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Abstract

Planning and managing urban trees and forests for livable cities remains an out-

standing challenge worldwide owing to scarce information on their spatial distri-

bution, structure and composition. Sources of tree inventory remain limited due

to a lack of detailed and consistent inventory assessments. In practice, most mu-

nicipalities still perform labor-intensive field surveys to collect and update tree

inventories.

This thesis examines the potential of deep learning to automatically assess ur-

ban tree location and species distribution from street-level photographs. A robust

and affordable method for detecting, locating, classifying and ultimately, creating

detailed tree inventories in any urban region where sufficient street-level imagery

is readily available was developed.

The developed method is novel in that a Mask Regional Convolutional Neural

Network is used to detect and locate tree instances from street-level imagery, cre-

ating shape masks around unique fuzzy urban objects like trees. The novelty of

this method is enhanced by using monocular depth estimation and triangulation to

estimate precise tree location, relying only on photographs and images taken from

the street. In combination with Google Street View, a technique for the rapid de-

velopment of an extensive tree genera training dataset was presented based on the

method of tree detection and location. This tree genera dataset was used to train a

Convolutional Neural Network (CNN) for tree genera classification.

Experiments across four cities show that the novel method for tree detection

and location can be transferable to different image sources and urban ecosystems.

Over 70% of trees recorded in a ground-truth campaign (2019) were detected and

could be located with a mean error in the absolute position ranging from 4m to
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6m, comparable to GPS accuracy used for geolocation in classical manual urban

tree inventory campaigns. The trained CNN classi�es 41 �ne-grained tree genera

classes with 83% accuracy. The detection and classi�cation models were then used

to generate maps of urban tree genera distribution in the Metro Vancouver region.

Results of this research show that developed methods can be applied across

different regions and cities and that deep learning and street-level imagery show

promise to inform smart urban forest management, including bio-surveillance cam-

paign planning.
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Lay Summary

Urban trees play a vital role in making our cities more livable, sustainable and

resilient to climate change. In order to manage and maximize bene�ts urban trees

provide for cities and their inhabitants, city of�cials need to know the location

of trees and how different species are distributed throughout urban environments.

This thesis explored a novel approach to collect information on the species and

distribution of urban trees from photographs taken from the streets. Using new

technologies like deep learning, a tool was developed that detected over 70% of

all trees growing on streets and classi�ed 41 tree species for different cities in the

Metro Vancouver region. In addition, it was examined if the developed tool can

be transferred to other urban areas. In future, the developed methods, tools and

data inform urban tree inventories to assist planning decisions and management

schedules of city planners and urban forest practitioners.
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Chapter 1

Introduction

The great green city of the future is ecologically and economically
resilient; it's made up of healthy, livable neighborhoods where the

bene�ts of nature are available to all people.— Pascal Mittermaier,
The Nature Conservancy's Global Managing Director for Cities

(2019)

1.1 Healthy green cities of the future

By 2050, three out of four people on Earth will live in cities [139]. As urbanization

continues in the epoch of the Anthropocene [30], cities embody the forefront of ac-

tion against global change impacts, but also become vulnerable to their detrimental

effects [35, 55]. It is increasingly recognized that urban trees play a critical role in

mitigating negative effects of global change for people and the planet [38, 53]. Nu-

merous studies have shown that urban trees are key in making cities more livable,

resilient and help adapt for impacts of future climate change [64]. By providing

shade, a natural way of air-cooling and absorbingCO2 through growth, trees help

mitigate climate change and save energy by reducing the need for air conditioning

[137]. They clean the air and environment, by capturing particulates and urban

pollutants through natural gas-exchange with the atmosphere [137]. Urban trees

promote storm water runoff as they intercept rainfall and increase in�ltration [60].

The presence of healthy trees in urban areas is known to have bene�cial effects on

human health and well being, promoting mental health, reducing stress, prevent-
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ing obesity and accelerating recovery from illnesses [138, 140]. Urban forest have

the potential to foster biodiversity, by providing shelter and food for animals and

plants [7]. It has been shown that urban forests have direct social impacts such as

increasing property values, positively impacting social cohesion and strengthening

communities [37, 101, 145].

As evidence gathers about the diverse bene�ts healthy urban trees provide to re-

silience and livability in cities through various ecosystem services, the demand for

effective urban forest management and planning grows [106, 140]. Expanding and

maintaining a healthy urban forest is a recognized challenge to-date [38]. Poorly

managed urban forests do not provide the same ecosystem services and can even

lead to property damage, personal injury or other disservices [97, 114]. Threats to

urban tree health and challenges associated with their mitigation and management

are diverse [38]. Street trees for example often suffer from water stress caused by

decreasing water availability to root systems from de-icing salts, barriers to root

growth, poor soil quality or presence of toxic substances [12]. Above ground stres-

sors include heat radiation from buildings and impervious surfaces, high winds

channelized through urban canyons, cutting of tree crowns and growth inhibiting

light patterns, especially for trees planted on the north side of buildings in the

northern hemisphere [87]. Owing to urban trees proximity to centers of human ac-

tivity and international trade routes, they are further threatened by damage through

native and invasive pests and pathogens [110]. Many of these threats to urban tree

health are expected to intensify with the effects of climate change, such as rising

temperatures in cities [91].

