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Abstract

Planning and managing urban trees and forests for livable cities remains an out-

standing challenge worldwide owing to scarce information on their spatial distri-

bution, structure and composition. Sources of tree inventory remain limited due

to a lack of detailed and consistent inventory assessments. In practice, most mu-

nicipalities still perform labor-intensive field surveys to collect and update tree

inventories.

This thesis examines the potential of deep learning to automatically assess ur-

ban tree location and species distribution from street-level photographs. A robust

and affordable method for detecting, locating, classifying and ultimately, creating

detailed tree inventories in any urban region where sufficient street-level imagery

is readily available was developed.

The developed method is novel in that a Mask Regional Convolutional Neural

Network is used to detect and locate tree instances from street-level imagery, cre-

ating shape masks around unique fuzzy urban objects like trees. The novelty of

this method is enhanced by using monocular depth estimation and triangulation to

estimate precise tree location, relying only on photographs and images taken from

the street. In combination with Google Street View, a technique for the rapid de-

velopment of an extensive tree genera training dataset was presented based on the

method of tree detection and location. This tree genera dataset was used to train a

Convolutional Neural Network (CNN) for tree genera classification.

Experiments across four cities show that the novel method for tree detection

and location can be transferable to different image sources and urban ecosystems.

Over 70% of trees recorded in a ground-truth campaign (2019) were detected and

could be located with a mean error in the absolute position ranging from 4m to
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6m, comparable to GPS accuracy used for geolocation in classical manual urban

tree inventory campaigns. The trained CNN classifies 41 fine-grained tree genera

classes with 83% accuracy. The detection and classification models were then used

to generate maps of urban tree genera distribution in the Metro Vancouver region.

Results of this research show that developed methods can be applied across

different regions and cities and that deep learning and street-level imagery show

promise to inform smart urban forest management, including bio-surveillance cam-

paign planning.
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Lay Summary

Urban trees play a vital role in making our cities more livable, sustainable and

resilient to climate change. In order to manage and maximize benefits urban trees

provide for cities and their inhabitants, city officials need to know the location

of trees and how different species are distributed throughout urban environments.

This thesis explored a novel approach to collect information on the species and

distribution of urban trees from photographs taken from the streets. Using new

technologies like deep learning, a tool was developed that detected over 70% of

all trees growing on streets and classified 41 tree species for different cities in the

Metro Vancouver region. In addition, it was examined if the developed tool can

be transferred to other urban areas. In future, the developed methods, tools and

data inform urban tree inventories to assist planning decisions and management

schedules of city planners and urban forest practitioners.
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Chapter 1

Introduction

The great green city of the future is ecologically and economically
resilient; it’s made up of healthy, livable neighborhoods where the

benefits of nature are available to all people. — Pascal Mittermaier,
The Nature Conservancy’s Global Managing Director for Cities

(2019)

1.1 Healthy green cities of the future
By 2050, three out of four people on Earth will live in cities [139]. As urbanization

continues in the epoch of the Anthropocene [30], cities embody the forefront of ac-

tion against global change impacts, but also become vulnerable to their detrimental

effects [35, 55]. It is increasingly recognized that urban trees play a critical role in

mitigating negative effects of global change for people and the planet [38, 53]. Nu-

merous studies have shown that urban trees are key in making cities more livable,

resilient and help adapt for impacts of future climate change [64]. By providing

shade, a natural way of air-cooling and absorbing CO2 through growth, trees help

mitigate climate change and save energy by reducing the need for air conditioning

[137]. They clean the air and environment, by capturing particulates and urban

pollutants through natural gas-exchange with the atmosphere [137]. Urban trees

promote storm water runoff as they intercept rainfall and increase infiltration [60].

The presence of healthy trees in urban areas is known to have beneficial effects on

human health and well being, promoting mental health, reducing stress, prevent-
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ing obesity and accelerating recovery from illnesses [138, 140]. Urban forest have

the potential to foster biodiversity, by providing shelter and food for animals and

plants [7]. It has been shown that urban forests have direct social impacts such as

increasing property values, positively impacting social cohesion and strengthening

communities [37, 101, 145].

As evidence gathers about the diverse benefits healthy urban trees provide to re-

silience and livability in cities through various ecosystem services, the demand for

effective urban forest management and planning grows [106, 140]. Expanding and

maintaining a healthy urban forest is a recognized challenge to-date [38]. Poorly

managed urban forests do not provide the same ecosystem services and can even

lead to property damage, personal injury or other disservices [97, 114]. Threats to

urban tree health and challenges associated with their mitigation and management

are diverse [38]. Street trees for example often suffer from water stress caused by

decreasing water availability to root systems from de-icing salts, barriers to root

growth, poor soil quality or presence of toxic substances [12]. Above ground stres-

sors include heat radiation from buildings and impervious surfaces, high winds

channelized through urban canyons, cutting of tree crowns and growth inhibiting

light patterns, especially for trees planted on the north side of buildings in the

northern hemisphere [87]. Owing to urban trees proximity to centers of human ac-

tivity and international trade routes, they are further threatened by damage through

native and invasive pests and pathogens [110]. Many of these threats to urban tree

health are expected to intensify with the effects of climate change, such as rising

temperatures in cities [91].

Proactive management and decision making is required to protect, improve and

extend urban forests with a direct influence on over 60% of the world population

in the future [38, 53]. One of the biggest limitations for proactive urban tree man-

agement is the scarcity of up-to-date urban tree inventory data, used as a basis for

planning and decision-making [42]. To date, the most common practice to retrieve

such important information is the manual collection and measurement of single

urban trees with hand held devices (s. section 1.1.4). At present, existing tree

inventory data are mostly restricted to public street trees or other trees on public

land and there is a lack of information on a large proportion of the urban forest,

especially trees on residential property. Cost-efficient and widely applicable tools
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are needed to provide high-resolution spatial information to enhance urban tree

management and support decision making [144].

1.1.1 Smart urban forest management

The field of urban forestry is growing rapidly alongside novel, technically ori-

ented urban sciences, like ecological engineering and smart city planning [11, 38].

”Smart urban forest management” describes the integration of urban forest man-

agement into emerging smart city planning concepts, applying novel technological

developments like Artificial Intelligence (AI), open source mapping platforms or

mobile Application (APP) driven citizen engagement to address the diverse chal-

lenges urban trees face [105]. In the context of proactive, resilient and smart urban

forest management, the purpose of this work is to explore the suitability of novel

Deep Learning (DL) architectures and openly available street-level imagery to de-

velop a tool that meets the need for up-to-date urban tree inventory data (s. chapter

1).

The approach proposed in this thesis is based on recent advances in ”instance

segmentation” for fuzzy objects and monocular depth estimation to locate features

detected on photographs in space (s. chapter 2). Ultimately, the aim is to pro-

duce a robust, cost-effective and rapid method for creating detailed tree location

and diversity data in any urban region where sufficient street-level imagery is read-

ily available. To demonstrate the value of the developed model for smart urban

forest management, the created tree diversity data is used to inform urban bio-

surveillance management in the Metro Vancouver region (s. chapter 3).

1.1.2 Urban trees as vectors for tree pests and pathogens

One of the major challenges enhanced by climate change for urban tree manage-

ment is the introduction and spread of native and invasive pests and pathogens in

urban areas [32]. Canada’s urban forests, for example, are increasingly threat-

ened by Forest Invasive Species (FIS) such as the Emerald Ash Borer (EAB), Asian

Longhorned Beetle (ALB), the Asian Gypsy Moth (AGM), Dutch Elm Disease

(DED) or Sudden Oak Death (SOD) [109]. These FIS can cause irreversible damage

to both natural and urban ecosystems and are associated with high management
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costs after establishment. In 2003 ALB infestations in Toronto, for example, lead

to the replacement of 28,700 urban trees, after the infestation was detected in cam-

paigns lead by the the Canadian Food Inspection Agency (CFIA) responsible for

invasive species management in Canada. Within this ALB management effort, the

replacement of one tree was subsidized by CA$300 in private areas, CA$150 in

public areas and CA$40 in urban woodlands, generating a total cost of > CA$6

millio for eradication of ALB in Toronto alone (correspondence M. Marcotte, Oc-

tober 2019, CFIA). Furthermore, Canada wide FIS are estimated to cost CA$800

million annually in management efforts and further generate a threat to export mar-

kets estimated up to CA$2.2 billion annually.

Increasingly, new FIS are expected to enter Canada, with urban forests acting

as key nodes in their dispersal pathways [110]. Yemshanov et al. [147] identified

Metro Vancouver and the Greater Toronto area as the two major points of entry

for invasive pests and pathogens through international trade and transportation net-

works. Urban trees located close to centers of human activity and international

trade routes such as ports, commercial zones or tree nurseries within urban envi-

ronments are under constant risk to be exposed to native and invasive pests and

pathogens [110]. Trees that are unhealthy are under considerable threat of addi-

tional damage caused by tree pests and pathogens, as defense mechanisms in un-

healthy trees are weakened [86]. Once an invasive pest or pathogen is established

in urban areas, urban trees can act as vectors for spread of these harmful diseases

into surrounding ecosystems [38].

Next to maintaining a healthy forest, urban tree managers face additional pres-

sure to detect these pests and pathogens early, to contain and prevent the spread and

establishment throughout the urban ecosystem into surrounding areas [110]. The

earlier FIS populations are noticed at the initial stages of infestation and invasion,

the higher the cost-efficiency and probability of management success [86]. Conse-

quently, invasion managers are faced with the task of maximising bio-surveillance

and early detection efforts to support rapid decision making, and minimize poten-

tial FIS management costs [88]. This is significant because 1) established FIS in

urban spaces can have negative impacts on ecosystem services urban forests pro-

vide, and 2) urban trees can act as sentinels for early detection and rapid response

before establishment, preventing FIS spreading into natural ecosystems [21].

4



1.1.3 The need for tree inventory data

Unfortunately, urban forest planning and management remains an outstanding chal-

lenge worldwide owing to relatively scarce information on the spatial distribution

and accessibility of urban forests, as well as their health condition, composition,

structure and function. Urban forest assessments are the basis for all decision-

making in managing and mitigating threats to tree health [60]. Tree inventories are

an important aspect of urban forest assessments, and usually involve the collection

of field data on the location, genus, species, crown shape and volume, diameter,

height and health condition of urban trees [68]. Urban tree inventories predomi-

nantly focus on information on individual urban trees, less so on groups of trees

as for example found in urban parks [102]. At present, existing tree inventory data

are mostly restricted to public street trees or other trees on public land and exclude

large areas of urban forest, especially trees on residential properties. For example,

in Vancouver, about 37 percent of urban forest is located on private land, and not

included in the city inventory [62].

For the purpose of bio-surveillance management, extensive inventories are needed

to manage and contain the spread and economic cost of harmful FIS through early

detection [8, 109]. Information about potential host-tree distribution over the urban

space can help to identify hotspots of establishment for FIS [116]. Similarly, tree-

health can be used as an indicator to detect trees already harmed by FIS. Knowing

where unhealthy trees are located can also be valuable to predict where FIS are most

likely to spread, since natural defense mechanisms of unhealthy trees are already

weakened [115]. Furthermore, detailed tree inventories can be used to quantify the

monetary value of environmental and aesthetic benefits of single trees, including

ecosystem services [126]. Weighting the cost of managing and protecting urban

trees against the benefits or services they provide is often used as a basis for deci-

sion making or economic risk assessments [60]. Such information can be used as

an economic baseline to inform decision makers which FIS mitigation strategies are

economically valuable and what is at risk for different stakeholders in case urban

trees are attacked [16, 88]. For the purpose of bio-surveillance it is therefore bene-

ficial to provide up to date urban tree inventories, especially including information

about location, tree health, tree genus and general tree structure. Furthermore, it is
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important to collect data over both public and private trees, since pests and insects

spread over public and private urban property. Additionally, detailed tree inventory

information about tree location or genus provides a backbone for many other ur-

ban forest assessments, such as the prediction of urban tree health under changing

climate conditions [47].

Methods used to collect data and the extent of these inventories is often gov-

erned by the direct application of the inventory and the municipality’s budgetary

constraints [102]. Depending on these factors cities need to decide whether they

are collecting information for every single urban tree or for a subset of trees and

if the inventory will be updated over time or information is only collected once,

resulting in a fragmented patchwork of multiple data collections merged over time

[68]. Keller and Konijnendijk [68] point out the need for inventory methods that

can be scaled over multiple regions in order to develop national and international

recommendations and standards for urban tree inventory data collection. More

abundant and standardized urban tree inventory data, specifically including private

trees, would open the possibility to plan and manage public green spaces more

holistically, integrating both public and private green spaces into one urban forest.

Aronson et al. [9] stress the need for this more holistic management approach in or-

der to protect and manage urban trees and biodiversity sustainably in future. Hence,

cost-efficient and widely applicable tools are needed to provide high-resolution

spatial information to enhance early detection and support decision making [144].

1.1.4 Collecting urban tree data

Nielsen et al. [102] distinguish four main types of generating and updating previ-

ously identified information in urban tree inventories: satellite-supported methods,

airplane-supported methods, on-the-ground scanning or digital photography, and

field surveys. Satellite-supported methods have primarily been used for single-tree

crown detection [67] or tree health assessments [117]. Data can be retrieved by

multiple sensors ranging from Red Green Blue (RGB) colour space, over multi-

spectral, hyper-spectral to panchromatic. Most satellite-based imagery used for

urban tree inventories is of Very High Resolution (VHR) in order to detect the com-

parably small objects of trees [102]. Similarly, airplane-supported methods have
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been used for tree detection, tree health assessments and more recently tree species

classification [6]. Multi-spectral, hyper-spectral, and Light Detection and Rang-

ing (LIDAR) sensors provide the advantage of more quickly generating relatively

high resolution data over bigger areas than field surveys [102]. However, in con-

trast to satellite-based imagery, airplane-supported sensors have to explicitly be

flown for the purpose of tree inventory data collection. On-the-ground scanning

or digital photography can in general be used to retrieve more detail and volume

of single tree inventory parameters than aerial based methods. [113] for example

developed a semi-automated method to calculate tree crown volume and density

from side view photographs. Nevertheless, classical field surveys with direct man-

ual measurement and visual tree inspection are the most commonly used method

to generate and update urban tree inventories [102].

All of these methods above are often limited in either geographical space, tem-

poral coverage or the number of parameters covered by the urban tree inventory

[144]. The need to perform labour-intensive field surveys or costly aerial cam-

paigns often limits the detail and frequency of urban tree inventory updates [6].

Most data sources furthermore lack processing methods that can be generalized or

automated over multiple cities. Often, expert knowledge is required to handle large

file sizes or semi-automate classifications [144]. This leads to some municipalities

not being able to collect tree inventory data at all, due to a constrained urban tree

inventory budget [102]. [68] point out the need for methods scaling over various

regions in order to develop national and international recommendations and stan-

dards for urban tree inventory data collection. Geospatial technologies and datasets

that are more cost efficient or free could be used to support a larger number of mu-

nicipalities and allow for urban tree inventory standardization [142]. A data source

that has recently attracted a lot of attention by the urban forest research commu-

nity, due to its low cost and global coverage, is street-level imagery in general and

Google Street View (GSV) in particular [13].

1.2 Computer vision for urban tree inventories
Two recent trends have gained attention in smart city planning because they allow

remote data collection, can be applied over large areas at low cost, and promote
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uptake from a larger number of municipalities [132]. First, the growing avail-

ability of low-cost, detailed and increasingly crowd-sourced street-level imagery

(photographs of street scenes taken from the ground) [13, 77]. Second, the success

of DL and Convolutional Neural Network (CNN) out-competing other methods for

extracting abstract features and objects in imagery [89].

1.2.1 Street-level imagery

Abundance of street-level imagery

In this thesis, street-level imagery is defined as photographs taken on the street,

captured by RGB sensors mounted on different types of vehicles (i.e cars, bikes)

or hand-held devices (i.e mobile phones, cameras). Easy access to affordable RGB

sensors and cameras by companies and the public, in combination with the will-

ingness to share imagery on the internet has lead to wide availability of street-level

imagery data [125]. To-date, there is an increasing abundance of platforms and ser-

vices providing street-level images. Imagery can, for example, either be accessed

through relevant Application Programming Interface (API)’s from e.g. GSV and

Bing Maps Streetside or it can be crowdsourced and collected through services

like Mapillary and OpenStreetCam. Currently efforts to standardize street-level

imagery are limited, resulting in data coming with varying quality and quantity

depending on the imagery provider.

GSV is a geospatial platform that offers standardized and geocoded street-level

imagery in different formats and resolutions at relatively low cost [52]. GSV pro-

vides extensive spatial coverage of North America and other countries in the world.

Google [52] gives a detailed and up to date description which places are cov-

ered by GSV, when they will be recorded next and when they were previously

recorded. GSV Street-level imagery is typically collected through a panoramic

camera mounted on a car roof. Panoramic recordings are single snapshots in time

covering a range of view of 360 degrees, spaced every 15 meters apart on public

roads which means that one tree can be seen in multiple images [144]. GSV up-

dates street-level images of public roads every 1-4 years. GSV data can be accessed

online via an official API, that allows querying of the closest street-level image ac-
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cording to a given geographic position or a geographic latitude and longitude data

pair [144].

Street-level imagery for smart urban forest assessments

GSV imagery has already found its way into smart urban forestry assessments in

recent literature. Berland and Lange [13] manually inspected single street-level

imagery to generate tree inventory data through ”virtual tree inventory surveys”.

