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Abstract 

In this thesis, we presented the design steps for developing new, reliable, and cost-effective 

diagnostic and prognostic tools for cancer using advanced Machine Learning (ML) techniques.  

We proposed tools to improve the diagnostic, prognostic and detection accuracy of quantitative 

digital pathology by incorporating advanced image analysis, image processing, and classification 

methods.  

In this thesis we presented our ML image-based analytic approaches for three cancer types 

(prostate, cervix, and kidney) with different scale ranges from the sub-micron to multiple 

centimeters. 

In this thesis, we demonstrated the full workflow to design an automated prognostic and grading 

system specially designed for prostate cancer. We started with demonstrating techniques for 

prostate glandular structures detection. Next, we introduced an automated cell segmentation 

method along with an interactive segmentation correction method requiring minimum user-

interaction and finally, we introduced our ML classification algorithms. We trained our ML 

method on the features extracted from cells/nuclei that were segmented via our proposed 

techniques.  

Next, we studied renal carcinoma. We presented the workflow of renal carcinoma classification 

from image processing to feature selection and development of machine learning classification 

techniques.  We extracted the features from renal vessel structures and demonstrated the design 

steps of machine learning classifiers to discriminate between different renal carcinoma subtypes 

using these features.  
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The last cancer site studied was the cervix. We applied our techniques for cervical pre-cancer 

abnormality detection. We showed the whole pipeline of designing an automated classification 

method starting from tissue imaging to the development of ML classifiers using both classical and 

deep-learning methods.  

Although we conducted these studies on specific cancer types, a modified version of our algorithm 

could be applied to other cancers and disease sites. 

These techniques have great potential to improve the healthcare environment by providing extra 

information/second opinion to the medical experts or to be used as a part of the first line of a 

screening program.    
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Lay Summary 

Cancer is a worldwide health problem and is the second leading cause of death in the North 

America. The number of patients diagnosed with cancer increases daily and despite advances in 

medical technology and extensive research, the incident rate of cancer is still very high.  

Over the past few decades, Machine Learning (ML) methods have been applied successfully in the 

healthcare domain. ML offers promising avenues for prediction of disease progression, extraction 

of clinically relevant information from the data, therapy planning, patient management and much 

more. 

In this thesis, we presented methods for automated detection and diagnosis using advanced ML 

techniques to classify tissues into aggressive/non-aggressive and detect abnormalities. These 

methods, if used in clinical settings, could improve patients life quality and increase the cancer 

survival rate. 

In this thesis, we showed the design steps for developing new, reliable, and cost-effective 

grading/diagnostic/prognostic tools for prostate, renal and cervical cancer.  
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Chapter 1 Introduction 

This dissertation presents techniques for cancer detection/diagnosis/prognosis using Artificial 

intelligence (AI). The term AI describes the techniques that simulate human behaviour. The focus 

is on the development of Machine Learning (ML), a subset of AI, techniques and advanced image 

analysis algorithms that are applied to tissue of the prostate, kidney, and cervix to 

detect/diagnose/prognose cancer. The methods and approaches however could be easily modified 

and extended to other sites of cancer.  

In the first half of this thesis, we introduce methodologies to assist with the quantification of 

prostate cancer nuclei in histopathological tissue images. In the second half of this thesis, we 

present our novel method for the detection and classification of larger-scale structures in tissue for 

two cancer types, renal carcinoma, and cervical pre-cancers.  

In this chapter, we provide background information (cancer statistics, the importance of medical 

imaging and advanced techniques for image analysis) relevant to the study presented in this thesis. 

We also summarize some of the current state of the art research relevant to our subjects of interest. 

Finally, we present an overview of the general framework of this thesis and provide a summary of 

the dissertation. 

1.1 Cancer Statistics 

Cancer is a major public health problem worldwide and is the second leading cause of death in the 

United States. 

Despite advances in technology and extensive research in cancer domain, cancer incident rate 

(during 2005-2014 period) was stable for women and only declined %2 for men, similarly, the 
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mortality rate only declined about 1.5%/per year for both women and men (during 2006‐2015 

period). It is estimated in 2018, we will have about 1,735,350 new cancer cases and 609,640 cancer 

deaths in the United States (Siegel, Miller, et al. 2018).  

Lung, prostate, and colorectum are the most common cancer types in men, and in women, however, 

lung, breast, and colorectum are the most common causes of cancer death. These four cancers 

account for 45% of all cancer deaths, with one‐quarter due to lung cancer (Siegel, Miller, et al. 

2018). 

Men have a slightly higher chance of being diagnosed with cancer. The reason for higher 

susceptibility in men could be related to environmental factors, lifestyle, endogenous hormones, 

and many more other factors (Siegel, Miller, et al. 2018) 

These factors highlight the significance of personalized medicine and are the reasons behind the 

fast-growing trend of the application of machine learning techniques in medicine.  

1.2 Personalized Medicine – Oncology 

Personalized treatment in oncology has attracted lots of attention, yet it requires more 

investigations.  

A fast, cost-efficient and comprehensive evaluation of the genome, gene sequencing/profiling, has 

encouraged personalized cancer medicine1. In the cancer domain, personalized oncology means 

analysis of an individual patient’s tumor which allows the selection of effective drugs to control 

that tumor and thereby improve survival rates.  

 
1 Personalized cancer medicine refers to the study of a person’s genetic makeup and tumor growth 
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Examples of such targeted treatments are, Trastuzumab and Vemurafenib which are used for 

human epidermal growth factor receptor type 2 (HER2)–expressing breast cancer and for 

melanomas that express mutated BRAF respectively (Tannock, Hickman 2016). Although most of 

these targeted therapies are effective at first, patients usually show resistance and succumb to the 

disease. This shows we have still a long way to completely understand cancer genomic as well as 

all the underlying cancer pathways. Furthermore, target therapy is very costly and not available to 

all patients.    

One of the ways to potentially gain an understanding of cancer biology is through quantitatively 

analyzing different molecules or observing the expression of a certain biological state or condition 

(e.g. angiogenesis and proliferation), some of which have proven to be useful biomarkers for 

cancer detection and management.  Using advanced imaging systems and incorporating different 

imaging modalities or techniques with machine learning algorithms has the potential to improve 

cancer management.  

1.3 Cellular and Tissue Level Analysis 

Optical technologies generate micro and macro level images and thereby provide clinicians with 

an improved visualization ability which otherwise would be very difficult if not impossible to 

observe and monitor by the human eye.  

The recent improvement in biomedical optics has made it possible to have a better understanding 

of the molecular and tissue changes by capturing high spatial resolution images even in-vivo 

locations.  An example of such a system is the device developed at BC Cancer Research Center 

that acquired macroscopic images in an in vivo fashion using multispectral imaging techniques 

(Milbourne, Park, et al. 2005). This optical technology could be used for cancer diagnosis as it can 
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guide gynecologists to select more precise biopsies from the cervix (advanced guided biopsies) or 

completely remove the need for any biopsy. This could improve patients’ quality of life and reduce 

associated medical costs.  Medical tools like this could be particularly beneficial in low resource 

countries where access to preventative and screening resources is limited.  

1.4 Digital Pathology 

Digital pathology refers to the creation and analysis of digital representations of tissues (through 

imaging a fixed, sectioned and stained tissue placed on a glass slide) usually using whole slide 

digital scanners. The acquired images may be used for targeted analysis which can aid with disease 

diagnosis and possibly cancer prognosis.  

With the advances in technology and medical imaging, it is now possible to use very fast, cost-

efficient data acquisition tools with very high resolution (at molecular and cellular level).  

Although proliferation of whole slide digital scanners results in improvements in clinical and 

research studies (by scanning slides and capturing digital images which later could be used for 

further analysis), tissue analysis still suffers from a dependency on human interaction and guidance 

as well as other challenges that we discuss in the following sections.  

1.5 The Necessity for Development of Automated Diagnostic 

Methods 

Manual evaluation of biomedical images is very labor-intensive, expensive and subjective. 

Furthermore, it might not be practical in locations where there is limited access to trained 

personnel. This emphasizes the need for the development of automated diagnostic and prognostic 

methods.   The goal of this thesis is to introduce machine learning-based automated diagnostic 
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techniques which could be used as the first line in the detection and diagnosis of cancer and pre-

cancerous lesions in developing countries. The approaches proposed in this thesis can provide 

additional information relevant to diagnosis/detection to oncologists/pathologists and improve our 

understanding of the biological behavior of lesions at the cellular and tissue level for different 

cancer types, so we can guide and personalize the treatment approach in individual patients. 

1.6 Challenges 

While digitizing pathology slides offers many advantages, it comes with some challenges that we 

discuss below. 

1.6.1 Staining and Imaging Issue 

Cellular heterogeneity of the lesions/ tumor microenvironment poses a significant difficulty in 

designing an automated system for cancer analysis. This variation becomes more pronounced with 

cancer as the tissue becomes a sea of different cell types and loses much of its structure and 

differentiated morphology. The other difficulties are due to the methods and techniques used for 

preparing the specimen for imaging. Issues such as staining variation, tissue deformation, 

sectioning inconsistency, and shrinkage complicates the design of automated systems. 

Additionally, optical imaging systems can also introduce linear and non-linear inconsistencies.  

1.6.2 Lack of Gold Standard 

The other equivalently challenging issue is the lack of acceptable ground truth for pathology 

specimens. The definition of appropriate and widely acceptable gold standard can be debatable 

even within the pathology community. For example, researchers have reported that manual tracing 

of regions of interest is not reliable and should not be used as the only source for the gold standard 

(Meiburger, Molinari, et al. 2016). This shows the need for a second (or more) opinion, which is 
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usually acquired with the assistance of another human (technician/ expert in the field) or a 

computer-aided device. 

Generally, long term patients’ outcomes combined with various diagnostic procedures and other 

biological factors may be considered as an acceptable gold standard. These processes can be very 

expensive, time-consuming and in some scenarios may not be available. 

1.6.3 Diagnoses of Atypia 

The tissue obtained from epithelial cancers such as prostate and breast may also contain atypical 

glands. These glands can be truly atypical, but may also be suspicious or represent malignant 

epithelium, so the results obtained from biopsies can be unclear (Kopp, Parsons, et al. 2011). The 

term cell atypia refers to the borderline entities that lie in the spectrum between benign and 

malignant. It can be hard to find a consistent definition of atypical cells and even more difficult to 

define the gold standard. Long term clinical follow-up and larger specimen are needed to improve 

the identification of these cases. Quantitative studies could potentially improve our understanding 

of these cases and help to clarify these somewhat challenging cases (Boucheron 2008). 

1.7 Computer-Aided Diagnosis (CAD) 

Computer-aided detection/diagnosis (CAD) is the procedures which use computing power to assist 

doctors with a better understanding of the case under investigation/study. This can be achieved by 

presenting quantitative measures or providing an interpretation of the medical images. An example 

of such a system is a CAD program that can discriminate between progressive and non-progressive 

cases using images from a prostate tissue microarray. Such a procedure usually involves three 

main steps, as explained below. 
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1.7.1 Localization and Segmentation 

The first step is to identify region/structure of interest (such as glands in the prostate or colon tissue 

or vascular structure in skin or kidney) or objects (such as cell/nuclei) in various tissue types (i.e. 

lung, oral and prostate).  

These regions, structures or objects carry biologically important information regarding the 

pathological behavior or disease progression that is to be recognized/classified/identified by a 

CAD system.  

1.7.2 Feature Extraction and Classification 

The next step after the selection and segmentation of the regions of interest is to extract 

features/characteristics from these segmented areas. Identifying appropriate and relevant features 

play a very critical role in the development of a powerful CAD classification system. This process 

usually requires a close collaboration between engineers and pathologists to encode aspects of 

their domain knowledge into quantitative measures.  The ultimate goal is to design a fast, objective 

solution to assist clinicians with their decision-making tasks. An example of such a procedure is 

using CAD to generate a Gleason score from prostate cancer tissue sections (Fehr, Veeraraghavan, 

et al. 2015).  

1.7.3 Disease Diagnosis and Prognosis 

The final step is to integrate the multiple forms of information obtained from the last two steps 

into a fully automated system that generates the desired score, classification, grading, etc. (that 

can be used for disease diagnosis/prognosis). Such a system can provide valuable information 

which otherwise may not be available/observable even by expert users.  
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1.8 Application of Machine Learning (ML) in Medicine 

Machine learning started to flourish in the 1990s. Arthur Samuel nicely described it as giving 

“computers the ability to learn without being explicitly programmed”. Machine learning is not 

used only in healthcare, but its application is very wide and diverse, examples are self-driving cars, 

speech recognition, cybersecurity, and many more (Babak Ehteshami Bejnordi 2017).  

Figure 1-1 illustrates the histogram of published papers on machine learning over the last 20 years.  

This histogram is normalized by the total number of publcations on ML. This information is 

collected based on the query search of PubMed using “cancer” and “machine learning” keywords. 

As we can see the distribution is very skewed to the right, which suggests an increase in published 

papers over time in this domain. 

 

Figure 1-1 This figure shows the distribution of the number of publications related to cancer 

and machine learning per year. As we can see in this histogram, the number of publications 
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in this domain increased over the years. This histogram is normalized by the number the 

total number of publications on Machine Learning. 

Depending on the nature of the data and the problem under study, machine learning algorithms 

can be divided into two main categories:  supervised learning, and unsupervised learning. 

1.8.1 Supervised Learning 

Supervised learning is a data processing task where the training data is labeled. The training dataset 

consists of a paired input observation (feature vector) and an output (user assigned ground truth) 

label. Supervised learning methods process the training data and generate an inferred function 

which later can be used to predict the label of unseen data. In other words, this function will be 

used to assign the feature vector to the label-mapping of any new dataset. This method can further 

be divided into two closely related prediction models, regression and classification. When the 

target property is continuous the task is referred to as regression. However, when the target 

property is a finite set of values, the task is referred to as classification. 

Andriy Burkov in his recent book “The Hundred-Page Machine Learning Book”  nicely explained 

different ML methods. This book provides a very detailed overview of various ML techniques, 

here we briefly explain the most widely used ML algorithm that we also tried in this thesis. 

Support Vector Machines (SVM): This discriminative model separates the training dataset by 

finding separating hyperplanes that maximize the gap between different classes and partition the 

feature space into different regions for each class. When the task is a binary classification the 

hyperplane simply divides the space into two parts where each side belongs to one class. This 

hyperplane is guaranteed to maximize the distance between the two classes. SVM support different 

kernel types which means it can use non-linear hyperplane to increase its accuracy. Gaussian 
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kernel is most frequently used and is shown to improve classification performance over linear 

kernel in many classification problems.  One of the concerns about using SVM is that it tries to 

focus on the hardpoints(data points closer to decision boundary)  which might limit its 

generalization capabilities. 

Decision trees: These predictive models use the observation about an item (as decided by the 

samples which are falling in the same branch) and try to make a decision about the new target 

value. Trees are very famous and are widely used as a simple and effective solution for prediction 

tasks.  There are various decision trees such as Random Forest and Boosted trees.  

In this thesis, we used Boosted trees for cervical cancer classification. Boosted trees are an 

effective ensemble method that uses more than one decision tree and refine the training weights to 

improve the prediction decision.  

Convolutional Neural Networks (CNN): A very famous and widely used sub-type of Deep 

Learning is CNN which is mostly used to classify visual imagery, however, they are also used in 

language processing.  These networks are made of neurons that take advantage of hierarchical 

patterns by applying one filter to different locations in an image. These networks learn the weights 

during the training process and do not require hand-engineered features. This independence from 

prior knowledge has made CNN very attractive, however, they require large datasets. We used 

CNN for cervical cancer classification. 

1.8.2 Unsupervised Learning 

In contrast with the supervised learning where the labels for the training dataset were known, an 

unsupervised learning dataset is not labeled. The task, in this case, is to use the structure of the 

unlabeled data to generate an implicit feature vector to label mapping.  
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The most common forms of unsupervised learning are clustering algorithms, which automatically 

partitions the data into groups of similar items called clusters. One of the most well-known 

clustering methods is called K-means clustering (Wu, SpringerLink ebooks - Computer Science 

2012). 

K-means clustering: K-means clustering partitions the samples into k clusters which are clustered 

around k centers. It uses a heuristic algorithm to converge quickly to a local optimum. In each 

iteration, it tries to minimize the within-cluster variance ( by using some measures such as 

Euclidean distances). We used K-means clustering in the second chapter to help with the prostate 

gland detection task.  

1.8.3 Classical ML vs Deep Learning Methods 

Classical machine learning techniques have been used successfully in the medical domain for 

years; however, their dependency on expert input/evaluation is inevitable. Classical machine 

learning, in the medical domain, has been used for different tasks such as anomaly detection, 

disease diagnosis/prognosis, cancer grading, etc. These techniques use the domain-knowledge to 

find/identify the complex relationships between different patterns and leverage them to accomplish 

the prediction task.  

As discussed earlier, the main limitation of classical machine learning is that it requires expert 

knowledge and consequently it is very domain-specific. This drawback limits its predictive power 

and makes it only suitable for specific defined datasets and prevents it from being generalizable to 

new datasets that are acquired from different tissue types or obtained in a different fashion using 

a different system or from a different environment. 
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Deep learning, a subtype of machine learning, in contrast, can automatically discover the 

representations needed for detection or classification, allowing the system to directly map an input 

image to an output vector. The main limitation of such a system is that it is very data-driven, and 

it requires a very large dataset (since it needs to optimize a large set of parameters as a part of its 

learning process.)   

In this thesis, the focus is on both classical machine learning as well as deep learning techniques. 

We believe both techniques are equivalently powerful/practical depending on the nature of the 

dataset and the problem under study.  

1.9 State of  the Art ML for Cancer Diagnosis/ Prognosis 

Over the past few decades, machine learning methods have been applied successfully to various 

fields. However, in the healthcare/medicine domain ML improvements were limited primarily due 

to the limited size of the available annotated dataset which consequently led to insufficient data 

acquisition and prevented the design of advanced and complex ML-techniques. Recently, ML has 

started to flourish in healthcare and medicine. ML techniques and feature selection algorithms 

have been widely used to assist with disease diagnosis and prognosis. 

In the medical domain, classical machine learning is a mean of selecting features, relevant to the 

task under study, from an exhaustive list of features space. Frequently, most of these features are 

redundant, irrelevant and not very practical for the topic under study. The selection of relevant 

features is usually achieved  in two main ways: one by asking the clinician/pathologist to identify 

useful diagnostic features (Canzonieri, Monfardini et al. 1998) and the other approach is to use an 

automated feature extraction method (Nafe, Yan et al. 2006, Latson, Sebek et al. 2003).  
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ML techniques can be used for cancer detection and disease diagnosis and also for disease 

prognosis. The main purpose of prognostic ML tools is to predict (i) individual cancer 

susceptibility, (ii) recurrence and (iii) survival (Kourou, Exarchos, et al. 2015).  

1.9.1 Cancer Detection/ Diagnosis  

Machine learning techniques have been used broadly for anomaly detection with the aim of finding 

cancerous or pre-cancerous lesions. 

Machine learning techniques have been used for detection/diagnosis of  cancer in many sites such 

as lung (Cui, Luo et al. 2019a), oral (Kourou, Exarchos, et al. 2015) , cervix (Tseng, Lu et al. 2014)  

, ovarian (Paik, Lee et al. 2019) , renal (Bektas, Kocak et al. 2019) , breast (Kim, Kim et al. 2012) 

, prostate(Vos, Hambrock et al. 2008, Shah, Turkbey et al. 2012), and etc. There are multiple 

studies that recommended to apply machine learning techniques for the detection of abnormalities 

in different imaging modalities such as mammogram images of breast cancer (Jalalian, 

Afsaneh|Mashohor, Syamsiah B.T.|Mahmud, Hajjah Rozi|Saripan, M. Iqbal B.|Ramli, Abdul 

Rahman B.|Karasfi, Babak 2013). 

For example, support vector machines (SVM) are powerful ML technique that has been 

successfully applied to clinical problems. Over the last 20 years, SVM showed promising results 

for the classification of many real-life problems, mostly because of its strong generalization ability 

(Wang, S., Burtt, et al. 2014). Multiple research groups such as Shah et al. (Shah, Turkbey, et al. 

2012) and Vos et al. (Vos, Hambrock et al. 2008) used machine learning techniques on 

Multiparametric MRI for prostate cancer detection. These two groups employed SVM as their 

classifier for localizing prostate cancer and analyzing prostate lesions.  
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In this thesis, we presented a modified SVM technique for prostate cancer grading. We also used 

a similar strategy for discriminating progressive from non-progressive prostate cancer cases which 

we will explain in detail in chapter five of this thesis.  

ML techniques will not only improve the accuracy of detection and diagnosis, but it can also 

improve prediction of cancer recurrence and survival (Wang, Burtt, et al. 2014) Wishart et al. in 

2006 showed that it is possible to improve predicting biological behavior of cancer, probability of 

recurrence, and mortality rate by 15–25% by using techniques which took advantage of ML 

algorithm (Cruz, Wishart 2006). 

1.9.2 Prediction of  Individual Cancer Susceptibility 

Inherited mutations in genes can result in a higher risk of developing cancer in specific tissues. 

For example, a mutation in tumor suppressor genes, oncogenes, and mutation in genes involved 

with DNA repair/ cell cycle control might increase individual susceptibility to cancer.  

Waddell M et al. used SVM techniques with leave-one-out cross-validation to predict an 

individual’s cancer susceptibility for multiple myeloma. The goal of this study was to answer this 

question:  is it possible to predict individual susceptibility to early onset of myeloma by using ML 

techniques? Single-nucleotide polymorphism (SNP) profiles were used as the feature vectors for 

this study. They achieved a prediction accuracy of 71%. Although this seems to be very close to 

random guessing it is important to point out that in this study only 3000 SNPs were used in 

profiling, whereas several million SNPs are known which shows a feasible window of possibility 

for further research and improvement (Waddell, Page, et al. 2005). 
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1.9.3 Prediction of Cancer Recurrence  

Similarly, multiple groups have used SVM to predict cancer recurrence. Groups such as Kim W 

et al (Kim, Kim, et al. 2012), and Eshlaghy A et al. (Lg, et al. 2013), Tseng C-J et al. (Tseng, Lu 

et al. 2014). All three groups used SVM techniques for cancer recurrence prediction, the first two 

groups for breast cancer and the last group for cervical.  

Exarchos K et al. presented a very interesting study where they employed Bayesian models for 

prediction of oral cancer recurrence. They used a systematic and multiparametric approach where 

features were selected from clinical, imaging and genomics. In this study, different classifiers were 

used for each feature category and at the last step a consensus classifier was used (in a 

complementary manner) to increase the accuracy. They reported 100% accuracy on discriminating 

disease recurrence vs non-recurrence (Kourou, Exarchos, et al. 2015). 

1.9.4 Prediction of Cancer Survival  

As explained earlier, ML can also predict cancer survival. Similar to cancer diagnosis and cancer 

recurrence prediction, many groups reported SVM as their choice of classifier for cancer survival 

prediction. Groups such as Chang S-W et al. (Chang, Abdul-Kareem, et al. 2013) and Xu X et al. 

(Xu, X., Zhang, et al. 2012)  respectively used SVM for oral and breast cancer survival prediction. 

1.9.5 Deep Learning and Cancer 

So far, we discussed classical machine learning techniques for cancer diagnosis/prognosis. These 

techniques are very powerful since they use features that are highly dependent on the subject under 

the study. However, since these features are tailored for specific cancer; it is not possible to 

generalize the method to other cancer types. There are even cases where it is not possible to apply 

the same technique to the same tissue image captured from a different imaging system. This 
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limitation and the dependency on the human expert are among the challenges that deep-learning 

techniques try to overcome.  

Although, deep-learning methods seem to be superior to classical machine learning they are very 

data-driven. Access to a large dataset especially in the medical domain is usually considered a 

luxury and most often is impossible to obtain.  

In Table 1-1 we summarized a few recent studies which used deep learning techniques for cancer 

diagnosis/prognosis. In chapter 8 of this thesis, we discuss deep-learning approaches for cervical 

cancer detection.  

Table 1-1 Selected summary of deep-learning publication for cancer 

detection/diagnosis/prognosis 

 
2 FNAC: Fine needle aspiration cytology 
3 RCNN: Recurrent Convolutional Neural Net (Alom, Yakopcic et al. 2019)  
4 RRCNN: Residual Convolutional Neural Net (Alom, Yakopcic et al. 2019)  
5 DRIVE dataset: Digital Retinal Images for Vessel Extraction (DRIVE: Digital Retinal Images for Vessel 

Extraction)  

Publication Neural 

Network 

Cancer type No of 

patients/Images 

Type of data Reported 

Accuracy or 

AUC 

Saikia et al. 

(Saikia, Bora et 

al. 2019)  

VGG 16, VGG 

19, ResNet 50, 

GoogLeNet V3 

breast 2120 images  FNAC 
2images. 

96.25% 
 

Alom et al. 

(Alom, Yakopcic 

et al. 2019)  

RCNN3, 

RRCNN4 
retina,  

lung,  

skin 

40/retina, 

900/skin,  

534/lung 

retina/DRIVE 

dataset5, white 

light 

lung/CT, 

skin/ histopat 

retina/%99, 

lung/ %98, 

skin/%86 
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1.10 Motivation 

While much work has been done using ML on image data for cancer localization/detection/grading 

and prognosis, there is still much more that can be done to harness the potential of ML combined 

with imaging systems. Automated quantitative image-based methods built around ML predictive 

power could be beneficial to patients of all cancer types and could significantly improve the cancer 

screening and detection process. 

In this dissertation, we propose and demonstrate across many spatial scales the application of 

advanced ML techniques to create new, diagnostic, prognostic and prediction tools.  

In this thesis, we applied ML technique to image data focusing across various spatial scales. 

Starting at the microscopic scale (the individual pixel of microscopy image) to collections of pixels 

representing a biological entity (nuclei) for prostate cancer nuclei detection. The next step up in 

 
6 DNM: Deep Neural Maps (Sedghi, Pesteie et al. 2019)  

Cai et al.(Cai, 

Huang et al. 

2019)  

AlexNet Breast 990 images full-field 
digital 

mammography  

%86.89 

Sedghi et 
al.(Sedghi, 

Pesteie et al. 

2019)  

DNM6 Prostate 255/sample TRUS-guided 

biopsies 

AUC>0.8 

Halicek M et al. 

(Halicek, Little, 

et al. 2019)  

3-layer custom 

CNN 
head and neck 21/patients Hyper-spectral 

imaging 
92% 

Cui S et al. (Cui, 

Luo et al. 2019b)  

classical/deep-

learning/joint 

lung 106/patient non-small cell 

lung cancer 

~0.83% 

Lee JH et al.(Lee, 

Ha et al. 2019)   

ResNet50, 

VGG16, 

VGG19, etc. 

cervix 995/image CT images AUC>0.95 
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scale was microscopic tissue structures that are collections of cells (microvascular system in renal 

carcinoma tissues) and finally, we applied ML techniques to the tissue macroscopic scale for 

localization of cervical pre-cancers.  

1.11 Structure of This Thesis 

In the second chapter of this dissertation, we introduce new ML techniques for the detection and 

segmentation of glandular structures in prostate cancer that are applied predominately at the pixel 

level (~0.3µm).  These glandular structures are important since they contain clinically relevant 

information regarding the disease status and Gleason grade of prostate cancer. The manual gland 

segmentation process is very time consuming and subjective, also existing automated methods are 

not robust and reliable. In this chapter, we introduce an automated, fast and objective method for 

glandular structure detection using hyperspectral image pixel characteristics and some pixel-level 

morphology operations, Figure 1-2. 

Recognizing and locating cell nuclei in images of stained tissue sections is a key step in the design 

and automation of Quantitative Digital Pathology, (QDP). A powerful QDP system can measure 

the visible structural chromatin changes (within nuclei) associated with neoplasia and enable 

prognostic and predictive assays based upon imaging of sectioned prostate tissue. However, tissue 

complexity, overlapping cell clusters, image and tissue inhomogeneities, and other imaging issues 

introduce uncertainties into this predictive process and are barriers to the development of a fully 

automated system. In the third and fourth chapters, we present solutions to overcome these 

challenges. 
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In the third chapter, we present a new method to automatically segment Thionin-stained prostate 

cancer nuclei (4µm-15µm spatial scale), which enable the extraction of various nuclear and cell 

sociology features. 

In the fourth chapter, we present an interactive segmentation algorithm that provides the user the 

ability to evaluate nuclei segmentation results and possibly add or remove nuclei centers to 

correct/improve the segmentation. This chapter complements the previous chapter by providing a 

tool for interactive cell-segmentation correction.  

In the fifth chapter, we present a machine learning approach to extract clinically relevant features 

from segmented nuclei and use these features for two goals 1) prostate cancer grading 2) prostate 

cancer prognosis. Figure 1-2 summarizes the procedure used in chapter 2 through 5. 

The cancer under study in chapter six is renal carcinoma. Despite advances in technology and the 

introduction of new diagnostics methods, the renal carcinoma mortality rate is still very high and 

so there is a need for a reliable, robust, cost-effective diagnostic/classification method in this site. 

