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Abstract

Mathematical models used in epidemiology provides a comprehensive understand-

ing of disease transmission channels and they provide recommendations for meth-

ods of control. This thesis uses different mathematical models (direct and indirect

transmission models) to understand and analyze different infectious diseases dy-

namics and possible prevention and/or elimination strategies.

As a first step in this research, an age of infection model with heterogeneous

mixing and indirect transmission was considered. The simplest form of SIRP epi-

demic model was introduced and served as a basis for other models. Most math-

ematical results in this chapter were based on the basic reproduction number and

the final size relation.

The epidemic model was further extended to incorporate the effect of diffusion

using a coupled PDE-ODE system. We proposed a novel approach to modelling

air-transmitted diseases using a reduced ODE system, and showed how the reduced

ODE system approximates the coupled PDE-ODE system.

A deterministic compartmental model of the co-interaction of HIV and infec-

tious syphilis transmission among gay, bisexual and other men who have sex with

men (gbMSM) was developed and used to examine the impact of syphilis infection

on the HIV epidemic, and vice versa. Analytical expressions for the reproduction

number and necessary conditions under which disease-free and endemic equilibria

are asymptotically stable were established. Numerical simulations were performed

and used to support the analytical results.

Finally, the co-interaction model was modified to assess the impact of combin-

ing different HIV and syphilis interventions on HIV incidence, HIV prevalence,

syphilis incidence and all-cause mortality among gbMSM in British Columbia
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from 2019 to 2028. Plausible strategies for the elimination of both diseases were

evaluated. According to our model predictions and based on the World Health Or-

ganization (WHO) threshold for disease elimination as a public health concern, we

suggested the most effective strategies to eliminate the HIV and syphilis epidemics

over a 10-year intervention period.

The results of the research suggest diverse ways in which infectious diseases

can be modelled, and possible ways to improve the health of individuals and reduce

the overall disease burden, ultimately resulting in improved epidemic control.

iv



Lay Summary

The work highlights different ways of modelling infectious diseases transmitted

indirectly through virus transferred by air, contaminated hands or object (host-

source-host models in Chapters 2 and 3) and directly through sexual contacts (person-

to-person models in Chapters 4 and 5). In particular, the main contribution of this

work are the developed epidemic models with heterogeneous mixing and indirect

transmission, the epidemic model designed using a coupled PDE-ODE system,

and the co-interaction model of HIV and syphilis infections. The models exhibit

many of the features we expect to see in more complex models, and respectively

highlights the core differences between sudden occurrence (epidemic models) and

constant presence (HIV and syphilis co-interaction models) of diseases in the en-

vironment, and possible ways in which these diseases could be eliminated in the

community.

v



Preface

Chapter 1 gives the basic background of infectious disease models, motivations

and their impact on public health policies, and there are no original results in this

Chapter. I was primarily responsible for all the works in Chapers 2, 4 and 5, and

Models in 2.3, 2.31, 3.31, 3.33, 4.4, B.1 are the main contributions.

Chapter 2. A version of this material has been published as Jummy Funke

David (2018) Epidemic models with heterogeneous mixing and indirect transmis-

sion, Journal of Biological Dynamics, 12:1, 375-399. I was primarily responsible

for all areas of model and concept formation and analysis, as well as manuscript

composition under the supervision of Dr. Fred Brauer.

Chapter 3. A version of this joint work between the author and Sarafa Iyani-

wura is under review, and we were both responsible for the study and model design,

and drafting of the manuscript. I was responsible for most part of the analysis of

the reproduction number and the final size relation, while Sarafa Iyaniwura was pri-

marily responsible for the asymptotic analysis. Drs Fred Brauer and Michael Ward

assisted with study concept and critical revision of the manuscript for important

intellectual content. This chapter extends the work done in Chapter 2.

Chapter 4. A version of this chapter is under review. I was primarily respon-

sible for all major areas of the model formulation, concept formation and analysis,

as well as a draft of the manuscript under the supervision of Drs Fred Brauer and

Viviane Dias Lima. Drs Fred Brauer, Viviane Dias Lima and Jielin Zhu assisted

with model design, data acquisition, and critical revision of the manuscript.

Chapter 5. A version of this work is in preparation for publication and I was

primarily responsible for the study concept, analysis, and drafting of the manuscript

under the supervision of Drs Fred Brauer and Viviane Dias Lima. Drs Fred Brauer

vi



and Viviane Lima assisted with the study concept. Drs Fred Brauer, Viviane Dias

Lima and Jielin Zhu assisted with model design and data acquisition.

vii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Natural history of disease in humans . . . . . . . . . . . . . . . . 1

1.2 Brief introduction to mathematical epidemiology . . . . . . . . . 3

1.3 Formulation and examples of some disease models . . . . . . . . 5

1.3.1 Simple epidemic model . . . . . . . . . . . . . . . . . . 7

1.3.2 Simple endemic model . . . . . . . . . . . . . . . . . . . 9

1.4 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Epidemic model . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Endemic model . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Quantitative analysis: . . . . . . . . . . . . . . . . . . . . . . . . 13

viii



1.6 Human epidemiological data, model fitting and parameter estimation 16

2 Epidemic models with heterogeneous mixing and indirect transmission 19
2.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 A two-group age of infection model with heterogeneous mixing . 22

2.3.1 A special case: heterogeneous mixing and indirect trans-

mission for simple SIRP epidemic model . . . . . . . . . 24

2.3.2 Reproduction number R0 . . . . . . . . . . . . . . . . . 30

2.3.3 The initial exponential growth rate . . . . . . . . . . . . . 32

2.3.4 The final size relation . . . . . . . . . . . . . . . . . . . . 34

2.4 Variable pathogen shedding rates . . . . . . . . . . . . . . . . . . 34

2.4.1 Reproduction number R0 . . . . . . . . . . . . . . . . . 36

2.4.2 The initial exponential growth rate . . . . . . . . . . . . . 38

2.4.3 The final size relation . . . . . . . . . . . . . . . . . . . . 38

2.5 Heterogeneous mixing and indirect transmission with residence time 40

2.5.1 Reproduction number R0 . . . . . . . . . . . . . . . . . 43

2.5.2 The initial exponential growth rate . . . . . . . . . . . . . 45

2.5.3 The final size relation . . . . . . . . . . . . . . . . . . . . 48

2.5.4 Numerical simulations . . . . . . . . . . . . . . . . . . . 51

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 A novel approach to modelling the spatial spread of airborne dis-
eases: an epidemic model with indirect transmission . . . . . . . . . 54
3.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Non-dimensionalization of the coupled PDE-ODE model . 58

3.3.2 Asymptotic analysis of the dimensionless coupled PDE-

ODE model . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 One-patch model . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 The basic reproduction number R0 . . . . . . . . . . . . 68

3.4.2 The final size relation . . . . . . . . . . . . . . . . . . . . 70

ix



3.4.3 Numerical simulation for one-patch model . . . . . . . . 71

3.5 Two-patch model . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Reproduction number R0 . . . . . . . . . . . . . . . . . 78

3.5.2 The final size relation . . . . . . . . . . . . . . . . . . . . 80

3.5.3 Numerical simulation for two-patch model . . . . . . . . 83

3.6 Effect of patch location on the spread of infection . . . . . . . . . 88

3.6.1 Effect of patch location on the basic reproduction number 88

3.6.2 Effect of patch location on the final size relation . . . . . . 92

3.6.3 Numerical simulation for two patch model with effect of

patch location . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 A co-interaction model of HIV and syphilis infection among gay, bi-
sexual and other men who have sex with men . . . . . . . . . . . . . 102
4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Model formulation and description . . . . . . . . . . . . . . . . . 105

4.4 Syphilis sub-model . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Endemic equilibrium points . . . . . . . . . . . . . . . . 111

4.4.2 Global stability of the endemic equilibrium for syphilis-

only model . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.3 Sensitivity analysis of ReS . . . . . . . . . . . . . . . . . 112

4.5 HIV sub-model . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.1 Disease free equilibrium point . . . . . . . . . . . . . . . 114

4.5.2 Effective reproduction number ReH . . . . . . . . . . . . 114

4.5.3 Global stability of the disease-free for HIV-only model . . 117

4.5.4 Endemic equilibrium points . . . . . . . . . . . . . . . . 118

4.5.5 Global stability of the endemic equilibrium for HIV-only

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5.6 Sensitivity analysis of ReH . . . . . . . . . . . . . . . . . 121

4.6 Analysis of the HIV-syphilis model . . . . . . . . . . . . . . . . . 124

4.6.1 Disease free equilibrium point (DFE) of the full HIV-syphilis

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

x



4.6.2 Effective reproduction number Re . . . . . . . . . . . . . 125

4.6.3 Global stability of the disease-free of the full HIV-syphilis

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.4 Endemic equilibrium point of the full HIV-syphilis model 125

4.7 Numerical simulations of the full model . . . . . . . . . . . . . . 127

4.8 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . 134

5 Assessing the combined impact of interventions on HIV and syphilis
epidemics among gay, bisexual and other men who have sex with
men in British Columbia: a co-interaction model . . . . . . . . . . . 136
5.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.1 HIV-syphilis transmission model . . . . . . . . . . . . . . 140

5.3.2 Modeling scenarios . . . . . . . . . . . . . . . . . . . . . 142

5.3.3 Main outcomes . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 143

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.1 Status Quo . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.2 TasP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.3 PrEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.4 Condom use . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4.5 Test & Treat syphilis . . . . . . . . . . . . . . . . . . . . 147

5.4.6 Combining two interventions . . . . . . . . . . . . . . . . 147

5.4.7 Combining three interventions . . . . . . . . . . . . . . . 148

5.4.8 Conditions for the elimination of the HIV and syphilis epi-

demics . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.9 Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . 153

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusions and future directions . . . . . . . . . . . . . . . . . . . 161

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xi



A Supporting information for the co-interactional model used in Chap-
ter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.1 The proof of Lemma 4.4.2 . . . . . . . . . . . . . . . . . . . . . 184

A.2 The proof of Lemma 4.4.4 . . . . . . . . . . . . . . . . . . . . . 185

A.3 The proof of Lemma (4.5.4) . . . . . . . . . . . . . . . . . . . . 186

A.4 The proof of Lemma (4.6.2) . . . . . . . . . . . . . . . . . . . . 187

B Supporting information for the co-interactional model used in Chap-
ter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 190

B.1.1 Model equations . . . . . . . . . . . . . . . . . . . . . . 190

B.1.2 Model parameters and variables . . . . . . . . . . . . . . 192

B.1.3 Model assumptions about PrEP uptake in BC . . . . . . . 195

B.1.4 Model calibration . . . . . . . . . . . . . . . . . . . . . . 195

B.2 Model outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xii



List of Tables

Table 2.1 Model variables, parameters and their descriptions. . . . . . . . 25

Table 2.2 Model variables, parameters and their descriptions. . . . . . . . 42

Table 2.3 Parameter values and their sources. . . . . . . . . . . . . . . . 50

Table 3.1 Model variables and their descriptions . . . . . . . . . . . . . 72

Table 3.2 Parameter descriptions and values for the Two-patch model. . 84

Table 4.1 Model variables and their descriptions . . . . . . . . . . . . . 105

Table 4.2 Model parameters and their interpretations. . . . . . . . . . . . 128

Table 5.1 Scenarios for the interventions examined in the study . . . . . 144

Table B.1 Model parameters and variables. Abbreviations: PrEP: Pre-

Exposure Prophylasis, gbMSM: Gay, bisexual and other men

who have sex with men, STIs: Sexually Transmitted Infections,

ART: Antiretroviral Therapy . . . . . . . . . . . . . . . . . . 192

Table B.2 Estimates of the number of PLWH and the number of annual

new HIV infections from PHAC. Abbreviation: PLWH: People

living with HIV . . . . . . . . . . . . . . . . . . . . . . . . . 196

Table B.3 Published data on cases of HIV and syphilis infections from

BC-CFE and BCCDC respectively. Abbreviation: BCCfE: British

Columbia Centre for Excellence for HIV/AIDS; BCCDC: British

Columbia Centre for Disease Control . . . . . . . . . . . . . . 196

Table B.4 Model outcomes under TasP interventions . . . . . . . . . . . 199

Table B.5 Model outcomes under Test & Treat syphilis interventions . . . 201

xiii



Table B.6 Model outcomes under PrEP and condom use interventions . . 202

Table B.7 Model outcomes under the combination of different interventions 203

Table B.8 HIV prevalence and incidence rates, syphilis incidence rates,

mortality rate among PLWH under different interventions . . . 205

xiv



List of Figures

Figure 1.1 Figure (1.1a) explains the onset of a disease from the infection

stage to outcome (Removed) stage, while figure (1.1b) gives

the pathways through which diseases are tranmsitted . . . . . 2

Figure 1.2 SIR model flow chart [25] . . . . . . . . . . . . . . . . . . . 7

Figure 1.3 Results of numerical solutions of the SIR (figure 1.3a) and

SEIR (figure 1.3b) epidemic model which predict the rate of

change of susceptible, exposed, infected and removed over time,

and compare quantitative behaviours of the two models. The

simulations show basically the effect of exposed period on the

behaviour of the model . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.1 Dynamics of I1 and I2 when we vary p11, p12, p21, p22 and have

no movement (p11 = p22 = 1, p12 = p21 = 0), half populations

moving (p11 = p22 = p12 = p21 = 0.5), and all populations

moving (p11 = p22 = 0, p12 = p21 = 1). The figure on the left

panel shows that the prevalence in patch 1 reaches its highest

when in extreme mobility case (blue line) and is lowest when

there is no mobility between patches (red line). The figure on

the right panel show the opposite of this senario in patch 2

(high risk). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xv



Figure 3.1 The dynamics of infected I(t) for different diffusion rates of

pathogen D and D0, and other parameters as in Table 3.1. (a)

shows the result obtained from the reduced ODE (3.35) with

initial conditions (S(0), I(0),R(0), p(0))= (249/250,1/250,0,0),

while (b) is the result of the dimensionless coupled PDE-ODE

model (3.34) with initial conditions (S(0), I(0),R(0),P(0)) =

(249/250,1/250,0,0) . . . . . . . . . . . . . . . . . . . . . 72

Figure 3.2 The dynamics of proportion of infected individuals I(t) using

different diffusion rates of pathogen, and all other parameters

as in Table (3.1). (a) shows the result obtained from the system

of ODEs (3.35) with initial conditions (S(0), I(0),R(0), p(0))=

(249/250,1/250,0,1), while (b) is the result of the dimension-

less coupled PDE-ODE model (3.34) with initial conditions

(S(0), I(0),R(0),P(0)) = (249/250,1/250,0,1) . . . . . . . 74

Figure 3.3 Surface plots of the basic reproduction number R0 (3.38) for

the one-patch model (3.35) plotted with respect to the diffusion

rate of pathoegns D0 and some dimensionless parameters of

the SIR model. (a) is for D0 and the transimission rate β , while

(b) is for D0 and the shedding rate σ . The parameters used are

given in Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 3.4 The dynamics of proportion of infected individuals I(t) using

different diffusion rates, and all other parameters as in Table

3.1. (a) shows the results for patches 1 and 2 obtained from the

reduced ODE (3.46) with initial conditions (S1(0), I1(0),R1(0))=

(249/250,1/250,0), (S2(0), I2(0),R2(0))= (250/250,0,0) and

p(0) = 0, and (b) shows similar results obtained with the cou-

pled PDE-ODE model (3.45) for the same initial conditions

in the patches as the ODEs and P(0) = 0 for the diffusing

pathogens. In both plots, the solid lines represents patch 1,

while the dashed lines are for patch 2 . . . . . . . . . . . . . 85

xvi



Figure 3.5 The dynamics of infected I(t) using different diffusion rates of

pathogen, and all other parameters as in Table 3.1. (a) shows

the results obtained for patches 1 and 2 from the reduced sys-

tem of ODEs (3.46) with initial conditions (S1(0), I1(0),R1(0))=

(249/250,1/300,0), (S2(0), I2(0),R2(0))= (250/250,0,0), and

p(0) = 1, while (b) shows similar results obtained from the

coupled PDE-ODE model (3.45) with the same initial condi-

tions for the ODEs in the patches and P(0)= 1 for the diffusing

patheogens. In both plots, the solid lines represent of patch 1,

while the dashed lines are for patch2 . . . . . . . . . . . . . . 86

Figure 3.6 The dynamics of infected I(t) using different diffusion rates,

and all other parameters as in Table 3.2. (a) and (b) show the

results obtained from the reduced system of ODEs (3.46) for

patches 1 and 2, with initial conditions (S1(0), I1(0),R1(0)) =

(299/300,1/300,0), (S2(0), I2(0),R2(0)) = (250/250,0,0),

and p(0) = 1, while (c) and (d) show similar results obtained

by solving the coupled PDE-ODE model (3.45) with the same

initial conditions for the ODEs in the patches and P(0) = 1 for

the diffusing patheogens . . . . . . . . . . . . . . . . . . . . 87

Figure 3.7 Surface plots of the basic reproduction number R (3.67) (sec-

ond row) and its O(ν) term R1 (3.68) (first row) with respect

to the distance of the patches from the centre of a unit disk

r, for different values of the transmission rates β1 and β2 for

patches 1 and 2, respectively. The parameters used are given

in Table (3.2) except for pc = 450, with diffusion rate D0 = 5.

For each of the graphs, β1 (vertical axis) is plotted against r

(horizontal axis). The value of β2 changes for each column

from left to right in increasing order. The term R1 show how

the leading-order basic reproduction number R0 is perturbed

by the location of the patches . . . . . . . . . . . . . . . . . . 96

xvii



Figure 3.8 The dynamics of infected I(t) for different ring radius r. (a)

and (b) show the results obtained from the reduced ODE (3.75)

for patches 1 and 2, with initial conditions (S1(0), I1(0),R1(0))=

(299/300,1/300,0), (S2(0), I2(0),R2(0))= (250/250,0,0), and

p(0) = 1, while (c) and (d) show similar results obtained from

the coupled PDE-ODE model (3.45) with the same initial con-

ditions for the ODEs in the patches and P(0) = 1 for the dif-

fusing patheogens. The diffusion rate of pathogens is fixed at

D0 = D = 5, while all other parameters are as given Table (3.2) 98

Figure 4.1 Diagram of the HIV/Syphilis co-interaction model . . . . . . 107

Figure 4.2 Syphilis reproduction number ReS as a function of testing and

treatment rate σ1, with all parameters as in Table B.1 except

βS = 5.0. The red dashed line indicates the reproduction num-

ber ReS = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 4.3 Impact of increasing testing rate α1, treatment rate ρ2 and rate

of treatment failure ν1 on HIV reproduction number ReH , with

all parameters as in Table B.1 except for βH = 0.4. The red

line shows when ReH = 1 . . . . . . . . . . . . . . . . . . . 123

Figure 4.4 Number of HIV infected individuals (green) and syphilis in-

fected individuals (red) based on initial condition (4.42) and

parameters in Table B.1, with different transmission rates and

reproduction number: βH = 0.02,βS = 0.1,Re = 0.139 (left);

βH = 0.4,βS = 5.0,Re = 2.780 (right) . . . . . . . . . . . . . 132

Figure 4.5 Using the initial condition in (4.42) with βH = 0.02 and βS =

5.0, the figure shows dynamics of HIV mono-infected individu-

als (UH +AH +TH) (A), co-infected individuals (USH +ASH +

TSH) (B), and syphilis mono-infected individuals (IS) (C). . . . 133

Figure 4.6 Using the initial condition in (4.42) with βH = 0.4 and βS =

0.1, the figure shows dynamics of HIV mono-infected individu-

als (UH +AH +TH) (A), co-infected individuals (USH +ASH +

TSH) (B), and syphilis mono-infected individuals (IS) (C). . . . 133

xviii



Figure 4.7 Prevalence of HIV and syphilis with βH = 0.4 and βS = 5.0

(ReH = 2.780> 1,ReS = 1.245> 1,Re = 2.780> 1). (a) Fig-

ure 4.7a shows the prevalence of HIV with syphilis at the ini-

tial stage of the epidemic (initial condition (4.42), blue dashed

line) and without syphilis (initial condition (4.43), red solid

line). (b) Figure 4.7b shows the prevalence of syphilis infection

with HIV at the initial stage of the epidemic (initial condition

(4.42), blue dashed line) and without HIV (initial condition

(4.44), red solid line). . . . . . . . . . . . . . . . . . . . . . . 134

Figure 5.1 Diagram of the HIV/Syphilis co-interaction model . . . . . . 141

Figure 5.2 HIV incidence rate under different intervention scenarios in

comparison to the WHO threshold for disease elimination as

a public health concern at the end of 2028. WHO: World

Health Organization; GBMSM: gay, bisexual and other men

who have sex with men; TasP: treatment as prevention; PrEP:

pre-exposure prophylaxis; Test & Treat: test and treat syphilis. 150

Figure 5.3 Syphilis incidence rate under different intervention scenarios

in comparison to the WHO threshold for disease elimination

as a public health concern at the end of 2028. WHO: World

Health Organization; GBMSM: gay, bisexual and other men

who have sex with men; TasP: treatment as prevention; PrEP:

pre-exposure prophylaxis; Test & Treat: test and treat syphilis. 151

Figure 5.4 Results for the reduction in HIV point prevalence, the cumu-

lative number of HIV incident cases, and all-cause mortality

cases among PLWH (first row), and the cumulative number

of syphilis incident cases (second row) among gbMSM living

with HIV after 10 years of TasP, PrEP, condom use, and Test

& Treat (syphilis) interventions . . . . . . . . . . . . . . . . 152

xix



Figure 5.5 Results of the sensitivity analyses for the top ten parameters

with the highest sensitivity coefficients based on the scenar-

ios for PrEP use. Row 1: cumulative number of HIV incident

cases at the end of 2028; Row 2: cumulative number of syphilis

incident cases at the end of 2028; PrEP: pre-exposure prophy-

laxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Figure 5.6 Results of the sensitivity analyses for the top ten parameters

with the highest sensitivity coefficients based on the scenarios

for TasP. Row 1: cumulative number of HIV incident cases at

the end of 2028; Row 2: cumulative number of syphilis inci-

dent cases at the end of 2028; TasP: HIV treatment as prevention155

Figure 5.7 Results of the sensitivity analyses for the top ten parameters

with the highest sensitivity coefficients based on the scenarios

for Test & Treat. Row 1: cumulative number of HIV incident

cases at the end of 2028; Row 2: cumulative number of syphilis

incident cases at the end of 2028; Test & Treat: test and treat

syphilis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 5.8 Results of the sensitivity analysis for the parameters with the

most uncertainty based on the available literature. Row 1: Per-

cent change in the cumulative number of HIV incident cases

in comparison to the Status Quo at the end of 2028; Row 2:

Percent change in the cumulative number of syphilis incident

cases in comparison to the Status Quo at the end of 2028 . . . 157

Figure B.1 PHAC estimates of PLWH and annual new HIV infections (blue

error bars) and model simulations (solid red line) during the

period 2011−2018 . . . . . . . . . . . . . . . . . . . . . . . 197

Figure B.2 Annual HIV and syphilis diagnoses (blue points) and model

simulations (solid red line) during the period 2011−2018 . . 197

xx



Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Professor Fred

Brauer, for his tremendous encouragement, patience, and motivation towards the

completion of my PhD studies. This has indeed been a long journey and I wouldn’t

have made it this far without your insightful ideas, countless useful discussions and

especially your believe in my ability. I also like to thank my co-supervisor Profes-

sor Viviane Dias Lima, for her cordial help, technical assistance, guidance and

support. Her valuable discussion and data interpretation helped me to better under-

stand applications of the models to public health. Special thanks to my committee

member Professor Priscilla Greenwood for her insightful comments, encourage-

ment and enlightenment towards widening my research from an interdisciplinary

perspective, and for always listening to my complaints.

My profound gratitude to Professor Leah Edelstein-Keshet for constantly check-

ing up on me and for being instrumental to my coming to Canada and working with

Fred. Many thanks to Professor Daniel Coombs for his expertise, valuable advice,

and for always encouraging me to think critically when he was my course instruc-

tor and graduate advisor at UBC. I am grateful to Professor Michael Ward for his

countless suggestions during graduate courses and for collaborating on one of our

projects. Also, my appreciation goes to Professor Carlos Castillo-Chavez, who first

introduced me to co-interaction of infectious disease models through Fred. Many

thanks to Professor Linda Allen for many useful forwarded posts and ads. I sin-

cerely appreciate Professor Julien Arino for recommending my dissertation to the

Graduate Studies.

I will like to appreciate Dr. Jielin Zhu, Dr. Ignacio Rozada, Sarafa Iyani-

wura who have immensely contributed to this success. I thank my fellow col-

xxi



leagues at UBC Mathematics department, Interdisciplinary Studies, Institutes of

Applied Mathematics and British Columbia Centre for Excellence in HIV/AIDS

(BCCfE). Over the years friendships were made and intercontinental relationships

built. Ditha, you were the best distraction I always wished for at BCCfE.

To my husband and my daughter (my Hero Seyi Oyajumo, and my Princess

Valerie Oyajumo): I know we have been through a lot as a family, but smiles on

your faces encouraged and gave me strength to carry through. You both have been

my support at the toughest moment of this study. Special thanks to my family, my

brothers and sister for supporting me and for believing in my dreams. Words can

not express how grateful I am to my mother, Mosunmola David and mother-in-law

Ololade Oyerinde, for all the sacrifices you made during my PhD program.

Whenever I felt the PhD journey would never end, my families at RCCG Grace

Chapel have always ignited the passion to hope for a better future. Thank you to

Pastor Bayo and Pastor Ola Adediran for their support towards destiny fulfilment.

I will end by saying, all my life God has been faithful. I am a living testimony and

a product of grace. I thank my God and my good good Father. Thank you JESUS.

xxii



Dedication

To my late father David Osevwe who died during my PhD program, and to the

Lord Almighty, the author and the finisher of my faith.

xxiii



Chapter 1

Introduction

1.1 Natural history of disease in humans
The epidemiologic triad of human diseases as in figure (1.1b) results from the inter-

action of a host (human), an infectious or other agent (e.g., virus, bacterium), and

the environment in which the exposure is being promoted (e.g., contaminated water

source) [25, 83]. In general, diseases such as influenza, measles, rubella (German

measles), and chicken pox that are transmitted via viral agents generate durable

immunity against reinfection, while diseases such as tuberculosis, meningitis, and

gonorrhoea that are transmitted via bacteria produce no immunity against reinfec-

tion. Many other human diseases (e.g., malaria, West Nile virus, HIV/AIDS) are

transmitted through infection of vectors or agents (usually insects) by a second host

(human) and from infected vectors or agents to another host (indirect transmission

pathway) [25]. Infectious diseases are generally transmitted via direct (person-

person) and/or indirect (person-host-person) pathways [23, 25, 83].
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(a) Natural history of disease [83] (b) Epidemiologic triad of a disease [83]

Figure 1.1: Figure (1.1a) explains the onset of a disease from the infection
stage to outcome (Removed) stage, while figure (1.1b) gives the path-
ways through which diseases are tranmsitted

In the web of disease transmission, both clinical and subclinical cases of dis-

ease are important, although most subclinical cases are invisible (asymptomatic).

Cases of polio in prevaccine days were one of the subclinical cases, where many

who contacted polio infection were not clinically ill, but were still capable of

spreading the virus to others [83]. From figure (1.1a), we denote this U (unex-

plained) as the interval from the exposed period to the time of clinical onset of

the disease). The rate of spread of disease is related to the virulence of the organ-

ism (the rate of production of disease by the organism), site in the host body, and

characteristics of host body (in terms of immune response) [83].

The Latent/Exposed period is the time when an individual is infected, shows no

signs or symptoms and cannot transmit the disease. The incubation period is the

interval from infection to the time of the clinical illness. During this time, an in-

fected individual shows no symptoms or signs of the disease and this time depends

on the organism, site in the body and the dose of the infectious agent received at

the infection time (large dose shortens the incubation period [83]). The length of

the incubation period for a given disease is characterized by the infective organ-

ism. The epidemiological problem here is that, during the latter part of incubation

period (denoted as U in figure (1.1a)), a person can transmit the disease to oth-

ers (e.g., common childhood disease) [83], and many mathematical models and as

well as epidemiological data may not take this period into account, and this poses

a problem of when to quarantine, isolate or even treat an infected person. This is
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common to influenza infections, where it is known as pre-symptomatic infection,

in which infected individuals become infective/infectious before the appearance of

disease symptoms [7, 83].

The infectious period, as in figure (1.1a), is the time during which an infected

individual is clinically ill, shows signs or symptoms and can transmit the disease

[25, 43, 110], and the earlier part of this period overlaps with the incubation period.

Mathematical modelers commonly refer to this period as the infective period, while

public health professionals refer to it as infectious period [7, 25, 43]. The terms

infective or infectious period will be used interchangeably in this essay. The epi-

demiological outcome of exposure is recovery, death (mostly used in epidemiology

because it is easy to measure), critical/severe illness and so on [83]. We will focus

mainly on epidemics and partially on endemic scenarios. Epidemic is the sudden

occurrence of disease in a region above the normally expected level [25, 43, 83].

Some epidemic outbreaks and events of concern to people include but are not lim-

ited to the 2002 SARS outbreak, Ebola virus and avian flu [25]. Endemic is the

constant presence of disease within a particular region [25, 43, 83]. Prevalence of

diseases such as HIV, malaria, cholera, and typhus are endemic in most less de-

veloped countries and in many parts of the world [25]. World wide epidemics are

referred to as Pandemics, and surveillance in public health helps in detecting an

unusual outbreak above the normal level [83].

1.2 Brief introduction to mathematical epidemiology
Mathematical models have been extensively used to study disease transmission

dynamics in human populations and to extrapolate from epidemiology data in pre-

dicting risk. We can similarly say that mathematical epidemiology is the use of

mathematical techniques to understand the spread of infectious diseases in human

populations [6]. Mathematical modeling in epidemiology gives us comprehension

of the disease transmission channels and then recommends methods of control as

in [25] and as well broadly discussed in [26]. Models also help to identify mea-

surement errors (information bias which may overestimate or underestimate the

true association of exposure and outcome [83]) in the the experimental data [25].

Models are used to evaluate the number needed to treat (NNT) and how extensive
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a vaccination plan must be to prevent epidemics [3, 25, 83, 86, 112].

Epidemiological experiments are often difficult or may be unethical to carry

out when diseases are involved, i.e., placing some groups on drug (treated group)

and others as control group (placebo or untreated group) may be impossible when

diseases are involved. Blinding is sometimes unethical in this situation and if done

may produce some irregularities in the data which may distort the true result [7,

25, 83]. Models are often used to identify unclear behaviour in experimental data

[7, 25]. Some of the models include, but are not limited to, deterministic models,

and stochastic models [86, 150]. We can also have heterogeneous models to include

different behaviour of people and the possibility of having superspreaders (people

that transmit infection to many people in the population) [22]. Many modelling

patterns that have been used include, but are not limited to, ordinary differential

equations, partial differential equations, integral equations, branching processes,

and chain stochastic models [3, 6, 7].

One of the basic results in mathematical epidemiology is the exhibition of

threshold behaviour by most mathematical epidemic models. This is symbolically

written as R0 (the basic reproduction number) and in epidemiological terms, it

means the average number of secondary infections caused by an average infective.

If the basic reproduction number R0 is less than one, this means that the disease

dies out and greater than one means that there is a possibility that an epidemic will

occur [7, 25, 169]. This idea, consistent with observations and quantified through

epidemiological models has been constantly used to estimate the efficacy (how a

vaccine works under ideal conditions [83]), effectiveness (how a vaccine works in

real life [83]), and efficiency (the cost benefit ratio of an effective vaccine [83]) of

vaccination policies and the possibility that a disease will be eradicated or elimi-

nated [25].

When we incorporate factors aimed at controlling the spread of disease into

a model, we use instead the control reproduction number, denoted as Rc, since

control measures decrease reproduction number and therefore decrease the number

of secondary infections caused by a single infective. Models give a methodical way

to estimate Rc, which is very important to determine the public health measures

necessary for disease control and impact on infection transmission [7, 25].

In modeling of disease transmission, there is always an issue of simple mod-

4



els omitting most details, and designed only for analyzing general qualitative be-

haviours, while detailed and complex models are designed for specific situations

and prediction making. The use of detailed and complex models for theoretical

purposes is limited since they are difficult to handle and can not be solved analyt-

ically; Complex models with high strategic value and numerical simulations are

needed for detailed planning by public health professionals and policy decision

makers. Simpler models such as systems of small number of differential equations

are the building blocks of most complex models, and may give some useful con-

clusions [6, 7, 22, 25, 43, 99]. There is need for collaboration to build models that

address the right questions for complex and timely decision making [7]. We there-

fore focus this introductory chapter on simple compartmental models to establish

basic concepts.

1.3 Formulation and examples of some disease models
Different models have been used in different forms to answer some public health

questions and in public policy making. To gain a broader knowledge, we will

limit the scope to simple compartmental models and begin the model formula-

tion with epidemic models (models with no demographic effects), and later extend

to incorporate demographic effects to explore endemic scenario. The Kermack-

McKendrick model, which comes with simple assumptions on rates of flow be-

tween different classes of individuals in the populaion is the form of the compart-

mental model we will mostly consider. The simple models we will formulate will

help answer some questions of interest to public health professionals. For exam-

ple, how detrimental do we expect an epidemic to be? [25, 43, 83]. The Kermack-

McKendrick model assumes complete homogeneous mixing between susceptibles

and infectives, but at the beginning of a disease outbreak, this assumption is not

valid for a stochastic process. Examining the network of person to person con-

tacts is more realistic for the description of the disease outbreak [7, 86]. The use

of network models led to greater improvements in the understanding of epidemic

development [7]. Network models are able to show that even if the basic reproduc-

tion number is greater than 1, there is a possibility that only a minor outbreak with

no full-blown epidemic may occur [7].
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An outbreak or epidemic is investigated when three critical variables are known,

i.e., the time the exposure took place, the time the disease began and the incuba-

tion period of the disease. One variable can be calculated when the other two are

known [83]. The study population is divided into different compartments, with as-

sumptions about the nature and time transfer rate from one compartment to another.

Susceptibles are individuals who have no full immunity against the infectious agent

and therefore can become infected when exposed. Infectives are individuals cur-

rently infected and can transmit the infection to susceptible individuals they are in

contact with. Removed individuals are individuals who have immunity against in-

fection, and have no effect on transmission dynamics whenever they are in contact

with other individuals [25].

The term SIR will be used to describe diseases that confer immunity against

re-infection (e.g., recovery from measles), which denote that the transition of indi-

viduals is from the susceptible class S to the infectious class I and to the removed

(outcome) class R. On the other hand, the term SIS will be used to describe dis-

eases with no immunity against re-infection (e.g., common cold, syphilis), which

denote the transition of individuals from the susceptible class S to the infectious

class I and then back to the susceptible class S again. Similarly, we have other

possibilities as SEIR (diseases such as tuberculosis, SARS, flu) and SEIS, which

include an exposed period between being infected and becoming infectious/infec-

tive, and SIRS models (diseases such as syphilis), with temporary immunity on

recovery from infection, and SI models (diseases such as HIV, and herpes), with

no recovery from infection [25, 43].

To begin with, our models are formulated as differential equations with time

t (the indepedent variable) and transfer rates between compartments expressed in

mathematical terms as derivatives with respect to time of the sizes of the model

compartments. It is possible to generalize to models in which transfer rates de-

pend on the compartments sizes over the past and at the instant of transfer as

well. These will lead to more general types of functional equations (differential-

difference equations, integral equations, or integro-differential equations [25]) and

will not be considered in this essay.
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Figure 1.2: SIR model flow chart [25]

1.3.1 Simple epidemic model

During the course of an epidemic, there is an initial increase in the number of new

infections, which leads to decrease in the number of susceptibles, and therefore

decreases the number of new infections. This decrease in the number of new in-

fection, as a result of decrease in the number of susceptible individuals, slows the

spread of disease and may eventually end the epidemic [7]. We assume a determin-

istic epidemic process here and for SIR epidemic model, the population under study

is divided into three classes S, I and R. Three papers written by W.O. Kermack and

A.G. McKendrick in 1927, 1932, and 1933 proposed simple compartmental mod-

els to describe the transmission of communicable diseases, and the first paper gave

the description of epidemic models (often called the Kermack-McKendrick epi-

demic model). The simple epidemic model that will be considered in this study

will be the special case of the proposed model by Kermack and McKendrick in

1927 [6, 25, 43], which is given as

dS
dt

= −β IS,

dI
dt

= β IS−σ I, (1.1)

dR
dt

= σ I.

The flow chart in figure (1.2) shows the transmission dynamics between com-

partments. Model (1.1) assumes mass action incidence, i.e., individual makes con-

tact enough to transmit infection with βN others per unit time and the total size

of the population is assumed to be N. The model focuses on the dynamics of a

single epidemic outbreak and therefore assumes no entry into the population and

that departure only exist through death from the disease (no demographic effects).
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The model assumes that infectious individuals leave the infective class at rate σ I

per unit time with recovery rate σ , which give the mean infective period 1/σ .

The total study population N = S(0) initially and in the absence of an infection.

The probability that an infectious individual made arbitrary contact with a sus-

ceptible individual, who then transmit infection is given by S/N and we therefore

have the number of new infections in unit time per an infectious individual to be

(βN)(S/N) = βS, which gives the rate of new infections (βN)(S/N)I = βSI, with

the transmission rate (per capita) β . Note that for an SIR disease model, the to-

tal population is N = S+ I +R. We may neglect the differential equation for the

number of removed individuals as

dS
dt

= −β IS,

dI
dt

= β IS−σ I, (1.2)

since R does not appear in (1.1), the equation for Ṙ or dR/dt has no effect on the

transmission dynamics of S and I [25]. This SIR model is standard and now being

discussed in many introductory calculus textbook [25]. The number R0 = βN/σ is

known as the basic reproduction number, and it is the important to consider in the

analysis of any infectious disease epidemic model. The first infectious individual

is expected to infect R0 = βN/σ individuals and this determines the occurrence

of an epidemic at all [25, 169]. The SI epidemic model (e.g., syphilis) is given as

dS
dt

= −β IS,

dI
dt

= β IS−αI, (1.3)

where α is the disease induced mortality. Diseases such as herpes and all chronic

infections [6] (e.g. HIV) are some of examples of SI cases. Similarly, the SIS

epidemic model is given as

dS
dt

= δ I−β IS,

dI
dt

= β IS− (α +δ )I, (1.4)
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where α is the disease induced mortality and δ is the disease recovery rate with no

immunity and we also have the SEIR epidemic model as

dS
dt

= −β IS,

dE
dt

= β IS−νE,

dI
dt

= νE−σ I, (1.5)

dR
dt

= σ I,

where the exposed individuals leave the exposed class at rate νE per unit time with

exposed rate ν , which give the mean exposed period 1/ν .

1.3.2 Simple endemic model

We assume a deterministic endemic process here and for SIR endemic model (model

with demography), the population under study is also divided into three classes S,

I and R. Since an epidemic generally has a much shorter time scale than the de-

mographic time scale, births and deaths which were omitted in the description of

epidemic will be discussed here with the use of longer time scale. Many endemic

diseases have caused millions of deaths each year in many parts of the world. For

endemic diseases, public health professionals are mostly interested in the number

of infectives at a given time, the rate of rise of new infections, possible control mea-

sures, and methods to eradicate the disease in a population. The simple endemic

SIR model that will be considered is given as

dS
dt

= µN−β IS−µS,

dI
dt

= β IS− (α +σ +µ)I, (1.6)

dR
dt

= σ I−µR.

