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Abstract 

 

The present thesis addresses the power management issues in a mobile sensor network, with 

application in automated water quality monitoring. A water quality monitoring platform typically 

involves a wireless sensor network (WSN), in which a number of mobile sensor nodes (SN) are 

deployed in the water body to constantly collect the water-related sensory data such as the 

dissolved oxygen, pH value, temperature, oxidation-reduction potential, and electrical 

conductivity.  This data is used to compute water quality index values, transmit them via some 

routing schemes, and eventually make them accessible to the water quality professionals, 

governing agencies, or the public.  

Power management is nontrivial in the monitoring of a remote environment, especially when long-

term monitoring is anticipated. However, constrained by the limited energy supply and internal 

characteristics of the devices, without proper power management, the devices may become 

nonfunctional within the networked monitoring system, and as a consequence, the data or events 

captured during the monitoring process will become inaccurate or non-transmittable. Research is 

proposed here to develop three distinct approaches for energy conservation in a sensor network, 

and apply them for automated monitoring of the quality of water in an extensive and remote aquatic 

body.  

This thesis analytically develops and applies several energy efficient schemes for power 

management in the automated spatiotemporal monitoring of the quality of water in an extensive 

and remote aquatic environment. In general, the schemes for power management of a sensor 

network can be investigated from a number of aspects and schemes. Those schemes typically range 

from physical layer optimization to network layer solutions. Meanwhile, depending on the specific 
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applications, some energy efficient methodologies are custom-designed, and thus have limitations 

when used in other applications. Given this background, three energy efficient methods are 

proposed in this thesis for conserving energy within a WSN. Those proposed three methods, 

including DDASA, Hybrid DPS and GCVD, are studied on both the sensor node level and the 

system level, which energy-efficiently reduce the energy consumption and save extra energy 

thereby prolonging the life of the WSN. It is expected that the proposed methods will be applicable 

in other spatiotemporal monitoring applications. 
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Lay Summary 

 

This thesis contains the research that mainly aims to address the power management issues of a 

Wireless Sensor Network (WSN) and proposes energy efficient schemes for environmental 

monitoring applications where a WSN is utilized. The developed schemes can be considered as 

schemes designed on the sensor node level, node-to-node communication level, and in 

geographical deployment of the sensor nodes. It is envisaged that, with the developed schemes, 

the lifetime of the WSN is effectively prolonged while the accuracy of the collected measurements 

is maintained at a desired high level. 
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Chapter 1: Introduction 

 

 

1.1 Motivation 

 

The water quality monitoring project, on which the present research is based, is primarily 

motivated by the fact that today people in rural and developing regions of the world are at a high 

risk of exposure to water-related diseases. However, problems of poor water quality are not limited 

to such regions. Urban areas in industrialized countries are equally vulnerable. For example, there 

were two major water-related crises that seriously affected Flint City, Michigan, USA in 2016 due 

to the leakage of lead in water distribution pipes, and Nova Scotia, Canada in 2019 because of the 

effluent leakage into a body of water. These problems could have been avoided and corrective 

actions could have been taken in a timely manner if a reliable, accurate, and distributed water 

monitoring system was available in the affected areas that could rapidly provide accurate 

information about the water contamination.  

 

Developing a reliable and automated monitoring system consisting of dynamic sensor network for 

spatiotemporal monitoring is arguably challenging and of great significance. Accordingly, 

research on the subject of remote environmental monitoring has been prominent in recent years. 

One cannot overstate the importance of automated remote environmental monitoring, since it can 

result in convenience and flexibility of observing environmental conditions from distance, thereby 

reducing the risks, cost, and the required time while improving the accuracy and efficiency. 

Furthermore, it is then possible to monitor large areas in near real time and even predict some 
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natural disasters such as volcano eruptions, sandstorms, and earthquakes, and take remedial actions 

ahead of the catastrophe. 

 

 

1.2 Problem Formulation 

The limited resources of a WSN are the key factor that determines the lifetime and efficiency of 

the WSN. Despite the fact that there are some advanced energy-harvesting techniques, without 

proper energy management schemes, the electronic devices may still encounter energy shortages 

and thus become dysfunctional. Not limited to the situations where energy harvesting possibilities 

are slim,  a scheme that improves the energy efficiency of a WSN will prolong the lifetime of the 

WSN and the limited energy supply can be properly utilized.  

 

Intuitively, there always exists a trade-off between the energy consumption and the accuracy of 

the sampled data. For instance, a more frequent sampling activity will collect more data samples 

for the user but, as a consequence, more energy will be consumed. Similarly, a more frequent node-

to-node data transmission will make more collected data available for use, but at the cost of 

increased energy consumption. In this regard, finding a balance between the data accuracy and the 

energy consumption remains an interesting and important research topic. In addition, for a given 

monitored area, the deployment strategy of a limited number of sensor nodes also plays a key role 

in deciding the working efficiency and energy consumption of the overall WSN. 

 

With regard to the problem specified here, the strategies for addressing the power management 

issues can be categorized in terms of the network layers. For instance, the sampling frequency of 
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each single sensor node could be adjusted according to the sampling needs or environmental 

changes. This scheme is based on the level of a single node. Next, considering the overall sensor 

node overhead in a WSN, the investigation of optimal routing schemes for the sensor nodes is also 

a potential research topic that has drawn much attention [1]. Similarly, a reduced transmission 

overhead among sensor nodes also contributes to the energy conservation. That being said, a 

reduced number of transmissions among the sensor nodes leads to reduced energy consumption. 

Moreover, considering the spatiotemporal relationship among the sensor nodes, exploiting the 

geographical information in terms of the monitored environment will also lead to a problem of 

sensor deployment optimization [2]-[3]. With an optimal deployment of the sensor nodes, more 

representative and informative measurements would be collected given the same amount of energy 

for the sensing activities [4]-[5]. Likewise, a fewer number of sensor nodes would be needed if 

each of them could be deployed at an optimal location [4]. 

 

 

 

1.3 Research Objective 

With the technical and potential research issues mentioned above, this thesis investigates and 

develops energy efficient schemes for effectively prolonging the lifetime of a WSN and 

simultaneously ensuring high data accuracy. The schemes are developed on multiple layers of the 

sensor network, which means they should be flexible for implementation in other practical 

environmental monitoring applications. The main research objectives of the present thesis are as 

follows: 1. On the sensor node level, develop an energy efficient scheme that neutralizes the energy 

consumption and the accuracy of the collected data, which entails that the energy consumed within 
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each single sensor node should be conserved as much as possible while the data accuracy of the 

sampled data is guaranteed. 2. On the node-to-node communication level, develop a dual 

prediction scheme (DPS) that reduces the necessary number of transmissions. 3. With a limited 

number of sensor nodes in a Mobile Wireless Sensor Network (MWSN), design a scheme that 

minimizes the total moving distance of all the sensor nodes and also maximizes the total sensing 

coverage within the monitored field. 

 

1.4 Related Work 

 

The subject of power management has been investigated by others in view of its importance in 

various applications. The power management in WSN is a broad topic and can be studied based 

on various aspects. The general methodologies for managing power in a WSN can be generally 

categorized as hardware design, software design, network protocols, and middleware services. The 

major energy-saving schemes designed under these four categories are mainly: radio optimization; 

battery repletion; sleep/wakeup schemes; energy-efficient routing, and; data reduction [6]. In terms 

of radio optimization, the traditional approaches focus on controlling the power used for signal 

transmission [7], where the nodes in a WSN require knowledge of the power levels and link 

qualities of their neighbor nodes. Hence, the designed schemes have a spatiotemporal impact on 

the wireless sensor network, either locally or globally. With regard to battery repletion, in recent 

years applications have been broadly developed for remote environmental monitoring where the 

monitored environment is not easily accessible. Considering that it might be time- and manpower-

consuming to replace the batteries in a remote sensor network, some work that focuses on the 

techniques of energy harvesting and wireless charging has been carried out [7]. Typical among the 



5 

 

sleep/wake schemes is duty cycling. This scheme is usually categorized as on-demand, 

asynchronous, and scheduled rendezvous. In [8], a hybrid method based on the battery state and 

the stability of water quality has been proposed. The nodes can be switched on or off either 

depending on its remaining battery state or the need of sampled data. Moreover, in energy-efficient 

routing techniques, the distance between each regular node and also the sink node of the WSN 

plays a key role. Hence, in order to optimally find a routing path that is energy efficient, schemes 

relying on single path and multiple paths have been proposed. A survey paper on this subject is 

available [9]. 

 

1.4.1 Adaptive Sampling 

Data reduction exploits the fact that depending on the characteristics of the sampled data within 

the environment, some data could be redundant. For example, in water quality monitoring, if the 

monitored parameters remain relatively stable within the time period of interest, it is believed that 

no significant changes will happen. Thus, a relatively low sampling frequency may be used for the 

sake of saving energy. With fewer sampled data, the trend of the water quality can still be analyzed. 

This is the main advantage of using adaptive sampling for power management. Besides data 

reduction, there are some other similar approaches such as data aggregation and data compression 

[2] that also contribute to energy conservation by using fewer but representative data. 

 

It may be desirable to predefine a standard for the quality of data when applying adaptive sampling 

techniques. Drira et al. [10] developed a location-aware scheme for an adaptive data collection 

system in vehicular networks, which constantly compares the travel time of a vehicle with a 

predefined value for deciding whether to transmit messages between a traffic management centre 
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and a vehicle. It is found that their developed algorithm is capable of reducing the communication 

load and data storage requirement while maintaining a high accuracy for estimating the fuel 

consumption and emission. Analogously, to ensure the quality of data, the proposed data-driven 

adaptive sampling algorithm (DDASA) constantly compares the latest sampled data with a set of 

historical data to determine a new sampling frequency. However, the energy consumption in their 

methods is reduced primarily by limiting the number of transmissions, while the approach in the 

present thesis focuses on saving energy on the sensor node level. 

 

Prabha et al. [11] proposed a context aware sensing technique, which could be utilized for landslide 

monitoring. According to their approach, given a set of data, a discrete wavelet transformation is 

performed to determine the lowest sampling rate, which meanwhile should guarantee the reliability 

of data. Based on the characteristics of data, three level thresholds are set to derive the 

sensor/network level contexts as Safe, Listen and Alert. The system initially starts to function at 

the lowest sampling rate until the sensor/network level contexts change (i.e., from Safe to Listen, 

or Listen to Alert). Hence, the sampling interval would be dynamically varied depending on the 

sensor/network-level contexts. As a result, the energy for sensory tasks could be saved. While their 

strategy is conceptually similar to the one developed in the present thesis, they only consider three 

fixed sampling intervals (i.e., sampling frequencies), which need to be predefined manually. It is 

believed that much more energy could be saved if the scheme for changing sampling frequency 

could be data-driven, rather than based on three predefined sampling intervals. 

 

In addition, an adaptive sampling approach for snow monitoring applications has been developed 

in [12]. This method initializes the sampling rate by conducting a fast Fourier transform (FFT) on 
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a sequence of pre-sensed data to acquire the maximum frequency, and depending on the 

subsequent data, a new maximum frequency is determined. By comparing the variation of the 

current sampling rate and the new maximum frequency, a new sampling rate is established. 

However, this algorithm highly relies on a large number of pre-sensed data, and also changes the 

sampling rate only depending on the FFT of the newly sampled data to avoid under-sampling. 

Nonetheless, in practical environmental monitoring situations, under-sampling is acceptable if the 

frequency of the sensed data hardly fluctuates and remains relatively steady within a period of 

interest. In this manner, in order to dynamically change the sampling frequency, properly using 

the actual value differences and stability of the sensed data makes more sense than simply using 

an FFT of the subsequent data. This is essentially what makes DDASA different from a traditional 

ASA. 

