex-

perts with years of training can still make mistakes. For example, a 2013 paper by

Graf on quality management of US hip sonography in Germany [14], reported that

in 1.6%-43.7% of cases across 8 states the sonographers’ licences were withdrawn

by a quality control commission because of poor quality diagnosis. Further, Graf

reported that in a refresher course, 250 orthopedic surgeons, pediatricians, and ra-

diologists were required to classify 4 neonatal hip sonograms. Only 28% of the

clinicians passed this test, and most mistakes were due tilting effects resulting in

incorrect anatomical identification.

Another source of variability may be attributed to human variability in drawing

the lines and circles used to make the measurements. However, this seems to be

a relatively smaller source of error as evidenced by the high intra-image, inter-

observer ICCs reported by Quader [61, 66] of 65%-90% for α and 70%-93% for

FHC.

Therefore, it appears that the main problem leading to variability is high vari-

ability in probe positioning.
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1.1.5 Solution: 3D Ultrasound

To mitigate human variability in probe positioning, and improve diagnostic accu-

racy and reliability of DDH, 3D-US is the most promising solution that has been

proposed in the last few years.

Quader proposed in 2016 the α3D angle, a novel 3D-US-based metric [63]

analogous to the α angle originally proposed by Graf [12]. They hypothesized

that 3D-US is more robust to ambiguous probe positioning, and would improve

test-retest reproducibility over 2D-US [61]. Quader’s implementation was based

on Confidence-Weighted Structured Phase Symmetry (CSPS) for segmenting the

pelvis bone surface and was fully automatic, not requiring operator input to seg-

ment the bone surface. They reported a 75% reduction in test-retest Standard De-

viation (SD) with α3D compared to α [61].

Concurrently in 2016, Mabee and Hareendranathan proposed another 3D-US-

based metric, the Acetabular Contact Angle (ACA) [21, 44]. Their implementation

of ACA was semi-automatic and required some human input. The reported inter-

exam, intra-rater variability for ACA was 41%, reported in Quader’s meta-analysis

[61, 66] as test-retest SD normalized over the range of angles from normal to dys-

plastic.

Quader later proposed in 2017 FHC3D [64], a novel 3D-US-based metric anal-

ogous to FHC originially proposed by Morin [47]. FHC3D was defined as the the

ratio of the femoral head volume medial to the Ilium plane-of-best-fit vs. the total

volume of the femoral head. Quader’s implementation was fully-automatic, and

resulted in a 65% reduction in test-retest SD compared to the analogous FHC 2D-

US-based measure [61].

Most recently, Zonoobi and Hareendranthan proposed α3D-posterior, α3D-anterior,

and Osculating Circle Radius (OCR) 3D-US-metrics [82]. Zonoobi reported inter-

exam ICCs of 68%, 62%, 50% for α3D-posterior, α3D-anterior, and OCR, respec-

tively. Using the same techniques, Mostofi conducted a study in 2019 [48] to com-

pare the benefit of 3D-US in the hands of novice (1.5 hrs. training) vs. expert (5

years training) users. For novice users, Mostofi reported inter-exam α angle ICC of

10% vs. α3D angle ICC of 73%-83%, showing that with 3D-US novices can measure

DDH almost as consistently as experts whereas this is not the case with 2D-US.
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These works have shown substantial evidence in support of the hypothesis that

3D-US-based DDH diagnostic metrics are more reliable as compared to 2D-US-

based metrics. To the best of our knowledge, we are not aware of any other works

in the literature on automatic 3D-US for DDH. Further, we acknowledge that there

have been many works on 2D-US for DDH, which we do not address in this thesis

due to the strong aforementioned evidence against this imaging modality for hip

dysplasia measurement.

1.2 Overall Objective
The ultimate goal of this project is to develop a system for safe, reliable, accurate,

and robust measurement of DDH, and that is amenable for clinical translation. US,

being a safe, non-ionizing modality; capable of imaging the cartilaginous hip joint

anatomy; and being a relatively portable and more cost-effective technology, is the

imaging modality of choice for our system. Specifically, we choose 3D-US due to

being more reliable than 2D-US. Therefore, we aim to develop a system that can

reliably and robustly extract key DDH metrics such as the α3D angle from 3D-US

images of the neonatal hip. A simplified workflow of our envisioned system is

depicted in figure 1.6. In the next section, we present preliminary technical work

that has been done by our lab and others towards such a system, and we propose

areas of improvement that will drive this thesis. Specifically, we address key steps

in the pipeline including:

• Automatic, accurate, and fast segmentation of salient anatomy including the

pelvis bone surface and femoral head

• Automatic, reliable, and robust key DDH metrics extraction from the seg-

mented volume

• Accurate and fast adequacy classification of images to provide point-of-care

feedback to the sonographer about the quality of the acquired image
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1.3 Related Work

1.3.1 Segmentation

Evidently, much progress has been made with 3D-US for DDH diagnosis and mea-

surement, but there are still some aspects that can be improved which would help

facilitate clinical adoption of the proposed system. For example, Hareendranathan’s

graph-based segmentation method is semi-automatic [21, 23], which unnecessarily

requires additional clinical time for seed-point entry (30-75 seconds [82]); intro-

duces another source of variability; and could be a barrier to clinical adoption

especially in settings where trained US technicians are scarce. Quader’s methods

on the other hand, are fully automatic. Hand-crafted features are used including

bone shadowing and phase symmetry to segment the pelvis bone surface [61, 62].

To segment the femoral head, they use multiple Random Forest Classifier (RFC)s,

which take as inputs many features including Histogram Of Gradients (HOG) and

Local Binary Patterns (LBP) [61, 64]. However, our recent observations using

Quader’s algorithm show dubious behaviour, including most commonly (see figure

1.5):

• Over-segmentation of soft-tissue

• Under-segmentation of the pelvis bone surface, in some cases missing most

of the pelvis bone surface and capturing only a thin sliver

• Under-segmentation of the femoral head

• Incorrect plane-fitting due to noisy segmentation

Ultimately, leading to concerns about the validity of the α3D and FHC3D measures,

despite being consistent between scans. For these reasons, part of this thesis fo-

cuses on fully automatic methods for segmentation and localization of the salient

anatomy in neonatal hip 3D-US, in an effort to improve DDH measurement. The

next sections present a discussion of recent related work in US bone segmentation.
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Bone Segmentation in Ultrasound

Automatic segmentation of bone surfaces in US is a well-studied area, with the

majority of work having been focused on Computer-Assisted Orthopaedic Surgery

(CAOS) applications in adult patients [17, 53]. Traditionally, a variety of techniques

based on hand-crafted features have been explored including intensity-based analy-

sis, morphological operations, connected-component analysis, phase analysis, and

others [17, 53]. In recent years, we have seen major successes of deep-learning-

based techniques for segmentation in medical imaging and other areas, and nat-

urally we have observed a similar trend for bone segmentation in US in the last

year.

Several works have proposed solutions for bone surface segmentation in US,

tested on adult bone US. For example, Villa proposed using the popular FCN-8s

architecture [43], concatenating the B-mode image with phase symmetry (PS) and

bone shadowing features in the input channels, and compared the performance of

this multichannel approach to the CSPS approach proposed by Quader [62]. Villa

[74] reported a DSC of 57%±28% for the multichannel Fully Convolutional Net-

work (FCN) compared to 41%±25% for CSPS, showing a significant improvement

in accuracy. Wang [76] proposed using another popular architecture, U-Net [67],

and similarly fusing with the input B-mode image features including Bone-Shadow

Enhanced Image, Local Phase Tensor Image, and Local Phase Bone Image. Wang

reported a DSC of 97% with this approach, and 93% with vanilla B-mode U-Net.

In a more recent work by the same group, Alsinan [1] proposed a new architecture

based on AdapNet [73], with late-stage Local Phase feature fusion, and reported

DSC of 98%, and 91% with vanilla B-mode U-Net.

Bone Segmentation in Neonatal Hip Ultrasound

Several works have explored automatic segmentation specifically in neonatal hip

US for DDH diagnosis, which presents unique challenges due to the partially carti-

laginous composition of neonatal bone.

Hand-engineered phase features were proposed, of which a prominent ex-

ample is the aforementioned CSPS technique proposed by Quader [61, 62]. CSPS

combined Structured Phase Symmetry, an orientation-independent variant of Phase
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Figure 1.5: Visualizing performance of Quader’s methods. Problems shown
include over-segmentation, under-segmentation, and incorrect plane-
fitting.

Symmetry [39] designed to segment non-planar bone structures, with bone shad-

owing features reducing soft tissue false positives. More recently, Pandey [54]

proposed Shadow Peak (SP), a simplified method that uses only bone shadowing

features to segment bone, and has shown certain improvements in accuracy and

speed over CSPS in a limited study. Though promising, these methods still rely on

highly engineered hand-crafted features hence challenges remain with regards to

robustness and generalizability to new data, as we later show.

Data-driven methods have also been proposed for this task. Hareendranathan

proposed using superpixel classification with a CNN and reported Hausdorff Dis-

tance (HD) error of 2.1±0.9mm between contours [22]. Zhang [81] proposed a

neural network based on Mask R-CNN, and compared it to other the popular archi-

tectures including FCN-32s and U-Net but they reported very poor DSCs of 39% for

their network, 5% with U-Net, and 22% with FCN-32s (we note that their results

contradict our own tests and findings, as will be presented later). Golan [11] ap-

plied U-Net with an extra adversarial component for automatically segmenting the

ilium and acetabulum bone surfaces for automatically extracting α angle from the

2D coronal standard plane. Golan did not directly report segmentation agreement

with human labels, but reported a correlation coefficient of 0.76 with the clinical α

angle.
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1.3.2 Adequacy Classification

Addressing the adequacy assessment step (figure 1.6), Quader [61, 65] presented

the first work on adequacy assessment of 2D-US for DDH. Quader’s method relied

on extracting certain features including HOG and LBP, and using a RFC to classify

whether coronal slices are adequate for measurement. They reported an excellent

AROC for this technique of 98.5%. Paserin conducted the first work on adequacy

classification of neonatal hip 3D-US volumes [56–58]. The goal of this work was

to implement a classifier that could provide rapid point-of-care feedback to the

operator whether the acquired volume is adequate for measurement or must be re-

acquired. The advantages here are improved workflow efficiency and speed, as the

existing methods for automatically extracting DDH metrics from 3D-US were rela-

tively slow, requiring on the order of 1 minute computation time, thus processing

an inadequate image would be a waste of valuable clinical time. Further, such a

classifier could reduce costs by helping inexperienced users in remote locations to

scan patients locally. For example, currently patients in Canadian Territories are

flown to British Columbia for DDH examination due to lack of expertise in these

remote locations.

Paserin first proposed using a Convolutional Neural Network (CNN)-based ad-

equacy classifier [57], that processes volumes frame-by-frame, and uses an ag-

gregate score to classify the full volume. Specifically, the CNN was trained to

look for coronal slices containing all anatomical landmarks including the ilium,

acetabulum, femoral head, ischium, and labrum. Paserin reported a per-slice cross-

validation classification accuracy of 90% and runtime of 2s per volume [56], much

faster than Quader’s method [65] which requires around 3 minutes per volume.

Paserin later also proposed the addition of a Recurrent Neural Network (RNN) [58],

which similarly processes coronal slices frame-by-frame, but can make use of in-

formation in adjacent slices. Paserin hypothesized that incorporating this informa-

tion would improve the classification accuracy. With this model, Paserin reported

an improved per-slice accuracy of 93% [56]. To the best of our knowledge, there

were no other works on automatic adequacy classification of DDH 3D-US volumes

outside of our group.

Despite showing excellent accuracy in terms of agreement with expert human
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Figure 1.6: High-level conceptual design of our system.

labels on a limited dataset, as well as improvements in computation time, Paserin’s

work [56, 58] did not evaluate the choice of adequacy criteria. In this thesis, we

revisit these criteria and present modified criteria and new methods for automatic

adequacy classification.

1.4 Research Questions Addressed
Some obstacles remain for clinical translation of the 3D-US-based system for DDH

measurement. Hareendranathan’s methods [23, 82] are semi-automatic, requir-

ing user input of key points to segment the pelvis bone surface and femoral head.

Quader’s methods [61], on the other hand, are fully automatic and use CSPS for

segmenting the pelvis bone surface, and an RFC to segment the femoral head.

However, our recent observations show that these methods which rely on highly-

engineered, hand-crafted features often fail to correctly segment the salient anatomy

for DDH measurement. The last few years have witnessed the rise of deep Convo-

lutional Neural Network (CNN)s, which consistently showed overwhelming evi-

dence for their ability to outperform classical machine learning methods that rely

on hand-crafted features for image processing. Our first research questions are as

follows:

• Research Question 1: Can CNNs be trained to segment the pelvis bone sur-

faces, including the ilium and acetabulum, in neonatal hip 3D-US? Would the

predictions produced by such CNNs more closely resemble human labels, as

compared to existing SOTA methods such as CSPS?

15



• Research Question 2: Can CNNs be trained to locate the femoral head in

neonatal hip 3D-US? Would the predictions produced by such CNNs more

closely resemble human labels, as compared to existing SOTA methods such

as Quader’s RFC?

Several automatic techniques have been proposed for extracting DDH met-

rics from segmented neonatal hip 3D-US volumes. However, these methods were

highly tailored to the segmentation techniques previously proposed. For example,

Quader developed highly engineered techniques to get α3D [61, 63] from the rel-

atively noisy CSPS segmentation of the bone surface. Perhaps these techniques

could be further improved, given improved segmentations, and can produce more

reproducible, robust, and plausible DDH diagnostics.

• Research Question 3: Can we develop automatic methods for extracting α3D

and FHC3D metrics with our improved segmentations that are at least as re-

producible as the previously proposed methods [61, 63, 64]? Can we show

that our proposed methods are at least as robust and plausible as these previ-

ously proposed methods?

Paserin first attempted to standardize and automate neonatal hip 3D-US ade-

quacy classification based on anatomical landmarks [56–58]. Paserin showed that

CNNs are capable of rapidly and accurately predicting adequacy based on pre-

defined criteria. However, Paserin did not explore the completeness of the ade-

quacy criteria and how they relate to DDH measurement.

• Research Question 4: Are the current adequacy criteria proposed by Paserin

[56] sufficient? Can we improve the criteria? Can we train new models for

automating classification based on the newly defined criteria?

1.5 Contributions
Our contributions are as follows:

• As part of our clinical study and for training neural networks, we collected

3D-US data from 59 newborn participants at BCCH, further expanding this

project’s database.
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• Training, comparing, and evaluating U-Net [67] and 3D-U-Net [6] for seg-

menting pelvis bone surface in 3D-US. Towards this end, I labelled ∼600

2D slices and ∼100 3D volumes. We show much improved segmentation

accuracy with these methods compared to the SOTA.

