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Abstract 

Steel wire mesh pinned by a pattern of bolts with plates is widely used in rock slope stabilization. 

The bolted steel mesh can hold potentially unstable rocks in place. Typical laboratory tests on steel 

mesh use rigid frames to fix the mesh perimeters. However, the steel mesh is usually pinned by 

bolts in the field. Different configurations of bolts will affect how the mesh behaves.  

This research aims to develop numerical models to understand the behaviour of bolted steel mesh. 

Instead of using expensive and time-consuming experimental and field tests, this research takes 

advantage of the existing experimental results to calibrate steel mesh models using the open-source 

discrete element method (DEM) code YADE. Several modelling approaches were compared in 

terms of their mechanical response and computational cost. The particle-based mesh model was 

finally chosen because this approach can capture the mechanical response of steel mesh with less 

computational demand. 

The influence of different bolt patterns and bolt spacing on the force-displacement response of 

steel wire mesh was analyzed using a calibrated mesh model. Relationships between the resistance 

force provided by the mesh and the bolt density at various mesh deformations were developed. A 

parametric study investigated various factors that affect the mesh behaviour under loads created 

by an unstable rock using DEM. The results provide a better understanding of the steel mesh 

response for various bolt arrangements and loading conditions, which can help engineers choose 

the proper bolt patterns to control the mesh deformation.  
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The simulation results were used to develop prediction models using the support vector machine 

(SVM) approach. The prediction models can be used to estimate the performance for bolted steel 

mesh. Finally, this research analyzed the interaction of the bolted mesh with a sliding and a 

toppling rock. The results revealed the load transfer and displacement between the rock, mesh and 

rockbolt plates. The research findings were demonstrated in a design of bolted mesh for a steep 

rock cut that was experiencing failures. 
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Lay Summary 

Using steel mesh pinned by bolts is popular in rock slope stabilization. Typical laboratory tests on 

steel mesh do not capture the real mesh behaviour in the field. This research improves the 

understanding of the behaviour of mesh pinned by rockbolts. Experimental tests are expensive and 

time-consuming. Thus, an open-source computer program was used to conduct numerical 

simulations. The results reveal the load and displacement behaviour of steel mesh with bolts. 

Design curves were developed to help choose a bolt layout to make the mesh more efficient. This 

research also developed a prediction tool using the machine learning technique. The tool can 

predict the mesh’s load-displacement behaviour when loaded by an unstable rock. Finally, this 

work presents a case study that applied the research findings to the design of bolted mesh for a 

steep rock cut.  
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Chapter 1: Introduction 

1.1 Background and motivation 

The failure of rock slopes is a common slope hazard along highways and railways, as well as in 

civil and mining engineering in mountainous areas. Steel wire mesh has been widely used in rock 

slope stabilization (Shu et al. 2005b, Giacomini et al. 2012, Justo et al. 2014). The mesh can 

function as a drapery, whereby its purpose is to deflect the trajectories of rockfalls (Giacomini et 

al. 2012). When the wire mesh is bolted to the rock surface, as shown in Figure 1.1, it is usually 

designed to hold potentially unstable rock blocks in place (Blanco-Fernandez et al. 2013). 

 

Figure 1.1 Bolted steel wire mesh 

Although bolted steel mesh support systems are common, only a few design methods for their use 

can be found in the literature. The current design methods for bolted steel mesh are based on 

Rockbolt with plate

High tensile steel mesh
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methods that work best for uniform loading associated with soil slopes (Blanco-Fernandez et al. 

2011). These methods rely on limit equilibrium analysis, and the slopes are simplified using 

vertical slices or several wedges in a shallow layer below the ground surface. One assumption in 

these methods is that the steel mesh exerts a normal and a shear force/pressure on the slope surface 

(Da Costa and Sagaseta 2010, Cala et al. 2012, Justo et al. 2014). In order to create these 

forces/pressures, the steel wire mesh needs to be pre-stressed during the installation of the bolts. 

However, it is difficult to achieve the proper pretension in the steel mesh in practice, and the tensile 

forces mobilized in the wires are typically much less than the tensile strength (Blanco-Fernandez 

et al. 2013). 

In terms of rock slopes, the simplification in the current design methods may not be suitable for 

structurally controlled failure modes such as plane sliding, wedge sliding, and block toppling, 

which are common for rock slopes (Hoek and Bray 1981, Wyllie and Mah 2004). Unstable rock 

blocks can move and deform the steel mesh. Mesh deformations can generate complex 

distributions of tensile forces in the wires, and wires can rupture. The current design methods do 

not consider mesh deformations and the distribution of tensile forces in the wires. A better design 

approach must limit the mesh deformations rather than using the ultimate load capacity of the 

mesh. The reason is that mesh can sustain a large amount of deformation when it reaches its 

ultimate load capacity. Large mesh deformations may not be acceptable when there is limited space 

between rock slope and buildings or infrastructure. 

The force-displacement response of the steel mesh can be used to estimate the support forces of 

steel mesh on the unstable rock blocks (Grimod and Giacchetti 2014). Rigid frames are often used 

to fix the outer boundaries of the steel mesh during laboratory tests to obtain the force-
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displacement relationship of steel mesh (Bertrand et al. 2008, Castro-Fresno et al. 2008, 2009, 

Cala et al. 2012, Gobbin et al. 2017). In 2016, a testing standard (ISO 17746) was developed to 

guide punch tests. However, the fixed outer boundary on a steel mesh is not a realistic boundary 

condition to represent field loading conditions. In the field, the steel mesh is usually anchored 

using bolts with two different patterns, pattern A and pattern B, as shown in Figure 1.2. In pattern 

A, the bolts are aligned with each other in rows and columns. In pattern B, the bolts in alternating 

rows are offset one half of the separation distance between the bolts. Field tests showed that the 

steel mesh is more deformable under real flexible boundary conditions compared to laboratory 

tests in a test frame (Bertolo et al. 2009). Thus, it is necessary to consider the real force-

displacement response of steel mesh when designing a bolted steel mesh support system. An ideal 

bolt arrangement will improve the effectiveness of steel mesh by helping the steel mesh mobilize 

a resisting load at smaller deformations. Nevertheless, many factors can affect the force-

displacement response of steel mesh, which limits the application of this design method. 

 

Figure 1.2 Bolt patterns A and B 

(a) Pattern A (b) Pattern B
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An alternative approach of expensive physical experiments is to use numerical modelling to 

investigate different configurations and boundary conditions of bolted steel mesh. While many 

researchers applied the finite element method (FEM) to model the steel mesh (Sasiharan et al. 

2006, Roth and Ranta-Korpi 2007, Castro-Fresno et al. 2008, del Coz Díaz et al. 2009, Gentilini 

et al. 2013, Escallon et al. 2015), the FEM needs specific algorithms to deal with large 

deformations and failure of the steel mesh (Bertrand et al. 2012). Although the discrete element 

method (DEM) is also computationally intensive, the DEM can simulate the motion and large 

displacements between elements without extra algorithms, making it more intuitive to deal with 

problems like rock moving and interacting with steel mesh (Xu and Tannant 2018). The double-

twisted hexagonal mesh was modelled by placing a particle (ball) at each node and introduced a 

virtual spring between two particles to capture the tensile behaviour of one steel wire (Nicot et al. 

2007, Bertrand et al. 2008, Li and Zhao 2018). Thoeni et al. (2013) improved this approach by 

adding a more complex stochastic interaction between particles that represented the distorted wires 

in the mesh. They implemented this method into an open-source DEM code YADE (Šmilauer et 

al. 2015). Dynamic tests showed that this kind of model can simulate the behaviour of wire mesh 

and was successfully used to model a drapery system for rockfall protection (Thoeni et al. 2014, 

2015) and applied in a reliability-based design for rockfall fences (Bourrier et al. 2015). Cylinder 

elements were first introduced by Bourrier et al. (2013) and were used to simulate wires in a mesh 

(Xu and Tannant 2016, Effeindzourou et al. 2017). The cylinder elements are a beam-like element 

in YADE that can handle tension, bending, and twisting (Effeindzourou et al. 2016). Compared 

with cylinder elements, the use of particle elements results in a steel mesh model that ignores wire 

bending.  
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Combinations of numerical simulations of wire mesh with mathematical optimization methods 

have been used to analyze the response of rockfall protection for both design and hazard reduction 

purposes (Bourrier et al. 2015, Toe et al. 2018). This approach can generate metamodels that 

statistically capture the complex structural response considering various influence factors in a 

computationally cost-effective way. Some examples used in geotechnical engineering include the 

response surface method (RSM) (Mollon et al. 2011, Shamekhi and Tannant 2015, Blanco-

Fernandez et al. 2016), artificial neural networks (ANN) (Lu and Rosenbaum 2003, Cho 2009), 

and the support vector machine (SVM) (Zhao 2008, Toe et al. 2018, Liu et al. 2019). The SVM 

approach (Vapnik 2000) overcomes the limitations of RSM because it can cope with problems 

beyond nonlinear concave or convex surfaces. The SVM has a regulation parameter to avoid 

overfitting and finds out the global optimum, which overcomes the limitations of ANN. Toe et al. 

(2018) used an SVM approach to assess the effectiveness of rockfall barriers for various impact 

conditions. The success of the support vector machine approach for the study on rockfall barriers 

motivated the current work with the bolted wire mesh. 

1.2 Research objectives 

This research aims to develop numerical models to understand the behaviour of bolted steel mesh 

used to support steep unstable rock slopes. The objectives of this research are to (1) develop 

numerical models to capture the mechanical response of steel mesh in the laboratory tests, (2) 

understand the force and displacement relationship of steel mesh with various bolt patterns and 

spacing, (3) demonstrate the performance of bolted steel mesh when resisting an unstable rock.  
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1.3 Contribution 

This research creates numerical models to demonstrate the response of bolted steel mesh with 

various bolt arrangements when the mesh is subject to loads from an unstable rock. The developed 

numerical models using DEM captures the mechanical characteristics of the physical steel mesh. 

The outcomes from extensive numerical simulations on the interaction of bolted steel mesh and 

rock block contribute to a better understanding of the mesh behaviour. These results have 

significant implications for improving the effectiveness of mesh on rock slopes using a proper bolt 

arrangement. 

1.4 Methodology 

To achieve the research objectives, extensive numerical simulations were performed on the steel 

mesh that was subjected to a pseudo-static loading. The tasks and corresponding methodologies in 

the research are presented as follows.  

• The first task was to determine an efficient modelling approach to simulate high-tensile steel 

mesh. Published results of laboratory tests on high-tensile steel mesh (TECCO G65/3) were 

collected. Different models for high-tensile steel mesh were developed in the open-source 

DEM code YADE using particle elements and cylinder elements. Numerical punch tests were 

performed to compare the force-displacement response and computational cost of these 

models. The particle-based mesh model was calibrated to match the mesh response under 

laboratory tensile test and punch test.  
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• The second task was to analyze the influence of bolt patterns and bolt spacing on the force-

displacement relationship of wire mesh. The calibrated mesh model was applied to perform 

the punch tests on the wire mesh pinned by two commonly used patterns of bolts. This research 

conducted a series of numerical simulations by varying the horizontal and vertical bolt spacing 

on the wire mesh. The influences of different bolt patterns and varying ratios of bolt spacing 

on the effectiveness of steel wire mesh were analyzed.  

• The third task was to investigate the displacement and load transfer mechanism of bolted steel 

mesh when resisting an unstable rock. Discrete element models were created to simulate 

realistic field scenarios where an unstable rock interacts with the bolted steel mesh. A 

parametric study was conducted based on DEM simulations. The influence of the factors that 

affect mesh performance was analyzed. 

• The fourth task was to develop a tool to predict mesh performance. A support vector machine 

was trained to predict the mesh responses using the results from DEM simulations. Three 

widely used SVM kernel functions were compared. The prediction performances of the 

obtained SVM models were analyzed. 

1.5 Thesis structure 

Chapter 1 presents the research background and motivation. The research progress and challenges 

are described for the bolted steel mesh for slope stabilization. The research objectives and 

methodologies are also presented.  
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Chapter 2 presents a literature review on the bolted steel wire mesh for slope stabilization. This 

chapter summarizes and discusses various rock slope failure mechanisms, experimental and 

numerical tests on the steel wire mesh and the applications that integrate the mathematical and 

numerical methods in civil engineering. 

Chapter 3 presents the discrete element modelling of high-tensile steel mesh. This chapter 

compares various modelling approaches for steel mesh in terms of force-displacement response 

and effectiveness using open-source DEM code YADE. The calibration and validation of the mesh 

model using the published results of laboratory tensile and punch tests on the wire mesh is 

discussed. 

Chapter 4 presents the influence of bolt pattern and spacing on the behaviour of bolted steel mesh. 

This chapter compares the force-displacement response of steel mesh pinned different bolt 

arrangements using numerical simulations. Relationships between the resistance force of steel 

mesh and bolt density at various mesh deformations are developed. 

Chapter 5 presents the use of DEM and SVM to analyze the rock-bolted steel mesh response. 

Discrete element models are created to simulate realistic field scenarios where an unstable rock 

interacts with the bolted steel mesh. A parametric study on the factors that affect mesh performance 

is conducted based on DEM simulations. A tool is developed to predict bolted mesh response on 

rock slopes. 

Chapter 6 presents an investigation on the bolted steel mesh to support a sliding rock and a topping 

rock. The rock block is simulated by particle elements that are clumped together. The slope face 
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is modelled by triangular facet elements. The calibrated steel mesh model is used to hold the rock 

block. The effectiveness of the bolted steel mesh and load transfer between the rock, mesh, and 

bolts is studied.  

Chapter 7 presents a case study that shows a design of bolted steel mesh to hold an overhanging 

rock slope. The design utilizes the research outcomes from previous chapters. 

Chapter 8 summaries the research outcomes and discusses the limitations and recommendations 

for future work. 
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Chapter 2: Literature review 

2.1 Failure of rock slopes 

The failure of rock slopes is common in mountainous regions. The rock slopes can be categorized 

as natural rock slopes and artificial rock slopes. The natural rock slopes are the products of nature, 

while the artificial rock slopes are created by excavations to make room for transportation, 

buildings, dams and portals (Goodman and Kieffer 2002). Many factors may cause a rock slope 

failure, such as weathering, groundwater, rainfall, freeze-thaw cycles, earthquake, and excavations 

(Frayssines and Hantz 2006, Amini et al. 2009, Zhang et al. 2016). The classical failure 

mechanisms of rock slopes are planar, wedge, and toppling failures (Hoek and Bray 1981, Wyllie 

and Mah 2004).  

A block of rock can slide as a planar on a single joint dipping out of the slope face (Wyllie and 

Mah 2004). Unstable rock blocks can also slide on several slip faces, which form a stepped-path 

failure mechanism (Brideau et al. 2009, Scholtès and Donzé 2015, Tannant et al. 2017). When two 

joints form a rock wedge, and the intersection of the two joints daylights the slope, a wedge failure 

may occur (Jiang et al. 2013, Paronuzzi et al. 2016). The wedge failure mechanism can be seen on 

a much wider range of geological and geometric conditions in the field than the plane failure. A 

toppling failure of rock slope involves the overturning of rock columns about their fixed bases. 

Different types of toppling failure, such as block toppling, flexural toppling, and block-flexural 

toppling, may occur depending on the rock types and development of joints in the rock masses 

(Liu et al. 2010, Majdi and Amini 2011, Amini et al. 2012). The toppling failure mechanism is 

more significant on steep slopes than the planar and wedge failure (Goodman and Kieffer 2002).  
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In the field, it is expected to see more complex failure mechanisms of rock slopes because of the 

differences in rock types, the discontinuities within the rock masses, and the environments where 

the rock slopes are. The sliding and toppling failure of rock blocks in a rock slope may happen one 

after another or at the same time. When the thoroughgoing discontinuities parallel the rock slope 

surface, a buckling failure of the rock slabs may occur near the toe of the slopes (Cavers 1981, Qin 

et al. 2001). A ravelling failure can occur if the rock slope is highly weathered or fractured 

(Goodman and Kieffer 2002). The collapse of overhanging rocks is another common failure mode 

on steep rock slopes (Makedon and Chatzigogos 2012, Huang et al. 2017). The overhanging rocks 

are usually caused by erosion in the weaker layers in the rock masses or excavations (Paronuzzi 

and Serafini 2009, Zhang et al. 2016). The development of the notch at the base of the rocks 

gradually affects the stability of the rocks, and both toppling and sliding failure may occur. The 

rock collapse caused by the notch at the base is also commonly seen on coastal cliffs (Matsukura 

2001, Muller et al. 2006, Kogure and Matsukura 2010).  

2.2 Current design methods for bolted steel mesh 

The failure of rock slopes near highways, railways, and buildings may damage this infrastructure 

and threaten human lives. A bolted steel mesh system is one of the rock slope protection measures 

to prevent potential rock failures and retain the failed rocks at their original positions. Most bolted 

mesh design methods were developed for soil slopes. Only two design methods were found 

specifically for rock slopes. This section summarizes the available design methods for both soil 

and rock slopes. The design methods described in this section are for the dry slope condition to 

demonstrate the basic design ideas. The actual design methods can consider other slope conditions, 

such as groundwater and earthquake. 
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2.2.1 Design methods for soil slopes 

2.2.1.1 Infinite soil slope 

One design method is for stabilizing an infinite soil slope (Da Costa and Sagaseta 2010). The slope 

is considered as an infinite slope if the ratio between the slope thickness and slope height is small. 

The method assumes that the soil slides along a plane that is parallel to the slope surface. The 

method divides the slope into several vertical soil slices, as shown in Figure 2.1. The forces at the 

upstream and downstream sides of the soil slice are assumed to be equal; thus, they are not 

considered. A limit equilibrium analysis is performed for each soil slice based on the Mohr-

Coulomb failure criterion at the sliding plane. This method assumes that the support of the bolted 

steel mesh is equivalent to a normal stress p and a shear stress t. The relationship between p and t 

can be expressed as t	=	p	∙	tanδ. The d is the interface friction angle between the soil surface and 

mesh. The p can be obtained by solving the force equilibrium equations for the soil slice. The 

values of p and t can be used to choose a proper mesh type to stabilize the slope. 

 

Figure 2.1 Force equilibrium on a soil slice in an infinite slope 
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2.2.1.2 Finite soil slope, method A 

Another design method is for the finite soil slopes proposed by Da Costa and Sagaseta (2010). A 

slope can be considered as finite if the ratio between the thickness of the unstable layer and the 

slope height is not small enough. This method divides the unstable layer into several wedges, as 

shown in Figure 2.2a. The size of the wedges depends on the bolt spacing on the slope. The reaction 

of the mesh is assumed as a normal pressure p acting on each wedge. 

 

Figure 2.2 (a) Slope discretized into wedges and (b) force equilibrium on wedges  

A series of limit equilibrium analysis is performed on every wedge from the crest to the toe in the 

slope. In every calculation step, two blocks are involved in the analysis: a lower block A sliding 

along an angle of a and an upper block B sliding on a plane that is parallel with the slope surface. 

For example, in Figure 2.2b, block A is wedge 4, and block B consists of wedge 1 to 3. The normal 

pressure on block B is already known from previous calculation steps, which is p2. Therefore, the 

value of the normal pressure p4 can be obtained by the limit equilibrium analysis on block A and 

block B based on the Mohr-Coulomb failure criterion at the sliding planes. The calculated 

maximum normal pressure is suggested in the design as the support from the mesh. 
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2.2.1.3 Finite soil slope, method B 

The third design method (IberoTalud and Universidad de Cantabria 2005) is also applied to the 

slope with a finite height. The method divides the unstable layer into an upper block and a lower 

wedge, as shown in Figure 2.3. The method assumes that the effect of the mesh is equivalent to a 

normal pressure p and a shear pressure t. Different from the design method for infinite soil slopes, 

the value of t is unknown. The Mohr-Coulomb failure criterion at the sliding planes is applied in 

the limit equilibrium analysis on the two blocks. The value of p is calculated by solving the force 

equilibrium equations, and p is a function of the angle a. The pmax value is then used to choose a 

proper mesh to stabilize the slope. 

 

Figure 2.3 Force equilibrium on a slope divided into an upper block and a lower wedge 
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on the mesh that is transferred to the bolts. It assumes that both P and Z are only acting on the 

lower wedge. The value of Z is determined by the mesh shear tests. The value of P is obtained by 

solving the force equilibrium equations on the two bodies based on the Mohr-Coulomb failure 

criterion at the sliding planes, and P is a function of the angle a. Then a proper mesh is chosen 

based on the maximum value of P.  

 

Figure 2.4 Force equilibrium on a block and a wedge between two rows of bolts 
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rocks between rockbolts on the slope. Two design methods were proposed for rock slopes by the 

mesh manufacturers, as described in the next two subsections. 

2.2.2.1 Sliding rock between two rows of bolts 

The first design method for rock slope is proposed by the manufacturer Maccaferri. The method 

assumes that the unstable rocks slide along the most critical joint between two rows of bolts 

(Grimod and Giacchetti 2014, Maccaferri 2019), as shown in Figure 2.5a. The mesh works only if 

the unstable rocks start to push against it. Thus the mesh is considered passive support. As shown 

in Figure 2.5a, the unstable rocks deform the mesh with an unbalanced force F along the sliding 

direction a. The upper half mesh profile has an angle of r to the original slope surface. The wire 

mesh generates a resistance force M which is perpendicular to the slope face and a tensile force T 

in the wire mesh. Both M and T are obtained by force equilibrium analysis. Then, the expected 

mesh bulge Z is obtained using the force-displacement curve of the wire mesh under the punch 

tests, as shown in Figure 2.5b. The proper design needs to satisfy the following conditions: (1) the 

tensile force T should be less than the maximum allowable tensile force in the mesh, (2) the mesh 

bulge Z should be less than the acceptable mesh deformation based on the specific site condition. 
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Figure 2.5 (a) Force equilibrium analysis for sliding rocks between two rows of bolts and (b) force-
displacement curve of mesh from punch tests 

However, rigid frames are often used to fix the outer boundaries of the steel mesh during laboratory 

the punch tests. In the field, the mesh is pinned by bolts. Many factors can affect the force-

displacement response of steel mesh, which limits the application of this design method. 
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The value of T1 and T2 are then obtained by the decomposition of M. The T1 and T2 should be less 

than the mesh tensile strength. 

  

Figure 2.6 Force equilibrium analysis on a single rock between two rows of bolts 
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2.3.1 Laboratory tests 

The tensile tests and punch tests are the two widely used small-scale laboratory tests on the wire 

meshes. The tensile tests stretch the mesh sheet by holding its two opposite sides to examine the 

mesh tensile strength, while the punch tests apply a load in a direction that is perpendicular to the 

mesh sheet to examine the resistant capacity of the wire mesh. A variety of mesh types have been 

tested by these two methods, such as the double-twisted wire mesh (Sasiharan et al. 2006, Bertrand 

et al. 2008), the high-tensile steel wire mesh (Castro-Fresno 2000, Cala et al. 2012, Justo et al. 

2014), the chain-link wire net (Escallon et al. 2015), the omega mesh (Bertrand et al. 2012), the 

cable net (Sasiharan et al. 2006, Castro-Fresno et al. 2009), and the wire ring net (Xu et al. 2018). 

In 2016, two international test standards (International Organization for Standardization 2016a, 

2016b) were developed to guide the tensile tests and punch tests. These two kinds of tests provide 

the fundamental force-displacement relationships of the wire meshes, which is necessary for the 

design of the bolted mesh system. The results from the mesh tensile and punch tests have been 

extensively used to calibrate and validate numerical mesh models (Bertrand et al. 2008, del Coz 

Díaz et al. 2009, Thoeni et al. 2013, von Boetticher and Volkwein 2019, Xu et al. 2019). 

Despite the tensile strength and resistant capacity of the mesh, the interaction between the slope 

surface and mesh is another important factor in the design of bolted steel mesh systems (Da Costa 

and Sagaseta 2010). Gratchev et al. (2015) designed and conducted a series of laboratory tilt tests 

on different kinds of meshes to investigate the interface friction between the mesh and irregularly 

shaped rocks. They found that the interlocking effect usually occurs when the mesh interacts with 

the rocks with irregular shapes. The tangential resistance force between the mesh and rock 
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increases as the slope angle increases. A friction angle of 25° to 30° between the rock surface and 

mesh was suggested in the design. 