In this chapter, we present our approach for renal carcinoma sub-type classification. In this study, 

we move up the spatial scale (10-200 µm) and apply ML techniques to identify blood vessels and 

vascular patterns in renal carcinoma. The required steps are summarized in Figure 1-3.  

In chapters seven and eight we present two different classification approaches for cervical cancer 

detection at the macro scale (~1-4 cm). This is the largest scale we examine in this thesis. Early 

detection is highly critical for successful cervical cancer screening as this cancer develops over 

several years without any obvious symptoms. Although due to cervical cancer screening programs,  

cervical cancer incidence and mortality rates have decreased in developed countries, developing 
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countries on the other hand still suffer from high mortality rates and a lack of screening/evaluation 

programs.  

 In chapter seven, we present a classical machine learning approach based on the analysis of the 

Multispectral Digital Colposcopy (MDC) image of the cervix.  

In chapter eight, we present and compare different deep-learning approaches for classification of 

normal vs abnormal areas in the MDC images ( the same dataset as chapter 7).  

Figure 1-4 summarized the procedure used in chapters 7 and 8.  
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Figure 1-2 Flowchart of dissertation, chapters 2, 3, 4 and 5.  
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Figure 1-3 Flowchart of dissertation, chapter 6.  
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Figure 1-4 Flowchart of dissertation, chapters 7 and 8.  
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Chapter 2 Automated Prostate Glandular Detection Using Hyper-

Spectral Imaging 

2.1 Introduction 

2.1.1 Prostate Cancer Epidemiology, Screening and Diagnostic 

Techniques 

Prostate Cancer (PCa) is the most frequently diagnosed non-cutaneous malignancy in men. PCa is 

known as the second and third leading cause of cancer mortality for American and Canadian men, 

respectively (Prostate Cancer Statistics | CDC2019). More than two million men in the United 

States have had prostate cancer. Over 15% of men are estimated to be diagnosed with prostate 

cancer during their lives, in 2019 it is estimated there will be 174,650 new prostate cancer cases 

and the estimated number of deaths in 2019 is 31,620 (Cancer of the Prostate - Cancer Stat Facts). 

PCa-related deaths are estimated to increase despite advances in diagnostic/prognostics 

techniques.  

PCa is a disease of disrupted prostate cell genomes and their corresponding proteins. In the process 

of cancer development, normal prostate epithelium cells will be deformed and disrupted, cells 

move from androgen-dependent and eventually androgen-resistant (referred to as castrate-resistant 

carcinoma). This process is very complex and involves processes associated with 

up/downregulation (malfunction) of different molecular pathways.  

 With the assistance of Prostate-Specific Antigen (PSA) screening, it is now possible to detect 

prostate cancer in its early stages; however, this method has caused significant over-diagnosis/-

treatment of PCa patients which led to unnecessary morbidity, decrease the quality of life and 
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significant increase in health care costs. There are recent studies which consider low-grade 

Gleason pattern prostate lesions as non-malignant lesion as they do not have the characteristic 

hallmarks of cancer (Hashim Ahmed, Manit Arya, et al. 2012) however this approach has not been 

clinically adopted. Most men with low-risk disease will be offered Active Surveillance (AS), an 

appealing approach for men with early PCa stage. In contrast, patients with more aggressive 

prostate cancer and, in particular, those with high Gleason grade would likely benefit from active 

treatments such as radiation with or without androgen deprivation therapy and/or brachytherapy 

or surgery. Needless to say, it is of great interest to design methods that can better discriminate 

between aggressive/non-aggressive lesions.  

 As explained earlier, epigenetic and genetic changes in normal epithelium cells can result in 

cancer progression, it is very important to design techniques to phenotypically monitor the 

epigenetic and genetic changes in cellular and tissue architecture.  

Currently, the diagnosis of prostate cancer is done by visually observing stained sections from 

prostate biopsies and determining the Gleason grade of these samples (Fenner 2015). This 

procedure is based on observing the morphological structures and changes in architectural tissue 

characteristics. Although this method is very effective and has been used for decades, it is very 

human-dependent/subjective and consequently, it is subject to inter-observer variability. This 

process is also very expensive and may not be available in countries with low resources. This fact 

motivated us to take the initiative to tackle this issue and design a fully automated system for 

prostate cancer grading and aggressive/non-aggressive prediction. The first step toward designing 

a fully automated system is to detect the region of interest (in our case, glandular structures). We 

published the processes involved with the design of an automated glandular detection method 
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(Zarei, Bakhtiari, et al. 2017).  In the upcoming chapters, we will present methods to use these 

structures for our classification purposes.  

2.1.2 Automated Gland Detection 

Many groups previously tackled the problem of automated gland detection in different tissues, 

such as colon (Gunduz-Demir, Kandemir et al. 2010, Ozgul, Sokmensuer et al. 2011), breast (Naik, 

Doyle et al. 2008) and prostate (Nguyen, Sabata et al. 2012, Pääkkönen, Päivinen et al. 2015, 

Singh, Kalaw et al. 2017, Doyle, S., Hwang et al. 2007, Naik, Doyle et al. 2008) . The focus of 

most of these groups was on the detection of the empty region inside the gland (lumen) and 

incorporating the color information (Naik, Doyle, et al. 2008, Nguyen, Sabata, et al. 2012) to find 

the empty spaces.  This step is usually followed by different image processing algorithms such as 

active contours (Xu, J., Sparks, et al. 2010), level-set (Naik, Doyle, et al. 2008), and etc. to detect 

and segment gland structures. However, these methods do not seem to be robust with respect to 

color variation which can be due to the variation of microscopic color calibration and staining 

variation. Moreover, these methods might fail to detect partially/fully filled or small glands. As 

such they require human interaction to validate/monitor the process (Xu, Sparks, et al. 2010). In a 

recent study (Fu, Qiu, et al. 2014), a random field model was used to overcome some of these 

challenges, however, it failed to detect any glandular structures that did not have star-convexity 

shapes.  

In this chapter, we present a new approach to automatically detect glandular structures in Tissue 

Micro-Array (TMA) cores and subsequently detect the gland nuclei.  The nuclei from these glands 

can be used for future normal/abnormal and cancer subtype classification. 
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2.2 Hypothesis  

Recently in a pilot study, we obtained promising results on discriminating between aggressive 

from non-aggressive PCa cases with a 70% correct classification rate using only nuclei of prostate 

TMA cores. We hypothesize that by incorporating clinically relevant information from a region of 

interest, it is possible to increase our system performance. Monitoring glandular structures is 

known to be important since, in the course of cancer development, tissue alternation may result in 

highly packed, ill-defined, fused and poorly-formed glandular lumina. These architectural changes 

are important patterns for tissue diagnosis and cancer prognosis. Moreover, the nuclei within each 

glandular structure could be used for further quantitative analysis. However; manual segmentation 

of the glandular structures especially in a large-scale study, e.g., thousands of TMA cores or cases 

is very user intensive and time-consuming. The goal of this chapter is to develop techniques for 

automated prostate glandular detection to facilitate the diagnosis/prognosis process. 

2.3 Objective 

Detection and segmentation of glandular structures are important. These structures contain 

clinically relevant information regarding the disease status and Gleason grade of prostate cancer. 

The objective of this chapter is to design an automated, fast and objective method for the detection 

of glandular structures in digitized histopathology images of Tissue MicroArray (TMA). 

2.3.1   Specific Objective 

I) Capture prostate TMA images using a Hyper-Spectral Imaging system  

II) Develop methods for glandular structure detection 

The workflow for the whole process of our study on prostate cancer is presented in Figure 2-1. 

The first step is to image the tissue using our hyper-spectral imaging system, followed by 
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automated detection of the region of interest. The next step is to select and implement ML 

techniques and the last step is parameter optimization to improve the system performance. The 

focus of this chapter is the blue box of Figure 2-1. TMA images were used for glandular structure 

detection.  

  

Figure 2-1. This figure shows the pipeline of our study. The focus of this chapter is on the 

Glandular Segmentation. In the later chapters, we will explain the classification and 

validation processes.  

2.4 Materials and Instrumentation  

2.4.1 Clinical Data 

The TMA slide of prostate tissue was stained with Hematoxylin and Eosin (H&E). The slide 

consists of 132 cores. This slide was provided by the Vancouver Prostate Center, pathology lab. 

We scanned this TMA slide with our in-house Hyper-Spectral Imaging (HIS) system, Figure 2-2 

(A). 

2.4.2 Instrumentation  

Here we present the description of our in-house Hyper-Spectral Image (HSI) acquisition system. 

This imaging system comprises a “NEO” CMOS camera (Andor, Belfast, UK) a CRI varispec 

liquid crystal tunable filter, a Zeiss Axioskop 2 mot plus, a Marzhauser Wetzlar XY stage, and a 

standard 100W halogen lamp, all of which are controlled via a custom-designed Matlab GUI.  
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The TMA slide was imaged with wavelengths of 420nm to 720nm in 20nm steps which results in 

a total of 16 spectral band images. The transmitted light from the sample is filtered by the tunable 

liquid crystal filter for the desired wavelength. Objective magnification, numerical aperture, and 

camera resolution were 20x, 0.75, and 2048x2048 respectively. The field of view was 667µm by 

667µm which resulted in an effective pixel size of 0.106 µm2 (optical spatial resolution of 9.43 

pixels/ µm2). Camera well depth was 30,000 e-. 

 

Figure 2-2. This figure shows our hyperspectral image acquisition set-up (on the left) and a 

representation of hyperspectral image construction that could be acquired by this system (on 

the right). 16 images with different wavelengths (420-720 nm) were captured with this 

imaging system (only 8 shown for illustration), the images are then combined and PCA 

images are constructed 
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2.4.3 Data Preparation 

Prior to acquiring raw images, a blank area of glass is imaged for each wavelength and used as the 

flat field correction image, equation (2,1).  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐼𝑚𝑎𝑔𝑒 =  
𝐼𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒

𝐹𝑙𝑎𝑡 𝑓𝑖𝑒𝑙𝑑 𝑖𝑚𝑎𝑔𝑒
         (2,1) 

This image is collected as a measure of the spatial distribution of the incident light on the sample 

and is used to determine correct exposure time for each raw spectral band image. Each core on the 

TMA slide required four (2x2) fields of view or tiles. 

Every pixel in the raw image is divided by its corresponding flat field pixel value to represent the 

percentage of light transmission. Pixels were then scaled by 216-1 and saved as 16-bit TIFF files. 

Each tile is scanned with 50 pixels overlap with adjacent tiles. We then used MATLAB intensity-

based image registration function on the tile that is imaged with 540 nm wavelength to register the 

four tiles. The reason for this selection was that the 540 nm wavelength image showed the highest 

contrast among the other hyperspectral images. Overlapping strips in this image are aligned, any 

transitional error is corrected, and the offsets are recorded. Overlapping pixel values in the large 

stitched image are a weighted sum of the values from each overlapping tile proportional to the 

pixel’s distance from the edge. We performed the same adjustment on the remaining 15 

hyperspectral images. 

2.5 Methodology 

2.5.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a common transformation used on multidimensional 

(hyperspectral) data to reduce data dimension and remove (spectral) correlation. It is a linear 
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algebra basis change from orthogonal basis vectors defined by the sensor to basis vectors with no 

spectral correlation. This step is done with MATLAB PCA function, equation (2,2).  

𝑃𝐶𝐴𝑐𝑜𝑒𝑓𝑓 = 𝑝𝑐𝑎(𝑋, 𝑁𝑎𝑚𝑒, 𝑉𝑎𝑙𝑢𝑒)         (2,2) 

 

where X is all 16 bands input images (each band is unrolled to a one-dimension array, we put all 

16 images in 16 individual columns to form a 2D matrix). Name is “algorithm” and Value is 

“SVD” (Singular Value Decomposition) of X (Principal component analysis of raw data).  

The data represented on the new axis are the principal component (PC) images each with decreased 

data variance or image contrast. Each PCA image is a weighted sum of the input images. Typically, 

a significant portion of the dataset variance is contained within the first 3 PC and they can be 

combined into a single color image with components 1, 2 and 3 in the red, green and blue channels 

respectively (with the first three PCA we captured almost 98% of the information). It is important 

to point out that, running PCA on datasets independently will result in PC RGB composite images 

where identical materials can appear as different colors due to the fact that basis vectors are 

calculated for each dataset separately; however, using consistent weights results in consistent PCA 

images. To compare RGB images, datasets are transformed into a common basis vector set and 

scaled so that color intensities can be compared between RGB images. Figure 2-3 shows the steps 

for constructing hyperspectral images. 
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Figure 2-3. Process of constructing the RGB images from PCA. The image in the red-box is 

the first three PCA components and is used for further analysis.  The second image (with 

orange background) is second, third and fourth PCA components and the last image is the 

third fourth and fifth PCA components. No satisfactory result is obtained using the last two 

images. They are presented here only for illustration. 

2.5.2 K-means Clustering and Morphological Cleaning 

The PC RGB images are now ready for further analysis. We first transformed them into LAB color 

space. We used LAB color transformation because Euclidian distance between colors does not 

correspond to the color perception in the RGB model (Color difference2019). LAB colour space 

is a three dimensional (L,a,b) colour/ intensity coding. The “L” axis, extends from black to white, 
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the “a” axis extends from green (-a) to red (+a) and the “b” axis extends from blue (-b) to yellow 

(+b). We then used K-means clustering in two steps: 

Step 1: At this step, we separate out three materials, glass, stroma and glands. So, we set the 

number of clusters, K, equal to 3 and we applied K-means clustering on all images. We obtained 

three classes as shown in Figure 2-4 (B). Here we are interested in only the gland class; however, 

the gland class is not clean and contains some residual stroma as shown in the first image of Figure 

2-4 (B). So, it was necessary to apply some image processing techniques to clean out the glands 

and remove the artifacts.  

In order to clean up the input image we used the following morphological processes: 

1. Removed all the connected components with an area of less than 30 pixels. 

2. Applied morphological image opening with a disk structure element of size 5 to the remaining 

set (obtained from above) to remove the small pieces and connect the components that are close 

together and assumed to be related. 

3. At the last step we removed all objects smaller than 1000 pixels, in this stage we expect the 

glands to be well-formed and connected so the objects smaller than 1000 pixels in size are 

considered noise/unwanted structures.  

The result is well-segmented glands as shown in Figure 2-4 (C).  

So far, we were successful in detecting glands, however, as we know glands contain cells with 

nuclei and cytoplasm, but we are only interested in the segmentation of the nuclei within each 

gland. In order to accomplish this goal, we need to continue with the second step as described 

below: 
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Step 2: In this step, we use another K-means clustering technique to segment nuclei inside the 

detected gland cells (nuclei of stroma are removed from the image in step 1). Here again, we set 

the number of clusters, K, equal to 3 since we have 3 clusters to classify (background, cytoplasm, 

and nuclei). Similar to step 1, we performed morphological cleaning (connected components 

smaller than 30 pixels are removed), Figure 2-4  (D). 

 

Figure 2-4 This figure shows the steps required for prostate glandular detection as well as 

detection of its nuclei. First, the PC RGB image transferred into LAB space and then using 

K-means clustering, gland/stroma, stroma, and glass are segmented. Morphological cleaning 

is used to remove undesired stroma in the gland/stroma image. At the last step, another K-

means clustering sequence is applied to detect nuclei within each detected gland. 
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2.6 Results  

We applied our automated method to all 132 TMA images. On average, it took two minutes for 

the algorithm to complete the glandular structures detection process and one minute to separate 

out the nuclei. To assess the performance of our algorithm we used a human observer.  If more 

than 80% of the glands per TMA core were detected successfully, we denoted it as “good” 

detection. If 50% - 80% of the glands were detected, we denoted it as “moderate detection” and 

“bad detection” otherwise. Figure 2-5 shows an example of “good” gland detection. In the last 

column, we showed that our algorithm successfully segmented other tissue structures such as 

neural fibers (this structure is categorized as stroma).  

In Figure 2-6 and Figure 2-7 we show examples of “moderate” gland detection and lastly, in Figure 

2-8 and Figure 2-9  we show an example of “bad” detection.  

Sixty-one percent of the cores had “good” detection, 15% had “moderate” detection and 24% of 

the cases had “bad” detection. About 50% of cases with “moderate” detection had uneven color 

intensity distribution, likely, due to various tissue processing/preparation protocol issues, (e.g. 

under-fixed or under-stained structures) and more than 60% of the cases in the “bad” detection 

category had gland infiltration filled with inflammatory cells and/or they had very muscular/ 

hyalinized stroma. These are some of the characteristics that our algorithm was not tuned to detect 

and consequently reduced its detection power.  
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Figure 2-5 This figure shows examples of “good” glandular structure detection, the top row 

shows the PC RGB images. GL stands for glass, S stands for stroma and N stands for nerve 

trunk. The second row shows the gland detection results where G stands for gland; we 

showed an example of nerve trunk detection and removal in the third image. The third row 

shows the nuclei segmentation results. 
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Figure 2-6 This figure shows an example of “moderate” glandular detection. Some glands 

are missed due to poor sectioning/scanning/imaging processes. 

 

Figure 2-7 This figure shows an example of “moderate” glandular detection. This is an 

example of a core with densely packed tumor glands and small luminal spaces. In this 

example, the tumor has glandular structures with slit-like luminal spaces. The gland image 

is not shown here.  
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Figure 2-8 This figure shows examples of “bad” glandular detection in which the stroma is 

infiltrated by inflammatory cells. (A) the PCA image with a zoom-out of a section of the 

core with glands. (B) shows the failure of the gland detection. In the red box, multiple 

glands were mislabeled and were not detected. The nuclei image is not shown here.  
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Figure 2-9  This figure shows examples of “bad” glandular detection, image (A) and image 

(B) show examples of cores in which the stroma is infiltrated by inflammatory cells. 

2.7 Discussion  

We compared our results with the state of art presented in (Alexe, Deselaers et al. June 2010). We 

directly used their publicly available code and tuned the parameters for our specific gland detection 

purposes (since the algorithm is dependent on the input image). The result is shown in Figure 2-10. 

This figure shows a very high probability of gland locations in the middle. Although our method 

works significantly better on this dataset, this comparison might not be completely fair since the 

method presented in (Alexe, Deselaers et al. June 2010) is designed for generic objects detection 

and is not designed specifically to detect glands in prostate tissue. From this comparison, we can 
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draw this conclusion that our method performs better for TMA prostate gland detection which is 

basically the purpose of this study.   

One of the weaknesses of our algorithm is its sensitivity to color intensity. This limitiation is due 

to the PCA transformation and K-means clustering steps We believe uneven color intensities, 

especially at the edges, is one of the reasons for our method misclassification. In this study, we 

applied our method on 132 prostate TMA cores and obtained promising segmentation results. It 

would be beneficial to investigate the performance of this algorithm on a larger dataset as well as 

observing its performance on different stains.  

 

Figure 2-10 Example of gland detection result using the code presented by (Alexe, Deselaers 

et al. June 2010). The input image is an RGB image from the same core as shown in image 2 

before the PCA transformation. The superimposed rectangles show the locations with a high 

probability of the presence of glands (mostly in the center.) 
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2.8 Conclusion   

Morphological structures and architectural tissue characteristics are important for the diagnosis 

and prognosis of prostate cancer by determining the Gleason score/grade of prostate cancer tissues. 

Glandular structures are the regions of interest and they provide clinically relevant information 

about the tissue. Although the visual inspection of tissues has been around for years as an effective 

primary procedure for diagnostic purposes, the inter-intraobserver variability, among other 

challenges limits this procedure.  

In this chapter, we presented our study results on the development of a new automated technique 

for glandular detection. This is the first step toward  the design of a fully automated QDP system. 

We believe one of the significant aspects of our study is incorporating different techniques that 

result in a fully automated and robust detection method. We integrated hyperspectral image 

capabilities along with advanced image processing techniques to develop a fully automated 

algorithm for prostate gland detection.   
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Chapter 3 Design of an Automated Technique for Digital Pathology 

Cell Segmentation 

3.1 Introduction 

In the process of cancer development, normal cells deform into cancerous cells. This complex 

process involves genetic and epigenetic disruption of the normal DNA organization, which results 

in phenotypic changes in nucleus/cellular/tissue structure. Therefore, to understand the altered 

functionality of cells and their interactions within the tissue, it is necessary to quantitatively study 

individual cells in the context of the whole tissue. With the flourish of light microscopy in 1670, 

study of tissue and cellular structures became popular (Madabhushi, Lee 2016, Meijering 2012) 

and continued with other imaging modalities such as fluorescence labeling of tissue samples 

(Irshad, Veillard et al. 2014, Doyle, Scott 2011) and digital microscopy (Alomari, Allen et al. 

2009, Langer, Binenbaum et al. 2015) . Quantitative assessment of nuclear structure using optical 

microscopy is now possible due to advances in image acquisition hardware and image processing 

algorithms. With the data obtained from Quantitative Digital Pathology (QDP), it is possible to 

measure the structural chromatin changes and provide prognostic and predictive outcomes. Image 

segmentation is the core of QDP. A very good segmentation algorithm greatly enhances the 

effectiveness of the QDP process and facilitates the decision-making in clinical pathology studies 

(Alomari, Allen, et al. 2009). With the assistance of medical image segmentation methods, it is 

possible to detect and segment cells and extract the relevant features. In the following section, we 

will present two main segmentation categories (Pixel-wise methods and Region-based methods). 

We have implemented similar techniques to design our minimally interactive cell segmentation 

technique.  
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3.1.1 Medical Image Segmentation Methods 

Partitioning an image into the desired non-overlapping regions is called image segmentation. There 

are various segmentation methods which can be divided into two major categories: 

I) Pixel-wise methods 

II) Region-based methods 

3.1.1.1 Pixel-wise Methods 

This method is based on a simple yet important assumption: Pixels of the same segmented region 

should have similar characteristics. This reasonable hypothesis helped the flourish of many 

segmentation algorithms  (Mao, Xie 2013, Wang, X., Zhang, et al. 2012). This method is further 

divided into two main categories, Pixel-wise thresholding, and Pixel-wise clustering.  

(a) Pixel-wise Thresholding 

One of the basic methods used in pixel-wise segmentation is Thresholding. This method usually 

requires some pre-knowledge of the input image and the intensity distribution of the Region of 

Interest (ROI). This requirement has been thoroughly investigated for one threshold, but it is very 

challenging for regions that require multi thresholds (Gonzalez, Wood, et al. 2004). Furthermore, 

thresholding is sensitive to noise, particularly salt & pepper noise (Gonzalez, Woods, et al. 2004). 

The other problem associated with this method is its ignorance of the spatial relationships of the 

ROI. Spatial information can be used to further improve the segmentation performance.  

Despite these and many more drawbacks, this method is still being used widely due to many 

advantages that this method has such as being fast, simple and efficient. These 

flexibilities/advantages have made this method very desirable for segmentation purposes 

(Manikandan, Ramar, et al. 2014, Ye, Hu et al. 2012, Cheriet, Said et al. 1998, Dong, Li et al. 
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2014). We have used a modified version of this method in our segmentation algorithm, which we 

will discuss later in this chapter.  

(b) Pixel-wise Clustering 

Clustering algorithms are among unsupervised methods. These methods do not require labeled 

datasets (predefined input-output mapping). The main idea behind this method is to segment the 

input image into different partitions according to some criteria (such as distance, color, etc)  related 

to the ROI and then check the quality of the segmentation (partitions). The last quality-check 

estimation can be done by using either an expert feedback or an automated (estimation 

segmentation) method. If the result is not satisfactory, the algorithm can segment the image again 

using different initial points and clustering parameters. This iterative process can be repeated 

multiple times until the desired result is obtained.  

This method is sensitive to initialization and may result in unsatisfactory segmentation 

performance (Zahara, Fan, et al. 2005). Although this method is very popular in the literature and 

many researchers have used this method or a modified version of it for their segmentation task 

(Coleman, Andrews 1979, Pappas 1992, Uslan, Bucak 2010, Thilagamani 2011, SrinivasaRao, 

Suresh, et al. 2015), similar to pixel-wise approach, that we discussed earlier, it doesn’t take spatial 

properties of the pixels into consideration (Zahara, Fan et al. 2005). 

To improve our segmentation quality, we used a modified version of this method which 

incorporates the spatial information as well. Later in this chapter, we will fully discuss our 

approach.  
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3.1.1.2 Region-based Methods 

Many region-based segmentation methods exist and are used in the literature (R, K et al. 2014, 

Slabaugh, Unal, et al. 2009, Lalaoui, Mohamadi 2013), in this section we will discuss the most 

relevant ones to the work presented in this thesis.  

a) Deformable Models 

Deformable models are a model-based method which require a parametric representation model 

of segmented objects to produce good results. This method segments the images using closed 

parametric curves.  

Although this approach has many advantages, it is sensitive to initialization and can have poor 

convergence (Kass, Witkin, et al. 1988).  

We incorporated deformable models into our segmentation algorithm. In our approach, we 

modeled nuclei as ovals using a simple deformable model. Furthermore, we utilized information 

from another part of our algorithm to overcome the challenges we discussed earlier (such as 

sensitivity to initialization and poor convergence). We discuss our approach later in this chapter.  

b) Region Growing 

Region-growing models require initial points to start the process.  This method starts from the 

provided initial points (seeds) and grows the ROI outward from these points. The criteria for this 

growth can be adjacency/or similarity in the region. The adjacency criterion considers the spatial 

relation between pixels and improves the performance of segmentation; while the similarity 

approach uses a similarity metric between two points, or a region and a point and decides whether 

to grow or not. Region growing methods usually need a manual initialization and similar to 

thresholding methods are sensitive to noise (Adams, Bischof 1994). 



 

46 

 

We used a region growing method (Adams, Bischof 1994) as a part of our segmentation algorithm 

and combined it with other segmentation methods to overcome some of the discussed limitations. 

We describe our approach later in this chapter.  

There are a variety of other segmentation approaches in the literature which apply advanced and 

complex methods to achieve cell segmentation. Examples include, dynamic programming (which 

uses gradient vector and boundary information of the objects) (McCullough, Gudla et al. 2008) , 

graph-cut (which uses fast min-cut approach to form the segmentation mask) (Bensch, 

Ronneberger April 2015), active mask (uses different combination of active contour methods) 

(Srinivasa, Fickus et al. 2009). Recently, multiple groups have used machine learning algorithms 

for their segmentation tasks. Different methods such as Support Vector Machine (SVM) and more 

advanced methods such as Deep Learning methods are used to achieve better segmentation results. 

Machine learning approaches require a large data set of images for training purposes 

(Ronneberger, Fischer, et al. 2015, de Brebisson, Montana 2015, Long, Shelhamer et al. June 

2015). It is very hard (if not impossible), expensive and time-consuming to construct a large dataset 

especially in the medical domain.   

In this chapter, we will present our segmentation approach in which we combined different 

segmentation methods to improve segmentation performance. Furthermore, in this chapter, we will 

introduce a new method to post-process the segmentation outcome with minimal user interaction. 

3.2 Hypothesis 

Our hypothesis in this chapter is very similar to the previous chapter. We believe digital pathology 

has high prognostic potential, however, it is mostly being used for preliminary diagnosis purposes. 

We hypothesize that an analytical approach based on the combined measurements of nuclei and 
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cell sociology features (Enfield, Martin, et al. 2019) can better classify aggressive and non-

aggressive tissues.  

Our goal is to develop simple, objective, automated, and cost-effective tools with the ability to 

produce reliable prognostic information for differentiating between indolent and aggressive 

prostate cancers. The first step to achieve this goal requires one to be able to accurately recognize, 

localize and segment cell nuclei. The segmented nuclei can then be used/accessed as a part of an 

automated pathology system to monitor and predict prostate cancer progress. 

3.3 Objective 

Our goal in this chapter is to develop an automated cell-/nuclei segmentation. We will also present 

the process to design an interactive tool for segmentation correction to improve the performance 

of the segmentation task.  

3.3.1 Specific Objective 

In this and next chapter, we have the following specific tasks: 

1- Prepare the TMA images: capture and store images 

2- Implement different segmentation algorithms to accomplish an automated cell-

segmentation 

3- Perform validation on the segmented cells (compare with human annotator) 

4- Design an interactive method to enhance the segmentation quality (next chapter) 

5- Compare the performance of the algorithm on various tissue type (next chapter) 

The workflow for the whole process of our study on prostate cancer is presented in Figure 3-1. 

The focus of this chapter, as shown in the blue box of  Figure 3-1 is on cell/nuclei segmentation.  
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In this step, we will first scan the TMA slide with a whole slide scanner, and then prepare the 

image for the next step (image processing step). 

 
Figure 3-1 This figure shows the pipeline of our study. In the previous chapter, we discussed 

our algorithm for glandular segmentation. The focus of this chapter is on the cell 

segmentation.  In the later chapters, we will describe the classification and validation 

processes. 

3.4 Materials and Data Preparation 

Surgical biopsy specimens from 33 prostate cancer patients were collected and a Tissue Microarray 

(TMA) was constructed from these specimens. The TMA is stained with Feulgen-Thionin stain. 