• Training, comparing, and evaluating CNNs including 3D-ResNet-50 [19, 20]

and 3D-U-Net [6] for segmenting and locating the femoral head in neona-

tal hip 3D-US. In the process, I labelled ∼100 volumes for training and

evaluating the neural networks. We show much improved segmentation and

localization accuracy with these compared to the SOTA.

• Proposing new algorithms for extracting α3D [63], FHC3D [64], and OCR

[82]. We show improved reliability, robustness, and plausibility with the

proposed algorithms compared to the SOTA.

• Revisiting the adequacy criteria previously proposed by Paserin [56–58], and

evaluating the the choice of these criteria. We propose new criteria, and show

that 3D-CNNs can be trained to automate adequacy classification based on the

newly proposed criteria. We show that the new criteria are more selective and

this selectivity improves test-retest reproducibility of DDH measurement.

1.6 Thesis Outline
In addition to this introductory chapter, this thesis includes six chapters, outlined

as follows:

• Chapter 2: Presents an overview of the clinical study, details of the data

collected, terminology, and conventions used in this thesis.

• Chapter 3: As per RQ-1, we train U-Net [67] for pelvis bone segmentation

in neonatal hip 3D-US, and evaluate its performance against SOTA methods

for pelvis bone segmentation including CSPS [54, 61].

• Chapter 4: We address RQs 1, 2, and 3.

– Section 4.1: We leverage U-Net from Ch.3 to train 3D-U-Net [6] to

further improve the segmentation of the pelvis bone surface.
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– Section 4.2: We apply 3D-CNNs to segment the femoral head, and com-

pare our models’ performance to Quader’s SOTA RFC [64].

– Section 4.3: We use our improved segmentation of the pelvis bone

surface and femoral head to implement a new algorithm for extracting

α3D, FHC3D, and OCR. We evaluate our metrics compared to Quader’s

[61] and Hareendranathan’s [82], and in the process present new ade-

quacy classification criteria.

• Chapter 5: This chapter focuses on revisiting adequacy classification criteria

previously proposed by Paserin [56], and presenting new adequacy criteria.

We assess the effect of using the old and new criteria on DDH measurement.

Finally, we evaluate 3D-CNNs for automating the task of adequacy classifi-

cation.

• Chapter 6: Final discussion of conclusions, limitations, and future work.
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Chapter 2

Clinical Protocol and Description
of Data

US data from real participants is a key component for the work presented in this

thesis, so we dedicate this chapter to describing how the data was collected and

used. As part of an ongoing effort since 2014, we collected data from a total of 118

participants at British Columbia Children’s Hospital (BCCH) (Vancouver, British

Columbia, Canada), with the collaboration of engineering students, professors, or-

thopedic surgeons, radiologists, US technicians, nurses, and research staff. Data

was collected with the approval of the UBC Children’s and Women’s Research

Ethics Board (REB), under the following application IDs:

• Phase I (2014-2018): H14-01448

• Phase II (2018-2019): H18-00131

• Phase III (2019-Present): H18-02024

Roughly the same protocol was used over the three phases for collecting 3D-US

from newborn participants, with some small differences due to changing research

questions and clinical workflow over the years, which will be briefly described in

this chapter.
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Figure 2.1: Ultrasonix 4DL14-5 3D ultrasound probe.

2.1 Inclusion and Exclusion Criteria
Participants were selected based on the following criteria.

Inclusion criteria:

• Suspected or diagnosed with DDH, and this is usually due to other risk factors

including being born with C-section, born breech, being female, or having a

family history of DDH.

• Referred for a regular ultrasound exam

• Ages 0 to 6 months of age (0-4 months in Phases I and II).

Exclusion criteria:

• Not suspected of having DDH

• Not referred for clinical US exam

• Has other congenital hip abnormalities

• Over the age limit
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2.2 3D-US Data Collection Protocol
When a newborn is suspected of having DDH, they are normally referred for a clin-

ical US exam. With the parents’ consent, 3D-US scans for our study are collected

after the technician scans the newborn with a 2D probe as part of their regular clini-

cal practice. The Ultrasonix 4DL14-5/38 (BK Ultrasound, Richmond, BC, Canada,

see figure 2.1), which uses a mechanically-swept 1D linear piezoelectric array to

get 3D images, is used to acquired 3D images in this study. For each participant,

the sonographer attempts to scan each hip twice, with the probe being removed and

replaced between exams. Before starting the recording, the sonographer is asked

to align the probe in the coronal plane, finding the optimal plane according to their

training. With the probe being held as steady as possible in this position, multiple

sweeps of the array are acquired within an exam. Using this protocol, multiple

volumes are acquired per participant (varies depending on the protocol followed in

each phase, and the participant’s level of cooperation).

We note the following differences between the phases:

• Phase I:

– Orthopedic surgeons did the scans

– Multiple surgeons imaged each participant

– Static assessment protocol was followed, so no force was applied to the

participant’s hip

– Number of sweeps per exam varied up to 8

• Phase II:

– Specialized US radiology technicians did the scans

– Only one technician imaged each participant

– Dynamic assessment protocol was followed [59], so the participant’s

hip was pushed posteriorly usually in the second and third sweeps in

an exam

– 4 sweeps were usually collected per exam

• Phase III (see Figure 2.2):
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Figure 2.2: Data collected per patient in Phase III, showing number of exams
per patient and number of sweeps per exam.

– Specialized US radiology technicians did the scans

– Only one technician imaged each participant

– Static assessment protocol was followed, so no force was applied to the

participant’s hip

– 4 sweeps were usually collected per exam

2.3 Data Used in Each Chapter
The data used in the following chapters is summarized in figure 2.3. The total

number of participants is 118, and the total number of sweeps from all partici-

pants is 2,202. In Chapters 4 and 5, to ensure as many participants as possible are

represented in the dataset given the labeling time constraints, we down-sample by

randomly selecting only 4 sweeps per participant, so we end up with 472 sweeps

which is reflected in the x-axis of figure 2.3. The numbers on the right hand side

represent the number of participants per category. We briefly describe the data

used in the subsequent chapters here:
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Ch.3 Train Set
(439 slices)

# sweeps

Ch.3 
Test Set
(103 slices)

Section 4.3 
Clinical Study Set
(483 sweeps) 

Section 4.1

Section 4.2

Chapter 5

Figure 2.3: Summary of 3D ultrasound data we collected from BCCH, show-
ing details of training and testing data used for each chapter in this the-
sis.

• Ch.3: The data in this chapter was used to train and test U-Net, which pro-

cesses volumes slice-by-slice. Briefly, we randomly extract 439 coronal

slices from the Phase II sweeps for training, and 103 coronal slices from

the Phase I sweeps for testing. Not shown in figure 2.3, we additionally col-

lected 72 2D coronal US images with the Clarius L7 wireless probe in Phase

III, which we use to evaluate U-Net’s performance on unseen data from a

different probe.

• §4.1: 3D-U-Net is used, so we require 3D binary mask labels. We label 64

sweeps from Phases I and II for training, and 52 sweeps from Phase III for

testing.
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• §4.2: Again, we use CNNs that use 3D convolutions, so require 3D labels.

We label 52 sweeps from Phases I and II for training, and 48 sweeps from

Phase III for testing.

• §4.3: For the clinical study described in this section, we make use of all 483

sweeps in Phase III before being down-sampled, as in this case the labeling

involved is much faster than the previous chapters. As we illustrate in figure

2.2, for each participant both hips are imaged. Each hip is scanned twice,

with the probe being removed and replaced to assess test-retest reproducibil-

ity. Within each exam we usually record 4 anterior/posterior sweeps. This

sums to 16 sweeps per participant, however this number could vary depend-

ing on the level of cooperation from the participant.

• Ch.5: Similar to §4.1 and §4.2, we again require labeled 3D data to train

3D-CNN adequacy classifiers. Since it requires much less time to get the

yes/maybe/no labels for this task compared to the pixel-wise segmentation

labels required in the previous chapters, we were able to label the full set of

472 sweeps. We assign all sweeps in Phases I and II to the training set and

all in Phase III to the test set.

2.4 Coordinate System Description
We can describe a 3D-US volume in terms of anatomical terms, Cartesian coordi-

nates, or matrix coordinates, so in this section we describe the relations between

these coordinate systems to clarify terms used in the rest of the thesis. The con-

ventions used are illustrated in figure 2.4. Anatomical terms are shown in white,

Cartesian coordinates in purple, and matrix terms in black. To conform with clin-

ical practice, in this thesis we always show hip US in the horizontal-cranial left

position [14]. Matrix rows are aligned with the y-axis; matrix columns are aligned

with the x-axis; coronal slices are aligned with the z-axis.
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Figure 2.4: Coordinate system conventions used in this thesis.
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Chapter 3

Comparative Evaluation of
Hand-Engineered and
Deep-Learned Features for
Neonatal Hip Bone Segmentation
in Ultrasound

In this chapter we address RQ-1 by implementing a popular data-driven model,

namely U-Net [67], for pelvis bone surface segmentation and comparing it to the

SOTA.

3.1 Methods

3.1.1 Hand-Crafted Features

We include CSPS [61–64] and SP [54] in our comparisons given their proven per-

formance on neonatal hip US. Both methods tend to localize hip bone surfaces well

but suffer from significant false positive responses at soft tissue, e.g. labrum and

other irrelevant bone structures like the femur. To improve performance further we

attempt to incorporate the spatial prior that the ilium and acetabulum are a continu-
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ous bone structure that always appears as the most medial (or deepest with respect

to the probe) and superior bone in the image.

To apply this spatial prior, we start with the observation that SP only detects one

structure along each vertical scan line, which due to its high acoustic impedance,

is likely to be bone. The hip bone is the most superior connected component of

the SP segmentation. To find this region, we first define the set of k regions CC =

{cc1, ...,cci, ...,cck} obtained by applying connected-component analysis to the SP

binary segmentation mask, with 8-connectivity test in 2D and 26-connectivity in

3D. We further define the corresponding set of their centroids C = {c1, ...,ci, ...,ck},
with ci = (xi,yi), and the corresponding set of x-components of the centroids X =

{x1, ...,xi, ...,xk}. We find the pelvis bone surface region ccxmin, where the index

xmin = argmin(X). The final segmentation with SP is obtained by converting this

connected region ccxmin to a binary mask.

For CSPS, we first threshold the CSPS output volume to obtain a binary mask.

Similarly, we apply connected-component analysis to obtain a set of connected

regions. To find the pelvis bone surface from this set of regions, we leverage the

segmentation previously obtained from SP of the pelvis bone surface, ccxmin, as

a Region-of-Interest (ROI), and use it to find the CSPS region with most overlap.

We convert this to a binary mask, and to eliminate any soft tissue connected to the

bone, we only keep the most medial (deepest) pixel along each scan line.

3.1.2 Deep-Learned Features

Architecture

We use the U-Net architecture [67] for our task of segmenting the ilium and ac-

etabulum bone surfaces. We choose U-Net for its proven performance on medical

image data and its ability to train on very few training samples. As in the origi-

nal architecture [67], our implementation includes nine convolution blocks, five in

the contracting path and four corresponding blocks in the expanding path. Each

block is made up of six layers in the following order: conv3x3-batchnorm-ReLU-

conv3x3-batchnorm-ReLU, in contrast to the original architecture which did not

include batch normalization layers [29]. We use stride 1 for the 3x3 convolutions.
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Figure 3.1: Example labeling procedure. Left: B-mode image with Struc-
tured Phase Symmetry overlaid in red, and user-defined points shown
as asterisks. Right: contour fitted to user-defined points shown as a
solid red line.

We use max pooling with 2x2 kernels and stride 2 in the contracting path, and

corresponding transposed convolution layers in the expanding path. With this con-

figuration, the receptive field of the convolution at the end of the contracting path

is 140x140 pixels of the input image whose size is 250×250. The number of

feature maps in the nine blocks is 64-128-256-512-1024-512-256-128-64. We ex-

plore training U-Net with two types of inputs: 1) B-mode only image data, and

2) a Multi-Channel (MC) input based on promising results from several recent pa-

pers [1, 74, 76] on bone segmentation that have shown improved accuracy of bone

localization with this method. In our implementation, the multi-channel input in-

cludes the B-mode image, the corresponding SPS, and shadow confidence map [35]

features in the R, G, B channels, respectively (see figure 3.2).

U-Net Training

To prepare the training data, we start with 231,384 coronal slices, obtained with the

Ultrasonix probe from 59 neonate scans as potential training data. Approximately

only 25% of these slices contained the anatomy of interest (ilium, acetabulum,

femoral head), so we filter out all other slices with a recently proposed RNN scan
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adequacy architecture [58]. We randomly select 500 such adequate slices, from

which a trained user manually labelled the ilium and acetabulum bone contour.

To aid with this manual training data labelling step, we overlaid the SPS feature

on the B-mode image to help guide the user while allowing flexibility to deviate

from SPS overlay should the user deem suitable (see figure 3.1). Further we allow

the user to reject inadequate slices not detected by the RNN from the training set.

In summary, we end up with 439 labelled samples in our training set from the

Ultrasonix set, all of which contained the anatomy of interest. We intentionally did

not include Clarius samples in the training set in order to test generalizability of

U-Net on different domains. We subsequently dilate the manually traced contours

as originally proposed by Villa to alleviate the class imbalance problem [74], the

imbalance between the number of contour and background pixels, converting our

bone contour to a ribbon-like structure. We train U-Net on both B-mode input only,

as well as the multi-channel input. We select Dice loss, Adam optimizer, two-slice

batch size, with learning rate of 0.0001 over 30 epochs, and resize the input images

to 250×250 pixels.

3.1.3 Testing

We contrasted segmentation accuracy of five methods:

• Original CSPS (with naive thresholding)

• CSPS after applying the ROI prior as described in §3.1.1

• SP with ROI prior as described in §3.1.1

• U-Net with only B-mode input

• U-Net with multi-channel input data (R=B-Mode, G=SPS, B=Shadow Con-

fidence Map)

We test these five methods on two datasets, a primary dataset of images that

were acquired with the Ultrasonix 4DL14-5 3D-US probe, and a secondary dataset

that was acquired with the Clarius L7 2D-US probe. The first test set was prepared

from 880 3D-US volumes (from 25 neonate patients) using the Ultrasonix 4DL14-

5/38 probe. Similar to the training data, we discarded inadequate slices with the
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RNN approach [58] to randomly select a subset of adequate slices, on which the

same user manually delineated the contours (see Figure 3.1). A final total of 103

labelled samples constituted this primary test set. We also prepared a secondary

test set using data from the Clarius L7 probe, constituting 72 2D-US images from

a different pool of 19 neonates.