In terms of the protection from the rockfall impact, the mesh response in the impact loading is 

significant in the designs of rockfall draperies, rockfall attenuators, and rockfall fences/barriers, as 

well as in the design of bolted mesh system. Various rockfall impact laboratory tests have been 

conducted on different types and sizes of meshes (Buzzi et al. 2012, 2015, Gentilini et al. 2013, 

Qi et al. 2018, Gao et al. 2018). These tests are usually carried out by dropping a block to hit the 

mesh panel. The results from the rockfall impact tests show that the mesh’s capability to capture 

the rock and absorb energy is influenced by the mesh stiffness, the mesh geometries, the block 

sizes and the impact speed.  

2.3.2 Field tests 

Different from the laboratory tests, the field tests are usually carried out on real slopes, which can 

obtain a more realistic mesh behaviour in the field than in the laboratory. For the bolted mesh 

system, the mesh is pinned by a pattern of bolts/anchors in the field tests, whereas the laboratory 

tests commonly use rigid frames to fix the mesh boundaries. Bertolo et al. (2009) conducted a 

series of full-scale field tests on the bolted mesh and found that the mesh deformation is generally 

larger in the field tests than that in the laboratory tests. Thus, it is necessary to consider the real 

force-displacement relationship of steel mesh into the design.  

The field tests also help better understand the load transfer mechanism between the unstable rock, 

mesh, bolts (Shu et al. 2005b, Flum and Roduner 2010, Cala et al. 2013a), as well as the external 

loads like the snow (Shu et al. 2005a). This is quite useful when a design concept needs to be 
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explained and verified (Cala et al. 2013b). The results from the field tests can also be used to 

examine whether an assumption in a design method is appropriate. For example, Blanco-

Fernandez et al. (2013) found that the stress in the mesh wires are very small after installation 

comparing to the tensile strength of the wire, and the whole bolted mesh systems are barely pre-

stressed by the measurements in three field tests. They argued that it is questionable to assume that 

the mesh exerts an active force to the ground in the current design methods.  

For rockfall protection, the field tests are widely used to better understand the performance of 

rockfall draperies and fences. Giacomini et al. (2012) conducted a series of rockfall tests on a rock 

slope above a mining portal to investigate the influence of a mesh drapery system on rockfall 

hazard mitigation. They released different sizes of concrete blocks from the top of the slope 

underneath the mesh drapery. The results show that the mesh drapery can decrease the length of 

the impact zone and can reduce the energy of the blocks when they hit the portal. For the rockfall 

fences, the field tests were performed by releasing the concrete blocks from the top of a slope to 

hit the rockfall fences (Gottardi and Govoni 2010, Bertrand et al. 2012, Tran et al. 2013, Xu et al. 

2018). These tests aim to examine the capability of rockfall fences to dissipate the high impact 

energy and to study the influence factors on the fence performance and ultimately to improve the 

fence design. 

2.4 Numerical simulations of wire mesh 

Numerical modelling is an alternative approach comparing to expensive and time-consuming 

physical experiments. The experimental test results are usually used to calibrate the mesh models. 

After calibration, the mesh models can capture the mechanical characteristics of the real mesh. 
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The numerical approach can provide a better insight into the relationship between the force and 

displacement in wire mesh and rock bolts, which are hard to obtain from experimental tests. The 

numerical approach is more capable of investigating the influence of different parameters for 

optimizing the design, such as bolt pattern, bolt spacing, and mesh type. The finite element method 

(FEM) and the discrete element method (DEM) are the most popular numerical approaches in 

modelling the wire mesh. 

2.4.1 Finite element method 

The finite element method (FEM) is widely used to model the wire mesh. A variety of FEM 

computer programs have been applied by different researchers, among which the ABAQUS is the 

most popular one (Sasiharan et al. 2006, Spadari et al. 2012, Gentilini et al. 2012, 2013, Escallon 

et al. 2013, 2015, de Miranda et al. 2015). The other FEM software used to simulate the wire 

meshes are the ANSYS (Castro-Fresno et al. 2008, del Coz Díaz et al. 2009, Blanco-Fernandez et 

al. 2016), FARO (Volkwein 2005, Roth and Ranta-Korpi 2007), and LS-DYNA (Tran et al. 2013). 

Different approaches have been developed to simulate the mesh using different elements in FEM, 

such as the truss element, beam element, link element, and membrane element.  

The finite element simulations are usually performed to reproduce the experimental tests on the 

wire meshes. The FEM mesh models can be used to simulate both quasi-static tests like the tensile 

tests (del Coz Díaz et al. 2009, Escallon et al. 2015) and punch tests (Castro-Fresno et al. 2008), 

and dynamic tests like the rockfall impact tests (Cazzani et al. 2002, Spadari et al. 2012, Tran et 

al. 2013, de Miranda et al. 2015, Mentani et al. 2018) and rockburst tests (Roth and Ranta-Korpi 

2007). The FEM needs to integrate specific algorithms to simulate large displacements and motion. 
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The numerical test results are then compared to the experimental test results to obtain an ideal 

mesh model that can capture the mechanical response of the physical wire mesh.  

The calibrated mesh models are effective tools to examine and design the flexible structures for 

slope protection, such as the draperies, rockfall fences and bolted meshes (Roth and Ranta-Korpi 

2007, Gentilini et al. 2013). For example, Sasiharan et al. (2006) analyzed the effect of the mesh 

weight, the friction interface between the rock and the mesh, and the accumulation of debris on 

the performance of the draped wire mesh and cable net system; Castro-Fresno et al. (2008) 

investigated the force-displacement relationship and mesh resistance capability for different mesh 

sizes in the cable net system; Spadari et al. (2012) analyzed the influence of block sizes, impact 

speeds and wire mesh geometries on the bullet effect of rockfall fences; de Miranda et al. (2015) 

and Escallon et al. (2013, 2015) evaluated the capability of rockfall fences to dissipate the high 

rockfall impact energy.  

However, FEM is based on continuum mechanics theory, so it is difficult to deal with problems 

like steel mesh interacting with rocks, large displacement in the mesh and rupture of mesh wires. 

Specific algorithms are required, which makes FEM computational demanding. 

2.4.2 Discrete element method 

The discrete element method (DEM) works well for modelling discontinuous materials and can 

easily simulate large displacement and failures between elements. A DEM model can simulate the 

behaviour of steel mesh interacting with loose rocks where the mesh may sustain large deformation 

and mesh wires may break during the loading. 
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Bertrand et al. (2008) developed a mesh model using particle elements in the discrete element 

code, PFC3D, to simulate the double-twisted hexagonal wire mesh. This approach simulates the 

wire mesh by setting one particle at each node in the mesh. The mesh wire is represented by a 

virtual spring which connects two particles at each end. The virtual spring only captures the tensile 

behaviour of the wire, which is obtained from the tensile tests of a single mesh wire. However, 

this approach ignores the distortion of wires and the loose connections where wires bend around 

each other and the mesh model behaves stiffer than real mesh. Thoeni et al. (2013) proposed an 

algorithm to overcome this problem by modifying the force-displacement relationship of the mesh 

wire that is assigned in the model. The improved approach has been implemented into the open-

source DEM code, YADE (Šmilauer et al. 2015). The limitations of this approach are that no 

physical wires are simulated, and the springs in the mesh model can only handle tension. The 

compression, bending and twisting in mesh wires are not simulated. 

The steel mesh can also be modelled by the cylinder elements in YADE (Xu and Tannant 2016, 

Effeindzourou et al. 2017, Albaba et al. 2017). The cylinder element was first introduced by 

Bourrier et al. (2013), and it is a deformable beam-like element that can handle tension, bending, 

and twisting (Effeindzourou et al. 2016). One mesh wire is simulated by either a cylinder element 

or multiple connected cylinder elements. Compared to the use of particles, more elements are 

required to create a model by using cylinders.  

Besides PFC3D and YADE, various software packages have also been used to model the wire 

mesh. Baek (2018) applied the beam structural elements to simulate welded wire mesh using 

3DEC. Coulibaly et al. (2019) developed a DEM software, GENEROCK, which is dedicated to 

modelling and simulations of rockfall ring nets. YADE is the only open-source software package 
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that has been used for modelling steel mesh. The advantages of using YADE are (1) it is easier to 

examine the source code to better understand the algorithm; (2) the code can be modified to achieve 

specific needs; (3) developers and researchers keep adding new elements and new features into the 

software package. 

The discrete element simulations were also conducted to reproduce the experimental tests to 

compare with the experiment results and to calibrate the mesh models (Bertrand et al. 2012, Thoeni 

et al. 2014, Baek 2018). The calibrated models were then applied to study the influence factors 

that affect the mesh performance and to improve the design of the flexible protection systems 

(Bourrier et al. 2015, Li and Zhao 2018, Xu et al. 2019). 

2.5 Integrated mathematical and numerical methods as design tools 

The collaboration of numerical simulations and mathematical methods has become popular as a 

novel design tool in civil engineering applications in recent years. Compared to the limit 

equilibrium method, this approach can generate metamodels that statistically capture the complex 

structural response considering various influence factors in a computationally cost-effective way. 

The mathematical methods that have been applied in geotechnical applications include the 

reliability approach (Bourrier et al. 2015, Mentani et al. 2016), the response surface method (RSM) 

(Mollon et al. 2011, Shamekhi and Tannant 2015, Blanco-Fernandez et al. 2016), artificial neural 

networks (ANN) (Lu and Rosenbaum 2003, Cho 2009), and the support vector machine (SVM) 

(Zhao 2008, Toe et al. 2018, Liu et al. 2019). The SVM approach (Vapnik 2000) overcomes the 

limitations of RSM and ANN because it can cope with problems beyond nonlinear concave or 

convex surfaces, and the results of SVM can be expressed in an explicit form (Zhao 2008). The 
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integrated mathematical and numerical methods have been successfully applied in the design of 

rockfall fences/barriers (Bourrier et al. 2015, Mentani et al. 2016, Toe et al. 2018) and bolted steel 

mesh for soil slopes (Blanco-Fernandez et al. 2016).  

2.6 Summary 

The current design methods of the bolted steel mesh system mainly focus on stabilizing shallow 

soil slopes or heavily weathered rock slopes. These design methods assume that the mesh is 

appropriately pretensioned after installation. However, the stress in the mesh wires was found to 

be lower compared to their tensile strength in the field, which limits the application of the current 

design methods. The majority of the laboratory tests of wire mesh were performed in fixed frames, 

while the mesh is usually pinned by a pattern of bolts on the slope surface. The knowledge of the 

mechanical response of bolted mesh is significant no matter what kind of design method is used. 

The field tests are ideal to obtain the realistic behaviour of bolted mesh on the slope, but they are 

expensive and time-consuming. Alternatively, the numerical simulations can take advantage of the 

results from experimental tests to calibrate the mesh models and then provide a better insight into 

the behaviour of bolted mesh considering various influence factors. Compared to FEM, DEM is 

more suitable to model the behaviour of steel mesh interacting with the rock where the mesh may 

sustain large deformation and mesh wires may break during the loading. The application of 

mathematical methods can further utilize the results from numerical simulations to provide 

metamodels for the mesh performance analysis. 
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Chapter 3: Discrete element modelling of high-tensile steel wire mesh 

3.1 Overview 

As an alternative approach to expensive and time-consuming physical experiments, numerical 

modelling can be used to investigate different configurations and boundary conditions of bolted 

steel mesh. The purpose of this chapter is to determine a proper numerical model that can 

realistically and efficiently simulate the steel wire mesh. This chapter presents three approaches to 

simulate the steel wire mesh using the open-source DEM code YADE (Šmilauer et al. 2015). 

Although the demonstrated mesh type is TECCO G65/3 high-tensile steel wire mesh, these 

simulation methods can also simulate other types of steel mesh, such as the double-twisted mesh. 

The mesh models were compared in terms of their mechanical response and computational cost. 

The chosen steel mesh model was calibrated and validated with published tensile and punch test 

results on TECCO G65/3 steel mesh (Castro-Fresno 2000, Cala et al. 2012). 

3.2 Mechanical properties of high-tensile steel wire mesh 

The 3 mm diameter wires in the TECCO G65/3 steel wire mesh create a pattern of rhombohedral 

83 × 143 mm openings, as shown in Figure 3.1. The ultimate tensile strength of a single wire in 

this mesh is approximately 1.77 GPa (12.5 kN). The weight of the mesh is 1.65 kg/m2 (Geobrugg 

2014). Each wire in the mesh is bent into a zig-zag pattern. Each bend in one direction hooks with 

the wire immediately above it, and each bend in the opposite direction with the wire below it. The 

wires form a diamond shape opening with a ratio of 1.72 between the longitudinal (143 mm) and 

transverse dimensions (83 mm). The wires in the mesh have loose contact at each bend. The 
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longitudinal direction is the stiffest direction in the steel mesh, whereas the transverse direction is 

much more deformable. 

 

Figure 3.1 TECCO G65/3 high-tensile steel wire mesh 

3.3 YADE discrete element modelling 

3.3.1 A brief introduction on YADE DEM modelling 

The discrete element method (DEM) simulates dynamic and deformable objects using an assembly 

of discrete elements (Cundall and Strack 1979). The method was implemented in the open-source 

software YADE by Šmilauer et al. (2015). The classical discrete elements are spherical particle 

elements and triangular facet elements. Researchers have been continuously developing new 

discrete elements in YADE, such as cylinder elements (Bourrier et al. 2013), pfacet element 

(Effeindzourou et al. 2016), and polyhedral elements (Eliáš 2014). 
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The discrete elements can interact with each other via contact forces that are generated by their 

relative motions and their contact relationships (contact laws). The motion of the elements is 

controlled by the equations of Newton’s second law. The contact laws (constitutive laws) 

determine the force acting on the discrete elements when they interact with each other. In a typical 

step cycle in YADE simulation, as shown in Figure 3.2, the resultant force on each discrete element 

from the previous step first resets to zero (named “ForceResetter”); then, the position of each 

element is detected to determine collision between elements (named “SortCollider”); next, new 

interactions are created and forces are calculated based on the contact law and other external 

conditions like gravity or boundary conditions (named “InteractionLoop”); finally, the velocity 

and position of each element are updated by solving the equations of Newton’s second law (named 

“Newton”). 

 

Figure 3.2 One step cycle in YADE simulation 

ForceResetter: reset forces

SortCollider: detect collisions 

InteractionLoop: update interactions 
and compute contact forces

Newton: calculate velocities and 
positions

+ 
Δt
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3.3.2 Particle and facet element 

The classical frictional contact interaction between two elements is shown in Figure 3.3. If the 

distance between the centres of two particles (l) is smaller than the sum of their radius (l < R1 + 

R2), these particles will contact each other. The contact force F between these particles is generated 

by the relative displacement and overlap of the two particles. The contact force F consists of a 

normal contact force Fn and a shear contact force Fs, defined as: 

 Fn = knun (3.1) 

 ∆Fs = ks∆us (3.2) 

 kn = 
2E1R1E2R2

E1R1 + E2R2
 (3.3) 

 ks = αkn (3.4) 

where kn and ks are the contact stiffness associated with normal force and shear force, un is the 

relative normal displacement (or overlap) between two particles, us is the relative shear 

displacement, E1 and E2 are Young’s modulus of the two particles, R1 and R2 are the radii of the 

two particles. 
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Figure 3.3 Particle-particle interaction 

Slip will occur in the tangential direction if 

 |Fs| ≥ |Fn| tan φ (3.5) 

where φ is the friction angle between the particles. Figure 3.4 shows a plot of the basic contact law 

in the normal and tangential directions. 

  

Figure 3.4 Schematic plots of the contact law between two particles 

A cohesive frictional contact can bond two particles together. In this situation, a bending moment 

Mb and a twisting moment Mt will be generated between them. The Mb and Mt are defined as: 
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 Mb = kbΩ12
b  (3.6) 

 Mt	=	ktΩ12
t  (3.7) 

where kb and kt are the contact stiffness for bending moment and twisting moment, Ω12b and Ω12t 

are the bending and twisting components of relative rotation. 

The elastic limits are defined by: 

 Fn	≤	σn
l A (3.8) 

 Fs	≤	Fn tan ϕ 	+	σs
l A (3.9) 

 
Mb	≤	

σn
l Ib

R  
(3.10) 

 
Mt	≤	

σs
l It

R  
(3.11) 

where σnl and σsl are the tensile and shear strengths, A is the reference surface area, R is the 

minimum radius of the two spheres, %& = ()*+ 4⁄  and %. = ()*+ 8⁄  are the reference polar and 

bending moments of inertia. 

The interaction between a particle and a triangle facet element is shown in Figure 3.5. If the 

distance between a particle and a facet is smaller than the radius of the particle, then a contact force 

F will be generated at the contact point based on the relative displacement and overlap between 
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the particle and the facet. F has a normal component Fn and a tangential component Fs. The 

Equations (3.1) – (3.5) are also applied in the particle-facet contact. 

 

Figure 3.5 Particle-facet interaction 

3.3.3 Cylinder element 

The cylinder element was first introduced by Bourrier et al. (2013). A cylinder element consists of 

two spherical particles connected by a cylinder. A cylinder element corresponds geometrically to 

the Minkowski sum of a polyline and a sphere (Figure 3.6). A cylinder element behaves like a 

classical discrete element. One cylinder can deform in the axial direction, but it cannot bend. Two 

or more cylinders can be connected at one particle, which is often called a node. 

 

Figure 3.6 Cylinder elements connected at a node 
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A beam-like constitutive law was developed for the cylinder elements (Bourrier et al. 2013). A 

cylinder can rotate and twist at the node, thus by using multiple cylinders connected by nodes, a 

model of steel wire can be created that allows the wire to both elongate and bend. The axial 

deformation of the cylinder is defined by the positions of the two nodes at each end. Two or more 

connected cylinder elements behave like a beam, whose constitutive behaviour contains tensile 

and shear forces, as well as bending and twisting moments. The node that connects two cylinders 

behaves like a virtual rotational spring, as shown in Figure 3.7. The mass of a cylinder element is 

lumped at its nodes. 

 

Figure 3.7 Beam-like constitutive law for cylinder elements 

For a single cylinder element, the contact stiffnesses are defined as: 

 kn = 
EnA

L  (3.12) 

 kt = 
GtIt

L  (3.13) 

Axial spring

Rotational spring

Mass

Mass
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 ks = 
12EbIb

L3  (3.14) 

 kb = 
EbIb

L  (3.15) 

where En is the tensile or compressive modulus, Eb is the bending modulus, Gt is the shear modulus 

associated with a twisting moment, L is the distance between the centre of two spheres, A is the 

reference surface area. 

The elastic limit of the cylinder elements is defined by a tensile force limit Fn and shear force limit 

Fs which are determined by Equations (3.8) and (3.9). These limits are related to the tensile strength 

σnl and shear strength σsl that allow the cylinder elements to model elastic perfectly plastic beams. 

The formulation allows the model to capture particle-cylinder interaction and cylinder-cylinder 

interaction (Figure 3.8). In the particle-cylinder interaction model, a virtual particle within the 

cylinder is generated at the contact point (Figure 3.8a). The virtual particle has the same radius as 

the cylinder, and the position of the virtual particle is at the projection of the contact point between 

the particle and the cylinder on the segment connecting the cylinder nodes. The particle-cylinder 

interaction turns into the classical particle-particle interaction. In the cylinder-cylinder interaction 

model, two virtual particles for each cylinder are generated at the contact point (Figure 3.8b). 

Similarly, cylinder-cylinder interaction can be turned into a particle-particle interaction. In YADE, 

the material properties assigned to the particles in cylinder elements control the behaviour of the 
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cylinder while the material properties assigned to the cylinder control the interaction between 

unconnected cylinder elements. 

 

Figure 3.8 Contact interaction for (a) particle-cylinder and (b) cylinder-cylinder, showing virtual 
particles 

3.4 Steel mesh simulated by cylinder elements with a beam-like constitutive 
law 

One approach to simulate steel mesh in YADE is to use the cylinder element with the beam-like 

constitutive law, which was proposed by Xu and Tannant (2016). A length of the wire is 

represented by a cylinder connecting two nodes (particles). The properties assigned to the cylinder 

elements are listed in Table 3.1 to simulate a TECCO G65/3 steel wire mesh. The diameter of a 

cylinder element is set to 3 mm to represent a 3 mm diameter wire. The Young’s modulus and 

tensile strength come from testing results of the wire, while other parameters are assumed based 

on engineering experience. The beam-like constitutive law was assigned to the spherical particles 

in the cylinder element to capture the mechanical characteristics of a wire (internal connection in 

a cylinder). A frictional contact was assigned to the cylinders to simulate the interaction between 

different wires.  
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Table 3.1 Parameters of cylinder elements used to represent steel wire in TECCO G65/3 mesh 

Property Particles Cylinders 

Young’s modulus E (GPa) 200 200 

ks/kn 0 0.2 

Density ρ (kg/m3) 7850 7850 

 j (°) 25 25 

Tensile strength σt (GPa) 1.77 na 

Shear strength σs (GPa) 1.77 na 

An example of a cylinder element to simulate a steel wire with 100 mm length and 3 mm diameter 

is used to demonstrate the calculation of the contact stiffnesses in the cylinder element using the 

values Table 3.1. From Equations (3.12) and (3.14), the normal stiffness kn is 1.4 ´ 107 N/m, and 

the shear stiffness ks is 9.5 ´ 103 N/m. The contact stiffnesses of a cylinder element depend on its 

length and cross-sectional dimension.  

For the contact between two cylinders to represent the interaction between two wires, the normal 

stiffness kn is 3 ´ 108 N/m, and the shear stiffness ks is 6 ´ 107 N/m using Equations (3.3) and (3.4) 

3.4.1 Single wire loaded in tension 

Published tensile test results (Cala et al. 2012) for a 100 mm length of wire with a diameter of 

3 mm gave a failure load of 12.9 kN with a maximum elongation of about 2% to 2.5%. This test 

was modelled with one cylinder element. The bottom end of the steel wire model was fixed and a 



38 

vertical velocity was applied to the upper end of the wire. Figure 3.9 shows the force-displacement 

curve for the model. The steel wire modelled by the cylinder element shows a linear elastic 

relationship. The connection between the cylinder and one of the spheres broke at a load of 

12.9 kN, consistent with the ultimate tensile strength of the wire. The stiffness of the wire was 

14 kN/mm, which corresponds to a wire Young’s modulus of 200 GPa. The maximum elongation 

of the wire was 0.9 mm or a strain of 0.9%, which is about 50% less than the maximum elongation 

of the actual wire at rupture. This is to be expected since the wire model only captures the elastic 

response of the wire and in its current configuration did not simulate the plastic yield of the steel 

immediately preceding rupture. 

 

Figure 3.9 Tensile test of a wire model made from one cylinder 

3.4.2 Single wire loaded in bending 

A model of a wire consisting of five cylinders, each 20 mm long, connected to six nodes was 

constructed to test the bending behaviour of the wire model. The model represents a 100 mm length 
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of 3 mm diameter wire. One end of the horizontal model was fixed, while a vertical load, P, was 

applied to the other end. Figure 3.10 shows the bending curve of the wire under forces of 30, 50, 

and 70 N. Also plotted are the analytical shapes of the deformed wire, assuming it behaves as an 

elastic cylindrical beam. The figure shows that the wire model can deform in a similar manner to 

an elastic beam, although the modelled deformations are slightly more than the analytical solution. 

The difference is that the wire is assumed to be homogenous and isotropic in the analytical model, 

while the numerical model used only five connected cylinders to represent the wire.  

 

Figure 3.10 Bending test of a wire model made from five cylinders 

3.4.3 Numerical models of wire mesh 

Using the cylinder elements, a model of wire mesh can be constructed by connecting the spheres 

and cylinders to match the geometry of the mesh. The cylinders have a 3 mm diameter. Multiple 

connected cylinder elements are used to capture the bend geometry, where one wire in a mesh 
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bends around another wire. In 3D, the wire has both a bend and a slight twist at this section of the 

mesh. Figure 3.11 shows a close-up view of the YADE model of two bent wires within a mesh. 