For the sake of simplicity, model (1.6) assumes mass action contact rate, similar to

the case of epidemic models previously considered. We have the disease recovery
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rate to be σ and disease induced mortality to be α . For simplicity, we may assume

equal birth and death as µ and no disease induced mortality (α), so that N is con-

stant. Since S+ I+R = N, we can determine R if S and I are known, and therefore

have model (1.6) to be written as

dS
dt

= µN−β IS−µS,

dI
dt

= β IS− (α +σ +µ)I. (1.7)

An endemic model that describes diseases with no immunity against re-infection

(SIS model for bacteria diseases such as common cold [7]) is given as

dS
dt

= µN +δ I−β IS−µS,

dI
dt

= β IS− (α +δ +µ)I, (1.8)

with disease recovery with no immunity to be δ .

Using model (1.2), we can write the initial exponential growth rate ϒ as

ϒ = σ(R0−1). (1.9)

Measuring ϒ makes it easier to estimate the basic reproduction number (R0) in

equation (1.9).

1.4 Qualitative analysis

1.4.1 Epidemic model

Model (1.2) with initial conditions S(0) = S0, I(0) = I0, S0 + I0 = N only

makes sense when S(t) and I(t) are nonnegative, and then the system ends when

either of S(t) or I(t) reaches zero. We notice that Ṡ < 0 for all t and İ > 0 on the

condition that S > σ/β , which then increases I and decreases S for all t. This de-

crease in S eventually decreases I, and I tends to zero. Infective I decreases to zero

(no epidemic) whenever S0 < σ/β , and on the other hand if S0 > σ/β , I increases

initially to a maximum reached when S = σ/β and then decreases to zero, which

10



denotes an epidemic. The basic reproduction number for model (1.2) is denoted

as R0 = βS0/σ , which determines whether an epidemic will occur. The infection

dies out whenever R0 < 1, and an epidemic occur whenever R0 > 1.

The basic reproduction number is defined as the number of secondary infec-

tions caused by the introduction of a single infective into a totally susceptible pop-

ulation of size N ≈ S0 during the period of infection of the single infective intro-

duced. In this scenario, βN contacts are made by an infective in unit time, with

all being with susceptibles and producing new infections and with mean infective

period 1/σ , which gives the basic reproduction number to be R0 = βN/σ rather

than βS0/σ . We can also explain this evident difference by looking at two differ-

ent ways in which epidemic begins. Epidemic may begin by either a member of a

population under study with I0 > 0 and S0 + I0 = N or by a visitor from outside of

the study population with S0 = N.

The naive way to solve a two-dimensional autonomous system of differential

equations like model (1.2) is to find equilibria and determine stability by linearizing

about each equilibrium. Nevertheless, model (1.2) has a line of equilibria (i.e.

every point with I = 0 is an equilibrium) and it is impossible to use this method

since the linearization matrix produces a zero eigenvalue at each equilibrium. We

therefore use a different method to analyze the system (1.2). The sum of equations

S and I in (1.2) gives
d(S+ I)

dt
=−σ I.

We can see that (S + I) decreases to a limit, and since (S + I) is a nonnegative

smooth function, we could show that its derivative approaches zero, from which

can be concluded that

I∞ = lim
t→∞

I(t) = 0.

Integrate the sum of the two equations of (1.2) from 0 to ∞ to have

σ

∫
∞

0
I(t)dt = S0 + I0−S∞ = N−S∞,

∫
∞

0
I(t)dt =

N−S∞

σ
, (1.10)

which implies that
∫

∞

0 I(t)dt < ∞.
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Divide the first equation of (1.2) by S and integrate from 0 to ∞ to have

log
S0

S∞

= β

∫
∞

0
I(t)dt,

and by substituting equation (1.10), we have

log
S0

S∞

= β
N−S∞

σ
=

βN
σ

[
1− S∞

N

]
= R0

[
1− S∞

N

]
. (1.11)

Equation (1.11) is known as the final size relation. It gives an estimate of the

total number of infections over the course of the epidemic from the parameter in

the model [23], and as well shows the relationship between the basic reproduction

number and the size of the epidemic. The final size of the epidemic (N− S∞) is

always described in terms of the attack rate/ratio (1−S∞/N). We can generalize the

final size relation (1.11) to epidemic model with more complex compartment than

the simple SIR model (1.2), including model (1.5) with exposed periods, models

with treatment, models involving quarantine of suspected individuals and isolation

of diagnosed cases. For example, an epidemic with proportion of susceptibles

S0 = 0.999, and S∞ = 0.35 as in figure 1.3a and substituting into equation 1.11,

gives the the estimate β/α = 1.61 and R0 = 1.61.

1.4.2 Endemic model

We can determine a disease free equilibrium (DFE) of the endemic model (1.7) by

setting Ṡ = İ = 0:

µN−β IS−µS = 0

β IS− (α +σ +µ)I = 0. (1.12)

We therefore have the disease free equilibrium (DFE) as (S, I) = (N,0), and the en-

demic equilibrium point (EEP) as (S, I)=
(
(α +σ +µ)

β
,

µ(βN− (α +σ +µ))

β (α +σ +µ)

)
,

which exists only when (α +σ +µ)< βN.

We can analyze the stability of the above equlibria by the theorem below as;

Theorem 1.4.1. Let the basic reproduction number be R0 =
βN

α +σ +µ
, then
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R0 < 1 shows that EEP does not exit, and for all positive initial conditions, we

have lim
t→∞

(S(t), I(t)) = (N,0) and the disease dies out. Also, if R0 > 1, then for all

positive initial conditions,

lim
t→∞

(S(t), I(t)) =
((α +σ +µ)

β
,

µ(βN− (α +σ +µ))

β (α +σ +µ)

)
=
( 1

R0
N,

µ

β
(R0−1)

)
,

and the disease persists in the population.

We can interpret the basic reproduction number R0 =
βN

α +σ +µ
(the aver-

age number of cases produced when a case is introduced into a totally susceptible

population) as the product of

• β , the probability of contracting the disease when a potentially infecting

contact occurs,

• 1
α +σ +µ

, the mean time spent in the infectious class when subject to the

competing risks of natural death, recovery and disease induced death.

1.5 Quantitative analysis:
The SIR model, which is one of the easiest and basic of all epidemiological models,

depends on calculating the percentage of the population in each classes (suscepti-

ble, infected and removed/recovered) and determining the transmission rates be-

tween these classes. Considering the simplest form of a single epidemic (ignoring

births and deaths) as in equation (1.1), there are only two transitions: infection (in-

dividuals progress from susceptible to the infected class) and recovery (individuals

progress from infected to the recovered class). For simplicity, it is often assumed

that individuals infected with a disease do recover at a constant rate [100], whereas

generally assumed from epidemic data that the per capita rate of a given suscepti-

ble individual being infected is proportional to the prevalence of the infection in the

population [83]. To make headway with the simple model in (1.1) needs modellers

to estimate two parameters (the infection transmission rate β and recovery rate σ )

which demonstrates the basic relationship between models and statistics. The in-

terchange between models and statistics is that only models with good statistical

estimated parameters from epidemiological data can be used for prediction.
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Once the two parameters have been estimated, the SIR model then predicts

an epidemic which follows the pattern in figure (1.3a): the number of cases (as

in colour red) initially increases until the percentage of Susceptible individuals

(as in colour blue) have been adequately consumed. This process continues until

the epidemic can no longer be maintained and eventually decreases the number of

cases, and increases the number of individuals being removed (as in green colour),

which then leads to extinction of infection (as seen in figure (1.3a) which shows

how the red curve goes to zero). The numerical simulations of the SIR model (1.1)

shown in figure 1.3a produce three general predictions that are of importance to

public health and have policy implications. Predictions from this simple model are

supported by many more complicated models with numerous parameters [4, 99].

For example, if figure (1.3a) assumes the numerical simulation for total proportion

of population N = 1, with S0 = 0.999, I0 = 0.001 and with β = 0.3, σ = 0.187.

We can therefore predict:

1. The value of R0 = β/σ < 1 denotes an epidemic that is destined to quick

failure due to inability of the epidemic to sustain the transmission dynamics,

whereas R0 > 1 denotes possibility of an epidemic. For the example shown

in figure (1.3a), R0 is estimated to be approximately 1.6 which is dependent

on both the population and infection.

2. In general, the proportion of susceptible population at the end of epidemic

becomes very small for large values of R0, but for the scenario of R0 = 1.6,

approximately 62% of the population is expected to be infected during an

epidemic. More complicated model with many parameters may change the

precise value of the proportion infected, but the general idea continues to

hold.

3. Susceptibility could be reduced through vaccination and therefore decrease

the spread of infection in the population. Epidemic could as well be pre-

vented by vaccinating only some part of the population, and endemic infec-

tion could also be eradicated or pandemic prevented if a proportion 1−1/R0

of the population is successfully immunized (number needed to treat) [4].

For our example, we would need to immunize approximately 38% (NNT) of
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the population to eradicate endemic and prevent pandemic. This value can

be reduced if vaccination is sensibly targeted with more complicated model

[4, 99].

(a) SIR epidemic model (b) SEIR epidemic model

Figure 1.3: Results of numerical solutions of the SIR (figure 1.3a) and SEIR
(figure 1.3b) epidemic model which predict the rate of change of sus-
ceptible, exposed, infected and removed over time, and compare quan-
titative behaviours of the two models. The simulations show basically
the effect of exposed period on the behaviour of the model

We can similarly consider an epidemic scenario (including an exposed class)

as in equation (1.5), and there are only three transitions: exposure (individuals

progress from susceptible to the exposed class), infection (individuals progress

from exposed to the infected class) and recovery (individuals progress from in-

fected to the recovered class). To make headway with the simple model in (1.5),

modellers need to estimate three parameters: the infection transmission rate β ,

exposed rate ν , and recovery rate σ .

Once the three parameters have been estimated, the SEIR model then predicts

an epidemic which follows the pattern in figure (1.3b): the number of cases (as

in colour red) initially increases but lower than in SIR model from figure (1.3a).

The epidemic was sustained for approximately 100 and 130 days in SIR and SEIR

model respectively (as in figure (1.3a) and (1.3b), which shows how the red curve

goes to zero). The numerical simulations of SEIR model (1.5) shown in figure 1.3b

also produces three general predictions like the SIR model (1.1).
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From the previous example, if figure (1.3b) assumes the numerical simulation

for total proportion of population N = 1, with S0 = 0.999, E0 = 0, I0 = 0.001 and

with β = 0.3, σ = 0.187, ν = 0.5. We therefore have a similar basic reproduction

number R0 = β/σ estimated to be 1.6 in both models. The proportion of suscepti-

ble population at the end of epidemic in both models is not significantly different as

the same number of population would need to be treated (NNT= 38%) to prevent

one less case.

In our example, the SIR and SEIR gave a very similar result and therefore SIR

should be preferred since only two parameters are needed, and of course this is just

an example to show the impact of including an exposed class. We can improve

the authenticity and predictive accuracy of a model but also increase the number of

parameters needed to estimate, by considering more complicated models which in-

corporate heterogeneous mixing and possibility of superspreaders [22], metapopu-

lation studies [8], age of infection [19], residence time [13, 22] and mixing patterns

through network models [150].

1.6 Human epidemiological data, model fitting and
parameter estimation

Human data are the most desirable and are highly prioritized, but unfortunately,

completely reliable epidemiological data are rarely available. Even when epidemi-

ological studies have been conducted, they usually have incomplete and unreliable

exposure histories. Data are considered to be inadequate evidence in humans if

no satisfactory epidemiological studies exist. For better predictions, more data is

needed to refine the models being used. For example, it may be possible to decide

optimal allocation of resources for treatment from a model when there are enough

data to know susceptibility to infection for several different age groups [7].

Building a model that describes the transmission dynamics of an infectious dis-

ease will strongly depend on parameters and available data to make proper estima-

tion of unknown parameters and possibly predictions. Nevertheless, this procedure

comes with some fundamental challenges since models are based on unobservable

occurrences at the time of modelling, such as the transmission of infection between

infectives and susceptible individuals, the start and end of an infectious period (the
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unexplained scenario, U in figure (1.1a) [83]), and the serial interval (the time in-

terval between sequential infectious individual in a series of transmission). But

data are based on observable occurrences that are usually collected by means of

epidemiological and clinical evidences [7]. The clinical serial interval may differ

from the serial interval from the model. There is also a problem of difference in

terminology, as public health professionals use the word incubation period of an

infection (the time from the period of infection/exposure to the clinical onset of

the disease as in figure (1.1a) [7, 83]), while modellers use the word latent/exposed

period (the time from the period of infection/exposure to the period of being infec-

tious as in figure (1.1a) [7, 83]). Inconsistent or inappropriate use of these words

may lead to confusion and may not be appropriately accounted for in the model.

For example, the case of influenza where we have an infectious pre-symptomatic

period, which implies a shorter latent period than the incubation period. In this sit-

uation, individuals become infectious before showing symptoms or signs and this

pose a problem denoted as U (unexplained) in figure (1.1a).

Another problem is the bias that may arise from data collection [7]. Admin-

istrative factors such as delay in report (report bias), and misclassification bias

(inconsistencies in classifying clinical cases) may distort and complicate the anal-

ysis of clinical data. A disease such as influenza which has an infectious pre-

symptomatic period and is therefore undiagnosed or not reported, or has differences

in reportability from one location to another, may present a complicated or dis-

torted clinical data analysis [7]. Modellers may describe the course of a disease and

estimate some key transmission parameters (e.g., the basic reproduction number)

by fitting models to data. Nevertheless, it is unreasonable to fit curves to data if the

model does not produce a curve that has the same qualitative features as the data,

and many times a model curve may not give the correct image of observations [7].

In addition, there is also a problem of differences in reported cases (symptomatic

cases) and actual cases (includes both symptomatic and asymptomatic cases) of

infection. The curve produced from epidemic data represents the reported cases,

while simple modelling will produce a curve that represents the actual cases of in-

fection. Proper distinction between these two is very important and necessary to

obtain appropriate results. Data collected from an epidemic is commonly used to

estimate the basic reproduction number based on the observed initial exponential
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growth rate of infectious cases. Measuring the initial exponential growth rate (ϒ)

in equation (1.9) makes it easier to estimate the basic reproduction number (R0).

However, a different model (SEIR) is needed if there is an exposed/latent pe-

riod between being infected and being infectious, and this will change the rela-

tion between the initial exponential growth rate and the basic reproduction number

[6, 7, 25]. Therefore, the use of a simplified model can lead to incorrect estimates

of important parameters [7]. Some limitations such as a balance between predic-

tive power of the model, its level of complication and the type of questions to be

addressed are inherent to the model structure itself. We therefore need to decide

on which parameters are needed to be included or excluded from the model based

on their relevance and effect on the correctness of predictions [110]. The accuracy

of the data used for estimating parameters of the model determines how useful a

model will be [7, 99]. In the case of limited data, sensitivity and uncertainty analy-

ses may be done to determine the most important information for reliable estimate

of outcomes [7, 99, 155]. Uncertainty analysis is done to investigate the effect of

unknown parameters or missing data on model outputs, while sensitivity analysis

is done to investigate how model outputs vary with changes in input parameter val-

ues [7, 155]. These two methods are now commonly used in decision analysis and

are now being used in infectious disease modeling. These methods help to identify

parameter values that most influence model estimates [7, 155].

While data early in the disease outbreak are usually misleading, we need au-

thentic data to develop models that compare management policies for disease out-

break. We can as well do the uncertainty and sensitivity analyses to know which

parameters mostly impact the model projections. To easily design public health

planning, control policy and decision making based on each country, quantitative

modelling techniques would need multi-disciplinary collaborations among experts

from different disciplines such as clinicians, public health professionals, labora-

tory technologists, epidemiologists, statistical and mathematical modelers. Simi-

larly, knowledge translation activities are crucial part of modelling and therefore,

modelers need to involve knowledge translation activities to demonstrate and com-

municate the relevance of their results in plain language and in the context of public

health. For detailed explanation of the main epidemic models contributed, please

see Chapters 2 & 3, and for endemic models, see Chapters 4 & 5 of this thesis.
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Chapter 2

Epidemic models with
heterogeneous mixing and
indirect transmission

2.1 Synopsis
We developed an age of infection model with heterogeneous mixing in which indi-

rect pathogen transmission is considered as a good way to describe contact that is

usually considered as direct and we also incorporate virus shedding as a function

of age of infection. The simplest form of SIRP epidemic model is introduced and

it serves as a basis for the age of infection model and a 2-patch SIRP model where

the risk of infection is solely dependent on the residence times and other environ-

mental factors. The computation of the basic reproduction number R0, the initial

exponential growth rate and the final size relation is done and by mathematical

analysis, we study the impact of patches connection and use the final size relation

to analyze the ability of disease to invade over a short period of time.

2.2 Introduction
Epidemic model of infectious diseases had been extensively investigated by propos-

ing and investigating mathematical models ([13, 23, 25, 29, 169, 178] and refer-
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ences therein). Diseases such as cholera and some airborne infections are pathogenic

microorganism diseases that are usually transmitted directly via host-to-host [178],

or indirectly by virus transferred through objects such as contaminated hands, en-

vironments or objects such as shelves and handles [18, 23, 127, 173]. Pathogen

sheds by infected individuals may stay outside of human hosts for a long period

of time. However, alternative transmission pathways as a result of the behavior of

host may constitute to the spread of infection, such as drinking contaminated wa-

ter, touching handles that have been exposed to a virus, eating contaminated food

and so on [178]. Brauer [23] proposed a SIVR epidemic model with homogeneous

mixing, which is an extension of the SIR model by the addition of a pathogen com-

partment V to describe the indirect transmission pathway (host-source-host). The

basic reproduction number and the final size relation was derived and investigated

to determine the impact of indirect transmission pathway on disease spread. Sim-

ilarly, Bichara et al. [13] proposed an SIR epidemic model in two patches with

residence times, which describes patches with residents who spent a proportion of

their time in different patches to analyze the direct transmission pathway (host-

host). They derived the basic reproduction number, final size relation and investi-

gated how residence times influence them. Tien and Earn [165] developed a SIWR

disease model which extended the SIR model by the addition of a compartment W

that describes direct and indirect transmission pathways.

We have based most mathematical results in this chapter on the final size rela-

tion of epidemic models in an heterogeneous environment. This relation had been

extensively discussed in [13, 19, 20, 23, 28] using different models to predict how

bad an epidemic could be during a disease outbreak. For example, consider a sim-

ple compartmental model, which comes with simple assumptions on rates of flow

between different classes of individuals in the population (the special case of the

proposed model by Kermack and McKendrick in [100–102]) given as

dS
dt

= −β IS,

dI
dt

= β IS−ρI, (2.1)

dR
dt

= ρI.
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The final size relation to the simple model in (2.1) is

log
S0

S∞

= β

∫
∞

0
I(t)dt,

=
βN
ρ

[
1− S∞

N

]
, (2.2)

= R0

[
1− S∞

N

]
,

where S0 denotes the initial size of the susceptible class, N the size of the en-

tire population, β effective contact rate, ρ removed rate, and R0 =
(

βN
ρ

)
the

basic reproduction number. The first infectious individual is expected to infect

R0 =
(

βN
ρ

)
individuals and this determines if an epidemic will occur at all. The

infection dies out whenever R0 < 1, and an epidemic occur whenever R0 > 1.

Equation (2.2) which is known as the final size relation and gives an estimate of

the total number of infections over the course of the epidemic from the parameter

in the model [19, 23], and can similarly show the relationship between the basic

reproduction number and the size of the epidemic. The final size (N−S∞) is usu-

ally described in terms of the attack rate/ratio (1−S∞/N). Note that the final size

relation in (2.2) can be generalized to epidemics model with more complex com-

partments than the simple model in (2.1). Papers [13, 19, 20, 23, 28] extensively

discussed details of age of infection models and their final size relations, and we

will use these techniques to derive the final size relations throughout the paper.

We intend in this work to incorporate an epidemic model with age of infection

and indirect transmission pathway in which pathogen is shed by infected individu-

als into the environment, acquired by susceptible individuals from the environment,

and transmitted in an heterogeneous mixing environment. We will further inves-

tigate the nature of the epidemic when variable virus shedding rate and residence

time are taken into consideration. A Lagrangian method is used to monitor the

place of residence of each population at all times [13, 29, 36, 57]. We propose that

this may be an alternative way to study disease epidemic in an heterogeneous mix-

ing environment. The rest of this chapter is structured as follows. In section 2.3,

we introduce the age of infection model in an heterogeneous mixing settings and

analyse the model succinctly. The analysis of the age of infection model follows
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similar steps from the simpler version analyzed in 2.3.1. We describe in section 2.4

how variable pathogen shedding rates are incorporated. In section 2.5, we formu-

late a 2-patch model with residence time and determine the nature of the epidemic

when populations in one patch spend some of their time in another patch. We anal-

yse the patchy model for different scenarios numerically in the last part of section

2.5 and devote section 2.6 to a summarized conclusion. Note that the same analytic

approach, a standard way to analyze disease transmission models will be used in

each section.

2.3 A two-group age of infection model with
heterogeneous mixing

We consider two subpopulations of sizes N1, N2, each divided into susceptibles S1

and S2 and infectives I1 and I2 with a pathogen class P. We assume that Susceptible

individuals become infected only through contact with the pathogen sheded by

infectives. Pathogen P is shed by infected individuals I1 and I2 at a rate r1 and r2

respectively as in [95, 178]. The model assumes that the epidemic occurs within a

short period of time.

Considering the age of infection, we define ϕ1(t) and ϕ2(t) as total infectivity

in classes I1 and I2 at time t respectively, ϕ10(t) and ϕ20(t) represent the total

infectivity at time t of all individuals already infected at time t = 0, A1(τ) and

A2(τ) are the mean infectivity of individuals in classes I1 and I2 at age of infection

τ and Γ(τ) the fraction of pathogen remaining τ time units after having been shed

by an infectious individual. This is an extension of [23] from homogeneous mixing
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to heterogeneous mixing, and we therefore have the equation as in [28] as

dS1(t)
dt

= −β1S1(t)P(t),

ϕ1(t) = ϕ10(t)+
∫

∞

0

[
−dS1(t− τ)

dt

]
A1(τ)dτ,

dS2(t)
dt

= −β2S2(t)P(t), (2.3)

ϕ2(t) = ϕ20(t)+
∫

∞

0

[
−dS2(t− τ)

dt

]
A2(τ)dτ,

P(t) =
∫

∞

0

(
r1ϕ1(t− τ)+ r2ϕ2(t− τ)

)
Γ(τ)dτ.

We can replace (2.3) by the limit equation

dS1(t)
dt

= −β1S1(t)P(t),

ϕ1(t) =
∫

∞

0

[
−dS1(t− τ)

dt

]
A1(τ)dτ,

dS2(t)
dt

= −β2S2(t)P(t), (2.4)

ϕ2(t) =
∫

∞

0

[
−dS2(t− τ)

dt

]
A2(τ)dτ,

P(t) =
∫

∞

0

(
r1ϕ1(t− τ)+ r2ϕ2(t− τ)

)
Γ(τ)dτ,

with a choice of initial function ϕ10(t) and ϕ20(t). Asymptotic theory of integral

equations in [111] assures that the asymptotic behaviour of (2.3) is synonymous

to that of the limit equation (2.4) for every initial function with limt→∞ ϕ10(t) =

limt→∞ ϕ20(t) = 0 [28, 111]. We assume that
∫

∞

0 Γ(τ)dτ < ∞, where the function

Γ is monotone non-increasing with Γ(0) = 1, and that
∫

∞

0 A(τ)dτ < ∞, where A is

not necessarily non-increasing.

In order to evaluate the basic reproduction number, the initial exponential growth

rate, and the final size relation in terms of the model parameters, it makes sense to

start with the simplest form of the limit equation (2.4) as was done in [20, 21, 28]

by considering a special case in Section (2.3.1). For this special case, we assume

that there is no age of infection, so that we approximate the model (2.4) by a com-
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partmental model in (2.5).

2.3.1 A special case: heterogeneous mixing and indirect transmission
for simple SIRP epidemic model

The age-of-infection model includes models with multiple infective. For exam-

ple, consider the standard SIRP epidemic model with pathogen P being shed by

infected individuals I1 and I2 at a rate r1 and r2, respectively, and these pathogen

decay at rate δ . Pathogen shed outside of the host organism can persist and repro-

duce but the decay rate δ is bigger than the reproduction rate [95, 178]. Infected

populations are removed at rate α . The indirect transmission model is therefore

written as

dS1

dt
= −β1S1P,

dI1

dt
= β1S1P−αI1,

dR1

dt
= αI1,

dS2

dt
= −β2S2P, (2.5)

dI2

dt
= β2S2P−αI2,

dR2

dt
= αI2,

dP
dt

= r1I1 + r2I2−δP,

with initial conditions

S1(0)= S10, S2(0)= S20, I1(0)= I10, I2(0)= I20, P(0)=P0, R1(0)=R2(0)= 0,

in a population of constant total size N = N1 +N2 where

N1 = S1 + I1 +R1 = S10 + I10 and N2 = S2 + I2 +R2 = S20 + I20.

Again, model (2.5) is an extension of [23] from homogeneous mixing to heteroge-

neous mixing in the population.
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Model (2.5) will be analyzed using the method of Kermack-McKendrick epi-

demic model [23, 25].

Table 2.1: Model variables, parameters and their descriptions.

Variables Description
Si Population of susceptible individuals
Ii Population of infected individuals
Ri Population of recovered individuals
P Pathogen shed by infected individuals

Parameters Description
βi Effective contact rate
α Removed rate for infected individuals
ri Pathogen shedding rate for infected individuals
δ Infectivity loss rate for pathogen

Note: For all i = 1,2.

Lemma 2.3.1. Let f (t) be a nonnegative monotone nonincreasing continuosly dif-

ferentiable function such that as t→ ∞, f (t)→ f∞ ≥ 0, then
d f
dt
→ 0.

Summation of equations S1 and I1 in (2.5) gives

d(S1 + I1)

dt
=−αI1 ≤ 0.

We can see that (S1 + I1) decreases to a limit, and by Lemma 2.3.1 we could

show that its derivative approaches zero, from which we can infer that I1∞ =

limt→∞ I1(t) = 0.

Integrate this equation to have α
∫

∞

0 I1(t)dt = S1(0)+ I1(0)−S1(∞) = N1(0)−
S1(∞), ∫

∞

0
I1(t)dt =

N1(0)−S1(∞)

α
, (2.6)

which implies that
∫

∞

0 I1(t)dt < ∞.

Similarly, sum S2 and I2 in (2.5) as

d(S2 + I2)

dt
=−αI2 ≤ 0,
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and by Lemma 2.3.1 and integrating, we have

∫
∞

0
I2(t)dt =

N2(0)−S2(∞)

α
, (2.7)

which implies that
∫

∞

0 I2(t)dt < ∞.

Reproduction number R0

Here, we use the next generation matrix approach [169] to find the basic reproduc-

tion number. Note that we have three infectious classes I1, I2,P, and the Jacobian

matrix of Fi =(F1,F2,F3), evaluated at the disease free equilibrium point (DFE)

DFE=(S10,0,0,S20,0,0,0)=(N1(0),0,0,N2(0),0,0,0) is given by

F =
(

∂Fi

∂x j

)
i, j

=

0 0 β1N1(0)

0 0 β2N2(0)

0 0 0

 ,

where x j = I1, I2,P for j = 1,2,3 and i = 1,2,3.

The Jacobian matrix of Vi = (V1,V2,V3), evaluated at the disease free equilib-

rium point DFE, is

V =
(

∂Vi

∂x j

)
i, j

=

 α 0 0

0 α 0

−r1 −r2 δ

 ,

FV−1 =


β1N1(0)r1

αδ

β1N1(0)r2
αδ

β1N1(0)
δ

β2N2(0)r1
αδ

β2N2(0)r2
αδ

β2N2(0)
δ

0 0 0

 .

Remark 1. Since we can not calculate the basic reproduction number for our two-

group model (2.5) by knowing secondary infections, we therefore used the method

of next generation matrix in [169] to find the basic reproduction number as the

dominant eigenvalues of FV−1 (the spectral radius of the matrix FV−1). And it is

given as
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R0 =
r1β1N1

αδ
+

r2β2N2

αδ
.

R0 can be written as R0 = β1R1 +β2R2, where R1 =
r1N1

α1δ
and R2 =

r2N2

α2δ
.

The first term in this expression represents secondary infections caused indi-

rectly through the pathogen since a single infective I1 sheds a quantity r1 of the

pathogen per unit time for a time period 1/α , and this pathogen infects β1N1 sus-

ceptible individuals per unit time for a time period 1/δ , while the second term

represents secondary infections caused indirectly through the pathogen since a sin-

gle infective I2 sheds a quantity r2 of the pathogen per unit time for a time period

1/α and this pathogen infects β2N2 susceptible individuals per unit time for a time

period 1/δ . The following easily proved Theorem will be used to summarize the

benefit of the basic reproduction number R0.

Theorem 2.3.2. For system (2.5), the infection dies out whenever R0 < 1 and

epidemic occur whenever R0 > 1.

The initial exponential growth rate

The initial exponential growth rate is a quantity that can be compared with ex-

perimental data [21, 27]. We can linearize the model (2.5) about the disease-free

equilibrium S1 = N1, I1 = R1 = 0,S2 = N2, I2 = R2 = P = 0 by letting u1 = N1−S1,

u2 = N2−S2 to obtain the linearization

du1

dt
= β1N1P,

dI1

dt
= β1N1P−αI1,

dR1

dt
= αI1,

du2

dt
= β2N2P, (2.8)

dI2

dt
= β2N2P−αI2,

dR2

dt
= αI2,

dP
dt

= r1I1 + r2I2−δP.
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The equivalent characteristic equation is given by

det



−λ 0 0 0 0 0 β1N1(0)

0 −α−λ 0 0 0 0 β1N1(0)

0 α −λ 0 0 0 0

0 0 0 −λ 0 0 β2N2(0)

0 0 0 0 −α−λ 0 β2N2(0)

0 0 0 0 α −λ 0

0 r1 0 0 r2 0 −δ −λ


= 0.

This equation can be reduced to a product of four factors and a third degree poly-

nomial equation

(λ 4)det

−α−λ 0 β1N1(0)

0 −α−λ β2N2(0)

r1 r2 −δ −λ

= 0.

The initial exponential growth rate is the largest root of this third degree equation

and it reduces to

G(λ ) = (α +λ )2(δ +λ )− (α +λ )
(

β1r1N1 +β2r2N2

)
, (2.9)

G(λ ) = (α +λ )2(δ +λ )− (α +λ )αδR0 = 0. (2.10)

We can measure the initial exponential growth rate, and if the measured value is ξ ,

then from (2.10) we obtain

(α +ξ )2(δ +ξ )− (α +ξ )αδR0 = 0, (2.11)

and we have

R0 =
(α +ξ )(δ +ξ )

αδ
. (2.12)

Equation (2.12) gives a way to estimate the basic reproduction number from known

quantities, and ξ = 0 in (2.12) corresponds to R0 = 1, which confirms the threshold

behaviour for the calculated R0. We can obviously see that λ > 0 in (2.10) is

equivalent to R0 > 1. Estimating the final epidemic size after an epidemic has
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passed is possible, and this also makes it feasible to choose values of α and β1β2

that satisfy (2.11) such that the simulations of the model (2.5) give the observed

final size. In summary, we have the following Theorem;

Theorem 2.3.3. For eigenvalue λ > 0 in (2.10), we have R0 > 1 denoting epidemic

occurrence, and ξ = 0 in (2.12) which corresponds to R0 = 1 also confirms the

threshold behaviour for R0.

The final size relation

The final epidemic size is achieved from the solutions of the final size relationship

which gives an estimate of the total number of infections and the epidemic size for

the period of the epidemic from the parameters in the model [13, 20]. The approach

in [19, 20, 23] is used to find the final size relation in order to evaluate the number

of disease cases and disease deaths in terms of the model parameters. It is assumed

that the total population sizes N1,N2 of both groups are constant.

Integrate the equation for S1 and S2 in (2.5);

log
Si0

Si∞
= βi

∫
∞

0
P(t)dt ∀i = 1,2. (2.13)

Integrate the linear equation for P in (2.5) to have

P(t) = P0e−δ t + r1

∫ t

0
e−δ (t−s)I1(s)ds+ r2

∫ t

0
e−δ (t−s)I2(s)ds. (2.14)

Next, we need to show that

lim
t→∞

∫ t

0
e−δ (t−s)Ii(s)ds = lim

t→∞

∫ t
0 eδ sIi(s)ds

eδ t = 0 ∀i = 1,2. (2.15)

If the integral in the numerator of (2.15) is bounded, this is obvious; and if un-

bounded, l’Hospital’s rule shows that limt→∞ Ii(t)/δ = 0 [23], and (2.14) implies

that

P∞ = lim
t→∞

P(t) = 0.

Integrate (2.14), and interchange the order of integration, then use (2.6) and (2.7)
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to have ∫
∞

0
P(t)dt =

r1

δ

∫
∞

0
I1(t)dt +

r2

δ

∫
∞

0
I2(t)dt, (2.16)

which implies that
∫

∞

0 P(t)dt < ∞.

Substitute (2.16) into (2.13) to have

log
Si0

Si∞
= βi

(r1

δ

∫
∞

0
I1(t)dt +

r2

δ

∫
∞

0
I2(t)dt +

2P0

δ

)
, ∀ i = 1,2,

and now the final size relation

log
Si0

Si∞
= βi

(r1N1

α1δ

{
1− S1(∞)

N1

}
+

r2N2

α2δ

{
1− S2(∞)

N2

}
+

2P0

δ

)
,

= βi

(
R1

{
1− S1(∞)

N1

}
+R2

{
1− S2(∞)

N2

}
+

2P0

δ

)
, ∀ i = 1,2,

is from the substitution of (2.6) and (2.7) which implies Si∞ > 0. If the outbreak

begins with no contact with pathogen, P0 = 0, and then the final size relation is

written as

log
Si0

Si∞
= βi

(
R1

{
1− S1(∞)

N1

}
+R2

{
1− S2(∞)

N2

})
∀ i = 1,2.

Note that the total number of infected populations over the period of the epidemic

in patch 1 and 2 are respectively N1−S1∞ and N2−S2∞ which are always described

in terms of the attack rate
(

1− S1∞

N1

)
and

(
1− S2∞

N2

)
as in [19].

Following the steps used in section (2.3.1), we can compute the reproduction

number, the exponential growth rate and the final size relation from equation (2.4)

as;

2.3.2 Reproduction number R0

Having analyzed the special case in Equation 2.5, We will use a similar approach

for the model in Equation 2.4. We have 3 infected classes ϕ1, ϕ2, P in Equations
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2.4 and following the approach of [169], the next generation matrix is 0 0 β1N1
∫

∞

0 A1(τ)dτ

0 0 β2N2
∫

∞

0 A2(τ)dτ

r1
∫

∞

0 Γ(τ)dτ r2
∫

∞

0 Γ(τ)dτ 0

 ,
and R0 is the largest root of

det

 −λ 0 β1N1
∫

∞

0 A1(τ)dτ

0 −λ β2N2
∫

∞

0 A2(τ)dτ

r1
∫

∞

0 Γ(τ)dτ r2
∫

∞

0 Γ(τ)dτ −λ

= 0. (2.17)

The basic reproduction number for the model (2.4), which is the number of sec-

ondary infections caused by a single infective in a totally susceptible population is

given by

R0 = r1β1N1

∫
∞

0
A1(τ)dτ

∫
∞

0
Γ(τ)dτ + r2β2N2

∫
∞

0
A2(τ)dτ

∫
∞

0
Γ(τ)dτ, (2.18)

which can be written as β1R1 +β2R2, where

R1 = r1N1

∫
∞

0
A1(τ)dτ

∫
∞

0
Γ(τ)dτ,

represent secondary infections caused by an infectious individual in I1 indirectly

by the pathogen shed and

R2 = r2N2

∫
∞

0
A2(τ)dτ

∫
∞

0
Γ(τ)dτ,

represent secondary infections caused by an infectious individual in I2 indirectly

by the pathogen shed. We summarize the analysis and impacts of R1 and R2 in

the following Theorem.

Theorem 2.3.4. Disease dies out whenever R0 < 1 (i.e. R1 < 1 and R2 < 1) and

epidemic occur whenever R0 > 1 (i.e. R1 > 1 and R2 > 1).
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2.3.3 The initial exponential growth rate

In order to avoid the difficulties caused by the fact that there is a three-dimensional

subspace of equilibria ϕ1 = ϕ2 = P = 0 and following the approach of [21], we

include small birth rates in the equations for S1 and S2, and equivalent proportional

natural death rates in each of the compartment to give the system

dS1(t)
dt

= µN1−µS1−β1S1(t)P(t),

ϕ1(t) =
∫

∞

0

[
−dS1(t− τ)

dt

]
e−µτA1(τ)dτ,

dS2(t)
dt

= µN2−µS2−β2S2(t)P(t), (2.19)

ϕ2(t) =
∫

∞

0

[
−dS2(t− τ)

dt

]
e−µτA2(τ)dτ,

P(t) =
∫

∞

0
[r1ϕ1(t− τ)+ r2ϕ2(t− τ)]e−µτ

Γ(τ)dτ.

We then linearize (2.19) about the disease-free equilibrium S1 = N1, ϕ1 = 0, S2 =

N2, ϕ2 = 0, P = 0 by letting u1 = N1−S1, u2 = N2−S2 to obtain the linearization

du1(t)
dt

= −β1N1P−µu1,

v1(t) =
∫

∞

0
β1N1P(t− τ)e−µτA1(τ)dτ,

du2(t)
dt

= −β2N2P−µu2, (2.20)

v2(t) =
∫

∞

0
β2N2P(t− τ)e−µτA2(τ)dτ,

P(t) =
∫

∞

0
[r1v1(t− τ)+ r2v2(t− τ)]e−µτ

Γ(τ)dτ,
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and form the characteristic equation, which is the condition on λ that the lineariza-

tion have a solution u1 = u10eλ t , v1 = v10eλ t , u2 = u20eλ t , v2 = v20eλ t , P = u0eλ t ,

det


−(λ +µ) 0 0 0 −β1N1

0 −1 0 0 β1N1♥
0 0 −(λ +µ) 0 −β2N2

0 0 0 −1 β2N2♠
0 r1

∫
∞

0 e−(λ+µ)τΓ(τ)dτ 0 r2
∫

∞

0 e−(λ+µ)τΓ(τ)dτ −1

= 0,

where ♥=
∫

∞

0 e−(λ+µ)τA1(τ)dτ and ♠=
∫

∞

0 e−(λ+µ)τA2(τ)dτ .

We have a double root λ =−µ < 0, and the remaining roots of the character-

istic equation are the roots of

det

 −1 0 β1N1
∫

∞

0 e−(λ+µ)τA1(τ)dτ

0 −1 β2N2
∫

∞

0 e−(λ+µ)τA2(τ)dτ

r1
∫

∞

0 e−(λ+µ)τΓ(τ)dτ r2
∫

∞

0 e−(λ+µ)τΓ(τ)dτ −1

= 0.

Since this is true for all sufficiently small µ > 0, we may let µ −→ 0 and conclude

that in a scenario where there is an epidemic, equivalent to an unstable equilibrium

of the model, then the positive root of the characteristic equation

det

 −1 0 β1N1
∫

∞

0 e−λτA1(τ)dτ

0 −1 β2N2
∫

∞

0 e−λτA2(τ)dτ

r1
∫

∞

0 e−λτΓ(τ)dτ r2
∫

∞

0 e−λτΓ(τ)dτ −1

= 0, (2.21)

is the initial exponential growth rate and this is

r1β1N1

∫
∞

0
e−λτA1(τ)dτ

∫
∞

0
e−λτ

Γ(τ)dτ+r2β2N2

∫
∞

0
e−λτA2(τ)dτ

∫
∞

0
e−λτ

Γ(τ)dτ = 1.