 

In [13], an adaptive sampling scheme for acquiring wind data is proposed based on energy 

awareness. Rather than being data accuracy oriented, this algorithm is essentially energy 

awareness oriented. This means when the remaining energy of the battery drops below a 

predetermined threshold, the sampling frequency will be decreased accordingly. The larger the gap 

between the remaining battery state and the predetermined threshold, the faster the drop of the 

sampling frequency, in order to maximize the life of the battery. Apparently, much more energy 

could be saved when the battery state is relatively low, through this proposed scheme. However, 

since there is always a tradeoff between the accuracy of the sensed data and the energy 

conservation, a strategy that is primarily driven by the battery state will surely compromise the 

accuracy of the sensed data, and possibly under-sampling can occur as a result. Hence, it is 
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believed that a scheme that is data accuracy-driven, would be more reasonable and universally 

applicable. 

 

1.4.2 Dual Prediction Scheme 

 

In the context of energy conservation in WSN, the prevailing approaches of data reduction have 

to be explored. The DPS, which serves as an energy-efficient scheme in the network-level 

communication, features data reduction and transmission reduction by conducting time-series 

prediction. While the work in [14] proposed the DPS and examined its performance on a 

temperature dataset, a more recent work [15] statistically proved the significance and efficiency of 

implementing DPS for transmission reduction.  

 

Since the DPS is closely associated with time-series prediction methods, especially when the 

collected data exhibits a temporal correlation, a solid prediction method should be developed in 

order to provide reliable prediction results. When choosing a proper method, the internal 

characteristics of the WSN should also be considered, such as the overload and memory capacity 

of the entire network. An early and classical solution provided by [16] handled this issue by 

continuously updating the coefficients of the kernel linear regression model instead of transmitting 

real measurements. 

 

The LMS is a light predictor and requires low memory and low computational complexity. The 

work in [14] proposed to use LMS as a predictor, which lays the foundation for conducting DPS. 

The results proved that by choosing the proper step size, the algorithm could effectively reduce 
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the transmission times and thus reduce the associated energy consumption. The coefficients of the 

algorithm were intimately based on a fine-tuning process and a specific data set. Thus, it is 

important that an improved LMS algorithm be developed. Especially when dealing with any given 

data set in an environmental monitoring application, the algorithm should be capable of adapting 

itself to the new data set and automatically determining an optimal step size during the prediction 

process. In this manner, the work in [17] provided a useful approach for dynamically changing the 

step size. The way of updating the step size in that work is to divide the old step size value by a 

fixed number M, which is determined by the dimension of the inputs. It was observed that the 

prediction accuracy would be acceptable since a large step size will boost the convergence speed 

in the early training phase and a smaller step size will ensure that the algorithm eventually 

converges in a globally optimal manner. However, it is speculated that when a higher dimension 

of the inputs is needed, the range of M becomes larger accordingly. Then it may take many rounds 

of trial to determine a suitable value for M. Besides LMS, there are other work such as [18][19][20] 

related to time-series prediction methods. For example, the use of Hidden Markov Model and 

Kalman filter can provide substantial prediction results. Nonetheless, the training progress is 

extensive and computationally expensive. 

 

It is generally inferred that a reasonable combination of two methods of prediction, forming a 

hybrid method, could enhance the prediction accuracy. However, the predictors themselves should, 

to some extent, mutually benefit or collaboratively contribute to obtain a better prediction result, 

when two independent methods are hybridized. The work in [21][22] offer such a possible solution 

by combining the Autoregressive Integrated Moving Average (ARIMA) model and a Neural 

Network (NN) for improving the prediction accuracy. Similar to LMS, the ARIMA could capture 
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a linear relationship among adjacent data. However a feed-forward Neural Network, despite its 

capability of capturing nonlinear relationships among data sets, still cannot capture a temporal 

correlation among data. This would cause the prediction results either under-fit or over-fit.  

In this context, the LSTM is a promising predictor, which is able to address the relevant issues. 

Some recent work [23][24][25] has proved that the LSTM could provide satisfactory results for 

capturing the temporal relationship among data. Yet it has not been widely used in WSN 

applications. 

 

It is known that for the present problem, either the existing methods are either computationally 

expensive or there exists much room to improve the prediction accuracy in choosing a better 

prediction model. The work in the present thesis provides a hybrid DPS that combines an improved 

LMS algorithm and the LSTM RNN. In seeking a trade-off between the algorithm complexity and 

efficiency, the present research also offers flexible solutions for leveraging the limited energy 

resources in a WSN. 

 

1.4.3 Sensing Coverage Maximization in MWSN 

 

The schemes for sensor node repositioning can be categorized primarily as on-demand-based and 

post-deployment-based [26]. The former one decides how some sensor nodes are relocated during 

the deployment phase, following certain demands such as the application-level needs or the 

network-level energy, while the latter one focuses on adjusting the locations of the sensor nodes 

after the deployment phase. As for the factors that have to be taken into account while relocating 

the sensor nodes, the coverage and the uniformity of the entire network need to be considered. 
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Also, since the energy used for propelling the mobile sensor nodes is significant, the time and 

distance that a node needs to travel also have to be taken into consideration. 

 

The notion of virtual force has been proposed and utilized for node repositioning [27][28][6], 

which resembles the repulsive or attractive force among molecules, trying to establish a balanced 

distance for sensor repositioning. It is proved that the nodes can be evenly distributed in the ROI 

with a good uniformity; however, since there would always be sensors moving back and forth, in 

reaching an equilibrium, energy would be unnecessarily wasted due to the perturbation. Apart from 

this, based on the VD, three different types of movement-assisted schemes: VEC (Vector-based), 

VOR(Voronoi diagram-based) and Minimax are developed for coverage maximization [29]. 

Nonetheless, energy would still be wasted due to the redundant movements of the sensors. 

Particularly, a few nodes might lose connection with other nodes during the relocation process, 

which is undesirable in practical environmental monitoring applications. Based on VD, Xia et al. 

[30] propose to move the sink instead of the nodes in the overall MWSN, thus allowing the sink 

to selectively visit candidate vertices for data collection. In [31], a game theory-based algorithm 

has been designed to relocate the mobile robots in an unknown environment. The marginal sensing 

contribution, combined with the energy consumption due to the movement, are considered as part 

of an objective function. It is demonstrated that the designed algorithm yields a satisfactory result 

with a few number of mobile agents in a limited space. 
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1.5 Contributions and Organization of the Dissertation 

 

The main contributions of this dissertation are listed below. 

 

1. A data-driven adaptive sampling algorithm (DDASA) for node-level sampling is presented. It 

is proven that this algorithm is robust for different types of parameter sampling, and can effectively 

conserve energy with a satisfactorily reconstructed signal. Compared with some existing adaptive 

sampling algorithms, which are battery-state driven, there are justifiable occasions where the 

sampling frequency is based on the real-time sampled data, especially when the environmental 

parameters fluctuate, is of significant interest. Additionally, it is shown that, by dynamically 

changing the sampling frequency according to the newly sampled data, the proposed DDASA will 

outperform a traditional ASA with respect to the accuracy of the reconstructed signal and the 

energy conservation. Thus, the goal of prolonging the life of the nodes is achieved with the 

developed approach. 

 

2. A Hybrid dual prediction scheme (DPS) is developed, which aims to make time-series prediction 

in environmental applications where a wireless sensor network is utilized. In the two-way 

communication between a normal sensor node and a cluster head (CH), the developed algorithm 

effectively reduces the number of necessary transmissions by forecasting the future data bilaterally. 

Meanwhile, the prediction accuracy can be maintained according to the error threshold that is 

predefined by the user. 



13 

 

 

3. Proposes a novel approach based on Voronoi diagram and its geometric center to determine the 

optimal location for sensing coverage maximization while ensure the connectivity among sensor 

nodes with least movement of the nodes. The proposed algorithm, GCVD, outperforms the existing 

algorithms that address the same problem, with respect to the energy conservation.  

 

The rest of the dissertation is organized as follows. 

 

Chapter 2 presents a novel adaptive sampling algorithm, which is a data driven scheme. Focusing 

on the environmental changes that numerically reflect on the sampled data, the sampling frequency 

is changed accordingly. With a dynamically changing sampling frequency, the energy consumed 

for the sampling tasks will be conserved. Meanwhile, the developed algorithm outperforms the 

existing methods and a fixed frequency sampling strategy, in terms of the energy conservation and 

data accuracy. 

 

Chapter 3 develops a hybrid dual prediction scheme, which achieves reduced communication by 

the means of bilateral prediction between nodes. A normalized least mean square filter (LMS) is 

first used for data prediction since it has low computational complexity and requires reduced 

memory. If the predicted data fails to meet the accuracy requirement, then the long short term 

memory approach intervenes to make a data prediction since it can capture the temporal 

relationship as well as the nonlinearity characteristics among the collected data. 
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Chapter 4 demonstrates a solution to another critical issue, which is how to efficiently deploy a 

limited number of sensor nodes in the monitoring field in order to maximize the sensing coverage. 

Considering the fact that the sensor movement consumes a significant amount of energy compared  

to what is consumed for sensing tasks and node-to-node communication, minimizing the total 

movement distance while maximizing the total sensing coverage is a key goal. In addition, in order 

to maintain the connectivity while the nodes are moving, the proposed scheme has to incorporate 

multiple factors for optimization. 

 

Chapter 5 concludes the work and discusses possible future work. 
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Chapter 2: Adaptive Sampling 

 

Ideally, the data sampling rate that is used for a sensor signal should depend on the rate at which 

the signal changes. The energy consumption for signal acquisition, processing, and transmission 

all depend on the sampling frequency, either directly or indirectly. Hence, for energy conservation, 

it is desirable to reduce the quantity of sampled data when the conditions (e.g., the water quality, 

in the present application) remain relatively stable. Meanwhile, if certain parameters in the process 

(water in the present application) are changing abruptly, the sampling frequency should be 

increased in order to acquire sufficient information about the condition of the process. It should be 

noted that not only will the sampling frequency have a significant impact on the energy usage, the 

processing and transmitting of the sampled data will also consume extra energy. With this in mind, 

a data-driven adaptive sampling algorithm (DDASA) is developed in the present chapter, which 

dynamically changes the sampling frequency based on the nature of the sampled signal. This 

algorithm would be universally applicable with respect to conserving energy and prolonging the 

lifetime of a WSN. This approach is not limited to water quality monitoring and is applicable in 

other types of monitoring applications using WSN, such as indoor environmental monitoring [32], 

structural health monitoring [33], climate conditions monitoring [34], and healthcare monitoring 

[35]. 

 

 

2.1  Data-Driven Adaptive Sampling Algorithm 

The core idea behind the proposed DDASA is the design of a data accuracy-driven strategy of 

power utilization, which is particularly applicable in water quality monitoring, using autonomous 
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sensor nodes, depending on the environmental changes. It is clear that a higher sampling frequency 

is desired where the water quality is vulnerable to rapid environmental change or pollution, 

particularly in a post-industrial city. Particularly, the researchers and water quality observers of 

such areas might be more concerned and sensitive to the sudden changes of certain key parameters 

in the water. Correspondingly, if the monitored parameters hardly fluctuate, meaning no significant 

changes are taking place, it is believed that a lower sampling frequency is preferred, and as a result, 

less energy will be needed for data sampling, data processing and transmission. 