The reason for selecting this stain is because Feulgen-Thionin stain binds in a stoichiometric 

fashion with DNA and since light absorption per pixel is directly proportional to DNA amount, it 

will increase the contrast of nuclei in the image and enable the quantitative measurement of the 

DNA organization within the nucleus. 

The TMA slides were scanned using a whole slide image tiling scanner (Pannoramic MIDI 

scanner, 3DHisttech, Budapest, Hungary, with ×40 objective) where each tile image was 1024 by 

1024 pixels and the pixel spacing was 0.3µm in both x and y directions.  
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3.5 Methodology 

3.5.1 Automated Prostate Cancer Nuclei Segmentation 

We used MATLAB as our prototyping tool for software development, primary because it has a 

very powerful image processing and machine learning toolboxes. (Once an optimized approach is 

identified it is possible to implement our methods in JAVA/C++ for even faster processing 

performance). Furthermore, object-oriented languages such as JAVA provides a better platform 

for further changes and modification (such as the addition of new features) which might be 

necessary in the course of software development.   

Figure 3-2 shows an image of Thionin-stained prostate core from a TMA. This image is 

constructed from 16 sub-images (tiles) which are captured from the Pannoramic scanner (Figure 

3-2 (a)). To reduce memory usage, we processed each tile separately and then stitch them together 

to represent the whole core.    

 
 

Figure 3-2 Thionin-stained prostate cancer core from a tissue microarray, a) 16 sub-images. 

b) the whole prostate core image obtained from (a). 
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Image pre-processing: To reduce photonic and systematic noise, we applied various filters. The 

trade-off of applying such filters is,  losing the image quality and consequently reducing the image 

segmentation performance.  

In this study, we applied a simple Gaussian filter (Gonzalez, Woods 2008). Gaussian filters are 

among smoothing filters whose weight is chosen according to the degree of smoothing required. 

This filter is known as a relatively good filter for reducing white noise (Dong, Li et al. 2014). A 

two-dimensional Gaussian filter in the frequency domain is formulated as shown in equation (3,1). 

Where D0 is the filter cut-off frequency (Figure 3-3). We tried different values for D0 and we chose 

D0 = 25 based on the best visual result. 

H(u, v) = e−D
2(u,v)/2D0

2
     (3,1) 

 

 
Figure 3-3 Gaussian filter. a) Perspective plot of Gaussian filter b) filter display as an image 

c) filter structure for different values of D0. 
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Next, we converted the RGB color image into a greyscale image. Since the nuclei are stained blue, 

we constructed a grey image by averaging the Red and Green channels (Since the intensity of blue 

in the image is very high, including blue channel in the averaging would skew the image to the 

blue color). 

To construct a binary image from the gray image, two different methods were considered. The first 

approach was to use the Gradient-Weighted (GW) thresholding method (Gonzalez, Woods, et al. 

2004). This method is known as an effective method and is applied to many medical images 

(Gonzalez, Woods, et al. 2004). In this method, the gradient image is calculated by using a Sobel 

filter, equation (3, 2). The assumption is that the gradient image will contain higher values for 

edges and lower values for the rest of the image. 

   
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
= (𝑓(𝑥 + 1, 𝑦 − 1) − 𝑓(𝑥 − 1, 𝑦 − 1) + 2 × 𝑓(𝑥 + 1, 𝑦) − 2 × 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥 +

1, 𝑦 + 1) − 𝑓(𝑥 − 1, 𝑦 + 1))               (3,2) 

 
𝜕𝑓(𝑥,𝑦)

𝜕𝑦
= (𝑓(𝑥 − 1, 𝑦 + 1) − 𝑓(𝑥 − 1, 𝑦 − 1) + 2 × 𝑓(𝑥, 𝑦 + 1) − 2 × 𝑓(𝑥, 𝑦 − 1) + 𝑓(𝑥 +

1, 𝑦 + 1) − 𝑓(𝑥 + 1, 𝑦 − 1))              (3,3) 

 

 

We define f (x, y) to represent the greyscale image. w and h represent the width and height of the 

image respectively, the GW threshold is calculated as follows: 

 

𝑇 =
∑ 𝑓(𝑥,𝑦)𝑔(𝑥,𝑦)𝑥,𝑦

∑ 𝑔(𝑥,𝑦)𝑥,𝑦
                                       𝑥 = 1, … ,𝑤 𝑎𝑛𝑑 𝑦 = 1,… , ℎ                       (3,4) 

 

where g (x, y) is the Sobel gradient magnitude image. 

GW thresholding approach didn’t provide a perfect result due to intensity inhomogeneity between 

and within nuclei, as shown in  Figure 3-4(b). To overcome this challenge, we implemented a 
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second thresholding method, Mean Gradient (MG). This method is reported by Watanabe for the 

thresholding of cytology images (Ye, Hu et al. 2012). MG is a variant of the GW method. MG 

tries to reduce the effect of isolated high values of the gradient magnitude by dividing the sum of 

the gradient of image intensity by the number of pixels of that intensity. The threshold calculated 

from MG histogram is given by equation (3,5): 

 

𝑇 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑖[∑ 𝑔(𝑥,𝑦)]𝑓(𝑥,𝑦)=𝑖∈(𝑥,𝑦)

𝑛𝑖
                                       𝑥 = 1, … ,𝑤 𝑎𝑛𝑑 𝑦 = 1,… , ℎ     (3,5) 

 

where ni is the number of pixels with the intensity of i. 

We applied MG thresholding to our images; Figure 3-4 (c). In Figure 3-4 we show the comparison 

between GW and MG thresholding. From this image, we can observe that MG thresholding 

produced a better result compared to GW.  

 

 
Figure 3-4 Process of image thresholding by Mean Gradient histogram and Gradient weight. 

an) input image b) binary image obtained from GW, c) binary image obtained from MG. 

The red circles enclose cells where the difference between the two thresholding methods is 

obvious. 
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Post-processing: The next step is to post-process the images and remove the artifacts. We removed 

small debris from the image by detecting and removing objects smaller than 10 pixels. We then 

labeled the remaining connected components as shown in Figure 3-5.  

 

 

Figure 3-5 Morphological image cleaning and labeling. a) binary image b) cleaned image c) 

labeled image, each color represents a connected component. The red circles enclose areas 

where debris existed and where debris removed upon applying the proposed algorithm.  

 

Now, that we have divided each image into multiple regions (connected labeled objects) it is 

possible to analyze each region independently. In Figure 3-6 we compared the histogram of the 

whole image and a selected connected component object, more variation could be observed in the 

histogram of the selected region versus the whole image.  
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Figure 3-6 Global thresholding versus local thresholding (a) whole image (b) histogram of 

the whole image (c) region of interest (d) histogram of (c).  

To further process each labeled object, and to optimally threshold each individual localized sub-

image, we performed another thresholding method referred to as Otsu thresholding (Gonzalez, 

Woods et al. 2004).  The Otsu method minimizes the overall within-class variance by minimizing 

the sum of class variances (Gonzalez, Woods, et al. 2004). 

In this method, the normalized histogram of the image is calculated (each gray level has the 

probability of 𝑝𝑖 = 
𝑛𝑖

𝑀𝑁
 , where M×N is the image size and ni denotes the number of pixels with 

the intensity of i).  

Then the cumulative sum and cumulative means are calculated using the formula presented in (3,6) 

and (3,7) respectively. The next steps are computing the mean intensity with (3,8), and then 
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calculating the between-class variance with (3,9), and finally finding the value of k, which 

maximize the equation presented in (3,9) and setting this value as the image threshold.   

In these equations L is intensity levels {0,1, 2, …, L-1} and k is the intensity level between 0 and 

L which sections the whole image into two segments: 

 

𝑃1(𝑘) = ∑ 𝑝𝑖
𝑡−1
𝑖=0                                (3,6) 

 

𝑃2(𝑘) = ∑ 𝑝𝑖
𝐿−1
𝑖=𝑡                                (3,7) 

 

𝑚1(𝑘) =
1

𝑃1(𝑘)
∑ 𝑖𝑡−1
𝑖=0                        (3,8) 

 

𝑚2(𝑘) =
1

𝑃2(𝑘)
∑ 𝑖𝐿−1
𝑖=𝑡                        (3,9) 

 

𝑚𝐺 = ∑ 𝑖𝐿−1
𝑖=0 𝑝𝑖                                (3,10) 

 

𝜎𝐵
2 = 𝑃1(𝑘)(𝑚1(𝑘) − 𝑚𝐺)

2 + 𝑃2(𝑘)(𝑚2(𝑘) −𝑚𝐺)
2     (3,11) 

 

We then applied the Otsu thresholding algorithm to the region of interest (localized objects) and 

subsequently extracted only the objects which contain the original seed point. 

This combined thresholding algorithm worked perfectly for the detection of well-separated nuclei, 

however, it had some difficulty in detecting overlapping nuclei in a cluster, as shown in Figure 

3-7.  
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Figure 3-7  An example of segmentation failure with simple thresholding. Failure is due to 

clumped nuclei. (a) whole image (b) cluster of nuclei, (c) segmentation mask from (b). 

Improving the performance of our algorithm for nuclei in clusters: In order to improve the 

performance of our detection method especially for overlapping nuclei, we computed the image 

skeleton (Morphology - Skeletonization/Medial Axis Transform)  and chose each endpoint of the 

skeleton as the potential location for nuclei centers. Next, we fit an oval to the edge of the detected 

area. This oval has two constraints: 1) its center is near the initial guess of the object center and 2) 

its area (number of pixels) is <800 pixels (within the average nuclei area range). With these 

constraints, we can make sure that the oval would only fit one nucleus. In the next step, we remove 

the detected object from the cluster and continued with the previous step on the remaining cluster’s 

objects Figure 3-8. 



 

57 

 

 

Figure 3-8 Localization procedure for clustered nuclei. This method finds the skeleton of a 

cluster and uses the endpoints as a possible location for the cell center. As we can see in the 

rightmost figure, the initial four nuclei resulted in six potential nuclei centers, we will explain 

how to find the four nuclei out of these six spots.  

Figure 3-9 demonstrates the performance of the algorithm in the segmentation of different cases 

(Isolated nucleus, a single nucleus with an overlapping neighbor, and a cluster of nuclei). 

Figure 3-9 illustrates the result of our algorithm on three different object types: 

I) Easy case: Isolated nucleus (top row): Perfect detection for isolated nuclei. (This is an 

example of an easy type where the segmentation is done perfectly).  

II)  Moderate case: Single nucleus with a small overlapping neighbor (middle row): Single 

nucleus is detected successfully and the small (and pale) overlapping nucleus is 

removed.  

III) Hard case: Cluster of nuclei (bottom row): The processes explained in the previous 

section is used to separate out these four nuclei ( in this image, the result for one nucleus 

is shown) 

The resulted image (right-most image of Figure 3-9) shows the estimated nuclei centers after 

applying our method.  
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Figure 3-9 Nuclei segmentation for three different object types (isolated nucleus, a single 

nucleus with overlapping neighbor, and a cluster of nuclei). 

Figure 3-10 illustrates the performance of our algorithm on a larger portion of an image. Our 

method was successful in localizing both isolated nucleus and nuclei within clusters.  
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Figure 3-10 Nuclei segmentation results for different nucleus arrangement 

We applied our algorithm on the RGB image of prostate TMA cores. The algorithm locates the 

estimated location of nuclei centers as shown in Figure 3-11. In this image, red dots represent the 

center of nuclei.  
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Figure 3-11 Nuclei detection result for prostate TMA tissue. Red dots represent detected 

nuclei 

For a summary of our algorithm that we presented in this chapter, please refer to Table 3-1.  



 

61 

 

Table 3-1 Automated PCa nuclei segmentation algorithm 

Automated Nuclei Segmentation Algorithm 

Input data: Scanned RGB image 

Output data: Segmented nuclei 

 

Algorithm: 

 

1. Convert RGB image to a greyscale image (using MATLAB rgb2gray7 function) 

2. Generate a binary image using global thresholding methods 

3. Apply morphological image cleaning to remove the small objects and remove the artifacts 

4. Label connected components in the binary image  

5. Dilate the result from above 

4. Apply Otsu thresholding 

5. Select the connected component (CC) 

6.  

If  𝑪𝑪𝑺𝒊𝒛𝒆 ≈ 𝑨𝒗𝒆(𝒏𝒖𝒄𝒍𝒆𝒊𝒔𝒊𝒛𝒆): 

Add ROI as a single nucleus to final results and remove it from image  

             else: 

Generate a skeleton of the mask (referred to as original mask): 

While there is an end-point in the skeleton of the original mask: 

i. randomly select one of the endpoints and use it as the initial point. 

ii. generate a rough mask around the initial point (by fitting an oval with the constrains 

explained in the text).  

iii. multiply this mask (referred to as nuclei mask) with the original mask to generate an ROI 

mask. 

iv. use an ROI mask to segment the nuclei.  

v. multiply the inversed of nuclei mask with the original mask and called it original mask. 

original mask = original mask * inversed (nuclei mask) 

vi. Generate a skeleton of the original mask 

vii. go the beginning of the while loop and check the condition.   

 

 

The last step after segmentation is saving each nucleus for further analysis 

 
7 rgb2gray: this is a MATLAB function which Converts RGB image to grayscale 
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 Figure 3-12 Gallery of segmented nuclei using our segmentation algorithm 

A summary of our whole algorithm design is illustrated in Figure 3-13. 

 

 
Figure 3-13 A carton that represents the whole processes used in our algorithm for the 

detection of prostate cancer nuclei in TMA slides.  

 

3.5.2 Algorithm Performance and Experiment Results 

We ran our algorithm on Thionin stained prostate cancer dataset containing 596 images (each 

image was 1024 by 1024 pixels). We randomly selected 20 images from a total of 596 images and 

compared the results of our algorithm with the results of a human annotator (human annotator 
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identified 13820 nuclei in the 20 randomly selected images). The comparison result is shown in 

Table 3-2.  

Table 3-2 Processed nuclei segmentation results with our proposed algorithm. 

Total Processed 

Nuclei 
Number of False 

Positive Nuclei 
Number of Missed 

Detection Nuclei 
Average False 

Positive Percentage 
Average Missed 

Nucleus Percentage 

13820 470 774 3.4 % 5.6 % 

 

 

According to Table 3-2, our proposed method missed around 5.6% of nuclei and had a 3.4% false 

nuclei detection rate. 

On average, using our algorithm we can process each image in about 2 minutes on a 3 GHz 

machine with 4 Gigabytes of RAM while the same process done by a human expert requires 45 

minutes.  

3.6 Discussion  

Although our algorithm was very successful in the detection of nuclei, it had some challenges in 

detecting nuclei in a few situations. One of the most common difficult situations is when the 

nucleus is lightly stained and has a pale color. In this case, the intensity of the nucleus is very 

similar to the background and may result in poor detection/segmentation. 

These limitations motivated us to design a method which can post-process the image (in an 

interactive fashion if required). We implemented such a system and we will explain our approach 

in the next chapter.  
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Chapter 4 Interactive Cell Segmentation forDigital Pathology  

4.1 Introduction 

This chapter is the continuation of the previous chapter, as a result, the introduction, hypothesis, 

and objectives are very similar to the prior chapter. The extra information that we will present in 

this chapter is around the improvement of the technique that was presented in the previous chapter. 

Furthermore, in this chapter, we will discuss how our method can be generalized and applied to 

other cancer sites.  

The method we presented in the previous chapter had some difficulties in the segmentation of a 

few cases, particularly in the segmentation of nuclei within clusters. To accomplish a complete 

nuclei segmentation, we have designed an interactive segmentation methodology. Our algorithm 

utilizes user input to re-segment locations where the user recognizes that the automated method 

failed to localize the cell nuclei. This method gives the user the ability to select/unselect miss-

segmentation and re-segment areas with minimum interaction. 

4.2 Motivation 

As explained earlier, the technique presented in the previous chapter had a very good performance 

on localized cells, however, the performance was relatively worse in challenging cases such as 

lightly stained nucleus, (Figure 4-1). In this case, for example, the intensity of the nucleus is very 

similar to the background resulting in a poor segmentation. 

Another challenging situation happens when we have a cluster of nuclei or overlapping nuclei. In 

these cases, our technique might miss a few nuclei or over-segment the cluster,  Figure 4-2.   
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Figure 4-1 Faint nuclei resulted in segmentation failure. a) a section of prostate tissue 

(Thionin stained), blue objects are cell nuclei, light green dots (not very visible) are cell 

locations predicted by our algorithm. b) zoomed-in section of image(a) red circle 

circumscribes a pale nucleus that our algorithm missed. 

 
Figure 4-2 Failure of segmentation method on a cluster of nuclei. a) blue objects are cell 

nuclei and the light green is the algorithm prediction result for the location of nuclei (missing 

nuclei). b) incorrect localization of cell nuclei by our algorithm (over-segmentation) for a 

cluster of nuclei. 
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4.3 Objective/Hypothesis  

The goal of an automated segmentation technique is to detect/localize/segment the objects of 

interest for a rapid interpretation. Thus, asking the user to draw nucleus boundaries (Ning, Zhang, 

et al. 2010) is counterintuitive and should be avoided in any tool that is to be used clinically. 

We hypothesize that it is possible to improve the performance of our technique(presented at the 

last chapter) by designing a powerful segmentation algorithm that can segment nuclei by utilizing 

the additional high-level information about the nuclei center locations that the user has provided 

(add/removed nuclei centers). To be useful in clinical settings, this process should require minimal 

interaction from users  

Our goal is to design a fast and accurate post-process method to be combined with an automated 

algorithm (presented in the previous chapter) to improve segmentation performance.  

In the next section, we will present our algorithm that uses the information provided by the user to 

improve the segmentation accuracy.  

4.4 Methodology 

In this section, we will discuss the steps required to accomplish the design of an integrative 

segmentation method which requires minimal input from the users. If no input is provided, the 

algorithm will still complete the segmentation procedure using the process explained in the 

previous chapter. 

Consider a situation where the nucleus has poor contrast and the user provides a rough estimation 

of the nuclei center, our algorithm will take the following steps to complete the segmentation.  

First, it uses the provided point as an initial guess and dilates that point with a disk of radius 50. 

This radius is selected by heuristically experimenting with different sizes from 5-60 pixels (each 

pixel spacing is 0.3 µm and 50 pixels is equal to 15 µm which is near nuclei size 7-20 µm). It uses 
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this mask to extract a portion of the image that should contain the intended nucleus as shown in 

Figure 4-3. 

 

Figure 4-3 Interactive correction method to add/remove the nuclei. a) original image, the red 

cross represents the interactive method on the location where we plan to apply some 

correction. b) extracted the nucleus and surrounding neighbors. 

The next step is to find the edges in the extracted area. This edge detection step is done using the 

Canny edge detection method (Canny 1986). Next, we dilated the extracted edges with a square 

structure element of size 3 (large enough to cover some part of nuclei as well as the background). 

We used this mask as our new ROI mask. Our assumption here is that the area under this new 

mask contains approximately the same amount of background and nucleus. Therefore, we can use 

a simple Otsu thresholding method to determine an optimal threshold for extracting the nucleus 

Figure 4-4.  
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Figure 4-4 Thresholding based on local information a) masked image. b) extracted edges in 

the area c) dilated edges using Canny d) extracted mask using Otsu thresholding. 

Although Otsu thresholding usually gives us reasonable results, it fails to extract the whole nucleus 

in some cases. To overcome this challenge and improve our result, we have applied a region 

growing algorithm combined with a clustering method. The details of our implementation are as 

follows: 

We implemented a modified region-growing algorithm technique. This method is based on the 

intensity values of the object of interest. In addition, we added a hysteresis mechanism to make 

the region-growing method robust with respect to noise and variations in the staining intensity. 

We have formulated the hysteresis step similar to the double thresholding method presented by 

Canny, (Canny 1986) with a couple of modifications to make it suitable for our study. We 

incorporated the pixels in the extracted mask obtained from Otsu thresholding as the region-

growing initial seed points. Next, we inverted the image so that the background becomes dark and 

cells become white. This makes it possible to apply the region-growing by starting from the white 

regions. It is important to highlight that, by implementing these steps we eliminated the need for 

human initialization or random initialization which is frequently required for the region growing 

algorithms.  
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Hysteresis region-growing: In our model, the initial seeds are usually a cluster of pixels instead 

of a single value, in order to decide whether to add a new point (pixel) into the region we used 

some statistical values of the cluster as the algorithm constraint, details of this implementation is 

provided below: 

Our model uses two thresholds (T1 & T2 (T1> T2)). The average intensity of the initial seeds was 

used as T1, with this threshold we generated a binary image referred to as G1. For the second 

threshold (T2) we used the standard deviation (SD) of the intensities of the initial seeds and 

formulated T2 as T2= T1-SD. With the T2 threshold, we generated a binary image referred to as 

G2. G1 gave us strong candidates whereas G2=G2-G1 provided us with the weak candidates. We 

start with a pixel in G1 since we are confident that it belongs to the nuclei, we then choose the 

corresponding pixel in G2 and check for eight connectivity to decide on region growth. 

During the region-growing procedure, two or more different regions might merge together.  In 

these situations, we would calculate new threshold values for T1 and T2 from the initial seed points 

of these regions.  

Figure 4-5, shows an example of cell localization after applying the above technique.  

 

Figure 4-5 Applying region-growing methods a) original image, selected nucleus and zoomed 

nucleus. b) original region growing method c) region growing result using hysteresis. 
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Hybrid clustering:  To help our algorithm robustness to noise we integrated a hysteresis approach 

in our proposed region growing method. However, this technique still has some difficulties with 

intensity variations in the objects and may not connect all parts of a single nucleus together. 

Therefore, we employed a novel hybrid clustering method.  

This method combines two well-known clustering methods (K-means clustering and Density-

based clustering). K-means clustering tends to return convex clusters as it usually does not use 

spatial information (Likas, Vlassis, et al. 2003). On the other hand, Density-based clustering uses 

spatial information but there is no guarantee of returning a convex shape (Gan, Tao 2017). In this 

study, we combined K-means clustering and density-based clustering technique to incorporate the 

strength of both methods. 

K-means clustering: In the K-means clustering method we set the number of clusters, K, equal to 

the number of distinct objects in the area of interest (ROI: is obtained from the previous region-

growing step). 

Density-based clustering: To calculate the density-based clustering we first need to define a few 

parameters, one of these parameters is the distance function presented in equation (4-1).  

𝑓(𝑝𝑥, 𝑝𝑦) = 𝑑(𝑋𝑝𝑎 , 𝑋𝑝𝑏)
𝛼 × 𝑑(𝐿𝑝𝑎 , 𝐿𝑝𝑏)

𝛽   (4-1) 

where 𝑋𝑝𝑎and 𝑋𝑝𝑏represents the location of a and b respectively. 𝐿𝑝𝑎 and 𝐿𝑝𝑏represents color in 

L.a.b space for a and b respectively, and d is the function that finds the Euclidian distance 

between these points.  
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The proposed distance function in equation (4-1) incorporates both the intensity level of a pixel as 

well as its location. This function has two tuning parameters ( and  ) which allow us to make a 

trade-off between the importance of pixels location and their intensity values. 

Since the Euclidian distance between colors does not correspond to the color perception in the 

RGB model we decided to use the Lab color map.  

Lab Color Space is a three dimensional (L,a,b) color/ intensity coding. The L axis extends from 

black to white, the “a” axis extends from green (-a) to red (+a) and the “b” axis extends from blue 

(-b) to yellow (+b). 

The initial points can be selected randomly. To find the clusters, we set α to 0.5 and β to 0.8 in 

equation (4-1). The other parameter is the maximum distance between two adjacent points in the 

cluster, we chose this value in equation 4-1 to be equal to 4 and finally the last parameter which is 

the minimum number of the pixels to form a cluster is selected to be equal to 10 pixels. All these 

parameters were selected heuristically by experimenting with various values and selecting those 

with the best visual outcome (This evaluation was done on a subset of images). 

Hybrid clustering workflow: As discussed earlier, we used two clustering techniques (K-means 

clustering with K detected centroids as the initial cluster centers and density-based clustering) for 

segmentation purposes.  

We first apply these two clustering methods and use their segmentation agreement as our initial 

segmentation result (in other words, those pixels that obtained the same labels from these two 

clustering methods, are considered as correctly clustered pixels.) 
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In the next step, we use density-based clustering to make the final decision on the remaining pixels 

(that are not selected by both clustering methods from the previous step). We use the size of the 

resulted cluster from this step as the factor for making the decision.  If the cluster obtained from 

this step is large enough (>10 pixels) we consider it as a nucleus otherwise we will discard it to 

avoid debris in our final results. An overview of the whole clustering step is depicted in  Figure 

4-6.  

 

Figure 4-6 Clustering flowchart, shows the steps necessary to select relevant clusters. This 

algorithm consists of two clustering methods (K-means clustering and density-based 

clustering) in the first run, pixels are selected if they belong to the same cluster (generated 

from two clustering methods), on the second run we feed the remaining pixels to the density-

based clustering and choose those with large area.   
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Figure 4-7 shows the result of comparing different clustering algorithms. In this figure, we show 

one nuclei cluster cropped from the original image as an example. 

 

Figure 4-7 Comparison between clustering methods (Density-based clustering, K-means 

clustering and hybrid method) a) input image. b) clustering result of Density-based 

clustering. c) clustering result of K-means clustering. d) results of our hybrid clustering 

method. 

In Table 4-1 we summarized the whole algorithm design that we introduced in this chapter.  

 

Table 4-1 Interactive nuclei segmentation algorithm steps 

Interactive Nuclei Segmentation Algorithm 

Input data: Scanned RGB image 

Output data: Segmented nuclei 
 

Algorithm: 

 

1. Apply automated segmentation method (presented in the previous chapter) 
2. Ask the user to evaluate the outcome (nuclei centers) 

3. Based on the outcome, the user should make a decision (add/remove nuclei or do nothing) 

 
if the user removed a center from a cluster 

a. Find the labeled objects that the removed center belonged to 

b. Assign pixels of the removed nucleus to their nearest neighbor object in the cluster 

 
             else if the user added a center 

 Dilate selected point with a disk with a radius of 50 as the ROI 

 Extract edges in the ROI and dilate them with square of width 3 
 Use dilated edges to create a new ROI mask and apply Otsu to the pixels within this. (Use 

Otsu results to binarize the initial ROI) 

 Find the connected components that contain nucleus marked by the user and automatically 
detect nuclei center and use them as seed points for region growing algorithm 

 Apply the hybrid clustering method on the region results of above step to find cell 

 Use the final mask to extract the nucleus 
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4.5 Results 

We applied our localization method presented in the previous chapter on Thionin stained prostate 

cancer TMA dataset from 33 patients.  

Our dataset contains more than 170,000 nuclei. We compared our segmentation results with the 

results obtained from the human annotator (which here is considered as our gold standard). We 

obtained about 12% false-positive cell segmentation and about 3.4% missed cell detection. To 

improve the segmentation accuracy, we used the interactive algorithm presented in this chapter.  

Direction to use the algorithm: the user loads the image and runs the original automated 

segmentation algorithm (presented in the previous chapter). Then the user uses our interactive 

method to add or remove nuclei centers. Adding and removing nuclei is a real-time process (means 

the process is very fast and the user can see the result right away). This interactive method can 

continuously show the results of any user interaction in a real-time fashion and gives the user the 

ability to observe the result of his/her actions.  In general, human experts require 45 minutes of 

processing time to select nuclei of each core while our automated method combined with this 

interactive method takes about only 6 minutes, more importantly, our algorithm has the same 

accuracy as the manual process. This means our algorithm is fast, efficient, and accurate which 

makes this method suitable to be used in the clinical settings.   

For illustration purposes, we selected an image, Figure 4-8, and ran our segmentation method 

with/without our interactive procedure, the result is presented in Figure 4-9 and Figure 4-10 

respectively.  
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Figure 4-8  Section of Prostate TMA core, selected for comparing the segmentation results 

with/without our interactive method. 

  

Figure 4-9 Automated segmentation result with our interactive method. 
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Figure 4-10 Automated segmentation result without our interactive method. 

 

4.6 Discussion 

4.6.1 Generalization to Other Cancer Sites and Comparison with 

ILASTIK 

In this section, we discuss the result of comparing our method with an open-source segmentation 

software, referred to as ILASTIK (Sommer, Straehle, et al. 2011).   

Although ILASTIK provides a user-friendly environment for interactive image segmentation, it is 

designed for expert-domain users (requires that the users have some image processing knowledge).   

ILASTIK uses a random forest algorithm that learns from labels provided by the user, each pixel’s 

neighborhood is characterized by a set of nonlinear features. Although ILASTIK is very powerful, 
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it requires an experienced user to continuously provide labels and refine/correct the labels, this 

drawback makes ILASTIK very time-consuming, user-intensive and subject to inter-intra 

variability.     

We compared our segmentation results with the result obtained from ILASTIK on the same sample 

of Thionin stained prostate tissue. We tuned ILASTIK parameters such as cell size and thresholds 

to obtain the best possible segmentation result. Figure 4-11, shows the outcome of this comparison. 

We chose two labels (colors), red for the cells, and, and green for the background (Figure 4-11 (a) 

and Figure 4-11(b)). Part of the segmentation results from ILASTIK is shown in Figure 4-11(c). 

