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Abstract

Automatic Modulation Classification (AMC) detects the modulation type and or-
der of the received signal using limited prior knowledge within a short observa-
tion interval. In this thesis, we aim to provide a computation-efficient and high-
performance AMC model for resource-constrained mobile devices.

We use a public RadioML dataset and introduce three data pre-processing
methods including noise reduction, normalization, and label smoothing before
training the raw signals. Besides four common signal representations, we propose
a new signal representation called a three-dimensional constellation image.

For each signal representation, we carefully design a Deep Learning (DL)
model. In addition to the traditional Convolutional Neural Network (CNN), two
new AMC model structures are proposed. The attention module is integrated
into the AMC model structure based on conventional Long Short-term Mem-
ory (LSTM) networks. Another proposed AMC model structure connects CNN,
LSTM, and densely connected neural networks with two additional connections.

After training the AMC models, we analyze the overall and per-class perfor-
mance. We also study the computational complexity of trained AMC models in
terms of memory consumption and detection efficiency. Overall, the results in-
dicate that the proposed data pre-processing methods and the new AMC model
structures can significantly improve the classification performance. To reduce the
complexity of proposed AMC models, we introduce weight pruning to remove un-
necessary connections in DL models. After weight pruning, the proposed AMC
models have negligible performance degradation.
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To further improve the performance of AMC models, we also propose en-
semble learning to train a second-level model based on multiple first-level AMC
models. With three-fold cross-validation, the second-level model can train on the
whole dataset and have an F1-score improvement of at least 10%. We also con-
duct weight pruning to reduce the unnecessary parameters of the ensemble learned
model. Overall, after weight pruning, the ensemble learned AMC model receives
an F1-score of 0.965 when the signal-to-noise ratio is greater than 6 dB.

iv



Lay Summary

Automatic Modulation Classification (AMC) is an important technology that finds
applications in both civilian and military communication systems. AMC classifies
the modulation types and orders of the received signals in short observation time
and typically requires less prior statistical information. This thesis aims to provide
a high-performance and memory-efficient AMC model for mobile devices.

We propose two improved Deep Learning (DL) models based on the existing
AMC models and three data pre-processing methods before training AMC mod-
els. To further improve the classification accuracy of the proposed AMC models,
we combine multiple AMC models into one model. To improve computational
efficiency, we further remove the unnecessary connections in the model structure.
Both performance analysis and experimental results validate the efficiency of the
proposed three data pre-processing methods, two new DL model structures, and
the combination of single models.
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Chapter 1

Introduction

In this chapter, we first introduce the purpose of Automatic Modulation Clas-
sification (AMC). We then introduce the classification of AMC methods with
motivations, and state our contributions. The structure of the thesis is outlined at
the end of this chapter.

1.1 Background
Radio spectrum is scarce. To use the radio spectrum efficiently, we need to mon-
itor and understand the spectrum resource usage. Effective use of radio spectrum
calls for developing advanced algorithms to share the available spectrum dynam-
ically. To achieve this goal, we are required to extract useful information from
complex radio signals over a wide frequency range [1].

Cognitive Radio (CR) can mitigate the long-standing spectrum scarcity prob-
lem [2]. CR automatically detects available channels in the wireless spectrum
to utilize unused spectrum. In CR, as an important element in determining the
throughput, robustness, and overall implementation overhead, the modulation type
is automatically determined according to the external environments.

As an intermediate step between signal detection and demodulation, Modula-
tion Recognition (MR) is the task of detecting the modulation type and modula-

1



tion order of a received radio signal [3]. AMC is a task to complete the MR task
in an autonomous way using limited prior knowledge within a short observation
interval.

Adaptive modulation uses different modulation schemes, such as different or-
ders of Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK)
according to changing channel conditions. In the adaptive modulation, pilot sym-
bols are commonly used to help demodulate in fading environments [4]. Under a
limited power budget, applying AMC to adaptive modulation without pilot tone
can increase spectral efficiency without sacrificing the Bit Error Rate (BER) per-
formance [5].

AMC has numerous civilian and military applications [1, 3, 6–9]. For civilian
applications, AMC is essential for signal sensing for cooperative communication
and spectrum interference monitoring. For military applications, AMC provides
added advantages for signal interception, jamming and localization of a hostile
signal in electronic warfare and surveillance.

1.2 AMC Methods
In general, MR can be formulated as a classification problem. Various MR
approaches in traditional wireless networks can be divided into two broad cat-
egories: Likelihood-based Method (LBM) and Feature-based Method (FBM)
1. Recently, many researchers have also applied Deep Learning-based Method
(DLM) to AMC, since DLM is simple to design, robust to model mismatch and
less dependent on prior features [6, 7, 10].

1.2.1 LBM
In LBM, the MR is presented as multiple composite hypothesis-testing problems.
LBM builds a probabilistic model for the received signal with a proper decision
criterion, where the modulation type having the largest likelihood value is the

1The LBM and FBM are also known as the decision-theoretic method and statistical pattern
recognition method, respectively.
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identified output. LBM assumes that the Probability Density Function (PDF)
of the transmitted signal contains all information for classification. Even though
LBM can achieve the highest recognition rate in the Bayesian sense for a given
model, LBM has the following four disadvantages [6].

First, obtaining accurate prior PDF information of the transmitted signal is
typically infeasible in most practical scenarios, e.g., non-cooperative communica-
tion.

Second, for LBM, it is challenging to obtain an exact closed-form solution
for the decision function of this hypothesis-testing problem. Even though such a
closed-form solution exists, for example in the PSK classification problem with
unknown carrier phase [8], the high computation complexity makes such a classi-
fier impractical [6].

Third, the classification performance of the LBM models is significantly de-
teriorated in the presence of a model mismatch, which indicates that there is a
discrepancy, e.g., unknown channel conditions, and other receiver discrepancies,
between the ideal system model of LBM and the true model.

Fourth, the practical implementation of LBM suffers from high computational
complexity due to the computation of PDF over unknown channel conditions and
the buffering requirement for a large number of samples. To ease the computa-
tional complexity, three sub-optimal methods have been proposed based on their
assumptions for the unknown parameters [9, 11, 12].

1.2.2 FBM
As a mapping function between features and multi-hypothesis, FBMs normally
focus on three major stages: 1) pre-processing; 2) feature extraction; 3) classifi-
cation.

Pre-processing estimates channel state information, eliminates noise, frequency
and phase offset, or transforms inputs into proper forms for better equalization and
easier feature extraction.

In the feature extraction stage, five statistical features of the instantaneous
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amplitude, phase, and frequency are subsequently extracted [13–21].

• Signal spectral based features [14, 16, 17].

• Wavelet, short-time Fourier transform-based features [17].

• High-order Statics (HOS) based features [14–17, 19, 21]. HOS-based fea-
tures include cumulants-based and moments-based features, which often
have better anti-noise and anti-interference properties.

• Cyclo-stationary analysis-based features [14, 16, 17, 20].

• Graph-based cyclic-spectrum analysis features, such as the constellation di-
agram [18].

For the classification process, the existing classifiers include various tech-
niques from the decision tree [16, 19], lightweight support vector machine [21],
K-Nearest Neighborhood (KNN) [15] to artificial Neural Network (NN) [14, 20].

Compared with LBM, FBM can achieve reasonable probability of correct
classification (Pc) with favorable computational complexity. Moreover, since
FBM exploits training data to extract features, it is more robust to variations of
systems, such as fading, path-loss and time shift.

However, it has been shown that FBM performance is stable only at relatively
high Signal-to-Noise Ratio (SNR) in an Additive White Gaussian Noise (AWGN)
channel, and is dependent on the number of fine-designed features [14–17]. The
manual selection of features [19–21] is also tedious and makes it impossible to
model all changes in time, location, velocity, and propagation conditions of the
transmitter or the receiver.

Overall, all these aforementioned LBM and FBM exploit knowledge about
the structure of different modulation schemes to formulate the classification rules
for AMC. Both methods require intensive processing power to deploy on low-
cost distributed sensors. Also, both methods are inflexible to adjust for various
environments where we need to extract different features for MR.
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1.2.3 DLM
The past decade has witnessed the rapid development of high-performance graphics-
card processing power, improved Stochastic Gradient Descent (SGD) methods,
and strong regularization techniques in Deep Learning (DL) area. With hardware
and software breakthroughs, DL has achieved a series of exciting achievements
in natural language processing, computer vision and other pattern recognition
tasks. This revolution has also sparked interests in extending DL to other do-
mains, including optimization algorithms for wireless communication to achieve
better end-to-end performance [22].

Many research works have been conducted to include DL in AMC [1, 3, 10,
18, 23, 24].

Meng et al. [23] specified an idea of end-to-end Convolutional Neural Network
(CNN)-based AMC, which shows a performance superior to FBM and close to
ideal LBM. Furthermore, Wang et al. [24] combined a CNN model based on In-
phase and Quadrature (IQ) data and another CNN model based on Constellation
Diagram (CD) to improve the poor classification of QAM16 and QAM64 in [23].
However, both works are limited to a relatively simple and small dataset, and as a
result, their models are not suitable in practical applications and not comparable
to other AMC models.

In [3], a public dataset with raw IQ time series radio signals for AMC is
generated using GNU Radio2, and this dataset is named as RadioML dataset. Ex-
periments in [3] show that the proposed DLM based on CNNs are robust to noise
and corruption.

Based on the public dataset [3], Kulin et al. [1] exploited three wireless signal
representations with CNNs for signal classification problems. The results demon-
strated the feasibility of DLM using correct signal representation. However, this
work only considered CNN and Densely-connected Neural Network (DNN) for
the model structure, and the computational complexity was not discussed [1]. To
achieve real-time AMC for varying environmental conditions, the quantized Long

2https://www.gnuradio.org/about/

5

https://www.gnuradio.org/about/
https://www.gnuradio.org/about/


Short-Term Memory (LSTM)-based model for Amplitude and Phase (AP) signals
was proposed by Rajendran et al. [10], where the robustness of LSTM is estab-
lished for variable sample lengths. Besides regular raw IQ signals or AP signals,
Peng et al. [18] also demonstrated the feasibility of constellation diagrams in dif-
ferent DLMs.

To date, a comprehensive performance and complexity comparison of AMC
models based on all possible signal representations is still missing. Whilst some
research has been carried out on different model structures, e.g., CNN and LSTM,
little attention has been paid to ensemble learning. It is also surprising that model
pruning 3 has not been investigated in all the aforementioned papers.

Therefore, in this thesis, we investigate five different signal representations
of RadioML dataset [3] and propose a corresponding DL-based model for each
signal form. Three data pre-processing methods are introduced to improve AMC
performance. To validate the performance of the proposed AMC models, we also
conduct extensive numerical experiments to compute and depict various perfor-
mance metrics including computational complexity. Pruning is further introduced
to achieve real-time AMC on edge devices having constrained computational re-
sources. Besides pruning, we illustrate the remarkably improved performance of
stacking learning. At last, pruned stacking models are proposed for improved
performance and realistic complexity in practice.

