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Abstract 

 

Having an integrated plan for the water distribution system (WDS) is a precondition to guarantee 

the safety of supply. Therefore, the development of such a plan can support the needs of WDS. 

Both integrated plans require highly accurate estimated values since they should not only cover 

failures in the system but also meet customers’ demand. Relevant literature lists many 

mathematical and empirical models for modeling water consumption in the recent decade. Most 

of the methods in literature are on low-resolution monthly scales because of the limitations in data 

availability. Besides, increasing the resolution of data would decrease the errors of forecasting 

models. This study suggested techniques to model high resolution temporal scale and improvement 

of the models. To analyses the nature of data, average mutual information, phase space 

reconstruction (PSR), and correlation dimension; where all these methods provide identification 

of chaotic behavior. The results showed the existence of chaos in the data in different temporal 

scales with the value of 3.4. Then, non-linear local approximation method (NLA), artificial neural 

networks, genetic expression programming, and multiple linear regressions techniques are applied 

for short-term (daily) and mid-term (monthly) forecasting. NLA showed the best performance with 

the accuracy of 98% for the test period among all models. Then, the highly accurate model of each 

techniques, were selected to be combined with PSR and wavelet decomposition pre-processing to 

improve the accuracy of the models. The results presented 1.2% improvement by PSR techniques. 

For transition of different resolution, this study employed the continuous random cascade method 

to transfer the resolution. Random Cascade gave the daily value out of monthly scale by 90% 

accuracy. Finally, using expected consumption values resulted by forecasting models, an approach 

to make the leakage detection procedure resource-efficient is to estimate the timeline of leakage 
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event within the target district.  The analysis of the value of consumption in two scenarios that 

were simulated in the target district related to consumption was provided using a detection 

classifier to investigate anomalies in the consumption patterns. This method detected the 

approximate time for the defined artificial leakage within the test case.  



v 

 

Lay Summary 

 

Global water scarcity is becoming increasingly of concern due to climate change, urban 

development, population growth, industrial development, economic expansion, and the cost of 

drinking water. It is imperative that governments invest in integrated management plans that 

address the consequences of water problems such as scarcity of available water resources, enough 

allocation, and pipeline maintenance. Traditionally, the investigation of recorded data of previous 

consumption was enough to forecast the needs of the future. Climate change, urbanization, and 

socioeconomic variables highlight the need for accurate, sophisticated techniques that should be 

replaced with traditional methods. Machine learning and artificial intelligence techniques are the 

recently developed methods to cover the limitations of conventional techniques. This study 

proposed novel use of available techniques for reliable analysis and forecasting of water 

consumption. These models have the ability of anticipation for future changes within a complex 

water distribution system in order to pattern anomaly detection. 
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Chapter 1: Introduction 

Climate change significantly affects the water availability all over the globe. This effect plays a 

crucial role in arid and semiarid regions. On the other hand, urban development, population 

growth, industrial development, and economic expansion also critically increase the water scarcity 

concerns worldwide. The availability of fresh potable water has huge impacts on society. 

Therefore, the authorities must be prepared in advance for relevant consequences. Moreover, water 

conflicts are more severe than any other natural resources scarcity, which are prevalent around the 

world (e.g., oil lands), especially in arid and semiarid regions that are suffering from water 

resources limitation. Moreover, such conflicts are becoming more prevalent and severe due to 

rapid increases in demand, while reliable sources of fresh water remain unchanged (if not 

depleted). Table 1.1 shows the approximate number of water-related conflicts around the world 

chronologically (data extracted from the Pacific Institute at www.worldwater.org). The Table 

indicates a large increase in total water related conflicts from 20 and 170 in the 19th and 20th 

centuries to 476 within the last two decades (https://www.worldwater.org/water-conflict/). 

Therefore, it is crucial to have an integrated plan to manage the allocations and consumption 

efficiently, and above all to have a long/short-term plan that is based on the future information of 

the system.    

Table 1.1 The summary of water conflicts around the world before 0 BC to present. 

Dates Years 
Conflicts 

Total Conflicts Conflict/Year 
Casualty Trigger Weapon 

Before 0 BC NA 4 0 23 27 NA 

0 - 1799 1800 1 2 9 12 0.007 

1800 - 1899 100 8 8 4 20 0.200 

1900 - 1999 100 78 41 51 170 1.7000 

2000 - 2019 19 232 188 56 476 23.800 

http://www.worldwater.org/
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The reliability of water distribution systems (WDS) can be improved through accurate simulation 

of hydraulic conditions in pipeline systems based on future values of water consumption. In other 

words, water consumption forecasting provides suppliers with the necessary future demand 

information to ensure consumption needs can be met [1,2]. Water consumption forecasting is a 

dynamic process as forecasting are essential for optimum operation, as well as sustainable growth 

and development of urban water supply systems [3]. 

Although recent studies have improved the understanding of the nonlinearity and complexity of 

water consumption variables, still more research is required to highlight the impact of water 

consumption variables on the accuracy of consumption models to forecast the future values. 

Accurate estimation and forecasting data are influenced by availability of high-resolution temporal 

scale datasets. Additionally, availability of other influential factors, such as holidays, humidity, 

peak hour consumption, air temperature, population growth, and consumers’ income, are important 

to accurately forecast the consumption data. Moreover, forecasting the consumption in short-, mid-

, and long-term time (e.g. less than a week, a week to a month, a month to a year or more) play a 

crucial role in making the operation of WDS more efficient by an integrated plan.  Various factors 

are essential in developing an integrated plan including optimized pumping, pipeline maintenance, 

minimizing energy and water supply cost, improving system reliability, and the quality of allocated 

water [4–6]. 

Over the past three decades, two groups of deterministic and probabilistic methods have been 

proposed to forecast urban water consumption. The deterministic approach is solely based on input 

variables and their initial conditions, whereas, a probabilistic model relies on modeling 

uncertainties and randomness of input variables. Researchers have confirmed the superiority of 

nonlinear deterministic approaches over probabilistic ones [7,8]. Individuals’ consumption habits 
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are important factors in modeling and forecasting the future consumption. However, there is a lack 

of detailed research about the importance of the individuals’ consumption habits in the forecasting 

models. 

Consumer habits are not commonly considered in the total recorded consumption that is used for 

modeling. Nonetheless, an individual’s habits influence the consumption, and thus, the future 

values in the system will be highly influenced by individual consumer’s habits, resulting in a 

highly complex system. In this complex system, “the behavior of the integral part of the system is 

simple, but the behavior of the overall system is complex” [9]. Given the significant challenges 

and complexity of probabilistic methods and knowing the fact that deterministic methods can 

provide a useful approximation to their probabilistic counterparts, this research has focused on a 

deterministic approach to forecast the short- and the mid-term water consumption. 

Majority of well-known methods need to use high-resolution temporal scales of data, for reliable 

estimation of water consumption. Nevertheless, only the well-equipped supervisory control and 

data acquisition (SCADA) systems can record such a high-resolution data (e.g., high-resolution 

temporal scale, proper time series of pressure values in pipelines, etc.). Therefore, development of 

a method to transfer the low-resolution scales (e.g., annual and monthly values) to a high-

resolution scale (e.g., hourly or daily events) is indispensable. A reliable consumption management 

plan for an urban area requires understanding of the information about the behavior of data series 

and the consumption pattern in different temporal resolutions [10,11]. The high-resolution 

temporal scale of data series gives the information that is required to understand the behavior of 

the dataset in more detail. Having the details of the dataset offers models with higher accuracy to 

estimate the goal values. Accurate estimation of the consumption values plays a crucial role in 

developing maintenance plans in WDS. For example, estimation of the future values of 
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consumption in a specific time, will give the minimum requirements of WDS to achieve the 

consumers satisfaction. Furthermore, these plans help municipal authorities to overcome the 

probable failures such as bursts, and leakages within the system to aid in WDS’s maintenance 

[12,13]. These integrated plans for the efficient WDS utilize interpolation and extrapolation 

modeling methods based on the SCADA records. Therefore, high-resolution temporal scale 

records have a linear relationship with the efficiency of the WDSs plans. This research proposes a 

new technique to transform temporal scales in reliable approximate accuracy. The proposed 

technique allows for the transformation of data from a low-resolution temporal scale to a high-

resolution set. 

Online monitoring requires the water consumption indicators to be constantly observed. 

Consequently, it can be resource-demanding and impractical in certain cases. Mathematical 

modeling, in contrast, is less demanding and often the best tool. However, the models must be 

calibrated by independent reliable sets of field data in order to guarantee their accuracy. Thus, the 

availability of high-resolution dataset is essential for accuracy of the model. Further, modeling can 

be computationally demanding and inefficient depending upon the type and number of variables 

under consideration. A comprehensive model is often mathematically complex and requires a rich 

knowledge that may be unavailable particularly in small water districts [14]. Using their local 

knowledge, such districts prefer employing a reliable predictive model that only requires basic and 

commonly available data resources. It can be shown that, increasing the number of input variables 

in a model does not necessarily improve its accuracy [15]. Therefore, application of input variable 

selection techniques, in combination with pre-processing techniques, will improve the accuracy of 

models while reducing the complexities due to high number of input variables. Given the 

significant challenges and complexity of probabilistic methods and the fact that pre-processing 
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methods can provide a useful approximation to their probabilistic counterparts, this research also 

proposes the application of pre-processing and input variable selection methods to make the 

forecasting models more efficient, improve the accuracy, and reduce the complexity. The research 

will focus on the dynamic characteristics of water demand in the city of Kelowna (British 

Columbia, Canada) as a test case. 

1.1 Water Consumption Modeling and Forecasting 

Information about future water consumption helps the authorities to develop an integrated and 

efficient plan to mitigate (if not eliminate) the water-related stresses for the suppliers and 

consumers. Recent evidence shows an exponential growth in peak and average consumptions, 

which overburden the water storage systems [2,16]. Therefore, efficient demand management and 

forecasting are required to solve this problem. Accurate estimation of drinking water demand and 

availability of resources is considered as one of the solutions to reduce the water stresses [17–21]. 

Figure 1.1. shows the approximate number of publications related to water consumption modeling 

and forecasting.  

 

Figure 1.1 Published papers with titles including (a) Water Demand Prediction/Forecasting (b) Water 

Consumption Prediction/Forecasting based on Google Scholar and Web Science data base.  
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To collect the information shown in Figure 1.1, “Publish and Perish V6.4” is used to approximate 

the number of studies with the different keywords in their titles. Since, studies in the area used 

both forecasting and prediction for consumption and demand, different keywords are considered 

to extract the information related to the studies. Figure 1.1 shows the number of publications with 

the keywords including “water demand forecast”, “water demand prediction”, “water consumption 

forecast” and “water consumption prediction” up to date based on “Cross Ref” and “Google 

Scholar”. It should be noticed that “Web of Science” is not considered as a source in this stage. As 

it is shown in Figure 1.1, the number of studies has been increasing with a considerable rate. 

However, there is not a significant difference between consumption and demand in the literature, 

to the best knowledge of the author “Consumption” is suitable for the related titles. Since the 

forecasting models in the literature are developed based on the past recorded data of the 

consumption values, the mentioned data are registered based on allocation and consumption while 

the term “Demand” is related to an estimated based model created from statistics and population 

information. Therefore, this study considers the keyword of “Consumption Forecasting” to present 

the methodologies and results. Moreover, the rate of increase in the number of publications shows 

the availability of dataset in the area. As it is shown in Figure 1.1, water consumption forecasting 

has become an interesting field of study to researchers after the year 2000. One reason for that is 

the availability of data from well-equipped WDS such as the counters and gages that register the 

value of consumption within a period. This evidence can be another reason why the term 

“Consumption” is a better choice rather than “Demand”. As the dataset used for the studies are 

more relevant to the numbers given by equipment that records and registers the value of allocations 

and consumptions. Table 1.2 shows the statistics about the publications that are shown in Figure 

1.1, in a specific period.  
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Table 1.2 Statistical information of publications in the field of water demand/consumption 

prediction/forecasting from 1980 to the present. 

 Water Demand 

Prediction 

Water Demand 

Forecasting 

Water consumption 

Prediction 

Water consumption 

Forecasting 

Publication Year 1980-2019 1980-2019 2001-2019 1992-2019 

Citation Years 39 39 18 27 

Papers 154 377 45 56 

Citations 983 4929 409 228 

Cites/year 25.2 126.3 22.72 8.44 

Cites/paper 6.18 13.07 8.52 3.62 

Authors/paper 2.72 2.73 2.71 2.76 

h-index 13 34 8 8 

g-index 28 63 20 12 

hI, norm 10 23 6 4 

hI, annual 0.26 0.59 0.33 0.15 

The variables affecting the consumption values can be categorized into two groups: climatic (e.g. 

temperature, relative humidity, rainfall, etc.) and socioeconomic (e.g. population and income) 

[13,22]. Commonly climatic variables are used in short- and mid-term forecasting, while 

socioeconomic variables are used for long-term demand predictions [23,24]. Common climatic 

factors considered in the literature are temperature, precipitation, and previously recorded demands 

[25–27]. While the literature provides a rich list of studies for short- and mid-term demand 

forecasting, a limited number of researches have focused on the impact of climatic factors on 

demand forecasting [28–30].  

Literature enlists the implementation of different statistical and probabilistic approaches for 

consumption forecasting. Conventional techniques were reported prevalent for a better 

understanding of chosen variables in the modeling of water consumption [31–33]. This type of 
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modelling considers certain linear relationships among the functional variables and the value of 

the water consumption, though the observations indicate that these relationships exhibit nonlinear 

behaviors. The literature is mostly categorized into physical-based and black-box models. 

Physical-based models approximate the general internal sub-process and physical mechanism by 

fundamental laws of mass, energy, and momentum. Black-box models implement artificial 

intelligence, fuzzy based and nonlinear deterministic methods (e.g., artificial neural networks, 

heuristic algorithms such as genetic programming, support vector machine, nonlinear local 

approximation, etc.) to ascertain the relationship between the input and output variables. 

Recent studies on physical-based and black-box models include conventional regression models 

[34], artificial neural networks (ANN) [16,25,35,36], feedforward neural networks (FNN) [26,37], 

general regression neural networks (GRNNs) [38], deep belief neural network (DBNN) [39], 

support vector machines (SVMs) [22,40–43], gene expression programming (GEP) [44,45], 

adaptive neural fuzzy inference system (ANFIS) [46], Fourier analysis [4], hybrid models (e.g. 

combined wavelet) [27,47,48], fuzzy regression [49], fuzzy cognitive map learning method 

[50,51], epidemiology-based forecasting framework [52], temporal disaggregation [53], harmonic 

analysis [54], and wavelet de-noising [55]. Table 1.3 briefly shows the most recent published 

related works in the area with higher publication indices in comparison with the relevant researches 

in the field. 

Table 1.3 shows that the temporal scales for the forecasting horizon is mostly considered as a 

short/mid-term time period. While other hydro-informatics studies (e.g. rainfall runoff, 

sedimentation, climate, etc.) are equally spread over short/long-term horizon, the complexity of 

consumption data caused weaker accuracy in long-term. Therefore, most studies calibrated 

forecasting models in short-term time period, whereas the models estimated acceptable fitness 
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values. The question is “how we can investigate the complexity of the data before calibrating the 

models?” and “how we can improve the accuracy of the models in long-term period?”. This 

research studies the possible answers for the mentioned questions.  

Table 1.3 Noted relevant literature chronologically in water consumption forecasting methods and periods. 

Method of Purpose Determinants Temporal Scale Horizon Category Reference 

DEMC Historical Data Hourly Short-Term [56] 

ARIMA, ANN Historical Data Yearly Long-Term [57] 

ELM, ANN Historical Data Daily Short-Term [58] 

Hybrid Model Historical Data Monthly Short-Term [59] 

Moving Window Historical Data Daily, Weekly Short-Term [60] 

MCP Historical Data Hourly, Daily Short-Term [60] 

Support Vector Regression Historical Data Monthly Short-Term [61] 

ANN, SVR, ELM, MLR Historical Data 1-,3-Day Short-Term [62] 

SVM, Clustering Historical Data Daily/Hourly Short-Term [63] 

Chaos, ANN Historical Data Daily Short-Term [64] 

ANN, SVM Historical Data Daily Short-Term [39] 

Tree based methods Historical Data Monthly Short-Term [65] 

Trend and Harmonic 

Analysis 
Historical Data Hourly Short-Term [54] 

ANN Historical Data Daily Short-Term [66] 

Review Article  

Review Article  

Review Article  

Review Article  
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1.2 Problem Statement 

Growth in peak water demand, which overburdens the urban water resources, requires an efficient 

management plan. This important challenge motivated the application of soft-computing 

techniques into urban water demand forecasting methods in order to develop methods that are 

applicable in solving the forecasting problems. Many techniques have been proposed to forecast 

water demand under differing time scales. However, there has been a limited investigation on 

performance comparisons among the models, to assist in selecting the best model under various 

conditions [67]. Moreover, non-stationary, non-linear, and inherent stochasticity of water demand 

data make the forecasting problems more challenging in this field [68]. Donkor et al. has reported 

that periodicity and forecasting horizon influence the performance of the methods in short- and 

long-term forecasting, such as artificial neural networks and econometric models, respectively 

[69]. Therefore, understanding the forecasting horizon, which is dependent on the dataset 

considered, will help to categorize the performance of the developed models. It can be considered 

as a classification for short-, mid-, and long-term forecasting models, which help the operators to 

select the appropriate model for implementation, considering the available dataset [20,25,70]. 

Forecasting horizon can improve the reliability of demand-forecasting methods, through 

identifying the most useful method for demand forecasting under specified time frames. In general, 

however, there is currently no acknowledgement of a time frame for these forecasting horizons 

[69]. This study focuses on the forecasting horizon for the considered models to inform 

performance under various periodicity (i.e. daily, 2-day, 4-day, weekly, bi-weekly, and monthly) 

and lead time. 

Based on previous studies, the common influential variables in water demand forecasting include; 

observed consumption values (e.g. historical recorded consumption values over various time 
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period), climatic variables (e.g. temperature, humidity, and levels of snow and rainfall) and 

socioeconomic variables (e.g. population growth rate, and the economic factors such as income 

and water cost) [67]. Although these variables are used in the literature, there is limited study in 

using socioeconomic variables in long-term forecasting studies. Moreover, extrapolation models 

in water consumption forecasting are based on the recorded data and its error terms [69]. The 

limitation of these models is based on their dependence of past trends that will likely be observed 

in the future, but do not consider the important roles the socioeconomic variables and the consumer 

habits can play in influencing the future consumption values. Recently-published studies 

investigating these factors are limited and require 1) accurate estimation and forecasting of water 

consumption, considering different periodicity and forecasting horizon to classify the models 

based on their performance, and 2) determination of the degree of nonlinearity among the 

influential variables to consider exogenous variables (e.g., socioeconomic). Therefore, such a 

complex system requires a method which considers the mentioned variables by investigating the 

dataset. Additionally, the application of the methods in different periodicity and lead time should 

be clarified regarding the models in their forecasting horizon.  

1.3 Research Objectives 

The overall objective of this research is to detect anomalies in consumption pattern caused by 

leakages and failures within the target district in WDS. To reach the goal, a reliable estimation of 

expected values of the water consumption in future is crucial.  It will assist water authorities 

detecting likely anomalies in consumption values within the system (with the reasons of leakage, 

pipe breaks, etc.). The long-term objective will be achieved through the following phsases, as 

indicated below: 
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1) Phase I – data collection and analysis: This step will investigate the accuracy of the dataset 

that is collected from municipalities and provide techniques to generate the possible missing 

data.  

2) Phase II – modeling the future value of water consumption: The aim is to develop novel 

models to forecast short- and long-term water consumption.   

3) Phase III – accuracy improvement of the selected models: This step aims to improve the 

accuracy of selected forecasting models. Combination of wavelet decomposition and input 

variable selection techniques will be applied to pre-process the input variables.  

4) Phase IV – anomaly detection in WDS: This step applies the concept of failures detection to 

interperet the anomalies  of consumption information within the system. 

The research applies the City of Kelowna as the test case.  

1.4 Thesis Structure 

Figure 1.2 depicts the structure of this dissertation including the following five chapters: 

1) Chapter 1 provided an overall introduction about the importance of water resources. Also, 

introduction about the impact of forecasting models and their roles in investigation of water 

consumption management plans in the field of urban water management. 

2) Chapter 2 investigated the reliability of the recorded data as the case test. Phase space 

reconstruction and dynamic investigation of explanatory variables and classification of the 

dataset were explained in this chapter. The existence of chaos and forecasting horizon for 

the test case was investigated.  

3) Chapter 3 discussed four methods were applied to define forecasting models. These include 

non-linear local approximation (NLA), multilayer perceptron artificial neural network 

(MLP-ANN), gene expression programming (GEP) and multiple linear regression (MLR) 
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methods. The performance of the models was investigated with and without PSR in different 

lead time. 

4) Chapter 4 applied pre-processing methods to improve the performance of selected models 

in previous chapter. Wavelet decomposition and PSR are the techniques that were applied 

for accuracy improvement of the selected models.  

5) Chapter 5 evaluated the performance of disaggregation techniques in transferring the 

temporal scales from low resolution to high resolution temporal scale. Non-linear 

deterministic and random cascade models were used to transition. Moreover, the application 

of disaggregation methods in accuracy improvement of the models were investigated. 

6) Chapter 6 employed the models output in anomaly detection of water consumption values 

within WDS and failure detection. Two scenarios were defined based on artificial leakage. 

Selected forecasting model was used to estimate the expected value of consumption for 

short-term future. Then, wavelet analysis was employed to detect the anomalies caused by 

different scenarios.  

7) Chapter 7 summarized the results of the research as conclusion and suggest future work 

along with this study.  
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Figure 1.2 Brief scheme of the thesis structure. 
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Chapter 2: Nature of Explanatory Variables in Forecasting of Consumption1 

2.1 Overview 

Numerous variables have been used in water consumption modeling within the water distribution 

system (WDS). The nature of these variables is not similar. Therefore, the information about the 

dynamic of the nature variables that are used in modeling is beneficial. The main benefit of this 

information is to improve the performance of the models (e.g. accuracy). In forecasting models, 

factors such as accuracy, reliability, and flexibility are essential in the evaluation of the models’ 

performance. 

Regarding to the literature, the focus on improving the models' performance is mostly related to 

pre-processing techniques. Therefore, there is a limited number of studies in the investigation of 

the dynamic of consumption dataset in WDS modeling techniques. This chapter overviews 

investigating the existence of chaotic behavior in the case data. Followed by, the information about 

phase space reconstruction (PSR), false nearest neighbor and correlation dimension.  

2.2 Background 

Active variables in complex water consumption systems may benefit from chaos theory’s 

techniques to improve forecasting models. Dimensional techniques based on chaos approach 

enhance the application of forecasting models to estimate future values in complex systems and 

improve the forecasting of nonlinearity within dynamic systems [9,71]. Descriptions of chaotic 

behavior have been used in various engineering applications. Chaotic systems are defined and 

characterized by significant changes in behavior resulting from small changes in initial conditions 

                                                 

1 A version of this chapter has been accepted with minor revision for publication in the Journal of Water as a full 

paper: Yousefi, P., Curtice, G., Naser, G., Mohammadi, H. 2019. Nonlinear Dynamic Modeling of Urban Water 

Consumption - A Chaotic Approach, Journal of Water MDPI. 
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of the system [72]. Using the ‘extent of complexity’ of a chaotic system (defined primarily in the 

context of the variability of relevant data), chaotic systems are classified as low-, medium- or high-

dimensional [73]. Also, the availability of noise in time series increases the complexity of the data 

and results in a high embedding dimension [74]. 