Proactive management and decision making is required to protect, improve and

extend urban forests with a direct in�uence on over 60% of the world population

in the future [38, 53]. One of the biggest limitations for proactive urban tree man-

agement is the scarcity of up-to-date urban tree inventory data, used as a basis for

planning and decision-making [42]. To date, the most common practice to retrieve

such important information is the manual collection and measurement of single

urban trees with hand held devices (s. section 1.1.4). At present, existing tree

inventory data are mostly restricted to public street trees or other trees on public

land and there is a lack of information on a large proportion of the urban forest,

especially trees on residential property. Cost-ef�cient and widely applicable tools
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are needed to provide high-resolution spatial information to enhance urban tree

management and support decision making [144].

1.1.1 Smart urban forest management

The �eld of urban forestry is growing rapidly alongside novel, technically ori-

ented urban sciences, like ecological engineering and smart city planning [11, 38].

”Smart urban forest management” describes the integration of urban forest man-

agement into emerging smart city planning concepts, applying novel technological

developments like Arti�cial Intelligence (AI ), open source mapping platforms or

mobile Application (APP) driven citizen engagement to address the diverse chal-

lenges urban trees face [105]. In the context of proactive, resilient and smart urban

forest management, the purpose of this work is to explore the suitability of novel

Deep Learning (DL) architectures and openly available street-level imagery to de-

velop a tool that meets the need for up-to-date urban tree inventory data (s. chapter

1).

The approach proposed in this thesis is based on recent advances in ”instance

segmentation” for fuzzy objects and monocular depth estimation to locate features

detected on photographs in space (s. chapter 2). Ultimately, the aim is to pro-

duce a robust, cost-effective and rapid method for creating detailed tree location

and diversity data in any urban region where suf�cient street-level imagery is read-

ily available. To demonstrate the value of the developed model for smart urban

forest management, the created tree diversity data is used to inform urban bio-

surveillance management in the Metro Vancouver region (s. chapter 3).

1.1.2 Urban trees as vectors for tree pests and pathogens

One of the major challenges enhanced by climate change for urban tree manage-

ment is the introduction and spread of native and invasive pests and pathogens in

urban areas [32]. Canada's urban forests, for example, are increasingly threat-

ened by Forest Invasive Species (FIS) such as the Emerald Ash Borer (EAB), Asian

Longhorned Beetle (ALB ), the Asian Gypsy Moth (AGM), Dutch Elm Disease

(DED) or Sudden Oak Death (SOD) [109]. TheseFIS can cause irreversible damage

to both natural and urban ecosystems and are associated with high management
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costs after establishment. In 2003ALB infestations in Toronto, for example, lead

to the replacement of 28,700 urban trees, after the infestation was detected in cam-

paigns lead by the the Canadian Food Inspection Agency (CFIA) responsible for

invasive species management in Canada. Within thisALB management effort, the

replacement of one tree was subsidized by CA$300 in private areas, CA$150 in

public areas and CA$40 in urban woodlands, generating a total cost of> CA$6

millio for eradication ofALB in Toronto alone (correspondence M. Marcotte, Oc-

tober 2019,CFIA). Furthermore, Canada wideFIS are estimated to cost CA$800

million annually in management efforts and further generate a threat to export mar-

kets estimated up to CA$2.2 billion annually.

Increasingly, newFIS are expected to enter Canada, with urban forests acting

as key nodes in their dispersal pathways [110]. Yemshanov et al. [147] identi�ed

Metro Vancouver and the Greater Toronto area as the two major points of entry

for invasive pests and pathogens through international trade and transportation net-

works. Urban trees located close to centers of human activity and international

trade routes such as ports, commercial zones or tree nurseries within urban envi-

ronments are under constant risk to be exposed to native and invasive pests and

pathogens [110]. Trees that are unhealthy are under considerable threat of addi-

tional damage caused by tree pests and pathogens, as defense mechanisms in un-

healthy trees are weakened [86]. Once an invasive pest or pathogen is established

in urban areas, urban trees can act as vectors for spread of these harmful diseases

into surrounding ecosystems [38].