According to the sensitivity analysis from Bourrier et al. (2013), using two connected cylinder 

elements can roughly match the bending behaviour of a cantilever beam, while five cylinders are 

ideal as demonstrated in Figure 3.10. Because of the restriction on the wire length where two wires 

bend around each other, three cylinders are used at each wire bend (Figure 3.11). However, the 

difference between using three cylinders and more than three cylinders will be minor. The straight 

wire sections in the mesh are modelled by one cylinder element because these wires mainly carry 

the tensile force when loading the mesh. 

 

Figure 3.11 Model of two wires bent around each other 

The generation of the wire mesh is based on the following steps. First, one wire is generated by 

following the zig-zag pattern applicable to the geometry of the specific mesh type. Then, a second 

wire is created, which hooks with the first wire to form the rhomboidal pattern. This step is 

repeated to create a large area of wire mesh. This modelling approach needs 3010 elements 

(cylinders plus spheres) to create a 1 ´ 1 m2 TECCO G65/3 steel wire mesh. 
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A series of numerical simulations were performed to measure the capability of YADE discrete 

element models to capture key load-deformation behaviours of wire mesh. A model of a small 

section of mesh was loaded in different directions and with different constraints on the boundaries 

of the mesh. Two models were loaded in the longitudinal (or stiff) direction, and a third model was 

loaded in the transverse direction.  

3.4.3.1 Longitudinal loading with mesh edges laterally constrained 

A numerical model was configured such that the mesh was loaded in the longitudinal direction 

(vertically) at the top with the bottom of the mesh fixed into position. The loads were applied to 

the uppermost spheres in each of the two top wire bends. The bottom of the mesh was fixed by 

fixing the lower-most spheres in each of the two bottom wire bends. Both lateral edges of the mesh 

were constrained such that they could only move vertically. This was accomplished by restricting 

the motion of spheres in each of the two wires on both edges of the mesh to vertical motion. The 

vertical force versus vertical displacement for this model is shown in Figure 3.12. The inset in this 

figure shows the geometry of the mesh at a specific stage of the loading. The boundary conditions 

on the model combined with the geometric configuration of the two wires created a stiff load-

displacement response. The mesh retained the rhombohedral pattern and only deformed a small 

amount before a large tensile force was developed in the wires, and a wire broke. The peak tensile 

force in the mesh was 40 kN, and this occurred at a displacement of 4.2 mm. This load capacity 

arose from the tensile strength of four wires inclined with respect to the longitudinal loading 

direction. If the forces are assumed to be carried by a simpler 2D geometry matching the wire 

orientations in the mesh, the predicted peak load would be: 
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 01234 = 4 × 12.9 × cos
49°
2
= 47	kN (3.16) 

This value is higher than the predicted load of 40 kN because the mesh wires carry higher loads 

near the bends, i.e., the wires break at the bends. 

 

Figure 3.12 Vertical loading with sides only allowed to slide vertically 

3.4.3.2 Longitudinal loading with mesh edges unconstrained 

The numerical model shown in Section 3.4.3.1 was modified such that both lateral edges of the 

mesh were unconstrained and thus were free to move in any direction. The load applied to the top 

of the mesh was in the longitudinal or vertical direction only, and the loading points were free to 

move laterally as the mesh deformed (as they were in the model in Section 3.4.3.1). Freeing the 

lateral boundaries of the mesh permits much more deformation. The vertical force versus vertical 

displacement for this model is shown in Figure 3.13. The inset in this figure shows the geometry 
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of the mesh at the beginning of the test, and later, when the deformation reached 8.5 mm. The 

much higher longitudinal displacement occurs because the mesh can deform in the transverse 

direction. 

 

Figure 3.13 Vertical loading with sides free 

In this test, both lateral edges were free and both lateral ends of the blue wires were allowed to slip 

out slowly from the hook during the test. There were only two wires working after that. So at 

failure, the load carried by the mesh is assumed to be twice the load capacity of a single wire 

25.8 kN. This value is also higher than the numerical results of 23.5 kN because the mesh wires 

carry higher loads near the bends, i.e., the wires break at the bends. 

3.4.3.3 Transverse loading with mesh top and bottom unconstrained 

The numerical model presented earlier was modified again, such that loading was applied in the 

transverse or horizontal direction. The wires at one side of the mesh were fixed while the loading 
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was applied to the opposite side. The other edges of the mesh were free to deform in any direction. 

The horizontal force versus horizontal displacement for this model is shown in Figure 3.14. The 

inset in this figure shows the geometry of the mesh at the beginning of the test and later when the 

elongation reached 150 mm. With this model configuration, the wires could simply straighten out 

at the bends allowing for very large displacements at small loads. After the wires deformed enough 

to become aligned nearly parallel with each other and the loading direction, the load carried by the 

wires rapidly increased until the point of failure. At failure, the load carried by the mesh was 

approximate twice the load capacity of a single wire. 

 

Figure 3.14 Horizontal loading with top and bottom free 

3.4.3.4 Load-displacement response for mesh loaded by a rockbolt plate 

A wire mesh model loaded by a rockbolt plate was created to examine the force-displacement 

response of the plate and the deformed shape and failure mechanism of the mesh. The model is 

shown in Figure 3.15. An array of connected particle elements was used to simulate the plate. The 
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parameters of these particles are shown in Table 3.2. As these particles were clumped together, the 

plate in this model was rigid. The mesh was fixed around its outer perimeter. The plate was centred 

20 mm below the mesh and loaded in a direction perpendicular to the mesh. Gravity was not 

applied in the model. 

 

Figure 3.15 Mesh model fixed around the perimeter loaded by a simulated rockbolt plate in the 
centre 

Table 3.2 Parameters of particle elements used to represent rockbolt plate 

Property Particle elements 

Radius r (mm) 5 

Young’s modulus E (GPa) 200 

ks/kn 0.3 

Density ρ (kg/m3) 7850 

Friction angle j (°) 25 

200 mm

1.5 m

V
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The force versus the displacement for the rockbolt plate is shown in Figure 3.16. For the first 

60 mm of plate movement, there was essentially no resistance by the mesh. After a plate 

displacement of 60 mm, the force gradually increased. When the plate displacement reached 

approximately 260 mm, some steel wires near the rockbolt plate broke, resulting in a sudden force 

decrease from 75 kN to 18 kN. The upper inset figure shows the deformation of the mesh and 

broken steel wires at this stage of loading. The force on the plate recovered somewhat with further 

displacement as the loads were transferred to other wires in the mesh. When the plate displacement 

reached about 288 mm, the force decreased dramatically again. As can be seen from the lower 

inset figure, more wires were broken resulting in substantial damage to the mesh. 

 

Figure 3.16 Load-displacement response of the plate and deformation/failure pattern of the mesh 

Although this mesh model can simulate the large differences in the strength and stiffness of mesh 

loaded in the longitudinal versus the transverse direction, as well as the deformed shape and failure 

mechanism of the mesh, it has two limitations. 
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(1) The cylinder elements only allow for elastic elongation, so the wire model currently does not 

account for plastic deformation of the wire. From the single wire tensile test, the model has 

about 50% loss in the wire elongation compared to a real steel wire. This results in a mesh 

model that is much stiffer than the physical mesh.  

(2) A large mesh model requires a large number of elements. This will become computational 

demanding. A powerful workstation may be needed to run this model to simulate a full-scale 

phenomenon where various bolt patterns and spacing are involved.  

3.5 Steel mesh simulated by stochastically distorted wire model 

There are other two modelling approaches in YADE to simulate steel wire mesh that can model 

the global mechanical response of the mesh and are also more efficient than the above modelling 

approach. 

3.5.1 Particle-based approach 

The particle-based approach was first proposed by Bertrand et al. (2008) to simulate a double-

twisted wire mesh. For modelling a TECCO G65/3 mesh, this approach sets particles where the 

wires bend around each other, as shown in Figure 3.17. There are 187 particles per square metre 

in the model. The diameter of these particles is set to 0.011 m, which is the same as the thickness 

of the mesh panel when including the bend in the wires. The weight of the wire mesh was assumed 

to be distributed to every particle equally (1.65 kg/m2/187 = 8.8 g per particle). 
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Figure 3.17 Particle-based mesh model 

In the steel mesh model, there is no physical contact between the particles. Instead, the interaction 

between particles is captured by a virtual spring used to represent the steel wire between the 

particles. The force-displacement relationship of the virtual spring is defined by the stress-strain 

curve, length and diameter of the steel wire. Figure 3.18 shows the stress-strain curve that is used 

in the modelling. It is a nonlinear piecewise curve that is adopted from the results of wire tensile 

tests by Effeindzourou et al. (2017). In the tensile tests, the wire samples are 100 mm long and 3 

mm diameter. Five points are chosen to capture the linear, yield and necking stages of the wire. 

These points are used in the simulation.  
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Figure 3.18 Stress-strain curve of steel wire used in the simulation 

In the modelling, an algorithm converts the assigned stress-strain relationship to a force-

displacement relationship based on the wire length and diameter. The force-displacement 

relationship is then applied to the virtual springs in the mesh model to simulate the tensile 

behaviour of the wires. The length and diameter of the simulated wire between two nodes are 

83 mm and 3 mm, respectively. Figure 3.19 shows the tensile behaviour of this simulated wire in 

a numerical tensile test. The simulated wire has a nonlinear force-displacement response. 
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Figure 3.19 Force-displacement relationship for an 83 mm long, 3 mm diameter wire model 

However, only using the curve in Figure 3.19 will make the mesh model stiffer than the real mesh. 

The real mesh has a loose connection at the nodes where two wires bend around. The wires may 

slip during the loading. In the model, four simulated wires are directly connected at one node. 

Thoeni et al. (2013) proposed a method to make the mesh model less stiff that allows the model to 

capture the global mechanical behaviour of the mesh. The method is to modify the force-

displacement relationship that is assigned to the simulated wires. The modified force-displacement 

relationship is called the stochastically distorted wire model (SDWM), as shown in Figure 3.20.  

Two shift parameters (λu, λF) are introduced to modify the curve. The parameter λu (0 ≤ λu ≤ 1) 

defines the horizontal shift distance in the curve, and the parameter λF (0 ≤ λF ≤ 1) defines the 

stiffness of the wire in the shifted area. Fl is the elastic limit. The length of a single wire (L) is 

limited by 
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 L0 < L < L0(1 + λun>) (3.17) 

where L0 is the initial distance between two interacted particles and n> is a random number between 

0 and 1 that obeys a triangular distribution. The parameter n> accounts for randomly distributed 

variations in the mesh wires.  

 

Figure 3.20 Force-displacement relationship in stochastically distorted wire model (SDWM) 

In addition, the SDWM allows the unloading and reloading of a wire by setting the corresponding 

stiffness equal to the initial elastic stiffness. The wire model can rupture when the axial 

displacement reaches the elongation limit. 

When creating the mesh model, the ‘mesh wires’ are randomly distributed in the model. This 

means different wires may have slightly different force-displacement relationships because of the 

random n>. According to Thoeni et al. (2013), this parameter has a triangular distribution with 0 for 



52 

the smallest, 0.5 for the most probable, and 1 for the largest value. For example, when setting the 

λu = 0.2, the average shift distance of the curves for the mesh wires is about 10% of the initial wire 

length. The randomness can be controlled by an integer seed factor. Using the same seed factor 

will always generate the same mesh model.  

Figure 3.21 shows the influence of λu and λF on the force-displacement relationship of the simulated 

wires by a series of tensile tests. In Figure 3.21a, λu is set to 0.2, 0.6, and 1 while λF is kept as 0.5. 

As λu increases, the mesh wire needs to have a larger displacement to mobilize the force. A larger 

value of λu will make the simulated wires more deformable, which results in a more flexible mesh. 

If λu = 0, no modification is made to the original force-displacement curve. In Figure 3.21b, λu is 

kept as 0.5 while λF is set to 0, 0.5 and 1. Increasing the value of λF will not change the elongation 

of the simulated wire, but will change its initial stiffness. A larger λF results in a stiffer wire. When 

λF = 0, the simulated wire will be activated until its elongation is over λun> L0. The influence of λu 

and λF presented here is for the behaviour of a single wire in the mesh model. It is necessary to 

investigate their influence on the global mechanical response of the mesh and determine the proper 

values for λu and λF to make the mesh model capture the behaviour of the physical mesh. These are 

presented in the mesh calibration in Section 3.5.4.1 
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Figure 3.21 Influence of λu and λF on the force-displacement relationship of simulated wire 

The wire model only considers the tensile behaviour, which means there is no compressive 

resistance between particles. This assumption is reasonable because the wire mesh is in tension 

when loaded by the rocks. Another limitation of this approach is that the wire bending is not 

captured in the model. However, bending does not exist in the longitudinal direction for the high-

tensile steel mesh because of its special form factor. The mesh wires are only hooked at their turns 

allowing the mesh to fold easily. The bending in the mesh only exists in its transverse direction, 

but the influence of bending resistance is minor when considering the wire diameter is only 3 mm. 

Unlike the mesh model presented in Section 3.4, this particle-based approach cannot simulate the 

different stiffnesses of mesh in the longitudinal and transverse directions. However, the SDWM in 

the particle-based approach modifies the force-displacement relationship of the wires to give the 

mesh model a similar mechanical behaviour as real mesh. To some extent, the difference in the 

mesh stiffnesses and bending in the longitudinal and transverse directions are implicitly embedded 

in the model. 
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3.5.2 Simplified cylinder-based approach 

The cylinder elements can also adopt the contact law of a stochastically distorted wire model 

(SDWM). As a simplified version of the modelling approach using cylinder elements, the 

simplified cylinder-based modelling approach uses the cylinder elements to simulate steel wire 

mesh by connecting four cylinder elements at each node where the wires bend around each other 

(Effeindzourou et al. 2017). The mesh model matches the geometry of the physical steel mesh, as 

shown in Figure 3.22. This simplified modelling approach assumes the nodes and cylinders are in 

the same plane. The eccentricities caused by folding the wires are not considered in the model. 

Instead, the diameter of these cylinders is set to 6 mm, which is twice as the physical wire diameter. 

These simplifications allow the mesh model to be more efficient to simulate the effect of the 

geometry of the wire mesh. In this modelling approach, the SDWM is applied in the mesh model 

to capture the mechanical response of the steel wire mesh. 

 

Figure 3.22 Steel mesh model by connected cylinder elements 
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3.5.3 Comparison between two modelling approaches using SDWM 

Numerical punch tests were conducted to compare the performance of the above two modelling 

approaches for simulating steel wire mesh in terms of the mechanical response of mesh and 

computational cost. Two 3 × 3 m mesh models were generated by the particle-based approach and 

cylinder-based approach, respectively. The mesh models had the same mesh geometry, as shown 

in Figure 3.23a. There are 1613 elements in the particle-based mesh model and 4721 elements in 

the cylinder-based mesh model. The elements at each boundary of the mesh model were fixed in 

all directions. The original force-displacement curve of the 3 mm diameter wire in Figure 3.19 was 

applied in the two mesh models to facilitate the comparison to avoid the uncertain randomness by 

using the shifted curve. 

 

Figure 3.23 DEM punch test geometries (a) at the beginning (b) particle-based mesh model after 
failure (c) cylinder-based model after failure 

A spherical block with a 0.5 m radius was created at the centre of each mesh model using one 

particle element to load the mesh. For both tests, the frictional contact law was applied between 
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the mesh model and the spherical loading block. The contact parameters were set to kn = 1 × 107 

N/m, ks/kn = 0.15, and ϕ = 25°. The time step was set to 2 × 10-5 s. During the simulations, a 

velocity of 0.1 m/s was set to the spherical block to load the mesh. The simulations were stopped 

when the displacement of the spherical block was over 0.3 m. The force and displacement of the 

spherical block were recorded during the tests. 

Figure 3.23b and c show the mesh geometries when the tests were stopped for the particle-based 

model and cylinder-based model, respectively. Both mesh models experienced failure of mesh 

wires from the centre of the mesh when the tests ended. Figure 3.24 shows the force-displacement 

curves on the spherical block for both tests. The responses of the mesh models are almost identical 

before the force drops around 260 mm. The force gradually increases exponentially as the 

displacement increases. This is expected because both models adopted the same force-

displacement curve for one single wire. The force suddenly drops at around 260 mm because mesh 

wires rupture. Both mesh models were able to capture the phenomenon in which the mesh still 

could resist the block after some wires rupture. The differences after wires rupture were caused by 

the difference in how the meshes were modelled and how the wires broke in the mesh. 
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Figure 3.24 Comparison between force-displacement curves using particle-based versus cylinder-
based approaches 

It is important to understand the computational cost to choose a more efficient modelling approach 

because the mechanical response of the two mesh models was similar. In order to facilitate the 

comparison of the efficiency of two approaches, both models were tested on the same computer 

with a quad-core Intel Core i5-6300HQ CPU with 2.3 GHz and 4 GB ram. The settings in both 

models were also the same, such as the loading velocity (0.1 m/s), fixed time step (2 × 10-5 s) and 

the number of time steps (150,000 steps). 

Figure 3.25 shows the computational time for the two mesh models and the proportion of each 

algorithm phase. The time to complete the modelling for the cylinder-based model was about 2.7 

times than the particle-based model (417s versus 152s). This is due to the number of elements in 

the cylinder-based model is more than the particle-based model (4721 versus 1613). The 

proportions of relative time cost in different calculation phases are similar in both models. The 
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only differences were that the cylinder-based model took more time in the interaction analysis 

phase compared to the particle-based model (71% versus 62%), whereas the particle-based model 

took more time in solving equations of Newton’s second law than the cylinder-based model (32% 

versus 23%). 

 

Figure 3.25 Comparison of computational time for different phases in DEM simulation 

Both particle-based and cylinder-based mesh models can provide a similar mechanical response 

of steel mesh in terms of interacting with other objects whose size is larger than the aperture 

opening size in the mesh. Although the cylinder-based mesh model can simulate a more realistic 

interaction between the mesh and other objects because the “wires” actually exist in the model, the 

difference is negligible if the mesh is interacting with a large object, such as a large rock block. 

However, the cylinder-based approach is more computationally intensive compared to the particle-

based mesh model because more elements are needed to generate the same mesh area. For the 

above reasons, the particle-based mesh model was chosen for the rest of the research. 
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3.5.4 Calibration and validation of the steel mesh model 

The particle-based mesh model was calibrated and validated with published tensile and punch test 

results on TECCO G65/3 steel mesh (Castro-Fresno 2000, Cala et al. 2012). As mentioned in 

Section 3.5.1, the parameters λu and λF need to be calibrated to match the mechanical response of 

the physical mesh. 

3.5.4.1 Calibration with laboratory tensile tests 

The data from laboratory tensile tests by Cala et al. (2012) were used to calibrate the two shift 

parameters (λu, λF) in the wire mesh model. The tensile tests were performed on a 1.08 × 1.00 m 

section of mesh that was loaded in the longitudinal direction. The lateral boundaries of the mesh 

could slide along the test frame. The size of the numerical wire mesh model and the boundary 

conditions were the same as the laboratory experiments. Figure 3.26 shows the numerical tensile 

model configuration. During the simulation, a constant velocity of 0.01 m/s was applied to the 

particles at the upper boundary of the model. The time step was set to 2 × 10-5. This setting allows 

the mesh model to deform gradually and fulfills a quasi-static loading process. The simulation 

process was stopped when the first wire in the model breaks. 
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Figure 3.26 Numerical tensile test boundary conditions 

To assess the influence of the shift parameters (λu, λF) on the response of the steel mesh model, a 

series of simulations was conducted using various combinations of λu (0.06, 0.08, 0.1, 0.12, 0.14) 

and λF (0.2, 0.4, 0.6, 0.8, 1.0). The range of λu is limited to 0 to 0.14 because a λu larger than 0.15 

will cause a mesh model deformation much larger than the real mesh. There are 25 possible 

combinations of λu and λF, and the simulations were repeated ten times for each combination to 

account for the response variability associated with the stochastic model. The values of the 

parameter n> were randomly generated between 0 and 1 in these simulations. To examine the effect 

of the shift parameters, the displacement at failure and the peak force of the steel mesh were 

recorded. These are shown in Figure 3.27. 
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Figure 3.27 Box plots showing the effect of λu and λF on the maximum displacement and force 

The influence of λu on the maximum displacement is significant, and the maximum displacement 

increases as the value of λu increases. The parameter λu also has a slight effect on the maximum 

force; the force decreases as λu increases. Although λF does not affect the displacement when the 

steel mesh model fails, the average peak force increases as the value of λF increases. 

In the experimental tensile tests on the mesh, the peak load was approximately 168 kN, and the 

maximum elongation was approximately 60 mm when the mesh failed (Cala et al. 2012). From the 

statistical analysis in Figure 3.27, a set of parameters to match the experimental tests was 

determined as λu = 0.08 and λF = 0.8. 
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The set of λu and λF was used in 10 numerical simulations with the parameter n> randomly generated 

in the model. Figure 3.28 shows the mean values and standard deviations of the force-displacement 

response from 10 numerical tensile simulations. Figure 3.28 also shows the force-displacement 

relationship of steel mesh from three experimental tensile tests. The force-displacement response 

of the mesh model is close to the experimental data, but it is more linear. 

 

Figure 3.28 Calibration results of wire mesh DEM model with laboratory tensile tests 

3.5.4.2 Validation with laboratory punch tests 

In the field, the mesh is usually loaded in a direction roughly normal to the mesh panel. Therefore, 

it is necessary to investigate whether the linear tensile response in the mesh model will affect the 

response when it is loaded in the direction normal to the mesh panel. For this purpose, this study 

used laboratory punch tests conducted by Castro Fresno (2000) and compared the force-

displacement response of the steel mesh. 
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As described by Castro Fresno (2000), the punching tests used two rigid steel frames bolted 

together. The mesh size used in the punch tests is 1 ´ 1 m. The mesh was fixed and held by the 

friction between the two frames and the shear stress on the bolts to restrict mesh movement during 

the tests. 

A ‘spike plate P33’ (330 ´ 190 mm) was placed in the centre of the mesh. A hydraulic cylinder 

was used to load the spike plate in the direction perpendicular to the mesh plane. The loading 

forced the mesh to deform until some wires ruptured. During the tests, the load applied by the jack 

and the displacement of the mesh were recorded simultaneously. 

The numerical model is shown in Figure 3.29. The steel mesh model is 1.08 × 1.00 m, and all the 

particles on boundaries were set to be fixed. A model of a ‘spike plate’ (330 × 190 mm) was created 

by rigid facet elements and was placed in the centre of the mesh to deform the mesh a constant 

velocity v in a direction perpendicular to the mesh plane. The simulation stopped when the first 

‘wire’ in the model ruptured. The interaction between the steel mesh and spike plate was controlled 

by the normal stiffness kn, the ratio between shear stiffness and normal stiffness ks/kn, and the 

friction angle ϕ. Different v, kn, ks/kn, and ϕ values were tested to investigate their influence on the 

response of the mesh model. The other settings were kept identical when changing the target 

variables. 
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Figure 3.29 Numerical punch test in the direction perpendicular to the wire mesh 

As shown in Figure 3.30a, c and d, the v, ks/kn and ϕ were found to have a minimal effect on the 

modelling results. A high kn may cause mesh particles to vibrate in the model, which causes the 

fluctuation in the force-displacement response of steel mesh (blue curve in Figure 3.30b). In 

contrast, a low kn may let particles passing through facet, which results in a soft mesh response 

(red curve in Figure 3.30b). 
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Figure 3.30 Influence of v, kn, ks/kn, and ϕ on the force-displacement response of mesh model 

The following parameters were found to work well: v = 0.01 m/s, kn = 1 × 107 N/m, ks/kn = 0.15, 

and ϕ = 30°. A friction angle of 30° is higher than the friction angle for a smooth steel-steel contact. 

However, the selected friction angle accounts for the uneven surface of the spike plate that impedes 

the slip of wires beneath the plate. Similar parameters were used by Thoeni et al. (2013, 2014). 

The force-displacement curves from three experimental and three DEM tests are shown in Figure 

3.31. The simulation stopped when the first ‘wire’ in the model ruptured. In the laboratory tests, 

the mesh was already slightly stretched before the tests started because of the weight of the mesh 

and the loading devices, and the load on the mesh was approximately 1.6 kN when the tests began 
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(Castro-Fresno 2000). To facilitate a comparison with the laboratory test data, the start points of 

the force-displacement curves from the numerical tests shown in Figure 3.31 were set to when the 

force applied by the spike plate was 1.6 kN. The response of the mesh model generally matches 

the response of the steel mesh in the punch tests. The response of the numerical model becomes 

stiffer than the real mesh after about 100 mm deformation. The mesh model results in a peak load 

and a peak displacement that is roughly 20% small than what was observed in the laboratory tests. 