They found that these ”virtual surveys” of street trees conducted with GSV agreed

with field data with over 93% of documented trees and discovered that it was pos-

sible to assess genus, species, location, diameter at breast height and tree health.

Rousselet et al. [118] tested if GSV data could be used to identify trees under attack

by the Pine Processionary Moth (PPM), through manual visual inspection of im-

agery by bio-surveillance professionals. A comparison of field data retrieved by a

large-scale analysis based on a mesh of 16 km grid size with a GSV based approach

recorded 96% of matching positive findings. Nevertheless, these studies and many

others, are still not automated and limited by expensive manual labour [36].

Advances in Computer Vision (s. section 1.2.2), the field of study that assesses

possibilities to automate tasks of the human vision system with a computer [83],

and DL are enabling automatic and robust information extraction for street-level

imagery in urban environments [57]. Computer vision algorithms developed for

smart city research using street-level imagery have been applied to assess demo-

graphics [45], urban change [99], wealth [48], perceived urban safety [100], build-

ing types [66] and urban morphology [94]. In the field of smart urban forestry,

street-level imagery in combination with computer vision has been applied in three

key areas: 1) estimation of shade provision for urban trees [78, 80, 81], 2) quantifi-

cation of perceived urban canopy cover [19, 36, 79, 124, 132], and 3) mapping the

location of urban trees [15, 144].

Li et al. [81], for example, calculated a sky view factor from GSV, which in-

dicates the level of enclosure of street canyons, in order to quantify shade provi-

sioning from trees. Seiferling et al. [124] used GSV imagery in combination with

Machine Learning (ML) techniques to quantify perceived urban canopy cover. Sim-

ilarly, Li et al. [79] assessed the percentage of vegetation in streets, by quantifying
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the amount of green pixels seen in a Street View Scene. These methodologies

helped to shape the so called Green View Index (GVI) [36]. This index indicates

how green streets are perceived by pedestrians and has been synthesized for multi-

ple cities all over the world [36]. Wegner et al. [144] designed a workflow for au-

tomatic street tree detection and geolocation from GSV and Google Maps imagery,

based on the Faster Region-based Convolutional Neural Network (FASTER R-CNN)

framework.

Research gaps

Most workflows generating urban tree inventory data using GSV and computer vi-

sion techniques are currently limited by quantifying and classifying single pixels

without distinguishing between separate trees, detecting tree position without the

possibility to quantify tree characteristics or relying on secondary data sources for

precise location predictions of trees [36]. This thesis proposes a workflow for the

detection, classification, and geolocation of separate trees ready to use as part of

tree inventories and introduces a method to streamline geolocation only relying on

street-level imagery.

1.2.2 Theoretical background of deep learning

DL has proven to be a powerful tool for extracting abstract features and objects from

raw imagery, and is increasingly adopted in ecology [27], environmental research

and the Remote Sensing (RS) community [154]. In the following section relevant

DL concepts for computer vision and their technical background will be presented.

In order to define DL, the umbrella concepts of AI and ML will be introduced,

under which DL can be placed as a sub-discipline (s. section 1.2.2). Next, CNNs

and their technical concepts, challenges, and limitations of use will be discussed (s.

section 1.2.2). Finally, the section will conclude by explaining the application of

modern computer vision to solve problems in environmental monitoring and earth

observation (s. section 1.2.2).
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Artificial Intelligence and Machine Learning

AI is the study to automate intellectual tasks normally performed by humans [119].

Figure 1.1 provides a conceptual overview of how DL can be placed in the field of

AI. ML is a subfield of AI and represents the new paradigm in the development of

algorithms that computers are able to learn without being explicitly programmed

[121]. In comparison to classical programming where specific rule sets are hard-

coded to process data to best match an output, ML systems allow to automatically

generate these rule sets though exposure to an input-output data pair [136]. The

process of generating and refining these rule sets, by automatically comparing the

systems current output to its expected output, is commonly described as training or

learning [26].

Figure 1.1: Deep learning, machine learning and artificial intelligence.
Deep learning is a concept used in machine learning, which is in turn a
subfield of artificial intelligence [26].

The field of ML can be further separated into three broad categories: Unsuper-

vised Learning, Reinforcement Learning and Supervised Learning. Unsupervised

Learning systems transform data without the previously described use of specific

targets, answers or outputs in the training process [56]. The two best known Un-

supervised Learning tasks are Clustering and Dimensionality Reduction. These

tasks are used to compress, denoise or visualize data and are often a necessary step
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to analyze a dataset before using it in a supervised-learning problem [26]. Re-

inforcement Learning conceptually places an agent at the core of a system who

learns to take action in order to gain the maximum reward by receiving informa-

tion about its environment [95]. Reinforcement learning has recently made a major

break through, for example, with Google DeepMind’s AlphaGo, a system using

reinforcement learning to master and succeed in the game of Go [128].

Supervised Learning, however, is currently the most commonly used type of

ML and the most dominant form of DL. At its core, Supervised Learning is the pro-

cess of meaningfully transforming input data into new data representations, which

is learned by exposing the system to known input-output data pairs. In other words,

Supervised Learning systems automatically learn new data representations by map-

ping input data onto a set of known output targets, so called annotations or labels

[26]. The trained system can then be used to generate predictions, its own annota-

tions and labels, on new input data. This process is called inference [75].

Deep learning

As a sub-field of Supervised Learning, DL represents the notion of learning multi-

ple, hierarchical layers of representations in between input data and output target

[75]. Shallow learning in comparison only transforms input data into one or maxi-

mal two successive representation layers. Representations in DL gain in complexity

with each successive deeper layer, whereby complex representations are build out

of simpler representation [51]. DL is most commonly applied in a Neural Net-

work (NN), also called a Deep Neural Network (DNN). These terms are often used

interchangeably [26]. Figure 1.2 shows how a DNN conceptualizes the image of a

person by layers of successively more and more complex representations.

DL in NN’s could be thought of as a multistage information-distillation process

[26]. A NN ”learns” by creating a sequence of data transformations to map a given

input to the target output (s. fig 1.2). Each step transforming the data is imple-

mented in successive layers and parameterized by so called weights or parameters

[26]. In the process of learning, these parameters are automatically updated, de-

pending on a distance or loss score between the prediction and the target, calculated

with the so called loss function (s. fig 1.3 (b)). The goal in DL is to minimize the
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Figure 1.2: Concept of deep neural networks. The image of a person is
presented in a concept of successive layers of representations. Repre-
sentations get more complex the ”deeper” the layers of the NN. These
deep layers build on top of shallower layers containing simpler repre-
sentations, like colors, vertical or horizontal lines [51].

loss score, to achieve a close match between prediction and target. To optimize the

loss score, parameters will be adjusted depending on an optimizer, a mechanism

that implements the so called back-propagation algorithm, i.e. a specific variant of

stochastic gradient descent [26]. In other words, training a DL model means that

data is transformed into new data representations or features by exposing the model

to a set of input variables and output targets, so called training data, to automat-

ically update parameters and minimize the loss function. Typically, the ”deeper”

the NN the larger the amount of training data needed in order to learn meaningful

representations.

13



Convolutional Neural Networks

Even though DL has a long history, the field has only recently achieved a major

break through in near-human-level to even superhuman performance in image clas-

sification [28]. The increasing depth of DNN frameworks, scale of computational

power available for training and the amount of openly available training data has

accelerated scientific discovery and development within the field and popularity of

methods transferable to other areas of research since the early 2010s [26]. Most

important though was the invention of a so called Convolution Operation used by

CNN [51].

CNNs are the most common algorithmic architecture to implement DL for an-

alyzing imagery (s. fig 1.3). They are explicitly designed to process large, multi-

dimensional tensors such as volumetric data or images, with typical dimensions

of nr. of pixels in width x nr. of pixels in height x 3 (red, green and blue) for

true color images [51]. An ordinary NN, relying mainly on fully-connected layers,

where a pixel would represent one neuron (i.e. unit within a DL model), would

need to learn a vast amount of parameters even for relatively small images, i.e. an

image of size 64x64x3 would result in a parameter vector of length 12,288 only for

one shallow layer. In contrast to regular NN’s, CNN’s leverage the concept of pa-

rameter sharing [74]. They learn the parameters of convolutional filters to directly

extract meaningful features from images, reducing the amount of parameters that

need to be learned and therefore enhancing scalability of data input and process-

ing speed [26]. The three basic building blocks of CNN’s are the Fully-connected

Layer (FC LAYER), the Convolutional Layer (CONV LAYER) and the pooling layer

(s. fig 1.3).

FC LAYERs, often referred to as ”densely connected layers” are the standard

layers representing the original idea of a NN, where all input elements, so called

”neurons”, are connected to all output elements, another array of neurons (s. fig

1.3). Parameters in FC LAYERs are one dimensional arrays and can be very large,

i.e. of length 12,288 for a small image. In CNN architectures, FC LAYERs are

typically applied at the ”top” of the network for classification, to transform the

input into a last desired number of outputs, i.e. a list of labels or a one dimensional

array.
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Figure 1.3: Convolutional neural network architecture, inference and
training. A CNN consists of a sequence of CONV LAYERs and pooling
layers for feature learning, typically followed by FC LAYERs for clas-
sification of learned features. Inference denotes the process of running
an input image through all layers subsequently to generate a prediction
Y ′. Training a CNN requires to optimize weights stored in filters through
calculating a loss score between predictions Y ′ and target Y .
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CONV LAYERs are at the core of a CNN and use convolutional filters to imple-

ment the concept of parameter sharing. In contrast to FC LAYERs, parameters in

CONV LAYERs are directly represented by convolutional filters. In figure 1.3, for

example, a layer of two convolutional filters of size 3x3, has a total of 3x3x2= 8 pa-

rameters that need to be learned for the same small input image with the dimensions

of 64x64x3. Typically, each filter is a tensor of relatively small size compared to the

input image. In other words, the fundamental difference between FC LAYERs and

CONV LAYERs is that FC LAYERs learn global patterns and CONV LAYERs learn

local patterns in the input feature space, found through small filters. In addition

to reducing the amount of parameters that need to be learned, CONV LAYERs al-

low the model to learn patterns that are translation invariant, i.e. if the model

can recognize horizontal edges in the upper left corner of the image, it can recog-

nize the same pattern everywhere, reducing the amount of training images that are

needed. An FC LAYER would need to learn the same pattern at a different location

again. Furthermore, CONV LAYERs allow models to learn spatial hierarchies of

patterns, starting with less complex patterns like edges and increasingly learning

more complex and abstract representations (s. fig 1.2). A convolution works by

sliding the filter over the last 3D feature map, and transforming the extracted 3D

patch (of shape width f ilter x height f ilter x depthinput) into a 1D vector (of shape

(depthout put ,)). This process quantifies the presence of the filter’s pattern at differ-

ent locations in the image and results in a new feature volume of size (width f ilter x

height f ilter x depthout put) (s. fig 1.3).

Lastly, pooling layers are applied to reduce the spatial extent of feature maps

[51]. These layers do not contain learnable parameters, but are used to reduce

computational cost of the model by reducing the image resolution while preserving

the depth and allowing for more filters to be applied. Max pooling is the most

common pooling strategy, convolving the maximum pixel value while sweeping a

filter over an image (s. fig 1.3). For a complete complete overview of pooling and

CNNs see Goodfellow et al. [51].

The invention of CNN has already revolutionized research in the field of robotics

and self driving cars [54] or medical imagery analysis [85]. The application of

DL in urban and ecological assessments in general and on street-level imagery for

updating urban forest inventories and monitoring urban trees in particular, is still
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sparse (s. section 1.2.1). Owing to a fast growing open source community, the

availability of pre-trained CNNs and extensive, openly available annotated datasets

on street-level imagery, CNNs show great potential to be successfully applied to

problems with small-scale data availability and fine-grained classification prob-

lems [51].

Classification, detection, segmentation and instance segmentation

The four main problems in computer vision to solve with CNNs are (s. fig 1.4): (1)

thematic image classification (e.g. classifying an image as tree vs non-tree) [122],

(2) multiple object detection (e.g. retrieving bounding box pixel-locations of all

trees in the image) [51], (3) pixel-wise semantic segmentation (e.g. classifying

every single-pixel into the class tree or the class non-tree) [18], and (4) pixel- and

object-wise instance segmentation (e.g. retrieving every pixel that belongs to the

class tree, differentiated per single tree instance) [26]. Zhang et al. [152] provide a

detailed overview and a technical tutorial for RS data analysis using DL algorithms

and Mountrakis et al. [98] highlight state-of-the-art examples for traditional and

novel RS applications enhanced by DL.

These four problems have been addressed with CNN algorithms in different ar-

eas of RS research in the past. Xing et al. [146] used thematic image classification

(problem 1) to classify the land cover seen on geo-tagged photos. In combination

with the photos’ distance to pixels in the GlobeLand30-2010 land cover map, the

photos’ classification results were used to validate the map product’s accuracy. By

combining geo-tagged GSV imagery with DL, Kang et al. [66] were able to per-

form thematic image classification (problem 1) of individual buildings and map

them in space. DNN were also used to extract the position of multiple smaller

objects and features (problem 2) from aerial and satellite imagery, including vehi-

cles [23], aircrafts [20], oil tanks [151] and sport fields [24]. Wegner et al. [144]

designed a workflow for automatic detection and geolocation of street trees, by

combining FASTER R-CNN bounding box detection (problem 2) scores from GSV

and aerial imagery, with information retrieved from Google Maps in a probabilis-

tic model. The authors then used street-level and aerial imagery to classify 18

different species among the detected trees (problem 1). Branson et al. [15] subse-
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Figure 1.4: The four tasks of computer vision. This thesis is based on in-
stance segmentation (d). [83]

quently built upon methods for object detection in [144] by including a Siamese

CNN, to verify whether detected trees had changed visibly over time. Pixel-wise se-

mantic segmentation (problem 3) with DNN has been dominating the International

Society for Photogrammetry and Remote Sensing (ISPRS) semantic segmentation

challenge, and is increasingly used for a variety of land cover classification projects

[65]. Despite the proven suitability of DL for semantic segmentation, research ap-

plying CNNs to quantify urban greenery from street-level imagery is sparse. Cai

et al. [19] recently tested tree canopy segmentation (problem 3) with different CNNs

and estimated the GVI with a custom architecture based on a Residual Network with

50 Layers (RESNET50).

The fourth problem (instance segmentation, i.e. pixel-wise detection of sep-

arate objects of the same class) is challenging, and DNN frameworks have only

recently shown great potential for this task [57]. Detecting and masking each dis-

tinct object in an image for ‘Stuff classes’ (fuzzy object classes without clearly

delineated shapes, like the sky, trees or other vegetation) was brought to the at-
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tention of the DL community via the 2016 Common Objects in Context (COCO)

Stuff Challenge [18]. Models such as Mask Region-based Convolutional Neural

Network (MASK R-CNN) have since had great success in performing instance clas-

sification on Stuff classes, which opens the door for assessing and mapping the

rich data on fuzzy objects contained in side-view imagery. Combining street-level

imagery and DL techniques to analyse urban features and objects is a promising

avenue in urban research.

1.3 Research questions and research design
Limited awareness of cost-efficient street-level imagery and DNN potential to sup-

port environmental management and policy making constrains the utilization of

these data and technologies. The direct and automated implementation of CNN

architectures and street-level imagery as a promising tool for high-resolution data

generation for decision support in smart urban forestry management is sparse.

The main objective of this thesis is to develop a cost-efficient and automated

approach to generate fine-scale tree inventory data in urban areas. The research

aims to assess the potential and advantages of an open source DL based approach

for decision support in smart urban forest management in general and in FIS man-

agement in particular. Therefore, the thesis explores the potential to use readily

available street-level imagery in combination with new and emerging open source

tools. A case study demonstrates how an automated data generation approach could

assist bio-surveillance procedures in Metro Vancouver, Canada.

1.3.1 Research questions

Specifically, the project addressed the following questions:

1. How can deep learning algorithms assist in improving tree detection in the

urban landscape?

2. How can monocular depth estimation be combined with tree detection for

urban tree geolocation from single street-level images?

3. How can urban trees be classified using emerging deep learning techniques

and what are potential applications for smart urban forest management?
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1.3.2 Research design

This research project explores the potential to extract valuable information about

urban forests from street-level imagery using DL techniques. An approach to au-

tomatically generate fine-scale urban tree inventory data is investigated and the

potential for implementation of the generated information in decision support for

bio-surveillance efforts is outlined. Novel CNN architectures are implemented in

three different modules that constitute an open source software package (s. fig 1.5)

implemented in a workflow for urban tree location and genera mapping. One mod-

ule (Detection) is for the task of tree instance segmentation on street-level imagery,

a second module (Geolocation) for the task of location prediction with monocular

depth estimation for detected trees (s. chapter 2) and the third module (Classifica-

tion) is for the tree genus classification based on street-level imagery (s. chapter 3).

Inference results generated through the three modules are combined to map urban

tree genera distributions in the Metro Vancouver region. The final workflow is then

evaluated for implementation in decision support for bio-surveillance (s. chapter

3).

A more detailed description of how street-level imagery and benchmark datasets

(s. section B.1.1) were acquired and processed (s. section B.1.2) for training and

evaluation purpose can be found in the appendix B. Details about the base architec-

ture MASK R-CNN of the proposed workflow (s. section B.2.1), evaluation strate-

gies to assess the suitability and performance of the chosen architecture (s. section

B.3), and the training strategy used for tree detection (s. section B.4) can also be

found in the appendix.