Following segmentation using the contrasted methods, we performed simple

post-processing to convert the output segmentation map output of U-Net to a crisp

contour. Specifically, we threshold the probability map at 0.5, skeletonize, and

prune the resulting binary mask to generate a contour.

To assess segmentation accuracy, many metrics have been proposed in the lit-

erature, but there is not a single standardized metric that encompasses all the in-

formation, so we include all metrics that may be applicable to our task. These can

be categorized into two main groups: pixel-wise classification metrics, and open

contour distance metrics. Classification metrics we reported include the following:

• Dice-Sorensen Coefficient (DSC), also known as the F1-score

DSC =
2|R∩P|
|R|+ |P|

=
2T P

2T P+FP+FN
(3.1)

• Jaccard coefficient, also known as Intersection-Over-Union (IOU)

J =
|R∩P|
|R∪P|

=
T P

T P+FP+FN
(3.2)

• Precision

Precision =
T P

T P+FP
(3.3)

• Recall

Recall =
T P

T P+FN
(3.4)

Where, TP, FP, and FN are true positive, false positive, and false negatives pix-

els, respectively; R are the set of pixels in the reference (ground truth) segmentation

and P are the set of pixels in the predicted segmentation; | · | is the cardinality oper-

ator, which returns the number of elements in a set. Note that these pixel-wise met-

rics are conventionally used for measuring blob-shaped segmentations, and cannot
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be used directly on thin, contour-like segmentations such as ours. To get around

this, we dilated both reference and prediction contours equally as was previously

proposed by others [74].

Distance metrics include:

• Vertical Root Mean Square Error (VRMSE), defined as the root mean squared

distance between the reference and predicted contours at every scan line that

contains both contours. More precisely, let RRR = ri, j ∈ RM×2 be the set of

all points in the reference contour and PPP = pi, j ∈ RN×2 be the set of all

points in the predicted contour. Define RRR⊇ RRRo = ro
i, j ∈ RK×2 and PPP⊇ PPPo =

po
i, j ∈ RK×2, the subsets of the contours where both reference and predicted

contours exist. VRMSE is defined as,

V RMSE =

√
∑

K
i (ro

i,2− po
i,2)

2

K
(3.5)

Where ro
i,2 is the y-component of the i-th element of RRRo, po

i,2 is the y-component

of the i-th element of PPPo, and K is the number of rows in RRRo and PPPo.

• Hausdorff Distance (HD). To compute HD, we first define the function d(p,q)

that computes the Euclidean Distance between two points p and q,

d(p,q) =
√

(px−qx)2 +(py−qy)2 (3.6)

We define AAA = ai j ∈ RM×N as the matrix of Euclidean Distances from all

points in RRR to all points in PPP, calculated with d(). We compute the vector

of minimum distances from each point in RRR to each point in PPP as the row-

minima of AAA,

dR2P = min
j

ai j (3.7)

And similarly we define the vector of minimum distances from each point in

P to each point in R as the column-minima of AAA,

dP2R = min
i

ai j (3.8)
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Table 3.1: Mean (and SD) segmentation accuracy of five methods we tested
on the primary and secondary datasets. From left to right: 1) Shadow
Peak with RoI spatial prior, 2) Confidence-Weighted Structured Phase
Symmetry with naive thresholding, 3) Confidence-Weighted Structured
Phase Symmetry with RoI spatial prior, 4) U-Net with B-mode input,
5) U-Net with multi-channel input. Best performers along each row are
bolded.

Ultrasonix SP+RoI CSPS CSPS+RoI U-Net MC U-Net
Jaccard 0.61 (0.13) 0.28 (0.14) 0.70 (0.16) 0.76 (0.10) 0.77 (0.11)
Dice-Sorensen 0.75 (0.12) 0.42 (0.16) 0.81 (0.14) 0.86 (0.07) 0.86 (0.08)
Precision 0.79 (0.12) 0.30 (0.15) 0.86 (0.11) 0.89 (0.07) 0.89 (0.07)
Recall 0.71 (0.14) 0.82 (0.11) 0.78 (0.17) 0.85 (0.10) 0.85 (0.11)
Hausdorff (mm) 4.41 (3.04) 21.89 (9.7) 3.06 (3.1) 1.60 (1.67) 1.91 (2.17)
VRMSE (mm) 0.35 (0.32) 5.45 (4.96) 0.37 (0.61) 0.21 (0.07) 0.20 (0.07)
Clarius - - - - -
Jaccard 0.58 (0.08) 0.34 (0.09) 0.69 (0.14) 0.85 (0.07) 0.86 (0.06)
Dice-Sorensen 0.73 (0.06) 0.51 (0.10) 0.81 (0.10) 0.92 (0.04) 0.92 (0.04)
Precision 0.88 (0.04) 0.35 (0.09) 0.72 (0.15) 0.92 (0.07) 0.94 (0.05)
Recall 0.64 (0.09) 0.93 (0.06) 0.95 (0.05) 0.93 (0.03) 0.91 (0.05)
Hausdorff (mm) 5.79 (1.92) 25.68 (3.54) 5.65 (4.55) 2.34 (4.79) 1.09 (0.90)
VRMSE (mm) 0.33 (0.12) 2.42 (3.27) 0.33 (0.12) 0.22 (0.10) 0.20 (0.07)

Finally, HD is calculated as follows,

HD = max(max(dR2P),max(dP2R)) (3.9)

3.2 Results and Discussion
Quantitative results for both the Ultrasonix and Clarius probe datasets are summa-

rized in Tab. 3.1. Across all evaluation metrics, the B-mode U-Net and MC U-Net

appeared to be virtually tied for best performance, and appeared to perform well

consistently as evident by the reduced standard deviations. CSPS suffered from sig-

nificant soft tissue false positives despite its use of shadow features, which explains

its high recall but low precision rates, but we observe that the precision was much

improved after applying the ROI, with a small drop in recall.
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a)

b)

c)

Figure 3.2: Example segmentation results. a,b) different segmentation tech-
niques including SP, CSPS, and U-Net applied to Ultrasonix test data. c)
the same techniques applied to Clarius test data.
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To evaluate generalizability, we tested our model trained only on the Ultrasonix

data on a secondary test set obtained with the Clarius probe. We saw a similar

pattern on this secondary Clarius set, with U-Net and MC U-Net outperforming

the other methods. Although not directly comparable, as the Clarius dataset was

comprised of only 2D-US optimal coronal images of the infant hip, whereas the

Ultrasonix dataset is 3D and contained coronal slices away from the optimal cen-

tral slice, these results still provide some evidence that U-Net is likely capable of

generalizing to image data from probes not included in the training set.

We show exemplar qualitative results on both Ultrasonix and Clarius data in

Figure 3.2. To extract the α angle, it is crucial for the segmentation algorithm to

accurately delineate the bony rim between the ilium and acetabulum, and enough

of the ilium and acetabulum surfaces surrounding it, while simultaneously not cap-

turing any false positive soft tissue or unrelated bone such as the femur. It is sub-

sequently crucial to reduce outliers and carefully assess failure cases beyond mere

aggregate quantitative measures comparisons such as those in Tab. 3.1. For CSPS,

common failure cases included soft tissue false positives; completely missing the

ilium when rotated at certain angles; as well as fragmented contour, as shown in

Figure 3.2. Similarly, SP often missed the acetabulum due to weak shadow in that

region (Figure 3.2). In contrast, U-Net rarely detected false positive soft tissue,

and consistently and accurately segmented the full ilium and acetabulum contour.

Errors were mainly due to slightly under- or over-segmenting the ilium or acetab-

ulum at the superior and inferior extremities of the contour. Along each scan line,

we observe that U-Net very accurately segmented the bone contours as is reflected

in the negligible VRMSE errors observed on our clinical dataset.

In contrast to recent papers reporting improved results by fusing phase sym-

metry and shadow features within MC deep learning networks [1, 74, 76], we did

not observe significant improvements by including these hand-crafted features to

our input. However, an apparent improvement in HD indicates slight improvement

on the secondary test set, and this is consistent with qualitative observations as we

observed that MC U-Net is sometimes more robust to soft tissue false positives.

Comparing to the closest literature, we observed on the primary test set improved

mean HD of 1.60±1.67 mm compared to Hareendranathan’s 2.1±0.9mm with the

superpixel classification method [22]. Further we report much improved mean
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DSC of 88% on our primary test set, compared to Zhang’s [81] DSC of 39% for

their proposed architecture, and 5% with their implementation of U-Net.

With regards to computational complexity, we had about 15 million parameters

in our U-Net implementation. When tested on 250×250 2D coronal US slices, on

a machine with Intel Core i-7 (4.0 GHz, 6 core) processor and NVIDIA Titan Xp

GPU, we logged run times of 0.007s for Shadow Peak, 0.155s for CSPS, and 0.003s

for U-Net.

3.3 Conclusions
We proposed a deep-learning-based approach for bone segmentation in neonatal

hip ultrasound. We showed this method improved accuracy over state-of-the-art,

feature-based techniques recently proposed in the literature for our task. Results on

a secondary dataset show that U-Net is robust to domain shifts such as images from

a probe that produces significantly different images, and that using a multi-channel

input may improve robustness further. The main limitation of this experiment is

using a CNN architecture that uses 2D convolution kernels, that do not incorporate

potentially useful information from adjacent slices. We address this limitation in

§4.1 with 3D-U-Net.
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Chapter 4

Measuring Hip Dysplasia with
3-Dimensional Convolutional
Neural Networks

In this chapter we address RQs-1,2, and 3. We address RQ-1 in §4.1, training 3D-

U-Net for pelvis bone surface segmentation, testing, comparing it to other meth-

ods. We address RQ-2 in §4.2, implemneting and training regression-based and

segmentation-based CNNs for femoral head localization, testing, and comparing

these models to other methods. We address RQ-3 in §4.3, proposing an algorithm

for extracting key 3D-US DDH metrics from the segmented anatomy, and evaluate

our algorithm’s performance in a clinical study against the SOTA.

4.1 Pelvis Bone Surface Segmentation: Going 3D
In the previous chapter, we showed that CNNs can outperform the previously pro-

posed CSPS for pelvis bone surface segmentation. However, U-Net [67] uses 2D

convolutions, so can only process the input volume slice-by-slice. Recent architec-

tures have been proposed that employ 3D convolutions to process the volume as a

single input, making use of potentially important 3D information in adjacent slices.

Most famously, these architectures include 3D-U-Net [6] and V-Net [46]. These

architectures were concurrently published and are very similar to each other, with
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the exception that V-Net additionally uses short-distance residual connections. In

this section, we extend our work from the last chapter on pelvis bone surface seg-

mentation by training 3D-U-Net and comparing its performance to U-Net [67] and

CSPS [62].

4.1.1 Labeling

One of the main challenges in training CNNs is getting enough labelled data. This

is especially a problem for getting segmentation mask annotations for volumetric

data, as the time required for labeling only a single training sample (i.e. a full

volume) is on the order of 10 to 100 times the time to label a single slice. In

our case, labeling a single slice takes roughly 10s. There are usually around 50

slices with visible pelvis bone surface, so this translates to roughly 10 minutes per

volume. This is the main reason we opted to use 2D U-Net in Ch.3 instead of

directly using a 3D architecture such as 3D-U-Net. To reduce the time required for

getting mask annotations for our task, we leverage the previously trained U-Net

from Ch.3 for getting approximate mask annotations. We then manually fix any

over- or under-segmentation in 3D Slicer [36] (see figure 4.1). We annotated the

pelvis bone surface in a total of 116 volumes from a total of 29 participants, with

64 volumes for training and 52 for testing.

4.1.2 Training

We train 3D-U-Net to optimize Binary Cross Entropy (BCE) Loss,

LBCE(y, ŷ) =−(y log(ŷ)+(1− y)(log1− ŷ)) (4.1)

where y is target class for each pixel and ŷ is the predicted class. We use batch

size of 1 volume, and use 4-fold cross-validation to find a good learning rate of

0.001. We resize the input volume down to 100×100×100 voxels. We train for 90

epochs, starting with an initial learning rate of 0.001 and reducing it by a factor of

0.2 at 30 and 60 epoch milestones. We use Adam optimizer [37]. Since we only

have a relatively small training set of 64 training volumes, we apply the following

random augmentations:
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Figure 4.1: To train 3D-U-Net, we use U-Net predictions (left) from the pre-
vious chapter as a starting point and manually fix areas that are incor-
rectly segmented to get the “human” label (right).

• Non-uniform zooming by a factor in the range of [0.9, 1.1]

• Shifting along the x,y,z axes in the range of [-10, 10] pixels

• Rotating around the x,y,z axes in the range of [-5, 5] degrees

• Flips in the medial/lateral direction (z-axis) with 0.5 probability

• Elastic deformation [72] with probability 0.5, and σ in the range [2,4]

• Gamma contrast correction with γ in the range of [0.2,2]

Iout = Iγ

in (4.2)

4.1.3 Testing

To evaluate the performance of the different methods proposed, we assess agree-

ment with a labelled test set of 52 volumes from 13 participants. In this section,

we compare the following methods:

• 3D-U-Net [6]
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• U-Net [67] that was proposed in Ch.3

• CSPS as originally proposed by Quader [62], with naive thresholding

• CSPS-DDH, which is the CSPS-based segmentation that Quader used to com-

pute the DDH metrics such as α3D [61]. This included some post-processing

such as cropping with an ROI and ray-casting.

Note that in this comparison we do not include methods previously evaluated in

Ch.3 including SP [54], MC U-Net, and CSPS with connected-component analysis

and anatomical prior. This is because, based on the evidence we saw in Ch.3, U-

Net performed the best and we do not see an added benefit of further investigating

the other methods.

As in §3.3, we use both classification and distance metrics to assess accuracy

of segmentation. Classification metrics used in this chapter include the following:

• Dice-Sorensen Coefficient (DSC), also known as the F1-score (see Eq.3.1)

• Jaccard coefficient, also known as IOU (see Eq.3.2)

• Precision (see Eq.3.3)

• Recall (see Eq.3.4)

Note that all of these metrics are conventionally used for measuring blob-

shaped segmentations, and cannot be used directly on thin, contour-like segmen-

tations such as ours. To get around this, we dilated both reference and prediction

contours equally with a 5×5×5 voxel cubic structuring element, as was previously

proposed by others [74].