1.3 Contributions
This thesis proposes real-time pruned stacking AMC models based on RadioML
dataset. We summarize the main contributions of this thesis as follows:

• We consider five commonly-used signal representations for AMC: time-
domain IQ signal, time-domain AP signal, frequency-domain Fast Fourier
Transform (FFT) signal, image-domain Three-dimensional Constellation
Image (3D-CI), and the statistical-domain manually extracted 23 features

3Model pruning removes the less salient connections in NNs to reduce the number of non-zero
parameters with little loss in final model quality.
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(denoted as “Features”). Noise reduction, normalization, and label smooth-
ing are conducted for signals in various representations before feeding into
the AMC model.

• For AP signal, we combine attention module with LSTMs to add weights
for lower features extracted by the LSTM module. For IQ signal, we add
two additional multi-scale connections to capture information at different
resolutions produced by CNN, LSTM and DNN modules. The well-known
MobileNet version 2 [25] is chosen for 3D-CI and simple CNNs are ex-
ploited for FFT and Features to control the computation complexity.

• Detailed per-class and overall performance metrics are computed for each
AMC model. Memory consumption and detection efficiency are also con-
sidered.

• Pruning AMC models with minimal performance degradation is introduced
to save the memory resource in practical deployment. The performance
comparison of the pruned model with the non-pruned model is also in-
cluded.

• Stacking with three-fold cross-validation is proposed to combine the strengths
of previous single AMC models. We also prune the stacking learned mod-
els to ensure efficient storage memory. Results show that the pruned stack-
ing models can achieve superior performance while having a relatively low
computation complexity, when compared with single AMC models and
conventional AMC models.

1.4 Outline of the Thesis
The rest of the thesis is organized as follows. Chapter 2 presents the signal model,
problem formulation, and fundamental information of DL in AMC. Chapter 3 in-
troduces five signal representations and data pre-processing methods. In Chapter
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4, we illustrate the AMC model structures and experiment setup. Chapter 5 sum-
marizes the performance metrics and evaluates the performance of AMC models.
In Chapter 6, pruning and stacking are conducted for improved end-to-end perfor-
mance. Conclusions and future work are presented in Chapter 7.
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Chapter 2

System Model and Machine
Learning Basics for AMC

2.1 Signal Model
This section describes the system model and formulates the AMC problem. The
processing pipeline for wireless communication system with AMC model is illus-
trated in Figure 2.1. A wireless signal model consists of a transmitter, a receiver
and a channel model at the system level. The AMC module is an intermediate
process that occurs between signal detection and demodulation at the receiver.

2.1.1 Transmitter
The transmitter transforms a stream of source information bits bk ∈ {0, 1} into
transmission signal s(t). After coding and modulation, the message is mapped to a
discrete waveform or signal denoted by sk via a pulse-shaping filter. The Digital-
to-analog (D/A) converter module transforms sk into the continuous baseband
signal sb(t).

The real-valued bandpass signal s(t) having carrier frequency fc can be written
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Source Information Modulation D/A

Information Demodulation A/D

AMC

bits symbols

noise

bk sk sb(t) s(t )

h(t , τ)
Channel

r (t )

n (t )

rb(t )

r (k )

Figure 2.1: Simplified block diagram of signal model processing chain

as [1]

s(t) =<{sb(t)e j2π fct}

=<{sb(t)} cos(2π fct)−={sb(t)} sin(2π fct)
(2.1)

where sb(t) =<{sb(t)}+ j={sb(t)} is the baseband complex envelope of s(t).

2.1.2 Wireless Channel
The channel effects are modelled as a linear time-varying bandpass channel im-
pulse response h(t, τ). A general channel output r(t) under h(t, τ) is

r(t) = s(t) ∗ h(t, τ)+n(t) (2.2)

where n(t) is AWGN having mean zero and variance σ2
n , and ∗ denotes the con-

volutional operation.
Equation 2.2 is widely used in traditional expert features computation. How-

ever, the practical input/output relation is more complicated with a frequency-
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selective fading channel and imperfect receiver hardware. For more details, please
refer to Section B.1.

2.1.3 Receiver
The relationship of r(t) and its baseband complex envelope rb(t) is given by

r(t) =<
{
rb(t)e j2π fct} (2.3)

rb(t) = (sb(t) ∗ hb(t,τ))
1
2

e j(2π f0t+φ(t))+n(t) (2.4)

where f0 is frequency offset of transmitter local oscillator frequency fc and re-
ceiver local oscillator frequency f ′c , φ(t) is the phase offset, and hb(t,τ) is the
baseband channel.

Let r(k) denote the discrete-time observed signal at sampling index k after the
received signal is amplified, mixed, low-pass filtered, and passed through the D/A
converter module. After sampling rb(t) at time k

fs
where fs is the sampling rate,

r(k) is given by
r(k) = rb(t)|t=k/ fs, −∞ < k < +∞. (2.5)

The input r(k) to AMC is presented in a set of IQ complex form I + jQ due
to its flexibility and simplicity for mathematical operations and algorithm design.
The expression of I + jQ form is given by

r(k) = rI(k)+ jrQ(k), k = 0, · · · ,L−1 (2.6)

where L is the sample length that specifies the number of received signal samples.

2.2 Problem Formulation
In general, AMC can be treated as a multi-class classification problem. The objec-
tive of supervised AMC is to produce the probabilities P(s(k) ∈ Θm |r(k)), where
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Θm represents the mth class in modulation schemes poolΘΘΘ, which is defined as

ΘΘΘ = {Θm}
M
m=1 (2.7)

where M is the number of possible modulation schemes.
Let Pr( fAMC (r(k)) =m′|Hm) denote the probability of detecting the mth mod-

ulation format of the transmitted signal as the m′th modulation format. fAMC(·) is
a classification function of the AMC classifier. fAMC(r(k)) denotes the modula-
tion format estimated by the classifier according to the received signal r(k). Hm

is the hypothesis that the transmitted sequence s(t) is generated from Θm.
We suppose each modulation type Θm has equiprobability. The typical AMC

approaches maximize the average probability of correct classification Pc in a short
observation interval for a wide range of SNR values, and Pc is defined as [6]

Pc =
1
M

M∑
m=1

Pr ( fAMC (r(k)) = m|Hm) (2.8)

2.3 Machine Learning in AMC
Machine learning trains a parametric data-driven model from historical data with-
out using explicit instructions, but relying on patterns and inference instead. For
a training dataset D = {(x1,y1),(x2,y2), . . . ,(xN,yN )}, xxxi is the i-th received se-
quence and yi is the corresponding modulation scheme index. We assume ex-
amples {(xi, yi)}

N
i=1 are Independent and Identically Distributed (I.I.D). Each yi

was generated by an unknown function yi = h(xxxi). The goal of machine learning
algorithm is to discover a function f that approximates the true function h.

The input signal matrix X and the output label vector Y are denoted by

X = [xT
1 ,x

T
2 , · · · ,x

T
N ]

T ∈ RN×L (2.9)
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Y = [y1,y2, . . . ,yN ]
T ∈ RN (2.10)

where xi = [xi,1,xi,2, . . . ,xi,L]
T ∈ RL for i = 1, . . . ,N is the received signal or the

feature vector at the ith observation, L is the signal sample length, and N is the
number of samples.

For continuous output variable yi ∈ R, f is called a regressor; for categori-
cal output variable yi ∈ {1, . . . ,M}, f is described as a classifier. Therefore, our
proposed model is called a modulation classifier.

For a new signal xxxnew in the testset, the modulation predictor is given by ŷ =

f (xxxnew; θθθ), where θθθ represents the AMC model parameters. The estimation of
θθθ is an optimization problem regarding the training loss J(θθθ) averaged over all
training examples. Hence, θθθ is computed as

argmin
θθθ

J(θθθ) =
∑N

i=1L(xxxi,yi,θθθ)

N
(2.11)

where L(xxxi,yi,θθθ) is the point-wise loss function of the true modulation scheme yi

and the predicted modulation label f (xxxi; θθθ).

2.4 DL in AMC

2.4.1 Classic NN
Based on the model of human brain neurons, classic NN projects the input signal
sequence space into a linearly separable space by feeding weighted sum of inputs
into a non-linear activation function fact(·). Let the input and output vector of the
classic NN layer l be xl−1 and xl , then the mathematical representation of xl can
be described as

xxxl = fact(WWW lxxxl−1+bbbl) (2.12)
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where weight matrix WWW has the dimension N l ×N l−1, the bias bbb has the dimension
N l ×1, the activation function fact is applied element-wise N l , and the number of
trainable parameters is N l ×N l−1+N l .

2.4.2 CNN
CNN uses a cascade of multiple hidden layers with non-linear logistic functions
to transform high-level pertinent information directly from the original data into a
manageable reduced dimension representation.

Derived from feed-forward NNs, CNN replaces general matrix multiplication
with convolution. CNN is more memory-efficient and invariant to various data
transformations with the characteristics of parameters sharing and local connec-
tion.

• Parameters sharing: Different from the Equation 2.12, CNN uses the convo-
lutions to compute the output neuron. Each hidden neuron in CNN has the
same shared weight matrix and bias connected to its local receptive field.
Compared with the fully-connected NN, CNN shares parameters between
different neurons to reduce parameter storage and enforce translation invari-
ance [7].

• Local connection: Classic NN connects every input neuron to every hidden
unit, while CNN achieves sparse connectivity by connecting local receptive
fields. The local receptive field slides across the entire input matrix with
certain movement step size known as stride length.

CNN relies on back-propagation with SGD to extract low-level features from raw
inputs and higher-level features from previous layers.

In general, there are three typical layers in CNN architectures: convolutional
layer, activation layer, and fully-connected or dense layer. Please refer to Ap-
pendix A for details.
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2.4.3 Prevent Overfitting in DL
There are many modern techniques (such as pooling and dropout) that can be
applied to prevent overfitting.

Pooling layer or down-sampling layer reduces the input dimensionality by
computing the average value or the maximum value of a windowed input vector
(average-pooling or max-pooling), which is defined as

xxxl+1 = fpool(xxxl) (2.13)

where fpool(·) is the pooling function.
Based on the fact that the exact locations of found features is not as impor-

tant as the rough location relative to other features, a pooling layer produces a
condensed feature map by throwing away the exact position information. After
pooling, xxxl+1 is more computational efficient and robust to the small translations
of xxxl .

Apart from pooling, dropout is also commonly applied to prevent overfitting.
Dropout neglects the updating of part nodes’ weights and results in more indepen-
dent nodes in DL models.

2.4.4 Loss function in DL
Back-propagation is the optimization process to update the parameters effectively
and iteratively, such as Equation 2.14 in traditional machine learning. In AMC
experiments, the Adam optimizer [26] is utilized. Under Adam optimizer, the
parameter θn+1 is updated as

θn+1 = θn−η
∂L(YYY, fAMC(XXX,θn))

∂θn
(2.14)

where η is the learning rate for Adam optimizer and L(·) is the chosen loss func-
tion.