 

Based on these assumptions, a revised sigmoid function is proposed for incorporation in the present 

DDASA, which is expressed as: 

 

( )

2( )
1 D tY D
e- -=

+
 (2.1) 

1

1

1
i i
i

i
i N

X X
D

X
N

+

- +

-
=

å
 

(2.2) 

 

Here, t is a pre-determined threshold, and D is the absolute difference between Xi+1 and Xi over the 

average value of N sliding-window-based most recent data. This function is used to dynamically 

change the sampling frequency. Since we are interested in knowing whether there exists a sudden 

environmental change or not, it is reasonable to compare the latest sensed data Xi+1 with the former 

data Xi in the signal sequence, and then divide the absolute difference between them by the mean 

value of the most recent N data. If D is sufficiently large, it indicates a sudden environmental 

change. Then a somewhat higher sampling frequency is desired. Additionally, if the value of D is 

smaller than the threshold t, which means the value changes are not adequately significant, the 
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sampling frequency can be reduced in view of the relative stability of the monitored data. Hence, 

the theoretical value of Y is actually smaller than 2 but greater than Y(0), that is, since the smallest 

value of D will not be a number smaller than 0 in the data sensing process, the value of Y(0) is 

essentially greater than 0 regardless of the value of t. A representation of the revised sigmoid 

function is presented in Figure 2.1. It is found the value of Y in simulation studies is mostly a 

number either slightly smaller than 1 (e.g., when D equals to D1) when the sensed data numerically 

remain stable or greater than 1 (e.g., when D equals to D2) when the sensed data abruptly change. 

 

D1 D2t
D

 

Figure 2.1 Representation of the revised sigmoid function. 

 

Since the value of Y(D) dynamically changes depending on the latest sampled data, the sampling 

frequency should also be changed accordingly. If the current sampling frequency is denoted by 



18 

 

fcurr, which is used to acquire the latest data, then the new sampling frequency, denoted by fnew is 

given by: 

 

𝑓$)* = 𝑓",--×𝑦(𝐷) (2.3) 

 

Hence, a new sampling frequency for the next iteration is a function of the newly sampled data 

and the average value of the latest N sliding window-based data, which satisfy the desirable 

requirements of a reasonable sampling frequency and energy conservation. 

 

A pseudo code for implementing the DDASA scheme is given in Algorithm 1. 
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Algorithm 1. DDASA 

1. Initialize a constant sampling frequency denoted by 𝑓"#$%&, sample N number of samples 
for later use; store the samples in a sequence as 𝑆; 

2. Predetermine a threshold t according to the characteristics of the monitored parameter; 

3. Define 𝐷 = 3456734
6
8 344

49856
;  

4. Define 𝑓",--=𝑓"#$%&; 

5. for (i=N; i++) { 

6. Sample 𝑋;<= based on 𝑓",-- (or	𝑓",--′); 

7. 𝐷 = 3456734
6
8 344

49856
; 

8. ( )

2( )
1 D tY D
e- -=

+
 ; 

9. 𝑓$)* = 𝑓",--×𝑌(𝐷); 

10. 𝑓",--′ = 𝑓$)*;  

11. S 𝑖 + 1 = 𝑋;<=;} 

12. end 

13. return 𝑆; 
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It should be noted that the use of a sigmoid function corresponds with both the physical nature of 

the sampling process and the sensed data. The present scheme ensures that a new sampling 

frequency is adjusted not just based on the latest sensed data, but also on a set of data from a 

previous period, which reflect the overall environmental conditions throughout the operating time. 

More precisely, a faulty reading, whose value might be unusually higher or lower than the average, 

would not change the next sampling frequency drastically. Instead, if an abrupt change is detected, 

which means a certain reading numerically increases or decreases quickly, the future sampling 

frequency will be increased gradually based on a consecutive set of obtained data. Equivalently, a 

much higher sampling frequency is the consequence of using fcurr to multiply Y(D) (greater than 1 

but lower than 2) in each iteration for multiple times after comparing the latest acquired data with 

a set of past-period data. As a result, this data-driven scheme allows the energy to be reasonably 

either consumed or conserved, as it is the trend of the sensed data rather than certain unusually 

high or low value data that decides the future sampling frequency. 

 

2.2 Illustrative Simulation 

 

 The performance of the proposed algorithm is assessed by using a set of real-time data provided 

by the National Oceanic and Atmospheric Administration (NOAA) [25]. NOAA uses distributive 

platforms (buoys) to form a network for collecting real-time water-quality data. The data chosen 

for the simulation are collected from a platform called “Jamestown,” where the monitoring 

duration was from 15 December 2016 to 15 March 2017 with a sampling interval of 1 h for a 

sample. To validate the robustness of the DDASA, two distinct parameters, turbidity and DO, are 

selected since their value range differs enormously among various water-related parameters. 
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 In order to evaluate the performance of the scheme for different values of pre-determined 

parameters, the term Normalized Mean Error (NME) is introduced, which indicates the overall 

goodness of fit, and is defined as: 

 

 

 

2.3 Simulation Results 

The simulation results are divided into two parts. First, the proposed DDASA is tested using DO 

and turbidity data separately, followed by the selection of a list of parameters and the 

corresponding performance indicator (i.e., NME). Later, with regard to energy conservation, a 

comparison between the algorithm proposed in the present research and a traditional adaptive 

sampling algorithm is presented. The simulation results demonstrate that the DDASA algorithm is 

not only capable of maintaining a high level for energy-efficient sampling, but also has the ability 

for effectively reconstructing the original signal with much fewer data. 

 

A plot of the original DO data signal is shown in Figure 2.2(a) for later comparison, which consists 

of 2182 sensed samples in total. In interpreting the original signal, it may be inferred that an abrupt 

change in the water quality occurs around the 600th sample, leading to a significant increase of 

the DO content. 
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In the simulation, the initial sampling frequency is set to the same value as the constant frequency 

used for sampling the 2182 data. The window size (i.e., N) is set to 50, while the threshold is a 

variable. Then a linear interpolation between two neighboring measurements is used, to fit the 

reconstructed signal with respect to different threshold values. Hence, the trend of the DO 

parameter is given intuitively. 

 

In Figure 2.2(b)–(d), the simulation results with different threshold values are presented. It is seen 

that as the predetermined threshold increases, fewer sample data are acquired based on the DDASA. 

Combined with the linear interpolation fitting, the trend of the DO content can still be maintained 

at a high level of similarity compared to the original DO signal when t = 0.01, t = 0.015 and t = 

0.02. 
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(a) (b) 

  
(c) (d) 

  
Figure 2.2 (a) Original dissolved oxygen (DO) Data; (b) Sampled DO data with t = 0.01; 

(c) Sampled DO data with t = 0.015; (d) Sampled DO data with t = 0.02. 

 

To provide a more intuitive understanding when adopting different sampling intervals, the 

difference among the sampled DO data is shown in Figure 2.3 correspondingly, which is the 

outcome of a combination of Figure 2.2(a)–(d). 
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Figure 2.3 The difference among DO data for different sampling intervals. 

 

 

The frequency trend for each corresponding threshold is also shown in Figure 2.4. It is believed 

that when the threshold is set to a proper number, (e.g., t = 0.01), the sampling frequency will 

eventually converge or remain at a stable level. However, it is also found that when the threshold 

is set to a value smaller than 0.01, for instance, when t = 0.009, the frequency trend will not 

converge. This happens mainly because the value of D(i) in most iterations is greater than the 

threshold, which results in a constant increase in the sampling frequency. This also means the 

dynamically changed sampling frequency is not sensitive to the data change, which in fact is not a 

desired outcome. Additionally, when t = 0.015 and t = 0.02, compared to the case when t = 0.01, 
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the sampling frequency is more sensitive to the data change, and as a consequence, more energy 

would be conserved since the sampling frequency in each iteration is lower than the initial 

sampling frequency. 

 

 

 

Figure 2.4 Frequency trend with t = 0.009, t = 0.01, t = 0.015and t = 0.02. 

 

In Table 2.1, an investigation of the performance od the algorithm and the predetermined threshold 

values is given. It is noticed that although the value of the predetermined threshold increases evenly, 

the number of samples drops unevenly; however, the NME increases as the number of samples 

decreases. In Figure 2.5, it is clear that some important peaks are missing due to a lack of sampled 
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data, where the threshold equals 0.03 and 0.07. The corresponding NME are 9.99% and 11.70%, 

which is relatively high. Thus, in order to find a suitable value for the threshold, it would be 

necessary to preset a value for the minimum required data quality in terms of NME and, meanwhile, 

the threshold value should not be too small, which ensures that the sampling frequency will 

eventually converge. More details regarding the choice of the threshold value will be given later. 

 

 

Table 2.1. Results with different threshold values for DO data sampling. 

 t = 0.01 t = 0.015 t = 0.02 t = 0.03 t = 0.07 
Number of Samples 1064 548 421 297 146 

Normalized Mean Error (NME) 1.62% 5.52% 8.43% 9.99% 11.70% 
 

 

  

(a) (b) 

Figure 2.5 (a) Sampled DO data with t = 0.03 and t = 0.07; (b) Frequency trend with t = 0.03 and 

t = 0.07. 
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A similar simulation is conducted based on the turbidity data. The results are presented in 

Figure 2.6 with threshold values of 0.110, 0.112 and 0.115. A comprehensive comparison is given 

in Table 2.2. The same linear interpolation scheme is implemented between two neighboring 

measurements to fit the plot. 
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(a) (b) 

  

(c) (d) 

Figure 2.6 (a) Original Turbidity data; (b) Sampled Turbidity data with t = 0.110; (c) Sampled 

Turbidity data with t = 0.112; (d) Sampled Turbidity data with t = 0.115. 
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Table 2.2. Turbidity data sampling results for different threshold values. 

 t = 0.110 t = 0.112 t = 0.115 t = 0.120 t = 0.140 

Number of Samples 1591 422 320 244 172 

NME 1.14% 4.26% 5.33% 5.39% 6.16% 

 

 

It can be shown that when the threshold value increases from 0.110 to 0.112, the number of samples 

drastically drops from 1591 to 422, while an NME of 4.26% is still tolerable when t equals 0.112. 

As t increases from 0.112, the number of samples decreases correspondingly, which is, however, 

not as many as in the case when t increases from 0.110. Thus, it is reasonable to believe that setting 

the threshold value as 0.112 is a suitable choice, while choosing a value of 0.115, 0.120 or 0.140 

for t is also acceptable considering their corresponding NME. Since only 422 or fewer data values 

are sampled with the DDASA, which is less than quarter of the original data values, the energy 

consumed for data acquisition, storage and transmission would be significantly reduced. Thus, the 

lifetime of the battery will be prolonged while maintaining a high level of accuracy within the 

sampled data, compared to the original ones. 

 

A comparison of the algorithm performance is presented in Figures 2.7 and 2.8, and Table 2.4. 

Using the same sequence of DO data, a traditional ASA is implemented as well. A set of parameter 

values are chosen as empirically suggested in paper [12]. Figure 2.7 shows that the reconstructed 
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signal using ASA can still indicate the fluctuation of the DO compared to the original signal in 

Figure 2.2(a). The NME for the results is 5.31% with 637 samples. The performance is similar 

when t = 0.115 for analyzing DO data in the proposed DDASA. However, to achieve a similar 

result, the ASA uses 637 samples in total, which proves to be more energy-consuming in contrast 

to the proposed DDASA, where only 320 samples are needed. Figure 2.8 presents the comparison 

of energy consumption over time for ASA and for different values of predetermined thresholds of 

DDASA. Considering the fact that a more frequent sampling process will correspondingly increase 

the energy consumption for storing and transmitting the data, to simplify the comparison process, 

only the energy consumed for keeping a node active and for data acquisition is considered. 

Moreover, the active time of the node in each case will be equivalent, which means it should be 

equal to the total length of time for a fixed rate sampling process. The specific quantity of energy 

consumption for different sensing activities can be found in [36]. Table 2.3 lists all the detailed 

information concerning the energy usage, which is the average cost for the Waspmote sensor node 

that was used for conducting the present practical experiments [36]. The battery has a capacity of 

66000 mAh with 3.7 V nominal voltage. To simplify the process of performance comparison, we 

compare the proposed DDASA with the ASA in terms of the remaining energy, in which only the 

energy for  

a node to remain active and collect data samples is considered. That is:  

 

where Wremain, Wtotal, Wsample and Wactive stand for the remaining energy, total energy, sampling 

energy and the energy for the node to remain active, respectively, which are expressed in joules. 