The three research questions outlined in section 1.3.1 were tested with the

methodological workflow depicted in figure 1.6. The proposed experimental work-

flow proceeds in four stages. Stage one (s. fig 1.6, orange) is characterized by data

acquisition and pre-processing. Developing a reproducible Python-based pipeline

for automated GSV image acquisition allowed for a user-friendly download of open

source imagery from any desired area for any desired view. Figure 1.7 shows a typi-

cal GSV scene (right), used in the analysis. Acquired imagery was further combined

with tree location and genus information from the existing street tree inventories

in Vancouver in order to build tree genera classification datasets. All datasets were
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Figure 1.5: AiTree: Open source software for urban tree mapping. The
full software will be published under github/slumnitz/aiTree and con-
tains three modules. One module for the task of tree instance segmenta-
tion on street-level imagery (1), a second module for the task of location
prediction with monocular depth estimation for detected trees (2) and
the third one for tree genus classification on street-level imagery (3).

separated for the use as training data, development data and as test data (explained

in stage three).
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Figure 1.6: Methodology for the development of trained deep neural network models for automatic tree de-
tection, geolocation and genus classification. Stage one (orange) is characterized by data acquisition. Stage
two (green) includes the design and training of tree detection, geolocation and classification models with the
MASK R-CNN, monodepth and RESNET50 architectures. In stage three (blue), the accuracy of the trained neural
network models is assess through development and test datasets. In a last step, the software and workflow are
tested for inference on Metro Vancouver imagery and decision support for bio-surveillance efforts (yellow).
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Figure 1.7: Google Street View data. Current tree inventory data and GSV

camera positions depicted on Google Maps imagery from 8th West Av-
enue, Vancouver (left). Street trees and trees on private property seen
in GSV imagery (right). (Source: Google Maps, 2018; Google Street
View; 2018)

Stage two (s. fig 1.6, green) included the design, training and deployment of

tree detection and classification models built on top of three different CNN archi-

tectures (s. fig 1.5). The final scientific software was implemented in Python and

will be made available as open source software on github. The software was pri-

marily based on instance segmentation done with the MASK R-CNN architecture.

MASK R-CNN is currently the most promising openly available framework for the

core instance segmentation model of this tree inventory generation workflow. At

present, MASK R-CNN is the best performing framework able to carry out both ob-

ject classification and pixel-level instance segmentation [57]. MASK R-CNN allows

for the automatic generation of bounding boxes, shape masks and classification

scores with only one CNN architecture (s. fig 1.5, Detection). For more detail on
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the MASK R-CNN architecture and training see appendix B.2.1. Furthermore, the

design of the proposed workflow can be easily adapted replacing MASK R-CNN,

depending on the accuracy of results or improvements in published state-of-the-art

algorithms. The trained MASK R-CNN model was utilized to classify tree instances

in GSV and Mapillary images from a human’s perspective (s. section 2.2.4). Gen-

erated bounding boxes and tree shapes were then used for extracting tree images

of interest that were fed into the subsequent geolocation (s. section 2.2.5) and clas-

sification modules (s. section 3.2.5). Stage two, in which detection, classification

and geolocation models were primarily designed and trained, was continuously in-

formed by stage three, in which model performance was assessed. Model training

in stage two was then repeated until model performance was optimized.

In stage three (s. fig 1.6, blue), model performance was analyzed and opti-

mized. Pre-processed data were split into training, development, and test datasets.

During training, a split dataset was required to test for both bias and over-fitting.

Model accuracy was assessed using both development and test datasets. For each

model (tree detection, geolocation, and genus classification), different optimiza-

tion measures (and their corresponding accuracies) were tested in order to find the

best set of model hyper-parameters, training data, and optimization algorithms and

achieve the highest possible model performance. The most accurate models were

used for inference and an overall workflow accuracy was calculated. Achieved

accuracy for all models were compared to state-of-the-art models or human-level

performance and used as an indicator for performance of the proposed methodolo-

gies. Software and model output data were exported as geographic data stored in

.csv, .shp or .geo json format.

In stage four (s. fig 1.6, yellow) the software was used to collect tree inven-

tory information for the Metro Vancouver region. The generated tree inventory

information was tested for implementation in bio-surveillance efforts in the Metro

Vancouver region. The location and intensity of tree genera hotspots are reported

in chapter 3.
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1.4 Thesis structure
In chapter 2 the tree detection and geolocation methodology and workflow are

described and model performance is assessed. In chapter 3 the tree genus classifi-

cation model is presented and evaluated for the purpose of generating estimates of

tree genera accumulation in the Metro Vancouver area. To conclude, key findings,

implications, limitations and future work is discussed in chapter 4. The appendix

contains additional information
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Chapter 2

Mapping urban trees with deep
learning and street-level imagery

2.1 Introduction

2.1.1 Urban tree assessment

Urban forests are gaining global attention as evidence is gathered about the diverse

benefits they provide to human health and well-being through various ecosystem

services [106, 140] (s. section 1.1). Planning and managing urban forests and trees

on the basis of urban tree inventories is increasingly coming to the fore in the con-

text of global urbanization trends, rapid climate change and increasingly connected

trade [110]. Nevertheless, urban forest planning and management remains an out-

standing challenge worldwide owing to relatively scarce information on the spatial

distribution and accessibility of urban forests and trees, as well as their health con-

dition, composition, structure and function [69]. In practice, most municipalities

still perform labor-intensive field surveys to collect and update inventories of pub-

lic trees. Despite the importance of urban trees, national and municipal sources

of tree inventory lack in detail, consistency and quantity due to the cost associ-

ated with mapping and monitoring trees through time and over large areas [102] (s.

section 1.1.3).

26



The study aims to produce an automatic, affordable and novel method for tree

detection and geolocation that can be used in any urban region where sufficient

street-level imagery is readily available. I introduce state-of-the-art instance seg-

mentation (object detection and pixel masking) with DL frameworks to extract and

mask fuzzy features like trees in images (s. section 2.2.4 and appendix B.2.1). In

addition, the novelty of this method is enhanced by using monocular depth estima-

tion and triangulation to estimate precise tree locations without the need to rely on

secondary datasets (s. section 2.2.5). Ultimately, I aim to fulfill the need for inven-

tory methods that can be automated and generalized over multiple cities in order to

develop national and international recommendations and standards for urban tree

inventory data collection [102] (s. section 1.1.3).

2.1.2 Remote sensing for individual tree mapping

Recent research has focused on RS data and techniques allowing for the remote and

automated recognition and characterization of individual trees [67]. Individual tree

mapping from remotely-sensed data, termed as Individual Tree Crown Delineation

or Detection (ITCD), has gained popularity since the mid-1980s as an alternative

to ground-truth measurements [153]. However, mapping and monitoring of indi-

vidual trees in heterogeneous urban areas using remotely-sensed data and current

ITCD methods remains challenging [10]. The small size of individual tree crowns

in urban areas binds the use of most satellite imagery sources to analyzing clusters

of urban trees or requires a process for spectral unmixing [129]. VHR satellite or

aerial imagery (<80 centimeter) can help provide the level of detail required for in-

dividual urban tree assessments, but are often impacted by urban shadows [33, 82].

Similarly, the use of high-resolution LIDAR data in individual tree assessments is

often impacted by vertical urban structures such as power lines and lamp posts

[153]. Datasets such as LIDAR or VHR aerial imagery are usually collected at one-

point in time and can be expensive to acquire [6, 82]. Novel, readily-accessible

methods and data sources to build standardized tree inventories on a large spatial

scale allowing for cheap, seamless and recurrent data collection and rapid process-

ing are still needed [67].
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2.1.3 Trends in automatic tree inventory assessments

Two recent trends have gained attention to filling the gap in assessing urban trees

over large areas at low cost, and promote uptake from a larger number of munic-

ipalities in recent literature [132]: first, the success of CNN out-competing other

methods for extracting abstract features and objects in imagery [89] (s. section

1.2.2), and second, the growing availability of low-cost, detailed and increasingly

crowd-sourced street-level imagery (photographs of street scenes taken from the

ground) [13, 77] (s. section 1.2.1).

Street-level imagery is, for example, used to quantify ‘perceived urban canopy

cover’ by estimating the percentage of detected tree canopy cover pixels relative

to the total number of pixels in an image [124]. Similarly, Li et al. [80] assessed

the percentage of vegetation in streets by quantifying the amount of green pixels

seen in a street view scene. Both of these methodologies calculated a GVI, a metric

that quantifies the proportional amount of green pixels in each image. The index

serves as a proxy for how urban vegetation is perceived by pedestrians, and has

since been applied to a variety of cities all over the world [36]. Wegner et al.

[144] designed a workflow for automatic detection and geolocation of street trees,

by combining FASTER R-CNN tree detection results from GSV and aerial imagery,

with information retrieved from Google Maps in a probabilistic model. The authors

then used street-level and aerial imagery to classify 18 different species among the

detected trees. Branson et al. [15] subsequently built upon methods for object

detection in [144] by including a Siamese CNN, to verify whether detected trees

had changed visibly over time. Both approaches, however, still rely on a data

fusion approach with VHR aerial imagery to locate urban trees.

Localizing objects that have previously been detected in photographs acquired

with smart phones or cameras from the street is a unique challenge for RS practi-

tioners. Satellite or aerial imagery pixels and LIDAR point clouds inherently store

either relative or absolute geographic location information and make the need to

additionally compute three dimensional geographic pixel coordinates redundant.

The translation process for features from street-level imagery to a geographical lo-

cation is usually achieved using one of two principal approaches: (1) objects are ei-

ther matched to locations using overhead or 3-dimensional data (e.g. passive aerial
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imagery or active LIDAR) [76], or (2) the location is directly retrieved from street-

view imagery by reconstructing 3-dimensional space or feature data (e.g. camera-

to-object depth) [5]. The latter approach can be achieved through multi-view stereo

methods (using multiple images to reconstruct the objects) [25], binocular meth-

ods (using two images) [59] or monocular methods (using only one image) [50].

Because monocular depth estimation can be made using a single image, it does not

require a large amount of images taken from multiple perspectives or additional

knowledge about the analysed scene, and allows for the analysis of features from

various data sources taken at different points in time [134]. Monocular depth esti-

mation has benefited from recent development of novel DL approaches, particularly

in the field of self-driving cars [92]. The potential to retrieve location information

of detected objects from a single image through the use of monocular depth esti-

mation enhances the potential to use street-level imagery collected with different

sensors over time to match detected objects to specific locations [144].

2.1.4 Chapter objectives

In this chapter, I propose a novel, low-cost method for urban tree detection and

geolocation using readily available geo-tagged street-level images. I investigate

the generalizability and transferability of the tree detection model by applying it

to different geographical locations in three cities in the Metro Vancouver region

(Canada) and the city of Pasadena (US). I further test the robustness of the ap-

proach on images provided by two different street-level imagery sources, namely

GSV, which provides proprietary data, and Mapillary, which offers crowd-sourced

data. I validate the model by comparing its output with on-the-ground tree location

measurements in the Metro Vancouver region. Ultimately, the aim is to produce a

robust, cheap and rapid method for creating detailed tree inventories in any urban

region where sufficient street-level imagery is readily available.

2.2 Data and methods
I started by detecting trees and generating tree instance masks in all available

panorama imagery prior to mapping detected trees in space using two DL archi-

tectures (s. fig 2.1). DL has proven to be a powerful tool for extracting abstract

29



Input

1. Detection 2. Geolocation

Output

Mask R-CNN

TriangulationmonoDepth

Metadata
{Location, Bearing}

bounding
box

softmax
probability

mask

depth
value

tree
locations

Figure 2.1: Urban tree mapping workflow: I first generate a bounding box,
a mask and a probability score for all urban trees for the input imagery
using the trained MASK R-CNN algorithm. I then compute a dense depth
mask with monoDepth for the same input imagery and extract a depth
value for every previously generated tree mask. I use the depth value,
and imagery metadata in the triangulation pipeline to generate tree lo-
cations as geographic coordinates. The output is a map of urban tree
positions connected to generated tree masks.

features and objects from raw imagery, and is increasingly adopted in the RS com-

munity [154]. The most common algorithmic architecture to implement DL for

analyzing imagery are CNNs (s. section 1.2.2). Zhang et al. [152] provide a de-

tailed overview and a technical tutorial for RS data analysis using DL algorithms

and Mountrakis et al. [98] highlight state-of-the-art examples for traditional and

novel RS applications enhanced by DL. CNNs were, for example, used to extract

the position of multiple smaller objects and features from aerial and satellite im-
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agery, including vehicles [23], air crafts [20], oil tanks [151] and sport fields [24].

Xing et al. [146] used CNNs to classify the land cover seen on geo-tagged photos.

In combination with the photos’ distance to pixels in the GlobeLand30-2010 land

cover map, the photos’ classification results were used to validate the map prod-

uct’s accuracy. The combination of street-level imagery and DL is also showing

promising applications in the urban context. Kang et al. [66] classified the use of

buildings and mapped them in space by combining geo-tagged GSV imagery with

DL. The approach assesses the potential to map urban trees in four areas of interest

and consists of the following steps (s. fig 2.1):

1. Street-level imagery retrieval for areas of interest (s. section 2.2.3)

2. Tree instance segmentation with MASK R-CNN architecture (s. section 2.2.4)

3. Geolocation of trees detected in panoramas through monocular depth esti-

mation and panorama metadata (s. section 2.2.5)

4. Geolocation correction of trees present in multiple panoramas through trian-

gulation (s. section 2.2.5)

2.2.1 Study site

For the majority of model training and assessment, I chose imagery and ground-

truth measurement plots distributed over the Metro Vancouver area (49◦ N, 123◦

W), specifically in the municipalities of Vancouver, Surrey and Coquitlam (s. fig

2.2). Metro Vancouver is located on Canada’s south-west coast, being one of the

warmest Canadian cities in winter and experiencing relatively high rainfall rates

throughout the year. Mild climatic conditions are favouring growth and survival

for tree species from harsher and milder climatic conditions [131]. Metro Vancou-

ver’s urban forest includes many exotic tree species imported from different cli-

matic zones in North America as well as over 60% of Canada’s native tree species

resulting in one of the most diverse urban forests in Canada [130]. Metro Vancou-

ver strives to be one of the world’s greenest cities by 2020, resulting in spatially

varying types of proactive urban forest management [62] (s. section 3.2.1). To

demonstrate the potential transferability of the model to other urban ecosystems, I
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Figure 2.2: Location of street-level imagery datasets and ground-truth
measurements. Street-level imagery is available for Metro Vancouver
and Pasadena. Geolocation test sites are located in the cities of Vancou-
ver, Coquitlam and Surrey, Canada. (Map tiles by Stamen Design, under
CC BY 3.0. Data by OpenStreetMap, under ODbL. Source: Mapillary
2019, Google Street View 2018)

evaluate the trained tree instance segmentation model on imagery of the Pasadena

Urban Tree dataset (34◦ N, 118◦ W), located 2000 kilometer further south in the

west coast of the United States (s. fig 2.2).

2.2.2 Ground-truth measurements

To evaluate the model’s geolocation performance, I conducted a field campaign in

March 2019 to collect ground-truth location measurements of all public and private

trees in four areas of interest: Vancouver, Surrey and two in Coquitlam (urban

and suburban areas) (s. fig 2.2). I define a tree as any vegetation with a clearly

distinguishable stem and crown, that has the potential to grow over 5 meters in

height with full maturity [103]. I recorded the Global Positioning System (GPS)

positions of each visible tree from the sidewalk using a Trimble Geo 7X handheld
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device in an unobstructed position to maximize GPS signal. I used the rangefinder

on the handheld device to measure the offset between the measurement position

and the tree, from which a precise tree location could be determined during post-

processing. The measured GPS locations were corrected using Base Station Data

for Vancouver (BCVC: 491632.73535 N, 123521.58021 W) and Surrey (BCSF:

491131.49655 N, 1225136.24849 W). This provided us with an overall accuracy

of under 0.5 meters for 294 recorded trees in Vancouver, 152 trees in Surrey, and

336 trees in Coquitlam.

2.2.3 Street-level imagery

It is common practice in training a CNN to divide a dataset into training, develop-

ment and testing datasets [122]. This practice ensures that model parameters are

adjusted to support the best possible generalization of the model and its applica-

bility to various datasets and tree objects. Given the range of imagery providers,

cameras used and quality of street-level imagery, I decided to test the transfer-

ability of the model between two different data providers: proprietary GSV data

(Vancouver, Surrey, Pasadena) and crowdsourced Mapillary data (Coquitlam).