In the multi-class classification problem, the cross-entropy loss function is
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commonly introduced to measure the deviation between the desired and actual
output across an entire layer, and this loss function can be expressed as:

L(y, ŷ) = −
1
M

M∑
i=0

yi log(ŷi)+ (1− yi) log(1− ŷi) (2.15)

where yi represents the true label, ŷi = fAMC(xxxi) is the predicted probability of the
ith class by the model fAMC , and M is the number of modulation categories.

2.5 Summary
In this chapter, we firstly describe the wireless communication system model and
formulate the AMC problem. In general, AMC is a multi-class classification prob-
lem. The fundamentals of ML and DL for AMC problem are discussed in Sec-
tion 2.3 and Section 2.4. For this specific multi-class classification problem, the
AMC problem, we choose the cross-entropy function as the loss function.
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Chapter 3

Signal Representations and AMC
Models

Since the RadioML 2016.10a has been widely used to evaluate the AMC models,
we choose the RadioML 2016.10a dataset to compare fairly with the benchmark
models without generating new datasets. The simulation setup to obtain the data
samples is presented in Appendix B.

In this chapter, the five forms of signal representation and three data pre-
processing methods are reviewed for AMC. In Section 3.3, we correspondingly
tailor the different types of DL-based AMC models for the five forms of signal
representation. At last, the dataset split and implementation details are introduced
in Section 3.4.

The notations in this chapter are as follows:

• yyyi: The ith one-hot encoding label vector1.

• xxxi: The ith complex signal with L data points.

1In AMC, each signal is associated with categorical data, i.e., the corresponding modulation
scheme. One-hot encoding quantifies the categorical data into numerical data. One-hot encoding
produces a vector with length equal to the number of categories in the dataset. If an element
belongs to the ith category, then the elements are assigned with a value of 0 except for the ith
element, which is assigned a value of 1 [27].
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• xxx I
i : The ith in-phase signal with L data points. Each element of xxx I

i is repre-
sented by x I

i,j , where j ∈ {1, 2, · · · L}.

• xxxQ
i : The ith quadrature signal with L data points. Each element of xxxQ

i is
represented by xQ

i,j , where j ∈ {1, 2, · · · L}.

• xxxA
i : The ith amplitude vector of complex signal xxxi. Each element of xxxA

i is
represented by xA

i,j , where j ∈ {1, 2, · · · L}.

• xxxP
i : The ith phase vector of complex signal xxxi. Each element of xxxP

i is repre-
sented by xP

i,j , where j ∈ {1, 2, · · · L}.

• xxxF
i : The ith frequency domain signal of xxxi. Each element of xxxF

i is repre-
sented by xF

i,k , where k ∈ {1, 2, · · · L}.

3.1 Signal Representations

3.1.1 Time-Domain IQ Signal
When the RadioML dataset is used, an IQ data sample consists of N time-domain
complex IQ signals. Denote the ith L-dimensional in-phase term by xxx I

i , and the
ith L-dimensional quadrature term by xxxQ

i , an IQ sample is given by

DIQ =
{
(xxx I

i , xxx
Q
i ), yyyi

}N

i=1
. (3.1)

3.1.2 Time-Domain AP Signal
When the jth term of the ith in-phase vector is x I

i,j , and the jth term of the ith
quadrature vector is xQ

i,j , we respectively define the terms xA
i,j and xP

i,j as

xA
i,j = Amplitude(xi,j) =

√(
x I

i,j

)2
+

(
xQ

i,j

)2
(3.2)
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and
xP

i,j = Phase(xi,j) = arctan
(
xQ

i,j/x
I
i,j

)
. (3.3)

Therefore, each IQ sample can be transformed to an AP sample in the polar
coordinate as

DAP =
{(

xxxA
i , xxx

P
i

)
, yyyi

}N

i=1
. (3.4)

3.1.3 Frequency Spectrum Signal
We perform the one-dimensional (1D) L-point Discrete Fourier Transform (DFT)
with the efficient FFT algorithm over the IQ sample. Since computing the L-point
DFT requires O(L2) arithmetic operations, which are time-consuming. There-
fore, the FFT algorithm is proposed to exploit symmetries in signals to reduce the
complexity to O(L log L).

Performing the FFT operation over the ith complex IQ signal, we obtain a
complex vector xxxF

i . More specifically, the kth element of xxxF
i is obtained as

xF
i,k =

L∑
p=1

xi,p · e−
j2π
L kp k = 1, . . . ,L. (3.5)

Therefore, a frequency spectrum sample is given by

DFFT =
{
(<{xxxF

i },={xxx
F
i }), yyyi

}N
i=1 . (3.6)

3.1.4 Image-Domain 3D-CI
In the constellation diagram, the horizontal x-axis is the in-phase term of complex
IQ signals, and the vertical imaginary y-axis is the quadrature term of complex IQ
signals. An L-dimensional complex IQ signal corresponds to the L points in the
constellation diagram. More specifically, the jth point is represented as (x I

i,j,x
Q
i,j)

where x I
i,j is the jth in-phase term of the ith complex IQ signal, and xQ

i,j is the
ith quadrature term of the ith complex IQ signal. Unless otherwise specified, we
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select the CD having a size of 0.015×0.015 for the RadioML dataset to avoid the
overlapping of constellation points and include as more signal points as possible.

The carrier phase shift from a reference phase is equal to the counterclock-
wise angle of the constellation point from the horizontal x-axis. The distance of a
constellation point to the origin represents the signal amplitude. The distance be-
tween different points indicates the ability of a receiver to differentiate modulation
schemes under additive noise. In practice, the CDs are usually a “cloud” of points
surrounding each symbol position. Since the different “cloud” areas in CD have
different densities of sample points, we use the differences in density to make the
disturbing signals more discernible. Therefore, we convert the traditional 2D-CD
into the 3D-CI where the third dimension is the signal density.

Density estimation techniques consist of mixture models and neighbor-based
approaches e.g., the non-parametric Kernel Density Estimation (KDE). We use
KDE to reconstruct the probability density function for the 3D-CI.

Assuming the observed signal {xi,j}
L
j=1 is univariate i.i.d, we want to estimate

the underlying unknown PDF. Mathematically, the formal definition of kernel
density estimator at a point z within {xi,j}

L
j=1 is given by

ρ̂h(z) =
1

Lh

L∑
j=1

K
( z− xi,j

h

)
(3.7)

where K(·) is the non-negative, smooth and symmetric kernel function controlled
by the bandwidth parameter h.

We choose the common Gaussian kernel function, which is defined by

K(x; h) ∝ e−
x2

2h2 (3.8)

where the smoothing bandwidth h controls the trade-off between the bias and
variance of the estimator. More specifically, the smoothness of ρ̂h(y) increases
with h. With the estimated PDF ρ̂h(y), we can convert CD into colorful 3D-CI.
Figure 3.1 illustrates the CD, 3D-CI, and 3D-CI with noise reduction of 30,000
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Figure 3.1: 30,000 QPSK constellation points at SNR = 2dB (upper) and 14
dB (lower)

QPSK samples when the values of SNR are 2 dB and 14 dB.
At high SNR, CD and 3D-CI have already revealed enough statistics informa-

tion for AMC, and the noise reduction has little improvement. Overall, both CD
and 3D-CI can reveal statistical modulation information at high SNR. However,
at low SNR, CD polluted by noise is disguised, and 3D-CI with color density in-
formation can provide richer amplitude and phase information. In addition, noise
reduction can concentrate the constellation points to build a clear “cloud”. The
details of noise reduction will be discussed in Section 3.2.1.

3.1.5 Statistical-Domain Manually Extracted Features
We convert a complex IQ signal into K-dimensional feature vector fff i based on
the extensive feature set, which contains the statistical and instantaneous features
[28]. Using the time-average features, the negative effects of background noise
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and phase rotation can be mitigated [29]. The High-order Moments (HOM) and
High-order Cumulants (HOC) vary for different modulated signals, and have good
anti-noise performance. Therefore, we include the HOM and HOC as two fea-
tures. Besides, kurtosis (K), skewness (S), Peak to Average Ratio (PAR) and Peak
to Root-mean-square Ratio (PRR) are also included. Table C.1 in Appendix C
lists the selected 23 statistical and instantaneous features [30–32].

3.2 Data Preprocessing
Before feeding the data samples to the AMC models, several pre-processing op-
erations are performed, namely noise reduction, signal normalization and label
smoothing.

3.2.1 Noise Reduction
Since the AWGN term n(t) can compromise the performance of AMC models, we
use the Gaussian low-pass filter fG(·) to reduce the noise before any other data
pre-processing method. The filter fG(·) attenuates high-frequency outliers and
keeps the low-frequency details of the received signal. The impulse response of
the one-dimensional Gaussian filter fG(·) with standard deviation σ is given by

fG(x) =
1

√
2π ·σ

· e−
x2

2σ2 . (3.9)

Mathematically, the input signal is convolved with the Gaussian function fG(x).
In theory, fG(x) is non-zero everywhere, which would require an infinitely large
convolution kernel. In practice, fG(x) is effectively zero more than about four
standard deviations from the mean, and therefore we truncate the convolution ker-
nel at this point.

The effectiveness of Gaussian low-pass filtered signals can be found in Fig-
ure 3.1. Experiments have demonstrated that setting σ = 0.8 can remove most
outliers and keep more constellation points in 3D-CI signal representation.
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3.2.2 Normalization
After passing the Gaussian filter, we normalize the training samples to robustify
the automatic feature extraction. The normalization is to perform a linear opera-
tion to the original data samples such that the normalized data samples have zero
mean and unit variance. For example, the normalization operation to the jth point
of the ith signal is given by

x′i j =
xi j − µ j

σj
, j ∈ {1,2, · · · L} (3.10)

where the jth element of the mean vector, denoted by µ j , is obtained as

µ j =
1

Ntrain

Ntrain∑
i=1

xi,j, j ∈ {1, 2, · · · L} (3.11)

and the jth element of the standard deviation vector, denoted by σj , is obtained as

σj =

√√√
1

Ntrain

Ntrain∑
i=1
(xi,j − µ j)

2, j ∈ {1, 2, · · · L}. (3.12)

Here, Ntrain is the number of training signals, and the values of µµµ and σσσ are
computed over the training set and fixed for the test set2.

3.2.3 Label Smoothing
In our experiments, the modulation scheme is represented by one-hot encoding
and later modified by label smoothing. With label smoothing, the difference of
true label value and wrong label value becomes a constant relying on a smoothing
parameter α. Moreover, the activation values of the penultimate layer of the model
are close to the true class and equidistant to the wrong classes [33]. Hence, the
model with label smoothing is automatically calibrated and less overfitting. For

2This trick can accelerate the training process and prevent overfitting.
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the mth modulation, we smooth the traditional label vector ym by

yyy′m = yyym(1−α)+
α

M
(3.13)

where the smoothing parameter α equals 0.1.

3.3 Corresponding AMC Model for Each Signal
Representation

Based on the five forms of signal representation in Section 3.1, we correspond-
ingly introduce five models by tailoring different types of neural networks as

• Attention-based model of AP signal (AP-Attention).

• Combined CNN, LSTM and DNN model with multi-scale additions of IQ
signals (IQ-CLDNN).