For measuring distance between the reference and predicted contours we use:

• Mean Euclidean Distance (MED), and this can be computed from the ref-

erence surface to the predicted surface, prediction to reference, or bidirec-

tionally as the maximum of these. To calculate the MED from reference to

prediction, let RRR = ri, j ∈ RM×3 be the set of all points in the reference sur-

face and PPP = pi, j ∈ RN×3 be the set of all points in the predicted surface.
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Further we define the function d(p,q) that computes the Euclidean Distance

between two points p and q,

d(p,q) =
√

(px−qx)2 +(py−qy)2 +(pz−qz)2 (4.3)

We define AAA = ai j ∈ RM×N as the matrix of Euclidean Distances from all

points in RRR to all points in PPP, calculated with d(). We compute the vector

of minimum distances from each point in RRR to each point in PPP as the row-

minima of AAA,

dR2P = min
j

ai j (4.4)

And similarly we define the vector of minimum distances from each point in

PPP to each point in RRR as the column-minima of AAA,

dP2R = min
i

ai j (4.5)

Finally, we compute the MEDs from RRR to PPP, PPP to RRR, and bidirectionally as,

MEDR2P =
∑dR2P

N
(4.6)

MEDP2R =
∑dR2P

M
(4.7)

MEDmax = max(MEDR2P,MEDP2R) (4.8)

• Hausdorff Distance (HD), and similarly this is computed from reference to

prediction, prediction to reference, or bidirectionally as the maximum of

these.

HDR2P = max(dR2P) (4.9)

HDP2R = max(dP2R) (4.10)

HDmax = max(HDR2P,HDP2R) (4.11)

In addition, our lab has recently proposed two new metrics that aim to ad-
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dress some of the shortcomings of the aforementioned metrics, specifically for the

task of bone segmentation in US, by combining classification and distance metrics

into a unified measure, that does not rely on dilation. This unified measure is the

Coverage Agreement Index (CAI) and is computed from the Coverage Distance

Index (CDI) and Root Mean Square (RMS) distance as follows.

Given a 3D binary segmentation BBB = bi, j,k ∈ ZM×N×K
2 , we compute the scan-

line 2D binary projection BBBBP = b j,k ∈ ZN×K
2 as follows:

bBP
j,k =

1 if ∑i b j,k > 0

0 otherwise
(4.12)

Given the reference binary segmentation volume RRR and corresponding scan-

line projection RRRBP, and the predicted binary segmentation volume PPP and corre-

sponding scan-line projection PPPBP, the CAI is the DSC between the 2D binary pro-

jections and is computed as follows:

CAI =
2|RRRBP∩PPPBP|
|RRRBP|+ |PPPBP|

(4.13)

Further, we compute the RMS Euclidean Distance error. For each image, it is

the RMS of the Euclidean Distances from each point on the predicted bone surface

to the nearest point on the reference bone surface.

RMSP2R =

√
∑dP2R

M

2

(4.14)

Where dP2R was defined in equation 4.5.

Finally CDI is computed as:

CDI =
CAI

1+RMS2
P2R

(4.15)

4.1.4 Results and Discussion

Testing results for the four contrasted methods are shown as boxplots in figures 4.3,

4.4, and 4.5, and a summary is provided in table B.1. As well, we show qualitative
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Figure 4.2: Visualizing pelvis bone surface segmentation with the contrasted
methods. a) human label; b) CSPS; c) U-Net; d) 3D-U-Net. Red arrows
point to areas that are over-segmented (false positives).
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(a) Precision (b) Recall

(c) Jaccard Coefficient (d) DSC

Figure 4.3: Pixel-wise classification evaluation for pelvis bone surface seg-
mentation.

visual results in figure 4.2.

We perform statistical analyses as follows. We first test the null hypothesis that

all four methods produce equivalent segmentations with a one-way Analysis of

Variance (ANOVA) (see results in table B.1). Considering the conservative Bonfer-

roni criterion for multiple tests [4], our p-value threshold for statistical significance

is reduced from 0.05 down to 0.004. Even with this conservative criterion, we re-

ject the null hypothesis across all 12 reported metrics. Further we apply post hoc

t-tests between methods for all the reported metrics (see t-test results in Appendix

B). From this, we make the following observations about the three key metrics:

• DSC: U-Net and 3D-U-Net outperform CSPS. U-Net slightly outperforms
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(a) MEDR2P (b) MEDP2R

(c) MEDmax (d) HDR2P

(e) HDP2R (f) HDmax

Figure 4.4: Contour distance evaluation metrics for pelvis bone surface seg-
mentation.
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(a) CAI (b) CDI

Figure 4.5: Combined evaluation metrics for pelvis bone surface segmenta-
tion.

3D-U-Net.

• HDmax and MEDmax: 3D-U-Net outperforms all the other methods, including

U-Net.

• CAI: 3D-U-Net far outperforms the other methods.

Based on these observations, as well as our qualitative visualizations of the

results, we conclude that 3D-U-Net is our best option to use in the final algorithm

for extracting the DDH metrics. The fact that U-Net slightly outperforms 3D-U-

Net in the classification metrics and CDI is probably explained by the fact that our

reference (ground truth) labels are initially based on the U-Net predictions. DSC

of 85% for 3D-U-Net is still an objectively good score, and taking all the other

metrics into consideration, we conclude that 3D-U-Net outperforms U-Net and far

outperforms CSPS.

4.1.5 Conclusions

We proposed 3D-U-Net to segment the pelvis bone surface.3D-U-Net more ac-

curately segmented the pelvis bone surface compared to CSPS, the SOTA method

previously proposed by Quader [61–64] to segment the pelvis bone surface. Com-

pared to the U-Net model proposed in chapter 3, 3D-U-Net captured similar bone
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surface as U-Net, but with fewer false positive detached islands from the main bone

surface.

4.2 Locating the Femoral Head
The second important landmark to delineate is the femoral head. This is especially

true for extracting metrics such as FHC3D. However, the femoral head presents

its own unique challenges. Being almost completely cartilaginous in neonates,

and therefore hypoechoic, the femoral head has weakly defined boundaries and

appears as a dark, approximately semi-spherical shape with some speckle. It is

bounded medially by hyperechoic pulvinar fat in the acetabulum, laterally by soft

tissue including muscles and ligaments, and superiorly by the labrum and hypoe-

choic hyaline cartilage lining the bony rim (junction between the ilium and the

acetabulum).

In this section, we explore two potential approaches for locating the femoral

head:

1. Direct regression of sphere parameters (§4.2.2): We assume that the femoral

head is a perfect sphere, although only part of the sphere is visible in an

US volume. We use 3D-CNNs to directly regress the four sphere parameters,

including the the center coordinates (cx,cy,cz) and the radius.

2. Segmentation (§4.2.3): We do not make assumptions about the shape, and

only attempt to segment the visible part of the femoral head. We again use

3D-U-Net [6] for this task.

4.2.1 Labeling

Similarly to the previous chapters, we need volumes with the femoral head anno-

tated to train the proposed CNNs. As the femoral head does not have well-defined

boundaries, we do not attempt a direct pixel-wise annotation as is customarily done

for segmentation datasets. We found that determining which pixels are femoral

head and which are background to be difficult. Additionally, frame-by-frame pixel-

wise labeling is extremely time-consuming and inefficient. Instead, we make use

of the knowledge that the femoral head is approximately spherical, and label it by
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Figure 4.6: Femoral head keypoint placement in 3D Slicer.
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Figure 4.7: Fitting a sphere to the key edge points. We show the full sphere
in green and the cropped sphere in yellow.

selecting only a few keypoints at its edges in some coronal and transverse frames.

We demonstrate this process in figure 4.6. After selecting these key edge points,

we use them to prepare two kinds of labels (see figure 4.7):

1. Full sphere label: We fit a sphere to these points with a least-squares method

[33], generating a 4-element vector that includes the three center coordinates

and the radius [cx,cy,cz,r]

2. Semi-sphere label: From this fitted sphere, we generate a semi-spherical
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Figure 4.8: Conceptual illustration of 3D convolutional neural networks used
for direct regression of sphere parameters.

binary segmentation mask of the visible part of the femoral head (see figure

4.7). First, any pixels within the sphere are labeled as 1 and any pixels out-

side are labeled as 0. Further, we define a bounding box B whose boundaries

are defined by the most extreme keypoints. We set any points outside of B to

0, ensuring that only the clearly bounded, visible parts of the femoral head

are segmented.

Our train set for this task contains 52 volumes from 13 participants, and the

test set constains 48 volumes from 12 participants.

4.2.2 Direct Regression

Architecture Choice

Considering the weakly-defined boundaries of the femoral head in 3D-US of the

neonatal hip, our initial guess was that formulating this problem as a segmentation

problem would not be effective. Instead, we propose to directly regress the centre

and radius parameters of the sphere-of-best-fit as shown in figure 4.8. Although

CNNs have been mainly used for classification, they can be used just as effectively

for regression. Sphere regression is by definition a 3D task, so we choose to use

3D models that use 3D convolutions, and have been shown to be effective for 3D

tasks such as video classification [18–20]. 3D versions of modern architectures

have been recently proposed including ResNet [26], whose residual connections

were shown to be improve accuracy and efficiency over its predecessors [5]; as

well as newer derivatives of ResNet including DenseNet [28], WideResNet [80],
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and ResNext [79]. Volumetric data and architectures require significantly increased

GPU memory and time for training. So, due to time and hardware limitations, we

choose to limit our experiments to 3D-ResNet-50 and 3D-DenseNet-121 proposed

in [18–20].

Training

We set up our models as shown in figure 4.8. We resize the input volume to

100×100×100 voxels to meet memory constraints of our system. To identify a

good model and hyper-parameters for our task, we use 4-fold cross-validation and

experiment with architectures including DenseNet-121 and ResNet-50, augmenta-

tion options, and learning rates. We choose Mean Squared Error (MSE) loss as the

objective function to train our networks for regression.

LMSE = ||y− ŷ|| (4.16)

Where y is the target label and ŷ is the prediction. Based on results from the

cross-validation, we finally choose 3D-ResNet-50, trained with batch-size of 3 vol-

umes, for 210 epochs, with an initial learning rate of 0.001, reduced by a factor of

0.2 at the 70 epoch and 140 epoch milestones. We apply the following augmenta-

tion in training:

• Non-uniform zooming by a factor in the range of [0.9, 1.1]

• Shifting along the x,y,z axes in the range of [-10, 10] pixels

• Rotating around the x,y,z axes in the range of [-5, 5] degrees

• Flips in the medial/lateral direction (z-axis) with 0.5 probability

• Gamma contrast correction with γ in the range of [0.2, 2]

4.2.3 Segmentation

Considering our previous successes with U-Net and 3D-U-Net, as well as over-

whelming evidence from the literature on the success of these architectures [30],

50



Figure 4.9: Conceptual illustration of 3D-U-Net used for segmenting the
femoral head.

we evaluate the performance of 3D-U-Net for this task (figure 4.9), despite our ini-

tial doubts about the challenging task of segmenting such ill-defined anatomy. We

use BCE loss (Eq. 4.1) as the objective function for this task. We use batch size of

1 volume, and train for 30 epochs with an initial learning rate of 0.0001, reduced

by a factor of 0.2 at 10 and 20 epoch milestones. We use the same augmentations

as in §4.2.2.

4.2.4 Testing

On a test set of 48 volumes from 12 participants, we evaluate the performance of

our proposed ResNet-50 for direct sphere regression and 3D-U-Net for segmenta-

tion, against the previously proposed SOTA RFC by Quader [64]. Metrics we used

for assessing performance can be divided into two categories: classification metrics

and distance metrics.

Classification metrics include:

• Precision (Eq. 3.3)

• Recall (Eq. 3.4)

• Jaccard coefficient, also known as IOU (Eq. 3.2)

• DSC (Eq. 3.1)
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Distance metrics include:

• Centre Absolute Error (CAE)s between the true and predicted spheres’ cen-

ters along all three x, y, and z axes. Note that the 3D-U-Net segmentation

ground truth label as well as its predicted output are not spherical, but instead

are semi-spherical cropped by the bounding box B. So for the segmentation

binary mask produced by 3D-U-Net, the center is computed as the center-of-

mass of the segmented region. The errors are computed as follow:

CAEx = |cx− ĉx| (4.17)

CAEy = |cy− ĉy| (4.18)

CAEz = |cz− ĉz| (4.19)

Where c is the reference (ground truth) centre and ĉ is the predicted centre.

• RAE between the true and predicted spheres’ radii. Again, the 3D-U-Net pre-

diction is not spherical, so the radius is computed as the difference between

the most medial and lateral points of the segmented region.

RAE = |r− r̂| (4.20)

Where r is the reference (ground truth) radius and r̂ is the predicted radius.

• Centre Euclidean Distance (CED) between the predicted center and human

label, computed as follows:

CED =
√

(cx− ĉx)2 +(cy− ĉy)2 +(cz− ĉz)2 (4.21)

4.2.5 Results and Discussion

We report quantitative testing results as boxplots in figures 4.13 and 4.14, as well

a summary in table C.1. Qualitative, visual examples are shown in figures 4.10,

4.11, and 4.12.
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Figure 4.10: Visualizing Quader’s [61, 64] RFC prediction of the femoral
head. Left: hip ultrasound with human-labelled keypoints of the
femoral head in red. Right: binary segmentation mask output of the
RFC in green.

Figure 4.11: Visualizing output of 3D-ResNet-50 direct regression model for
femoral head localization. Left: hip ultrasound with human-labelled
keypoints of the femoral head in red, and best fitting sphere in green.
Right: 3D-ResNet-50 predicted sphere in blue.
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Figure 4.12: Visualizing output of 3D-U-Net segmentation model for femoral
head localization. Left: hip ultrasound with human-labelled keypoints
of the femoral head in red, and best fitting, cropped sphere in yellow.
Right: 3D-U-Net segmentation binary mask prediction in pink.

Similar to the previous section we apply the following statistical analyses. We

apply a one-way ANOVA to test the null hypothesis that all 3 methods are equal

(see results of ANOVA in table C.1). Considering the Bonferroni correction for

multiple comparisons [4] (in our case 9 comparisons), our p-value threshold for

statistical significance is reduced from 0.05 down to 0.006. With this conservative

threshold, we can reject this null hypothesis for all the metrics except for the CAEx,

for which a p-value of 0.009 suggests we cannot reject the null hypothesis for this

metric. Further, we apply post hoc t-tests to compare the different methods (see

tables in Appendix C). We make the following observations about the key metrics:

• DSC: both of our proposed models, 3D-U-Net (segmentation) and 3D-ResNet-

50 (regression) outperform the RFC, and 3D-U-Net performs the best.

• CED: 3D-U-Net predicts the center against its ground truth label most accu-

rately. 3D-ResNet-50 and the RFC are virtually tied.

• RAE: 3D-ResNet-50 and 3D-U-Net outperform the RFC, and 3D-U-Net pre-
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(a) Precision (b) Recall

(c) Jaccard Coefficient (d) DSC

Figure 4.13: Pixel-wise classification-based evaluation for femoral head lo-
calization.

dicts the radius most accurately.