Next to maintaining a healthy forest, urban tree managers face additional pres-

sure to detect these pests and pathogens early, to contain and prevent the spread and

establishment throughout the urban ecosystem into surrounding areas [110]. The

earlierFIS populations are noticed at the initial stages of infestation and invasion,

the higher the cost-ef�ciency and probability of management success [86]. Conse-

quently, invasion managers are faced with the task of maximising bio-surveillance

and early detection efforts to support rapid decision making, and minimize poten-

tial FIS management costs [88]. This is signi�cant because 1) establishedFIS in

urban spaces can have negative impacts on ecosystem services urban forests pro-

vide, and 2) urban trees can act as sentinels for early detection and rapid response

before establishment, preventingFIS spreading into natural ecosystems [21].

4



1.1.3 The need for tree inventory data

Unfortunately, urban forest planning and management remains an outstanding chal-

lenge worldwide owing to relatively scarce information on the spatial distribution

and accessibility of urban forests, as well as their health condition, composition,

structure and function. Urban forest assessments are the basis for all decision-

making in managing and mitigating threats to tree health [60]. Tree inventories are

an important aspect of urban forest assessments, and usually involve the collection

of �eld data on the location, genus, species, crown shape and volume, diameter,

height and health condition of urban trees [68]. Urban tree inventories predomi-

nantly focus on information on individual urban trees, less so on groups of trees

as for example found in urban parks [102]. At present, existing tree inventory data

are mostly restricted to public street trees or other trees on public land and exclude

large areas of urban forest, especially trees on residential properties. For example,

in Vancouver, about 37 percent of urban forest is located on private land, and not

included in the city inventory [62].

For the purpose of bio-surveillance management, extensive inventories are needed

to manage and contain the spread and economic cost of harmfulFIS through early

detection [8, 109]. Information about potential host-tree distribution over the urban

space can help to identify hotspots of establishment forFIS [116]. Similarly, tree-

health can be used as an indicator to detect trees already harmed byFIS. Knowing

where unhealthy trees are located can also be valuable to predict whereFIS are most

likely to spread, since natural defense mechanisms of unhealthy trees are already

weakened [115]. Furthermore, detailed tree inventories can be used to quantify the

monetary value of environmental and aesthetic bene�ts of single trees, including

ecosystem services [126]. Weighting the cost of managing and protecting urban

trees against the bene�ts or services they provide is often used as a basis for deci-

sion making or economic risk assessments [60]. Such information can be used as

an economic baseline to inform decision makers whichFIS mitigation strategies are

economically valuable and what is at risk for different stakeholders in case urban

trees are attacked [16, 88]. For the purpose of bio-surveillance it is therefore bene-

�cial to provide up to date urban tree inventories, especially including information

about location, tree health, tree genus and general tree structure. Furthermore, it is
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important to collect data over both public and private trees, since pests and insects

spread over public and private urban property. Additionally, detailed tree inventory

information about tree location or genus provides a backbone for many other ur-

ban forest assessments, such as the prediction of urban tree health under changing

climate conditions [47].

Methods used to collect data and the extent of these inventories is often gov-

erned by the direct application of the inventory and the municipality's budgetary

constraints [102]. Depending on these factors cities need to decide whether they

are collecting information for every single urban tree or for a subset of trees and

if the inventory will be updated over time or information is only collected once,

resulting in a fragmented patchwork of multiple data collections merged over time

[68]. Keller and Konijnendijk [68] point out the need for inventory methods that

can be scaled over multiple regions in order to develop national and international

recommendations and standards for urban tree inventory data collection. More

abundant and standardized urban tree inventory data, speci�cally including private

trees, would open the possibility to plan and manage public green spaces more

holistically, integrating both public and private green spaces into one urban forest.

Aronson et al. [9] stress the need for this more holistic management approach in or-

der to protect and manage urban trees and biodiversity sustainably in future. Hence,

cost-ef�cient and widely applicable tools are needed to provide high-resolution

spatial information to enhance early detection and support decision making [144].

1.1.4 Collecting urban tree data

Nielsen et al. [102] distinguish four main types of generating and updating previ-

ously identi�ed information in urban tree inventories: satellite-supported methods,

airplane-supported methods, on-the-ground scanning or digital photography, and

�eld surveys. Satellite-supported methods have primarily been used for single-tree

crown detection [67] or tree health assessments [117]. Data can be retrieved by

multiple sensors ranging from Red Green Blue (RGB) colour space, over multi-

spectral, hyper-spectral to panchromatic. Most satellite-based imagery used for

urban tree inventories is of Very High Resolution (VHR) in order to detect the com-

parably small objects of trees [102]. Similarly, airplane-supported methods have
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been used for tree detection, tree health assessments and more recently tree species

classi�cation [6]. Multi-spectral, hyper-spectral, and Light Detection and Rang-

ing (LIDAR ) sensors provide the advantage of more quickly generating relatively

high resolution data over bigger areas than �eld surveys [102]. However, in con-

trast to satellite-based imagery, airplane-supported sensors have to explicitly be

�own for the purpose of tree inventory data collection. On-the-ground scanning

or digital photography can in general be used to retrieve more detail and volume

of single tree inventory parameters than aerial based methods. [113] for example

developed a semi-automated method to calculate tree crown volume and density

from side view photographs. Nevertheless, classical �eld surveys with direct man-

ual measurement and visual tree inspection are the most commonly used method

to generate and update urban tree inventories [102].

