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Abstract

Coronary Artery Disease (CAD) is the leading cause of morbidity and mortality in

developed nations. In patients with acute or chronic obstructive CAD, Echocar-

diography (ECHO) is the standard-of-care for visualizing abnormal ventricular wall

thickening or motion which would be reported as Regional Wall Motion Abnormal-

ity (RWMA). The accurate identification of regional wall motion abnormalities is

essential for cardiovascular assessment and myocardial ischemia, coronary artery

disease and myocardial infarction diagnosis. Given the variability and challenges

of scoring regional wall motion abnormalities, we propose the development of a

platform that can quickly and accurately identify regional and global wall motion

abnormalities on echo images.

This thesis describes a deep learning-based framework that can aid physicians

to utilize ultrasound for wall motion abnormality detection. The framework jointly

combines image data and patient diagnostic information to determine both global

and clinically-standard 16 regional wall motion labels. We validate the approach

on a large cohort of echo studies obtained from 953 patients. We then report the

performance of the proposed framework in the detection of wall motion abnormal-

ity. An average accuracy of 69.2% for the 16 regions and an average accuracy of

69.5% for global wall motion abnormality were achieved.

To the best of our knowledge, our proposed framework is the first to analyze

left ventricle wall motion for both global and regional abnormality detection in

echocardiography data.
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Lay Summary

Identification of patients with regional wall motion abnormalities is beneficial for

early detection of any coronary artery disease not evident by symptoms. Conven-

tional methods for assessment of RWMAs, which are based on visual interpretation

of endocardial excursion and myocardial thickening, are observer variants and de-

pend on the experience level of the echocardiographer. Considering the variability

and challenge of coding RWMAs, an effective model for the reduction of the mis-

reading of RWMAs is required. Thus, we propose the development of a machine

learning platform that can quickly and accurately identify regional wall motion

abnormalities on echo images. Such a tool would have several applications to im-

prove the accuracy and consistency of RWMA reporting with bedside echo at the

point of care.
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Chapter 1

Introduction and Background

1.1 Clinical Background

1.1.1 Heart

Anatomy

The heart is a muscular organ that pumps blood around the body, located within

the thoracic cavity, medially between the lungs in the space known as the medi-

astinum. Figure 1.1 shows the position of the heart in the thoracic cavity. The heart

is located on its own space named the pericardial cavity and is separated from other

mediastinal parts in the mediastinum by the pericardium or pericardial sac which

is a tough membrane.

The heart looks like a pinecone. A person’s heart is typically around the size of

his/her fist: normally 12 cm× 8 cm× 6 cm. Considering the differences between

the members of each sex, an average female heart is approximately 250-300 grams

and an average male heart is approximately 300-350 grams. Exercise is an impor-

tant factor in the increase in the size of the heart. The behaviour of the cardiac

muscle at exercise time is similar to the skeletal muscle. The exercise increases the

protein myofilaments, resulting in an increase in the size of particular cells without

increasing the number of them, i.e. hypertrophy. Thus, athletes’ hearts can pump

blood more effectively (same amount of blood pump at a lower heart rate) than
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Figure 1.1: Heart position in the thoracic cavity, located in the mediastinum
between the lungs. (This image is available under a Creative Commons
Attribution License 2.0 at
https://commons.wikimedia.org.)

non-athletes [43].

There are four chambers in the human heart: one atrium and one ventricle on

each side of the heart. The upper chambers, also known as the atrium, serve as

receiving chambers and contract to push the blood to the ventricles. On the other

hand, the ventricles function as the principal pumping section, pushing the blood

to the lungs or the other organs in the body.

The wall of the heart consists of three unequal thickness layers of tissue: epi-

cardium, myocardium, and endocardium. The so-called layers are mainly covered

with a thin protective layer named pericardium. The epicardium is mainly made

of connective tissue. The myocardium particularly consists of the muscles of the

heart, and the endocardium lines the inside of the heart and protects the valves and

chambers [43].

Besides, the heart contains four valves being used to keep the blood flow in one

direction only. The atrioventricular valve or tricuspid valve is located between the
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right atrium and the right ventricle. Moving forward from the right ventricle at the

base of the pulmonary trunk, we reach the pulmonary valve. The mitral valve, also

known as the bicuspid valve, is located at the opening between the left atrium and

left ventricle. The last valve is the aortic valve settled at the base of the aorta that

prevents back-flow from the aorta.

Function

The heart, blood, and blood vessels combined are called the circulatory system.

An average human body has around 5 litres of blood, which is constantly pumped

throughout the body around 100,000 times a day.

There are two blood circulations in the human body called pulmonary and sys-

temic circuits. The pulmonary circuit is the transportation of blood between the

heart and lungs, where it receives fresh oxygen and delivers carbon dioxide for

exhalation. On the other hand, the systemic circuit is the transportation of oxy-

genated blood to all other tissues of the body and returning of deoxygenated blood

and carbon dioxide to the heart to be sent back to the pulmonary circulation.

A cardiac rhythm or heartbeat is known as the process of blood pumping

through the four chambers. The heartbeat can be split into two phases: systole

and diastole. In diastole, the atria and ventricles relax and fill with blood. In sys-

tole on the other hand, the atria contract and pump blood into the ventricles; after

that, as the atria start to relax, the ventricles contract (ventricular systole) and pump

blood out of the heart.

In summary, as shown in Figure 1.2, blood flows from the right atrium to the

right ventricle, then it is pumped into the pulmonary circuit. The blood in the

pulmonary artery branches has low oxygen but a relatively high amount of carbon

dioxide. In the pulmonary capillaries, gas exchange occurs (oxygen is entered to

blood, carbon dioxide is out). Subsequently, the blood which is high in oxygen

and low in carbon dioxide is returned to the left atrium. Then, blood enters the

left ventricle, which is pumped to the systemic circuit. Following the exchange in

the systemic capillaries, the deoxygenated blood returns to the right atrium and the

cycle is repeated.
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Figure 1.2: Human blood circulation in Heart. (This image is available under
a Creative Commons Attribution Licence 2.0 at
https://commons.wikimedia.org.)

Imaging Modalities

The visual assessment of ventricular function, cardiac chamber dimensions, and

ventricular mass is essential for clinical diagnosis, risk assessment, therapeutic de-

cisions, and prognosis in patients with any kind of cardiac disease. Many imaging

techniques are applicable for the assessment of the left ventricular function each

with their own limitations.

Cardiac Magnetic Resonance (Imaging) (CMR) has been considered as the gold

standard for Left Ventricle (LV) assessment. Despite good performance, CMR is

expensive, time-consuming, and is not available in most of the medical centers.

Moreover, it can not be used for all patients, due to the presence of metal devices

or clinical conditions such as claustrophobia and the inability to lay flat in some

patients [17].

Cardiac Computed Tomography (CCT) is a non-invasive imaging technique that

can be used to obtain information about left ventricular function and morphology,

in addition to its main application which is the assessment of coronary artery dis-

4



ease. It serves as a decent alternative option when other imaging modalities such

as echocardiography cannot deliver acceptable images; or where CMR cannot be

used due to patient’s contraindications [50].

Having compelling developments in ultrasound technology, the routine incor-

poration of harmonic imaging has been used clinically for the assessment of LV

segmental function [21].

A detailed assessment of the global and regional myocardial function is de-

veloped using other echocardiographic imaging modalities including automated

endocardial border detection using integrated backscatter, tissue Doppler and two-

dimensional (2D) speckle tracking imaging of myocardial displacement, velocity,

strain and strain rate, and real-time three-dimensional (3D) echo that will be dis-

cussed in the next section.

1.1.2 Echocardiography

Echocardiography or cardiac echo, mainly known as echo, is an ultrasound im-

age of the heart. The conventional ultrasound image is created by an ultrasound

transducer transmitting and then receiving Radio Frequency (RF) signals. The RF

signals are then converted to a digital RF signal, filtered to produce an envelope-

detected signal. The resulting signal will produce the final B-mode image after

some post-processing methods. Moreover, for doing some measurements, colour

flow Doppler is interpreted.

Echocardiography has been routinely used in most of the diagnosis, manage-

ment, and follow-up of patients related to heart diseases. It is one of the most

common diagnostic tests used in cardiology. It provides rich information about

the size and shape of the heart (internal chamber size quantification), pumping ca-

pacity, and the location and extent of any tissue damage. Moreover, the videos of

it help cardiologists to have a good estimation of the heart function, such as the

calculation of the cardiac output, ejection fraction, and diastolic function (i.e. how

well the heart relaxes). It is also used as a tool for the assessment of how severe is

the wall motion abnormality in patients with suspected cardiac diseases.
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(a) B-mode (b) Doppler

Figure 1.3: Demonstration of different echo modalities.

B-mode

The B-mode echo producing the visual interface of examined anatomy in both 2D

and 3D echo files is the most common method of heart imaging. The brightness of

each pixel in the images is dependent on the amplitude of the returned echo signal.

The difference in brightness of each tissue allows visualization and quantification

of anatomical structures, as well as visualization of diagnostic and therapeutic pro-

cedures. This is a real-time method for image acquisition, allowing for up to 50-70

images per second in 2D echo.

Colour Doppler

Colour Doppler ultrasound allows cardiologists to clearly observe the blood flow

through the heart and the blood vessels. It also allows them to measure obstructions

in arteries and the degree of narrowing or leakage of heart valves (regurgitation).

It is mainly done by encoding colour Doppler information and overlaying it on 2D

echo images. Each colour is a representation of the speed of blood flow within a

Region of Interest (ROI).

Cardiac views

Transthoracic Echocardiography (ECHO) is the most common imaging modality

used for cardiac assessment. The ultrasound data is acquired from standard cross-
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sections of the heart for measurement and examination of multiple variables in

cardiac structures and functions. Each of these cross-sections of the heart will

result in different views in echo that distinctly highlight specific regions of the

heart details. The cardiac echo data is acquired by the manual movement of the

imaging probe over chest acoustic windows. A good interpretation of the heart is

achieved through correct acquisition using the best fixation on the cross-section.

This requires years of experience and expertise.

2D echo incorporates a recording of 2D cardiac images, often referred to as

cine series. Each cine illustrates a 2D cross-sectional video of heart and may con-

tain several cardiac cycles. There are 14 cardiac standard views each with their

own set of signature features. The main standard cardiac views are:

• Apical views (Apical Two-chamber (A2C), Apical Four-chamber (A4C), etc.)

• Parasternal Short-axis (PSAX) views

• Parasternal Long-axis (PLAX) view.

Figure 1.4 shows the main cardiac views, in which the transthoracic echo view is

alongside its anatomical diagram.

The four views most frequently acquired by clinicians are apical four-chamber,

parasternal long axis (PLAX), parasternal short axis at the papillary muscle level

(PSAX-PM), and subcostal four-chamber (SUBC4). For the purpose of this thesis,

we only need three views of the heart: apical two-chamber and four-chamber, and

parasternal long axis (PLAX).