Based on these observations and our qualitative observations of the visual seg-

mentations, we conclude that 3D-U-Net is the best of the three methods presented,

so we choose to use it in our final pipeline for DDH metrics extraction.

4.2.6 Conclusions

We proposed two new methods based on 3D-CNNs for locating the femoral head

in neonatal hip 3D-US. We directly compared the performance of our methods

to each other, as well as to the SOTA RFC proposed by Quader [61, 64], the only

other fully automatic method proposed for our task to the best of our knowledge.
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(a) CAEx (b) CAEy

(c) CAEz (d) CED

(e) RAE

Figure 4.14: Distance-based evaluation metrics for femoral head localization.
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We found that the regression-based, 3D-ResNet-50 model locates the femoral head

more accurately than the RFC in all the proposed metrics, except for the CAEx. The

segmentation-based, 3D-U-Net model locates the femoral locates more accurately

than 3D-ResNet-50 and the RFC, so we choose to use 3D-U-Net in our final metrics

pipeline for extracting dysplasia metrics as described in the next section.

4.3 Extracting Dysplasia Metrics
In this section, we describe our algorithms for extracting α3D, FHC3D, and OCR

DDH diagnostic metrics from neonatal hip 3D-US, using the improved segmentation

techniques described in the previous chapters. In addition, we present a clinical

study to evaluate the performance of our algorithms against the SOTA.

4.3.1 Choosing DDH Metrics

Many US-based diagnostic metrics have been previously presented in the literature

for DDH [66]. For consistency with standard clinical practice, and for direct com-

parison to the SOTA algorithms, we choose to focus only on the following three

metrics:

• ααα3D: a 3D metric that was first proposed by Quader [63], analogous to the

widely clinically-used α angle first proposed by Graf [12]. This metric is

defined as the angle between the normals to the fitted planar surfaces of the

ilium and acetabulum. DDH severity increases with decreased α3D angle.

• FHC3D: another 3D metric that was first proposed by Quader [64], analogous

to the widely used FHC metric originally proposed by Morin [47]. This met-

ric captures additional information not captured by α3D, and can potentially

be used for quantitative dynamic assessment as proposed by Paserin [59].

This metric is defined as the ratio of the femoral head volume medial to the

plane of the ilium vs. the total femoral head volume. DDH severity increases

with decreased FHC3D.

• OCR: another 3D metric that was initially proposed by Zonoobi and Hareen-

dranathan [82]. This metric is relatively new and is not traditionally used in

standard clinical practice. We choose to report it as it may provide additional
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information about bony rim rounding that is not necessarily captured by the

α3D angle. This metric is defined as the radius of the largest sphere that can

be fitted under the bony rim (junction between ilium and acetabulum, also

called “apex line”). DDH severity increases with increased OCR.

4.3.2 Algorithm for Extracting the Metrics

We propose new methods for extracting these 3 metrics from the 3D-U-Net pelvis

bone and femoral head segmentations, that builds on ideas from the previously

proposed algorithms by Quader [61] and Hareendranathan [82]. The algorithm is

illustrated in figure 4.15.

Getting OCR

Starting with the pelvis bone surface segmentation, we do the following to extract

the OCR:

1. Apply connected-component analysis to remove any small detached islands

from the main surface of interest, keeping only the largest component.

2. Skeletonize to convert the thick segmentation to a thin (one-pixel-wide) sur-

face binary segmentation.

3. Convert this binary segmentation to a point cloud PCP.

4. Fit a polynomial surface SP(x,z) of the 2nd order along the z-axis and 3rd

order along the x-axis to PCP. This allows us to compute the surface Gaus-

sian Curvature K in the next step, as the point cloud surface is otherwise too

noisy for this calculation.

5. Compute the Gaussian Curvature K(x,z) of the polynomial surface SP(x,z)

as described by Zonoobi and Hareendranathan [82].

6. Find the coordinates (xK ,zK) of the point of maximum Gaussian Curvature,

R = (xK ,zK ,yK), on the polynomial surface.

(xK ,zK) = argmax
(x,z)

|K(x,z)| (4.22)
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7. Compute OCR as the reciprocal of the First Principal Curvature K1 at the

point of maximum K:

OCR =
1

|K1(xK ,zK)|
(4.23)

Getting α3D

Building on the steps for calculating OCR, we do the following to extract α3D:

1. Similar to the pelvis bone segmentation, we convert the femoral head binary

segmentation to a point cloud PCF = fi, j ∈ RN×3.

2. Find the center-of-mass C of the femoral head as

C =
∑i fi

N
(4.24)

3. Define the sphere O with center C and radius ‖C−R‖, which will be used to

separate the ilium and acetabulum point clouds

4. Assign all the points in PCP and outside O to the ilium point cloud PCI

5. Assign all the points in PCP and inside O to the acetabulum point cloud PCA

6. Fit planes A and I to the PCA and PCI point clouds, respectively, with least-

squares plane-fitting

7. Compute α3D as the angle between the unit normal vector to the iliac plane

nI and the unit normal vector to the acetabulum plane nA:

α3D = cos−1 nA ·nI

|nA||nI|
(4.25)

Getting FHC3D

Further building on the previous steps, we simply compute FHC3D as,
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𝝰3D

FHC3D

OCR

SP(x,z)

C
Ilium

Acetabulum

nI
R

nA

nI

O

Figure 4.15: Conceptual illustration of proposed pipeline for extracting α3D,
FHC3D, and OCR from the segmented pelvis bone surface and femoral
head. Note that measurement is done in 3D, but concept is simplified
to 2D for illustration purposes only.

FHC3D =
∑BM

F

∑BF
(4.26)

Where BF is the femoral head binary segmentation mask, and BM
F is the binary

segmentation mask containing only the femoral head portion medial to the plane

of the ilium I.

4.3.3 Clinical Study

We conduct a clinical study to evaluate the performance of our proposed algo-

rithms against the SOTA methods. Ideally, we would assess accuracy of our meth-

ods against a clinical gold standard, but such a measure does not exist because

2D-US, the current clinical standard, is highly variable as previously explained so

cannot be considered a gold standard. Accuracy could be assessed with a longitu-
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dinal study that tracks patient outcomes, but this type of study requires long-term

tracking on the order of years and is beyond the scope of this thesis. Therefore, we

only compare the reliability of our methods to the state-of-the-art techniques. Ad-

ditionally, we perform a comparative visual comparison of the different methods

when large discrepancies with previous methods are observed.

Reliability

To assess reliability we use 483 sweeps from 34 participants as was described in

Ch.2. Our goal is to simulate the real clinical scenario as close as possible, so

we design our study to assess inter-exam test-retest reproducibility. In our study,

an expert US technician images both hips of every participant. The same tech-

nician scans each hip twice (i.e. 2 exams), removing and replacing the probe in

between exams. Within an exam, the probe is held still while the transducer is

swept anteriorly-posteriorly 4 times. In summary, each participant is imaged 16

times, with each hip imaged twice (2 exams), and each exam containing 4 sweeps.

See Figure 2.2 for an illustration. We note that the same technician does both ex-

ams, so we can only compute the intra-sonographer reproducibility and not the

inter-sonographer reproducibility, and we note this as a limitation of our method.

We apply our full pipeline including segmentation and metrics extraction to

each sweep in the clinical study set. Similarly, we apply Quader’s [61] full pipeline

to the same set of sweeps to extract α3D and FHC3D with their proposed algorithms

that use CSPS and RFCs for segmentation. Additionally, we manually inspect and

discard any sweeps according to the scan adequacy labeling procedure described

in §5.1. If all the sweeps within an exam are discarded, we discard that exam

completely, and subsequently do not include that hip in our final analysis. For

each exam (containing 1-4 adequate sweeps), the assigned dysplasia metric is the

average of that dysplasia metric across all the remaining adequate sweeps in that

exam. Finally, each remaining exam is assigned the following five metrics:

• α3D using our proposed methods

• α3D using Quader’s methods [61, 63]

• FHC3D using our methods
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Table 4.1: Results showing inter-exam, intra-sonographer ICC of our pro-
posed pipeline for computing α3D, FHC3D and OCR vs. the state-of-the-
art methods (n=42 hips).

Method ICC (95% CI) p-value
(H1: ours
> other
method)

ααα3D
Quader’s [61] 0.78 (0.62, 0.88) 0.03

Ours 0.87 (0.77, 0.93) -

FHC3D
Quader’s [61] 0.68 (0.47, 0.81) 0.006

Ours 0.84 (0.72, 0.91) -

OCR Quader’s [61] - -
Ours 0.74 (0.58, 0.86) -

• FHC3D using Quader’s methods [61, 64]

• OCR using our methods

Given the inter-exam pairs for each of these 5 metrics, for each hip, we can

compute the inter-exam reproduciblity using the ICC. Following the guideline for

selecting ICC by Koo [38], we select a two-way mixed effects model, based on

single measurement, with absolute agreement definition. In addition to ICC, we

also report the test-retest Standard Deviation (SD)s for the different methods as

another measure of reproducibility.

4.3.4 Results and Discussion

Starting from 483 sweeps (from 60 hips) in the clinical study set, 317 sweeps (from

42 hips) remain after we discard all inadequate sweeps. We report ICC for the DDH

metrics with the different methods in table 4.1. Further, we report the the SDs in

table D.1.

Comparing to the literature

To the best of our knowledge, there are only two other techniques in the literature

that were proposed for extracting DDH metrics from 3D-US of the neonatal hip,

and these are Quader’s [61, 63, 64] and Zonoobi’s [82]. We had access to Quader’s
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Table 4.2: Qualitative plausibility analysis of adequate sweeps in which a
large discrepancy between our methods and Quader’s (SOTA) was de-
tected. Numbers reported are percentages of successful and plausible
measurements out of 51 sweeps visually inspected. Inspection was per-
formed by an unbiased rater other than the author of this thesis.

% Plausible

α3D
Quader’s [61, 63] 76%
Ours 100%

FHC3D
Quader’s [61, 64] 57%
Ours 100%

[61] code, so we were able to compare our methods to theirs directly on the same

dataset. We use the R implementation of ICC in the IRR package [9], which per-

forms a one-sided test against a specified null hypothesis, and these are the p-values

we report in the ICC table 4.1. Our results show that across all three of the reported

metrics, our proposed methods are more reproducible than Quader’s [61]. We can

only compare our methods to Zonoobi’s [82] methods indirectly as we do not have

access to their code, so we can only compare our results to the numbers reported

in their publication. We first note the following differences in Zonoobi’s meth-

ods: 1) they used a different ICC definition (two-way mixed effects, consistency,

single rater; 3,1); 2) they averaged the measures from multiple sonographers at

each exam; 3) instead of a single α3D measure, they report α3D-posterior and α3D-

anterior. With these differences, Zonoobi reports an inter-exam ICC on a set of 60

hips for α3D-posterior, α3D-anterior, and OCR of 68%, 62%, and 50%, respectively.

Comparing to our ICC results for α3D and OCR of 87% and 74%, respectively, it

appears that our methods may be more reproducible, but this is yet to be confirmed

in a direct comparison in future work.

Comparing the metrics to each other

Following Koo’s guidelines [38] for ICC, our α3D’s reproducibility is good to ex-

cellent, FHC3D is moderate to excellent, and OCR is moderate to good. α3D and

FHC3D are virtually tied, and they both significantly outperform OCR.
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(a) α3D (◦)

(b) FHC3D (unitless ratio)

Figure 4.16: Bland-altman plots showing large discrepancies between our
metrics and Quader’s metrics (n=42 hips).
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Ultrasound 
air gap 
echoes 
falsely 
identified as 
pelvis bone 
surface

Femoral head severely 
under-segmented
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c

b

d
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anatomy

Figure 4.17: Example showing failure with Quader’s SOTA CSPS-based
method for pelvis bone surface segmentation and α3D measurement
[63]. a) Incorrectly segmented pelvis bone surface with Quader’s
method shown in green. b) The corresponding fitted planes result-
ing in an implausible α3D measurement. c) The same sweep correctly
segmented with 3D-U-Net shown in red. d) The corresponding fitted
planes and plausible α3D measurement.

65



a b

c d

Severely 
under-segmented 
femoral head

Correctly 
segmented femoral 
head

Figure 4.18: Example showing failure with Quader’s SOTA RFC-based
method [64]. a) Incorrectly segmented femoral head with Quader’s
method shown in green. b) The corresponding fitted planes resulting
in an implausible FHC3D measurement. c) The same sweep correctly
segmented with 3D-U-Net shown in red. d) The corresponding fitted
planes and plausible FHC3D measurement.
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￼a b

c d

Only a thin sliver of pelvis 
bone surface is 
segmented

Most of the pelvis bone 
surface is segmented

Figure 4.19: Example showing questionable case with Quader’s SOTA CSPS-
based method [63]. a) Quader’s CSPS segmentation method only cap-
tures a very thin silver of the overall pelvis bone surface. b) The cor-
responding fitted planes resulting in a questionable α3D measurement.
c) The same sweep correctly segmented with 3D-U-Net shown in red.
d) The corresponding fitted planes and plausible α3D measurement.
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Large Discrepancy Analysis and Failure Cases

On the set of 42 hips, we inspect cases where there are large discrepancies be-

tween our methods and Quader’s. Since we do not have a trusted gold standard

measurement of DDH in these participants due to the clinical standard 2D-US being

unreliable, we cannot directly judge which of the two methods is closer to the true

value, or in other words which method is more accurate. In these cases, we visu-

alize the segmentation and plane-fitting outputs of Quader’s methods and ours, to

determine if we can make any conclusions which meathod is more plausible.

First, we discard inadequate sweeps as described in §5.1. Of the remaining

adequate sweeps, we identify how many such large discrepancy cases exist with

Bland-Altman plot analyses. For both α3D and FHC3D, we visualize the discrep-

ancies on Bland-Altman plots as shown in figure 4.16. Note the relatively high

1.96SD ranges of -22◦ to 16◦ for α3D, and -52% to 19% for FHC3D, suggesting a

high level of discrepancy between the two methods that warrants further investiga-

tion.

Based on these Bland-Altman plots, we select rough cut-offs of -10◦ to 10◦ for

α3D, and -30% to 10% for FHC3D, and deem any cases with an absolute difference

(i.e. difference between our metrics and Quader’s metrics) beyond these thresholds

as a large discrepancy. Based on this, we identified 51 adequate sweeps (from 7

hips) with large discrepancy.