(2.22)

We can obviously see from equations (2.18) and (2.22) that epidemic occurs only

if λ > 0 which is equivalent to R0 > 1. In summary, we have a simple Theorem

as;

Theorem 2.3.5. An epidemic occurs if and only if λ > 0, which is equivalent to

R0 > 1.
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2.3.4 The final size relation

Integrate the equations for S1 and S2 in (2.4) to have

log
Si0

Si∞
= βi

∫
∞

0
P(t)dt ∀ i = 1,2. (2.23)

Interchanging the order of integration, using S1(u) and S2(u) for u < 0, and by

Lemma (2.3.1) to have∫
∞

0
ϕi(t)dt = [Ni−Si∞]

∫
∞

0
Ai(τ)dτ ∀ i = 1,2,

∫
∞

0
P(t)dt = r1

∫
∞

0
ϕ1(τ)

∫
∞

0
Γ(τ)dτ + r2

∫
∞

0
ϕ2(τ)

∫
∞

0
Γ(τ)dτ

= r1[N1−S1∞]
∫

∞

0
A1(τ)dτ

∫
∞

0
Γ(τ)dτ

+r2[N2−S2∞]
∫

∞

0
A2(τ)dτ

∫
∞

0
Γ(τ)dτ.

Substitute into (2.23) to have

log
Si0

Si∞
= βi

(
r1[N1−S1∞]

∫
∞

0
A1(τ)dτ

∫
∞

0
Γ(τ)dτ

+r2[N2−S2∞]
∫

∞

0
A2(τ)dτ

∫
∞

0
Γ(τ)dτ

)
,

log
Si0

Si∞
= βi

(
R1

[
1− S1∞

N1

]
+R2

[
1− S2∞

N2

])
∀ i = 1,2. (2.24)

Note that the final size of the epidemic, the total number of members of the pop-

ulation infected over the course of the epidemic in patch 1 and 2 are respectively

N1−S1∞ and N2−S2∞ and are often described in terms of the attack rates
(

1− S1∞

N1

)
and

(
1− S2∞

N2

)
respectively.

2.4 Variable pathogen shedding rates
We describe a more realistic model that allows the pathogen shedding rates r1 and

r2 depend on age of infection of the shedding individual. We need a more complex

34



model that allows the shedding rates decrease to zero. We therefore let Q1(w) and

Q2(w) be rates at which virus is being shed for infectives with age of infection w,

and Γ(c) be the proportion of infectivity remaining for virus already shed c time

units earlier.

We can reasonably assume that infectivities (Q1(τ) and Q2(τ)) which are func-

tions of infection age, are effective viruses at time t shed by infectives I1 and I2 with

age of infection τ at time t.

Then, it makes sense to make changes of A1(τ) = Q1(τ) and A2(τ) = Q2(τ) in

the equation for ϕ1 and ϕ2 in (2.4).

A more general equation for P need to be developed while equations for S1 and

S2 from (2.4) remain unchanged and the idea follows from [23].

Let the number of individuals with age of infection w at time t be i(t,w), which

may include individuals with zero infectivity who do not infect any more.

Therefore i(t,w) = i(t−w,0) =−S′i(t−w).

Consider infectives that are infected at time t−c, 0≤ c≤∞ with infection age

v, 0≤ v≤ c and contribution of their virus at time t.

At time t− c+ v, we have

i(t− c+ v,v) = i(t− c,0) =−S′i(t− c).

Their shedding rates are Q1(v) and Q2(v), and the viruses remaining at time t are

Q1(v)Γ(c− v) and Q2(v)Γ(c− v). We therefore have

P(t) =
∫

∞

0

∫ c

0
[−S′1(t− c)]Q1(v)Γ(c− v)dvdc

+
∫

∞

0

∫ c

0
[−S′2(t− c)]Q2(v)Γ(c− v)dvdc

=
∫

∞

0

∫
∞

v
[−S′1(t− c)]Γ(c− v)dcQ1(v)dv

+
∫

∞

0

∫
∞

v
[−S′2(t− c)]Γ(c− v)dcQ2(v)dv

=
∫

∞

0

∫
∞

0
[−S′1(t− z− v)]Γ(z)dzQ1(v)dv

+
∫

∞

0

∫
∞

0
[−S′2(t− z− v)]Γ(z)dzQ2(v)dv.
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The general model becomes

dS1(t)
dt

= −β1S1(t)P(t),

ϕ1(t) =
∫

∞

0

[
−dS1(t− τ)

dt

]
Q1(τ)dτ,

dS2(t)
dt

= −β2S2(t)P(t), (2.25)

ϕ2(t) =
∫

∞

0

[
−dS2(t− τ)

dt

]
Q2(τ)dτ,

P(t) =
∫

∞

0

[∫
∞

0

[
−dS1(t− z− v)

dt

]
Γ(z)dz

]
Q1(v)dv

+
∫

∞

0

[∫
∞

0

[
−dS2(t− z− v)

dt

]
Γ(z)dz

]
Q2(v)dv.

The equation for P can be substituted into equations for S1 and S2 in the model

(2.25) to have two single equations for S1 and S2 as

dS1(t)
dt

= −β1S1(t)
(∫

∞

0

[∫
∞

0

[
−dS1(t− z− v)

dt

]
Γ(z)dz

]
Q1(v)dv

+
∫

∞

0

[∫
∞

0

[
−dS2(t− z− v)

dt

]
Γ(z)dz

]
Q2(v)dv

)
,

and

dS2(t)
dt

= −β2S2(t)
(∫

∞

0

[∫
∞

0

[
−dS1(t− z− v)

dt

]
Γ(z)dz

]
Q1(v)dv

+
∫

∞

0

[∫
∞

0

[
−dS2(t− z− v)

dt

]
Γ(z)dz

]
Q2(v)dv

)
.

2.4.1 Reproduction number R0

We will find the basic reproduction number for (2.25) by beginning with new infec-

tives and calculating the virus shed over the period of the infection. The effective
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viruses at time t are given as∫ t

0
Qi(w)Γ(t−w)ds =

∫ t

0
Qi(t− c)Γ(c)dc ∀ i = 1,2,

and total infectivities over the period of the infection are∫
∞

0

∫ t

0
Qi(t− c)Γ(c)dcdt =

∫
∞

0

[∫ ∞

c
Qi(t− c)dt

]
Γ(c)dc

=
∫

∞

0

[∫ ∞

0
Qi(v)dv

]
Γ(c)dc

=
∫

∞

0
Qi(v)dv

∫
∞

0
Γ(c)dc ∀ i = 1,2.

The basic reproduction number can therefore be written as

R0 = β1N1

∫
∞

0
Q1(v)dv

∫
∞

0
Γ(c)dc+β2N2

∫
∞

0
Q2(v)dv

∫
∞

0
Γ(c)dc, (2.26)

and we have

R0 = β1R1 +β2R2,

where

R1 = N1

∫
∞

0
Q1(v)dv

∫
∞

0
Γ(c)dc and R2 = N2

∫
∞

0
Q2(v)dv

∫
∞

0
Γ(c)dc,

and follows from Theorem 2.3.4.
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2.4.2 The initial exponential growth rate

The linearization of (2.25) at the equilibrium S1 =N1, S2 =N2, ϕ1 = ϕ2 = 0, P= 0,

are

dS1(t)
dt

= −β1N1

(∫
∞

0

[∫
∞

0

[
−dS1(t− z− v)

dt

]
Γ(z)dz

]
Q1(v)dv

+
∫

∞

0

[∫
∞

0

[
−dS2(t− z− v)

dt

]
Γ(z)dz

]
Q2(v)dv

)
,

and
dS2(t)

dt
= −β2N2

(∫
∞

0

[∫
∞

0

[
−dS1(t− z− v)

dt

]
Γ(z)dz

]
Q1(v)dv

+
∫

∞

0

[∫
∞

0

[
−dS2(t− z− v)

dt

]
Γ(z)dz

]
Q2(v)dv

)
.

The characteristic equation shows a situation when the linearization have solutions

S1(t) = S10eλ t and S2(t) = S20eλ t , which are

β1N1

(∫ ∞

0
e−λvQ1(v)dv

∫
∞

0
e−λc

Γ(c)dc+
∫

∞

0
e−λvQ2(v)dv

∫
∞

0
e−λc

Γ(c)dc
)
= 1,

(2.27a)

β2N2

(∫ ∞

0
e−λvQ1(v)dv

∫
∞

0
e−λc

Γ(c)dc+
∫

∞

0
e−λvQ2(v)dv

∫
∞

0
e−λc

Γ(c)dc
)
= 1.

(2.27b)

Theorem 2.4.1. The disease dies out and there is no epidemic when λ < 0 (i.e.

when R0 < 1) in equation (2.27), but disease persists when λ > 0 (i.e. when

R0 > 1) which corresponds to an epidemic.

Combining (2.26) and (2.27) we have

R0 =

∫
∞

0 Q1(v)dv
∫

∞

0 Γ(c)dc+
∫

∞

0 Q2(v)dv
∫

∞

0 Γ(c)dc∫
∞

0 e−λvQ1(v)dv
∫

∞

0 e−λcΓ(c)dc+
∫

∞

0 e−λvQ2(v)dv
∫

∞

0 e−λcΓ(c)dc
.

2.4.3 The final size relation

Integrate the equations for S1 and S2 in (2.25) to obtain the final size relation,

log
Si0

Si∞
= βi

∫
∞

0
P(t)dt. (2.28)
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But we know that∫
∞

0
P(t)dt =

∫
∞

0

∫
∞

0

[∫
∞

0

[
−dS1(t− z− v)

dt

]
Γ(z)dz

]
Q1(v)dvdt

+
∫

∞

0

∫
∞

0

[∫
∞

0

[
−dS2(t− z− v)

dt

]
Γ(z)dz

]
Q2(v)dvdt.

Interchange the order of integration, integrate with respect to t to obtain

∫
∞

0
P(t)dt =

∫
∞

0

∫
∞

0

[∫
∞

0

[
−dS1(t− z− v)

dt
dt
]

Γ(z)dz
]

Q1(v)dv

+
∫

∞

0

∫
∞

0

[∫
∞

0

[
−dS2(t− z− v)

dt
dt
]

Γ(z)dz
]

Q2(v)dv

=
∫

∞

0

∫
∞

0
[S1(−z− v)−S1∞]Γ(z)dzQ1(v)dv

+
∫

∞

0

∫
∞

0
[S2(−z− v)−S2∞]Γ(z)dzQ2(v)dv

=
∫

∞

0

∫
∞

0
[N1−S1∞]Γ(z)dzQ1(v)dv (2.29)

+
∫

∞

0

∫
∞

0
[N2−S2∞]Γ(z)dzQ2(v)dv

= [N1−S1∞]
∫

∞

0
Γ(z)dz

∫
∞

0
Q1(v)dv

+[N2−S2∞]
∫

∞

0
Γ(z)dz

∫
∞

0
Q2(v)dv

= R1

[
1− S1∞

N1

]
+R2

[
1− S2∞

N2

]
.

Using (2.29) in (2.28) and by Lemma (2.3.1), we obtain,

log
S10

S1∞

= β1

(
R1

[
1− S1∞

N1

]
+R2

[
1− S2∞

N2

])
,

log
S20

S2∞

= β2

(
R1

[
1− S1∞

N1

]
+R2

[
1− S2∞

N2

])
. (2.30)
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2.5 Heterogeneous mixing and indirect transmission with
residence time

Here we examined SIRP two patch model which included an explicit travel rate

between patch. We divide the environment into two patches, and the population

in each patch is divided into Susceptible, Infective and Removed with different

pathogens in each patch. This model considers patches with residents who spend

some of their time in another patch or in a different environment.

The model is considered for a short period of time and therefore assumes no

recruitment, birth or natural death. We assume that the rate of travel of individuals

between the two patches depends on the status of the disease, and individuals do

not change disease status during travel. The disease is assumed to be transmitted by

horizontal incidence βiSiPi(i = 1,2) with the same removal rate and infectivity loss

rate for infected individuals in both patches. We assume that one of the patches has

a larger contact rate β2 > β1, with short term travel between the two patches and

that each patch has a constant total population with p11 + p12 = 1, p21 + p22 = 1,

where pi j(i, j = 1,2) is the fraction of contact made by patch i residents in patch j

[13, 20].

A Lagrangian method is followed to keep track of individual’s place of resi-

dence at all times. This model with direct transmission of infection is the starting

point of [13, 29].
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Two-patch SIRP model with residence time

dS1

dt
= −β1 p11S1(p11P1 + p21P2)−β2 p12S1(p12P1 + p22P2),

dI1

dt
= β1 p11S1(p11P1 + p21P2)+β2 p12S1(p12P1 + p22P2)−αI1,

dR1

dt
= αI1,

dP1

dt
= r1I1−δP1,

dS2

dt
= −β1 p21S2(p11P1 + p21P2)−β2 p22S2(p12P1 + p22P2), (2.31)

dI2

dt
= β1 p21S2(p11P1 + p21P2)+β2 p22S2(p12P1 + p22P2)−αI2,

dR2

dt
= αI2,

dP2

dt
= r2I2−δP2,

with initial conditions

S1(0)= S10, S2(0)= S20, I1(0)= I10, I2(0)= I20, P1(0)=P10, P2(0)=P20, R1(0)=R2(0)= 0,

in a population of constant total size N = N1 +N2 where

N1 = S1 + I1 +R1 = S10 + I10 and N2 = S2 + I2 +R2 = S20 + I20.

Since this is an indirect transmission model, each of the p11S1 susceptibles from

Group 1 present in patch 1 can be infected by pathogens shed by members of Group

1 and Group 2 present in patch 1. Similarly, each of the p12S1 susceptibles from

Group 1 present in patch 2 can be infected by pathogens shed by members of Group

1 and Group 2 present in patch 2. The infective proportion in patch 1 is given by

p11P1(t)+ p21P2(t) and in patch 2 is p12P1(t)+ p22P2(t).

Therefore, the rate of new infections of members of patch 1 in patch 1 is

β1 p11S1(p11P1 + p21P2).
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Table 2.2: Model variables, parameters and their descriptions.

Variables Description
Si Population of susceptibles in patch i
Ii Population of infectives in patch i
Ri Population of removed in patch i
Pi Pathogens shed by infectives in patch i

Parameters Description
βi Effective contact rate in patch i.
α Removed rate for infected individuals.
ri Pathogen shedding rate for infected individuals.
δ Infectivity loss rate for pathogen.
p11 The fraction of contact made by patch 1 residents in patch 1
p12 The fraction of contact made by patch 1 residents in patch 2
p21 The fraction of contact made by patch 2 residents in patch 1
p22 The fraction of contact made by patch 2 residents in patch 2.

The rate of new infections of members of patch 1 in patch 2 is

β2 p12S1(p12P1 + p22P2).

Similarly, the rate of new infections of members of patch 2 in patch 1 is

β1 p21S2(p11P1 + p21P2).

The rate of new infections of members of patch 2 in patch 2 is

β2 p22S2(p12P1 + p22P2).

From the sum of the equations for S1, S2, I1 and I2 in (2.31), we have

d(S1 + I1)

dt
=−αI1 ≤ 0.

We can see that (S1 + I1) decreases to a limit, and by Lemma 2.3.1 we could show
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that its derivative approaches zero, from which can be deduced that

I1∞ = lim
t→∞

I1(t) = 0.

Integrate this equation to give

α

∫
∞

0
I1(t)dt = S1(0)+ I1(0)−S1(∞) = N1(0)−S1(∞),

∫
∞

0
I1(t)dt =

N1(0)−S1(∞)

α
, (2.32)

implying that
∫

∞

0 I1(t)dt < ∞. Similarly,
d(S2 + I2)

dt
=−αI2 and we have

∫
∞

0
I2(t)dt =

N2(0)−S2(∞)

α
, (2.33)

implying that
∫

∞

0 I2(t)dt < ∞.

2.5.1 Reproduction number R0

Note that we have four infectious classes I1,P1, I2,P2, and the Jacobian matrix of

Fi = (F1,F2,F3), evaluated at the disease free equilibrium point,

DFE=(S10,0,0,0,S20,0,0,0)=(N1(0),0,0,0,N2(0),0,0,0) is given by

F =
(

∂Fi

∂x j

)
i, j
=


0 (β1 p2

11 +β2 p2
12)N1(0) 0 (β1 p11 p21 +β2 p12 p22)N1(0)

0 0 0 0

0 (β1 p11 p21 +β2 p12 p22)N2(0) 0 (β1 p2
21 +β2 p2

22)N2(0)

0 0 0 0

 ,

where x j = I1,P1, I2,P2 for j = 1, . . . ,4 and i = 1, . . . ,4.

The jacobian matrix of Vi = (V1,V2,V3), evaluated at the disease free equilib-
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rium point DFE is

V =
(

∂Vi

∂x j

)
i, j

=


α 0 0 0

−r1 δ 0 0

0 0 α 0

0 0 −r2 δ

 .

The dominant eigenvalues of FV−1 which is the spectral radius of the matrix

FV−1, gives the basic reproduction number for Epidemic from the model (2.31)

as;

R0 =
N+H±

√
(N+H)2−4β1β2(p11 p22− p12 p21)2N1(0)N2(0)r1r2

2αδ
, (2.34)

where

N= (β1 p2
11 +β2 p2

12)N1(0)r1,

and

H= (β1 p2
21 +β2 p2

22)N2(0)r2.

Note that in the special case of proportionate mixing where we have p11 = p21 and

p12 = p22, so that p12 p21 = p11 p22, the simplified basic reproduction number from

(2.34) is given as

R0 =
(β1 p2

11 +β2 p2
22)N1(0)r1 +(β1 p2

11 +β2 p2
22)N2(0)r2

αδ
. (2.35)

Similarly for the case of no movement between patches, we have:

p11 = p22 = 1, p12 = p21 = 0,

so that the simplified basic reproduction number from (2.34) is given as

R0 = ρ(FV−1) = max
(r1β1N1

αδ
,
r2β2N2

αδ

)
. (2.36)
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R0 in (2.36) can be written as

R0 = max(R1,R2),

where R1 =
r1β1N1

αδ
(the reproduction number for patch 1) and R2 =

r2β2N2

αδ
(the

reproduction number for patch 2). Theorem (2.3.4) gives the summary of this

analysis.

2.5.2 The initial exponential growth rate

The initial exponential growth rate is a quantity that can be compared with experi-

mental data [21, 27]. We can linearize the model (2.31) about the disease-free equi-

librium S1 =N1, I1 =R1 =P1 = 0,S2 =N2, I2 =R2 =P2 = 0 by letting u1 =N1−S1,

u2 = N2−S2 to obtain the linearization

du1

dt
= β1 p11N1(p11P1 + p21P2)+β2 p12N1(p12P1 + p22P2),

dI1

dt
= β1 p11N1(p11P1 + p21P2)+β2 p12N1(p12P1 + p22P2)−αI1,

dR1

dt
= αI1,

dP1

dt
= r1I1−δP1,

du2

dt
= β1 p21N2(p11P1 + p21P2)+β2 p22N2(p12P1 + p22P2), (2.37)

dI2

dt
= β1 p21N2(p11P1 + p21P2)+β2 p22N2(p12P1 + p22P2)−αI2,

dR2

dt
= αI2,

dP2

dt
= r2I2−δP2.
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The equivalent characteristic equation be reduced to a product of four factors and

a fourth degree polynomial equation

λ
4det


−α−λ (β1 p2

11 +β2 p2
12)N1 0 (β1 p11 p21 +β2 p12 p22)N1

r1 −δ −λ 0 0

0 (β1 p11 p21 +β2 p12 p22)N2 −α−λ (β1 p2
21 +β2 p2

22)N2

0 0 r2 −δ −λ

= 0.

The initial exponential growth rate corresponds to the largest root of this fourth

degree equation and it reduces to

G(λ ) = (α +λ )2(δ +λ )2− (α +λ )(δ +λ )
(
(β1 p2

11 +β2 p2
12)r1N1

+(β1 p2
21 +β2 p2

22)r2N2

)
+β1β2r1r2N1N2(p11 p22− p12 p21)

2.

We can write the initial exponential growth rate in a simplified form using

(2.35) as

G(λ ) = (α +λ )2(δ +λ )2− (α +λ )(δ +λ )αδR0 = 0. (2.38)

Estimating the initial exponential growth rate from data is possible, and if the esti-

mated value is ξ , then from (2.38) we obtain

(α +ξ )2(δ +ξ )2− (α +ξ )(δ +ξ )αδR0 = 0, (2.39)

and we have

R0 =
(α +ξ )(δ +ξ )

αδ
. (2.40)

Equation (2.40) gives a way to estimate the basic reproduction number from known

quantities, and ξ = 0 in (2.40) corresponds to R0 = 1, which confirms the proper

threshold behaviour for the calculated R0. Estimating the final epidemic size after

an epidemic has passed is possible, and this makes it feasible to choose values of

α and β1β2 that satisfy (2.39) such that the simulations of the model (2.31) give

the observed final size.
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In the case of no movement, the initial exponential growth rate is given as

G(λ ) = (α +λ )2(δ +λ )2− (α +λ )(δ +λ )
(

β1r1N1 +β2r2N2

)
+β1β2r1r2N1N2,

and simplified using (2.36) as

G(λ ) = (α +λ )2(δ +λ )2− (αδ )(α +λ )(δ +λ )
(
R1 +R2

)
= 0. (2.41)

Estimating the initial exponential growth rate from data is also possible, and if the

estimated value is ξ , then from (2.41) we obtain

(α +ξ )2(δ +ξ )2− (αδ )(α +ξ )(δ +ξ )
(
R1 +R2

)
= 0, (2.42)

and we have

R1 +R2 =
(α +ξ )(δ +ξ )

αδ
. (2.43)

On the one hand, if R1 > R2, it means disease is more effectively spread in patch

1 and infection in patch 2 is therefore driven to extinction. Then the basic repro-

duction number from (2.43) becomes

R0 = R1 =
(α +ξ )(δ +ξ )

αδ
. (2.44)

On the other hand, if R2 > R1, it means disease is more effectively spread in

patch 2 and infection in patch 1 is therefore driven to extinction. Then the basic

reproduction number from (2.43) becomes

R0 = R2 =
(α +ξ )(δ +ξ )

αδ
. (2.45)

Equations (2.5.2) & (2.45) give a way to estimate the basic reproduction number

from known quantities, and by Theorem (2.3.3) and ξ = 0 in either of these equa-

tions corresponds to R0 = 1, which confirms the proper threshold behaviour for the

calculated R0. Estimating the final epidemic size after an epidemic has passed is

also possible, and this makes it feasible to choose values of α and β1β2 that satisfy

(2.42) such that the simulations of the model (2.31) give the observed final size

when there is no movement between patches.
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2.5.3 The final size relation

Integrate the equation for S1 and S2 in (2.31);

log
S10

S1∞

= β1 p2
11

∫
∞

0
P1(t)dt +β1 p11 p21

∫
∞

0
P2(t)dt

+β2 p2
12

∫
∞

0
P1(t)dt +β2 p12 p22

∫
∞

0
P2(t)dt,

log
S20

S2∞

= β1 p11 p21

∫
∞

0
P1(t)dt +β1 p2

21

∫
∞

0
P2(t)dt (2.46)

+β2 p12 p22

∫
∞

0
P1(t)dt +β2 p2

22

∫
∞

0
P2(t)dt.

Integrate the linear equation for P1 and P2 in (2.31) to have

P1(t) = P10e−δ t + r1

∫ t

0
e−δ (t−s)I1(s)ds, (2.47)

P2(t) = P20e−δ t + r2

∫ t

0
e−δ (t−s)I2(s)ds.

Next, we need to show that

lim
t→∞

∫ t

0
e−δ (t−s)Ii(s)ds = lim

t→∞

∫ t
0 eδ sIi(s)ds

eδ t = 0 ∀ i = 1,2. (2.48)

This is clear if the integral in the numerator of (2.48) is bounded, and if unbounded,

l’Hospital’s rule shows that the limit is limt→∞ Ii(t)/δ = 0 [23]. And (2.47) implies

that

Pi∞ = lim
t→∞

Pi(t) = 0.

But integrate (2.47), interchange the order of integration, and use (2.32) and (2.33)

to have ∫
∞

0
P1(t)dt =

r1

δ

∫
∞

0
I1(t)dt, (2.49)∫

∞

0
P2(t)dt =

r2

δ

∫
∞

0
I2(t)dt.

implying that
∫

∞

0 Vi(t)dt < ∞.

Substitute (2.49) into (2.46) to have
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log
S10

S1∞

= β1 p2
11

r1

δ

∫
∞

0
I1(t)dt +β1 p11 p21

r2

δ

∫
∞

0
I2(t)dt

+β2 p2
12

r1

δ

∫
∞

0
I1(t)dt +β2 p12 p22

r2

δ

∫
∞

0
I2(t)dt,

log
S20

S2∞

= β1 p11 p21
r1

δ

∫
∞

0
I1(t)dt +β1 p2

21
r2

δ

∫
∞

0
I2(t)dt (2.50)

+β2 p12 p22
r1

δ

∫
∞

0
I1(t)dt +β2 p2

22
r2

δ

∫
∞

0
I2(t)dt.

Now substitute (2.32) and (2.33) into (2.50) and using Lemma (2.3.1), gives the

final size relation

log
S10

S1∞

= (β1 p2
11 +β2 p2

12)
(r1N1

αδ

){
1− S1(∞)

N1

}
+(β1 p11 p21 +β2 p12 p22)

(r2N2

αδ

){
1− S2(∞)

N2

}
,

log
S20

S2∞

= (β1 p11 p21 +β2 p12 p22)
(r1N1

αδ

){
1− S1(∞)

N1

}
(2.51)

+(β1 p2
21 +β2 p2

22)
(r2N2

αδ

){
1− S2(∞)

N2

}
.

which implies Si∞ > 0.

Equation (2.51) can as well be written as log S10
S1∞

log S20
S2∞

=

 M11 M12

M21 M22


 1− S1(∞)

N1

1− S2(∞)
N2

 , (2.52)

where

M=

 (β1 p2
11 +β2 p2

12)
r1N1
αδ

(β1 p11 p21 +β2 p12 p22)
r2N2
αδ

(β1 p11 p21 +β2 p12 p22)
r1N1
αδ

(β1 p2
21 +β2 p2

22)
r2N2
αδ

 .

In a situation where we have no movement between patches, the final size relation
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can be written as

log
S10

S1∞

=
(

β1r1N1

αδ

){
1− S1(∞)

N1

}
,

log
S20

S2∞

=
(

β2r2N2

αδ

){
1− S2(∞)

N2

}
. (2.53)

which implies Si∞ > 0.

Equation (2.53) can as well be written as log S10
S1∞

log S20
S2∞

=

 M11 M12

M21 M22


 1− S1(∞)

N1

1− S2(∞)
N2

 , (2.54)

where

M =


β1r1N1

αδ
0

0 β2r2N2
αδ

 .

Table 2.3: Parameter values and their sources.

Symbol Value References
N1(0) 200
N2(0) 300
β1 0.3 [13]
β2 1.2 [13]
α 1.87 [178]
r1 0.1 [178]
r2 1 [178]
δ 0.25
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Figure 2.1: Dynamics of I1 and I2 when we vary p11, p12, p21, p22 and have
no movement (p11 = p22 = 1, p12 = p21 = 0), half populations moving
(p11 = p22 = p12 = p21 = 0.5), and all populations moving (p11 = p22 =
0, p12 = p21 = 1). The figure on the left panel shows that the prevalence
in patch 1 reaches its highest when in extreme mobility case (blue line)
and is lowest when there is no mobility between patches (red line). The
figure on the right panel show the opposite of this senario in patch 2
(high risk).

Note that the eigenvalues of FV−1 (the next generation matrix) are the same as the

eigenvalues of the matrices M (the final epidemic size) and M (the final epidemic

size for no movement between patches). In a special case where the epidemiologi-

cal system cannot be controlled, we have the dominant eigenvalue to be R0.

2.5.4 Numerical simulations

We run simulations to gain deeper understanding of the role of residence time on

disease dynamics.

We simulate for Susceptible populations S1(0) = 199 in patch 1 with one in-

fective and similarly for S2(0) = 298 in patch 2 with two infective. We assume that

patch 2 has higher risk with β2 = 1.2 and patch 1 has lower risk with β1 = 0.3. We

have the parameter values and their sources in table 2.3.

From our simulations in figure 2.1,

we observe that:

1. For the case of no movement between patches (no mobility), that is, p11 =
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p22 = 1 and p12 = p21 = 0, the system behaves as two separated patches

where we have the disease prevalence to be at its highest in patch 2.

2. For the symmetric case in which p11 = p12 = p21 = p22 = 0.5, the system

has the same level of disease prevalence in both patches.

3. The case where everyone move from their patch to the other patch (high

mobility), that is p11 = p22 = 1 and p12 = p21 = 0, the system has the highest

disease prevalence in patch 1.

Our numerical results is similar to [13] where direct transmission pathway is con-

sidered as a form of disease spread. Our results show that considering indirect

transmission pathway is of great importance and disease spread may be difficult to

control (the case of cholera) if otherwise, as in figure 2.1.

2.6 Conclusion
In this chapter, we proposed and studied an epidemic model in which infection is

transmitted when viruses are shed and acquired through host (population)-source

(environment)-host (population) in heterogeneous environments. For the three

models developed, we calculated the reproduction number, estimated the initial

exponential growth rate and obtained the reproduction number in terms of param-

eters that can be estimated. The final size relation was also analyzed to find the

number of disease cases and disease deaths in terms of the model parameters.

We examined an SIVR model with residence times and developed a 2-patch

model where infection risk is as a result of the residence time and other environ-

mental factors. With this approach, we studied the disease prevalence in hetero-

geneous environment through indirect transmission pathways without needing to

measure contact rates, and our analysis was also buttressed by numerical results.

Our primary result shows that the number of populations being infected through

indirect transmission, which had been omitted in some other previous works is

worth taking into account. The result of our numerical simulation is similar to one

of the results in [13] in which only a direct transmission pathway was considered.

We were able to show how much worse the prevalence of a disease could be when

the disease transmission is indirect.
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We considered indirect transmission of viruses in heterogeneous mixing popu-

lations, but considering direct and indirect pathways (the case of ebola), may give a

different/better insight into the disease prevalence and how accurate treatment will

be apportioned.

Despite these limitations, our models can be used to compare disease spread be-

tween two populations with different contact rates, such as cities against villages,

rich against poor populations and so on. The derivation of the age of infection

model could be extended to include direct transmission pathways. It is also possi-

ble to extend the model with the residence times to incorporate treatment strategies

which may reduce the contact rates and then lower the reproduction number. In

addition, it may be more realistic to extend the model to incorporate multiple class

of hosts and sources in order to compare the disease spread among different popu-

lations and with different viruses.

53



Chapter 3

A novel approach to modelling
the spatial spread of airborne
diseases: an epidemic model with
indirect transmission

3.1 Synopsis
We formulated and analyzed a class of coupled partial and ordinary differential

equation (PDE-ODE) model to study the spread of airborne diseases. Our model

describes human populations with patches and the movement of pathogens in the

air with linear diffusion. The diffusing pathogens are coupled to the SIR dynamics

of each population patch using an integro-differential equation. Susceptible indi-

viduals become infected at some rate whenever they are in contact with pathogens

(indirect transmission), and the spread of infection in each patch depends on the

density of pathogens around the patch. In the limit where the pathogens are dif-

fusing fast, matched asymptotic analysis is used to reduce the coupled PDE-ODE

model into a nonlinear system of ODEs, which is then used to compute the ba-

sic reproduction number and final size relation for different scenarios. Numerical

simulations of the reduced system of ODEs and the full PDE-ODE model are con-
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sistent, and they predict decrease in the spread of infection as the diffusion rate of

pathogens increases. Furthermore, we studied the effect of patch location on the

spread of infections for the case of two patches, our models predict higher infec-

tions when the patches are closer to each other.

3.2 Introduction
Airborne diseases are well studied in epidemiology and public health, and still

remain a serious public health concern today. Many airborne diseases are transmit-

ted directly (host-host) and/or indirectly (host-source-host) through actions such

as coughing, sneezing and sometimes vomiting [131]. For example, viral diseases

(measles, influenza) and bacterial infections (tuberculosis) are transmitted via air-

borne route. In addition, there has been evidence that airborne transmission plays

a significant role in the spread of many opportunistic pathogens causing several

acquired nosocomial (hospital) infections [11]. Some mathematical models have

been used to study the transmission of airborne diseases using direct and indirect

transmission pathways. Noakes et al. in [131] studied the transmission of airborne

infections in enclosed spaces using an SEIR model to show how changes to both

physical environment and infection control could be a potential limitation in the

spread of airborne infections. Issarow et al. in [94] developed a model to predict

the risk of airborne infectious diseases such as tuberculosis in confined spaces us-

ing exhaled air. Several approaches including but not limited to the framework in

[176] have been used to study the dynamics of an SIS model with diffusion, [81] to

assess the impact of heterogeneity of environment and advection on the persistence

and infectious diseases eradication, and [114] to evaluate population migration us-

ing SIS epidemic models with diffusion. In addition, several PDE models such as

[176, 180] were also used to study the effect of diffusion. However, despite all

these models and previous studies, it has largely been an open problem to evaluate

the effect of diffusion on the spread of infections between one or two populations.

To our knowledge none of these works has assessed the impact of diffusion using

a coupled PDE-ODE SIR model with an indirect transmission pathway.

In this chaper, we consider an airborne disease as any disease caused by pathogen

and transmitted through the air. Such diseases include but are not limited to chick-
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enpox, influenza, measles, smallpox, tuberculosis, among others. We focus on an

indirect transmission pathways and derive fundamental quantities such as the basic

reproduction number (R0) and the final size relation. To incorporate the limitation

of the impact of diffusion among homogeneous and heterogeneous mixing popu-

lation, we propose a coupled PDE-ODE model similar to the one used in [84] to

model communication between dynamically active signaling compartments. Our

model extends the models presented in [23] and [50] by incorporating diffusion of

pathogens. This allows us to theoretically and numerically analyze how diffusion

affects the spread of air-transmitted diseases, in which the human populations are

confined to a distinct spatially segregated regions. The novelty of our approach is

that through a PDE-ODE system we model the spread of airborne diseases allow-

ing allowing for person-air-person transmission. Overall, our modelling framework

provides an alternative way to describe the epidemics of airborne diseases.

The outline of this chapter is as follows. In Section 3.3, a new coupled PDE-

ODE model of epidemics is formulated, and this model is non-dimensionalized in

Section 3.3.1. In Section 3.3.2, matched asymptotic expansion methods is used

to reduce the dimensionless coupled PDE-ODE model into a nonlinear system of

ODEs in the limit where the pathogens are diffusing very fast. In Section 3.4, we

study the dimensionless coupled PDE-ODE model for a single population patch

numerically and compare the result to that of the reduced system of ODEs. We

also use the reduced system of ODEs to compute the basic reproduction number

and final size relation. A similar study is performed for the case of two population

patches in Section 3.5. In Section 3.6, we study the effect of patch location on the

spread of infection for two population patches. The chapter concludes with a brief

discussion in Section 3.7.

3.3 Model formulation
In this section, we formulate and analyze a coupled PDE-ODE model for studying

the spread of airborne diseases. This model is non-dimensionalized and later re-

duced into a nonlinear ODE system in the limit where the diffusivity of pathogens

is large.

We begin by representing human populations by localized patches with par-
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tially transmitting boundaries through which pathogens are shed into the atmo-

sphere by infected individuals. These pathogens are assumed to diffuse and de-

cay at constant rate in the air (bulk region), while the spread of infection in each

patch depends on the density of pathogens around the patch. Pathogens are not

explicitly modelled in the patches; likewise the movement of individuals between

patches is not accounted for. A susceptible individual becomes infected by com-

ing in contact with pathogens (indirect transmission pathway). Let Ω⊂ R2 be our

2-D bounded domain of interest containing m population patches represented by

Ω j for j = 1, . . . ,m, and separated by an O(1) distance from each other and from

the boundary of the domain ∂Ω. In the region Ω \∪m
j=1 Ω j (bulk region) between

the patches, the spatio-temporal density of pathogens P(XXX ,T ) satisfies the partial

differential equation (PDE) given by

∂P

∂T
=DB ∆P−δ P, T > 0, XXX ∈Ω\∪m

j=1 Ω j; (3.1a)

∂nXXX P = 0, XXX ∈ ∂Ω; DB ∂nXXX P =−r j I j, XXX ∈ ∂Ω j, j = 1, . . . ,m,

(3.1b)

where DB > 0 denotes the diffusion rate of pathogens in the bulk region, δ is the

dimensional decay rate of pathogens, r j > 0 is the dimensional shedding rate of

pathogen by an infected individual in the jth patch, and ∂nXXX is the outward nor-

mal derivative on the boundary of the domain Ω. The dynamics of the diffusing

pathogens is coupled to the population dynamics of the jth patch using the integro-

differential system of equations given by

dS j

dT
=−µ jS j

∫
∂Ω j

(P/pc) dSXXX ; (3.1c)

dI j

dT
= µ jS j

∫
∂Ω j

(P/pc) dSXXX −α jI j; (3.1d)

dR j

dT
= α jI j, j = 1, . . . ,m, (3.1e)

where S j, I j, and R j denote the population of susceptible, infected, and removed

individuals in the jth patch, respectively, with N j(T ) = S j(T )+I j(T )+R j(T ).

The parameters µ j and α j are the dimensional transmission and recovery rates,
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respectively, for individuals in the jth patch, and pc is a typical value for the den-

sity of pathogens. The integrals in (3.1c) and (3.1d) are over the boundary of the

jth patch, and are used to account for all the pathogens around the patch. These

terms show that the spread of infection within a patch depends on the density of

pathogens around it. It is important to emphasize that our model does not account

for pathogens in the patches. The Robin boundary condition DB ∂nXXX P = −r j I j

on the boundary of the jth patch accounts for the amount of pathogen shed into

the atmoshere by infected individuals in the patch. This condition shows that the

amount of pathogens shed into the atmosphere from the jth patch depends on the

population of infected individuals within the patch.

3.3.1 Non-dimensionalization of the coupled PDE-ODE model

In this subsection, we non-dimensionalize the coupled PDE-ODE model (3.1). The

dimensions of the variables and parameters of the model are given as follow:

[P] =
pathogens
(length)2 , [DB] =

(length)2

time
, [pc] = pathogens, [T ] = time,

[XXX ] = length, [δ ] = [α j] =
1

time
, [N j] = [S j] = [I j] = [R j] = individuals,

[µ j] =
length
time

, [r j] =
pathogens

individual × time× length
, j = 1, . . . ,m.

(3.2)

where [γ] represents the dimension of γ . Assuming that the patches are circular

with common radius R, which is small relative to the length-scale L of the 2-D

domain Ω, we introduce a small scaling parameter ε = R/L� 1 and the following

dimensionless variables

P =
L2

pc
P, S j =

S j

N j
, I j =

I j

N j
, R j =

R j

N j
, xxx =

XXX
L
, t = δ T.