1.1.3 Wall Motion Abnormality (WMA)

Clinical Definition

The blood is supplied to different regions of the heart through three main epicardial

coronary arteries. The left main coronary artery is split to the Left Anterior De-

scending Artery (LAD) and the Left Circumflex Artery (LCX). In the blood supply,

there may be some variations but the overall pattern is the same: The LAD goes

down the interventricular groove and provides blood to the anterior wall (with the

help of its diagonal branches), anterior septum and apex of the heart. On the other

7



(a) A2C view (b) A4C view

(c) PLAX view (d) PSAX view

Figure 1.4: Four main cardiac views. (Left) The transthoracic echocardio-
gram displaying different structures in the heart. (Right) An anatomical
diagram of the corresponding view.

hand, the lateral wall is supplied by the left circumflex artery with its marginal

branches. The Right Coronary Artery (RCA) arising from the right sinus of Val-

salva and going infero-medially down to the atrioventricular groove. The posterior

descending artery (PDA), which is a branch of RCA, supplies the inferior wall and

the inferior septum.

In echocardiography, regional myocardial function assessment is mainly done

by observing the wall thickening and endocardial motion of the myocardial seg-

ment.

However, it should be remembered that deformation can also be passive and

therefore, may not always accurately reflect myocardial contraction.
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Figure 1.5: LV regional wall motion analysis. Subfigure (a) shows the effect
of WMA severity on motion dysfunction of the wall. It has been advised
to assess the wall motion of individual LV segments visually and score
them [29].

Many models have been used to divide the left ventricular myocardium into

segments so that regional wall motion can be accurately explained and quantified.

The LV myocardium is divided into three sections as follows:

base (six segments, each encompassing 60 degrees of the left ventricular short-

axis which are described as: basal anterior, basal anterolateral, basal inferolateral,

basal inferior, basal inferoseptal)

mid-section (divided into six segments in a similar manner to the base)

apex (divided into four 90 degree segments of apical anterior, apical lateral,

apical inferior, apical septum).

Each of these sections is divided into some segments that correspond to regions

in the LV wall. The most recent recommendation from the American College of

Cardiology (ACC) and American Heart Association (AHA) is a 17-segment model

[42]. Since the apical cap in the 17 segment model is acontractile and therefore

more appropriate for perfusion imaging, the 16 segment model of myocardial seg-

mentation is being used extensively. Table 1.1 shows a complete list of all segments

highlighted in Figure 1.6.

Each segment is then assigned a score between 1 to 5, using the following

criteria:

1 = normal or normokinetic (normal wall thickening and endocardial excur-
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Table 1.1: The complete list of all 17 segments of left ventricle wall.

Basal segments Mid segments Apical segments

1. Basal anterior 7. Mid anterior 13. Apical anterior

2.Basal antero-septal 8. Mid antero-septal 14. Apical septal

3.Basal infero-septal 9. Mid infero-septal 15. Apical inferior

4. Basal inferior 10. Mid inferior 16. Apical lateral

5. Basal infero-lateral 11. Mid infero-lateral 17. Apex

6. Basal antero-lateral 12. Mid antero-lateral

sion)

2 = hypokinetic (myocardial thickening ≤ 30-40% in systole)

3 = severely hypokinetic or akinetic (myocardial thickening ≤10% in systole)

4 = dyskinetic (segment moves outward in systole)

5 = aneurysmal (segment pouches out in both systole and diastole)

There is a correspondence between the location of regional wall motion abnor-

malities and the coronary artery territories. Mainly, the anterior septum, anterior

wall and the anterior apex are affected by LAD. Any disease in the LCX artery

affects the lateral and posterior walls of the left ventricle. Besides, CAD detection

is improved by the detection of regional wall motion abnormality in this region

mostly due to the pathology of the LCX artery. The RCA at its posterior descend-

ing branch supplies the inferior septum and inferior wall of the left ventricle. Any

wall motion abnormality in the mentioned areas has a strong correspondence with

RCA. Since the location of regional wall motion abnormalities correlates reason-

ably well with the location disease in coronary arteries, it can be utilized as a valid

guide for further management.
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Figure 1.6: ACC/AHA recommended “bulls-eye” plot of the 17 segment
model. The outer ring represents the basal segments, the middle ring
represents the segments at midpapillary muscle level, and the inner ring
represents the distal level. The anterior insertion of the right ventricular
wall into the left ventricle defines the border between the anteroseptal
and anterior segments. Starting from this point, the myocardium is sub-
divided into six equal segments of 60 degrees. The apical myocardium
in is divided instead into four equal segments of 90 degrees. The apical
cap is added in the center of the bull’s-eye.

Clinical Importance

Regional wall motion abnormality refers to the motion of a region of the heart mus-

cle being abnormal. Myocardial infarction or severe ischemia is the most common

cause of left ventricular (LV) wall motion abnormalities [21].

Regional wall motion abnormalities mainly occur early in the ischemic cascade

followed by Electrocardiogram (ECG) changes. When the myocardium oxygen de-

mand is reduced and subsequently returned to baseline, there would be a resolution

of myocardial ischemia and wall motion returns to normal [42]. Wall motion anal-

ysis has been a paramount factor in clinical decision-making situations such as in

patients with chest pain in the emergency department and patients with congestive

heart failure [33]. The accurate evaluation of left ventricular (LV) regional function
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is essential for general cardiac assessment, specifically for evaluation of CAD and

acute myocardial infraction [27, 29, 33, 58].

Identification of regional wall motion abnormalities (RWMA) can help in the

diagnosis of acute myocardial infraction and multi-vessel CAD and coronary syn-

dromes or chronic CAD, direct to the ischemic territory and finally influence pa-

tient treatment [8].

Automated LV Wall Motion Assessment Using Echocardiography

Echocardiography, with its high spatial and temporal resolution, is the best choice

as a non-invasive method for assessing changes in wall motion. In patients with

an acute situation, having ECG inclusive would be useful in the early detection of

myocardial ischemia. Equally, in patients with acute chest pain, ECG included,

normal regional wall motion may help to exclude underlying myocardial ischemia

[21].

Despite the impressive advances in echo technology, detection and quantifica-

tion of regional left ventricular wall motion abnormalities on echocardiography im-

ages is highly subject to the observer skills, require substantial experience [8, 33],

and is prone to significant inter-observer variability [8].

To alleviate the wall motion assessment subjectivity, some other echocardio-

graphic imaging modalities are developed to automate the process and reduce the

inter- and intra-observer variability. These methods conduct a more comprehensive

assessment of global and regional left ventricle function. In the following, we will

discuss some of these methods.

• Border Tracking

The automated border tracking method is a procedure in which the differ-

ence between the ultrasound backscatter emitted from the endocardium and

blood in the LV cavity is being used. After image acquisition, the backscat-

ter information along the scan line is analyzed and the pixels are classified.

The pixels are colour coded and superimposed onto a 2D image. This leads

to real-time tracking of the endocardial border. The figure shows an echo

image with and without automated border tracking. The main drawback of

automated endocardial border tracking is that it is dependent on good image
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quality. The poor quality images lead to poor tracking of the endocardial

border which results in turn poor colour-coded tracking images [37, 46].

• Tissue Doppler imaging

In Tissue Doppler imaging (TDI), high amplitude, low-frequency Doppler

signals coming from the myocardium and mitral annulus are measured. In

Figure 1.7 a tissue Doppler sample volume of the myocardium or the annulus

area and the systolic and diastolic velocities at that point are then displayed.

Essentially, any area of the myocardium can be studied in this manner. Thus,

the quantitative assessment of regional systolic function is achieved by mea-

suring the S wave peak velocity. Any translational movement and tethering

affect the myocardial velocity measurements, which in turn leads to the dif-

ficulty of discrimination between segments that are akinetic or actively con-

tracting. Besides, the distribution of the velocities is not uniform through

the myocardium; as moving from base to apex, it would be harder to set a

reference value [18].

• Strain Rate Imaging

Imaging myocardial deformation is a good alternative to conquer the limi-

tations of velocity measurements. Strain and strain rate measurements are a

representation of the magnitude and rate of change in length of myocardial

fibre which is the energy required in both systole and diastole [12, 14]. Two-

dimensional speckle tracking echo is a method for assessment of myocardial

motion by tracking natural acoustic markers, known as speckles, generated

from interactions between ultrasound and myocardium. By tracking the mo-

tion of speckles, deformation is measured. Limitations of speckle tracking in

echo include the need for good image quality and the assumption that a given

speckle can be tracked from one frame to the next, which may not happen in

excessive cardiac motions.

• 3D echocardiography

The development of 3D echo has allowed assessing LV volumes and move-

ment without any dependency on LV geometry and any assumption about

LV shape. Thus, the truncation in apical visualization in 2D echo is resolved
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(a) Border tracking (b) 3D echo demonstration

(c) Directions of LV Strain (d) Longitudinal Strain Measurement

Figure 1.7: (a) Demonstration of colour kinesis where lack of colour chang-
ing depicts lack of wall thickening[37]. (b) Three-dimensional echocar-
diographic images of the heart (apex view) [38]. (c) The main directions
of deformation and strain imposed on the LV myocardium. (d) Example
of measurements of the main 2D Strain variables. Each of the coloured
lines at the left panels denotes one of the six regions measured from the
apical 4-chamber window [12].

in 3D echo. 3D echo captures the entire volume of the left ventricle dur-

ing image acquisition. The acquired images are demonstrated as a rendered

volume or surface, wire-framed or 2D tomographic slices [38]. Figure 1.7-

b shows an example of a 3D echo. While 3D echo has got more popular

than before, it is still limited to the need for good image quality and operator

skills and experience. Temporal and spatial resolution development and data

manipulation are also needed to enhance the application of this method.

Although echo imaging has had remarkable enhancements, the echo data are
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still nontrivial. This results in an adverse effect on echo-based diagnosis due to high

inter and intra-observer variability. These limitations are because of intrinsic ultra-

sound constraints such as noise, frequency vs. depth trade-off, probe tethering and

dependency of image quality to the right probe positioning in the planes. However,

these limitations are addressed partially by automatic machine learning methods

that benefit from high spatio-temporal resolution of echo images [2, 57, 59, 60].

1.2 Machine Learning in WMA Detection
Recently, applications of machine learning in medical imaging have become very

prominent. Machine learning can be used in different ways to achieve diverse ob-

jectives. Thus, many research groups in the field have focused on semi-automatic

and automatic techniques for cardiac assessment (e.g., wall motion abnormality

analysis). Deep learning as one powerful branch in machine learning is an effec-

tive method for detection and classification for several diseases.