In water distribution systems, factors such as temperature, humidity, precipitation, the economic 

condition of consumers, population size, holidays, etc. have an impact on water consumption. By 

aggregating data at increasing temporal scales, the effects of scaling time series on deterministic 

chaos can be found [75,76] and any missing data can be generated [77,78]. This approach has been 

used in solving problems in various fields of study such as river discharge [79–81], sedimentation 

[82–85], climate [86],  lake level variability [87], rainfall [88–91], traffic speed [92], finance [93], 

image processing [94] and ship motion prediction [95] and existents of chaos in hydrological 

variables [96]. However, there is a paucity of study on the application of chaos theory on water 

consumption modeling techniques. Oshima [9] developed a real-time forecasting model system 

for water consumption based on chaos theory. To support operations with labor saving, facility 

maintenance and efficient use of energy, he introduced “information integration type chaos theory-

based demand forecasting.” The report showed the application of chaos-based techniques in 

improving the accuracy of the results. Recent studies in water consumption forecasting primarily 

used various hydrological variables in modeling water consumption for different proposes. 

Therefore, this study investigated the impact of chaotic behavior of consumption data in models.   

2.3 Methodology 

 Phase Space Reconstruction 

This research employed the concept of phase space recounstruction to better understand the 

dynamic nature of a municipal water consumption dataset for the City of Kelowna. The dynamics 
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of a water consumption system are represented by data points along a trajectory, whereby each 

position in time represents a system state. The lag-embedding technique can be used on 

deterministic, dynamic systems such as the present water consumption dataset to reconstruct 

phase-space from time series. The fundamental dynamics of a system can be studied by 

reconstructing an m-dimensional phase-space of Dt that is defined by [97,98]:   

𝐷𝑡 = {𝑑𝑡, 𝑑𝑡−𝜏, 𝑑𝑡−2𝜏, … , 𝑑𝑡−(𝑚−1)𝜏} , 𝑡 = 1,2,3, … ,𝑁    (2.1) 

where Dt is a vector of the consumption data of {dt}t=1,…, N, N is the number of recorded 

consumption data points, 𝜏 is the lag time, and m is the number of embedding dimension that in 

this chapter generally varies from 1 to 20 [82,84,87,99]. In the case when m is greater than the 

minimum embedding dimension, the trajectory of reconstructed vectors can display the true state 

of the chaotic system. Often, the lag time (𝜏) is arbitrary as the data are assumed to have infinite 

precision. The lag time should not be too small given the difference between various elements of 

the delay vectors; and, it should not be too large as this can result in low coordinate correlation 

[100]. If the dynamics of the system can be reduced to a set of deterministic laws, trajectories will 

converge towards a subset of the phase-space with a fractional dimension called the attractor [99]. 

The lag-embedding method is sensitive to both embedding parameters of 𝜏 and m. Average mutual 

information (AMI), is a well-known method for estimating the lag time [101]. To estimate the lag 

time, this research employed AMI:  

𝐼(𝑑𝑡, 𝑑𝑡+𝜏) = ∑ ∑ 𝑃(

𝑑𝑡+𝜏𝑑𝑡

𝑑𝑡 , 𝑑𝑡+𝜏) log2

𝑃(𝑑𝑡, 𝑑𝑡+𝜏)

𝑃(𝑑𝑡)𝑃(𝑑𝑡+𝜏)
 (2.2) 

where the sum is extended over the total number of samples in the time series, P(dt) and P(dt+) 

are the marginal probabilities for measurements, dt and dt+ and P (dt, dt+) is their joint probability. 
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The optimal  minimizes the value of the function I (dt, dt+) for t = . AMI considers the first local 

minimum as the lag time [102]. In addition to AMI method, autocorrelation function (ACF) is 

considered as another well-known method in literature to estimate the lag time [101]. More details 

about ACF and different functions are presented in chapter 3. This chapter employed AMI in the 

process of investigating the availability of chaotic behavior in consumption time series. To 

compare the impact of both AMI and ACF in models’ results, in chapter 3, both AMI and ACF are 

considered.  

 Contribution of Chaos in the Problem 

The term “chaos” is defined as turmoil and disorder. Therefore, chaos theory studies systems that 

at first sight, seem to have random and stochastic behavior, while specific rules govern these 

systems. Such systems are susceptible to initial conditions, that apparent imperfect and arbitrary 

inputs can extensively affect them. Integrating chaos theory is not only to focus on the irregularities 

in outputs of another system or attributed random sources but also to analyze very determined but 

nonlinear and chaotic dynamics of the system itself. Then, the chaotic data can be categorized 

between regular and predictable signals, or irregular and random signals. Chaos theory is mainly 

based on the fact that an order is hidden in each irregularity. Chaotic processes are intrinsically 

definite. In addition, chaos theory is the study of unstable and non-periodic behavior in the 

nonlinear dynamic systems. The scientific method, which is provided by this theory for us, is the 

change of aspect in look at the events so as their structural order can be discovered. Of course, a 

new view of this reasoning behind the order also challenges many traditional controversies about 

order proof, etc., in the philosophy. As an example, the result of a coin toss at a time is random 

and indefinite, since it has local amplitude. However, the expected results of the phenomenon are 

permanent and predictable when it is repeated many times. Edward Lorenz arranged twelve 
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equations that are followed the probabilistic weather forecasting to simulate with computer. Once 

for securing the accuracy of the result, he re-entered the data into the computer and obtained a 

different result. He saw that the data was rounded when entered into the computer and instead of 

considering data with 6 decimal places; data was considered with 3 decimal points, i.e., data were 

not similar to previous data, and there were partial differences. For example, the difference in the 

response of two near changes in the input, their behavior is similar at first, and it is entirely different 

at the end [103]. From the aspect of water distribution systems, many variables are involved in the 

water consumption value, which may look random at first sight in different periods (peak hours, 

local party nights, holiday nights, etc.). The chaotic investigation can study the behavior of these 

variables. Therefore, having information about the nature of different variables, give insight into 

whether these variables are influential explanatory for models' output. Regarding the nature of the 

variables, potential variables play a beneficial role in models' performance to accurate simulations. 

Although the increase of the accuracy is necessary, it can strikingly decrease unpredicted costs in 

long term prediction for exact management in networks designing and proper strategies of urban 

development, which nowadays is crucial in the field of water engineering. 

 Correlation Dimension 

The dimension of a system designates  its complexity and indicates the number of required 

variables that specify a deterministic system. Kermani classified different dimensions in a system 

including topological, Hausdorf, box counting, point-wise, and correlation dimensions [80]. 

Additionally, the correlation dimension is used as an indicator of a deterministic or stochastic 

process [85,104]. The below function calculates the correlation integral value [105].  
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𝐶𝑚(𝑟) =
2

𝑁(𝑁 − 1)
∑∑𝐻(𝑟 − ‖𝑋𝑖 − 𝑋𝑗‖)

𝑁

𝑖=1

𝑁

𝑗=1

 (2.3) 

here, N is the number of data points, where H is the Heaviside step function (H (u) =1 for u > 0, H 

(u) = 0 for u ≤ 0 and 𝑢 = 𝑟 − ‖𝑋𝑖 − 𝑋𝑗‖, Xi is the ith state vector, r is the radius of a sphere with 

the content of Xi or Xj as the center. Cm(r) is proportional to r for stochastic time series, whereas 

for chaotic time series it scales with r as: 

𝐶𝑚(𝑟) ∝ 𝑟𝑐𝑒 (2.4) 

where 𝑐𝑒 is the correlation exponent defined by approximating the slope of log 𝐶𝑚(𝑟) versus 

log  (𝑟) in logarithmic scale. If the calculated 𝑐𝑒 is unchanged by increasing the number of 

embedding dimensions, ce can be considered as the correlation dimension of the attractor in the 

system. But, if 𝑐𝑒 is not stable as a function of embedding dimensions, this system can be 

considered non-chaotic [75,106,107]. 

 False Nearest Neighbor  

False nears neighbor method obtain the optimum embedding dimension to reconstructing the phase 

space [108]. The neurorthid of the points embedded in increasing n-dimensional manifolds, the 

method eliminates false neighbors. I other word, the points are apparently laying close together 

because of separated projections in higher number of dimensions. If the ratio of false neighbors 

between dimensions of m+1 and m gets below 5% (a given threshold), the next higher number of 

embedding dimensions would be the optimum one (m' > m+ 1) [85]. 

2.4 Case Study 

Water consumption modeling relies upon many different factors including population size, 

climatic, hydrologic, economic, and customers’ consumption patterns. Forecasting future values 
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of consumption is one of the goals in this research to reach the objective. Consequently, 

consumption time series data are used to train the forecasting models. National offices have 

provided the collected data of the test case. The consumption pattern in different temporal 

resolution are studied. The water supply for the region comes from various resources, which 

include Lake Okanagan, Mission Creek, Mill Creek, Scotty Creek, Hydraulic Creek and numerous 

wells [109]. There is one primary distribution system that services 99% of the population via 

Poplar Point, Eldorado (seasonal intake uses only utilized during peak consumption time period) 

and Cedar Creek pump stations [109], in addition to, plus Swick road pump station which services 

approximately 300 residents. This study considered Poplar Point, Eldorado and Cedar Creek 

stations. Table 1.A shows the summary of water production and consumption rate since 2012 to 

2016. The information in the appendix A is reported by Kelowna City Utility as “Annual Water 

and Filtration Exclusion Report” in July 2017 [110]. The SCADA software obtains information 

remotely from sensors installed at the intake locations. The software platform facilitates tracking 

of historical system performance, for auditing and future decision making, to optimize the system 

[109]. Table 2.1 shows the characteristics of the dataset in the test case.   

Table 2.1 Characteristics of the water consumption values in test case. 

Property Daily 2-Day 4-Day 7-Day 14-Day Monthly 

Number of Data 2186 1092 552 312 156 72 

Max. value                  (m3) 114597.2 210740.3 410428.3 656173.6 1255211 2475026 

Min. value                  (m3) 14124 31477.3 69655.5 124112.9 252704.1 557066.8 

Average                      (m3) 43046.4 86102 170332.4 301357.3 602714.7 1291944 

Standard deviation   (m3) 20074.5 39897 79304.3 136626.8 268733.2 552701.5 

Coefficient of variation 0.46 0.46 0.46 0.45 0.44 0.42 

Skew 0.73 0.71 0.72 0.66 0.63 0.54 

Kurtosis -0.38 -0.45 -0.51 -0.63 -0.79 -0.91 
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The data is synchronized in 1-, 2-, 4-, 7-, 14-days and monthly temporal resolution. Also, all 

dataset is divided into two groups as the training and the test period. The nature of data fed to 

define the models are studied in all temporal scales.  This study used six temporal scales of the 

consumption, including daily, 2-,4-,7-,14- and 30 days since January 1st, 2010 to December 30th, 

2016.  

2.5 Results and Discussion 

Figure 2.1 presents the time variation of water consumption dataset for a six-year period (from 

January 2011 to December 2016), and the average 24-hour consumption based on City of Kelowna 

Utility report. The data was parsed into hourly maximum, minimum, and mean values for a 24-

hour period (Figure 2.1b). Figure 2.1b also presents a boxplot of the total mean, minimum, and 

maximum consumption value distributions for the six year period. Figure 2.1b indicates that the 

average consumption and minimum values have low frequency, demonstrating the highly 

deterministic behavior of the data. consumption estimation and forecasting of the average and 

minimum values are not as complex as compared to the peak consumption values. However, the 

maximum values exhibit a non-linear behavior which does not follow a specific pattern (i.e. 

appears to be random), unlike average and minimum values. Further, the maximum consumption 

values in a water distribution system are very important. It is because of estimation of peak 

consumption to supply customers’ consumption, and optimize WDS pipeline to make WDS more 

reliable such as; managing pipeline failures, improving peak pressure, reducing leakage, etc.  

Average mutual information (AMI) was used to identify the proper lag time in this study. Figure 

(4a) presents the first local minimum lag time of τ = 17 days for daily time series as a function of 

lag time. The first minimum values of AMI were at lag times of 17, 12, 10, 6, 3 and 2 for daily, 2-

, 4-, 7-, 14- and 30-days (monthly) data series of the water consumption, respectively. Table 2 
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summarizes the results for all other timescales. By using the lag time of τ = 17 days, the phase-

space was reconstructed, as presented in Figure (4b) for daily scale. The vertical axis shows the 

time series and the other two axes show the same time series delayed by 17-(τ) and 34-days (2τ). 

This figure shows reconstructions in three dimensions; the projection attractor on the plane 

{𝑥𝑖, 𝑥𝑖+𝜏, 𝑥𝑖+2𝜏} with the lag time of 17 days. When comparing the two PSR graphs in Figure (4b), 

the presence of attractors becomes clear for τ = 17 days (black line) comparing to τ = 1 (blue dots). 

Indeed, the phase space is more spread out for 1-day lag time and more concentrated on attractors 

for 17-days lag time. Based on the figure, PSR can make a consistent set of inputs for the model 

which makes better results in comparison with other sets having less consistency (e.g., peak 

consumption represented in figure 3b). The results for other resolutions are available in the 

appendix (I). 

 

Figure 2.1 Time series plot of (a) daily water consumption; (b) 6-years consumption pattern within a 24-hour 

period. 
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Figure 2.2 (a) Average mutual information (τ); (b) reconstructed phase space by (τ and 2τ -day lag time). 

Figure 2.3 plots the results for correlation function versus log (r) for different embedding 

dimensions (m) varies in the range of 1 to 20 for two temporal scales of daily (a) and 2-days (b).  

 

Figure 2.3 The relation between correlation function C(r) and r by different embedding dimensions, (a) daily; 

(b) 2-days. 

Figure 2.4a reveals the value of false nearest neighbor (FNN) at the first local minimum of m = 17 

for daily time series. m=17 is considered as the optimum embedding dimension (mopt) for the daily 

temporal resolution. The first minimum values of FNN were at embedding dimension of 17, 17, 

9, 6, and 4, for daily, 2-, 4-, 7-, 14- and 30-days (monthly) dataset, respectively.  
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To investigate the availability of chaotic behavior, the correlation exponents, Ce (m), were 

determined. The results are shown in Figure (2.4b). As the figure shows, the correlation exponent 

increases with the embedding dimension up to a certain value and then remains steady. The figure 

reveals that the slope of larger (m) would become constant for all temporal scales. The saturation 

of the correlation exponent in a specific embedding dimension, is an indication of the presence of 

chaos in the dataset. The correlation exponent was saturated approximately after the embedding 

dimension of 16 for all temporal scales.  

 

Figure 2.4 (a) False nearest neighbor values of embedding dimensions for daily temporal scale; (b) saturation 

of correlation dimension Ce (m) with embedding dimension m for different temporal scales. 

The results of correlation exponent and FNN showed that the 17th embedding dimension is 

potentially the optimum embedding dimension of the system. The results of correlation exponent 

and FNN in the temporal scales for more than 4-days are not the same. Thus, it is evident that 

having a similar result by both methods clarified that the 17th embedding dimension is the optimum 

dimension in daily temporal scale. Also, the saturation and constant slope of correlation exponent 

for all temporal resolution revealed the high dimensional chaotic behavior of the total system. No 

study investigates the chaotic behavior of a total system by studying all temporal scales from high 

resolution to low-resolution temporal scale. Many studies that investigated the chaotic behavior of 
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a system concluded that high-resolution timescales have chaotic behavior, meanwhile the low-

resolution timescale of the same time series does not.  

Regarding the fractal law, it can be a debatable issue whether a chaotic system should have chaotic 

behavior in all temporal scales, though this study would bring this question into the area about the 

issue. This study would not conclude the issue because of the difference in the dynamic nature of 

the data set in this case study. Moreover, Regonda et al. suggested that to determine the chaotic 

behavior of a time series; it is better to investigate more than one temporal scale [75]. For the 

moment, investigation of the chaotic behavior in different time scales of the test case of this study 

is sufficient for following the objectives of this research. However, further researches are needed 

to make a reasonable conclusion about the issue, whether suggestions of Regonda et al. [75] and 

this study are encouraging to investigate the chaotic behavior of different time scales of a test data. 

Back to the result of this study, the embedding dimension of 17 seems to be sufficient to explain 

the dynamic of the system (1- and 2-day consumption). The saturation values of the correlation 

exponent for all temporal resolutions are 3.5, 3.37, 3.74, 3.94, 3.83, and 3.49 for daily, 2-, 4-, 7-, 

14- and monthly, respectively. Low correlation exponents obtained for all the temporal scales’ 

series reveal that the dynamic behavior of the consumption values may be in low dimensional 

deterministic. Regarding the concept of PSR and correlation exponent, the nearest above integer 

value of correlation exponent indicates the number of dominant variables in the system. Therefore, 

it can be interpreted as the number of variables that are dominantly governing the temporal 

dynamics of water consumption are about 4 for all temporal scales. Table 2.2 shows the results of 

lag time and correlation exponent for all the temporal resolutions. The condition of Ce < 2logN 

(with N as the number of data) was satisfying for the chaotic temporal scales [111]. 
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Table 2.2 Average mutual information and correlation exponent values in different temporal resolutions. 

Time Scale Average Mutual Information Correlation Exponent 2 Log N > D2 

Daily 17 3.50 6.67 

2-Day 12 3.37 6.07 

4-Day 10 3.74 5.48 

7-Day 6 3.94 4.98 

14-Day 3 3.83 4.38 

30-Day 2 3.49 3.71 

 

2.6 Summary 

Becoming steady value for the correlation exponent (no changes were shown in the slope of 

graph) in a certain embedding dimension (the dimension that the slop of graphs became steady) 

is an indication of chaotic behavior in all six temporal scales. The correlation exponent became 

steady after an embedding dimension of 17 for the temporal scales. The correlation exponent 

results showed the 17th embedding dimension may be considered the optimum embedding 

dimension for this system; however, we have conducted additional investigation to better 

understand the optimum embedding dimension for the test case. Moreover, the saturation and 

constant slope of correlation exponent for all temporal scales revealed a highly chaotic behaviour 

exhibited by the whole system. Many studies that investigated the chaotic behaviour of the system 

concluded that high-resolution timescales demonstrate chaotic behaviour, while the low-

resolution timescale of the same time series does not exhibit chaotic behaviour. Regarding the 

fractal law, it remains uncertain whether a chaotic system should have chaotic behaviour in all 

temporal scales; we speculate this is an important factor to consider under this application. Based 

on the presented results, this study suggests that to investigate the availability of chaos in any 

dataset, investigation for different temporal scales is needed to indicate if the system has chaotic 
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behaviour, as this conclusion supports the findings presented by other researchers. Considering 

the paucity of studies available for comparison, the present investigation of chaotic behaviour in 

different time scales using the test case provides enough data to evaluate the objectives of this 

research. However, additional study is required to make definitive conclusions regarding the 

findings of this study and more generally the chaotic behaviour of consumption data. 

Nevertheless, the study findings provide encouraging evidence to further investigate the chaotic 

behaviour of water consumption values over different time scales of a dataset.  
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Chapter 3: Soft-Computing Methods in Forecasting of Water Consumption2 

3.1 Overview 

Factors like urban area development, population growth, and industry expansion are also variables 

which are useful in supplying water resources. Therefore, it is necessary to understand the 

relationship between available water resources and the influential variables for assisting the 

governments in developing long-term plans for water-related problems (drinking water) in the 

period. Future consumption values are necessary for developing a practical and dynamic 

management plan for an efficient operation of water distribution system (WDS) to supply proper 

drinking water. The consumption forecasting is categorized as long-term (up to 25 years), mid-

term (up to 2 years) and short-term (up to 2 days) based on essential factors like water supply plan, 

pipeline maintenance, and water distribution system optimization [5]. 

3.2 Background 

Many variables are affecting the forecast of consumption values, but not as active variables in 

other hydrological forecasting problems (e.g., river discharge, sedimentation, rainfall, temperature, 

etc.). In context to literature, commonly used input variables to forecast are; temperature, humidity, 

precipitation, and recorded consumption series [13,26,27,112,113]. 

Different deterministic and probabilistic techniques are being listed in the literature to forecast 

drinking water consumption. Conventional methods, autoregressive integrated moving average 

(ARIMA), autoregressive integrated moving average with explanatory variable (ARIMAX), 

                                                 

2 A version of this chapter has been published as papers: Yousefi, P., Naser, G., Mohammadi, H. 2018. Surface Water 

Quality Model: Impacts of Influential Variables. Journal of Water Resources Planning and Management 144 (5), 

04018015 and, Yousefi, P., Shabani, S., Mohammadi, H., Naser, G. 2017. Gene Expression Programing in Long Term 

Water Demand Forecasts Using Wavelet Decomposition. Procedia Engineering 186, 544-550 and, Yousefi, P., 

Curtice, G., Naser, G., Mohammadi, H. 2019. Nonlinear Dynamic Modeling of Urban Water Consumption - A Chaotic 

Approach, accepted with minor revision to be published in Journal of Water MDPI. 
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artificial neural networks (ANNs), support vector machines (SVM), gene expression programming 

(GEP), neuro-fuzzy systems and hybrid techniques are commonly used to forecast drinking water 

consumption values [15,33,114–118]. 

Chaos approach is successfully employed to understand the dynamics of a non-linear system. The 

deterministic nature of a chaotic system is dependent on initial conditions and leads to entirely 

different behaviors for the next time slots. Non-linear local approximation method (NLA), is one 

of the techniques in this section to forecast water consumption values. NLA was applied in 

different hydrological studies, however, there is a paucity of studies on the application of chaos 

theory on water consumption forecasting methods. Oshima [9] developed a real-time forecasting 

system for water consumption based on chaos theory. The report showed the application of chaos-

based techniques in improving the accuracy of the results. Yousefi et al. [13] studied the dynamic 

of explanatory variables by the chaos approach for urban consumption time series. They studied 

the different temporal resolution of the time series for a better understanding of the connections 

among the resolutions in a chaotic time series. Yousefi et al. [119] investigated the performance 

of NLA in water consumption forecasting. The results of their study showed that NLA has better 

performance compared to artificial neural networks and gene expression programming. Moreover, 

they concluded that phase space reconstruction (PSR) and pre-processing techniques (e.g., wavelet 

decomposition) improve the performance of models in forecasting a chaotic dataset and increase 

the forecasting horizon. Beside the advantages of NLA, the limitation of this method is employing 

univariate input variable.  