All of these methods above are often limited in either geographical space, tem-

poral coverage or the number of parameters covered by the urban tree inventory

[144]. The need to perform labour-intensive �eld surveys or costly aerial cam-

paigns often limits the detail and frequency of urban tree inventory updates [6].

Most data sources furthermore lack processing methods that can be generalized or

automated over multiple cities. Often, expert knowledge is required to handle large

�le sizes or semi-automate classi�cations [144]. This leads to some municipalities

not being able to collect tree inventory data at all, due to a constrained urban tree

inventory budget [102]. [68] point out the need for methods scaling over various

regions in order to develop national and international recommendations and stan-

dards for urban tree inventory data collection. Geospatial technologies and datasets

that are more cost ef�cient or free could be used to support a larger number of mu-

nicipalities and allow for urban tree inventory standardization [142]. A data source

that has recently attracted a lot of attention by the urban forest research commu-

nity, due to its low cost and global coverage, is street-level imagery in general and

Google Street View (GSV) in particular [13].

1.2 Computer vision for urban tree inventories

Two recent trends have gained attention in smart city planning because they allow

remote data collection, can be applied over large areas at low cost, and promote
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uptake from a larger number of municipalities [132]. First, the growing avail-

ability of low-cost, detailed and increasingly crowd-sourced street-level imagery

(photographs of street scenes taken from the ground) [13, 77]. Second, the success

of DL and Convolutional Neural Network (CNN) out-competing other methods for

extracting abstract features and objects in imagery [89].

1.2.1 Street-level imagery

Abundance of street-level imagery

In this thesis, street-level imagery is de�ned as photographs taken on the street,

captured byRGB sensors mounted on different types of vehicles (i.e cars, bikes)

or hand-held devices (i.e mobile phones, cameras). Easy access to affordableRGB

sensors and cameras by companies and the public, in combination with the will-

ingness to share imagery on the internet has lead to wide availability of street-level

imagery data [125]. To-date, there is an increasing abundance of platforms and ser-

vices providing street-level images. Imagery can, for example, either be accessed

through relevant Application Programming Interface (API)'s from e.g. GSV and

Bing Maps Streetside or it can be crowdsourced and collected through services

like Mapillary and OpenStreetCam. Currently efforts to standardize street-level

imagery are limited, resulting in data coming with varying quality and quantity

depending on the imagery provider.

GSV is a geospatial platform that offers standardized and geocoded street-level

imagery in different formats and resolutions at relatively low cost [52].GSV pro-

vides extensive spatial coverage of North America and other countries in the world.

Google [52] gives a detailed and up to date description which places are cov-

ered byGSV, when they will be recorded next and when they were previously

recorded. GSV Street-level imagery is typically collected through a panoramic

camera mounted on a car roof. Panoramic recordings are single snapshots in time

covering a range of view of 360 degrees, spaced every 15 meters apart on public

roads which means that one tree can be seen in multiple images [144].GSV up-

dates street-level images of public roads every 1-4 years.GSV data can be accessed

online via an of�cial API, that allows querying of the closest street-level image ac-
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cording to a given geographic position or a geographic latitude and longitude data

pair [144].

Street-level imagery for smart urban forest assessments

GSV imagery has already found its way into smart urban forestry assessments in

recent literature. Berland and Lange [13] manually inspected single street-level

imagery to generate tree inventory data through ”virtual tree inventory surveys”.

They found that these ”virtual surveys” of street trees conducted withGSV agreed

with �eld data with over 93% of documented trees and discovered that it was pos-

sible to assess genus, species, location, diameter at breast height and tree health.

Rousselet et al. [118] tested ifGSV data could be used to identify trees under attack

by the Pine Processionary Moth (PPM), through manual visual inspection of im-

agery by bio-surveillance professionals. A comparison of �eld data retrieved by a

large-scale analysis based on a mesh of 16 km grid size with aGSV based approach

recorded 96% of matching positive �ndings. Nevertheless, these studies and many

others, are still not automated and limited by expensive manual labour [36].