Building training and development datasets

In total, I compiled two datasets for two separate training steps described in section

2.2.4. I split each of the compiled datasets with a 80:20 ratio into training and

development datasets. First, I extracted 36,500 images from the openly available

COCO Stuff semantic segmentation dataset that contains semantic labels (classified

pixels) for trees. The COCO Stuff dataset is, to date, the most expansive collection

of images with semantic segmentation labels (∼164,000) for ”amorphous Stuff”

classes (e.g. sky, roads, brick walls, trees, etc.) [18]. In contrast, most datasets

focus on clearly delineated ”thing” classes (e.g. people, cars, traffic lights, etc)

[14]. Second, I acquired GSV images from Vancouver and Surrey in March 2018

(s. fig 2.2, tab 2.1). I used the “Labelbox” web tool to create single tree instance

labels for combined 60 images for Vancouver and Surrey by manually masking all

visible trees, resulting in approximately 1200 tree masks (i.e. instance labels), 453

for Vancouver and 711 for Surrey [73].
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Table 2.1: Street-level imagery and mask annotations for the fine-tuning
procedure. Compiled datasets consist on 30 panorama images each.

dataset provider tree masks green infrastructure
Vancouver train/dev Google 453 street and private trees
Surrey train/dev Google 711 private trees
Pasadena test Google 365 street and private trees
Coquitlam test Mapillary 471 street and private trees

Building test datasets

To assess the models generalization performance and transferability to imagery of

a different urban ecosystem, I evaluated the model’s performance on an indepen-

dent test dataset consisting of imagery from the city of Pasadena (s. tab 2.1). The

dataset, which covers all of Pasadena, was created in March 2016 and is available

from Branson et al. [15]. In addition, I used imagery acquired from Mapillary for

the city of Coquitlam as a second independent test dataset to demonstrate the ro-

bustness of the model applied to different street-level imagery providers (s. fig 2.2

and tab 2.1). For Coquitlam, I downloaded panorama images in February 2019

[133]. I randomly sampled 30 test images from both datasets using the NumPy

random number generator (assuming a univariate Gaussian distribution) in order

to test imagery from different types of city structure. I masked and annotated ap-

proximately 360 individual tree masks for Pasadena and 470 for Coquitlam using

the same method for labeling Vancouver and Surrey imagery described above. All

panorama imagery contained metadata about the camera location of capture, and a

360◦ bearing reference to true north.

2.2.4 Tree instance segmentation

Tree instance segmentation model

I trained the MASK R-CNN architecture for tree instance segmentation, the task of

pixel-wise detection and delineation of separate objects of interest in an image.

Instance segmentation for ”Stuff classes” (fuzzy object classes without clearly de-

lineated shapes, like the sky, trees or other vegetation) is technically challenging
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and has only recently gained attention in the DL community, resulting in a relative

scarcity of architectures performing well for this task [18]. I chose MASK R-CNN

due to its generality, flexibility and the best performing architecture in the recent

COCO 2017 Instance Segmentation Challenge [14]. MASK R-CNN is a state-of-the-

art architecture that is implemented in the model in a modular way so that it can be

replaced, by surpassing instance segmentation algorithms in future. The implemen-

tation of MASK R-CNN adopts the original framework He et al. [57] implemented in

Python 3, Keras and TensorFlow and can be accessed through Abdulla [4]. Gener-

ated outputs include: (1) bounding boxes in pixel coordinates around each detected

tree object, (2) a probability score of the class label assigned to a detected object

(binary: tree or non-tree), and (3) a pixel mask through the assignment of single

pixels to individually detected object [57]. For more detailed information about the

architecture of MASK R-CNN c.f. He et al. [57] and supplementary material in ap-

pendix B. After finalizing training, the MASK R-CNN model was applied to detect

and mask new tree objects in images which were not exposed during the previous

training step, which I refer to as the process of inference (s. section 1.2.2) [51].

Training strategy

I used all three, transfer learning, a layered-training approach and fine-tuning to

train the MASK R-CNN architecture [26]. Through transfer learning, a model pre-

trained for one task (e.g. semantic segmentation of ”thing” classes in the COCO

dataset) is re-trained for another task (e.g. tree instance segmentation on street-

level imagery) through the transferal of weights [111][14]. I transferred weights

(i.e. feature representations) of a MASK R-CNN model pre-trained on the COCO

dataset to the first (deep) layers of the fresh model, and initialized the training

process with these COCO weights. In this way, the model first learned to distinguish

tree structure in general and was later able to separate single trees more effectively

[19].

In the subsequent training iteration, defined as the layered-training approach, I

used images containing tree objects in the COCO Stuff dataset. For this, I trained the

last 5+ top layers of MASK R-CNN with 50 epochs on COCO Stuff using a learning

rate of 1e-4. An epoch refers to all images in the training dataset being run through

35



the entire model and the internal model parameters being updated at least once

[51].

Finally, I fine-tuned the model by training with the labeled data from Vancouver

and Surrey. I therefore trained the model heads (the most shallow or last layers of

the model) with 30 epochs, followed by another iteration training +5 layers of

the Residual Network with 101 Layers (RESNET101). After a sparse grid search I

found 1e-4/10 to be the most successful learning rate to use for the fine-tuning step.

I set all other hyper-parameters following recommendations in existing research

that employs MASK R-CNN [4, 57].

To avoid over-training the model on relatively few training samples from Sur-

rey and Vancouver (1000 tree instances), I used heavy data augmentation at train-

time during the fine-tuning procedure. In brief, I split the panorama images in half

at the start of each training epoch, downscaled the halves to 1024x1024 pixels in

size. Each time an image was loaded into memory: (1) I flipped the images left to

right 50% of the time; (2) I either re-scaled the image in the x and/or y direction

by a variable factor between 0.8 and 1.2, rotated the image with a random angle

between -4 and +4 degrees, or sheared the image with a random angle between -2

and +2 degrees; (3) and performed contrast normalization using a random target

factor between 0.9 and 1.1 of the initial contrast of the image. The full model was

trained on a NVIDIA GTX1080 Ti Graphics Processing Unit (GPU), and limited

by 11GB of memory to stochastic gradient descent, or a mini-batch size of 1.

Evaluation strategy

I evaluated the method on two development datasets (Vancouver and Surrey, using

GSV imagery) and two test datasets (Coquitlam using Mapillary, and Pasadena us-

ing GSV imagery). To evaluate model performance, I chose three commonly used

evaluation metrics for instance segmentation frameworks [14]: (1) mean average

precision (mAP), (2) average precision over Intersection over Union (IOU) using

a threshold of 0.5 (AP50), and (3) average precision over IOU with threshold 0.75

(AP75) (s. appendix B.3.2). To quantify the known, negative influence of small

tree mask sizes on instance segmentation performance in detail, I iteratively ex-

cluded all smaller masks under a mask size threshold and compared recalculated
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evaluation metrics [70]. Next, I manually inspect failure cases according to three

different tree mask sizes to identify the most frequent tree detection error. For de-

tailed tree instance segmentation error assessment, I defined small masks to be un-

der 3000 pixels in size (approximately 0.3% of total image pixels per small mask),

representing detections of very distant trees (> 70 meters) relative to the camera

position at image capture. I defined medium masks to be between 3000 and 30,000

pixels in size, roughly all private trees, found in front yards, and big masks to be

over 30,000 pixels in size (approximately 3% of total image pixels per big mask),

repetitive to large front yard trees, or street trees.

Additionally, I calculated precision and recall to compare detection results with

annotated images [34]:

precision =
treepred

treepred +otherpred
(2.1)

recall =
treepred

treeannotated
(2.2)

All final evaluation metrics and precision-recall curves to compare model per-

formance for different datasets were calculated excluding very small masks under

a size of 3000 pixels (approximately 0.3% of total image pixels per small mask)

[18].

2.2.5 Geolocation of trees

Depth Estimation

To geolocate individual trees, I first created a dense depth estimate layer for each

panorama using monocular depth estimation [50]. I adapted Godard et al. [50]’s

monocular depth estimation architecture, MonoDepth, to develop dense depth masks

because of its applicability to images with varying lens types (e.g. panoramic or

narrow view) typically found in street-level imagery datasets [132]. MonoDepth

is available off-the-shelf as a fully trained unsupervised DL model with a depth

error margin of less than 20%. Godard et al. [50] provide multiple trained weights

for non-commercial usage, which allows researchers to use the model for infer-

37

https://github.com/mrharicot/monodepth


ence purposes without having to perform laborious training stages. For the analy-

sis, I followed Godard et al. [50]’s recommendations to adopt the best performing

weights when MonoDepth was pre-trained on the Cityscapes dataset and fine-tuned

using the KITTI vision benchmark dataset [29, 46].

The depth estimation model typically computes disparities (D) between objects

in each panorama image which then need to be translated by a factor (F) into

meters. During the translation process, values need to be calibrated for the specific

lens (C) used and corrected for differences in image sizes between the original

Cityscapes and KITTI datasets (W0) and the input image (W1). Depth can then be

interpreted as per pixel depth estimate (depth) between the object in the image and

the camera position at the time of image capture:

depth =
W0 ∗F

(W1 ∗D)∗C
(2.3)

Based on Godard et al. [50], I set F to 0.54 meters, W0 to 721 pixels, W1 to

6656 pixels and C to 1.5 to account for the use of a camera lens that captures

panorama images. The calibration parameter C was determined by minimizing the

average error in the monocular depth estimates compared to distances of measured

ground-truth trees to the recorded camera position. Once dense depth layers were

computed, I extracted a single depth value in meters for each previously detected

tree using depth pixel values at the center of mass calculated for each instance

mask. Finally, I translated each observation of a detected tree into geographic

coordinates by combining the depth value, the bearing of each tree instance in

respect to the position the panorama was captured, and the panoramas coordinates.

Both of the later are recorded in the imagery’s metadata.

Triangulation

In a subsequent processing step, triangulation is used to reduce duplicate obser-

vations of individual tree predictions and correct their position estimation where

multiple observations of the same tree are recorded (s. fig 2.3 (a)). I assumed that

there are no false-positive tree instances (i.e. each tree detected as an object is a

real tree). Through triangulation, I created nodes of intersections for all crossing

edges, drawn between preliminary tree prediction positions and the correspond-
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Figure 2.3: Correction of predicted tree locations through triangulation.
I draw bearings between raw tree locations from monocular depth esti-
mation and camera positions (a). The triangulated intersections of these
bearings are selected if they are located within a maximum distance
(maxdist) from raw tree locations, for a minimum of two raw predic-
tions (b). The intersection which are the closest to the raw tree positions
are chosen and clustered (c) to create the final corrected tree position
(d).

ing camera location. I selected candidate intersections within a maximum distance

(maxdist, s. equation (2.4)) to the preliminary tree location estimate for at least

two preliminary tree locations (s. fig 2.3 (b)).

maxdist = c0 + c1 ∗depth (2.4)

c0 is a constant offset in meters, and c1 describes the maximum relative error in

the depth estimate, calculated as 65%. I chose a value of 3 meters for c0 to account

for the average inaccuracy in the GPS positioning of panorama locations.

Given that each edge between the preliminary tree position and the correspond-
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ing panorama location has potentially multiple candidate intersections, I selected

the closest intersection to each preliminary tree position. Finally, I used hierarchi-

cal clustering to assign the average position of all selected candidate points in the

cluster as an output tree coordinate (s. fig 2.3 (c), (d)). I analyzed the distances

of all ground-truth measurements with respect to each other, and found that over

99% of all points were separated by at least 3 meters. To avoid multiple detections

of the same tree represented by multiple candidate intersection points, I chose a 3

meter threshold for the clustering as the minimum distance between observations.

2.2.6 Model evaluation

I used measured public and private tree positions to evaluate the tree location model

performance for areas of interest in Vancouver, Surrey, an urban and a suburban

area in Coquitlam. I evaluated the absolute positioning error of tree predictions as

the euclidean distance between the ground-truth measurement and the tree loca-

tion predictions [148]. I used a greedy algorithm to assign closest matching trees

first, and then took matched trees out of the running process until no ground-truth

measurements were left to match [144]. A match is kept as a true positive match

if the distance between ground-truth measurement and tree prediction does not ex-

ceed 15 meters. A 15 meter threshold was chosen to include as many private trees

as possible in the error assessment, typically found in a 15-30 meter range from

the camera position at time of image capture. Trees located more than 15 meters

from the measured private ground-truth data represent distant tree detections be-

hind houses without comparable measured ground-truth data and were excluded in

the error asssessment by the given threshold. I defined a measure of absolute tree

positioning accuracy as the mean of absolute positioning errors meanepos [148]:

meanepos =
1

nT P

nT P

∑
i=1

√
(xi− xpredi)2 +(yi− ypredi)2 (2.5)

I evaluate absolute tree positioning accuracy and the ratio of matches to non-

matches for public, private and all trees respectively.
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2.3 Experiments

2.3.1 Instance segmentation

Effects of layered training

Performing layered training with COCO Stuff images improves the detection of

tree objects from ∼80% without COCO Stuff training to a slight overcounting of

trees with 103% detected trees compared to the labeled tree masks in the combined

Vancouver and Surrey datasets (s. tab 2.2). The overall model accuracy with AP50

and mAP improves slightly while values for AP75 decline. The small decrease

in mask accuracy for AP75 may be a direct result of the layered model including

detections of trees which are more difficult to detect compared to the lower number

of detections when layered training is not used.

Table 2.2: Evaluation metrics for training with and without COCO Stuff
on combined Vancouver and Surrey dataset

AP50 AP75 mAP mask predicted mask annotations
COCO only 0.608 0.252 0.281 74 90
COCO Stuff 0.661 0.199 0.290 93 90

Transferability between different ecosystems and data sources

I find that MASK R-CNN developed on Vancouver and Surrey training datasets was

successfully applied to detecting trees across all four datasets (s. fig 2.4 and tab

2.3). AP50 values ranging from 0.620 to 0.682 and values of other evaluation met-

rics are consistent with current tree or plant semantic segmentation performances

found in other studies, with the difference that I not only evaluate pixel-based clas-

sification results, but also distinguish between different tree objects [18] (s. tab

2.3). AP75 and AP50 values are lowest for Surrey (0.157, 0.262) and highest for

Pasadena (0.262, 0.316) and Coquitlam (0.261, 0.342) datasets. Overall, at a recall

threshold of 0.6, precision is above 0.8 for all four datasets (s. fig 2.4). With a

recall of 0.35 or higher, precision-recall curves for both development datasets are

slightly higher than for the testing datasets, which is to be expected since assessed
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features in the development datasets directly influence the training process (s. fig

2.4) [75].
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Figure 2.4: Precision-recall curves for development (Surrey, Vancouver)
and test (Coquitlam, Pasadena) datasets.

Table 2.3: Evaluation metrics for Vancouver, Surrey and Pasadena. Ex-
cluding masks under 3000 pixels in size.

AP50 AP75 mAP mask predicted mask annotations
Vancouver 0.682 0.232 0.312 53 52
Surrey 0.634 0.157 0.262 40 38
Pasadena 0.628 0.262 0.316 194 202
Coquitlam 0.620 0.261 0.342 238 215

MASK R-CNN performance for the Pasadena and Mappillary test datasets is

very similar (mAP) to slightly better (AP75, AP50) than that of the Vancouver and

Surrey dataset (s. tab 2.3). Slight differences in precision-recall curves and vari-

ations in evaluation metrics may be attributed to overall varying tree shapes and

sizes found in each dataset. Features learned throughout the trained MASK R-CNN

model appear to be sufficient to detect a variety of urban trees in different urban

greenspace management settings, i.e. they are not limited to tree species and forms
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observed in Vancouver and Surrey (i.e. detection of palm trees in Pasadena). The

tree detection model is therefore robust to a variety of ecosystems and urban green

space design without the need for extensive retraining.

Furthermore, performing inference on Coquitlam (Mapillary) test imagery with-

out retraining results in the highest mAP value of the four datasets. Model perfor-

mance appears therefore robust to the different data source and sensor used for

street-level photography, i.e. Mapillary, (s. fig 2.4 and tab 2.3). Precision-recall

curves for both testing datasets appear to be very similar. This indicates that the

presented model has the ability to generalize well for both a city with a very dif-

ferent ecosystem (Pasadena) and imagery from different data sources or sensors

(Mapillary in the case of Coquitlam). The consistency of model performance with

an AP50 > 0.6 regardless of data and sensor source implies that panoramas acquired

from both GSV and Mapillary are suitable for use in the urban tree mapping model.

Instance Segmentation performance as a function of mask size

Next, I assessed the influence of tree mask sizes on MASK R-CNN instance segmen-

tation performance. Plotting AP metrics values against mask size thresholds shows

that larger masks get predicted more accurately (AP values over 0.6) (s. fig 2.5).

This is expected, since the ratio between the outline of a tree and the tree mass con-

tained by the outline (i.e. outline-mass-ratio) decreases with object size, resulting

in a bigger weight of the fuzzy tree outline with decreasing mask size in the calcu-

lation of model evaluation metrics [70]. Predicting precise fuzzy tree outlines (tree

to sky interface) is often harder than predicting the tree mass. Outlines therefore

often differ more from the ground-truth outline than the actual mass of a tree, re-

sulting in declining evaluation metrics numbers with smaller tree size. Notably, the

accuracy for large masks are similar for both the Vancouver (GSV) and Coquitlam

(Mapillary) datasets, while accuracy for Surrey (GSV) and Pasadena (GSV) datasets

are approximately 0.2 lower. This indicates that similarity in tree object structure,

to a degree, may have a bigger influence on image segmentation performance than

similarity in image quality when instance segmentation is performed on multiple

datasets. Values for AP50 increase once masks under 3000 pixels (which represent

very small or distant trees) are removed. There is a corresponding significant de-
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crease in accuracy for masks smaller than 3000 pixels once all masks over 3000

pixels in size are discarded.
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Figure 2.5: Effect of mask size on model performance. I iteratively ex-
cluded smaller masks, measured by the number in pixels per mask in
calculating AP50, mAP and AP75. The dotted vertical line indicates the
cut-off size of >3000 pixels for final calculation of the evaluation met-
rics. The model can predict big tree masks of Coquitlam (Mappilarry)
in red and Vancouver in green datasets the most accurate.