1.2.1 Deep Neural Networks

Neural networks are data processing structures (i.e. functions). They map input

x in IRn to the output ŷm in IRm. In classification, ŷm is the likelihood of each M

classes. If we assume each neuron as a function of x, W as parameters (weight)

matrix and b as bias vector, then the function of each neuron can be written as:

ŷm = f (Wx+b). (1.1)

A typical neural network consists of multiple layers as follows:

• Input Layer

• Hidden Layer(s)

• Output Layer

Deep neural networks have been successfully applied to medical imaging tasks

such as image classification, object detection, and image segmentation thanks to

the development of Convolutional Neural Networks (CNN). These neural networks
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utilize parameterized, sparsely connected kernels which preserve the spatial char-

acteristics of images. Convolutional layers sequentially downsample the spatial

resolution of images while expanding the depth of their feature maps. This se-

ries of convolutional transformations can create much lower-dimensional and more

useful representations of images than what could possibly be hand-crafted. The

success of CNNs has spiked interest and optimism in applying deep learning to

computer vision tasks. There are many branches of study that hope to improve

current benchmarks by applying deep convolutional networks to computer vision

tasks. Improving the generalization ability of these models is one of the most dif-

ficult challenges. Generalizability refers to the performance difference of a model

when evaluated on previously seen data (training data) versus data it has never seen

before (testing data). Models with poor generalizability have overfitted the training

data. One way to discover overfitting is to plot the training and validation accuracy

at each epoch during training.

Training neural networks is an optimization problem. The parameters of f , W

and b are optimized with respect to a set of data X , with the labels Y , using a defined

loss function. The most common method of optimization takes the derivatives

and minimizes the loss function with respect to the weights via iterative back-

propagation of gradients in parameters. This is a non-convex optimization, which

means during training we may go through some local optima points. Besides, a

trained neural network is prone to be over-fitted on the set of training data, meaning

you may do well on the train set but perform worse on the unseen test set.

There are some solutions to defeat the over-fitting problem. One is using regu-

larization, which penalizes the parameters W from becoming too specific on train-

ing data. Limiting the size of the network (number of hidden units) and also lim-

iting the size of the weights (Weight decay) and early stopping before over-fitting

are other possible solutions for this issue.

Deep Neural Networks consist of a number of hidden layers, extracting low

to high-level features from images. Convolutional neural networks and recurrent

neural networks are two examples of deep neural networks.
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1.2.2 Convolutional Neural Networks

Convolutional Neural Networks were first inspired by visual cortex research done

by Hubel et al [23]. To date, CNNs are the most powerful tool for image classifica-

tion and regression problems [34]. Using CNNs the number of network parameters

is reduced due to parameter sharing through convolutional kernels.

In CNNs, the input image is a matrix of pixel values that are a representation

of the brightness at the given pixel in the image. While traditional neural networks

treat the whole image as a one-dimensional array, CNNs include the location of

pixels and their neighbours into consideration.

In a convolutional layer, a weight matrix (kernel) is used for the extraction of

low-level features. The kernel with its corresponding weights slides over the image

matrix to obtain the convolved output. The kernel is like a filter for the extraction

of particular information from the input image. By minimizing the loss function

the weight of the kernel is learnt.

Figure 1.8: Demonstration of a deep convolutional neural network with five
hidden layers including convolutional, pooling and fully-connected lay-
ers.

Figure 1.8 is a typical configuration of a CNN architecture. The configuration

mainly consists of an input image, followed by a sequence of convolutional layers

joint with a non-linear function and pooling function. The result is then fed to

the last layers containing sequences of fully-connected blocks with the output size

being equal to the number of classes in the dataset.
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1.2.3 Recurrent Neural Networks

Recurrent neural networks are a branch of neural networks that extract the features

in temporal dimension and have been used widely in time-sequence modelling [5].

RNNs process sequential data points through a recurrent hidden state that its acti-

vation at each step depends on that of a previous step [19]. An RNN updates its

hidden state of ht by the following equation, where X = (x1, ...,xN) is a sequence

data:

ht =

Θ(ht−1,xt), if: t 6= 0

0, if: t = 0
(1.2)

Knowing that xt is the data value and ht is the recurrent hidden state at time step

t, and Θ denotes the activation function of a hidden layer which is nonlinear such

as sigmoid or hyperbolic tangent. Having y = (y1, ...,yT ) as the output is optional

for RNNs. The conventional RNN model, known as vanilla, updates the recurrent

hidden state in equation 1.2 is implemented as:

ht = Θ(Wxt +Zht−1). (1.3)

In the equation, W and Z are the coefficient matrices of the input at the current

step and the recurrent hidden units activation at the previous step, respectively. By

expanding equation 1.2 the hidden vector sequence ht is calculated as follows:

ht = Θ(Wihxt +Whhht−1 +bh), (1.4)

where Wih denotes the input-hidden weight vector and Whh is the weight matrix of

the hidden layer, and bh is the bias vector in the hidden layer.

While traditional RNN implementation has vanishing gradient problem, mean-

ing that gradients decrease significantly for a deeper temporal model, new types of

recurrent hidden units such as Long Short Term Memory (LSTM) and Gated Re-

current Unit (GRU) have improved upon this and addressed the problem. While

traditional RNN applies a transformation to a weighted sum of inputs in equations

1.3 and 1.4, an LSTM-based recurrent layer creates a memory cell m at each time

step whose activation is computed as:
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ht = ptΘ(mt), (1.5)

where pt denotes the output gate which determines the portion of the memory

cell content in time step t (mt) to be exposed at the next time step [5, 16]. The

expanded, recursive version of updating pt is as follows:

pt = σ(Woixt +Wohht−1 +Wocmt−1 +bo), (1.6)

In the above equation σ(.) is the logistic sigmoid function, Woi is the input-

output weight matrix, Woh is the hidden layer-output weight matrix, and Woc is the

memory-output weight matrix. Each memory cell, mt , is updated by the sum of

new content, current value of mt , and discarding part of the present memory:

mt = it .mt + ft .mt−1, (1.7)

where . is an element-wise multiplication and mt is calculated as:

mt = Θ(Wmixt +Wchht−1 +bc), (1.8)

In equation 1.8, since W term represents weight matrices, Wmi is the input-

memory weight matrix. Input gate i denotes the degree that new information is

to be added and forget gate f determines the degree current information is to be

dismissed, as follows:

it =σ(Wixxt +Wihht−1 +Wicmt−1 +bi); (8)

ft =σ(W f xxt +W f hht−1 +W f mmt−1 +b f ).

All weight matrices, W, and biases, b, are shared between cells across time.

A graphical model of an LSTM cell is shown in figure 1.9. GRU is a slightly

different structure of LSTM with a fewer number of parameters to avoid over-fitting

in models with a low number of training samples [10]. The forget and input gates

are combined into a single update gate, known as u, and merge the cell memory

and hidden state to a reset gate, r. Also, the activation of the hidden layer in GRU
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is an interpolation between the updated activation, ht , and the previous activation,

ht1:

ht = (1−ut)ht−1 +htut , (1.9)

where ut denotes the amount of update for the unit content. The update gate for-

mula is:

ut = σ(Wuixt +Wuhht−1), (1.10)

Given that Wui is the input-update weight matrix and Wuh is the update-hidden

weight matrix, the updated activation, ht , will be computed like the traditional

RNN in Equation 1.3 as follows:

ht = Θ(Woixt +Wrh(rt .ht−1)). (1.11)

Finally, the reset gate, rt , is computed as:

rt = σ(Wrixt +Wrhht−1). (1.12)

Figure 1.9: Demonstration of an LSTM block. mt−1 stands for the input from
a memory cell in time point t; xt is an input in time point t; ht is an output
in time point t that goes to both the output layer and the hidden layer in
the next time point.
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1.2.4 Hyper-Parameter Optimization

Most of the learning algorithms are trained based on a set of hyper-parameters that

affect the performance of the model. Generally, hyper-parameters are selected to

minimize the generalization error. This objective is essentially done by running

different trials of diverse sets of hyper-parameters, comparing the output perfor-

mances and desiring the best setting. Many approaches have been suggested for

hyper-parameter optimization. The most straight forward one is the grid search.

Grid search is an exhaustive search in a specified subset of the hyper-parameter

space of a learning algorithm [6]. On the other hand, random search replaces the

exhaustive enumeration of all combinations by a random selection of them. While

Bayesian optimization [53] builds a probabilistic model that maps from hyper-

parameter values to the evaluated measurements on a validation set, evolutionary

hyper-parameter optimization follows a procedure inspired by the biological con-

cept of evolution [7]. Also, gradient-based optimization [35] and population-based

training (PBT) [32] are other methods for hyper-parameter optimization.

1.2.5 Applications of ML in WMA detection

Machine learning with its powerful capabilities has been constantly used for wall

motion abnormality detection. The ML methods for wall motion abnormality clas-

sification include radial basis functions [11], random forest [13], unsupervised

multiple kernel learning [51], dictionary learning [44], support vector machines

(SVM)-based wall motion classication (in CMR) images [36]. Recently, deep

learning has shown a remarkable role in the classification of several diseases in

many medical fields [15, 20, 26]. Conventional machine learning methods mainly

require pre-determined features and measurements to identify relevant hidden in-

formation in the images [25]. However, deep learning extracts useful features au-

tomatically [4, 30]. Moreover, the capability of the deep convolutional layers in

extracting low-level features from the original input image is useful in pathology

detection in echocardiographic images. Recent research has shown that the Deep

Convolutional Neural Networks (DCNN) can be useful for RWMA detection in the

clinical setting [28]. The study provides predictions only on coronary infarction

territories, using conventional two-dimensional echocardiographic images.
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In a work on 3D stress echo [41], Omar et al. proposed a CNN to distinguish

between normal and abnormal wall motion. Some works have developed statis-

tical spatio-temporal cardiac atlases, mainly relying on cardiac motion and shape

priors [3, 47, 48, 55, 56, 61]. Peressutti et al. extract clinically relevant features

by using a motion atlas with non-motion information [45]. Oktay et al. proposed

learning cardiac image representations using anatomically constrained neural net-

works [40]. Also, in CMR, wall motion assessment is done by first segmenting and

then feature tracking and strain estimation [49]. Current available DCNNs trained

on 2D echo images are only predicting the overall wall motion score as normal

and abnormal and none of the above methods predict the severity of abnormality

of each region separately. We hypothesize that a deep convolutional neural net-

work trained with echocardiographic images may provide improved detection of

RWMAs in addition to prediction of the abnormality for all 16 segments in the LV.

Figure 1.10 shows a systematic architecture of the proposed method.

Figure 1.10: A systematic diagram of the workflow for automated RWMA
prediction. After data are acquired in the clinic, it is stored in the Van-
couver Coastal Health (VCH)’s servers along with the cardiologist’s
measurements. The machine learning model will then use these data
to make predictions on RWMA.
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1.3 Thesis Objective
It is clinically crucial to have an automatic system for evaluation of regional wall

motion abnormality that is more objective, consistent, broadly accessible to less

trained echocardiographers, and is as precise as an expert. Also, this system could

be used when an experienced echocardiographer is not available or could be used

as a second opinion by experts. Hence, this system is a practical tool for automated

regional wall motion evaluation that scores left ventricular segments as precise as

visual determinations by expert echocardiographers. It can be utilized as an extra,

broadly used qualitative method for the detection of wall motion abnormalities and

as a screening tool for the novice echocardiographers. Moreover, this tool can

be used for teaching, unified regional scoring and routine objective evaluation of

regional wall motion.