Advances in Computer Vision (s. section 1.2.2), the �eld of study that assesses

possibilities to automate tasks of the human vision system with a computer [83],

and DL are enabling automatic and robust information extraction for street-level

imagery in urban environments [57]. Computer vision algorithms developed for

smart city research using street-level imagery have been applied to assess demo-

graphics [45], urban change [99], wealth [48], perceived urban safety [100], build-

ing types [66] and urban morphology [94]. In the �eld of smart urban forestry,

street-level imagery in combination with computer vision has been applied in three

key areas: 1) estimation of shade provision for urban trees [78, 80, 81], 2) quanti�-

cation of perceived urban canopy cover [19, 36, 79, 124, 132], and 3) mapping the

location of urban trees [15, 144].

Li et al. [81], for example, calculated a sky view factor fromGSV, which in-

dicates the level of enclosure of street canyons, in order to quantify shade provi-

sioning from trees. Seiferling et al. [124] usedGSV imagery in combination with

Machine Learning (ML ) techniques to quantify perceived urban canopy cover. Sim-

ilarly, Li et al. [79] assessed the percentage of vegetation in streets, by quantifying
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the amount of green pixels seen in a Street View Scene. These methodologies

helped to shape the so called Green View Index (GVI) [36]. This index indicates

how green streets are perceived by pedestrians and has been synthesized for multi-

ple cities all over the world [36]. Wegner et al. [144] designed a work�ow for au-

tomatic street tree detection and geolocation fromGSV and Google Maps imagery,

based on the Faster Region-based Convolutional Neural Network (FASTER R-CNN)

framework.

Research gaps

Most work�ows generating urban tree inventory data usingGSV and computer vi-

sion techniques are currently limited by quantifying and classifying single pixels

without distinguishing between separate trees, detecting tree position without the

possibility to quantify tree characteristics or relying on secondary data sources for

precise location predictions of trees [36]. This thesis proposes a work�ow for the

detection, classi�cation, and geolocation of separate trees ready to use as part of

tree inventories and introduces a method to streamline geolocation only relying on

street-level imagery.

1.2.2 Theoretical background of deep learning

DL has proven to be a powerful tool for extracting abstract features and objects from

raw imagery, and is increasingly adopted in ecology [27], environmental research

and the Remote Sensing (RS) community [154]. In the following section relevant

DL concepts for computer vision and their technical background will be presented.

In order to de�neDL, the umbrella concepts ofAI and ML will be introduced,

under whichDL can be placed as a sub-discipline (s. section 1.2.2). Next,CNNs

and their technical concepts, challenges, and limitations of use will be discussed (s.

section 1.2.2). Finally, the section will conclude by explaining the application of

modern computer vision to solve problems in environmental monitoring and earth

observation (s. section 1.2.2).
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Arti�cial Intelligence and Machine Learning

AI is the study to automate intellectual tasks normally performed by humans [119].

Figure 1.1 provides a conceptual overview of howDL can be placed in the �eld of

AI . ML is a sub�eld ofAI and represents the new paradigm in the development of

algorithms that computers are able to learn without being explicitly programmed

[121]. In comparison to classical programming where speci�c rule sets are hard-

coded to process data to best match an output,ML systems allow to automatically

generate these rule sets though exposure to an input-output data pair [136]. The

process of generating and re�ning these rule sets, by automatically comparing the

systems current output to its expected output, is commonly described as training or

learning [26].

Figure 1.1: Deep learning, machine learning and arti�cial intelligence.
Deep learning is a concept used in machine learning, which is in turn a
sub�eld of arti�cial intelligence [26].

The �eld of ML can be further separated into three broad categories: Unsuper-

vised Learning, Reinforcement Learning and Supervised Learning. Unsupervised

Learning systems transform data without the previously described use of speci�c

targets, answers or outputs in the training process [56]. The two best known Un-

supervised Learning tasks are Clustering and Dimensionality Reduction. These

tasks are used to compress, denoise or visualize data and are often a necessary step
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to analyze a dataset before using it in a supervised-learning problem [26]. Re-

inforcement Learning conceptually places an agent at the core of a system who

learns to take action in order to gain the maximum reward by receiving informa-

tion about its environment [95]. Reinforcement learning has recently made a major

break through, for example, with Google DeepMind's AlphaGo, a system using

reinforcement learning to master and succeed in the game of Go [128].

Supervised Learning, however, is currently the most commonly used type of

ML and the most dominant form ofDL. At its core, Supervised Learning is the pro-

cess of meaningfully transforming input data into new data representations, which

is learned by exposing the system to known input-output data pairs. In other words,

Supervised Learning systems automatically learn new data representations by map-

ping input data onto a set of known output targets, so called annotations or labels

[26]. The trained system can then be used to generate predictions, its own annota-

tions and labels, on new input data. This process is called inference [75].