(3.3)

In this way, S j, I j, and R j are the proportion of susceptible, infected, and removed

individuals in the jth patch, respectively, and P≡ P(xxx, t) is the dimensionless den-

sity of the pathogens at position xxx at time t. Upon substituting (3.3) into (3.1), we
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derive that the dimensionless spatio-temporal density of pathogens P(xxx, t) satisfies

∂P
∂ t

=D∆P− P, t > 0, xxx ∈Ω\∪m
j=1 Ω j; (3.4a)

∂nxxx P = 0, xxx ∈ ∂Ω; D∂nxxx P =−r j

(
N jL
δ pc

)
I j, xxx ∈ ∂Ω j, j = 1, . . . ,m,

(3.4b)

where D ≡ DB/(δ L2) is the effective diffusion rate of the pathogens. From the

system of ODEs ((3.1c) - (3.1e)) for the population dynamics of the jth patch, we

derive the dimensionless system

dS j

dt
=−

(
µ j

δ L

)
S j

∫
∂Ωε j

P dsxxx;

dI j

dt
=
(

µ j

δ L

)
S j

∫
∂Ωε j

P dsxxx−φ jI j;

dR j

dt
= φ jI j, j = 1, . . . ,m,

(3.5)

where Ωε j = {xxx : |xxx j−xxx|< ε} represents the jth patch of radius ε � 1 with center

at xxx j and boundary ∂Ωε j. It is important to remark that we have used the scaling

dSXXX = Ldsxxx in the integrals on the boundary of the patches. Since the patches

are relatively small compared to the length-scale of the domain, we assume that

(µ j/δ L) and r j (N jL/δ pc) are O(1/ε) in order to effectively capture the density

of the pathogen shed into the atmosphere. Hence, we set

β j

2πε
=

µ j

δL
and

σ j

2πε
= r j

N jL
δ pc

, (3.6)

such that β j and σ j are O(1). This rescaling enables us to write the dimension-

less transmission and shedding rates, β j and σ j, respectively, as functions of the

circumference of the jth patch. Substituting (3.6) into (3.4) and (3.5), we have that
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the dimensionless density of the pathogens P(xxx, t) satisfies

∂P
∂ t

=D∆P− P, t > 0, xxx ∈Ω\∪m
j=1 Ωε j; (3.7a)

∂nxxx P = 0, xxx ∈ ∂Ω; 2πεD∂nxxx P =−σ j I j, xxx ∈ ∂Ωε j, j = 1, . . . ,m,

(3.7b)

which is coupled to the dimensionless SIR dynamics of the jth patch through the

integro-differential equations given by

dS j

dt
=−

β jS j

2πε

∫
∂Ωε j

P dsxxx;

dI j

dt
=

β jS j

2πε

∫
∂Ωε j

P dsxxx−φ jI j; (3.7c)

dR j

dt
= φ jI j, j = 1, . . . ,m,

where β j, σ j and φ j are the dimensionless transmission, shedding and recovery

rates for the jth patch, respectively, and are given by

β j =
2πε

δL
µ j, σ j =

2πε

δ pc
r j N jL and φ j =

α j

δ
. (3.8)

In the next subsection, we study the dimensionless coupled PDE-ODE model (3.7)

in the limit D = O(ν−1), where ν = −1/ loge(ε) and ε � 1 using the method of

matched asymptotic expansions.

3.3.2 Asymptotic analysis of the dimensionless coupled PDE-ODE
model

Here, the dimensionless coupled PDE-ODE model (3.7) is analyzed in the limit

D = O(ν−1), where ν ≡ −1/ loge(ε) for ε � 1, using the method of matched

asymptotic expansions. This analysis is used to reduce the coupled model into a

nonlinear system of ODEs, which is then used to determine the basic reproduction

number and final size relation of epidemics.
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We begin our analysis by rescaling the diffusion rate of pathogens as

D =
D0

ν
, where D0 = O(1) and ν =− 1

loge(ε)
� 1. (3.9)

Substituting D = D0/ν into (3.7a) and (3.7b), we obtain

∂P
∂ t

=
D0

ν
∆P− P, t > 0, xxx ∈Ω\∪m

j=1 Ωε j; (3.10a)

∂nxxx P = 0, xxx ∈ ∂Ω; 2πε
D0

ν
∂nxxx P =−σ j I j, xxx ∈ ∂Ωε j, j = 1, . . . ,m,

(3.10b)

Since the pathogens shed by infected individuals go into the air through the bound-

ary of the patches, one would expect the density of pathogens around each patch

to be high relative to the regions far away from the patches. As a result of this,

we construct an inner region at an O(ε) neighborhood of each patch, and intro-

duce the local variables yyy = ε−1(xxx−xxx j) and P(xxx) = Q j(εyyy+xxx j), with |yyy| = ρ for

j = 1, . . . ,m. Upon writing (3.10a) and (3.10b) in terms of the inner variables, we

obtain for ε � 1 the limiting inner problem

∆ρ Q j = 0, t > 0, ρ > 1;

2π
D0

ν
∂ρ Q j = −σ j I j, ρ = 1, j = 1, . . . ,m,

(3.11)

where ∆ρ ≡ ∂ρρ +ρ−1∂ρ is the radially symmetric part of the Laplacian in 2-D. In

this inner region, we expand Q j(ρ, t) as

Q j = Q0 j +
ν

D0
Q1 j + . . . (3.12)

Upon substituting this expansion into (3.11) and collecting terms in powers of ν ,

we obtain the leading-order inner problem

∆ρ Q0 j = 0, t > 0, ρ > 1; ∂ρ Q0 j = 0 on ρ = 1, j = 1, . . . ,m,

(3.13)

Observe that any constant or function of time is a solution to this problem, so that
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Q0 j ≡ Q0 j(t). The next-order inner problem is given by

∆ρ Q1 j = 0, t > 0, ρ > 1; 2π ∂ρ Q1 j = −σ j I j on ρ = 1, j = 1, . . . ,m,

(3.14)

and its solution is readily calculated as

Q1 j =

(
−σ j I j

2π

)
loge(ρ)+ c j, j = 1, . . . ,m, (3.15)

where c j, for j = 1, . . . ,m, are constants to be determined. Substituting the solu-

tions Q0 j and Q1 j into the inner expansion (3.12), and writing the resulting expres-

sion in terms of the outer variables, we obtain a two term asymptotic expansion of

the inner solution

Q j =

(
Q0 j(t)−

σ jI j

2πD0

)
+

ν

D0

[
−

σ jI j

2π
loge |xxx−x jx jx j|+ c j

]
+ . . . (3.16)

Next, from (3.4a) and (3.4b), we construct the outer problem for the density of

pathogens, which is valid far away from the patches, as

∂P
∂ t

=D∆P− P, t > 0, xxx ∈Ω\{xxx1, . . . ,xxxm}; ∂n P = 0, xxx ∈ ∂Ω, (3.17)

where xxx1, . . . ,xxxm are the centres of the patches. In this region, we expand the outer

solution as

P = P0 +
ν

D0
P1 + . . . (3.18)

Substituting (3.18) into (3.17) and collecting terms in powers of ν , we obtain the

leading-order outer problem given by

∆P0 = 0, t > 0, xxx ∈Ω\{xxx1, . . . ,xxxm}; ∂nP0 = 0, xxx ∈ ∂Ω. (3.19)

Observe that this problem is similar to the leading-order inner problem (3.13) and

any constant or function of time satisfies it. As a result of this, we chose the

leading-order outer solution to be P0 ≡ P0(t). The next order outer problem for P1
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is given by

∆P1 = P0 +P0t , xxx ∈Ω\{xxx1,xxx2, . . . ,xxxm}; ∂nP1 = 0, xxx ∈ ∂Ω. (3.20)

Upon matching the inner solution (3.16) and the outer expansion (3.18), we obtain

the following required singularity behavior for the outer solution as xxx−→ xxx j:

P0(t)+
ν

D0
P1 + · · · ∼

(
Q0 j(t)−

σ jI j

2πD0

)
+

ν

D0

[
−

σ jI j

2π
loge |xxx−x jx jx j|+ c j

]
+ . . . ,

xxx−→ xxx j.

(3.21)

In this way, we obtain the matching conditions

P0(t)∼
(

Q0 j(t)−
σ jI j

2πD0

)
and P1 ∼−

(
σ j I j

2π

)
log |xxx−xxx j| as xxx−→ xxx j.

(3.22)

The first condition yields that Q0 j(t) = P0(t)+σ jI j/2πD0 for each j = 1, . . . ,m.

The ODE for P0(t) is derived from a solvability condition on the problem for P1.

To do so, it is convenient to write the singularity behaviour of P1 given in (3.22) as

a delta function forcing for the PDE in (3.20). In this way, the outer problem for

P1 is equivalent to

∆P1 = P0 +P′0 +
m

∑
i=1

(−σi Ii)δ (xxx−xxxi), xxx ∈Ω; ∂nP1 = 0, xxx ∈ ∂Ω. (3.23)

Integrating (3.23) over the domain Ω and using the divergence theorem, we obtain

an ODE for the leading-order density of pathogens P0(t) in the bulk region given

by

P′0 =−P0 +
1
|Ω|

m

∑
i=1

σi Ii. (3.24)

This ODE is the solvability condition for the O(ν) outer problem (3.23).

To solve the outer problem (3.23), we introduce the Neumann Green’s function
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G(xxx;xxx j), which satisfies

∆G =
1
|Ω|
−δ (xxx−xxx j), xxx ∈Ω; ∂nG = 0, xxx ∈ ∂Ω; (3.25a)

G(xxx;xxx j)∼−
1

2π
log |xxx−xxx j|+R j, as xxx−→ xxx j, and

∫
Ω

Gdxxx = 0, (3.25b)

where R j ≡R(xxx j) is the regular part of G(xxx;xxx j) at xxx = xxx j for j = 1, . . . ,m. Without

loss of generality, we impose
∫

Ω
P1 dxxx = 0, so that the spatial average of P in the

bulk region is P0. Therefore, the solution to the outer problem (3.23) is written in

terms of the Neumann Green’s function G(xxx;xxx j) as

P1 =
m

∑
i=1

σiIi G(xxx;xxxi). (3.26)

Upon substituting (3.26) into the outer expansion (3.18), we obtain a two-term

asymptotic expansion of the outer solution in the bulk region as

P = P0 +
ν

D0

m

∑
i=1

σiIi G(xxx;xxxi)+ . . . . (3.27)

Now, we expand (3.26) as xxx −→ xxx j, and substitute the singularity behaviour of

the Neumann Green’s function G(xxx,xxx j) given in (3.25b) into the corresponding

expansion to get

P1 ∼ σ jI j

(
− 1

2π
loge |xxx−xxx j|+R j

)
+

m

∑
i6= j

σiIi G(xxx j;xxxi) as xxx−→ xxx j, j = 1, . . . ,m.

(3.28)

Matching the inner and outer solutions, we derive the constants c j in terms of the

Neumann Green’s function as

c j = σ jI j R j +
m

∑
i 6= j

σiIi G(xxx j;xxxi), j = 1, . . . ,m. (3.29)

Thus, substituting (3.29) into (3.16), we derive a two-term asymptotic expansion of

the inner solution Q j(ρ, t), valid in an O(ε) neighbourhood of the jth patch, given
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by

Q j =

(
P0(t)+

σ j I j

2πD0

)
+

ν

D0

[
−
(

σ j I j

2π

)
loge ρ +σ jI jR j +

m

∑
i6= j

σiIi G(xxx j;xxxi)

]
+ . . . ,

j = 1, . . . ,m.

(3.30)

Lastly, by substituting the inner solution (3.30) into the SIR system in (3.7c) and

evaluating the integrals over the boundary of the jth patch, we obtain a nonlin-

ear system of ODEs for the leading-order density of pathogens in the bulk region

coupled to the population dynamics of the jth patch. This system is given by

dP0

dt
=−P0 +

1
|Ω|

m

∑
j=1

σ j I j, (3.31a)

which is coupled to

dS j

dt
=−β jS j

(
P0(t)+

σ j I j

2πD0

)
− ν

D0
β jS jΨ j,

dI j

dt
= β jS j

(
P0(t)+

σ j I j

2πD0

)
+

ν

D0
β jS jΨ j−φ jI j, (3.31b)

dR j

dt
= φ jI j, j = 1, . . . ,m,

Here, Ψ j = (G Φ) j is the jth entry of the vector G Φ, with Φ = (σ1I1, . . . ,σmIm)
T

and G is the Neumann Green’s matrix whose entries are defined by

(G ) j j =R j≡R(xxx j) for i= j and (G )i j =G(xxxi;xxx j) for i 6= j with (G )i j =(G ) ji.

(3.32)

The function G(xxx j;xxxi) is the Neumann Green’s function satisfying (3.25) and R j ≡
R(xxx j) is its regular part at the point xxx = xxx j. In our analysis, D0 = O(1) and ν =

−1/ loge(ε)� 1. Therefore, as ε tends to zero, ν also approaches zero, and so to

the leading-order we can neglect the O(ν) terms in (3.31b). Replacing the leading-

order density of pathogens P0 with p in (3.31), we derive the leading-order system
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of ODEs given by

d p
dt

=−p+
1
|Ω|

m

∑
j=1

σ j I j, (3.33a)

dS j

dt
=−β jS j

(
p(t)+

σ j I j

2πD0

)
, (3.33b)

dI j

dt
= β jS j

(
p(t)+

σ j I j

2πD0

)
−φ jI j, (3.33c)

dR j

dt
= φ jI j, j = 1, . . . ,m, (3.33d)

Observe that we started with the dimensionless coupled PDE-ODE model (3.7) for

studying the spread of airborne disease with indirect transmission, and arrived at

the leading-order reduced system of ODEs (3.33) in the limit D = O(ν−1). This

system of ODEs also models indirect transmission of infections, even though, the

terms with σ j I j/(2πD0) in (3.33b) and (3.33c) make it look like infection is trans-

mitted from person-to-person through direct interaction. This term does not model

direct transmission, rather, it accounts for the pathogens shed by infected individ-

uals in a patch. The density of these pathogens depend on the scaled-diffusion rate

D0 > 0. When the pathogens diffuse slowly (smaller values of D0), there is sig-

nificant contribution from this term. This contribution decreases as the pathogens

diffuse faster (increasing D0). Moreover, in the limit D0 −→ ∞, this terms tends

to zero and (3.33) reduces to the model for well-mixed regime given in equation

5 of [50]. In Sections 3.4 and 3.5, the reduced system of ODEs (3.33) is used to

compute the basic reproduction number and final size relation for one and two pop-

ulation patches, respectively. The effect of the spatial locations of the patches and

their interaction, as characterized by O(ν) terms in (3.31), is studied in Section

3.6.

3.4 One-patch model
In the previous section, the method of matched asymptotic expansions was used to

reduce the dimensionless coupled PDE-ODE model (3.7) to the nonlinear system

of ODEs (3.31), for the leading-order density of pathogens p and m population

patches. In this section, we consider a single population patch located at the center
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of a unit disk, and use the dimensionless coupled model (3.7) together with the

reduced system of ODEs (3.33) to study the effect of diffusion on the spread of

infection in the population.

From (3.7), we derive that the density of pathogens P(xxx, t) for this one-patch

scenario satisfies

∂P
∂ t

=D∆P− P, t > 0, xxx ∈Ω\Ω0; (3.34a)

∂n P = 0, xxx ∈ ∂Ω; 2πεD∂n P =−σ I, xxx ∈ ∂Ω0, (3.34b)

Here Ω is a unit disk and Ω0 ⊂Ω is a disk of radius ε � 1 representing the single

population patch, which is located at the centre of the unit disk. The density of

pathogens P is coupled to the S I R dynamics of the population given by

dS
dt

=− βS
2πε

∫
∂Ω0

P ds;

dI

dt
=

βS
2πε

∫
∂Ω0

P ds−φ I; (3.34c)

dR

dt
= φ I,

From the reduced system of ODEs (3.33), we obtain an ODE model for a single

population patch given by

d p
dt

=−p+
1
|Ω|

(σ I),

dS
dt

=−βSp−βS
(

σ I
2πD0

)
,

dI
dt

= βSp+βS
(

σ I
2πD0

)
−φ I,

dR
dt

= φ I.

(3.35)

To study the spread of infection in the population and the effect of diffusion

on the epidemic caused by the pathogens, we solve the coupled PDE-ODE model

(3.34) numerically using the commercial finite element package, FlexPDE [161]
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with several diffusion rate of pathogens. The full PDE results are then com-

pared with results from the reduced system of ODEs (3.35), which is valid for

D = D0/ν � 1. In addition, the limiting ODE system (3.35) is analyzed using the

method of Kermack-McKendrick similar to that done in [23], [25]. To do so, the

following simple lemma is needed:

Lemma 3.4.1. Let f (t) be a nonnegative monotone nonincreasing continuously

differentiable function such that as t→ ∞, f (t)→ f∞ ≥ 0, then
d f
dt
→ 0 as t→ ∞.

Upon summing the equations for S and I in (3.35), we obtain

d(S+ I)
dt

=−φ I ≤ 0. (3.36)

This implies that (S+ I) decreases to a limit. It can be shown from Lemma 3.4.1

that its derivative approaches zero, so that we can conclude that I∞ = lim
t→∞

I(t) = 0.

In addition, by integrating (3.36), we obtain

∫
∞

0
I(t)dt =

N(0)−S(∞)

φ
, (3.37)

which implies that
∫

∞

0 I(t)dt <∞, where S∞ = lim
t→∞

S(t) denotes the total susceptible

populations remaining after the outbreak. This simple property is employed when

computing the final size relation below.

3.4.1 The basic reproduction number R0

The calculation of the basic reproduction number is done using the next generation

matrix method similar to that done in [53, 169]. Note that there are two infectious

classes I and p for this scenario. The Jacobian matrix F for new infections evalu-

ated at the disease free equilibrium point, DFE=(S0,0,0)=(N(0),0,0) is given by

F =
(

∂Fi

∂x j

)
i, j

=

βσN(0)
2πD0

βN(0)

0 0

 ,

where the functions F1 ≡ dI/dt, F2 ≡ d p/dt in (3.35) and x j = I, p for j = 1,2.

The Jacobian matrix V for transfer of infections between compartments, evaluated
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at the disease free equilibrium point DFE is

V =
(

∂Vi

∂x j

)
i, j
=


φ 0

− σ

|Ω|
1

 , and FV−1 =


βN(0)σ

φ |Ω|
+

βN(0)σ
2φπD0

βN(0)

0 0

 .

Remark 2. In order to calculate the basic reproduction number for the model in

(3.35), we use the next generation matrix method as in [53], [169] known to be the

dominant eigenvalues of FV−1 (the spectral radius of the matrix FV−1), and given

as

R0 =
βN(0)σ

φ |Ω|
+

βN(0)σ
2φπD0

. (3.38)

Conveniently, we can decompose R0 as R0 =R?+RD, where R? =
βN(0)σ

φ |Ω|
and

RD =
βN(0)σ
2φπD0

.

The expression for R0 in (3.38) denotes the secondary infections contributed

by indirect transmission (R?) and diffusion (RD). The term R? represents the

secondary infections caused indirectly through the pathogen since a single infective

I sheds a quantity σ of the pathogen per unit time for a time period 1/φ and this

pathogen infects βN susceptibles. The second term RD denotes the secondary

infections caused by the pathogen diffusing in the bulk at the rate D0 since a single

infective I sheds a quantity σ of the pathogen per unit time for a time period 1/φ

and this pathogen infects βN susceptible individuals in the patch. As the diffusion

rate of pathogens become asymptotically large, that is, D0 → ∞, we observe that

RD→ 0. Therefore, in this limit, the basic reproduction number R0 in (3.38) can

be written as

R∞
0 = lim

D0→∞
R0 =

βN(0)σ
φ |Ω|

= R?. (3.39)

A more detailed discussion of equation (3.39) will be given below while explaining

our numerical simulations. The implication of the basic reprodction number R0 is

summarized as follows in the readily proved result.

Theorem 3.4.2. For system (3.35), the infection dies out whenever R0 < 1. In
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contrast, an epidemic occurs whenever R0 > 1.

3.4.2 The final size relation

The final size relation gives an estimate of the total number of infections and the

epidemic size for the period of the epidemic in terms of the parameters in the model

as similar to that done in [13, 20]. In other words, the final size relation is used to

estimate the total number of disease deaths and cases from the parameters of the

model. Following the approach in [19, 20, 23], we integrate the equation for S in

(3.35) to get

log
S0

S∞

= β

∫
∞

0
p(t)dt +

βσ

2πD0

∫
∞

0
I(t)dt. (3.40)

Similarly, integrating the equation for p(t) in (3.35) gives

p(t) = p0 e−t +
σ

|Ω|

∫ t

0
e−(t−s)I(s)ds. (3.41)

Next, we need to show that

lim
t→∞

∫ t

0
e−(t−s)I(s) ds = lim

t→∞

∫ t
0 esI(s) ds

et = 0. (3.42)

If the integral in the numerator of (3.42) is bounded, this relation is immediate.

If the numerator is unbounded, L’Hopital’s rule yields that lim
t→∞

∫ t

0
e−(t−s)I(s) ds =

lim
t→∞

I(t) = I(∞), which vanishes as established above following equation (3.36).

Therefore, (3.41) yields that

p∞ = lim
t→∞

p(t) = 0.

By integrating (3.41), interchanging the order of integration, and then using (3.37)

we get ∫
∞

0
p(t)dt =

σ

|Ω|

∫
∞

0
I(t)dt + p0, (3.43)

which implies that
∫

∞

0 p(t)dt < ∞. Upon substituting (3.43) into (3.40), we obtain

log
S0

S∞

=
βσ

|Ω|

∫
∞

0
I(t)dt +

βσ

2πD0

∫
∞

0
I(t)dt +β p0,
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so that, by using (3.37), we obtain the final size relation

log
S0

S∞

=
βσN
φ |Ω|

{
1− S(∞)

N

}
+

βσN
2πφD0

{
1− S(∞)

N

}
+β p0,

= R?

{
1− S(∞)

N

}
+RD

{
1− S(∞)

N

}
+β p0.

This implies that S∞ > 0. In a situation where the outbreak begins with no contact

with pathogen, so that p0 = 0, the final size relation becomes

log
S0

S∞

= R?

{
1− S(∞)

N

}
+RD

{
1− S(∞)

N

}
,

=
(
R?+RD

){
1− S(∞)

N

}
, (3.44)

= R0

{
1− S(∞)

N

}
.

Equation (3.44) is referred to as the final size relation, and this gives the relation-

ship between the basic reproduction number and the epidemic size. Note that the

total number of infected population over the period of the epidemic is N−S∞ and

can also be described in terms of the attack rate
(

1−S∞/N
)

as in [20].

3.4.3 Numerical simulation for one-patch model

Next, we present some numerical simulations of the coupled PDE-ODE model

(3.34) and the reduced system of ODEs (3.35) for the case of a single population

patch located at the centre of a unit disk. The coupled model (3.34) is solved

numerically using the commercial finite element package FlexPDE [161], while

the reduced ODE system (3.35) is solved using the numerical ODE solver ODE45

in MATLAB [158]. For these models, simulations are done with different diffusion

rates of pathogens in order to understand the effect of diffusion on the dynamics

of the infected population. The parameters used for these simulations are shown in

Table 3.1.
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Table 3.1: Model variables and their descriptions

Parameter Description Dimensional(less) values
µ (β ) dimensional (dimensionless)

effective contact rate
0.3 [13]

(
computed using (3.8)

)
r (σ) dimensional (dimensionless)

pathogen shedding rate
0.1 [178]

(
computed using (3.8)

)
α (φ) dimensional (dimensionless)

removed rate for infected in-
dividuals

1.87 [178]
(
computed using (3.8)

)
δ dimensional decay rate of

pathogens
0.25

pc typical value for density of
pathogens

0.01

ε radius of the population
patches

0.02

|Ω| area of the domain (unit disk) π
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(a) Simulation of the reduced system of
ODE (3.35)
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(b) Simulation of the coupled PDE-ODE
(3.34)

Figure 3.1: The dynamics of infected I(t) for different diffusion rates of
pathogen D and D0, and other parameters as in Table 3.1. (a) shows
the result obtained from the reduced ODE (3.35) with initial conditions
(S(0), I(0),R(0), p(0)) = (249/250,1/250,0,0), while (b) is the result
of the dimensionless coupled PDE-ODE model (3.34) with initial con-
ditions (S(0), I(0),R(0),P(0)) = (249/250,1/250,0,0)
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Figure 3.1 shows the proportion of infected over time when an epidemic be-

gins with one infective in a total population of 250 individuals, with susceptible,

infected and recovered population given as S(0) = 249/250, I(0) = 1/250 and

R(0) = 0, respectively. The initial density of pathogen used for both the coupled

model and the reduced system of ODEs is p(0) = P(0) = 0, denoting that the out-

break begins with no pathogen in the air, and that the only source of pathogen into

the system is the one shed by infected individuals. We observe from this figure that

the proportion of infected individuals decreases with increases in the diffusion rate

of pathogen. This shows that when pathogens diffuse slowly, they cluster around

the population as they are being shed. As a result, since human populations are

confined in a region, this in turn leads to more infections.

However, when pathogens diffuse faster (diffusion rate increases), they diffuse

away from the population as they are being shed, which in turn, reduce the den-

sity of pathogens around the patch. This effect lowers the population of infected

individuals. Comparing Figures 3.1a and 3.1b, we notice that the proportion of

infectives estimated by the two models are similar when D and D0 are small and

when they are asymptotically large. Since D = D0/ν , a small value of D0 implies

that D is also small. As a result of this, the two models would behave similar in

this limit even though the reduced system of ODEs (3.35) is only valid in the limit

D = O(ν−1), where ν = − log(ε), with ε � 1. The difference between the two

models becomes more apparent with an increase in diffusion rate, as the number of

infectives estimated by the system of ODEs is less as compared to that of the PDE-

ODE model. This is because the system of ODEs is valid in the limit D =O(ν−1),

and the spread of infection decreases as D increases. Lastly, as the diffusion rates

become asymptotically large, the solutions of the two models essentially coincide.

This is because when D→∞, the problem becomes well-mixed, where the density

of pathogen is homogeneous in space, and the coupled PDE-ODE model can be

reduced to a system of ODEs. Similarly, if we take the limit of the reduced system

of ODEs (3.35) as D0 −→ ∞, we have the model studied in [23]. This suggests

that the model in [23] can be interpreted as the well-mixed limit of the coupled

PDE-ODE model (3.34).
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(a) Simulation of the reduced system of
ODE (3.35)
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Figure 3.2: The dynamics of proportion of infected individuals I(t) us-
ing different diffusion rates of pathogen, and all other parameters
as in Table (3.1). (a) shows the result obtained from the sys-
tem of ODEs (3.35) with initial conditions (S(0), I(0),R(0), p(0)) =
(249/250,1/250,0,1), while (b) is the result of the dimen-
sionless coupled PDE-ODE model (3.34) with initial conditions
(S(0), I(0),R(0),P(0)) = (249/250,1/250,0,1)

The results in Figure 3.2 are similar to those in Figure 3.1 except that the initial

conditions of the pathogens is taken as P(0) = p(0) = 1. This models the case

where there is pathogen in the air at the beginning of the outbreak. The other

initial conditions are the same as those used in Figure 3.1. These results show

how the presence of pathogens in the atmosphere at the beginning would affect the

transmission of infection. The epidemic takes off earlier when there are pathogens

in the air at the beginning of the outbreak (Figure 3.2) compared to when there are

no pathogens at the beginning (Figure 3.1). When the diffusion rate is small, the

model with (Figure 3.2) and without (Figure 3.1) pathogen at the beginning of the

outbreak have similar estimates. This is because the pathogens are barely moving

when the diffusion rate is small, and as a result, it does not make much difference

whether they are present or not. As the diffusion rate of pathogens increases, there

seems to be significant differences in the two solutions, since, the epidemic takes

off earlier in Figure 3.2 as compared to Figure 3.1. Therefore, the presence of

pathogens in the air around the population patch increases the spread of infection
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in the population, as expected intuitively.

(a) (b)

Figure 3.3: Surface plots of the basic reproduction number R0 (3.38) for
the one-patch model (3.35) plotted with respect to the diffusion rate of
pathoegns D0 and some dimensionless parameters of the SIR model.
(a) is for D0 and the transimission rate β , while (b) is for D0 and the
shedding rate σ . The parameters used are given in Table 3.1

The surface plots in Figure 3.3 show the basic reproduction R0 (3.38) for the

one-patch model (3.35) in terms of the diffusion rate of pathogens D0 and the di-

mensionless transmission and shedding rates, β and σ , respectively. These results

show the effect of D0 on the basic reproduction number, R0. We observe from both

results in this figure that R0 increases as the transmission and shedding rates in-

crease, and decreases as D0 increases for a fixed value of the transmission and shed-

ding rates. These results agree with the simulations in Figures 3.1 and 3.2, where

the spread of infections decreases as the diffusion rate of pathogen increases. In

Figure 3.3a, the largest R0 is obtained when D0 is small and the transmission rate

β is large. This is reasonable because when pathogens diffuse slowly, it would take

longer for them to diffuse away from the population, and as a result, they continue

to cause infections in the population, and consequently this leads to a large basic

reproduction number. Similarly, in Figure 3.3b, the largest R0 is obtained when

the shedding rate of pathogen is large and D0 is small, because when infected indi-

viduals shed pathogens at a high rate and the pathogens do not diffuse away from

the population, they lead to more infections. When the transmission and shed-
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ding rates are low, irrespective of the diffusion rate of pathogens, the reproduction

number will be less than one and the epidemic will die out.

In the next section, we perform a similar analysis for a scenario with two spa-

tially segregated population patches.

3.5 Two-patch model
In the previous section, we studied the effect of the diffusion rate of pathogens on

the spread of infection in a single population. In this section, we consider a scenario

with two population patches, and use the dimensionless coupled PDE-ODE model

(3.7) and the reduced system of ODEs (3.33) with m = 2 to study the dynamics

of infection in these populations. The patches are centered at xxx1 = (0.5,0) and

xxx2 = (−0.5,0) in a unit disk.

For this two-patch scenario, the density of pathogen P for the coupled PDE-

ODE model satisfies

∂P
∂ t

=D∆P− P, t > 0, xxx ∈Ω\{Ω1∪Ω2}; (3.45a)

∂n P = 0, xxx ∈ ∂Ω; 2πεD∂n P =−σ1 I1, xxx ∈ ∂Ω0; 2πεD∂n P =−σ2 I2, xxx ∈ ∂Ω2,

(3.45b)

where Ω1 and Ω2 are the two population patches centered at xxx1 = (0.5,0) and

xxx2 = (−0.5,0). This density of pathogen is coupled to the population dynamics of

the two patches through the following ODE system:

Patch 1 Patch 2
dS1

dt
=−β1S1

2πε

∫
∂Ω1

P ds;
dS2

dt
=−β2S2

2πε

∫
∂Ω2

P ds;

dI1

dt
=

β1S1

2πε

∫
∂Ω1

P ds−φ1I1;
dI2

dt
=

β2S2

2πε

∫
∂Ω2

P ds−φ2I2; (3.45c)

dR1

dt
= φ1I1;

dR2

dt
= φ2I2.

The coupled PDE-ODE model (3.45) is solved numerically using FlexPDE [161]

with different diffusion rate for the pathogens. The solutions are used to study the

effect of diffusion on the spread of the infection caused by the pathogens within the
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population. From (3.33), we construct the reduced system of ODEs for the case of

two patches as

d p
dt

=−p+
1
|Ω|

(σ1 I1 +σ2 I2), (3.46a)

Patch 1 Patch 2
dS1

dt
=−β1S1 p−β1S1

(
σ1 I1

2πD0

)
,

dS2

dt
=−β2S2 p−β2S2

(
σ2 I2

2πD0

)
,

dI1

dt
= β1S1 p+β1S1

(
σ1 I1

2πD0

)
−φ1I1,

dI2

dt
= β2S2 p+β2S2

(
σ2 I2

2πD0

)
−φ2I2,

(3.46b)
dR1

dt
= φ1I1,

dR2

dt
= φ2I2,

with initial conditions

S1(0)= S10, S2(0)= S20, I1(0)= I10, I2(0)= I20, R1(0)= 0, R2(0)= 0, p(0)= p0,

in a population of constant total size N = N1 +N2, where N1 = S1 + I1 + R1 =

S10 + I10 and N2 = S2 + I2 +R2 = S20 + I20. This system of ODEs is similar to the

model studied in [50], in which indirect transmission of diseases with no diffusion

was studied. We use this model to compute the basic reproduction number and the

final size relation, and the method of Kermack-McKendrick epidemic model as in

[23, 25] will be used to analyze the model.

Summing the equations for S1 and I1, and then those for S2 and I2 in (3.46b),

we obtain
d(S1 + I1)

dt
=−φ1I1 ≤ 0. (3.47)

d(S2 + I2)

dt
=−φ2I2 ≤ 0. (3.48)

Here, we see that (S1 + I1) and (S2 + I2) decreases to a limit, and we can show

from Lemma (3.4.1) that their derivatives approach zero. Therefore, we conclude

that I1∞ = lim
t→∞

I1(t) = 0 and I2∞ = lim
t→∞

I2(t) = 0.

Next, by integrating (3.47) we get φ1
∫

∞

0 I1(t)dt = S1(0) + I1(0)− S1(∞) =

77



N1(0)−S1(∞), so that

∫
∞

0
I1(t)dt =

N1(0)−S1(∞)

φ1
, (3.49)

which implies that
∫

∞

0 I1(t)dt < ∞. Similarly, we integrate (3.48), to obtain

∫
∞

0
I2(t)dt =

N2(0)−S2(∞)

φ2
. (3.50)

Here, S1∞ = limt→∞ S1(t) and S2∞ = limt→∞ S2(t) denote the total susceptible

population remaining in patch 1 and patch 2, respectively, after the outbreak.

3.5.1 Reproduction number R0

Following a similar approach to that used in Section 3.4.1 for the one-patch model,

we construct our system of infected classes as

dI1

dt
= β1S1 p+β1S1

(
σ1 I1

2πD0

)
−φ1I1, (3.51a)

dI2

dt
= β2S2 p+β2S2

(
σ2 I2

2πD0

)
−φ2I2 (3.51b)

d p
dt

=−p+
1
|Ω|

(σ1 I1 +σ2 I2). (3.51c)

Using the next generation matrix approach in [53, 169], the basic reproduction

number is calculated as follows. We first introduce the three infectious classes

I1, I2, p, and the Jacobian matrix of Fi = (F1,F2,F3), evaluated at the disease

free equilibrium point

DFE=(S10,0,0,S20,0,0)=(N1(0),0,0,N2(0),0,0,0) given by

F =

(
∂Fi

∂x j

)
i, j

=


β1σ1N1(0)

2πD0
0 β1N1(0)

0
β2σ2N2(0)

2πD0
β2N2(0)

0 0 0

 ,

where x j = I1, I2, p for j = 1,2,3 and i = 1,2,3.

The Jacobian matrix of Vi = (V1,V2,V3), evaluated at the disease free equilib-
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rium point DFE is

V =
(

∂Vi

∂x j

)
i, j

=



φ1 0 0

0 φ2 0

− σ1

|Ω|
− σ2

|Ω|
1


, and

FV−1 =



β1N1(0)σ1

φ1|Ω|
+

β1N1(0)σ1

2φ1πD0

β1N1(0)σ2

φ2|Ω|
β1N1(0)

β2N2(0)σ1

φ1|Ω|
β2N2(0)σ2

φ2|Ω|
+

β2N2(0)σ2

2φ2πD0
β2N2(0)

0 0 0


.

Remark 3. To calculate the basic reproduction number for the two-patch model

in (3.35), we use the method of next generation matrix in [53, 169] given as the

dominant eigenvalues of FV−1 (the spectral radius of the matrix FV−1). A simple

calculation yields that

R0 =
(|Ω|+2πD0)♣
4πφ1φ2|Ω|D0

+

√
(|Ω|2 +4π|Ω|D0)♠2 +4π2D2

0♣2

4πφ1φ2|Ω|D0
, (3.52)

where we have defined ♣ and ♠ by

♣= β1N1(0)φ2σ1 +β2N2(0)φ1σ2 and ♠= β1N1(0)φ2σ1−β2N2(0)φ1σ2.

In the well-mixed limit D0 � 1, similar to that studied for one patch model in

Section 3.4, the reproduction number R0 in (3.52) reduces to

R∞
0 = lim

D0→∞
=

♣
φ1φ2|Ω|

,
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which implies that

R∞
0 =

β1N1(0)σ1

φ1|Ω|
+

β2N2(0)σ2

φ2|Ω|
. (3.53)

We observe that R∞
0 can be decomposed as R∞

0 = β1R1 + β2R2, where R1 =
N1(0)σ1

φ1|Ω|
and R2 =

N2(0)σ2

φ2|Ω|
.

We can interpret the large D0 limiting value R∞
0 of the reproduction number

as follows. The formula for R0 in Equation (3.53) denotes the contribution of

the first and second patch. The term β1R1 represents the secondary infections

caused indirectly through the pathogen since a single infective I1 sheds a quantity

σ1 of the pathogen per unit time for a time period 1/φ1 and this pathogen infects

β1N1 susceptibles. The second term β2R2 denotes the secondary infections caused

indirectly through the pathogen since a single infective I2 sheds a quantity σ2 of

the pathogen per unit time for a time period 1/φ2 and this pathogen infects β2N2

susceptibles.

A detailed qualitative explanation of R0 (for the case where D0 = O(1)) and

R∞
0 (for the well-mixed limit D0→ ∞), will be given below when discussing our

results from numerical simulations. The following easily-proved Theorem summa-

rizes the implications of the reproduction number R∞
0 .

Theorem 3.5.1. For the well-mixed limit D0→ ∞ for the system (3.46), the infec-

tion dies out whenever R∞
0 < 1, while epidemic occurs whenever R∞

0 > 1.

3.5.2 The final size relation

Following the same approach as in subsection 3.4.2, we integrate the equations for

S1 and S2 in (3.46b) to get

log
S10

S1∞

= β1

∫
∞

0
p(t)dt +

β1σ1

2πD0

∫
∞

0
I1(t)dt. (3.54)

and

log
S20

S2∞

= β2

∫
∞

0
p(t)dt +

β2σ2

2πD0

∫
∞

0
I2(t)dt. (3.55)
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Similarly, integrating the equation for p in (3.46a), we obtain

p(t) = p0e−t +
σ1

|Ω|

∫ t

0
e−(t−s)I1(s)ds+

σ2

|Ω|

∫ t

0
e−(t−s)I2(s)ds. (3.56)

Next, we need to show that

lim
t→∞

∫ t

0
e−(t−s)I1(s)ds = lim

t→∞

∫ t
0 esI1(s)ds

et = 0. (3.57)

and that

lim
t→∞

∫ t

0
e−(t−s)I2(s)ds = lim

t→∞

∫ t
0 esI2(s)ds

et = 0. (3.58)

If the integral in the numerator of (3.57) and (3.58) are bounded, the result is

immediate. Alternatively, if these integrals are unbounded, then by l’Hospital’s

rule these two limits reduce to lim
t→∞

I1(t) and lim
t→∞

I2(t) = 0, which vanish since

I1(∞) = I2(∞) = 0 as was shown above following (3.48) (see also [23]). As a result,

(3.56) yields that

p∞ = lim
t→∞

p(t) = 0.

Next, upon integrating (3.56), interchanging the order of integration, and then using

(3.49) and (3.50), we get∫
∞

0
p(t) dt = p0 +

σ1

|Ω|

∫
∞

0
I1(t) dt +

σ2

|Ω|

∫
∞

0
I2(t) dt, (3.59)

which implies that
∫

∞

0 p(t)dt < ∞.