An unbiased (i.e. not involved in any of the work done in this thesis or Quader’s

work, and does not have conflicts-of-interest) engineering student in our lab is

asked to inspect each such case (adequate and large discrepancy). This individual

is asked to judge the overall plausibility of the α3D and FHC3D measurements for

the two contrasted methods based on the perceived quality of the segmentation and

plane-fitting. We report the results of this analysis in table 4.2.

From these results, we can see that in all cases in the inspected dataset our

proposed methods for α3D and FHC3D are always plausible, whereas measurements

with Quader’s methods are in many cases implausible. The most common reason

for α3D measurement implausibility with Quader’s method was failure to segment

the pelvis bone surface, instead falsely segmenting other regions (e.g. soft tissue or

air gaps) and identifying them as the pelvis bone surface (7/51 such cases), and we

68



show an example of this in Figure 4.17. For FHC3D, the rater observed many cases

in which Quader’s RFC severely undersegmented the femoral head, resulting in an

implausible measurement (17/51 such cases), and we show an example in Figure

4.18. In addition to these clearly implausible cases, the rater reported observing

some borderline (questionable) cases in which Quader’s CSPS-based segmentation

method resulted in only a very thin sliver of the total pelvis bone surface being

segmented, for example see Figure 4.19. Finally, the rater reported 3/51 cases

in which Quader’s program failed and quit with an error before completing the

segmentation and measurement, resulting in outputs of 0 for α3D and FHC3D.

4.3.5 Conclusions

We proposed a new algorithm for extracting DDH metrics including α3D, FHC3D,

and OCR from segmented neonatal hip 3D-US. We showed that our methods pro-

duce higher inter-exam, intra-sonographer ICCs compared to the SOTA methods

proposed by Quader [61, 63, 64]. It also appears that our methods may be more

reproducible than the semi-automatic method proposed by Zonoobi [82], although

this is yet to be determined in a direct comparison in future work. Further, we

showed that in cases with large disagreement between our methods and Quader’s,

our methods appear to produce more plausible results and are more robust to fail-

ure.
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Chapter 5

Automatic Adequacy Assessment
with 3-Dimensional
Convolutional Neural Networks

As described in Ch.1, Paserin’s [56, 58] was the only work to explore automatic

adequacy assessment for 3D neonatal hip ultrasound that made use of 3D data from

adjacent slices. Paserin introduced this in the form of an RNN model that classifies

whether or not a given volume is adequate based on the following criteria defined

by Paserin in collaboration with a radiologist:

• The femoral head, a hypo-echoic spherical structure, should be fully present

and seen growing and shrinking in size across the encompassing slices

• The ilium must appear as a straight, horizontal, hyper-echoic line

• The acetabulum must be present and appear continuous with the iliac bone

• Presence of ischium

• Presence of labrum

• All of these features should be collectively present within an adequate vol-

ume, but they do not necessarily all need to be present within any single

slice
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Paserin’s RNN was able to emulate the radiologist’s adequacy assessment quite

well, achieving a reported AROC of 83% on a test set of 20 volumes. However, the

completeness of the criteria themselves was not validated. Specifically, the effect

of the choice of adequacy criteria on the reproducibility of α3D and FHC3D was not

tested. In this chapter, we evaluate if using Paserin’s proposed criteria can improve

DDH measurement. Further, we propose our own adequacy criteria and compare

these with the criteria proposed by Paserin, evaluating these against DDH metric

reproducibility. Lastly, we show how 3D-CNNs can be used to automate adequacy

classification with our proposed criteria.

5.1 Labeling with New Criteria
In §4.3.3, we described a clinical evaluation study in which a rater (the author of

this thesis) inspected the full set of 483 sweeps from 34 participants, and judged

which sweeps were adequate for DDH measurement. Having gained access to high

quality segmentations of the hip anatomy with our trained models from the pre-

vious chapter, we could now see patterns in the anatomy which were not previ-

ously apparent, and consequently gained an improved understanding of the overall

shape. Given this newfound understanding, we suggest that Paserin’s adequacy

criteria could be improved, and hypothesize that criteria that are more selective

could ultimately improve the reliability of the DDH measurement. As such, we did

not strictly adhere to Paserin’s criteria in the labeling process. Instead, to label

the 483 sweeps, the rater (author of this thesis) was asked to only answer the fol-

lowing simplified question for every sweep: “Is the sweep adequate for α3D and

FHC3D measurement?”. The rater was given a choice of answering the question

as “yes”, “maybe” (if not sure), or “no”, after visualizing simultaneously 4 views:

1) B-mode coronal view cine, 2) B-mode sagittal view cine, 3) B-mode transverse

view cine, and 4) the segmented anatomy as point clouds. Using this procedure,

317 sweeps were labelled as “yes”, 101 as “maybe”, and 65 as “no”.

Retrospectively, the following are the reasons we most often observed for which

we rejected a sweep:

• The ilium is fully or partially beyond the Field-of-View (FOV) of the probe,

and this is usually caused by the probe being positioned too inferiorly. If
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much of the ilium surface is missing, then we cannot be certain that the fitted

plane represents the full ilium surface, and consequently is not adequate for

α3D or FHC3D measurement. (e.g. see figure 5.1)

• Similarly, the femoral head is partially or fully beyond the FOV of the probe,

and this can be caused by the probe being positioned too anteriorly or pos-

teriorly. If the femoral head is occluded, we cannot make a FHC3D measure-

ment.

• There is clear movement artifact. This can be usually observed in the sagittal

view and appears as a “smudge”. It is also visible when playing a cine of the

coronal view as we see the femoral head abruptly moving superiorly and

inferiorly in the cine. (e.g. see figure 5.2)

• The ilium and acetabulum are present and planes can be fitted to them, but

their segmented surface area appears smaller than other high-quality, “ade-

quate” examples. This can be caused by the probe pose or rotation deviating

significantly from the optimal position. (e.g. see figure 5.3)

We highlight the following differences compared to Paserin’s criteria. With our

criteria:

• We ignore the labrum and ischium, as these are not relevant for measuring

α3D and FHC3D.

• We emphasize movement artifact, whereas this was not included in Paserin’s

criteria.

• The ilium is treated as a plane (which can be tilted), whereas Paserin’s cri-

teria specifies that it must be a horizontal line (and we assume that this is

based on the standard plane as judged by the rater).

• Beyond the simple presence of certain anatomy viewed in the B-mode views,

we emphasize probe positioning and image quality in terms of the shape and

surface area of the segmentation, which can be more clearly observed in the

3D segmentation view, but is not obvious when looking at only the sagittal,

coronal, and transverse B-mode cines.

72



Figure 5.1: Example showing a sweep that was deemed “inadequate” be-
cause the ilium appears to be beyond the FOV of the scan due to the
probe being positioned too inferiorly from the optimal position (right),
and an “adequate” volume with ilium fully within the FOV for compari-
son (left).

5.1.1 Evaluation Scheme

To evaluate and compare our new criteria with Paserin’s, we apply Paserin’s RNN

model [56, 58] to the same clinical evaluation dataset described in §4.3.3, and dis-

card sweeps labelled as inadequate by this model. We again compute the following

metrics for all 483 sweeps in the set:

• α3D using our methods described in Ch.4

• FHC3D using our methods described in Ch.4

• OCR using our methods described in Ch.4

And we compare the inter-exam, intra-sonographer ICC of the following three sets:

• No-Discard: The full clinical evaluation set without discarding any sweeps
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Coronal Sagittal Transverse

SagittalCoronal Transverse

Movement 
artifact

Figure 5.2: Example of a sweep deemed “inadequate” because of movement
artifact that can be seen as a “smudge” in the sagittal view (lower row),
and for comparison we show the sagittal view of an “adequate” volume
(top row).

• Paserin-Criteria: A distilled set, discarding “inadequate” sweeps based on

the predictions from Paserin’s RNN model [56, 58], and we consider the pre-

dictions of this model to be an approximation of Paserin’s adequacy criteria

• Our-Criteria: A distilled set, discarding “inadequate” sweeps based on the

new criteria describe in the previous §5.1

5.1.2 Results and Discussion

We report the results in table 5.1. First, we note that only 17 sweeps out of 483

were labelled as inadequate and rejected with the RNN, compared to 166 labeled
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Figure 5.3: Example of a sweep deemed borderline adequate (“maybe”) on
the right, due to the labeler’s perception that the probe was not posi-
tioned optimally. Note the shape and reduced area of the ilium (green)
and acetabulum (yellow) surfaces used for α3D in the sweep on the right,
compared with the high-quality sweep on the left. This is potentially due
to the probe being slightly tilted (roll around x-axis) or translated (along
z-axis) away from the optimal position.

Table 5.1: Comparing inter-exam, intra-rater test-retest ICC with different
adequacy criteria. The number of sweeps remaining after discarding in-
adequate sweeps n is shown in parentheses beside each column header.
The 95% CI is reported in parentheses next two each ICC number.

No-Discard (n=483) Paserin-Criteria (n=466) Our-Criteria (n=317)
ααα3D 0.65 (0.48,0.78) 0.67 (0.50,0.79) 0.87 (0.77,0.93)
FHC3D 0.74 (0.61,0.84) 0.75 (0.62,0.85) 0.84 (0.72,0.91)
OCR 0.67 (0.50,0.79) 0.68 (0.52,0.80) 0.74 (0.58,0.86)

as inadequate (in the “maybe” or “no” category) and rejected with the proposed

criteria. Further, the ICCs across all three metrics appear to be higher in the Our-

Criteria set compared to the other two, whereas the Paserin-Criteria set appears to

be tied with the No-Discard set. This suggests that our adequacy criteria are more

selective compared to Paserin’s RNN, and that this selectivity appears to increase

test-retest reproducibility.
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Table 5.2: Adequacy train and test sets class distribution.

Yes=1 Maybe=0.5 No=0 Total
Train Set 100 91 145 336
Test Set 81 30 25 136

Total 181 121 170 472

5.2 Automatic Adequacy Classification with 3D-CNNs
As was described in Ch.1, the overall objective of this thesis is to develop a fully

automatic system that is user-independent, so in this section we attempt to automate

the adequacy classification step that was performed manually as was described in

§5.1.

5.2.1 Classification Model

Inspired by the high accuracy and speed of CNNs proposed by Paserin [56–58] for

this task, we also propose to use CNNs for this task. However, similar to our meth-

ods proposed for femoral head sphere regression presented in §4.2, we propose to

use 3D-CNNs that can fully capture the 3D information in the full volume, com-

pared to the 2D-CNNs that can only use limited information from single frames and

RNNs that can only use information from a few adjacent slices. Again, we experi-

ment with 3D-ResNet-50 and 3D-DenseNet-121 based on promising performance

with on a video classification task reported in the literature [18–20], and given our

time and hardware limitations.

5.2.2 Labeling Data for CNN Training

As depicted in figure 2.3, for training and testing our models, we use an expanded

set of volumes from all 118 participants in our full dataset. We assign 336 sweeps

from 84 participants to the training set and 136 sweeps from 34 participants to

the test set, totaling 472 sweeps. The same rater (author of this thesis) labelled

this set of training and test data using the procedure described in §5.1. The class

distribution for the train and test sets is illustrated in figure 2.3 and is summarized

in table 5.2.
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5.2.3 Training

Based on observations from preliminary cross-validation experiments, we choose

3D-DenseNet-121 over 3D-ResNet-50 for our classification task. We train three

models based on 3D-DenseNet-121 with the following differences:

• Model 1 [B Y/N]

– Input: single channel B-Mode input only

– Output: binary class label, 1 for adequate and 0 for inadequate

– Training set class distribution: All sweeps labelled as “yes” are as-

signed to one class (adequate), all sweeps labelled as “no” are assigned

to the other class (inadequate), and all sweeps labelled as “maybe” are

ignored and not included in the training.

• Model 2 [B+Seg Y/N]

– Input: 3-channel input with B-mode in one channel, 3D-U-Net binary

mask prediction of the pelvis bone surface in the second channel, and

3D-U-Net binary mask prediction of the femoral head in the third chan-

nel.

– Output: binary class label, 1 for adequate and 0 for inadequate

– Training set class distribution: All sweeps labelled as “yes” are as-

signed to one class (adequate), all sweeps labelled as “no” are assigned

to the other class (inadequate), and all sweeps labelled as “maybe” are

ignored and not included in the training.

• Model 3 [B+Seg Y/M/N]:

– Input: 3-channel input with B-mode in one channel, 3D-U-Net binary

mask prediction of the pelvis bone surface in the second channel, and

3D-U-Net binary mask prediction of the femoral head in the third chan-

nel

– Output: binary class label, 1 for adequate and 0 for inadequate
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– Training set class distribution: All sweeps labelled as “yes” are as-

signed to one class (adequate), all sweeps labelled as “maybe” or “no”

are assigned to the other class (inadequate).

For all three models we select the same training hyperparameters:

• Batch size: 1

• Learning rate: 0.0001

• Optimizer: Adam [37]

• Loss: BCE

• Epochs: 150

• Augmentation as described in §4.2.2

• Input size: 100×100×100 pixels

• Regularization: dropout with rate 50%

5.2.4 Testing

We compare the performance of the three models using the AROC on the test set.

Although not directly comparable as it was trained on a different training set, for

completeness we also report the Paserin’s RNN AROC against the same test set.

Since our models output is binary (adequate/inadequate), whereas the test set in-

cludes three classes (yes/maybe/now), we compute the AROCs on two subsets of

the test set:

• Test subset 1: ignoring the “maybe” test cases (this reduces the test set from

136 to 111 sweeps), and

• Test subset 2: assigning all “maybe” cases to the “inadequate” class

Further, we repeat the inter-exam, intra-sonographer ICC analysis on the clin-

ical evaluation sweep (483 sweeps), but this time using the predictions from the

three contrasted models to discard inadequate sweeps. We report ICCs for the
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Table 5.3: AROC scores of three contrasted models when applied on the test
set. In the first row we ignore sweeps in the test set labelled as “maybe”.
In the second row we assign all sweeps labelled as “maybe” to the “inad-
equate” class.

Tested on: RNN[58] B Y/N B+Seg Y/N B+Seg Y/M/N
Subset1
(Y=1,
M=ignore,
N=0)

0.49 0.89 0.9 0.84

Subset2
(Y=1, M=0,
N=0)

0.49 0.75 0.84 0.83

Table 5.4: Inter-exam, intra-sonographer ICC with the proposed CNNs. n
is the number of remaining sweeps after “inadequate” sweeps are dis-
carded. 95% CIs are shown in parentheses.