Manual detection resolved 449 cells in the original image, our algorithm detected/segmented 450 

cells (after two correction process), however, ILASTIK detected only 206 objects (nuclei, cluster 

of nuclei). We can see in Figure 11(c) that ILASTIK failed to segment cells within clusters. One 

of the reasons for this failure could be due to its algorithm implementation which uses local 

features (cues, brightness, color, and texture) and is not designed to capture spatial configurations 

(Sommer, Straehle, et al. 2011). On the other hand, our algorithm uses global features to 

successfully detect and segment overlapping nuclei. Another ILASTIK drawback is the necessity 

for user input, the user has to manually draw lines to separate cells from the background. This 

process is very time consuming and is not practical in clinical use, where the user has to screen 

more than 10,000 cells per slide. Our model uses a fast-automated segmentation method to select 

cells and then the user has the chance to post-process incorrect/missed cells by removing/adding 

cell centers.  
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Prostate Tissue Stained with Thionin 

 

 

Figure 4-11 Comparison between ILASTIK nuclei segmentation and our algorithm.  (a) a 

selected image from prostate TMA which is Thionin stained (column b) ILASTIK nuclei 

segmentation required steps (manually selection of first label, nuclei, (I) manual selection of 

background, stroma, (II) final results is presented in (III) each color in (III) represents an 

object) (column c) our algorithm nuclei segmentation steps (automated localization of nuclei 

with minor adjustments(I), final results presented in (II), again each color in (II) represents 

an object)   
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In this study, we tuned our algorithm for only Thionin stain. As explained before, one of the 

advantages of using Thionin stain for nuclei segmentation is that it binds in a stoichiometric 

fashion with DNA which results in high contrast images, which makes segmentation much easier. 

Here, as a proof of concept, we showed and compared two methods performances (our algorithm 

and ILASTIK). In this experiment, we didn’t adjust for the new color since the purpose of this 

study is to use this algorithm specifically on Thionin stained tissues, however, we still want to 

investigate how our algorithm performs on other stains.  

To investigate the performance of our algorithm on other stains, we decided to apply our method 

to prostate tissue stained with Hematoxylin and Eosin (H&E). In this experiment, we used the 

same dataset of TMA prostate core biopsies; however, in this experiment the TMA cores were 

stained with H&E. We did not change any of the algorithm parameters to adjust for the new stain. 

We randomly selected 10 samples from the whole dataset and only select ¼ of each image in our 

experiment. The human impression of correct segmentation is used as the gold standard for the 

comparison. The result is presented in Table 4-2. 

The result of the comparison between our algorithm performance and ILASTIK is shown in Figure 

4-1. We again chose two labels (colors), red for the cells, and green for the background (Figure 

4-12(b-I) and Figure 4-12(b-II)). By comparing Figure 4-12 (b-III) and (c-II) we can appreciate 

that our algorithm performed much better than ILASTIK. ILASTIK had poor performance for 

detecting cells in clusters. Although our algorithm was relatively better, it was not perfect since 

the method was not adjusted for the new stain.  
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Prostate Tissue Stained with H&E 

 

 

Figure 4-12 This figure shows the comparison between ILASTIK nuclei segmentation and 

our algorithm.  (a) a selected image from prostate TMA, Thionin stained (column b) 

ILASTIK nuclei segmentation steps (manually selection of first label, nuclei, (I) manual 

selection of background, stroma, (II) and final results presented in (III) each color in (III) 

represents an object) (column c) our algorithm nuclei segmentation steps (automated 

localization of nuclei with minor adjustments(I), final results presented in (II), again each 

color in (II) represents an object)   
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Table 4-2 Prostate tissue (H&E) segmentation results for 10 randomly selected images. 

PROSTATE TISSUE 

(H&E) NO.  

FALSE 

NEGATIVE (%) 

FALSE 

POSITIVE (%) 

TOTAL 

OBJECTS 

1 1.49 1.12 801 

2 1.13 0.20 965 

3 2.35 0 85 

4 5.12 5.38 390 

5 0.52 6.25 384 

6 1.10 4.15 361 

7 0 5.55 36 

8 0.28 2.11 708 

9 0.13 0.97 718 

10 0 3.22 186 

TOTAL 1.16 2.17 4634 

 

We also compared our segmentation method with ILASTIK on other tissue types. We explored 

oral, cervix and lung tissues, all tissues were stained with Thionin.  

Oral Tissue 

In Figure 4-13 we show the comparison between the performance of our segmentation algorithm 

and ILASTIK on oral tissue. Figure 4-13-a is the original image, the segmentation results and a 

gallery of selected segmented cell are shown in Figure 4-13 (b) and Figure 4-13 (c) respectively. 

By comparing Figure 4-13 (b) and Figure 4-13 (e), we can see that our algorithm outperformed 

ILASTIK. In this segmentation, we did not adjust any part of the code based on  the size and color 

of oral tissue, however, to increase the performance of ILASTIK we manually drew a boundary 

for each individual cell. As mentioned earlier one of the main drawbacks of using ILASTIK is the 
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necessity of extensive user intercalation to select all the objects in an image. This process might 

require hours for large samples. 

We compared our segmentation performance with the human impression of correct segmentation. 

For the outcome of our segmentation on 10 randomly selected oral tissue please refer to Table 4-3. 

 

Figure 4-13 This figure shows the comparisons between ILASTIK nuclei segmentation and 

our algorithm performance on oral tissue.  (a) a selected image from oral tissue, which is 

Thionin stained, (b) our segmentation results where each color represents an object. (c) 

gallery of selected nuclei from our segmentation method.  (d) original oral image (the same 
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as (a)), and segmentation result from ILASTIK nuclei segmentation is presented in (e) where 

each color represents an object. 

Table 4-3 Oral tissue (Thionin) segmentation results for 10 randomly selected images. 

ORAL TISSUE 

NO. 

FALSE NEGATIVE 

(%) 

FALSE 

POSITIVE (%) 

TOTAL 

OBJECTS 

1 3.69 1.58 379 

2 3.32 1.10 271 

3 5.74 1.20 331 

4 9.21 5.26 152 

5 8.28 3.18 157 

6 0 7.40 54 

7 0.81 4.32 370 

8 0.14 1.40 711 

9 0.35 7.16 279 

10 4.50 1.80 111 

TOTAL 2.80 2.7 2815 

 

Cervical Tissue 

Figure 4-14 shows the results of our method compared with ILASTIK for the segmentation of the 

epithelial layer of Thionin stained cervix tissue. Similar to oral tissue, we visually investigated the 

performance of our method on 10 randomly selected cervix tissues. The segmentation result of our 

algorithm on 10 randomly selected cervix tissues is presented in Table 4-4. 
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Figure 4-14 Comparison between ILASTIK nuclei segmentation and our algorithm for 

cervix tissue.  (a) a selected image from cervix tissue, Thionin stain, we manually select the 

epithelial layer for segmentation purposes.  (b) Automated nuclei localization with our 

algorithm, (c) the segmentation results from our algorithm where each color represents an 

individual object. (d) the first and second steps of ILASTIK segmentation, manual selections 

of two labels (red for cells and green for background/stroma). (e) segmentation results from 

ILASTIK where each color represents an object. 
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Table 4-4 Cervix tissue (Thionin) segmentation results for 10 randomly selected images. 

CERVIX 

TISSUE NO. 

FALSE 

NEGATIVE (%) 

FALSE POSITIVE 

(%) 

TOTAL OBJECTS 

1 0.71 0.28 2106 

2 0.74 0.22 1346 

3 0.26 0.11 3399 

4 0.53 0.42 1861 

5 0.28 0.28 1764 

6 0.84 0.42 944 

7 1.56 3.13 510 

8 3.60 1.71 582 

9 2.36 2.48 805 

10 1.24 0.24 803 

TOTAL 0.81 0.55 14120 

 

Lung tissue 

We also experimented on a sample dataset of lung tissue, stained with Thionin. We compared our 

algorithm performance with ILASTIK segmentation performance. For the result of this 

comparison please refer to Figure 4-15. Again, we used the standard human impression of correct 

segmentation as our gold standard. For the outcome of our segmentation result on 10 randomly 

selected lung tissue samples, please refer to Table 4-5. 
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Figure 4-15 Comparison between ILASTIK nuclei segmentation and our algorithm for lung 

tissue.  (a) a selected image from lung tissue, Thionin stain, (b) Automated nuclei localization 

with our algorithm, (c) the segmentation results from our algorithm where each color 

represents an individual object. (d) original image presented in (a). (e) the first and second 

steps of ILASTIK segmentation, manual selections of two labels (red for cells and green for 

background/stroma). (f) segmentation results from ILASTIK where each color represents 

an object. 
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Table 4-5 Lung tissue (Thionin) segmentation results for 10 randomly selected images. 

LUNG TISSUE 

NO. 

FALSE 

NEGATIVE (%) 

FALSE 

POSITIVE (%) 

TOTAL OBJECTS 

1 0.04 0.04 2106 

2 1.04 0.14 1346 

3 0.50 0.05 3399 

4 0.48 0.21 1861 

5 0.28 0.17 1764 

6 2.11 0.10 944 

7 0.98 0.58 510 

8 0.51 0 582 

9 0.86 0.37 805 

10 1.61 0 803 

TOTAL 0.66 0.13 14120 

 

4.6.2 Reproducibility Analysis 

To investigate the intra- and inter-observer variability of our method, we asked a user to select 

nuclei centers of H&E stained prostate tissue (blue dots in Figure 4-16). To simulate another 

observer’s possible selections, we moved the originally selected cell center (blue dot) by ± 5 pixels 

in four directions (top, down, left and right) and then we ran our algorithm for all five different 

cases. After the above process was completed we calculated relevant statistics/features (such as 

area, perimeter, major and minor axes) from the segmented objects.  

We then calculated the difference between the center features and the displaced feature and 

normalized it by the value of the center feature, equation (4-2). 
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𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 
𝑓𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑− 𝑓𝑐𝑒𝑛𝑡𝑒𝑟

𝑓𝑐𝑒𝑛𝑡𝑒𝑟
      (4-2) 

where f stands for calculated features depending on the subscript either from the center or the 

displaced center.  

The result of this experiment is shown in Figure 4-17. As we can see in this figure the observed 

difference is very small (approximately less than 0.01). 

With this experiment, we demonstrated that our algorithm is robust and reproducible with respect 

to the selection of initial points.   

 

Figure 4-16 Reproducibility analysis (segmentation results and the dependency of the 

algorithm to user input/selection). The blue dot represents the original location selected by 

the segmentation algorithm and other dots are potential locations that the user could possibly 

select.  
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Figure 4-17 Reproducibility analysis of five cores. Statistic results on segmented cells 

obtained from cells/nuclei features. 

As discussed earlier, the analyses on the other tissue sites and other colors were on a very small 

dataset. It would be interesting to expand this work and continue the experiment on a larger sample 

size. Another limitation of this study is the dependency to criteria-based algorithms such as K-

means clustering and density-based clustering. 

4.7 Conclusion 

In this chapter, we presented an interactive segmentation method to improve the extraction of 

nuclei from the image of prostate TMA cores. The nuclei were stained with Feulgen-Thionin, and 

the cores were selected from 33 patients.  
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Furthermore, we investigated the performance of our method on other tissue types (oral, cervix 

and lung) and other stains (H&E) as a proof of concept (the datasets for these experiments were 

very limited).  

Although we tuned  our methods for prostate cancer cells, we  showed that it is possible to use this 

method to segment other cell types. This generalization capability made our interactive method an 

essential core for developing an automated cell segmentation tool for different tissue types. 
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Chapter 5 Design of Machine Learning Methods as a Predictive 

Tool for Prostate Cancer 

5.1 Introduction 

Classical Machine learning for automated image processing is a topic of great interest, especially 

in medical imaging. The majority of these analyses are based on classical supervised learning 

where domain knowledge plays a critical role in the design and handcrafted features.  In cancer 

research, usually, the diagnostic hallmarks are defined and selected by pathologists/clinicians. 

Scientist incorporates these features with other statistical information to create a comprehensive 

or sometimes rather comprehensive feature set. 

The difficulty of classification arises from the fact that the vast majority of relevant information 

such as underlying class probabilities, class-conditional probabilities, relevant features, and etc. 

are unknown. Therefore, the introduction of exhaustive feature space, although not very desirable 

and computationally expensive, is inevitable. This might result in redundant and irrelevant features 

that later with proper feature reduction methods or a smart classifier design could be addressed.  

The focus of this chapter is to select and extract clinically relevant features from segmented nuclei 

and use these features for prostate cancer grading. 

5.2 Hypothesis  

It is our hypothesis that using nuclei features from segmented cells (as explained in the previous 

chapters) and a sophisticated classification method (as we introduce later in this chapter) makes it 

possible to classify prostate cancer grades. To test our hypothesis, we selected cell-level features 
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from prostate cancer TMA cores and applied a modified SVM algorithm to classify prostate cancer 

grade.  

5.3 Objective 

In the previous chapters, we discussed the importance of the segmentation step for designing a 

fully automated method for prostate cancer classification. The next step is to use these well-

segmented cells and extract relevant information from them. This information is called features. 

Later we use these features as the input of our classifier. Our objective for this chapter is to 

introduce the whole orchestration of feature selection and design/implementation of classifiers.  

5.3.1 Specific Objective 

III) Selection and implementation of relevant features.  

IV)  Development of a machine learning technique to use the above feature to classify prostate 

cancer grades.    

The workflow for this chapter is presented in Figure 5-1. The first step as always is imaging the 

tissue, followed by image/ label preparation. The next step is feature selection and the design of 

the ML technique for classification and finally, parameter optimization to improve the 

performance.  
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Figure 5-1 This figure shows the pipeline of our study. The focus of this chapter is on the 

classification step.  

5.4 Materials and Instrumentation  

5.4.1 Clinical data 

A Tissue Microarray (TMA) was obtained from the University of British Columbia and the 

Vancouver Prostate Center. The surgical specimen tissue cores were obtained from 32 prostate 

cancer patients treated with brachytherapy with a median follow-up of 8.9 years. The specimens 

were placed into a TMA and a section from the TMA stained with Thionin. The patients were 

divided into two groups based on whether they relapsed (Failure group) or not (Non-failures 

group), Table 5-1. 

Table 5-1  Number of patients with different Gleason scores in failure and no- failure 

groups 

GLEASON SCORE FAILURE (NO. PATIENTS) NON-FAILURES(NO. PATIENTS) 

6 0 8 

7 9 7 

8 4 1 

9 3 0 
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In the failure group, the Gleason score was seven in nine patients, eight in four patients, and nine 

in three patients. In the non-failures group, the Gleason score was six in eight patients, seven in 

seven patients, and eight in one patient. 

The slides were scanned digitally with the whole slide Pannoramic MIDI scanner (3DHISTECH) 

using a 20x magnification and 0.8 NA objective. 

We used our segmentation algorithm as explained in the earlier chapter to construct a gallery of 

cells that will be used to select features from them, Figure 5-2.  

 

Figure 5-2 This figure shows the steps required from segmentation, (A) shows a part of an 

image used for segmentation (B) shows segmentation results and some statistics (area of cells) 

on the left panel and (C) shows some relevant features, such as area, nucleus density, etc. 
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5.5 Methodology 

5.5.1 Feature Selection 

5.5.1.1 Feature Selection-Size and Other Related Properties 

Here we present the details regarding the features that we selected for our classification purposes. 

The first feature set is related to the selected object size. 

• Area is defined as the total number of pixels in an object (MacAulay, Keyes, et al. 2017). 

 𝐴𝑟𝑒𝑎 =  ∑∑𝐼𝑚𝑔𝑚𝑎𝑠𝑘(𝑛,𝑚)

𝑚𝑛

   

 

    (5,1) 

where  𝐼𝑚𝑔𝑚𝑎𝑠𝑘(𝑛,𝑚) is the mask of nuclei (the object). 

• Perimeter connected boundary of an object, defined as below (MacAulay, Keyes, et al. 

2017)  

 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 =  ∑√(𝑥(𝑛 + 1) − 𝑥(𝑛)) 2 + (𝑦(𝑛 + 1) − 𝑦(𝑛)) 2

𝑛

 (5,2) 

• Compactness is a measure of the roundness of an object 

 
𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  

4 ∙ 𝜋 ∙ 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 

 

(5,3) 

where  𝑥 and 𝑦 are the x-coordinate and y-coordinate of the N boundary pixels.  

• Radii distance between the boundary pixels and the object centroid (MacAulay, Keyes, et 

al. 2017). 

 𝑅𝑎𝑑𝑖𝑖 =  √((𝑥 − 𝑥0) 2 + (𝑦 − 𝑦𝑜) 2    

 

(5,4) 
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𝑥0 and 𝑦0 are the x and y centroids of the object as defined below: 

 
𝑥0 =  

∑ ∑ 𝑛. 𝐼𝑚𝑔𝑚𝑎𝑠𝑘(𝑛,𝑚)𝑚𝑛  

𝐴𝑟𝑒𝑎
  

𝑦0 =  
∑ ∑ 𝑚. 𝐼𝑚𝑔𝑚𝑎𝑠𝑘(𝑛,𝑚)𝑚𝑛  

𝐴𝑟𝑒𝑎
 

 

(5,5) 

• Sphericity is a measure of the largest circle fully inscribed in the object to that of the 

smallest circle which fully circumscribes the object.  

 
𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  

min(𝑅𝑎𝑑𝑖𝑖)

max(𝑅𝑎𝑑𝑖𝑖)
 

 

(5,6) 

• Inertial Shape similar to compactness is another measure of roundness: 

 
𝐼𝑛𝑡𝑒𝑟𝑡𝑖𝑎𝑙𝑆ℎ𝑎𝑝𝑒 =  

2𝜋∑ ∑ 𝑅𝑎𝑑𝑖𝑖(𝑛,𝑚)2𝑚𝑛  

𝐴𝑟𝑒𝑎2
 

 

(5,7) 

• Center of Mass is defined as below (MacAulay, Keyes, et al. 2017) : 

 
𝐶𝑒𝑛𝑡𝑒𝑟𝑀𝑎𝑠𝑠 =  

√(𝑥𝐶𝑀−𝑥0) 2 + (𝑦𝐶𝑀−𝑦0) 2    

2𝑚𝑥𝑦
 

 

(5,8) 

where  

 
𝑥𝐶𝑀 =  

1

𝑁
∑∑𝑛 ∙ 𝐼𝑚𝑔𝑔𝑎𝑟𝑦(𝑛,𝑚)

𝑚𝑛

   

𝑦𝐶𝑀 = 
1

𝑁
∑∑𝑚 ∙ 𝐼𝑚𝑔𝑔𝑎𝑟𝑦(𝑛,𝑚)

𝑚𝑛

   

 

(5,9) 
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• Equivalence Diameter is defined below: 

 
𝐸𝑞𝑖𝑣 = 2√

𝜋

𝐴𝑟𝑒𝑎
 

 

(5,10) 

• Major Axis Length and Minor Axis Length is defined as below (MacAulay, Keyes, et 

al. 2017).  

 

𝑀𝑎𝑗_𝐴𝑥𝑖𝑠_𝐿𝑒𝑛 = 2√2 .√𝑚𝑥𝑥+ 𝑚𝑦𝑦 + √(𝑚𝑥𝑥−𝑚𝑦𝑦) 2 + 4𝑚𝑥𝑦
2  

𝑀𝑖𝑛_𝐴𝑥𝑖𝑠_𝐿𝑒𝑛 = 2√2 .√𝑚𝑥𝑥+ 𝑚𝑦𝑦 −√(𝑚𝑥𝑥−𝑚𝑦𝑦) 2 + 4𝑚𝑥𝑦
2  

 

(5,11) 

where 

𝑚𝑥𝑥 =  
1

𝑀
 ∑(𝑥𝑖 − 𝑥𝑜)

2 + 
1

12

𝑀

𝑖=1

 

𝑚𝑦𝑦 = 
1

𝑀
 ∑(𝑦𝑖 − 𝑦𝑜)

2 + 
1

12

𝑀

𝑖=1

 

𝑚𝑥𝑦 =  
1

𝑀
 ∑(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦𝑜)

𝑀

𝑖=1

 

 

(5,12) 

where M is the total number of pixels in an object. 

• Eccentricity measures the deviation from the circular (a circle has an eccentricity of zero 

and a line has an eccentricity of one) (Eccentricity (mathematics). 2019). 
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𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =  
2√
𝑀𝑎𝑗_𝐴𝑥𝑖𝑠_𝐿𝑒𝑛

4

2

−
𝑀𝑖𝑛_𝐴𝑥𝑖𝑠_𝐿𝑒𝑛

4

2

𝑀𝑖𝑛_𝐴𝑥𝑖𝑠_𝐿𝑒𝑛
 

 

(5,13) 

Orientation is defined as the angle between the major axis and the x-axis of the image (System 

and method for automatically detecting malignant cells and cells having malignancy-associated 

changes. ). 

 

𝜃𝑜 =

{
 
 

 
 tan−1

𝑚𝑥𝑥− 𝑚𝑦𝑦 + √(𝑚𝑥𝑥−𝑚𝑦𝑦) 2 + 4𝑚𝑥𝑦
2     

2𝑚𝑥𝑦
, 𝑚𝑦𝑦 < 𝑚𝑥𝑥

tan−1
2𝑚𝑥𝑦

𝑚𝑥𝑥− 𝑚𝑦𝑦 + √(𝑚𝑥𝑥−𝑚𝑦𝑦) 2 + 4𝑚𝑥𝑦
2
,  𝑒𝑙𝑠𝑒

 

 

(5,14) 

Elliptical Deviation which is a measure of deviation from ellipse and considers the double-

side Minus operation (considers pixels that are presented in the image and not present in the 

ellipse and vice versa), the result is also normalized by the area (Bengtsson, Rodenacker 2003).  

 
𝑥0 = 

∑ 𝐼𝑚𝑔(𝑛,𝑚) + ∑ Ellipse (𝑛,𝑚)(𝑛,𝑚)∃Ellipse& ∄𝐼𝑚𝑔(𝑛,𝑚)∃𝐼𝑚𝑔 & ∄Ellipse  

𝐴𝑟𝑒𝑎
  

 

(5,15) 

where Ellipse (𝑛,𝑚) is the ellipse mask.   

• Convex Area which is a measure of the convex hall of the object mask (Bengtsson, 

Rodenacker 2003).  

 𝐶𝑜𝑛𝑣𝐴𝑟𝑒𝑎 =  ∑∑𝐶𝑜𝑛𝑣𝑒𝑥(𝐼𝑚𝑔𝑚𝑎𝑠𝑘(𝑛,𝑚)

𝑚𝑛

)   

 

(5,16) 
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• Convex Deficiency as defined below calculates the normalized difference between the 

convex hall area and the actual area (Bengtsson, Rodenacker 2003).  

𝐶𝑜𝑛𝑣𝑒𝑥𝐷𝑒𝑓𝑖 =  
𝐶𝑜𝑛𝑣𝐴𝑟𝑒𝑎 − 𝐴𝑟𝑒𝑎 

𝐴𝑟𝑒𝑎
 

 

    (5,17) 

• Solidity as defined below (Bengtsson, Rodenacker 2003) :  

 
𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =  

𝐴𝑟𝑒𝑎 

𝐶𝑜𝑛𝑣𝐴𝑟𝑒𝑎
 

 

(5,18) 

• Filled Area which considers only the areas of the image that are filled and disregard the 

holes (not-filled areas).  

 𝐹𝑖𝑙𝑙𝑒𝑑𝐴𝑟𝑒𝑎 =  ∑∑𝑓𝑖𝑙𝑙(𝐼𝑚𝑔𝑚𝑎𝑠𝑘(𝑛,𝑚)

𝑚𝑛

)  

 

(5,19) 

 

• Euler Number which calculates the difference between the total number of regions vs total 

number of holes (Euler's number (mathematical constant). 2019).   

 𝐸𝑢𝑙𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟 =  𝑁𝑟𝑒𝑔𝑖𝑜𝑛𝑠 − 𝑁ℎ𝑜𝑙𝑒𝑠 (5,20) 

 

• Extent which is defined as below: 

 
𝐸𝑥𝑡𝑒𝑛𝑡 =  

𝐴𝑟𝑒𝑎 

𝑊 ∙ 𝐻
 

 

(5,21) 

 

where 𝑊and 𝐻are width and height respectively.  

• Aspect Ratio which is defined as below: 
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𝐴𝑠𝑝𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜 =  

𝐻 

𝑊
 

 

(5,22) 

 

where 𝑊and 𝐻are width and height respectively.  

• Perimeter FFT: uses the Fast Fourier Transform (FFT) to measure energies at various 

frequencies to characterize the variations in the object boundary (MacAulay, Keyes, et al. 

2017).  

 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝐹𝐹𝑇 = ∑ 𝑥(𝑛)
−𝑗2𝜋𝑛𝑘

𝑁     , 𝑘 = 0: 𝑁 − 1

𝑁−1

𝑛=0

 

 

(5,23) 

 

We used N = 1024 and if 𝑥(𝑛) is smaller than N, it is zero-padded.  

• Perimeter FFT boundaries are defined as below (MacAulay, Keyes, et al. 2017) : 

 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐹𝐹𝑇𝐿𝑜𝑤 =  ∑ |𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐹𝐹𝑇(𝑛)|2
340

𝑛=0

 

 

(5,24) 

 

• Perimeter FFT Medium describes as below: 

 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐹𝐹𝑇𝑀𝑒𝑑 =  ∑ |𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐹𝐹𝑇(𝑛)|2
683

𝑛=0

 

 

(5,25) 

 

• Perimeter FFT High describes as below: 
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𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐹𝐹𝑇𝐻𝑖 =  ∑ |𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐹𝐹𝑇(𝑛)|2
1023

𝑛=0

 

 

(5,26) 

 

• Perimeter FFT high describes as below: 

 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐹𝐹𝑇ℎ =  ∑ |𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝐹𝐹𝑇(𝑛)|2 , ℎ = 0: 32

32.(ℎ+1)−1

𝑛=32ℎ

 

 

(5,27) 

 

• Perimeter Curvature is defined as below (Bengtsson, Rodenacker 2003) : 

 
𝜃𝑐𝑢𝑟𝑣𝑒 = tan

−1
𝑦(𝑛 + 1) − 𝑦(𝑛)

𝑥(𝑛 + 1) − 𝑥(𝑛)
,   𝑛 = 1:𝑁  

 

(5,28) 

 

• Bending Energy is measured as the sum of the difference between the curvature of two 

boundary points, as defined below (Bengtsson, Rodenacker 2003)  : 

 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑(𝜃𝑐𝑢𝑟𝑣𝑒 (𝑛 + 1) − 𝜃𝑐𝑢𝑟𝑣𝑒 (𝑛)) , 𝑛 = 0:𝑁

𝑁

𝑛=1

 

 

(5,29) 

 

5.5.1.2 Feature Selection - Size and Other Related Properties 

These features are calculated using the Gray Level Co-occurrence Matrix (GLCM) which 

calculates the occurrence of the specific grey value in a specific location (pairs of value and 

spatial location) as defined below.  
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• GLCM Inertia is defined as below (Bengtsson, Rodenacker 2003, System, and method 

for automatically detecting malignant cells and cells having malignancy-associated 

changes.): 

 

 𝐺𝐿𝐶𝑀𝐼𝑛𝑡𝑒𝑟𝑡𝑖𝑎 =  ∑∑(𝑛 −𝑚)2𝐺𝐿𝐶𝑀(𝑛,𝑚)

𝑚𝑛

   (5,30) 

 

 

• GLCM Energy is defined as below (Bengtsson, Rodenacker 2003)  

 𝐺𝐿𝐶𝑀𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑∑𝐺𝐿𝐶𝑀2(𝑛,𝑚)

𝑚𝑛

   

 

(5,31) 

 

• GLCM Entropy is defined as below (Bengtsson, Rodenacker 2003): 

 𝑮𝑳𝑪𝑴𝑬𝒏𝒕𝒓𝒐𝒑𝒚 =  ∑∑𝑮𝑳𝑪𝑴(𝒏,𝒎)𝒍𝒐𝒈𝟐(

𝒎𝒏

𝑮𝑳𝑪𝑴(𝒏,𝒎))  

 

(5,32) 

 

• GLCM Homogeneity is defined as below (Bengtsson, Rodenacker 2003): 

 
𝐺𝐿𝐶𝑀𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑∑

𝐺𝐿𝐶𝑀(𝑛,𝑚)

1 + (𝑛 − 𝑚)2
𝑚𝑛

  

 

(5,33) 

 

• GLCM Max Prob is defined as below (Weyn, van de Wouwer et al. 1998) : 

𝐺𝐿𝐶𝑀𝑀𝑎𝑥𝑃𝑟𝑜𝑥 =  max
𝑛,𝑚

𝐺𝐿𝐶𝑀(𝑛,𝑚) 

• GLCM Cluster Shade is defined as below (Bengtsson, Rodenacker 2003): 
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where 

𝐺𝐿𝐶𝑀𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆ℎ𝑎𝑑𝑒 =  ∑∑(𝑘 −𝑀𝑥 +𝑚−𝑀𝑦)
3𝐺𝐿𝐶𝑀(𝑛,𝑚)

𝑚𝑛

 

 

(5,34) 

 

 
𝐺𝐿𝐶𝑀𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =   

∑ ∑ (𝑛 − 𝑀𝑥)(𝑚 −𝑀𝑦)𝐺𝐿𝐶𝑀(𝑛,𝑚)𝑚𝑛

𝑆𝑥 ∙ 𝑆𝑦
  

 

(5,35) 

 

 𝑀𝑥 = ∑∑𝑛𝐺𝐿𝐶𝑀(𝑛,𝑚)

𝑚𝑛

  

𝑀𝑦 = ∑∑𝑚𝐺𝐿𝐶𝑀(𝑛,𝑚)

𝑚𝑛

   

• GLCM Correlation is defined as below (Bengtsson, Rodenacker 2003): 

where 

 
𝑆𝑥 = √∑(𝑛 − 𝑀𝑥)2

𝑛

𝐺𝐿𝐶𝑀(𝑛,𝑚)    

𝑆𝑦 = √∑(𝑚− 𝑀𝑦)
2

𝑚

𝐺𝐿𝐶𝑀(𝑛,𝑚)    
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Here we discuss properties related to the optical properties of the selected object.  