Evolutionary techniques have become popular in modeling and optimizing fields. Genetic 

programming (GP) and gene expression programming (GEP) are included in the category of 

heuristic algorithms that are found in Darwin's evolution theory. Evolutionary techniques adjust 
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the population of a specific solution. In each stage, individuals are selected randomly from the 

current population. Then, the chosen individual plays the parent’s role to be reproduced for another 

population for the next generation of solutions. This reproduction goes toward an optimal answer 

which has been defined as the goal values. The evolutionary techniques are used for optimization 

problems where standard methods are not suitable, such as discontinuity, nondifferentiable, 

stochastic, or highly nonlinear objective functions. Among evolutionary techniques, GP and GEP 

are used for modeling problems with the same abilities as genetic algorithm (GA). For example, 

informing data gaps and forecasting time series [22,120–123] used the GP technique to model 

suspended sediment load in the Tongue River (United States) and reported better performance 

from GP compared to sediment rating curves and multiple linear regressions (MLR). Since GEP 

provides a tree-structure scheme, it makes GEP more convenient to interpret the results in 

comparison with GP. Moreover, GEP presents mathematical equations that clarify the relationship 

between input and output variables by a factor of 100-10000 [124–126]. The superiority of GEP 

and the advantages of this technique interested researchers to develop more sophisticated models 

with hybrid methods, such as combining the extended Kalman filter [127], clustering the 

consumption values [128], Wavelet decomposition [113], and phase space reconstructed GEP 

(PSR-GEP) [13] in forecasting urban drinking water consumption. The results showed that GEP 

models are highly sensitive to wavelet decomposition when attempting to improve the 

performance of the models. The GEP models can be extracted based on the defined arithmetic 

operations. It is one the advantages of GEP.  

Among the variety of examined methods, Artificial Neural Networks (ANNs), have been applied 

to the various period in the wide variety of hydrological issues. The main reason of ANNs frequent 

usage is its ability to overcome the relationship in determining the complexity of time series, even 
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with the limited data available to train the models. Therefore, most of the studies applicable in 

areas of water resource demands applies ANNs to forecast short, mid and long-term consumption 

values [27,129,130].  

ANN offers several advantages and disadvantages. Advantages include; 1) ANN often requires less 

formal statistical training, 2) ANN implicitly detects complex nonlinear relationships among input 

and output variables, 3) ANN evaluates all possible interactions among effective variables, 4) ANN 

is computationally fast and requires fewer input variables in comparison with other data-driven 

methods, 5) ANN has powerful pattern classification and recognition capabilities [15], and 6) ANN 

is a self-learning technique suitable for predicting future states of a system [131]. Whereas 

disadvantages, ANN requires a large set of data for training and it is susceptible to overfitting. In 

contrast to multilayer perceptron (MLP) ANN, single layer perceptron (SLP) ANN often produces 

unreliable results due to the stochastic nature and the complexity of chemical and biological 

processes in water, and high variance and inherent non-linear relationships among influential 

variables [132]. This research employed the well-known MLP-ANN for the modeling of 

consumption values. 

NLA, GEP, MLP-ANN and MLR are the methods that were used in this research. Each method is 

classified in different modeling techniques categories. To select the model with the highest 

performance, wide variety of techniques were compared. Therefore, the present study employed 

these four techniques for the modeling phase. MATLAB V2019 was used for running the models 

to extract the results.  



33 

 

3.3 Methodology 

 Non-linear Local Approximation  

Non-linear local approximation (NLA) can forecast a system’s future without development of an 

analytical model [103]. This research applied NLA to (I) test the chaotic nature of consumption 

data and (II) forecast the consumption in the case study. The results for the first section are reported 

in chapter 2. It was concluded that the consumption dataset for the city of Kelowna has chaotic 

behaviour for all temporal resolution with the optimum embedding dimension of 17 for the daily 

and 2-day resolution. This was done by reconstructing the phase space of the dataset. It is critical 

in chaos analysis to reconstruct the multi-dimensional phase space that provides a conceptual 

pattern for the time series. The presence of attractors in phase space indicates the possibility of 

chaos in the data set. A phase-space reconstruction in a dimension m facilitates an interpretation 

of the underlying dynamics in the form of an m-dimensional map, fT, by:  

𝑋𝑗+𝑇 = 𝑓𝑇(𝑋𝑗) (3.1) 

where Xj is the vector of dimension m at the current state of the system at time j and Xj+T is the 

vector of dimension m at the future state of the system at time j+T. NLA entails the subdivision of 

the fT domain into many subsets. In other words, the dynamics of the system was described step-

by-step locally in the phase-space [133]. In an m-dimensional space, estimating the change of 

trajectory with time would lead to forecasting. Considering the relation between two states 𝑋⃗𝑡 and 

𝑋⃗𝑡+𝑝, the behaviour at a future time (p) on the attractor was forecasted by the mapping 𝐹⃗ as [99]: 

𝑋⃗𝑡+𝑝 ≅ 𝐹⃗(𝑋⃗𝑡) (3.2) 
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where the evolving dynamic of state 𝑋⃗𝑡 is influenced by nearby states. The future state 𝑋⃗𝑡+𝑝 was 

determined by the first-order polynomial mapping 𝑓 [134]: 

𝑋⃗𝑡+𝑝 ≅ 𝐹⃗(𝑋⃗𝑡) = 𝑎⃗ + 𝑓(𝑋⃗𝑡, 𝑋⃗𝑡−𝜏, … , 𝑋⃗𝑡−(𝑚−1)𝜏) (3.3) 

while the mapping 𝑓 is linear, the forecasted value is nonlinear [135]. This is because every state 

on the trajectory belongs to a different subset defined by different expressions for 𝐹⃗.   

 Gene Expression Programming 

Evolutionary soft computing techniques may be applied to solve engineering problems. Among 

these evolutionary techniques, genetic algorithm (GA), genetic programming (GP), and gene 

expression programming (GEP) are considered, inspired from Darwin’s theory of evolution [136–

139]. GA and GP work with a string of numbers and a specific length that is known as a 

“chromosome.” GEP defines an equation that shows the relationship between input and output 

values. Moreover, the process of the algorithm’s learning starts with the generation of 

chromosomes for a given random raw dataset that works with chromosomes and expression trees. 

Expression trees demonstrate the relationship among variables connecting with arithmetic 

operators. Chromosomes contain genes that provide a series of symbols of two parts, head and tail, 

which have functions, terminals, and only terminals, respectively. GEP follows the genome 

restructuring process by mutation, recombination, transposition, and gene duplication randomly. 

This random reputation will deliver the best model to be selected. This cycle will be continued by 

the reproduction of randomly generated chromosomes to reach the model with satisfying results 

based on defined evaluation criteria. In this research, 30 chromosomes with the head size of 8 and 

3 genes are reproduced with the linking functions of {+,−,×, 𝑥, 𝑥2, √𝑥, log 𝑥}. All models are 
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selected with a fair assessment by considering stopping condition of 5000 generations. Figure 3.1 

shows the scheme of the process with GEP method. 

 

Figure 3.1 Expression tree and mathematical function of two gene chromosome. 

 Multi-Layer Perceptron Artificial Neural Network 

This research employed multi-layer perceptron (MLP) artificial neural network (ANN), including 

input, hidden and output layers (Figure 3.2). The neurons and hidden layers are the most 

fundamental parts of ANN. In general, the number of neurons in the input and output layers vary 

with the number of the variables of the system under study. The numbers of neurons in the input 

and output layers are equal to the numbers of input and output variables, respectively.  

In hidden layers, each neuron calculates the sum of the values (xi) with weight (wij) and uses a 

transfer function (∅) to determine the output signal (uj). Figure 3.3 shows a neuron model with 

forecasting of consumption values as the output (Oj) defined by Equations (3.4) and (3.5): 

𝑢𝑗 = ∑𝑤𝑖𝑗𝑥𝑖

𝑝

𝑖=1

 (3.4) 

𝑂𝑗 = ∅(𝑢𝑗 − 𝜃𝑗) (3.5) 

where 𝜃 is a threshold limit [140–142]. 
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Figure 3.2 Simple configuration of multilayer perceptron neural network. 

 

Figure 3.3 Nonlinear model of a neuron. 

The transfer function is often monotonically increasing, continuous, differentiable, and bounded. 

Theoretically, the transfer function may take any form including sigmoid shape, piecewise 

function, step function, linear function (Purelin), and non-linear function. The logistic sigmoid and 

Purelin transfer functions are common in the literature [140–143]. This research studied a large 

number of input variables. Thus, the research applied no transfer function at the input layer in order 

to make the forecasting less computationally demanding. While the research applied all the above 
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transfer functions at the output and hidden layers, the logistic sigmoid and Purelin transfer 

functions provided the most accurate predictions. Back propagation learning technique was used 

to compare the predictions with measured data and to compute bias with (3.6) that was then fed 

back through the network [144]. 

𝐵𝑖𝑎𝑠 =
1

𝑁
∑(𝑅𝑖 − 𝐹𝑖)

𝑁

𝑖=1

 (3.6) 

where N, Ri and Fi are the number of observations, recorded values and forecasted values, 

respectively. Note that error is any difference between the predicted values, and the measured 

(true) values. While error makes up all imperfections and faults in results, bias is the error that is 

systematic in nature [142,143]. Representing the mean of all individual errors, bias reveals how 

over- or under-estimated the predictions are [144]. 

 Multiple Linear Regression 

When multiple linear regression (MLR) corresponds to a linear combination of the components of 

multiple signals x (e.g. Recorded consumption value, delayed consumption, or combination of 

them) to a single output signal y (water consumption) by: 

 

𝑦 = 𝑏 + ∑𝑎𝑖𝑥𝑖

𝑁

𝑖=0

 (3.7) 

where xi is the defined input (reconstructed phase space for consumption values) and ai is 

regression coefficient determined by the least square method with the residual r defined by: 

𝑟 = 𝑦 − 𝑎1𝑥1 − 𝑎2𝑥2 − ⋯− 𝑏 (3.8) 
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 Largest Lyapunov Exponent 

The rate of convergence or divergence in different dimensions is measured using the Lyapunov 

exponent. A deterministic system contains at least one positive Lyapunov exponent [145]. This 

research employed the approach proposed by Rosenstein et al. [145] to extract the value of 

Lyapunov exponent for the test case. After reconstruction of phase-space, a point Yn0 was selected 

and all the points in the neighborhood of Yn, 
with the closer distance of r to that point were found. 

r is the radius of a sphere with the content of Yn as the center. The procedure was repeated for N 

points in the route to find a stretch factor S: 

𝑆 =
1

𝑁
∑ ln [

1

|𝑢𝑌𝑛0
|
∑|𝑌𝑛0 − 𝑌𝑛|]

𝑁

𝑛0=1

 (3.9) 

where |𝑢𝑌𝑛0
| is the number of neighbors to point Yn0. The plot of S verses N consists of linear and 

nonlinear components. Literature provides two methods for calculating the largest Lyapunov 

exponent (𝜆𝑚𝑎𝑥). Shang et al. [146] determined 𝜆𝑚𝑎𝑥 as the slope of the linear part of the curve, 

while Rosenstein et al. [145] determined 𝜆𝑚𝑎𝑥 as the average of the slope of the first part and that 

of the second part [146,147]. This research applied the second approach to study different temporal 

scales. The forecasting horizon (∆𝑡) is a time in which the consumption dataset sustains its 

dynamics in the most accurate forecasting; ∆𝑡 was obtained as the inverse of the largest Lyapunov 

exponent: 

∆𝑡 =
1

𝜆𝑚𝑎𝑥
 (3.10) 
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 Evaluation of Model’s Performance 

This research measured the models’ accuracy by coefficient of determination (CD), root mean 

squared error (RMSE), and mean absolute error (MAE) defined as: 

𝐶𝐷 =

[
 
 
 

∑ (𝑅𝑖 − 𝑅̅)(𝐹𝑖 − 𝐹̅)𝑁𝑡
𝑖=1

√∑ (𝑅𝑖 − 𝑅̅)2𝑁𝑡
𝑖     √∑ (𝐹𝑖 − 𝐹̅)2𝑁𝑡

𝑖 ]
 
 
 
2

 (3.11) 

CC =
∑ (𝑅𝑖 − 𝑅̅)𝑁𝑡

𝑖=1 (𝐹𝑖 − 𝐹̅)

√∑ (𝑅𝑖 − 𝑅̅)2𝑁𝑡
𝑖     √∑ (𝐹𝑖 − 𝐹̅)2𝑁𝑡

𝑖

 
(3.12) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑖 − 𝐹𝑖)2𝑁𝑡

𝑖=1

𝑁𝑡
 (3.13) 

𝑀𝐴𝐸 =
1

𝑁𝑡
∑|𝑅𝑖 − 𝐹𝑖|

𝑁𝑡

𝑖=1

 (3.14) 

where Nt is the number of the recorded consumption values in the dataset, R and F are the recorded 

and forecasted values of water consumption, respectively. 𝑅̅ and 𝐹̅ are the mean of the recorded 

and forecasted consumption values, respectively. Note that the range of CD is between 0 and 1 

with higher positive values indicating better agreement. The range of CC is -1 and 1, where larger 

positive value of CC and a lower value of RMSE and MAE indicates better agreement between 

the observed and forecasted values. It should be noticed that to evaluate the performance of the 

models, only three of the fitness criteria is considered. The results are based on three different 

publications, which in each of the different criteria is used to select the models. 
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3.4 Data Information and Test Case 

 Understandings 

Unlike natural water resources like rainfall, the lower percentage of drinking water, which is 

changed to wastewater after use, goes back to the cycle. Water pressure in a pipeline, water quality, 

supply peak consumption time, pipeline maintenance, maintenance cost, specialist and educated 

human resources, pipeline failure management, etc. are the variables that should be under control 

at the same time. Also, to develop an integrated long-term plan, the availability of resources is 

crucial. Therefore, knowing about the value of consumption in a specific period is the first step for 

any management plan beyond urban drinking water supply and allocation systems. This chapter 

investigates the first step of every long-term plan development in urban drinking water, as 

discussed below. Water utility management needs drinking water long-term forecasted values in 

several terms. 1) water distribution network design; 2) supply and consumption management; 3) 

efficient application of distribution network; 4) pipeline pressure management; 5) network 

development; 6) optimizing the cost of water supply and network maintenance. 

 Study Area 

This section selected water consumption of the City of Kelowna (BC, Canada) as the test case. 

The City of Kelowna water utility provides services for approximately 79000 residents in water 

district boundary [110]. Poplar Point, Eldorado, Cedar Creek, and Swick Road pump stations cover 

services for 99% of the population of the area [109]. However, few areas in the boundary are 

named as “Future City” which do not contain any population yet, but land development plan shows 

water servicing is considered in the area. Monitoring of water quality, the operation of the pumps, 

water level in reservoirs, and pipeline pressure are conducted by the use of Supervisory Control 

and Data Acquisition system (SCADA). 
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 Review of Data Records 

Hourly water consumption for the stations, as mentioned above, has been made available by the 

city utility of Kelowna. The data used a time period of six years (approximately 52,464 hourly 

consumption) starting on January 1st, 2011 to December 30th, 2016. Concerning the six years water 

consumption samples of daily scale (2186 points), the first five years (1882 points) are used for 

calibrating the models, and the last year (365 points – 2016) is considered as the test period. Also, 

cross correlation and K-fold methods were used for training and testing splitting periods. Since, 

the periodicity of the time series are quite steady, it did not affect the results of models in selection 

of the best modeling technique. Therefore, to make consistence condition for selection phase, the 

last years was considered as the test period for the modeling phases. Table 3.4 shows the 

characteristics of the dataset in the test case for the daily temporal resolution that has been applied 

to evaluate the performance of models in the methodology. 

 

Figure 3.4 Time series plot of daily and monthly temporal scale of water consumption in City of Kelowna. 

Table 3.1 Statistics of water consumption of Kelowna City in different temporal resolutions (*m3). 

Property Number 

of Data 

Max. 

Value*                   

Min. 

Value*                    

Average*                       Standard 

deviation*     

Coefficient 

of variation 

Skew Kurtosis 

Data 2186 114597.2 14124 43046.4 20074.5 0.46 0.73 -0.38 
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3.5 Models Development and Results 

Non-linear Local Approximation (NLA): The present research studied whether the embedding 

dimension and lag time influence the accuracy of forecasted consumption values. First, forecasted 

values were evaluated for the embedding dimensions (ranging from 2 to 20) at lag times 1 and 17 

days to predict 1-day-ahead.  For m = 2 for a lag time of 1-day, two variables Dt and xt-1, and for 

m = 2 for a lag time of 17 days two variables Dt and Dt-17 were used as input variables to predict 

1-day ahead (Dt+1). Also, for m = 3 for the lag time of 1 and 17 days, three variables Dt, Dt-1, Dt-2 

and Dt, Dt-17, Dt-34 were used as input variables to forecast 1-day-ahead. Moreover, phase space 

was reconstructed for m>3.   Table 3.2 presents a summary of the 1-day ahead forecasted values 

that reconstructed phase-space in dimensions ranging from 2 to 20 for τ = 1 and 17 days. The 

overall average for all embedding dimensions CC > 0.96, RMSE< 4200 (m3/day) (8% of daily 

average consumption) and MAE < 49 indicate reasonable forecasting for each series. 

Moreover, the table reveals the best embedding dimension for the most accurate forecasted value 

in bold. Using CC, RMSE, and MAE, the optimum embedding dimension (mopt) was found to be 

18 and 19 for the lag time of 1 and 17 days, respectively. The results of NLA forecasting methods 

admit the same results that correlation exponent (or correlation dimension presented in chapter 2) 

and false nearest neighbor resulted in optimum embedding dimension (m=17 for CD and FNN for 

daily value). To evaluate the performance of selected m and τ, the results of the best models for m 

= 18, τ = 1 and m = 19, τ = 17 have been applied to forecast 2-, 4-, 7-, 14-, 30- and 60-days time 

step ahead (lead time) water consumption. Figure 3.5 shows the results of each model (NLA and 

PSR-NLA) in comparison with actual recorded values.  
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Table 3.2 Fitness values for NLA and PSR-NLA methods in different embedding dimension lag time and lead 

time. 

NLA , τ =1    T=1 PSR-NLA , τ =17    T=1 τ =1   m=18 

m CC RMSE* MAE m CC RMSE* MAE T CC RMSE* MAE 

1        1 0.9842 2855.6 43.07 

2 0.9759 3532.1 47.85 2 0.9751 3581.7 49.09 2 0.9783 3351.6 48.02 

3 0.9771 3424.8 47.34 3 0.9773 3425.3 48.01 4 0.9331 5883.5 63.03 

4 0.9762 3495.5 47.74 4 0.9789 3302.9 47.30 7 0.8932 7445.8 72.49 

5 0.9785 3332.0 47.08 5 0.9785 3331.7 47.10 14 0.7877 10555.0 87.76 

6 0.9795 3248.6 46.13 6 0.9795 3257.8 46.79 30 0.6735 13307.6 100.44 

7 0.9802 3187.3 45.49 7 0.9829 2967.1 45.80 60 0.2523 20189.1 129.71 

8 0.9805 3176.4 45.65 8 0.9838 2887.9 45.22 τ =17   m=19 

9 0.9806 3164.1 45.65 9 0.9849 2792.8 43.95 T CC RMSE* MAE 

10 0.9803 3193.6 45.09 10 0.9846 2828.2 44.52 1 0.9852 2772.8 43.83 

11 0.9813 3098.7 44.56 11 0.9850 2792.2 43.95 2 0.9898 2295.7 39.59 

12 0.9763 3495.1 48.11 12 0.9804 3189.4 46.69 4 0.9415 5504.2 61.47 

13 0.9752 3578.0 48.11 13 0.9768 3457.4 48.32 7 0.9002 7211.2 71.46 

14 0.9779 3378.9 47.14 14 0.9788 3303.6 47.65 14 0.8048 10147.5 86.61 

15 0.9806 3169.7 46.06 15 0.9790 3290.2 47.23 30 0.6776 13265.1 95.31 

16 0.9765 3491.0 47.24 16 0.9796 3250.2 46.70 60 0.4363 17784.9 118.53 

17 0.9810 3139.6 45.21 17 0.9825 2995.5 45.95     

18 0.9842 2855.6 43.07 18 0.9838 2894.0 45.21     

19 0.9685 4088.5 44.69 19 0.9852 2772.8 43.83     

20 0.9661 4209.2 45.29 20 0.9846 2833.1 44.43     

Tot 0.9775 3394.2 46.30 Tot 0.9807 3142.9 46.34     

Best 0.9842 2855.6 43.07 Best 0.9852 2772.8 43.83     

EM 18 18 18 EM 19 19 19     

 

 

Figure 3.5 Forecasted values for water consumption by NLA and PSR-NLA in comparison with actual recorded 

values. 
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The research indicated that the results were more sensitive to optimum embedding dimension and 

lag time calculated by AMI than to the reconstructed phase space by 1-day lag time. However, the 

difference between the results of NLA and PSR-NLA were not considerable, the performance of 

PSR-NLA was better than NLA to forecast consumption values in different lead time. As it is 

shown in Figure 3.5, PSR-NLA values are more concentrated on the actual values.  Moreover, mopt 

= 19 provided more accurate results than mopt = 18 in different lead time (Table 3.2). 

Gene Expression Programming (GEP): 

One of the most important steps in developing an accurate model is the selection of the input 

variables. The combinations were selected in a way that they included daily consumption data with 

lag times of τ = 1 and 17 days. Different combinations of the time series of daily consumption 

were used to structure a policy for input dataset. Combinations of Dt, Dt-1, Dt-2, …, Dt-20 variables 

were used as input data with Dt+1 (1-day step ahead) as output of the GEP, and combinations of 

Dt, Dt-τ, Dt-2τ, …, Dt-20τ variables were used as input data with Dt+1 as output of the PSR-GEP 

(forecasting of 1 day step ahead). The combinations of arithmetic functions of {+,−,×

, 𝑥, 𝑥2, √𝑥, log 𝑥} were used for GEP and PSR-GEP and PSR-MLR models, respectively. 

Ultimately, the best combination was selected using the criteria of CC, RMSE, and MAE. Table 

3.3 reveals the 20 combinations of inputs and their performance with GEP and PSR-GEP models. 

On the table, the three criteria indicate the fourth combinations (m = 4) for the lag time of 1-day, 

and (m=8) for the lag time of 17 days as the best combination of input data (reconstructed phase 

space) and arithmetic functions for GEP and PSR-GEP. The study revealed the followings for both 

GEP and PSR-GEP, respectively: 

𝐷𝑡+1 = 𝐷𝑡−1 + log[log (log(9.58𝐷𝑡−4)) × (𝐷𝑡−2𝐷𝑡−3)] + 8.253 (3.15) 
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𝐷𝑡+1 = 𝐷𝑡−𝜏 − 0.04𝐷𝑡−4𝜏 + 8.03√𝐷𝑡−4𝜏 + 0.623 (3.16) 

To investigate the accuracy of the forecasted values by equations (3.15) and (3.16), consumption 

values with different lag times were calculated. The results were not found more sensitive to lag 

time calculated by AMI (17 days) than to the 1-day lag time. However, PSR made the performance 

of the model better than m=4 with 1-day lag time. Moreover, regarding the equations (3.15) and 

(3.16), equation (3.15) used all four arithmetic operators made by m=4 (𝐷𝑡−1, 𝐷𝑡−2, 𝐷𝑡−3, 𝐷𝑡−4)  

 

Figure 3.6 Forecasted values for water consumption by GEP and PSR-GEP in comparison with actual recorded 

values. 

while equation (3.14) only used two of the arithmetic operators out of 8 operators (m=8; 

𝐷𝑡−𝜏, 𝐷𝑡−4𝜏). Table 3.3 compares further details for GEP and PSR-GEP models for different lead 

time forecasted values. 