• MobileNet version 2 model of 3D-CI images (Img-MobileNetV2).

• CNN-based model of statistical features (Features-CNN).

• CNN-based model of frequency spectrum signals (FFT-CNN).

Among the five models, we propose AP-Attention and IQ-CLDNN models
for the first time. Though the MobileNet model has achieved great success in the
discipline of computer vision, the performance is unknown in the AMC problems.
Therefore, we tailor the MobileNet model for the proposed 3D-CI signals. We
consider the Features-CNN and FFT-CNN as benchmarks [1, 17].

3.3.1 AP-Attention Model
The proposed AP-Attention model consists of an LSTM-based module to extract
low-level features, an attention-based module to include importance weights, and
a classification module to obtain the probabilities for different modulations. The
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Figure 3.2: AP-Attention model schematic diagram for batch i
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Table 3.1: LSTM Parameters

Variables Definition

h The number of hidden units
d The number of input features
σg The sigmoid activation function
σh The tanh activation function
xxxt ∈ R

d The input vector to the LSTM unit
fff t ∈ R

h The activation vector of forget gate
iiit ∈ R

h The activation vector of input gate
ooot ∈ R

h The activation vector of output gate
hhht ∈ R

h The hidden state vector of the LSTM unit
ccct ∈ R

h The current cell state vector
WWW ∈ Rh×d The weight matrix of input vector xxxt
UUU ∈ Rh×h The weight matrix of previous hidden state vector hhht−1
bbb ∈ Rh The trained bias vector

input of the AP-Attention model has a unified size of 128× 2 for the AP signals.
Figure 3.2 provides the schematic diagram of AP-Attention model. The term
“None” in the diagram represents the first dimension of a variable. This dimension
is usually ignored when building a model and is defined during the prediction
period.

The LSTM module can alleviate the gradient vanishing problem by exploiting
a gating mechanism with explicit memory releasing and updating. The variables
of the LSTM module are listed in Table 3.1.

Typically, an LSTM block is composed of a cell state vector ccct to record values
over arbitrary time intervals and three gates to regulate the information flow. The
functionalities of the three gates are [34]:

• Input gate with weight matrices WWW i, UUUi, and bbbi to control the extent where a
new value flows into the cell state.

• Forget gate with weight matrices WWW f , UUU f , and bbb f to control the extent where
the value is kept or discarded from the cell state.
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Figure 3.3: LSTM block diagram

• Output gate with weight matrices WWWo, UUUo, and bbbo to control the extent where
the cell value computes the output activation of the LSTM unit.

The mechanism of the LSTM module is described by the following equations
using current input xxxt and the previous state hhht−1 [35]:

• Gates
iiit = σg(WWW ixxxt +UUUihhht−1+bbbi) (3.14)

fff t = σg(WWW f xxxt +UUU f hhht−1+bbb f ) (3.15)

ooot = σg(WWWoxxxt +UUUohhht−1+bbbo) (3.16)
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• Input transform
cccint = σh(WWWcxxxt +UUUchhht−1+bbbc) (3.17)

• State update
ccct = fff t ~ ccct−1+iiit ~ cccint (3.18)

hhht = ooot ~σt(ccct) (3.19)

where the initial values c0 and h0 are zero, the subscript t represents the time step,
and the operator ~ denotes the element-wise product. Figure 3.3 presents the
LSTM block diagram and illustrates the above equations. The input, output, and
forget gate functions are the sigmoid function. The input transform and output
activation functions are the tanh function.

In the LSTM module, we exploit two layers of LSTM with a hidden size ls
of 128 along with a dropout layer with a ratio of 0.5 to encode the AP sequences.
In AP-Attention model, the input xxxt of LSTM module is denoted by xxxi, where
i ∈ {1, · · · ,bs}. Thus, the output of LSTM hhhi ∈ R

L×ls is described as

hhhi = fLSTM(xxxi; θLSTM) (3.20)

where L is the signal length and θLSTM is the parameters of LSTM module.
The second module in AP-Attention model is the attention module with archi-

tecture illustrated in Figure 3.4. We explain Figure 3.4 in the following equations
from Equation 3.21 to Equation 3.25.

We first generate the attention score [35]. Let HHH be the annotation matrix
with the LSTM extracted vector [hhh1,hhh2, . . . ,hhhbs ]

T , where bs is the batch size and
hhhi ∈ R

L×ls is the LSTM feature vector with sample length L and hidden size ls.
We feed hhhi into an additional feed-forward densely-connected network such that
the attention score vector uuui ∈ R

L×ls is obtained.
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Figure 3.4: Schematic diagram of the attention module
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As a hidden representation of hhhi, the vector uuui is defined as

uuui = fc(WWWc ·hhhi) (3.21)

where fc represents the fully-connected network and WWWc is the weight matrix ran-
domly initialized and jointly trained.

The attention score sssi ∈ R
L is computed by

sssi = uuui ·hhht (3.22)

where hhht ∈ R
ls is the last LSTM hidden state vector and is extracted from the

matrix HHH.
With attention scores sssi and softmax activation function fsoftmax(·), the atten-

tion weights αααi is given by αααi = fsoftmax(sssi) ∈ R
L . The large values in αααi force the

network to focus on the corresponding part in input xxxi.
After that, we measure the context vector vvvi ∈ R

ls . vvvi is a weighted combina-
tion of attention weight αααi and hhhi, which is given by

vvvi = αααi ·hhhi . (3.23)

We then concatenate the context vector vvvi and the last hidden states hhht into
an attention output vector vvva

i ∈ R
ls . At last, the attention vector aaai ∈ R

la with the
attention output size la is computed by feeding vvva

i into a DNN having 128 neurons,

vvva
i = [vvvi, hhht] (3.24)

aaai = fa(WWWa ·vvv
a
i ) (3.25)

where fa is the DNN layer with attention weight matrix WWWa ∈ R
la×ls .

In summary, the attention module has full access to the input sequences. Al-
though the weighted combination increases the computational burden, attention
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module produces a more targeted and better-performing model.
The last module is the classification module. The classification module takes

the attention layer output aaai as the input. We feed aaai into a DNN with M units,
where M is the number of modulation schemes. Then a softmax classifier is used
to predict the modulation scheme ŷi. The process in the classification module is
as follows:

rrr i = tanh(WWWcaaai +bbbc) (3.26)

p̂(yyyi |Θ) = softmax (WWW srrr i +bbbs) (3.27)

ŷi = argmax
yyyi

p̂(yyyi |Θ) (3.28)

where WWWc and bbbc are DNN layer parameters, WWW s and bbbs are softmax layer pa-
rameters, and the p̂(yyyi |Θ) represents the probability vector for each modulation
scheme.

3.3.2 IQ-CLDNN Model
Speech recognition performance can be improved by combining CNNs, LSTMs,
and DNNs in a unified framework [36]. Thus, we propose a CLDNN model to
combine CNN, LSTM, and DNN. We also introduce the multi-scale additional
connections to include more features. Figure 3.5 shows the structure of the IQ-
CLDNN model.

The first module is the CNN module. Passing the input signal to CNNs be-
fore LSTMs can help reduce the input variance. Thus the temporal modeling in
LSTM is processed on higher-level features extracted by CNNs. Specifically, we
choose two 1D-CNNs with 256 and 128 units. The convolutional kernel with size
of nine is chosen for each CNN.

After the CNN module, we pass the output to the LSTM module to model
temporally the sequence input. We use two layers of LSTM with returned se-
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Figure 3.5: IQ-CLDNN model schematic diagram for batch i
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quences and 128 cells.
A DNN module provides a mapping between hidden units and outputs, which

help the AMC model separate different modulation schemes. Therefore, we pass
the output of the LSTM module to two DNNs with 64 and 11 hidden units. For
activation functions, the first DNN layer uses ReLU and the second DNN layer
exploits softmax to output probability scores for each modulation scheme.

Compared with the CLDNN model in [37], we add two additional multi-scale
connections to capture information at different resolutions. The additional con-
nections are shown in Figure 3.5 by dashed streams. The “Permute” block changes
the input dimensions, and the “Concatenate” block concatenates the two inputs to-
gether.

The first additional connection forward the long-term features from the CNN
module and the original short-term input features to the LSTM module. The
second connection directly passes the outputs from the LSTM module and CNN
module into the DNN module without extra layers. The two direct connections
increase only a negligible amount of the number of network parameters.

3.3.3 Img-MobileNetV2 Model
In Section 3.1.4, our inputs are batches of Gaussian filtered 3D-CIs with a size
of (224, 224, 3). We convert the AMC problem into a multi-class classification
problem. The popular MobileNetV2 [25] model is proposed for running deep net-
works efficiently on personal mobile devices. Hence, we choose the MobileNetV2
model for the real-time AMC problem under resource-constrained environments.
The training parameters are provided in Section 3.4.

3.3.4 Features-CNN Model
Statistical features have been proven to be a robust input format for the AMC
problem [17]. Based on Section 3.1.5, our input is in the form of (bs, 23, 2) with
23 manually selected features. To prevent overfitting, we use a simple model with
four 1D-CNNs and two DNNs. A dropout layer with a dropout rate of 0.6 is

33



exploited after each CNN and DNN layer.
The numbers of CNN filters for four 1D-CNN layers are 256, 128, 64, and

64. The classification module has a DNN of 128 neurons with Rectified Linear
Unit (RELU) activation function and another DNN of 11 neurons with softmax
activation function.

3.3.5 FFT-CNN Model Architecture
Based on the definition in Section 3.1.3, the frequency spectrum data DFFT is in
the form of (bs, 128, 2) with batch size bs. the FFT-CNN model has three layers
of one-dimensional (1D)-CNN and two layers of DNN.

Specifically, the three 1D-CNNs have 256, 128, and 64 filters of the same size
of nine. Each 1D-CNN is followed by a batch normalization layer and a dropout
layer with a dropout rate of 0.4. After CNNs, the input feature maps are flattened
to 1D. The DNN classification module has two DNN layers. The first DNN has
128 neurons and the second DNN has 11 neurons.

3.4 Experiment Setup

3.4.1 Dataset Split
In the RadioML dataset, there are total NSNR×M × L = 20×11×1000 = 220,000
samples. We split the dataset into three parts: training set, validation set, and test
set. We randomly selected 50% samples for training with a batch size bs of 1024,
25% samples for validation. After training, the performance of the AMC model
is tested using the remaining 25% samples. All sets are uniformly distributed in
different SNR values.

34



3.4.2 Implementation Details
Benefit from the user-friendliness, modularity and easy extensibility features, we
choose the open-source NN library “Keras” to develop our models3. With addi-
tional support for CNN, Recurrent Neural Network (RNN), and other commonly
used layers, Keras allows non-ML researchers to focus on their model construc-
tion and training setting.

The AMC models are trained and validated with the central processing unit
Intel(R) Core i7-8700 @ 3.20GHz with 12 threads and 16GB RAM.