                         

                                        Wremain=Wtotal-Wsample-Wactive 

(

(2.5) 
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The sampling interval of the original DO data is 1 hour. The simulation results are presented in 

Figure 2.8. The battery level given in y axis is calculated as Wremain/Wtotal. In Table 2.4, a 

performance comparison is provided. It is seen that the DDASA outperforms the ASA when t = 

0.115 and t = 0.112, with respect to the remaining battery level. 

Table 2.3. Average power and energy consumption for different activities. 

Activity Power (mW) Time (ms) Energy (µJ) 
Transmitting data (16 bytes) 108.9 0.5 54.45 

Receiving data (16 bytes) 59.4 0.5 29.70 
Sampling DO 38 1600 60,800 
Staying active 0.858 N/A * N/A 

Sleeping 0.0129 N/A * N/A 
* The duration of time can be adjusted based on the sampling needs. 

 

 

Figure 2.7 Reconstructed DO signal based on adaptive sampling algorithm (ASA). 

 

To focus on the performance of adaptive sampling algorithms and simplify the process of 

algorithm comparison, it is assumed that there is no data transmission that costs extra energy. Also, 
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the sensor node remains active continuously without any sleeping activity. Then, a performance 

comparison is conducted in terms of the remaining battery level in Figure 2.8. 

 

Figure 2.8 Algorithm performance with respect to the remaining battery level. 

Table 2.4. Performance comparison between ASA and data-driven adaptive sampling 
algorithm (DDASA) using DO data. 

 DDASA (t 
= 0.115) 

DDASA (t 
= 0.112) ASA DDASA (t 

= 0.110) 
Fixed Rate Sampling 

(f = 1/3600 Hz) 
Number of Samples 320 422 637 1591 2182 

NME 5.33% 4.26% 5.31% 1.14% 0 
Remaining Battery Level 86.03% 82.86% 80.72% 75.19% 55.37% 
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2.4 Model Validation 

In the scheme developed in the present work, finding an appropriate value for the threshold plays 

a key role when determining the performance of the algorithm. The value of D in Equation (2.3) 

is highly related to not only the absolute value between the newest data sample and the former one, 

but also the mean value of a set of window-based data. Thus, the function for determining a suitable 

threshold value should follow suit, which is defined as: 

To validate the proposed model, a k-fold cross-validation is conducted based on Equation 

(2.6). To simplify the cross-validation process, a five-fold cross-validation is selected for the total 

number of data. Meanwhile, the entire set of data is divided into five equal sized subsets, four of 

which are utilized as the training sets while the remaining subset functions as the testing set. In 

each cross-validation process, a threshold value is given depending on Equation (2.6), in which Xi 

denotes the sensed data amongst the training set. Afterwards, based on the threshold value, an 

NME is determined by comparing the reconstructed signal against the training set. If each of the 

five subsets is denoted by A, B, C, D and E, separately, the outcome of the cross-validation is 

presented in Table 2.5. 

Table 2.5. Model validation using five-fold cross-validation. 

Training Sets ABCD ABCE ABED ACED BCED 

Testing set E D C B A 

Threshold 0.0102 0.0113 0.0115 0.0120 0.0136 

NME 3.37% 3.40% 3.12% 2.53% 2.25% 
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It is found that through the cross-validation process, the average value of NME is 2.93% while a 

suggested average value of the threshold is 0.01172. This threshold value and its corresponding 

NME also correspond with the results presented in Table 2.1, where a slightly smaller value of t 

results in a smaller NME, while a slightly larger value of t leads to a higher NME. 

 

To demonstrate that the algorithm developed in the present work is widely applicable, a different 

dataset from Intel Berkeley Research lab [37] is utilized. The dataset is comprised of real-time data 

for temperature, humidity, light and voltage measured by Mica2Dot sensor nodes within a WSN 

(see Figure 2.9). In particular, a set of temperature data consisting of 25,000 samples, which were 

collected by Sensor 13 during 28 February 2004 to 20 March 2004, is selected as the original data 

set. Based on the entire data set, a suggested threshold for sampling is derived using Equation (2.6), 

which is 0.0016. The reconstructed signal is shown in Figure 2.10, which has an NME equal to 

0.08%, and 17,957 samples were needed. Since around 7000 samples are deducted by comparing 

with the original data set, it is believed that considerable energy can be saved throughout the 

sampling process. Furthermore, since the accuracy of the reconstructed signal is 99.2% when t 

equals 0.0016, for further saving energy, slightly increasing the value of t and thus reducing the 

sample numbers should also be considered. For instance, when t increases to 0.0020, the 

corresponding NME is 0.29%, while only 11,423 samples are necessary. 
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Figure 2.9 Wireless sensor network (WSN) setup in the Intel Berkeley Research Lab. 
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(a) 

 

Figure 2.10 (a) Original Temperature data from Intel Berkeley Research Lab; (b) Sampled 

Temperature data with t = 0.0016. 

 

The DDASA algorithm of the present work focuses on addressing the energy consumption issues 

on the sensor node level, which is efficient in conserving energy for “energy-hungry” sensor nodes. 

However, saving energy from the aspect of reduced communication would be another avenue for 

proper power management. Such an energy-efficient methodology is presented in Chapter 3. 
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Chapter 3: Dual Prediction Scheme 

 

Saving energy by reducing the node-to-node communication could be equivalently crucial in 

conserving energy, as adopting an adaptive sampling algorithm. They are both done at the sensor 

node level. This chapter develops a relevant communication scheme. 

 

Typically, environmental monitoring is done over a geographic area. Hence, the measurements 

will demonstrate a spatiotemporal correlation, despite the fact that some of them may change in 

an imperceptible manner. In addition, some observations on temperature, humidity, wind, and 

rainfall, and so on are seasonally affected, which means there might be an ascending or descending 

trend starting from a certain time point in a year. In this context the correlation of the measured 

data can be rather obvious. As a result, the data reduction of those environmental measurements 

can be realized and consequently, only a lower extent of communication would be necessary [38]. 

 

An efficient way to carry out data reduction in a WSN is through data prediction. Based on the 

correlation among the measurements, data prediction can facilitate the sensor nodes to provide the 

latest environmental information without necessarily conducting the sensing task. As a result, the 

total degree of communication will correspondingly decrease, which paves the way for further 

energy conservation within a WSN. 

 

In the grand scheme of things, the Least Mean Squares (LMS) filter is a useful tool, which lays the 

foundation for implementing a Dual Prediction Scheme (DPS). The LMS filter itself has been 

broadly used in various applications [39][40]. Due to its low computational complexity and 
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reduced storage requirements, the LMS filter is expected to be beneficial in WSN. Meanwhile, the 

DPS is data-quality based, allowing both the sensor nodes and the gateway (GW) or cluster head 

(CH) to predict the data contemporaneously. Only when the data quality is undesirable, meaning 

that the error between the predicted data and the real sensed data exceeds a pre-defined threshold, 

the sensor nodes will send the sensed data to the GW/CH and consequently will update the 

coefficients of the filter. While the sensor nodes are selectively sending the measurements to the 

GW/CH, further energy savings are realized as there is reduced level of data transmission as a 

result. 

 

Moreover, the sensed signal (i.e., the time series data) in environmental monitoring might have 

linear and nonlinear segments. Although the LMS has an outstanding performance in predicting 

time-series data, the filter itself treats each segment as a piecewise linear function; hence, an 

autoregressive process lays the foundation for the future value prediction. Thus, it is believed that 

a tool for predicting the nonlinear segment will strengthen the outcome of the data prediction. In 

this regard, a Long Short-Term Memory Recurrent Neural Network (LSTM RNN) would be a 

suitable option. 

 

In the present work, a normalized LMS algorithm is utilized. It is such a scheme that is designed 

under the DPS, which allows the desired signal to replace the unsatisfying prediction results. Also, 

considering the nonlinearity of the sensed signal, an LSTM RNN is combined with the normalized 

LMS in order to further compensate for and improve the performance of data prediction. 
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3.1 Problem Formulation and Algorithm Development 

In most environmental monitoring applications, a WSN typically consists of dozens of sensor 

nodes, which are spatially deployed over a geographic area of interest. Based on the geographical 

condition and the monitoring goals, the specific number of nodes needed may vary accordingly. 

However, the structure of the typical WSN is generally categorized into two types: 1) a WSN with 

multiple clusters; 2) a WSN without any clusters. As shown in Figure 3.1(a), in a clustered sensor 

network, a cluster head (CH) plays the role of communicating with its surrounding sensor nodes 

and processing the received data by techniques such as data fusion and data integration. Afterwards, 

the processed data will be directly sent from the CH to the GW, ready to be analysed by the WSN 

host. Alternative simpler case would be a WSN without any CH taking the responsibility of 

gathering data and pushing them forward to the GW. Instead, following a routing protocol (see for 

example, [41], [42], [43]), some sensor nodes within the WSN would directly transmit the sensed 

data to the GW, which makes the entire network assume a flat organizational structure. By means 

of GPRS/3G/Radio communication, the acquired and pre-processed data can be uploaded and later 

analysed at the user end. 
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(a) 
 
 

  
 

(b) 
 

Figure 3.1 (a) A WSN with multiple clusters including CHs; (b) A WSN without CHs. 
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3.2 Dual Prediction Scheme in WSN 

 

Regardless of the structure of the WSN, before reaching a state where the collected data are ready 

to be uploaded, the communication between the GW/CH and a sensor node is inevitably necessary. 

The mechanism of DPS enables both the sensor node and GW to predict the future value 

simultaneously based on the past measurements. In particular, the sensor node constantly compares 

the latest sensed data with the predicted data in each iteration, and only when the error exceeds a 

pre-defined threshold, a transmission is made. With the latest transmitted data, the GW/CH and 

sensor nodes, therefore, are capable of amending and updating the coefficients of the prediction 

model. Consequently, the entire process not only keeps track of the latest environmental changes, 

ensuring that the predicted data are fairly accurate by continuously updating the prediction model, 

it also reduces the total number and duration of data transmissions, which effectively conserves a 

significant amount of energy in long-term environmental monitoring applications. 

 

A specific illustration of implementing the DPS is shown in Figure 3.2. Considering a scenario 

where a sensor node communicates with a CH, an n number of samples x(1), x(2), … , x(n) are 

first collected by a sensor node and later transmitted to the CH. Meanwhile, a prediction model is 

initialized based on those samples. In the period of implementing DPS, both the sensor node and 

the CH constantly predict data, which are denoted as 𝑥. Meanwhile, the sensor node also compares 

the latest predicted data with the latest sampled data in each iteration, and if the difference is 

tolerable, the sampled data will be discarded. On the other hand, if the difference exceeds a pre-

defined threshold error thresholde  (see x(n+3) and 𝑥(n+3)), the sensor node will inform the CH by 

transmitting the sampled data, and the prediction model will be updated bilaterally. 
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The implementation of DPS requires a robust network protocol design, which means each time 

when a transmission is bound to happen, the next receiver (e.g., a sensor node, a CH, or the GW) 

could manage to receive the data. Failing to synchronize the data may result in failure of updating 

the coefficients of the prediction model, making the DPS implementation useless. The algorithm 

proposed in the present work assumes that there is no network failure and all the sensor nodes are 

placed within proper ranges. 

 

 

 

 

 

 

 
Figure 3.2 The process of implementing DPS between a sensor node and the CH. 
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3.3 The LMS Algorithm 

 

The LMS algorithm has been widely used in various environmental applications for time-series 

prediction due to its simplicity and robustness. It manifests itself as an autoregressive process when 

used, which only requires a low computational overhead and memory footprint in applications of 

WSN. Also, compared to some other filters such as the Kalman filter, the LMS algorithm does not 

necessarily need prior knowledge or nature (e.g., probability distribution) of the statistics of the 

environment, which thus efficiently reduces the need for significant training. The structure of the 

LMS algorithm is illustrated in Figure 3.3. 