• Image Band which measures image bands for each object as defined below:  

 𝐼𝑚𝑎𝑔𝑒𝐵𝑎𝑛𝑑 = [𝐴(𝑛,𝑚, 1),…𝐴(𝑛,𝑚, 𝐵)], 𝐵 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑛𝑑𝑠 

 

(5,36) 

 

• Intensity is defined as below (Bengtsson, Rodenacker 2003): 

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑘) =  
1

𝐵
∑𝐼𝑚𝑎𝑔𝑒𝐵𝑎𝑛𝑑𝑠(𝑘, 𝐵)

𝐵

𝑏=1

   

 

(5,37) 

 

• Values of Optical Densities is calculated as below (Bengtsson, Rodenacker 2003): 

 𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 = [𝑂𝐷1, 𝑂𝐷2, … , 𝑂𝐷𝐵 , 𝑂𝐷𝐼] 

 

(5,38) 

 

where 

 
𝑂𝐷𝑏 =  −𝑙𝑜𝑔10 (

𝐼𝑚𝑎𝑔𝑒𝐵𝑎𝑛𝑑𝑠(𝑘, 𝑏)

𝐴𝑚𝑥
) , 𝑘 = 1: 𝐴𝑟𝑒𝑎, 𝑏 = 1:𝐵 

(5,39) 

 

 
𝑂𝐷𝐼 = −𝑙𝑜𝑔10 (

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑘)

𝐴𝑚𝑥
) , 𝑘 = 1:𝐴𝑟𝑒𝑎 

 

(5,40) 

 

where 𝐴𝑚𝑥 is the maximum transmission value for a blank slide, which is 255 for an 8-bit image. 

• Integrated Optical Density is defined as below (Bengtsson, Rodenacker 2003): 



 

105 

 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠(𝑏)

=  ∑ 𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠(𝑘, 𝑏), 𝑏 = 1:𝐵 + 1

𝐴𝑟𝑒𝑎

𝑘=1

 

 

(5,41) 

 

MOD or the integrated optical density is defined as below (MacAulay, Keyes, et al. 2017)  

 
𝑀𝑂𝐷 =  

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠(𝑏)

𝐴𝑟𝑒𝑎
 

 

(5,42) 

 

 
𝐻𝑢𝑒 = {

𝜃(𝑘), 𝐵 < 𝐺
2𝜋 − 𝜃(𝑘),  𝑒𝑙𝑠𝑒

 

 

(5,43) 

 

 
𝜃 = arccos (

1

2
∙

2𝑅 − 𝐺 − 𝐵

√𝑅 − 𝐺) 2 + (𝑅 − 𝐵)(𝐺 − 𝐵)
) 

 

(5,44) 

 

5.5.1.3 Feature Selection-Texture Features 

These features are calculated using the gray level run length (GLRL) matrix given 𝜃. 

• Run Length   features are defined as below (MacAulay, Keyes, et al. 2017)  

o Short Run Emphasis is defined as below: 
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𝑆ℎ𝑜𝑟𝑡𝑅𝑢𝑛𝐸𝑚𝑝ℎ𝑎𝑠𝑖𝑠 =   

1

𝑆
∙∑

𝑟(𝑚|𝜃)

𝑚2

𝑚

 

where  ∑ ∑ 𝐺(𝑖, 𝑗|𝜃) =  ∑ 𝑔(𝑖|𝜃) =  ∑ 𝑟(𝑗|𝜃) 𝑗  𝑖𝑗𝑖 ,  𝑔(𝑖|𝜃) =  ∑ 𝐺(𝑖, 𝑗|𝜃) ,𝑗

𝑟(𝑗|𝜃) =  ∑ 𝐺(𝑖, 𝑗|𝜃) ,𝑖    

 

(5,45) 

 

o Long Run Emphasis is defined as below: 

 
𝐿𝑜𝑛𝑔𝑅𝑢𝑛𝑠𝐸𝑚𝑝ℎ𝑎𝑠𝑖𝑠 =   

1

𝑆
∙∑𝑟(𝑚|𝜃)

𝑚

∙ 𝑚2 

 

(5,46) 

 

o Gray Level Non-uniformity is defined as below: 

𝑔𝑟𝑎𝑦𝐿𝑒𝑣𝑒𝑙𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =   
1

𝑆
∙∑𝑔(𝑛|𝜃)2

𝑛

 

 

(5,47) 

 

o Run Length Non-uniformity is defined as below: 

𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ 𝑛𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =   
1

𝑆
∙∑𝑟(𝑛|𝜃)2

𝑚

 

 

(5,48) 

 

o Run Length Percentage is defined as below: 

𝑅𝑢𝑛𝑠𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =   
1

𝐴𝑟𝑒𝑎
∙∑𝑟(𝑚|𝜃)

𝑚

 

 

(5,49) 

 

o Low Gray Level Run Emphasis is defined as below: 
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𝐿𝑜𝑤𝐺𝑟𝑎𝑦𝐿𝑒𝑣𝑒𝑙𝑅𝑢𝑛𝑠𝐸𝑚𝑝ℎ𝑎𝑠𝑖𝑠 =   
1

𝑆
∙∑

𝑔(𝑛|𝜃)

𝑛2
𝑛

 

 

(5,50) 

 

High Gray Level Run Emphasis is defined as below:  

𝐻𝑖𝑔ℎ𝐺𝑟𝑎𝑦𝐿𝑒𝑣𝑒𝑙𝑅𝑢𝑛𝑠𝐸𝑚𝑝ℎ𝑎𝑠𝑖𝑠 =   
1

𝑆
∙∑𝑔(𝑛|𝜃)

𝑛

∙ 𝑛2 
(5,51) 

 

5.5.1.4 Feature Selection-Chromatin Information 

 

Here we presented features that are related to the chromatin within nuclei of the cell.  

• Area: this measure is defined earlier, here we calculate this value for different regions. 

o Low DNA Area is defined as below (MacAulay, Keyes, et al. 2017) : 

𝐿𝑜𝑤𝐷𝑁𝐴𝐴𝑟𝑒𝑎 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚)𝐿𝑚𝑛  

𝐴𝑟𝑒𝑎
 

(5,52) 

 

o Medium DNA Area is defined as below (MacAulay, Keyes, et al. 2017)  : 

𝑀𝑒𝑑𝐷𝑁𝐴𝐴𝑟𝑒𝑎 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚)𝑀𝑚𝑛  

𝐴𝑟𝑒𝑎
 

(5,53) 

 

o High DNA Area is defined as below (MacAulay, Keyes, et al. 2017) :  

𝐻𝑖𝑔ℎ𝐷𝑁𝐴𝐴𝑟𝑒𝑎 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚)𝐻𝑚𝑛  

𝐴𝑟𝑒𝑎
 

(5,54) 
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o Low DNA Integral Optical Density is defined as below (MacAulay, Keyes, 

et al. 2017) : 

𝐿𝑜𝑤𝐷𝑁𝐴𝐼𝑛𝑡𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝐿𝑚𝑛  

𝐼𝑂𝐷
 

(5,55) 

 

o Medium DNA Integral Optical Density is defined as below (MacAulay, 

Keyes, et al. 2017) : 

𝑀𝑒𝑑𝑁𝐴𝐼𝑛𝑡𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝑀𝑚𝑛  

𝐼𝑂𝐷
 

(5,56) 

 

o High DNA Integral Optical Density is defined as below (MacAulay, Keyes, 

et al. 2017) : 

𝐻𝑖𝑔ℎ𝐷𝑁𝐴𝐼𝑛𝑡𝑂𝑝𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝐻𝑚𝑛  

𝐼𝑂𝐷
 

(5,57) 

 

o Low DNA Mean Optical Density is defined as below (MacAulay, Keyes, et 

al. 2017)  : 

𝐿𝑜𝑤𝐷𝑁𝐴𝑀𝑒𝑎𝑛𝑂𝑝𝑟𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝑀𝑚𝑛  

∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝐿𝑚𝑛  
 

(5,58) 

 

o Medium DNA Mean Optical Density is defined as below(MacAulay, Keyes, 

et al. 2017)  

𝑀𝑒𝑑𝐷𝑁𝐴𝑀𝑒𝑎𝑛𝑂𝑝𝑟𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝐻𝑚𝑛  

∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝐿𝑚𝑛  
 

(5,59) 

 

o High DNA Mean Optical Density is defined as below (MacAulay, Keyes, et 

al. 2017) : 
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𝐻𝑖𝑔ℎ𝐷𝑁𝐴𝑀𝑒𝑎𝑛𝑂𝑝𝑟𝑖𝑐𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝑀𝐻𝑚𝑛  

∑ ∑ 𝑂𝐷(𝑛,𝑚) ∙ 𝑂𝐷(𝑛,𝑚)𝐿𝑚𝑛  
 

(5,60) 

 

• Number of Regions measures the number of discreet regions based on the defined 

connectivity, in this study we considered 4- and 8-connectivity. 

• Compactness: this measure is defined earlier; here we calculate this value for different 

regions. 

o Low Compactness is defined as below (MacAulay, Keyes, et al. 2017) : 

𝐿𝑜𝑤𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  
4𝜋𝐿𝑜𝑤𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎

𝑃𝐿
2  

(5,61) 

 

o Medium Compactness is defined as below (MacAulay, Keyes, et al. 2017)  : 

𝑀𝑒𝑑𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  
4𝜋𝑀𝑒𝑑𝑖𝑢𝑚𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎

𝑃𝑀
2  

(5,62) 

 

o High Compactness is defined as below (MacAulay, Keyes, et al. 2017) :  

𝐻𝑖𝑔ℎ𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  
4𝜋𝐻𝑖𝑔ℎ𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎

𝑃𝐻
2  

(5,63) 

 

o Medium-High Compactness is defined as below (MacAulay, Keyes, et al. 

2017) : 

𝑀𝑒𝑑𝐻𝑖𝑔ℎ𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  
4𝜋𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑖𝑔ℎ𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎

𝑃𝑀𝐻
2  

(5,64) 

 

Where 𝑃∗ is the perimeter of the region of interest.  

• Distance: is calculated as the average distance between all pixels of the regions of interest 

and the centroid.  
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o Low Distance is defined as below (MacAulay, Keyes, et al. 2017) : 

𝐿𝑜𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
∑ √(𝑛 − 𝑥0)2 + (𝑚 − 𝑦0)2(𝑛,𝑚)𝜖𝑂𝐷𝐿

𝐿𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑚𝑒𝑎𝑛(𝑅𝑎𝑑𝑖𝑖)
 

(5,65) 

 

o Medium Distance is defined as below (MacAulay, Keyes, et al. 2017)  :  

𝑀𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
∑ √(𝑛 − 𝑥0)2 + (𝑚 − 𝑦0)2(𝑛,𝑚)𝜖𝑂𝐷𝑀

𝑀𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑚𝑒𝑎𝑛(𝑅𝑎𝑑𝑖𝑖)
 

(5,66) 

 

o High Distance is defined as below (MacAulay, Keyes, et al. 2017) : 

𝐻𝑖𝑔ℎ𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
∑ √(𝑛 − 𝑥0)2 + (𝑚 − 𝑦0)2(𝑛,𝑚)𝜖𝑂𝐷𝐻

𝐻𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑚𝑒𝑎𝑛(𝑅𝑎𝑑𝑖𝑖)
 

(5,67) 

 

o Medium-High Distance is defined as below (MacAulay, Keyes, et al. 2017) : 

𝑀𝑒𝑑𝐻𝑖𝑔ℎ𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
∑ √(𝑛 − 𝑥0)2 + (𝑚 − 𝑦0)2(𝑛,𝑚)𝜖𝑂𝐷𝐻

𝐻𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑚𝑒𝑎𝑛(𝑅𝑎𝑑𝑖𝑖)
 

(5,68) 

 

• Center of the Mass is calculated by finding the distance between the center of the mass and 

the object centroid (MacAulay, Keyes, et al. 2017).  

o Low Center Mass is defined as below: 

𝐿𝑜𝑤𝐶𝑛𝑡𝑀𝑎𝑠𝑠 =  
√(𝑥𝐶𝑀𝐿 − 𝑥0)2 + (𝑦𝐶𝑀𝐿 − 𝑦0)2

𝐿𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑚𝑒𝑎𝑛(𝑅𝑎𝑑𝑖𝑖)
 

(5,69) 

 

o Medium Center Mass is defined as below: 

𝑀𝑒𝑑𝐶𝑛𝑡𝑀𝑎𝑠𝑠 =  
√(𝑥𝐶𝑀𝐿 − 𝑥0)2 + (𝑦𝐶𝑀𝐿 − 𝑦0)2

𝑀𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑚𝑒𝑎𝑛(𝑅𝑎𝑑𝑖𝑖)
 

(5,70) 

 

o High Center Mass is defined as below: 
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𝐻𝑖𝑔ℎ𝐶𝑛𝑡𝑀𝑎𝑠𝑠 =  
√(𝑥𝐶𝑀𝐿 − 𝑥0)2 + (𝑦𝐶𝑀𝐿 − 𝑦0)2

𝐻𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑚𝑒𝑎𝑛(𝑅𝑎𝑑𝑖𝑖)
 

(5,71) 

 

o Medium High Center Mass is defined as below: 

𝐻𝑖𝑔ℎ𝐶𝑛𝑡𝑀𝑎𝑠𝑠 =  
√(𝑥𝐶𝑀𝐿 − 𝑥0)2 + (𝑦𝐶𝑀𝐿 − 𝑦0)2

𝑀𝐻𝐷𝑁𝐴𝐴𝑟𝑒𝑎 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑚𝑒𝑎𝑛(𝑅𝑎𝑑𝑖𝑖)
 

(5,72) 

 

5.5.1.5 Feature Selection- Cell Sociology  

• Voronoi Tessellation or Dirichlet finds polygonal cells around the nodes (Voronoi 

diagram. 2019). In this region, all pixels are closer to the nuclei than any other nuclei 

outside the polygonal region, Figure 5-3. 

• Delaunay Triangulation is a complement (dual graph) to Voronoi Tessellation. 

• Minimum Spanning Tree is the tree that, as the name suggests, connects all the cells for 

which the sum of the edge lengths is minimum. 

• Number of Nodes is the total number of nodes in a graph (𝑁𝑒). 

Number of Edges is calculated as below 

𝑁𝑒 = 
1

2
 ∑𝑎𝑖,𝑗
𝑖,𝑗

 

(5,73) 

 

• Edge Length is calculated by finding the Euclidean distance between each two neighboring 

nuclei. 
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Figure 5-3 An image of the Voronoi Tessellation feature on a part of TMA tissue.  

5.5.1.6 Latent Support Vector Machine Algorithm for Classification of Prostate Cancer 

Grading 

A common way to classify tissues and determine whether it is progressive or non-progressive is to 

classify each nucleus within tissue as progressive-non-progressive and then aggregate these labels 

and compute a score for the whole tissue and then determine how likely it is for the tissue to 

become progressive. It is shown that the accuracy of this method relies on many parameters such 

as the anatomical location of the nucleus (whether it is part of a clustered group of nuclei) the 

imaging properties (such as image quality, out of focus issue, contrast, etc.) and many other 

parameters. There are two major ways to handle these problems. In the first method, the nuclei 

which have high quality and are part of anatomically relevant areas are selected manually. The 

main drawback of this approach is that it requires extensive human expert interaction which makes 

the process expensive, time consuming and biased. The second approach is to implement an 

algorithm to first predict relevant areas/features and then use another classifier to predict the labels.  
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Although the second approach is relatively faster it needs labeled datasets for training the 

classifiers and these classifiers usually do not have perfect accuracy.  These inaccuracies may also 

propagate to the later stages of the prediction pipeline.  

Here we introduce an elegant method to overcome the aforementioned difficulties. The intuition 

behind our proposed method comes from the fact that the goal of all the predictive systems is to 

distinguish between progressive and non-progressive parameters and whatever comes in between 

is considered as unnecessary information.  

Here we present a predictive method using the Latent Support Vector Machine (LSVM) 

framework. By using this method, we can consider all the intermediate labels as latent variables 

and then classify the nuclei. Using the methods expressed in the previous chapters, we have 

constructed a collection of segmented nuclei from Thionin stained tissue micro-array of prostate 

cancer patients with a Gleason score of 6-9. Our goal is to introduce a powerful method to classify 

these nuclei based on the Gleason score and the progressive/non-progressive outcome.  

We formulated our latent SVM model using the following scoring function: 

𝑓𝑤(𝑥, ℎ) =  𝑤
𝑇𝛹(ℎ, 𝑥)

=  𝑤0
𝑇𝜑0(𝑥0) +∑𝑤1

𝑇𝜑1(𝑥𝑗, ℎ𝑗)

𝑗∈𝑉

+∑𝑤2
𝑇𝜑2(ℎ𝑗)

𝑗∈𝑉

         

(5,74) 

 

where 𝑓𝑤(𝑥, ℎ) calculates a predictive scoring value for a nucleus. This value is correlated to the 

likeliness of cancer progression, ℎ𝑖is a set of latent variables representing binary values of different 

parameters/features such as belonging to epithelial layers, image quality, being a cluster member 

and others. We will explain each part of this equation in the following section.  

For an overview of our system please refer to Figure 5-4.  
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Figure 5-4 A Simplified cartoon representing an overview of our LSVM algorithm. 

 Nucleus progressive\non-progressive potential 𝑤0
𝑇𝜑0(𝑥0): This potential function is a global 

function that models the relationship between the nucleus shape information and prediction. 𝑥0 

represents a set of features describing the shape of the nucleus, and 𝑤0represents the weight vector 

for these features. These terms guarantee that our model at the worst case would perform like any 

other classification method that uses nuclei information for prediction of cancer progression. 

Image-Nucleus Property potential 𝑤1
𝑇𝜑1(𝑥𝑗, ℎ𝑗): Models the compatibility between image 

features 𝑥𝑗 and the predicted nucleus property ℎ𝑗. We used the following formula for this potential 

function. 

𝑤1
𝑇𝜑1(𝑥𝑗, ℎ𝑗) = ∑𝑤1,𝑏

𝑇 1(ℎ𝑗 == 𝑏) ∙ 𝑥𝑗
𝑏∈𝐻

 (5,75) 

 

where function 1(.) is an indicator function. This function is equal to one if the inner term is true 

and is zero otherwise. To calculate xjwe used some information from cell sociology features for 

latent variables related to anatomical location on nucleus (as presented in Feature Selection- Cell 

Sociology section), blur (Narayanan Ramakrishnan 2010)  and contrast (Peli 1990)  information 
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for the quality of the nucleus and adjacency information for determining whether it belongs to a 

cluster or not. H represents the set of values for the latent variables which is usually 0 or 1 (for 

example whether it belongs to the epithelial layer or not). For the quality measures latent variable, 

we have a set of (0,1,2,3) values where 0 is the highest out of focus and low quality and 3 is the 

highest quality.  

Nucleus Property-progressive\non-progressive potential 𝑤2
𝑇𝜑2(ℎ𝑗): This potential function 

models the relation between nucleus properties and cancer progression, we modeled this term 

using the following equation: 

𝑤2
𝑇𝜑2(ℎ𝑗) = ∑𝑤2,𝑏

𝑇 1(ℎ𝑗 == 𝑏)

𝑏∈𝐻

 (5,76) 

 

Inference and Learning: We found the values for the latent values as well as the output in the 

inference part of the algorithm. Since the search space for our problem is relatively small we used 

the brute force method to find latent values. 

The most challenging part of our approach is to find the weights in our formula. Since our 

algorithm is nonconvex it is not possible to use gradient descent optimization method as our solver. 

To solve this problem, we used Non-Convex Regularized Bundle Methods (NRBM) package (Do, 

Artières 2009)  This package is guaranteed to converge to local optima. Furthermore, the kernel 

used in the scoring function is linear and the NRBM package works efficiently to find the weights. 

From our experiments, the estimated local optima appear to be good enough and they can 

outperform the existing prediction methods such as regular SVM. 
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We used 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝐸(𝑥, 𝑦;𝑤) as the predicted label of 𝑥 , where the value of 𝑦 can be ±1. 

Given ((𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛 , 𝑦𝑛)), the set of training data, our aim is to find parameters such 

that the sign of score function 𝑥𝑖 represents the class of the 𝑋𝑖. 

We formulated the training criteria in the Max-Margin framework (Felzenszwalb, Girshick, et al. 

2010). We set 𝑤 by using the following formula:  

𝑚𝑖𝑛𝑤,𝜉𝑖
𝜆

2
||𝑤||2  +  ∑𝜉𝑖

𝑁

𝑖=1

 

(5,77) 

 

where  𝜉𝑖  = max (0,1 −  𝐸(𝑥𝑖; 𝑤)) 

𝑠. 𝑡 𝑦𝑖(𝐸(𝑥
𝑖; 𝑤) + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 𝑚𝑎𝑥(0,1 − 𝑦𝑖(𝐸(𝑥

𝑖; 𝑤) + 𝑏)) (5,78) 

 

where 𝜆 represents the trade-off constant and is determined using cross-validation in different 

experiments. These constraints force the score of progressive samples to be positive and greater 

than 1 while forces the score for non-progressive samples to be negative and less than -1. 

5.6 Experiment and Result  

In this section, we present the results of our classifier and investigate the performance of our 

classification approach.  

We used Matlab 2014 to implement the features presented in the previous sections. Then we used 

Python 2.7 to implement classifiers and apply models to the data. 

In this study, we investigated two important questions: I) the accuracy of our algorithm for Gleason 

score grading, II) Prostate cancer prognosis (progressive and non-progressive prostate cancer case 
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for patients with moderate Gleason score). In both these two experiments, we applied LSVM to 

all the features presented earlier. Also in both studies, 80% of the cases (cells) are randomly 

selected for training and the other remaining 20% is reserved for testing. 

5.6.1 ML for Prostate Gleason Score Grading 

In this experiment, the goal is to predict the prostate cancer Gleason score. In this study, we used 

images of all 32 patients with the descriptions mentioned in the “Material” section. Each TMA 

core was imaged and saved as 16 smaller tile sub-images. Randomly one sub-image per patient is 

selected for further processing. The total number of cells under this study was 84,527 cells.  

In the first step, we tried to distinguish between high Gleason scores (8 and above) and low Gleason 

scores (7 and below) and then within these categories we tried to do a fine level classification to 

predict the accurate Gleason score. For this experiment, we used the features presented in the 

previous sections and applied different models to our data. The latent SVM classifier performed 

the best compared with the other classifiers that we tried. The results of this experiment are 

presented in Table 5-2f and Figure 5-5.  

As shown in Figure 5 5 Latent SVM method performed very well for distinguishing between high 

Gleason grades and low Gleason grades, however, the accuracy dropped during fine level 

classification (still higher than the baseline classifier, regular SVM).   

5.6.2 ML for Prostate Prognoses  

In the second experiment, our goal is to predict whether cancer progression would happen for 

patients with a Gleason score of 7.  
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 Among 32 patients we had 9 patients with a Gleason score of 7 in the failure group and 7 patients 

with a Gleason score of 7 in the non-failure group. The total number of patients for this experiment 

was 16. Similar to the first experiment, we randomly selected one sub-image per patient for further 

analyses. The total number of cells under this study was 46,464 cells. 

For this experiment, we randomly divided the input dataset to test and train datasets. For the test 

set, we took 20% of the data and used the rest as our training set. The results of this experiment 

can be seen in Figure 5-6. Our proposed Latent SVM method significantly outperformed the 

regular SVM and has an accuracy of 92% while the regular SVM only achieves 84% accuracy. 

Some Statistics that are described in equations (5,80)-(5, 85) are calculated and summarizes in 

Table 5-3. 

 Table 5-2 The classification statistics for classifying aggressive vs non-aggressive on the test 

dataset.    

 True Positive False Negative Accuracy Precision 

7898 2471 0.925 0.887 

False Positive True Negative Recall F1 Score 

1005 35090 0.761 0.819 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑𝑇𝑃+∑𝑇𝑁

∑ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
                                                          (5,79) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑𝑇𝑃

∑𝑇𝑃+∑𝐹𝑃
                                                                    (5,80) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑𝑇𝑃

∑𝑇𝑃+∑𝐹𝑁
                                                                           (5,81) 

𝐹1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                      (5,82) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑇𝑃𝑅) =  
∑𝑇𝑃

∑𝑇𝑃+∑𝐹𝑁
                                                        (5,83) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑇𝑃𝑅) =  
∑𝑇𝑁

∑𝑇𝑁+∑𝐹𝑃
                                                        (5,84) 

 

Figure 5-5 In this figure we present the ROC result of Glean grade classifications between 

different scores. The black line represents a random line. The purple line is the baseline using 

SVM. LSVM is used to classify between 6-7 vs 8-9 red line, 6 vs 7 shown with the blue line 

and 8 vs 9 shown with the green line. 
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Table 5-3 The classification statistics for classifying 6-7 vs 8-9 Gleason score cases on the test 

set.  

 

 

 

 

Figure 5-6 In this figure we present the ROC result of aggressive vs non-aggressive 

classification for patients with Gleason score 7.  We used both SVM and LSVM as our 

classification method, the results are shown with green and blue lines respectively.   

True Positive False Negative Accuracy Precision 

14327 3231 0.876 0.665 

False Positive True Negative Recall F1 Score 

7233 59736 0.816 0.732 



 

121 

 

5.7 Conclusion 

We implemented our algorithm and ran our proposed method on our dataset and achieved 95% 

and 87% accuracy for Gleason score prediction on the training-set and test-set respectively. Also, 

we achieved 98% and 92% for aggressive vs non-aggressive prediction on the training-set and test-

set respectively.  The differences in the accuracies obtained from the test-set and training set could 

be due to over-fitting.  

One of the advantages of our method is that it requires much less human interaction which achieved 

the purpose of having an automated Quantitative Digital Pathology (QDP) system. 

LSVM algorithm could serve as a predictive tool for prostate cancer behavior prediction. This 

technique can be combined with a high-resolution imaging system to reduce over-

diagnosis/treatment.  

One of the limitations of the method presented in this chapter is the necessity to design hand-

crafted (hand-engineered) features. These features served as an excellent solution for the problem 

under the study however they limit the predictive power of classical ML to the topic under the 

study. 

Although this method still needs extensive validation to be clinically useful, future application of 

this method can change clinical pathology by identifying aggressive lesions that require upfront 

treatments vs. nonaggressive lesions that need to be under active surveillance. 
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Chapter 6 Machine Learning for Renal Cell Carcinoma (RCC) 

Detection  

This study is based on the collaboration between our group at BC Cancer Research Center, Canada 

and Morpheme group at Inria (institution for research in digital science and technology), France. 

The goal is to use explicit measures of tissue structures for tissue type prediction. 

6.1 Background-Renal Carcinoma 

Kidney cancer is one of the most common malignancies worldwide. More than 338,000 new 

kidney cancer cases diagnosed in 2012 (Kidney cancer statistics2018). Only in the United States, 

it is estimated that about 62,700 patients will be diagnosed with kidney cancer in 2016 and ¼ of 

them succumb to death (Key Statistics About Kidney Cancer). More than 85-90% of kidney 

cancers arise in the renal parenchyma, and many of the cases are renal cell carcinomas (RCCs) 

(Campbell, Rini, et al. 2012). WHO in 2004 classified RCC into 10 groups primarily based on 

RCC morphology. Clear Cell RCC (CCRCC) with 60-70% prevalence and Papillary RCC (PRCC) 

with 10–15% prevalence account for first and second most common RCC respectively (Campbell, 

Rini, et al. 2012). The focus of this chapter is on these two prevalent renal carcinomas.  

Kidney cancer incidence is estimated to increase due to the aging of the population, obesity, diet, 

lifestyle, etc. (Campbell, Rini, et al. 2012). Despite advances in technology and the introduction 

of new diagnostics methods, the RCC mortality rate is still high and so a reliable, robust, cost-

effective diagnostic method is needed. We are interested to develop such a system with high 

sensitivity and specificity to classify normal versus RCC, CCRCC versus PRCC.  
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The study of the cell out of the context of its microenvironment might not be a very reliable 

approach since the microenvironment orchestrates the cancer development and cells' spatial 

orientation and relative locations toward each other are influenced by cancer heterogeneity. As a 

result, hallmarks such as stromal vascularity (Iakovlev, Gabril, et al. 2012), stromal hyalinization 

and others are clinically important features. The other important characteristic of CCRCCs is their 

architectural patterns, the common ones are compact-alveolar (nested), tubular (acinar), and 

microcystic. Figure 6-1 (b) shows an architectural pattern of CCRCC cells.  