1.4 Contributions
Our research goal has been to develop a framework for regional wall motion ab-

normality analysis on echo imaging information. To reach this goal the following

contributions were made:

Initially a thorough study of the heart and relevant cardiac diseases were per-

formed and the diagnostic imaging techniques were reviewed. In order to improve

the diagnosis of wall motion abnormalities and help the cardiologists on this matter,

we decided to develop an artificially intelligent model to assist in the identification

of the wall motion abnormalities through echo images. This is of a great value

given the variability and challenges of scoring such abnormalities.

Subsequently, I developed a machine learning framework for training a neural

network, consisting of three views of echocardiography data as input, with abnor-

mality classification for 16 wall segments as output. The network directly analyzes

echo data without any need for prior segmentation of the cardiac LV wall.

I trained the network with the data described above from 489 patients and opti-

mized the parameters and hyper-parameters of it. The resultant network precisely

identifies regional wall motion abnormalities on echo as compared to the expert

human labels with advanced echo training. In independent test dataset, I demon-

strated that the neural network can produce accuracy as high as 69.2% for detection
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of abnormal wall motion.

The developed model, to the best of our knowledge, is the first to analyze the

left ventricle wall motion for both global and regional abnormality detection in

echocardiography data. This can be considered a great contribution in enhancing

the diagnostic process of the wall motion abnormalities, by expediting the process

for physicians.

1.5 Thesis Outline
This thesis covers the background of left ventricle wall motion abnormality, and the

relevant technologies for the proposed problem, the details of a system developed,

and the evaluation of the proposed system. The outline of the thesis is as follows:

• Chapter 1: Introduction and background

In this chapter, the basic anatomy of the heart is reviewed to gain an under-

standing of its global function and the importance of the LV. Moreover, a

detailed walk-through of the current wall motion abnormality detection sys-

tem is provided. Furthermore, relevant machine learning techniques used in

ultrasound are demonstrated.

• Chapter 2: Materials In this chapter, the dataset obtained from Philip’s Xcel-

era TM and FilemakerTM systems is explained. This dataset is used to train

models for the proposed framework. The echo data is mainly acquired from

XceleraTM, extracted from routine studies since 2005 at Vancouver coastal

health clinics by different ultrasound machines. Consequently, the patient’s

clinical measurements are acquired from the FilemakerTM database; this

dataset contains over 200,000 records and is used to label diseases available

in the corresponding echo files.

• Chapter 3: Methods

In this chapter, a deep learning model is proposed to extract features and then

classify the 16 segments of LV. The model is used to extract Spatio-temporal

features from the echo cine loops. Hence, the proposed model can accurately

identify regional wall motion abnormalities on echo images as compared to
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the reference standard, experienced human interpreters with advanced echo

training.

• Chapter 4: Experiments and Results

To evaluate the presented framework on 489 unique patients, acquired from

the routine cardiology care, three streams for tri-plane assessment are fed

to the network. The inputs to the network are cine loops captured in the

A2C, A4C and PLAX views. The cine loops consist of one full cardiac

cycle and are synchronized based on the cardiac phase. The expert annotated

RWMA labels will be provided in a supervised learning framework and the

network will hence be trained to map the LV regions to a motion score. Then

the evaluation results of the proposed framework are reported. Using the

proposed model, we investigate the advantages of using a joint-feature model

over a single view information model. Finally, we investigate the correlation

of occurrence of the abnormality in the 16 segments of LV.

• Chapter 5: Conclusion

This chapter summarizes the objectives of the research and the contributions

made and describes potential applications and directions for this research to

be continued.
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Chapter 2

Materials

The wall motion abnormality detection framework uses the echocardiography dataset

obtained from Vancouver Coastal Health (VCH). The datasets and the software ap-

plications used for interfacing them are briefly described below.

2.1 Ethics
Ethics approval for evaluation of 3000 studies acquired from routine cardiology

care was obtained from the Clinical Medical Research Ethics Board of Vancouver

Coastal Health (VCH) and in consultation with the VCH Information Privacy Office.

A meticulous process of data anonymization, de-identification and data encryption

was fulfilled based on guidelines recommended by the VCH Privacy Office. The

patient information such as age, sex, height, weight and related health issues and

the echo images were assigned an alpha-numeric code to eliminate any risk of re-

identification of participants. The data is encrypted using on-the-fly encryption

software named TrueCryptTM (TrueCrypt.Org, Czech Republic). While the devel-

opment of TrueCrypt has been discontinued, an independent audit of the software

(published in March 2015) has confirmed that there are no significant flaws in the

software [1].
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2.2 Echocardiography Data
The presented framework is part of the Information Fusion for Echocardiography

(INFUSE) project. The data consists of 992 echo studies from 953 unique patients.

It consists of two parts: an echo image database and the corresponding measure-

ments and pathology reports. The echo image dataset consists of 2005 to 2015

of Vancouver echo cine videos, measurement screenshots, Doppler cine files and

images.

To access the ultrasound studies, the cardiology department’s XceleraTM database

is interfaced. It allows for downloading information associated with patient follow-

ups, emergency, and investigational echo studies. Each study contains an echo cine

that has a variable number of frames, where the mean number of frames is 48. Be-

sides, the collected studies are generated from seven different ultrasound machine

models: Philips iE33, GE Vivid 7, Vivid i, Vivid E9, Sequoia, and Sonosite.

The Digital Imaging and Communications in Medicine (DICOM) studies com-

ing from these devices are uploaded to VGH’s cardiology department’s XceleraTM

server. By the time the upload for echo data is completed, it can be accessed

through an XceleraTM workstation terminal.

2.2.1 Echocardiography Retrospective Data

The XceleraTM ultrasound software allows users to have access to all saved echo

studies through a Graphical User Interface (GUI). The XceleraTM software also

works with DICOM images and can be used as both a server and a viewer for

them. In addition to that, it incorporates some advanced features for both cardiol-

ogists and sonographers. The features include the image measurement module in

the software suite that authorizes the cardiologist to draw or measure the cardiac

parameters directly on medical images and save them for future examination. The

measurement module has no automatic section and every measurement input to the

FilemakerTM database is assessed manually.

The XceleraTM software contains two separate databases, Echo and Xcelera.

The downloaded echo information from the ultrasound machine is written to echo

MySQL instance. Moreover, the manual segmentation information made on an

image undertaken by a cardiologist is stored in MySQL instance named Xcel-
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Figure 2.1: A diagram designed to show the relationship between the Echo,
Xcelera and Filemaker databases in a routine cardiology study.

era. Xcelera stores patient information keys, which connects both SQL instances.

Hence, whenever the measurements are evaluated, they will be stored with a unique

identifier.

The key identifier will then be used to link each particular ultrasound, allow-

ing each study to be reopened anytime with the correct measurements attached.

The two databases are connected using a key matching method for this large-scale

data. For the purpose of this thesis, we only use the XceleraTM database to ob-

tain the Echo. Figure 2.1 shows an echo saving routine using XceleraTM (Philips

Healthcare, Netherlands)’s database.
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2.2.2 Echo Data Download and Processing

Data acquisition is done with the help of the Information Technology team of VGH.

A MySQL instance of XceleraTM is being copied and anonymized and then it will

be installed on a computer located at Vancouver Coastal Health’s IT department.

A subset of available data is then queried. All available echo studies from VGH’s

Picture Archiving and Communication System (PACS) are copied to Robotics and

Control Lab (RCL) servers, encrypted and secured with password as required by

our ethics application.

Once all of the data are acquired, a new MySQL database on University of

British Columbia (UBC) RCL servers is created. This database contains all the data

that have been downloaded from XceleraTM software in VGH for different projects

at RCL.

Each study file located on the RCL servers contains the echo volume pieces of

information along with manufacturer name, file name, date of the study, Medical

Record Number (MRN), DICOM header information and if any available segmen-

tation coordinates.

Each study is an echo cine series that contains a variable number of frames,

where the mean number of frames is 48. Besides, the collected studies were gen-

erated from seven different ultrasound machine models: Philips iE33, GE Vivid

7, Vivid i, Vivid E9, Sequoia, and Sonosite. Therefore, the resolution, size of the

ultrasound visual area, the probe specification, and imaging settings vary across

the machine models. Given these differences, the echo volumes are processed by

applying a semi-automatically cropping ultrasound beam shaped black mask, and

the frame size is reduced to 128×128 pixels.

2.3 Analytical Measurements
The measurements associated with each study of all patients are stored on VGH’s

FileMakerTM Pro 6 database. All the findings including diagnostic information

for standard measurements, comments, etc along with patient information (e.g.,

name, age) and exam information (e.g. date, examiner) are entered manually by

the sonographer to the FileMaker. Besides, the exams in FileMaker can be linked

to the downloaded echo files using a hospital-assigned patient number and the date
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Figure 2.2: Snapshot of the wall motion abnormality section of FileMaker.
By clicking on each region, the cardiologist will type a score from 1 to
5 to each region to label the abnormality of the region.

in which the study has been recorded.

2.3.1 Filemaker Measurements

FilemakerTM is a relational database program that integrates a database engine and

a graphical user interface (GUI) while keeping security features. It allows all users

with a minimal level of technical knowledge to modify the database by dragging

new elements into layouts, screens, or forms.

Considering that the XceleraTM (Philips Healthcare, Netherlands)’s cardiol-

ogy suite provides searching by MRN only, a custom version of FilemakerTM was

created to allow advanced searching by patient physiology in addition to MRN.

Thus, this software has a remarkable role within the cardiology department. More-

over, FileMakerTM software is a precious teaching tool for cardiologists because

the studies can be retrieved based on certain keywords.

Within the software, there are four main tabs for each echo study. After each
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Figure 2.3: A block diagram of the relationship between the Echo database
tables.

study, the sonographer fills out the front page, Valves/PA, Aorta/ Atria/Shunts Peri-

cardium pages. As seen in Figure 2.2, there are check boxes and empty values for

their report. The cardiologist will then fill out the last tab (LV/RV/Conclusions)

after reviewing the first three tabs and the echo images.

2.3.2 Analytical Data Download and Processing

The only process of acquiring FileMakerTM data for this thesis was through export-

ing the FilemakerTM database into a Comma-Separated Values (CSV) file, where

each row represented a unique study and each column represented a unique field.

This CSV file was then imported into an internally created RCL Echo database.

Figure 2.3 shows the connection of each table in that database.

As it is depicted, patient table contains all the patients available in the CSV
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and is linked to the study table in a one-to-many relationship. The study is then

linked to the filepath table in a one-to-many relationship as well. The study table

contains all available studies within the FileMaker that we have the ethics for them.