 

The training process of the LMS filter is done in a manner similar to the Back-Propagation Neural 

Network (BPNN), which constantly compares the predicted outputs with the desired outputs, and 

subsequently updates the weights of the hidden neurons, in each iteration. A detailed description 

of the algorithm is given next. 

 

At any given time, an N-dimensional input signal vector X(n) collected by a sensor node is 

represented as 

                ( ) [ ( 1), ( 2), ( 3),..., ( )]X n x n x n x n x x N= - - - -                                (3.1) 

which comprises N readings from the past measurements. Hence, the output at time n, which is 

also the prediction value, is obtained as 

                                        ( ) ( ) ( )Ty n W n X n=                                                (3.2) 
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where 1 2 3( ) [ ( ), ( ), ( ),..., ( )]NW n w n w n w n w n=  is the weight vector. Typically, W(0) is set to 0 , which could 

be the worst possible initializing condition for the algorithm [44]. 

 

d(n)

X(n)
W(n) +

e(n)y(n)
+

_

 

Figure 3.3 Structure of the LMS algorithm. 

 

 

With the output derived from (3.2), denote d(n) as the desired signal which the filter adapts to. 

Then the error e(n) between the desired signal and the prediction is given by 

 

                                 ( ) ( ) ( )e n d n y n= -                                              (3.3) 

 

Based on the computed error in (3.4), the weights can be updated as 

                              ( 1) ( ) ( ) ( )W n W n X n e nh+ = +                                             (3.4) 
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 The present work utilizes a normalized LMS filter with a fixed step size 1, in which the weight 

coefficients are updated according to: 

 

                              
2

( ) ( )( 1) ( )
( )

X n e nW n W n
X n

+ = +                                                            (3.5) 

 

 

Practically, in environmental monitoring applications, the time-series measurements collected by 

a single node demonstrate the characteristics of temporal correlations. It is safe to say that the 

correlated measurements within a short sampling interval might be numerically similar. Also, 

recalling that a pre-defined threshold has been established in DPS (refer to Chapter 3.2 and Figure 

3.2), the desired output is determined as: 

 

                      ( ) ( ) ( ( ) ) ( ) ( ) ( ( ) )threshold thresholdd n x n e n e OR d n y n e n e= > = £                       (3.6) 

 

where the desired output ( )d n  is equal to the real sensed data ( )x n  while the prediction error is 

greater than the pre-defined error thresholde , otherwise it equals the predicted output ( )y n .  
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3.4 The Long Short-Term Memory Recurrent Neural Network (LSTM RNN) 

Constrained by the complexity of the original signal, the LMS filter may not provide the expected 

accurate prediction. Considering the fact that the signal of the ground-truth data might be 

decomposed as a combination of linear segments and nonlinear segments, it is expected that 

besides the LMS filter, a nonlinear model capturing the nonlinearity of the signal would enhance 

the prediction accuracy. 

 

In such a context, the Neural Networks (NNs) are a convenient tool that have been widely studied 

and utilized in the past decades. The feedforward NNs are capable of providing satisfactory 

performance in capturing the nonlinear relations in given data, and also making predictions about 

them. Unfortunately, there are also shortcomings of feedforward NNs. One of the most challenging 

and obvious disadvantages of feedforward NNs is the lack of memory. That being said, when the 

inputs are time-series related, the forecasts should be somewhat correlated with the data in the past 

periods. While an NN is capable of mapping high-level nonlinear relationship, it treats each input 

time-independently, thus failing to yield a sound prediction. 
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However, the Recurrent Neural Networks (RNNs), compared to the traditional NNs, are capable 

of capturing the dependencies of long-range time-series sequences. That means, while processing 

the time-series sequences, the trained model acquires the correlation within the sequence, and the 

prediction is thereby influenced and determined by a long range of past inputs. Due to this 

superiority, RNNs have been widely utilized in various applications such as speech recognition, 

prescription systems, image processing, and natural language processing. Unfortunately, 

constrained by the inner structure of an RNN, the issue of gradient vanishing/exploding emerges, 

which necessitated the enhanced version LSTM RNN. A detailed description of LSTM is found in 

[45].  

When dealing with time-series sequences, the LSTM normally outperforms RNNs and the Hidden 

Markov Model [25]. By avoiding the gradient vanishing/exploding problems, the LSTM 

 
Figure 3.4 Structure of the LSTM cell. 
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constantly updates the module state by selectively keeping or removing past inputs from a long-

term range. Particularly, this benefits those environmental monitoring applications such as the 

rainfall prediction and water level prediction, where the collected data vary temporally, following 

a seasonal pattern. 

 

In order to keep track of long sequences, the notion of memory cell is used. A memory cell contains 

three gates: input, output and forget. The three gates together control the inputs to flow in and out 

of the memory cell and decide how much information should be carried over from any arbitrary 

time. Figure 3.4 shows the structure of the LSTM cell. 

 

It should be noted that the LSTM uses the cell state to iteratively store the information transferred 

among neurons. Hence, denoting the forget gate, input gate, output gate, and the cell state as ft, it, 

ot and Ct, respectively, the formulas for updating the module and carrying the information forward 

are as follows: 

                      1( [ , ] )t f t t ff W h x bs -= × +
                                          (3.7) 

                      1( [ , ] )t i t t ii W h x bs -= × +                                           (3.8) 

                       1( [ , ] )t o t t oo W h x bs -= × +                                            (3.9) 

                      1tanh( [ , ] )t c t t cC W h x b-= × +                                            (3.10) 

                      1t t t t tC f C i C-= * + *                                            (3.11) 

                      tanh( )t t th o C= *                                            (3.12) 



49 

 

 

where 1th -  is the output vector at the last time step, s  is the sigmoid function, { fW , iW , oW , cW }

Î 2n n´ is the weight matrix, and { fb , ib , ob , cb }Î represent the bias matrix. In addition, (3.10) 

derives a new candidate value tC , indicating by what scale the information needs to be retained 

and subsequently, being added to a new state in (3.11). Meanwhile, (3.9) and (3.12) collaboratively 

determines the output vector th  at the current time step. 

 

3.5 Hybrid DPS Based on LMS and LSTM 

 

Since the LMS is capable of observing the linear features and making corresponding predictions, 

and also since the LSTM encompasses the advantage of making nonlinear predictions, it is 

envisaged that a Hybrid DPS relying on both methods could provide better predictions and further 

reduce the necessary transmission times in a WSN for environmental applications.  

 

According to Equation (3.6), if the error goes beyond the pre-defined value, rather than directly 

transmitting the ground-truth data ( )x n , a beacon signal could be sent from the sensor node to CH, 

informing both sides to use the forecast value from LSTM at the current time step. Compared to a 

normal data packet that is used to update the prediction model, a beacon signal is typically of 

smaller size, which in return consumes lower energy while maintaining a reliable level of accuracy 

of the collected data. However, if both prediction models fail to provide a satisfactory prediction, 

which means the error is still intolerable, a packet containing the ground-truth data will be sent to 
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the CH and the prediction model will be updated bilaterally. Figure 3.5 illustrates the process of 

implementing LSTM with LMS.  

Taking into account the illustration in Figure 3.2, if the difference exceeds a pre-defined 

threshold (again see x(n+3) and 𝑥(n+3)), rather than directly transmitting x(n+3) and updating the 

prediction model, a forecast value th  derived by LSTM at the current time step could be utilized as 

a substitute. If the error is acceptable at this time, a beacon signal consisting of a small packet is 

sent from the sensor node, informing that both sides should take th  as the valid prediction value. 

However, if the difference is intolerable between x(n+6) and 𝑥(n+6) and even the forecast value 

derived by LSTM at the corresponding time step could not yield a tolerable difference, then it 

becomes necessary to transmit the ground-truth value from the sensor node side and update the 

prediction model bilaterally. A pseudo code for implementing the Hybrid DPS is shown in 

Algorithm 3.1. 
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Algorithm 3.1. A Hybrid DPS Based on LMS and LSTM 

Collect N consecutive samples as initial inputs:
, feed the inputs to both LMS and LSTM 

for model training 
1. for each time step  do 
2.     measure the ground-truth sample  
3.     estimate the prediction value by  
4.     estimate the prediction error by  
5.     if   do 

6.             update  
7.             update  

8.     else do 

9.              
10.     if   do 
11.             update  
12.             update  

13.     else do 
14.     transmit the ground-truth sample  to CH 
15.             update  
16.             update  

17. end 
  
  

 
Figure 3.5 Hybrid DPS indicating when the model needs updating. 
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3.6 Simulation Study 

 

3.6.1 Data Selection 

 

For the computer simulation that is presented in this section, the data sets provided by the Intel 

Berkeley Research Lab are chosen from their website at db.csail.mit.edu/labdata/labdata.html [37]. 

There were 54 sensors in total deployed in their lab, successively collecting environmental data 

from February 28th to April 5th 2014. Various types of data including the humidity, temperature, 

light, and voltage values, sampled every 31 seconds, are available from this site. Researchers have 

widely depended on these data sets to validate their work. In the present work, the temperature 

data from Node 13 has been randomly selected as the data set. After removing some abnormal data 

and using interpolation to replace them, there are 25000 data samples in total in the used data set. 

 

3.6.2 Experimental Setup and Parameter Determination 

 

There is no specific rule to exactly determine the number of hidden layers and neurons in an NN, 

yet empirically-derived rules of thumb exist. Also, common experience could be followed for this 

purpose. Typically, two hidden layers are sufficient to handle a practical application since one 

hidden layer is adequate to represent any nonlinear function. A number greater than two may lead 

to over-training and also will unnecessarily cause the training process to be computationally 

expensive. Additionally, a rule of thumb indicates that the number of neurons in the hidden layer 

should be no more than the number of inputs but greater than the number of outputs. In the present 

simulation, the entire data set is divided into a training set with 21332 samples, a validation set 
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with 1123 samples, and a testing set with 2545 samples. The prediction is one-step ahead and 

carried out on a sliding-window basis. The used window size is 50, which means, each time, a 

vector containing 50 individual samples is fed into the network for predicting the next value. While 

the new prediction is appended at the very end of the vector, the oldest one will be removed. In 

this manner, repeatedly, the new vector is used for the next round of prediction. After many rounds 

of trial, the two hidden layer network structure provided a superior performance than with just one 

layer. However, in order to choose the most appropriate number of neurons in the first layer and 

the second hidden layer, the MSE and Mean Absolute Error (MAE) are utilized to measure the 

accuracy of the proposed algorithm on the test samples. The MSE and MAE are defined as follows: 

                                 
2

1

1 ˆ( )
n

i i
i

MSE x x
n =

= -å
                                                  (3.13) 

                                 1

1 ˆ
n

i i
i

MAE x x
n =

= -å
                                                  (3.14) 

where ix  denotes the ground-truth value in the test data set and ˆix  denotes the predicted value. 

Table 3.1 lists the overall performance when different number of neurons is chosen for the first 

layer. Each value represents the average value obtained after 5 rounds of trial. By comparing the 

average MSE and MAE when the number of neurons in the second layer vary, it is found that when 

there are 50 neurons in the first layer, the average MSE and MAE reach their minimum values. 

Then, on fixing the number of neurons in first layer at 50, Table 3.2 presents the corresponding 

performance after 5 rounds of trial when different number of neurons are used in the second layer. 
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TABLE 3.1 
THE NUMBER OF NEURONS IN THE 1ST LAYER AND THE CORRESPONDING ERROR. 