As mentioned in Section 2.4.4, the categorical cross-entropy measures the
probability error, and the Adam optimizer estimates the model parameters with
a learning rate of 0.001. The training of AMC models will stop when the valida-
tion loss dose not improve for the last 20 epochs. The model having the lowest
validation loss is selected for evaluation. All AMC models use the same training
parameters unless specified explicitly.

In the Img-MobileNetV2 model, the SGD optimizer with an initial learning
rate of 0.1, a momentum of 0.9, and a weight decay of 10−4 is used for training.
The total number of training epochs is 120. The learning rate is divided by 10
every 40 epochs.

3.5 Summary
In this chapter, we introduce five different signal representations for AMC prob-
lem. Before we feed raw signals of different signal representations into AMC
models, three data pre-processing methods are conducted in Section 3.2. In Sec-
tion 3.3, we build a DL-based AMC model for each signal representation. At
last, the experiment setting including dataset split and implementation details are
introduced in Section 3.4.

3https://keras.io/
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Chapter 4

Performance of AMC Models

In this chapter, we perform extensive experiments to evaluate the performance of
AMC models. Accuracy rate is introduced in Section 4.1, and confusion matrix
is introduced in Section 4.2. In Section 4.3, we regard AMC models as soft
classifiers or hard classifiers. We also discuss the micro-averaging and macro-
averaging algorithms when combing the per-class metrics in Section 4.3. We
evaluate the computational complexity in Section 4.4.

4.1 Accuracy Rate
The accuracy rate Pacc, also known as the correct probability, assesses the ratio of
correct AMC predictions. We evaluate the overall per-class accuracy rate using
different SNR values to gain insights on the effective SNR range of each AMC
model. The overall accuracy rate is defined as the ratio of correct predictions over
the total samples

Pacc =
Nc

Ntest
(4.1)

where Nc is the number of correct predictions, and Ntest is the number of samples
in test set.

36



For each modulation scheme, the per-class correct accuracy rate is defined as

Pm
acc =

Nm
c

Nm
test

(4.2)

where Nm
c is the number of correct classifications for modulation scheme Θm, and

Nm
test is the number of samples with modulation scheme Θm in test set.

Figure 4.1: Overall accuracy rate of AMC classifiers under various SNR
values.

Figure 4.2: Accuracy rate of AP-Attention model
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4.1.1 Overall Accuracy Rate
Figure 4.1 depicts the overall accuracy rate Pacc over various SNR values for
five AMC models in Section 3.3 (AP-Attention, IQ-CLDNN, Img-MobilenetV2,
features-CNN, and FFT-CNN) and previous AMC models (AP-LSTM [10] and
IQ-CNN [3]). We use the same signal representation and model structure in [3, 10]
for comparison. Seven AMC models are trained, validated, and tested on the same
dataset. Compared with the results in [1, 3, 10, 17], noise reduction and label
smoothing help the model discriminate modulation schemes better.

At high SNR, AP-Attention achieves a higher Pacc than the other models.
Moreover, AP-Attention, IQ-CLDNN, and Img-MobilenetV2 achieve a stable
Pacc over 86% for most modulation schemes in Figure 4.2. On the contrary, the
AMC models based on statistical features and frequency-domain features require
at least 6 dB to converge and have low converged Pacc values, especially for FFT-
CNN model with a final Pacc less than 80%. Hence, we conclude that the AP
signal representation has the best modulation discrimination ability, which veri-
fies that the signal representation is a key factor for the AMC problem.

Compared with an 87.4% accuracy rate for IQ-CNN model [3], our updated
IQ-CNN with noise reduction and label smoothing has a roughly 1.3% improve-
ment under the same model structure. Similarly, for SNR > 10 dB, AP-LSTM
achieves a nearly 1.2% accuracy gain over the model based on partial high-SNR
training data in [10]. This further verifies the efficiency of proposed data pre-
processing methods.

4.1.2 Per-class Accuracy Rate
We further investigate the per-class accuracy rate of AP-Attention in Figure 4.2
due to its highest overall Pacc. The curves are obtained by averaging various
modulation schemes. The value in the brackets represents the Pm

acc averaged over
all possible SNR values from −20 dB to +18 dB with step size of 2 dB.

Figure 4.2 shows that AM-SSB is the most easily recognized modulation type
with an almost 100% accuracy rate for all considered SNR values. For high SNR
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Figure 4.3: Accuracy rate of 8PSK for different signal sample lengths

values (> 5 dB), almost all modulation schemes have Pacc over 95%, except for
WBFM. It is also found that the accuracy rate of 8PSK has a sudden decrease at
low SNR from around −14 dB to −4 dB, which is because that the noise limits
the representation learning capability of attention module and results in unstable
performance.

Figure 4.3 illustrates that the performance degradation of 8PSK can be alle-
viated by increasing the dimension of signals. Based on the original RadioML
dataset, three new datasets are generated with sample lengths of 256, 512, and
1024, respectively. We train the same AP-Attention model for new datasets and
plot their accuracy rates of 8PSK. The results show that the accuracy rate curve
grows more steadily and converges faster when we increase the sample dimension
L of training samples.

4.2 Confusion Matrix
Since the accuracy rate is unreliable for imbalanced datasets, we evaluate the con-
fusion matrix of AMC models. A detailed overview of the per-class performance
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(a) AP-Attention at 0 dB (b) AP-Attention at 6 dB

(c) IQ-CLDNN at 0 dB (d) IQ-CLDNN at 6 dB

(e) Img-MobileNetV2 at 0 dB (f) Img-MobileNetV2 at 6 dB

Figure 4.4: Confusion matrices when SNR is 0 dB or 6 dB
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(g) Features-CNN at 0 dB (h) Features-CNN at 6 dB

(i) FFT-CNN at 0 dB (j) FFT-CNN at 6 dB

Figure 4.4: Confusion matrices when SNR is 0 dB or 6 dB

is also evaluated and visualized by a confusion matrix for the AMC problem. In an
M ×M confusion matrix, the ith row represents the signals with actual Θi, while
the jth column represents the signals predicted as Θ j . The (i, j)th entry represents
the percentage of signals with Θi but predicted as Θ j . The summation over the ith
row is equal to 1. The diagonal element is the correct classification probability for
the mth modulation. Therefore, a good classifier will have a clear diagonal in its
confusion matrix.

From Figure 4.4a and Figure 4.4b, the main source of error for AP-Attention is
the misclassification between QAM16/QAM64 and AM-DSB/WBFM. IQ-CLDNN

41



tends to misclassify more QAM64 as QAM16 when SNR = 0 dB, while AP-
Attention discriminates QAM16/QAM64 better with a clear diagonal. This is due
to the fact that QAM16 is a subset of QAM64, and it is hard to differentiate them.
Separating AM-DSB and WBFM is another challenge for both AP-Attention and
IQ-CLDNN.

Compared with other models, Img-MobileNetV2 cannot classify most mod-
ulation schemes when SNR is 0 dB, while the performance for SNR at 6 dB
is better and comparable to AP-Attention and IQ-CLDNN. The performance of
Features-CNN also degrades for low SNR values. Thus, in low SNR regime, 3D-
CI and statistical features are not a good choice. From Figure 4.4i and Figure 4.4j,
compared with the other AMC algorithms, FFT-CNN has no benefits for QAM16,
QAM64, QPSK, and WBFM.

4.3 Performance Metrics for Hard and Soft
Classifiers

Accuracy rate and confusion matrix are relatively simple metrics. To obtain a
balanced and overall performance description, we further evaluate AMC mod-
els from two scopes: hard classifier with a single cutoff and soft classifier with
multiple cutoffs. The per-class metrics are combined by two averaging methods:
micro-averaging and macro-averaging.

4.3.1 Basic Statistics
We introduce some fundamental statics before defining the performance metrics
for hard and soft classifiers. For each sample in the test set, true positive (TP), true
negative (TN), false positive (FP) and false-negative (FN) are computed at first.
We use them to derive per-class performance metrics: sensitivity, specificity, false
positive rate (FPR), false negative rate (FNR), and precision. For simplification,
we denote precision by P and recall by R.

• TP: Number of signals with Θm and predicted as positive.
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• TN: Number of signals not with Θm and predicted as negative.

• FP: Number of signals not with Θm but predicted as positive.

• FN: Number of signals with Θm but predicted as negative.

• Sensitivity, recall, or true positive rate (TPR): Number of signals correctly
predicted as positive over total true items

Sensitivity = R = TPR =
TP

TP+FN
. (4.3)

• Specificity or true negative rate (TNR): Number of signals correctly pre-
dicted as negative over total false items

Specificity = TNR =
TN

TN+FP
. (4.4)

• FPR: Number of signals wrongly predicted as positive over total false items

FPR = 1−Specificity =
FP

FP+TN
. (4.5)

• FNR: Number of signals wrongly predicted as negative over total true items

FNR = 1−Sensitivity =
FN

FN+TP
. (4.6)

• Precision: Number of signals correctly predicted as positive over total pos-
itive predicted items

P =
TP

TP+FP
. (4.7)

4.3.2 Hard Classifiers: Balanced Accuracy and F1-score
Balanced accuracy is a combination of sensitivity and specificity. Based on the
definition of sensitivity and specificity in Equation 4.3 and Equation 4.4, balanced
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accuracy is a holistic measure considering all entries in the confusion matrix, and
it is calculated by

Balanced Accuracy =
Sensitivity+Specificity

2
. (4.8)

F1-score is the harmonic mean of precision and recall, and it is defined by

F1 = 2 ·
R ·P
R+P

. (4.9)

However, from Equation 4.3 and Equation 4.7, F1-score should only be used when
TN does not play a role, as TNs are not taken into account in F1-score.

We depict the per-class F1-scores for AP-Attention and IQ-CLDNN in Fig-
ure 4.5. The number in parentheses represents the F1-score for a certain modula-
tion class average over all possible SNR values. We will discuss the reason why
balanced accuracy is unreliable later.

Figure 4.5a indicates that at high SNR, AP-Attention has excellent perfor-
mance on most modulations except for AM-DSB and WBFM. The F1-score per-
formance of AM-SSB is far superior to other modulations with the highest overall
F1-score of 0.802 and the fastest convergence speed. AM-DSB and WBFM can
be easily classified at low SNR, but they have little improvement when SNR is
increased. QAM16 and QAM64 have similar performance of per-class F1-scores.

Figure 4.5b shows the per-class F1-scores for IQ-CLDNN. Similarly, AM-
SSB is still the most easily recognized modulation. Different from AP-Attention,
QAM16 and QAM64 both have a slight performance degradation for around 8%
and a larger performance gap between them in high SNR values. In the low SNR
regime, all modulation schemes have lower F1-scores in IQ-CLDNN than in AP-
Attention. This indicates that AP-Attention can extract robust and distinct features
at lower SNR.
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(a) F1-scores for AP-Attention.

(b) F1-scores for IQ-CLDNN.