Moreover, at the time of each study, there may be many files recorded, these files

with their filepath are saved in the filepath table. The decisive components for

connecting each file to the correct study is the patientID and the date of the study.

If the patient’s MRN and date of study in both the echo study file and study table

match, the file will be linked to that specific matched study. Besides, once the

view classification label of each file is ready it is linked to the filepath table as a

one-to-one relationship.

Specific measurements in the FileMakerTM database that were needed for wall

motion detection including:

• Global wall motion

• Regional wall motion

– A2Cbasalant

– LAXbasalant

– A4Cbasosept

– A2Cbasalinf

– LAXbasalinf

– A4Cbasolat

– A2Cmidant

– LAXmidant

– A4Cmidsept

– A2Cmidinf

– LAXmidinf

– A4Cmidlat

– A2Cdistalant

– A4Cdistalsept

– A2Cdistalinf

– A4Cdistallat

were filtered out by creating a query from the database.

The distribution of regional and global wall motion abnormality from the avail-

able studies has been plotted in Figure 2.4, and the frequency of the Wall Motion

Score Index (WMSI) is reported in Table 2.1.
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Table 2.1: The Wall Motion Abnormality data frequency in each region.

Region
WMSI

1 2 3 4 5

Global 541 231 13 0 251

1 974 54 8 0 0

2 918 68 50 0 0

3 909 74 51 1 1

4 817 109 99 2 9

5 886 97 45 3 5

6 982 45 9 0 0

7 828 123 85 0 0

8 749 81 205 0 1

9 817 104 110 4 1

10 783 144 107 0 2

11 826 131 77 1 1

12 918 90 28 0 0

13 711 78 228 11 8

14 645 103 264 14 10

15 715 92 214 6 9

16 640 118 253 16 9
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2.4 Summary
A full description of the dataset obtained from Philip’s XceleraTM and FilemakerTM

systems was presented. This dataset is used for the training stage of all models pro-

posed in the next chapter. The echo data are mainly acquired from XceleraTM, ex-

tracted from routine studies from 2005 to 2015 at Vancouver Coastal health clinics

by different ultrasound machines. Moreover, the patient’s clinical measurements

are downloaded from the FilemakerTM database; this dataset contains over 200,000

records and is used to label diseases available in the corresponding echo files.
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Figure 2.4: The Wall Motion Abnormality data distribution in different re-
gions of the heart: (a) is data distribution in LCX region , (b) is data
distribution in LAD region, and (c) is data distribution in RCA region.
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Chapter 3

Methods

The proposed framework for echo analysis to identify RWMAs consists of three

phases of view processing, classification, and localization. The objective of the

view processing phase is to automatically distinguish the view in which the study

has been recorded. In the classification phase, after retrieving key echo views re-

quired for the visualization of RWMAs (parasternal long-axis, apical 2-chamber,

and apical 4-chamber), these clips will be coded for regional and global wall mo-

tion abnormalities for training and validation of a convolutional neural network.

3.1 Relevant Cardiac Echo View Selection for WMA
In Point-Of-Care Ultrasound (POCUS), apical four-chamber (AP4), parasternal long

axis (PLAX), parasternal short axis at the papillary muscle level (PSAX-PM), and

subcostal four-chamber(SUBC4) are the four views most frequently acquired by

clinicians. Since RWMA is visible in both parasternal short axis and apical views,

we decided to continue with the apical views due to the popularity. For the de-

termination of relevant cine loops, a pre-trained deep learning network is used to

predict any of the 14 views. The model was trained on a dataset of 3,151 unique

patients who were diagnosed with various heart conditions and diseases during the

period of 2005 to 2015. Generally, the dataset contains 16,612 echo cines (with a

total of 807,908 frames) from cardiac standard views taken from the four standard

imaging windows, namely, Apical, Parasternal, Subcostal, and Suprasternal. The
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View A2C A3C A4C A5C PLAX RVIF S4C S5C IVC PSAX-A PSAX-M PSAX-PM PSAX-APEX SUPRA

Training set 335 283 359 128 390 131 172 29 218 401 388 187 63 46

Validation set 126 101 105 42 131 49 77 5 67 135 137 60 19 13

Test set 106 95 93 44 137 29 49 15 56 108 147 73 13 11

Table 3.1: The dataset composition in terms of number of studies from each
type of the 14 standard echocardiography views (A#C: apical #-chamber
view, PLAX: parasternal long-axis view, RVIF: right ventricular inflow
view, S#C: subcostal #-chamber view, IVC: subcostal inferior vena cava
view, PSAX-A: parasternal short-axis view at aortic valve, PSAX-M:
PSAX view at mitral annulus valve level, PSAX-PM: PSAX view at mi-
tral valve papillary muscle level, PSAX-APEX: PSAX view at apex level,
and SUPRA: Suprasternal view).
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Figure 3.1: The cardiac view classifier network architecture. Related embed-
ding are extracted from the individual frames by the Spatial embedding
extractor (DenseNet blocks). The embeddings are then fed into the Long
Short-Term Memory (LSTM) blocks to extract the temporal information
across 10 sequential echo cine frames.

distribution of the data per class is shown in Table 3.1, and an example of dataset

images (one per view class) can be found in the table:

The network architecture is demonstrated in Figure 3.1. The input is a 10-frame

randomly extracted from an echo cine array, where each frame is a 120× 120

pixel, gray-scale image. As shown in the Figure 3.1 the model consists of four

components:

• A seven-layer DenseNet model that extracts per-frame features from the in-
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put;

• an LSTM layer with 128 units to capture the temporal dependencies from

the generated DenseNet features;

• a regression layer that produces the quality score from the output feature of

the LSTM layer for each frame;

• a softmax classifier that predicts the content view from the LSTM features

for each frame.

The best accuracy of 89% is achieved by an ensemble of the three very deep

models. It is noteworthy that the average performance of the model for A2C, A4C

and PLAX view is 89%, 93%, 96%, respectively[60]. For the purpose of this thesis,

we only input the samples to the trained model and get the predicted view per study.

3.2 Automatic WMA Detection Deep Convolutional
Network

We propose a regression model for WMA detection. The network architecture

can be seen in Figure 3.2. The input to the network is sampled from synchronous

A2C and A4C and PLAX echo cines. This network consists of two main stages:

a convolutional layer and a fully-connected layer. The first stage is composed

of convolutional layers (Conv) and pooling layers (Pool); the second stage only

contains Fully-Connected Layers (FC).

3.2.1 Spatial Feature Extractors

The convolutional layer mainly consists of 2D or 3D kernels which are convoloved

with the input images and return the spatial feature-maps (cine representations).

The kernels perform a discrete convolution (i.e. a weighted sum of inputs). For

instance the 2D kernels of size 2p+1×2p+1 do the following:

xl
i, jk =

p

∑
m=−p

p

∑
n=−p

wl
i,mnxl−1

( j+m)(k+n). (3.1)
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Figure 3.2: The proposed WMA network architecture. Spatio-temporal em-
beddings are extracted from the individual cines. The embeddings are
then fed into the FC blocks to connect the reasoning between the infor-
mation across echo cine frames.
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In the above equation, wl
i is the weight matrix, and xl

i is the output feature-map

of the ith kernel of the Conv layer l; xl
1 denotes the input feature-map of the layer.

The feature-maps of the previous layer is convolved with the kernel and result in

a 2D output. All of the outputs from kernels are stacked and generate a 3D output

feature-map.

The total number of parameters in the convolutional layer is calculated by mul-

tiplying the number of kernels by the size of each kernel. Compared to FCs a

convolutional layer has fewer parameters since only a single kernel is generating

the feature-maps. Thus, the convolutional layer has considerably fewer parameters

to be optimized.

The output feature-maps are passed to a non-linear activation function. The

Rectified Linear Unit (ReLU) is used on all the feature-maps. While having the

same performance, the ReLU function is much faster than its rivals such as sigmoid

and hyperbolic tangent functions [39]. This function is described below:

f (x) = x+ = max(0,x) (3.2)

A non-linear form of down-sampling is pooling. The spatial variance of feature-

maps is reduced using pooling layers. This allows faster convergence in addition

to picking the most relevant features [52]. Since pooling layers reduce the size of

feature maps, the computation time is reduced as well. Besides, adding pooling

layers to the model will increase the generalization as they make the model robust

to small translations. Between several methods of pooling, max-pooling has shown

a remarkable performance in comparison to its other alternatives [9]. Max-pooling

layers have no corresponding weights; thus, the number of parameters in this layer

is zero.

3.2.2 Temporal Feature Aggregators

Fully connected layers perform the high-level reasoning in the neural networks,

mainly by representing the connection between the spatial feature-maps. In an FC

layer, each neuron is connected to every neuron (or activations) in the previous

layer. Mathematically, the FC layer is denoted by a matrix multiplication followed
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by summation of offset value.

f l
i (x

l−1) =
n

∑
j=1

wl
i jx

l−1
j +bl

i, (3.3)

where wl
i j denotes the j-th weight in neuron i of layer l, and bl

i is the bias value.

The output of an FC layer is passed to the activation function as well as the out-

put of convolutional layers. However, the output of the last FC layer is not filtered

by an activation function since it would be the final prediction of the network.

3.2.3 Spatio-temporal Framework

There are several spatio-temporal convolutional variants within this framework.

Given that the input is gray-scale cine files of the size 3× f ×H×W , where 3 is

the number of view channels, f is the number of frames, H and W are the frame

height and width equal to 128. In the following, different convolutional blocks that

are used for feature extraction, will be discussed in detail.

2D convolutions over the cine

One approach would be using 2D convolutions over the entire cine. 2D CNNs

disregard the temporal nature of cine files and behave like there is no difference in

the relative occurrence of each frame. Thus, this model will reshape the 4D input

to a 3D input with a size of 3 f ×H×W .

The output of the convolutional block is also a 3D tensor. Its size is Ni×Hi×
Wi, where Ni is the number of convolutional filters used in the ith block, and Hi,Wi

are the spatial dimensions, which may be smaller than the original input frame due

to pooling or striding. The filters are 3D and have the size of Ni−1×d×d, where

d is the spatial width and height of the filter. It is worth mentioning that although

the filter is 3D, it is convolved spatially in only two dimensions. Consequently, the

output of each filter is a 2D output, meaning the temporal information vanishes in

the first layers of convolution. This may result in a lack of temporal reasoning in

the subsequent layers.
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2D convolutions per frame

Another 2D CNN approach is processing all f frames via a series of 2D convolu-

tional blocks. The same filters are applied to all f frames. There is no temporal

modelling in the convolutions, however, the global spatiotemporal pooling layer

combines the individual information from each frame. This architecture is illus-

trated in Figure 3.3 as C2D.