B Y/N (n=335) B+Seg Y/N (n=391) B+Seg Y/M/N (n=345)
ααα3D 0.79 (0.65,0.88) 0.76 (0.62,0.86) 0.73 (0.50,0.86)
FHC3D 0.82 (0.70,0.90) 0.77 (0.64,0.87) 0.81 (0.64,0.91)
OCR 0.60 (0.40,0.76) 0.72 (0.56,0.83) 0.67 (0.41,0.83)

DDH metrics given that inadequate sweeps are discarded with the three trained 3D-

DenseNet-121 models, and compare these with the previously proposed strategies:

No-Discard, Paserin-Criteria (RNN), and Our-Criteria (manually labeled) summa-

rized in table 5.1.

5.2.5 Results and Discussion

The AROC scores in table 5.3 show that all three 3D-DenseNet-121 models have

mostly learned to emulate the labeler’s ability to predict adequacy based on our pro-

posed criteria. Paserin’s RNN, in comparison, has a very poor score of 49%, indi-

cating that it is not good at predicting adequacy based on our new criteria, although

Paserin reported a high AROC of 83% on a test set of 20 volumes labeled with their

own criteria. Model1 [B Y/N] performs well (AROC of 89%) when tested on test

subset1 that does not include “maybes”, but performs relatively poorly (AROC of
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75%) when tested on subset2 that includes “maybes”. This suggests that this model

is less selective and might classify borderline “maybe” cases as “adequate”, which

presents a risk in a real-world scenario where it is safer to be more selective and

repeat acquisition for borderline cases, as repeated acquisitions are low cost and

fast. In contrast, Model2 (B+Seg Y/N) and Model3 (B+Seg Y/M/N) which addi-

tionally take as input the segmentation binary masks, scored higher AROCs of 84%

and 83% on Subset2. This suggests that segmentation data may provide additional

useful information that can help determine adequacy in uncertain cases. Models 2

and 3 appear to be more selective compared to Model 1, suggesting that they are

potentially safer for use in real-world scenarios.

Considering the ICC scores in table 5.4 and comparing these to scores in table

5.1, in general we see worse test-retest reproducibility with the 3D-DenseNet-121

compared to the human-labelled “Our-Criteria” set. This is probably explained

by over-fitting to the training data and a relative decrease in accuracy on unseen

test data, despite using augmentation and dropout regularization. This could be

improved with more data which we did not have. Further, based on the reported

ICC scores, we do not see a clear pattern on which of the three 3D-DenseNet-121

models performs the best across all three DDH metrics. However, in general we

see that models 2 and 3 appear to score as good or better than the No-Discard

and Paserin-Criteria sets, suggesting their potential to assist in improving DDH

measurement in a real-world scenario.

5.2.6 Conclusions

We proposed new adequacy criteria and compared these criteria to Paserin’s [56,

58], the closest work to ours, and to the best of our knowledge the only other work

on scan adequacy for 3D-US for DDH. We showed that our newly proposed criteria

capture more relevant information and are more selective. Due to this selectivity,

we showed that using these criteria to discard inadequate sweeps improves repro-

ducibility of α3D and FHC3D measurement, suggesting that using the proposed ad-

equacy criteria may reduce misdiagnosis (to be confirmed in future work). Further,

we evaluated 3D-DenseNet-121 to automate adequacy classification with our cri-

teria. We show that our trained models capture more information and are more
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selective compared to the RNN, but we did not show conclusively which of the

three proposed training regimes for 3D-DenseNet-121 is the best.

Limitations

We can only make limited conclusions due to the limitations of this study. These

include:

• The adequacy criteria we proposed and used, although they showed improve-

ments in ICC, are not precisely defined and remain subjective.

• There is a data imbalance in our train and test sets. For example 43% of the

training data was labelled as “no”, whereas only 18% of the test data was

labelled as “no”. It appears that our sonographers became better at acquiring

adequate images as time progressed. This can also be seen in the last row of

figure 2.3, of which the x-axis is ordered chronologically, we see that as time

progresses we get more “yes” labels, and fewer “maybe” and “no” labels.

Future Work

Future work will focus on improving the adequacy criteria, the models, and exper-

imental methodologies. Suggestions for future work include:

• More precisely and quantitatively defining adequacy criteria to improve la-

beling reproduciblity.

• Having more than one labeler, which allows testing reproducibility of the

criteria and reduces labeler bias.

• Using novice sonographers, ideally having a new sonographer for every scan,

which would reduce the learning effect described in the limitations.

• Mitigating the class imbalance in the training process, by reorganizing the

train and test sets, re-sampling, or re-weighting training examples for exam-

ple with Focal Loss [41].

• In our analysis we simply discarded “inadequate” cases. In a real clinical

scenario, this presents a real problem, as an inadequate case means that the
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DDH diagnosis must be made based on information from different tests, po-

tentially forcing the clinician to revert to standard techniques including 2D-

US and clinical examination. As these techniques are unreliable, as we dis-

cussed in Ch.1, this puts the patient at risk of misdiagnosis. Future work

should incorporate point-of-care adequacy feedback, and assess how many

of all the “inadequate” cases can be adequately re-acquired.

• An interesting avenue that could be explored in future work is incorporating

a built-in uncertainty measure into the network that can tell the user if the

network is uncertain of its prediction. This additional uncertainty informa-

tion may potentially help identify the “maybe” cases.

82



Chapter 6

Discussion and Conclusions

6.1 Revisiting Research Questions and comparing the
State-of-the-Art

Here we reiterate the research questions presented in §1.4, and outline conclusions

made for each RQ based on work presented in the previous chapters, in the process

comparing our proposed methods to the SOTA previously presented in the literature.

6.1.1 Research Question 1

Can CNNs be trained to segment the pelvis bone surfaces, including

the ilium and acetabulum, in neonatal hip 3D-US? Would the predic-

tions produced by such CNNs more closely resemble human labels, as

compared to existing SOTA methods such as CSPS?

In Ch.3, we trained U-Net [67] on 439 2D slices for segmenting the pelvis bone

surface in neonatal hip 3D-US. We chose U-Net because of its proven success for

medical image segmentation [30] and ability to learn from very few images. In our

comparison, we mainly compare with CSPS as it is the only fully automatic method

that was applied to 3D-US volumes for DDH, to the best of our knowledge, and we

consider to be the SOTA for our application. When tested on 103 previously unseen

2D slices, U-Net achieved a DSC of 86%, outperforming CSPS+ROI [61, 62] which

achieved a DSC of 81%.
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In §4.1, we further experimented with 3D-U-Net [6], which uses 3D convolu-

tion kernels as opposed to U-Net which uses 2D convolutions, hypothesizing that

incorporating 3D information may improve the segmentation accuracy. We trained

3D-U-Net on a set of 64 volumes. When tested on 52 volumes, we report DSCs of

85% an 91% for 3D-U-Net and U-Net, respectively, but very different CDI scores

of 76% and 24% with 3D-U-Net and U-Net, respectively. These results, supported

by our visual observations, suggest that 3D-U-Net is less likely to produce false

positive segmentations (islands) that are distant from the bone surface, but that

both methods can capture most of the bone surface. Importantly, these are much

higher than the scores achieved by the SOTA CSPS method, which achieved DSC of

26% and CDI of near 0%.

We conclude that CNNs can be trained to segment the pelvis bone surfaces in

neonatal hip 3D-US, and that the resulting segmentations more closely resemble

human labels as compared to the SOTA.

6.1.2 Research Question 2

Can CNNs be trained to locate the femoral head in neonatal hip 3D-

US? Would the predictions produced by such CNNs more closely re-

semble human labels, as compared to existing SOTA methods such as

Quader’s RFC [61, 64]?

In §4.2, we trained 3D-U-Net [6] to segment the femoral head in neonatal hip US.

We compare 3D-U-Net to an RFC-based method introduced by Quader [61, 64],

which is to the best of our knowledge the only method previously presented in

the literature for fully automatic segmentation of the femoral head in 3D-US of

the neonatal hip, and which we consider the SOTA for this application. When

tested on a set of unseen 53 volumes, 3D-U-Net localized the femoral head with

CED 1.42 mm and RAE 0.46 mm. This more closely matched the human label

compared to the RFC [61, 64], which achieved 3.90 mm CED and 2.01 mm RAE

on the same test set. We conclude that CNNs can be trained to locate the femoral

head in neonatal hip 3D-US, and that the predictions produced by these CNNs more

closely resembles the human labels as compared to the SOTA.
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6.1.3 Research Question 3

Can we develop automatic methods for extracting α3D and FHC3D

metrics with our improved segmentations that are at least as repro-

ducible as the previously proposed methods [61, 63, 64]? Can we

show that our proposed methods are at least as robust and plausible

as these previously proposed methods?

In §4.3, we presented algorithms for automatically extracting dysplasia metrics

including α3D, FHC3D, and OCR from the segmented neonatal hip 3D-US volumes.

Comparing to the literature, to the best of our knowledge, there are only two other

systems which use 3D-US for DDH diagnosis that are comparable to our system,

and both were developed simultaneously. One system, which was developed by

Zonoobi et al. [82], is semi-automatic, requiring seed-point inputs from the user,

and measures the α3D-anterior, α3D-poster, and OCR metrics. The other system,

developed in our lab by Quader et al. [61, 63, 64], is fully automatic, uses CSPS for

bone surface segmentation, an RFC classifier for femoral head segmentation, and

measures α3D and FHC3D. Of these two, Quader’s method, being fully automatic,

is closest to ours, so we consider this to be the SOTA for our application, so we

compare directly to this method in our experiments.

On a clinical set of 42 hips, our method achieves inter-exam, intra-sonographer

ICCs of 87%, 84%, and 74% for α3D, FHC3D, and OCR, respectively. On the same

set of 42 hips, Quader’s methods [61, 63, 64] achieved lower ICCs of 78% and 68%

for α3D and FHC3D, respectively. Further, qualitative observations by an indepen-

dent observer suggest higher plausibility, fewer failures, and improved robustness

with our methods.

Based on our experiments in §4.3, we conclude that our methods are more

reproducible (in the inter-exam, intra-sonographer setting), more robust, and more

plausible than Quader’s methods [61, 63, 64], the current SOTA for fully automatic

measurement of DDH from neonatal hip 3D-US volumes.

6.1.4 Research Question 4

Are the current adequacy criteria proposed by Paserin [56] sufficient?

Can we improve the criteria? Can we train new models for automating
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classification based on the newly defined criteria?

To the best of our knowledge, Paserin’s work [56–58] is the only other work

in the literature that addressed the problem of adequacy classification of 3D-US,

so we consider it the SOTA for this application. In §5, we propose a new set of

adequacy criteria based on recent observations of segmented volumes, and com-

pare these to Paserin’s. When applied to a set of 483 volumes, only 317/483 cases

were deemed adequate with the new criteria, whereas 466/483 were deemed ad-

equate with Paserin’s criteria (as approximated by the RNN [58]). Based on this,

we conclude that our new criteria are more selective. Further, we report higher

inter-exam, intra-sonographer ICCs when inadequate volumes are discarded with

our criteria, for example 87% for α3D vs. 67% when using the RNN for adequacy

classification. These results, in addition to qualitative observations, suggest that

the newly proposed criteria are more selective, and that this selectivity results in

improved test-retest reproducibility of DDH measurement.

Further, we experimented with 3D-DenseNet-121 [18–20], for automating the

adequacy classification based on the new adequacy criteria. Tested on an un-

seen test set of 136 sweeps, which was labelled based on the new criteria, 3D-

DenseNet-121 achieved classification AROC of 84%, much higher than the RNN

which achieved an AROC of 49%. With this improved selectivity, using 3D-DenseNet-

121 for identifying and discarding inadequate sweeps, we observed higher ICCs

compared to using the RNN for identifying discarding inadequate sweeps, but still

lower than manual labeling (e.g. for α3D, ICCs of 65% without discarding inad-

equate sweeps, 67% with the RNN, 76% with 3D-DenseNet-121, and 87% with

manual inadequate sweep identification). We conclude that 3D CNNs show some

promise towards this task, but can likely be much improved in future work.

6.2 Limitations
Overall, the biggest limitations of the work presented in this thesis include:

• Homogeneity and limited diversity in the data. For example, the data col-

lected included only scans with the Ultrasonix 4DL14-5 probe, and from a

sample of participants only from British Columbia. A known problem with
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deep neural networks is their tendency to overfit to the training data, which

is best mitigated by training with a diverse dataset, so our models have likely

overfitted to our limited dataset. Their performance will likely deteriorate

when used on data from other domains, such as different US probes, but this

is yet to be determined with an expanded, more diverse dataset.

• Due to the lack of a reliable and trusted gold standard diagnostic technique

for measuring hip socket depth, we do not report accuracy or validity of

our methods, only test-retest reproducibility. Therefore, we cannot make

any strong conclusions about our methods’ validity beyond our qualitative

observations that show plausibility of our proposed methods.

• The ICCs reported are inter-exam, intra-sonographer, and only two expert

sonographers participated in the study. Therefore, conclusions about repro-

ducibility cannot be generalized to inter-sonographer and novice user sce-

narios.

6.3 Future Work
Ultimately, the goal of this project is to develop an accurate, safe, and robust so-

lution for DDH diagnosis. This device should additionally be optimized for cost,

computational efficiency, and usability to facilitate wide-spread clinical adoption

to reach as many participants as possible, and to reduce misdiagnosis rates glob-

ally. Building on work presented in this thesis, and considering these overarching

goals, I recommend that future research should prioritize addressing the aforemen-

tioned limitations, as well as exploring new research avenues that would target

these goals.

6.3.1 Domain Shift and Adaptation

Data from different domains: To address the problem of homogeneous data and

domain shift, the first challenge would be to obtain more diverse data, for exam-

ple from different probes, settings, and geographical regions. This is potentially

possible with the help of clinical researchers at the International Hip Dysplasia In-

stitute. This data would be crucial not only for evaluating, but also for improving
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the accuracy of our models under domain shift. Here, different data scenarios may

arise, which would require different solutions. For example, in the best-case sce-

nario, we may get many images and many labels from different domains; or worse,

we may get many images but few or no labels; or in the worst-case scenario, we

may get few images and few labels. All of these are realistic scenarios, and present

interesting research avenues.

Solutions for domain shift: Ultimately, the solution will depend on the avail-

able images and labels. In the scenario where many unlabelled images are pro-

vided from a new domain, unsupervised domain adaptation techniques can be used

[75, 77]. A related approach is neural style transfer, whose main application has

been artistic style transfer [34], but one can imagine each probe and setting com-

bination as a different artistic style and apply the same techniques. In the scenario

with many images but few or weak labels, weakly-supervised techniques, which

use cheaper labels such as image-level tags to train segmentation networks, or

semi-supervised techniques, which leverage a small number of strongly labelled

images and many weakly-labelled images to cheaply improve segmentation, have

been proposed [55]. In the more challenging scenario where images are scarce,

new approaches such as few-shot learning [15], which aims to learn with very few

labelled images, may be useful. Notably, few-shot techniques for segmentation are

seemingly relatively under-studied compared to classification. The final solution

will likely be a combination of such techniques as dictated by the available data.