These differences largely occur after wires begin to rupture. This thesis focuses on the mesh 

behaviour up to the point of the first wire rupture, and thus the mesh model does a good job of 

capturing the force-displacement response of the mesh. 

 

Figure 3.31 Load-displacement response of steel mesh from DEM and laboratory punch tests 

There are a few possible reasons for the differences between the numerical and laboratory results 

in Figure 3.31. The mesh model is stiffer than the physical mesh in the transverse direction. The 

physical mesh has a loose connection at each node where two wires bend around. In the mesh 

model, four virtual springs are connected at each node. It is difficult for this mesh model to capture 
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the large difference in the mesh stiffness in both directions. Another reason is that the mesh may 

slide in the laboratory tests, while the mesh boundaries are all fixed in the modelling. The third 

reason is that the simulated loading plate is rigid. The rigid loading plate in the numerical 

simulations also makes the force-displacement response in the model stiffer than the physical tests. 

The numerical modelling captures the failure location of mesh wires in the laboratory tests, as 

shown in Figure 3.32. In both tests, the mesh wire fails close to the right side of the loading plate. 

In Figure 3.32a, the load is applied to the six particles that contact with the loading plate, and then 

the load is transferred to the mesh boundaries through the aligned mesh wires. The mesh wires that 

are aligned to the particles underneath the left and right corners of the loading plate carry the largest 

load. The wire next to the right side of the loading plate reaches its ultimate strength and ruptures 

first. The wire rupture causes a load redistribution in the mesh. The numerical simulation 

demonstrates the load transfer mechanism for the laboratory tests. As can be seen in Figure 3.32b, 

the wire ruptured at a wire bend because of stress concentration at the bends. In the modelling, the 

wire rupture is represented by removing the virtual link where the wire fails.  
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Figure 3.32 Comparison between DEM punch test and laboratory test (a) tensile force distribution 
in wires showing ruptured wire in DEM simulation; (b) failure of mesh wires in the laboratory test 

after Castro Fresno (2000) (used under Creative Commons Attribution 3.0 Spain) 

It is worth noting that when simulating the interaction between the mesh and rockbolt plate, the 

plate only interacts with the particles at each node. In the lab tests, the plate interacts with both 

physical mesh wires and the nodes in the mesh. The mesh wires may experience bending during 

the loading. Although the bending of wires is not simulated, the mesh model can simulate the 

mechanical response of physical mesh in the punch tests, including force-displacement response 

and mesh failure mechanism. Therefore, the bending of mesh wires has a minor influence on the 

global mesh behaviour. 

3.6 Summary 

This chapter presents three modelling approaches in the open-source discrete element software 

YADE to simulate the steel wire mesh. One approach used connected cylinder elements to model 

a steel wire in the mesh. A beam-like contact law was applied in the model. The spherical particles 

between each cylinder element act like an elbow and thus allow the wire model to bend. Simple 
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models of wire and small sections of wire mesh were created to show that the models can represent 

the behaviour of the high-tensile wire and the wire mesh. The wire model currently only simulates 

the elastic behaviour of the wire and does not account for the plastic deformation. If the problem 

to be modelled is primarily concerned with the elastic response of the mesh and the complex load 

transfer mechanisms and deformations of hooked bent wires oriented in different directions, the 

mesh model does a good job at capturing the phenomena. However, the simulated elongation of a 

single wire is estimated to be 50% less than the real wire, which will result in a stiffer response 

when modelling a steel mesh. Also, this modelling approach is computationally intensive. 

Nevertheless, the proposed mesh model can simulate the large differences in the strength and 

stiffness of mesh loaded in the longitudinal versus the transverse direction. A rockbolt plate 

loading test was conducted to show the deformed shape and failure mechanism of the mesh.  

The other two modelling approaches, named particle-based approach and simplified cylinder-

based approach, applied the stochastically distorted wire model to simulate the steel wire mesh. 

These two approaches have fewer elements to create the same mesh size compared to the detailed 

cylinder-based approach. Numerical simulations were conducted to compare the modelling 

performance in terms of their mechanical response and computational cost for the two modelling 

approaches. The particle-based modelling approach was found to be less computationally intensive 

than the cylinder-based approach and can provide an equivalent result on the mechanical response 

of steel mesh when the mesh interacts with other objects. The particle-based modelling approach 

was chosen to perform the simulations for the remainder of the thesis. 

The particle-based mesh model was then calibrated and validated using the published results from 

the experimental tensile and punch tests. Although the bending resistance of wires is not 
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considered in the model, using the stress-strain relationship of the wire and calibration of ‘shift 

parameters’ allows the mesh model to capture the tensile and punching behaviour of the physical 

steel mesh. The mesh models of tensile tests behaved more linearly than the steel mesh in the 

experimental tests. However, the response of the mesh models had a good match with experimental 

punch tests when the loading is perpendicular to the mesh panel, which is consistent with the 

common loading direction in the field. 
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Chapter 4: Discrete element analysis of the influence of bolt pattern 
and spacing on the force-displacement response of bolted steel mesh 

4.1 Overview 

Steel wire mesh is usually held by a pattern of bolts to stabilize a rock slope. Knowledge of the 

force-displacement response of steel mesh is essential in the design of this support system. 

Laboratory tests have been used to test mesh that is held to rigid steel frames. These testing 

conditions differ from how steel mesh is held in the field by bolts. The response of steel mesh in 

the laboratory or the field is affected by how the mesh is held or pinned to the rock due to the 

different boundary conditions. The existing laboratory test data may underestimate the 

deformation and overestimate the load-bearing capacity of the steel mesh. This chapter focuses on 

the response of the high-tensile steel mesh held by commonly used bolt patterns. The mesh 

calibrated to the properties of TECCO G65/3 in Section 3.5.4 was used for all simulations. 

Section 4.2 presents the simulated steel mesh response for a model of the fixed frame punch test 

based on the recent ISO 17746 mesh testing standard. The results from this simulation were 

compared with simulations of mesh pinned by bolts at two different patterns. This comparison is 

presented to justify the need to better represent the field response of mesh by simulating the 

presence of bolts and not a fixed, rigid boundary. 

Section 4.3 and Section 4.4 show the effect of bolt spacing on the response of steel wire mesh at 

deformations below 0.5 m held by bolt pattern A and pattern B, respectively. The purpose is to 

analyze the effectiveness of the steel mesh with various ratios between vertical and horizontal bolt 

spacing for different bolt patterns. 
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Section 4.5 compares the effectiveness of high-tensile steel mesh with bolt pattern A and pattern 

B. In addition, relationships between the resistance force of steel mesh and bolt density at various 

mesh deformations were established to help guide the design of bolted steel mesh. 

4.2 DEM punch tests on steel mesh with various boundary conditions 

4.2.1 DEM models for punch tests 

Three different numerical models of mesh were constructed. Model 1 consisted of a fixed boundary 

model built from 1612 particles to represent the ISO 17746 test standard, in which a 3 × 3 m2 area 

of the mesh was tested (Figure 4.1a). The particles along the outer boundary were fixed to simulate 

the effect of the steel frame used in the ISO 17746 standard. 

Model 1 was compared with two different numerical punch test models of steel mesh held by 

simulated rockbolt plates. Model 2 used bolt pattern A and Model 3 used bolt pattern B, as shown 

in Figure 4.1b and Figure 4.1c, respectively. For a comparison with Model 1 results, the horizontal 

(H) and vertical (V) spacing of the bolts was set to 3 × 3 m for pattern A, and 3 × 1.5 m for pattern 

B. The vertical spacing of bolts V is the distance between adjacent rows of bolts, as shown in 

Figure 4.1. 
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Figure 4.1 Numerical models of punch tests 
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Models 2 and 3 were constructed from 33391 particles to simulate a 14 × 14 m2 area of mesh with 

free boundaries. The effect of plates on bolts holding the mesh was modelled by fixing the 

movement of six particles in all directions that would have been in direct contact with 330 × 190 

mm spike plates. This simplification may make the mesh model stiffer than the real mesh. The size 

of the particles that represent the plates was exaggerated to show their locations in Figure 4.1. 

There were 16 and 12 simulated plates for each bolt pattern, respectively. It is difficult to set the 

same number of bolts for each model because of the different bolt patterns. The number of bolts 

only has a minor influence on the deformation response. 

For all models, a simulated hemispherical punching device was used to load the mesh. The device 

was constructed from triangle facet elements. The device has a radius of curvature 1.2 m and a 

diameter of 1 m projected on a plane (Figure 4.2). The punch device was placed in the centre of 

the mesh. The interaction between the steel mesh and the punch device used the same stiffness and 

friction angle parameters used in Section 3.5.4.2. 

 

Figure 4.2 Numerical model of the punch device 

1 m



75 

A constant velocity was applied to the punching device to load the steel mesh in a direction 

perpendicular to the mesh panel until the first wire in the mesh model failed. The combination of 

the velocity and time step ensures a stable simulation process with quasi-static loading. Typically, 

50,000 calculation cycles were required to move the punching device 0.5 m. 

The maximum loads plotted in the force-displacement curve correspond to the point at which the 

first wire in the model breaks. The mesh may be able to carry higher loads with subsequent 

displacement of the punching device, but this was not simulated. 

4.2.2 Results of DEM punch tests with different boundary conditions 

The force-displacement responses of steel mesh determined using the three different models are 

shown in Figure 4.3. Model 1 gave the highest peak load (160 kN). The maximum force carried 

by the mesh decreases to 65 kN and 87 kN for Models 2 and 3, respectively. The first wire to break 

for the fixed boundary test occurred at the edge of the punching device. In contrast, the first wire 

to break in the pinned mesh occurred at a simulated rockbolt plate for all models presented in this 

chapter. 
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Figure 4.3 Force-displacement responses of steel mesh for the three models 

The force-displacement response of the punching device became more deformable when the mesh 

was pinned compared to a fixed outer boundary. The mesh in the centre of Model 1 was able to 

deform 0.5 m. For Model 2 and Model 3, the maximum deformation of the steel mesh in the centre 

was 0.99 m and 0.66 m, respectively. The testing boundary conditions significantly influence the 

response of steel mesh. The laboratory and field tests on the double-twisted wire mesh also show 

the same trend (Bertolo et al. 2009, Grimod and Giacchetti 2014). It should be noted that the mesh 

in Model 3 is stiffer than Model 2. The reason is that the distance from the nearest bolts to the 

centre of the punch device in Model 3 is smaller than Model 2 (1.5 m vs. 2.1 m). 

It is important to recognize the number of wires that carry loads when interpreting laboratory test 

data. Tests with fixed boundary conditions, varying mesh areas, and varying sizes of the punching 
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0

30

60

90

120

150

180

0 0.3 0.6 0.9 1.2

Fo
rc

e 
(k

N)

Displacement (m)

Model 1
(Fixed boundaries

3 x 3 m)

Model 3
(Pattern B 3 x 1.5 m)

Model 2 
(Pattern A 3 x 3 m)



77 

by bolts. The laboratory data may indicate that larger mesh areas create higher load capacities, but 

this does not reflect the reality of how mesh carries the load in the field. The results from punch 

tests with a fixed frame will likely underestimate the deformation and overestimate the load 

capacity of the steel mesh in the field. 

For reasons above, the remainder of this chapter focuses on mesh supported by bolts because these 

results are more applicable to field conditions. The mesh’s force-displacement response is sensitive 

to how it is pinned to the rock surface. The influence of bolt pattern, bolt spacing, and the ratio of 

the vertical to horizontal bolt spacing is presented in the next three sections. 

 

4.3 Effect of bolt spacing with bolt pattern A 

A full factorial design approach (Montgomery 2017) to numerical modelling was used to develop 

a series of simulations by varying the horizontal and vertical bolt spacing from 2 to 4 m in 0.5 m 

intervals for pattern A. The force-displacement curves for all combinations of bolt spacing are 

shown in Figure 4.4. The mesh resistance force increases in an exponential manner with mesh 

displacement. The peak force that the mesh can carry is approximately 50 to 70 kN, and the peak 

is not very sensitive to the bolt spacing. The peak force is fundamentally a function of the number 

of wires running from the punching device to adjacent plates. By contrast, a larger bolt spacing 

will result in a larger maximum displacement. 
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Figure 4.4 Force-displacement response of steel mesh with bolt pattern A 
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The data plotted in Figure 4.5 were truncated at a maximum displacement of 0.5 m. The reason for 

truncating these curves is that the focus of this chapter is on assessing the mobilization of resistance 

force by the steel mesh at deformations less than 0.5 m, which are more likely to be of relevance 

in engineering practice. 

 

Figure 4.5 Effect of vertical and horizontal bolt spacing on the force-displacement response of mesh 
with bolt pattern A 
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A 0.3 m displacement of the mesh was selected as a design threshold based on practical 

considerations in the field. The force mobilized perpendicular to the mesh when the mesh is 

displaced 0.3 m is denoted as F0.3 and is generically called the mesh resistance force. The tensile 

force in the wires when F0.3 occurs are well below the maximum allowable tensile force (12.5 kN) 

for all bolt spacings, as shown in the force distribution in mesh wires in Figure 4.7 and Figure 4.8. 

Figure 4.6 shows the relationship between the V/H ratio and F0.3. The mesh can carry the load more 

efficiently if the load from the punch device is transmitted along wires that are aligned directly 

between the punch device and the bolts. The distance from the centre of the punch device to the 

nearest four bolts is denoted as D, as shown in Figure 4.1. This geometry occurs when the nearest 

two rows of bolts carry the load with a V/H bolting ratio of 1.72 (equal to the mesh opening aspect 

ratio), as shown in Figure 4.7a. For a wider horizontal spacing, a V/H that is close to 0.58 results 

in an arrangement where there are mesh wires that run directly from the punching device to the 

bolts located two rows above and below the punch device (Figure 4.7b) and these bolts also carry 

a portion of the load. 
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Figure 4.6 Effect of V/H ratio on F0.3 for bolt pattern A 

 

Figure 4.7 Force distribution in wires for bolt pattern A for (a) V/H = 1.75 and (b) V/H = 0.5 at 
0.3 m displacement of the punch device 
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number of bolts that carry the load increases. With a further decrease in V/H to 0.8, the mobilization 

resistance force increases because the nearest bolt is closer to the punch device, and the bolts 

located two rows above and below the punch device begin to carry a substantial portion of the load 

(Figure 4.8d). 

 

Figure 4.8 Force distribution in wires for bolt pattern A with a horizontal bolt spacing of 2.5 m and 
different V/H ratios at 0.3 m displacement of the punch device 
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Figure 4.9 shows the influence of distance from the nearest bolt to the punch device on the mesh 

resistance force when the displacement of the punch device is 0.3 m. The mesh resistance force 

shows a decreasing trend as the bolt-to-load distance increases. However, F0.3 is larger when the 

V/H ratio is close to the mesh opening aspect ratio compared to other V/H ratios at a similar bolt-

to-load distance. Although F0.3 for the three cases plotted within the blue ellipse in Figure 4.9 is 

high, the bolt densities are also higher than the cases with a V/H ratio close to the mesh opening 

geometry plotted within the red ellipse. Therefore, the bolted steel mesh is more effective when 

the bolt spacing with pattern A matches the mesh opening aspect ratio. 

 

Figure 4.9 Effect of D on F0.3 with bolt pattern A (grey points indicate a V/H ratio close to the mesh 
opening aspect ratio) 
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the centre of the punch device were similar. The full force-displacement curves are shown in Figure 

4.10. Similar to pattern A, the mesh resistance force increases in an exponential manner with mesh 

displacement, but there is a greater range in the mesh displacement for a given horizontal bolt 

spacing, and the peak force is generally higher for pattern B. 

 

Figure 4.10 Force-displacement response of mesh with bolt pattern B 
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Figure 4.11 shows the simulated force-displacement response of the steel mesh with a constant 

horizontal spacing of 3 m. As with pattern A, we focus on the mobilization of resistance force by 

the steel mesh at deformations less than 0.5 m. When H is fixed, the mesh resistance force when 

the punch device reaches a certain deformation decreases as the V/H ratio increases, and as the 

mesh area between the nearest four bolts to the punch device increases. For pattern B, a V/H ratio 

of 0.86 (equal to half of 1.72 as for pattern A) corresponds to the mesh opening aspect ratio because 

the bolts in alternating rows are offset one half of the separation distance between the bolts. It is 

interesting to note that when V/H = 0.83, which is close to 0.86, the force-displacement curve is 

no better than curves with other ratios. For pattern B, the V/H ratio has little influence on 

optimizing the mesh performance. 

 

 Figure 4.11 Effect of vertical and horizontal bolt spacing on the force-displacement 
response of mesh with bolt pattern B 
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ratio that matches the mesh opening aspect ratio. As shown in Figure 4.13, although the V/H ratio 

is close to the mesh opening aspect ratio for a 2 × 1.5 m spacing for pattern B, the forces are not 

carried directly from the punching device to the bolts. The wires that carry a higher load form a 

diamond shape surrounding the punching device with four corners at the bolt locations. 

 

Figure 4.12 Effect of V/H ratio on F0.3 for bolt pattern B 
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Figure 4.13 Force distribution in wires for bolt pattern B with 2 × 1.5 m bolt spacing for a 0.3 m 
displacement of the punching device 
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in the longitudinal (vertical) direction versus the transverse direction. Also, this diamond-like mesh 

is much stiffer in the longitudinal direction than in the transverse direction (Xu and Tannant 2016). 

 

Figure 4.14 Effect of DH and DV on F0.3 with bolt pattern B (grey points indicate a V/H ratio close to 
the mesh opening aspect ratio) 
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4.5.1 Effectiveness of steel mesh with different bolt patterns 

The two types of bolt patterns were compared to provide suggestions for the design of a bolted 

steel mesh system. Figure 4.15 shows two force-displacement curves for mesh held by a 2 × 2 m 

bolt spacing in pattern A and a 3 × 1.5 m bolt spacing in pattern B. These two arrangements of 

bolts create a similar distance (approximately 1.5 m) from the nearest bolts to the centre of the 

punch device. For these two bolt spacings, pattern B can be viewed as rotating the bolt arrangement 

in pattern A by 45°, which allows the two bolt patterns to have the same bolt density. Note that the 

number of bolts in the model with pattern B was less than that in pattern A (12 versus 16). 

 

Figure 4.15 Comparison of force-displacement curves of different bolt patterns with a similar 
distance from the nearest bolts to the centre of the punch device 

Figure 4.15 shows the mesh held by bolt pattern A is stiffer and mobilizes a resistance force quicker 

than pattern B. From a force transmission perspective for pattern A, the mesh mobilizes forces in 

the wires pinned by the four bolts above and the four bolts below the punch device, as shown in 

Figure 4.16a. In comparison, for pattern B, the mesh mainly mobilizes forces in the wires pinned 

0

4

8

12

16

20

0 0.1 0.2 0.3 0.4 0.5

Fo
rc

e 
(k

N)

Displacement (m)

Pattern A
2 x 2 m

Pattern B
3 x 1.5 m



90 

by the three bolts above and three bolts below the punch device, with one bolt on each side carrying 

a minor load (Figure 4.16b). There are eight bolts involved in each of these two cases, but the mesh 

held by pattern A behaves stiffer and has a higher F0.3. 

 

Figure 4.16 Force distribution in wires for different bolt patterns at 0.3 m displacement of the 
punch device 

Figure 4.17 shows the results for the two bolt patterns for a range of mesh areas between the nearest 
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to the mesh opening aspect ratio. For pattern A, a V/H ratio close to the mesh opening aspect ratio 

and a smaller area around the punch device provide a higher F0.3. For pattern B, placing the bolts 
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for pattern A is close to the mesh opening aspect ratio, the mesh performance is slightly better 

compared to pattern B. 

 

Figure 4.17 Mesh resistance force mobilized for different bolt patterns and mesh area (grey points 
indicate a V/H ratio close to the mesh opening aspect ratio) 
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force that the mesh can apply to loose rock is much smaller than that supplied by the bolts. 

Nevertheless, there is an opportunity to optimize this force to maximize the benefit from the mesh. 

For both bolt patterns, the resistance force increases as the mesh area between bolts around loose 

rock decreases. The mesh resistance force also increases as the displacement of the rock increases. 

 

Figure 4.18 Design curves for mesh resistance force mobilized at different mesh displacement for 
different mesh area and patterns 

The mesh resistance force is small (< 3kN) if the area is larger than 7 to 8 m2, and there is little 

difference between bolt patterns A and B on the mesh resistance force. It is recommended that the 

bolt spacing be selected such that the area between four bolts is less than 7 to 8 m2 (bolt spacing 

less than approximately 2.7 m) to allow the mesh to mobilize a higher resistance force. Bolt pattern 

A should create a higher mesh resistance force than bolt pattern B if the area is less than 7 to 8 m2. 
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mesh deformation limit, the mobilized mesh resistance force can be calculated. This force can be 

used to evaluate whether the mesh can stabilize the rock and achieve equilibrium. 

4.6 Summary 

This chapter analyzes the influence of bolt patterns and spacing on the force-displacement response 

and the effectiveness of the high-tensile steel mesh. The modelling results show that punch tests 

conducted with a rigid supporting frame may underestimate the deformation and overestimate the 

load capacity of the steel mesh. These testing conditions differ from the boundary conditions of 

the steel mesh used in the field. In the field, the steel mesh is usually anchored by bolts and plates 

with various patterns. Boundary conditions that are representative of field conditions and two 

commonly used bolt patterns were used to model the performance of mesh when loaded by a loose 

rock located between the rockbolts. 

The chapter determines the bolt arrangements that give a more effective mesh response. An 

effective mesh provides a larger mesh resistance force at lower mesh displacement; thus, a mesh 

displacement of 0.3 m is chosen as an example to demonstrate the influence of various bolt patterns 

on the mesh performance. The results are also applicable for other small mesh displacements. For 

bolt pattern A, a vertical to horizontal bolt spacing ratio that matches the mesh opening aspect ratio 

(1.72 ratio) makes the mesh more effective at carrying loads and limiting deformations. However, 

a V/H ratio that matches the mesh opening aspect ratio for bolt pattern B does not help to optimize 

the mesh effectiveness. Reducing the vertical bolt spacing in pattern B is more important than the 

horizontal spacing in achieving better mobilization of a mesh resistance force. For both bolt 

patterns, the mobilized mesh resistance force of steel mesh decreases as the distance from the 
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nearest bolt to the loaded area increases. If the mesh is loaded at the centre within a pattern of bolts 

and the bolt spacing geometry is close to the mesh opening aspect ratio, the mesh performance for 

pattern A is better compared to pattern B. 

Preliminary engineering design relationships for the mobilized mesh resistance force at different 

bolt densities and mesh deformations were developed for TECCO G65/3 steel mesh. These 

relationships can help engineers choose the bolt spacing and provide a lower-bound estimate of 

the mesh resistance force at the desired deformation limit for a given bolt pattern. An ideal bolt 

arrangement will help the steel mesh mobilize load quickly at lower deformations. A mesh area 

less than 7 to 8 m2 between the nearest bolts around the load is recommended because the mesh 

will provide a higher resistance force. Also, bolt pattern A has a better performance than bolt 

pattern B in this range. 
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Chapter 5: Discrete element method and support vector machine 
applied to the analysis of rock-bolted steel mesh response 

5.1 Overview 

It is difficult to achieve the proper pretension in the steel mesh during installation in practice, and 

the tensile forces mobilized in the wires are typically much less than their tensile strength. Unstable 

rocks can still move and deform the steel mesh. The current designs of steel mesh pinned by bolts 

only use the ultimate load capacity of mesh and do not adequately consider the deformation of the 

mesh. A better design approach must limit the mesh deformations rather than using the ultimate 

load capacity of the mesh, because large mesh deformations may not be acceptable in practice 

when there is limited space between rock slopes and buildings or infrastructure.  

This chapter presents a study of the performance bolted mesh when resisting a sliding rock block. 