 

Figure 6-1 Microenvironment features. (a) shows a clinical image of renal carcinoma where 

lots of large cells with clear cytoplasm and a very large vessel in the tissue are present. (b) 

shows the cell/nuclei sociology/ tree-pattern. (c) shows the vessel and detected branches 

which is an indication of angiogenesis.  

6.2 Hypothesis 

Digital pathology using advanced image analysis technologies has revolutionized histopathology 

by providing an objective assessment of cellular morphology, aiding with cancer grading and 

obtaining clinically relevant quantitative data from pathological samples (Heindl, Nawaz, et al. 

2015). Since the development of the cancerous cell is a complex process which results in different 

nucleus, cellular and architectural morphology, we hypothesize that a discriminative algorithm 



 

124 

 

which uses information from cancer hallmarks such as blood vessel development associated with 

angiogenesis can effectively assist with normal and RCC classification. Figure 6-2  shows some 

pathological features of renal carcinoma that might be helpful to consider.   

 

Figure 6-2 Renal tissue, pathological features. In this image, many pathological features are 

illustrated, although, in this study, we are interested in angiogenesis hallmark, other 

pathological indications such as infiltration of inflammatory cells are worth mentioning. 

Other features such as abundant clear cell carcinoma, although is not discussed in this 

chapter, were the topic of previous chapters where we showed the importance of nuclei 

features and how they can be used for classification purposes.   

6.3 Objective 

The objective of this study is to design a reliable and robust machine learning classifier to 

discriminate between different renal carcinoma subtypes. 



 

125 

 

6.3.1   Specific Objective 

• Collecting the image, selecting the region of interest, labeling the images. 

• Using cancer hallmark features for the input of the classifier.  

• Implementing machine learning algorithms to evaluate the renal images.  

The workflow for this chapter is presented in Figure 6-3. 

The first step, like most of the biomedical studies, was to prepare the clinical data. The next step 

was to image the collected data/sample/specimen, followed by consecutive image processing 

techniques such as image enhancement, image segmentation, Region of Interest (ROI) selection, 

etc. The next step was to use more advanced image processing techniques to select and extract 

features that are going to be used in the next step for classification. The last step as explained and 

shown in Figure 6-3 is the implementation of machine learning techniques to use the extracted 

features from the previous step to discriminate between normal and abnormal cases. This step 

consists of feature, parameter optimization, selection of important features, implementation of 

classification methods (test, train, and validation) and finally parameter optimization to improve 

the performance. 

 

Figure 6-3 This figure shows the pipeline of our renal carcinoma study. The processes consist 

of imaging and pre-processing of the captured images. The next step is post-processing and 

extracting/segmenting clinical important features and the last step is ML techniques 

implementation for classification of normal and abnormal cases.   
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6.1 Material 

Tissues from 50 consecutive patients with renal cell carcinoma were collected by Pasteur Hospital, 

Nice, France. These tissues were annotated by the study pathologist into CCRCC (60% of the 

cases), PRCC (60% of the cases) and mixed CCRCC/PRCC (10% of the cases).  

All tissues are sliced into 3 µ thick slices and stained with H&E. This stain has two components 

Eosin and Hematoxylin. Eosin stains the cytoplasm pink and Hematoxylin stains the nuclei blue.  

A Leica SCN400 was used to scan the samples. The captured images have a resolution of 0.25 µm 

and they are around 100,000×100,000 pixels in size. The Images were manually annotated, as 

shown in black areas in Figure 6-4 (b). Since the images were very large, to reduce the computation 

costs we implemented a sliding window, part (c) in Figure 6-4. The sliding window was 50×50 

µm and the overlapping area was 5 µm.  

 

Figure 6-4 This image shows the Sliding window implementation. This image illustrates the 

process required to slice the large image to smaller pieces so that our computing 

instrument could handle the pre/post-processing step (required image processing). (a) an 

image of renal carcinoma tumor, (b) manually annotated image where the black area 
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represents the tumor and other areas represent the healthy tissue. (c) a sliding window is 

shown on the image.  

6.2 Methodology 

In this section, we explain the step and processes required to extract the clinically important 

features, we describe the required image processing steps and in the end, we will describe the 

classification step. One of the features that is clinically important is the vascular structures. As 

explained earlier, angiogenesis is one of the hallmarks of cancer and we believe it could be a 

discriminative feature for our classification goal.  

The whole workflow for extracting the vessels is shown in Figure 6-5.  

To enhance the presence of vascular structures, a color-deconvolution method is used. In this step, 

new channels are defined: 1) vessel channel (V) and 2) nuclei channel (H), calculated by equations 

(6,1) and (6,2) respectively.  

𝑉 = 0.5
R+B

√𝑅2+𝐺2+𝐵2
                                                      (6,1) 

where R, B, and G represent red, blue and green pixel intensities in the RGB image.  

𝐻 =
B

arcttan(
B

max(R,G)
)
                    (6,2)  

In the following step, we applied  a modified Gabor filter (Zubiolo, Debreuve, et al. 2016), 

equation (6,3)   followed by Harr filter (Haar 1-D wavelet transform - MATLAB haar). 

𝐺+(𝑥, 𝑦) = {
𝐺(𝑥, 𝑦)𝑖𝑓𝑥 , ≥ 0
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (6,3) 
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𝐺−(𝑥, 𝑦) = {
𝐺(𝑥, 𝑦)𝑖𝑓𝑥 , ≤ 0
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (6,4) 

where: 

𝐺(𝑥, 𝑦) = 𝑐𝑜𝑠 (
𝑥 ,𝜋

√2𝜎
) 𝑒𝑥𝑝 (−

𝑥 ,2+𝑦 ,2

2𝜎2
)                         (6,5) 

where: 

𝑥 ,  =  𝑥 𝑐𝑜𝑠𝜃 +  𝑦 𝑠𝑖𝑛 𝜃       (6,6) 

𝑦 ,  =  𝑥 𝑠𝑖𝑛𝜃 −  𝑦 𝑐𝑜𝑠 𝜃      (6,7) 

The next step is to convert the image to a binary image, for this step we used the Otsu algorithm 

to make the binary image. Then we cleaned the binary image using morphological cleaning 

(removing objects smaller than 5 pixels and opening with a disk structure of size 5 pixel). Once 

we have the cleaned image, we applied hit or missed based skeleton extraction method (Soille, 

SpringerLINK eBooks - English/International Collection (Archive) et al. 2004)  to extract the 

skeleton. Figure 6-5 represent the whole pipeline of this process. This image, at a high level, 

explains the steps taken from an RGB image (input) to the image of the vessel skeleton (output).   



 

129 

 

 

Figure 6-5 Pipeline of the pre/post-processing. This workflow starts with an RGB image, 

pathological image (input) and the resulted output is the skeleton of the vessels where all 

the nuclei and other structures are removed. 

In  Figure 6-6, we showed the whole procedures that we explained so far using a part of our renal 

sample. The steps showed in Figure 6-6 aligns with the process explained in the diagram of Figure 

6-5.  
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Figure 6-6 The whole process of the pre-post processing step. This workflow starts with an 

RGB image, the pathological image of renal carcinoma (input) and ends with the output 

which is the skeleton of the vessels where all the nuclei and other structures are removed. 

6.3 Feature Extraction and ML Algorithm Design 

The next step in our workflow is developing an ML method to classify different RCC subtypes. 

This step consists of two main tasks: 
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1- Implementing /selecting the features;  

2- Developing different machine learning classifiers using these features. 

6.3.1 Feature Extraction 

A 50× 50 sliding window scans the whole image, per each sliding window an RGB image will be 

generated. As explained above and shown in Figure 6-5 and Figure 6-6 an image of the vessel 

skeleton is generated from each input RGB image. The next step is to extract features for these 

vessels.  

Here we define features and extract them from the skeleton. (these features are selected as they are 

more relevant to tree’s (here vessel structure) pattern).  

The skeleton features that I decided to calculate are listed as below: 

1- Number of branches,  

2-Number of  the actual junctions (close junctions, merged together),  

3- Number of endpoint voxels (with less than 2 neighbour) ,  

4- Number of junction voxels (with more than 2 neighbour),  

5-Number of slap voxels (if a pixel has exactly 2 neighbors),  

6-Average branch length,  

7-Number of triple points,  

8- Number of quadruple points, 

9- Maximum branch length, 
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10-Largest-shortest path ( Floyd–Warshall algorithm), 

11-
Number of End point voxels

Number of Junctions
 

6.3.2 Design/Select the Classifier 

At this point, we prepared a dataset in which each row represents a sliding window and each 

column represents the feature vector for that window. The next step is to select a classifier, we 

experimented with different classifiers and selected an ensemble of five classifiers with the best 

outcome for our study, as explained below.  

One of the classifiers that we used is “Discriminant Analysis”, this classifier uses a linear decision 

boundary (Linear discriminant analysis. 2019). This boundary is generated by fitting class 

conditional densities to the data using Bayes’ rule, equation (6,8).  

Like PCA, this model can also be used to reduced class dimensionality by projecting the dataset 

into the most discriminative directions.  

P(y = k|X) =
P(X|y = k)P(y=k)

P(X)
=

P(X|y = k)P(y=k)
∑ P(X|y = l)𝑙 ⋅P(y=l)

                                                       (6,8) 

 where y, X and k are the label, sample, and class respectively.  

The model fits a Gaussian density to each class assuming all classes share the same covariance 

matrix, equation (6,9).   

More specifically, for linear and quadratic discriminant analysis, 𝑃(𝑋|𝑦) is modeled as a 

multivariate Gaussian distribution with density: 

𝑃(𝑋|𝑦 = 𝑘) =
1

(2𝜋)𝑑/2|Σ𝑘|
1/2 𝑒𝑥 𝑝 (−

1

2
(𝑋 − 𝜇𝑘)

𝑇Σ𝑘
−1(𝑋 − 𝜇𝑘))                                       (6,9) 
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where d is the number of features. In this model, we need to estimate class priors 𝑃(𝑦 = 𝑘), class 

means 𝜇𝑘  and covariance matrices.  

We can assume Σ𝑘  = Σ  and this will lead to linear decision surfaces, equation (6,10). 

 

log (
P(X|y = k)P(y=k)
∑ P(X|y = l)𝑙 ⋅P(y=l)

) = 0 ⇔ (μk − μl)
𝑡Σ−1𝑋                                                                    (6,10) 

=
1

2
(μk

𝑡Σ−1μk − μl
𝑡Σ−1μl) − 𝑙𝑜𝑔

𝑃(𝑦 = 𝑘)

𝑃(𝑦 = 𝑙)
 

    

The next classifier we used was logistic regression, also known in the literature as logit, maximum-

entropy classification or log-linear classifier (Generalized Linear Models — scikit-learn 0.20.2 

documentation. ). In this model, the probabilities describing the possible outcomes of a single trial 

are modeled using a logistic function, a loss function using maximum likelihood is defined and the 

optimization goal is to minimize this loss function, equation (6,12).  

The cost function that we tried to minimize is shown in equation (6,11). 

𝐽(θ) =  − 
1

𝑚
∑ 𝑦(𝑖)𝑙𝑜𝑔((ℎ𝑤(𝑥

𝑖)) + (1 −𝑚
𝑖=1 𝑦(𝑖))𝑙𝑜𝑔(1 − ℎ𝑤(𝑥

𝑖)))              (6,11) 

where                                       

ℎ𝑤 = 
1

1+𝑒𝑥𝑝(−𝑊𝑇𝑋 )
            (6,12) 

where 𝑊𝑇 , is the transposed matrix of weights. 

We also used tree-based classifiers such as decision tree which is a decision support tool that uses 

a tree-like model of decisions, as well as Random Forest and boosted tree algorithms ( Introduction 

to Boosted Trees).  

https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Decision_support_system
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Causal_model
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Figure 6-7 Diagram of a simple decision tree. In each node, a selection is made as shown in 

red. 

 

Figure 6-8 Diagram of the Random Forest algorithm, this algorithm is based on an 

ensemble decision making where each tree can have many branches. The final class 

selection would be based on the majority votes of all trees. 
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Figure 6-9 Diagram of Boosted Tree algorithm. Boosted tree is an ensemble algorithm that 

uses the majority votes of some stump trees, in each step the weights for the next decision 

making would be updated as shown with the green arrows above. 

6.4 Results 

For the first experiment, we decided to classify CCRCC vs other tissues. We applied different 

classifiers (linear discriminate, logistic regression, decision tree, random forest, boosted tree 

classifier) to our dataset. Figure 6-10 shows the ROCs of all the classifiers we used, we obtained 

95% training accuracy ( using 80% of the dataset).  Table 6-1 summarizes the classification results 

on the training -set.  
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Figure 6-10 This figure represents the ROC of all 5 classifiers (linear discriminate, logistic 

regression, decision tree, random forest, boosted tree classifier) for classification between 

CCRCC and other tissue sites.  

Table 6-1 classification results for CCRCC and other tissue sites using a boosted tree 

classifier on the training set 

Iteration Elapsed Time Training-accuracy Training-log loss 

1 0.009     0.950           0.484           

2 0.018     0.951           0.370           

3 0.028     0.951           0.300          
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4 0.037    0.952         0.254          

5 0.049     0.952          0.225          

6 0.064      0.952          0.204           

Number of examples: 14683 

Number of classes: 2 

Number of feature columns:11 

 

Next, we decided to normalize the features, using the Z-score normalization method (Feature 

scaling) and observe the performance of our method. The accuracy didn’t improve very much and 

stayed relatively the same. Figure 6-11 shows the ROCs of all the classifiers that we picked for 

this study. Comparing this figure with Figure 6-10, we can observe similar behavior.  

 

Figure 6-11 This figure represents the ROC of all 5 classifiers (linear discriminate, logistic 

regression, decision tree, random forest, boosted tree classifier) for classification between 

CCRCC and other tissue sites when the features are normalized.  
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We also classified (Chromophobe RCC) CCP and other tissue sites, Figure 6-12 as well as PCC 

and other tissue sites Figure 6-13. We did not obtain a promising result for classifying these two 

cancer sites. In the future section of this chapter, we discuss the possible reasons for this poor 

result, we also discuss methods/avenue to explore for possible better classification results.  

 

Figure 6-12 This figure represents the ROC of all 5 classifiers (logistic regression, decision 

tree, random forest, boosted tree classifier) for classification between CCP and other tissue 

sites. 
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Figure 6-13 This figure represents the ROC of all 5 classifiers (logistic regression, decision 

tree, random forest, boosted tree classifier) for classification between PRCC and other 

tissue sites. 

6.5 Discussion and Future Directions  

There are a few avenues to investigate to improve the performance of our algorithm, for example: 

1) Extracting other clinically relevant features such as: 

(a) cell/nuclei feature: There are atypical features indicating of CCRCC, for example, 

epithelial cells with clear cytoplasm, prominent nuclei, and distinctive cell membrane. 

In the previous chapters, we showed a custom-designed automated segmentation 
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algorithm for prostate tissue, this method can also be tuned for renal carcinoma to 

locate nuclei and later extract nuclei features. 

(b) Population-based features such as stroma and cell sociology feature: Stroma 

structures and features, as well as the formation and orientation of the cells, could be 

among the features to investigate.  

(c) Other statistical quantities such as mean, median, entropy, size, shape, compactness, 

major/minor axes could be used to increase the accuracy.    

2) Using other stains such as Thionin: Nuclei/ blood specific stains could be used to 

specially stain the desired structure and improve the segmentation process.    

3) Applying different color de-convolution method: More sophisticated color maps such as 

LAB or clustering methods such as K-means clustering or other methods such as 

principal component analysis (PCA) could be used to improve the performance.  

4) Collecting more data: in general, in the ML domain, more data usually would result in 

more accurate outcomes. The size of the data that we had for this study was very limited 

and wasn’t a good representation of the whole population. In the future, we plan to 

collect more data to better generalize our algorithm.   

The most important limitation of this study was related to the small number of images, resulting 

in imbalanced dataset (the number of normal cases was very small). To overcome this issue we 

could potentially use cost-sensitive metrics or to apply up-sampling (for the minority class) and 

down-sampling for the (majority class).  
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Table 6-2 potential feature list for renal carcinoma study 

Image Representation Quantitative Histomorphometric Features 

Individual Cells Area, Mean, Standard Deviation, 

Elliptical Features: Minimum-Maximum axes, length Orientation 

Convex Hull: Convex areas 

Boundary Features: perimeter, radii, FFT, etc. 

Cell Sociology (e.g. using 

minimum Spanning Tree) 

Edge Length: Average, Standard Deviation, Minimum-Maximum 

Ratio, Disorder, etc 

Vascular Pattern (E.G. 

using graph-based 

models) 

Total polygon Area, Average polygon Area, Number of terminal 

(or end) branches, Average length of the terminal branches, number 

of junctions, the average length of the non-terminal branches, and 

different ratios, etc. 

Radiometric and 

Densitometry 

Image Bands, Intensity 

Optical density, integrated optical density, Mean optical density, 

etc. 

Texture Hue, co-occurrence matrix features (gray and optical density), 

Inertial, energy, entropy, homogeneity, maximum probability, 

cluster shade, cluster prominence, correlation, etc. 

Image Representation Quantitative Histomorphometric Features 
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Chapter 7 Cervical Cancer Epidemiology, Screening and 

Diagnostic Techniques 

Cervical cancer is the fourth common diagnosed cancer in women worldwide (Cervical cancer 

statistics. 2018). Although it is a preventable disease, approximately 500,000 patients with cervical 

cancer are diagnosed worldwide every year and about half of these people may succumb to the 

disease (Cervical cancer statistics. 2018). Despite the introduction of the advanced diagnostic and 

prognostic methods/tools, it’s been predicted that the occurrence of cervical cancer will increase 

due to lifestyle, diet, smoking, and aging of the population. In developing countries, cervical cancer 

is often the most common cancer in women and may constitute up to 25% of all female cancers. 

Countries with High Human Development Index (HDI) have a three times higher 5-year survival 

rate comparing to countries with low HDI (David Forman, Catherine de Martel, Charles J Lacey 

2012). Cervical Intraepithelial Neoplasia (CIN) or Squamous Intraepithelial Lesions (SIL) is a 

cervical cancer precursor which can take 3 to 20 years to progress into cancer. It is very important 

to diagnose cervical cancer at an early stage when the treatment is effective. Unfortunately, in 

developing countries, cervical cancer is frequently diagnosed at a late stage which results in a high 

mortality rate (Botha 2015). 

Cervical cancer incidence rates have dramatically decreased since the introduction of population-

based organized cytological screening programs, using the Papanicolaou (Pap) smear, in western 

countries. A Pap-smear screening program detects potential precancerous changes in the cervical 

tissue which may be caused by certain types of human papillomavirus (HPV)8.  In the presence of 

abnormalities in the Pap smear, patients are referred for examination with colposcopy followed by 

 
8 An HPV infection is caused by human papillomavirus, which is a DNA virus from the papillomavirus family.  

Over 170 types of HPV are known most which are harmless and resolved eventually, there are certain types, 

however, which may persist and cause precancerous lesions (Human papillomavirus infection. 2018) 
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possible biopsies and lesion treatments if necessary. This procedure can decrease the cervical 

cancer mortality rate; however, this labor-intensive process might not be accessible in developing 

countries (Chang, Follen et al. 2002a). 

Despite advanced screening tests, cervical cancer is still the leading cause of cancer-related death 

in women in developing countries (Origoni, Prendiville, et al. 2015), which could be due to limited 

screening resources. Although the need to develop a more advanced detection method is more 

viable in developing countries, such a method can also be beneficial to developed countries as an 

adjunct to current screening procedures to increase the overall reliability and improve the detection 

outcomes.  

Optical technologies such as fluorescence spectroscopy have been extensively investigated as an 

effective and non-invasive method for cancer screening. It has been shown that morphological, 

cytological and histopathological changes can be quantified using fluorescence and reflectance 

imaging (Milbourne, Park et al. 2005a). We are interested in developing optical technologies for 

cervical cancer screening for the developing world.  

Fluorescence spectroscopy has showed promising results for the detection of precancerous lesions. 

For example, with the application of fluorescence imaging, it is possible to clinically visualize 

invisible cancer/pre-cancer locations in the oral cavity (Lane, Pierre, Poh, et al. 2011, Poh, Ng et 

al. 2007, Lane, Pierre M., Gilhuly, et al. 2006). Similar results have been obtained from the lung 

(Lam, S., MacAulay, et al. 1993) and gastrointestinal tract (Zeng, Haishan, Weiss, et al. 1998). 

More importantly, several clinical trials have used the same approach for the real-time detection 

of CIN (Ferris, Lawhead, et al. 2001, Ramanujam, Mitchell, et al. 1994). Another important 

technique is point spectroscopy (which uses a fiber optic probe). This technique showed 86% and 

74% sensitivity and specificity respectively (Ramanujam, Mitchell, Mahadevan-Jansen, et al. 
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1996, Ramanujam, Mitchell, Mahadevan, et al. 1996, Ramanujam, Mitchell, et al. 1994) ,however, 

as larger field of view is very critical in cancer imaging and can help with cancer diagnosis, field 

spectroscopy is being conducted in the lung, bladder, skin, and cervix (Weingandt, Stepp et al. 

2002, Nordstrom, Burke et al. 2001, Zeng, H., MacAulay et al. 1998, Lam, Stephen, MacAulay et 

al. 2000, Mourant, Bigio et al. 1995). Our group at BC Cancer Research Center has developed a 

Multispectral Digital Colposcopy (MDC) technique to visualize the whole cervix. We used 

different light wavelengths chosen to have the most diagnostic outcome based on a large point 

spectroscopy trial (Benavides, Chang et al. 2003a). This device can also be used adjunct to current 

colposcopy device as a guide for better, more accurate biopsies in the developed countries with 

more robust screening infrastructure.  

7.1 Objective 

The objective of this chapter is to design an automated classification method using classical 

machine learning techniques that use the reflectance and fluorescence images of the cervix and 

localize the at-risk cervical cancer tissue within these images. In this chapter, we discuss the design 

process to implement this analytic tool which could be beneficial for cervical cancer screening and 

diagnostic procedures.  

The technique presented here incorporates MDC images and apply ML techniques to eliminate the 

need for further biopsies or to improve current colposcopy devices by making the detection process 

faster and more accurate. 

MDC images which are captured in different bandwidth along with image processing and 

advanced machine learning techniques are blended together to provide a more powerful detection 

tool. This new analytics tool would help with the current standard care system, improve the 

diagnostic process, and increase the life quality of patients. 
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7.1.1 Specific Objective 

Annotating the MDC image data based on the level of agreement of a group of expert reviewers 

who were asked to assess the histopathology tissue maps and trace the locations of abnormal tissue 

in the images. 

Defining and selecting features with the most discrimination capabilities.   

Developing advanced machine learning algorithms such as boosted tree and convolution neural 

network to evaluate the MDC images.  

The workflow for this chapter is presented in Figure 7-1. The first step is to image the tissue, 

followed by image/ label preparation. The next step is to select features and implement ML 

technique (training and testing the dataset) and finally, parameter optimization to improve the 

performance.  

  

Figure 7-1. This figure shows the pipeline of our study. The processes mentioned in the blue 

boxes are completed and fully developed by our group. The processes illustrated in green 

boxes are the focus of this chapter. 
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7.2 Materials and Methods  

7.2.1 Instrumentation 

The MDC is a device that combines the image of the whole cervix and a point probe imaging. The 

analyses presented in this chapter refers only to the whole cervix images.  This device uses cross-

polarized white-light illumination, reflectance, and fluorescence imaging. The system consists of 

a colposcope, and an RGB color charge-coupled device (CCD) (MicroPublisher 3.3, QImaging) 

to capture and filter fluorescent and reflectance light and a light source, which is a Xenon arc lamp 

in the base of the device. The lamp provides monochromatic and broadband illumination. The 

fluorescence excitation light is produced using band-pass filters enclosed in a motorized filter 

wheel.  

Figure 7-2 shows the diagram of the system, a photograph of the system and the specifications of 

the reflectance and fluorescence light used in this device. These excitation and emission 

wavelengths were obtained from a previously reported study (Chang, Follen et al. 2002b). Previous 

versions of the device generated automated diagnoses of 80% sensitivity and 80% specificity for 

the diagnosis of high-grade SIL (Windeatt, Ardeshir 2002, Milbourne, Park et al. 2005b, Park, 

Collier et al. 2005, Benavides, Chang, et al. 2003b). 

For this study, the MDC devices were calibrated before each patient measurement. 

A diffuse reflectance standard made from sintered PTFE (Polytetrafluoroethylene) was used to 

white balance and calibrate the reflectance pathways of the system. Similarly, a fluorescence 

standard, composed of the same material but doped with two inorganic fluorophores was used to 

calibrate the fluorescence pathways, Table 7-1.  

Fluorescence imaging detects metabolic changes in tissue including changes in NADH and FAD 

as well as alteration in tissue structure such as collagen and elastin content. Blue excitation 
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wavelength is used to monitor FAD and collagen, UV excitation is used to monitor NADH. 

Reflectance imaging can show information regarding the presence and saturation of hemoglobin, 

as well as the stroma vascularity (angiogenesis) (Freeberg et al. 2007).  

Table 7-1 Tiles used for MDC device calibration 

                   Tile  

Measurement 

Reflectance Fluorescence 

Reflectance Positive Control NA 

Fluorescence Negative Control Positive Control 

 

 

Figure 7-2 This figure shows A) a schematic diagram of the Multispectral Digital Colposcope 

(MDC) device, B) a photo of the “in house” device, and C) the table of the illumination color 

and excitation wavelengths. 
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7.2.2 Clinical Data 

49 patients were recruited for this study. Each patient was to undergo standard of care Loop 

Electrical Excision Procedure (LEEP).  Six images were taken using the MDC; three reflectance 

images and three fluorescence images. 

7.3 Methodology-Conventional ML from Data Preparation to 

Data Analysis 

7.3.1 Data Preparation 

The study design is shown in Figure 7-3. The study protocol was reviewed and approved by the 

Institutional Review Board (IRB) at the British Columbia Cancer Agency.   

During the colposcopic examination of each patient, acetic acid (6%) was applied to the cervix for 

2 minutes.  Six images were taken using the MDC; three reflectance images and three fluorescence 

images.   

The colposcopy physician was asked to denote in the white light image 1) margins/edges of the 

LEEP specimen 2) areas which were thought to be most abnormal.  

The removed specimen (via LEEP) was oriented by the surgeon. The LEEP pieces were sectioned 

and reviewed by a clinical pathologist for final diagnosis and annotated by the study pathologist.  

Each section was carefully marked identifying areas of low-grade SIL, high-grade SIL, and cancer 

by an expert cervical cancer pathologist, the description of patients' CIN level is presented in Table 

7-2.  
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Table 7-2 CIN level of patients for this study.  

patients CIN1 CIN2 CIN3 Invasive & CIN3 

49 7 16 26 2 

 

Preserving the orientation of each section from each piece helped us to reconstruct the 

histopathologic map which served as the gold standard for the rest of this study.   

 

Figure 7-3. This figure shows the study design. Patients were consented for an IRB-approved 

study, images were acquired, the Loop Electrical Excision Procedure (LEEP) was carried 

out, the specimen was processed and annotated, and the dataset was subjected to analysis for 

training and testing classification 
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7.3.2 MDC Images and Pathological Map  

A group of 11 experts were tasked to trace the areas (Region of Interest, ROI) where they believed 

were associated with high-grade disease based upon only the reconstruction pathology map, Figure 

7-4  (a).  These 11 traces were superimposed on top of each other, Figure 7-4 (b) and regions of 

most agreement are shown in the heat-map image of Figure 7-4 (c). Hot regions (glowing yellow) 

indicate the highest level of agreement on the presence of abnormalities (these are the regions that 

we are interested to detect via an automated tool). From this image, we generated a mask 

(description comes later) which serves as the pixel-wise label for each image.  

 

Figure 7-4. The protocol to select regions of interest. (a) pathology map, where the green 

yellow and blue annotations represent high grade, low grade, and squamous columnar 

junction respectively. (b) reviewers selected the region of interest (each color boundaries 

represents a reviewer’s drawing) on the RGB image of MDC using the image provided in (a). 

(c) shows the heatmaps where the hot or glowing areas represent the most agreement 

between reviewers’ selections of ROIs.   
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For comparison, in the next image (Figure 7 5) we selected four patients and we show the clinical 

impression of the cervix (first row), cervical pathological annotation, marker by the expert cervical 

pathologist (second row), traces of abnormalities drawn by our reviewers (third row) and generated 

heatmaps and mask (fourth and fifth row respectively) constructed from the reviewers’ selections. 