We then substitute (3.59) into (3.54) and (3.55) to get

log
S10

S1∞

=
β1σ1

|Ω|

∫
∞

0
I1(t)dt +

β1σ2

|Ω|

∫
∞

0
I2(t)dt +

β1σ1

2πD0

∫
∞

0
I1(t)dt +β1 p0,

and

log
S20

S2∞

=
β2σ1

|Ω|

∫
∞

0
I1(t)dt +

β2σ2

|Ω|

∫
∞

0
I2(t)dt +

β2σ2

2πD0

∫
∞

0
I2(t)dt +β2 p0,
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which yields the final size relation

log
S10

S1∞

=
β1σ1N1(0)

φ1|Ω|

{
1− S1(∞)

N1(0)

}
+

β1σ2N2(0)
φ2|Ω|

{
1− S2(∞)

N2(0)

}
+

β1σ1N1(0)
2πφ1D0

{
1− S1(∞)

N1(0)

}
+β1 p0,

and

log
S20

S2∞

=
β2σ1N1(0)

φ1|Ω|

{
1− S1(∞)

N1(0)

}
+

β2σ2N2(0)
φ2|Ω|

{
1− S2(∞)

N2(0)

}
+

β2σ2N2(0)
2πφ2D0

{
1− S2(∞)

N2(0)

}
+β2 p0,

This expression can be written by using R1 =
N1(0)σ1

φ1|Ω|
and R2 =

N2(0)σ2

φ2|Ω|
, as

log
S10

S1∞

= β1

(
R1

{
1− S1(∞)

N1(0)

}
+R2

{
1− S2(∞)

N2(0)

}
+

σ1N1(0)
2πφ1D0

{
1− S1(∞)

N1(0)

})
+β1 p0,

and

log
S20

S2∞

= β2

(
R1

{
1− S1(∞)

N1(0)

}
+R2

{
1− S2(∞)

N2(0)

}
+

σ2N2(0)
2πφ2D0

{
1− S2(∞)

N2(0)

})
+β2 p0,

where we used (3.47), which implies S1∞ > 0 and S2∞ > 0. In the case where

the outbreak begins with no contact with pathogen, so that p0 = 0, the final size

relation for patch 1 and 2 can be written as

log
S10

S1∞

= β1

(
R1

{
1− S1(∞)

N1(0)

}
+R2

{
1− S2(∞)

N2(0)

}
+

σ1N1(0)
2πφ1D0

{
1− S1(∞)

N1(0)

})
,

(3.60)

log
S20

S2∞

= β2

(
R1

{
1− S1(∞)

N1(0)

}
+R2

{
1− S2(∞)

N2(0)

}
+

σ2N2(0)
2πφ2D0

{
1− S2(∞)

N2(0)

})
.

In th well-mixed limit of asymptotically large diffusion in which limD0→ ∞,

the final size relation (3.60) becomes

log
S10

S1∞

= β1

(
R1

{
1− S1(∞)

N1(0)

}
+R2

{
1− S2(∞)

N2(0)

})
,

log
S20

S2∞

= β2

(
R1

{
1− S1(∞)

N1(0)

}
+R2

{
1− S2(∞)

N2(0)

})
.

(3.61)
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This result can be written in matrix form as
log

S10

S1∞

log
S20

S2∞

=

 T11 T12

T21 T22




1− S1(∞)

N1(0)

1− S2(∞)

N2(0)

 , (3.62)

where

T=

 β1R1 β1R2

β2R1 β2R2

 .

Note that the total number of infected populations in patches 1 and 2 over the period

of the epidemic are respectively N1−S1∞ and N2(0)−S2∞, and can be described in

terms of the attack rate
(

1−S1∞/N1(0)
)

and
(

1−S2∞/N2(0)
)

as in [20].

3.5.3 Numerical simulation for two-patch model

Here, we present numerical simulations of the dimensional coupled PDE-ODE

model (3.45) and the reduced system of ODEs (3.46) for the case of two population

patches. Our goal is to study the spread of infection between and within these

populations. For the coupled PDE-ODE model, our patches are centered at xxx1 =

(0.5,0) and xxx2 = (−0.5,0) for patches 1 and 2, respectively.

The results in Figure (3.4) show the proportion of infected individuals for the

two patches in the case where the outbreak begins with no pathogen in the air

(P(0) = p(0) = 0), only one infected individual in patch 1 (I1(0) = 1/250), and

no infections in patch 2 (I2(0) = 0). The population patches are assumed to be

identical with parameters as given in Table (3.2).

Figures 3.4a and 3.4b show the result obtained from the reduced system of

ODEs (3.46) and the coupled PDE-ODE model (3.45) respectively, for different

diffusion rates.

Similar to the results for a single population patch, epidemic take-off is de-

layed, and epidemic size decreases as the diffusion rate increases. When the dif-

fusion rate is small, there is a delay in the epidemic take-off time in patch 2, and

this delay decreases as the diffusion rate increases. The observed delays are due
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to the time it takes the pathogens shed in patch 1 to diffuse to patch 2, since there

are no pathogens in the air, and no infections in patch 2 at the beginning of the

epidemic. As the diffusion rate increases, the time it takes the pathogens to dif-

fuse from patch 1 to patch 2 decreases, thereby decreasing the delay in epidemic

take-off in the second population. In the limit, where the diffusion rate becomes

asymptotically large, the epidemics starts at approximately the same time in the

two population patches for both models. Observe that the delay in epidemic take-

off time in the second population is more obvious in the results from the coupled

PDE-ODE model in Figure 3.4b than those of the reduced system of ODEs in

Figure 3.4a. This is because the system of ODEs is valid in the limit where the

diffusion rate of the pathogens D = O(ν−1), where ν = −1/ log(ε) with ε � 1.

In this limit, the pathogens are already diffusing fast enough to reduce the time it

takes them to travel from patch 1 to patch 2. This reduces the delay in take-off time

of the epidemic in patch 2. As D,D0 → ∞, the system becomes well-mixed, and

the predictions for the two model agree (D = D0 = 300).

Table 3.2: Parameter descriptions and values for the Two-patch model.

Parameter Description Patch 1, 2 values
µ (β ) dimensional (dimensionless) ef-

fective contact rate
0.3, 1.2 [13]

(
computed using (3.8)

)
r (σ) dimensional (dimensionless)

pathogen shedding rate
0.1, 1 [178]

(
computed using (3.8)

)
α (φ) dimensional (dimensionless) re-

moved rate for infected individ-
uals

1.87 [178]
(
computed using (3.8)

)
N1,N2 total population 300, 250
δ dimensionless decay rate of

pathogens
0.25

pc typical value for density of
pathogens

0.01

ε radius of the population patch 0.02
|Ω| area of the domain (unit disk) π

When there is a pathogen at the beginning of the outbreak (P(0) = p(0) = 1),

with only one infected individual in patch 1 (I1(0) = 1/250) and no infectives in

patch 2 (I2(0) = 0), epidemics starts in the two patches at approximately the same
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time for both models, irrespective of the diffusion rate of pathogens. This occurs

simply because there are pathogens in the air close to the second patch at time

t = 0, which cause infections to spread into the population immediately. These

results are shown in Figure 3.5. The parameters and initial conditions used are the

same as those used for the results in Figure 3.4 except for the initial density of

pathogen p(0) = P(0) = 1.
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(a) Simulation of the reduced system of
ODE (3.46)
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(b) Simulation of the coupled PDE-ODE
(3.45)

Figure 3.4: The dynamics of proportion of infected individuals I(t) using dif-
ferent diffusion rates, and all other parameters as in Table 3.1. (a)
shows the results for patches 1 and 2 obtained from the reduced ODE
(3.46) with initial conditions
(S1(0), I1(0),R1(0)) = (249/250,1/250,0), (S2(0), I2(0),R2(0)) =
(250/250,0,0) and p(0) = 0, and (b) shows similar results obtained
with the coupled PDE-ODE model (3.45) for the same initial conditions
in the patches as the ODEs and P(0) = 0 for the diffusing pathogens. In
both plots, the solid lines represents patch 1, while the dashed lines are
for patch 2

For a scenario with two distinct patches where the transmission of infections

and shedding of pathogens are done at different rates (a more realistic scenario), the

reduced system of ODEs (3.46) predicts slightly different results from the coupled

PDE-ODE models (3.45). These results are shown in Figure 3.6. The dimensional

transmission and shedding rates in patch 1 are µ1 = 0.3 and r1 = 0.1, respectively,

while in patch 2 are µ2 = 1.2 and r2 = 1 respectively (their dimensionless equiv-
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alents can be computed with (3.8)). Figures 3.6a and 3.6b show the proportion of

infected individuals in patches 1 and 2, respectively, obtained using the reduced

system of ODEs (3.46) with different values of D0, while Figures 3.6c and 3.6d

show similar results for the coupled PDE-ODE model (3.45). We observe from

these figures that even though there are no infections in patch 2 when the outbreak

begins, there are still more infections occurring in the patch 2 than in patch 1. This

occurs simply because patch 2 has a higher shedding and transmission rate. Higher

shedding and transmission rates imply more pathogens are shed and transmitted

faster in patch 2 than in patch 1.
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(a) Simulation of the reduced system of
ODE (3.46)
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(b) Simulation of the coupled PDE-ODE
(3.45)

Figure 3.5: The dynamics of infected I(t) using different diffusion rates of
pathogen, and all other parameters as in Table 3.1. (a) shows the results
obtained for patches 1 and 2 from the reduced system of ODEs (3.46)
with initial conditions (S1(0), I1(0),R1(0)) = (249/250,1/300,0),
(S2(0), I2(0),R2(0)) = (250/250,0,0), and p(0) = 1, while (b) shows
similar results obtained from the coupled PDE-ODE model (3.45) with
the same initial conditions for the ODEs in the patches and P(0) = 1
for the diffusing patheogens. In both plots, the solid lines represent of
patch 1, while the dashed lines are for patch2

When the diffusion rate is small or asymptotically large, the estimates from

the two models agree qualitatively. However, this is not the case for intermediate

diffusion rates. For these rates, the coupled PDE-ODE model shows no signifi-

cant difference in the epidemic take-off times in patch 1 for different values of D,
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although, the maximum number of proportion of infectives at a given time is differ-

ent (see the results for D = 0.5 and D = 10 in Figure 3.6c). This is due to the fact

that the transmission and shedding of pathogens are done at higher rates in patch 2

relative to patch 1.
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(a) Patch 1 for ODE model
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(b) Patch 2 for ODE model
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(c) Patch 1 for coupled PDE-ODE model,
p =0.1
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(d) Patch 2 for coupled PDE-ODE model,
p=0.1

Figure 3.6: The dynamics of infected I(t) using different diffusion rates, and
all other parameters as in Table 3.2. (a) and (b) show the results ob-
tained from the reduced system of ODEs (3.46) for patches 1 and 2, with
initial conditions (S1(0), I1(0),R1(0)) = (299/300,1/300,0),
(S2(0), I2(0),R2(0)) = (250/250,0,0), and p(0) = 1, while (c) and (d)
show similar results obtained by solving the coupled PDE-ODE model
(3.45) with the same initial conditions for the ODEs in the patches and
P(0) = 1 for the diffusing patheogens
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The pathogens shed in patch 2 diffuse to patch 1, thereby causing the epidemic

in patch 1 to occur earlier than one would have expected if the populations were

identical or the patches are farther away from each other. As the distance between

the two patches increases, the effect of the pathogens shed in patch 2 on the popula-

tion in patch 1 decreases. This qualitative effect is discussed in detail in Section 3.6,

where we study the effect of patch locations on the spread of infections.

3.6 Effect of patch location on the spread of infection
So far, we have studied the effect of the diffusion rate of pathogens on the spread of

infections within and between populations, and we have not considered the effect

of the location of the patches. In this section, we study the effect of patch location

on the dynamics of infections by analyzing the two-term (extended model) reduced

system of ODEs, as given in (3.31), which involves the Neumann Green’s matrix

characterizing the spatial interaction between patches. This extended ODE system

is then used to compute the basic reproduction number and the final size relation,

which now depends on the location of the patches. In addition, we present some

numerical simulations for two patches equally-placed on a ring of radius of radius

r, with 0 < r < 1, concentric within a unit disk, and we study how the proportion of

infected individuals changes as the distance between the patch locations is varied.

3.6.1 Effect of patch location on the basic reproduction number

In our analysis below we assume that our domain is a unit disk and that the patches

are equally-placed on ring of radius r, with 0 < r < 1, which is concentric within

the disk. Here, we derive an expression for the basic reproduction number using

(3.31), while following the analytical framework used in Section (3.5). From the

reduced system of ODEs (3.31), we construct our infectious classes for m patches

as

dI j

dt
= β jS j

(
P0(t)+

σ j I j

2πD0

)
+

ν

D0
β jS jΨ j−φ jI j, j = 1, . . . ,m,

d p
dt

=−p+
1
|Ω|

m

∑
j=1

σ j I j.
(3.63)
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Here, Ψ j = (G Φ) j is the jth entry of the vector G Φ, with Φ = (σ1I1, . . .σmIm)
T ,

and G is the Neumann Green’s matrix define in (3.32). The resulting ODE system

is an (m+ 1) dimensional system of equations for the infected classes I1, . . . , Im,

and the pathogens p. At the disease free equilibrium, we construct the Jacobian

matrix F for the new infections as

F =

(
∂Fi

∂x j

)
i, j
=



β1N1(0)
D0

(
σ1

2π
+ν

∂Ψ1

∂ I1

)
νβ2N2(0)

D0

∂Ψ1

∂ I2
. . .

νβmNm(0)
D0

∂Ψ1

∂ Im
β1N1(0)

νβ1N1(0)
D0

∂Ψ2

∂ I1

β2N2(0)
D0

(
σ2

2π
+ν

∂Ψ2

∂ I2

)
. . .

νβmNm(0)
D0

∂Ψ2

∂ Im
β2N2(0)

...
...

. . .
...

...

νβ1N1(0)
D0

∂Ψm

∂ I1

νβ2N2(0)
D0

∂Ψm

∂ I2
. . .

βmNm(0)
D0

(
σm

2π
+ν

∂Ψm

∂ Im

)
βmN0

m

0 0 0 0 0


,

(3.64)

where the functions F j ≡ I′j for j = 1, . . . ,m, and Fm+1 ≡ p′ are as given in (3.63),

x j ≡ I j for j = 1, . . . ,m, and xm+1 ≡ p. Similarly, from (3.63), we construct the

Jacobian matrix V for the transfer of infections between compartments, evaluated

at the disease free equilibrium point as

V =

(
∂Vi

∂x j

)
i, j

=



φ1 0 0 . . . 0

0 φ2 0 . . . 0
...

...
. . .

... 0

0 0 0 . . . φm

− σ1

|Ω|
− σ2

|Ω|
. . . − σm

|Ω|
1


. (3.65)
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For the case of two population patches, the Jacobian matrices (3.64) and (3.65)

reduce to

F =


β1N1(0)

D0

(
σ1

2π
+ν

∂Ψ1

∂ I1

)
νβ2N2(0)

D0

∂Ψ1

∂ I2
β1N1(0)

νβ1N1(0)
D0

∂Ψ2

∂ I1

β2N2(0)
D0

(
σ2

2π
+ν

∂Ψ2

∂ I2

)
β2N2(0)

0 0 0

 and V =


φ1 0 0

0 φ2 0

− σ1

|Ω|
− σ2

|Ω|
1

 .

Upon calculating the inverse of the matrix V , and then multiplying by the matrix F

from the left, we construct our next generational matrix as

FV−1 =


β1N1(0)

φ1D0

(
σ1

2π
+

σ1D0

|Ω|
+ν

∂Ψ1

∂ I1

)
νβ2N2(0)

φ2D0

∂Ψ1

∂ I2
+

σ2β1N1(0)
φ2|Ω|

β1N1(0)

νβ1N1(0)
φ1D0

∂Ψ2

∂ I1
+

σ1β2N2(0)
φ1|Ω|

β2N2(0)
φ2D0

(
σ2

2π
+

σ2D0

|Ω|
+ν

∂Ψ2

∂ I2

)
β2N2(0)

0 0 0

 .

(3.66)

The dominant eigenvalue of the next generation matrix is our desired basic repro-

duction number. From a computation of the eigenvalues of (3.66), we derive a two

term asymptotic expansion for the basic reproduction number given by

R = R0 +νR1 +O(ν2), (3.67)

where R0 ≡ R0 is the leading-order basic reproduction number given in (3.52),

and the O(ν) term R1 is given by

R1 =
1

φ1φ2D0

N
2
+

4πφ1φ2D0�+(|Ω|+2πD0)H♠√
(|Ω|2 +4π|Ω|D0)♠2 +4π2D2

0♣2

 , (3.68)

where the quantities N, H and �, are defined by

N≡ β1N1(0)φ2
∂Ψ1

∂ I1
+β2N2(0)φ1

∂Ψ2

∂ I2
, H≡ β1N1(0)φ2

∂Ψ1

∂ I1
−β2N2(0)φ1

∂Ψ2

∂ I2
,

�≡(β1N1(0))2
σ2

∂Ψ2

∂ I1
+(β2N2(0))2

σ1
∂Ψ1

∂ I2
.

(3.69)
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Here, the variables ♠ and ♣ are as defined in (3.52), and Ψ j for j = 1,2 are as

defined in (3.31). Since there are only two patches, we can use (3.31) to construct

Ψ1 and Ψ2 explicitly as

Ψ1 = σ1I1R1 +σ2I2 G(xxx1;xxx2), and Ψ2 = σ1I1 G(xxx2;xxx1)+σ2I2R2,

where R j ≡R(xxx j) is the regular part of the Neumann Green’s function G(xxxi;xxx j) at

xxx = xxx j. Upon differentiating Ψ1 and Ψ2, with respect to I1 and I2, we obtain

∂Ψ1

∂ I1
= σ1R1,

∂Ψ1

∂ I2
= σ2 G(xxx1;xxx2),

∂Ψ2

∂ I1
= σ1 G(xxx2;xxx1), and

∂Ψ2

∂ I2
= σ2R2.

(3.70)

To evaluate these derivatives explicitly, as are needed in (3.69), we must determine

the Neumann Green’s function G(xxxi;xxx j) and its regular part R j as obtained by

solving (3.25) in the unit disk. These results are well-known (see equation (4.3) of

[105]), and we have

G(xxx;ξξξ ) =− 1
2π

log |xxx−ξξξ |− 1
4π

log
(
|xxx|2|ξξξ |2 +1−2xxx ·ξξξ

)
+

(|xxx|2 + |ξξξ |2)
4π

− 3
8π

,

R(ξξξ ) =− 1
2π

log
(
1−|ξξξ |2

)
+
|ξξξ |2

2π
− 3

8π
.

(3.71)

Since the patches are symmetrically located on a ring of radius r, with 0 <

r < 1, we can take their centres as xxx1 = (r,0) and xxx2 = (−r,0) for patch 1 and 2,

respectively, so that, |xxx1|= |xxx2|= r. Substituting xxx1 and xxx2 into (3.71), we conclude

that

G(xxx1;xxx2) = G(xxx2;xxx1) =
1

2π

(
− log(2r)− log

(
1+ r2)+ r2− 3

4

)
,

R(xxx1) =R(xxx2) =
1

2π

(
− log

(
1− r2)+ r2− 3

4

)
.

(3.72)
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Upon substituting (3.72) into (3.70), and then using (3.70) in (3.69), we obtain

N≡ ♣
2π

(
− log

(
1− r2)+ r2− 3

4

)
, H≡ ♠

2π

(
− log

(
1− r2)+ r2− 3

4

)
,

�≡ σ1σ2

2π

(
− log(2r)− log

(
1+ r2)+ r2− 3

4

)[
(β1N1(0))2 +(β2N2(0))2

]
,

(3.73)

where ♣ and ♠ are given by

♣= β1N1(0)φ2σ1 +β2N2(0)φ1σ2 and ♠= β1N1(0)φ2σ1−β2N2(0)φ1σ2.

(3.74)

Therefore, the O(ν) term in the basic reproduction number (3.67) can be computed

by substituting (3.74) and (3.73) into (3.68). By using the leading-order basic

reproduction number R0 given in (3.52) together with R1 in (3.67), we arrive at

an explicit two term asymptotic expansion for the basic reproduction R which

depends on the location of the patches. Note that the dependence on the location

comes into R through only the O(ν) term, which involves the Green’s function.

3.6.2 Effect of patch location on the final size relation

In the previous subsection, for a special two-patch configuration where the patches

are equally spaced on a ring concentric within the disk, we derived a two-term

asymptotic formula for the basic reproduction number. In this subsection, we study

the effect of patch location on the final size of the epidemic.

From (3.31), a two term asymptotic expansion of the reduced system of ODEs

for the case of two population patches is given by

d p
dt

=−p+
1
|Ω|

(σ1 I1 +σ2 I2), (3.75a)
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Patch 1 Patch 2

dS1

dt
=−β1S1 p−β1S1

(
σ1 I1

2πD0

)
− ν

D0
β1S1Ψ1

dS2

dt
=−β2S2 p−β2S2

(
σ2 I2

2πD0

)
− ν

D0
β2S2Ψ2,

dI1

dt
= β1S1 p+β1S1

(
σ1 I1

2πD0

)
+

ν

D0
β1S1Ψ1−φ1I1,

dI2

dt
= β2S2 p+β2S2

(
σ2 I2

2πD0

)
+

ν

D0
β2S2Ψ2−φ2I2,

(3.75b)

dR1

dt
= φ1I1,

dR2

dt
= φ2I2

where p(t) is the leading-order density of pathogens in the air, S j, I j,R j are the

susceptible, infected, and removed individuals, respectively, in the jth patch for j =

1,2. Here, Ψ1 = σ1I1R1 +σ2I2 G(xxx1;xxx2) and Ψ2 = σ1I1 G(xxx2;xxx1)+σ2I2R2, and

G(xxx1;xxx2) = G(xxx1;xxx1) is the Neumann Green’s function and R1 =R2 is it regular

part at the points xxx1 and xxx2. This system of ODEs depends on the locations of the

patches, and the dependence arises from the O(ν) terms.

Following the same approach as in subsection (3.5.2), we integrate the S1 and

S2 equations in (3.75b) to obtain

log
S10

S1∞

= β1

∫
∞

0
p(t) dt +

β1σ1

2πD0

∫
∞

0
I1(t) dt +

β1ν

D0

∫
∞

0
Ψ1 dt. (3.76)

and

log
S20

S2∞

= β2

∫
∞

0
p(t) dt +

β2σ2

2πD0

∫
∞

0
I2(t) dt +

β2ν

D0

∫
∞

0
Ψ2 dt. (3.77)

The integral of Ψ1 and Ψ2 are given by

∫
∞

0
Ψ1 dt = σ1R1

∫
∞

0
I1(t) dt +σ2 G(xxx1;xxx2)

∫
∞

0
I2(t) dt

and ∫
∞

0
Ψ2 dt = σ1 G(xxx2;xxx1)

∫
∞

0
I1(t) dt +σ2R2

∫
∞

0
I2(t) dt

Similarly, the integral of (3.75a) is given by (3.59). Upon substituting (3.59) into

(3.76) and (3.77), and assuming that the outbreak begins with no epidemic (p0 = 0),
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the final size relation is given by

log
S10

S1∞

=
β1σ1N1(0)

φ1|Ω|

{
1− S1(∞)

N1(0)

}
+

β1σ2N2(0)
φ2|Ω|

{
1− S2(∞)

N2(0)

}
+

β1σ1N1(0)
2πφ1D0

{
1− S1(∞)

N1(0)

}

+
β1 ν

D0

[
σ1R1N1(0)

φ1

{
1− S1(∞)

N1(0)

}
+

σ2G(xxx1;xxx2)N2(0)
φ2

{
1− S2(∞)

N2(0)

}]
,

and

log
S20

S2∞

=
β2σ1N1(0)

φ1|Ω|

{
1− S1(∞)

N1(0)

}
+

β2σ2N2(0)
φ2|Ω|

{
1− S2(∞)

N2(0)

}
+

β2σ2N2(0)
2πφ2D0

{
1− S2(∞)

N2(0)

}

+
β2 ν

D0

[
σ2R2N2(0)

φ2

{
1− S2(∞)

N2(0)

}
+

σ1G(xxx2;xxx1)N1(0)
φ1

{
1− S1(∞)

N1(0)

}]
,

which can be written as

log
S10

S1∞

= β1

(
R1

{
1− S1(∞)

N1(0)

}
+R2

{
1− S2(∞)

N2(0)

}
+

σ1N1(0)
2πφ1D0

{
1− S1(∞)

N1(0)

}
+

ν

D0

[
σ1R1N1(0)

φ1

{
1− S1(∞)

N1(0)

}
+

σ2G(xxx1;xxx2)N2(0)
φ2

{
1− S2(∞)

N2(0)

}])
,

(3.78)

log
S20

S2∞

= β2

(
R1

{
1− S1(∞)

N1(0)

}
+R2

{
1− S2(∞)

N2(0)

}
+

σ2N2(0)
2πφ2D0

{
1− S2(∞)

N2(0)

}
+

ν

D0

[
σ2R2N2(0)

φ2

{
1− S2(∞)

N2(0)

}
+

σ1G(xxx2;xxx1)N1(0)
φ1

{
1− S1(∞)

N1(0)

}])
,

where R1 = σ1N1(0)/(φ1|Ω|) and R2 = σ2N2(0)/(φ2|Ω|). Upon writing (3.78) in

matrix form, we have
log

S10

S1∞

log
S20

S2∞

=

(
A+B+

ν

D0
C
)

1− S1(∞)

N1(0)

1− S2(∞)

N2(0)

 , (3.79)
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where the matrices A, B, and C are defined as follows

A=


β1R1 β1R2

β2R1 β2R2

 , B=



σ1β1N1(0)
2πφ1D0

σ2β2N2(0)
2πφ2D0


and

C=



σ1β1R1N1(0)
φ1

σ2β1G(xxx1;xxx2)N2(0)
φ2

σ1β2G(xxx2;xxx1)N1(0)
φ1

σ2β2R2N2(0)
φ2

.


In this way, we have derived a two term expansion of the final size relation that

depends on the location of the patches. Similar to the basic reproduction number

(3.67), the dependence on the location comes into this result at the O(ν) term

through the Green’s function and its regular part. The explanation of the final size

follows from subsection (3.5.2).

3.6.3 Numerical simulation for two patch model with effect of patch
location

Next, we present some surface plots of the basic reproduction number R in (3.67)

and its O(ν) correction term R1, defined in (3.68) with respect to the location

of the patches. Our plots are for different values of the dimensionless transmission

rates β1 and β2 for patches 1 and 2, respectively. In addition, we show some numer-

ical simulations of the reduced system of ODEs (3.75) and the coupled PDE-ODE

model (3.45) for two patches. The system of ODEs is solved using the MATLAB

numerical ODE solver ODE45 ode45 [158], while the PDE is solved using Flex-

PDE [161]. Our goal is to numerically study the effect of patch location on the

spread of infections and the final epidemic size.

Figure (3.7) shows the surface plot of the O(ν) term of the basic reproduction

number, R1 (3.68) (first row), and the basic reproduction number R (3.67) (second
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row) with respect to the location of the patches and the transmission rates of the

two patches. For each of the results in this figure, the transmission rate β1 (vertical

axis) is plotted against the distance of the patches from the centre of the unit disk

(horizontal axis). A fixed value of β2 is used for each column, with the value

increasing from left to right (β2 = 0.1, 0.4, 0.8, 1.2). Since r is the distance from

the centre of each patch to the centre of the unit disk, for each value of r, the

distance between the centre of the two patches is 2r. The O(ν) term R1 shows

how the leading-order basic reproduction number R0 ≡R0 (3.53) is perturbed by

the locations of the patches. Note that we have omitted the surface plots of R0

from this figure because it is independent on the location of the patches.

(a) β2 = 0.1 (b) β2 = 0.4 (c) β2 = 0.8 (d) β2 = 1.2

(e) β2 = 0.1 (f) β2 = 0.4 (g) β2 = 0.8 (h) β2 = 1.2

Figure 3.7: Surface plots of the basic reproduction number R (3.67) (sec-
ond row) and its O(ν) term R1 (3.68) (first row) with respect to the
distance of the patches from the centre of a unit disk r, for different
values of the transmission rates β1 and β2 for patches 1 and 2, respec-
tively. The parameters used are given in Table (3.2) except for pc = 450,
with diffusion rate D0 = 5. For each of the graphs, β1 (vertical axis) is
plotted against r (horizontal axis). The value of β2 changes for each
column from left to right in increasing order. The term R1 show how
the leading-order basic reproduction number R0 is perturbed by the
location of the patches
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The first row of Figure (3.7) show that R1 may increase or decrease R depend-

ing on the location of the patches and the transmission rates. When the transmis-

sion rate in patch 2, β2 = 0.1 (Figures 3.7e), we observe that R1 has high values

when r is small and β1 is high. In this case, where the two patches are close to

each other, the infection is transmitted at a high rate in patch 1. As the distance

between the two patches increases (r increases), the value of R1 decreases for all

values of β1 and it attains negative values for some values of β1. For this range, R1

decreases the leading-order basic reproduction number R0. These figures show

that for all values of β2, there are more infections (R, &R1 high) when the two

patches are closer to each other (r small) as compared to when they are farther

apart (r large). In addition, as the transmission rate β2 increases (from left to right

in Figure 3.7), the surface plot of R1 in the rβ1 parameter space changes, and the

effect of the reflecting boundary of the unit disk becomes apparent. For each value

of β2, the corresponding effect of R1 on the overall basic reproduction number R

is shown in the second row of Figure 3.7. When β2 = 1.2, we observe that higher

values of R1 occur for smaller values of r (when the two patches are close to each

other) and for values of r close to 1 (when the patches are close to the boundary

of the disk). When the patches become closer to the reflecting boundary of the

unit disk, they see a reflection of themselves through the boundary. This leads to

a feedback-effect whereby the reflection of pathogen from the boundary returns

back to the patches. This boundary effect, as evident in the surface plot of the basic

reproduction number R in Figure 3.7h, leads to a higher level of infections.

The numerical simulations of the coupled PDE-ODE model (3.45) and the re-

duced system of ODEs (3.75) for two patches in the unit disk are shown in Fig-

ure (3.8). For a fixed diffusion rate of pathogens, these two models are solved

numerically for different locations of the patches. The location of each patch is

given in terms of the parameter r, which measures distance between the centre of

the patch and the centre of the unit disk. Both patches have the same parameters

except for the transmission rates of infection, and the shedding rate of pathogens

(see Table 3.2). In addition, both patches have one infective at the beginning of the

outbreak, and the density of pathogens in the air is fixed at p(0) = P(0) = 1.

Figures (3.8a) and (3.8b) show the results obtained from the reduced system of

ODEs (3.75) for patches 1 and 2, respectively, while (3.8c) and (3.8d) show similar
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results for the coupled PDE-ODE model (3.45). For each radius r, the epidemic in

patch 2 (right column of Figure (3.8)) is more than that in patch 1 (see Table 3.2

for the parameters).
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(a) ODE model: Patch 1
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(b) ODE model: Patch 2
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(c) Coupled PDE-ODE model: Patch 1
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(d) Coupled PDE-ODE model: Patch 2

Figure 3.8: The dynamics of infected I(t) for different ring radius r. (a)
and (b) show the results obtained from the reduced ODE (3.75)
for patches 1 and 2, with initial conditions (S1(0), I1(0),R1(0)) =
(299/300,1/300,0), (S2(0), I2(0),R2(0)) = (250/250,0,0), and
p(0) = 1, while (c) and (d) show similar results obtained from the
coupled PDE-ODE model (3.45) with the same initial conditions for
the ODEs in the patches and P(0) = 1 for the diffusing patheogens.
The diffusion rate of pathogens is fixed at D0 = D = 5, while all other
parameters are as given Table (3.2)

As the radius of the ring (on which the patches are located) increases, that is,
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as the distance between the centres of the two patches increases, the size of the

epidemic in patch 1 decreases, while there seems to be no significant difference in

the size of the epidemic in patch 2. Since the shedding rate of pathogens in patch

2 is larger than that in patch 1, the density of pathogens in the air around patch 2 at

each point in time is higher than those around patch 1. As a result, when the two

patches are closer to each other, the pathogens shed from patch 2 can easily diffuse

to patch 1, and lead to more infections in the population. This effect depends on

the proximity of the two patches, and it weakens as the patches move farther away

from each other. This explains why infections in patch 1 decrease as the distance

in the two patches increases. This observation is more prominent in the results

obtained from the PDE-ODE model than in the system of ODEs. This is due to the

fact that the ODEs system is valid in the limit D� O(ν−1), with ν =−1/ log(ε)

and ε � 1. In this regime where the pathogens are diffusing fast, spatial gradients

in the pathogen density are smoothed out, and as a result the proximity of patch 2

to patch 1 seems to have no significant effect on the epidemic in patch 2.

However, as both patches move closer to the boundary of the domain, they

receive signals of pathogens that is of equal strength as their shedding rates from

the boundary (since the boundary is reflecting). In this way, there is an increasing

infection in both patches as they move closer to the boundary. This observation is

noticeable in the patch 2 dynamics shown in Figures (3.8b) and (3.8d), due to its

high shedding rate. Specifically, it is more apparent in Figure (3.8b) than in (3.8d)

because the system of ODEs used to obtain (3.8b) are only valid in the limit where

the pathogens are diffusing very fast. We observe from these simulations that the

estimates and predictions of both models qualitatively agree, even though the ODE

model is only valid in the limit D� O(ν−1).

3.7 Discussion
We developed and analyzed a coupled PDE-ODE model for studying the spread

of airborne diseases with indirect transmission. This model improves previously

developed epidemic models for indirect transmission [23, 50] by incorporating the

movement of pathogens, which is modelled with linear diffusion. Human popula-

tions are modelled as circular patches, that are small relative to the length scale of
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the domain, where each patch has an SIR dynamics for the population of suscep-

tible, infected, and removed individuals respectively. The diffusion of pathogens

is restricted to the region outside the patches, while human movement is not con-

sidered. In our model, a susceptible individual becomes infected only by coming

in contact with the pathogens (indirect transmission), and the spread of infection

within a patch depends on the density of pathogens around the patch. In the limit

D = O(ν−1) with ν = −1/ log(ε) and ε � 1 (when the pathogens are diffusing

fast), the coupled PDE-ODE model is reduced to a nonlinear system of ODEs.

This system of ODEs was then analyzed and used to compute the basic reproduc-

tion number and the final size relation. Furthermore, the full PDE-ODE model

and the reduced system of ODEs were solved numerically, and their results agreed

qualitatively.

The numerical simulations for both the coupled model and the reduced system

of ODEs predicted a decrease in the epidemic as the diffusion rate of pathogens

increases, and the two models agreed in the limit D,D0→ ∞. When pathogens are

diffusing slowly, it takes longer for them to diffuse away from the patches after

shedding, and as a result, more infections occur. On the other hand, when the

diffusion rate is high, pathogens diffuse away from the patches immediately after

shedding, which thereby reduces infections. When there are two patches, where

infection starts from only one of the patches with the other patch being disease

free, and with no pathogens in the air, our models predict a delay in epidemic take-

off time in the second population when pathogens diffuse slowly. This occurs as a

result of the time required for pathogens to diffuse from the infected patch to the

other patch. As the diffusion rate increases, the delay in epidemic take-off time

decreases. The results of our model seems consistent with other previous results

[41, 91, 104, 115, 121, 176, 179] where human populations were modeled with a

PDE approach. Furthermore, we studied the effect of patch location on the spread

of infection. Our models predicted more infections when the two patches are close

to each other, and less infections when the patches are farther apart.

In our model, we have assumed that the amount of pathogens in a patch can

be accounted for by knowing the density of pathogens around the patch, and in-

dividuals do not move between patches. This assumption may not be true for all

real-life scenarios as the amount of pathogens in a patch may be different from the
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density around the patch. Also, people may move between cities and towns. Our

model can be extended to incorporate human mobility between patches. This can

be achieved by allowing both humans and pathogens to diffuse in the bulk region,

or by using the approach of meta population dynamics, in which individuals are

transferred from one patch to another without modelling their movement explicitly,

or by using Lagrangian method to keep track of individuals’ place of residence at

different time. In addition to this, we can allow for infections to be transmitted in

the bulk region when a susceptible individual comes in contact with the diffusing

pathogens. This would lead to a reaction-diffusion type model in the bulk region.

Furthermore, similar models (indirect and/or direct transmission model) can be de-

veloped for other diseases such as malaria, where the mosquitoes diffuse in the bulk

region and human populations are modelled with patches. Mosquito reservoirs can

also be incorporated into the modelling framework, where an ODE system is used

to describe mosquito life cycle from egg to adult.

Notwithstanding all of these limitations and assumptions, we believe that our

proposed novel approach to modelling airborne diseases, where the movement of

pathogens is explicitly modelled with linear diffusion, will significantly contribute

to knowledge and may be seen as a better approach. Our analysis and full numerical

computations suggest that disease dynamics can be adequately studied with our

more tractable reduced ODEs model, instead of the more intricate coupled model.

The presence of parameter D0 in the reduced ODE system makes it easier to study

the effect of diffusion on diseases transmission. Furthermore, the extended system

of ODEs, which includes weak spatial effects through a Green’s interaction matrix,

allowed us to study the effect of patch location on disease dynamics. Including

this spatial information encoded in the Green’s matrix allows for characterizing

the effect of the spatial distribution of patches on disease transmission between

spatially segregated populations.

101



Chapter 4

A co-interaction model of HIV
and syphilis infection among gay,
bisexual and other men who have
sex with men

4.1 Synopsis
We developed a mathematical model to study the interaction of HIV and syphilis

infection among gay, bisexual and other men who have sex with men (gbMSM). We

qualitatively analysed the model and established necessary conditions under which

disease-free and endemic equilibria are asymptotically stable. We gave analytical

expressions for the reproduction number, and showed that whenever the reproduc-

tion numbers of submodels and the co-interaction model are less than unity, the

epidemics die out, while epidemics persist when they greater than unity. We pre-

sented numerical simulations of the full model and showed qualitative changes of

the dynamics of the full model to changes in the transmission rates. Our numerical

simulations using a set of reasonable parameter values showed that: (a) each of the

diseases die out or co-exist whenever their respective reproduction number is less

than or exceeds unity. (b) HIV infection impacts syphilis prevalence negatively
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and vice versa. (c) one possibility of lowering the co-infection of HIV and syphilis

among gbMSM is to increase both testing and treatment rates for syphilis and HIV

infection, and decrease the rate at which HIV infected individuals go off treatment.

4.2 Introduction
HIV is known to be a sexually transmitted and blood-borne infection with a highly

variable disease progression in humans [134]. People infected with HIV experi-

ence immune supression as a result of continuous destruction of the CD4+T lym-

phocytes, which makes immunosupressed individuals at risk of acquiring other

sexually transmitted infections (such as syphilis, gonorrhea [16, 44, 134]). At the

end of 2017, approximately 37 million people were living with HIV throughout the

world, and over 900,000 reported deaths were attributed to HIV infection [142]. In

2016, gay, bisexual and other men who have sex with men (gbMSM) accounted for

about half of the new HIV infections in Canada [138]. Similarly, gbMSM currently

accounts for most new and prevalent cases of HIV in Vancouver [69] and San Fran-

cisco [39]. There were about 3320 gbMSM who were newly diagnosed with HIV

in the UK in 2015 [51]. The increase of antiretroviral therapy (ART) coverage to

reduce and prevent HIV transmission in British Columbia (BC), Canada, made us

observe a positive impact of ART to prevent HIV transmission and decrease HIV

diagnosis per year [78].

Syphilis is known to be an infection caused by the Treponema pallidum bac-

teria [44, 137], and progresses from primary → secondary → latent → tertiary

stage if left untreated [137]. Infectious syphilis is more frequent in males with an

increased rate among gbMSM population in BC and Canada [70, 137]. In 2017,

5% or more of gbMSM in 22 of 34 reporting countries were infected with syphilis

[143]. From 2011 to 2015, the rate of reported cases of syphilis per 100,000 pop-

ulation in the United States rose by 58% (from 14.8 to 23.4), with the highest

rate observed in San Francisco, where the rates rose by 77% (from 84.3 to 149.6)

[39]. In 2016, gbMSM accounted for about 80.6% of male infectious syphilis in

the United States [66]. Similarly, in BC, the rate of reported cases of infectious

syphilis per 100,000 population in 2016, rose to 16.0 (759 cases) when compared

to 4.2 (193 cases) in 2011 [70]. The highest rate in BC was observed in Vancou-
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ver and surrounding regions, where the rates rose from 19.6 (131 cases) in 2011

to 63.7 (428 cases) in 2016 [70]. In 2016, gbMSM accounted for about 63.5% of

infectious syphilis in Vancouver [70].