3D convolutions over the Cine

3D CNNs extract features in spatial and temporal dimensions by performing 3D

convolutions, so they capture the motion information within multiple adjacent

frames. The output will be a 4D tensor with the size of Ni×L×Hi×Wi, where

Ni is the number of filters in i-th layer. The filter size is Ni× t× d× d, where d

and t denote the spatial and temporal extent of the filter respectively. Moreover,

the filters are convolved in both time and space. This architecture is depicted in the

Figure 3.3.

2D convolutions+temporal feature extractor over the Cine

The more promising approach is using the 2D convolutions followed by LSTM or

GRU units. In other words, the architecture consists of both spatial and temporal

feature extraction elements in separate stages. The convolution part can be a plain

stack of convolutions or sequence of DenseBlocks [22].The feature space output of

the convolutional blocks is then flattened and fed to the temporal feature extractor

part of the network (i.e. LSTM and GRU units). Thus, the output of feature extrac-

tor is XViewi
m of length M×1,m = 1 : M where Viewi is one of the three views used

for the WMA detection. The output of all view channels (i.e: XA2C
m ,XA4C

m ,XPLAX
m )

fed to the fc layers. The different structures out of this are illustrated in the Figure

3.3 subsections b to e.

3.2.4 Regularization and Data Augmentation

Improving the generalizability of machine learning models has been one of the

most challenging tasks. Generalizability denotes the difference in the evaluated

performance of the model on training data versus test data. Models that are overfit-
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Figure 3.3: The network architectures for WMA classification considered in
this work. (a) C2D are 2D Covolutions; (b) C2D+LSTM are time dis-
tributed 2D Covolutions followed by LSTM units; (c) C2D+GRU are
time distributed 2D Covolutions followed by GRU units; (d) D2D are
2D DenseBlocks followed by LSTM units; and (e) D2D are 2D Dense-
Blocks followed by GRU units. (f) C3D are 3D convolutions. For inter-
pretability, the connections are omitted.

ted on train data have low generalizability. Monitoring loss and accuracy plot for

train and validation set at the end of each epoch is an approach for the detection of

over-fitting. Hence, we monitor the plots during training.

There are many strategies to stabilize learning and prevent the model from

over-fitting while training. By adding a penalty term to the loss function, it is

possible to prevent the coefficients or weights from getting too large. This method

is called Regularization. In all experiments, we used a `2 regularizer term in the

loss function in the form of λ‖w‖2
2, where λ ∈ 0.00001−0.001. Moreover, λ will

be a hyper-parameter that we will investigate the optimal value for it.

Another method to prevent the over-fitting problem is dropout. Dropout layers

limit the co-adaptation of the feature extracting blocks and force the neurons to

follow the overall behaviour. In each step, the dropout layer removes some random

units from the neurons in the previous layer of the network based on the probability
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parameter of the dropout layer as another hyper-parameter. Thus, by removing

the units, the network architecture is changed in each training step. This implies

that dropout integrates diverse architectures in the model [54]. In other words, a

dropout acts like adding random noise to hidden layers of the model. In our design,

a dropout layer was deployed after each FC layer. The probability of the dropout

can be another hyper-parameter.

3.3 Summary
The model exemplifies the ability of a supervised training algorithm to be applied

to the US, to address the clinical need for WMA detection. Different possible

structures for extracting features and then classifying the 16 segments of LV were

discussed. Convolutional layers are used to extract feature-maps from the echo cine

loops and FC layers are used to model the relationship between the feature-maps.

Having both spatial and temporal feature extraction blocks, the proposed model can

outperform baseline methods in identifying regional wall motion abnormalities on

echo images.
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Chapter 4

Experiments and Results

In this chapter, a study of wall motion abnormality detection performance using

the different spatio-temporal convolutions, described in the previous chapter, is

presented. It should be pointed out that the echo dataset used in this study is large

enough to enable the training of deep models from scratch over enough number of

iterations.

4.1 Experimental Setup

4.1.1 Dataset

The proposed model has a large number of parameters to be trained. Thus, it re-

quires a large annotated dataset. In this research a dataset of 1037 patients collected

from the Picture Archiving and Communication System at Vancouver General Hos-

pital is used. The data includes combinations of A2C, A4C and PLAX echo views

of each patient. The echo studies are mainly acquired by echo-technicians during

routine cardiac exams. However, the ground-truth label of WMA is annotated by

expert cardiologists.

In every echo routine, the heart is imaged from different standard imaging

views, mainly parasternal long and short axes, apical 2-, 3-, and 4-chamber, sub-

costal, and suprasternal, in which the transducer is placed on patient’s chest to

acquire ultrasound cine files. In this research, the apical two-chamber (A2C), four-
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chamber (A4C), and parasternal long axes (PLAX) views are used.

The whole data were divided into a training set and a test set (80:20 split,

respectively) so that a total of 953 patients with 992 studies were split to 667 cases

(704 studies) as the training set, 95 cases (96 studies) as the validation set, and 191

cases (192) as the test set. The dataset is shuffled randomly and then split into five

non-overlapping groups based on the patients. The experiment is done five times,

where in each run, one of the five sets is set aside as test data and unseen while

training with the other four subsets. Moreover, in each run, the validation portion

in the training set is used for searching the optimal hyperparameters.

4.1.2 Wall Motion Abnormality labels

All the labels corresponding to the studies of echo dataset are available in File-

Maker. These labels are extracted and an integer score of 1 (normal) to 5 (aneurys-

mal) was assigned to show the abnormality level of each segment. As discussed in

Chapter 1, scores 3, 4 and 5 all correspond to totally abnormal functioning region

(akinetic, dyskinetic and aneurysmal). Thus, we consider them all together as ab-

normal. Distribution of data among the five abnormality-levels is demonstrated in

Figure 2.4 for each of the segments.

4.1.3 Network Architecture

To compensate for the differences among patients’ frame rate and heart rate, images

from only one heart cycle were used. All DICOM (Digital Imaging and Communi-

cations in Medicine) images were resized into 128 pixel mat-files. The distribution

of WMA labels among the training and test sets were examined using Pearson’s χ2

goodness-of-fit test to verify that train and test set are reasonable representations

of the original data (i.e. p− value > 0.05).

Three parallel streams of the network with similar architecture in the feature

extraction part are trained for each of the three correspondent cardiac views. This

disconnects the views from one another, enabling the full use of available infor-

mation in the cines. While this architecture causes a big increase in the number of

parameters in the network, we will show that this structure is successful for WMA

detection based on our experiments so far. This is mainly due to having denser
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and richer feature vectors from each view, which allows more effective temporal

learning.

The network architectures are illustrated in Figure 3.3. Having 5-6 convolu-

tional layers (each followed by ReLU activation functions. All convolutional ker-

nels were convolved with a stride of one on padded inputs to preserve dimensions.

Moreover, 2D and 3D pooling layer filters where used afterwards. The features are

then are fed to FC layers to predict the WMA for each of the regions. Moreover,

within each structure there would be another similar channel for optical flow trans-

fer of image is added to add more information about the movement in the videos.

The results compare each method with and without optical flow. In results section,

if the input data to the method consists of both echo cardiac view and optical flow

the method name will have an ”OF” at the end of the name of method.

4.1.4 Hyper-parameters

The hyper-parameters are optimized using a grid search. The grid search starts to

divide the training set into training and validation sets (80% and 20%, respectively).

The loss and accuracy on both training and validation sets are used to find the best

combination of the hyper-parameters. Loss is defined as the mean squared error

between the predicted label and the true label, while accuracy is the mean absolute

error between the ground truth label and the prediction.

We perform a grid search over the initial learning rate, lr ∈ {0.001− 0.0001}
and batch size, using two different optimization algorithms, SGD and Adam. We

also experiment with different levels of dropout rate, dr ∈ {0,0.5} and L2 regular-

ization term (λ ) lreg ∈ {0.00001,0.001}. These parameters result in 48 different

hyper-parameter settings for the proposed model. All models are trained with the

same number of iterations and training is stopped after 1000 epochs.

4.1.5 Regularization and Data Augmentation

There are many strategies to stabilize learning and prevent the model from over-

fitting while training. By adding a penalty term (regularizer) to the loss function,

it is possible to prevent the coefficients or weights from getting too large. In this

research, we used a `2 regularizer term in the loss function in the form of λ‖w‖2
2,
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where λ = 0.001. Moreover, λ will be a hyper-parameter that we will investigate

the optimal value for it.

Another method to prevent the over-fitting problem is dropout. Dropout layers

limit the co-adaptation of the feature extracting blocks and force the neurons to

follow the overall behaviour. In each step, the dropout layer removes some random

units the neurons from the previous layer of the network based on the probability

parameter of the dropout layer as another hyper-parameter. Thus, by removing

the units, the network architecture is changed in each training step. This implies

that dropout integrates diverse architectures in the model [54]. In other words, a

dropout acts like adding random noise to hidden layers of the model. In our design,

a dropout layer was deployed after each FC layer. The probability of the dropout

is also another hyper-parameter.

Data augmentation is the next approach to prevent over-fitting and add transi-

tional invariance to the model. Therefore, the train samples were augmented on-

the-fly while training. In every mini-batch, each sample was translated horizontally

and rotated. The number of pixels for translation of the image was generated ran-

domly from a zero-mean Gaussian distribution with a standard deviation of 15%

of the image width. Likewise, rotational invariance is added to the images, on-the-

fly, with a random degree generated from a zero-mean Gaussian distribution with

σ = 25 degrees and capped to 2σ .

Since the WMA labels are for the original non-augmented files, the maximum

for transitional and rotational augmentation is limited. Thus, the upper limit for

both transitional and rotational augmentation is estimated by an expert cardiologist

on the research team. This is to make sure that data augmentation does not affect

the clinical value of the cine files.

4.1.6 Training

Once the hyper-parameters are selected and the architecture of the model is final-

ized, the proposed network is trained on the entire training set containing both

train and validation data subsets. The training was repeated four times not only to

emphasize the robustness of the results but to justify the random initialization and

different training paradigms. The final performance of the models was evaluated

49



based on the predictions of the model for the test set. Neither in hyper-parameter

selection nor final training test data was not deployed or analyzed in the design of

networks. Adam optimizer is used for training the networks.

Adam is an optimization algorithm that can be used extensively instead of the

classical stochastic gradient descent procedure to update network weights itera-

tively. Adam is a gradient-based optimization algorithm using adaptive estimates

of lower-order moments for stochastic objective functions. While stochastic gradi-

ent descent maintains a single and constant learning rate for all parameter updates

during training, Adam maintains a learning rate for each network parameter and

adapts separately as learning unfolds.

The suggested parameters for training deep learning models in the paper are:

learning− rate = 0.001,β1 = 0.9,β2 = 0.999, and ε = 1e−08. (4.1)

A relatively high momentum of 0.9 will be sufficient to reward the persistent reduc-

tion in the loss. The optimal initial value for the learning rate in our framework was

1e−5. After 3000 epochs of training, diagnostic accuracy was calculated using the

test set. During training, a small batch-size of 8 triple-cines was favoured.