The mask, referred to as the agreement mask, is generated from the level of agreement between 

the reviewers. Less than 20% agreement on the abnormalities is considered as normal and shown 

as black areas. Between 20% and 60% agreement is considered as “don’t care” areas and shown in 

gray, and finally above 60% agreement is considered as abnormalities and shown in white. 
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Figure 7-5 This figure shows four patients' results. In each column, we presented the 

clinical impression of the colposcopy physician, the histopathologic map, the tracing by the 

11 reviewers, the agreement map, and the mask generated by the calculation of 60% 

agreement.  
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7.3.3 Feature Extraction and ML Algorithm Design 

7.3.3.1 Feature Extraction 

The next step in our pipeline is developing a classifier to differentiate between normal and low-

grade CIN vs. high-grade CIN. This step consists of two main tasks: 

3- Implementing /selecting the features;  

4- Developing different machine learning methods using the features selected from the previous 

step. 

7.3.3.2 Design/Select the Features 

We designed a 10× 10 sliding window to scan the whole image and used the histogram intensities 

of the image in each sliding window as our features (20 bins are used to generate the histogram 

intensities for each image). Histograms are a good choice for the feature because they would 

remove the spatial sensitivity of the data and only uses the statistical characteristics of image 

intensity distribution such as mean and variance.  

We divided our dataset into two sets: 80% of patients (39 patients) were used for training-

validation and 20% (10 patients) were used as the test set. We used different classifiers to identify 

the normal vs. abnormal regions. Using a boosted-tree we obtained the best results (shown in 

Figure 7-6). We constructed the feature space using equation (7,1). 

 

𝐹(𝑥) = [𝐹1(𝑥) + 𝐹2(𝑥) +⋯+ 𝐹𝐶(𝑥)]     (7,1) 

 

where C is the number of channels (in our study we had 18 channels). Each channel as defined 

below is an ensemble of weak classifiers with a fixed depth (d) (in our study we used d  equal to 

6). The input of our classifier is the features defined as above (histogram of intensities for all MDC 

images) represented by x. The output vector is defined as y: 

𝑌𝑘(𝑥) = 𝑠𝑖𝑔𝑛∑ 𝑤𝑛ℎ𝑛(𝑥), 𝑛 = 1,2,… ,𝑀
𝑀
𝑛=1      (7,2) 
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where h stands for the estimated probability and M is the number of week classifiers. 

Based on a voting strategy, each classifier predicts a label (Windeatt, Ardeshir 2002), in other 

words, a label is predicated for each pixel based on the majority votes of the classifiers. We also 

compared our results with the ensemble classifier that consisted of four classifiers, a linear 

classifier with Euclidian distance, a linear classifier with Mahalanobis distance, a K-nearest 

neighbor (KNN) classifier with eight neighbors, and a Support Vector Machine (SVM) with a 

linear kernel (Young Park, Follen et al. 2008). 

Figure 7-6 shows the strategy for our analyses. As shown in this figure, a probability map and a 

Receiver Operating Characteristic (ROC) curve can be generated for pixels of each image.  

 

Figure 7-6 This figure shows the strategy for the analysis. Eighty percent of the data was 

used to train and validate a classifier, shown in A. The classifier was tested on the 

remaining data (B). Output from a sample patient is shown in C1 and C2. The probability 

of disease is shown in C1 and the Receiver Operating Characteristic (ROC) curve is shown 

in C2.   
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7.4  Experiment and Result  

The classification results on both test and training sets are summarized in Figure 7-7 and Figure 

7-8 respectively. We obtained 93% and 91% accuracy when we applied a boosted-tree classifier 

to the training and test set respectively. Area Under the Curve (AUC) was 0.99 and 0.86 for training 

and test set respectively. Details of the statistics calculated on both test and training datasets is 

given in Table 7-3 and Table 7-4 respectively.  

 

Figure 7-7 This figure represents the ROC of the boosted tree classifier on the training set  

(using 80% of the data (for 39 patients)) and using histogram intensities as the features.  
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Table 7-3 The statistics results using a boosted tree classifier on the training set, using 

histogram intensities as the features. 

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

30,992 7,128 0.93 0.89 0.81 

False Positive True Negative Recall F1 Score Specificity (TNR)  

3,711 116,002 0.81 0.85  0.97 

 

Figure 7-8 This figure represents the ROC of the boosted tree classifier on the test-set (using 

20% of the data (for 10 patients)) using histogram intensities as the features. 
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Table 7-4 The statistics results using a boosted tree classifier on the test set, using histogram 

intensities as the features.   

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

1,070 2,360 0.91 0.47 0.31 

False Positive True Negative Recall F1 Score Specificity (TNR)  

1,225 34,803 0.31 0.37 0.97 

 

To observe the performance of the ML algorithm per image, we generated the heatmaps of the 

probability of each pixel within each image. We can see in Figure 7-9 that our method is very 

sensitive on the edges where we can see fuzzy predictions, Figure 7-9 (second row). Locations 

close to the edges are usually harder to predict since even the reviewers were not sure of their 

selections.  
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Figure 7-9 The algorithm performance per image. The first row is the label, where white, 

gray and back represents abnormal, normal and don’t-care regions. The second row 

represents the probability prediction for each pixel within an image. Red drawing illustrates 

the fuzzy regions such as edges where even the reviewers might be unsure of the selection.    

7.4.1 Improving the Performance 

7.4.1.1 Define and Select Features with the Most Discrimination Capabilities.   

Based on the findings of previous studies (Milbourne, Park et al. 2005)  we identified a few ratios 

that have higher discriminative capabilities. To improve the performance of our algorithm we 

decided to first investigate these ratios and based on their performance decided whether or not to 

integrate these features with the features that we designed before (histogram of the intensities 

within each sliding window).  



 

159 

 

As we explained earlier, the 18 channels construct six RGB images as shown in Table 7-5, from 

these images we calculate the new features based on the ratios presented in equation (7,3) to 

(7,13). 

Table 7-5 Table of MDC channel names and acronyms.  

Channel No. Channel Name Acronym  

1 RGB while image  White 

2 Blue Reflectance  BRF 

3 Violet Reflectance  VRF 

4 Blue Excitation  BE 

5 Violet Excitation  VE 

6 UV Excitation  UVE 

 

 

 

    

BEG_WRFR =
𝐵𝐸𝑔𝑟𝑒𝑒𝑛

𝑊ℎ𝑖𝑡𝑒𝑟𝑒𝑑
         (7,3) 

 

VEG_WRFR =
𝑉𝐸𝑔𝑟𝑒𝑒𝑛

𝑊ℎ𝑖𝑡𝑒𝑟𝑒𝑑
   (7,4) 

 

VEG_BER =
𝑉𝐸𝑔𝑟𝑒𝑒𝑛

𝐵𝐸𝑟𝑒𝑑
               (7,5) 

 

UVEB_VEB =
𝑈𝑉𝐸𝑏𝑙𝑢𝑒

𝑉𝐸𝑏𝑙𝑢𝑒
   (7,6) 

 

VER_BER =
𝑉𝐸𝑟𝑒𝑑

𝐵𝐸𝑟𝑒𝑑
     (7,7) 

 

VEB_VRFB =
𝑉𝐸𝑏𝑙𝑢𝑒

𝑉𝑅𝐹𝑏𝑙𝑢𝑒
    (7,7) 

   

VEG_VRFB =
𝑉𝐸𝑔𝑟𝑒𝑒𝑛

𝑉𝑅𝐹𝑏𝑙𝑢𝑒
    (7,8) 
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BEG_VEG =
𝐵𝐸𝑔𝑟𝑒𝑒𝑛

𝑊ℎ𝑖𝑡𝑒𝑟𝑒𝑑
    (7,9) 

 

UVEG_WRFR =
𝑈𝑉𝐸𝑔𝑟𝑒𝑒𝑛

𝑊ℎ𝑖𝑡𝑒𝑟𝑒𝑑
                (7,10) 

 

UVEG_VRFB =
𝑈𝑉𝐸𝑔𝑟𝑒𝑒𝑛

𝑉𝑅𝐹𝑏𝑙𝑢𝑒
    (7,11) 

 

 UVEB_WRFB =
𝑈𝑉𝐸𝑏𝑙𝑢𝑒

𝑊ℎ𝑖𝑡𝑒𝑏𝑙𝑢𝑒
                (7,12) 

 

VEG_WRFG =
𝑉𝐸𝑔𝑟𝑒𝑒𝑛

𝑊ℎ𝑖𝑡𝑒𝑔𝑟𝑒𝑒𝑛
     (7,13) 

 

Using only the above 12 features and gradient boosting classifier, we constructed the feature 

importance image ( Figure 7-10). From this image we can see that VEB_VRFB (violet excitation 

blue channel fluorescence emission pixel-wise normalized by violet illumination detected by the 

camera’s blue channel) is the most important feature selected by the algorithm, next important one 

is VEG_WRFR ( violet excitation green channel fluorescence emission pixel-wise normalized by 

white illumination detected by the camera’s red channel). The ROC result of boosted tree classifier 

(using only these ratio features) on the training and test-set are depicted in Figure 7-11 and Figure 

7-12 respectively. 

The statistics results on the training set and the test set are shown in Table 7-6 and Table 7-7 

respectively. The accuracy dropped on both training and test-set by using these features 

(comparing with the boosted-tree classifier that uses histogram intensities as the features). To 

investigate further and observe the effectiveness of ratio feature along with histogram intensities 

features we  combined all features together (the result is presented later in this chapter),  
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Figure 7-10 This image shows the importance of each feature using our algorithm when only 

ratio features are used.  



 

162 

 

 

Figure 7-11 This figure represents the ROC of the boosted tree classifier on the training set 

and (using 80% of the data (for 39 patients)), only ratio features are used.  

Table 7-6 The statistics results using a boosted tree classifier on the training set.  

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

29619 8501 0.92 0.879 0.777 

False Positive True Negative Recall F1 Score Specificity (TNR)  

4070 115643 0.777 0.825  0.97 
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Figure 7-12  This figure represents the ROC of the boosted tree classifier on the test-set (using 

20% of the data (for 10 patients)), only ratio features are used.  

Table 7-7 The statistics results using a boosted tree classifier on the test set.  

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

1499 1931 0.885 0.366 0.437 

False Positive True Negative Recall F1 Score Specificity (TNR)  

2594 33434 0.437 0.399  0.93 

 

Next, we combined all features together to form the feature-set and used the same classifier. Figure 

7-13 shows the selection of important features. The top five selected features are, VEG_WRFR, 
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VEB_VRFB, BEG_WRFR, UVEB_WRFB, and 7 (indicates bin 7 of histogram intensities 

capturing from RGB image).  

The ROC result of using all features ( ratio features and histogram intensities features) on the 

training and test-set please are given in  Figure 7-14 and Figure 7-15 respectively.  

The statistics results on the training set and the test set are shown in Table 7-9 and Table 7-8. We 

obtained 94% accuracy and 91% accuracy on training and test-set respectively, which is an 

improvement compared with using only ratio or histogram intensities as the features. 

 

Figure 7-13 This image shows the importance of each feature using our algorithm when all 

features are used.   
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Figure 7-14 This figure represents the ROC of the boosted classifier on the training set 

(using 80% of the data (for 39 patients)), using all features( ratio and histogram 

intensities). 

Table 7-8 The statistics results using a boosted tree classifier on the training set.  

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

32211 5909 0.941 0.903 0.845 

False Positive True Negative Recall F1 Score Specificity (TNR)  

3472 116241 0.845 0.873 0.97 
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Figure 7-15 This figure represents the ROC of the boosted tree classifier on the test-set (using 

20% of the data (for 10 patients)), using all features( ratio and histogram intensities).  

Table 7-9 The statistics results using a boosted tree classifier on the test set.  

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

1303 2127 0.909 0.469 0.38 

False Positive True Negative Recall F1 Score Specificity (TNR)  

1477 34551 0.38 0.42  0.96 
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7.5 Discussion and Future Directions  

Tree classifier results were promising. We compared our method with the existing method 

presented by (Young Park, Follen, et al. 2008). The method presented in (Young Park, Follen, et 

al. 2008) only used information from the white light image (red dashed line in Figure 7-16). When 

we added information from other MDC images into their proposed method (Ensemble classifier) 

the classifier performance improved ( blue line in Figure 7-16), more importantly, our boosted tree 

classifier (green line in Figure 7-16) outperformed their method. 

 
Figure 7-16 This figure shows the results of the Ensemble (MDC images and only white 

light) and the Boosted-Tree classifier being applied on the test set. 

The strengths of this study are found in the histological review and mapping of the specimens. 

This careful mapping allowed the classification of the five remaining image’s pixels. The large 

number of pixels provides a relatively large data set for analysis.  
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One of the limitations of this study originate from the histopathologic map not covering every 

square millimeter of the sample.  Thus, assumptions were made about the tissue in-between the 

images. Another potential weakness of the study is how the reviewers interpreted the instructions 

for the selection of the abnormalities and accurately defining the lesions. 

7.5.1 Future Direction and More Evaluation of the Study Procedure  

In this study, we have evaluated the performance of our method (as a proof of concept) on a small 

dataset of 49 patients. We obtained 41 more patients (description of CIN level of each patient is 

given in Table 7-10 ) and extended our method to a larger dataset of 89 patients (which contains 

old and new images). These data are collected at a different time point (over 10-12 months), with 

three different devices.  

Table 7-10  CIN level of the second half of the patients recruited for further studies.  

Patients CIN1 CIN2 CIN3 Invasive & CIN3 

41 1 15 20 5 

 

Using the histogram intensities as the features and boosted tree classifier on the second half of 

newly acquired images we obtained 92 % accuracy on the training set and 83% accuracy on the 

test set. We can see that the accuracies slightly dropped on this new dataset.  

The ROC results on the training and test-set are shown  Figure 7-17 and Figure 7-18 respectively. 

The statistic results on the training and test set are shown in Table 7-11 and Table 7-12 

respectively.  
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Figure 7-17 This figure represents the ROC of the boosted tree classifier on the training set 

on the second half of LEEP patients (using 80% of the data (for 32 patients)), using all 

features (ratio and histogram intensities). 

Table 7-11 The statistics results using a boosted tree classifier on the training set.  

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

20085 11200 0.923 0.825 0.642 

False Positive True Negative Recall F1 Score Specificity (TNR)  

4256 165977 0.642 0.722  0.97 
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Figure 7-18 This figure represents the ROC of the boosted tree classifier on the test-set on 

the second half of LEEP patients (using 20% of the data (for 9 patients)), using all features( 

ratio and histogram intensities).  

Table 7-12 The statistics results using a boosted tree classifier on the test set.  

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

6248 5070 0.832 0.648 0.552 

False Positive True Negative Recall F1 Score Specificity (TNR)  

3398 35663 0.552 0.596  0.91 
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Then we investigated the performance of our classifier trained on the old dataset and tested on the 

new data-set. The ROC result is presented in Figure 7-19 and the statistics are presented in Table 

7-13.  

 

Figure 7-19 This figure represents the ROC of the boosted tree classifier on the new dataset 

(the second half of LEEP patients), all 50 images are used as the input. The classifier is 

trained on the first half of the images (49 patients).  
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Table 7-13 The statistics results using a boosted tree classifier trained on the old-data and 

tested on the new data.  

True Positive False Negative Accuracy Precision Sensitivity (TPR) 

14400 28203 0.83 0.496 0.34 

False Positive True Negative Recall F1 Score Specificity (TNR)  

14651 194644 0.34 0.402 0.92 

 

In a pilot study, we also investigated the performance of our algorithm when all 90 images are 

using all features (ratio and histogram intensities features). Using 10-fold cross-validation we 

obtained about 79% accuracy, the ROC result is presented in Figure 7-20.  

 

Figure 7-20 ROC, 10-fold cross-validation, using an image of 90 patients (old and new 

dataset).  
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As expected, we observed some variations due to changes in the device performances. Moreover, 

some of the recruited reviewers for the second part of the study are different from the first part of 

the study which might have also resulted in some intra variation for labeling the dataset based on 

the difference between reviewers’ expertise. More evaluation and investigation of the new dataset 

are required.   

7.6 Conclusion  

In this study, we implemented a boosted tree classifier using the histogram intensity as our features. 

Later we integrated ratio features to improve the performance. Our algorithm performance on a 

subset of the data (49 patients) was promising (result summary is given in Figure 7-16), however, 

the classifier performance on the new dataset was not as good as Figure 7-20. Some of the reasons 

for misclassification could be 1) variation in the performance of different MDC devices, 2) 

variation in device performance over time 3) variation in the labels resulted from different MDC 

traces due to different levels of expert’s expertise. For future studies, these challenges should be 

completely investigated. Furthermore, using classical machine learning, it is always necessary to 

design handcrafted features. In addition the limitation for generalization always exist. As a result, 

we decided to explore more robust methods such as deep convolutional neural networks (for the 

details of this study please refer to the next chapter).   
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Chapter 8 Deep Learning for Cervical Cancer Detection 

8.1 Introduction 

Deep Neural Networks (DNN) have shown promising results by automatically learning important 

features through multiple forward and backward propagations (LeCun, Bengio, et al. 2015). The 

power of DNNs is stemmed from the fact that the model is trained in an end-to-end fashion which 

has helped to deliver similar or even better results than conventional systems where they rely on 

hand-crafted features. It is important to keep in mind that although DNN is very data-driven (data-

dependent) and could possibly learn/identify robust representations of the data, it can be very 

expensive (cost and time) and require a complex model. The other drawback of DNN could be the 

loss of feature interpretability.  Moreover, because of performing in a black-box fashion, it gives 

rise to skepticism by the medical community where the feature interpretability is an important 

factor (Guo, Liu, et al. 2016)  

Transfer learning ability by Deep Convolutional Neural Networks (DCNNs) has significantly 

improved the performance of image processing, image classification, object detection and 

computer vision in general.  

In this chapter, we propose a deep convolutional learning method to detect and locate abnormality 

(CIN2 or worse areas) within the cervix (for details of abnormalities refer to the previous chapter). 

The deep learning network that we propose herein takes MDC images as input and detects and 

localizes the regions where abnormality exists in the image (for the information regarding the 

MDC images refer to the previous chapter). The neural networks presented in this chapter are an 

extension of convolutional neural networks which is used by other groups such as Visual Geometry 

Group (VGG) at Oxford University. We modified and fine-tuned these networks and used them 

for our classification task.  
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In the previous chapter, we explained how the data is collected, labeled and prepared. In this 

chapter, we first explain the fundamentals of DCNNs and how this method applied to our question. 

Then we explain how we formulated the image analysis question and handled our data to fit the 

requirements of the network. We continue by showing the experimental design and conclude the 

chapter by showing our results and validation process.  

8.2 Objective 

The objective of this chapter is to investigate the performance of different convolutional neural 

networks using reflectance and fluorescence images from the cervix (macroscopic MDC images). 

Our goal is to design an automated technique to localize at-risk tissue (CIN2 above) within the 

cervix. 

8.2.1   Specific Objectives 

I) Investigating and comparing the performance of different Convolutional Neural 

Networks 

II) Preparing the dataset (MDC images) to fit the selected CNN 

III) Applying different CNN to our dataset and compare the results. 

The workflow for this chapter is presented in Figure 8-1. The first step, as always is imaging the 

tissue, followed by image/ label preparation. The next step is the selection and implementation of 

the CNNs (using training and test datasets) and finally, the last step is parameter optimization to 

improve the performance.   
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Figure 8-1. Workflow of our process from tissue imaging to hyperparameter optimization. 

The first step is imaging the tissue with MDC technology, next, we will prepare the data and 

labels according to the type of CNN that we plan to use (we might also need to center the 

data, by using normalization procedures) and finally, we will optimize some parameters to 

increase the performance.   

8.3 Methodology-Convolutional Neural Network Architecture  

8.3.1 Patch-based CNNs  

We proposed a Patch-based CNN algorithm. In this method, the training step is divided into two 

main sections as illustrated in Figure 8-2. We  selected this method due to some limitations that 

we were facing  such as 1) limited number of images and 2) minimal availability of normal-looking 

cervical MDC images. Although these limitations constrained us from implementing a (whole) 

image-level classifier, the patch-based CNN reduced the computational cost of handling the high-

resolution MDC images. The challenges that we are facing are 1) how to design such a system to 

derive the best discriminative result and 2) how to aggregate the processed patches to represent the 

whole image.  
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Figure 8-2. A very high-level representation of the workflow of patch-based CNN. After 

preparing the MDC images we will apply a sliding window to scan the entire image and 

extract image patches. Next, we will label these patches. Finally, we implement the 

classification step to predict the labels.   

8.3.1.1 Image-patch Generation 

 We defined various window sizes and strides based on the selected CNN architecture.  A sliding 

window of size 𝑠x×𝑠x scans through the entire image using a stride of d. At each location (i,j), the 

image within the window is cropped and the image beneath is saved. Setting sx too small would 

not capture enough spatial context for object extraction while setting sx too large would result in 

the retrieved context being too complicated for the extraction and increase the amount of 

computation required in the prediction step of a deep CNN. After experimenting with different 

values for 𝑠x  we concluded that 51 would provide the best result.  
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We set the stride d to be 25 pixels. Although a smaller d  could increase the accuracy, it would 

also increase the amount of overall computation. Through extensive experimentation, 25 pixels 

was found to achieve a good balance between these two issues. 

8.3.1.2 Deep CNN Prediction 

We used the images obtained from the sliding window patches and used them to train a deep CNN 

(DCNN). The goal of this CNN was to predict the label of the pixel located exactly in the center 

of each patch. Since we are down-sampling the image by generating patches and assigning the 

label in the middle as the label of the whole patch, we do not need to deal with generating label-

mapping and applying the threshold ruling (e.g. calculating the average) for over-lapping areas 

(areas where two sliding windows have overlaps).   

8.3.2 Deep CNNs on Patches  

As shown in Figure 8-3 our deep CNNs take an RGB image patch N from a channel as an input, 

apply a sequence of linear/non-linear transformations to extract features from the patch in a layer-

by-layer fashion, and map the extracted features to probabilities of being a label patch M  (certain 

object as the output).  

The architecture of deep CNNs is inspired by the system presented by (LeCun, 1989). The 

convolution and pooling operations enable the networks to learn features that are shift-invariant 

and robust to small image distortions. These features have been proven to be extremely useful for 

image-based applications (LeCun et al., 1998; Krizhevsky et al., 2012; Mnih 2013; Girshick et al. 

2014). 
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Figure 8-3 Feature extraction and classification steps of one of the networks (VVG16). The 

first block is the feature extraction which consists of consecutive convolution and Max-

pooling blocks (purple rectangle in each stack of rectangles is representative of Max-pooling) 

the second block is a classification module where it is fully connected to the previous layer. 

The output of this layer is fed to a binary logistic regression for prediction. The number of 

rectangles shown above is not representative of the actual number of filters in each layer.  

The details of the mathematical model of using patch-based CNNs for object extraction, the 

architecture of DCNNs, and the approach of the learning parameters of DCNNs, are presented in 

the following sections: 

8.3.3 Problem Formulation 

 Here we formulate the proposed method. As mentioned above, the goal is to predict the label 

given an image: 

𝑃(𝑀|𝑁)                        (8.1) 
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Here N denotes a three-dimensional patch image. Information regarding the combination of images 

used to construct the input 3D image can be found in the previous chapter. These images have the 

size of 𝑠x×𝑠x×𝑐  where 𝑠𝑛 is the spatial dimension and c is the channel dimension (in our algorithm 

c is equal 3 but it is possible to have between 1 to n channels). M is the predicted label, which 

takes the values of a set of possible object labels {0, 1, …, K}, in our case 0-1 since we are 

implementing a binary classifier.  

If we assume the labels to be independent, we can simplify equation 8.1 to sum of all predictions 

as shown in equation 8.2: 

𝑃(𝑀|𝑁) = 𝛱i=1
𝑛 𝑃(𝑀𝑖|𝑁)                                                                               (8.2) 

We can use a logistic output, (8.3) and (8.4) unit is a binary classifier.  In the case of more classes, 

it is possible to use other classifier methods such as SoftMax unit (, Softmax function2019).   

 

𝑓𝑖 = 𝜎(𝑎𝑖(𝑁))           (8.3) 

 

𝜎(𝑥) =
1

1+exp−𝑥
                (8.4) 

     

where 𝑓𝑖 is the value of the ith output unit; 𝑎𝑖 is the total input to the ith output unit, and x is the 

input images.  

8.3.3.1 I-Convolutional Layer  

The convolution layers consist of three modules, convolution, non-linear transformation and 

spatial pooling (all these modules can be eliminated or bypassed).  
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The reason for using the convolution unit is to enable weight sharing across the input .This feature 

will make it possible to learn shift-invariant features and eventually help the 

detection/identification of certain features.  

Convolution Layer:  

The use of a convolution operator leads to weight sharing across the input (due to the fact that 

weights 𝑊𝑖𝑗 of each filter are replicated across the input filed). Such weight sharing enables CNNs 

to learn shift-invariant features, which have proven to be very useful for solving visual problems 

Here are  some notations: 

X: input to the convolution layer 

𝑠𝑥×𝑠𝑥×𝑐𝑥: dimension of the input image (𝑠𝑥 and 𝑐𝑥 denote the spatial dimension and number of 

channels respectively) 

𝑠𝑦×𝑠𝑦×𝑐𝑦: dimension of the output image (𝑠𝑦 and 𝑐𝑦 denote the spatial dimension and number of 

channels respectively) 

𝑠𝑤×𝑠𝑤: matrix of the weights defined by the filter dimension 

The output of the convolution layer can be expressed as shown in (8.5): 

𝑌𝑗 = 𝑝𝑜𝑜𝑙 (𝑔(𝑏𝑗 +∑ 𝑊𝑖𝑗 ∗ 𝑋𝑖
𝑐𝑥
𝑖=1 ))         (8.5) 

where 𝑌𝑗  denotes the array in the jth channel of output Y; 𝑋𝑖 denotes the input in the ith channel of 

input X; 𝑊𝑖𝑗 denotes the weights of the filter connecting input 𝑋𝑖 to output 𝑌𝑗; 𝑏𝑗 denotes a vector 

of biases; ∗ denotes a two-dimensional convolution operator. g is a point-wise non-linear activation 

function. 

The last function on the convolution unit is a pooling unit. This can apply different pooling 

strategies such as max, mean or median pooling. In all these methods, the defined statistic will be 

calculated by considering the neighboring cells. The pooling unit will increase the robustness to 
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shift and distortion, as a result, CNN can benefit from better generalization. The equation for max-

pooling is shown in equation (8.6). 

𝑔(𝑥) = 𝑚𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑥, 0)            (8.6) 

𝑝𝑜𝑜𝑙 is a function that applies spatial pooling to activations (the result of the activation function). 

In the case where a max-pooling operator is used, it considers a neighborhood of activations and 

produces one pooling per neighborhood by taking the maximum activation within the 

neighborhood. Pooling over a small neighborhood provides additional variance resistance to small 

input shifts and distortions, which help CNNs achieve better generalization on object recognition. 

Fully-Connected layer: 

The fully connected layer has a mapping between all nodes with a weight of W. The output of the 

layer Y can be expressed as,  

 

𝑌 = 𝑔(𝑏 +𝑊𝑋)          (8.7) 

where b denotes a vector of biases; 𝑔(𝑥) is a nonlinear activation function. 

8.3.3.2 II-Training Step 

We have a total of 885,600 data points and we reserved 797,040 for training (90% of the whole 

dataset) and the rest for testing. The total trained parameters for VGG16 is 1,026 which includes 

weights W and biases b in each layer. The reason for not training the whole parameter is to take 

advantage of transfer learning, where a model designed and trained for a specific task is reused for 

another task (Lisa Torrey 2009). We used ImageNet weights which are already trained on a very 

large image-set. Using these weights, we can reduce the training time significantly and the model 

only trains the last few layers (the other non-trainable weights remain constant during forward and 

backward propagations).  
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The loss function that we used is the cross-entropy. It learns the best set of parameters by 

minimizing the total cross-entropy (equation (8.8)) between the ground truth and predicted labels.                  

𝐿(𝑊, 𝑏) = −
1

𝑚
∑ (𝑦𝑖 𝑙𝑛 (𝑓𝑖(𝑁, (𝑊, 𝑏))) + (1 − 𝑦𝑖) 𝑙𝑛 (1 − 𝑓𝑖(𝑁, (𝑊, 𝑏)))
𝑚
𝑖=1      (8.8) 

where 𝑦𝑖  represent the actual label and 𝑓𝑖(𝑁, (𝑊, 𝑏)) represents the formula that was being used 

to predict the label. In our study, we used the ReLU function as shown in equation (8.4) (Rectifier 

,neural networks,2019).  

We used stochastic gradient descent with mini-batches and used the Adam optimization algorithm 

as our optimizer method. The list of used hyperparameters is given in Table 8-1. These 

hyperparameters are proven in the literature (Kingma, Ba 2015) to produce the best results.  