Recent increases in sexually transmitted infections (STIs), especially among

gbMSM, brought up about the importance for characterising the co-interaction of

HIV and syphilis. Increases in the risk of HIV and STI transmission have been

attributed to sexual behaviours over the last decade [44, 51, 66]. It is estimated

that about 43% of gbMSM in BC with syphilis diagnoses and known HIV status in

2016, were HIV positive [70]. Individuals co-infected with these two diseases are

more likely to transmit HIV to their sexual partners, and as well likely to progress

to serious disease stages [44, 70]. gbMSM living with HIV are about 2 times more

likely to be infected with syphilis compared to those that are HIV negative [66].

This chapter considers a single class of infectious syphilis since major stages,

such as primary, secondary, early latent and infectious neurosyphilis, are generally

classified as infectious syphilis, and is of public health concern [137]. Many math-

ematical models have been previously used to assess dynamics of the co-infection

of HIV and other diseases, such as Hepatitis C virus, gonorrhea, tuberculosis and

syphilis [12, 24, 25, 34, 49, 129, 132, 154], but only Nwankwo et al. [132] used

a similar approach to study the dynamics of HIV and syphilis. The study differs

from [132] as we consider the gbMSM population in a setting where treatment

of both diseases is readily available. We make simplifying assumptions about the

natural history of both diseases and incorporate some epidemiological features of

the co-dynamics of HIV and syphilis. Using a set of parameter values from pub-

lished articles, our model aim to answer the following questions: What effect does

syphilis infection have on HIV infected population and vice versa? What is the

impact of change in transmission rate on both disease dynamics? Can we test and

treat mono-infected individuals more to reduce both diseases prevalence?

The chapter is organised as follows. We develop and describe the model in

Section 4.3, and analyse two sub-models in Sections 4.4 and 4.5. We present the

analysis of the full co-interaction model and some numerical simulations in Sec-

tions 4.6 and 4.7 respectively while Section 4.8 discusses and concludes the paper.
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4.3 Model formulation and description
The total gbMSM population at time t, denoted by N(t) is divided into 8 mutually

exclusive compartments stated in Table (4.1), so that

N(t) = S(t)+ IS(t)+UH(t)+AH(t)+TH(t)+USH(t)+ASH(t)+TSH(t). (4.1)

Table 4.1: Model variables and their descriptions

Variable Description
S Susceptibles
IS Individuals mono-infected with syphilis
UH Individuals mono-infected with HIV and unaware
AH Individuals mono-infected with HIV and aware
TH HIV infected individuals on treatment
USH Coinfected individuals unaware of HIV infection
ASH Coinfected individuals aware of HIV infection
TSH Coinfected individuals on HIV treatment

We assume that at time t, new individuals enter the population at a constant

rate Π. Individuals die at a constant natural mortality base rate µ . HIV infected

individuals (UH ,AH ,USH ,ASH) not on treatment have additional HIV induced death

rates dUH ,dAH ,dUSH ,dASH respectively. We assume no death from syphilis and that

HIV infected individuals on treatment do not transmit HIV infection [56, 149].

Diseases co-dynamics are complicated processes, but for simplicity, we assume

that both mono and coinfected individuals can either transmit HIV or syphilis but

not both at the same time. Susceptible individuals may acquire syphilis infection

when in contact with individuals in IS, USH , ASH and TSH compartments, at a rate

λS (the force of infection associated with syphilis infection), given by

λS = βS
(IS +φ1USH +φ2ASH +φ3TSH)

N
, (4.2)

where βS denotes the transmission rate for syphilis. Parameter βS is the probability

of syphilis transmission from one contact between individuals in S and in other

syphilis infected compartments (IS, USH , ASH , TSH), times the number of contacts

per year per individual. Modification parameters φ1, φ2 and φ3 respectively account
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for the relative infectiousness of syphilis infected individuals with undiagnosed

HIV infection (USH), coinfected with HIV and aware (ASH), and coinfected with

HIV and on HIV treatment (TSH), compared to individuals mono-infected with

syphilis. We assume that coinfected individuals are about two times as infectious as

mono-infected individuals [66]. Since it is believed that individuals infected with

syphilis recover with temporal immunity [151], we then assume that individuals

infected with syphilis recover after treatment and return to the susceptible class at

a rate σ1.

Susceptible individuals acquire HIV infection from those in the UH , AH , USH

and ASH compartments, at the rate λH (the force of infection associated with HIV

infection), given by

λH = βH
(UH +κ1AH +κ2USH +κ3ASH)

N
, (4.3)

where βH denotes the transmission rate for HIV. Parameter βH is the probability

of HIV transmission from one contact between individuals in S and in other HIV

infectious compartments (UH , AH , USH , ASH), times the number of contacts per

year per individual.
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Figure 4.1: Diagram of the HIV/Syphilis co-interaction model
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Modification parameters κ1, κ2 and κ3 respectively account for the relative

infectiousness of individuals monoinfected with HIV and aware (AH), coinfected

with HIV and unaware (USH), coinfected with HIV and aware (ASH), in comparison

with individuals mono-infected with HIV.

Susceptible individuals infected with HIV at rate λH enter the HIV unaware

class UH , where they progress to HIV aware class AH following testing at a rate

α1, and are then placed on treatment at a rate ρ2 to enter the class TH . Individuals

in the HIV infected and on treatment classes TH and TSH can go off treatment at

rates ν1 and ν2 respectively. Individuals mono-infected with HIV (UH ,AH ,TH)

are infected with syphilis at rates η1λS, η2λS, η3λS to enter classes USH ,ASH ,TSH

respectively, and modification parameters η1,η2,η3 > 1 account for higher risk of

syphilis acquisition for people living with HIV.

Individuals mono-infected with syphilis, IS are infected with HIV at a rate γλH

to enter the class USH , where the modification parameter γ > 1 due to higher risk of

HIV acquisition for people whose immune system are affected by syphilis infec-

tion. Coinfected individuals in the class ASH are placed on treatment at a rate ρ1 to

enter class TSH . Coinfected individuals in the classes USH ,ASH ,TSH are tested and

treated for syphilis at rates σ2, σ3, σ4 to move back into the classes UH ,AH ,TH ,

respectively. This model assumes uniform and homogeneous mixing population.

The model diagram presented in Figure 4.1 is described by the following system

of nonlinear differential equations.

108



dS
dt

= Π+σ1IS− (µ +λS +λH)S,

dIS

dt
= λSS− (µ +σ1 + γλH)IS,

dUH

dt
= λHS− (µ +dUH +α1 +η1λS)UH ,

dAH

dt
= α1UH +σ2USH +σ3ASH +ν1TH − (µ +dAH +η2λS +ρ2)AH ,

dTH

dt
= ρ2AH +σ4TSH − (µ +η3λS +ν1)TH , (4.4)

dUSH

dt
= γλHIS +η1λSUH − (µ +dUSH +σ2)USH ,

dASH

dt
= η2λSAH +ν2TSH − (µ +dASH +σ3 +ρ1)ASH ,

dTSH

dt
= ρ1ASH +η3λSTH − (µ +ν2 +σ4)TSH ,

We will analyse different diseases separately, and then jointly understand dif-

ferent components of the general model and as well adapt to different scenarios.

4.4 Syphilis sub-model
We have the model with syphilis only by setting UH = AH = TH = USH = ASH =

TSH = 0 in system (4.4), and this gives

dS
dt

= Π+σ1IS− (µ +λS)S,

dIS

dt
= λSS− (µ +σ1)IS, (4.5)

where λS = βS
IS

NS
, with total population given as NS(t) = S(t)+ IS(t).

The simple SIS model in (4.5) ignored syphilis-related death and was exten-

sively discussed in [151] using different stages of syphilis infection to understand

the transmission dynamics, and in [10] to track syphilis dynamics in men and

women. Hence, the dynamics of system (4.5) based on biological consideration

in the region ΞS =
{
(S, IS) ∈ R2

+ : NS ≤ Π

µ

}
, is easy to show as being positively
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invariant with respect to the model. We therefore consider model (4.5) to be epi-

demiologically and mathematically well posed with all variables and parameters

being positive for all time series as in [24, 25, 52]. Model (4.5) has a disease free

equilibrium given by E0S = (S0, I0S) =

(
Π

µ
, 0

)
.

The linear stability of E0S will be explained by the reproduction number ReS

derived using the method of next generation matrix in [52, 169]. The matrix F

showing the rate of appearance of new infections and matrix V showing the rate of

transfer of individuals in and out of the compartments are respectively

F = βS, and V = µ +σ1.

The only eigenvalue of the next generation matrix FV−1 gives the reproduction

number for syphilis from the model in (4.5) as:

ReS = ρ(FV−1) =
βS

(µ +σ1)
, (4.6)

where ρ denotes the spectral radius (the dominant eigenvalue) of FV−1.

ReS is the reproduction number for syphilis dynamics given by the product

of the transmission rate of syphilis infection βS and the rate that an infective pro-

gresses out of syphilis infectious class
1

(µ +σ1)
. The biological interpretation of

ReS is the number of syphilis infections produced by one syphilis infective dur-

ing the period of infectiousness when introduced in a totally syphilis susceptible

population in the presence of treatment.

We can establish the local stability of the disease free equilibrium (E0S) using

Lemma 4.4.1 which follows from [52] and Theorem 2 of [169].

Lemma 4.4.1. The DFE E0S of model (4.5) is locally asymtotically stable (LAS) if

ReS < 1 and unstable if ReS > 1.

The biological interpretation of ReS < 1 is that we can eliminate syphilis from

the population if the initial sizes of the subpopulation of syphilis sub-model are in

the attraction region E0S.

To ensure that elimination of the syphilis epidemic is independent of the initial

sizes of the sub-populations, we establish the global stability of the DFE E0S by
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claiming the result in Lemma 4.4.2.

Lemma 4.4.2. For any positive solutions (S(t), IS(t)) of model system (4.5), if

ReS < 1, then, the DFE E0S is a global attractor.

See Appendix A for the proof of Lemma 4.4.2.

4.4.1 Endemic equilibrium points

We can solve equation (4.5) in terms of the force of infection λS = βS
IS

N
to find

the conditions for the existence of an equilibrium (S∗, I∗) for which syphilis is

endemic in a population. By equating the right-hand side of equations (4.5) to zero

and solving for S∗ and I∗, we have

S∗ =
Π(µ +σ1)

µ(µ +σ1 +λ ∗S )
, (4.7)

I∗S =
λ ∗S S∗

(µ +σ1)
, (4.8)

with λ
∗
S = βS

I∗S
N∗

. From equation (4.8), we have

I∗S
S∗

=
λ ∗S

(µ +σ1)
=

1
(µ +σ1)

(
βS

I∗S
N∗

)
,

N∗

S∗
= ReS,

ReS = 1+
λ ∗S

(µ +σ1)
,

λ
∗
S =

(ReS−1)
Ω

,

where Ω denoting the mean infective period is given by Ω =
1

(µ +σ1)
.

When we substitute λ ∗S into the Equations in (4.7) and (4.8), we obtain

S∗ =
ΠΩ(µ +σ1)

µ(Ω(µ +σ1)+(ReS−1))
=

Π

µReS
, (4.9)

I∗S =
Π(ReS−1)

µ(Ω(µ +σ1)+(ReS−1))
=

Π(ReS−1)
µ(ReS)

. (4.10)
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And the endemic equilibrium is given by E∗S = (S∗, I∗S ).

The endemic equilibrium point E∗S must be positive since the model in (4.5)

keeps track of human population. We have from Equations (4.9) and (4.10) that

when ReS > 1, E∗S is positive and the epidemic of syphilis persists in the commu-

nity.

We can summarize the uniqueness of the endemic equilibrium in Lemma 4.4.3.

Lemma 4.4.3. The endemic equilibrium E∗S exists and is unique if and only if

ReS > 1.

Proof. It is enough to show that the components of E∗S are positive only if ReS > 1.

We have I∗S in Equation (4.10) to be non-zero and positive only when ReS > 1. The

same follows for S∗. QED.

4.4.2 Global stability of the endemic equilibrium for syphilis-only
model

We claim the result in Lemma 4.4.4.

Lemma 4.4.4. The endemic equilibrium of syphilis-only model 4.5 is globally

asymptotically stable in ΞS whenever ReS > 1.

See Appendix B for the proof of Lemma 4.4.4.

In summary, the syphilis-only model (4.5) has a globally asymptotically stable

disease-free equilibrium whenever ReS < 1, and a unique endemic equilibrium

whenever ReS > 1.

4.4.3 Sensitivity analysis of ReS

In this section, we investigate the effect of testing and treating syphilis on the dy-

namics of syphilis by the elasticity of ReS with respect to σ1. From Equation (4.6),

we use the approach in [24, 25, 42] to compute the elasticity ([37]) of ReS with

respect to σ1 as:
σ1

ReS

∂ReS

∂σ1
=− σ1

µ +σ1
. (4.11)
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Equation (4.11) is used to measure the impact of a change in σ1 on a proportional

change in ReS. Equation (4.11) suggests that an increase in the testing and treat-

ment rate of syphilis always leads to decrease of ReS, indicating a positive impact

on the control of syphilis in the community.

Figure 4.2 shows the effect of increasing the treatment of syphilis in the com-

munity. For the set of parameters used, the figure shows that, by increasing the

testing and treatment rate to 5 or more (ReS ≤ 0.99) (i.e., test and treat all suscep-

tible males for syphilis every 2.4 months or less), the reproduction number would

be below unity, which indicates syphilis eradication in the community.

0

5

10

15

0.0 2.5 5.0 7.5 10.0
σ1

R
e

S

Figure 4.2: Syphilis reproduction number ReS as a function of testing and
treatment rate σ1, with all parameters as in Table B.1 except βS = 5.0.
The red dashed line indicates the reproduction number ReS = 1

4.5 HIV sub-model
We have the model with HIV only by setting IS = USH = ASH = TSH = 0 in (4.4)

given by

dS
dt

= Π− (µ +λH)S,

dUH

dt
= λHS− (µ +dUH +α1)UH ,

dAH

dt
= α1UH +ν1TH − (µ +dAH +ρ2)AH , (4.12)

dTH

dt
= ρ2AH − (µ +ν1)TH ,
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λH = βH
(UH +κ1AH)

NH
, (4.13)

with the total population given as NH(t) = S(t)+UH(t)+AH(t)+TH(t).

Please note that the population is not constant and the equation of NH that

denotes the total sub-population of HIV-only model follows that

dNH

dt
= Π−µN−dUHUH −dAHAH ≤Π−µN, (4.14)

and (4.14) implies that lim
t→∞

supNH(t) ≤
Π

µ
. Therefore the dynamics of system

(4.12) will be studied based on biological consideration in the region ΞH =
{
(S,UH ,AH ,TH)∈

R4
+ : NH ≤ Π

µ

}
, which is easy to show as being positively invariant with respect to

the model. We can similarly consider model (4.12) to be epidemiologically and

mathematically well posed with all variables and parameters being positive for all

time series (years) as in [52].

4.5.1 Disease free equilibrium point

We have the disease free equilibrium when UH = AH = TH = 0 in model system

(4.12) . This gives E0H =
(

Π

µ
, 0, 0, 0

)
.

4.5.2 Effective reproduction number ReH

Similarly, using the method of next generational matrix in [52, 169], as in ReH =

ρ(FV−1), we have the reproduction number of HIV infections produced by HIV

positive cases to be ReH . Note that we have three infected classes UH , AH and TH ,

and the matrix showing the rate of appearance of new infections in compartment is

given by F =


λHS

0

0

.

The matrix showing the rate of transfer of individuals in and out of the com-
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partments i is

V = V −−V + =

 (µ +dUH +α1)UH

(µ +dAH +ρ2)AH −α1UH −ν1TH

(µ +ν1)TH −ρ2AH

 .

The jacobian matrix of F evaluated at the disease free equilibrium point, DFE

(E0H) =

(
Π

µ
,0,0,0

)
is given by

F =
∂F (E0H)

∂xl
=

βH βHκ1 0

0 0 0

0 0 0


where xl =UH ,AH ,TH for l = 1,2,3.

The jacobian matrix of V evaluated at the disease free equilibrium point DFE

is

V =
∂V (E0H)

∂xl
=

(µ +dUH +α1) 0 0

−α1 (µ +dAH +ρ2) −ν1

0 −ρ2 (µ +ν1)

 ,

and FV−1 has eigenvalues 0 and ReH . The dominant eigenvalues of the next

generation matrix FV−1 which is the spectral radius of the matrix FV−1, gives the

effective reproduction number for HIV from model (4.12).

Therefore we have

ReH = ρ(FV−1) =
βH ((µ +ν1)(µ +α1κ1 +dAH)+µρ2)

(µ +dUH +α1)((µ +ν1)(µ +dAH)+µρ2)
, (4.15)

and we can write ReH = BU +BA, where

BU =
βH

(µ +dUH +α1)
,

BA =
βHα1κ1(µ +ν1)

(µ +dUH +α1)((µ +ν1)(µ +dAH)+µρ2)
. (4.16)

ReH denotes the effective reproduction number for HIV dynamics (the number of
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HIV infection produced by one HIV case).

Remark 4. We can epidemiologically interpret the terms for the expression of ReH

in Equation (4.16). We have denoted BU as the average number of new cases of

HIV generated by individuals in the class UH , and BA as the average number of

new cases of HIV generated by individuals in the class AH .

BU is interpreted as the product of the transmission rate of HIV infected in-

dividuals in the UH class (βH) and the average duration spent in the UH class( 1
µ +dUH +α1

)
.

Similarly, we can interpret BA as the product of the transmission rate of HIV

infected individuals in the AH class (βHκ1), the fraction that survives the UH class(
α1

µ +dUH +α1

)
and the average duration spent in the AH class, which include the

duration of the fraction that goes off treatment from class TH

(
1

µ +dAH + ρ2µ

µ+ν1

)
.

Then the reproduction number ReH is the sum of the expressions for BU and BA,

which is the number of HIV infections produced by one HIV infective during the

period of infectiousness when introduced in a totally HIV susceptible population

in the presence of treatment.

We can establish the local stability of the disease free equilibrium (E0H) using

Lemma 4.5.1 which follows from [52] and Theorem 2 of [169].

Lemma 4.5.1. The DFE E0H of model (4.12) is locally asymtotically stable (LAS)

if ReH < 1 and unstable otherwise.

The biological interpretation of ReH < 1 means that we can eliminate HIV

from the population if the initial sizes of the subpopulation of HIV sub-model are

in the attraction region E0H . To be sure that eventual eradication of HIV epidemic

is independent of the initial sizes of the sub-populations, we will show that the

disease free equilibrium E0H is globally asymptotically stable.
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4.5.3 Global stability of the disease-free for HIV-only model

We can rewrite model (4.12) as,

dU
dt

= F(U,V ),

dV
dt

= G(U,V ), G(U,0) = 0, (4.17)

where U = S and V = (UH ,AH ,TH), with U ∈R1
+ denoting the number of suscep-

tible individuals and V ∈R3
+ denoting the number of infected individuals.

We now denote the disease free equilibrium by,

E0H = (U∗,0), where U∗ =
(

Π

µ

)
. (4.18)

Conditions S1 and S2 in equation (4.19) must be satisfied to guarantee local asymp-

totic stability.

S1 :
dU
dt

= F(U,0), U∗ is globally asymptotic stable (g.a.s)

S2 : G(U,V ) = AV − Ĝ(U,V ), Ĝ(U,V )≥ 0 for (U,V ) ∈ ΞH , (4.19)

where A = DV G(U∗,0) denotes the M-matrix (the off diagonal elements of A are

non-negative) and ΞH denotes the region where the model makes biological sense.

Lemma 4.5.2 holds if system (4.17) satisfies the conditions in (4.19).

Lemma 4.5.2. The disease free equilibrium point E0H of HIV-only model is glob-

ally asymptotically stable if ReH < 1 and conditions in (4.19) are satisfied.

Proof. We have from Lemma 4.5.1 that E0H is locally asymptotically stable if

ReH < 1. Now consider

F(U,0) = {Π−µS},

G(U,V ) = AV − Ĝ(U,V ),
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A =


βH − (µ +dUH +α1) κ1βH 0

α1 −(µ +dAH +ρ2) ν1

0 ρ2 −(µ +ν1)

 . (4.20)

Ĝ(U,V ) =


Ĝ1(U,V )

Ĝ2(U,V )

Ĝ3(U,V )

=



βH

(
1− S

NH

)
(UH +κ1AH)

0

0


. (4.21)

We have the conditions in 4.19 satisfied since Ĝ1(U,V )≥ 0 and Ĝ2(U,V )= Ĝ3(U,V )=

0⇒ Ĝ(U,V )≥ 0. And therefore we can conclude that E0H is globally asymptoti-

cally stable for ReH < 1.

4.5.4 Endemic equilibrium points

We can solve equation (4.12) in terms of the force of infection λH = βH
(UH +κ1AH)

NH
to find the conditions for the existence of an equilibrium, and for which HIV is en-

demic in a population.

We equate the right-hand side of equations (4.12) to zero to have

Π− (µ +λ
∗
H)S

∗ = 0, (4.22)

λ
∗
HS∗− (µ +dUH +α1)U∗H = 0, (4.23)

α1U∗H +ν1T ∗H − (µ +dAH +ρ2)A∗H = 0, (4.24)

ρ2A∗H − (µ +ν1)T ∗H = 0, (4.25)
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From Equations (4.22) to (4.25), we have

S∗ =
Π

(µ +λ ∗H)
, (4.26)

U∗H =
λ ∗HS∗

(µ +dUH +α1)
, (4.27)

A∗H =
α1U∗H +ν1T ∗H
(µ +dAH +ρ2)

,

=
α1U∗H(µ +ν1)

(µ +ν1)(µ +dAH)+µρ2
, (4.28)

T ∗H =
ρ2A∗H

(µ +ν1)
, (4.29)

And the endemic equilibrium is given by E∗H = (S∗, U∗H , A∗H , T ∗H), where

λ ∗H = βH
(U∗H+κ1A∗H)

N∗H
.

From equation (4.26) and (4.29), we have

U∗H
S∗

=
λ ∗H

(µ +dUH +α1)
,

U∗H
S∗

=
1

(µ +dUH +α1)

(
βH

(U∗H +κ1A∗H)
N∗H

)
,

N∗H
S∗

=
βH

(µ +dUH +α1)

(
U∗H +κ1A∗H)

U∗H

)
,

N∗H
S∗

= ReH ,

ReH = 1+
λ ∗H

(µ +dUH +α1)
+

α1λ ∗H(µ +ν1)

(µ +dUH +α1)((µ +ν1)(µ +dAH)+µρ2)

+
α1ρ2λ ∗H

(µ +dUH +α1)((µ +ν1)(µ +dAH)+µρ2)
,

ReH −1 = λ
∗
HΣ,

λ
∗
H =

(ReH −1)
Σ

,

where Σ denotes the mean infective period given by

Σ=
1

(µ +dUH +α1)

(
1+

α1(µ +ν1)

((µ +ν1)(µ +dAH)+µρ2)
+

α1ρ2

((µ +ν1)(µ +dAH)+µρ2)

)
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When we substitute λ ∗H into the endemic equilibrium point in (4.26) to (4.29), we

obtain the endemic equilibrium point in terms of ReH as

S∗ =
ΠΣ

µΣ+(ReH −1)
, (4.30)

U∗H =
Π(ReH −1)

(µ +dUH +α1)(µΣ+(ReH −1))
, (4.31)

A∗H =
α1Π(µ +ν1)(ReH −1)

(µ +dUH +α1)(µ(µ +dAH +ρ2)+ν1(µ +dAH))(µΣ+(ReH −1))
,(4.32)

T ∗H =
α1ρ2Π(ReH −1)

(µ +dUH +α1)(µ(µ +dAH +ρ2)+ν1(µ +dAH))(µΣ+(ReH −1))
,(4.33)

The endemic equilibrium point E∗H must be positive since the model in (4.12) also

keeps track of human population. We have from Equations (4.30) - (4.33) that

when ReH > 1, E∗H is positive and HIV is able to attack the population. That is

ReH > 1 shows the possibility of HIV to prevail in the community where there is

no syphilis infection.

We summarize the uniqueness of the endemic equilibrium in Lemma 4.5.3.

Lemma 4.5.3. The endemic equilibrium E∗H of model (4.12) exists and is unique if

and only if ReH > 1.

Proof. It is enough to show that the components of E∗H are positive only if ReH > 1.

We have the numerator and denominator of U∗H in Equation (4.31) to be positive

only when ReH > 1. Therefore, both the numerator and denominator of U∗H are

non-zero and positive when ReH > 1. The same follows for S∗, A∗H and T ∗H .
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4.5.5 Global stability of the endemic equilibrium for HIV-only model

For the special case of when there is no HIV-related death (i.e dUH = dAH = 0), the

model in (4.12) becomes

dS
dt

= Π− (µ +λH)S,

dUH

dt
= λHS− (µ +α1)UH ,

dAH

dt
= α1UH +ν1TH − (µ +ρ2)AH , (4.34)

dTH

dt
= ρ2AH − (µ +ν1)TH .

The new model (4.34) has a similar unique endemic equilibrium as model (4.12),

but with dUH = dAH = 0.

Let ΞH0 =
{
(S,UH ,AH ,TH)∈Ξh :UH =AH =TH = 0

}
and ReH0 = ReH |dUH=dAH=0.

We claim Lemma 4.5.4 with the proof in Appendix C.

Lemma 4.5.4. The endemic equilibrium of HIV-only model 4.34 is globally asymp-

totically stable in ΞH \ΞH0 whenever ReH0 > 1.

Using a regular perturbation argument together with Liapunov function theory

as was done in [17], the proof in Lemma (4.5.4) can be shown for the case of when

dUH > 0,dAH > 0 but small.

In summary, the HIV-only model in (4.5) has a globally asymptotically stable

disease-free equilibrium whenever ReH < 1, and a unique endemic equilibrium

whenever ReH > 1. This unique endemic equilibrium is globally asymptotically

stable whenever ReH0 > 1 (the case of dUH = dAH = 0).

4.5.6 Sensitivity analysis of ReH

Firstly, we investigate the effect of treating HIV on the dynamics of HIV by the

elasticity of ReH with respect to ρ2. From Equation (4.15), we use the approach in

[24, 25, 42] to compute the elasticity ([37]) of ReH with respect to ρ2 as:

ρ2

ReH

∂ReH

∂ρ2
=− α1κ1µρ2(µ +ν1)(

(µ +ν1)(µ +dAH)+µρ2

)(
(µ +ν1)(µ +α1κ1 +dAH)+µρ2

) .
(4.35)
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Equation (4.35) is used to measure the impact of a change in ρ2 on a proportional

change in ReH . Equation 4.35 suggests that an increase in the rate of treatment of

HIV always lead to decrease of ReH , indicating a positive impact on the control of

HIV infection in the community.

Figure 4.3a shows the effect of increasing treatment of HIV in the community.

The figure predicts that even though increasing the number of cases treated can

positively impact HIV epidemics by reducing the reproduction number, but elimi-

nation may only be achieved with aggresive treatment (i.e., ρ2 = 50 means treat all

diagnosed cases every week). Note that based on Equation (4.16), no matter how

high we increase ρ2, BU will not be affected, which indicates that elimination of

HIV requires more than increasing the number of cases treated, and may never be

achieved by increasing ρ2 if BU > 1.

Secondly, we investigate the effect of testing HIV on the dynamics of HIV by

the elasticity of ReH with respect to α1. From Equation (4.15), we use the approach

in [24, 25, 42] to compute the elasticity ([37]) of ReH with respect to α1 as:

α1

ReH

∂ReH

∂α1
=

α1κ1(µ +ν1)(µ +dUH)−α1

(
(µ +ν1)(µ +dAH)+µρ2

)
(µ +dUH +α1)

(
(µ +ν1)(µ +α1κ1 +dAH)+µρ2

) . (4.36)

Equation (4.36) is used to measure the impact of a change in α1 on a proportional

change in ReH . Equation (4.36) suggests that an increase in the rate of testing HIV

will have a positive impact in decreasing ReH and reducing HIV burden only if the

numerator of Equation (4.36) is negative, i.e. if

κ1(µ +ν1)(µ +dUH)−
(
(µ +ν1)(µ +dAH)+µρ2

)
< 0

Figure 4.3b shows the effect of increasing testing of HIV in the community. The

figure predicts that increasing the number of cases tested could positively impact

HIV epidemic by reducing the reproduction number, but elimination will never be

achieved with testing alone. Note that based on Equation (4.16), no matter how

high we increase α1, there will always be an asymptote of BA for α1 → ∞. This

indicates that elimination of HIV requires more than increasing the number of cases

tested, and may never be achieved by increasing α1 if the asymptote of BA > 1.
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Thirdly, we investigate the effect of the rate of treatment failure on the dynam-

ics of HIV by the elasticity of ReH with respect to ν1. We compute the elasticity

([37]) of ReH with respect to ν1 as:

ν1

ReH

∂ReH

∂ν1
=

α1κ1ν1µρ2(
(µ +ν1)(µ +α1κ1 +dAH)+µρ2

)(
(µ +ν1)(µ +dAH)+µρ2

)
(4.37)
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Figure 4.3: Impact of increasing testing rate α1, treatment rate ρ2 and rate
of treatment failure ν1 on HIV reproduction number ReH , with all pa-
rameters as in Table B.1 except for βH = 0.4. The red line shows when
ReH = 1

Equation (4.37) is used to measure the impact of a change in ν1 on a pro-

portional change in ReH . Equation (4.37) suggests that a decrease in the rate of

treatment failure always lead to a decrease of ReH , indicating a positive impact on
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the control of HIV in the community.

Figure 4.3c shows the effect of treatment failure on the dynamics of HIV in the

community. This Figure predicts that increasing the rate of treatment failure (time

retained on treatment) could negatively impact HIV epidemics by increasing the

reproduction number and possibly increasing HIV epidemics.

4.6 Analysis of the HIV-syphilis model
Having analyzed the two sub-models, we have the full HIV-syphilis model as in

(4.4). From the equation of N that denotes the total population as in Equation

(4.1), it follows that

dN
dt

= Π−µN−dUHUH −dAHAH −dUSHUSH −dASHASH ≤Π−µN, (4.38)

and (4.38) implies that lim
t→∞

supN(t)≤ Π

µ
. Therefore the dynamics of system (4.4)

will be studied based on biological consideration in the region

Ξ =
{
(S, IS,UH ,AH ,TH ,USH ,ASH ,TSH) ∈ R8

+ : N ≤ Π

µ

}
,

which is easy to show as being positively invariant with respect to the model. Sim-

ilarly, we can consider model (4.4) to be epidemiologically and mathematically

well posed with all variables and parameters being positive for all time series as in

[52].

4.6.1 Disease free equilibrium point (DFE) of the full HIV-syphilis
model

We have the disease free equilibrium when IS = UH = AH = TH = USH = ASH =

TSH = 0 in model (4.4). This gives

E0 =(S0, I0S,U0H ,A0H ,T0H ,U0SH ,A0SH ,T0SH)=

(
Π

µ
, 0, 0, 0, 0, 0, 0, 0

)
.
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4.6.2 Effective reproduction number Re

We have the effective reproduction number for the full model to be Re . Using the

next generation method in [52, 169], we can show that the effective reproduction

number for the full HIV-syphilis model (4.4) is given by

Re = max
{

βS

(µ +σ1)
,

βH ((µ +ν1)(µ +α1κ1 +dAH)+µρ2)

(µ +dUH +α1)((µ +ν1)(µ +dAH)+µρ2)

}
, (4.39)

We can establish the local stability of the disease free equilibrium (E0) using

Lemma 4.6.1 which follows from [52] and Theorem 2 of [169].

Lemma 4.6.1. The DFE E0 of model (4.4) is locally asymptotically stable (LAS) if

Re < 1 and unstable otherwise.

Biological interpretation of Re < 1(ReS < 1 & ReH < 1) means that we can

eliminate both diseases from the population if the initial sizes of the population are

in the attraction region Ξ.

In the section below, we show that the elimination of HIV and syphilis epi-

demics is independent on the initial sizes of the populations by showing the global

stability of the DFE E0.

4.6.3 Global stability of the disease-free of the full HIV-syphilis
model

We claim the result in Lemma 4.6.2 from Lemmas 4.4.2 and 4.5.2.

Lemma 4.6.2. The DFE E0 of model (4.4) is globally asymptotically stable if Re <

1 and unstable otherwise.

For reference, see Appendix D for the proof of Lemma 4.6.2.

4.6.4 Endemic equilibrium point of the full HIV-syphilis model

The computation of the endemic equilibrium of the full HIV-syphilis model is an-

alytically complicated, and therefore the endemic equilibria of model (4.4) corre-

sponds to;

1. E1 = (S1, IS1,0,0,0,0,0,0), the HIV free equilibrium, where
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E1 =

(
Π

µReS
,

Π(ReS−1)
µReS

, 0, 0, 0, 0, 0, 0
)
. (4.40)

This exists when ReS > 1. The analysis of the equilibria E1 is similar to the

endemic equilibria E∗S in equations (4.9) and (4.10).

2. E2 = (S2,0,UH2,AH2,TH2,0,0,0), the syphilis free equilibrium, where

S2 =
ΠΣ

µΣ+(ReH −1)
,

UH2 =
Π(ReH −1)

(µ +dUH +α1)(µΣ+(ReH −1))
,

AH2 =
α1Π(µ +ν1)(ReH −1)

(µ +dUH +α1)(µ(µ +dAH +ρ2)+ν1(µ +dAH))(µΣ+(ReH −1))
,(4.41)

TH2 =
α1ρ2Π(ReH −1)

(µ +dUH +α1)(µ(µ +dAH +ρ2)+ν1(µ +dAH))(µΣ+(ReH −1))
,

This exists when ReH > 1. The analysis of the equilibria E2 is similar to the

endemic equilibria E∗H in equations (4.30), (4.31), (4.32) and (4.33).

3. E3 =(S3, IS3,UH3,AH3,TH3,USH3,ASH3,TSH3), the HIV-syphilis co-interaction

equilibrium.

We summarize the existence of the disease free equilibrium points in the following

theorem:

Theorem 4.6.3. The system of equations (4.4) has the following disease free equi-

librium points:

1. E0S which exist when ReS < 1.

2. E0H which exist when ReH < 1.

3. E0 which exists when ReS < 1 and ReH < 1, i.e. Re < 1.

We similarly summarize the existence of the endemic equilibrium points in the

following theorem:

Theorem 4.6.4. The system of equations in (4.4) has the following endemic equi-

librium points:
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1. E∗S or E1 which exist when ReS > 1.

2. E∗H or E2 which exist when ReH > 1.

3. E3 which exists when ReS > 1 and ReH > 1, i.e. Re > 1. A detailed ex-

planation of E3 will be given in our numerical simulations. These endemic

equilibria will be explored and justified using numerical simulations. Our

numerical simulations will also explore epidemiological scenarios when

(a) ReH > 1 and ReS < 1,

(b) ReH < 1 and ReS > 1.

4.7 Numerical simulations of the full model
In order to illustrate the results of the preceding analysis, the full HIV-syphilis

model (4.4) is numerically simulated using R programming language and ggplot2

[170, 175]. Unfortunately, we are unable to calibrate the model to data as a re-

sult of the complexity of our model and unavailability of data on HIV-syphilis

co-interaction, but we make assumptions of parameters for illustrative purposes.

Hence the shape of the figures or time of epidemic take-off in our simulations may

change if the model is fitted or calibrated to the data of a particular region. We

suggest that this theoretical study be seen as a guide for future research and data

collection.

Initial conditions used are:

(S(0), IS(0), UH(0),AH(0), TH(0), USH(0), ASH(0), TSH(0))= (5500,6,7,5,3,4,3,2)

(4.42)

which indicate the presence of both diseases in the community,

(S(0), IS(0), UH(0),AH(0), TH(0), USH(0), ASH(0), TSH(0))= (5500, 0, 7, 5, 3, 0, 0, 0)

(4.43)

which indicate the presence of only HIV infection in the community, and

(S(0), IS(0), UH(0),AH(0), TH(0), USH(0), ASH(0), TSH(0))= (5500, 6, 0, 0, 0, 0, 0, 0),

(4.44)
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which indicate the presence of only syphilis infection in the community. Parame-

ters in Table (B.1) are also used, except otherwise stated.

Table 4.2: Model parameters and their interpretations.

Symbol Parameter Value(yr−1) Source
Π Recruitment rate estimated from N ≤Π/µ 100

µ Natural mortality rate 0.017 corresponds to

the life expectancy of 58.8 years

0.017 [45]

dUH death rate due to unaware HIV infection in

mono-infected individuals

0.094 [153]

dAH death rate due to aware HIV infection in

mono-infected individuals

0.094 [153]

dUSH death rate due to unaware HIV infection in co-

infected individuals

0.094 [153]

dASH death rate due to aware HIV infection in co-

infected individuals

0.094 [153]

βS Transmission rate for syphilis infection. This

is the product of the probability of syphilis

transmission from one contact between in-

dividuals in S and in other syphilis infected

compartments (IS, USH , ASH , TSH), and the

number of contacts per year per individual

Variable

βH Transmission rate for HIV infection. This is

the product of the probability of HIV trans-

mission from one contact between individu-

als in S and in other HIV infectious compart-

ments (UH , USH , AH , ASH), and the number of

contacts per year per individual

Variable

σ1 Testing and treatment rate of syphilis among

mono-infected males in the class IS. The

value 4year−1 means the average time for di-

agnosis and treatment is 1/σ1 = 1/4 year = 3

months.

4 [132]
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σ2,σ3,σ4 Testing and treatment rate of syphilis among

HIV infected males in classes USH ,ASH ,TSH

respectively. The value 4year−1 means the

average time for diagnosis and treatment is

1/σ4 = 1/4 year = 3 months.

4,4,4 [132]

ρ2 Treatment initiation rate of HIV. The value

2.5year−1 means the time from HIV diagnosis

to treatment initiation among mono-infected

males in the class AH is 1/ρ2 = 1/2.5 year

= 4.8 months.

2.5 Assumed

ρ1 Treatment initiation rate of HIV. The value

2.5year−1 means the time from HIV diagno-

sis to treatment initiation among coinfected

males in the class ASH is 1/ρ1 = 1/2.5 year

= 4.8 months.

2.5 Assumed

ν1,ν2 Rate of treatment failure for mono and coin-

fected individuals in classes TH and TSH re-

spectively. The value 0.9375year−1 means

the time retained on HIV treatment for mono-

infected and coinfected males is 1/νi =

1/0.9375 year = 12.8 months for i = 1,2.

That is, HIV infected males on treatment

spend at least 12.8 months before going off

treatment

0.9375,0.9375 [172]

η1,η2,η3 Modification parameters accounting for the

higher risk of syphilis acquisition for people

living with HIV in classes UH ,AH ,TH respec-

tively

2.237,2.237,2.237 [66]
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γ Modification parameters accounting for the

higher risk of HIV acquisition for people liv-

ing with syphilis in the class IS

2.5 [15,

55,

59,

64,

133]

φ1,φ2,φ3 Modification parameters accounting for the

higher risk of syphilis transmission for coin-

fected individuals in classes USH ,ASH ,TSH

respectively, compared with individuals

monoinfected with syphilis in the class IS

2.867,2.867,2.867 [92]

κ1 Modification parameter accounting for the

risk of HIV transmission for individuals

monoinfected with HIV and aware (AH),

compared with individuals monoinfected with

HIV and unaware (UH). We assume that the

risk of transmitting HIV among UH is not sig-

nificantly different from AH

1.0 Assumed

κ2,κ3 Modification parameters accounting for the

higher risk of HIV transmission for individ-

uals coinfected with HIV (USH ,ASH), com-

pared with individuals monoinfected with

HIV (UH)

2,2 [5,

133]

α1 Progression (testing) rate for individuals

mono infected with HIV in the class UH . The

value 0.5year−1 means the time from HIV in-

fection to diagnosis is 1/α1 = 1/0.5 year = 2

years.