Error analysis for instance segmentation

I manually inspected 296 failure cases (including small masks) to identify the most

frequent tree detection error (s. fig 2.6 and 2.7). The majority of errors arise from

densely planted public and private trees, resulting in two trees being detected as

one combined tree, occlusion of trees, or otherwise overlapping trees (s. fig 2.6

(a), (b), (e), (h)). This source of error confirms that distinguishing between visu-

ally overlapping amorphous objects is a difficult task [18]. Detecting trees using

multiple street-level perspectives potentially offsets this error source, as occluded

or overlapping trees can either be seen in the foreground or are otherwise distin-

guishable from another perspective and image in the full model [72]. Detecting

hedges as false positives, small trees, trees in shadows of buildings and trees with

leaf-off condition (s. fig 2.7, (c), (d), (f), (g), (i)) is a direct result of having very

few training examples of these special cases in the datasets. As expected, most of

these errors were detected for small mask sizes (<3000 pixel) (s. fig 2.6).

Trees seen far in the distance were often disregarded in the manual labeling
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Figure 2.6: The most common inference errors of tree instance segmen-
tation with Mask R-CNN (in percent).

process due to their small mask size and relative distance for the direct camera

location at image capture time. I note that 200 of these human labeling errors were

recorded, describing instances where the model correctly identified a tree but no

corresponding tree label was created. I disregarded human labeling errors for small

masks, as masks under a threshold of > 3000 pixels in size were not included in

the final evaluation (s. section 2.3.1). These smaller masks, which represent trees

found in backyards or distant trees, could be included with help of additional data

augmentation methods mentioned in Kisantal et al. [70] in future analyses.

2.3.2 Localization

Comparison to ground-truth

I matched 70% of all ground-truth tree measurements with tree predictions after

excluding all matches over 15 meters in distance as false positive matches (s. fig

2.8). Non-matched ground-truth measurements often result from a tree missing

in the tree detection process, through either occlusion by larger trees in the front

of an image (s. fig 2.8 (a)), or by the absence of a tree in either the ground-truth
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(a) combined (b) double (c) hedge

(d) small (e) occluded (f) shadow

(g) other (h) encapsulated (i) leaf-off

Figure 2.7: Examples of masking errors in instance segmentation with
Mask R-CNN. Most common errors include: separate trees detected
as one (a), one tree split into multiple detections (b), hedges or shrubs
detected as trees (c), small trees that were not detected (d), undetected
trees behind detected trees (e), undetected trees in shadows of buildings
(e), non-tree objects detected as trees and masking errors (g), undetected
small trees in front of large trees (h) and undetected trees with leaf-off
condition and non-sky background (i)
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measurements or the street-level imagery, due to a two or more year time difference

in the ground-truth and imagery datasets (s. fig 2.8 (b)). Localizing trees using

monocular depth estimation can potentially help to prevent loss of information

since every single tree detection can be localized and is not dependent on many

photographs from different views [72]. I note that triangulation, in comparison to

raw tree location predictions, successfully reduced the mean absolute position error

for all areas by approximately 2 meters, from 9 to 7 meters, and the total count of

tree predictions by 45-55%.

a) b) c)

Figure 2.8: Location prediction results of trees. Predicted tree positions
(yellow), ground-truth measurements (red) and common detection er-
rors (blue). 70% of all measured trees were detected, 30% are miss-
ing through occlusion by large trees (a). The time difference between
ground-truth measurements and when a street-level image was taken
(>=2 years) results in the absence of either a tree prediction or a
ground-truth measurement (b). Geolocation accuracy decreases slightly
with increasing distance of trees to the car position of image capture (c).
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Minimum distances between tree location prediction and ground-truth mea-

surements for all areas are 0.26 meters or higher (s. tab 2.4). Tree location predic-

tion in Vancouver is, with a mean of 5.28 and a median position accuracy of 4.36

meters approximately 2 meters more accurate than all other areas, followed by Co-

quitlam’s urban and suburban areas with mean and median slightly above 6 meters.

With a mean of 7.06 meters and a medium of 6.87 meters, geolocation performance

in Surrey is lower than in all other areas. Overall lower position accuracy in the

Surrey could be attributed to the area of interest being located on a slope >15%

negatively influencing triangulation, compared to other areas with no or a relatively

low slope (<5%). Another source of error may be the overall more spread building

and green space structure of the Surrey area. This structural characteristic is lead-

ing to trees being located further away from the camera position of image capture

with a slight decline in detection and location accuracy with resulting smaller tree

masks, discussed in section 2.3.2 (s. fig 2.8 (c)).

Table 2.4: Absolute geolocation accuracy (in meters)

match min mean median std
Vancouver 235 0.26 5.28 4.36 3.59

street trees 143 0.26 4.31 3.92 2.76
private trees 97 1.56 8.55 8.38 3.77

Surrey 94 0.42 7.06 6.87 3.36
Coquitlam (urban) 64 0.46 6.58 6.26 3.22
Coquitlam (suburban) 159 0.55 6.83 6.07 3.73

Location accuracy for private and street trees

After triangulation, 143 street trees (93% of the ground-truth measurement) were

successfully located in the Vancouver area after triangulation. 11 trees (7%) of 154

street trees remained unmatched (<15 meter ground-truth to prediction). The ma-

jority (9 trees) of ground-truth street trees that were not matched were either newly

or re-planted small trees in between the date of capture for street-level images and

the collection of ground-truth data (i.e. 2 years) (s. fig 2.8, (c)). The two remaining

unmatched trees were not detected in the instance segmentation step, due to large

vehicles obstructing the trees in respective street-level images. Distances from
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ground-truth to tree predictions for street trees range from 0.26 to 13.14 m meters

with a mean of 4.31 meters, a median of 3.92 meters and a standard deviation of

2.76 meters (s. tab 2.4). The mean of street trees (red) can be detected almost 1

meter more accurately than the mean of all trees (blue) and 4 meters more accu-

rately than the mean of private trees (green) in the Vancouver area (s. fig 2.9). The

overall more accurate predictions in Vancouver are possibly a result of the presence

of uniformly and separately planted street trees (s. fig 2.9, red, and fig 2.8). Owing

to street trees proximity to the camera position, tree masks are bigger and predicted

more accurate which has a potential influence on the location prediction of street

trees (s. section 2.3.1).
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Figure 2.9: Absolute geolocation accuracy for street trees (red), private
trees (green), and all trees (blue) in the Vancouver area.

Absolute location accuracy for private trees with the presence of street trees is 3

meters less accurate compared to the previously discussed overall accuracies of all

of Vancouver, Surrey and Coquitlam areas (s. tab 2.4). Values for Vancouver’s pri-

vate trees are a minimum of 1.56 meters, a mean of 8.55 meters, a median of 8.38

meters and a standard deviation of 3.77 meters. 70% (97 trees) of all recorded pri-

vate trees were matched, 30% (43 trees) were not matched. Both, non-matches and
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low position accuracy of private trees may be influenced by the more varying spa-

tial pattern of planted private trees. Surrey and Coquitlam areas with similar spatial

tree heterogeneity, not influenced by street trees, also recorded approximately 30%

of non-matched ground-truth trees. As previously discussed, the combination of

two trees detected as a single tree is the most common tree detection error for all

mask sizes (s. section 2.3.1). This error is expected to occur more often for densely

planted private trees with overlapping canopy, than uniformly planted street trees

[144].

It is also possible that the presence of street trees influences the model’s lo-

cation accuracy. Surrey and Coquitlam’s (suburban) private trees (no presence of

street trees) show lower positional errors than Vancouver’s private trees. Street

trees often overlap with private trees in street-level photographs due to their prox-

imity to the camera position. Street trees therefore influence both, monocular depth

estimation of private trees and the bearing information of the tree detection bound-

ing box from the camera position, as the center of mass shifts towards the larger

part of the mask, the street tree. These detection errors negatively influence the

localization process and may result in lower positional accuracy for private trees in

areas with street tree presence.

Location accuracy with distance of tree from position of image capture

Distances of street tree measurements to the camera positions range between 6-14

meters, distances of private tree measurements to the camera position are typically

>15 meters away, resulting in a bi-modal distribution of all distances between

ground measurements and car positions for all areas (s. fig 2.10). Another reason

for more accurate geolocation in Vancouver may be attributed to Vancouver trees

being positioned closer to the camera at the time of image capture than in Surrey

and Coquitlam image datasets (s. fig 2.10). The range of absolute position error

from the tree location prediction to the tree ground-truth measurement is slightly

lower for trees closer to the camera position than the error range for trees further

away from the camera (s. fig 2.8, (b)), indicated by the shape of the Kernel Density

Estimates (KDE) in figure 2.10. However, only a low correlation with R-square of

0.17 can be recorded between the distance of the predicted tree to the ground-truth
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measurement and the distance of the ground-truth measurement to the car position.

The mean positional error increases with distance to the camera by approximately

0.23 times the distance between ground-truth tree location and camera, indicated

by the slope of figure 2.10. This aligns in magnitude with a Root Mean Squared

Log Error (RMSLE) of approximately 0.2 reported by Godard et al. [50] for the

increase in error for monocular depth estimation with distance from the camera

position. Random noise of 6.3 meters is introduced, likely through different street

slopes, described tree detection errors and resulting triangulation errors. I also

detect a systematic error, an intercept of 2.7 meters with a potential cause through

systematic car position GPS inaccuracies in urban landscapes [41]. Another cause

for this systematic error could be the initial tree location prediction using the center

of mass for each tree crown, retrieving a depth measurement for the outside of the

crown diameter instead of the usually measured stem position.
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Figure 2.10: Influence of camera position at time of image capture on tree
location prediction. Comparison of the distance of ground-truth mea-
surements to the camera location at time of image capture vs. ground-
truth measurements to predicted tree locations for all data points (Van-
couver, Surrey, Coquitlam))
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2.4 Conclusion
To support decision-making and research that can improve the management of ur-

ban forests, cities need more cost-efficient and widely applicable tools that can pro-

vide high-resolution spatial information on single urban trees for the entire urban

and peri-urban landscape (s. section 1.1.3) [69]. I presented a promising low-cost

framework for mapping individual urban trees over large areas that shows potential

to be adopted in different cities around the world. This novel model relies solely on

street-level imagery as a data input and does not require any additional, potentially

expensive VHR aerial or satellite imagery for the geolocation of trees. Further-

more, it is developed and tested to be transferable over different image sources and

geographical regions as evidenced by the experimental results.

The approach can be applied to a diversity of urban trees and forests, both pub-

lic and private, and could form the basis for urban assessments that require single

tree detection. I found that MASK R-CNN can be successfully trained to identify

fuzzy objects like trees to a high precision with a minimal amount of training im-

ages (48 images) and a layered training approach integrating open source imagery

datasets (COCO Stuff). The experimental results of this study demonstrate that a

layered training approach resulted in a 23% higher tree detection rate compared

to only using transfer learning. AP50 values over 0.62 are consistent with state-of-

the-art results in other studies segmenting fuzzy objects [18]. The instance seg-

mentation model, in combination with the layered training approach, has shown

potential to learning a broad range of tree shapes, species and sizes without the

need for extensive training on particular tree features. For instance, palm trees in

the Pasadena test set were detected without palm trees being included in the Van-

couver and Surrey training set. The combination of DL and street-level imagery

appears promising towards the detection of trees in different urban ecosystems.

Further, the model is not limited to the use of the same sensor or dataset. Both

Mapillary and GSV panoramas showed suitable for urban tree mapping.

I accurately geolocated trees using one or two street-level images, a monocular

depth estimation algorithm, and triangulation that requires no additional or context

information. The geolocation of street trees with a mean accuracy of around 4

meters was approximately 2 meters more accurate than the mean accuracy of 6
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meters for private trees seen from the street. Most trees clustered at 10 meters

distance from the camera position for the tested Google and Mapillary imagery.

The proximity of trees resulted in a generally larger tree mask in the tree detection

step. Inversely, the further away a tree was away from the camera, the more errors

in tree detection occured. This suggests that for future application the distance

from the camera position at time of image capture to trees of interest should be

a consideration when choosing or generating a dataset for urban tree mapping for

future application. Detection errors influenced our tree geolocation module and I

recommend collecting images in a range of 7-14 meters away from trees of interest

for best positioning results.

Street-level imagery in combination with DL brings a new perspective to as-

sessing urban forests. Accurate masking and geolocation of trees can provide the

basis for a variety of quantitative urban forest assessments (s. section 4). For ex-

ample, this assessment could be used in the future to quantify ecosystem services

of urban trees at a large scale using tree structure attributes as proxies to estimate

multi-functionality. Future research directions aimed at optimizing street-level im-

agery capture could include: assessing the influence of spacing between camera

positions of image capture on triangulation and positional accuracy of tree predic-

tions; evaluating the influence of slope and vertical terrain variability on geolo-

cation performance; and improving geolocation performance for areas with high

terrain variability.
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Chapter 3

A machine learning tool for
mapping urban tree diversity

3.1 Introduction

3.1.1 The importance of urban tree diversity

A diverse and healthy urban forest enhances the ability of cities to adapt to cli-

mate change impacts, such as droughts or floods, improves wildlife habitat, con-

tributes to the protection of native ecosystems and, importantly, increases resilience

of cities to pest and disease outbreaks [7, 104]. Mass tree mortality, i.e. of Fraxinus

or Ulmus, due to disease and invasive pests has been known to occur; famous ex-

amples in Canada and the United States being DED and EAB [90]. These outbreaks

can be hugely detrimental to the health of urban ecosystems, including the health

of people living in cities, and can come at a great cost to municipalities (s. section

1.1.2) [135].

Given the many benefits of a diverse urban forest (s. section 1.1), preserving

and improving urban forest health and diversity are key goals of many urban forest

strategies across North America and Europe [7, 62, 108]. Tree diversity metrics

used in the context of urban forest management often relate to richness (the count

of different tree genera), evenness (the proportion of a given tree genus with the
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total urban forest), composition (the identity of present tree genera), and distribu-

tion (the spatial abundance of tree genera) [104]. These metrics are used to assess

the state of diversity in urban forests, and they require detailed and accurate ur-

ban tree inventories as a baseline. In the face of resource constraints and lack of

capacity, municipalities are increasingly looking for new ways to carry out urban

forest inventories and continuously assess the state of their urban forest resource

(s. section 1.1.4), especially as climate change is predicted to increase urban forest

vulnerability to pests and disease (s. section 1.1.3) [96].

3.1.2 Bio-surveillance in the Metro Vancouver region

Urban decision makers in Canada will require detailed urban tree inventory data

to predict FIS spread patterns, to minimise impacts on valuable urban forests and

to assess the efficacy and efficiency of bio-surveillance programs [43]. Emerging

national and international policy statements and strategies will greatly impact the

management of urban forests for prevention, detection and rapid response for FIS

infestations [39]. Key goals of these policies and strategies are to improve surveil-

lance activities in geographic areas under risk of pest and pathogen introduction,

such as residential areas close to ports, tree nurseries, or industrial zones, to evalu-

ate the effectiveness of international policies and pest contamination procedures in

regards to introduction prevention.

The implementation of the above strategies will require a sound understanding

of baseline conditions such as tree species and genera richness, evenness, com-

position, and distribution. The availability of cost-efficient, fine-scale urban tree

inventory data, therefore, has the potential to direct successful bio-surveillance ef-

forts and identify areas of high economic and invasion risk for many known and

unknown FIS [116]. Detailed tree inventory data can, for example, provide valu-

able information about the location of native and planted host trees susceptible to

attack from specific FIS. Knowledge of the spatial distribution of urban trees and

their genera composition allows to determine the most effective bio-surveillance

activity in varying urban forest landscapes (s. section 1.1.3) [71].

Two common bio-surveillance activities for early detection of FIS in the Metro

Vancouver region involve: 1) the distribution of pheromone traps around areas of
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high introduction risk, such as harbours or commercial zones where FIS first come

in contact with trees, and 2) manual visual inspection of potential host trees present

at intersection points of a 1km by 1km triangular grid placed over the Metro Van-

couver area (correspondence with Kimoto T., April 2019, CFIA). Both of these ac-

tivities directly rely on up-to-date, spatially comprehensive data on the distribution

and host tree or genera composition of the urban forest. Current tree inventories of

the 21 municipalities in the Metro Vancouver region are mostly restricted to public

street trees or other trees on public land and exclude large areas of urban forest,

especially trees on residential properties. For example, in Vancouver, about 37%

of urban forest is located on private land [62]. As outlined in section 1.2 automatic

processing of spatially extensive GSV imagery has the potential to provide detailed

information on the abundance and distribution of host trees or tree genera in urban

areas. With the aim of improving urban bio-surveillance activities in the Metro

Vancouver region, I propose a method to automatically classify tree species at the

genus level, leveraging GSV imagery and CNNs.

3.1.3 Training data for tree genus classification

The main challenge of using new DL technology in urban and environmental re-

search is the lack of availability of large scale, public training datasets. Most pub-

licly available datasets still focus on classical areas of machine learning like face

recognition [112], self-driving cars or medical imagery. There are few very special-

ized datasets available for tree species or plant recognition [141]. These datasets

represent best available imagery or specific use cases and often do not represent an

operational dataset needed for learning correct feature representations by the CNN.

3.1.4 Chapter objectives

The study presented in this chapter has two key goals. The first goal is to propose a

multi-stage strategy for building large imagery datasets for research in urban areas,

with only a limited amount of manual annotation needed. Therefore, I propose a

method that integrates readily available geospatial information (i.e environmental

in-situ datasets, such as street-tree inventories) and geo-tagged street-view imagery,

leveraging the tree detection method presented in chapter 2. The second goal is to
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create a DL model to classify urban tree genera from street-level imagery. I ex-

plore state-of-the-art procedures in transfer-learning for fine-grained classification

problems. Ultimately, I create a new dataset of tree genera hotspots for the Metro

Vancouver area in British Columbia (BC), Canada, to inform urban bio-surveillance

management and planning.