Early stopping is also deployed to prevent over-fitting. The cost function (loss)

is used as a performance measure for it. Training is stopped if the loss does not

decrease or increases after 100 epochs. Moreover, an absolute difference in the

loss of less than γ = 0.0001 is considered as no improvement. All the network pa-

rameters were randomly initialized using a zero-mean Gaussian distribution. This

paradigm as described ensures a substantial convergence of the network. In all tri-

als, training is stopped once the network is converged. Convergence was defined

as the state in which no progress was observed in the loss decay. Moreover, since

the classes distributions is imbalanced, all the training batch data is sub-sampled

using a stratified sampling.

4.1.7 Implementation

Keras was first developed as part of the project Open-ended Neuro-Electronic In-

telligent Robot Operating System (ONEIROS) and its main author is François Chol-

50



let, a Google engineer. [ keras.io. Retrieved 2018-02-23.] It is an open-source

neural network library in python that is capable of running on top of TensorFlow,

Microsoft Cognitive Toolkit, Theano, or PlaidML. Keras was used for training and

testing of the proposed network on the Tensorflow backend with Python version 2.7

programming language (Python Software Foundation, Beaverton, Oregon). The

experiments were undertaken using Nvidia GeForce GTX 980 Ti GPU with 2816

CUDA cores and a GPU clock of 1 GHz, featuring from the CUDA runtime plat-

form version 8.

4.2 Results
The study population consisted of 953 patients with at least one malfunctioning

LV region. Since, the frequency of abnormal cases is roughly 20% of the whole

data, reporting only the overall accuracy measurement would not be sufficient for

evaluating the network performance. Thus, all the numbers reported in the table

are the accuracy per each class. Given that we only have two classes of normal and

abnormal, the reported accuracy per class would be the specificity and sensitivity

respectively.

Table 4.1 shows the co-variance matrix of the 16-segment labels and WMSI.

As it is shown, there is a high correlation between WMSI and regions 7, 8, 9, 13,

14, 15 and 16. Therefore, the wall motion score index had a higher co-variance

with the apical regions than in the other regions. Figure 4.1 illustrates the value

of the loss function in the training and validation sets for training the proposed

model, where the horizontal axis is the number of epochs and the vertical axis is

the value of loss function. As shown in this figure, the model converges in the

training process near the 1000th epoch. It has been seen that SGD and Adam have

similar performance on our data while SGD learns faster than Adam optimizer.

Table 4.3 shows that the Densenet network with LSTM cells and optical flow

channel(D2D+LSTM+OF) leads to a lower loss value and a higher accuracy in

most of the regions visible in A2C view. Besides, same performance have been

observed for the other two views with their corresponding regions in the Tables 4.4

and 4.5.

Quantitative results for detection of global WMA obtained in this study are

51



Figure 4.1: The value of loss for training and validation over each epoch.

demonstrated in Table 4.2. The highest performance is achieved using the DenseNets

and LSTMs for detection of regional wall motion abnormalities.

As it is seen in the results tables, C3D performs lower than the D2D+LSTM

or GRU networks, this difference suggests that the spatiotemporal decomposition

of D2D+LSTM makes the optimization easier compared to C3D. The other note-

worthy observation, would be the result of adding optical flow transform of the

video as a separate channel. However, this doubles the number of parameters, it

increases the accuracy per each class in all models, significantly. This proves that

the network is analyzing the motion through the cines.

By comparing the results in C2D and D2D structures, it is observed that Dense

blocks have been more successful in pertaining the relevant spatial features of the

images. A key pattern recognized in our observations is the link between model

performance and the quality of images. The performance increases as quality of

the cines increase.
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Region1 Region2 Region3 Region4 Region5 Region6 Region7 Region8 Region9 Region10 Region11 Region12 Region13 Region14 Region15 Region16 WMSI GlobalWM
Region1 0.08
Region2 0.05 0.23
Region3 0.04 0.08 0.25
Region4 0.03 0.03 0.12 0.43
Region5 0.03 0.02 0.08 0.18 0.26
Region6 0.03 0.02 0.03 0.05 0.06 0.08
Region7 0.08 0.13 0.07 0.02 0.00 0.03 0.37
Region8 0.06 0.21 0.09 -0.02 -0.03 0.01 0.28 0.65
Region9 0.05 0.16 0.16 0.06 0.02 0.02 0.18 0.30 0.44
Region10 0.04 0.05 0.12 0.34 0.16 0.06 0.05 0.04 0.11 0.44
Region11 0.04 0.02 0.07 0.20 0.22 0.07 0.02 -0.02 0.04 0.22 0.35
Region12 0.05 0.05 0.05 0.07 0.06 0.07 0.11 0.07 0.08 0.09 0.10 0.18
Region13 0.07 0.17 0.09 0.02 0.00 0.04 0.33 0.48 0.29 0.08 0.03 0.11 0.72
Region14 0.05 0.15 0.09 -0.02 -0.02 0.02 0.27 0.49 0.33 0.05 0.00 0.08 0.55 0.78
Region15 0.06 0.12 0.11 0.12 0.07 0.05 0.26 0.34 0.25 0.18 0.13 0.13 0.55 0.44 0.69
Region16 0.06 0.14 0.08 -0.01 -0.01 0.03 0.30 0.48 0.29 0.06 0.02 0.12 0.55 0.70 0.46 0.76
WMSI 0.05 0.10 0.09 0.10 0.07 0.04 0.16 0.21 0.17 0.13 0.10 0.09 0.25 0.25 0.25 0.25 0.14

GlobalWM -0.02 -0.06 -0.07 -0.15 -0.09 -0.03 -0.16 -0.26 -0.17 -0.18 -0.14 -0.07 -0.31 -0.38 -0.31 -0.36 -0.17 0.71

Table 4.1: The co-variance matrix of the 16-segment labels and WMSI.
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4.3 Discussion and Summary
Several methods have been developed for measuring cardiac wall motion and strain

and strain rate. However, a quantitative automatic method is needed to fulfill the

inter-observer or intra-observer variability and reproducibility limitations of the

those methods. Although strain and 3D echo have superior sensitivity and repro-

ducibility than the routine echo, they require more expertise and several techni-

cal difficulties and standardization issues remain. Having portable and handheld

echocardiography in emergency departments and intensive care units to evaluate

patient hemodynamics results in easier LV wall motion assessment. Moreover, it is

more generalizable to a wider range of physicians with various levels of training,

expertise and echocardiographic equipment. There are some groups that have pro-

posed automated algorithms for assessment of the the LV function [31]. Though,

the majority of them remain semiautomatic, since an observer is needed to input

the important landmarks. Thus, a fully automated assessment algorithm is needed

to do the WMA assessment without any user interaction. The reported results in

the previous section suggest that deep learning with its powerful features in clas-

sification is used for development of a fully automated system for wall motion

abnormality detection.

The most significant limitation is the difficulty to obtain good images that in-

terpret motion abnormalities clearly. The wall motion scores were assessed by an

experienced echocardiographer. While the estimation of the wall motion abnor-

malities can be subjective, we categorized the patients to normal and abnormal to

reduce the observer variability to less than 5%. However, short-axis parasternal

views offer the real 3D (360) analysis of cardiac dynamics as opposed to the lim-

ited degrees of evaluation obtained with the thin sagittal cuts from the apical views,

the acquiring process is much harder for PSAX views. Thus, the measurements

from apical views are studied. Given the linear relationship between the model

performance and image quality in the cines, misclassified cines generally have un-

clear LV boundaries, which cause a great deal of variance in the appearance of the

heart and its motion. Besides, despite automatic view classification done for these

experiments, confusion between the apical views (A2C, three-chamber, A4C and

five-chamber) appears to remain a challenge and a potential source of error. Thus,
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Global WMA

Method Normal Abnormal

C2D 53.4% 54.2%

C2D-OF 55.1% 56.2%

D2D[28] 54.5% 54.9%

D2D-OF 56.7% 56.4%

C2D+LSTM 56.9% 55.6%

C2D+LSTM-OF 59.3% 57.1%

C2D+GRU 57.3% 56.0%

C2D+GRU-OF 58.7% 59.1%

D2D+LSTM 64.5% 67.8%

D2D+LSTM-OF 68.8% 70.3%

D2D+GRU 63.3% 66.1%

D2D+GRU-OF 69.4% 69.6%

C3D 61.5 % 62.9%

C3D-OF 65.2% 66.1%

Table 4.2: The Global WMA accuracy per class comparison of experimented
methods.

a bottom-up approach for improving WMA accuracy can be through improving the

quality of the input data.

The benefit of usage of deep learning to other machine learning methods, id that

deep leaning creates the matching features needed for classification automatically

via its intermediate layers and different structures in deep learning extract different

features. Thus, the difference between the deep learning algorithms performance

is being addressed in this way and shows why a deep learning model is superior to

others.

Since LV localization has been a key step in some ejection fraction estimation

approaches proposed for CMR, another approach worth exploring is whether LV
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Region Numbers

1 4 7 10 13 15

Method Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal

C2D 53.0% 53.4% 53.5% 53.9% 54.0% 54.5% 54.4% 54.3% 54.1% 54.6% 53.1% 53.5%

C2D+OF 54.8% 55.1% 55.3% 54.4% 55.1% 55.9% 56.0% 56.5% 55.5% 55.8% 54.5% 56.0%

D2D 54.2% 54.2% 53.0% 54.8% 55.1% 55.9% 54.0% 54.9% 55.2% 55.0% 54.9% 54.8%

D2D+OF 55.7% 55.4% 56.0% 55.1% 56.2% 55.0% 56.7% 56.8% 56.4% 56.6% 55.9% 57.3%

C2D+LSTM 56.4% 54.6% 56.5% 55.5% 57.2% 55.8% 57.3% 56.2% 56.9% 56.0% 56.3% 55.1%

C2D+LSTM+OF 58.5% 56.3% 58.9% 57.1% 59.4% 57.1% 59.9% 57.9% 59.4% 57.7% 59.0% 56.9%

C2D+GRU 56.7% 55.1% 56.9% 55.4% 57.7% 56.1% 57.8% 56.6% 57.4% 56.3% 56.8% 55.4%

C2D+GRU+OF 58.1% 58.2% 58.5% 58.0% 58.9% 59.0% 59.1% 59.5% 59.0% 59.3% 58.0% 58.7%

D2D+LSTM 63.8% 66.8% 64.1% 66.6% 64.6% 67.5% 64.8% 68.9% 65.1% 67.0% 63.5% 65.5%

D2D+LSTM+OF 67.5% 69.4% 68.0% 69.9% 68.5% 70.4% 69.3% 71.4% 69.3% 69.6% 67.8% 68.2%

D2D+GRU 61.7% 65.0% 62.5% 65.1% 63.6% 65.4% 63.3% 67.1% 64.0% 65.8% 62.0% 63.5%

D2D+GRU+OF 67.7% 68.4% 68.3% 68.5% 69.9% 68.8% 69.8% 70.6% 70.3% 68.9% 68.2% 67.1%

C3D 61.5% 62.5% 61.7% 62.9% 62.2% 62.3% 62.7% 63.9% 62.4% 63.7% 61.4% 62.5%

C3D+OF 65.5% 65.4% 66.4% 65.9% 66.7% 65.8% 65.9% 67.2% 67.4% 67.1% 66.6% 65.9%

Table 4.3: The A2C relevant RWMA accuracy per class comparison of ex-
perimented methods.