0.5 [168]

Figure 4.4 shows the HIV and syphilis epidemics with initial condition (4.42)

and parameters in Table (B.1). If the reproduction number is less than unity (ReH =

0.139 < 1,ReS = 0.025 < 1,Re = 0.139 < 1) due to smaller transmission rates of

HIV and syphilis (βH = 0.02, βS = 0.1), the number of individuals living with

HIV and/or syphilis decreases and converges to the asymptotcally stable disease-
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free equilibrium (Figure 4.4a). Biologically, both diseases go to extinction and the

epidemics of HIV and syphilis die out in the community. In contrast, if the trans-

mission rates are larger (βH = 0.4, βS = 5.0) and Re > 1 (ReH = 2.780 > 1,ReS =

1.245 > 1,Re = 2.780 > 1), the number of infected individuals converges to the

HIV-syphilis endemic equilibrium (Figure 4.4b). This biologically means that the

epidemics of both HIV and syphilis persist in the community. The simulations are

consistent with Lemma 4.6.1 and Theorem 4.6.4.

Furthermore, Figure 4.5 shows the HIV and syphilis epidemics with initial

condition (4.42). If the reproduction number of syphilis is greater than unity

(ReH = 0.139 < 1,ReS = 1.245 > 1,Re = 1.245 > 1) due to a larger transmission

rate of syphilis (βH = 0.02, βS = 0.5), then the reproduction number of the coinfec-

tion system is greater than the unity. The number of individuals mono-infected and

co-infected with HIV persists for a long time and then decreases slowly to zero

because of the long life time of people living with HIV (Figures 4.5a and 4.5b).

The number of individuals mono-infected with syphilis increases (Figure 4.5c) and

then becomes stable after about 6 years (the zoomed-in plot of IS in Figure 4.5c)

to converge to the asymptotcally stable syphilis endemic equilibrium showing one

possibility of Theorem 4.6.4, (3b). This biologically means that with our choice

of parameters and over a long period of time, a community with smaller transmis-

sion rate of HIV and larger transmission rate of syphilis will experience syphilis

epidemics, while the epidemic of HIV will die out. In this case, the maximum re-

production number of the HIV-syphilis full model will be the reproduction number

of the syphilis sub-model.

Figure 4.6 similarly shows the HIV and syphilis epidemics with initial con-

dition (4.42). If the reproduction number of HIV is greater than unity (ReH =

2.780 > 1,ReS = 0.025 < 1,Re = 2.780 > 1) due to a larger transmission rate of

HIV (βH = 0.4, βS = 0.1), then the reproduction number of the coinfection system

is greater than unity. The number of individuals mono-infected and co-infected

with syphilis decrease to zero (Figures 4.6b and 4.6c) in less than 2 years (the

zoomed-in plot of IS in Figure 4.6c) since syphilis is curable. The number of indi-

viduals mono-infected with HIV infection first increase to a maximum value and

then decrease to converge to the asymptotically HIV endemic equilibrium (Figures

4.6a) showing one possibility of Theorem 4.6.4, (3a). This biologically means that
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with our choice of parameters, a community with larger transmission rate of HIV

and smaller transmission rate of syphilis will experience the HIV epidemic, while

the syphilis epidemic will die out. In this case, the maximum reproduction number

of the HIV-syphilis full model will be the reproduction number of HIV sub-model.

Figure 4.7 shows the impact of the presence of one disease on the other in

a community where either one or both diseases persist at the initial stage of the

epidemic. Figure 4.7a shows the number of individuals living with HIV using

initial conditions (4.42) (blue line) and (4.43)) (red line). It is worth noting that

the steady state in blue line is about 5% higher than the one in red line, which

indicates that, for the same community, the presence of syphilis infection is likely

to enhance the HIV prevalence in comparison to no syphilis infection and efforts

towards eradicating syphilis infection may in turn decrease HIV prevalence.
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(a) Disease free equilibrium
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Figure 4.4: Number of HIV infected individuals (green) and syphilis infected
individuals (red) based on initial condition (4.42) and parameters in
Table B.1, with different transmission rates and reproduction number:
βH = 0.02,βS = 0.1,Re = 0.139 (left); βH = 0.4,βS = 5.0,Re = 2.780
(right)

Figure 4.7b shows the number of individuals living with syphilis using initial

conditions (4.42) (blue line) and (4.44)) (red line). Similarly, it worth noting that

the steady state in blue line is about 30% higher than the one in red line, which

indicates that, for the same community, the presence of HIV infection is likely to

enhance the syphilis prevalence in comparison to no HIV infection and efforts aim

at decreasing or eradicating HIV infection will in turn decrease syphilis prevalence.
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Figure 4.5: Using the initial condition in (4.42) with βH = 0.02 and βS = 5.0,
the figure shows dynamics of HIV mono-infected individuals (UH +AH +
TH) (A), co-infected individuals (USH + ASH + TSH) (B), and syphilis
mono-infected individuals (IS) (C).
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Figure 4.6: Using the initial condition in (4.42) with βH = 0.4 and βS = 0.1,
the figure shows dynamics of HIV mono-infected individuals (UH +AH +
TH) (A), co-infected individuals (USH + ASH + TSH) (B), and syphilis
mono-infected individuals (IS) (C).
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(b) Population of syphilis positive individ-
uals

Figure 4.7: Prevalence of HIV and syphilis with βH = 0.4 and βS = 5.0
(ReH = 2.780 > 1,ReS = 1.245 > 1,Re = 2.780 > 1). (a) Figure 4.7a
shows the prevalence of HIV with syphilis at the initial stage of the epi-
demic (initial condition (4.42), blue dashed line) and without syphilis
(initial condition (4.43), red solid line). (b) Figure 4.7b shows the preva-
lence of syphilis infection with HIV at the initial stage of the epidemic
(initial condition (4.42), blue dashed line) and without HIV (initial con-
dition (4.44), red solid line).

4.8 Discussion and conclusion
We presented a mathematical model that rigorously analysed the co-interaction

of HIV and syphilis infections in the presence of treatment of both diseases. We

carried out the stability analysis of disease-free and endemic equilibra, and showed

that

1. disease-free equilibra for sub-models and the full model were locally and

asymptotically stable whenever their respective reproduction numbers are

less than unity.

2. endemic equilibra for sub-models and the full model were locally and asymp-

totically stable whenever their respective reproduction numbers are greater

than unity.

3. increasing testing and treatment rate of mono-infected individuals with syphilis

may bring the reproduction number of syphilis below unity, and thereby

134



eradicating the disease among mono-infected individuals in the community.

4. increasing the testing rate, treament rate and reducing the rate of treatment

failure for mono-infected individuals impact HIV epidemic by lowering the

reproduction number of HIV, but may not be able to eradicate the disease in

the community.

Despite the limitations of assuming homogeneous mixing populations and using

parameter values from published articles, our results and analyses of the reproduc-

tion number indicated that

1. HIV infection increases syphilis prevalence and vice versa.

2. we could bring the reproduction number of syphilis below unity if syphilis

is tested and treated more, but testing and treating cases of HIV alone may

not be sufficient to bring down the prevalence of HIV as this may depend on

some other factors, for example, some parameters in Equation (4.16) (lower

HIV-related death, increase time retained on treatment and so on).

Great attention has not been given to the negative effect of the co-interaction

of HIV and syphilis globally, and there are not many mathematical models that

considered synergistic interactions with treatment of both diseases among gbMSM

population. Even though our approach is similar to those considered in the liter-

ature [12, 23, 29, 34, 49, 129, 132, 154] in terms of the joint dynamics of both

diseases, but treatment of both HIV and syphilis infections among gbMSM popu-

lation is an essential difference that none of those studies examined. Our model can

be extended to include general population, and can also be stratified into different

age group or risk level.
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Chapter 5

Assessing the combined impact of
interventions on HIV and syphilis
epidemics among gay, bisexual
and other men who have sex with
men in British Columbia: a
co-interaction model

5.1 Synopsis
Introduction: The majority of HIV and infectious syphilis cases (over 80% of all

infectious syphilis cases) in British Columbia (BC) were among gay, bisexual and

other men who have sex with men (gbMSM). A recent study carried out in a set-

ting where the uptake of preexposure prophylaxis (PrEP) is moderate, the authors

revealed that the risk of acquiring bacterial sexually transmitted infections (STIs)

increases among gbMSM following initiation of PrEP. We therefore developed a

mathematical transmission model to assess the impact of different interventions,

especially PrEP on HIV and syphilis infections, and show how the combination of
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testing and treating syphilis, HIV treatment as prevention (TasP), condom use and

PrEP uptake could eliminate both HIV and syphilis epidemics among gbMSM in

BC over the next ten years (2019−2028).

Methods: The model explores epidemiological aspects of the HIV and syphilis

epidemics among gbMSM in BC. We divided the gbMSM population into differ-

ent disease status and examined the impact of multiple interventions on several

outcomes, specifically the World Health Organization threshold for disease elimi-

nation as a public health concern (less than one new infection per 1000 susceptible

gbMSM). We focussed on the interventions that improved PrEP uptake, TasP op-

timization, improved syphilis testing and treatment, and condom use. Other out-

comes we examined included HIV incidence, HIV prevalence, syphilis incidence

and all-cause mortality among people living with HIV (PLWH). We carried out dif-

ferent sensitivity analyses and implemented every aspect of the model in Python.

Results: Of the strategies evaluated, the combination of optimizing all aspects of

TasP, improving syphilis testing and treatment, and increasing provision of PrEP

reduced the HIV incidence rate more than TasP, by as much as 88% (0.13 per

1000 susceptible gbMSM), and the elimination of HIV infection was possible by

optimizing TasP or combining TasP with any other interventions. Similarly, the

combination of improving syphilis testing and treatment, and increased condom

use reduced syphilis incidence rate by as much as 80% (0.85 per 1000 susceptible

gbMSM), and the elimination of the syphilis epidemic was also possible. Combin-

ing TasP and PrEP with or without other interventions reduced the HIV incidence

rate more than TasP alone, while combining PrEP, and improving syphilis testing

and treatment increased the syphilis incidence rate more than improving syphilis

testing and treatment alone.

Conclusions: The combination of any interventions with PrEP decreases the HIV

incidence rate more than without PrEP, and less compared to condom use. In ad-

dition, the findings highlight how increasing the number of susceptible gbMSM

on PrEP can create unexpected negative impact on syphilis incidence, and show

the importance of public health policies to address the co-interaction of HIV with
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syphilis, and with other STIs among gbMSM in BC and in other similar settings.

5.2 Introduction
HIV incidence seems to be declining in many parts of the world among gay, bi-

sexual and other men who have sex with men (gbMSM), but not as fast as in other

group [141]. Globally, gbMSM are about 19 times more likely to be living with

HIV than the other groups, and this group accounts for a disproportionate burden

of HIV and syphilis infections [141, 146]. In British Columbia (BC), Canada,

gbMSM continue to have the greatest number of new HIV diagnoses, constituting

about 60% of all new HIV diagnoses in 2016 [69, 75]. The Public Health Agency

of Canada estimated that in 2016, approximately 52% of all 11,621 people living

with HIV (PLWH) in BC, were gbMSM, and in 2017, 69.8% (127 cases) of all

new HIV diagnoses were among gbMSM [62, 135, 136, 177]. Since 2004, the

number of new infections diagnosed each year among gbMSM in BC has been

relatively constant between 150 and 180 cases, and at the end of 2016, it was esti-

mated that 147 (range 90−260 cases) gbMSM in BC became newly infected with

HIV[62, 135, 136, 139, 177].

The rate of infectious syphilis in Canada is on the rise, and with a higher burden

among gbMSM. In BC, gbMSM account for the majority of infectious syphilis

cases and remain the group most at risk of contracting syphilis [70]. Even in the

US, both HIV and syphilis remain highly concentrated epidemics among gbMSM

[145, 152], and primary and secondary syphilis remain the most infectious stages

of syphilis [80]. The inflammatory genital ulcers and lesions usually caused by

syphilis create entry points for the HIV virus, which in turn, increase the risk of

HIV transmission and shedding [30, 54]. In addition, syphilis complicates the

clinical course of HIV by increasing viral load levels [30, 162].

Studies have shown the high impact of the antiretroviral therapy (ART) up-

take in decreasing the HIV transmission among people living with HIV (PLWH)

[46–48]. BC adopted the HIV ”Treatment as Prevention” (TasP) in 2010 as pub-

lic health policy, to prevent new HIV infections, maximize engagement among

PLWH, increase the possibility of viral suppression, decrease morbidity and mor-

tality among PLWH on treatment [79, 124]. In BC, the impact of ART in de-
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creasing the HIV epidemic and reducing the transmission among gbMSM is lower

when compared to other populations [69, 75, 125]. Also, the rate of sexually

transmitted infections (STIs) have been rapidly increasing during the last 10 years

among gbMSM [70]. Of all cases of STIs at the end of 2016, infectious syphilis

was observed to have the highest prevalence (about 86% of all cases were among

gbMSM), and among gbMSM cases with known HIV status, 43% were co-infected

with HIV [70].

Oral pre-exposure prophylaxis (PrEP) for HIV prevention is the daily use of

antiretroviral (ARV) drugs by HIV-negative people to obstruct HIV acquisition.

More than 10 randomized controlled trials have shown the effectiveness/efficacy

of PrEP in preventing HIV transmission among serodiscordant heterosexual cou-

ples (when one of the partner is HIV positive and the other is negative), gbMSM,

transgender women, high-risk heterosexual couples, and people who inject drugs

[38, 60, 85, 89, 118, 119, 122, 123]. The effectiveness of PrEP among gbMSM,

which is mostly dependent on adherence, ranges from 42% to 99% [76]. Before

PrEP became known, people used condoms or engaged in sero-adaptive behav-

iors (e.g., having sex with only people of the same HIV status) in order to prevent

being infected with HIV [14, 103, 120]. PrEP is now widely recommended to pre-

vent HIV transmission, specifically among people at high risk of HIV acquisition

[9, 76, 88, 144]. Since January 2018, PrEP became provincially-funded for people

in BC who is at higher risk of HIV infection, which is made available through the

HIV Drug Treatment Program (DTP) at the British Columbia Centre for Excellence

in HIV/AIDS (BCCfE) [76].

Currently, PrEP is totally free for elligible invididuals in BC, and reasonably

subsidized and more affordable in Canada, by the governments of Ontario and

Qubec [2, 67]. Syphilis is mainly treated with a single dose of antibiotics after

diagnosis [69], but consistent and correct use of condoms is known to significantly

reduce the risk of STIs and HIV transmission[65], and the reduction in condom use

is due in part to increases in the number of people on PrEP [31, 40, 113]. PrEP can

reduce the risk of acquiring HIV among sexually active gbMSM, however it does

not offer any protection against syphilis and other STIs and may in fact accidentally

increase the risk of STIs transmission [171].

Given the continued risk of syphilis transmission, its close association with
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HIV infection, and the disproportionate disease burden among gbMSM in BC,

there is a need to examine and understand the co-interaction of HIV and syphilis

epidemics, and their trends among gbMSM. In addition, several studies have shown

the impact of PrEP in reducing the HIV incidence [140], but based on a recent study

that focused on the importance of frequent testing for STIs among gbMSM using

PrEP, in a setting similar to BC and where the uptake of PrEP is moderate, the

authors showed that the risk of bacterial STIs increases among gbMSM following

initiation of PrEP [167]. Therefore, we developed a mathematical transmission

model to assess how the combination of TasP, PrEP, condom use, and testing and

treating syphilis, could eliminate HIV and syphilis epidemics in BC over the next

ten years (2019−2028).

5.3 Methods
We designed a modeling approach in which HIV-syphilis disease progression and

transmission model were used. The model schematic is shown in Figure 5.1. In the

model, we combined the complex epidemiological dynamics of HIV and syphilis

infections by introducing the HIV-syphilis co-interaction. The model can be used

to predict epidemic trends, identify key factors that influence HIV and syphilis epi-

demics among gbMSM, and as well predict the impact of different interventions.

5.3.1 HIV-syphilis transmission model

We developed a deterministic compartmental model for the co-interaction of HIV-

syphilis transmission among the gbMSM population in BC, Canada. The model

assumptions and parameters (appropriate for the context of BC, Canada) and a

detailed description of the model are presented in the supplementary informa-

tion in Appendix B. The model has eight compartments (Fig 5.1): (1) Suscepti-

ble (S)−individuals at risk of HIV and/or syphilis infection who were never ex-

posed to both diseases and/or at risk of being re-infected with syphilis virus among

those syphilis virus-experienced individuals who were cured; (2) Mono-infected

with syphilis (IS)−individuals who were infected or re-infected with syphilis; (3)

Mono-infected with HIV and Unaware (UH)−individuals who are infected with

only HIV and stay in this compartment until they are tested postive for HIV; (4)
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Mono-infected with HIV and Aware (AH)−there are four sets of individuals in

this compartment: those who were tested positive from the unaware compartment

(UH) and waiting for treatment; those individuals mono-infected with HIV who

dropped out of treatment, individuals co-infected and unaware who recently got

tested positive for HIV and have gotten tested and treated for syphilis; and in-

dividuals co-infected and aware who recently got tested and treated for syphilis;

(5) Mono-infected and on Treatment (TH)−there are two sets of individuals in

this compartment: co-infected individuals on HIV treatment who got tested and

treated for syphilis, and individuals who are eligible for and on HIV treatment; (6)

Co-infected and Unaware (USH)−there are two sets of individuals in this compart-

ment: those who were previously infected with syphilis and got infected with HIV

but unaware, and individuals who were mono-infected with HIV and unaware, and

then got infected with syphilis; (7) Co-infected and Aware (ASH)−there are two

sets of individuals in this compartment: those who had been tested positive for

HIV then got infected with syphilis and waiting for treatment, and co-infected in-

dividuals who previously dropped out of HIV treatment; (8) Co-infected and on

Treatment (TSH)−co-infected individuals who are on HIV treatment.

S UH AH TH

IS USH ASH TSH

Π λH

λS

ρ2

ν1

α1

σ1

σ4
σ3

η1λS
σ2

η2λS η3λS
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µ µ+ dUSH µ+ dASH µ

µ

Figure 5.1: Diagram of the HIV/Syphilis co-interaction model

We assumed that individuals in the TH and TSH compartments cannot transmit

HIV infection [56, 149] and that there are no syphilis related deaths since individ-

uals infected with syphilis rarely die from this disease [151]. In addition, PLWH
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can exit the model via either non-HIV or HIV-related mortality. Since it is difficult

to get population-level data regarding the dynamics of the co-interaction of both

diseases amongst gbMSM in BC, our initial conditions were chosen close to the

observed data of HIV and syphilis separately in BC. We calibrated the model by

optimizing the parameters βH ,α1,ρ2,βS,σ1,σ2 (see Appendix B for definitions),

so that the numerical solution fits to: (1) the estimated number of PLWH and the

estimated number of annual new HIV infections among the gbMSM population in

BC from the Public Health Agency of Canada in 2011, 2014 and 2016 [62, 139];

(2) the annual HIV diagnoses from the HIV cascade of care in BC (2011−2018)

[71–75]; (3)the number of annual syphilis diagnoses from British Columbia Centre

for Disease Control (BCCDC) surveillance report (2012− 2017) [63, 70]. Since

PrEP uptake was very low before 2017 [2, 67], we introduced PrEP in the model

in 2017 and the number of gbMSM on PrEP gradually increased to 4000 at the end

of 2019 (see Section B.1.3 of the Appendix B for details).

PythonTM version 2.7.6 was used for all the numerical and analytical coding,

and the NUMPY and SCIPY libraries were used for the numerical simulations [97].

Using the optimization package in the SCIPY library and with all other parameters

fixed, we ran a simulation in a Nelder-Mead simplex algorithm to determine the

optimal values of the fitted parameters, while assuming a tolerance of 10−3 [130].

We estimated final outputs by linear interpolation of the integrated solution and

evaluation at yearly intervals. Details of differential equations, model parameters,

calibration, and references can be found in the Appendix B.

5.3.2 Modeling scenarios

With all parameters kept as those in the end of 2019 under the Status Quo sce-

nario, we evaluated the impact of HIV TasP intervention (see Table 5.1 for details):

(1) linearly decreasing the time from HIV infection to diagnosis for mono and

co-infected individuals; (2) linearly decreasing the time from HIV diagnosis to

treatment initiation; (3) linearly increasing the time retained on ART treatment

for mono and co-infected individuals. For PrEP intervention, we focussed on en-

rolling individuals on treatment with the uptake linearly increasing from 4000 in

2019 to 5000 (low), 7000 (medium) and 10000 (high) in 2028 (see Table 5.1). Sim-
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ilarly, we evaluated the impact of linearly decreasing time from syphilis infection

to treatment among both mono and co-infected individuals (Test & Treat syphilis)

(see Table 5.1 for details). For condom intervention, we linearly increased the pro-

portion of condom use from 65% in 2019 to 70% (low), 75% (medium) and 80%

(high) in 2028 (see Table 5.1). Lastly, we evaluated the impact of combining: (a)

PrEP and TasP; (b) TasP and Test & Treat syphilis; (c) PrEP and Test & Treat

syphilis; (d) condom use and TasP; (e) condom use and Test & Treat syphilis; ( f )

PrEP, TasP and Test&Treat syphilis; and (g) condom use, TasP and Test & Treat

syphilis, according to the low, medium, and high scenarios as described in Table

5.1. It is worth noting that no combination of PrEP and condom use was assessed

in this study since different studies have shown decrease in condom use among

individuals on PrEP [82, 90].

5.3.3 Main outcomes

We compare the Status Quo (or baseline) scenario with different intervention sce-

narios by forecasting the course of HIV and syphilis epidemics in BC. The follow-

ing outcomes were estimated at the end of 2028: (1) the number of PLWH; (2)

the number of cumulative HIV incident cases; (3) all-cause mortality cases among

HIV-positive gbMSM; (4) the number of cumulative syphilis incident cases; (5)

HIV point prevalence; (6) all-cause mortality rate among HIV-positive gbMSM;

(7) HIV incidence rate; and (8) syphilis incidence rate. The outcomes in (1)− (4)

were presented in terms of the number of cases and the percent change when com-

pared with the Status Quo. To evaluate which of the interventions could lead to

HIV and/or syphilis elimination, the estimates of the HIV and syphilis incidence

rates were compared to the World Health Organization (WHO) threshold for dis-

ease elimination as a public health concern (less than one new infection per 1000

susceptible gbMSM).

5.3.4 Sensitivity analysis

We estimated the univariate sensitivity coefficients for the HIV and syphilis inci-

dence changes under the TasP, PrEP and Test & Treat syphilis scenarios for the top

ten parameters with the highest coefficients at the end of 2028. Using the sensi-
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tivity coefficients, we measured the relative change in the HIV and syphilis inci-

dence with respect to the relative change in our model parameters [117, 155]. We

demonstrated the occurence of positive and negative coefficients with an increase

or decrease in a parameter. Positive and negative coefficients denote positive and

inverse association respectively, with the magnitude denoting how sensitive the

target variable (HIV and syphilis incidence) is to changes in each parameter.

In addition, the percent change in the number of cumulative HIV incident cases

and syphilis incident cases with respect to Status Quo scenario from 2019 to 2028

was estimated. Based on the available data and literature, we considered lower and

higher values for the parameters with the most uncertainty. Every aspect of the

sensitivity and uncertainty analyses were performed using the scientific computing

libraries in PythonTM version 2.7.6.

Table 5.1: Scenarios for the interventions examined in the study

Interventions Status
Quo

Low Sce-
nario

Medium
Scenario

High
Scenario

PrEP use (number of susceptible
gbMSM enrolled)

4000 5000 7000 10000

Condom use (%) 65 70 75 80

TasP

Time from HIV Infection to Diagnosis 3.37 years 2 years 1 year 6 months

Time from Diagnosis to ART Treat-
ment

4.61 months 3.0 months 45 days 21 days

Time Retained on ART Treatment 2.72 years 3.5 years 4.5 years 6.0 years

Test & Treat Syphilis

Time from Syphilis Infection to Treat-
ment (mono-infected individuals)

3.26 years 2 years 8 months 3 months

Time from Syphilis Infection to Treat-
ment (co-infected individuals)

18.6 years 10 years 5 years 3 years

gbMSM: gay, bisexual and other men who have sex with men; ART: antiretroviral
treatment; PrEP: pre-exposure prophylaxis; TasP: treatment as prevention.
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5.4 Results

5.4.1 Status Quo

When we kept 4000 gbMSM on PrEP from 2019 to 2028 (Status Quo scenario),

our model predicted the cumulative number of HIV incident cases, syphilis incident

cases and all-cause mortality cases among PLWH to be 1389, 8039, and 961 re-

spectively (see details on Tables B.4, B.5,B.6 and B.7 in Appendix B). In 2028, the

model estimated the HIV and syphilis incidence rate per 1000 susceptible gbMSM,

and the mortality rate per 1000 HIV-positive gbMSM to be 4.01, 24.68 (Figures 5.2

and 5.3) and 17.65, respectively (Table B.8). In addition, the HIV prevalence was

estimated to be 6432 at the end of 2028 (see details on Tables B.4, B.5,B.6 and B.7

in Appendix B).

5.4.2 TasP

Tables B.4 and B.7 show the impact of TasP interventions on the model outcomes

at the end of 10 years. From the combination of all aspects of TasP, our model

predicted that from low to high scenarios, the cumulative number of HIV in-

cident cases, the cumulative number of syphilis incident cases and the 10 year

cumulative number of mortality cases among PLWH were between 842− 203

(547− 1186 averted cases; 39%− 85% decrease from Status Quo (Figure 5.4)),

7874− 7539 (165− 499 averted cases; 2%− 6% decrease from Status Quo), and

741− 494 (220− 467 averted cases; 23%− 49% decrease from Status Quo (Fig-

ure 5.4), respectively. The model estimated that in 2028, the HIV and syphilis

incidence rates per 1000 susceptible gbMSM, and the mortality rate per 1000 HIV-

positive gbMSM from low to high scenarios would be 1.97−0.2 (51%−95% de-

crease from Status Quo), 23.39−21.76 (5%−12% decrease from Status Quo), and

13.15−8.91 (25%−50% decrease from Status Quo), respectively (see Table B.8).

In addition, after 10 years, the number of PLWH from low to high scenarios was

estimated to be between 6021− 5536 (6%− 14% decrease from Status Quo) (see

Table B.4). Of all TasP interventions, improving the time from HIV diagnosis to

treatment seems to have the largest impact on the averted number of the cumula-

tive HIV incident cases, HIV incidence rate and the mortality rate among PLWH
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(see Table B.4). The combined time from syphilis infection to treatment, and time

to HIV diagnosis seems to have the largest impact on the averted number of the

cumulative syphilis incident cases and incidence rate (see Table B.4). Of all indi-

vidual combination of interventions, only TasP significantly reduced the mortality

cases among PLWH (Figures 5.4, 5.2 and 5.3).

5.4.3 PrEP

We evaluated the impact of having 5000, 7000 and 10000 for low, medium and high

PrEP uptake compared to 4000 uptake under the Status Quo scenario (Table B.6).

When 10000 individuals are on PrEP, the model estimated the cumulative number

of HIV incident cases and the cumulative number of syphilis incident cases to be

1172 (16% decrease from Status Quo), and 8403 (5% increase from Status Quo).

In addition, the model estimated the HIV and syphilis incidence rate in 2028 to be

3.26 (19% decrease from Status Quo) and 25.94 (5% increase from Status Quo)

per 1000 susceptible gbMSM respectively. It is noticeable that enrolling 10000

individuals on PrEP increased the syphilis incidence rate (see details in Figures 5.4,

5.2 and 5.3, and on Table B.8).

5.4.4 Condom use

We evaluated the impact of having 70%, 75% and 80% for low, medium and high

condom use compared to 65% condom use under the Status Quo scenario (Table

B.6). When 80% of susceptible gbMSM use condom, the model estimated the

cumulative number of HIV incident cases and the cumulative number of syphilis

incident cases to be 1026 (363 averted cases; 26% decrease from Status Quo),

and 5739 cases (2300 averted cases; 29% decrease from Status Quo). In addition,

the model estimated the HIV and syphilis incidence rate in 2028 to be 2.63 (34%

decrease from Status Quo) and 15.43 (37% decrease from Status Quo) per 1000

susceptible gbMSM, respectively (see details in Figures 5.4, 5.2 and 5.3, and on

Table B.8).
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5.4.5 Test & Treat syphilis

We evaluated the combined effect of all syphilis interventions scenarios among

mono and co-infected individuals (see details on Table B.5) at the end of 10 years.

Our model predicted that from low to high scenario, the cumulative number of

HIV incident cases, the cumulative number of syphilis incident cases and the 10

year cumulative number of mortality cases among PLWH are between 1278−1010

(111− 378 averted cases; 8%− 27% decrease from Status Quo), 6078− 2048

(1961−5991 averted cases; 24%−75% decrease from Status Quo), and 928−858

(33− 103 averted cases; 3%− 11% decrease from Status Quo), respectively. The

model estimated that in 2028, the HIV and syphilis incidence rate per 1000 sus-

ceptible gbMSM, and the mortality rate per 1000 HIV-positive gbMSM from low

to high scenario to be between 3.17− 2.04 (21%− 49% decrease from Status

Quo), 14.27− 1.25 (42%− 95% decrease from Status Quo), and 16.66− 15.26

(6%−14% decrease from Status Quo), respectively (see Figures 5.4, 5.2 and 5.3,

and Table B.8). Of all the combined syphilis interventions, improving the time

from syphilis infection to treatment among co-infected individuals on ART seems

to have the largest impact on the averted number of the cumulative syphilis incident

cases and syphilis incidence rate.

5.4.6 Combining two interventions

The impact of combining two interventions ((1) TasP and PrEP, (2) TasP and Test

& Treat Syphilis, (3) PrEP and Test & Treat Syphilis, (4) Condom use and Test &

Treat Syphilis, and (5) TasP and Condom use) was evaluated in comparison to the

Status Quo scenario (see Table B.7). The combination of TasP and PrEP (medium

scenario), gave a higher reduction in the cumulative HIV incident cases that is 73%

(HIV incidence rate as low as 0.61) when compared to TasP alone that is 71% (HIV

incidence rate as low as 0.66) (Figures 5.4, 5.2). The combination of PrEP with

Test & Treat Syphilis (high scenario), gave a lower reduction in the cumulative

syphilis incident cases that is 74% (syphilis incidence rate given as 1.31) when

compared to Test & Treat Syphilis alone that is 75% (syphilis incidence rate given

as 1.25) (Figures 5.4, 5.3).
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5.4.7 Combining three interventions

The impact of combining three interventions ((1) TasP, Test & Treat Syphilis and

PrEP (2) TasP, Test & Treat Syphilis and condom use) was evaluated in comparison

to the Status Quo scenario (see Table B.7). The combination of two interventions

with PrEP (medium scenario) produced a 74% reduction in the cumulative HIV

incident cases (HIV incidence rate given as 0.46) but lower when compared to con-

dom use that is 76% (HIV incidence rate as low as 0.41) (Figures 5.4, 5.2). Sim-

ilarly, the combination of two interventions with PrEP (high scenario) produced

a 73% reduction in the cumulative syphilis incident cases (syphilis incidence rate

given as 1.12) but lower when compared to condom use (high scenario) that is 80%

(syphilis incidence rate given as 0.86) (Figures 5.4, 5.3).

5.4.8 Conditions for the elimination of the HIV and syphilis
epidemics

We based the condition for the elimination of HIV and syphilis epidemics on the

WHO threshold for disease elimination as a public health concern (< 1 new in-

fection per 1000 susceptible gbMSM). The combination of PrEP with or without

any other HIV interventions gave a much lower HIV incidence rate compared to

interventions without PrEP (see Figure 5.2 and Table B.8). On the contrary, the

combination of PrEP with any other syphilis interventions gave a much higher

syphilis incidence rate compared to interventions without PrEP (see Figure 5.3 and

Table B.8). For example, increasing the number of gbMSM on PrEP to 10000 gave

the syphilis incidence rate of 25.94 per 1000 susceptible gbMSM (5% increase

from Status Quo), and the elimination of syphilis epidemic was not achieved.

Based on WHO threshold, further optimizing TasP to at least the medium sce-

nario (i.e., 1 year from infection to diagnosis, 3 months from diagnosis to treat-

ment, and 4.5 years to be continually retained on treament) will lead to the HIV

disease elimination with the HIV incidence rate as low as 0.66 per 1000 susceptible

gbMSM (medium scenario). In addition, the combination of TasP (medium sce-

nario) with any other interventions to at least the medium level (i.e., TasP, provide

PrEP to at least 7000 individuals, 75% of condom use, or improve syphilis testing

and treatment at the medium level) could also achieve this threshold level for HIV
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and with lower HIV incidence rate when compared to TasP alone (see Figure 5.2).

Improving syphilis testing & treatment (high scenario) and 80% of condom use

will lead to syphilis disease elimination, with syphilis incidence rate as low as 0.85

per 1000 susceptible gbMSM (see Table B.8). Similarly, syphilis infection could

also be eliminated by combining TasP (high scenario), improving syphilis interven-

tion (high scenario) and having 80% of condom use with syphilis incidence rate as

low as 0.86 per 1000 susceptible gbMSM (see Figure 5.3 and Table B.8. It may not

be possible to eliminate both diseases with increasing the number of gbMSM on

PrEP. Simultaneous elimination of both diseases was achieved by combining TasP

(high scenario), improving syphilis testing and treatment (high scenario), and 80%

of condom use with HIV and syphilis incidence rate as low as 0.11 and 0.86 per

1000 susceptible gbMSM respectively (see Figures 5.2 and 5.3 and Table B.8).
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Figure 5.2: HIV incidence rate under different intervention scenarios in comparison to the WHO threshold for disease
elimination as a public health concern at the end of 2028.
WHO: World Health Organization; GBMSM: gay, bisexual and other men who have sex with men; TasP: treat-
ment as prevention; PrEP: pre-exposure prophylaxis; Test & Treat: test and treat syphilis.
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Figure 5.3: Syphilis incidence rate under different intervention scenarios in comparison to the WHO threshold for dis-
ease elimination as a public health concern at the end of 2028.
WHO: World Health Organization; GBMSM: gay, bisexual and other men who have sex with men; TasP: treat-
ment as prevention; PrEP: pre-exposure prophylaxis; Test & Treat: test and treat syphilis.
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(a)

(b)

Figure 5.4: Results for the reduction in HIV point prevalence, the cumula-
tive number of HIV incident cases, and all-cause mortality cases among
PLWH (first row), and the cumulative number of syphilis incident cases
(second row) among gbMSM living with HIV after 10 years of TasP,
PrEP, condom use, and Test & Treat (syphilis) interventions
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5.4.9 Sensitivity analyses

First, we estimated the univariate sensitivity coefficients on the cumulative num-

ber of HIV and syphilis incident cases under PrEP, TasP and syphilis interventions

scenarios at the end of 2028, and showed the top paramters with the highest coef-

ficients in Figures 5.5, 5.6 and 5.7. For all interventions, the most sensitivity pa-

rameters on the cumulative number of HIV incident cases (first row of Figures 5.5,

5.6 and 5.7) were the proportion and effectiveness of condom use among gbMSM,

and the HIV transmission rate. Similarly, for all interventions, the most sensitiv-

ity parameters on the cumulative number of syphilis incident cases (second row

of Figures 5.5, 5.6 and 5.7) were the proportion and effectiveness of condom use

among gbMSM, the syphilis transmission rate and higher risk of syphilis transmis-

sion among co-infected individuals on ART. The impact of each parameter on the

cumulative number of HIV incident cases decreased as we moved from the low to

the high scenario of these interventions. Similarly, the impact of each parameter

on the cumulative number of syphilis incident cases decreased as we moved from

the low to the high scenario of Test and Treat syphilis, and TasP interventions.

Conversely, the impact of each parameter on the cumulative number of syphilis

incident cases increased as we moved from the low to the high scenario of PrEP

intervention.

In addition, we estimated the percent change in the cumulative number of HIV

and syphilis incident cases at the end of 2028 (Figure 5.8), with respect to our

model predictions based on the Status Quo scenario, for the parameters with the

most uncertainty based on the available literature and data. The proportion of

gbMSM using condoms and the transmission rate of HIV were the assumptions

that mostly influenced both the changes in the cumulative number of HIV and

syphilis incident cases.

153



(a)

(b)

Figure 5.5: Results of the sensitivity analyses for the top ten parameters with
the highest sensitivity coefficients based on the scenarios for PrEP use.
Row 1: cumulative number of HIV incident cases at the end of 2028;
Row 2: cumulative number of syphilis incident cases at the end of 2028;
PrEP: pre-exposure prophylaxis
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(a)

(b)

Figure 5.6: Results of the sensitivity analyses for the top ten parameters with
the highest sensitivity coefficients based on the scenarios for TasP.
Row 1: cumulative number of HIV incident cases at the end of 2028;
Row 2: cumulative number of syphilis incident cases at the end of 2028;
TasP: HIV treatment as prevention
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(a)

(b)

Figure 5.7: Results of the sensitivity analyses for the top ten parameters with
the highest sensitivity coefficients based on the scenarios for Test &
Treat. Row 1: cumulative number of HIV incident cases at the end of
2028; Row 2: cumulative number of syphilis incident cases at the end
of 2028; Test & Treat: test and treat syphilis
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(a)

(b)

Figure 5.8: Results of the sensitivity analysis for the parameters with the most
uncertainty based on the available literature. Row 1: Percent change
in the cumulative number of HIV incident cases in comparison to the
Status Quo at the end of 2028; Row 2: Percent change in the cumulative
number of syphilis incident cases in comparison to the Status Quo at the
end of 2028
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5.5 Discussion
We have developed a co-interaction model of HIV and syphilis infections in a

gbMSM population using ordinary differential equations. Several models have

been designed to show the transmission of HIV infection among gbMSM without

explicitly modeling its synergy with other diseases, especially with other sexually

transmitted diseases like syphilis. Our study shows that the most successful strat-

egy to reach HIV elimination entailed the optimization of all aspects of TasP, or

combination of TasP with any other interventions (impoving syphilis testing and

treatment, putting at least 7000 individuals on PrEP and increasing the proportion

of gbMSM using condoms to at least 75%) to at least the medium level. We show

that the elimination of HIV epidemic is better when different interventions are

combined with PrEP than without PrEP. But the combination of any interventions

with condoms seems best.

The most successful strategy to reach syphilis elimination entailed improving

syphilis testing and treatment (high scenario), simultaneous increase in the propor-

tion of gbMSM using condoms to 80% and/or optimizing all aspects of TasP. We

showed that the elimination of syphilis epidemic is worse when different interven-

tions are combined with PrEP, and seems better with condom use. The simultane-

ous elimination of both diseases may never be achieved by putting more and more

people on PrEP. The most successful strategy to reach simultaneous elimination of

HIV and syphilis epidemics entailed optimizing all aspects of TasP (high scenario),

improving syphilis testing and treatment (high scenario), and the simultaneous in-

crease in the proportion of gbMSM using condoms to 80%; reduction in HIV and

syphilis incidence rate by as much as 89% and 80% respectively.