# of Neurons 

in 2nd layer 
# of Neurons 

in 1st  layer 
50 45 40 35 30 25 20 15 10 5 

50 
MSE 0.1723 0.1301 0.1447 0.1299 0.1997 0.1422 0.183 0.2151 0.2104 0.1698 

MAE 0.0516 0.0352 0.0512 0.0449 0.0660 0.0498 0.0537 0.0727 0.0679 0.0538 

40 
MSE 0.1510 0.1584 0.1631 0.2118 0.1449 0.1985 0.1625 0.1617 0.1449 0.1201 

MAE 0.0449 0.0413 0.0444 0.0664 0.0379 0.0601 0.0507 0.0451 0.0426 0.0364 

30 
MSE 0.1430 0.1644 0.2005 0.1745 0.1303 0.2036 0.1842 0.1270 0.1513 0.1704 

MAE 0.0376 0.0443 0.0563 0.0633 0.0356 0.0633 0.0572 0.0427 0.0418 0.0511 

20 
MSE 0.1677 0.2183 0.1274 0.1484 0.1851 0.1230 0.0947 0.1565 0.1534 0.1870 

MAE 0.0542 0.0666 0.0380 0.0411 0.0554 0.0334 0.0284 0.0491 0.0457 0.0654 

10 
MSE 0.1278 0.1533 0.1566 0.2199 0.1377 0.1843 0.1425 0.1408 0.1239 0.1923 

MAE 0.0402 0.0477 0.0648 0.0711 0.0432 0.0534 0.0478 0.0531 0.0410 0.0600 

Average 
MSE 0.1524 0.1649 0.1585 0.1769 0.1596 0.1703 0.1535 0.1602 0.1568 0.1679 

MAE 0.1963 0.1970 0.2027 0.2299 0.2035 0.2173 0.1996 0.2203 0.2063 0.2187 
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TABLE 3.2 
THE NUMBER OF NEURONS IN THE 2ND LAYER AND THE CORRESPONDING ERROR. 

# of Neurons 
50 45 40 35 30 25 20 15 10 5 

Round 1 

MSE 0.0542 0.0590 0.0245 0.0318 0.0328 0.0256 0.1002 0.0328 0.0329 0.1204 

MAE 0.1936 0.1772 0.0892 0.1274 0.1255 0.0930 0.2757 0.1129 0.1168 0.2208 

Round 2 

MSE 0.0339 0.0275 0.0292 0.0372 0.0320 0.0553 0.0727 0.0309 0.0640 0.0421 

MAE 0.1332 0.0930 0.1026 0.1302 0.1307 0.1793 0.2140 0.1191 0.1850 0.1444 

Round 3 

MSE 0.0470 0.0457 0.0457 0.0581 0.0312 0.0443 0.0462 0.0393 0.0307 0.0339 

MAE 0.1447 0.1680 0.1680 0.1941 0.1207 0.1647 0.1520 0.1215 0.0948 0.1154 

Round 4 

MSE 0.0826 0.0554 0.0554 0.0340 0.0419 0.0890 0.0273 0.0302 0.0289 0.0696 

MAE 0.2577 0.1987 0.1987 0.1274 0.1629 0.2028 0.1016 0.1092 0.1106 0.1727 

Round 5 

MSE 0.0404 0.0653 0.0653 0.0310 0.0502 0.0727 0.0244 0.0356 0.0446 0.0362 

MAE 0.1326 0.1986 0.1986 0.1015 0.1754 0.2023 0.0952 0.1233 0.1317 0.1099 

Average 

MSE 0.0516 0.0427 0.0449 0.0384 0.0376 0.0574 0.0542 0.0338 0.0402 0.0604 

MAE 0.1723 0.1453 0.1514 0.1361 0.1430 0.1684 0.1677 0.1172 0.1278 0.1526 
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It is observed that when the number of neurons equals 15, both MSE and MAE reach their lowest 

values. As a result, the LSTM designed for implementing the developed algorithm is comprised 

of 2 hidden layers with 50 neurons in the first hidden layer and 15 neurons in the second layer. 

The number of inputs is 50 and the number of outputs is 1. In addition, the dropout probability is 

set at 0.2. To avoid over-fitting (over-training), 50-epochs of training is conducted to determine 

the loss on the training data set and the validation set. Results are shown in Figure 3.6.  

 

Clearly, the validation loss continues to drop significantly until approximately the 9th epoch, after 

which the validation loss starts to fluctuate and eventually stabilizes at the level that is nearly the 

same as the level at the 9th epoch. So, it can be inferred that the model on the test data set starts to 

over-fit after the 9th epoch. Hence, 9 epochs are used for training the model. 

 
Figure 3.6 Model loss in 50 epochs of training. 
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In comparison with the LSTM, the training process of the LMS is relatively simple. Since a large 

number of samples is not needed for the training process, only 50 samples are taken for 

initialization. Also, the system input order is set at 5, which means in each iteration, 5 individual 

samples are fed into the filter. The pre-defined threshold is set at 0.2. It is suggested that the pre-

defined threshold should vary depending on the specific characteristic of the parameter that is to 

be determined. 

 

The simulation experiments using the developed algorithms are carried out in a PC with a 2.60 

GHz Intel Xeon E5-2630 v2 CPU, 128GB RAM. The MATLAB R2017b and Python 3.6 with 

Keras using Tensorflow backend are the platforms that were used to conduct the simulation. 

 

3.7 Simulation Results 

 

With the pre-defined error set at 0.2, Figure 3.7 shows the simulation results for the estimated data, 

and compares with those for the original data, which consist of 2545 samples.  

 

To further examine the performance of the proposed algorithm, Table 3.3 lists all the simulation 

results in terms of the prediction accuracy when the pre-defined error ranges from 0.1 to 0.6. Again, 

the MSE and MAE are utilized for measuring the accuracy. 
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TABLE 3.3 
THE PREDICTION ACCURACY FOR DIFFERENT PRE-DEFINED ERROR VALUES. 

 

Pre-defined error 0.1 0.2 0.3 0.4 0.5 0.6 

MSE 0.0015 0.0090 0.0220 0.0395 0.0549 0.0750 

MAE 0.0236 0.0686 0.1163 0.1605 0.1927 0.2251 

 

 
Figure 3.7 Estimated data compared to the original data when =0.2; 
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Depending on the difference in the pre-defined error values, the performance of the prediction 

varies. It should be noted that the selected pre-defined error determines the performance of the 

proposed algorithm. However, in practical applications, the pre-defined error is essentially a trade-

off between the prediction accuracy and the energy consumption. Intuitively, a higher accuracy 

means a more frequent communication, which results in an increase of energy consumption. 

However, in terms of different data sets, there should be a general way of deriving the pre-defined 

error. Given an input denoted as Xi, the average, maximum and minimum values of this entire data 

set is identified as AVG(Xi), MAX(Xi), and MIN(Xi), respectively. The pre-defined error ethreshold is 

hence expressed as 

 

      { }( ) ( ) %, ( ) ( ) %threshold i i i ie MIN MAX X AVG X MIN X AVG Xh h= - ´ - ´              (3.15) 

 

where h  is a user-defined parameter that indicates to what degree the error could be tolerated. In 

our case, the ethreshold equals 0.2 when %h  is set as 5%. In practical applications, it is suggested 

that the pre-defined threshold could be slightly adjusted either in favor of a higher prediction 

accuracy or energy conservation. 

 

It is then believed that when the two time-series methods are combined together, the prediction 

accuracy is further improved when a proper value for the pre-defined error is selected. In particular, 

from Table 3.3 it is observed that when the pre-defined error is set to a number equal to or smaller 

than 0.3, both MSE and MAE are smaller than the prediction results obtained by LSTM alone. 

Also, as the pre-defined error increases, which means a relatively larger error would be tolerable, 

the proposed algorithm itself could smoothly handle the prediction process and meet the accuracy 
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requirements, and hence a fewer number of transmission would be needed. Table 3.4 lists all the 

energy consumption details for data transmission and sampling, which are measured in terms of 

the data size. The energy consumption Etrans for transmitting l-bit data through a distance d is 

defined as [46]: 

                        
2

4

,

,
elec fs l

trans
elec amp l

l E l E d d d
E

l E l E d d d

ì ´ + ´ ´ £ï= í
´ + ´ ´ >ïî

                               (3.16) 

where Efs is the energy consumed based on a free space model when the transmitting distance is 

within the distance limit dl while Eamp stands for the energy consumed by an amplifier when the 

transmitting target is located outside of the distance limit dl. 

 

Table 3.4 Energy consumption details for data transmission and sampling. 

 

It is clear that the energy consumed for data transmission is significantly larger than that consumed 

for sampling data in terms of the data size. Hence, to analyze the conserved energy by achieving a 

reduced transmission, the total number of transmissions is measured under different schemes. 

 

 

 

Parameter Value 

Basic energy consumed for transmission (Eelec) 50 nJ/bit 

Energy consumed based on a free space model  (Efs) 10 pJ/(bit m2) 

Energy consumed by an amplifier (Eamp) 0.0013 pJ/(bit m4) 

Energy consumed by sampling data (Es) 0.5 nJ/(bit signal) 
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Figure 3.8 shows the necessary number of transmissions containing the data packets for updating 

the model and the times of sending beacon signals. In addition, as a comparison, the number of 

necessary transmissions while only either the LMS and the LSTM is utilized is provided. The blue 

bar shows the times of necessary transmission while solely LMS is used; the red bar indicates the 

times of necessary transmission while solely LSTM is utilized; the yellow bar represents for the 

number of necessary transmissions and the purple bar shows the times of sending beacon signals 

while using the developed Hybrid DPS. 

 

 

 
Figure 3.8 Number of transmissions for different pre-defined error values. 
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It was demonstrated that the Hybrid DPS could reduce the number of network transmissions 

effectively. Compared to the case where only the LMS is used, the beacon signal, playing the role 

of a substitution, takes a reasonable amount of total transmissions as the pre-defined error increases. 

Beacon signals are also called advertising packets, which consist of small packets of data. However, 

the specific number of advertising packets should be based on the communication standard. In this 

manner, the energy consumed in network communication could be further conserved, while 

guaranteeing the accuracy of the collected data. For example, without a DPS being applied, there 

might be 2545 transmissions for sending all the measurements. However, when the Hybrid DPS 

is adopted, and thresholde  is 0.2, less than one-third of the 2545 transmissions are needed plus the times 

of sending the beacon signals. Though it is known that the normal packet size depends on the 

specific application as well as the protocol, considering the fact that the beacon signals are the 

advertising packets, which are essentially smaller than the normal signals, the total energy 

consumption could still be reduced by more than a half. According to [27], for the ZigBee protocol, 

which is built based on the IEEE 802.15.14 standard, advertising packet is theoretically at least 

half the size (which is much smaller in reality) of a normal signal that contains the data payload. 

In that sense, the equation for computing the total packets needed to be sent is given by: 
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where TP  denotes the total packets, NP  denotes the packets of normal signals that contain the 

sensed data, BP  represents the packets of beacon signals, and a  is the ratio of these two. Given 

that a  is at least equal to 2, when thresholde  is equal to 0.2, at least 62.29% of the total energy for 

data transmission could be saved. In the meantime, the MAE is only 0.0687, which makes the 
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prediction accuracy approximately 93% with respect to the original data. To further understand 

the performance of the proposed algorithm in terms of energy conservation, Figure 3.9 offers the 

comparison of energy expenditure based on Equation (3.17) and Figure 3.9. The total number of 

data packets, which is TP  that is referred to Equation (3.17), is used as a measurement. The curves 

show that the Hybrid DPS (LMS+LSTM) outperforms the two algorithms when each of them is 

utilized solel. It should be noted that in practical applications, the value of a  could be greater 

than 2, which means the Hybrid DPS might have an even better performance than that indicated 

in the figure. Moreover, there exists a trade-off between the prediction accuracy and the energy 

consumption. Table 3.5 presents the maximum absolute prediction error among the prediction 

results and Figure 3.10 also indicates the relationship among the threshold, accuracy and energy 

consumption. It is evident that the pre-defined threshold determines the accuracy and the level of 

energy conservation, so it could be adjustable depending on the specific applications and the 

anticipated accuracy as well as the remaining network energy. 