Region Numbers

3 6 9 12 14 16

Method Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal

C2D 53.4% 53.2% 53.6% 53.4% 55.1% 55.5% 54.0% 54.6% 54.1% 54.6% 53.1% 53.5%

C2D+OF 54.6% 54.5% 55.9% 54.0% 55.8% 56.4% 55.6% 56.9% 55.9% 55.7% 54.0% 56.8%

D2D 54.5% 54.1% 54.2% 54.9% 56.0% 56.4% 55.7% 55.3% 55.0% 55.5% 54.9% 54.4%

D2D+OF 55.4% 55.8% 56.5% 55.8% 56.2% 56.9% 56.5% 57.1% 56.4% 56.5% 55.3% 57.3%

C2D+LSTM 56.3% 55.6% 56.1% 56.1% 56.9% 56.2% 57.2% 55.8% 57.5% 56.6% 55.9% 56.5%

C2D+LSTM+OF 58.4% 56.5% 58.8% 57.3% 59.6% 57.5% 60.5% 58.2% 58.3% 57.0% 59.5% 56.7%

C2D+GRU 56.1% 55.5% 57.3% 55.7% 57.2% 56.5% 57.2% 56.3% 58.0% 56.9% 56.0% 55.2%

C2D+GRU+OF 58.5% 58.3% 58.2% 58.9% 58.3% 58.7% 59.5% 59.9% 60.5% 61.3% 59.5% 58.0%

D2D+LSTM 64.2% 66.5% 64.9% 66.0% 65.7% 67.2% 64.1% 67.7% 65.4% 68.3% 64.2% 64.9%

D2D+LSTM+OF 66.8% 69.9% 69.4% 68.6% 69.7% 71.5% 70.8% 70.9% 69.0% 69.8% 68.1% 68.9%

D2D+GRU 61.2% 65.9% 63.1% 66.4% 63.2% 66.1% 63.9% 66.9% 63.5% 66.7% 63.9% 64.7%

D2D+GRU+OF 67.1% 68.9% 68.0% 67.9% 68.8% 67.3% 69.9% 71.3% 70.4% 69.2% 68.4% 66.9%

C3D 60.9% 61.8% 62.9% 63.4% 62.8% 61.7% 61.9% 63.2% 62.9% 63.2% 61.9% 63.0%

C3D+OF 66.4% 65.9% 67.2% 66.6% 66.2% 64.3% 65.1% 67.9% 66.9% 67.8% 67.3% 65.3%

Table 4.4: The A4C relevant RWMA accuracy per class comparison of ex-
perimented methods.
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Region Numbers

2 5 8 11 14 16

Method Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal

C2D 52.8% 53.2% 53.3% 53.7% 54.2% 54.1% 54.4% 54.3% 54.0% 55.1% 53.6% 53.2%

C2D+OF 54.5% 55.0% 54.7% 54.2% 54.9% 56.2% 55.5% 56.1% 55.9% 55.8% 54.5% 56.6%

D2D 53.9% 53.8% 54.5% 54.6% 54.9% 55.0% 55.8% 58.1% 55.2% 55.7% 54.3% 54.8%

D2D+OF 55.3% 55.8% 55.4% 55.9% 56.0% 56.8% 56.3% 57.2% 56.5% 56.6% 55.9% 58.0%

C2D+LSTM 56.9% 54.8% 56.9% 54.9% 57.5% 56.5% 57.1% 55.9% 56.5% 56.7% 56.0% 55.5%

C2D+LSTM+OF 58.0% 57.5% 58.2% 57.9% 59.7% 57.0% 56.3% 57.4% 59.8% 57.5% 58.8% 56.1%

C2D+GRU 56.5% 55.8% 56.4% 55.9% 57.5% 56.9% 59.9% 56.8% 57.9% 56.1% 55.9% 56.3%

C2D+GRU+OF 58.6% 58.9% 58.1% 59.2% 57.5% 59.4% 58.9% 59.3% 60.2% 59.1% 57.5% 57.5%

D2D+LSTM 63.5% 62.1% 63.9% 65.3% 64.5% 67.9% 64.3% 68.2% 65.8% 67.5% 62.9% 66.0%

D2D+LSTM+OF 67.0% 69.9% 68.5% 69.3% 68.8% 71.9% 69.5% 71.0% 69.5% 68.5% 68.9% 67.1%

D2D+GRU 62.9% 63.4% 63.5% 64.9% 63.8% 65.2% 64.7% 65.9% 63.9% 66.6% 63.5% 62.4%

D2D+GRU+OF 67.5% 68.0% 68.9% 67.5% 69.8% 68.6% 67.7% 70.2% 71.1% 68.8% 68.7% 68.8%

C3D 61.2% 61.7% 61.8% 61.6% 62.8% 61.9% 62.2% 64.2% 66.9% 62.5% 61.1% 62.9%

C3D+OF 65.9% 64.9% 66.1% 65.5% 66.8% 64.9% 65.6% 67.7% 67.5% 66.6% 65.9% 66.0%

Table 4.5: The PLAX relevant RWMA accuracy per class comparison of ex-
perimented methods.

localization helps with WMA detection in echo. Excluding the motion of the atria

and right ventricle decreases variance from the neighbouring chambers. Going

through the failed cases, a number of studies might have been misclassified due to

wrong localization of the LV. There are some approaches that localize LV automat-

ically with the current segmentation networks [24]. These methods can be used to

to localize, track and accordingly crop LV throughout the cine.

Our results suggest that the estimation of WMS is an accurate method. Any

echocardiography machine can then easily translate this routine information into a

robust estimate of WMS without the use of any strain measurement.

57



Chapter 5

Conclusion

In this thesis, we proposed an automatic system for the evaluation of regional wall

motion abnormality. Given the variability and challenge of coding RWMAs, the

development of a platform that can quickly and accurately identify regional wall

motion abnormalities on echo images will be significant asset. Such a tool has

several applications to improve the accuracy and consistency of RWMA reporting

with bedside echo at the point-of-care, stress echo, and for the workflow of the lab.

The required data were collected from the VGH in two streams consisting 489

unique patients. First part of the data was echo images from these patients and the

second piece contained the corresponding measurements and pathology reports.

The relevant measurements included diagnostic information for standard measure-

ments, comments, etc along with patient information (e.g.,name, age) and exam

information. These information were linked to the echo images using the patients

unique IDs and dates. Eventually the data were transformed into a local database

to make it in a proper format as an input for the model.

Furthermore, we recognize that the categorization of RWMAs is imprecise and

that there are different degrees of hypokinesis that may correlate with differing

severity of flow-limiting lesions. These subtle differences in echo appearance may

be difficult to perceive by human interpreters but are detected with a robust machine

learning model.

The overarching objective of our research program is the development of inte-

grated tools to assist and automate in the acquisition and interpretation of echo. For
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this dissertation, a novel deep learning model is implemented to: identify RWMAs

thus, reducing the time to accurate interpretation; and predict the degree of ob-

structive coronary disease through multi-view data analysis. The created database

allows us to leverage the extensive echo dataset of patients’ images, coded RW-

MAs, and complete clinical reports.

Automated identification of regional wall motion abnormalities was imple-

mented through the following fazes: Using our own previously developed ma-

chine learning platform for view classification, we identified and retrieved key

echo views required for the visualization of RWMAs (parasternal long-axis, api-

cal 2-chamber, and apical 4-chamber). These clips were coded for regional wall

motion abnormalities for training and validation of a machine learning model. As

described in chapter 4, a model that can predict the regional and global wall motion

abnormality was trained and hyper-parameters of it were tuned. In the evaluation

phase, the model predicted the abnormality of all regions for the test cases.

5.1 Contributions
In this work, a framework for regional wall motion abnormality analysis on echo

imaging information has been investigated. The contributions made to reach this

goal are summarized below:

A study on the heart and relevant cardiac diseases were performed. The di-

agnostic imaging techniques were reviewed. In order to improve the diagnosis of

wall motion abnormalities, we decided to develop an artificially intelligent model

to assist in the identification of the wall motion abnormalities through echo im-

ages. This is of a great value given the variability and challenges of scoring such

abnormalities.

Then, I developed a deep learning framework consisting of 3 views of echocar-

diography data as input, with abnormality prediction for 16 wall segments as out-

put. The network directly analyzes echo data without any need for prior segmenta-

tion of the cardiac LV wall.

The models were trained using the data consisiting 489 patients. The hyper

parameters of the model were then optimized. The resultant model precisely iden-

tifies regional wall motion abnormalities as well as global WMA on echo as com-
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pared to the expert human labels with advanced echo training. In independent test

dataset, I demonstrated that the neural network can produce accuracy as high as

69.2% for detection of abnormal wall motion.

The developed model, to the best of our knowledge, is the first to analyze the

left ventricle wall motion for both global and regional abnormality detection in

echocardiography data. This can be considered a great contribution in enhancing

the diagnostic process of the wall motion abnormalities, by expediting the process

for physicians.

5.2 Future Work
There is room for future work to improve the accuracy of the current framework.

Moreover, the current framework is only predicting the normal versus abnormal

regional and global function, it can be extended to predict all severity levels. Be-

sides, we hypothesize that a machine learning approach is able to produce a model

that can accurately predict the severity of obstructive coronary disease based on

echo images as compared to the reference standard, degree of epicardial stenosis

on invasive coronary angiogram or coronary computed tomography angiograms.

Also, since only the apical views are used for predictions, it might be worth trying

to compare the results with the parasternal views as well.

To conclude, while there are many approaches available for WMA detection

using speckle tracking, we believe we are the first to propose a model that predicts

all the 16 segments abnormality using apical views of echocardiography. The flex-

ibility and true power of the framework are seen by combining global wall motion

abnormality predictions, which results in better performance using only 2DE image

information. The benefits advanced by this unified framework are: 1) it can predict

both regional and global wall motion abnormality of LV, 2) due to the low com-

putational complexity of the framework, the framework can be applied to portable

echo machines that are frequently used in the emergency room and in rural clinics.
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Supporting Materials
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(a) The Front Page
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(b) The Valves Page
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(c) The Aorta, Atria, Shunts, Percardium Page
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(d) The LV/RV Assessment Page

Figure A.1: A snapshot of different tabs available in the Filemaker software
for cardiologists to records the analytical measurements.
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