3.2 Data and methods

3.2.1 Case study site

The Metro Vancouver region spans 2,700 square kilometers, including the three

cities (vancouver, Surrey, and Coquitlam) introduced in chapter 2, section 2.2.1.

Metro Vancouver is a federation of 21 municipalities, with 26 urban centers rang-

ing in size and character. Given proximity to one of the major trade nodes to Asia,

urban forests in the Metro Vancouver region are particularly vulnerable to invasive

tree pests and insects, such as ALB, AGM, DED or SOD arriving through interna-

tional trade [147] (s. section 1.1.2). Detailed maps of tree genera can for example

help urban bio-surveillance managers to identify areas of high invasion risk and

target areas for visual inspections according to host tree abundance and accumula-

tion (s. section 1.1.3). In this study, I define areas of high invasion risk as areas

that show an accumulation of detected trees of the same genus (as investigated by

KDE), located in relative proximity to points of entry for pests and pathogens, such

as industrial areas or ports, or connected to areas where the assessed tree genus can

be observed. Pseudotsuga, Thuja, Acer, Ulmus, Quercus and Fraxinus are native

and planted tree genera, that are abundant within the Metro Vancouver area and can

act as host to either ALB, AGM, DED or SOD, pests and pathogens that are expected

to arrive in the region in future [69, 120, 127, 147].

Metro Vancouver imagery dataset

A GSV imagery dataset for assessing tree species distribution in parts of the Metro

Vancouver area (excluding Abbotsford, Mission, Maple Ridge, Langley Township

and Pitt Meadows) was acquired from GSV in 2017. The dataset consists of a total

of over 2 million images of size 512x512 pixels, predominantly collected from
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April to September, 2017. It contains images for over 690,000 car positions spread

over Metro Vancouver, with four images per car position representing a Filed of

View (FOV) of 0◦, 90◦, 180◦ and 270◦ from true north, respectively.

Tree genus classification training dataset

To build a tree genera classification model to classify the retrieved images of Metro

Vancouver, I developed a workflow to build a labeled dataset containing approxi-

mately 40,000 curated training images for 120 different tree genera compiled into

41 genera classes and one “other genera“ class. For a full list of tree genera classes

see appendix D. The method for download and retrieval of imagery for building

training, development and testing datasets for tree genus classification is described

in section 3.2.4.

3.2.2 Full mapping workflow

Computer vision tasks are frequently approached as end-to-end DL problems. In

end-to-end learning, learning is highly automated, meaning that all stages of learn-

ing are performed as a holistic learning process (i.e. detection and classification

of trees as one model and learning process). The main drawback of end-to-end DL

models is that they usually require enormous amounts of data to train (millions of

images) [49]. I promoted the strategy of sub-problem solving which requires less

training imagery compared to training end-to-end DL models for the task of tree

genera classification from street-level imagery [49] (s. fig 3.1). In an automated

manner, I first detected trees in street scenes, as described in chapter 2, and then

classified cropped images displaying the tree of interest in the center of the im-

agery. Adopting this strategy I received a tree count per street-level car location as

well as a tree genera label for each detected tree. Lastly, I created maps of kernel-

density estimates, using the open source package ”seaborne” to visualize hot spots

of tree genera in the Metro Vancouver area [143].

3.2.3 Tree detection

In this study, MASK R-CNN was used to detect and outline trees in imagery by gen-

erating bounding boxes and binary segmentation masks for each tree instance (s.
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Figure 3.1: Tree genus classification workflow. GSV images are cropped to
display single trees and further augmented to build training, develop-
ment and testing datasets.

section 2.2.4). These tree detections were then used for both tree location, as pre-

sented in chapter 2, and the following genus classification model. For the tree genus

classification workflow, MASK R-CNN’s binary segmentation masks were used for

two purposes. First, the tree detection module, developed in chapter 2, was used

to build a tree genera dataset outlined in section 3.2.4. Second, MASK R-CNN was

applied to the full Metro Vancouver dataset and generated bounding boxes were

used to extract images of single trees used for single-label tree genus classification.

The MASK R-CNN architecture, its training and evaluation process, as well as the

chosen training data, are described in detail in appendix B.
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3.2.4 Multi-stage strategy for building tree genera dataset

I proposed a multi-stage strategy to rapidly collect and sample tree genera im-

ages from street-level imagery providers for training a tree genus classifier. The

challenge of this task was to match known occurrences of tree genera recorded in

Vancouver’s official street-tree inventory to pictures of the recorded trees retrieved

from GSV, to create a labeled dataset for training. The main stages of the proposed

strategy to create this labeled street-level imagery dataset involved: 1) image ac-

quisition, 2) cropping images to the tree of interest, and 3) manual removal of

erroneously labeled images.

Step 1: Imagery acquisition

I leveraged location and genus information of existing street tree inventory data

for the city of Vancouver to semi-automatically create a training and testing tree

genera imagery dataset. Vancouver street tree inventory data contains geographic

coordinates for manually recorded individual trees, connected to a single species

and genus label. Metadata of street-level imagery from different providers (i.e.

crowd-sourced Mapillary data or proprietary GSV data) generally contains the cam-

era position at the time of image capture in geographical coordinates and bearing of

the image center in relation to magnetic north in degrees. Given the spatial relation

between the tree location and species name recorded in the street tree inventory

and the camera position at the time of image capture I calculated the necessary im-

agery bearing to display the selected, manually recorded tree location in the middle

of the image (s. fig 3.2 (a)). I then downloaded all available imagery with the cal-

culated bearing information as input for the image center, a FOV of 90◦ and a pixel

resolution of 512x512 pixels from the GSV platform in June 2018 [144] (s. fig 3.2

(b)). The choice of a relatively wide FOV of 90◦ accounted for known errors of

GPS accuracy of 2-12 meters in urban environments for both the car position at

time of image capture and the tree location recorded in the urban tree inventory

[149]. Owing to inaccuracies in GPS measurements, and associated error in cal-

culated bearings, a wide FOV ensured that each downloaded image displayed the

tree of interest recorded in the tree inventory, even if the tree was off-set from the

center of the image.
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Figure 3.2: Training data generation for tree genus classification. Us-
ing existing street tree inventory, the closest GSV car coordinates to
each recorded tree are calculated (a) and a corresponding image is re-
quested (b). All trees in the requested image are detected with a trained
MASK R-CNN model (c) and the closest and largest bounding boxes or
tree detections are chosen to represent the street tree (d). Images are
cropped to display the selected single tree in the center for training the
tree genus classification model (e).

Step 2: Cropping images to tree of interest

I post-processed images in order to create an image displaying a single tree, con-

nected to the correct label from Vancouver’s street tree inventory. I first applied the

trained MASK R-CNN model to detect all trees present in the image as described in

chapter 2 and appendix B (s. fig 3.2 (c)). I then ran a monocular depth estimation

model, to create a dense depth layer for each image as described in section 2.2.5.

I computed a measure of distance between each tree detected in the image and

the camera position at the time of image capture in meters by extracting the depth

value of the pixel located at the center of mass for each calculated tree mask. I then

selected one tree per downloaded GSV image as the labeled street-tree under the

assumption that the particular street-tree must be the tree with the smallest depth

value, or the closest tree to the camera position at the time of image capture (s.

fig 3.2 (d)). Each GSV image was cropped according to the bounding box of teh

selected tree, previously computed by MASK R-CNN (s. fig 3.2 (e)).
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Step 3: Manual removal of erroneous images

Lastly, I manually inspected the created training dataset of cropped images, one

genus class at a time, to identify all cropped images of trees with an incorrect

label. Images that displayed a tree genus that did not correspond to the matched

label were discarded. Furthermore, I discarded all images of size 50 KB or smaller

as visual analysis revealed that their resolution was not fit for training the classifier.

Following the recommendations of [15] for tree species classification, all genera

with an image sample set over 125 images per class were used as separate classes

training the genus classifier. All genera with an image sample set under 125 images

per class were combined under the class label “other”. Resulting in a tree genus

dataset of 41 tree genera and one ”other” class (s. fig 3.3).

3.2.5 Tree genus classification

To classify the detected trees into one of the 42 fine-grained genera classes, I

trained an image classification model using the novel fast.ai DL framework built

on PyTorch. fast.ai is an open source software package, designed for researchers

and DL practitioners to quickly build and iteratively train DL models with state-of-

the-art guidance on best practices for training. I used a transfer-learning approach

with a modified RESNET50 architecture and a softmax classifier [58].

Balancing the training dataset

First, I split the genera training dataset into training, development and test datasets

with a 80:10:10 ratio. I sought to prevent the classifier from over-fitting on tree gen-

era which dominate the genera dataset, due to their abundance in the Vancouver,

i.e. Acer or Prunus with over 5,000 images per class. In order to balance classes

in the training dataset, I under-sampled respective classes, meaning, I selected a

maximum of 4,000 images per class and removed the rest from training. I then

over-sampled all other classes [17]. First, I added all downloaded, uncropped im-

ages of the respective tree, and second, multiplied images using a NumPy random

number generator (assuming a univariate Gaussian distribution) until all classes

were equalized to a count of 4,000 images per class.
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Figure 3.3: Examples of tree genera dataset and data augmentation. GSV

images are cropped to display single trees and further augmented to
build training, development and testing datasets. The final training size
of each image is 256x256 pixels.

Mixup and data augmentation

Mixup is a novel data augmentation technique known to improve generalization er-

ror of models and avoid the memorization of corrupted labels [150]. As the name

suggests, mixup constructs a training image through mixing two random examples

from the training set and their labels through linear interpolation (60% image one,

40% image two) [150]. In order to avoid over-fitting on the oversampled dataset,

I implemented mixup. Additionally, several data augmentation techniques were
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applied to imagery as mixed training images were fed into the model. Data aug-

mentation was applied randomly and included a horizontal flip with a probability

of 50%, a rotation of up to 15◦, a zoom up to 150%, lighting and contrast change

of magnitude up to 0.4 and a symmetric warp of magnitude up to 0.2 (s. fig 3.3).

Mixed precision training and progressive resizing

Mixed precision training performs operations within the model using smaller sized

data types when possible – so called half-precision or 16-bit Floating Points (FP16)

and Single-precision Floating Points (FP1) – which improves training time and de-

creases the use of memory [93, 107]. I implemented mixed precision training to

speed up the computational training process [63]. Furthermore, I used progres-

sive resizing of images, starting from 64x64, over 128x128, to 256x256 pixels for

training respective models [112]. As training with smaller sized images was less

memory intensive the training process was accelerated through learning to distin-

guish tree genera on coarse resolution images first, in comparison to training on

larger resolution images from the beginning. I used trained weights from each

model with a smaller image size to initiate the training process of the model with

the next bigger image size. I trained the RESNET50 implementation on an NVIDIA

GPU (Tesla P100-PCIE-12GB) with 32 CPU cores and 32 GB of memory.

Evaluation

I used mAP as an evaluation metric, where precision for each genus class (pclass)

was defined as the number of correctly classified trees (true positives, TP) di-

vided by the number of correctly classified trees (true positives, TP), plus the

number of incorrectly classified trees (false positives, FP) falling into the specific

genus class. mAP was then calculated as the weighted mean of all class preci-

sions (p1, p2, ..., pn), with the corresponding number of training images per class

as weights (w1,w2, ...,wn)::

pclass =
T Pclass

T Pclass +FPclass
(3.1)
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mAP =

n

∑
i=1

wi pi

n

∑
i=1

wi

(3.2)

In addition to mAP, I used top-3 accuracy to assess model performance. Top-3

accuracy was defined as the percentage of images of one class whose ground truth

genus label is within the three highest ranked predicted labels. Last, I compared

classification of separate genera classes in a detailed confusion matrix.

3.3 Experiments

3.3.1 Classification performance

The model achieved an overall classification accuracy of mAP of > 82% and top-

3 accuracy of > 95% for 41 different tree genera and one ”other” class in both

training and development datasets (s. tab 3.1). I closely examined classification

mAP for different genera classes (s. fig 3.4): the model classified 6 genera over

90%, 13 genera with over 80% and 27 genera over 70% precision; 12 genera were

classified with a precision under 70%. Laburnum, Abies, Ilex, Prunus and Betula

genera display the highest classification precision. Amelanchier, Ginko, Cercis,

Juglans and Tsuga could not be classified successfully.

Table 3.1: Classification accuracy for development and test sets

top-3 accuracy mAP

development set 95.0% 82.4%
test set 95.5% 82.9%

The confusion matrix for the test dataset revealed that most tree genera were

successfully distinguished from one another (s. fig 3.5). Few high values diverging

from the center line were observed, indicating overall high prediction accuracy,

precision and recall for all genera classes. Cercis, Amelancier, Tsuga and Ginkgo

were the most confused genera classes (s. fig 3.5).
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Figure 3.4: Precision for different genus classes in the test dataset. Up to
27 genera can be classified with a precision over 0.7 (Green).
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Figure 3.5: Confusion matrix for tree genera classification. Darker shades
indicate higher classification accuracy, precision and recall. The darker
blue the colour of the confusion matrix, the higher the displayed per-
centage value. The dark blue diagonal center line indicates that in most
cases, the model generated a matching prediction to the actual tree gen-
era displayed on the analyzed image.
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3.3.2 Hotspot maps of Metro Vancouver

I detected a total of > 4 million trees in street-level imagery dataset of the Metro

Vancouver area. Generated image sizes varied from a minimum of 2 KB to a maxi-

mum of 450 KB with a mean of 32 KB (s. fig 3.6). An image of pixel size 256x256

used for the last iteration of training the genus model, corresponded approximately

to 65,000 pixels or 64 KB in size. Visual analysis of generated images revealed that

images under 20 KB or 30,000 pixels in size typically represented trees far away

from the camera position of image capture (s. fig 3.6). Images over a threshold of

> 20 KB were used to generate the following hotspot maps (s. fig 3.7).

Figure 3.6: Distribution of sizes of generated tree cutouts with examples.

Applying the tree genera classifier to cropped images retrieved through tree

detection with MASK R-CNN, I built maps of specific tree genera hotspots through

KDE for Metro Vancouver, to aid bio-surveillance planning and management. Dis-

played in figure 3.7 are two coniferous (Pseudotsuga, Thuja), and four deciduous
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Figure 3.7: Tree genera distributions in Metro Vancouver.
Kernel density estimates are shown for two coniferous, Pseudotsuga and Thuja,

and four deciduous, Acer, Quercus, Fraxinus and Ulmus, tree genera.
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(Acer, Ulmus, Quercus, Fraxinus) tree genera. All six genera are currently un-

der threat by invasive pests and pathogens and of high interest in bio-surveillance

campaigns (s. tab 3.2). Appendix C provides a visual example, comparing the

generated, underlying dataset used for KDE maps to existing street tree inventory

data.

Table 3.2: Selected occurrences of tree genera in Metro Vancouver. Count
of generated detections and example threats of two coniferous, Pseudot-
suga, Thuja, and four deciduous, Acer, Ulmus, Quercus, Fraxinus tree
genera

genus Count native Threatened by
ACER 493,000 x Asian Long-horned Beetle (ALB)
THUJA 175,000 x Asian Gypsy Moth (AGM)
FRAXINUS 110,000 Emerald Ash Borer (EAB)
QUERCUS 95,000 x Sudden Oak Death (SOD)
PSEUDOTSUGA 90,000 x Sudden Oak Death (SOD)
ULMUS 47,000 Dutch Elm Disease (DED)

Generated data and KDE maps helped to answer diverse questions about the

genera composition of Metro Vancouver’s urban forest ranging from where most

trees were detected (Vancouver West), to highest percentage of assessed conifer-

ous trees (North Vancouver), or highest percentage of Fraxinus (new settlements in

East Vancouver). KDE maps for both coniferous genera, which are native to Van-

couver, show that Pseudotsuga and Thuja were found throughout Metro Vancou-

ver, but were especially abundant in less densely populated areas, close to provin-

cial parks or nature reserves, i.e. Stanley Park, North Vancouver or Coquitlam.

Ulmus was mainly detected in the city of Vancouver, West Vancouver and East

Vancouver, but was not observed in Surrey or Richmond. In comparison, Acer

hotspots were very interconnected and spread wide over the region. This suggests

that in the event of an infestation of Acer, negative impacts of pests and pathogens

could be far reaching for Metro Vancouver, as pests and pathogens spread more

easily and quickly when host trees are interconnected.

The highest count of tree observations on imagery among the displayed tree

genera of interest were Acer, followed by Thuja. Trees of the genus Ulmus were

observed the least in this example with a total of approximately 50,000 occurrences
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in street-level images (s. tab 3.2). A full list of genera and corresponding occur-

rences in street-level imagery can be found in appendix D.

3.4 Discussion

3.4.1 Classification model performance

The model presented in this chapter is the first method currently available for tree

genera classification from street-level imagery that tests applicability to a larger

area like Metro Vancouver. Cercis, Amelancier, Tsuga and Ginkgo were the most

confused and lowest performing genera classes. These four classes were strongly

underrepresented in the training, developing and testing datasets with < 1% of the

total dataset for each class in the testing dataset (s. fig 3.8). In contrast Laburnum,

Abies and Ilex that are amongst the classes with the best model performance are

also among the image class datasets with < 1% of the total dataset (s. fig. 3.8).