The chapter is structured in the following sections to cover the following topics. (1) The 

development of DEM models to simulate wire mesh and a moving rock block are presented. The 

DEM models simulate field conditions where an unstable rock located between the bolts slides 

downward along a steep joint to load the bolted steel mesh. (2) A parametric study was performed 

using 900 DEM simulations to analyze the influences of various factors on the response of the 

mesh. (3) The DEM simulation results were used to develop a mesh performance prediction model 

based on a support vector machine learning approach. This predictive tool can be used to evaluate 

the performance of bolted steel mesh for rock slopes. 
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5.2 DEM model of bolted steel mesh and rock block 

The behaviour of steel mesh depends on many influence factors, such as pinned or fixed 

boundaries, geometries of rock blocks, contact and relative movement between the rock and steel 

mesh. This section describes a numerical approach that simulates a steel mesh pinned by bolts 

interacting with a moving rock block. The loading conditions in the simulations were 

representative of field conditions.  

The steel mesh was modelled by the particle-based mesh model in Chapter 3. The following 

sections described the modelling of the rock blocks and the construction of the whole model. 

5.2.1 Model of rock blocks 

The rock block was simulated by a polyhedral element that was proposed and implemented into 

YADE by Eliáš (2014). Figure 5.1 shows a polyhedral element used as a rock block. According to 

Eliáš (2014), the creation of a polyhedral element is as follows: (1) a three-dimensional space with 

a volume of 5 × 5 × 5 units is used; (2) nuclei starting with a nucleus at the centre of the volume 

are placed at random locations within the volume with an average distance between nuclei of 

approximately 1 unit; (3) a Voronoi tessellation process is performed on this volume to divide the 

space by many planar polygons; (4) the polygons surrounding the central nucleus define the shape 

of a polyhedral element; (5) the final step is randomly rotating the polyhedral element to avoid 

directional bias. The randomness of the polyhedral element is controlled by a seed factor. 
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Figure 5.1 Rock block model constructed from a polyhedral element 

The randomly generated shape of the polyhedral element captures the irregular shapes of rocks in 

the field. Hence, various contacts between the rock block and the mesh can be simulated by the 

model. Because the polyhedral elements are randomly generated, the volume for each polyhedral 

element is different. The input parameters of a polyhedral element are size factor, aspect ratio, and 

seed factor. Ten thousand polyhedral elements were generated using size factor = 1 unit, aspect 

ratio = 1:1:1, and seed factor from 1 to 10,000. Figure 5.2 shows a histogram of the block volume. 

The mean volume of these polyhedral elements was 0.775 unit3 with a standard deviation of 0.104 

unit3. For the simulations, the volume of the polyhedral element needs to be restricted to a narrow 

range of sizes close to the mean value. This was done by finding a relationship between the volume 

of each polyhedral element and its input parameters. The seed factors that gave a volume between 

0.77 to 0.78 unit3 were selected to generate a seed factor list (398 in total).  
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Figure 5.2 Volume histogram for 10,000 randomly generated polyhedral elements using size factor 
1 and aspect ratio 1:1:1 

Twenty rock blocks were generated using the seed factors that were randomly chosen from this 

list. The size factor of these blocks ranged from 0.1 to 2, with a 0.1 interval. The relationship 

between the size factor and volume is shown in Figure 5.3, and it can be expressed by Equation 

(5.1). Thus, it is possible to generate a rock block with the desired volume by calculating the 

corresponding size factor. 
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Figure 5.3 Relationship between volume and size factor 

5.2.2 Model construction 

The modelling considers situations where potentially unstable rocks on a slope have been already 

scaled down before the installation of bolted steel mesh. The steel mesh is well attached to the 

slope surface, so there is no gap between the mesh and the rock. Due to weathering or other 

reasons, a rock block behind steel mesh becomes unstable. It is assumed that the unstable rock will 

slide along a joint or the intersection of two joints. When the unstable rock pushes against the 

mesh, the mesh generates a resistance force to stop the movement of the rock. The rock is assumed 

to stay on the joint(s) during the sliding process. Thus the modelling does not consider a rock that 

falls down the slope face. 

As shown in Figure 5.4a, the DEM model consists of a model of high-tensile steel mesh and a rock 

block model, as described in Section 3.5 and Section 5.2.1, respectively. The mesh particles at the 

boundaries are set free in all directions. Thus, the influence of the mesh model size was minor. 
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The effect of rockbolts and their plates was simplified by fixing the movement in all directions of 

six mesh particles that were at each bolt location. There were 12 rockbolt plates represented in 

each model. The mesh model was generated at an inclination angle of b to represent the slope 

angle (Figure 5.4b). The mesh was assumed to rest on a planar slope surface, but the actual slope 

surface was not modelled. The simulations were performed by loading the bolted steel mesh by a 

moving rock block. The simulations were stopped if either of the following criteria were detected: 

(1) the velocity of the rock in the direction perpendicular to the mesh reverses direction, or (2) one 

or more mesh wires break. Using the second criterion is somewhat conservative from a mesh 

design perspective because the mesh can often sustain a few broken wires and still stop the rock’s 

motion via load redistribution. However, this research was interested in assessing the performance 

of the mesh before it sustained any significant damage. 

 

Figure 5.4 DEM model for the rock block and bolted wire mesh (a) front view (b) side view 
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Note that the boundary condition of the mesh model in this simulation is different from the 

boundary condition used for mesh model calibration. In the calibration, the mesh boundaries are 

fixed in all directions. Releasing the mesh boundaries significantly affects the mesh behaviour for 

both the physical mesh and the mesh model. The physical mesh can bend much more easily along 

its longitudinal direction because of the chain-link geometry. For example, the mesh can be easily 

rolled up in the longitudinal direction. The mesh model will also be more flexible because it is 

made by particles connected by virtual springs. When the mesh model is fixed by simulated ‘plates’ 

and subject to load, the force will be transferred through the mesh wires to the plates. Because the 

mesh model and physical mesh have the same mesh geometry, the load transfer will be similar 

when they are pinned by plates. However, the mesh model does not capture the bending resistance 

in the wires in the transverse direction, which results in a larger displacement in the mesh model 

than in the physical mesh. 

The rock was created by a polyhedral element, and it was placed behind the mesh with a specified 

offset or rock position dr relative to the centre of the mesh along the longitudinal direction. 

The following assumptions are made to simplify the modelling: 

(1) No gravity is applied in the simulation. 

(2) A constant force F is applied to the rock at an orientation of a (sliding angle) to simulate the 

mesh loading by the rock. 
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The mesh is only affected by the movement of the rock because no gravity is simulated in the 

model. The steel mesh initially has no tensile forces in the springs that represent the wires.  As the 

rock moves into the mesh, the wires (springs) mobilizes resisting tensile forces. The sliding angle 

can be taken to represent the joint dip angle for planar sliding or the inclination angle of two joints 

intersecting to form a sliding wedge. The analysis considers the sliding angle as the dip angle of a 

plane upon which the block slides to be conservative. The movement direction of the rock may 

shift slightly in response to the force applied to the rock by the mesh. This effect can be more 

pronounced in the vertical direction depending on the relative position of the rock with respect to 

the pattern of fixed particles representing the plates. 

The magnitude of the load applied to the rock block, F, was based on a calculation of the 

unbalanced force for a block sliding along a virtual joint with a friction angle of f (no cohesion) 

that is inclined at an angle a. The rock volume Vrock and the assumed density of the rock (ρ = 

2,600 kg/m3) also affect F. Equation (5.2) is applicable for a simple planar sliding mechanism for 

the rock block. 

 

0 = OPQrock sin T − OPQrock cos T tanV (5.2) 

The force F was kept constant in the model, whereas for real rock, as the mesh was deformed, it 

would apply a force that would increase the sliding resistance, thus decreasing F. This assumption 

makes the simulated deformation of the steel mesh larger than that in the field. 

It is worth noting that there was no contact detection between the virtual mesh wires and the rock. 

The interaction only existed between the rock model and the particles in the mesh model. This may 
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cause the mesh displacement to be larger compared to actual mesh because the mesh does not 

recognize the rock until the mesh particles contact the rock. However, the influence is minor 

because the rock size was much larger than the opening size in the mesh.  

The interaction between the rock block model and mesh model follows the classical contact law 

between discrete elements (Cundall and Strack 1979). The contact properties for the rock-mesh 

interaction in this paper were set as kn = 1 × 107 N/m, ks/kn = 0.15 and φ = 30°. YADE uses a 

numerical damping scheme that decreases the force causing the particle velocity (Šmilauer et al. 

2015). In the simulations, the damping for the rock was set to zero for the block sliding. Local 

non-viscous damping of 0.5 was applied to the mesh to simulate the mesh resistance due to the 

wire bending. An increase of the damping coefficient will decrease the mesh displacement. A 

similar damping parameter for a mesh model was also used by Thoeni et al. (2013).  

Table 5.1 shows the ranges of the input parameters. The rock volume ranged from 0.1 to 3 m3, 

which covers small to large rock blocks held by bolted steel mesh. Rock slopes are often excavated 

at a slope of 0.25:1 (H:V), which corresponds to a slope angle of ~75°. The simulations considered 

a range from 65° to 85°, which matches the historical cases in Table 5.2. The other parameters 

were assumed based on engineering experience. 



104 

Table 5.1 Input parameters for DEM simulations 

Input parameters Range 

Volume of rock V 0.1 - 3 m3 

Slope angle b 65 - 85° 

Sliding angle a 30 - 50° 

Friction angle f 25 - 40° 

Rock position dr -0.5 to 0.5 m 

The choice of the bolt pattern and spacing used in the model was based on observations of common 

practice. Two different patterns are usually used for bolted steel mesh, namely, pattern A and 

pattern B (Xu et al. 2019). In pattern A, the bolts are aligned in rows and columns. In pattern B, 

the bolts in alternating rows are offset one half of the separation distance between the bolts. The 

arrangements of bolts used for 11 rock slope stabilization projects are listed in Table 5.2 (retrieved 

from https://www.geobrugg.com/en/Slope-Protection-77493.html). As shown in Table 5.2, bolt 

pattern B was used more often than pattern A for the TECCO mesh. For the simulations, only 

pattern B was used. 
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Table 5.2 Bolt patterns and spacing for rock slopes in the past projects 

Location Year Slope 
angle Mesh type Bolt 

pattern 
Bolt spacing 

(m) 

National road D8, Croatia 2013 60-85° TECCO 
G65/3 A 2.5 × 2.5 * 

Sapjane, Croatia 2015 65-90° TECCO 
G65/3 A 2 × 2.5 * 

Demir Kapija-Smokvica 
motorway, Macedonia 2013 65-85° TECCO 

G65/3 B 4 × 1.25 * 

Wetter, Germany 2014 60-85° TECCO 
G65/3 B 2.5 × 3 * 

Bilaspur, Himachal 
Pradesh, India 2015 60-80° TECCO 

G65/3 B 
1.9 × 1.9 
2.4 × 2.4 

Zion Hill, Panama 2015 65-80° TECCO 
G65/3 B 2.5 × 2.5 

San Jose - Calderas, Costa 
Rica 2015 45-85° TECCO 

G65/3 B 2 × 2 

Marinella di San Terenzo, 
Comune di Lerici, Italy 2017 60-80° TECCO 

G45/2 B 3 × 3 

Udhampur, Jammu & 
Kashmir, India 2017 65-70° TECCO 

G65/3 B 
2 × 2 

2.5 × 2.5 

Meja, Croatia 2017 75-80° TECCO 
G65/4 B 2 × 2 * 

Lauca, Angola 2017 40-90° TECCO 
G65/3 B 

1.4 × 1.4 
3 × 1.4 
5 × 5 
2 × 2 

* Visually estimated from photos in the published case history 

The bolt spacing typically ranges from 2 to 3 m. Hence, models were constructed with a 2 ´ 2 m 

bolt spacing, a 2.5 ´ 2.5 m bolt spacing, and a 3 ´ 3 m bolt spacing. For the 2 ´ 2 m bolt pattern, 
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the size of the mesh model was 6 ´ 10 m (10,363 particles). For the 2.5 ´ 2.5 m bolt pattern, the 

mesh model was 6 ´ 12 m (12,420 particles). For the 3 ´ 3 m bolt pattern, the mesh model was 8 

´ 14 m (19,207 particles).  

This study conducted 300 simulations for each bolt spacing using a combination of input 

parameters (900 simulations in total). A Latin-Hypercube sampling (Fang et al. 2006) method was 

used for the simulations, assuming a uniform distribution of values for the input parameters. 

5.3 Simulation results 

5.3.1 Response of steel mesh deformed by a rock block 

Two mesh responses occurred in the simulations: (1) the bolted steel mesh successfully resisted 

the moving rock block or (2) one or more wires ruptured in the mesh. The mesh was considered 

capturing the rock when the movement of the rock in the direction perpendicular to the mesh 

reversed direction. The maximum bulge of the steel mesh was also recorded in the simulations. 

Where mesh bulge data are presented, they only include data from cases in which no wires 

ruptured.  

Figure 5.5 shows two mesh response examples for a 2 ´ 2 m bolt spacing with two different rock 

sizes. The ratio of tensile force in the wires to the maximum allowable tensile force (12.5 kN) is 

also shown. For both cases, the rock started its motion centred with the bolt pattern (rock position 

dr = 0). The position of the rocks shown in Figure 5.5 captures how the rock has moved downward 

with respect to the bolt pattern. The smaller rock was stopped or captured by the mesh, whereas 

the larger rock resulted in the rupture of mesh wires near the plate immediately below the rock. 
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Figure 5.5 Mesh responses for bolt pattern B with a 2 × 2 m spacing (b = 75°, a = 40°, f = 30°, dr = 0 
m) 

(a) rock captured by bolted mesh: V = 0.78 m3 and (b) wire failure: V = 2.62 m3 

The bolted steel mesh successfully captured the 0.78 m3 rock without damaging the steel mesh 

(Figure 5.5a). The maximum bulge of the steel mesh is 0.52 m. The load was transformed from 

the rock to the rockbolt plates in the second and third row, as well as the rockbolt plate below the 

0

F/Fmax

0.1

0.3
0.2

0.6

0.4
0.5

Bulge 0.52 m

(a)

(b)
0.85

0.7

0.5

0.1

0.3

0

F/Fmax

Bulge 0.48 m



108 

rock (the middle one in the fourth row). The tensile force was mainly concentrated in the wires 

near the rockbolt plate below the rock block. The most critical wire reached 60% of its tensile 

strength. 

Several mesh wires broke in resisting the movement of the 2.62 m3 rock (Figure 5.5b). The load 

transformation is similar to the first case. The maximum bulge of the steel mesh was 0.48 m, which 

is slightly smaller than the other case. The reason is that a larger contact area between the large 

rock and mesh results in a larger local deformation in mesh wires to resist the rock movement, 

which ruptured mesh wires. 

5.3.2 Influence of rock volume and sliding angle 

Figure 5.6 shows the sliding angle a versus the rock volume V for all 2 ´ 2 m bolt spacing 

simulations. The symbols on this plot show ranges of the maximum mesh bulge or whether the 

model was stopped because of the rupture of mesh wires. The bolted wire mesh captured the rock 

block successfully in 180 cases. The rock did not even move in 45 cases because the friction angle 

was larger than the inclination angle; these results are not plotted. The maximum mesh bulge was 

0.2 to 0.4 m in 63 cases, 0.4 to 0.6 m in 111 cases, and 0.6 to 0.7 m in 5 cases. The cases in which 

wires ruptured are clustered at the upper right half of the plot, where simulations with larger rocks 

and steeper virtual joints occur. 
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Figure 5.6 Simulation results of a versus V for 2 × 2 m bolt spacing 

Table 5.3 shows the percent of cases with wire rupture for different rock volumes. The bolted steel 

mesh worked well if V was less than 1 m3 (no wire ruptures). The percent of cases with wire rupture 

increases as V increases. When the rock was 2 to 3 m3, 49% to 54% of the cases experienced a 

wire rupture.  

Table 5.3 Influence of rock volume on mesh response for 2 × 2 m bolt spacing 

V (m3) Total number Wire rupture 
Percent of cases with 

wire rupture 

0-1 93 0 0 

1-1.5 51 6 12% 

1.5-2 53 16 30% 

2-2.5 51 25 49% 

2.5-3 52 28 54% 
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Table 5.4 shows the influence of the sliding angle a on the percent of cases with wire rupture. For 

a between 30° and 35°, only one out of 75 cases had a wire rupture. The percent of cases with wire 

rupture increases as a increases. For example, 49% of the cases had wires rupture if a was between 

45° to 50°. 

Table 5.4 Influence of sliding angle for 2 × 2 m bolt spacing 

a (°) Total number Wire rupture 
Percent of cases with 

wire rupture 

30-35 75 1 1% 

35-40 75 13 17% 

40-45 75 24 32% 

45-50 75 37 49% 

Figure 5.7 shows the influence of rock volume V on the mesh bulge. The number of cases in which 

the mesh bulge was between 0.2 and 0.4 m decreases as V increases. The number of cases in which 

the mesh bulge was between 0.4 and 0.6 m increases slightly as the range in V increases from 0 - 

1 to 1 - 2 m3. The number of cases in which V is greater than 2 m3 is small because a large portion 

of the simulations caused a rupture of a wire. 
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Figure 5.7 Influence of V on the mesh bulge for 2 × 2 m bolt spacing 

Figure 5.8 shows the influence of the virtual sliding angle a on the mesh bulge. The number of 

cases in which the mesh bulge was between 0.2 and 0.4 m fluctuates as a increases, whereas the 

number of cases in which the mesh bulge was between 0.4 and 0.6 m shows an increasing trend as 

a increases. The number of cases in which a > 45° is small because many simulations with a steep 

sliding angle caused a rupture of a wire. 

 

Figure 5.8 Influence of a on the mesh bulge for 2 × 2 m bolt spacing 
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The rock volume and sliding angle obviously have a large influence on the mesh response because 

they determine the force acting on the mesh and the loading direction with respect to the mesh 

panel. A large rock sliding on a steep joint is more likely to result in a large mesh bulge and to 

damage the steel mesh.  

5.3.3 Influence of slope angle and rock position 

Figure 5.9 shows the slope angle b versus the rock volume V for all 2 ´ 2 m bolt spacing 

simulations. The wire rupture cases are evenly distributed along the axis of the slope angle, which 

indicates that b has a minor influence on the mesh wire rupture. The results for the influence of b 

on the mesh bulge are shown in Figure 5.10. As b increases, the number of simulations in which 

the mesh bulge was between 0.2 m and 0.4 m decreases, whereas the number of simulations where 

the mesh bulge was greater than 0.4 m increases. Thus, a large mesh deformation may be expected 

on steeper rock slopes. The reason is that a steeper slope surface increases the angle between the 

loading direction and mesh panel. The mesh is more deformable if the load is perpendicular to the 

mesh. 
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Figure 5.9 Simulation results for b versus V for 2 × 2 m bolt spacing 

 

Figure 5.10 Influence of b on the mesh bulge for 2 × 2 m bolt spacing 
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position. This distribution indicates that dr has little influence on the rupture of wires in the mesh. 

The results for the influence of dr on the mesh bulge are shown in Figure 5.12. The mesh bulge 

increases if the rock is closer to the upper bolt, whereas the mesh bulge decreases if the rock is 

closer to the bottom bolt. A large mesh bulge (0.6 to 0.7 m) only occurs when the rock position 

was above the centre between the bolts (dr > 0 m). The most flexible part of a mesh is at the centre 

within a pattern of bolts. When an unstable rock originates closer to the upper bolt, it may slide 

down towards the centre of the bolt pattern, thus causing a large mesh displacement. 

 

Figure 5.11 Simulation results for dr versus V for 2 × 2 m bolt spacing 
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Figure 5.12 Influence of dr on the mesh bulge for 2 × 2 m bolt spacing 

5.3.4 Influence of force applied by the rock on steel mesh 

Figure 5.13 shows the simulation results for different forces (F) applied by the rock to the mesh 

for all 2 ´ 2 m bolt spacing simulations. Recall that F is the unbalanced force calculated for a 

sliding block using Equation (5.2), and its magnitude is typically much smaller than the weight of 

the rock. Two boundaries (dash lines) can be seen in Figure 5.13. The steel mesh stops the rocks 

if F < 8.5 kN. A force larger than 13 kN ruptures mesh wires. The steel mesh may stop the rock, 

or the wires may rupture if the force is between 8.5 and 13 kN. A large force occurs for large 

blocks sliding on steep joint surfaces. The mesh sustained broken wires at forces that are seven 

times lower than what was reported as the mesh capacity measured in laboratory tests where the 

mesh was fixed to a loading frame, and many wires work together to carry the load (Geobrugg 

2014). 
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Figure 5.13 Simulation results of F versus V for 2 × 2 m bolt spacing 

5.3.5 Influence of bolt spacing 

Figure 5.14 and Figure 5.15 show the sliding angle versus the rock volume and the force versus 

the rock volume for all 2.5 ´ 2.5 m and 3 ´ 3 m bolt spacing simulations, respectively. The results 

show similar distributions to the 2 ´ 2 m bolt spacing simulations. The number of cases with wire 

rupture is 86 out of 300 for a 2.5 ´ 2.5 m bolt spacing, and 90 out of 300 for a 3 ´ 3 m bolt spacing. 

The wire rupture cases are also clustered at the upper right half of the a versus V plots. The increase 

of the bolt spacing only slightly increases the percentage of cases with mesh wire rupture. The 

rocks were captured by steel mesh if F < 8 kN and a force larger than 12 kN typically caused wire 

rupture. 
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Figure 5.14 Simulation results for (a) a versus V and (b) F versus V for 2.5 ´ 2.5 m bolt spacing 
(dash lines show boundaries between different types of mesh response) 

 

Figure 5.15 Simulation results for (a) a versus V and (b) F versus V for 3 ´ 3 m bolt spacing (dash 
lines show boundaries between different types of mesh response) 

 

30

34

38

42

46

50

0 0.5 1 1.5 2 2.5 3

Sl
id

in
g 

an
gl

e 
a

(°)

Volume V (m3)

0.2-0.4 m
0.4-0.6 m
0.6-0.7 m
0.7-0.8 m
Failure

(a)

0

4

8

12

16

20

24

28

32

0 0.5 1 1.5 2 2.5 3

Fo
rc

e 
F

(k
N)

Volume V (m3)

(b)

30

34

38

42

46

50

0 0.5 1 1.5 2 2.5 3

Sl
id

in
g 

an
gl

e 
a

(°)

Volume V (m3)

0.2-0.4 m 0.4-0.6 m 0.6-0.7 m 0.7-0.8 m Wire rupture
(15 cases) (102 cases) (41 cases) (11 cases) (86 cases)

30

34

38

42

46

50

0 0.5 1 1.5 2 2.5 3

Sl
id

in
g 

an
gl

e 
a

(°)

Volume V (m3)

0.2-0.4 m 0.4-0.6 m 0.6-0.8 m 0.8-1.0 m Wire rupture

30

34

38

42

46

50

0 0.5 1 1.5 2 2.5 3

Sl
id

in
g 

an
gl

e 
a

(°)

Volume V (m3)

0.2-0.4 m
0.4-0.6 m
0.6-0.8 m
0.8-1.0 m
Wire rupture

0

4

8

12

16

20

24

28

32

0 0.5 1 1.5 2 2.5 3

Fo
rc

e 
F

(k
N)

Volume V (m3)

(4 cases) (60 cases) (78 cases) (22 cases) (90 cases)

(a) (b)



118 

The bolt spacing has a large influence on the steel mesh deformation. Figure 5.16 shows the 

number of cases of various mesh bulge for different bolt spacings. As expected, the overall mesh 

bulge increases as the bolt spacing increases. For both 2 ´ 2 m and 2.5 ´ 2.5 m bolt spacing, most 

mesh bulges were 0.4 to 0.6 m (112 and 102 cases). For a 3 ´ 3 m bolt spacing, most mesh bulges 

were 0.6 to 0.8 m (78 cases). A 2 ´ 2 m bolt spacing successfully restrained most rocks with a 

mesh bulge less than 0.6 m, whereas a 3 ´ 3 m bolt spacing had 22 cases with a mesh bulge greater 

than 0.8 m. Larger spacing between bolts results in a more flexible mesh response. 