 

 

 

 

TABLE 3.5 
MAXIMUM ABSOLUTE PREDICTION ERROR (IN ° CELSIUS) FOR  

DIFFERENT PRE-DEFINED ERROR VALUES. 
 

Pre-defined error 0.1 0.2 0.3 0.4 0.5 0.6 

Hybrid DPS 0.0998 0.1996 0.2995 0.3996 0.4994 0.5985 

LMS only 0.0999 0.1997 0.2995 0.3997 0.4994 0.5993 

LSTM only 0.0999 0.1998 0.2999 0.3987 0.4999 0.5941 
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Figure 3.10 Trade-off between accuracy and energy consumption for different threshold values. 
 

 

 

 
 

Figure 3.9 Data packets sent in terms of different pre-defined error values. 
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Noting that a reduced communication level would help save energy in the WSN, selecting a proper 

number of sensor nodes could also be important in the environmental monitoring applications. 

Particularly, it is vital when it comes to covering the entire monitored area with the least allowable 

number of sensor nodes. Chapter 4 presents a methodology for estimating a proper number of 

sensor nodes. 
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Chapter 4: Optimal Estimation of Sensor Nodes 

 

The selection of the number of deployed sensor nodes in the region of interest (ROI) is a nontrivial 

problem in environmental monitoring applications where a WSN is used. Particularly, a large 

number of sensor nodes indicates a heavier overhead within the network and consequently, more 

energy will be consumed in the tasks of sensing, communication and possible sensor node 

relocation. However, if the number of sensor nodes is not sufficiently large, some key areas within 

the ROI may not be fully or properly covered and thus some key information might not be collected. 

To decide an optimal number of sensor nodes, the notion of a sensing model has to be introduced. 

This is done next 

 

4.1 Sensing Models  

Given that the ROI is considered in a two dimensional plane in the considered application (i.e., 

water quality monitoring), two types of sensing models are widely utilized for WSN applications. 

They are the binary disk sensing model and the probabilistic sensing model. Within any ROI, 

denote a random sensor node as ni, a random point as p, and the probability of detecting a target at 

point p as ρ(ni,p). Then the  binary disk sensing model is formulated as: 

                                       ( )
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where d(ni,p) represents the Euclidean distance between the sensor node and the point p, while Rs 

stands for the sensing radius of the sensor node ni. It is quite clear that if a random point falls 

outside the sensing radius, it would not be detected by the sensor node. Otherwise, detection of 
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the point would be guaranteed. However, for the probabilistic model, the detection of an event 

follows a probabilistic distribution pattern, which is defined as: 
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where α and β are the parameters determined by the inherent characteristics of the sensor node, 

which also indicate the difference in sensing capability for different types of sensor nodes. Rc 

represents an alternative radius, within which the probability of detecting an event is 1. Figure 4.1 

shows two types of sensing probabilities in the sensing models. 

 

Rs

ni

ρ{ni,p | Rs>≥ d(ni,p)}=1  

Rs

Rc

ρ{ni,p | Rs>d(ni,p)>Rc}=e  -αd(ni,p)β

ρ{ni,p | Rc≥ d(ni,p)}=1  

ni

 

(a)                                                                 (b) 

Figure 4.1  (a) Binary sensing disk model; (b) Probabilistic sensing model 

 

This thesis considers the binary sensing disk model for further study. Regarding each sensor node 

in the ROI, with only a single sensing radius that contributes to the total sensing coverage, the 
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coverage problem hence becomes straightforward. A probabilistic sensing model for the coverage 

problem will be considered in the future work. 

 

4.2 Number of Sensor Nodes 

Deciding an optimal number of sensor nodes that meets the monitoring requirements is also critical 

from the perspective of the data sampling efficiency as well as the energy consumption. However, 

determining an optimal number of sensor nodes in the ROI is NP-hard [47]. Hence a few heuristic 

methodologies have been proposed to find an optimal number for monitoring applications in which 

the WSN/MWSN are utilized. However, most of them rely on a probabilistic model and a prior 

sampling knowledge of the ROI is also required. As the research presented in [48], with a prior 

sampling knowledge of the ROI, the sensor nodes are most likely placed in “information rich” 

locations, where the sensor node can collect massive amounts of useful data or be able to detect 

specific events at high probability in the ROI. Likewise, in [49], the sensor nodes are dynamically 

placed one after the other based on the probability of being able to communicate with other sensor 

nodes. The placement stops when the ROI is mostly covered by the sensor nodes while the 

connectivity of the sensor nodes is guaranteed. However, for an unknown environment where no 

prior knowledge is available, a general way of estimating a proper number of sensor nodes would 

be needed. Particularly, for a coverage problem where the energy consumption is also a concern, 

there is no doubt that a large number of sensor nodes could cover the entire monitoring area 

sufficiently, but a heavier network overload is expected as a consequence. 

Hence, it is desired to estimate a suitable minimum number of sensor nodes that are approximately 

adequate to cover most of the monitored area and as a result, excessive  energy consumption can 
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be avoided in view of the absence of massive node relocation and communication. To fulfill this 

requirement, a solution is provided next, with an example. 

 

D1

D2

Rs

 

Figure 4.2 First step of deploying sensor nodes to cover most space of a rectangular area.  

 

Despite the fact that the minimum disk covering problem is NP-complete [50], the practical 

monitoring applications are different. For instance, given an ROI whose length D1 is equal to 8 

times the sensing radius Rs and width D2 is 6 times the sensing radius, the first step of covering 

most of the ROI with least number of sensor nodes would be to deploy 12 sensor nodes without 

overlap, as shown in Figure 4.2.  From Figure 4.3, it is noticed that there are still quite a few areas 

that are not covered, such as S1, S2 and S3, which calls for more sensor nodes. 
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D1

D2

Rs

S3 S2

S1

 

Figure 4.3  Areas not covered by sensor nodes after the first round of deployment. 

 

Clearly, the total area of S1 is exactly twice that of S2, while S2 is twice that of S3. It is worth 

mentioning that in practical monitoring applications, the shape of the monitored area could 

potentially be irregular, which indicates that not all the points inside the area could be covered. 

Hence, if the entire area is partitioned into a number of sub-areas, and due to the possible 

irregularity of the area, it is believed that a suitable number for the sensor nodes can be derived by 

partitioning the entire area into sub-areas and subsequently recombining them as a whole. That 

being said, if one sensor node is capable of covering S1, for every other two areas that are of the 

same size as S2, one more sensor is needed. The same applies for every other four areas like S3. 

Hence, for a monitored area as shown in Figure 4.3, besides the initially deployed sensor nodes, 

12 more sensor nodes are required to basically cover the entire monitored area. To generalize, in 

order to approximately cover the entire ROI, a reasonable number of sensor nodes may be 

expressed as: 
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To justify Equation (4.3), it can also be written as 2
max 1 22sN R D Dpp× = × . Then, the total sensing 

coverage of Nmax sensor nodes, equals 1 22
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be rewritten, more accurately, as: 
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With the developed methodology for selecting a proper number for nodes, Chapter 5 demonstrates 

an energy-efficient scheme for sensor node relocation, which aims to save as much energy as 

possible with least node movement, in order to maximize the total sensing coverage. 
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Chapter 5: MWSN Lifetime and Maximum Sensing Coverage 

 

A large geographical area could possibly be monitored by using a sufficiently large number of 

sensor nodes in order to collect all the information within the environment. However, extra energy 

will also be consumed due to the increased number of sensor nodes. Chapter 4 provides a solution 

for covering the monitored area effectively while using a fewer number of sensor nodes. 

Continuing in this direction, the present chapter aims to maximize the total sensing coverage with 

an estimated number of sensor nodes. A sensor node relocation scheme associated with this 

approach is presented in this Chapter. 

 

Considering various types of monitoring applications, the sensor nodes might have to be located 

in hazardous environments that may even be inaccessible. Hence, efficiently making use of the 

limited energy and prolonging the lifetime of the entire sensor network might be a major concern 

that needs to be properly addressed. In this regard, careful node placement could be an effective 

solution for energy conservation and allocation. Incorporating proper node placement is also 

advantageous in situations where the sensor nodes are mobile, as in the present application of water 

quality monitoring. This means the mobile sensor nodes could be relocated with respect to the 

dynamic environmental changes or the remaining energy of the nodes. 

 

The main incentives for studying the sensor node placement in mobile sensor networks can be 

summarized as follows: 1) maximizing the lifespan of the sensor network; 2) ensuring maximum 

coverage of the region of interest (ROI); 3) maximizing the connectivity among sensor nodes; 4) 

minimizing the energy wastage. Also, considering the fact that the sensor nodes within the ROI 
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might be faulty or malfunctioning, especially when a large number of sensor nodes are deployed 

in a hazardous situation, the distribution of sensor nodes will become uneven and consequently, 

the energy of some sensor nodes might deplete faster than that of others. It is then desirable to 

relocate the sensor nodes and reorganize the structure of the entire sensor network, which will help 

achieve a fair balance and prolong the network life. 

 

 

 

5.1 Assumptions 

Pertinent assumptions are made now, before delving further into the proposed algorithm. 

 

Assumption 1:  Every sensor node knows the location of every other sensor node through some 

technique such as a Global Positioning System (GPS) [51]. 

 

Assumption 2:  Each sensor node has a disk of sensing range Rs and a communication range Rc, 

which are the same for an individual node. 

 

Assumption 3:  There are no obstacles in the ROI that could obstruct the node placement. This 

assumption is made for the sake of simplicity, but in future work, more complicated scenario that 

include static and dynamic obstacles would be incorporated. 
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5.2 Hole detection strategy based on Voronoi diagram 

The VD is a widely used tool in computer graphics. It is capable of partitioning the entire ROI by 

generating convex polygons within the field. For each convex polygon ci, with only one node ni 

residing inside the polygon, their spatial collaborative relationship can be defined as: 

                              { }2 : ( , ) ( , ), {1, , },i i jc x d x n d x n j N i j= Î £ Î ¹  (            1             (5.1)) 

where nj denotes the neighbor node in an adjacent polygon, and d(x,ni) represents the Euclidean 

distance between the sensor node ni and any random point x within the polygon ci. This entails that 

any given point is closer to the node in the same polygon than to those in other polygons. In 

addition, this thesis considers a binary sensing model [52][53][54] under the condition that Rc≥2Rs, 

which is a necessity for maintaining full sensing coverage and connectivity in any given sensing 

field [55]. With a sensing range Rs, each node ni is able to either fully or partially cover its 

corresponding polygon, depending on the shape of the partitioned polygon and the initial location 

of the node. Hence, the detection and coverage problem of “holes” in the entire ROI could be 

converted into studying the spatial correlations of the polygon ci and the sensor nodes ni. As 

illustrated in Figure 5.1, each node in the ROI takes its own responsibility to monitor its 

surrounding area. However, since there might be an overlapping area as well as an uncovered area 

in a convex polygon, the node may have to be relocated for better coverage and improved usage 

efficiency, taking account of the node-to-node connectivity, and also the moving distance. 
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Figure 5.1 The partitioned Voronoi polygons with nodes residing inside. 

 

As for the hole detection strategy, for each single polygon, the corresponding node ni should check 

its distance to every vertex Vk, that is: 

                                 ( , ) ( , ) ( , )
i ki k n vd n v C x y C x y= -  (2                               )(5.2) 

where d(ni,vk) represents the Euclidean distance between the node ni and the vertex Vk while Cni 

and CVk are their corresponding coordinates. Then, for every node ni, the corresponding polygon 

is assumed to be not fully covered iff: 

                             { }2( , ) , 1,..., , ( , )i k i k sd n v k N d n v R" Î Î $ <      (         3)     (5.3) 

When one or more holes are detected, due to the characteristics of the convex polygon, it is 

reasonable that the node should move towards the vertex that is farthest to the node’s current 

location, which could achieve an enhanced coverage rate in the ROI. The farthest distance for 

sensor ni is given by: 

                             ( ){ } }( ) , { ,, 1, max i kd i ma v kx d n NÎ=                     (4 )(5.4) 
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5.3 Hole Healing Strategy 

According to the work reported in [56], the optimal position for a node should be 

somewhere between its initial location and the geometric centroid (GC) of the Voronoi polygon 

(VP). That means while aiming to move and heal the detected hole within the polygon, there should 

be a constraint for the node’s movement. However, it should be noted that both the energy 

consumption for movement and the node-to-node connectivity should be taken into consideration 

in this scheme. Hence, a local safe area is built to ensure the connectivity while the node is moving. 