Deep learning

As a sub-�eld of Supervised Learning,DL represents the notion of learning multi-

ple, hierarchical layers of representations in between input data and output target

[75]. Shallow learning in comparison only transforms input data into one or maxi-

mal two successive representation layers. Representations inDL gain in complexity

with each successive deeper layer, whereby complex representations are build out

of simpler representation [51].DL is most commonly applied in a Neural Net-

work (NN), also called a Deep Neural Network (DNN). These terms are often used

interchangeably [26]. Figure 1.2 shows how aDNN conceptualizes the image of a

person by layers of successively more and more complex representations.

DL in NN's could be thought of as a multistage information-distillation process

[26]. A NN ”learns” by creating a sequence of data transformations to map a given

input to the target output (s. �g 1.2). Each step transforming the data is imple-

mented in successive layers and parameterized by so called weights or parameters

[26]. In the process of learning, these parameters are automatically updated, de-

pending on a distance or loss score between the prediction and the target, calculated

with the so called loss function (s. �g 1.3 (b)). The goal inDL is to minimize the
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Figure 1.2: Concept of deep neural networks.The image of a person is
presented in a concept of successive layers of representations. Repre-
sentations get more complex the ”deeper” the layers of theNN. These
deep layers build on top of shallower layers containing simpler repre-
sentations, like colors, vertical or horizontal lines [51].

loss score, to achieve a close match between prediction and target. To optimize the

loss score, parameters will be adjusted depending on an optimizer, a mechanism

that implements the so called back-propagation algorithm, i.e. a speci�c variant of

stochastic gradient descent [26]. In other words, training aDL model means that

data is transformed into new data representations or features by exposing the model

to a set of input variables and output targets, so called training data, to automat-

ically update parameters and minimize the loss function. Typically, the ”deeper”

the NN the larger the amount of training data needed in order to learn meaningful

representations.
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Convolutional Neural Networks

Even thoughDL has a long history, the �eld has only recently achieved a major

break through in near-human-level to even superhuman performance in image clas-

si�cation [28]. The increasing depth ofDNN frameworks, scale of computational

power available for training and the amount of openly available training data has

accelerated scienti�c discovery and development within the �eld and popularity of

methods transferable to other areas of research since the early 2010s [26]. Most

important though was the invention of a so called Convolution Operation used by

CNN [51].

CNNs are the most common algorithmic architecture to implementDL for an-

alyzing imagery (s. �g 1.3). They are explicitly designed to process large, multi-

dimensional tensors such as volumetric data or images, with typical dimensions

of nr. of pixels in width x nr. of pixels in height x 3 (red, green and blue) for

true color images [51]. An ordinaryNN, relying mainly on fully-connected layers,

where a pixel would represent one neuron (i.e. unit within aDL model), would

need to learn a vast amount of parameters even for relatively small images, i.e. an

image of size 64x64x3 would result in a parameter vector of length 12;288 only for

one shallow layer. In contrast to regularNN's, CNN's leverage the concept of pa-

rameter sharing [74]. They learn the parameters of convolutional �lters to directly

extract meaningful features from images, reducing the amount of parameters that

need to be learned and therefore enhancing scalability of data input and process-

ing speed [26]. The three basic building blocks ofCNN's are the Fully-connected

Layer (FC LAYER), the Convolutional Layer (CONV LAYER) and the pooling layer

(s. �g 1.3).

FC LAYERs, often referred to as ”densely connected layers” are the standard

layers representing the original idea of aNN, where all input elements, so called

”neurons”, are connected to all output elements, another array of neurons (s. �g

1.3). Parameters inFC LAYERs are one dimensional arrays and can be very large,

i.e. of length 12,288 for a small image. InCNN architectures,FC LAYERs are

typically applied at the ”top” of the network for classi�cation, to transform the

input into a last desired number of outputs, i.e. a list of labels or a one dimensional

array.
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Figure 1.3: Convolutional neural network architecture, inference and
training. A CNN consists of a sequence ofCONV LAYERs and pooling
layers for feature learning, typically followed byFC LAYERs for clas-
si�cation of learned features. Inference denotes the process of running
an input image through all layers subsequently to generate a prediction
Y0. Training aCNN requires to optimize weights stored in �lters through
calculating a loss score between predictionsY0and targetY.