Multi-Layer Perceptron Artificial Neural Network (ANN) 

Artificial Neural network (ANN) is another approach to model the consumption values 

represented in section 3.3.4. ANN’s structures have different hidden layer neurons (HLN) from 1 

to 10 with 100 epochs for each model. Table 3.4 represents the result of ANN for both 1-day  
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Table 3.3 Fitness values for GEP and PSR-GEP methods in different embedding dimension lag time and lead 

time. 

GEP , τ =1    T=1 PSR-GEP , τ =17    T=1 τ =1   m=4 

m CC RMSE* MAE m CC RMSE* MAE T CC RMSE* MAE 

1        1 0.9764 3486.6 47.83 

2 0.9757 3543.7 48.14 2 0.9789 3636.9 48.57 2 0.9494 5112.2 57.92 

3 0.9761 3517.8 47.91 3 0.9788 3644.6 48.59 4 0.9130 6716.4 67.48 

4 0.9764 3486.6 47.83 4 0.9789 3647.1 48.56 7 0.8652 8376.4 76.57 

5 0.9760 3519.0 47.95 5 0.9789 3635.5 48.68 14 0.7810 10734.8 88.95 

6 0.9760 3520.5 48.37 6 0.9788 3649.5 48.71 30 0.6548 13649.0 97.03 

7 0.9760 3500.9 47.91 7 0.9788 3649.0 48.70 60 0.2345 20411.3 130.23 

8 0.9760 3521.4 47.97 8 0.9789 3631.6 48.62 τ =17   m=8 

9 0.9760 3511.9 47.89 9 0.9788 3653.9 48.63 T CC RMSE* MAE 

10 0.9760 3514.7 47.89 10 0.9788 3650.6 48.73 1 0.9789 3631.6 48.62 

11 0.9760 3514.6 47.88 11 0.9788 3656.6 48.65 2 0.9553 5267.3 58.52 

12 0.9760 3514.7 47.89 12 0.9787 3657.4 48.69 4 0.9227 6894.5 68.47 

13 0.9760 3510.1 47.91 13 0.9789 3645.4 48.55 7 0.8713 8848.2 78.11 

14 0.9760 3516.6 47.91 14 0.9787 3655.7 48.69 14 0.7782 11571.8 91.84 

15 0.9760 3510.4 47.86 15 0.9788 3650.5 48.61 30 0.6334 14631.5 105.98 

16 0.9760 3498.7 47.88 16 0.9789 3644.4 48.54 60 0.3864 18670.2 126.20 

17 0.9759 3515.1 47.89 17 0.9789 3638.9 48.56     

18 0.9760 3509.7 47.85 18 0.9789 3646.6 48.57     

19 0.9759 3514.8 47.93 19 0.9787 3650.6 48.74     

20 0.9759 3514.2 47.90 20 0.9789 3642.5 48.51     

Tot 0.9759 3519.0 47.96 Tot 0.9788 3646.5 48.62     

Best 0.9764 3486.6 47.83 Best 0.9789 3631.6 48.51     

EM 4 4 4 EM 8 8 20     

 

delay and PSR values. The results in the table for each m are extracted from the result of various 

HLN and epochs. Figure 3.7 shows the example for selecting m=14 among (10×100=1000) for 

CC and RMSE. This calculation has been done for all m from 1 to 20 for both 1-day delay and the 

delay with the lag time (PSR). (1000×20×2=40000) number of calculations where the best 20 

values have been selected (Table 3.4). For all the models, m=1 to 20 is considered because of the 

results in chapter 2. The embedding dimensions with the higher fitness value were among the 

range of m=1 to 20. Then, the table provides the results for the m=1 to 20.   
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Selection of ANN structures are represented in Table 3.4 for the test period. Statistical indices for 

the fitness values showed m=17 for 1-day delay and m=14 for PSR, with the values of (CD= 

0.9802, RMSE=3183.7 and MAE=46.2) and (CD=0.9817, RMSE=3405.8 and MAE=48.4), 

respectively. Regarding the results, PSR-ANN mostly dominates in all embedding dimensions for 

the fitness accuracy indices. Figure 3.8 shows the comparison of the recorded and modeled values 

in the test period for both ANN and PSR-ANN in m=17 and 14, respectively.  

 
Figure 3.7 The results of ANN for τ =17 PSR by various HLN and Epochs. 

 

 

Figure 3.8 Forecasted values for water consumption by ANN and PSR-ANN in comparison with actual 

recorded values. 
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Table 3.4 Fitness values for ANN and PSR-ANN in different embedding dimensions (*m3/day). 

 ANN , τ =1    T=1  PSR-ANN , τ =17    T=1 τ =1   m=17 

m ST CC RMSE* MAE m ST CC RMSE* MAE T CC RMSE* MAE 

1          1 0.9802 3183.7 46.2 

2 2-2-1 0.9769 3450.2 47.4 2 2-4-1 0.9794 3600.6 48.2 2 0.9403 5811.38 62.97 

3 3-3-1 0.9774 3400.7 46.9 3 3-6-1 0.9792 3613.0 48.4 4 0.9127 7041.91 69.96 

4 4-1-1 0.9779 3373.5 46.9 4 4-4-1 0.9794 3600.5 48.1 7 0.8650 8776.83 78.39 

5 5-4-1 0.9776 3387.1 47.3 5 5-1-1 0.9795 3588.1 48.4 14 0.7873 11121.08 89.86 

6 6-3-1 0.9781 3340.4 47.3 6 6-8-1 0.9793 3610.8 49.1 30 0.6291 14502.09 104.25 

7 7-5-1 0.9766 3457.4 48.0 7 7-4-1 0.9791 3619.2 48.1 60 0.2222 20509.33 130.35 

8 8-1-1 0.9782 3348.6 46.9 8 8-6-1 0.9798 3587.4 49.2 τ =17   m=14 

9 9-4-1 0.9793 3291.8 46.9 9 9-4-1 0.9799 3548.7 48.2 T CC RMSE* MAE 

10 10-6-1 0.9791 3272.7 46.1 10 10-3-1 0.9799 3553.7 48.0 1 0.9817 3405.80 48.40 

11 11-6-1 0.9785 3320.9 46.9 11 11-8-1 0.9808 3538.0 48.7 2 0.9390 4692.09 55.09 

12 12-5-1 0.9790 3289.7 47.3 12 12-9-1 0.9805 3511.8 48.3 4 0.8655 7007.03 68.68 

13 13-1-1 0.9791 3263.3 47.1 13 13-7-1 0.9809 3482.8 48.3 7 0.7708 9186.85 79.04 

14 14-8-1 0.9791 3276.8 46.5 14 14-4-1 0.9817 3405.8 48.4 14 0.6244 11910.5 92.82 

15 15-5-1 0.9795 3238.5 46.8 15 15-9-1 0.9809 3486.4 48.8 30 0.4877 15014.8 106.15 

16 16-4-1 0.9799 3215.0 46.3 16 16-5-1 0.9801 3538.9 48.3 60 0.3862 18677.2 126.50 

17 17-3-1 0.9802 3183.7 46.2 17 17-3-1 0.9808 3498.0 48.3     

18 18-9-1 0.9793 3259.9 47.1 18 18-3-1 0.9806 3524.3 49.7     

19 19-7-1 0.9768 3472.1 47.9 19 19-6-1 0.9806 3489.7 47.5     

20 20-8-1 0.9783 3346.5 48.2 20 20-8-1 0.9803 3528.3 49.2     

Tot  0.9783 3335.3 47.1 Tot  0.9801 3547.6 48.5     

Best  0.9802 3183.7 46.1 Best  0.9817 3405.8 47.5     

EM  M17 M17 M10 EM  M14 M14 M19     
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Multiple Linear Regression (MLR): 

Microsoft Office Excel 365 was used to implement MLR model. The train period was used to 

derive regression coefficient from getting the value of variables in the linear equation. The 

availability of trained equation helped in testifying the previous year data as the test period. In the 

first fold, the 1-day delay was considered for m=1 to 20, and second fold applied 83-day delay. 

Table 3.5 shows the results of both MLR and PSR-MLR in the test period. Figure 3.9 shows the 

comparison of the recorded and modeled values in the test period for both MLR and PSR-MLR in 

m=17 and 3, respectively. The results showed (Dt, Dt-τ , Dt-2τ) as the best input combination for the 

models (m=3 for PSR-MLR). Statistical indices for the fitness values showed m=1 for 1-day delay 

and m=4 for the reconstructed phase space with the value of (CC=0.9789, RMSE=3638.45 and 

MAE=48.56) and (CC=0.9809, RMSE=3336.0 and MAE=48.17), respectively. The difference 

between the two models is not considerable, however, in the case of a large value of water 

consumption in long-term this difference can come into account. Moreover, the suggested equation 

for the best result by MLR is PSR-MLR with m=3 given by: 

𝐷𝑡+1 = −0.00854𝐷𝑡 − 0.0366𝐷𝑡+𝜏 − 0.0128𝐷𝑡+2𝜏 + 0.9427𝐷𝑡+3𝜏 (3.17) 

 

Figure 3.9 Forecasted values for water consumption by ANN and PSR-ANN in comparison with actual 

recorded values. 
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Table 3.5 Fitness values for MLR and PSR-MLR methods in different embedding dimensions. 

MLR , τ =1    T=1 PSR-MLR , τ =17    T=1 τ =1   m=17 

m CC RMSE* MAE m CC RMSE* MAE T CC RMSE* MAE 

1        1 0.9789 3638.9 48.56 

2 0.7825 11658.6 92.37 2 0.9758 3763.4 50.48 2 0.9494 5139.4 58.65 

3 0.9790 3762.3 49.89 3 0.9809 3336.0 48.17 4 0.9130 6701.6 68.26 

4 0.9790 3792.3 50.19 4 0.9811 3443.9 49.41 7 0.8595 8511.9 77.68 

5 0.9790 3814.1 50.42 5 0.9766 3905.5 52.04 14 0.7595 11204.4 91.66 

6 0.9790 3958.0 52.11 6 0.9148 22846.5 145.73 30 0.6447 13707.5 101.02 

7 0.9790 4133.6 54.24 7 0.9765 3568.2 48.60 60 0.2282 20211.2 129.01 

8 0.9790 4187.1 54.85 8 0.9764 3811.2 51.08 τ =17   m=3 

9 0.9791 4432.7 57.65 9 0.9766 3568.2 48.71 T CC RMSE* MAE 

10 0.9792 5024.0 63.46 10 0.9766 3680.4 49.81 1 0.9809 3336.0 48.17 

11 0.9792 5576.0 68.14 11 0.9767 3610.6 49.13 2 0.9555 5336.5 59.61 

12 0.9792 5921.4 70.92 12 0.9767 3603.9 49.04 4 0.9232 6889.3 69.17 

13 0.9793 6276.8 73.59 13 0.9766 3601.4 49.13 7 0.8723 8841.9 78.12 

14 0.9793 7267.0 80.61 14 0.9767 3584.5 48.92 14 0.7790 11549.8 91.70 

15 0.9794 9128.5 92.30 15 0.9769 3560.6 48.79 30 0.6344 14504.2 104.84 

16 0.9794 10115.3 97.81 16 0.9769 3550.4 48.73 60 0.3859 18351.2 125.12 

17 0.9789 3638.9 48.56 17 0.9769 3550.5 48.73     

18 0.9794 10114.2 97.80 18 0.9769 3560.4 48.81     

19 0.9794 10115.3 97.81 19 0.9768 3561.6 48.87     

20 0.9795 9618.8 95.07 20 0.9769 3610.5 49.39     

Tot 0.9595 6709.6 72.00 Tot 0.9738 4579.2 54.20     

Best 0.9795 3638.8 48.56 Best 0.9811 3336.0 48.17     

EM 20 17 17 EM 4 3 3     

 

Figure 3.11 plots the stretching factor (S) versus the number of points (N=100). The figure shows 

an overall increase in S by increasing N. Furthermore, the figure reveals two components: the first 

part reveals a sudden increase in S, while the second part (after N=25) shows a more gradual 

increase in S. Figure 3.11 also indicates the best line (dashed line) fitted to the second part. 

Following Rosenstein et al. [145], the present study revealed 𝜆𝑚𝑎𝑥 of 0.014, 0.0102 and 0.0082 

for m = 17, 18 and 19, respectively. Three different values of 𝜆𝑚𝑎𝑥 are considered because of the 

embedding dimensions range that were determined by CD, FNN, NLA and PSR-NLA, which were 

between 17 and 19. Note that m=18 and 19 were determined by NLA and PSR-NLA, respectively, 

which gave higher accuracy than the other embedding dimensions (see Table 3.2).  
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Largest Lyapunov Exponent and Forecasting Horizon: 

The forecasting horizons (Δt = 1/𝜆𝑚𝑎𝑥) were 72, 98 and 122 days for m = 17, 18 and 19, 

respectively. Also, m=17 with forecasting horizon value of 72 was determined by CD. Figure 3.10b 

shows the frequency of the data is smooth from day 1 to 72. Even with the high data frequency 

between days 98 and 122, PSR-NLA increased the forecasting horizon from 98 days (NLA) to 122 

days. Considering results of CD, NLA, PSR-NLA, and forecasting horizon, it is reasonable to 

select m=17 as the system’s optimum dimension. 

 

Figure 3.10 Estimation of  largets Lyapunov exponent for daily consumption (a) for embedding dimension of 

17, 18 and 19; (b) Observed values of water consumption in the test period. 

3.6 Discussion  

The results indicate that forecasting was more sensitive to optimum embedding dimension and lag 

time calculated by AMI (Chapter 2), than to the reconstructed phase space by 1-day lag time. It 

can be considered as the pre-processing method to improve the performance of the models. 

However, the difference between the results of NLA and PSR-NLA was not considerable; the 

performance of PSR-NLA was better than NLA to forecast consumption values in different lead 

time.  Moreover, mopt = 19 provided more accurate results than mopt = 18 (Table 3.2). Figures 3.5 

to 3.9 highlight the negligible error in the results of all models during the test period. Regarding 
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the average fitness results for all dimensions, the performance of GEP is better than PSR-GEP, 

while the application of PSR is shown in forecasting with equal dimension and different lead times. 

Considering the small difference among the forecasted values by different embedding dimensions 

in all models, it is recommended to test the optimum embedding dimension by various methods. 

However, their results are quite similar, the overview of approximation for all the techniques for 

multiple dimensions concluded that the optimum embedding dimension is between m=17 and 

m=19, demonstrating reliability of the methods. To compare the models, Table 3.6 shows the 

statistics of the forecasted and actual recorded data. The most accurate models which had the least 

percentage of error comparing to the actual recorded values were highlighted with a check mark. 

The results reveal the PSR technique had a positive impact on the accuracy of all models. As Figure 

3.10 shows, the performance of NLA and PSR-NLA was approximately similar for daily and 2-

days ahead forecasting, but PSR-NLA was more accurate than NLA in different lead time (1-, 2-

months ahead). Nevertheless, the slope of the fitted line for the fitness functions shows that PSR-

NLA can forecast more accurate values in comparison with NLA. The results of this application 

of PSR may also serve useful for application in long-term forecasting, which was previously 

identified in the literature as a topic requiring further study in drinking water consumption 

modeling. 

Table 3.6 Statistics comparison of observed and forecasted consumption in test period by the selected models. 

Property Observed NLA 

τ =1 

m=18 

PSR-NLA 

τ =17 

m=19 

GEP 

τ =1 

m=4 

PSR-GEP 

τ =17  

m=8 

MLR 

τ =1 

m=17 

PSR-MLR 

τ =17 

 m=3 

ANN 

τ =1 

m=6 

PSR-ANN 

τ =17 

 m=3 

Max. value 75620.26  ✓       

Min. value 21313.72    ✓     

Average 42500.82  ✓       

Standard deviation 16117.34        ✓ 

Coefficient of variation 0.38       ✓  

Skew 0.43  ✓       

Kurtosis -1.13  ✓       
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Figure 3.11 Performance of NLA and PSR-NLA in time ahead forecasting by the fitness functions of; (a) 

Correlation Coefficient; (b) Root Mean Square Error; (c) Mean Absolute Error. 

3.7 Summary 

An urban water consumption dataset from the City of Kelowna (British Columbia, Canada) was 

used as a test case to forecast future consumption values using varying lead times to identify 

models which may improve forecasting performance. NLA, MLP-ANN, GEP and MLR were the 

techniques for modelling the consumption values. Chaos theory techniques were compared with 

previously studied forecasting methods to assess the applicability of considering the chaotic 

behavior of urban consumption values to improve forecasting performance. Non-linear 

approximation, dynamic investigation, phase space reconstruction for input variables were 

considered to forecast various periodicity and lead time. Based on the selection criteria, NLA gave 



54 

 

the highest accuracy with 0.9852, 2772.8 and 43.83 for CD, RMSE and MAE, respectively. Also, 

PSR improved the accuracy of all models. Findings suggest that considering the chaotic behavior 

of consumption values (chapter 2) may improve forecasting performance. Further study of the 

chaotic behavior of consumption values may help inform forecasting methods to improve water 

distribution system management. 
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Chapter 4: Improvement of Soft-Computing Forecasting models’ Accuracy3 

4.1 Overview 

The limited availability of water resources is becoming significant, especially in arid and semiarid 

regions, due to climatic change. Factors like urban area development, population growth, and 

industry expansion are also reasons responsible for water resources scarcity. Therefore, it is 

necessary to understand the relation of available water resources and the active variables for 

assisting the governments in developing long-term plans for water-related problems (drinking 

water) in the future. For a practical management plan and its operation to supply proper drinking 

water for the future, accurate estimation and consumption information is required. The accurate 

estimation of drinking water consumption can also reduce the water stress of an area [6]. Many 

variables are affecting the forecast of water consumption values, but not as influential variables in 

other hydrological forecasting problems (e.g., river discharge, sedimentation, rainfall, temperature, 

etc.). In context to literature, commonly used input variables to forecast are temperature, humidity, 

precipitation and recorded consumption series [148–150]. The present accepted knowledge for 

these factors is still limited and depends upon 1) accurate estimation and forecast water 

consumption and 2) determination of type and degree of nonlinearity among the effective variables 

[151]. While studies have advanced in the understanding of nonlinear characteristics and high 

complexity of water consumption factors, further research is still required. The deterministic 

                                                 

3 A version of this chapter has been published as; Yousefi, P., Naser, G., Mohammadi, H. 2018. Application of Wavelet 

Decomposition and Phase Space Reconstruction in Urban Water Consumption Forecasting: Chaotic Approach (Case 

Study). Wavelet Theory and Its Applications, Intech; Yousefi, P., Shabani, S., Mohammadi, H., Naser, G. 2017. Gene 

Expression Programing in Long Term Water Demand Forecasts Using Wavelet Decomposition. Procedia Engineering 

186, 544-550.; Yousefi, P., Naser, G., Mohammadi, H. 2018. Hybrid Wavelet and Local Approximation Method for 

Urban Water Demand Forecasting – Chaotic Approach. Published in WDSA / CCWI Joint Conference 2018.  

 

https://www.intechopen.com/books/wavelet-theory-and-its-applications
javascript:void(0)
javascript:void(0)
https://ojs.library.queensu.ca/index.php/wdsa-ccw/issue/view/631
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approach is solely based on the input variables and their initial conditions, whereas, a probabilistic 

model relies on modeling uncertainties and randomness of the input variables. Given the 

significant challenges and complexity of probabilistic methods, and the fact that pre-processing 

methods can provide an accurate approximation to their probabilistic counterparts, this research 

focused on the application of pre-processing methods in improving the accuracy of the models.  

4.2 Background 

Midterm water consumption forecast helps the water management authorities to develop an 

integrated plan which balances supply and consumption in a given period. The applicability of this 

plan has direct relation with the accuracy of estimation for the future value of water consumption. 

In addition, water stress of an area can be reduced by accurate estimation of drinking water 

consumption [6,13,18,148,151]. Moreover, management can provide water sustainability based on 

their experience, as well as the accurate and reliable value of estimation of future consumption 

[28]. Literature enlists various deterministic and probabilistic techniques for forecasting urban 

drinking water consumption. In general, conventional methods were prevalent for a better 

understanding of determinants of water consumption which consider linear relationships between 

effective variables and water consumption, which is nonlinear. The mentioned studies are broadly 

categorized into two-fold: physical based and black box models. Without analyzing the physical 

processes, the second one applies artificial intelligence techniques (artificial neural networks, 

genetic programming, etc.), fuzzy-based (fuzzy logic, neuro-fuzzy, etc.), soft computing (support 

vector machine, etc.), and nonlinear deterministic (nonlinear local approximation, etc.) to identify 

the relationship between the input and output variables4. 

                                                 

4 See Chapter 3 for further details. 
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The dominant application of wavelet pre-processing is improving the accuracy of deterministic 

and probabilistic methods in forecasting problems [152]. Regarding the literature review reported 

by Nourani et al. [152], they concluded about the dominant application of wavelet-based models. 

Moreover, Labat [153] informed about the improving ability of wavelet in models’ performance. 

Therefore, the application of wavelet brought researchers attention into areas such as denoising 

[154]; stream flow and water resources [155]; evaporation and climatic models [156]; groundwater 

level modeling [157]; water consumption forecasting [44,150]. In most of the mentioned studies 

combination of Wavelet-ANNs performed accurately over conventional models without hybrid 

wavelet models (e.g. ARIMA, MLR, ANN and etc.). This chapter applies non-linear local 

approximation method (NLA), artificial neural network (ANN), gene expression programming 

(GEP), and multiple linear regression (MLR) to determine their performance with/without pre-

processing by phase space reconstruction (PSR) and wavelet decomposition in the case. To 

understand the dynamics of a nonlinear system, chaos theory could be successfully employed. The 

investigation about availability of chaotic behavior for the test dataset has been done in chapter 2. 

The results showed the chaotic behavior of the dataset for all temporal scales.  

Input variable selection (IVS) is another popular pre-process technique that is highlighted in the 

literature as a fundamental step in creating an accurate and computationally efficient model 

[158,159]. Computational efficiency as well as complexity of a model strongly depends on the 

type and number of influential variables.  Considering all influential variables in a water 

consumption model does not necessarily improve the model performance, however, a large set of 

input variables can cause many challenges in modeling. Selecting irrelevant variables or too many 

or too few variables as inputs can 1) increase the model’s complexity and computational burden, 

2) reduce computational efficiency of the model, and 3) decrease the model’s accuracy [160–165]. 
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The literature reveals a list of approaches for measuring the significance of variables and their 

relative importance [159,163,166]. The list includes correlation-based algorithm [162–164], 

connection weight approach [167], Garson’s equation [168], partial derivatives [160], input 

perturbation [169], sensitivity analysis [170],  forward stepwise addition, backward stepwise 

elimination, and improved stepwise selection [160], partial correlation input selection [171],  and 

partial mutual information [166,172]. Olden et al. [167] compared several techniques and reported 

the connection weight approach as the best, followed by partial derivatives and input perturbation 

approaches. While researchers mainly applied IVS to reduce the complexities and to improve the 

accuracy of the models, they focused less on the most relevant and ecologically meaningful input 

variables [159]. Therefore, this chapter employed Garson’s equation due to its simplicity in using 

the weights produced by MLP-ANN with no need for further information. It should be noted that 

the relevant literature provides applications of Garson’s equation and ANN to find each variable’s 

relative importance.  