As illustrated in Figure 5.2, when the node n1 is moving towards GC, there should be at least one 

node whose distance to node n1 is not farther than Rc. In this manner, the restricted points f1 and 

f2 would be the last positions where n1 is able to communicate with n3 and n2, respectively. 

Despite the fact that locating at the point GC might possibly ensure a better coverage rate, the node 

n1 still has to stop at point f2 to maintain the connectivity within the entire network. 
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Figure 5.2 Node’s movement for healing the detected hole. 

 

Compared to the energy consumed for conducting sensing and communication tasks, the energy 

used for node movement is much more significant. Thus, as a trade-off for a better coverage rate, 

it is nontrivial to carefully decide when to stop the moving node for an optimal rearrangement. It 

should be pointed out that, no matter where the GC and restricted points lie in a VP, the coverage 

rate might stay the same or even decrease as the node moves. As can be seen in Figure 5.3, 

compared to the original location of n1, the same node moving towards vertex V4 would provide a 

superior coverage rate at point n1’ than that at points n1 and n1’’. Therefore, a threshold should be 

set to decide when to stop the node. In this thesis, it is assumed that when the coverage rate no 

longer increases more than 5% in the given iteration, the node stops moving in its corresponding 

polygon. 
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Figure 5.3 Changes of the covered area when node n1 moves. 

 

 

 

To implement the proposed scheme for the process of hole detection and healing, a pseudo code 

is provided as follows: 
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Algorithm 5.1 
1. Randomly deploy N sensors in the ROI 
2. Inputs: coordinates of all the deployed nodes ni 
3. Build up VD relying on ni(x,y) in the ROI 
4. repeat 
5.   for each VP P(i), while i≤N do 

6.      calculate: 2 2( , ) ( ) ( )
i k i ki k n v n vd n v x x y y= - + -  

7.      calculate: dmax(i)=max{d(ni,vk)} // determine the farthest vertex 
8.      calculate GC based on the coordinate of each vertex 
9.      calculate the movement direction based on GC and the farthest vertex 
10.      based on the communication range and the position of neighbor nodes, calculate the 

approachable movement area and restricted points in terms of the movement direction 
11.      calculate dmax(ni,fj)=max{d(ni,fj)}// determine the farthest restricted point 
12.      if d(ni,GC)>dmax(ni,fj) // distinguish the spatial relationship between GC and the farthest 

restricted point 
13.          while dmove(ni)<dmax(ni,fj) 
14.              move node ni towards fj 
15.              calculate the movement distance as dmove(ni) 
16.              if Rcov<5% then break // coverage increasing rate check 
17.              end if 
18.          end while 
19.      else // the else case entails d(ni,GC)<dmax(ni,fj) 

while dmove(ni)< d(ni,GC) 
20.              move node ni towards GC 
21.              calculate the movement distance as dmove(ni) 
22.              if Rcov<5% then break // coverage increasing rate check 
23.              end if 
24.          end while 
25.      end if 
26.    if P(i)!=NULL then  i++, check next polygon P(i) 
27.   end for 
28. Outputs: coordinates of all the deployed nodes after movement 
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5.4 Illustrative Experiment 

To demonstrate and verify the efficiency of the proposed scheme for hole detection and healing, 

an illustrative simulation experiment is presented in this section. Specifically, 30 sensor nodes are 

chosen to be randomly deployed in a 50x50m2 ROI with the Rs=6m and Rc=12m. The node moves 

through 0.5m in each iteration. Due to the stopping criterion that has been set up beforehand, no 

perturbation of the nodes will occur, which saves extra energy. 

 

Figure 5.4(a) presents the initial locations of the nodes that are randomly deployed in the ROI 

while Figure 5.4(b) shows the locations of nodes after using the proposed scheme for repositioning. 

It is clear that the sensing coverage rate has been significantly increased, notably from 68.9% to 

92.6%. Figure 5.5 also shows the guaranteed connectivity after the node repositioning. Clearly, all 

the sensor nodes within this ROI are connected to at least one surrounding node, which makes sure 

that all the collected data from each single node could be properly transmitted and uploaded 

through some routing technique [57]-[61]. 

 

 

 

 

 

 



81 

 

 

 

Moving the nodes also costs significant energy compared to what is consumed for the tasks of data 

sensing and transmission [46][58]. To compare the proposed algorithm with the existing research 

that handles the same problem of sensing coverage optimization with regard to the energy 

consumption, the realistic parameters with values [59] involved in the relocation process are listed 

in Table 5.1.  

 

 
(a)                                                                               (b) 

Figure 5.4 (a) Randomly deployed nodes before repositioning; (b) Deployed nodes after repositioning. 
  



82 

 

Figure 5.5 Guaranteed node-to-node connectivity after repositioning. 

Table 5.1 Realistic parameters with values. 

Parameter Value 

Sensing range (Rs) 6 m 

Communication range (Rc) 12 m 

Data packet size 1000 bytes 

Beacon packet size 45 bytes 

Energy for node movement (Em) 

Energy for data processing (Ep) 

2 J/m 

5 nJ/(bit signal) 

Transmitter electronics (Et) 50 nJ/(bit signal) 

Receiver electronics (Er) 50 nJ/(bit signal) 

 

Undoubtedly, data processing and computing will consume some energy. Also, data transmission 

among sensor nodes for updating the location information is necessary, which also consumes some 

energy. However, compared to the energy consumed for the above activities, the energy utilized 

for the  movement of the nodes is so significant that the other types of energy consumption could 

be neglected. Likewise, as discussed in [58], moving a sensor node one meter consumes 

approximately a similar amount of energy for transmitting 300 messages. Hence, the present thesis 

mainly takes the travelled distance as the metric to indicate the efficiency of the proposed 

algorithm. Consequently, the total travelled distance is adopted to represent the efficiency of the 

developed algorithm compared to some existing algorithms.  
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Figure 5.6 depicts the total distance that all the nodes have travelled during the repositioning 

process. 

 

To achieve the same sensing coverage rate, which is set at 90% in the present simulation, different 

numbers of nodes have been adopted for 10 rounds of simulation. The larger the total distance 

needed for achieving the same sensing coverage rate, the more energy is correspondingly 

consumed. As can be observed from the figure, the developed algorithm GCVD outperforms two 

traditional methods VFA in [27] and VOR in [29] concerning the energy consumption. It should 

be noted that when the number of nodes increases, the location adjustment to each node is still 

needed under the schemes of VFA and VOR, which consequently will cost extra energy for the 

node perturbation. However, the developed scheme GCVD in the present work does not 

necessarily have to move a node if its corresponding polygon has been well covered. Thus, 

especially when a larger number of nodes are deployed in the ROI, the percentage of nodes that 

need repositioning would be relatively lower in the developed scheme than for VFA and VOR. 
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Figure 5.6 Total distance travelled on average when different number of nodes are 

chosen. 

 

This chapter presented a novel approach based on Voronoi diagram and its geometric center to 

determine the optimal sensor node location for sensing coverage maximization while ensuring the 

connectivity among sensor nodes with least node movement. Compared to the existing algorithms 

that handle the same problem, the proposed algorithm GCVD is found to be superior in relation to 

the energy conservation. Nevertheless, it is envisaged that the proposed scheme could be further 

enhanced, referring to the simulation results in Figure 5.4. For instance, some nodes such as node 

12 and 13, could be  selectively switched off since their sensing area could be covered by their 

neighbor nodes. Additionally, a new VD may be generated for relocating the nodes again, in order 

to further enhance the sensing coverage rate. This makes sense because there would always be a 

trade-off between the sensing coverage rate and the energy consumption for moving the nodes. 

These issues will remain as future work. 
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Chapter 6: Conclusion and Future work 

 

6.1 Main Contributions and Significance 

This thesis developed and evaluated new power management schemes for energy efficient sensor 

node utilization in a mobile sensor network for environmental monitoring activities, particularly 

water quality monitoring. The developed schemes have been designed from the perspective of 

single sensor node level, node-to-node level, and the entire network level. Through computer 

simulation using practical sensory data, it was demonstrated and verified that all the proposed 

schemes were highly efficient in conserving energy as well as maintaining the data accuracy. Thus, 

it is believed that all the proposed schemes are feasible for practical application in an effective 

manner, depending on the specific characteristics of the monitoring application. 

 

The developed DDASA focuses on the power consumption issue on the single sensor node level. 

In this scheme, by constantly detecting if there is a sudden environmental change based on the 

newly sampled data, the sampling frequency is dynamically changed from the viewpoint of saving 

energy. It has been demonstrated and validated as well that the data accuracy will not be 

undermined while energy for the sensing activities will be further conserved. It was verified that 

this algorithm was robust for different types of parameter sampling, and could effectively conserve 

energy by using a satisfactory reconstructed signal. Compared with some existing adaptive 

sampling algorithms, which are battery-state driven, there are justifiable occasions where the 

sampling frequency is based on the real-time sampled data, especially when the fluctuation of the 

environmental parameters, is of significant interest. This commonly occurs in spatiotemporal 

monitoring of the quality of natural bodies of water, which is the specific practical application that 
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is addressed in the present dissertation. Additionally, it was shown that, by dynamically changing 

the sampling frequency according to the newly sampled data, the proposed DDASA would 

outperform a traditional adaptive sampling algorithm with respect to the accuracy of the 

reconstructed signal and the energy conservation. Thus, the goal of prolonging the life of the nodes 

has been achieved with the proposed approach, which is particularly advantageous in water quality 

monitoring applications in remote and hazardous locations. 

 

Moreover, a hybrid dual prediction scheme was developed in the present dissertation, which was 

aimed to make time-series prediction in environmental applications where a wireless sensor 

network would be utilized. In the two-way communication between a normal sensor node and a 

CH, the developed algorithm effectively reduced the number of necessary transmissions by 

forecasting the future data, bilaterally. Meanwhile, the prediction accuracy could be maintained 

according to a pre-defined error threshold. 

 

In addition, with regard to the network failure, since the proposed algorithm is capable of achieving 

a significantly reduced communication effort quantified by the total times of transmission, 

resending another data packet if network failure happens would not particularly burden or overload 

the network. Thus, for simplicity, this research assumed that there was no network failure.  

 

Lastly, this thesis developed a novel approach based on Voronoi diagram and its geometric center, 

to determine the optimal location for sensing coverage maximization while ensuring the 

connectivity among sensor nodes, under least node movement. Compared to the existing 

algorithms that address the same problem, the proposed algorithm GCVD outperforms them with 
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respect to the energy conservation. However, it is envisaged that the proposed scheme could be 

further enhanced, referring to the simulation results in Figure 5.4. For instance, some nodes such 

as node 12 and 13, could be  selectively switched off since their sensing area could be covered by 

their neighbor nodes.  

 

6.2 Possible Future Work 

For the proposed algorithm GCVD, a new VD may be generated for relocating the nodes again, in 

order to further enhance the sensing coverage rate. This makes sense because there would always 

be a trade-off between the sensing coverage and energy consumption for moving the nodes. 

 

Additionally, a more complicated scenario where obstacles get in the way of the moving nodes 

can be studied. The moving nodes may either stop early or detour during the relocation process. 

In this regard, the node-to-node connectivity might be temporarily lost and more energy might be 

consumed for detouring. Thus, for the same optimization problem, a more complex case with 

obstacles being considered is also worthy to be investigated. 
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