15



CONV LAYERs are at the core of aCNN and use convolutional �lters to imple-

ment the concept of parameter sharing. In contrast toFC LAYERs, parameters in

CONV LAYERs are directly represented by convolutional �lters. In �gure 1.3, for

example, a layer of two convolutional �lters of size 3x3, has a total of 3x3x2= 8 pa-

rameters that need to be learned for the same small input image with the dimensions

of 64x64x3. Typically, each �lter is a tensor of relatively small size compared to the

input image. In other words, the fundamental difference betweenFC LAYERs and

CONV LAYERs is thatFC LAYERs learn global patterns andCONV LAYERs learn

local patterns in the input feature space, found through small �lters. In addition

to reducing the amount of parameters that need to be learned,CONV LAYERs al-

low the model to learn patterns that are translation invariant, i.e. if the model

can recognize horizontal edges in the upper left corner of the image, it can recog-

nize the same pattern everywhere, reducing the amount of training images that are

needed. AnFC LAYER would need to learn the same pattern at a different location

again. Furthermore,CONV LAYERs allow models to learn spatial hierarchies of

patterns, starting with less complex patterns like edges and increasingly learning

more complex and abstract representations (s. �g 1.2). A convolution works by

sliding the �lter over the last 3D feature map, and transforming the extracted 3D

patch (of shapewidthf ilter x heightf ilter x depthinput) into a 1D vector (of shape

(depthout put,)). This process quanti�es the presence of the �lter's pattern at differ-

ent locations in the image and results in a new feature volume of size (widthf ilter x

heightf ilter x depthout put) (s. �g 1.3).

Lastly, pooling layers are applied to reduce the spatial extent of feature maps

[51]. These layers do not contain learnable parameters, but are used to reduce

computational cost of the model by reducing the image resolution while preserving

the depth and allowing for more �lters to be applied. Max pooling is the most

common pooling strategy, convolving the maximum pixel value while sweeping a

�lter over an image (s. �g 1.3). For a complete complete overview of pooling and

CNNs see Goodfellow et al. [51].

The invention ofCNN has already revolutionized research in the �eld of robotics

and self driving cars [54] or medical imagery analysis [85]. The application of

DL in urban and ecological assessments in general and on street-level imagery for

updating urban forest inventories and monitoring urban trees in particular, is still

16



sparse (s. section 1.2.1). Owing to a fast growing open source community, the

availability of pre-trainedCNNs and extensive, openly available annotated datasets

on street-level imagery,CNNs show great potential to be successfully applied to

problems with small-scale data availability and �ne-grained classi�cation prob-

lems [51].

Classi�cation, detection, segmentation and instance segmentation

The four main problems in computer vision to solve withCNNs are (s. �g 1.4): (1)

thematic image classi�cation (e.g. classifying an image as tree vs non-tree) [122],

(2) multiple object detection (e.g. retrieving bounding box pixel-locations of all

trees in the image) [51], (3) pixel-wise semantic segmentation (e.g. classifying

every single-pixel into the class tree or the class non-tree) [18], and (4) pixel- and

object-wise instance segmentation (e.g. retrieving every pixel that belongs to the

class tree, differentiated per single tree instance) [26]. Zhang et al. [152] provide a

detailed overview and a technical tutorial forRS data analysis usingDL algorithms

and Mountrakis et al. [98] highlight state-of-the-art examples for traditional and

novelRS applications enhanced byDL.

These four problems have been addressed withCNN algorithms in different ar-

eas ofRS research in the past. Xing et al. [146] used thematic image classi�cation

(problem 1) to classify the land cover seen on geo-tagged photos. In combination

with the photos' distance to pixels in the GlobeLand30-2010 land cover map, the

photos' classi�cation results were used to validate the map product's accuracy. By

combining geo-taggedGSV imagery withDL, Kang et al. [66] were able to per-

form thematic image classi�cation (problem 1) of individual buildings and map

them in space.DNN were also used to extract the position of multiple smaller

objects and features (problem 2) from aerial and satellite imagery, including vehi-

cles [23], aircrafts [20], oil tanks [151] and sport �elds [24]. Wegner et al. [144]

designed a work�ow for automatic detection and geolocation of street trees, by

combiningFASTER R-CNN bounding box detection (problem 2) scores fromGSV

and aerial imagery, with information retrieved from Google Maps in a probabilis-

tic model. The authors then used street-level and aerial imagery to classify 18

different species among the detected trees (problem 1). Branson et al. [15] subse-
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Figure 1.4: The four tasks of computer vision.This thesis is based on in-
stance segmentation (d). [83]

quently built upon methods for object detection in [144] by including a Siamese

CNN, to verify whether detected trees had changed visibly over time. Pixel-wise se-

mantic segmentation (problem 3) withDNN has been dominating the International

Society for Photogrammetry and Remote Sensing (ISPRS) semantic segmentation

challenge, and is increasingly used for a variety of land cover classi�cation projects

[65]. Despite the proven suitability ofDL for semantic segmentation, research ap-

plying CNNs to quantify urban greenery from street-level imagery is sparse. Cai

et al. [19] recently tested tree canopy segmentation (problem 3) with differentCNNs

and estimated theGVI with a custom architecture based on a Residual Network with

50 Layers (RESNET50).

The fourth problem (instance segmentation, i.e. pixel-wise detection of sep-

arate objects of the same class) is challenging, andDNN frameworks have only

recently shown great potential for this task [57]. Detecting and masking each dis-

tinct object in an image for `Stuff classes' (fuzzy object classes without clearly

delineated shapes, like the sky, trees or other vegetation) was brought to the at-
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tention of theDL community via the 2016 Common Objects in Context (COCO)

Stuff Challenge [18]. Models such as Mask Region-based Convolutional Neural

Network (MASK R-CNN) have since had great success in performing instance clas-

si�cation on Stuff classes, which opens the door for assessing and mapping the

rich data on fuzzy objects contained in side-view imagery. Combining street-level

imagery andDL techniques to analyse urban features and objects is a promising

avenue in urban research.