The objectives of the present study are four-fold: 1) evaluating the performance of NLA, ANN, 

GEP, and MLR methods by reconstructing phase space with different lag time, and 2) applying 

wavelet decomposition to the case data and investigating chaotic behavior of decomposed values; 

then, 3) forecasting the case data by the developed model with combination of PSR-Wavelet 

Decomposition and the selected high performance models. 
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4.3 Methodology 

 Nonlinear Local Approximation5 

This chapter employs the correlation dimension since it is a general lower bound measure of the 

fractal dimension. The investigation of the time series has already been performed in chapter 2 and 

3, and hence, is applied in the analysis of the objectives for the present chapter. This section applies 

NLA to forecast short-term period in the case study that is performed by reconstructing the phase 

space of the dataset. In chaos analysis, it is complicated to reconstruct the multi-dimensional phase 

space, which conceptually is responsible for designing the general pattern of the time series as the 

input. A phase-space reconstruction in m-dimension reflects an interpretation of the underlying 

dynamics in the form of an m-dimensional map. In other words, the dynamics of the system were 

explained locally step-by-step in the phase-space. The measure of change of trajectory with time 

in m dimensional place would result in forecasting.  

 Gene Expression Programming6 

Initiating with the random generation of chromosomes, GEP is followed by different applications 

of genetic operators like replication, recombination, mutation, etc. The terminating condition for 

developing GEP depends upon the selection of maximum fitness. This section applied 30 

chromosomes, eight head sizes, three genes, and arithmetic operators of {+,-, ×, x, x2, √x}. 

 Artificial Neural Network7 

ANN is based roughly on the neural layout of the human brain and is capable of non-linear 

modeling processes that can classify the patterns and recognize the capabilities. Regarding the 

                                                 

5 Further details are available at section 3.3.1. 
6 Further details are available at section 3.3.2. 
7 Further details are available at section 3.3.3.  
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ability of multilayer perceptron (MLP)-ANN outperformance as a conventional ANN approaches 

[173,174], this section employed three-layer MLP-ANN (Input, Hidden and Output layers) and the 

different number of neurons. The number of neurons in the input layer varies from 1 to 10 (without 

decomposition) and 4 to 24 (with decomposition). Moreover, the neurons of the layers relate to 

the neurons in the next layer by weights. Also, to consider all optimal solutions with the highest 

probable accuracy, this study investigated the number of HLN from 1 to 20 in 1 to 200 epochs. 

 Multiple Linear Regression8 

The common application of the linear regression (LR) modeling method is to model the goal 

variable (Y) with a single input variable (X). Multiple linear regression (MLR) describes the 

relationship between the goal value (Y) and the number of input variables (X1, X2, …, Xn). In other 

words, MLR finds a relationship with a linear combination of independent explanatory variables 

(e.g., reconstructed phase space with a different number of embedding dimensions for recorded 

values of water consumption) and response variable (time ahead values of water consumption). 

 Pre-Processing 

4.3.5.1 Phase Space Reconstruction 

The system dynamics (e.g., water consumption) can be described by a single point moving on a 

trajectory, where each point represents a state of the system under a given set of physical variables 

and their interactions. The lag-embedding method helps in the reconstruction of phase space from 

univariate or multivariate time series generated under the deterministic dynamic system [97]. The 

underlying dynamics could be understood by constructing m-dimensional space Xt defined by: 

                                                 

8 Further details are available at section 3.3.4. 
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𝑋𝑡 = {𝑥𝑡, 𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, . . . , 𝑥𝑡−(𝑚−1)𝜏}    (4.1) 

where Xt is a vector of the observed data of {xt}t=1,…,N, N being the total number of observed data, 

τ is the lag time, and m is the embedding dimension. The lag-embedding method is sensitive to 

both embedding parameters of τ and m. The estimation of lag time can be calculated by the two 

popular methods, average mutual information (AMI) and autocorrelation function (ACF). To 

calculate the lag time in this research, ACF is used. In majority cases, wavelet transforms are 

employed for decomposition, de-noising, and compression of the time series [175]. Time series, 

based on the combination of low and high frequency represents improved features (e.g., cyclical 

trends) and chaotic element. Based on these frequencies, separated low and high frequencies 

entails the original pattern and behavior of the time series. Wavelet decomposition is used here to 

separate each level of frequencies in time series.  The decomposition level shows the subseries. 

Following the study of [13], applying the same decomposition transforms and comparing the 

results of the present models with the previous results, i.e., second and fourth order Daubechies 

(db2, db4) with level 3, were applied for the pre-processing of input variables. db2 and db4 were 

the decomposition functions of the selected models with the highest accuracy. The software 

MATLAB 2019 and 2018 (https://www.mathworks.com) was employed for the analysis of the 

study. 

4.3.5.2 Wavelet Decomposition 

Commonly, wavelet transforms are used for decomposition, de-noising, and compression of the 

time series [175]. Time series have a combination of low and high frequency which represent 

improved features (e.g., cyclical trends) and chaotic element, respectively [176]. Considering these 

frequencies, separation of low and high frequency is helpful in studying the original pattern and 
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behavior of the time series. One of the mentioned methods is discrete wavelet transform (DWT) 

to separate per level of frequencies in time series. One of the common discretion ways proposed 

by Mallat [177] that this study is used the mentioned DTW method to separate the frequencies of 

the applied data. In which, the level of the decomposition shows the subseries. For example, for 

level 1 decomposition, the number of subseries is two. Therefore, the number of levels indicates 

the number of subseries plus one. Level 3 is considered as a suitable decomposition level in the 

present study regarding the number of data (2186 day) and following Nourani et al. [175] that 

offered:     

𝐿𝑛 = 𝑖𝑛𝑡[𝑙𝑜𝑔(𝑁)]  (4.5) 

where Ln is the number, the level of decomposition and N is the number of used data. Thus, the 

proper level in this study is considered as 3. However, increasing the level number does not 

necessarily improve the accuracy of the models. Therefore, the original data are discretized in a 

high-frequency subset (a3) and three high frequencies as (d1), (d2) and (d3), where the summation 

of all is equal to the value of original data. This research employed Haar, the second and fourth 

order Daubechies (db2, db4), and the second and fourth order Symlets (Sym2, sym4) wavelets to 

decompose daily water consumption time series into sub-series.  

 Evaluation of Models’ Performance 

This research measured the models’ accuracy by coefficient of determination (CD), root mean 

squared error (RMSE) and mean absolute error (MAE) defined as: 
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𝐶𝐷 =

[
 
 
 

∑ (𝑅𝑖 − 𝑅̅)(𝐹𝑖 − 𝐹̅)𝑁𝑡
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𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑖 − 𝐹𝑖)2𝑁𝑡

𝑖=1

𝑁𝑡
 (4.8) 

𝑀𝐴𝐸 =
1

𝑁𝑡
∑|𝑅𝑖 − 𝐹𝑖|

𝑁𝑡

𝑖=1

 (4.9) 

where Nt is the number of values, R and F are the recorded and forecasted values of consumption, 

respectively. 𝑅̄ and 𝐹̄ are the mean of the observed and forecasted consumption values, 

respectively. Note that the range of CD is between 0 and 1 with higher positive values indicating 

better agreement. A lower value of RMSE and MAE indicates better agreement between the 

observed and forecasted values. 

4.4 Case Study and Dataset 

Following previous sections, this chapter also selected water consumption of the City of Kelowna 

(BC, Canada) as the test case. Table 4.1 shows the characteristics of the dataset in the test case. 

Figure 3.4 and Table 3.1 shows the daily consumption values and statistics of the used data in 

training and test period.  

4.5 Results and Discussion 

Existence of chaotic behavior in the time series is shown in Figure 4.2. However, in this chapter 

the results are not entirely based on the proof of having chaotic behavior, as the figure only shows 

possible low-dimensional chaotic behavior for only one scale of temporal resolution. Although, 

the investigation beyond the availability of chaos in the test case is proved in chapter 2 based on 
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the results of all temporal resolution. Theoretically, several methods are well known for 

investigating the chaotic behavior, such as lag time calculation method (e.g., average mutual 

information (AMI), Autocorrelation function (ACF), correlation dimension, largest Lyapunov 

Exponent, etc.). This chapter investigates the chaotic behavior by applying ACF (chapter two’s 

results were based on AMI) and correlation dimension. Having chaotic behavior allows the use of 

ACF to calculate the lag time of the time series. The value of lag time is considered as the first 

approach of ACF to 0 (Figure 4.21). The reason for considering two phase space techniques, AMI 

and ACF, is to investigate the performance of each methods in designing input combination for 

the forecasting models. Since, the results of both AMI and ACF shows the chaotic behavior in the  

 
Figure 4.1 (a) Autocorrelation function (τ); (b) Reconstructed phase space by (τ and 2τ -day lag time). 

data set, the results of fitness values for forecasting models can be the recognition criteria for 

selecting the appropriate methods for PSR. The results show 83-days as the lag time of the time 

series. Therefore, 83-days is used to design combinations of inputs as phase space for the time 

series. In this chapter, the difference between the 1st day and 83rd day is used as delay period for 

phase space reconstruction (PSR) varying embedding dimensions from 1 to 10 (m1: Dt; m2: Dt, Dt-

τ; m10: Dt, …, Dt-10τ). It should be noticed that several methods were introduced in literature to 

calculate the value of optimum embedding dimension, which may be more than 10 for the used 
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time series in this study. This study aims at showing the performance of embedding dimension and 

reconstructed phase space, where m is only considered 1 to 10 (further details are available in 

chapter two). Figure 4.1 shows the value of ACF for the consumption series and reconstructed 

phase space (τ=83). Figure 4.2a shows the relation between C(r) and r and (4.2b) correlation 

exponent by varying m. Figure 4.2b shows that the value of correlation exponent increases by m 

and as m=17, the correlation exponent reaches a specific value (Ce =3.41). The value of Ce in 

chapter two reported as 3.50, which was based on AMI. However, for both of Ce, upper value of 

4 is considered as the effective variable to define the system. Therefore, AMI and ACF both give 

reasonable results in the investigation of availability of chaos.  This constant value of Ce at m=17 

indicates the existence of the deterministic behavior of the time series. 

 
Figure 4.2 (a) The relation between correlation function C(r) and r by various m; (b) Saturation of correlation 

dimension Ce(m) with embedding dimensions. 

 Non-Linear Local Approximation 

83-days and 1-day lag time (calculated value of lag time in the mentioned study) are used to 

reconstruct the phase space with various embedding dimension from m=1 to m=10 (m1: Dt; m2: Dt, 

Dt-τ; m10: Dt,…, Dt-10τ for τ=1 and 83). This chapter researches whether pre-processing influences 

the accuracy of forecasted consumption values. First, NLA is used to forecast the short-term daily 

consumption values by embedding dimensions ranging from 1 to 10 at lag times 1- and 83-days to 
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forecast short-term future values. As an illustration of input variables, Dt, Dt-1 and Dt, Dt-83 are used 

as input variables for embedding dimension (m=2) for two lag times τ=1 and τ=83, respectively, 

to forecast 1-day ahead (Dt+1) consumption value. Table 4.1 presents the summary of the forecasted 

values with/without PSR.  

Table 4.1 Fitness values for NLA and PSR-NLA methods in different embedding dimensions. 

NLA , τ =1 PSR-NLA , τ =83 

m CD RMSE(m3/day) MAE m CD RMSE(m3/day) MAE 

1 0.9735 3706.12 49.11 1 0.9735 3706.12 49.11 

2 0.9759 3532.07 47.85 2 0.9741 3685.70 49.06 

3 0.9771 3424.84 47.34 3 0.9745 3623.66 48.73 

4 0.9762 3495.50 47.74 4 0.9773 3410.60 48.09 

5 0.9785 3331.98 47.08 5 0.9778 3380.71 47.87 

6 0.9795 3248.59 46.13 6 0.9785 3327.78 47.87 

7 0.9802 3187.30 45.49 7 0.9794 3252.34 48.05 

8 0.9805 3176.36 45.65 8 0.9795 3242.26 47.38 

9 0.9806 3164.13 45.65 9 0.9778 3381.76 48.23 

10 0.9803 3193.65 45.09 10 0.9770 3439.18 48.67 

The average of fitness values for all dimensions is CD>0.97, RMSE<37100 (m3/day) and 

MAE<50, which are the indication of reasonably calculated values. Moreover, the table shows the 

most accurate values in bold. The evaluation of the models for selected m and τ, showed 

CD=0.9806, RMSE=3164.13, MAE=45.65 and CD=0.9795, RMSE=3242.2, MAE=47.38 for τ=1, 

m=9 and τ=83, m=8, respectively. The results revealed that PSR pre-processing could not improve 

the performance of NLA in increasing the accuracy. However, PSR in MLR, ANN, and GEP 

models improved the accuracy of forecasted values, NLA and the mentioned methods are 

categorized into two different techniques. Although it appears to be due to the application of the 

methods, thorough exploring in needed to clarify which pre-processing methods are compatible 

with different techniques to improve the models’ performance. Figure 4.3 compares the forecasted 
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values by NLA and PSR-NLA to the observed data that are bolded in Table 4.5. Also, the results 

revealed that the performances of the models are more sensitive to the number of dimensions 

comparing to with/without PSR. Moreover, the results of models’ performance based on the 

designed input combination with AMI and ACF proved the priority of AMI in comparison with 

ACF. Previously, ACF and AMI were compared based on chaos investigation. Therefore, this 

research suggests using AMI for both chaos investigation and input combination design for 

forecasting models.  

 

Figure 4.3 The performance of NLA and PSR-NLA in comparison with observed values. 

 Gene Expression Programming 

GEP preliminarily investigates the relationship between input and output as discussed previously. 

Unlike the other models in this study, 1-day ahead is the output, and various combinations of input 

in terms of m are considered as input variables. The arithmetic operations used in this study are 

{+, - , ×, x, x2, √x}, and GEP applies them to fit the best accuracy between input and output 

variables. Further details of GEP initial term values are in following of [22,44,85] to extract the 

GEP model for both 1-day delay and PSR. The results are shown in the table 4.2 for the test period. 

According to Table 4.2, there is not much difference among the different m. However, the 

difference in PSR-GEP results can be considered as a proof of sensitivity to the initial values of 
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specific time lags where the variations of the results for different m are more than 1-day delay. 

There is not a significant difference in the results of this study comparing to other alternative 

models, especially PSR-ANN is not an advantage of GEP. However, extracting the mathematical 

equation through GEP is one advantage of GEP comparing to other artificial models. As a result 

of the given model, the equation for m=3 (PSR-GEP) can calculate the consumption value for 1-

day ahead by: 

𝐷𝑡+1 = 0.0529√𝐷𝑡+𝜏 + 𝐷𝑡+2𝜏 + 𝐷𝑡 − 7.0838  (4.11) 

Table 4.2 Fitness values for GEP and PSR-GEP in different embedding dimensions. 

GEP , τ =1 PSR-GEP , τ =83 

m CD RMSE(m3/day) MAE m CD RMSE(m3/day) MAE 

1 0.9494 3621.87 48.59 1 0.9565 3363.46 48.03 

2 0.9497 3609.82 48.37 2 0.9565 3357.00 47.82 

3 0.9494 3633.87 48.42 3 0.9569 3343.36 47.50 

4 0.9494 3637.74 48.42 4 0.9566 3359.53 47.95 

5 0.9494 3639.05 48.43 5 0.9562 3372.70 48.04 

6 0.9494 3619.77 48.60 6 0.9566 3359.64 48.08 

7 0.9495 3630.44 48.38 7 0.9564 3365.04 47.95 

8 0.9494 3634.41 48.42 8 0.9567 3353.24 47.62 

9 0.9494 3628.46 48.42 9 0.9562 3370.08 48.05 

10 0.9494 3631.12 48.40 10 0.9565 3356.68 47.84 

 

Although, variety of other arithmetic operations may have been applied here, focusing on the aim 

of study, only simple known operations were applied to extract the GEP equation. The results of 

PSR-GEP and alternative methods prove the advantage of PSR to improve the accuracy of the 

models. Statistical indices for the fitness values showed m=2 for 1-day delay and m=3 for the 

reconstructed phase space with the value of (CD=0.9497, RMSE=3609.82, and MAE=48.37) and 

(CD=0.9569, RMSE=3343.36, and MAE=47.50), respectively. Figure 4.4 shows the comparison 
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of observed and consumption values in the test period for both GEP and PSR-GEP in m=2 and 3, 

respectively. 

 
Figure 4.4 The performance of GEP and PSR-GEP in comparison with observed values. 

 Artificial Neural Networks 

ANN is another approach to model the consumption values which were represented in section 

4.3.3. ANN’s structures have different hidden layer neurons (HLN) from 1 to 20 with 200 epochs 

for each model. Table 4.3 represents the result of ANN for both 1-day delay and PSR values.  

Table 4.3 Fitness values for ANN and PSR-ANN in different embedding dimensions (*m3/day). 

 ANN , τ =1  PSR-ANN , τ =83 

m Structure Epoch CD RMSE* MAE m Structure Epoch CD RMSE* MAE 

1 1-3-1 70 0.9505 3641.27 48.53 1 1-6-1 60 0.9565 3397.03 47.81 

2 2-4-1 130 0.9508 3661.74 48.63 2 2-12-1 170 0.9564 3424.68 48.20 

3 3-7-1 10 0.9514 3583.31 48.25 3 3-4-1 140 0.9569 3367.37 47.64 

4 4-11-1 40 0.9520 3564.67 47.76 4 4-6-1 60 0.9570 3443.61 47.98 

5 5-6-1 60 0.9512 3620.06 48.35 5 5-12-1 90 0.9567 3395.01 47.51 

6 6-3-1 180 0.9514 3669.03 48.65 6 6-9-1 90 0.9570 3357.65 47.31 

7 7-16-1 110 0.9510 3621.90 48.45 7 7-7-1 130 0.9564 3403.48 48.17 

8 8-7-1 10 0.9509 3659.41 48.40 8 8-6-1 60 0.9565 3416.01 47.79 

9 9-3-1 150 0.9509 3684.60 48.43 9 9-17-1 30 0.9564 3448.65 48.64 

10 10-11-1 30 0.9515 3575.83 48.13 10 10-8-1 10 0.9566 3547.71 49.47 
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Selection of ANN structures are represented in Table 4.3 for the test period. Statistical indices for 

the fitness values showed m=4 for 1-day delay and m=6 for PSR, with the values of (CD= 0.9520, 

RMSE=3564.67 and MAE=47.76) and (CD=0.9570, RMSE=3357.65 and MAE=47.13), 

respectively. Regarding the results, PSR-ANN mostly dominates in all embedding dimensions for 

the fitness accuracy indices. Figure 4.5 shows the comparison of observed and consumption values 

in the test period for both ANN and PSR-ANN in m=6 and 3, respectively. The results showed (Dt, 

Dt+τ, Dt+2τ) as the best input combination for the models. 

 
Figure 4.5 The performance of ANN and PSR-ANN in comparison with observed values. 

 Multiple Linear Regression  

Excel 2010 was used to implement MLR model. The train period was used to derive regression 

coefficient from getting the value of variables in the linear equation. The availability of trained 

equation helped in testifying the previous years data as the test period. In the first fold, the 1-day 

delay was considered, for m 1 to 10, and second fold applied 83-day delay. Table 4.4 shows the 

results of both MLR and PSR-MLR in the test period. Statistical indices for the fitness values 

showed m=1 for 1-day delay and m=4 for the reconstructed phase space with the value of 

(CD=0.9565, RMSE=3642.89 and MAE=50.42) and (CD=0.9572, RMSE=3636.34 and 

MAE=51.04), respectively. However, the difference between the two models is not considerable, 
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in the large value of consumption in long-term this difference can come into account. Figure 4.6 

shows the comparison of observed and modeled consumption values. Moreover, the suggested 

equation for the best result by MLR is given by: 

𝐷𝑡+1 = −0.00854𝐷𝑡 − 0.0366𝐷𝑡+𝜏 − 0.0128𝐷𝑡+2𝜏 + 0.9427𝐷𝑡+3𝜏  (4.10) 

Table 4.4 Fitness values for MLR and PSR-MLR methods in different embedding dimensions. 

MLR , τ =1 PSR-MLR , τ =83 

m CD RMSE(m3/day) MAE m CD RMSE(m3/day) MAE 

1 0.9565 3642.89 50.42 1 0.9565 3642.89 50.42 

2 0.9565 3804.14 52.14 2 0.9565 3804.14 52.14 

3 0.9468 14106.70 112.82 3 0.9570 5319.51 66.90 

4 0.9473 13174.97 108.82 4 0.9572 3636.34 51.04 

5 0.9505 3724.99 49.81 5 0.9568 4167.55 56.45 

6 0.9503 3746.33 50.09 6 0.9569 5907.90 71.65 

7 0.9503 3747.49 50.10 7 0.9565 4370.03 58.86 

8 0.9493 6058.34 70.88 8 0.9566 4581.10 60.89 

9 0.9505 3736.33 50.02 9 0.9566 5023.16 64.71 

10 0.9506 3738.35 50.07 10 0.9566 4327.34 58.48 

 

 

Figure 4.6 The performance of MLR and PSR-MLR in comparison with observed values. 
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 Pre-Processing  

The combination of models with wavelet decomposition is derived by adding the output of each 

wavelet to the input of the models. Figure 4.7 shows the example of the decomposed values for 

water consumption time series by db2 transform function. To discrete the consumption values, five 

wavelet transforms were applied (Section 4.3.6). As suggested by Nourani et al. [175], 3rd level 

decomposition is recommended for 2186 point data. To evaluate the availability of chaotic  

 
Figure 4.7 Three level DWT of daily water consumption time series of Kelowna City in 2016. 

Table 4.5 Chaotic property identification of 3rd level decomposition of the daily water consumption. 

TF Wavelet τ m Ce 

db2 

A 83 9 2.1 

D1 2 9 3.4 

D2 3 9 3.5 

D3 4 9 3.5 

db4 

A 83 8 2.2 

D1 2 8 3.3 

D2 3 8 3.4 

D3 4 8 3.5 

behavior in decomposed values of the main test data, the third level of db2 and db4 are considered. 

Table 4.5 shows the results of the chaos investigation for approximation (A) and details (D) values 
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of case data. Figure 4.8 shows that the value of correlation exponent increases by m, but it reaches 

a steady value in m=9 for both db2 and db4. The value of the approximation (A) and detail 1 (D1) 

perform a chaotic behavior, but D2 and D3 of both db2 and db4 are not as steady as A and D1. 

Since each detail represents the different scale of the time series, the results reveal that to 

investigate the chaotic behavior of any time series, it is recommended to investigate all temporal  

 

Figure 4.8 Saturation of correlation dimension Ce(m) with embedding dimensions (a) db2 (b) db4. 

scales to claim whether the series have chaotic behavior. While, all temporal resolutions were 

investigated in chapter 2, based on the results, it was concluded that the test data set has chaotic 

behavior. Regarding this fact, it seems AMI method is more appropriate than ACF in calculating 

lag time to be used in chaos investigation. The hybrid model with the combination of wavelet 

preprocessing and NLA model is derived by replacing the decomposed values as inputs. The 

reason for selecting the 3rd level of db2 and db4 in this section is because of these two functions' 

performance in the results of all models that resulted in the highest accuracy in the same case. 