In BC, we have the highest number of new HIV and syphilis infections among

gbMSM [69, 70], with other studies in a similar settings also reporting a high

incidence of both infections in this group [116, 167]. The reason for the increase

in syphilis incidence when the PrEP uptake increases is unknown. This increase

could be due to several factors like decrease in condom use, since several studies

suggest that condom use is decreasing among gbMSM [58, 147, 148]

Our results seem consistent with previous modeling studies on effectiveness of

PrEP, condom use, TasP and syphilis interventions [34, 93, 109, 116, 174]. But the
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question still remain on how to give PrEP to susceptible gbMSM in BC and not in-

crease the epidemic of syphilis. Our model showed that having 10000 PrEP uptake

could lead to 5% increase in syphilis incidence. According to a recent study in a

similar setting to ours, we expect that testing individuals on PrEP more and more

often for syphilis and other STIs could avert this 5% increase in syphilis incidence.

Hence, the reason to develop cost-effectiveness strategies for the distribution of

PrEP and to prioritize testing for STIs among gbMSM in BC.

The findings in this work have important implications and are subject to some

limitations. First, we modeled the HIV and syphilis epidemics among gbMSM as a

closed system and did not explicitly model migration in BC. Instead, we assumed a

constant recruitment of gbMSM population due to unavailability of data. Second,

we acknowledge that the model is susceptible to some degree of uncertainty since

most parameters were based on published data and literature. Both of our sensi-

tivity analyses showed how our outcomes could be influenced by the parameters.

Third, based on availability of data and the complexity of the synergy that occurs

between the HIV and syphilis infections, we ssumed a homogeneous mixing pat-

tern in the co-interaction model, whereas studying the impact of interventions in

heterogeneous mixing settings would be a great addition to knowledge on different

intervention strategies among different gbMSM populations. Fourth, we did not

stratify our model by risk and age (i.e., high and low risk, young and old) known

to significantly modify the risk of HIV and syphilis transmission [1, 96, 157, 166].

Therefore we could not assess the effect of PrEP and different degrees of assor-

tativity between different risk and age groups, and the complexities that exist in

the sexual networks of these individuals. Even though, these conditions are some-

what important factors in the co-interaction of both diseases, modeling their effects

would greatly increase the complexity of the model, which is beyond the scope of

this study, and is considered as one of the future works we intend to explore. Es-

timating the effective reproduction number for each of the interventions and their

scenarios will also be a good way to extend our work in order to know the inter-

ventions and scenarios that give the effective reproduction number less than one.

It is worth noting that the success of all the aforementioned interventions is de-

pendent on identifying gbMSM at risk of HIV and/or syphilis infection, and those

already living with HIV but not diagnosed and on ART treatment. Across Canada,
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the Momentum and Engage studies are the major two cohorts that can better under-

stand the key barriers to accessing PrEP, TasP and trends in STIs among gbMSM

[35, 77, 106, 107, 163].

5.6 Conclusion
The use of a co-interaction model to combine the synergies between HIV and

syphilis infections enables us to evaluate the impact of HIV and syphilis interven-

tions on both epidemics. Our model can be applied to other settings similar to BC

and would be useful to measure how succesful interventions like the ones consid-

ered in this study could impact the epidemics of both HIV and syphilis infections.

Based on our work, we propose that it is important to develop some public health

policies to address the co-interaction of HIV and syphilis infections, in BC and in

other parts of the world. Given the HIV-syphilis synergy and according to WHO

threshold for the elimination of both diseases as a public health concern, healthcare

providers should ensure to further optimize TasP, increase the provision of PrEP,

improve syphilis testing and treatment particularly among gbMSM using PrEP, en-

courage and promote consistent condom use particularly among those who may not

be eligible to receive PrEP, and initiate immediate treatment of gbMSM and their

sexual contacts when necessary. Successful implementation of these proceedings

is crucial to addressing the HIV and syphilis epidemics among gbMSM.
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Chapter 6

Conclusions and future directions

The thesis studied the epidemic and endemic scenarios of infectious diseases trans-

mission and prevention using mathematical models. Specifically, epidemic of dis-

eases transmitted through indirect transmission pathways using the basic repro-

duction number and the final size relation were carried out. In addition, the syn-

demic dynamics of endemic diseases, particularly sexually transmitted diseases

such as HIV and syphilis were addressed, with different intervention scenarios in-

vestigated.

In Chapter 1, we introduced some basic background of infectious diseases in

humans and simple appproach to modeling them mathematically. This chaper high-

lights the impact of mathematical modeling, modeling used for public health and

some challenges.

In Chapter 2, the main contribution was the developed indirect transmission

SIRP model which considered the effect of age of infection and variable pathogen

shedding rates on the basic reproduction number and the final size relation, in

an heterogeneous mixing environment. Following a Langrangian approach, we

kept track of individual’s place of residence at all times, and showed how move-

ment within and between patches could impact the final epidemic size. This study

demonstrated that: (1) the patches behave separately (independently) with no mo-

bility; (2) the patches have the same level of disease prevalence with equal mobility

(symmetric movement); and (3) patch 1 has highest disease prevalence with high

mobility.
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In Chapter 3, we extended the work done in Chapter 2 to incorporate how dif-

fusion impacts the epidemic of airborne infections. A class of coupled PDE-ODE

system was formulated and proposed as a novel approach, with human populations

modeled using ODE, and with the movement and amount of pathogen in the air

modeled with PDE. Matched asymptotic analysis was used to reduce the coupled

PDE-ODE system into an ODE. It was shown analyticaly and numerically how the

change in diffusion rate could increase or decrease the basic reproduction num-

ber and the final epidemic size. The effect of the location of the patches was also

explored analytically and numerically. This study demonstrated that epidemic de-

creases with increase in the diffusion rate, and with human populations confined in

a region. The model suggested that, in order to reduce the complexity in using a

PDE model, the proposed ODE system which approximates the PDE system in the

limit where diffusion is large, could be used to assess the effect of diffusion.

In Chapter 4, the main contribution was the developed co-interaction model

of HIV and syphilis used to demonstrate how one disease influences the other.

We analytically and numerically established the necessary conditions under which

disease-free and endemic equilibria are asymptotically stable using the effective

reproduction number. This theoretical study showed that, HIV impacts syphilis

epidemic negatively and vice versa. Using parameters from published articles, we

showed one possibility of diseases eradication. The results further showed the

importance of taking other STIs into consideration when trying to eradicate HIV

epidemic.

In Chapter 5, the model in Chapter 4 was extended to investigate the impact

of interventions on HIV and syphilis epidemics, and how the combination of dif-

ferent interventions could be used to reduce or eliminate both epidemics among

gay, bisexual, and other men who have sex with men in BC. Based on the WHO

threshold for disease elimination as a public health concern, our results suggested

that both diseases could be eliminated if we further optimize TasP, syphilis testing

and treatment, PrEP uptake and further promote condom use. In addition, the study

demonstrated that the synergy that exists between HIV and other STIs, particularly

syphilis should be taken into consideration in order to reach the elimination tar-

gets. This result is consistent with the ongoing HIV and STIs testing and treatment

recommendation among PrEP users.
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For simplification, several aspects of the underlying problems were not mod-

eled. For future directions, it may be possible to incorporate more realistic fea-

tures into the models considered in this thesis. Some of the additional features

include, but are not limited to, direct transmission pathways with/without saturated

incidence, heterogeneity, networking, model stratification by risk, age and gender,

since all these are important factors to consider in the modeling of infectious dis-

eases. By incorporating direct transmission in the epidemic models, and using a

lagrangian approach to explore human mobility (Chapters 2 & 3), it may be possi-

ble to significantly improve the model outcomes.

Similarly, in order to have a stronger impact of interventions, it may be neces-

sary to stratify our models (Chapters 4 & 5) by different risk level and age group in

the future (depending on the availablity of data). By distributing PrEP by risk level

and age, we may be able to significantly reduce, avert and probably eliminate the

epidemics within a shorter period of time. In addition, deriving conclusions (Chap-

ter 5) based on the parameter set from a single best fit can be unreliable, hence the

need to assess model behavior and outcomes for all important parameters to an

acceptable extent in the future (e.g., the use of Bayesian approach). Similarly, the

issue of parameter nonidentifiability could also be resolved with the use of more

data or by reducing the number of unknown parameters.
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Appendix A

Supporting information for the
co-interactional model used in
Chapter 4

Here we show the Lemmas and Proofs of some results presented in the text.

A.1 The proof of Lemma 4.4.2
In this proof, we show that the disease free equilibrium E0S for syphilis-only model

is a global attractor.

Proof.

Let f ∞ = lim sup
t→∞

f (t) and f∞ = lim inf
t→∞

f (t).

It follows from I′S(t) = βS
ISS
NS
− (µ +σ1)IS, and

S
NS
≤ 1,

IS

NS
≤ 1 that

I′S(t)≤ βSIS− (µ +σ1)IS ≤ (µ +σ1)

(
βS

(µ +σ1)
−1
)

IS (A.1)

≤ (µ +σ1)(ReS−1)IS

Using the approach of [164], if we choose a sequence tn→∞, such that IS(tn)→ I∞
S ,

and I′S(tn)→ 0, we then have 0≤ (ReS−1)I∞
S .
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Since
(

βS

(µ +σ1)

)
< 1, we have I∞

S = 0, and therefore lim
t→∞

IS(t) = 0.

Similarly, choose a sequence t1
n →∞, such that S(t1

n)→ S∞. Then using IS(t)→
0 as t→ ∞ in the first equation in (4.5), we have

0≤Π−µS∞, (A.2)

and Equation (A.2) gives S∞ = S∞ = Π

µ
. QED.

A.2 The proof of Lemma 4.4.4
We show here that the endemic equilibrium point E∗S is globally asymptotically

stable.

Proof. We can similarly show as in Lemma 4.4.2 above, that the unique endemic

equilibrium point E∗S is globally asymptotically stable for ReS > 1.

Recall that NS =
Π

µ
as t → ∞, and substituting S = NS− IS =

Π

µ
− IS in (4.5),

we have

I′S = λS

(
Π

µ
− IS

)
− (µ +σ1)IS. (A.3)

We have from Dulac’s multiplier
1
IS

that

∂

∂ IS

{
βSIS

ISΠ/µ

(
Π

µ
− IS

)
− (µ +σ1)

}
=−µβS

Π
=−βS

NS
< 0 (A.4)

Therefore, by Dulac’s criterion, we conclude that there are no periodic orbits in ΞS.

Since ΞS is positively invariant, and the endemic equilibrium E∗S exists whenever

ReS > 1, then we can infer from the Poincare-Bendixson Theorem in [98] that

for all time t, all solutions of the limiting system emanating in ΞS remain in ΞS. In

addition, the absence of periodic orbits in ΞS indicates that the endemic equilibrium

of syphilis-only model is globally asymptotically stable whenever ReS > 1.
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A.3 The proof of Lemma (4.5.4)
In this proof, we show that the endemic equilibrium point of HIV-only model (4.34)

is globally asymptotically stable in ΞH \ΞH0.

Proof. We can similarly show as in Lemma 4.5.2 above, that the unique endemic

equilibrium point for this simple case exits if and only if ReH0 > 1.

Recall that NH =
Π

µ
as t→ ∞, and substituting

S = NH −UH −AH −TH =
Π

µ
−UH −AH −TH

in (4.34), we have

U ′H = λH

(
Π

µ
−UH −AH −TH

)
− (µ +α1)UH .

A′H = α1UH +ν1TH − (µ +ρ2)AH .

T ′H = ρ2AH − (µ +ν1)TH .

We have from Dulac’s multiplier
1

UHAHTH
that

∂

∂UH

{
βH(UH +κ1AH)

UHAHTHΠ/µ

(
Π

µ
−UH −AH −TH

)
− (µ +α1)

AHTH

}
+

∂

∂AH

{
α1UH +ν1TH − (µ +ρ2)AH

UHAHTH

}
+

∂

∂TH

{
ρ2AH − (µ +ν1)TH

UHAHTH

}
= −

{
βH

AHTHΠ/µ
+

βHκ1

U2
HTH
− βHκ1AH

U2
HTHΠ/µ

− βHκ1TH

U2
HTHΠ/µ

+
α1UH

UHA2
HTH

+
ν1TH

UHA2
HTH

+
ρ2AH

UHAHT 2
H

}
= −

{
βH

AHTHΠ/µ
+

βHκ1

U2
HTH

(
1− AH

Π/µ
− TH

Π/µ

)
+

α1UH

UHA2
HTH

+
ν1TH

UHA2
HTH

+
ρ2AH

UHAHT 2
H

}
< 0 since AH +TH ≤Π/µ in ΞH .

Therefore, by Dulac’s criterion, we conclude that there are no periodic orbits in

ΞH \ΞH0. Since ΞH is positively invariant, and the endemic equilibrium exists

186



whenever ReH0 > 1, we can infer from the Poincare-Bendixson Theorem in [98]

that for all time t, all solutions of the limiting system emanating in ΞH remain

in ΞH . In addition, the absence of periodic orbits in ΞH indicates that the endemic

equilibrium of HIV-only model is globally asymptotically stable whenever ReH0 >

1.

A.4 The proof of Lemma (4.6.2)
We show here that the disease-free equilibrium point E0 is globally asymptotically

stable.

Proof. The proof is based on a Comparison Theorem in [108] and by following the

approach in [23, 29, 87, 126, 128, 159]. Equations of the infected compartments in

system (4.4) can be written as

dIS
dt

dUH
dt

dAH
dt

dTH
dt

dUSH
dt

dASH
dt

dTSH
dt



=(B−C)



IS

UH

AH

TH

USH

ASH

TSH



−
(

1− S
N

)
B



IS

UH

AH

TH

USH

ASH

TSH



, where B and C are given by
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B=



βS 0 0 0 φ1βS φ2βS φ3βS

0 βH κ1βH 0 κ2βH κ3βH 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, C =



A1 0 0 0 0 0 0

0 A2 0 0 0 0 0

0 −α1 A3 −ν1 −σ2 −σ3 0

0 0 −ρ2 A4 0 0 −σ4

0 0 0 0 A5 0 0

0 0 0 0 0 A6 −ν2

0 0 0 0 0 −ρ1 A7



.

We have A1 = µ +σ1,

A2 = µ +dUH +α1,

A3 = µ +dAH +ρ2,

A4 = µ +ν1,

A5 = µ +dUSH +σ2,

A6 = µ +dASH +σ3 +ρ1,

A7 = µ +ν2 +σ4.
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For all t ≥ 0 and since S≤ N in Ξ, we have

dIS
dt

dUH
dt

dAH
dt

dTH
dt

dUSH
dt

dASH
dt

dTSH
dt



≤ (B−C)



IS

UH

AH

TH

USH

ASH

TSH



(A.5)

Since the eigenvalues of the matrix B−C all have negative real parts, then the

linearized differential inequality system (A.5) is stable whenever Re < 1. Con-

sequently, (IS,UH ,AH ,TH ,USH ,ASH ,TSH) → (0,0,0,0,0,0,0) as t → ∞. It fol-

lows by a Comparison Theorem as in [108] that (IS,UH ,AH ,TH ,USH ,ASH ,TSH)→
(0,0,0,0,0,0,0) as t → ∞ and evaluating system (4.4) at IS = UH = AH = TH =

USH = ASH = TSH = 0 gives S→ S0 for Re < 1. Therefore, the DFE E0 is GAS for

Re < 1.
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Appendix B

Supporting information for the
co-interactional model used in
Chapter 5

B.1 Mathematical model

B.1.1 Model equations

The full HIV-syphilis model, which represents the health states of the gbMSM

population in BC, consists of 8 ordinary differential equations. Each equation de-

notes the following compartments: susceptible S, mono-infected with syphilis IS,

mono-infected with HIV and unaware UH , mono-infected with HIV and aware AH ,

mono-infected with HIV and on treatment TH , co-infected with HIV and unware

USH , co-infected with HIV and aware ASH , co-infected with HIV and on treatment

TSH . Parameters explanation and assumptions are in this Appendix Table 1. The
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differential equations used in the model are given by,

dS
dt

= Π+σ1IS− (µ +λS +λH)S,

dIS

dt
= λSS− (µ +σ1 + γλH)IS,

dUH

dt
= λHS− (µ +dUH +α1 +η1λS)UH ,

dAH

dt
= α1UH +σ2USH +σ3ASH +ν1TH − (µ +dAH +η2λS +ρ2)AH ,

dTH

dt
= ρ2AH +σ4TSH − (µ +η3λS +ν1)TH , (B.1)

dUSH

dt
= γλHIS +η1λSUH − (µ +dUSH +σ2)USH ,

dASH

dt
= η2λSAH +ν2TSH − (µ +dASH +σ3 +ρ1)ASH ,

dTSH

dt
= ρ1ASH +η3λSTH − (µ +ν2 +σ4)TSH ,

The recruitment rate Π, the total population N, the syphilis force of infection λS

and the HIV force of infection λH are given by

N(t) = S(t)+ IS(t)+UH(t)+AH(t)+TH(t)+USH(t)+ASH(t)+TSH(t)

Π = µN +dUHUH +dAHAH +dUSHUSH +dASHASH

λS = βS(1− εξ )((1−ψ)+ψRP)
(IS +φ1USH +φ2ASH +φ3TSH)

N

λH = βH(1− εξ )((1−ψ)+(1−θ)ψRP)
(UH +κ1AH +κ2USH +κ3ASH)

N
.

The parameters φ1, φ2, φ3 represent the relative infectivity of individuals in the co-

infected and unaware USH , co-infected and aware ASH , and in the co-infected and

on treatment TSH , respectively, in comparison to individuals mono-infected with

syphilis IS. The parameters κ1, κ2, κ3 represent the relative infectivity of individ-

uals in the mono-infected and aware AH , co-infected and unaware USH , and in

the co-infected and aware ASH , respectively, in comparison to individuals mono-

infected with HIV and unaware UH . The parameters ε, ξ respectively represent

the proportion and effectiveness of condom use, the parameters ψ, θ respectively

represent the proportion and effectiveness of PrEP, and the parameter RP repre-
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sents the relative risk associated with using PrEP. It is worth mentioning that the

model assumes screening for syphilis among individuals co-infected and unaware

can help assess a person’s risk for getting HIV [54].

B.1.2 Model parameters and variables

Table B.1: Model parameters and variables.
Abbreviations: PrEP: Pre-Exposure Prophylasis, gbMSM: Gay, bisex-
ual and other men who have sex with men, STIs: Sexually Transmitted
Infections, ART: Antiretroviral Therapy

Parameter Explanation and Values Reference
S Susceptible individuals

IS Individuals mono-infected with syphilis

UH Individuals mono-infected with HIV and un-

aware

AH Individuals mono-infected with HIV and aware

TH Individuals mono-infected with HIV and on

treatment

USH Individuals co-infected with HIV and unaware

ASH Individuals co-infected with HIV and aware

TSH Individuals co-infected with HIV and on HIV

treatment

µ Natural mortality rate of gbMSM, estimated to

be 0.84 deaths per 100 person-years

estimated from

[32, 33, 45]

dUH Mortality rate due to unaware HIV infection

in mono-infected individuals, estimated to be 4

deaths per 100 person-years

adjusted based

on [153]

dAH Mortality rate due to aware HIV infection in

mono-infected individuals, estimated to be 4

deaths per 100 person-years

adjusted based

on [153]

dUSH Mortality rate due to unaware HIV infection in

co-infected individuals, estimated to be 4 deaths

per 100 person-years

adjusted based

on [153]
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dASH Mortality rate due to aware HIV infection in co-

infected individuals, estimated to be 4 deaths per

100 person-years

adjusted based

on [153]

βS Transmission rate for syphilis infection. This is

product of the effective contact rate for syphilis

infection and the probability of syphilis transmis-

sion per contact. The fitted value is 0.234

Fitted

βH Transmission rate for HIV infection. This is

product of the effective contact rate for HIV in-

fection and probability of HIV transmission per

contact, The fitted value is 0.195

Fitted

1/σ1 Time from syphilis infection to treatment for in-

dividuals monoinfected with syphilis. The fitted

value for Status Quo is 3.26 years. Intervention

scenarios: 2 years, 8 months, and 3 months

Fitted

1/σ2 Time from syphilis infection to treatment, and

time to HIV diagnosis for individuals coinfected

with HIV and unaware. The fitted value for Sta-

tus Quo is 18.6 years. Intervention scenarios: 10

years, 5 years, and 3 years

Fitted

1/σ3 Time from syphilis infection to treatment for in-

dividuals coinfected with syphilis and aware. Es-

timated to be 18.6 years for Status Quo. Inter-

vention scenarios: 10 years, 5 years, and 3 years

Assumed based

on σ2

1/σ4 Time from syphilis infection to treatment for in-

dividuals coinfected with HIV and on HIV treat-

ment. Estimated to be 18.6 years for Status Quo.

Intervention scenarios: 10 years, 5 years, and 3

years

Assumed based

on σ2

1/α1 Time from HIV infection to HIV diagnosis. The

fitted value for Status Quo is 3.37 years. Inter-

vention scenarios: 2 years, 1 year, and 6 months

Fitted
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1/ρ2 Time to ART treatment for monoinfected indi-

viduals. The fitted value for Status Quo is 4.61

months. Intervention scenarios: 3 months, 45

days, and 21 days

Fitted

1/ρ1 Time to ART treatment for co-infected individu-

als. Estimated to be 4.61 months for Status Quo.

Intervention scenarios: 3 months, 45 days, and

21 days

Assumed based

on ρ2

1/ν1,1/ν2 Time retained on ART before dropping out for

mono and coinfected individuals respectively.

Estimated to be 2.72,2.72 years respectively for

Status Quo. Intervention scenarios: 3.5 years,

4.5 years, and 6.0 years

adjusted based

on [172]

γ Higher risk of HIV acquisition for people living

with syphilis. Estimated to be 2.5

adjusted based

on [15, 55, 59,

64, 133]

φ1,φ2,φ3 Higher risk of syphilis transmision for coin-

fected individuals compared with individuals

monoinfected with syphilis. Estimated to be

2.867, 2.867, 2.867

[92]

κ1 Higher risk of HIV transmision for individuals

monoinfected with HIV and aware, compared

with individuals monoinfected with HIV and un-

aware. Estimated to be 1.0

Assumed

κ2,κ3 Higher risk of HIV transmision for individu-

als coinfected with HIV and unaware, compared

with individuals monoinfected with HIV and un-

aware. Estimated to be 2, 2

adjusted based

on [5, 133]

N Total number of gbMSM population. Estimated

to be 50900

[62, 68, 69]

η1,η2,η3 Higher risk of syphilis acquisition for people liv-

ing with HIV. Estimated to be 2.237,2.237,2.237

[66]
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ε Proportion of susceptible gbMSM population

that regularly use condoms. Estimated to be 65%

adjusted based

on [168]

ξ Effectiveness of condoms among HIV-negative

gbMSM. Estimated to be 70%

adjusted based

on [160]

ψ Proportion of susceptible gbMSM population us-

ing PrEP. At any time t, the parameter ψ was cal-

culated as the ratio of the number of PrEP and the

size of the susceptible gbMSM population

See Section

B.1.3 for detail

θ Effectiveness of PrEP. Estimated to be 86%. Sen-

sitivity scenarios: 92%, 96%, and 100%

[119, 122, 156]

RP Relative risk associated with using PrEP. Esti-

mated to be 1.24

adjusted based

on [167]

B.1.3 Model assumptions about PrEP uptake in BC

The uptake of Pre-exposure prophylaxis (PrEP) since its approval Health Canada

in 2016 was very low, and PrEP became fully subsidized in BC in January, 2018 for

people at risk of HIV infection [61]. The Drug Treatment Program (DTP) of the BC

Centre for Excellence in HIV/AIDS (BC-CfE) accounted for about 3225 suscepti-

ble gbMSM on PrEP at the end of 2018, and currently close to 4000 in September

2019 (unpublished data). Therefore, in our model, we assumed that during the pe-

riod 2017−2018, the number of gbMSM on PrEP at any time was described by a

sigmoid function from 0 to 3225, achieving the half uptake in the middle of 2017.

For the period 2018− 2019, we assumed that the number of gbMSM on PrEP at

any time was also described by a sigmoid function from 3225 to 4000 individuals,

achieving the half uptake in the middle of 2018. For the intervention starting from

the end of 2019, we assumed that the ratio of the number of PrEP given was kept

constant as it was in 2019.

B.1.4 Model calibration

For better description of the HIV and syphilis epidemics among the gbMSM pop-

ulation in BC, we included the estimates of the number of people living with HIV
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(PLWH), the number of annual new HIV infections from Public Health Agency of

Canada (PHAC) [62, 139] (details in Table B.2), and the estimates of the annual

HIV and syphilis diagnoses (Table B.3).

Table B.2: Estimates of the number of PLWH and the number of annual new
HIV infections from PHAC.
Abbreviation: PLWH: People living with HIV

Variables 2011 estimates 2014 estimates 2016 estimates

PLWH 5840 6013 6070
[4940, 6750] [5080, 6950] [5130, 7010]

Annual new HIV infections 142 141 147
PLWH [110, 200] [100, 200] [90, 260]

Table B.3: Published data on cases of HIV and syphilis infections from BC-
CFE and BCCDC respectively.
Abbreviation: BCCfE: British Columbia Centre for Excellence for
HIV/AIDS; BCCDC: British Columbia Centre for Disease Control

Variables Years References

Annual HIV diagnoses 2011−2018 [71–75]

Annual syphilis diagnoses 2012−2017 [63, 67, 70]

The model calibration was based on the available data from Tables B.2 and

B.3 A unique set of parameter values in Table B.1 that minimizes the difference

between simulation and the target values was kept if the model simulation fitted

to the following data: (1) the PHAC estimates of the number of PLWH in 2011,

2014 and 2016; (2) the annual number of new HIV infections in 2011, 2014 and

2016; (3) the annual number of HIV diagnoses during the period 2011−2018; (4)

the annual number of syphilis diagnoses during the period 2012−2017. We ran a

simulation inside a Nelder-Mead simplex algorithm to determine the optimal value

of unknown parameters, assuming a tolerance of 10−3 and with all other parameters

fixed [130].
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Figure B.1: PHAC estimates of PLWH and annual new HIV infections (blue
error bars) and model simulations (solid red line) during the period
2011−2018

Figure B.2: Annual HIV and syphilis diagnoses (blue points) and model sim-
ulations (solid red line) during the period 2011−2018
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For the implementation of the analysis, we used the optimization package in the

SCIPY library in PythonTM version 2.7.6. We allow the model to run from 2011

to 2028 adjusting for changes in the number of susceptible gbMSM on PrEP in

different year (details in Section B.1.3). It is worth mentioning that throughout all

simulated scenarios, the total gbMSM population (N = 50900) was kept constant.

The algorithm fitted the unkown parameters, and the solution that minimized the

sum-squared relative residuals of the model’s estimates and the data (the solution

that best fit the available data) are shown in Figures B.1 and B.2.

B.2 Model outcomes
The model outcomes in 2028 under TasP, PrEP, Test and Treat syphilis, condom

use and different combinations of intervention scenarios are summarized in Tables

(B.4), (B.5), (B.6), (B.8)
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Table B.4: Model outcomes under TasP interventions

HIV Prevalence Cumulative HIV Incident cases Cumulative mortality cases, PLWH Cumulative syphilis Incident cases

Scenarios N
Reduction %

Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

Status-Quo
in 2028 6432 - - 1389 - - 961 - - 8039 - -

Decrease Time from HIV Infection to Diagnosis
Low 6358 74 -1% 1284 105 -8% 914 47 -5% 8029 10 0%
Medium 6282 150 -2% 1176 213 -15% 866 96 -10% 8017 22 0%
High 6236 196 -3% 1110 279 -20% 836 125 -13% 8008 31 0%

Decrease Time from HIV Diagnosis to ART Initiation among mono-infected individuals
Low 6332 100 -2% 1238 151 -11% 888 73 -8% 8014 25 0%
Medium 6224 208 -3% 1076 313 -23% 809 152 -16% 7986 53 -1%
High 6163 269 -4% 984 405 -29% 764 197 -20% 7970 69 -1%

Decrease Time from HIV Diagnosis to ART Initiation among co-infected individuals
Low 6328 104 -2% 1263 126 -9% 921 40 -4% 8048 -9 0%
Medium 6213 219 -3% 1125 264 -19% 877 84 -9% 8058 -19 0%
High 6146 286 -4% 1044 345 -25% 851 110 -11% 8064 -25 0%

Increase Time Retained on ART among mono-infected individuals
Low 6375 57 -1% 1303 86 -6% 919 42 -4% 8025 14 0%
Medium 6328 103 -2% 1233 156 -11% 885 76 -8% 8014 25 0%
High 6286 146 -2% 1170 219 -16% 854 107 -11% 8003 36 0%

Increase Time Retained on ART among co-infected individuals
Low 6367 64 -1% 1311 77 -6% 936 25 -3% 8045 -6 0%
Medium 6315 117 -2% 1248 141 -10% 916 45 -5% 8049 -11 0%
High 6267 165 -3% 1190 199 -14% 898 63 -7% 8054 -15 0%

Decrease Time from syphilis Infection to treatment, test for HIV (co-infected & unaware)
Low 6372 60 -1% 1323 66 -5% 942 19 -2% 7890 149 -2%
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Medium 6281 150 -2% 1221 168 -12% 913 48 -5% 7659 380 -5%
High 6209 223 -3% 1139 250 -18% 888 73 -8% 7470 569 -7%

Combined TasP (Combination of the previous HIV interventions)
Low 6021 411 -6% 842 547 -39% 741 220 -23% 7874 165 -2%
Medium 5692 740 -12% 407 982 -71% 571 390 -41% 7675 364 -5%
High 5536 896 -14% 203 1186 -85% 494 467 -49% 7539 499 -6%
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Table B.5: Model outcomes under Test & Treat syphilis interventions

HIV Prevalence Cumulative HIV Incident cases Cumulative mortality cases, PLWH Cumulative syphilis Incident cases

Scenarios N
Reduction %

Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

Status-Quo
in 2028 6432 - - 1389 - - 961 - - 8039 - -

Decrease Time from syphilis Infection to treatment among mono-infected individuals
Low 6355 77 -1% 1375 14 -1% 950 11 -1% 7117 922 -11%
Medium 6251 180 -3% 1342 46 -3% 933 28 -3% 5788 2251 -28%
High 6217 215 -3% 1327 62 -4% 926 35 -4% 5326 2712 -34%

Decrease Time from syphilis Infection to treatment, test for HIV (co-infected & unaware)
Low 6372 60 -1% 1323 66 -5% 942 19 -2% 7890 149 -2%
Medium 6281 150 -2% 1221 168 -12% 913 48 -5% 7659 380 -5%
High 6209 223 -3% 1139 250 -18% 888 73 -8% 7470 569 -7%

Decrease Time from syphilis Infection to treatment among individuals co-infected and aware
Low 6423 9 0% 1382 7 -1% 960 1 0% 7919 120 -1%
Medium 6405 27 0% 1368 21 -2% 958 3 0% 7679 360 -4%
High 6384 47 -1% 1352 37 -3% 955 6 -1% 7393 646 -8%

Decrease Time from syphilis Infection to treatment among individuals co-infected and on ART
Low 6391 41 -1% 1361 28 -2% 956 5 0% 7228 811 -10%
Medium 6325 107 -2% 1314 75 -5% 948 13 -1% 5898 2141 -27%
High 6267 164 -3% 1271 118 -8% 941 20 -2% 4751 3288 -41%

Combined Test & Treat (Combination of the previous syphilis interventions)
Low 6260 171 -3% 1278 111 -8% 928 33 -3% 6078 1961 -24%
Medium 6060 372 -6% 1117 272 -20% 884 77 -8% 3400 4639 -58%
High 5960 471 -7% 1010 378 -27% 858 103 -11% 2048 5991 -75%
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Table B.6: Model outcomes under PrEP and condom use interventions

HIV Prevalence Cumulative HIV Incident cases Cumulative mortality cases, PLWH Cumulative syphilis Incident cases

Scenarios N
Reduction %

Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

Status-Quo
in 2028 6432 - - 1389 - - 961 - - 8039 - -

Increase Condom Use
Low 6291 141 -2% 1260 129 -9% 940 21 -2% 7219 820 -10%
Medium 6161 271 -4% 1139 250 -18% 921 40 -4% 6454 1585 -20%
High 6042 390 -6% 1026 363 -26% 903 58 -6% 5739 2300 -29%

Increase PrEP Use
Low 6398 34 -1% 1352 37 -3% 957 4 0% 8099 -60 1%
Medium 6332 100 -2% 1279 110 -8% 948 13 -1% 8220 -181 2%
High 6235 197 -3% 1172 217 -16% 935 26 -3% 8403 -364 5%
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Table B.7: Model outcomes under the combination of different interventions

HIV Prevalence Cumulative HIV Incident cases Cumulative mortality cases, PLWH Cumulative syphilis Incident cases

Scenarios N
Reduction %

Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

N
Averted
cases

%
Change
from
Status
Quo

Status-Quo
in 2028 6432 - - 1389 - - 961 - - 8039 - -

TasP and Test & Treat (Combination of HIV and syphilis interventions)
Low 5955 476 -7% 817 572 -41% 733 228 -24% 6065 1973 -25%
Medium 5632 799 -12% 383 1006 -72% 563 398 -41% 3413 4626 -58%
High 5507 925 -14% 194 1195 -86% 490 471 -49% 2063 5976 -74%

Increase Combined TasP and Condom Use
Low 5940 492 -8% 768 621 -45% 731 230 -24% 7082 957 -12%
Medium 5622 810 -13% 343 1046 -75% 564 397 -41% 6190 1849 -23%
High 5488 943 -15% 159 1230 -89% 489 472 -49% 5422 2617 -33%

Increase Combined Test & Treat, and Condom Use
Low 6147 285 -4% 1164 225 -16% 911 50 -5% 5474 2565 -32%
Medium 5895 536 -8% 933 456 -33% 859 102 -11% 2815 5224 -65%
High 5752 680 -11% 772 617 -44% 826 135 -14% 1570 6469 -80%

Increase Combined TasP, Test & Treat, and Condom Use
Low 5885 547 -9% 747 642 -46% 723 238 -25% 5470 2569 -32%
Medium 5579 853 -13% 327 1062 -76% 558 403 -42% 2832 5207 -65%
High 5470 962 -15% 154 1235 -89% 487 474 -49% 1584 6455 -80%

Increase Combined TasP and PrEP Use
Low 6002 430 -7% 821 568 -41% 739 222 -23% 7935 104 -1%
Medium 5668 764 -12% 378 1011 -73% 569 392 -41% 7858 181 -2%
High 5516 916 -14% 176 1213 -87% 492 469 -49% 7907 132 -2%

Increase Combined Test & Treat, and PrEP Use
Low 6233 199 -3% 1246 143 -10% 924 37 -4% 6122 1917 -24%
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Medium 5997 435 -7% 1037 352 -25% 875 86 -9% 3468 4571 -57%
High 5851 580 -9% 869 520 -37% 843 118 -12% 2124 5915 -74%

Increase Combined TasP, Test & Treat, and PrEP Use
Low 5939 493 -8% 797 592 -43% 731 230 -24% 6110 1928 -24%
Medium 5614 818 -13% 359 1030 -74% 562 399 -42% 3481 4558 -57%
High 5492 940 -15% 170 1219 -88% 489 472 -49% 2140 5899 -73%
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Table B.8: HIV prevalence and incidence rates, syphilis incidence rates, mor-
tality rate among PLWH under different interventions

Scenarios HIV point pe-
valence (%)

HIV Incidence
rate (per 100 sus-
ceptible gbMSM)

Mortality rate
(per 1000 PLWH)

Syphilis Incidence
rate (per 1000 sus-
ceptible gbMSM)

Status-Quo
in 2028

12.64 4.01 17.65 24.68

Decrease Time from HIV Infection to Diagnosis
Low 12.49 3.54 16.53 24.54

Medium 12.34 3.15 15.61 24.4

High 12.25 2.95 15.14 24.3

Decrease Time from HIV Diagnosis to ART Initiation among mono-infected individuals
Low 12.44 3.5 16.33 24.42

Medium 12.23 2.98 14.91 24.15

High 12.11 2.69 14.11 23.99

Decrease Time from HIV Diagnosis to ART Initiation among co-infected individuals
Low 12.43 3.54 16.87 24.62

Medium 12.21 3.03 15.99 24.55

High 12.07 2.74 15.47 24.51

Increase Time Retained on ART among mono-infected individuals
Low 12.52 3.72 16.89 24.53

Medium 12.43 3.48 16.26 24.42

High 12.35 3.27 15.69 24.31

Increase Time Retained on ART among co-infected individuals
Low 12.51 3.71 17.17 24.64

Medium 12.41 3.47 16.76 24.61
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High 12.31 3.26 16.38 24.59

Decrease Time from syphilis Infection to treatment among mono-infected individuals
Low 12.48 3.71 17.31 19.73

Medium 12.28 3.33 16.86 14.67

High 12.21 3.22 16.72 13.3

Decrease Time from syphilis Infection to treatment, test for HIV (co-infected & unaware)
Low 12.52 3.64 17.09 23.8

Medium 12.34 3.16 16.32 22.61

High 12.2 2.85 15.82 21.8

Decrease Time from syphilis Infection to treatment among individuals co-infected and aware
Low 12.62 3.96 17.62 23.97

Medium 12.58 3.88 17.56 22.58

High 12.54 3.78 17.5 20.98

Decrease Time from syphilis Infection to treatment among individuals co-infected and on ART
Low 12.56 3.79 17.5 20.08

Medium 12.43 3.45 17.24 13.38

High 12.31 3.19 17.02 8.7

Combined TasP (Combination of the previous HIV interventions)
Low 11.83 1.97 13.15 23.39

Medium 11.18 0.66 10.04 22.27

High 10.88 0.2 8.91 21.76

Combined Test & Treat (Combination of the previous syphilis interventions)
Low 12.3 3.17 16.66 14.27

Medium 11.91 2.35 15.66 4.47

High 11.71 2.04 15.26 1.25

Increase Condom Use
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Low 12.36 3.49 17.29 21.2

Medium 12.1 3.03 16.95 18.13

High 11.87 2.63 16.64 15.43

TasP and Test & Treat (Combination of HIV and syphilis interventions)
Low 11.7 1.71 12.86 14.02

Medium 11.07 0.49 9.87 4.43

High 10.82 0.14 8.87 1.26

Increase Combined TasP and Condom Use
Low 11.67 1.73 12.97 20.21

Medium 11.04 0.53 9.96 16.67

High 10.78 0.15 8.89 14.02

Increase Combined Test & Treat, and Condom Use
Low 12.08 2.8 16.4 12.3

Medium 11.58 1.89 15.34 3.41

High 11.3 1.5 14.86 0.85

Increase Combined TasP, Test & Treat, and Condom Use
Low 11.56 1.52 12.73 12.14

Medium 10.96 0.41 9.83 3.43

High 10.75 0.11 8.86 0.86

Increase PrEP Use
Low 12.57 3.88 17.58 24.89

Medium 12.44 3.62 17.43 25.31

High 12.25 3.26 17.22 25.94

Increase Combined TasP and PrEP Use
Low 11.79 1.91 13.11 23.61

Medium 11.14 0.61 10.02 22.98
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High 10.84 0.17 8.91 23.2

Increase Combined Test & Treat, and PrEP Use
Low 12.24 3.07 16.6 14.39

Medium 11.78 2.15 15.53 4.58

High 11.5 1.71 15.03 1.31

Increase Combined TasP, Test & Treat, and PrEP Use
Low 11.67 1.66 12.83 14.15

Medium 11.03 0.46 9.86 4.55

High 10.79 0.13 8.87 1.32
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