Figure 4.5: Per-class F1-scores for AP-Attention and IQ-CLDNN
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4.3.3 Micro and Macro Averaging
To obtain one metric that quantifies the overall performance of the AMC classifier,
we combine the aforementioned per-class performance measures using micro or
macro averaging algorithms. Since the AMC problem belongs to the category of
multi-class classification problems, each AMC model has a larger TN than the bi-
nary classification problems1. Since the specificity becomes inflated, the balanced
accuracy does not provide a good performance measurement for the multi-class
classification problem. Therefore, the F1-score is used for the micro and macro
averaging algorithms.

Micro-averaging algorithm considers each modulation type as a binary classi-
fication problem and assigns equal weight to the individual decision. The micro-
averaging precision and recall are defined as

Pmicro =

∑M
m=1 TPm∑M

m=1 (TPm+FPm)
(4.10)

and

Rmicro = TPRmicro =

∑M
m=1 TPm∑M

m=1 (TPm+FNm)
(4.11)

where m is the index of modulation scheme, and M represents the number of
modulation schemes.

The micro-averaging F1-scores are calculated by

F1micro = 2 ·
Rmicro ·Pmicro

Rmicro+Pmicro
. (4.12)

Since the micro-averaging is unreliable for imbalanced class distribution, the
macro-averaging algorithm is introduced. Macro-averaging algorithm is suitable
for imbalanced datasets. Macro-averaging algorithm assigns equal weights to
each modulation schemes and averages over M possible modulation schemes. The

1The ith type of modulation is TP, and the other types of modulations are TNs when ∀ j , i.
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Table 4.1: Micro and Macro-averaging F1-scores for AMC models

AMC Model F1micro F1macro

AP-Attention 0.6974 0.6946
IQ-CLDNN 0.6800 0.6785
Img-MobileNetV2 0.5951 0.5844
Features-CNN 0.5488 0.5721
FFT-CNN 0.5602 0.5457

macro-averaging precision and recall are defined as

Pmacro =
1
M

M∑
m=1

TPm

TPm+FPm
=

∑M
m=1 Pm

M
(4.13)

and

Rmacro = TPRmacro =
1
M

M∑
m=1

TPm

TPm+FNm
=

∑M
m=1 Rm

M
. (4.14)

Similarly, the macro-averaging F1macro is defined by

F1macro = 2 ·
Rmacro ·Pmacro

Rmacro+Pmacro
. (4.15)

Table 4.1 provides the F1micro and F1macro computed by the same test set.
The AP-Attention obtains the largest F1micro and F1macro. Note that, except for
Features-CNN, other AMC models have a larger F1micro than F1macro. This indi-
cates that Features-CNN is more stable when the modulation scheme distribution
is imbalanced, as F1macro is sensitive to the predictive performance for individual
classes.
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4.3.4 Soft Classifiers: Receiver Operating
Characteristics (ROC) and Precision-Recall
Curve (PRC)

The AMC models can be regarded as soft classifiers that produce predictions with
a decision cutoff applied on scores for each modulation scheme. ROC curve and
PRC are plotted to visualize the classification performance for soft classifiers.

Figure 4.6: Micro-averaging ROC Curves for AMC models

Figure 4.7: Per-class ROC Curves for AP-Attention
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Figure 4.8: Micro-averaging PRCs for AMC models

Figure 4.9: Per-class PRC for AP-Attention

ROC curve is a probability curve with FPR as the x-axis and TPR as the y-
axis. Each point of the ROC curve represents a TPR/FPR pair at different decision
thresholds. The point in the upper left corner (0,1) of the ROC space yields the
best prediction result, representing no FNs and FPs.

The area under ROC (AUROC) measures the model distinguishing ability be-
tween classes by computing the 2D area under ROC from point (0, 0) to (1, 1).
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In probabilistic interpretation, AUROC is a decision-threshold-invariant measure,
while F1-score is a threshold-sensitive measure based on hard (0 or 1) outputs. In
our experiment, AUROC is computed by the trapezoidal rule [38] in Python.

As a useful measure for imbalanced datasets, PRC shows the trade-off be-
tween precision and recall for different decision thresholds. A larger area under
PRC (AUPRC) represents high scores for both precision and recall. However,
similar to F1-score, PRC does not consider TNs.

Compared with the macro-averaging ROC curves, micro-averaging ROC curves
for AMC models are closer to the ideal point (0,1) and has a slightly larger AU-
ROC for all AMC models. This indicates that AMC models have better overall
performance (micro-averaging) than class-specific performance (macro-averaging).
Compared with the macro-averaging ROC, micro-averaging ROC has a similar
growing tendency and comparable AUROC value. Thus, we only present the
micro-averaging ROC curves for AMC models in Figure 4.6, unless specified ex-
plicitly. Per-class ROC curves of AP-Attention are also plotted in Figure 4.7.

From Figure 4.6, almost all algorithms converge to TPR = 1.0 at the same
value of FPR ≈ 0.35, except for Features-CNN. For per-class ROC curves of AP-
Attention in Figure 4.7, AM-SSB, AM-DSB, and WBFM have the lowest FPR
when reaching TPR = 1. In other words, classifying AM-SSB, AM-DSB, and
WBFM is easier than other modulations. QAM16 and QAM64 have the nearly
coincident ROC curves and the smallest AUROCs because of their similar features
under low SNR values.

Similarly, micro-averaging and per-class PRCs are illustrated in Figure 4.8
and Figure 4.9. Iso-F1 curve consisting of points with the same F1-score is also
included in these two figures to show how close the PRCs are to different F1
scores. Good PRC are close to point (1,1) and good AUROC is close to 1.

Overall, micro-averaging AUPRCs are lower than micro-averaging AUROCs.
From Figure 4.8, AP-Attention and IQ-CLDNN still show an AUPRC advantage
of up to 0.16 than other AMC models. AP-Attention and IQ-CLDNN reach a
recall of roughly 46% without any FP predictions. Features-CNN and FFT-CNN
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start to predict FP at a low recall rate of 29%.
For the per-class PRCs for AP-Attention model in Figure 4.9, AM-SSB has the

highest AUPRC. It is also noticed that at first plotted PRC points, only the preci-
sion of AM-SSB is slightly lower than 100%. This indicates that at the first thresh-
old, the AP-Attention model already makes FPs for AM-SSB. However, to reach
a sensitivity of 100%, the precision of AM-SSB only reduces to around 70%. Ex-
cept for QAM16 and QAM64, the modulation classes have an AUPRC above 75%
in AP-Attention. From the micro-averaging PRC, AP-Attention reaches a recall
rate of roughly 48% without any FPs.

4.4 Computational Complexity
Computational complexity includes memory consumption and detection efficiency.
The memory consumption can be measured by the number of trainable parame-
ters (and corresponding required storage size) and the peak memory usage. The
detection efficiency is evaluated by the average inference time per input signal.
Since the model parameters of AMC models can be trained and stored in mem-
ory, the computational complexity of AMC models is mainly determined by the
model structure (neural-network architecture and input size) the feature extraction
stage (signal representation transformation and data pre-processing). The modu-
lation schemes and channel states have negligible influence on the computational
complexity. To make a fair comparison, we analyze the complexity metrics (the
number of trainable parameters, storage size of parameters, peak memory usage
and average inference time) under the same hardware and software implementa-
tions.

As shown in Table 4.2, AP-Attention has the smallest number of trainable pa-
rameters and the smallest required memory size. Therefore, AP-Attention presents
an attractive choice when the computational complexity and classification perfor-
mance are preferred. We also observe that the proposed IQ-CLDNN model has
the second-highest efficiency in inference time. The Img-MobileNetV2 model re-
quires more memory and inference time than other models because of the larger
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Table 4.2: Computational Complexity of AMC Models

AMC Model
Number of
Trainable
Parameters

Storage
Size
(MB)

Peak
Memory
Usage
(MiB)

Average
Inference
Time per
Example
(ms)

AP-Attention 249,227 3.0 4,243.492 0.329
IQ-CLDNN 794,763 9.6 6,317.871 0.303
Img-MobileNetV2 2,237,963 16.1 7155.203 17.045
Features-CNN 821,259 9.9 3530.207 0.655
FFT-CNN 1,175,883 14.2 6518.602 0.291

input size of (224, 224, 2) and complex model structure. The average inference
time for Features-CNN is almost twice than that of AP-Attention since the com-
putation of statistical features consumes more time. Using the pooling layer and
a smaller number of CNN filters, FFT-CNN has the lowest inference time among
AMC models.

Attributing to the hardware support of parallel processing and the software op-
timization of data flow, it is envisioned that the inference time of DL-based models
can be sharply reduced in implementation. Therefore, the graphics processing unit
(GPU) assisted AMC models are envisioned to have lower computation complex-
ities by processing different received sequences simultaneously.

4.5 Summary
This chapter analyzes the results of previous introduced five AMC models. Differ-
ent performance metrics are introduced to evaluate the AMC models. Experiment
results indicate that AP-Attention and IQ-CLDNN have the superior classification
performance over other AMC models. Computational complexity including mem-
ory consumption and detection efficiency is discussed in Section 4.4. Complexity
results show that AP-Attention has less trainable parameters and short inference
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time, while Img-MobileNetV2 suffers from high complexity.
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Chapter 5

Weight Pruning and Stacking for a
Better End-to-end AMC Model

5.1 Weight Pruning
Real-time AMC for mobile devices with constrained computational resources
requires more memory-efficient and power-efficient AMC models. Therefore,
pruned NNs are introduced at the expense of negligible loss in accuracy. Back
to the 1990s, pruned NNs have been proposed based on the fact that many NN
parameters are redundant and have less contributions to the final output [39].

We eliminate the unnecessary model parameters to improve the memory effi-
ciency and power efficiency of the proposed AMC models. More specifically, the
weight pruning operations set the low-magnitude model parameters to zero such
that the required memory resource is reduced. After weight pruning, the models
become sparse. Therefore, performing the compression operation1 can reduce the
latency. The detailed procedures of our proposed weight pruning operation are
as follows. Based on the obtained models in Chapter 4, the training is performed
for 150 epochs among which the pruning operation is conducted in the first 60

1The compression operation is defined as recording the non-zero elements and skipping the
computations related to those zeros.
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Figure 5.1: Model sizes comparison after weight pruning

epochs. Since pruning too many model parameters in each iteration can severely
degrade the performance, the pruning operation is performed iteratively. For ex-
ample, we prune every 500 steps to give the AMC model more recovery time. We
gradually train the model until the sparsity target of 70% is reached. When the
validation accuracy does not improve in consecutive 30 epochs, the pruned model
is obtained.

We compress the original models and the pruned models by a generic file com-
pression algorithm, namely zip compression. As illustrated in Figure 5.1, bars
with texture represent the model after zip compression. The value labeled on each
bar is the model size before zip compression. Figure 5.1 shows that pruned mod-
els occupy roughly 30% memory of the original models. After zip compression,
we can save roughly 10% more storage space. From these results, the sizes of
pruned models do not exceed 5 MB. Moreover, pruned AP-Attention, pruned IQ-
CLDNN, and pruned Features-CNN only occupy around 1 MB. Therefore, weight
pruning greatly lightens the storage burden for end-to-end mobile devices.