1.3 Research questions and research design

Limited awareness of cost-ef�cient street-level imagery andDNN potential to sup-

port environmental management and policy making constrains the utilization of

these data and technologies. The direct and automated implementation ofCNN

architectures and street-level imagery as a promising tool for high-resolution data

generation for decision support in smart urban forestry management is sparse.

The main objective of this thesis is to develop a cost-ef�cient and automated

approach to generate �ne-scale tree inventory data in urban areas. The research

aims to assess the potential and advantages of an open sourceDL based approach

for decision support in smart urban forest management in general and inFIS man-

agement in particular. Therefore, the thesis explores the potential to use readily

available street-level imagery in combination with new and emerging open source

tools. A case study demonstrates how an automated data generation approach could

assist bio-surveillance procedures in Metro Vancouver, Canada.

1.3.1 Research questions

Speci�cally, the project addressed the following questions:

1. How can deep learning algorithms assist in improving tree detection in the

urban landscape?

2. How can monocular depth estimation be combined with tree detection for

urban tree geolocation from single street-level images?

3. How can urban trees be classi�ed using emerging deep learning techniques

and what are potential applications for smart urban forest management?
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1.3.2 Research design

This research project explores the potential to extract valuable information about

urban forests from street-level imagery usingDL techniques. An approach to au-

tomatically generate �ne-scale urban tree inventory data is investigated and the

potential for implementation of the generated information in decision support for

bio-surveillance efforts is outlined. NovelCNN architectures are implemented in

three different modules that constitute an open source software package (s. �g 1.5)

implemented in a work�ow for urban tree location and genera mapping. One mod-

ule (Detection) is for the task of tree instance segmentation on street-level imagery,

a second module (Geolocation) for the task of location prediction with monocular

depth estimation for detected trees (s. chapter 2) and the third module (Classi�ca-

tion) is for the tree genus classi�cation based on street-level imagery (s. chapter 3).

Inference results generated through the three modules are combined to map urban

tree genera distributions in the Metro Vancouver region. The �nal work�ow is then

evaluated for implementation in decision support for bio-surveillance (s. chapter

3).

A more detailed description of how street-level imagery and benchmark datasets

(s. section B.1.1) were acquired and processed (s. section B.1.2) for training and

evaluation purpose can be found in the appendix B. Details about the base architec-

ture MASK R-CNN of the proposed work�ow (s. section B.2.1), evaluation strate-

gies to assess the suitability and performance of the chosen architecture (s. section

B.3), and the training strategy used for tree detection (s. section B.4) can also be

found in the appendix.

The three research questions outlined in section 1.3.1 were tested with the

methodological work�ow depicted in �gure 1.6. The proposed experimental work-

�ow proceeds in four stages. Stage one (s. �g 1.6, orange) is characterized by data

acquisition and pre-processing. Developing a reproducible Python-based pipeline

for automatedGSV image acquisition allowed for a user-friendly download of open

source imagery from any desired area for any desired view. Figure 1.7 shows a typi-

calGSV scene (right), used in the analysis. Acquired imagery was further combined

with tree location and genus information from the existing street tree inventories

in Vancouver in order to build tree genera classi�cation datasets. All datasets were
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Figure 1.5: AiTree: Open source software for urban tree mapping.The
full software will be published undergithub=slumnitz=aiTreeand con-
tains three modules. One module for the task of tree instance segmenta-
tion on street-level imagery (1), a second module for the task of location
prediction with monocular depth estimation for detected trees (2) and
the third one for tree genus classi�cation on street-level imagery (3).

separated for the use as training data, development data and as test data (explained

in stage three).
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Figure 1.6: Methodology for the development of trained deep neural network models for automatic tree de-
tection, geolocation and genus classi�cation.Stage one (orange) is characterized by data acquisition. Stage
two (green) includes the design and training of tree detection, geolocation and classi�cation models with the
MASK R-CNN, monodepth andRESNET50 architectures. In stage three (blue), the accuracy of the trained neural
network models is assess through development and test datasets. In a last step, the software and work�ow are
tested for inference on Metro Vancouver imagery and decision support for bio-surveillance efforts (yellow).
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