 

𝑉𝑑𝑤 = 𝛽1𝑉𝑑𝑤 + (1 − 𝛽1) 𝑑𝑤              (8.9) 

𝑉𝑑𝑏 = 𝛽1𝑉𝑑𝑏 + (1 − 𝛽1) 𝑑𝑏  (8.10) 

𝑆𝑑𝑤 = 𝛽2𝑆𝑑𝑤 + (1 − 𝛽2)𝑑𝑤
2  (81.1) 

𝑆𝑑𝑏 = 𝛽2𝑆𝑑𝑏 + (1 − 𝛽2)𝑑𝑏
2   (8.12) 

𝑉𝑑𝑤
𝑐 =

𝑉𝑑𝑤

1−𝛽1
𝑡    (8.13) 

𝑉𝑑𝑏
𝑐 =

𝑉𝑑𝑏

1−𝛽1
𝑡    (8.14) 

𝑆𝑑𝑤
𝑐 =

𝑆𝑑𝑤

1−𝛽2
𝑡    (8.15) 

𝑆𝑑𝑏
𝑐 =

𝑆𝑑𝑏

1−𝛽2
𝑡    (8.16) 

𝑊 ≔ 𝑊 −𝛼
𝑉𝑑𝑤
𝑐

√𝑆𝑑𝑤
𝑐 +𝜀

   (8.17) 

𝑏: = 𝑏 − 𝛼
𝑉𝑑𝑏
𝑐

√𝑆𝑑𝑤
𝑐 +𝜀

   (8.18) 
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Where 𝑉𝑑𝑤, 𝑉𝑑𝑏 , 𝑆𝑑𝑤 and 𝑆𝑑𝑏 are set to zero at the initial step.  

Table 8-1 Hyper-parameter table for Adam optimizer  

Hyper parameter name Value 

𝜶 0.001 

𝜷𝟏 0.9 

𝜷𝟐 0.999 

𝜺 0.0001 

 

8.3.4 Data Preparation 

We designed a sliding window of size  sx×sx and step size of d. The sliding window scans the 

whole image and save the image underneath. We used this sliding window for all six channels 

(three in reflectance mode and three in fluorescence mode). The label for each sliding window is 

the label of the pixel at location sx/2×sx/2 (middle of the window).  We experimented with different 

values for sx and d. 51 and 25 have given us the optimum results for sx and d respectively.  

We divided our dataset into two sets: 90% were used for training-validation and 10% were used 

as the test set. 

To help the optimizer to converge faster and possibly increase the performance instead of random 

initialization of the weights, we used the model weights of the ImageNet pre-trained9 networks 

and adapt them to our task of binary classification. We replaced the 1000-way ImageNet classifier 

in the last layer with a binary SoftMax. All positions and labels are equally weighted in the overall 

 
9 ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns), in which 

each node of the hierarchy is depicted by hundreds and thousands of images. Recent success in Convolutional 

networks (ConvNets) is due to the large public image repositories, such as ImageNet (Deng, Dong et al. 2009). 
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loss function (except for unlabeled pixels which are ignored). Our targets are the ground truth 

labels (subsampled by the sliding windows of different sizes).  

In the next section, we will explain the experiment setup and results. 

8.4 Experiment and Results 

We used four architectures of CNNs, I) simple architecture II) VGG16, III) VGG19, IV) ResNet50 

(Saikia, Bora et al. 2019). A diagram representative of each network is shown in  Figure 8-4- 

Figure 8-8.  

We started with a very simple model, as shown in Figure 8-4 and continued with deeper, more 

complex networks. The list of parameters (learned and not-learned for this model) can be found in  

Table 8-2.  

 

 

Figure 8-4 Simple Convolutional Neural Network.  This very simple network consists of 

one convolution and the ReLU layer followed by a Max-pooling layer, a Flatten layer, 

another dense layer followed by a dropout layer with (20% drop-out) and at the end a 

there is a SoftMax layer (with only two classes).  
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Using the network presented in Figure 8-4 (referred to as Simple Network) and only 3 channels 

we obtained around 77% accuracy. This indicated that the network is not deep enough. To increase 

the accuracy we decided to train deeper models. 

 

Figure 8-5 This figure shows the flow diagram of the simple model.  
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Table 8-2  Simple model summary table, shows input to each layer and number of 

parameters 

Layer (type)                                                 Output Shape                 Param No.    

conv2d_1 (Conv2D)                                      (None, 49, 49, 32)           896        

activation_1 (Activation)                              (None, 49, 49, 32)           0          

max_pooling2d_1 (MaxPooling2)               (None, 24, 24, 32)           0          

flatten_1 (Flatten)                                        (None, 18432)                 0          

dense_1 (Dense)                                            (None, 128)                   2359424    

activation_2 (Activation)                               (None, 128)                    0          

dropout_1 (Dropout)                                      (None, 128)                    0          

dense_2 (Dense)                                             (None, 2)                        258        

activation_3 (Activation)                                (None, 2)                        0          

=============================================== 

Total parameters: 2,360,578 

Trainable params: 2,360,578 

Non-trainable params: 0 

 

To increase the accuracy we decided to use deeper models. One of the networks that we 

investigated was VGG16. VGG is a convolutional neural network model proposed by VGG 

(Visual Geometry Group) (Simonyan, Zisserman 2014) from the University of Oxford. This model 

achieves 92.7% top-5 test accuracy on ImageNet data. They won the ImageNet ILSVRC-2014 

competition and secured the first and the second places in the localization and classification 

respectively. Later they modified and added few layers to their current VGG16 and invented a 

deeper model called VGG19 (later, in this chapter, we also show how we leveraged this network 

for our prediction purposes).  
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We used VGG16 as our CNN model and used our MDC image patches as the input (please refer 

to the data preparation section for the details on data preparation). The architecture of VGG16 is 

shown in Figure 8-6 . Using this network, we obtained about 0.846 accuracy which is an 

improvement over using a simple model.  The number of learned and non-learned parameters is 

given in Table 8-4. Although the training time was longer (14 hrs. to train the VGG16 using MDC 

patches vs 3 hrs. using the simple model), this is a cost we are usually ready to pay when training 

on deep neural networks.  

 

Figure 8-6  VGG16 Convolutional Neural Network.  This relatively deep network consists 

of few layers of convolution and ReLU layers followed by a Max pooling layers, two last 

layers are a fully connected layer and a SoftMax layer (with only two classes).  
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Table 8-3 VGG16 summary table, shows input to each layer and number of parameters 

Layer (type)                                   Output Shape                        Param No.    

input_1 (InputLayer)                   (None, 51, 51, 3)                      0 

block1_conv1 (Conv2D)              (None, 51, 51, 64)                   1792 

block1_conv2 (Conv2D)              (None, 51, 51, 64)                  36928 

block1_pool (MaxPooling2D)    (None, 25, 25, 64)                   0 

Block2-4                                      continued                               … 

block5_conv1 (Conv2D)              (None, 3, 3, 512)                     2359808 

block5_conv2 (Conv2D)              (None, 3, 3, 512)                     2359808 

block5_conv3 (Conv2D)              (None, 3, 3, 512)                     2359808 

block5_pool (MaxPooling2D)     (None, 1, 1, 512)                     0 

flatten_1 (Flatten)                        (None, 512)                             0 

dense_1 (Dense)                           (None, 2)                                 1026 

============================================== 

Total parameters: 14,715,714 

Trainable parameters: 1,026 

Non-trainable parameters: 14,714,688 

 

To see whether we can increase the accuracy of the prediction using an even a deeper model, we 

decided to use VGG19. The architecture of VGG19 (shown in Figure 8-7 ) is very similar to 

VGG16 (shown in Figure 8-6), however, due to deeper structure, there is a possibility of 

exploding/vanishing gradient (Hanin 2018). Figure 8-7 shows a carton of the network, and  Table 

8-4 gives the number of learnt and non-learnt parameters.  
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Figure 8-7  VGG19 Convolutional Neural Network.  This relatively deep network consists 

of few layers of convolution and ReLU layers followed by a Max pooling layers, two last 

layers are a fully connected layer and a SoftMax layer (with only two classes).  

Table 8-4  VGG16 summary table, shows input to each layer and number of parameters 

Layer (type)                                 Output Shape                         Param No.                                 

input_1 (InputLayer)                   (None, 51, 51, 3)                    0          

block1_conv1 (Conv2D)             (None, 51, 51, 64)                  1792       

block1_conv2 (Conv2D)             (None, 51, 51, 64)                  36928      

block1_pool (MaxPooling2D)   (None, 25, 25, 64)                  0          

Block2-4                                     continued                               … 

block5_conv2 (Conv2D)             (None, 3, 3, 512)                    2359808    

block5_conv3 (Conv2D)             (None, 3, 3, 512)                     2359808    

block5_conv4 (Conv2D)              (None, 3, 3, 512)                    2359808    

block5_pool (MaxPooling2D)     (None, 1, 1, 512)                     0          

flatten_1 (Flatten)                       (None, 512)                             0          

dense_1 (Dense)                          (None, 2)                                1026       

============================================== 

Total parameters: 20,025,410 

Trainable parameters: 1,026 , Non-trainable par parameters ams: 20,024,384 

 



 

191 

 

Using VGG19, we obtained 0.848 accuracy which is slightly better than VGG16, however, this 

network is deeper, and required more time to train the model.  

Next, we decided to train an even deeper network called ResNet50. Very deep networks such as 

this network are essentially very hard to train and very prone to exploding and vanishing gradients 

(gradients becoming really large or very small, (Nielsen 2015). To overcome this issue a residual 

learning framework is being used (Fung 2017). Figure 8-8 illustrates this network. Networks with 

residual learning are easier to optimize (He, Zhang et al. 2016) and each layer is not  dependent on 

only one layer behind, but also receives input from few layers behind it (Fung 2017)  as shown in  

Figure 8-8. The bypass abilities (Fung 2017)  made this network very appealing. He and his group 

(He, Zhang et al. 2016)  won 1st place in ILSVRC 2015 classification task using this Network. In 

this chapter, we also show the result of using this network for our prediction goal.  

 

Figure 8-8  One block of ResNet-50. It has two learning paths, the bottom path contains 

layers of convolution, batch normalization, and ReLU, and the top path has no learning 

module.  

We obtained 0.7871 in accuracy using the ResNet50 network (input images were from the first 

channel only). The accuracy dropped using this network and we suspected that it might be due to 
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exploding/vanishing gradients that we explained earlier.  Since our input data is limited, we 

decided not to use a very deep network, and so we picked VGG16, which is relatively shallow 

compared with ResNet-50.  

Table 8-5 shows the comparison between these four networks with a focus on accuracy and the 

training time. 

Table 8-5 comparison between different networks 

Networks Accuracy Train time (hrs.) 

Simple Model 0.774 3 

VGG16 0.847 14 

VGG19 0.848 17 

ResNet-50 0.7871 55 

 

8.4.1 Per MDC Channel Performance Analysis 

Based on the results we obtained from investigating the performance of different networks and the 

time required for training as well as the network complexity, we decided to select VGG16 for the 

rest of our analysis. 

Using VGG16, for each channel, we recorded the loss10 and accuracy for each batch11. Batch is a 

subset of samples12 (images) that are being processed in parallel and independently (generally each 

batch approximates the input distribution)(Keras Training Documentation). We selected 32 

 
10 Loss: Binary cross-entropy is used ((Raúl Gómez )  
11 Batch: A collection of sample data that are being processed independently and they represent the whole dataset 

(means they are assumed to have similar distribution) (Keras Training Documentation)  
12 Samples: usually refers to the images or in this study sliding windows (Keras Training Documentation)  
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samples per batch and ended up with the total number of 887 batches. The accuracy and loss plots 

over these 887 patches for 5 epochs13 ( number of times to finish going through the training set, in 

our case 5 times) for channel 1 is shown in Figure 8-9. As illustrated in Figure 8-9 and Figure 8-10, 

we can observe that the accuracy and loss plateau at around 0.86 and 0.32 respectively. acc_i 

(i=1:5) and loss_i (i=1:5), are corresponded to accuracy per epoch and loss per epoch respectively.  

 For the compiled list of figures for all channels please refer to the Appendix.   

 

Figure 8-9 Accuracy values per epoch for channel 1. The accuracy level fluctuated at the 

beginning and eventually plateaus around 0.85. Each color represents one epoch.  

 

 
13 Epoch: Usually refers to as one pass through the dataset. (Keras Training Documentation)  
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Figure 8-10 Loss values per epoch for channel 1. The loss level fluctuated at the beginning 

and eventually becomes plateau around zero. Each color represents one epoch.  

To compare different channels, we calculated the average accuracy and loss per epoch. The 

result for accuracy and loss are shown in Figure 8-11 and Figure 8-12 respectively. Almost all 

channels show relatively similar behavior.  
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Figure 8-11 Accuracy values per channel for each epoch. The accuracy level increased at 

the beginning and became stable at around 0.85. Each color represents one channel. All 

channels show relatively similar performance.  

 

Figure 8-12 Loss values per channel for each epoch. The loss level decreased drastically at 

the beginning and became stable at around 0.25. Each color represents one channel. All 

channels show relatively similar performance.  
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To visualize the performance of the trained network (per channel) for one of the MDC images 

(contains 3600 samples, including the “don’t care” samples) refer to Figure 8-13. In this image 

you can observe that almost all channels show similar performance.  

 

Figure 8-13 Prediction visualization for one whole image input. The prediction per sliding 

window is calculated and the whole image is reconstructed per channel (for 6 channels). All 

channels show relatively similar performance.  

In order to increase the accuracy, we centered the data by normalizing the images (using the Z-

score normalization method, (Feature scaling)  and trained the network with the new dataset. The 

result is shown in Figure 8-14. This image compares normalized and not-normalized dataset. The 

grouped average accuracies on the top of Figure 8-14 are associated with normalized data and 

the grouped curved on the bottom is associated with non-normalized data.  
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Figure 8-14 Comparison between normalized input and nonnormalized input. Accuracy 

values per channel for each epoch is shown for 10 inputs, half normalized and the other half 

non-normalized. The accuracy level increased at the beginning and became stable at around 

0.85 for normalized channel and around 0.84 for the non-normalized channel. Each color 

represents one channel.  

8.4.2 Improving the Performance 

Leveraging our past studies on developing devices that use different light sources for cancer 

detection and diagnoses, we identified light channel ratios that might show better discriminative 

results (Zeng, MacAulay, et al. 1999). The ratios that we found are listed below where 1-3 showed 

the highest discriminative results. 

1. Blue Excitation Green Emission (BG) / white Illumination Red Reflectance (wR) 
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2. UV Excitation Blue Emission (UB) / Violet Excitation Blue Emission (VB) 

3. white Illumination Blue Reflectance (wB)/white Illumination Red Reflectance (wR) 

4. Violet Excitation Green Emission (VG) / white Illumination Red Reflectance (wR) 

5. Violet Excitation Green Emission (VG) / Blue Excitation Red Emission (BR) 

The networks that we used so far accepts only 3 dimensionalimages, so we decided to construct 

an artificial RGB image using the top three ratios provided  from the list above, we constructed a 

new RGB channel, shown in Figure 8-15. Channel R has BG/wR, channel G has UB/VB and 

channel B has wB/wR.  

We used VGG16 as our CNN model and modified MDC images as the input (as explained above). 

We monitored the performance of our model on a larger epoch (25) as shown in Figure 8-16  (only 

one channel is shown here). We can observe that the accuracy is slightly improved at the beginning 

ad plateaus around 0.848. 

 

Figure 8-15 RGB images are constructed from a ratio image. 
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Figure 8-16 Monitoring the performance for a larger epoch for the normalized input. The 

accuracy value for channel 1 during 25 epochs are monitored. The accuracy level increased 

at the beginning and became stable at around 0.848.  

8.5 Discussion  

Convolutional Neural Networks (ConvNets) have played a very important role in large-scale 

image and video recognition. Machine Vision has entered a new era by advances in deep learning 

and high-speed GPUs. Researchers have attempted to improve the performance and accuracy of 

the original architecture presented by (Krizhevsky, Sutskever, et al. 2017) by using different 

window sizes, strides, filters, and deeper networks. Our goal was to improve the current 

infrastructure for cervical cancer screening by adapting and fine-tuning the existing 

implementation of deep learning algorithms. We are not aware of any work that uses VGG-like or 

ResNet-like architecture for abnormality detection in the cervix using MDC images. In summary, 
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we were able to show that it is possible to improve the performance by using another representation 

of the input (ratio images). 

Sharma’s team used classical ML for prediction of cervical cancer stage. His team obtained an 

accuracy of 67% using decision tree (Sunny Sharma 2016) .  

Tomio’s team recently published their study on application of deep learning on classification of 

colposcopy images. They obtained around 50% accuracy on the validation dataset. (Sato et al. 

2018).  

One of the advantage of our method is that it incorporates the feedback from 11 reviewers. Also 

the gold standard for our reviewers was the histopathological mapping. 

Although by using CNN as our classifier we removed the dependency to hand-crafted features and 

improved the generalization capability of our classifier, we lost the feature interpretability of 

classical ML. This limitation exists by nature in our algorithm, it would be interesting to continue 

this research and implement interpretable CNN.  

The other limitation of this study is treating each RGB image as an independent sample, the 

reason for this assumption is due to CNN architecture limitation that does not allow for higher 

dimensional input. We are aware of this limitation and we plan to implement custom made CNN 

to accept higher dimensional input.   
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Chapter 9 Conclusion and Future Work 

In this chapter, we present a summary of our research and the contributions of this thesis. In 

addition, we discuss the potential future research directions and applications of our work. 

9.1 Prostate Cancer: Gland Detection, Image Segmentation, and 

Prediction  

Chapter 2 through 5 are focused on prostate cancer. In these chapters, we discussed prostate cancer 

and introduced methods for improved detection and prognoses.  

Chapter 2: 

In chapter 2 we introduced pixel-level techniques for glandular structures detection, these 

structures are important since they contain clinically relevant information regarding the disease 

status and Gleason score. In this chapter, we blended different techniques such as hyper-spectral 

imaging, PCA, clustering methods to develop a new automated technique for glandular detection. 

We obtained promising results on data obtained from 132 prostate TMA cores. In future studies, 

it would be beneficial to obtain larger datasets and investigate the effectiveness of this method on 

different datasets or different stains batches to determine the performance of our algorithm across 

the different H&E staining protocols that are in use clinically at different institutions.  

Chapter 3: 

In this chapter, we  designed an automated system to recognize and localize cell nuclei in digitally 

scanned images. This is a very important step to enable quantitative digital pathology.  
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We constructed images of a Feulgen-Thionin-stained prostate cancer TMA from 33 prostate cancer 

patients. We developed a fully automated system to localize prostate cell nuclei and overcame 

implementation challenges such as tissue complexity, cell clusters, background noise, image and 

tissue inhomogeneities, etc.  Using this method, we obtained a 96.6% true-positive (correct 

segmentation) rate and a 12% false-positive rate. Although this method was very successful it had 

some difficulties in the detection of faint nuclei.  

Chapter 4: 

To overcome some of the difficulties we encountered in chapter 3 and to improve the segmentation 

quality of our technique, we  introduced an interactive segmentation algorithm. This method 

required minimum user interaction and produced a very good segmentation result. The images 

used here were selected from 33 prostate cancer patients as explained earlier.   

Our algorithm requires less time to complete the segmentation process comparing with a human 

expert (45 min vs 6 min) with comparable accuracy. This shows that our algorithm is fast, efficient, 

and accurate which makes it suitable to be used in the clinical settings.  

In a pilot study (on very small sample size) we studied other tissue types such as oral, cervix, lung 

and other stains such as H&E and obtained promising results using our proposed algorithm. 

Chapter 5: 

In this chapter, we discussed the development of a machine learning algorithm trained on the 

features extracted from cells/nuclei that were segmented using our technique as explained in the 

earlier chapters.  
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We constructed a large feature space and implemented a new classification method (LSVM 

algorithm) to use these features as the input. We implemented our algorithm and ran our proposed 

method on our dataset and achieved 87% accuracy for Gleason score prediction and 92% for 

aggressive vs non-aggressive prediction. Our method requires much less human interaction, a 

requirement for an automated Quantitative Digital Pathology (QDP) system. 

We showed that the LSVM algorithm could serve as a predictive tool for prostate cancer 

progression prediction and reduce over-diagnosis/treatment. Combining our algorithm with a high-

resolution imaging system could potentially improve the performance even more.  

The method presented here can change clinical pathology by identifying aggressive prostate cancer 

lesions that require upfront treatments vs. nonaggressive lesions that need to be under active 

surveillance. 

9.2 Renal Carcinoma: Vascular Structure Segmentation, 

Feature Extraction, and Classification 

Chapter 6: 

In this chapter, we presented the complete process of renal carcinoma classification from the image 

processing step to feature selection and development of machine learning techniques.  In this 

chapter, we  designed a new machine learning classifier to discriminate between different renal 

carcinoma subtypes. The data from this study were collected from 50 consecutive patients with 

renal cell carcinoma at Pasteur Hospital, Nice, France. These tissues were annotated by the study 

pathologist (Dr. Ambrosetti) into CCRCC, PRCC and mixed CCRCC/PRCC. We used advanced 

image processing techniques to extract the skeleton of renal blood vessels and then extracted 



 

204 

 

features from the processed vessels. These features were used as the input to our ML algorithm. 

We obtained a 95% training accuracy for classification of CCRCC and other tissue sites.The 

classification of CCP vs other tissue sites and PCC vs other tissue sites were promising as well. 

Integrating other features (e.g. cellular- level features), applying other stains (e.g. H&E), using 

different de-convolution image processing methods and collecting more data are among the 

various interesting future works for this chapter that could potentially improve the prosed 

classification performance.  

9.3 Cervical Cancer: Abnormalities Detection Using 

Classical and Convolutional Neural Network 

Chapter 7: 

In chapters 7 and 8 we designed techniques for cervical cancer abnormality detection at the 

macroscopic scale. 

In chapter 7 we explained  the whole workflow of designing an automated classification method 

starting from multispectral tissue imaging to the development of ML classifiers. The dataset used 

for this study were obtained from 49 patients. We captured reflectance and fluorescence images 

from these patients’ cervix using our in-house Multispectral Digital Colposcope (MDC) device. 

We extracted features from histogram intensities of small sliding windows and applied various 

classification methods. 

We obtained %93 and %91 accuracy when we applied a boosted-tree classifier to the training and 

test set, respectively. We also incorporated other features such as ratio features to improve 

classification accuracy.  
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When we applied our method on a newly acquired dataset the accuracy dropped which could be 

due to various reasons such as variation in the imaging device or overtraining of the method.  

In the last chapter (chapter 8) we leveraged a convolutional neural network to improve the 

generalization limitation of our classical ML method.  

Chapter 8: 

Deep Neural Networks (DNN) has shown promising results, by automatically learning important 

features and eliminating the need to design hand-crafted features. In this chapter, we investigated 

the performance of different convolutional neural networks using MDC images to localize the at-

risk cervical pre-cancer tissues. In this chapter, we implemented various convolutional neural 

networks and explained how it would fit as our solution.  

We obtained promising results using the VGG16 network. The results were comparable with 

classical ML. As a future direction, it is possible to improve the performance by experimenting 

with different window sizes, strides, filters, and deeper networks and/or obtaining larger datasets.  

9.4 Future Directions 

Prostate Cancer (Segmentation): It is possible to improve the glandular segmentation process 

by  taking advantage of neural networks. One of the famous networks that we can possibly use is 

UNet. UNet is a CNN that is designed for biomedical image segmentation.  This Network uses 

data augmentation to compensate for the need for large annotated samples (Ronneberger, Fischer, 

et al. 2015). It would be interesting to see whether CNN could increase the segmentation accuracy. 

The other interesting approach would be to combine all images captured from different bandwidths 

and use this matrix as the input to the UNet.  
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A great extension of this study would be to investigate the performance of our algorithm on other 

tissue types (e.g breast tissue). We investigated and tested our proposed glandular detection 

algorithm on prostate cancer,  however, our proposed method could be simply modified for gland 

detection of other tissues. It is necessary to fine-tune our method for the tissue under study (e.g. 

different stains and gland structure/size).  

Furthermore, we tested our proposed cell segmentation methods on TMA images of prostate 

cancer cells (stained with Thionin),.We also showed that it is possible to use this method to 

segment other cell types (e.g. lung, cervix, oral) and other stains (H&E). This generalization 

capability made our interactive method an essential core for developing an automated cell 

segmentation tool for different tissue types. More investigations on the generalization capability 

of our algorithm is essential.  

Prostate Cancer (Classification):As we implemented a very comprehensive hand-crafted 

feature-set to accomplish the classification task, it seems natural to replace this process with an 

advanced CNN. However, by doing so, we would lose the feature interpretation which is still very 

important in the clinical settings. There are newer, more advanced CNN refered to as Interpretable 

CNNs (Zhang, et al, 2019) with comparable interpretability capability to the classical ML that one 

can possibly investigate.   

Renal Carcinoma:We used the features obtained from blood vessels for Renal carcinoma 

classification. Blood vessels are considered an important biomarker and are used in differential 

diagnosis of different cancer types such as renal and skin. We conducted our study on renal 

carcinoma, however, a modified version of our algorithm could be used for the diagnostic purposes 

of other diseases where monitoring the blood structure is important. It is possible to improve the 
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performance by collecting more samples and constructing a poll of relatively even-balanced 

healthy and non-healthy tissues, extracting clinically relevant features such as (cell/nuclei 

features), collecting higher quality images, incorporate other imaging modalities and other stains. 

It would be interesting to see the performance of a deep learning algorithm on renal carcinoma 

classification (which eliminates the necessity to the design hand-crafted feature), however it 

requires access to a very large dataset.  

Cervical cancer: The last cancer under study was cervical cancer. We presented an automated 

abnormality detection using both classical ML (chapter 7) and deep learning methods (chapter 8). 

It would be interesting to see whether there would be any improvement in the performance if the 

classical and deep learning methods are combined together to form a hybrid model. To accomplish 

this task, there are two possible design approaches to explore:  

1- First, apply classical ML techniques such as SVM, boosted tree, etc and obtain the 

probabilities of each pixel/window, next use this probability map as the input of a deep 

CNN.  

2- Use an ensemble classifier, where both ML technique (classical and deep learning) would 

try to do the prediction in a parallel fashion and finally the ensemble classifier makes the 

final decision based on the results obtained from both classifiers (in this scenario it is 

possible to have multiple classical ML and multiple CNN). 

The other avenue to explore is to observe the impact of combining all 18 channels together and 

use it as the input. In a pilot study, we explored this option. This required to redesign and modify 

the VGG16 Network since the current design only accepts 3 channels. We boosted the accuracy 

by about %5. This is a new and very interesting finding and more tuning and validation are needed. 



 

208 

 

General ways to improve the CNN performance would be to collect more MDC images, use the 

weights obtained from training medical images instead of ImageNet (as it would be more relevant 

to the subject under the study). 

Similar approaches could be used to apply our methods to other cancer types by fine-tuning the 

existing implementation of deep learning algorithms to cancer/tissue under the study.  

9.5 Significance and Application of This Study 

The number of patients diagnosed with cancer increases daily. Being able to distinguish  cancers 

requiring aggressive treatment from  those which do not, would allow for the tailoring of more 

appropriate treatments to the individuals and would increase cancer survival rate and improve the 

quality of life of those living with cancer. Individualized treatments are the future of oncology and 

ML techniques are an effective solution to that. In this thesis, I presented new, cost-effective 

prognostic tools for cancer using advanced ML techniques. I introduced methods to apply ML 

techniques to microscopic and macroscopic images to improve our understanding of the neoplastic 

process, localization, and prediction of biological behavior of early cancers. Specifically, I 

presented techniques to apply ML techniques to digital pathology images of prostate and renal 

carcinoma, and macroscopic multispectral images of high grade cervical intraepithelial neoplasia 

lesions.  These techniques have great potential to improve the healthcare environment by providing 

extra information/second opinion to the medical experts or to be used as the first line of 

screening/localization and detection. 
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Appendix 
 

 
Accuracy values per epoch for channel 2. The accuracy level fluctuated at the beginning and 

eventually plateaus around 0.85. Each color represents one epoch.  

 

Loss values per epoch for channel 2. The loss level fluctuated at the beginning and 

eventually becomes plateau around zero. Each color represents one epoch.  
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Accuracy values per epoch for channel 3. The accuracy level fluctuated at the beginning 

and eventually plateaus around 0.85. Each color represents one epoch.  

 

Loss values per epoch for channel 3. The loss level fluctuated at the beginning and 

eventually becomes plateau around zero. Each color represents one epoch.  
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Accuracy values per epoch for channel 4. The accuracy level fluctuated at the beginning 

and eventually plateaus around 0.85. Each color represents one epoch.  

 

Loss values per epoch for channel 4. The loss level fluctuated at the beginning and 

eventually becomes plateau around zero. Each color represents one epoch.  
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Accuracy values per epoch for channel 5. The accuracy level fluctuated at the beginning 

and eventually plateaus around 0.85. Each color represents one epoch.  

 

Loss values per epoch for channel 5. The loss level fluctuated at the beginning and 

eventually becomes plateau around zero. Each color represents one epoch.  
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Accuracy values per epoch for channel 6. The accuracy level fluctuated at the beginning 

and eventually plateaus around 0.85. Each color represents one epoch.  

 

Loss values per epoch for channel 6. The loss level fluctuated at the beginning and 

eventually becomes plateau around zero. Each color represents one epoch.  

 