We also perform the comparison of F1-scores based on the original models in
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Figure 5.2: Micro-averaged F1-scores comparison after weight pruning

Chapter 4 and the pruned models. The micro-averaged pruned F1-scores results
can be found in Figure 5.2. The values in the brackets are the overall averaged
F1-scores. We observe that the pruning operation results in minor performance
degradation. Although the degradation in F1-scores is more obvious in low SNR
regime, the overall decrease does not exceed 0.08. Therefore, the pruning opera-
tion can trade the F1-scores for the memory reduction.

5.2 Ensemble Learning
Chapter 4 illustrates the classification accuracy of different models in the de-
scending order as AP-Attention, IQ-CLDNN, Img-MobileNetV2, Features-CNN,
and FFT-CNN. Using the parallel processing, we can process multiple signal se-
quences simultaneously. Therefore, the classification accuracy is more important
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than the computational complexity in practice. To improve the classification ac-
curacy, ensemble learning is introduced to integrate the different AMC models in
Chapter 4.

5.2.1 Definition
In ensemble learning, multiple first-level models (a.k.a. weak learners) are com-
bined and trained to solve the same problem. Two categories of combination
methods can be used for the ensemble learning, namely homogeneous and hetero-
geneous methods. The homogeneous methods combine the same models trained
in different ways, and the heterogeneous methods combine the different models.
Different models are based on different learning algorithms.

5.2.2 Stacking
Since the proposed AMC models are all heterogeneous models based on different
learning algorithms, our ensemble target is to obtain a more accurate modulation
classification. Therefore, a heterogeneous method (i.e., stacking method) is used.
Rather than choosing a single model, stacking method integrates the different first-
level models into a second-level model (a.k.a meta model) and trains the second-
level model based on outputs of first-level models [40].

We denote the original training dataset by D with N individual signal sam-
ples {xxxi, yyyi}

N
i=1 and N1 first-level models. At the beginning, the general proce-

dure of stacking learns the first-level model f 1 = { f 1
1 , f 1

2 , . . . , f 1
N1
} based on D.

Then, stacking trains a second-level model f 2 based on the predictions of first-
level models f 1. For sample (xxxi, yyyi), the corresponding item in the new dataset
is ({ f 1

1 (xxxi), f 1
2 (xxxi), . . . , f 1

N1
(xxxi)}, yyyi). After training the second-level model f 2, the

prediction of unseen sequence xxx is computed by f 2( f 1
1 (xxx), f 1

2 (xxx), . . . , f 1
N1
(xxx)).

We use the combinations of introduced AMC models in Chapter 4 to generate
the first-level models f 1. To maintain low complexity, a three-layer CNN is used
as the second-level model f 2. Using the proposed five AMC models, we can
obtain C2

5 +C3
5 +C4

5 +C5
5 = 26 first-level models. Based on the performance of five
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introduced AMC models discussed in Chapter 4, we consider the five reasonable
combinations to include more features and less computation complexity:

• AP-Attention, IQ-CLDNN (AP-IQ)

• AP-Attention, IQ-CLDNN, Img-MobileNetV2 (AP-IQ-Img)

• AP-Attention, IQ-CLDNN, Features-CNN (AP-IQ-Features)

• AP-Attention, IQ-CLDNN, Img-MobileNetV2, Features-CNN (AP-IQ-Img-
Features)

• AP-Attention, IQ-CLDNN, Img-MobileNetV2, Features-CNN, FFT-CNN
(AP-IQ-Img-Features-FFT).

When the first-level models use the same dataset as the second-level model,
the overfitting to the dataset occurs. A heuristic method is to split the dataset into
two subsets for the first-level models and the second-level model. However, the
data-splitting method has an obvious drawback, i.e., only a fraction of the data
samples are used for training the model in each level. Therefore, the K-fold cross-
validation is used.

Using the K-fold cross-validation, we can partition D into K disjoint subsets
such that the second-level model f 2 can be trained using all samples in dataset D.
The procedure of stacking with K-fold cross-validation is illustrated in Figure 5.3.
We train f 1 on K − 1 folds and make predictions on the remaining fold to avoid
overfitting. Repeat K times, all predictions from f 1 make up the training dataset
for f 2. After training f 2, we re-train f 1 on the whole dataset D. Therefore,
the final stacking model F is obtained by applying the second-level model f 2 on
re-trained first-level models f 1, which is defined by

F(·) = f 2( f 1
1 (·), f 1

2 (·), . . . , f 1
N1
(·)). (5.1)

In our experiments, we choose three-fold cross-validation to train the stacking
model. The second-level model f 2 consists of three layers of CNN with 128,
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Repeat K 
times

Figure 5.3: Stacking with K-fold Cross-Validation

128, and 64 hidden neurons. The padding and dropout with a rate of 0.4 are
utilized. We depict the F1-scores performance of five stacking learned models in
Figure 5.4. The values in the brackets are the overall micro-averaged F1-scores.

Compared with the other stacking models and the AMC models in Figure 5.2,
we found that the AP-IQ model has the highest overall micro-averaged F1-scores.
This observation is reasonable due to the facts that the AP-Attention model and
IQ-CLDNN models show the superior performance over the other models. When
the highly accurate features are combined, the second-level model f 2 extract more
discriminative representations. Besides, AP-IQ model outperforms the single AP-
Attention model by roughly 2% in F1-score, which validates the effectiveness of
stacking.
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Figure 5.4: Micro-averaged F1-scores for stacking learned models

Predictions of Features-CNN and FFT-CNN limit the representation learning
capability of the second-level model f 2. Therefore, the obtained F1-scores is
lower than the other stacking models. This observation indicates the possibility
of a weighted dataset to give more weights to the first-level models f 1 with better
performance and fewer weights to other models.

Following Section 4.4 and Section 5.1, extensive pruning experiments with a
target of 70% sparsity are also conducted to control the computational complexity
of stacking AMC models. Similar to single AMC models, pruning operation leads
to a slight degradation in F1-scores. Although the deterioration is more severe
under low SNR regime, overall the effects can be neglected.

Table 5.1 shows the comparison of complexity with the same pruning oper-
ations in Section 5.1. After the pruning operations, the stacking classifiers with
Img-MobileNetV2 ensembled have remarkably increased inference time. The AP-
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Table 5.1: Computational Complexity of Pruned Stacking AMC Models

AMC Model
Number of
Trainable
Parameters

Storage
Size
(MB)

Peak
Memory
Usage
(MiB)

Average
Inference
Time per
Example
(ms)

AP-IQ 331,656 4.15 6,806.595 0.723
AP-IQ-Img 977,142 7.91 7,382.542 17.325
AP-IQ-Features 633,930 7.52 6,917.368 1.378
AP-IQ-Img-
Features

1,177,869 12.19 7,520.321 18.308

AP-IQ-Img-
Features-FFT

1,551,467 15.88 7,614.509 18.711

IQ model has a storage size of less than 5 MB and an averaged inference time of
less than 1 ms. Therefore, the pruned AP-IQ is the most suitable AMC classi-
fier for end-to-end devices due to its superior F1-scores performance and lower
computational complexity.

5.3 Summary
In this chapter, we introduce weight pruning and stacking learning to further im-
prove the classification performance of AMC models. Experiments show that
weight pruning can reduce the AMC model complexity with a negligible perfor-
mance degradation. Stacking learned AMC models have superior performance
than single AMC models. Overall, the pruned stacking learned AP-IQ model has
the best classification performance and acceptable low computational complexity.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude and highlight the contributions of this thesis in Sec-
tion 6.1. Then, we also illustrate some ideas for future work in Section 6.2.

6.1 Conclusions
This thesis aims at providing a memory-efficient and high-performance AMC
model for resource-constrained devices. Our contributions can be summarized as
follows:

• We introduced noise reduction, signal normalization, and label smoothing
before training AMC models. To conduct a thorough comparison, we inves-
tigated all possible signal representations and designed a DL-based model
for each signal representation. For example, we used the KDE algorithm to
convert the well-known CD into 3D-CI. We proposed the attention module
in AP-Attention and connected CNN, LSTM, and DNN with multi-scale
connection IQ-CLDNN.

• We conducted extensive simulations to evaluate the model performance
based on the comprehensive metrics, namely F1-score, ROC, and PRC.
Numerical results illustrate that the overall performance of AMC models
in descending order was: AP-Attention, IQ-CLDNN, Img-MobileNetV2,
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Features-CNN, and FFT-CNN. Moreover, the complexity experiments vali-
dated the computation-efficiency of AP-Attention and IQ-CLDNN.

Therefore, we conclude that the used data pre-processing methods and pro-
posed AMC models (AP-Attention model and IQ-CLDNN model, Img-MobileNetV2
model, Features-CNN and FFT-CNN) can improve the AMC performance over
the benchmark models (AP-LSTM and IQ-CNN). Besides, our work also com-
pared the impacts of the pruning operation and stacking operation on the AMC
models. The investigation of pruned models showed that weight pruning greatly
reduced the model storage size while only brought negligible performance degra-
dation. Furthermore, the stacking experiments confirmed that pruned AP-IQ achieved
the highest F1-scores and kept low computational complexity at the same time.

6.2 Future Work
Several research directions can be considered in the future

• Recently, O’Shea et al. [7] proposed the second version of the RadioML
dataset that includes both synthetic simulated channel effects and over-the-
air recordings of 24 modulation schemes. We will train and test our models
on this dataset in the future to check the performance of our proposed mod-
els on this complicated dataset.

• In this thesis, we chose weight pruning to remove unnecessary NN connec-
tions. Further efforts to reduce the model size might explore the quantiza-
tion method. Quantization converts the model weights to eight-bit preci-
sion. We should also convert the final pruned model into a suitable format
to run on specific back-ends. For example, TensorFlow lite1 is a format for
deploying DL models on mobile devices.

• In Section 5.2, we assign equal weights to the predictions of first-level base
models when building the training dataset for the meta-model. However, the

1https://www.tensorflow.org/lite
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results suggest the possibility for further research about a weighted dataset
with more weights to good predictions and fewer weights for other predic-
tions.

• Recent research has shown that DNNs are highly vulnerable to adversar-
ial attacks. Sadeghi and Larsson [41] validated this phenomenon in radio
modulation classification tasks. Further studies need to be carried out to de-
termine whether adversarial attacks will affect our proposed AMC models.

• All our proposed models belong to supervised learning. The model per-
formance relies heavily on the quality of training dataset. More research
should be undertaken to explore how semi-supervised learning performs in
AMC problem.
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Appendix A

Typical Layers in CNN Architecture

A.1 Convolutional Layer
Each convolutional layer convolves input feature map with fixed length filters and
then cascades these new feature maps together to form the output layer. We begin
with the standard One-dimensional (1D) convolutional layer, which convolves in
a single direction for vectors.