Differences in model performance for these 6 classes could result from: 1) tree

genera structures that are generally very difficult to classify through either high

heterogeneity within the genus class or similarities to other genera, 2) the low

amount of remaining test images after selecting 100 training images is not sufficient

to accurately represent the real world distribution of potential GSV images of the

respective class. It appears that 100 training examples per class are not enough to

train a model to successfully classify Cercis, Amelancier, Tsuga and Ginkgo. Both

of the above named reasons could be solved in future through increasing training

and testing data for the respective classes.

On the other hand, the class with the highest number of training examples

(Acer) was not the class with the highest classification precision (s. fig 3.4 and

fig 3.8). This suggests that certain genera could be harder to classify either ow-

ing to similarities to different genera classes or to high heterogeneity within the

respective genera class [123]. In the latter case it might be beneficial to separate

these genera out to classify different tree species found within the genus. Assess-

ing which of the above factors (lack of training imagery, insufficient testing data,

heterogeneity within the genus class, similarity in between genera) is the ultimate

cause of lower model performance for certain classes is currently still a challeng-
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Figure 3.8: Images per class in the tree genus classification test dataset.
All classes have a minimum of 125 images in the training set, all re-
maining images are in the development and test datasets. Up to 8 genera
classes (yellow) have under 50 images (red) in the test dataset.

ing and time consuming task through the lack of tools to interpret DNNs [22]. This

gap in available tools and standardized workflows opens up possibilities for future

research in assessing the influence of tree genera class structure and training data

availability on classification performance.

3.4.2 Transferability to other areas

Retraining the presented model with labelled imagery from other cities and includ-

ing a greater number of tree genera would make it possible to use the model to as-

sess urban forest diversity more extensively. However, as beneficial climatic condi-

tions have made Vancouver’s urban forest one of Canada’s most diverse forests, the

model was trained using a large dataset containing > 1000 images per genus class

that characterise a wide range of trees found within a genera, located in differing

urban environments. The model could be used to analyse the distribution of genera

with a high number of training images (> 50 images in the test dataset) and good

model performance (> 70% accuracy) in other urban environments with sufficient

street-level imagery taken in summer, including but not restricted to: Acer, Prunus,
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Tilia, Fraxinus, Carpinus, Ulmus, Betula, Magnolia, Platanus, Thuja, Pinus, Pseu-

dotsuga, Sorbus, Cercidiphyllum, Cedrus, Metasequoia, Malus and Quercus.

GSV imagery, processed for training the model, is currently predominantly

available for the months of April to October, when most tree genera display leaves.

An expansion of the tree genera training data to different seasons would increase

the generality of the model as it could be used to classify tree images taken at any

time. Even though bio-surveillance management focuses on campaign planning

for leaf-on tree conditions, when harmful pest and pathogens are the most active

and the most likely to be detected, other smart urban forest management activities,

i.e. the health assessment of allergy potential from urban trees, might benefit from

information about tree diversity before spring starts (s. section 4.2).

In addition to the current imagery being constrained to certain times of the

year, the process of generating training data was restricted to Vancouver’s pub-

lic street and boulevard trees, which limits the ability to train the model for rare

tree genera found only on private property. For an exhaustive urban tree diversity

assessment, future work should focus on the development of tools for or the collec-

tion of imagery for genera that cannot be assessed through the presented training

data generation workflow, including tree genera on private property and parks (s.

section 4.4).

3.5 Conclusion
I successfully analysed tree genera distribution across the Metro Vancouver area,

using DL for the classification of over 2 million street-level images. To facilitate

CNN training, I presented a method to rapidly and semi-automatically collect a

large training dataset. I trained a fine-grained tree genera classification model with

a mean average precision of 83% for 41 different tree genera and one ”other” class

including a total of 125 genera in the analysis. Integrated into smart urban forest

management, the presented workflow and model for analysing tree genera distribu-

tions in urban environments presents the opportunity to aid bio-surveillance cam-

paign planning to detect invasive pests and insects early. The approach, coupled

with publicly available street-level imagery, could enhance urban forest diversity

assessments through more detailed information on trees located on private prop-
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erty and has the potential to generate information on tree genera more rapidly and

over large areas than has been possible to date through to manual data collection to

update tree inventories. Depending on the genera of interest, the workflow can be

reproduced to retrain the model on new genera classes or the model can directly be

transferred to other urban environments.
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Chapter 4

Conclusions

4.1 Key findings
This thesis presented exploratory research in developing a method for automati-

cally detecting, locating and classifying urban trees. In the context of smart ur-

ban forest management, a combination of novel DL architectures and cost-efficient

street-level imagery was used to generate urban tree inventory data over a large

urban spatial extent. The developed method relied solely on street-level imagery as

a data input instead of more costly or less detailed aerial or satellite imagery that

many other models require (s. chapter 1 and section 1.2.1). The novelty of this

method was enhanced in that monocular depth estimation and triangulation were

used to predict tree locations without a dependence on complementary information

or aerial imagery (s. chapter 2). Finally, a reproducible and fast approach to gener-

ate a tree genera classification dataset was presented and maps of urban tree genera

distributions for the Metro Vancouver area were created (s. chapter 3).

4.1.1 Tree detection with Mask R-CNN

Trees were detected through training and using the MASK R-CNN architecture for

instance segmentation. Experimental results for performance and transferability of

tree instance segmentation were demonstrated for four cities (Vancouver, Surrey,

Coquitlam and Pasadena) and two data sources (GSV and Mapillary). MASK R-CNN

was successfully trained with a minimal amount of training images (48 images) and
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a layered training approach integrating open source imagery datasets (i.e. COCO

Stuff) to identify fuzzy objects like trees to a high precision. The experimental re-

sults of this study demonstrated that a layered training approach allowed for more

accurate instance segmentation of trees, compared to using only transfer learn-

ing. Tree instance segmentation results (0.6-0.7 AP50) were consistent with current

tree or plant semantic segmentation performances found in other studies, with the

added value that this work also distinguished between different tree objects [18].

The combination of DL and street-level imagery showed promising results for the

detection of different tree shapes and sizes in various urban ecosystems and urban

management regimes and was not limited to the use of the same sensor or dataset,

without the need for extensive retraining.

4.1.2 Tree geolocation with monocular depth estimation

Trees were located using one or multiple street-level photographs, combining monoc-

ular depth estimations generated with the monoDepth model, with tree detection

masks and location and bearing information of each photograph. Initial tree lo-

cation predictions were enhanced using triangulation that required no additional

or contextual information. Tree detection with MASK R-CNN in combination with

monocular depth estimation was able to provide a basis for street tree location pre-

diction that is comparable to manually conducted ground truth measurements with

hand held GPS devices in urban environments. Over 70% of trees, measured on

the ground, were successfully located for four different plots (Surrey, Vancouver,

Coquitlam urban center and residential area). The geolocation of street trees with a

mean of around 4 meters, mainly found in the Vancouver area, was approximately

2 meters more accurate than for private trees (6 meter), predominantly recorded in

Surrey and Coquitlam, seen from the street. The presented method allowed for the

assessment of trees on private property, a part of the urban forest for that cities are

still lacking information.

4.1.3 Tree genus classification

Fine-grained classification across different tree genera from imagery is a challeng-

ing task even for humans [13]. To facilitate tree genera classification in urban
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environments, a method for rapid sampling of tree genera training images from

GSV was presented. A tree genera dataset of 40,000 images compiled for 41 fine-

grained tree genera and one ”other genera” class, including a total of 80 different

tree genera, was created. This dataset was used to train a CNN for tree genera clas-

sification with 83% mean average precision. The model was applied to generate

tree genera distribution maps over the Metro Vancouver area and could be used in

the future for other urban areas provided that sufficient street-level imagery can be

acquired to use as training sample.

4.2 Implications

4.2.1 Deep learning for bio-surveillance planning

The goal of this research was to create and assess a methodology that has the poten-

tial to improve the consistency and availability of urban tree inventory data across

different regional authorities and scales. New data can help inform decision makers

for bio-surveillance efforts and urban forest management. For example, an open

and reproducible DL approach resulting in more accurate and detailed tree inven-

tories could add significant value to identifying and targeting areas of high infes-

tation risk in existing bio-surveillance investigations, particularly in cases where

infestation risk and impact is predicated on species composition and forest struc-

ture [40]. Improving urban forest inventories and subsequently identifying trees

with high infestation risk using DL techniques can allow decision makers to pro-

actively prevent, monitor and manage forest invasive alien species outbreaks in

higher temporal resolution than currently possible [88].

4.2.2 A new baseline for risk assessment

Diversity in structure and function is crucial to urban forest resilience, as exempli-

fied by the outbreaks that have devastated monocultures of elms (Ulmus) and ash

(Fraxinus) trees across cities in Canada and the United States. Urban tree biodi-

versity and the connectivity of tree canopy supports wildlife habitat, contributes

to the protection of native ecosystems, and enhances the ability for urban ecosys-

tems and people to adapt to climate change. A detailed urban tree inventory can be
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used to quantify the monetary value of and manage the suite of ecosystem services

provided by biodiverse urban forests, including ecological, health, recreational and

aesthetic benefits [126]. Tree clusters or groups of trees, for example, will generate

more services (such as cooling) compared to a single tree. Large trees will generate

greater ecosystem services value than smaller trees.

Weighting the cost of managing and protecting urban trees against the benefits

or services they provide is often used as a baseline for risk assessment and decision

making. In combination with other spatial information derived from LIDAR or high

resolution satellite RS data (e.g. tree health, tree structure), the trained NN can, for

example, improve bio-surveillance efforts through implementation into a decision

support pipeline for FIS risk analysis. The presented tool could also help map tree

genera that are more drought-tolerant contributing to climate adaptation strategies

of cities that are expected to be affected by more frequent heat waves.

4.2.3 Smart urban forest management

The research goals identified for this thesis (s. section 1.3) are of interest to many

industry and government participants. According to Östberg et al. [155], tree

species or genus and location of urban trees have been named some of the most

needed urban tree inventory parameters by various city officials and researchers.

Municipalities often do not have the resources nor capacity to carry out complete

inventories of their urban forest resource, not to mention consistent updates once

a baseline inventory has been completed. Efficient, cost-effective, and reliable ur-

ban tree inventory techniques are sorely needed to provide cities with the tools for

strategic urban forest planning and management. This research also highlights a

novel way in which technology can be used to monitor urban forests and enable

more proactive decision making about urban biodiversity, which could be consid-

ered a contribution to smart urban forestry.

4.2.4 A novel method for environmental research

Lastly, this study represents a project at the forefront of introducing state-of-the-art

DL frameworks to environmental management and decision making. It is expected

to not only produce a cost-efficient and openly available tree inventory generation
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framework, but also to inform research needs for other fields of study. By intro-

ducing and showcasing how new AI concepts can be leveraged for environmental

RS and object detection, I intend to inspire their application to generate new so-

lutions and expect far-reaching future implications for the fields of environmental

management and global change studies.

4.3 Limitations
Detecting, mapping and classifying urban trees from street-level imagery is a com-

plex and challenging task. As a novel approach to generate tree inventory data, this

project encountered critical limitations that require further thought for application

and research in future (s. section 4.4).

4.3.1 Tree visibility on street-level imagery

The presented methodological workflow is limited to assessing trees that can be

seen on street-level imagery. This often excludes parts of the urban forest that are

not visible from the street, for example trees found in backyards and trees in parks.

Furthermore, as outlined in chapter 2, 70% of all ground-truth measurements were

matched in the analysis. Thus, 30% of front yard and street trees were not recorded

in our detection and location predictions, either due to erroneous localization or due

to detection errors, i.e. through occlusion from other trees (s. chapter 2). Addi-

tionally, the performance to detect and locate trees in other parts of the urban forest

(e.g., urban woodlands and parks) was not assessed. Even though the developed

tool helps to gain insights about the urban forest going beyond street-trees, it is still

unclear what proportion of the urban forest can be recorded.

4.3.2 Availability of street-level imagery

Another key limitation for the future application of the developed software and

workflow is the availability of spatially coherent street-level imagery. Increasingly,

street-level imagery providers update their terms of use to prohibit the large-scale

processing and extraction of information from the provided data source (this is in

particular the case for GSV, which updated terms of use in September 2018). The

purpose of closing many geospatial data sources is predominantly to avoid costly
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law suits in case street-level imagery were used to collect sensitive and private

information (correspondence I. Seiferling, December 2018, MIT). Other providers

still cannot generate large spatial coverage within cities and over different countries

and regions (Mapillary).

Lastly, standards among service providers differ. As a result, different services

provide street-level imagery of varying quantity and quality. GSV spaces their

camera positions of image capture roughly every 15 meters, whereas Mapillary

provides imagery spaced one meter or lower apart. While GSV makes it a re-

quirement to collect data with high resolution panoramic cameras only, Mapillary

imagery ranges from low resolution smart phone cameras to also very high reso-

lution panoramic cameras and lenses. Similarly to GSV, Bing StreetSide or Open-

StreetCam have certain standards in place before an image is made publicly avail-

able on their platform, however, image resolution is, to date, still lower than GSV.

The presented methodology requires processing of panoramic or high resolution

street-level imagery. It has not been tested for compatibility and performance with

lower-resolution imagery from providers other than GSV and Mapillary. Lastly,

the methodology is restricted to assessing areas with sufficient, high-resolution

street-level imagery coverage only.

4.3.3 Limited tree genera training data

Related to the above, the generated tree genera dataset and tree genera classification

model are mainly targeted to identify planted trees and trees on boulevards rather

than trees found in local parks, greenbelts, backyards or other local natural forests.

Planted trees on developed sites that can be identified well and are abundant in

Metro Vancouver include: Acer, Prunus, Quercus, Tilia, Platanus, Fagus, Thuja,

Malus, Carpinus and Magnolia. Due to the genera dataset being developed mainly

on the basis of Vancouver’s existing street tree inventory, classification accuracy

for native trees is generally lower than for planted trees. This raises the question

of how far the developed tree genera classification model is applicable to native

trees in urban woodlands. Hence, the chosen training and evaluation methodology

is limited in that it does not assess urban tree classification accuracy for the largest

number of trees, namely native trees, because the number of forest trees are vastly
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more than planted trees on streets, in yards and in cultivated park areas: Alnus

and Populus dominate the deciduous list in abundance and size; Thuja, Tsuga and

Pseudotsuga dominate the coniferous list in abundance and size. Improving train-

ing data for native trees is particularly important in suburbs outside of the City of

Vancouver (Langley, Maple Ridge, Surrey etc.), as many of the roadside trees are

native trees growing on road allowance or near the road on private property.

4.4 Future research directions
This research has demonstrated the value of using street-level imagery and DL

architectures for smart urban forestry management. Current limitations open up a

range of avenues for future methodological development, testing applications and

research.

4.4.1 Assessing different data sources

A promising research avenue to assess the urban forest as a whole is the com-

bination of data sources from different perspectives, such as the side view from

street-level imagery and an aerial perspective from aerial imagery or LIDAR data

[13, 144]. Mapping urban trees from multiple perspectives could have the poten-

tial to overcome the limitation in missing tree instances of street-level imagery

presented in 4.3. While street-level imagery remains the most valuable data source

for fine-grained urban tree species classification, a combination with aerial imagery

or LIDAR data has the potential to provide more accurate localization of trees. Fur-

thermore, a baseline count of urban trees from aerial data could help quantify the

percentage of urban trees that were not detected on street-level images. Knowing

how many park and private trees are not included in the genera classification could

provide insights into how applicable the developed tree genera maps are for bio-

surveillance efforts. The difference in LIDAR and street-level imagery tree counts

could further help to identify areas where a denser street-level imagery coverage

could be needed. Additionally, a combination with aerial imagery and LIDAR data

could contribute other information, such as tree health (multispectral aerial im-

agery) or tree structure (LIDAR), to allow for a more comprehensive assessment of

the urban forest state in the future.
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Similarly, using video imagery instead of street-level imagery could provide

more detail of urban scenes leading to more accurate tree location predictions and

tree detection of private trees otherwise occluded. MASK R-CNN as well as Yolo are

DL architectures that also perform well for instance segmentation in video datasets.

Novel methods such as Optical flow, Structure from Motion (SFM) or Simultaneous

localisation and mapping (SLAM) could provide the basis for an improved geolo-

cation module. Such research could be beneficial for smart urban forest manage-

ment applications that require a higher level of detail but only need assessments for

smaller urban areas, such as genera classification for areas directly located at ports

or commercial zones of very high FIS risk.

4.4.2 Crowd-sourcing and street-level imagery collection

To overcome limitations caused by low or no availability of spatially coherent, high

resolution street-level imagery, new avenues of imagery collection in urban areas

could be evaluated. Data could, for example, be crowd-sourced through mobile

phone applications or citizen scientist campaigns, engaging citizens in smart urban

forest management. Including citizens in the acquisition of imagery could add the

benefit of also covering private areas or parks with imagery. Adding these images

in the presented workflow could allow urban forest managers to include otherwise

undetected private and park trees in the tree inventory (s. section 4.3).

Alternatively, street-level imagery could be captured through professional cam-

paigns using the same cameras, sensors, techniques and standards given by GSV.

This could give urban forest managers more control over the season, spacing or fre-

quency of image acquisition. Collected data through citizen engagement or smart

urban forest management campaigns could be hosted for free through services like

Mapillary and processed as presented in this research. Future research questions

could include: How does the cost of acquiring tree inventory data through manual

measurements, LIDAR or hyperspectral surveys compare to data generated through

street-level images? How do tree detection and geolocation results change with dif-

ferent spacing between camera positions of image capture? How does seasonality,

image resolution and other external circumstances like weather influence tree de-

tection and classification results? How frequently can tree inventories be updated
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using the proposed workflow from data caption to the final map product?