 

Figure 5.16 Comparison between 2 ´ 2 m, 2.5 ´ 2.5 m and 3 ´ 3 m bolt spacing 

5.4 Support Vector Machine approach 

The support vector machine (SVM) approach, one of the widely used machine learning algorithms, 

was used to analyze the response of bolted steel mesh to the loading by a rock block. The SVM 

modelling was conducted with the scikit-learn library (Pedregosa et al. 2011), an open-source 

machine learning code in Python. The numerical simulation results in Section 5.3 were used to 
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train and test the performance of SVM models. The complex relationship between the mesh 

responses and a wide range of influence factors can be captured. The advantage of using SVM is 

that it has a regulation parameter to avoid overfitting. SVM can find out the global optimum which 

overcomes the limitations of other machine learning algorithms like ANN.  

5.4.1 A brief introduction to SVM 

Although the SVM was developed to distinguish two-class problems, it can also be used in 

multiclass classification by introducing the one-versus-rest or one-versus-one method. The one-

versus-one method in scikit-learn was used. The basic idea is to construct one classifier for each 

pair of classes. When predicting, each classifier votes for one class, and the class that receives the 

most votes is selected. The advantage of this method is that any unbalance in the class sizes is 

taken into account. 

A basic two-class SVM classifies the data points by finding the best hyperplane that separates all 

data points of one class from the other (Figure 5.17). The points that are closest to this hyperplane 

are called the support vectors. The optimal hyperplane is the one with the largest margin between 

the two classes. The margin is the maximum distance between support vectors on each side of the 

hyperplane. Kernel functions can be used to transform the data points from one space to another 

space with higher dimensions to better separate the data points. The three frequently used kernel 

functions (Liu et al. 2019) are as follows: 
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(1) Linear kernel function (LF) 

 

W(Y, [) = Y ∙ [ (5.3) 

(2) Polynomial kernel function (PF) 

 
 

W(Y, [) = (1 + Y ∙ [)^, _ = 1, 2, 3… (5.4) 

(3) Radial basis function (RBF) 

 

W(Y, [) = exp(−d ∙ ‖Y − [‖f) (5.5) 

 

Figure 5.17 Support vectors and hyperplane in SVM 
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An SVM can be categorized into hard- and soft-margin SVM (Brereton and Lloyd 2010). A hard-

margin SVM finds the optimal boundary that exactly separates the classes. This may lead to 

overfitting when forcing the algorithm to search for this optimal hyperplane. To avoid overfitting 

in the model, the soft-margin SVM is used to tolerate a degree of misclassification and balance the 

classification error by introducing a penalty parameter C. A larger value for C means a lower 

tolerance of misclassification and more complex boundaries. Thus, the SVM is trained to 

determine the parameters in the chosen kernel function and the penalty parameter C that provide 

the lowest misclassification error. These parameters are called hyperparameters in machine 

learning. 

5.4.2 SVM modelling process 

The first step in the machine learning modelling was data preprocessing. The data from numerical 

simulations were grouped into two categories, a feature group and a target group. The feature 

group (input group) contains the bolt spacing, rock volume V, sliding angle a, slope angle b, 

friction angle f, and rock position dr. The feature group data were standardized by their mean and 

standard deviation. The target group (output group) is the mesh response. A mesh bulge of 0.5 m 

was added as a criterion in the mesh response. Thus, three mesh responses were the output: (a) 

mesh bulge less than 0.5 m without breaking a wire, (b) mesh bulge greater than 0.5 m without 

breaking a wire, and (c) one or more wires in the mesh ruptures. Then, the whole data set was 

randomly split into two sets, one set for training (training data set) and one set for testing (testing 

data set). The ratio between the two sets was 80% to 20% (720 versus 180).  
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The next step was to use the training set data to train a model. The goal is to search for the 

hyperparameters that give the best modelling performance. The 10-fold cross-validation strategy 

was applied to access the performance of a trained model. In the cross-validation process, the 

training set data were randomly divided into 10 subsets. The model training was repeated 10 times. 

Each time, one of the 10 subsets was used to test the modelling performance after the other 9 

subsets were put together to train the model. The modelling performance was examined by the 

accuracy, which is defined by Equation (5.6),  

 

Error =
1
h
i%{[kl ≠ [l}

o

lpq

 
(5.6) 

where n is the sample size, [kl is the predicted mesh response, and [l is the corresponding mesh 

response from the numerical results.  %{Y} is the indicator function, 1 if [kl = [l, else 0 if [kl ≠ [l . 

The average accuracy across all 10 sets of training was computed. 

A random search technique (Bergstra and Bengio 2012) was applied to find the best combinations 

of the hyperparameters that give the highest modelling accuracy. As such, an optimal model was 

obtained after retraining the model using the whole training data set with the best hyperparameters. 

The last step was to evaluate the prediction performance of the obtained model using the test data 

set. One way is to use accuracy in Equation (5.6), and another way is to use the confusion matrix 

(Awad and Khanna 2015). The confusion matrix technique shows the misclassification rate of a 

model in the predicted mesh responses. The scenario of two types of mesh response is taken as an 

example to explain this technique. The response of bolted steel mesh is classified as Class S if rock 
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block stops without rupturing a wire, and Class R if one or more wires in the mesh ruptures. With 

reference to the DEM simulation results, a prediction model can provide good predictions (true, 

T) and bad predictions (false, F). As shown in Table 5.5, a good prediction can be positive (TP) if 

Class S is estimated by the model and Class S is observed in the DEM results; a good prediction 

also can be negative (TN) if Class R is estimated by the model and Class R is observed in the DEM 

results. Similarly, a bad prediction can be positive (FP) if Class S is estimated by SVM, but Class 

R is observed in the DEM results; a bad prediction can also be negative (FN) if Class R is estimated 

by the model, but Class S is observed in the DEM results. 

Table 5.5 Confusion matrix 

DEM results 
Model Prediction 

Class S Class R 

Class S TP FN 

Class R FP TN 

Based on the confusion matrix, two criteria, namely Precision and Recall, can be used to evaluate 

whether a model makes good predictions of each class. For a prediction of Class S, the Precision 

is calculated by Equation (5.7), which shows the proportion of the predicted Class S that is actually 

correct. The Recall is calculated by Equation (5.8), which shows the proportion of the actual Class 

S that is correctly identified. An ideal model should have both Precision and Recall that are close 

to 1. It is often convenient to combine Precision and Recall into one metric, namely F1 score, to 

evaluate a model’s performance. The F1 score is the weighted average of Precision and Recall and 

is calculated by Equation (5.9). A model with a higher F1 score is better. 
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rstuvwvxh =

yr
yr + 0r

 (5.7) 

 
)tuz{{ =

yr
yr + 0|

 (5.8) 

 
0q = 2 ∙

rstuvwvxh ∙ )tuz{{
rstuvwvxh + )tuz{{

 (5.9) 

5.4.3 SVM modelling results 

Table 5.6 shows the optimized hyperparameters for each algorithm. These parameters gave the 

highest prediction accuracy for their models. Figure 5.18 shows the cross-validation accuracy 

curves of each machine learning algorithm with different numbers of DEM simulations used in 

training (training data size) when using the optimized hyperparameters. The cross-validation 

accuracy represents the prediction capability of each algorithm. As expected, the cross-validation 

accuracy increases as the training size increases. The rate of improvement in the prediction 

accuracy slows down dramatically once the training data size increases beyond approximately 100 

to 150. The maximum cross-validation accuracy is around 85%-87% for the SVM-PF and SVM-

RBF models, and about 80% for the SVM-LF model. Thus, the SVM-PF and SVM-RBF models 

should have a better prediction performance than the SVM-LF model.  
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Table 5.6 Optimized hyperparameters for each algorithm 

Algorithms Hyperparameters 

SVM-LF C = 1.437  

SVM-PF C = 0.2313 d = 2 

SVM-RBF C = 7.7561 g = 0.0342 

 

Figure 5.18 Cross-validation accuracy curves for different algorithms 
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confusion matrixes were used to calculate the precision, recall, and F1 score for each prediction 
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SVM-LF model has a weighted average F1 score of less than 0.9, which indicates that it provided 

poorer predictions. 

Table 5.7 Performance evaluation of different algorithms 

Classifier Predictions Precision Recall F1 score 

SVM-LF 

Bulge < 0.5 m 0.85 0.84 0.84 

Bulge > 0.5 m 0.83 0.78 0.80 

Wire rupture 0.90 0.96 0.93 

Weighted average 0.86 0.86 0.86 

SVM-PF 

Bulge < 0.5 m 0.91 0.91 0.91 

Bulge > 0.5 m 0.92 0.87 0.90 

Wire rupture 0.92 0.96 0.94 

Weighted average 0.92 0.92 0.92 

SVM-RBF 

Bulge < 0.5 m 0.94 0.90 0.92 

Bulge > 0.5 m 0.91 0.87 0.89 

Wire rupture 0.90 0.98 0.94 

Weighted average 0.92 0.92 0.92 
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Figure 5.19 Confusion matrix of the prediction results on the test data set for different algorithms 

It is important to examine the precision of the mesh bulge < 0.5 m class, the recall of mesh bulge 

> 0.5 m class, and recall of mesh wire rupture class because low precision and recall values indicate 

a higher risk for overestimating the performance of the bolted steel mesh. The SVM-PF and SVM-

RBF models had a similar precision score in mesh bulge < 0.5 m class (0.94 versus 0.91), a similar 

recall score in wire rupture class (0.98 versus 0.96), and the same recall score in mesh bulge > 

0.5 m class (0.87). Thus, both models were good at predicting the mesh bulge < 0.5 m and wire 

rupture classes. The lower recall score obtained for the mesh bulge > 0.5 m class indicates that 

these models suffered in identifying data in this class. This was because there was a high overlap 

between the mesh bulge > 0.5 m class and the other two. 

5.4.4 Machine learning as a tool to estimate the performance of bolted steel mesh 

Current bolted mesh design methods only consider the maximum load capacity of the mesh and 

do not examine the mesh displacement that may occur on the rock slope. The developed machine 

learning model can help overcome this limitation. The predictive models can be used to estimate 
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used to improve existing design methods by adding a check of the mesh performance, thus 

including the assessment of mesh displacement. 

The flow chart in Figure 5.20 shows the validation process. A geotechnical investigation of a rock 

slope can determine the following features: slope angle, expected rock block volume, critical joint 

dip, and joint friction angle. A mesh type, bolt pattern and bolt spacing can be selected. Based on 

the desired bolt locations in the slope, the rock position in a pattern of surrounding bolts can be 

estimated. These parameters can be used as input to the machine learning model to predict the 

mesh responses. If the model predicts wire rupture or mesh bulge > 0.5 m, then the mesh type or 

bolt arrangement should be changed. The process ends when the predicted mesh bulge is less than 

the selected criterion of 0.5 m. The choice of mesh wire rupture or a mesh bulge of 0.5 m as 

assessment criteria can be changed to different criteria based on relevant site conditions. 
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Figure 5.20 Flow chart for bolted mesh validation using the machine learning model 

Although TECCO G65/3 mesh was used to develop the prediction models, the same DEM 

approach is applicable for other mesh types and different bolt patterns and spacings. The response 

of other mesh types and bolt arrangements can be obtained by conducting the DEM simulations. 

The new results could be added to the current simulation results to retrain the machine learning 

model to refine the predictive model. 

The predictive model developed with the use of numerical modelling and machine learning 

provides a tool for checking the performance of mesh designs coming from existing design 
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methods that ignore displacement. If the mesh is predicted to sustain unacceptably large 

displacements by the predictive model, engineers can change their design by reducing the bolt 

spacing or using a stronger mesh. 

5.5  Summary 

This chapter examines the response of bolted steel wire mesh to loading by a loose rock block 

between a pattern of rockbolts. Three components of this work are (1) the creation of discrete 

element models to simulate realistic field scenarios where an unstable rock interacts with the bolted 

steel mesh, (2) a parametric study of factors affecting the mesh performance based on DEM 

simulations, and (3) the development of a tool to estimate the mesh performance for bolted steel 

mesh for rock slope. 

The DEM models were created to capture the response of bolted steel mesh to loads imposed by 

an unstable sliding rock using the open-source DEM code YADE. The DEM model used an 

assembly of particle elements connected by virtual springs to simulate the mesh and a polyhedral 

element to simulate the rock. The models allowed for large mesh deformations and wires could 

break. 

The parametric study on the mesh response involved 900 DEM simulations of steel mesh for three 

bolt spacings (2 ´ 2 m, 2.5 ´ 2.5 m, and 3 ´ 3 m) considering five influence factors: rock volume 

and shape, sliding angle, slope angle, friction angle and rock position. Two kinds of mesh 

responses were tracked in the simulations: (1) the mesh stopped the rock motion with no mesh 

damage and (2) one or more wires broke in the mesh. The simulations used the mechanical 
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properties of high-tensile TECCO 65/3 steel mesh. The results showed that the mesh typically 

experienced a bulge of 0.4 to 0.8 m for a rock volume less than 3 m3 for the scenarios that were 

simulated. The mesh bulge increased as the rock volume, sliding angle, slope angle, and bolt 

spacing increased. The mesh bulge is smaller if the unstable rock is located closer to the bottom 

bolt. The rock volume and sliding angle have the largest influence on the rupture of mesh wires. 

Slope angle and rock position have a minor influence on wire rupture. The bolted steel mesh was 

unlikely to experience wire ruptures if the net load from the rock block was less than 8 kN, but 

wire ruptures were likely if the load was larger than 13 kN. For loads between 8 and 13 kN, wires 

may or may not rupture in the mesh depending on the other influence factors. 

The DEM simulation results were used to create mesh performance prediction models by using a 

support vector machine (SVM) learning approach. The SVM models can predict the behaviour of 

bolted steel mesh loaded by a sliding rock block for a range of input conditions. Different mesh 

performance criteria, such as the mesh bulge, can be selected to define classes in an SVM model. 

Three classes of mesh performance were used: (1) mesh bulge < 0.5 m without breaking a wire, 

(2) mesh bulge > 0.5 m without breaking a wire, and (3) > 1 wire in the mesh ruptures. The 

predictive ability of the SVM models with a polynomial or a radial basis function kernel was good.  

The development of the DEM models of steel wire mesh and using the simulation outcomes to 

construct SVM models is part of an approach to develop tools to estimate the performance of 

bolted steel mesh. Engineers can first use the current methods to design the bolted steel mesh, then 

apply the predictive model to assess the mesh performance on a rock slope. If the mesh 

performance is not satisfactory, the design can be improved by reducing the bolt spacing or 

choosing a stronger mesh to limit the mesh displacement. 
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Chapter 6: Investigation of bolted steel mesh to support a sliding and 
a toppling rock block using DEM 

6.1 Overview 

It is important to reveal the interaction between the unstable rock and the bolted steel mesh. A 

better understanding of the deformation and load transfer in the bolted mesh system is beneficial 

to more effective design. This chapter presents numerical studies on the behaviour of the bolted 

steel mesh to resist a sliding and a toppling block using discrete element modelling. The 

displacement of the blocks and mesh was analyzed, as well as the load on the blocks and rockbolt 

plates. The simulation results provide a better insight into the force-displacement relationship of 

the bolted mesh system. Recommendations are also made to improve mesh efficiency. 

6.2 Sliding block supported by bolted steel mesh 

One situation in rock slope stabilization is to stabilize single rock blocks. When it is impossible to 

place rockbolts through the unstable rock block or if it is expected that the rock block will 

disintegrate around the rockbolts, then rockbolts can be arranged around the critical area (Flum et 

al. 2008). Figure 6.1a and b show a vertical cross-section and a horizontal cross-section, 

respectively. It is essential to estimate the tension force in the steel mesh through longitudinal 

restraint (F1-mesh, which equals the resultant of T1 and T2) and transverse restraint (F2-mesh, which 

equals the resultant of T3 and T4) to select the appropriate mesh and to design the corresponding 

rockbolts. This section presents an analysis of the response of the steel mesh under a load from a 

sliding rock block and the load transfer mechanism using discrete element simulations. 
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Figure 6.1 Schematic drawing of tension forces in steel mesh in support of a sliding rock block 

6.2.1 Modelling of a sliding rock supported by bolted steel mesh 

A DEM model comprising a rock block, slope face, and bolted steel mesh was constructed to study 

the displacement and load transfer between a sliding rock block and the bolted steel mesh. The 

calibrated TECCO G65/3 mesh model in Section 3.5.4 is used in all the simulations. This section 

describes the model construction process. 

The rock block size in the simulations is 1.5 ´ 2 ´ 0.5 m with a density of 2600 kg/m3 (block 

weight = 38.5 kN). The rock block model is made of 2204 overlapping particles (overlap radius = 

0.1 m) that are clumped together (Figure 6.2). The slope face is made with triangular facet 

elements. The Young’s modulus and friction angle of the rock block and the slope surface are set 

to 50 GPa and 30°, respectively. 
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Figure 6.2 Rock block model 

Figure 6.3 shows the process of model construction. First, the slope surface is generated at a 30° 

inclination, and the rock block is attached to the slope surface. Then, a steel mesh model is 

generated in front of the slope with an initial mesh size of 8 ´ 8 m2. The top edge of the steel mesh 

model is aligned with the top of the slope surface. There is an initial angle between the steel mesh 

and slope face to make sure no overlaps between the particles of mesh and rock block. The particles 

on the top edge of the mesh model are fixed in the directions that are perpendicular and parallel to 

the rock face.  This boundary condition simulates the anchorage of the steel mesh to the top of the 

slope. The other boundaries of the steel mesh are set to free in all directions. Next, the gravity is 

turned on to let the steel mesh drape freely to cover the rock block until equilibrium is obtained. 

Finally, four ‘rockbolts’ are installed to support the rock block.  
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Figure 6.3 Process of model construction showing the actual profile of the steel mesh 

The commonly used two bolt patterns, pattern A and pattern B, are simulated, as shown in Figure 

6.4. The effect of the rockbolt plates is modelled by fixing the movement of mesh particles in all 

directions at locations where the plate would be located. The simulated rockbolt plates are the 

‘spike plate P33’ with a dimension of 330 ´ 190 mm. Thus, six particles are needed to simulate 

the effect of one rockbolt plate because they directly contact the plates (Figure 6.4). The 

installation process is simulated by moving the ‘rockbolt plates’ in a direction that is normal to the 

slope face to pretension the steel mesh. The ‘rockbolts’ are installed in a top-down sequence. The 

movement of the particles that represent the rockbolt plates is stopped once the plate contacts the 

slope surface. The horizontal and vertical spacing of rockbolts are 2 m and 3 m in pattern A, and  

2.5 m and 3 m in pattern B. After installing the rockbolts, the resultant force on the rock block is 

about 5 kN for pattern A, and about 36 kN for pattern B. The resultant force on the rock block for 

pattern B is much larger than for pattern A because the bolts in pattern B are closer to the rock 

block, which results in more pretension in the mesh wires.  
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Figure 6.4 DEM model of rock block and bolted steel mesh with inset showing six particles used to 
represent the rockbolt plate 

Figure 6.4 shows the two constructed DEM models. The simulations start by releasing the rock 

block models from the slope surface. During the simulations, the displacement and force on the 

rock block are recorded, as well as the force on each rockbolt plate. Different scenarios are 

simulated by progressively increasing the angle of the sliding plane to 85° in 5° increments. 

6.2.2 Displacement of rock block and steel mesh 

As expected, the rock block moves when the sliding angle increases to 35° for bolt pattern A. The 

support force provided by the bolted mesh is too small to provide enough frictional resistance to 

stop the block from sliding. The mesh becomes loose after the rock block slides. The rock block 

continues to slide away between the lower two bolts, as shown in Figure 6.5. Therefore, it is more 

likely for rocks to pass between bolts when using bolt pattern A because there is no bolt to stop 

them on their way. 
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Figure 6.5 Rock block sliding between bolts for bolt pattern A 

For bolt pattern B, the bolted steel mesh successfully stops the rock block in all simulations. Figure 

6.6 shows the maximum displacement of the rock block along the sliding direction for different 

angles of the sliding plane. The maximum displacement of the rock block increases as the angle 

of the sliding plane increases when the sliding angle is larger than 55°. The final displacement of 

the rock block along the sliding plane ranges from 0.14 to 0.25 m. 

 

Figure 6.6 Displacement of rock block at various sliding angles for bolt pattern B 
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The movement of rock block deforms the steel mesh. Figure 6.7a and b show the vertical and 

horizontal profiles of the steel mesh. As the rock block slides downwards, it pushes the steel mesh 

below the block and stretches the mesh above (Figure 6.7a). However, the profiles of the steel 

mesh in the transverse direction display little change (Figure 6.7b). This is because the thickness 

of the rock block in the simulations is constant, and the rock block slides beneath the steel mesh 

without catching the steel mesh. 

 

Figure 6.7 Geometry of steel mesh with various sliding angles for bolt pattern B 

Figure 6.7c shows the angle between the steel mesh and the sliding plane in the upslope direction 

(θ1), and the downslope direction (θ2), and along the transverse direction (β). For sliding angles 

from 30° to 55°, the rock block is kept at its original position, resulting in no changes in the angles 

between the steel mesh and the sliding plane. The geometry of steel mesh depends on the geometry 
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44 - 47°. When the sliding plane angle is larger than 55°, the rock block moves, and the geometry 

of the steel mesh changes accordingly. The angle θ1 decreases, and θ2 increases as the sliding angle 

increases because the rock block pushes the steel mesh below the block and stretches the steel 

mesh above the block. 

6.2.3 Load transfer between a rock and bolted steel mesh 

Because the bolted steel mesh failed to stop the sliding of the rock block in bolt pattern A, only 

the load transfer between the rock and bolted steel mesh for bolt pattern B is presented for this 

section.  

Figure 6.8 shows the distribution of the force carried by the mesh wires when the sliding angle is 

60°, 75°, and 85°. Note that the maximum force in the plots is set to 6.5 kN for better visualization. 

The force distribution in the wires shows a diamond shape with corners at the rockbolts and covers 

the rock block underneath. The force is mainly carried along the wires that run from one rockbolt 

to another, which transmits the rock block loads to the rockbolts. As the sliding angle increases, 

the loads on the wires increase. The maximum force in the wires for these sliding angles is 5, 7.2, 

and 10 kN, respectively. 
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Figure 6.8 Distribution of axial force in wires in steel mesh 

The resultant force on each rockbolt as the rock block moved with sliding angles of 60° and 85° 

are shown in Figure 6.9. For different sliding angles, the force on the top and bottom rockbolts is 
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when the block initially starts to move then increases as the deformation of the block increases. 

The reason is that the steel mesh is tensioned at the beginning because of the installation of the 
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Figure 6.9 Resultant force on each rockbolt during deformation of rock block with sliding angle of 
60° and 85° 

At a sliding angle of 60°, the load on the rockbolt at the top is higher than the bottom at the 

beginning. Then, the load on the bottom bolt plate gradually becomes larger than the load on the 

top bolt plate as the deformation increases. However, the top bolt plate carries a higher load than 

the bottom plate at the end of the simulation. For a larger sliding angle (85°), the load on the 

rockbolt at the top is higher than the bottom at the beginning, but the load on the bottom rockbolt 

increases faster than the load on the top rockbolt as the deformation of rock block increases. The 

rockbolt below the block carries the highest load when the slip plane is steep. 

The maximum force acting on each rockbolt occurs when the block stops moving. These are shown 

in Figure 6.10a for different sliding angles. The insert sketch shows the force and its direction on 

each rockbolt plate. The forces on the top and bottom rockbolts (T1 and T2) are higher than the 

forces in the rockbolts at each side of the rock block (T3 and T4) for all sliding angles. Also, there 

is no significant difference between T3 and T4 because of the symmetric positions of these two 

rockbolts. 
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Figure 6.10 Resultant force on each rockbolt and rock block 

For a sliding plane angle from 30 to 55°, when the steel mesh holds the rock block at its original 

position, the force on the rockbolts remains nearly the same value with T1 slightly larger than T2 

(16.6 vs. 15.5 kN), and T3 and T4 around 6.6 kN. When the sliding angle exceeds 55°, the force on 

rockbolt plates increases. However, T2 becomes larger than T1 when the sliding angle is somewhere 

between 60° and 65° and larger. 