Hence, db2 and db4 are applied in this study to compare the results of NLA and W-NLA models. 

Table 4.7 indicates the results of wavelet decomposition for the selected models in the previous 

section. As the table highlights, db4 and db2 are the transforms which resulted in the highest 

accuracy in W-MLR and W-PSR-MLR, with the value of (CD= 0.9697, RMSE=2804.44 and 
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MAE=42.11) and (CD=0.9745, RMSE=2699.83and MAE=43.61), respectively. After implying 

the decomposed inputs for MLR and PSR-MLR for result comparison improved the results in both 

models. Also, sym4 and db2 are the transforms which resulted in the highest accuracy in W-ANN 

and W-PSR-ANN, with the value of (CD= 0.9915, RMSE=1486.21 and MAE=30.06) and 

(CD=0.9756, RMSE=2517.24, and MAE=41.68), respectively. Also, calculations for W-ANN and 

W-PSR-ANN are done with HLN 1 to 20 and epochs 1 to 200, and the mentioned results in the 

table are selective of the highest among them. Unlike the results of MLR, W-ANN more accurately 

forecasted the inversion of the results of ANN and PSR-ANN than W-PSR-ANN.” However, 

wavelet decomposition improved the results of W-ANN and W-PSR-ANN comparing to the 

alternative without decomposition. Moreover, db4 and db2 are the transforms which resulted in 

the highest accuracy in W-GEP and W-PSR- GEP, with the value of (CD= 0.9845, 

RMSE=2027.28 and MAE=36.62) and (CD=0.9753, RMSE=2532.21, and MAE=41.69), 

respectively. Following the results of ANN method, W-GEP more forecasted accurately than W-

PSR-GEP. However, wavelet decomposition improved the results of W-GEP and W-PSR-GEP 

comparing to the alternative without decomposition. Also, the table shows the results of W-NLA 

for both with/without PSR. The optimum embedding dimensions of NLA and PSR-NLA are 

selected for wavelet pre-processing (m=9 and 8). As the table highlights, db2 is the function which 

resulted in highest fitness values for both W-NLA and W-PSR-NLA with the value of (CD= 

0.9878, RMSE=3211.78 and MAE=45.61) and (CD=0.9924, RMSE=2759.18, and MAE=43.61), 

respectively. Unlike PSR, it seems wavelet pre-processing is compatible with the NLA method to 

improve the accuracy of the results.  All PSR models resulted in the highest values which used the 

decomposed inputs by db2 transform. It is noticeable that PSR affects the inherent of the time 

series which the results of performance of all models are in common about improving the accuracy. 
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Considering this fact, PSR can be introduced as a pre-processing method like wavelet 

decomposition; however, complexity and accuracy of PSR cannot be compared with the higher 

result of wavelet decomposition. Figure 4.9 and 4.10 shows the comparison of all selected models 

with highest accuracy in forecast of short-term water consumption values. The figure shows that 

the performance of W-ANN and W-GEP is better than W-PSR-MLR, while  

Table 4.6 Fitness values for decomposition of selection of models for the test period. 

Models Fitness 
Transform Functions 

haar db2 db4 sym2 sym4 

W-MLR 

CD 0.9612 0.9477 0.9697 0.9677 0.9694 

RMSE(m3/day) 3168.62 3681.17 2804.44 2893.60 2816.06 

MAE 44.48 49.04 42.11 43.54 42.24 

W-PSR-MLR 

CD 0.9670 0.9745 0.9719 0.9745 0.9712 

RMSE(m3/day) 3008.34 2699.83 2811.58 2699.83 2845.69 

MAE 45.39 43.61 43.95 43.61 44.24 

W-ANN 

CD 0.9868 0.9816 0.9861 0.9856 0.9915 

RMSE(m3/day) 1853.11 2189.15 2136.25 1948.28 1486.21 

MAE 33.78 36.91 39.50 33.86 30.06 

W-PSR-ANN 

CD 0.9685 0.9756 0.9723 0.9752 0.9715 

RMSE(m3/day) 2867.87 2517.24 2677.44 2547.89 2724.56 

MAE 43.16 41.68 42.09 42.19 42.61 

W-GEP 

CD 0.9721 0.9766 0.9845 0.9297 0.9255 

RMSE(m3/day) 2698.16 2492.46 2027.28 4311.60 4429.89 

MAE 41.21 39.05 36.62 54.23 55.25 

W-PSR-GEP 

CD 0.9667 0.9753 0.9721 0.9748 0.9704 

RMSE(m3/day) 2937.76 2532.21 2689.20 2555.82 2770.80 

MAE 43.66 41.69 42.13 41.90 42.51 

W-NLA 

CD - 0.9878 0.9924 - - 

RMSE(m3/day) - 3211.78 2759.18 - - 

MAE - 45.61 43.61 - - 

W-PSR-NLA 

CD - 0.9840 0.9877 - - 

RMSE(m3/day) - 3452.18 2930.82 - - 

MAE - 48.49 45.59 - - 
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W-ANN’s calculated values are more accurate than W-GEP in simulating peak points. This study 

eventually would be the extent of expectations in this study, but results are better than that for 

MLR, W-MLR, and GEP, W-GEP and ANN, W-ANN in forecasting the same case data. Also, the 

results of all four models presented revealed that the combination of both pre-processing methods 

(PSR and wavelet decomposition) at the same time would improve the accuracy, rather than  

 
Figure 4.9 The performance of the ANN, GEP and MLR models in comparison with observed values

Figure 4.10 The performance of the NLA and Pre-Processed NLA in comparison with observed values. 

applying one of them as is implied in Table 4.7. Figure 4.11 represents the performance of the 

models by residual values for the selected models with/without wavelet decomposition pre-

processing. However, wavelet decomposition increased the values of evaluation criteria here, but 

the other models have advantages which makes them important. NLA simulated the lowest  
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Figure 4.11 Residual values of the selected W-models. 
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consumption, whereas W-PSR-NLA simulated the peak consumption accurately. The peak values 

are decisive in managing water distribution network for satisfying allocation, and optimum 

pipeline design and the lowest values of consumption are essential in managing the optimum 

pressure within the network. Therefore, it can be concluded that the model with the highest 

accuracy is not an absolute optimum best model. To have an integrated dynamic WDS plan, 

knowledge of different models with their pros and cons in the different situation will improve the 

total efficiency of the application of any urban WDS. Therefore, it is recommended to evaluate 

models’ performance in two separate parts as maximum values and minimum values along with 

evaluating criteria such as CD, RMSE, and MAE for the test period. The difference is not visible 

in Figures 4.9 and 4.10. Therefore, focusing on Figure 4.11, it shows the performance of models 

by residual values in the test period. In Figure 4.11, the residual values show the remarkable 

difference of performance of models. The results show the performance of NLA with both PSR 

and W-PSR pre-processing is the most accurate model among the other models based on the 

forecasting accuracy within the horizon.  

4.6 Summary 

Over the past decades, hydrologists have paid attention to data-driven modeling techniques. City 

governments and WDS operators are always looking for an accurate estimation of water 

consumption values, not only for the future but also focusing on probable failures like peak 

consumption and pressure values to manage the WDS pipelines. Therefore, the wide variety of 

modeling techniques such as artificial and evolutionary simulation methods are proposed by 

researchers. This chapter investigated the performance of four techniques (NLA, ANN, GEP, and 

MLR) in forecasting short-term water consumption of Kelowna City (BC, Canada). Six years daily 

dataset was employed for training and testing the models. The first five years were considered to 
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train the model and the last year as the test period. All three techniques performed considerably 

accurate, while the focus of this chapter was on improving the accuracy of the models for the same 

dataset. Firstly, the model was calibrated by different input combinations with 1-day lag time. 

Then, models were calibrated by the lag time of the data set (83-day) which was calculated by 

ACF method. WDT was combined with the models to capture multi-scale features of the signals 

by decomposing observed consumption values into sub-series. Five WDT functions (haar, Db2, 

db4, Sym2, and sym4) were employed to decompose the dataset.  The results were then compared 

with the MLR, ANN, GEP and NLA when no pre-processing (PSR, WDT) was applied. The 

research results were more accurate than PSR. WDT have also improved the accuracy of models 

with PSR and without PSR. However, the impact of wavelet on the models with PSR was not as 

considerable as without PSR. The lowest error was reported by W-NLA among all alternative 

models in this chapter. Regarding the improvement of all models combining WDT and PSR, it is 

recommended to use the method in modeling and forecasting issues, especially about the dataset 

that the peak points are very critical in the case. The inherent behavior of dataset (deterministic or 

stochastic) can affect the performance of the pre-processing methods. Therefore, behavior of 

datasets should be investigated before deciding to combine any pre-process methods. 
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Chapter 5: Estimation of high-resolution water consumption time series9 

5.1 Overview 

To develop an integrated dynamic plan for water distribution systems (WDS), an approximate 

estimation for future values of water consumption is required. This plan is crucial for efficient 

customer satisfaction and the optimum allocation among industrial, commercial, and individual 

consumption. The estimation depends upon the increase of the rate of population and climatic 

changes. However, the information about influential variables (population growth rate, climate 

change, etc.) is limited. Hence, most of the research studies were done to evaluate water 

consumption for handling future probabilistic water disasters. Majority of well-known methods 

need to use high-resolution temporal scales of the data for reliable estimation of water 

consumption. 

Nevertheless, only well-equipped supervisory control and data acquisition (SCADA) systems can 

record such high-resolution data (e.g., high-resolution temporal scale, proper time series of 

pressure values in pipelines, etc.). Therefore, development of a method to transfer low-resolution 

scales (e.g., annual and monthly values) to high-resolution (e.g., hourly or daily events) scales is 

necessary. This chapter reports a newly developed cascade method to transfer the resolution among 

the scales. Moreover, the results are compared with the previously introduced disaggregation 

technique. Finally, the role of resolution transfer in forecasting models is highlighted with the same 

                                                 

9 A version of this chapter has been published as; Yousefi, P., Naser, G., Mohammadi, H. 2018. Application of Wavelet 

Decomposition and Phase Space Reconstruction in Urban Water Consumption Forecasting: Chaotic Approach (Case 

Study). Wavelet Theory and Its Applications, Intech. Yousefi, P., Naser, G., Mohammadi, H. 2018. Estimating High 

Resolution Temporal Scale of Water Demand Time Series – Disaggregation Approach (Case Study). HIC 2018. 13th 

International Conference on Hydro informatics 3, 2408-2416.  

  

https://www.intechopen.com/books/wavelet-theory-and-its-applications
javascript:void(0)
javascript:void(0)
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test case. Water consumption values of the City of Kelowna10 is considered as the test case for this 

chapter. 

5.2 Background 

A reliable water distribution management plan of an urban area requires the understanding of the 

behavior of series and consumption patterns in different spatial and temporal resolutions [11,178]. 

Temporal high-resolution time series enables better estimation of peak consumption values that 

are very important in a short-term plan, alongside, developing a maintenance plan for pipeline 

systems in the long-term period to overcome probabilistic failures in the network [12,22,44]. These 

theories also have interpolation and extrapolation methods based on recorded values in SCADA 

systems. Those recorded values are time-dependent, therefore, making them unable to provide 

satisfying high temporal scales. This chapter aims to present a method that allows the 

transformation of the data from a low-resolution to high-resolution temporal scale. The concept of 

transformation from one temporal scale to another is a phenomenon and varies according to the 

particular case. Firstly, it is recommended to the researchers of this field to investigate the scaling 

behavior. Regarding literature about disaggregation techniques, the time series need to have 

scaling behavior. Sivakumar [179,180] considered the subject from the scaling point of view, and 

studied the possibility of scaling behavior in the suspended sediment load of rivers. Valencia [181] 

proposed disaggregation methods to transfer low-resolution time series to high-resolution temporal 

scales. They applied their proposed technique to disaggregate annual river discharge into seasonal 

values. Various downscaling and disaggregating methods were used to estimate high-resolution 

                                                 

10 The test case in the articles are the City of Peachland (BC, Canada). To make this study consistence and compare 

the results off all techniques, the developed models are used to calculate the results for City of Kelowna (BC, Canada) 

as the test case. 
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values. Disaggregation including the value of rainfall in short-term temporal scales, down-scaling 

stream flow time series [182], evaluation of weather data [183–185] and river flow [186,187]. 

Random cascade method is one of the well-known disaggregation methods that has been used in 

the area of hydrology. Olsson [188] applied random cascade method to disaggregate rainfall values 

in Sweden. Burlando [189] evaluated two various stochastic disaggregation models based on 

random cascade method to gain observed values into a high-resolution scale. The mentioned 

methods were developed to apply in discontinuous data (e.g., rainfall).  

This study aims to estimate the high-resolution temporal scales of urban drinking water 

consumption. A newly developed cascade method that is based on weights and probability 

statistics of the recorded data would be used to transfer continuous low-resolution, i.e., monthly 

values, into high-resolution daily values in Kelowna’s public drinking water consumption (BC, 

Canada). 

5.3 Methodology 

 Power Spectrum 

The power spectrum is a standard tool in studying the properties scaling (fractal) time series 

[75,179,188]. If f is the frequency and β is an exponent, then the spectrum follows as power law 

equation: 

𝐸(𝑓) = ∝ 𝑓−𝛽  (5.1) 

Equation (5.1) could indicate index of the existence or absence one-time scale specified in the 

scope exponent and therefore assuming behavior scaling (fractal) is possible. Power spectrum is 

also useful for studying the oscillations process. In the general stochastic process, power spectrum 

oscillates randomly for the constant value that indicates series varying frequency is greater than 
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other frequencies. For periodic or quasi-periodic series, peak values exist in special frequency 

only, and measured noise adds a continuous layer to the spectrum. Therefore, in the power 

spectrum, signals and noises are easily recognizable [179]. 

 Random Cascade  

To disaggregate the time series, the cascade model divides the value of the consumption (V) of 

each temporal scale into two scales (V1, V2). Each of the two scaled values resulted from 

multiplying the weight value (W1, W2; W1+W2=1) to (V) [190].  Figure 5.1 shows the brief scheme 

of the process in random cascade disaggregating.   

 

Figure 5.1 Schematic representation of cascade weight distribution 

The idea of subdivision and boxes in cascade method has been taken from the proposed technique 

of [188]. This method disaggregates non-continuous rainfall data into short-term values. Since the 

consumption series are continuous values, this study suggests upgrading the technique to be 

applicable for continuous data (e.g., discharge, sedimentation, water consumption, etc.). Each box 

is subdivided into four; 1) have the value of demand be greater than both the previous and 

successive time; 2) lesser than the previous and greater than the successive time; 3) greater than 

the previous and lesser than the successive; 4) lesser than both previous and successive ones. The 

mean and median of the consumption values are considered as additional variables to divide 

different boxes. By combining all the information about the boxes, the probabilities of each box 
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P(x|x) are estimated, and a proper weight (Wi) were given to each value to be divided into two 

different values. 

 Non-Linear Deterministic Method 

To determine the degree of correlation of time series and the lag time, average mutual information 

(AMI) has been utilized (See Chapter 2). This function is a periodic phenomenon, which indicates 

stability of a relationship between repetitive values. It is assumed that 𝑥𝑖 , 𝑖 = 1,2,3, … , 𝑛 is a series 

of water consumption with a resolution of T1 and aims to find the values of (𝑧𝑖)𝑘, 𝑘 = 1,2,3, … , 𝑝 

in a high resolution, and also 𝑝 = 𝑇1 ⁄ 𝑇2 and values of xi according to (𝑧𝑖)𝑘, 𝑘 = (𝑊𝑖)𝑘 =

(𝑊𝑖)𝑘 × 𝑥𝑖 to (𝑧𝑖)𝑘, (𝑊𝑖)𝑘 is the distribution of transfer weights of Xi which is written to (𝑧𝑖)𝑘 

[75]. Figure 5.2 shows the scheme of the process.  

 

Figure 5.2 Schematic representation of distributions of weights between resolutions. 

According to nonlinear behavior of demand data, the evolution of sub-mechanisms must be 

considered by using phase space reconstruction [97]. This reconstruction makes it possible to draw 

a relationship between the first and subsequent condition by a functional equation.  

𝑌𝑗+𝑇 = 𝑓𝑇(𝑌𝑗) (5.2) 

By disaggregating the values of water consumption, the resolution increases from T1 to T2 and in 

this way the distributed weights of (𝑊𝑛+1)𝑘 can be determined. 
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 Evaluation Criteria 

This research measured the models’ accuracy by correlation of coefficient (CC), root mean squared 

error (RMSE), and mean absolute error (MAE) defined as: 

CC =
∑ (𝑅𝑖 − 𝑅̅)𝑁𝑡

𝑖=1 (𝐹𝑖 − 𝐹̅)

√∑ (𝑅𝑖 − 𝑅̅)2𝑁𝑡
𝑖     √∑ (𝐹𝑖 − 𝐹̅)2𝑁𝑡

𝑖

 
(5.3) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑖 − 𝐹𝑖)2𝑁𝑡

𝑖=1

𝑁𝑡
 (5.4) 

𝑀𝐴𝐸 =
1

𝑁𝑡
∑|𝑅𝑖 − 𝐹𝑖|

𝑁𝑡

𝑖=1

 (5.5) 

where Nt is the number of the recorded consumption values in the dataset, R and F are the recorded 

and disaggregated/forecasted values of water consumption, respectively. 𝑅̅ and 𝐹̅ are the mean of 

the recorded and disaggregated/forecasted consumption values, respectively. The range of CC is -

1 and 1, where a larger positive value of CC and a lower value of RMSE and MAE indicates better 

performance.  

5.4 Case Study 

The City of Kelowna is selected to evaluate the performance of the model based on their drinking 

water consumption (Table 5.1). Along with the consideration of scaling behavior of the used 

consumption data, embedded dimensions with phase space reconstruction, lag time, and 

disaggregation calculations have been done in five different temporal scales. Then the results of 

disaggregated values are compared with recorded data of the city. Six years of monthly data are 

considered for the test case. The test data in this chapter is the same as the previous chapters. As 
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seen in Table 5.1, the results of data characteristics are different from the previous chapters. Since 

the number of data that are used for disaggregation techniques should be equal to 2n (n=1,2,3…), 

compared to previous chapters, the number of used data is different. Table 5.1 shows the results 

for the used number of data for Kelowna water consumption values in five temporal scales. Figure 

5.3 show the time variations of the water consumption dataset for the selected number of data. 

Table 5.1 Statistics of water consumption of Kelowna City in different temporal resolutions. 

Property Daily 2-Day 4-Day 8-Day 16-Day 32-Day 

Number of Data 2048 1024 512 256 128 64 

Max. value                  (m3) 114597 210741 387912 748720 1370023 2617245 

Min. value                   (m3) 14124.00 31477 67642.00 153472 314633 655151 

Average                       (m3) 44466 88932 177865 355729 711458 1422916 

Standard deviation    (m3) 19920 39518 77977 153522 295206 571961 

Coefficient of variation 0.45 0.44 0.44 0.43 0.41 0.40 

Skew 0.68 0.66 0.61 0.60 0.49 0.46 

Kurtosis -0.44 -0.54 -0.69 -0.74 -0.99 -1.04 

 

Figure 5.3 Time series plot of daily and monthly temporal scale of water consumption values 
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5.5 Results and Discussion 

Figure 5.4 shows the result of power spectrum for daily scale of water consumption. The value of 

𝜷 can be calculated by the gradient of line, approximately 1.775; which is greater than 1, and 

represents scaling behavior of the time series [75]. 

 

Figure 5.4 Scaling analysis of time series. 

Therefore, the test case may potentially be used for transferring the temporal scales. This chapter 

aims to disaggregate the time series from the low-resolution scale into high resolution. Since the 

disaggregation techniques are based on phase space in relation with previous scales, availability 

of scaling behavior for the test case is necessary. 

To compare the results of the continuous cascade method with another well-known method, the 

non-linear deterministic method is used to disaggregate the value of water consumption. Regarding 

the literature, the application of this method is well-known among researchers and was applied to 

various hydrology areas (discharge, sediment, climate, etc.). As mentioned previously, the number 

of used data in this chapter is changed. Therefore, investigation of the availability of chaos in the 

new set is needed. Firstly, to calculate the lag time for the series in each temporal scale, average 
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mutual information method (AMI) is applied. Figure 5.5 shows the first local minimum as the lag 

time for the scale. Figure 5.5 shows the results of time determining and the values of 15, 10, 10, 

5, 6 and 2 are for the daily, 2-, 4-, 8-, 16-days and 32-days temporal scale consecutively. 

 

Figure 5.5 Average mutual information (τ) for the daily values of consumption and the values of five temporal 

scales.  

Figure 5.6a plots the results for correlation function versus log (r) for different embedding 

dimensions (m) varying in the range of 1 to 20 for the daily values of water consumption. To 

investigate the availability of chaotic behavior, the correlation exponents, Ce (m), were determined. 

The results are shown in Figure 5.6. Figure 5.6b shows that the correlation exponent increases with 

the embedding dimension up to a certain value and then remains steady. The figure reveals that 

the slope of larger (m) would become constant for all temporal scales. The saturation of the 

correlation exponent in a specific embedding dimension, is an indication of the presence of chaos 

in the dataset. Investigation of the chaotic behavior in different time scales for the test case of this 
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study is sufficient for following the objectives of this research. Furthermore, in chapter two, the 

results showed the chaotic behavior of the time series. By investigation of this time series, the 

embedding  

 
Figure 5.6 The relation between correlation function C(r) and r by different embedding dimensions for daily 

values; (b) saturation of correlation dimension Ce (m) with embedding dimension m for different temporal 

scales. 

dimension of 17 seems to be sufficient to explain the dynamic of the system (the results are shown 

in chapter two). The saturation values of the correlation exponent for all temporal resolutions are 

3.14, 3.01, 3.52, 3.66, 3.76, and 3.86 for daily, 2-, 4-, 8-, 16- and 32-days, respectively. Table 5.2 

shows the results of lag time and correlation exponent for all the temporal resolutions. The 

condition of Ce < 2logN (with N as the number of data) was satisfied for all the chaotic temporal 

scales except 32-days resolution (Ce is larger than the condition) [111]. To the best knowledge of 

the authors, the lower number of samples for the 32-days resolution is the reason of having a lower 

chaotic behavior.  

To transfer the resolutions from the lower scale to high resolution, the time series were divided 

into two groups. The first group is used for reconstruction of phase space and the second group, 

shows the performed fitness evaluation. Two disaggregation techniques are applied in transferring  
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Table 5.2 Average mutual information and correlation exponent values in different temporal resolutions. 