Evaluation: Robustness to domain shift of proposed models and solutions

could then be evaluated on a more diverse and heterogeneous dataset designed

to test performance under domain shift. For example, solutions could be trained

on data from one domain (e.g. with the Ultrasonix probe), and then tested on data

from an unseen domain (e.g. different probe and settings). Depending on the task

(e.g. segmentation or adequacy classification), performance could be measured

and contrasted quantitatively with relevant metrics for the task (e.g. classification

accuracy, Dice Score, etc.) on examples from the unseen domain.
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6.3.2 Improved Clinical Study

To address the aforementioned limitations of validity (as opposed to reliability) and

intra-sonographer ICC, an improved clinical study will likely be necessary in the

future. Ideally, one could conduct a randomized clinical trial which would random-

ize patients into control and experimental groups, treat based on diagnosis with our

3D-US-based methods, and track clinical outcomes in the long run to assess sen-

sitivity, specificity, and AROC of our proposed diagnostic techniques. However,

this is likely not possible due to ethical considerations and resource limitations.

Alternatively, one could make smaller modifications to future clinical studies to

address the limitations, at least partially. For example, to assess inter-sonographer

(as opposed to intra-sonographer) reproducibility, one could require each hip to be

scanned by more than one sonographer. To address the question of validity, one

could perhaps require patients to be scanned with a different imaging modality (e.g.

MRI).

6.3.3 Detectability of Failure: Deep Learning with Uncertainty

Another interesting topic to be explored in future work is uncertainty. Patient

safety is paramount in medical applications. Safety is a function of severity, proba-

bility, and detectability of failure. The biggest safety risk with using our AI-enabled

US device is perhaps the risk of misdiagnosis. Work in this thesis has focused on

reducing the probability of misdiagonsis. Further implementing a measure of un-

certainty in our models would improve detectability of failure and potential mis-

diagnosis. This is perhaps especially important under scenarios of domain shift

(e.g. different probe), in which an indication of low confidence can alert the oper-

ator that the model output cannot be trusted and that manual intervention may be

necessary.

Uncertainty is an active area of research that has gained much attention re-

cently. Many methods have been proposed to estimate uncertainty, perhaps most

popular of which are Monte Carlo Dropout [8] and Bayes by Backprop [3]. A

recent study [52] that compared the aforementioned techniques and others under

domain shift concluded that quality of uncertainty degrades with increasing dataset

shift regardless of method. It would be interesting to evaluate different uncertainty
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techniques (e.g. Monte Carlo Dropout, BNNs, etc.) using the metrics proposed by

Ovadia [52] on the DDH dataset, including Reliability Diagrams, Expected Cali-

bration Error, and Entropy.

6.4 Clinical Impact and Significance
We have proposed a system for DDH diagnosis with 3D-US. CNNs played a key

role in improving the segmentation and classification components of this system,

ultimately improving the reliability, robustness, and usability of the system as a

whole, as we showed in a limited clinical study. We hypothesize that these im-

provements will serve to improve the accuracy of DDH diagnosis in the clinic,

reducing misdiagnosis rates, and consequently improving patient outcomes and re-

ducing costs. Improved automation and usability of our system further serves to

make this solution more attractive to clinicians, especially in low-resource settings

that lack expertise, ultimately encouraging clinical translation of our system and

consequently reaching more patients globally.
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Automatic Characterization of the Neonatal Hip with 3-Dimensional 
and Tracked Ultrasound 

 
Date form completed:  __ __/__ __ __/ __ __ __ __ Study ID: 3DUS19__ __ __ 
            Day       Month                 Year  

 
Data Collection Form  

  

Participant Demographics: 
 
Date of Appointment: __ __/__ __ __/ __ __ __ __  

  Day       Month                 Year  

 
Chronologic age: ___________   weeks (rounded to nearest whole number) 
 
Gender:  M F 
  
 
Affected Hip:  R L Bilateral 
 
 
 
Familial History of DDH: Yes No 
 
If yes, whom:  ________________________________ 
 
 
 
First Born Child: Yes No 
 
 
Breech Presentation: Yes No 
 
 
Caesarian Section: Yes No 

Data Collection Form March 1, 2019 

 

Figure A.1: Data collection form used in the clinical study
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Table B.1: Mean performance metrics for the four contrasted methods on a
test set of 52 volumes from 13 participants.

CSPS CSPS DDH U-Net 3D-U-Net ANOVA p-value
Precision 0.11 0.28 0.84 0.83 5.0E-115
Recall 0.83 0.28 1.00 0.87 7.9E-103
J 0.11 0.15 0.84 0.74 2.9E-127
DSC 0.19 0.26 0.91 0.85 1.5E-126
MED R2P(mm) 0.15 3.54 0.00 0.12 3.3E-24
MED P2R(mm) 14.52 9.16 0.93 0.29 1.4E-73
MED max(mm) 14.52 9.23 0.93 0.31 2.6E-74
HD R2P(mm) 1.65 11.63 0.39 3.38 3.2E-40
HD P2R(mm) 33.57 32.78 16.50 3.56 3.8E-96
HD max(mm) 33.57 32.78 16.50 5.46 1.5E-86
RMS P2R(mm) 17.15 12.65 2.91 0.70 8.7E-84
CAI 0.35 0.31 0.94 0.92 3.1E-101
CDI 0.00 0.00 0.24 0.76 1.4E-56

Table B.2: Precision post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 1.5E-16 7.6E-66 2.5E-76
CSPS DDH 1.5E-16 1.0E+00 1.3E-46 2.0E-51
U-Net 7.6E-66 1.3E-46 1.0E+00 4.9E-01
3D-U-Net 2.5E-76 2.0E-51 4.9E-01 1.0E+00

Table B.3: Recall post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 9.5E-43 7.0E-19 3.8E-02
CSPS DDH 9.5E-43 1.0E+00 3.6E-62 2.1E-51
U-Net 7.0E-19 3.6E-62 1.0E+00 4.4E-30
3D-U-Net 3.8E-02 2.1E-51 4.4E-30 1.0E+00

Table B.4: Jaccard Coefficient post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.00E+00 2.55E-04 5.99E-66 2.80E-70
CSPS DDH 2.55E-04 1.00E+00 4.62E-62 5.83E-65
U-Net 5.99E-66 4.62E-62 1.00E+00 2.45E-07
3D-U-Net 2.80E-70 5.83E-65 2.45E-07 1.00E+00
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Table B.5: Dice-Sorensen Coefficient post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 4.6E-04 1.9E-69 6.5E-69
CSPS DDH 4.6E-04 1.0E+00 7.7E-62 2.3E-60
U-Net 1.9E-69 7.7E-62 1.0E+00 1.3E-06
3D-U-Net 6.5E-69 2.3E-60 1.3E-06 1.0E+00

Table B.6: MEDR2P post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 3.3E-10 6.2E-15 2.5E-01
CSPS DDH 3.3E-10 1.0E+00 8.0E-11 2.6E-10
U-Net 6.2E-15 8.0E-11 1.0E+00 7.2E-18
3D-U-Net 2.5E-01 2.6E-10 7.2E-18 1.0E+00

Table B.7: MEDP2R post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 2.3E-10 3.2E-48 1.9E-51
CSPS DDH 2.3E-10 1.0E+00 2.2E-23 3.7E-26
U-Net 3.2E-48 2.2E-23 1.0E+00 2.3E-04
3D-U-Net 1.9E-51 3.7E-26 2.3E-04 1.0E+00

Table B.8: MEDmax post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 2.5E-10 3.2E-48 2.1E-51
CSPS DDH 2.5E-10 1.0E+00 4.8E-24 8.6E-27
U-Net 3.2E-48 4.8E-24 1.0E+00 3.5E-04
3D-U-Net 2.1E-51 8.6E-27 3.5E-04 1.0E+00

Table B.9: HDR2P post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 3.5E-23 7.7E-25 7.7E-03
CSPS DDH 3.5E-23 1.0E+00 1.3E-26 4.4E-13
U-Net 7.7E-25 1.3E-26 1.0E+00 8.2E-06
3D-U-Net 7.7E-03 4.4E-13 8.2E-06 1.0E+00
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Table B.10: HDP2R post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 1.7E-01 2.4E-33 3.1E-61
CSPS DDH 1.7E-01 1.0E+00 4.7E-32 1.3E-60
U-Net 2.4E-33 4.7E-32 1.0E+00 1.1E-21
3D-U-Net 3.1E-61 1.3E-60 1.1E-21 1.0E+00

Table B.11: HDmax post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 1.7E-01 2.4E-33 2.5E-52
CSPS DDH 1.7E-01 1.0E+00 4.7E-32 1.5E-51
U-Net 2.4E-33 4.7E-32 1.0E+00 8.5E-16
3D-U-Net 2.5E-52 1.5E-51 8.5E-16 1.0E+00

Table B.12: CAI post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 1.3E-01 3.8E-50 1.2E-49
CSPS DDH 1.3E-01 1.0E+00 2.3E-55 4.5E-55
U-Net 3.8E-50 2.3E-55 1.0E+00 5.8E-02
3D-U-Net 1.2E-49 4.5E-55 5.8E-02 1.0E+00

Table B.13: CDI post hoc t-test p-values.

CSPS CSPS DDH U-Net 3D-U-Net
CSPS 1.0E+00 1.0E-04 2.8E-09 1.6E-36
CSPS DDH 1.0E-04 1.0E+00 3.3E-09 1.8E-36
U-Net 2.8E-09 3.3E-09 1.0E+00 2.6E-16
3D-U-Net 1.6E-36 1.8E-36 2.6E-16 1.0E+00
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Table C.1: Results comparing the two proposed methods with the state-of-
the art RFC for predicting the location of the femoral head. Note that the
RFC and 3D-ResNet-50 were compared against the full sphere label as
ground truth (as described in §4.2.1), whereas 3D-U-Net was compared
against the semi-sphere cropped by bounding box B as ground truth.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg ANOVA p-value
Precision 0.46 0.62 0.73 1.1E-12
Recall 0.49 0.81 0.82 7.3E-20
J 0.29 0.53 0.62 4.4E-27
DSC 0.43 0.69 0.76 3.3E-26
CAE x(mm) 1.63 1.61 1.04 9.3E-03
CAE y(mm) 1.87 2.31 0.45 1.3E-11
CAE z(mm) 2.27 1.19 0.66 2.2E-09
CED(mm) 3.90 3.35 1.42 5.3E-15
RAE(mm) 2.01 1.01 0.46 1.9E-17

Table C.2: Precision post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 2.0E-05 6.1E-13
3D-ResNet-50 Reg 2.0E-05 1.0E+00 6.1E-04
3D-U-Net Seg 6.1E-13 6.1E-04 1.0E+00

Table C.3: Recall post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 4.0E-13 5.3E-13
3D-ResNet-50 Reg 4.0E-13 1.0E+00 5.1E-01
3D-U-Net Seg 5.3E-13 5.1E-01 1.0E+00

Table C.4: Jaccard Coefficient post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 3.6E-15 3.2E-24
3D-ResNet-50 Reg 3.6E-15 1.0E+00 5.3E-04
3D-U-Net Seg 3.2E-24 5.3E-04 1.0E+00
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Table C.5: DSC post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 3.8E-14 4.2E-21
3D-ResNet-50 Reg 3.8E-14 1.0E+00 4.4E-04
3D-U-Net Seg 4.2E-21 4.4E-04 1.0E+00

Table C.6: CAEx post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 9.4E-01 7.9E-03
3D-ResNet-50 Reg 9.4E-01 1.0E+00 3.6E-03
3D-U-Net Seg 7.9E-03 3.6E-03 1.0E+00

Table C.7: CAEy post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 1.5E-01 8.1E-08
3D-ResNet-50 Reg 1.5E-01 1.0E+00 7.3E-16
3D-U-Net Seg 8.1E-08 7.3E-16 1.0E+00

Table C.8: CAEz post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 3.2E-04 3.7E-08
3D-ResNet-50 Reg 3.2E-04 1.0E+00 2.8E-04
3D-U-Net Seg 3.7E-08 2.8E-04 1.0E+00

Table C.9: CED post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 9.7E-02 7.8E-13
3D-ResNet-50 Reg 9.7E-02 1.0E+00 2.3E-14
3D-U-Net Seg 7.8E-13 2.3E-14 1.0E+00

Table C.10: RAE post hoc t-test p-values.

RFC 3D-ResNet-50 Reg 3D-U-Net Seg
RFC 1.0E+00 4.5E-07 9.1E-16
3D-ResNet-50 Reg 4.5E-07 1.0E+00 3.7E-06
3D-U-Net Seg 9.1E-16 3.7E-06 1.0E+00

110



Appendix D

§4.3 Supporting Materials

Table D.1: Comparing the SD for paired inter-exam measures for the different
DDH metrics (n=42 hips)

SD

α3D (◦)
Quader[61] 2.6
Ours 2.1

FHC3D (%)
Quader[61] 2.9
Ours 3.5

OCR (mm)
Quader[61] -
Ours 0.41
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Figure E.1: An example case for which the ground truth label is “inade-
quate”, our models predicted as “inadequate”, but that the RNN pre-
dicted as “adequate”. Left: the coronal view near the standard plane,
with the 3D-U-Net pelvis bone surface prediction overlaid in pink.
Right: the ilium and acetabulum point clouds after processing with the
metrics extraction algorithm described in §4.3. We get a clear picture
from these views that the probe is positioned too inferiorly, and that
much of the ilium surface is not imaged. As a result, the bony rim ap-
pears to be misidentified, and the ilium plane appears to be incorrectly
fitted, ultimately resulting in invalid α3D and FHC3D measurements.
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Coronal Sagittal Transverse

Figure E.2: Another example case for which the ground truth is “inade-
quate”, our models predicted as “inadequate”, but that the RNN pre-
dicted as “adequate”. In this case we show the segmented points clouds
in the top row, and the 3 anatomical planes in the bottom row. We can
see in the sagittal view that there is a “smudge” due to movement ar-
tifact, circled in red. The effect of this on the acetabulum point cloud
can be seen as a gap in the acetabulum that is usually not present in
high-quality, adequate volumes.
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Figure E.3: Another example case for which the ground truth is “inade-
quate”, our models predicted as “inadequate”, but that the RNN pre-
dicted as “adequate”. Left: we show our best attempt at locating the
standard plane by browsing all the coronal slices. Right: the per-frame
prediction of the RNN, from which the finall RNN prediction is made
by thresholding and summing. We clearly see that the RNN incorrectly
predicts very high scores for the first 40 slices, although none of these
meet the criteria defined by Paserin [56, 58].
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