The simulations also track the resultant force acting on the rock block that is generated by the steel 

mesh (Fmesh). Figure 6.10b shows these data. The angle between Fmesh and sliding plane, g, 

decreases as the sliding angle increases. This means that the support force from the mesh is inclined 

towards the upslope direction when the slope angle is steeper. The resultant force of T1 and T2 

(longitudinal restraint F1-mesh), and the resultant force of T3 and T4 (transverse restraint F2-mesh) are 

compared with Fmesh in Figure 6.10b and Table 6.1. The support force of steel mesh in both 

directions increases as the sliding angle increases. The proportion of the longitudinal restraint 

contributing to the block stabilization increases as the sliding angle increases, while the proportion 

of transverse restraint decreases. The support provided by the longitudinal restraint accounts for 

(a) Resultant force on each rockbolt (b) Resultant force on rock block by steel mesh 
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about 68% - 75% of the load, while about 26% - 29% is provided by transverse restraint. Thus, the 

rockbolts in the longitudinal direction are more significant than the bolts in the transverse direction.  

Table 6.1 Load carried by longitudinal restraint vs. transverse restraint 

Sliding angle F1-mesh/Fmesh F2-mesh/Fmesh 

30° 68.3% 28.8% 

40° 68.4% 28.8% 

50° 68.3% 28.9% 

55° 68.4% 28.9% 

60° 71.2% 27.9% 

65° 72.0% 27.2% 

70° 72.2% 26.8% 

75° 73.3% 25.7% 

80° 74.3% 24.9% 

85° 75.1% 24.3% 

6.3 Toppling block supported by bolted steel mesh 

The toppling failure of rock blocks is another common failure mechanism on rock slopes. The 

current design methods are all based on a sliding failure assumption, which is not suitable for the 

toppling failure of rock blocks. It is recognized that the steel mesh may only provide a small 

amount of support force because it is difficult to pre-stress the mesh properly during bolt 

installation (Blanco-Fernandez et al. 2013). However, a low support force may be enough to 

stabilize some toppling rock blocks depending on the rock block geometry and the equilibrium of 

moments. Thus, it is necessary to understand the performance of bolted steel mesh when stabilizing 



144 

a toppling rock block to improve the design. This section presents an analysis of the response of a 

toppling rock for different support forces provided by bolted steel mesh using the discrete element 

simulations.  

6.3.1 Modelling of a toppling rock supported by bolted steel mesh 

The components of the DEM model are the steel wire mesh, the rock surface and the rock block 

(Figure 6.11a). The rock block size is 1 ´ 1 ´ 1 m3 with a density of 2600 kg/m3 (weight = 26 kN). 

The rock block model is made of 729 overlapping and clumped particles (overlap radius = 0.1 m), 

as shown in Figure 6.11b. The slope face is made by the triangular facet elements. There is a 

0.25 m offset between the upper half and lower half of the slope face, which forms a small bench. 

The Young’s modulus and friction angle of the rock block and the slope surface are set to 50 GPa 

and 30°, respectively. 



145 

               

Figure 6.11 DEM model of a toppling rock block with bolted steel mesh 

Figure 6.12 shows the process of model construction. First, the slope face is generated, and the 

rock model is placed on the small bench of the slope face. Then, a steel mesh model is generated 

in front of the slope with an initial size of 8 ´ 8 m2. The top edge of the steel mesh model is aligned 

with the top of the slope surface. The initial angle between the steel mesh and slope face is 20° to 

ensure no overlap occurs between the mesh and rock block. The particles on the top edge of the 

mesh model are fixed in the directions that are perpendicular and parallel to the rock face to 

simulate the anchorage of the steel mesh to the top of the slope. The other boundaries of the steel 

mesh are set to free in all directions. Next, gravity is turned on to let the steel mesh drape freely to 

cover the rock block until equilibrium is reached. There are 16 rockbolts installed using pattern A 

to support the rock block. The horizontal and vertical spacing between the bolts is 2 m. The 

installation process is simulated by moving six particles at each ‘rockbolt plate’ location in a 
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direction normal to the slope face to pretension the steel mesh. All ‘rockbolt plates’ are moved at 

the same time. Once a rockbolt plate touches the slope face, the movement of the six particles is 

fixed in all directions (Figure 6.11c), which is the same as Section 6.2.1. 

 

Figure 6.12 Model construction process 

6.3.2 Support force on rock block during installing rockbolts 

The support force on the rock block and the force on the four nearest rockbolt plates around the 

rock (Figure 6.11a) are recorded during the rock bolting process. The monitored forces are in a 

direction perpendicular to the slope face. The support force on the rock block and the force on the 

‘rockbolt plates’ increases as the displacement of the ‘rockbolt plates’ increases, as shown in 

Figure 6.13. The forces on the upper two bolts (#1 and #2) are larger than that on the lower two 

bolts (#3 and #4). The support force on the rock block is much higher than the force applied on a 

single rockbolt plate. 
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Figure 6.13 Support force on rock block versus displacement of rockbolt plates 

Theoretically, the minimum support force to stop the rock block from toppling can be determined. 

This force is 0support =
f}	kN	∙	�.fÄ	m

�.Ä	m
= 13	kN. As shown in Figure 6.13, when the support force 

reaches 13 kN, the force on the rockbolt plates around the rock block ranges from 1.5 to 2.3 kN. 

The displacement of the rockbolt plates is close to 0.12 m. This means that moving the rockbolt 

plates approximately 0.12 m during installation generates about 13 kN support force on the rock 

block.  

Figure 6.14 shows the tensile force distribution in the mesh wires when the support force on the 

rock is 13 kN. The force is mainly transferred from the rock block to the nearest four bolts above 

and four bolts below the rock. The tensile force in the mesh wires is much smaller than the 

maximum allowable tensile force for these 3 mm wires (12.5 kN). 
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Figure 6.14 Tensile force distribution in mesh wires when support force on rock is 13 kN 

6.3.3 Effect of support force of bolted steel mesh to resist rock toppling 

For a comparison purpose, when the support force on a rock block reached 0, 5, 10, and 13 kN, 

the rockbolt plates are stopped, and their movements are fixed in all directions, as shown in the 

four red points in Figure 6.13. Four different models are saved at these four points to investigate 

the rock block trajectory under different initial support forces. A support force of zero represents 

no steel re-stressing of the mesh by the rock bolting. The simulations initiate by releasing the rock 

block under gravity. During the simulations, the trajectory of the centroid of the rock block is 

monitored. The simulations are stopped if an equilibrium state is obtained or the rock falls off from 

the slope face. 

The bolted steel mesh held the rock block on the slope in all four simulations. Figure 6.15 shows 

the trajectories of the centroid of the rock blocks with various initial support forces. When the steel 

mesh is not pre-stressed by bolts (zero initial support force on rock), the displacement of rock 

block is the largest among the four situations. As the initial support force increases, the 
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displacement of the rock block decreases. A larger initial support force also keeps the trajectory of 

the rock block closer to the slope face. With a support force of 13 kN applied on the rock block, 

the displacement of the rock block is very small, which means that the bolted steel mesh holds the 

rock at its original position as expected.  

 

Figure 6.15 Trajectories of the rock block centroid 

6.4 Influence of bolting sequence 

Different bolting sequences may cause different mesh behaviour. This is because the tension in the 

steel mesh varies as the bolting sequence changes. This section discusses the influence of two 

different bolting sequence on the support force of the bolted steel mesh using discrete element 

modelling. The simulations were conducted on a convex slope face. The two bolting sequences 

are from top to bottom and from bottom to top. The purpose of the simulations is to highlight the 

influence of the installation process of bolts. 
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6.4.1 Modelling of rock slope with a convex profile 

The DEM model comprises a steel wire mesh, a rock surface, and a rock block, as seen in Figure 

6.16. The rock block size is 1 ´ 1 ´ 0.5 m3 with a density of 2600 kg/m3 (weight 13 kN). The rock 

block model is made of 324 particles with an overlap of their radius and clumped together. The 

block model is attached to a plane rock face model. The rock face model is made using triangular 

facet elements. A steel mesh model is draped in front of the rock model. The initial mesh size is 8 

´ 8 m2. The particles on the top edge of the mesh model are fixed in both the vertical direction and 

horizontal direction perpendicular to the rock face to simulate the anchorage of the steel mesh at 

the top. The other boundaries of the steel mesh are set to be free in all directions.  

 

Figure 6.16 DEM model of rock block with bolted steel mesh 

The effect of the rockbolt plates is modelled by fixing the movement of ‘mesh’ particles that 

directly contacted the plates, as shown in Figure 6.16. The rock bolts and plates (16 in total) are 

modelled in a bolt pattern A with a 2 m spacing in four rows and four columns. The installation 

Rock block

Rock bolt plate
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process is simulated by moving the ‘rockbolt plates’ towards the rock face to pretension the steel 

mesh. The ‘rockbolt plates’ are stopped when they contact the rock face.  

The first simulation applies a top-to-bottom bolting sequence, while the second simulation uses 

the opposite sequence. The models ran to an equilibrium state before installing each row of rock 

bolts. 

6.4.2 Support force of different bolting sequences 

Figure 6.17 shows the profiles for both simulations. When bolting from top to bottom, the changes 

in the profiles are below the rock block because the installation of rockbolts pulls up the loose steel 

mesh from below. There is no significant change in the profile when bolting from bottom to top 

because the mesh is secured at the bottom by the bolt plates.  

 

Figure 6.17 Vertical profile of the steel mesh in the middle section (in metres) 
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The bolting sequence affects the tensile force distribution in the steel mesh, as shown in Figure 

6.18. The tensile force in the mesh wires concentrates on the upper edge of the rock block when 

bolting from top to bottom. Because the steel mesh above the rock block is secured at first, bolting 

the steel mesh below the rock block stretches the steel mesh downwards. On the contrary, the 

tensile force concentrates on the bottom edge of the rock block when bolting from bottom to top. 

A smaller support force at the top edge of the rock block is needed to resist its toppling because it 

has a larger moment arm about the rotation base. Therefore, bolting from top to bottom better for 

preventing rock block toppling using bolted steel mesh. 

 

Figure 6.18 Tensile force distribution in the steel mesh 

The final tensile force in the mesh wires around the rock block in a top-bottom bolting sequence 

is larger than in the bottom-top bolting sequence, resulting in a larger support force on the rock 

block as well (Figure 6.19). During bolting, the support force increases when installing the adjacent 

bolts around the block (second and third rows). This indicates that the bolted steel mesh can 
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provide a certain amount of support force before rock block moves if the mesh is tensioned 

properly. 

 

Figure 6.19 Resultant force on rock block during bolting process 

6.5 Summary 

This chapter presents numerical studies on the use of bolted steel mesh to support a sliding rock 

block and a topping rock block using the discrete element method (DEM). The rock block is 

simulated by clumped particle elements. The slope face is modelled by the triangular facet 

elements. The calibrated steel mesh model is used to hold the rock block. Two different types of 

models are constructed, one with a sliding rock and the other one with a toppling rock, to 

investigate the displacement and load transfer in the bolted steel mesh system. 
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The results show that the steel mesh can provide a sufficient support force to retain a sliding rock 

block on a slope face if the mesh is properly pre-stressed by rockbolts. Noted that the rock block 

may slide between the bolts if the bolts are aligned with each other in rows and columns. The force 

is mainly carried by the wires that run diagonally from one rockbolt location to another. The 

rockbolt above and below the rock block (longitudinal restraint) carries much more load than the 

rockbolts on either side of the rock block (transverse restraint). Also, the percentage of load carried 

by longitudinal restraint in the mesh increases as the sliding angle increases. The load on the 

rockbolts below the rock block is slightly larger than the load on the bolts above the rock block at 

steep sliding angles.  

Using rockbolts to secure the steel mesh on the slope face can improve the performance of the 

steel mesh in resisting the toppling of rock blocks. A proper pretension on the steel mesh can hold 

a rock block at its original position. Results show that even if the mesh is not pre-stressed during 

rock bolting, the mesh still can still resist rock toppling, but a larger displacement may occur. It is 

recommended to install the rockbolts at the concave spots on the slope face to permit slight 

preloading of the mesh to gain better control of the displacement of the rock blocks. A top-to-

bottom bolting sequence can provide a larger support force on the rock block. 
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Chapter 7: Case history: bolted steel mesh design for a rock cut 

7.1 Background 

This chapter presents a design of bolted steel wire mesh to stabilize a rock cut. The design applied 

the research outcomes from Chapters 4 to 6. The rock cut is beside Shannon View Drive, West 

Kelowna, British Columbia, Canada. The City of Kelowna plans to stabilize this rock cut. There 

is no bolted mesh present when this thesis was written. Figure 7.1 shows a plan view of the rock 

cut area. The bearing of the rock cut is 61°, which is about the same as Shannon View Drive. 

Figure 7.2 shows an oblique view of the rock cut area. The design is focused on the rock cut 1. 

There is another smaller rock cut located approximately 20 m east to the rock cut 1. Large blocks 

of rocks have already fallen from the face of the rock cut 2.  

 

Figure 7.1 Plan view of rock slope area 
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Figure 7.2 Oblique view of rock cut area (from point cloud) 

Figure 7.3 shows a front view of the rock cut 1. The rock consists of trachyandesite with minor 

intercalated pyroclastic deposits (Tempelman-Kluit 1989). A layer of pyroclastic rock (dark red 

area) locates in the middle part of the rock cut. Two nearly vertical dykes intrude into the 

trachyandesite. There are a ditch and a concrete barrier at the toe of the rock cut. The debris in the 

ditch mostly comes from the pyroclastic layer. 

Rock cut 1

Rock cut 2 with fallen rock blocks
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Figure 7.3 Front view of rock cut 1 

Using the ISRM strength classification (ISRM 1981), the intact trachyandesite is strong to very 

strong strength (~70 to 140 MPa compressive strength), but the intercalated pyroclastic rock is 

weak to very weak (~ 2 to 10 MPa compressive strength). A big notch in the middle of the rock 

cut has formed as the pyroclastic layer gradually eroded. The big notch causes overhanging rock 

above the notch and between the two dykes. The span of the overhanging rock is about 20 m. The 

overhanging rock mass is jointed and fractured as shown in Figure 7.4, and rockfalls often occur. 

There was only a ditch at the toe of the rock cut before 2015. As talus accumulates in the ditch, 

falling rocks often bounce onto the road. A concrete barrier was built to minimize this situation. 

However, the fractured overhanging rock mass is still a potential threat to the public. For example, 

the length of the largest fallen rock block from the rock cut 2 is 3.9 m, and it has an estimated mass 

of approximately 24,000 kg, as shown in Figure 7.5. It did not cause any damage because there 

was a bench below to catch this rock. However, it is a huge concern that large rock blocks may 
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fall from the rock cut 1 as well. Using steel wire mesh pinned by rock bolts can stabilize the rock 

cut and hold loose rocks. 

 

Figure 7.4 Notch and fractured rock 

 

Figure 7.5 Large fallen rock blocks 
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7.2 Field investigation using UAV 

The field investigation applied the aerial photogrammetry technique to obtain the topography of 

the rock cut and map the geological structures. The aerial photographs were taken by a DJI 

Phantom 4 RTK unmanned aerial vehicle (UAV).  

Ten survey targets were placed on the rock cut before taking the photos (five near the toe and five 

near the crown). The 3D coordinates of the targets were measured using a Leica TS06 total station. 

These targets were used as a reference to examine the scale of the 3D model that was georeferenced 

by the Global Navigation Satellite System (GNSS) in the UAV.  

The field investigation conducted three UAV flights to take the aerial photographs: (1) 45 m above 

the road with a 45° shooting angle (124 images taken, 88 images used); (2) 60 m above the road 

with the camera shooting straight down (96 images taken, 95 images used); and (3) a free flight 

near the notch of the slope (133 images taken, 13 images used). Figure 7.6 shows these camera 

locations. The flight grids cover the rock cut. The free fights capture a higher level of detail in the 

overhanging rock because the first two flights are above the notch. The coordinates of the UAV 

recorded by the on-board GNSS system for each aerial photograph were corrected and transformed 

to the NAD83 Canadian Spatial Reference System / UTM zone 11 N with elevations given relative 

to the CGVD2013 vertical datum. This was done by submitting the RINEX observation data from 

the UAV to an online tool of Natural Resources Canada (https://www.nrcan.gc.ca/maps-tools-and-

publications/tools/geodetic-reference-systems-tools/tools-applications/10925). These coordinates 

are for the image sensor in the camera for each image. 
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Figure 7.6 Point cloud of rock slope with camera locations from three flights 

The aerial photographs were processed in Pix4D photogrammetry software 

(https://www.pix4d.com) by two different projects. One project processed the 183 images from 

the first two flights. The GNSS coordinates embedded in the EXIF header for each image were not 

used, instead, the UTM coordinates of the camera were used. The other project processed the 13 

images from the third flight separately from the first two flights using an arbitrary coordinate 

system. The reason is that the free flight did not have the RINEX file to correct and transform their 

coordinates. Three common points that were identified in both projects to enable the merging of 

the two projects. For the merge project, 196 images were processed using the structure-from-

motion algorithms to generate a dense and accurate point cloud with 15.9 million points, and an 
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orthophoto of the area. The relative coordinate accuracy was estimated to be 20 mm based on a 

comparison of ten distances between the 10 survey targets calculated from 3D target locations 

measured with the total station and from the point cloud. 

7.3 Rock cut characterization 

Figure 7.7 shows the joints in the rock mass. The orientations of joints in the rock mass were 

measured using the Compass plugin in CloudCompare (Thiele et al. 2017). Figure 7.8 shows a 

stereonet plot of the measured joint orientations. The main joint set is likely roughly parallel to the 

upper and lower boundary of the lava flow. The mean orientation of the main joint set is 35°/145° 

(dip/dip direction). The other joints are the columnar joints that were formed during the cooling of 

the lava. The orientations of these columnar joints are nearly perpendicular to the main joint set. 

As shown in Figure 7.8, the poles of columnar joints spread along the great circle (red circle) 

corresponding to the mean orientation of the main joint set. 
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Figure 7.7 Joint sets on rock mass and measurements of rock block dimensions 

 

Figure 7.8 Stereonet of the discontinuities on the rock slope 
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The rock cut face was excavated at an orientation of 76°/335°, which dips in an opposite direction 

to the main joint set (Figure 7.8). Because of the development of the notch, the main joint set forms 

the bottom of the overhanging rock. The columnar joints that have an orientation close to 67°/327° 

are the potential sliding plane for small block failures in the rock cut. The main joint set and 

columnar joints form the potentially unstable rock blocks. Figure 7.7 shows a few block size 

measurements. The length of the rock blocks ranges between 0.3 and 0.7 m. 

Three cross-sections with a strike of 337° are made through the most critical overhanging rock on 

the slope. These cross-sections are 4 m apart. Figure 7.9 shows the positions of these cross-sections 

on a plan view. Figure 7.10 shows a cropped version of the point cloud containing five million 

points corresponding to the locations of the cross-sections. 

 

Figure 7.9 Plan view of rock slope showing the locations of three cross-sections 
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Figure 7.10 Point cloud of the rock slope with the locations of three cross-sections 

The data from cross-section 2 in Figure 7.10 are plotted in Figure 7.11. The pyroclastic deposits 

are located between an upper and lower trachyandesite lava flow and intersected with the slope 

face at an elevation between 550 m to 554 m. The layer of pyroclastic rock has a dip angle of 

roughly 35°. The inserted figure shows the orientations of joints in the rock mass. The apparent 

dip of a joint on a cross-section can be calculated by 

 T = atan(tan(Å) ∙ sin(Ç)) (7.1) 

where a is the apparent dip, d is the true dip, and b is the angle between the strike of joint and the 

bearing of the cross-section. 

123
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From Eq. (7.1), the apparent dips of the columnar joints and the main joint set can be calculated 

as 67° and 35° for cross-section 2, respectively. The slope height is about 36 m from the road. The 

road was at about 538 m elevation. The locations of the ditch and concrete barrier are also shown. 

The angle of the slope face above the ditch is about 76°. The big notch in the middle of the rock 

slope is at an elevation between 550 m to 558 m. The angle of slope face above the notch is 56°, 

which was smaller than the slope angle below the notch. The top of the rock slope was excavated 

because of the construction of an apartment nearby.  

 

Figure 7.11 Rock types on cross-section 2 with insert figure showing joints 
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Figure 7.12 shows the slope geometries for all three cross-sections. The notch size gradually 

increases from cross-section 1 to cross-section 3. The rock slope profile to the east of cross-section 

3 is similar to cross-section 3; thus cross-section 3 represents the rest of the slope profile.  

 

Figure 7.12 Slope geometries of three cross-sections with potentially unstable rock blocks 

The geometries of larger-scale blocks that could slide along the steeply dipping columnar joints 

are shown in Figure 7.12. The volumes of these blocks were calculated. The rock block on cross-

section 1 had the largest volume (22.9 m3/m). The volumes of blocks at cross-section 2 and 3 were 

approximately 19.2 and 12.4 m3/m, respectively. 
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7.4 Bolted steel mesh design for the rock cut 

7.4.1 Back analysis of joint strength properties 

The rock block at cross-section 1 is the most critical one, and it was used for the analysis because 

it has the largest volume. A back analysis of the columnar joint friction angle and cohesion is 

necessary because no laboratory experiments were conducted. Figure 7.13 shows a free-body 

diagram for the rock block. The stability analysis of the rock block is based on the Mohr-Coulomb 

failure criterion. The factor of safety can be expressed as 

 
03 =

).
É ∙ sinÑ

 (7.2) 

 É = drock ∙ Q (7.3) 

 ). = )o ∙ tan f+ 	u ∙ Ö (7.4) 

 )o = É ∙ cosÑ − Ü (7.5) 

where W is the rock block weight, grock is the rock density, V is the rock volume, Rn is the normal 

resistant force, Rt is the shear resistant force, j is the dip of the critical joint, f is the friction angle 

of the critical joint, c is the cohesion on the critical joint, A is the area of the sliding face, U is the 

water force at the bottom, Fs is the factor of safety.  
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Figure 7.13 Free-body diagram for block at cross-section 1 

Assuming the water fills the full fissure, as shown in Figure 7.13, the water can drain at both the 

top and bottom of the block. The peak water pressure is taken at the centre of the sliding surface. 

The water force can be calculated as 

 
Ü = ámax ∙

Ö
2
= dà ∙

Ö
2
∙ sinÑ ∙

Ö
2

 (7.6) 

where pmax is the maximum water pressure, and gw is the unit weight of water (9.81 kN/m3). 

From Eq (7.2) to (7.6), Fs can be obtained by 

 
03 =

(drock ∙ Q ∙ cosÑ − dà ∙
Öf

4 ∙ sinÑ) ∙ tan f+ u ∙ Ö
drock ∙ Q ∙ sinÑ

 
(7.7) 
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Table 7.1 shows the rock block properties for the stability analysis Table 7.1. The unit weight of 

the rock is assumed 25.5 kN/m3 (density 2600 kg/m3). The critical joint dip is 67°. The area of the 

sliding face is measured as 13.8 m2 per metre. 

Table 7.1 Rock block properties for stability analysis 

Property Value 

Unit weight of rock grock (kN/m3) 25.5 

Rock volume V (m3/m) 22.9 

Area of sliding face A (m2/m) 13.8 

Critical joint dip j (°) 67 

The Barton shear strength criterion (Barton 1973) was used to estimate the friction angle in the 

joint. The shear strength t in a joint can be determined by 

 
â = äã tan(V& + å)ç log

åçè
äã
) (7.8) 

where fb is the base friction angle of a joint, JRC is the joint roughness coefficient, JCS is the 

compressive strength of the rock on the joint surface, s’ is the normal effective stress applied on 

this joint surface. 

In Eq (7.8), the term V& + å)ç log
êëí

ìî
 can be considered equivalent to the friction angle f in the 

joint. According to Barton and Choubey (1977), the base friction angle fb for most smooth 

unweathered rock surfaces lies between 25° and 35°. Thus, the lower bound fb = 25° is chosen to 
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be conservative. Based on the field investigation and comparison with Barton’s standard curves 

for JRC (Hudson & Harrison 1997), the value of JRC is determined as 7. The JCS is assumed as 

50 MPa, which is half of the rock’s uniaxial compressive strength. The s’ is estimated from the 

normal stress acting on the centre of the sliding face, which is s’ = 25.5 ´ 22.9 ´ cos67°/12.8/1000 

= 0.018 MPa. As shown in Figure 7.14, f can be determined as 46° by drawing a line tangent to 

shear strength curve at point (0.018, 0.021).  