For example, if the input feature map of the first 1D convolutional layer is
xl−1 ∈ RL×N l−1

, where L is the sample length of 128 points and N l−1 = 2 is the
number of input feature maps, or dimensions, then the 1D convolutional layer l

with N l output feature maps would have N l−1 × N l kernels with size kl and N l

biases.
For a certain kernel i ∈ {1, . . . ,N l} in next layer l, the input vector of 1D

convolution layer is the output from previous layer denoted as xl−1
j with j ∈

{1, . . . ,N l−1}, then the ith mathematical output vector is represented as

xl
i = fact

©­«
Nl−1∑
j=1

xl−1
j ∗ k l

i,j + bl
i
ª®¬ (A.1)

where k l
i,j is the kernel for ith output vector and jth input vector with size k l , bl

i
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represents the bias term, and ∗ is the convolution operation. For kernel with size
kl , the total number of trainable parameters in convolution layer l is Nl ×Nl−1 ×

kl +Nl .

A.2 Activation Layer
After classic NN or convolutional layer, a non-linear activation function, like
RELU, is applied to mitigate the effects of gradient vanishing problem. RELU
can be described as

fReLU(xi) = max(0, xi). (A.2)

Activation functions are typically in sigmoidal shape, resulting in a nonlinear sys-
tem to extract more complex features than a high-order linear system.

Another common activation function, softmax is often used to produce the
probability score associated with the ith class. In AMC, the final modulation type
is decided by the modulation class with the highest probability score. The ith
element in output of softmax is

fsoftmax(xi) =
exi∑M

i=1 exi
(A.3)

where xi is ith pre-activation output, and M is the number of modulation classes.

A.3 Fully-connected or Dense Layer
After stacked convolutional layers and a flatten layer to transfer a 2D vector to a
1D vector, a fully-connected layer is used to extract higher-level information from
the previous flatten layer.

Fully-connected layer or dense layer has the same architecture as classic neural
networks in Equation 2.12 where neurons have full connections to all activations
from the previous layer. The dense layer is usually used as the last layer in the
classification problem to output the normalized likelihood vector with activation
function being softmax.
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Appendix B

RadioML Dataset Generation Setup

B.1 Dataset Simulation Model
Modulated with real voice and text data, the samples in this dataset are generated
with 11 different modulation schemes and 20 different SNR levels from −20 dB
to +18 dB with a step of 2 dB.

For digital modulations, Binary Phase Shift Keying (BPSK), Quadrature Phase
Shift Keying (QPSK), 8PSK, QAM16, QAM64, and Pulse Amplitude Modula-
tion (PAM)4, the entire Gutenberg works of Shakespeare in ASCII is used, with
whitening block randomizer to ensure equiprobable symbols and bits. Moreover,
the gr-mapper OOT module and an interpolating finite impulse response root-
raised cosine pulse shaping filter with an excess bandwidth of 0.35 is used to
achieve the desired samples per symbol rate [3].

For analog modulations Wide-band Frequency Modulation (WBFM), Ampli-
tude Modulation (AM)-Single Side-band Modulation (SSB), AM-Double Side-
band (DSB), Gaussian Frequency-shift Keying (GFSK), and Continuous-phase
Frequency-shift Keying (CPFSK), a continuous acoustic voice speech with some
interludes and off times is implemented with GNU Radio hierarchical blocks.

The generated signals then pass through a number of realistic channel imper-
fections and intersymbol interference. Primary amplitude, phase, Doppler, and
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delay impairments introduced in the wireless channel consist of [42]:

• Thermal noise: Due to the resistive components in the physical device such
as the receiver antenna, this thermal noise maybe modelled as AWGN, n ∼

N(0, σ2), which forms a specific noise power level corresponding to the
desired SNR.

• Frequency offset: The frequency offset is caused by the slightly different
local oscillator signal frequencies at the transmitter fc and receiver f ′c , and
the motion of emitters, reflectors, and/or receivers.

• Phase noise: Oscillator drift and unknown phase-delay of various propa-
gation medium result in the angle of the signal to drift around its intended
instantaneous phase 2π fct.

• Sample rate offset: Different sample rates at the receiver and transmitter
and time dilation are simulated by a fractional interpolator stepping along
at a rate of 1+ ε input samples per output sample, where ε is close to zero
and follows a clipped random walk process.

• Multipath fading or frequency selective fading: Implemented by the sum of
sinusoids with random phase offset for Rician and Rayleigh fading in GNU
Radio, multipath fading usually occurs when signals reflect off any form of
reflectors like buildings and vehicles.

• Delay spread: Non-impulsive delay spread is caused by the propagation of
delayed multi-path reflection, diffraction, and diffusion.

B.2 Dataset Parameters
The total dataset is split by a short-time rectangular windowing process which
is similar for speech recognition to slice continuous acoustic voice signals [42].
After segmentation, each signal example is normalized to average transmit power
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Table B.1: RadioML Dataset Parameters

Parameters Value

Samples per symbol 4
Sample length 128
Sampling frequency 200 kHz
Sampling rate offset standard deviation 0.01 Hz
excess bandwidth for root-raised cosine pulse shaping
filter

0.35

Maximum sampling rate offset 50 Hz
Carrier frequency offset standard deviation 0.01 Hz
Maximum carrier frequency offset 500 Hz
Number of sinusoids 8
Maximum Doppler frequency 1
Fading model Rician
Rician K-factor 4
Fractional sample delays for the power delay profile [0, 0.9, 1.7]
Number of samples per modulation scheme at a specific
SNR

1000

Magnitude corresponding to each delay time [1, 0.8, 0.3]
Filter length to interpolate the power delay profile 8
Standard deviation of the AWGN process 10− SNR

10

Number of training samples 82500
Number of validation samples 41250
Number of test samples 41250

of 0 dB in a 128×2 vector with IQ components. Each example is approximately
128 µ sec and contains between 8 and 16 symbols.

For dataset storage, numpy and cPickle Python packages are exploited to store
it as a pickle file with complex 32-bit floating point samples. The detailed spec-
ifications and generation parameters are listed in Table B.1. As a modulation
characteristic, the samples per symbol parameter used in the Table B.1 specify the
number of samples representing each modulated symbol.
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Appendix C

Statistical Features

C.1 HOC
The HOC Cpq is defined by

Cpq = cum(x, . . . ,x, x∗, . . . ,x∗) (C.1)

where cum(·) denotes the cumulant function, x is repeated p− q times and the
conjugated version x∗ is repeated q times. To remove the effect of the signal scale
on cumulants, Cpq is typically powered by 2

p .
By adopting Equation C.1, second-order cumulant C21 is given by cum(x, x∗),

fourth-order cumulant C42 is cum(x,x,x∗,x∗), and the sixth-order cumulant C62 is
computed by cum(x,x,x,x,x∗,x∗).

The joint cumulant function is defined as [17]:

cum(x1, . . . ,xN ) =
∑

A

(|A| −1)!(−1)|A|−1
ΠB∈AE(Πi∈Axi) (C.2)

where A is the whole partitions of set [1, . . . ,N], and B runs through the list of
all blocks of the partition A. A simple example is cum(α,β,γ,ν) = E[αβγν] −

E[αβ]E[γν]−E[αγ]E[βν]−E[αν]E[βγ].
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C.2 HOM
Given N samples x(i), the function of HOC Cpq can be obtained from HOM Mpq,
where the empirical estimated moment Mpq associated with the stationary process
x(i) is computed as

Mpq = E[x(i)p−q(x(i)∗)q], for 0 ≤ q ≤ p (C.3)

where p and q are integers, and the superscript ∗ represents the complex conjugate.

C.3 Other features
Another effective feature type extracted for AMC here is instantaneous features
[28, 30, 31]. We introduce three instantaneous features: γmax , kurtosis K and
skewness S. γmax is the maximum value of the power spectral density of the
normalized signal samples.

K measures whether the PDF of x(i) are heavy-tailed or light-tailed relative
to a normal distribution. In other words, K checks the presence of outliers in the
data distribution. High K indicates the presence of heavy tails or outliers in data,
while low K is an indicator of light tails or lack of outliers.

S is a measure of lacking symmetry in the data distribution. The S of symmet-
rical distribution is zero. Negative S indicates x(i) is skewed left, which means the
left tail is longer than the right tail of the distribution. While positive S suggests
the x(i) is skewed right; the mean and median are less than the mode.

Besides, we also include four variances. σ2
aa is the variance of the absolute

value of normalized instantaneous amplitude |xcn(i)|. σ2
v represents the variance

of the absolute value of normalized signal phase.
In the the variance of the direct instantaneous phase ϕN L(i), σ2

dp, and the vari-
ance of the non-linear component of ϕN L(i), σ2

ap, there is a threshold xt = 1 below
which the estimation of instantaneous phase ϕN L(i) is sensitive to noise.
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Table C.1: List of Features Used in Proposed AMC Method

Features Definition

f1 : C20 M20
f2 : C21 M21

f3 : C1/2
40 M40−3M2

20
f4 : C1/2

41 M40−3M20M21

f5 : C1/2
42 M42− |M20 |

2−2M2
21

f6 : C1/2
44

M44−M2
40−18M2

22−54M4
20−144M4

11−432M2
20M2

11+

12M40M2
20+192M31M11M20+144M22M2

11+72M22M2
20

f7 : C1/3
60 M60−15M20M40+30M3

20
f8 : C1/3

61 M61−5M21M40−10M20M41+30M3
20M21

f9 : C1/3
62

M62−6M20M42−8M21M41−M22M40+6M2
20M22+

24M2
21M20

f10 : C1/3
63

M63−9M21M42+12M3
21−3M20M43−3M22M41+

18M20M21M22

f11 : C1/4
80 M80−28M60M20−35M2

40+420M40M2
20−630M4

20
f12 : C1/4

84 M84−16C63C21− |C40 |
2−18C2

42−72C42C2
21−24C4

21
f13 : γmax max |DFT(x(·))|2/N
f14 : σ2

aa E[x2
cn(i)]−E[|xcn(i)|]2

f15 : σ2
v E[x2

v (i)]−E[|xv(i)|]2

f16 : σ2
dp Ex(i)>xt [ϕ

2
NL(i)]−Ex(i)>xt [ϕNL(i)]2

f17 : σ2
ap Ex(i)>xt [ϕ

2
NL(i)]−Ex(i)>xt [|ϕNL(i)|]2

f18 : v20 M42/M2
21

f19 : β
∑N

i=1 x2
I (i)/

∑N
i=1 x2

Q(i)
f20 : K

��E[x4
cn(i)]/E

2[x2
cn(i)]

��
f21 : S

���E[x3
cn(i)]/E

3
2 [x2

cn(i)]
���

f22 : PAR max(|x(·)|)/E[|x(i)|]
f23 : PRR max(|x(·)|2)/E[|x(i)|2]
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C.4 Summary of Selected Statistical Features
Partial variables in Table C.1 are given by

x(i) = xI(i)+ j xQ(i) (C.4)

xcn(i) =
|x(i)|

E[x(i)]
−1 (C.5)

xv(i) =

√
|x(i)|

E2[|x(i)| −E[x(i)]]
−1 (C.6)

ϕNL(i) = phase(x(i))−E[phase(x(i))] (C.7)

In the Table C.1, the E[·] operation denotes the mathematical expectation; the
DFT(·) denotes the discrete Fourier transform operation; N is the number of the
received symbols; and x(·) represents all samples of the received signal x.
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