4.4.3 Methodological adaption for bio-surveillance

The achieved results for fine-grained tree genus classification raise the question:

What are future possibilities and where are limits for urban tree assessments with

DL architectures and street-level imagery? Tree genera identified in this research

could be extended in number and characteristics, e.g. through inclusion of more

native genera as outlined above (s. section 4.3) or rare genera found in urban en-

vironments. A next step after assessing tree classification at the genus level could

be a more detailed tree species classification, focusing on species particularly en-

dangered by arriving FIS or vulnerable to climate change impacts, such as droughts

and rising temperatures. Additionally, specifically for bio-surveillance and early

detection of tree pests and pathogens, it would be interesting to directly assess

tree health from street-level imagery. Impacts of tree pests and pathogens, such as

large holes in the bark for trees caused by ALB can already be visually identified

by professionals from photographs. Generating training datasets and developing a

model to detect different FIS impacts, for example defoliation, discolouring, holes,

in combination with regular imagery captures could open up opportunities to detect

and contain the spread of FIS at an early stage.

4.4.4 Green smart cities of the future

Finally, the generated dataset opens up a range of avenues for future research in

smart urban forest management. Accurate masking of trees and the position of

generated tree masks could provide the basis for a variety of quantitative urban for-

est assessments. For example, a detailed analysis of tree masks to extract informa-

tion about tree structure could allow estimating ecosystem function using proxies.

Qualitatively comparing different generated tree masks could provide valuable in-

formation on aesthetic appeal of different trees types and shapes, providing insights

into cultural ecosystem services provided by street trees. Location information of

urban trees in combination with a genus label can help answer questions such as:

What effect do urban trees have on the livability and resilience of our cities [53]?

What is the value and range of ecosystem services provided by urban forests [60]?
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How can urban trees help adapt and mitigate impacts of climate change on cities

[38]? How do urban trees contribute to human health and well being [137]? In

conclusion, street-level imagery in combination with DL brings a new perspective

to assessing urban forests.
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Appendix B

Theoretical background on
developing Mask R-CNN

In this project, MASK R-CNN was used to detect and outline trees in imagery by

generating bounding boxes and binary segmentation masks for each tree instance.

These tree detections were then used for both tree location and genus classifica-

tion (s. chapter 2 and 3). As the most central part of the proposed workflow, the

MASK R-CNN architecture, it’s training and evaluation process as well as the cho-

sen training data is described in detail in this section.

B.1 Training, development and evaluation data
generation

The presented workflow relied on two main data sources used to train, develop and

evaluate the tree detection (MASK R-CNN) and the genus classification (RESNET50)

models: 1) openly available benchmark datasets for training, i.e. the COCO Stuff

annotated dataset, and second, generated street-level panoramas and corresponding

tree labels. 2) Acquired street-level imagery for training, development, testing and

inference purposes.
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B.1.1 COCO Stuff dataset

The COCO Stuff dataset is the most expansive dataset with pixel-level annotations

for ”stuff classes” to date [18]. Stuff classes describe classes of objects that are

amorphous and consist of less to no distinct parts, e.g. sky, grass [31]. Stuff classes

are opposed to ”thing classes”, e.g. car, human, which describe objects of a specific

size and shape, and are made of identifiable parts, e.g. wheels and door for the thing

class ”car” [83]. In the context of computer vision, the ”tree class” is commonly

referred to as a stuff class, owing to a tree’s amorphous structure composed of

typically trunk, branches, leafs but also through shining background noise. COCO

Stuff consists of 164,000 images from the original COCO dataset with pixel-level

annotations for 172 classes: 91 stuff classes and 1 unlabeled class, additionally to

the traditional 80 thing classes [18]. Figure B.1 provides an example of images and

image annotations of images collected in COCO Stuff.

Figure B.1: COCO Stuff image and segmentation mask examples. The
COCO Stuff dataset is the most expansive dataset with pixel-level an-
notations for stuff classes. The COCO Stuff dataset is used as training
data in the presented workflow. These are three example images with
corresponding Stuff segmentation masks retrieved from the COCO 2017
Stuff Segmentation Task Challenge [2, 18]

The dataset can be downloaded via the official COCO dataset website [2]. After

downloading the image datasets, COCO Stuff data structures and annotations can

be accessed, manipulated and integrated into our DL workflow using the official

COCO Stuff API [1].

In the presented workflow, this extensive stuff dataset was used to extend the

smaller annotated tree datasets for training the instance segmentation DNN model.

All 36,500 images containing tree objects and pixel-level annotations were strate-
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gically extracted from COCO Stuff. Extracted images are used as basic training

and development datasets in the layered training approach for the tree detection

model, and therefore complement the smaller development and test datasets used

for fine-tuning (presented in the following section B.1.2).

B.1.2 Street-level panoramas and annotations

A developed data processing pipeline enabled a dense download of all GSV panora-

mas in a defined area of interest, and relied on the Python implementation of the

official Google API. In order to download a single panorama the API required a

set of coordinates of interest as main user input. The given user input was then

compared to recorded GSV car or camera positions at time of image capture and

metadata, including coordinate points, for the panorama closest to the user input

coordinates was returned. In a subsequent step, metadata information was then

used to download the actual panorama in various resolutions. Leveraging the API

the proposed processing pipeline consisted on the following steps of operation:

1. Generating a grid of coordinates over the area of interest: A grid of

coordinate points was generated to allow a dense download of all panoramas

over a given area of interest. The upper left and lower right corner coordinate

defined the size of the grid and allowed for a download of panoramas in

the resulting square. A new coordinate point was generated every 6 meters

to ensure all panoramas of an area were downloaded, since the common

distance between two points of panorama capture was 15 meters [144].

2. Crawling metadata of nearest panorama: The generated coordinate grid

was now used to crawl and download the metadata of all corresponding near-

est panoramas.

3. Downloading panorama data: All panoramas of interest were densely

downloaded based on the crawled metadata and the Google API. Panora-

mas were stored as a coherent dataset and further processed.

4. Dataset annotation: Training, development and testing datasets were build

through semi-atuomatic and manual annotation of a subset of GSV images.
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(a) For tree detection model development a small subset of 120 panora-

mas including roughly 1200 private and public trees located in Metro

Vancouver, Canada and Pasadena, USA were annotated. Trees were

manually annotated using Labelbox, software to annotate images and

mask objects, in combination with a custom designed label template.

Figures B.2 and B.3 show an annotated example panorama and details

of annotation masks.

(b) For tree genus classification model development tree masks were au-

tomatically generated through inference of the trained tree detection

model on all available imagery. Resulting masks were combined with

information from existing tree inventories based on the spatial location

of single trees. For a more detailed description see chapter 3.

Figure B.2: Manual image annotation with Labelbox. Trees on the full
panorama are manually annotated using Labelbox, an open source soft-
ware package. Masks are created by manually outlining tree instances.
Labels are saved in . json format. (Imagery source: Google Street View
2018)

The presented data generation pipeline based on these four steps resulted in

annotated datasets which were used as training, development and test datasets in

training the tree detection and genus classification models. Step one to three can

be used in combination with our fully trained model to update or generate urban

tree inventories in future.
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Figure B.3: Google Street View panorama and tree annotations. Trees on
the full panorama are annotated using Labelbox. Original panoramas
are of the size 6656x3328 pixels but will be downsized and halved for
the purpose of training. The black stripes represent an automatic appli-
cation of zero padding in order to transform images to the same format
for training (Imagery source: Google Street View 2018).

Generated datasets are further preprocessed as part of both tree detection and

tree genus classification models:

1. Automated bounding box generation: In addition to tree labels and masks,
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bounding boxes were automatically computed by drawing a rectangular bound-

ing box with the best fit around each separate mask. This approach allowed

for an easy augmentation of tree detection datasets without the need to up-

date each bounding box according to the respective image and mask trans-

formation.

2. Resizing images: All images and corresponding labels in a dataset were

resized to 1024x1024 pixels for tree detection and 256x256 pixels for tree

classification. Zero padding was added at the sides when using the COCO

Stuff dataset to preserve the original aspect ration. GSV panoramas were

split in half and downsized from 6656x3328 pixels. Resizing images to the

same size was vital to gradient descent.

3. Resizing masks: Individual instance masks were downsized to a resolution

of 56x56 pixels in order to save memory space during one step of training

and accelerate the training process. Figure B.4 gives an example of reshaped

and normalized tree masks.

Figure B.4: Reshaped mask annotations. Annotations need to be reshaped
to 56x56 pixels in order to reduce memory needed during training. This
is an effective method to speed up the training process.

These preprocessing steps were particularly important to optimize the training

process on high-resolution imagery for tree detection. All of the steps above sig-
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nificantly decreased the time needed for training and allow me to use a single GPU

with 11 GB of memory.

B.2 Mask R-CNN for tree detection

B.2.1 Mask R-CNN framework

MASK R-CNN is a framework specialized on instance segmentation, the computer

vision task to detect and outline seperate objects in an image [57]. Figure B.5

shows the architecture of the MASK R-CNN framework.

Figure B.5: The Mask R-CNN framework for instance segmentation. An
input image is transformed using a Feature Pyramind Network (FPN)
and a RESNET101 core. Resulting features are additionally realigned
with the input image through a Region of Interest (ROI)Align operation
which ensures that further generated masks are in the right position
on the input image. Class and bounding box are predicted separately
branching off from the first convolution layer. Binary masks are pre-
dicted in parallel for every ROI using an additional convolution layer
[57].

MASK R-CNN extends FASTER R-CNN used by Branson et al. [15] by adding a

segmentation mask prediction for each detected instance or object. It therefore al-

lowed me to classify and detect single urban tree instances, create bounding boxes
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and segmentation masks surrounding the individual trees [57]. MASK R-CNN can

be conceptualizes as a two stage algorithm: 1) The first part is also referred to

as a Region Proposal Network (RPN), predicting multiple ROI. A convolutional

backbone architecture, RESNET101 coupled with a FPN, allows to generate multi-

ple anchor boxes at different scales [58, 84]. 2) In the so called head of the model,

features are then extracted from each ROI which can be associated with the relevant

class. All in parallel, the head extracts class and bounding box values, leveraging

a ROIPool operation, and creates a binary mask for each detected object using a

ROIAlign operation [152].

The implemented network head of MASK R-CNN decouples the classification

from the convolution mask prediction branch. Class, bounding box and binary

mask are therefore predicted separately and in parallel for every ROI [57]. In com-

parison, the classification task usually depends on a previously predicted mask in

other state-of-the-art instance segmentation frameworks [44]. Due to the separa-

tion of these different tasks, MASK R-CNN is performing faster and with higher

accuracy compared to prior and other state-of-the-art systems and was chosen for

this research project [61]. He et al. [57] provide more detailed information on the

architecture of MASK R-CNN. The original architecture can be openly accessed

online and is implemented in Keras with a Tensorflow backend [3].

B.3 Evaluation strategy

B.3.1 Architecture evaluation for tree detection

Detecting trees on street-level imagery is a binary classification and image segmen-

tation problem. This means the CNN learns whether a pixel in an image is a tree or

a non-tree pixel and assigns tree pixels to exactly one tree object, which is located

at a specific position in the image. Owing to findings of Berland and Lange [13],

where humans could identify trees and tree genera from the GSV image with 90%

overlap to the field survey, and the promise of current CNN architectures to near

human-level performance, MASK R-CNN was assumed to be able to preform this

task. However, it was important to test whether or not the chosen MASK R-CNN
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architecture was powerful enough for the task at hand.

A common test used to assess weather an architecture can perform a task is to

train the architecture to over-fit a set of example images [26]. The goal of training a

NN is to strike the balance between over-fitting to it’s training data and introducing

a bias due to inaccurate representation of the training data (under-fitting) and there-

fore to generalize the task at hand. Therefore, before a NN is trained to generalize

it needs to be assessed if the architecture is suited to over-fit on a specific training

set.

In a preliminary experiment, MASK R-CNN was trained with 20 annotated GSV

images and inference was evaluated on the same images. Figure B.6 clearly indi-

cates that MASK R-CNN correctly detects and masks all trees after only 8 epochs of

training. This implied that MASK R-CNN could be used for the task of tree instance

segmentation with the right training strategy and a good representation of the target

class.

Figure B.6: Over-fitting Mask R-CNN. I purposely over-fit the model in or-
der to test whether or not MASK R-CNN is powerful enough for the task
of tree instance segmentation.

118



B.3.2 Evaluation metrics for tree detection

To evaluate the performance of tree detection and masking with MASK R-CNN the

Mean Average Precision (mAP), Average Precision 50, and 75 (AP50, AP75) were

computed.

A common way to determine if a detection proposal is right is to asses IOU

[51]. A set of of proposed object pixels A and the set of true object pixels B were

compared:

IoU(A,B) =
area of overlap
area of union

=
A∩B
A∪B

(B.1)

Unless otherwise specified, AP is commonly averaged over multiple IOU val-

ues [18]. In this work, 10 IOU thresholds of .50:.05:.95 are used. This is a break

from tradition, where AP is computed at a single IOU of .50 (which corresponds to

the metric APIoU=.50). Averaging over IOUs rewards detectors with better local-

ization evaluation.

B.4 Training strategy

B.4.1 Feature extraction and fine-tuning

For training MASK R-CNN two commonly used training strategies using pre-trained

models were applied, 1) feature extraction and 2) fine-tuning [26].

In feature extraction new models are build upon already trained NN’s, by down-

loading trained weights, i.e. mathematical features of representations (s. section

1.2.2). These weights derive from already learned very generic representations

found in the first layers (1-80) of the RESNET101 core (s. section B.2.1). In con-

trast to the more complex representations learned in end layers or so called heads,

these simple base representations can be reused. The level of re-usability of these

representations or features decreases with the depth of layers in the architecture.

The chosen implementation of the MASK R-CNN architecture allowed to download

openly sourced weights with which can be used to initialize the training process.

These weights are derived from the same MASK R-CNN architecture that has previ-

ously been trained on the official COCO dataset (which differs from the COCO stuff

119



dataset).

Fine-tuning describes the process in which MASK R-CNN is retrained for a new

task, starting from transferred COCO weights. A best-practice fine-tuning workflow

starts by only training the heads, followed by only training the last 4 RESNET101

layers and lastly completed by training only heads a second time. This approach

optimizes and reduces the amount of training data and time needed [26]. Only

the last layers of the RESNET101 core, the so called heads were adjusted in the

training process. Generic layers were frozen, i.e. excluded in the updating pro-

cess described in section 1.2.2), and only the later, top layers were trained to fit

the problem of tree detection. Representations derived from the heads were there-

fore fine-tuned to tree shapes. Since tree shapes are very specific and in common

benchmark datasets like COCO rather uncommon shapes, the last 4 layers in the

RESNET101 core needed to be updated additionally to the classification head.

B.4.2 Training Mask R-CNN

In order to train MASK R-CNN training configurations and a specific training strat-

egy had to be developed. Both of these are typically altered in order to optimize

results achieved during the evaluation of the model. The most important training

configurations that had to be set in MASK R-CNN for training were:

1. Steps per epoch. This determined how many gradient updates (updates of

weights) were done before a new set of weights was saved at the end of an

epoch.

2. Images per GPU. For a 1024x1024 pixel image, the maximum batch size

was two, using a GPU with 11-12 GB memory. Assessing more than two

images per training step, required more than 12 GB of memory.

3. Validation steps. These ran at the end of an epoch to generate validation

statistics. These default to 50 and should generally be much smaller than

steps per epoch to not slow down the training process, due to additional

memory requirements.

4. Learning rate. The smaller the number of the learning rate, the smaller

the number of gradient updates. A default of 0.001 to train the heads was
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used; a smaller value was more appropriate for training last layers of the

RESNET101 backbone.

5. Number of classes. This indicates the number of classes to train for and was

set to ”tree, no-tree”.
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Appendix C

Comparing existing and
generated tree genera
distribution information

Figure C.1: Visual comparison of existing and generated tree inventory
records for Prunus. Generated Prunus occurrence data (green) is more
spread as existing records of Prunus (red) in Vancouver, owing to the
inclusion of private trees and oversampling inherent to the methodol-
ogy used. (Map tiles by Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under ODbL.)
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Appendix D

Tree genera detection
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Table D.1: Tree genera detections in Metro Vancouver

genus count — genus count

FAGUS 609288 SORBUS 52896
ACER 492853 TILIA 49200
PRUNUS 360943 ULMUS 46560
PICEA 263775 LIQUIDAMBAR 28151
MALUS 240133 STYRAX 27796
CHAMAECYPARIS 232685 AESCULUS 26863
BETULA 214790 ILEX 25902
THUJA 174806 MAGNOLIA 20259
PARROTIA 140427 AMELANCHIER 18929
CRATAEGUS 122600 GLEDITSIA 14956
PINUS 120400 PLATANUS 10277
FRAXINUS 110167 LABURNUM 7708
QUERCUS 94854 ROBINIA 5226
PSEUDOTSUGA 90482 CERCIS 3675
CARPINUS 88762 ABIES 2727
CORNUS 79627 TSUGA 2498
CERCIDIPHYLLUM 74687 CATALPA 2182
CEDRUS 59897 METASEQUOIA 1323
LIRIODENDRON 55320 GINKGO 1176
PYRUS 54857 JUGLANS 564

OTHER 41614
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