 

Figure 7.14 Estimation of f based on Barton’s shear strength criterion 

The rock block is stable currently, thus its Fs must be greater than 1. There are likely rock bridges 

aside from the friction angle to holding the rock block. The effect of rock bridges can be taken as 

being equivalent to a cohesion c in the joint. Based on Eq (7.7), a value of c = 54 kPa can be found 

assuming Fs = 1 when f = 46°. The equivalent sliding resistance from rock bridges can be 
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calculated as F = c × A = 54 ´ 13.8 = ~745 kN. The estimated shear strength of the intact rock is 

50 MPa based on the rock’s uniaxial compressive strength of 100 MPa. Thus, the area of rock 

bridges can be calculated as Arock bridges = 745/50/1000 = 0.015 m2. The minimum percentage of 

rock bridge in the joint is Arock bridges/A = 0.015/13.8 = ~0.1%. Note that the chosen values for f and 

c are on the conservative side.  

7.4.2 General design of bolted steel mesh 

Steel wire mesh pinned by rockbolts can secure the overhanging rock on the rock cut. The 

rockbolts can stabilize the large rock blocks, and steel wire mesh can hold the smaller rock blocks 

between the bolts. Figure 7.15 shows the design layout for the rock cut.  

 

Figure 7.15 Design for rock slope stabilization 
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The design uses TECCO G65/3 high-tensile steel wire mesh. The measured mesh area is about 

280 m2. The results from Chapter 4 suggest that the mesh area between bolts in a pattern needs to 

be less than 7-8 m2 to make the mesh more efficient. Chapter 6 suggests that bolt pattern B works 

better for preventing rocks from sliding between the bolts. For bolt pattern B, reducing the vertical 

spacing between bolts can make the steel wire mesh more efficient at providing a higher resistance 

force at lower displacement (Chapter 4). Thus, the design uses bolt pattern B with an average 

horizontal bolt spacing of 2 m, and a vertical bolt spacing from 1.5 to 2 m. The bolt spacing varies 

slightly depending on the slope geometry. The total number of bolts is 51. Figure 7.16 shows the 

three profiles with the bolts. The recommended bolt length is 6 m to ensure at least 3 m of bolt 

length goes beyond the potential sliding surface for the large-scale block. Five bolts with a 6 m 

length are designed to hang the wire mesh at the top. These top bolts are 6 m apart. All bolts plunge 

15° with respect to the horizontal direction based on engineering experience.
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Figure 7.16 Bolted mesh design on cross-section 1, 2 and 3 (black bolts are on the current profile; grey bolts are on either side) 
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A wire rope goes through the eye nuts used on the top row of bolts. The top edge of the mesh is 

attached to this wire rope. There are two wire ropes to secure the mesh edges at each lateral side. 

Another one wire rope goes through the lowest row of bolts to make the mesh wrap the 

overhanging rock.  

7.4.3 Estimation of mesh performance 

The design applied the prediction model developed in Section 5.4 to estimate the mesh 

performance. The design criterion was that the mesh bulge needs to be less than 0.5 m without 

breaking wires.  

The estimated average size of a single rock is 0.5 ́  0.5 ́  0.5 = 0.125 m3 based on the measurements 

in Section 7.3. The slope face angle of the overhanging rock is over 90°. Because the slope face 

angle is greater than the upper limit of the input values used in the prediction model, a slope face 

angle of 85° is used. The sliding angle for the rock block (67°) is also larger than the upper bound 

of the prediction model (50°). The friction angle is set to 25° because it is the base friction angle 

used in Barton’s shear strength criterion, as well as the lower bound in the prediction model. Both 

horizontal and vertical bolt spacing is set to 2 m. The mesh response is checked for a rock position 

ranging from -0.5 to 0.5 m with respect to the centre in a bolt pattern.  

The predicted mesh performance shown in Table 7.2 is found after applying the prediction model 

from Section 5.4. The predicted mesh bulge is less than 0.5 m without breaking the mesh wires for 

all cases where the rock volume is less than 0.625 m3 (volume equivalent to 5 blocks). If the rock 

volume is 0.75 and 0.875 m3 (volume equivalent to 6 - 7 blocks), a mixed mesh behaviour is 

predicted. The mesh bulge is less than 0.5 m if the rock is close to the lower bolt (-0.5 m rock 
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position), while the mesh wires may rupture if the rock is at or above the centre in a bolt pattern. 

When the rock block is greater than 1 m3 (volume equivalent to 8 blocks), the mesh wires may 

break for all situations. Based on the field investigation, approximately 2 m3 of rock per year has 

fallen from the rock cut over the past seven years. This equates to an average volume of unstable 

rock in one pattern of bolts of less than 0.625 m3. Thus, the design is acceptable.  

Table 7.2 Predictions of mesh performance 

Rock volume (m3) Rock position (m) Mesh response 

0.125 -0.5 to 0.5 < 0.5 m 

0.25 -0.5 to 0.5 < 0.5 m  

0.325 -0.5 to 0.5 < 0.5 m 

0.5 -0.5 to 0.5 < 0.5 m  

0.625 -0.5 to 0.5 < 0.5 m 

0.75 

-0.5 < 0.5 m 

0 Wire rupture 

0.5 Wire rupture 

0.875 

-0.5 < 0.5 m 

0 Wire rupture 

0.5 Wire rupture 

1 -0.5 to 0.5 Wire rupture 

7.4.4 Design of rockbolts 

This section takes the rock block on cross-section 1 as an example to demonstrate the design of 

the rockbolts. The same approach is also used at cross-sections 2 and 3. Figure 7.17 shows a free-
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body diagram for calculating the net tensile force of rockbolts on cross-section 1. The design 

assumes that the water fills the fissure to be conservative. Eq. (7.6) shows the calculation of water 

force U at the block bottom. A force equilibrium analysis is used based on the concept of active 

bolts by Hoek and Bray (1981). Assuming all forces are through the centroid of the rock block. 

The factor of safety Fs is calculated as 

 
!" =

(%rock ∙ + ∙ cos- − / + 1 ∙ sin(4 + -)) ∙ tan f+ 8 ∙ 9
%rock ∙ + ∙ sin- − 1 ∙ cos(4 + -)

 
(7.9) 

where b is the bolting angle with respect to the horizontal plane.  

 

Figure 7.17 Free-body diagram for block on cross-section 1 

From Eq. (7.9), the net tension force T of the bolts can be calculated by 
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1 =

%rock ∙ + ∙ (!" ∙ sin- − cos- ∙ tan f) − 8 ∙ 9 + / ∙ tan f
sin(4 + -) ∙ tan f+ !" ∙ cos(4 + -)

 
(7.10) 

Thus, the tensile force on each bolt can be obtained by 

 
1bolt =

1 ∙ <=
>

 (7.11) 

where SH is the horizontal bolt spacing, n is the number of bolt rows per cross-section. 

Table 7.3 shows the parameters for the rockbolt design. The dimensions of the rock block are based 

on Figure 7.12. The estimated parameters of joint shear strength in Section 7.4.1 are used. The 

cohesion c is reduced 54/2 = 27 kPa considering the effect of weathering. The bolting angle is set 

to 15° based on engineering experience. The horizontal bolt spacing is 2 m. Five rows of bolts are 

used at cross-section 1 besides the short bolts at the top, as shown in Figure 7.15. The same 

approach is also used to analyze the rock block at cross-sections 2 and 3. 
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Table 7.3 Parameters for the rockbolt design 

Properties Cross-section 1 Cross-section 2 Cross-section 3 

Unit weight of rock grock (kN/m3) 25.5 25.5 25.5 

Rock volume V (m3/m) 22.9 19.2 12.4 

Sliding face area A (m2/m) 13.8 12.5 10 

Critical joint dip j (°) 67 67 67 

Friction angle f (°) 46 46 46 

Cohesion c (kPa) 27 27 27 

Bolt horizontal spacing SH (m) 2 2 2 

Bolting angle b (°) 15 15 15 

Number of bolt rows n 5 5 3 

If the rock blocks are at a limit equilibrium state (FS = 1), from Eq. (7.10) to (7.11), the tensile 

forces on each bolt for cross-section 1, 2 and 3 are 129, 97, and 73 kN, respectively. If the FS 

increases to 3, the tensile forces of each bolt on cross-section 1, 2 and 3 are 402, 328 and 328 kN, 

respectively. For these loads, the recommended rockbolts are #10 Grade 517 MPa Dywidag 

threadbar or equivalent (diameter 32 mm, yield load 424 kN), which gives a factor of safety of 3. 

The measured mesh area is about 280 m2. The mesh weighs 1.65 kg/m2 (Geobrugg 2014). Thus, 

the total mesh weight is 1.65 ´ 280 ´ 9.81/1000 = ~5 kN. Considering a 0.2 m thick layer snow/ice 

accumulates on the mesh during winter. According to Muhunthan et al. (2005), the mesh weight 

plus snow load on the five rockbolts at the top can be expressed as 

 !?@ABCADEF = (G?@AB + HADEF ∙ I ∙ 9mesh ∙ M) ∙ (sin NO − cos NO ∙ tanP) (7.12) 
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where Wmesh is the total mesh weight, rsnow is the density of the snowpack (919 kg/m3), Amesh is the 

mesh area, z is the thickness of the snowpack, af is the slope angle, y is the friction angle between 

mesh and slope face. 

The dip angle of slope face af above the notch is 56°.  Gratchev et al. (2015) suggest that the 

friction angle between the rock face and mesh is between 25 to 30°, thus y  = 25° to be 

conservative. From Eq. (7.12), the calculated load of mesh plus snow is 290 kN. The load on each 

of the five rockbolts at the top to hang the mesh is 290/5 = ~58 kN. The recommended rockbolts 

are #14 Grade 517 MPa Dywidag threadbar or equivalent (43 mm diameter, yield load 801 kN). 

These bolts are strong enough to carry the load of mesh and also can contribute to stabilizing the 

rock cut. 

7.4.5 Design of wire ropes 

Figure 7.18 shows an equilibrium analysis for the wire rope at the top between two rockbolts. The 

load on the wire rope is the weight of wire mesh plus a 0.2 m thick snow/ice between two bolts 

287/4 = ~72 kN. Assuming the load on the wire rope is a uniformly distributed load. The distance 

between the two bolts is L = 6 m. The sag of the wire rope is h. The maximum tensile force in the 

wire rope Tmax occurs at the two ends (Hibbeler 2012). The Tmax can be expressed as  

 
1max =

!mesh+snow
2

T1 + (
V
4 ∙ ℎ

)Y 
(7.13) 
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Figure 7.18 Equilibrium analysis on top wire rope between two bolts 

Because the wire rope will be tensioned, h should be small. The calculated Tmax using Eq. (7.13) 

when h is 0.2, 0.4, 0.6, 0.8, 1 m are shown in Table 7.4. The maximum tensile force in the wire 

rope is 274 kN when the h is 0.2 m. Note that this is an extreme case where only the wire rope 

carries all the load, and the sag is only 0.2 m over a span of 6 m. The five rockbolts at the top will 

also carry a portion of the load from mesh and snow. 

The recommended wire rope is the 3/4 inch diameter EIPS IWRC 6 ´ 36 or equivalent (19 mm 

diameter, 288 kN breaking load). The wire rope is strong enough to hang the mesh. The other mesh 

edges will also use the same type of wire rope. 

Table 7.4 Tmax with various h 

h (m) 0.2 0.4 0.6 0.8 1 

Tmax (kN) 274 141 98 77 65 



181 

7.5 Construction guideline 

The recommended construction sequence for the bolts and mesh is outlined below. 

(1) Scale the rock slope before the installation of the rockbolts and mesh. The loose rocks and 

vegetation on the slope surface must be removed. 

(2) Mark the positions of all the bolts using dots of paint on the rock surface. The bolts should be 

placed at local concave surfaces within the tolerance range of the bolt pattern. 

(3) Drill boreholes for the first row of threadbars. The recommended borehole diameter is 50 mm.  

(4) Install #14 threadbars using a fast setting epoxy resin at the toe of the boreholes followed by 

cement grouting. Install eye nuts on the top row of shorter threadbars. 

(5) Run a wire rope through the eye nuts. Tension and clamp the wire rope to the eye nuts at the 

two ends with wire rope clips. According to the manufacturer’s manual 

(https://www.geobrugg.com/en/TECCO-System-101216.html), use at least four wire rope 

clips to clamp the wire rope at a spacing of 19 mm. The first wire rope clip must be placed 

immediately next to the eye. The required tightening torque must be at least 36 N×m. 

(6) Cut the mesh rolls to the proper lengths. 
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(7) Unroll the mesh and fix the top edge of the mesh to the wire rope using TECCO press claws 

type 2 or steel shackles. The overlap between two mesh sheets must be greater than two 

diamond mesh units. The press claws or shackles must be used at every third mesh diamond.  

(8) Connect the different mesh sheets together using TECCO connection clips T3. Each mesh 

diamond at the edge must be clipped to the neighbouring mesh with a single connection clip.  

(9) Drill the holes for the remaining bolts through the mesh openings based on the marked points. 

A TECCO drilling device can be used to protect the mesh during the drilling. 

(10) Install the bolts one row after another. The bolt heads above the rock face must stick out at 

least 0.3 m. The bolt heads below the overhanging rock must stick out at least 0.5 m. 

(11) Install P33 spike plates to pin the mesh to the rock surface. Stretch the mesh if possible when 

installing the plates. Preload the bolts to approximately 150 kN by tightening the nuts on the 

bolts.  

(12) Conduct pull-out tests on at least four bolts. The results of the proof tests should be submitted 

for quality assurance purposes. 

(13) Install the eye nuts on the bolt heads at the two bottom corners.  
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(14) Install two wire ropes between the eye nuts to secure the two lateral and bottom mesh edges. 

Run the wire ropes through the eyes on the bolts and fasten the wire ropes by clamping them 

to the eye nuts with wire rope clips.  

(15) Use type 2 press claws or shackles to attach the wire ropes to the mesh. These must be 

positioned every second mesh unit for the lateral edges, and every third mesh unit for the 

bottom edge. 
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Chapter 8: Conclusions and Discussions 

8.1 Conclusions 

The work presented in this dissertation includes extensive numerical simulations of steel mesh and 

steel mesh pinned by rockbolts. The results contribute a better understanding of the force and 

displacement behaviour of steel mesh with various bolt patterns and bolt spacing. The performance 

of bolted mesh loaded by a sliding or a toppling rock block is also studied. The knowledge gained 

from this research on the response of bolted steel mesh can help improve the design of bolted mesh 

for rock slopes. 

The force-displacement behaviour of steel wire mesh was simulated using the DEM approach. An 

open-source DEM code, YADE, was used to perform the simulations. Two modelling approaches, 

a particle-based mesh model and a cylinder-based mesh model, were tested in terms of the 

predicted force-displacement response and computational cost. Results show that the particle-

based modelling approach is not only less computationally intensive than the cylinder-based 

approach but it also provides an equivalent force-displacement response for steel mesh when the 

mesh interacts with other objects. Thus, the particle-based modelling approach was used for all 

subsequent modelling in this thesis. The bending resistance of wires is not considered in the 

particle-based mesh model. However, the use of the wire’s tensile stress-strain curve and 

calibration of shift parameters allows the mesh model to capture the behaviour of the physical steel 

mesh. The mesh model in the tensile tests behaved more linearly than the real steel mesh in the 

experimental tests. The response of the mesh models had a good match with experimental punch 

tests when the loading is perpendicular to the mesh panel, which is consistent with the common 

loading direction in the field. 
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Simulations of mesh punch tests were conducted with two boundary conditions. One boundary 

condition fixed the movement of mesh edges in all directions to simulate a rigid supporting frame. 

The other boundary condition simulated fixed particles representing the locations of rockbolt 

plates. Results show that punch tests conducted with a rigid supporting frame underestimate the 

deformation and overestimate the load capacity of the steel mesh. These testing conditions differ 

from field conditions. In the field, the steel mesh is usually anchored by bolts and plates installed 

with various patterns.  

A proper bolt arrangement will significantly increase the mesh resistance force, which helps to 

restrain rock blocks. Different bolt patterns generate different load transfer mechanisms in the 

mesh resulting in different force-displacement responses of steel mesh. Two commonly used bolt 

patterns were tested using DEM punch tests. In pattern A, the bolts are aligned with each other in 

rows and columns. In pattern B, the bolts in alternating rows are offset one half of the separation 

distance between the bolts. For bolt pattern A, a vertical to horizontal bolt spacing ratio that 

matches the mesh opening aspect ratio (1.72 ratio) makes the mesh more effective at carrying loads 

and limiting deformations. However, a V/H ratio that matches the mesh opening aspect ratio for 

bolt pattern B does not help to optimize the mesh effectiveness. Reducing the vertical bolt spacing 

in pattern B is more important than the horizontal spacing in achieving the mobilization of a higher 

mesh resistance force. For both bolt patterns, the mobilized mesh resistance force decreases as the 

distance from the nearest bolt to the loaded area increases. If the mesh is loaded at the centre within 

a pattern of bolts, and the bolt spacing geometry is close to the mesh opening aspect ratio, the mesh 

performance for pattern A is better compared to pattern B. 
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Existing design methods for bolted steel mesh use the ultimate load capacity of steel wire mesh 

and ignore mesh displacements. However, a mesh may experience an unacceptable displacement 

when it reaches its ultimate load capacity. This research developed the design curves plotted in 

Figure 4.18 for TECCO G65/3 steel mesh. These design curves show the mobilized mesh 

resistance force at different bolt densities, mesh deformations, and bolt patterns. These curves can 

help engineers choose the bolt spacing and they provide a lower-bound estimate of the mesh 

resistance force at the desired deformation limit for a given bolt pattern. An ideal bolt arrangement 

will help the steel mesh mobilize load quickly at lower deformations. A mesh area less than 7 to 8 

m2 between the nearest bolts will provide a higher resistance force. A mesh area of 7 to 8 m2 is 

equivalent to an average bolt spacing of 2.7 m. Thus, the bolt spacing should be less than 2.7 m to 

obtain a more effective mesh in practice. 

A parametric DEM study was conducted on the response of bolted mesh to the load created by a 

moving rock. Results show that the TECCO G65/3 steel wire mesh typically experienced a bulge 

of 0.4 to 0.8 m if the rock volume is less than 3 m3 for a bolt spacing of 2 to 3 m. The mesh bulge 

increased as the rock volume, sliding angle, slope angle and bolt spacing increased. The mesh 

bulge is smaller if the unstable rock is located closer to the bottom bolt. The rock volume and 

sliding angle have the largest influence on the rupture of mesh wires. Slope angle and rock position 

have a minor influence on wire rupture. The bolted steel mesh was unlikely to experience wire 

ruptures if the net load from the rock block was less than 8 kN, but wire ruptures were likely if the 

load was larger than 13 kN. For loads between 8 and 13 kN, wires may or may not rupture in the 

mesh depending on the other influence factors. 
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The DEM simulation results in Chapter 5 were used to create mesh performance prediction models 

by using a support vector machine (SVM) learning approach. The SVM models can predict the 

behaviour of bolted steel mesh loaded by a sliding rock block for a range of input conditions. 

Different mesh performance criteria, such as the mesh bulge, can be selected to define classes in 

an SVM model. Three classes of mesh performance were used: (1) mesh bulge < 0.5 m without 

breaking a wire, (2) mesh bulge > 0.5 m without breaking a wire, and (3) > 1 wire in the mesh 

ruptures. The predictive ability of the SVM models with a polynomial or a radial basis function 

kernel was good. The SVM models provide a tool to determine the displacement of bolted steel 

mesh.  Engineers can use the existing methods to design the bolted steel mesh, then apply the SVM 

model to check whether the predicted mesh displacement is acceptable. 

A series of DEM simulations were conducted to investigate the response and load transfer between 

bolted steel mesh and a sliding or a topping rock block. For a sliding rock, the results show that 

the steel mesh can provide a sufficient support force to retain the rock block on the slope face if 

the installation of the rockbolts properly stresses the mesh. It is noted that the rock block may slide 

between the bolts if the bolts are aligned vertically in columns. The force is mainly carried by the 

wires that run diagonally from one rockbolt location to another. The rockbolt above and below the 

rock block (longitudinal restraint) carries much more load than the rockbolts on either side of the 

rock block (transverse restraint). Also, the percentage of load carried by longitudinal restraint in 

the mesh increases as the sliding angle increases. The load on the rockbolts below the rock block 

is slightly larger than the load on the bolts above the rock block at steep sliding angles.  

The use of rockbolts to secure the steel mesh on the slope face will improve the performance of 

the steel mesh in preventing the toppling of the rock blocks. A proper tension on the steel mesh 
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can hold to rock block at its original position. Results show that even if the mesh is not stressed 

during rock bolt installation, the mesh still can prevent the toppling rock from falling from the 

slope face, but a large displacement may occur. Rockbolts installed at locally concave locations 

on the slope face generate higher preloads in the mesh and better control the rock block 

displacement. A top-to-bottom bolting sequence is recommended because this sequence generates 

a larger support force in the mesh. 

A case study was presented on the design of bolted steel mesh to support an overhanging rock cut. 

The rockbolts were designed to support potential large-scale planar sliding and the steel wire mesh 

was designed to hold jointed rock blocks between the bolts. A mesh bulge less than 0.5 m was 

used as the design criterion. TECCO G65/3 steel wire mesh with a bolt pattern B  was designed to 

support the rock using the results of Chapter 4 and Chapter 6. The horizontal bolt spacing was 

approximately 2 m, and the vertical bolt spacing was 1.5 to 2 m. The bolt spacing varied slightly 

depending on the rock face geometry. The SVM model from Chapter 5 estimated that the 

maximum mesh bulge before wire rupture was less than 0.5 m for the chosen bolt arrangement, 

which was acceptable for the design. 

8.2 Limitations and recommendations 

There are limitations to the work presented in this dissertation. This section summarizes four key 

limitations and provides recommendations for future improvements. 
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(1) The research was focussed on one type of widely used steel mesh: TECCO G65/3 high-tensile 

steel wire mesh. Although this research focused on one mesh type, the same research 

methodologies can be used on other types of wire mesh.  

(2) This research used a particle-based mesh model. A limitation is that this modelling method 

lacks the ability to simulate the physical mesh wires and bending in the wires. However, the 

calibrated and validated mesh models are still able to capture the mechanical response of the 

physical wire mesh when interacting with rock blocks. 

(3) This research presented a detailed analysis of the effectiveness of wire mesh with two 

commonly used bolt patterns. However, the bolt locations can vary significantly depending 

on the actual rock slope conditions. The analysis approach can be used for any bolt layout. 

(4) The analysis of the response of bolted mesh to an unstable rock covered a wide range of 

influence factors. The prediction model was created based on these results and had a good 

prediction accuracy. However, it is difficult to consider every possible situation in the field. 

Some values of the input parameters may still fall outside the current range, such as the slope 

face angle.  

Recommendations for further research are: 

(1) Laboratory tests should consider the use of a punch device to load the steel mesh pinned by 

bolts with patterns A and B, or other bolt arrangements. Field tests should evaluate bolted steel 

mesh holding various sized rock blocks on a rock slope. Although experimental tests are 
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expensive, the results would be valuable for making comparisons with numerical tests to 

validate the predicted load-displacement behaviour and load transfer mechanisms in the bolted 

steel mesh.  

(2) Future work is recommended to include more mesh types to expand the knowledge on the 

response of wire mesh, such as the spider mesh and double-twisted wire mesh. The analysis 

can also include the influence of various types and sizes of bolt plates, such as spike plates, 

flat plates, and dome plates. Both numerical simulations and experimental tests can be involved 

in the analysis. 

(3) Future work is recommended to develop design software for bolted steel mesh that integrates 

machine learning based on a database of the bolted mesh response from current simulations, 

as well as the results from future simulations.  

(4) Future work is recommended to create a database of existing bolted mesh projects including 

information of mesh type, bolt pattern and spacing, mesh performance, slope geometry and 

geological conditions, etc. 
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