Time Scale AMI Correlation Exponent (Ce) 2 Log N > Ce 

Daily 15 3.14 6.62 

2-Day 10 3.01 6.02 

4-Day 10 3.52 5.41 

8-Day 5 3.66 4.82 

16-Day 6 3.76 4.21 

32-Day 2 3.86 3.61 

the resolutions. Based on the chaos approach, it is the non-linear deterministic approach [75]. The 

results of chaos and scaling behavior investigation proved the eligibility of the time series to be 

transferred by this method. Embedding dimension of m=1 to 20 shows the dynamic of 

reconstructed transportation; also, zero-degree approximation is utilized to find neighbors in the 

disaggregation process. The presented results are obtained from disaggregation of water 

consumption values (See Table 5.3). The results showed the acceptable performance of non-linear 

deterministic disaggregation method. Based on the selection criteria, the highest accuracy of the 

results is highlighted in Table 5.3 for the test period. 75% of the available data are used for training, 

and the remaining 25% is used for testifying the models. The embedding dimension of each 

resolution is different. The embedding dimension of 15 (m=15) is the selected dimension for the 

most accurate disaggregated among dimensions 1 to 20. Regarding the optimum embedding 

dimension of daily time series (see chapter 3), the results are reasonable.  Figure 5.7 shows the 

calculated values in comparison with observed values for the daily temporal scale. The selected 

values are for the 15th embedding dimension with CC= 0.954, RMSE= 5248 and MAE= 4260. 

Also, the number of samples for the test period for disaggregation of 2-days to 1-days is 512 (25% 

of 2048 samples).  
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Table 5.3 Accuracy of the disaggregated values in different temporal scales. 

32 to 16 16 to 8 8 to 4 4 to 2 2 to 1 m 

MAE RMSE R MAE RMSE R MAE RMSE R MAE RMSE R MAE RMSE R  

93522 122547 0.894 35463 49796 0.930 18714 23309 0.941 8852 10991 0.949 4379 5606 0.948 1 

89986 112960 0.906 36990 47749 0.936 19641 23843 0.939 8336 10908 0.950 4524 5646 0.947 2 

78802 113099 0.907 36380 46606 0.938 18948 24247 0.938 7719 9813 0.959 4664 5964 0.942 3 

81567 114835 0.905 37150 46848 0.938 18493 23142 0.943 8908 11363 0.946 4498 5601 0.948 4 

64150 83014 0.949 35793 47152 0.937 19071 23306 0.942 8818 11763 0.942 4810 6025 0.941 5 

69262 98817 0.928 32850 43465 0.947 20538 25997 0.929 9264 11796 0.942 4431 5686 0.947 6 

67723 85259 0.945 35222 45982 0.940 18129 23537 0.940 9657 12318 0.937 4520 5570 0.949 7 

60441 85406 0.946 34265 45741 0.940 18786 23165 0.942 10149 12433 0.936 4423 5620 0.948 8 

55587 84829 0.946 35936 45456 0.941 20501 25373 0.932 8785 11157 0.948 4568 5860 0.943 9 

63758 94099 0.933 32496 42959 0.947 19899 24298 0.938 9184 11914 0.941 4621 5756 0.945 10 

85177 104689 0.920 38678 47262 0.938 19538 25392 0.931 9012 11291 0.947 4543 5749 0.946 11 

78779 94084 0.935 33464 45095 0.942 21165 26249 0.927 8304 10672 0.952 4575 5782 0.945 12 

82365 109416 0.911 34186 47289 0.937 20781 26308 0.927 9077 11174 0.948 5012 6129 0.939 13 

86124 100437 0.924 42791 53637 0.921 17808 22576 0.945 8370 10755 0.951 5117 6236 0.937 14 

74771 97506 0.927 34933 49619 0.930 20102 25850 0.929 8128 10761 0.951 4260 5248 0.954 15 

72886 92533 0.935 43224 54834 0.917 19727 25434 0.931 8430 10926 0.950 4268 5296 0.953 16 

78302 103236 0.923 38814 50863 0.927 18767 23274 0.942 9025 11745 0.942 4244 5323 0.953 17 

72018 93216 0.934 32763 39343 0.956 19327 24726 0.935 8884 11583 0.944 4290 5452 0.951 18 

75587 94829 0.936 38821 49433 0.931 21918 26477 0.926 9416 12192 0.938 4529 5619 0.948 19 

63758 94099 0.933 30803 38924 0.956 21272 26556 0.927 9790 12441 0.937 4783 5892 0.943 20 
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Figure 5.7 Observed in comparison with Disaggregated values of water consumption for daily temporal scale 

in the test period with continuous cascade. 

However, the model used in the present study considered one variable (consumption values); 

applying the impact of related variables in water consumption such as weather information, 

holidays, peak hours, etc., seems to be more helpful for calibration of the model to estimate subs’ 

weight more accurately. It has not yet been reported to consider the mentioned variables in the 

models if they need to have scaling behavior, in which this study suggests for future work in the 

field to upgrade the continuous disaggregation techniques to be applicable in different conditions. 

Considering the application of both methods that make the high-resolution temporal scale available 

from lower resolution, their accuracy is acceptable. Comparing the results of each technique, non-

linear deterministic was more accurate than the continuous cascade technique. Figure 5.9 shows 

the residual of the selected embedding dimensions of non-linear deterministic and continuous 

cascade methods. 
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Figure 5.8 Residual values of the selected models for 2-Days to 1-Day in comparison with observed daily 

consumption value. 

As it is seen in the figure, both disaggregation methods have weaknesses in simulation of high 

frequency consumption and the peak values. Neglecting this weakness, the ability of transferring 

the resolution from lower temporal scale to higher temporal scale bring the attention to the 

forecasting area. Regarding the literature and findings of this research, the accuracy of the 

forecasting models has laid upon the availability of higher resolution input values.  

5.6 Summary 

In this chapter, continuous random cascade and non-linear deterministic methods were considered 

in order to attain high-resolution temporal scale data for given water consumption of Kelowna. 

The power spectrum was used to investigate the scaling behavior of the time series. The value of 

the power spectrum was reported 1.775, which is more than 1 and represents the presence of 

scaling behavior of the time series. Downscaling was applied to convert monthly (32-Days) values 

into daily values for both methods. The domain of the given weight for random cascade method 

was in the range of 0.3 to 0.7 for each defined sub boxes, which resulted from the investigation of 

the relation for different temporal scales. It was suggested to use other active variables on 

consumption values (e.g., temperature, humidity, average income, population growth, etc.) in order 
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to calculate more accurate values of weight for the subs. The well-defined weight will improve the 

accuracy of continuous random cascade model in disaggregating. The value of CC, RMSE, and 

MAE for downscaling 2-days to daily scale was more accurate than the other temporal scales. 

Also, to disaggregate consumption values by non-linear deterministic method, various embedding 

dimensions (EDs) varying from 1 to 20 were considered for different temporal scales. The lag time 

for different temporal scales was calculated by average mutual information (AMI). The optimum 

ED was 15 for the daily resolution, that was similar to the results of chapter 2. The difference in 

the value of the optimum embedding dimension was because of the difference in the number of 

samples. By comparing the applications of the two techniques, it was suggested that non-linear 

deterministic approach is more effective than continuous random cascade method in simulating 

the peak consumption values in this stage of the research (without applying the role of influential 

variables). The focus of this chapter was to realize the application of disaggregation methods, 

which are mostly used for hydrology issues, and into urban management areas (i.e., drinking water 

consumption). Having the mentioned methods (or similar techniques) in the area will help the 

governors of the cities with low SCADA equipment to solve considerable problems. However, the 

value of fitness criteria of the used methods was not perfect; the total consumption in large time 

scale is precisely equal to the recorded values. The total values of consumption are considered in 

WDS to design the network and management planning. The disaggregation methods can be 

considered as an adequate replacement for any other non-linear evolutionary forecasting methods 

because the cumulative values of their results are less accurate than disaggregation methods. 
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Chapter 6: Anomaly (Leakage) detection within a water distribution system 

6.1 Overview 

Drinking water resources are becoming more scares and that directly affect humans’ life. It is 

because of the direct relationship between population growth, climate change, industrialization 

and availability of fresh water. International water supply association (IWSA) estimate that 30% 

of fresh water is lost due to uncounted water including leakage, metering errors, pipeline burst and 

theft. This amount of loss is very considerable compared to the limited available drinking water 

resources. Therefore, it attracts municipalities’ and other authorities’ attention to control the loss. 

In addition to environmental and economic losses from leakage, it is risky for public health, as the 

water leaking from pipes can potentially take the contaminates into the resources. One of the 

methods to control these losses within a system is managing the distribution system to improve 

the reliability and availability of water supply and efficient operation of the system [191]. 

Implementing an audit system within a water distribution system (WDS) that is based on leakage 

control and detection program is a way to reduce the loss along with the aforementioned risks. 

This audit and detection system collect large amounts of data from the WDS. Interpreting this data 

is challenging due to influential variables on the water consumption, include seasonal variation, 

location of water supply, daily and weekly cycle, and peak demand cycles. Therefore, the reliable 

leakage management plan acts immediately, catching any anomalies on the allocation volume.  

Leak detection systems work based on detecting changes in target variables (e.g. acoustic, 

pressure, etc.) that happen following leakage. Leakage management with the acoustic equipment 

are modern computer-based instruments that measure the difference of sound of vibration within 

two points of a pile line to determine the leakage.  Though, this method helps to control the loss 

within a WDS, the large cost of maintenance, operation, online detection, equipment operation, 
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especially in a large WDS, make the method unsatisfactory. This section tries to suggest solutions 

to overcome the mentioned disadvantages. 

6.2 Background 

Current solutions and methodologies that are controlling and detecting the leak/burst in a WDS 

have various principals. Methods based on utilizing hardware and equipment’s like noise 

detection, gas injection and acoustic sensing are used for these techniques of leak/burst detection 

[192]. However, these techniques are considered as expensive leak/burst detection methods 

because of professional operator resource and slow running operation system. Therefore, recent 

studies are focused on developing techniques that are not costly and time consuming.  

Other methods that use fluid transient to examine the pipeline have been used, including transient 

analysis, frequency domain method and unsteady signal investigation frequently [193–197]. These 

techniques have lower cost compared to the equipment-based methods because they are based on 

numerical modelling methods. To the numerical models, they need pressure, or another dataset 

measured within the WDS that are sampled frequently. For example pressure abnormalities can be 

resulted from; 1) large water loss resulting from a burst, 2) power loss in a district which affects 

the performance of pumps in a network; 3) maintenance activities that results blocking a zone in a 

district; 4) operational activities such as reservoir, tank, pump, pipeline repair and change; 5) 

communication loss as a result of low power of signal which stop reading the data or sending the 

records to the cloud. These can affect the rate of water flow and velocity in pipelines, water quality 

in the network and the influential variables that are in relation to water consumption. To record 

these samples, large number of sensors should be implemented in the network. While, using 

numerical methods have pros about the costs, implementing the measuring equipment lead to high 
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expenditures. In total, these techniques have not succeeded in comparison with equipment-based 

methods [198]. 

Methods that use data maiming and artificial intelligence (AI) to process the operational factors 

(e.g. pressure, flow, quality, velocity etc.) are getting more useful compared to the previous 

equipment-based methods. Although data mining methods work based on the recorded data, the 

applicability and reliability of these techniques are still doubtful. Since, the anomaly detection 

element is on the soft-computing method, the devices for data acquisition are not necessarily 

fascinated and costly compared to the devices used for previous techniques.  Artificial neural 

networks (ANN), fuzzy systems, Kalman Filter, and hierarchical rule-based approach are such 

techniques that are proposed for anomaly detection [199–203]. AI methods don’t require high-

performance devices, while also sampling less frequently compared those transient analysis 

methods [198].  Moreover, the required number of pressure or flow measurements are lower than 

acoustic recording devices, therefore, there is no need for large number of implemented devices 

within the network. These advantages highlight the popularity of AI methods in leakage detection. 

This chapter explore alternative soft-computing data processing method for anomaly detection on 

WDS. The method is selected based on the application of models stated in previous chapters. Also, 

the application of the models is investigated with/without pre-processing to probe into 

improvement of the reliability of detection models.  

6.3 Methodology 

 Hydraulic Simulation  

The detection system uses data collected by the WDS simulation by way of virtual leaks within 

the system. AI based techniques and statistical data analysis are used to evaluate the anomalies 

and detect virtual leakage(s) in the system. A section of the district is considered as the test case. 
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Figure 6.3 locates the selected zone of anomaly detection. As figure 6.3 reveals, two leaks are 

defined independently in the system that they happen with a time lag and then by combining 

available information from all available signals and techniques to detect the leak events. The 

simulated network is based on peak consumption to design the pipelines and the needs of tanks, 

pumps, and valves. EPANET V2 is used for simulating the peak consumption within the data. The 

designed details of the EPANET model for the WDS is provided by the City unitality.  

The anomaly detection is simulated in seven phases: (1) perform the WDS without any defined 

leak within the target zone; (2) define virtual leaks in two different location (with the base of 5 

LPS) and perform the WDS; (3) interpret the software output in combination with the actual values 

in the same resolution (6 hours); (4) analyzing the data and investigation of availability of chaos 

in the dataset and phase space reconstruction for the models; (5) applying the selected forecasting 

models and pre-processing analysis to define the forecasting horizon; (6)  AI memory setting based 

on the forecasted models’ output; and (7) anomaly detection from the simulated consumption 

values by using the data of the target reservoir and zone’s main pipeline.   

 Models Implementation  

Correlation dimension method is used to investigate the availably of chaos in the dataset. for phase 

space reconstruction, average mutual information (AMI) is employed to calculate the lag time (For 

further details see chapter 2). Non-linear approximation (NLA) and ANNs are the selected 

forecasting methods (For further details see chapter 3). To analyze the data and anomalies, wavelet 

decomposition is employed as the diagnosis and pre-processing approach (For further details see 

chapter 4). Figure 6.1 shows the two spots of artificial leakage simulation within the target district.  
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Figure 6.1 Location of the test zone and the artificial leakages within WDS of the City of Kelowna. 

6.4 Case Study 

Lake Okanagan, Mission Creek, Mill Creek, Scotty Creek, Hydraulic Creek, and numerous wells 

are supplying the City of Kelowna’s water distribution system and provide service to 

approximately 65,000 residents plus commercial and business sectors [204]. Poplar Point, 

Eldorado, and Cedar Creek pump stations service 99% of the population. Additionally, the Swick 

road pump station services approximately 300 residents [204]. This study considered the hydraulic 

model that is simulated by EPANET V2. The hydraulic simulation of the district is provided by 

the City utility. The output data of the simulated WDS is synchronized in 6hour resolutions to 

cover four different demand times within 24 hours. The consumption pattern is defined based on 

actual data in this research. Figure 6.2 shows the district water consumption pattern which is based 
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on average consumption for the actual test case for hourly data since January 1, 2010 to December 

30, 2016.  All datasets are divided into two groups, as the training and the test period to calibrate 

the estimation models for data anomaly detection. Figure 6.3 presents the pipeline within the WDS 

district. 

 

Figure 6.2 The City of Kelowna’s water consumption pattern within 24 hours. 

6.5 Results and Discussion 

 Review of Data Records 

Hourly water consumption for the target zone, as mentioned above, have been selected from the 

hydraulic model of the WDS of the city of Kelowna. Three datasets have been simulated; (1) 

Consumption value supplied by Eldorado reservoir in the target district; (2) Consumption value of 

the reservoirs with one-leaked artificial node; (3) Consumption value of the reservoirs with two-

leaked artificial node. Figure 6.4 shows the variation of 6-hour water consumption without any 

leakage within the district. Since the simulated WDS is based on the peak values to design the 

system, the time series is not based on actual consumption values. Therefore, the normalized unit  
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Figure 6.3 Water Distribution System of the City of Kelowna (EPANET Layer). 
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Figure 6.4 Time series plot of one-year (a) actual weighted consumption values; (b) simulated consumption 

values. 

of the real data of the same time scale (6-hours) is used to transfer the hydraulic output into reliable 

actual data (Figure 6.4a, b). The data is divided into two parts for the training and testing period. 

The first 10 months (with the 6-hours resolution) is used for training the models and the last two 

months to evaluate the performance of trained models. The artificial leakages are employed in the 

second week of each month in the test period on the same day and same hour to analyze the 

performance of detection models and evaluate their accuracy (day 10th at 12:00 pm). Table 6.1 

shows the characteristics of the dataset in the test case for the three datasets. 

Table 6.1 Characteristics of the water consumption values for three scenarios in target zone. 

Property Without Leak 1-Leak 2-Leak 

Number of Data 1457 1457 1457 

Max. value                  (L/S) 247.40 250.14 266.74 

Min. value                  (L/S) 211.37 211.37 211.37 

Average                      (L/S) 224.87 225.28 226.20 

Standard deviation   (L/S) 8.41 9.45 10.21 

Coefficient of variation 0.04 0.04 0.05 

Skew 0.57 0.74 0.74 

Kurtosis -0.57 -0.40 -0.31 
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 Phase Space Reconstruction and Investigation of Chaotic11 

The investigation beyond the availability of chaos in the test case is proved in chapter 2 based on 

the results of all temporal resolutions for the actual consumption values of the test case for the 

whole WDS districts. Although, the data used in the previous chapters was the total consumption 

of the day, this chapter uses the rate of consumption in a specific time represented as liter per 

second. This chapter investigates the chaotic behavior by applying average mutual information 

(chapter 2’s results were based on AMI) and correlation dimension. The value of lag time is 

considered as the first local minimum (figure 6.5). Previously, both lag time calculation methods 

have been investigated, and the results showed the priority of AMI in comparison with 

autocorrelation function (AFC) in chaos investigation. Figure 6.6 presents the reconstructed phase 

space based on the lag time calculated by AMI.  

 

Figure 6.5 Average Mutual Information for the weighted consumption value. 

                                                 

11 Further details of phase space reconstruction are available in sections 2.3.1 and 4.3.5.1. 
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The results show 3 scales (1-time scale = 6 hours) as the lag time of the time series. Therefore, 18-

hours is used to design combinations of inputs as phase space for the time series. In this chapter, 

the difference between the 1st hour and 18th hour is used as a delay period for the phase space 

reconstruction (PSR) with varying embedding dimensions from 1 to 20 (m1: Dt; m2: Dt, Dt+τ; m20: 

Dt, …, Dt+20τ).  

 

Figure 6.6 Reconstructed phase space by (τ and 2τ -day lag time), for the weighted consumption value. 
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Figure 6.7 shows the relation of C(r) with r and correlation exponent by varying m. Regarding 

Figure 6.7, the value of correlation exponent increases by m, and as m=9, the correlation exponent 

reaches a specific value (Ce =2.83). The value of Ce in chapter 2 was reported as 3.50 and section 

three 3.41, which was based on AMI and ACF for the total actual consumption values of the 

district, respectively. However, for both Ce, the upper value of 4 is considered as the number of 

active variables to define the system, the lower value of the correlation exponent for the weighted 

simulated values is related to the small size of the district with the limited simulation joints. 

Therefore, the availably of chaos in the dataset gives opportunity to use the most accurate 

forecasting model in this research (Nonlinear local approximation). 

 Forecasting Model - Non-linear Local Approximation12 

Forecasted values were evaluated for the embedding dimensions (ranging from 2 to 10) at lag 

times 1 and 3 unit (6 hours each unit) to forecast 6-hours-ahead (lead time T=1).   

 

Figure 6.7 (a) The relation between correlation function C(r) and r by various m; (b) Saturation of correlation 

dimension Ce(m) with embedding dimensions. 

                                                 

12 Further details of non-linear local approximation forecasting model are available in section 3.3.1. 
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 For m = 2 for a lag time of 1 unit (6 hours), two variables Dt and Dt-1, and for m = 2 for a lag time 

of 3 units (18 hours) two variables Dt and Dt-3 were used as input variables to forecast 1-day ahead 

(Dt+1). For m= 3 for the lag time of 1 and 3, three variables Dt, Dt-1, Dt-2 and Dt, Dt-3, Dt-6 were used 

as input variables to forecast 1unit ahead. Moreover, phase space was reconstructed for m > 3.   

Table 6.2 Forecasted results of NLA and PSR-NLA for embedding dimensions in the test period. 

NLA , τ =1    T=1 PSR-NLA , τ =3    T=1 

m CC RMSE* MAE m CC RMSE* MAE 

1        

2 -0.019 6.58 2.35 2 0.830 2.53 1.36 

3 0.148 5.37 2.07 3 0.830 2.53 1.34 

4 0.213 5.00 1.94 4 0.815 2.68 1.37 

5 0.803 2.73 1.39 5 0.787 2.84 1.41 

6 0.809 2.70 1.37 6 0.818 2.66 1.37 

7 0.806 2.71 1.37 7 0.812 2.71 1.39 

8 0.789 2.86 1.40 8 0.796 2.80 1.42 

9 0.783 2.89 1.42 9 0.771 2.97 1.46 

10 0.817 2.67 1.36 10 0.808 2.72 1.40 

Tot 0.594 3.63 1.61 Tot 0.807 2.72 1.39 

Best 0.817 2.67 1.35 Best 0.830 2.53 1.34 

EM 18 18 18 EM 19 19 19 

Table 6.2 presents a summary of the 6 hours ahead forecasted values that are reconstructed phase-

space in dimensions ranging from 2 to 10 for τ = 1 and 3. The overall average of fitness values for 

all embedding dimensions are CC > 0.59, RMSE< 3.63 (l/s) and MAE < 1.61.  Comparing to the 

results in chapter 3, the lower value of the fitness functions for the forecasting model is training 

the models with lower number of the data. As stated, previously, long-term training period will 

train the models to estimate the actual values accurately. Figure 6.8 shows the results of each model 

(NLA and PSR-NLA) in comparison to simulated weighted values.  
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Figure 6.8 Forecasted values for water consumption by NLA and PSR-NLA in comparison with simulated 

weighted values.  

The difference between the results of NLA and PSR-NLA were not considerable; the performance 

of PSR-NLA was better than NLA to forecast consumption values in lead time. As it is shown in 

Figure 6.8, PSR-NLA values are more concentrated on the actual values. Therefore, PSR-NLA is 

the potential forecasting model for processing this chapter. The aim of this section is employing 

an AI method to detect any probable anomalies. Phase space reconstruction is the only pre-

processing method combined with the selected forecasting model. 

 Leakage Signal Analyzing13 

The leakage events that are simulated on the same day and time of a week in the testing period are 

decomposed. Symlet 2 is used to decompose the signals in 5 levels. Symlet were the selected pre-

processing method in improving the accuracy of all forecasting models. A higher number of levels 

are chosen to investigate further details on the changes within the signals. Figure 6.9 shows the 

signal in approximation value (A) and five details (5 Levels).  

                                                 

13 Further details of wavelet decomposition are available in section 4.3.5.2.  



108 

 

 

Figure 6.9 Decomposed values for approximation in 5 level with Symlet function for three scenarios. 

To investigate the details within the time series of all scenarios, five levels of decomposition is 

employed. However, it was reported previously in this research that 3 levels of decomposition are 

sufficient (based on the number of data within the time series), a higher level of decomposition 

would give further details.  

Figures 6.10-14 show the difference in the detailed decomposed time series for each scenario. All 

the graphs are for the testing period. The test period for the test case is the two last months. Scenario 

I is the application of WDS without any leakage in the target district, scenario II with one leakage 

and scenario III is the target district with two leakages. The locations of the leakages are 

highlighted in Figure 6.3. 
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Figure 6.10 Decomposed values for detail (d1) in 1st level with Symlet function for three scenarios. 

 

Figure 6.11 Decomposed values for detail (d2) in 2nd level with Symlet function for three scenarios. 
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Figure 6.12 Decomposed values for detail (d3) in 3rd level with Symlet function for three scenarios. 

 

Figure 6.13 Decomposed values for detail (d4) in 4th level with Symlet function for three scenarios. 
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Figure 6.14 Decomposed values for detail (d5) in 5th level with Symlet function for three scenarios. 

The AI tool combined with the SCADA system get updated by the new pulse of data. Therefore, 

the forecasting model forecasts the approximate values of the future (expected short-, mid-term 

values of consumption). The forecasted horizon is based on the previously recorded data. 

Meanwhile, if any changes happen within the system, the signal analyzing tool of SCADA (based 

on wavelet decomposition) detects the changes. Since the data has chaotic behavior, any small 

changes in initial condition will result in a significant difference after some time [103]. Figure 

6.15-19 show the changes in signals of the forecasted values and the potential changes in each 

scenario. The results show the ability of the introduced technique in detecting the approximate 

time of the leakage. 
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Figure 6.15 Residual of decomposed Values of forecasted consumption for d1, scenarios (II) and (III). 

 

Figure 6.16 Residual of decomposed Values of forecasted consumption for d2, scenarios (II) and (III). 

 

Figure 6.17 Residual of decomposed Values of forecasted consumption for d3, scenarios (II) and (III). 
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Figure 6.18 Residual of decomposed Values of forecasted consumption for d4, scenarios (II) and (III). 

 

Figure 6.19 Residual of decomposed Values of forecasted consumption for d5, scenarios (II) and (III). 

In the figures, the red boxes are the potential time range (6 hours each) for the probable anomalies 

within the decomposed signals. The results are based on the Symlet function in 5 levels. This 

research recommends employing different functions on different levels. The behavior of time 

series for different districts is not the same; therefore, to upgrade the leakage detection model, 

various functions and different levels would improve the performance of the detection method. 

Figure 6.20 shows all possible logical relations among the limited range of potential signal changes 

for different sets. 
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Figure 6.20 Logical relation for five levels of Symlet function for the residual values. 

Figure 6.20 highlights the timeline with potential leakage. The results for the second scenario (blue 

color in Figure 6.20) are more accurate than the first scenario. To the best knowledge of the author, 

it is because of the length of training and testing period. From the first to the second scenario, there 

are more data employed to calibrate the models. In a chaotic time series, a higher number of data 

will improve the calibration of the models. This research estimated the approximate time for two 

simulated artificial scenarios. The estimation is 38-45 units and 158-163 units for first and second 

scenarios, respectively (each unit is 6 hours). The exact time for the leakage is on the 10th day of 

each month in the test period at 12:00 pm. Based on the defined units, it is on the 41st and 161st 

units on the timeline. The results showed the developed AI in combination with SCADA devices 

gives the opportunity of detecting accurately the time that leakage appears within the target district.   

6.6 Future Implementation 

The presented methodology shows the ability to detect leakage in WDS districts from the aspect 

of the timeline. The results were simulated on a small target district within a large WDS for the 

test case. The test data were based on the reservoir that supplies the target district. The test case is 
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provided through different reservoirs and tanks that are presented in the section of the case study. 

To calibrate the presented models and techniques, online recording for the consumption values are 

necessary. The second step of Integrated WDS management is localizing the leakage. Having the 

approximate time for the event plus analyzing the signals pulsed from implemented devices in 

specific joints (location) within a WDS, provide enough information to detect the time and location 

of the leakage. 

6.7 Summary 

In this chapter, a supervised data-driven approach and signal tracking technique of hidden 

variables were employed for detection of anomalies in a WDS. The primary focus of this chapter 

was on the analysis of the consumption value of a reservoir in the test case. Many of the reported 

methods in the literature can recognize unusual patterns or anomalies in time series, the advantage 

of the presented technique is the detection of any changes in consumption pattern in a specific 

timeline. A target district was selected from the simulated hydraulic model of the City of Kelowna 

to evaluate the performance of the detection procedure. Two events were simulated within the 

district. In the first event, one artificial leakage, and in the second event, two leakages were 

defined. The events were defined at the same timeline of each month in the test period. NLA model 

employed to estimate the future expected values of consumption. Then, the value of consumption 

in the target district was analyzed by the wavelet decomposition approach. Symlet function was 

used to decompose the forecasted values and leakage events in 5 levels. The results showed that a 

combination of forecasting model and signal analysis technique recognized the pattern change 

within the system. Each level of decomposition gave the approximate range of timeline for the 

potential leakage. The combination of the outputs from analyzing each level detected the leakage 

events in the system accurately. t was suggested that by implementing recording devices within 
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the district, the presented technique not only identify the anomalies, but also localize them within 

the distribution network approximately.   
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Chapter 7: Conclusions and future work 

7.1 Conclusions 

To improve the practice in short-, mid- and long-term water consumption forecasting, besides 

leakage detection in a water distribution system, this study used an artificial intelligence approach 

in the forecasting and analytics of urban drinking water consumption. The outcomes of this 

research are listed below:  

1. The results of the correlation exponent showed the existence of chaos in the water 

consumption dataset of Kelowna City, BC, Canada. Chapter two suggested that to investigate the 

availability of chaos in a dataset, an investigation for different temporal scales is needed to claim 

the existence of chaos. Besides, it was concluded that the dynamic nature of explanatory data 

provides valuable information about the selection of forecasting models. Average mutual 

information and correlation dimension methods are employed to calculate the lag time and 

existence of chaos for the test data, respectively. 

2. The test case dataset was used to forecast future consumption values in various lead times in 

order to identify the model that had a better performance among all. Non-linear approximation 

(NLA), dynamic investigation, phase space reconstruction (PSR) for input variables were 

considered to forecast various periodicity, and lead time. Artificial neural network (ANN), gene 

expression programming (GEP), and multiple linear regression (MLR) models were calibrated 

based on the reconstructed phase space with average mutual information, and embedding 

dimensions varied from 1 to 20. Regarding the existence of chaos in the test case, the performance 

of NLA was the best among other conventional and soft-computing techniques. Moreover, the 

performance of NLA with PSR was reported to be better than the other models in forecasting far 

lead time. 
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3. The performance of four techniques (NLA, ANN, GEP, and MLR) was investigated in 

forecasting the short-term period of water consumption of Kelowna City (BC, Canada). All three 

techniques performed accurately without the combination of the pre-processing methods. WDT 

improved the accuracy of models with PSR and without PSR. However, the impact of wavelet on 

the models with PSR was not as considerable as without PSR. It was recommended to use the pre-

processing techniques in modeling and forecasting issues, especially about the dataset that the peak 

points are very critical in the case. The inherent behavior of the dataset (deterministic or stochastic) 

can affect the performance of the pre-processing methods. Therefore, it was suggested that the 

behavior of datasets should be investigated before deciding to employ any pre-process methods. 

4. By comparing the results of the models with/without pre-processing, based on their 

performance and the value of fitness functions, it was concluded that AMI gives a proper lag time 

for time series with chaotic behavior. The models that their embedding dimensions defined by the 

lag time, which was estimated with AMI, performed better than the other models with embedding 

dimension and ACF lag time. 

5. The value of the power spectrum for the test case represented the presence of the scaling 

behavior within the test data. Fitness values for the models were reasonable; however, the models 

were not included as the models with the highest accuracy. The total consumption on a large time 

scale was precisely equal to the recorded values, which is an advantage for the disaggregation 

models in this research. Moreover, the disaggregation methods can be an adequate replacement 

for various non-linear techniques. This is because disaggregation techniques can estimate the target 

values on a large scale with the highest accuracy. It was reported that the non-linear deterministic 

approach was more accurate than the continuous random cascade method in simulating the peak 

values of water consumption. 
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6. A supervised data-driven approach and signal tracking technique of hidden variables were 

employed for the detection of anomalies at the test case. The presented method detected the 

artificial changes that were made in the pattern of consumption simulation. The results showed 

that the AI technique, which was the combination of forecasting and analyzing techniques, 

detected the approximate time of the leakage in the target district. Besides, it was suggested that 

by implementing information recording devices within the target district, the presented technique 

could detect the location of the leakage. 

The consumption-based proposed method would result in an integrated dynamic management plan 

which can overcome possible unexpected failures in a WDS. Besides, it will allow the WDS 

operators to have failures information in real time. This information would lead to the automated 

management of the WDS as a smart management system. Pressure optimization, peak 

consumption supply, uncounted water management and optimizing pumps and tanks operation, 

are the expected advantages that the proposed technique offered. 

7.2 Main Contributions 

• Investigation of water consumption time series by the chaos approach to determine the 

explanatory variables of the system. 

• Phase space reconstruction for the models based on the proper lag time and defining the 

combination of input variables based on the optimum embedding dimension. 

• Application of PSR and Optimum embedding dimension in improving the performance of the 

models from the aspect of complexity and accuracy.  

• Exploring the application of ACF and AMI in modeling problems and introducing their use for 

different modeling problems.  
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• Exploring the performance of conventional and soft-computing techniques combining with pre-

processing methods to simulate the peak values accurately.  

• Introduction to the application of an input variable selection technique in improving the 

complexities of the models by removing the non-active variables.  

• Developing a new concept of a combination of the temporal scale transition with pre-processing 

methods to improve the models' accuracy.  

• Defining a signal analyzing method in combination with AI modeling techniques to detect 

leakage time within a district.  

7.3 Limitations 

• The developed models do not have the same high accuracy in different case studies. This is 

because the time series of each test case has different explanatory variables. Therefore, the models 

should be calibrated based on the available explanatory variables of the test cases. 

• Finding relevant data for input variable design is challenging. Besides, the relation of the 

variables to other variables and their effects on the target values are very important to calibrate the 

models. Therefore, having a variety of relevant data is not sufficient, but the study of their effects 

is necessary.  

• The high accuracy of the calibrated models is the advantage of employing them in WDS 

management. But, complex calculations and the combination of different methods are time-

consuming and costly.  

• Implementing devices within a WDS to record accurate data is costly. Therefore, the cost of 

maintaining and implementing the tools versus savings from leakage and consumption control 

should be considered.  
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7.4 Future Work 

New ideas can be developed by the findings of this research. The potential studies are as follow: 

• All the developed models in this research were based on a univariate variable (the value of 

water consumption). It is suggested to employ active variables in the modeling of water 

consumption values. Temperature, humidity, holidays, population growth, and average income are 

all potential variables. 

• This dissertation showed the ability of soft-computing techniques to detect leakage in WDS 

districts from the aspect of the timeline, without any device implemented within the target district. 

The simulation was done on a small district of the test case. Employing the introduced technique 

in different districts in a WDS can be an interesting topic for future research ideas.  

• Detection of the location and time of the leakage at the same time needs implemented 

recording devices within the target district. The cost of implementation and maintenance are very 

considerable. Optimization methods locate the devices in only critical joints within a WDS. It will 

reduce the costs and the number of devices while providing useful information for better 

operational management. Further research can be done in investigating optimization methods to 

locate the devices.  
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Appendices 

 

Appendix A   

Table A.1 is published in “City of Kelowna Annual Water and Filtration Exclusion Report” that 

was published in July 2017 [110]. 

Table A.1. Summary of water production and consumption trends. 

 

 2012 2013 2014 2015 2016 Unit 

Production 

Total Pumped 14,983.2 16,962 15,243.2 16,083.6 15,512.8 1000 m3 

Population within COK Water Utility Boundary 

2.7 per Single, 1.9 per multifamily  67,311 68,523 68,077 69,679 78,694 people 

Climate  

Precipitation (April-September)  181  288  214  153  148  mm  

Number of Services (active and inactive)  

Residential  14,087  14,408  14,425  14,084  14,365  services  

Multifamily  396  409  387  342  351  services  

Strata  658  660  651  648  657  services  

Commercial  1,104  1,120  1,074  1,361  1,367  services  

Parks  191  187  194  167  167  services  

Total  16,436  16,784  16,980  16,910  16,907  services  

Consumption (Metered)  

Residential  5,649.8  5,369.3  5,481.4  6,052.0  5,647.6  1000 m3  

Multifamily  2,164.4  2,251.1  2,168.8  2,542.7  2,443.0  1000 m3  

Strata  683.4  656.0  673.4  735.5  717.0  1000 m3  

Commercial  3,058.8  3,250.9  3,304.9  3,666.0  3,867.8  1000 m3  

Parks  479.5  402.2  495.6  585.3  498.0  1000 m3  

Total  12,035.9  11,929.5  12,124.0  13,599.5  13,173.4  1000 m3  

Indicator  

Other Use 2,446.9  2,728.0  829.9  2,421.5  2,201.1  1000 m3  

Max Day Demand  82.3  89.4  87.7  87.9  77.8  1000 m3  

Average Day Demand  41.1  41.0  41.7  44.1  42.4  1000 m3  

Utility wide Peak Day Demand  1,223  1,304  1,392  1,261  989  L/capita/day  

Utility wide Average Day Demand  611  598  662  633  539  L/capita/day  

Single Family Dwelling Demand  392  371  420  436  403  L/capita/day  

Monthly Residential Consumption  36  34  35  36  33  m3/month  

Other Use 2,446.9  2,728.0  829.9  2,421.5  2,201.1  1000 m3  

Peaking Factor (April-September)  1.5  1.6  1.6  1.5  1.4   

Peaking Factor (October-March)  1.9  1.3  1.5  1.7  1.7   
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Appendix B   

Figures B.1 plots the results for average mutual information (AMI) for different temporal scales. 

As it was reported in chapter 2, the first local minimum is considered as a function of lag time. 

The first minimum values of AMI were at the values of 17, 12, 10, 6, 3 and 2 for daily, 2-, 4-, 7-, 

14- and 30-days (monthly) data series of the water consumption, respectively. Figure B.1 presents 

the AMI values for the temporal scales of 2-, 4-, 7-, 14- and 30-days resolutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.5. Average mutual information (τ) for 2-, 4-, 7-, 14- and 30-days  
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Figure B.1 and B.2 plots the results for correlation function versus log (r) for different embedding 

dimensions (m) varies in the range of 1 to 20 for 4-, 7-, 14- and 30 days temporal scales. 

 

Figure B.1 The relation between correlation function C(r) and r by different embedding dimensions, (a) 4 

days; (b) 7-days. 

 

Figure B.2 The relation between correlation function C(r) and r by different embedding dimensions, (a) 14-

days; (b) 30-days. 
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Appendix C  14 

C.1 Methodology 

This research found the relative importance of each input variable by Garson’s equation [205]: 

                                                                                             (C.1) 

where Impj is the relative importance of the jth input variable, w is a connection weight, and Ni and 

Nh are the number of neurons at input layers and hidden layers, respectively, extracted from the 

developed ANN network. While the superscripts i, h and o refer to input, hidden and output layers, 

the subscripts k, m and n indicate input, hidden neurons and output neurons, respectively [206]. As 

equation C.1 indicates, the weights were normalized based on their absolute values. Thus, the signs 

of the weights did not influence the results. This method is considered as a technique for input 

variable selection (IVS) to improve the accuracy of the models while decreasing the complexity 

by considering a lower number of input variables. IVS methods employ the active variables that 

are the most influential on the target variables. The benefits of IVS is already shown in reducing 

the input variables for 40% in all [15] in water quality studies. The aim of this section is the 

investigation of the application of average mutual information (AMI) and autocorrelation function 

(ACF) in reconstructing the phase space for the time series with chaotic behavior. 

                                                 

14 A version of this section has been published as papers: Yousefi, P., Naser, G., Mohammadi, H. 2018. Surface Water 

Quality Model: Impacts of Influential Variables. Journal of Water Resources Planning and Management 144 (5), 

04018015 
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C.2 Implementation  

AMI and ACF are the two methods that are considered to reconstructed phase space for the case 

data in chapter 3 and chapter 4, respectively. However, the application of AMI reported better than 

ACF based on the model’s accuracy, and there is still a gap in interpreting the application of each 

method in reconstructing various phase spaces.  

Garson equation, as the selected IVS method, is used to interpret the application of AMI and ACF 

separately in forecasting models’ performance. The value of AMI and ACF for the daily temporal 

scale was reported as τ =17 and τ =83, respectively. Artificial neural network (ANN) is employed 

as the forecasting model. Embedding dimension of 10 (m=10) is the selected dimension for the 

phase space. The best structure of ANN is selected among 500 models with various hidden layer 

neurons and epochs. Table C.1 shows the results of the forecasting model for m=10.  

Table C.1. Results of PSR-ANN with two ACF and AMI methods.  

PSR Structure Epoch CD RMSE* MAE 

AMI 10-5-1 50 0.9800 3547.3 48.1 

ACF 10-3-1 10 0.9784 3357.6 47.9 

The results of Table C.1 shows that the performance of AMI, from the sight of accuracy, was better 

than ACF. But, in simulating the highest and lowest values, the errors in ACF was lower than 

AMI. Therefore, the fitness values of the forecasting model are not enough to conclude about the 

priority of AMI and ACF to each other in PSR. Tables C.2 and C.3 show the value of correlation 

and relative importance (RI) for input values and forecasted values for both PSR methods. Also, 

the highest values of correlation and RI for each input variable are selected to define a new 

combination of input variables for the same forecasting model. The results of this comparison 

reveal the effect of PSR with AMI and ACF on the models’ accuracy, separately.  



154 

 

C.2. Correlation of input variables and forecasted values for PSR with AMI and ACF.  

Par V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 

Target (AMI) -0.545 -0.422 -0.266 -0.132 0.008 0.203 0.421 0.612 0.770 0.979 

Rank      5 4 3 2 1 

Target (ACF) 0.824 0.096 -0.565 -0.408 0.451 0.460 -0.289 -0.539 -0.027 0.978 

Rank 2 5   4 3    1 

C.3. Relative importance of input variables and forecasted values for PSR with AMI and ACF.  

Par V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 

RI (AMI) % 4.65 2.13 16.13 9.35 9.45 7.47 1.19 11.46 15.12 23.05 

Rank   2  5   4 3 1 

RI (ACF) % 4.83 0.63 0.43 1.38 1.52 2.69 0.84 1.24 0.50 85.94 

Rank 2   5 4 3    1 

As seen in the figure, the distribution of correlation values and RI for AMI seems more reasonable 

based on their rank comparing to ACF. Figure C.1 shows the distribution of RI for AMI and ACF. 

 

Figure C.1. Distribution of RI for input variables with AMI and ACF. 

To investigate the performance of models in combination with the IVS method, the selected input 

variables (first five variables with higher RI) are used to define a new input combination. Table 

C.4 shows the results for the RI-PSR-ANN method with AMI and ACF. Table C.4 shows how the 

models, with the lower number of input variables and hidden layer neurons and epochs, gave the 

same results. Regarding Table C.1 and C.4, it is concluded that IVS methods, in combination with 

the models, can improve the performance of models. 
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Table C.4. Results of RI-PSR-ANN with two ACF and AMI methods. 

PSR Structure Epoch CD RMSE* MAE 

AMI 5-3-1 10 0.9799 3556.8 47.7 

ACF 5-2-1 50 0.9785 3348.1 48.3 

Based on the outcomes in Appendix C, it was concluded that AMI is the appropriate method to 

calculate the lag time to phase space reconstruction in comparison with ACF. Also, the 

combination of IVS and forecasting models is a proper pre-processing approach to improve the 

performance of the models. For further investigation as the future work, this section suggests 

investigating other phase space reconstruction method. Moreover, the application of hybrid pre-

processing techniques such as Wavelet-IVS and PSR-Wavelet-IVS are recommended to improve 

the performance of forecasting models and forecasting horizon in mid- and long-term periods. 
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Appendix D   

To improve the accuracy of forecasting models, phase space reconstruction (PSR), wavelet 

decomposition and input variable selection (IVS) methods reported as the potential techniques. 

Also, it was reported in literature high resolution data improve the performance of the models in 

simulating the critical points (e.g. highest and lowest consumption values in water distribution 

networks). Also, it was reported in chapter one, majority of the studies are in forecasting short- 

and mid-term period in lower temporal scales such as monthly and weekly. Previously, application 

of PSR, wavelet decomposition, IVS and hybridizing the pre-processing methods in combination 

with forecasting models presented the better performance of the forecasting models in daily 

temporal scale. Along with the same results, this section presents the application of disaggregation 

models in forecasting low resolution consumption data in improving the accuracy of the models.  

In the first step, monthly values (aggregated from the daily values) are used for forecasting monthly 

consumption values with artificial neural networks. Then, the disaggregated values (monthly to 

daily) for the same temporal scales are used as the input variables of the same forecasting models 

(same structure for ANN). The comparison of the results for the two input variables reveals the 

application of disaggregation methods in improving the performance of forecasting models.  

The value of 𝛽 was calculated by the gradient of line, approximately 1.775 (chapter 5); which is 

greater than 1, and represents scaling behavior of the time series [75]. Therefore, it was concluded 

that the test case dataset has scaling behavior. For the lag time, the values of 15, 10, 10, 5, 6 and 2 

were reported (chapter 5) for the daily, 2-, 4-, 8-, 16-days and 32-days temporal scale 

consecutively. Therefore, τ = 2, is the lag time to reconstruct the phase space for the monthly scale. 
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Embedding dimension of m=1 to 20 showed the dynamic of reconstructed transportation; also, 

zero-degree approximation is utilized to find neighbors in the disaggregation process. Following 

the results in chapter 6, 75% of the available data are used for training, and the remaining 25% is 

used for testifying the forecasting models. The embedding dimension of 15 (m=15) was the 

selected dimension for the most accurate disaggregated among dimensions 1 to 20. Table D.1 

shows the input variables define for ANN Model.  

Table D.1. Input variables definition for Daily and Monthly temporal scales.  

Variables Disaggregated (Daily) Monthly 

Input Ct-17, Ct-(2×17), …, Ct-(15×17) Ct-2, Ct-(2×2), …, Ct-(15×2) 

Output Ct (Daily) Ct (Monthly) 

The output for the daily resolution is aggregated to the monthly. The monthly scales for both 

calibrated models are compared. Artificial neural network (ANN) is employed as the forecasting 

model. Embedding dimension of 15 (m=15) is the selected dimension for the phase space (Selected 

dimension based on the value of fitness function (see Table 5.3). The best structure of ANN is 

selected among 2000 models with various hidden layer neurons (1 to 20) and epochs (1 to 100). 

Table D.2 shows the results of the forecasting model for m=15.  

Table D.2. Results of monthly forecasting, daily forecasting and aggregated values from daily to monthly 

temporal scale.  

Scale Structure Epoch CD RMSE* MAE 

Monthly 15-17-1 70 0.9532 98464 270 

Daily 15-18-1 100 0.9123 5078 64 

Daily to Monthly 

(Aggregated) 
NA NA 0.9770 79360 247 

The results in Table D.1 are for the selected models with the most accurate fitness function values. 

The aggregated values have resulted from the transition of daily forecasting values to monthly 
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values. The results showed that employing disaggregation techniques that were presented in 

chapter 5 can improve the performance of the models by increasing accuracy. Therefore, besides 

the other pre-processing methods in the literature and chapter 5 of this research, a combination of 

disaggregation methods are potential methods to improve the accuracy of the forecasting models. 

Figure D.1 presents the comparison of observed values of water consumption with monthly 

forecasted and aggregated values. 

 

Figure D.1. Observed in comparison with monthly and aggregated values of water consumption.  

 


