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Abstract 

The urban-wildland interface is growing as human development expands, potentially 

increasing human-wildlife conflict. Conflicts include animals accessing garbage, damaging 

agricultural crops, or depredating livestock. For mammalian carnivores this often leads to lethal 

mitigation. Mortality from conflict represents a major threat to carnivores who miscalculate the 

risk of human-dominated areas. By contrast, carnivores that adapt to these novel anthropogenic 

environments may facilitate human-wildlife coexistence.  

Human-carnivore conflict is an increasing issue on Vancouver Island, British Columbia, due 

to rapidly expanding development and high concentrations of black bears (Ursus americanus) 

and cougars (Puma concolor). To reduce these conflicts and promote coexistence, it is critical to 

target proactive mitigations using reliable evidence to distinguish where conflict is probable from 

where carnivores are adapting to coexist.  

I modelled relative conflict probability using seven years of reported conflicts and GIS data 

to investigate which anthropogenic and environmental predictors best explained the spatial and 

temporal distribution of conflict in Victoria’s Capital Regional District. I found that the 

probability of conflict for both species increased along the urban-wildland interface, where 

human disturbance adjoined natural habitat. Black bear conflict also increased in rural areas in 

autumn before winter denning.  

I subsequently used a camera trap survey to see when and where bears were active across a 

gradient of human disturbance and compared bear habitat use to the previously estimated 

probabilities of conflict. For much of the year, bears used areas of low to medium conflict, such 

as forests near urban areas, avoided areas of higher human density, and were more nocturnal in 

urban and rural areas compared to wild. However, in autumn, bears were more active in areas of 
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high conflict probability, specifically rural lands with ripe crops. This suggests that bear 

behaviour may allow for coexistence in most seasons by spatially and temporally avoiding 

humans, except in autumn when hyperphagia and peak anthropogenic crop availability increase 

the risk of human-bear conflict. 

Overall, I recommend proactive conflict mitigation to secure anthropogenic attractants 

against multiple carnivore species, and a particular focus on mitigations during seasonal peaks in 

attractive human food resources. 
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Lay Summary 

As human development expands into wild areas, it is crucial to prevent increasing conflict 

between humans and carnivores. My research used southern Vancouver Island, BC, to examine 

where conflict was likely to occur with black bears and cougars, and whether bear behaviour 

changed in human environments. I found conflict with both species increased in more densely 

populated areas next to forest, where humans and carnivores overlapped the most, and that bear 

conflict was most likely in rural areas in autumn, when crops provided an abundant source of 

food. However, bears predominantly avoided people by selecting forested habitat and switching 

activity to nighttime in urban areas. Only in autumn did bears spend more time in high-conflict 

rural areas, as they prepared for winter denning. Therefore, I recommend that to reduce conflict, 

human food resources be secured in communities near prime wildlife habitat, particularly in 

seasons when agricultural resources are most abundant.  
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Preface 

Chapter 2 used previously obtained reports of human-carnivore conflict from the British 

Columbia Conservation Officer Human Wildlife Conflict Reporting Database provided by Mike 

Badry, Wildlife Conflict Manager. GIS data were provided by Todd Golumbia at CRD Regional 

Parks. Use and storage of personal information from reports of conflict was approved by UBC 

Behavioural Research Ethics Board (H18-01677). 

Chapter 3 used camera trap data sampled in a study design developed by Cole Burton (UBC) 

and myself. This project was partially funded by a National Geographic early career grant. Field 

data collection was conducted by myself with assistance from Joanna Burgar, Erin Tattersall, 

Meghna Bandyopadhyay (Wildlife Institute of India), Paige Monteiro (FLNRORD), Alexia 

Constantinou, Jacqui Sunderland-Groves, Aisha Uduman, and Taylor Justason (all UBC unless 

otherwise specified). Additional GIS data were provided by Laura Hooper and Brian Goble from 

the District of Sooke. Camera trap images were processed at UBC by Emily Siemens, Lauren 

Kasper, Zach, Brunton, Avril Hann, Micaela Anguita, HyunGu Kang, and myself. The camera 

trap sampling was approved by the Canadian Council of Animal Care administered by UBC 

(A18-0234), and the management of camera trap photos containing humans was approved by 

UBC Behavioural Research Ethics Board (H18-01677).  

Chapter 2 has been adapted for publication, co-authored with Cole Burton, Mike Badry, 

Adam Ford, and Todd Golumbia. Cole Burton developed the original research question and I 

defined specific hypotheses. All co-authors provided edits and feedback. Chapter 3 is also being 

adapted for publication. Cole Burton and I developed the research question and I defined specific 

hypotheses. I performed all data analysis and wrote the original drafts of each chapter with edits 

and feedback from my committee members, Cole Burton, Peter Arcese, and Adam Ford. 
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Chapter 1: General introduction 

1.1 Human-carnivore conflict  

As human development spreads further into previously wild habitat, it is crucial to predict 

and mitigate negative human-wildlife interactions (Woodroffe, Thirgood, and Rabinowitz 2005). 

Negative interactions – conflicts – can take many forms, including wildlife accessing human 

food, damaging property, depredating livestock, physical attacks, and car accidents. These 

conflicts are responsible for billions of dollars of damages, loss of livelihoods, human injuries 

and death, and often reactive killing of the animals (Nyhus 2016). The frequency of these 

harmful conflicts is likely to grow as people spread into wild areas, so there is an increasing need 

to reduce conflicts and protect both people and animals.  

Conflicts between humans and carnivores (Order Carnivora) are especially important to 

consider as they are typically perceived as being more serious, often involving loss of livestock 

or human safety, and thus the responses can be more severe and have long-ranging effects on 

carnivore populations. Historically, responses to human-carnivore conflicts often involved 

eradication, such as seen with large carnivore species across the United States (Woodroffe, 

Thirgood, and Rabinowitz 2005). As carnivores are at the top of the food chain, they exist in 

lower numbers which makes eradication more feasible than with more abundant species (e.g. 

rodents, deer). However, losing top-down trophic control can allow herbivore populations to 

increase unchecked. Deer overabundance in North America due to decreased predation and 

increased forage availability has damaged forestry and agriculture, increased the transmission of 

tick-borne zoonoses (diseases spread from animals to humans), and led to increased vehicle 

accidents (Côté et al. 2004). Additionally, if the removal of a territorial carnivore is incomplete, 

immigration of new individuals competing for vacant territories can actually increase conflicts 
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(McManus et al. 2015). Ultimately, eradication of carnivores is neither socially desirable nor 

ecologically effective, and thus there is a need to transition to different methods for mitigating 

human-carnivore conflict.  

1.2 Conflict mitigation 

Approaches to conflict mitigation can be split into two main categories: proactive and 

reactive (Karlsson and Johansson 2010). Proactive mitigation consists of practices that prevent 

conflicts from occurring, such as removing attractants, installing fencing or other deterrents, or 

using guardian animals (Treves, Krofel, and McManus 2016). Reactive mitigation occurs post-

conflict but attempts to reduce the risk of further conflict, such as killing the animal involved, 

rapid removal of livestock carcasses to reduce repeat attacks, or compensation programs for 

property damage and livestock lost (Treves, Krofel, and McManus 2016).  

Proactive mitigation can create coexistence between people and carnivores, where 

coexistence is defined as people and animals using the same spaces without unsustainable death 

or costs to each other (Carter and Linnell 2016). This definition differs from that of  coexistence 

in the context of community ecology,  whereby species can live in the same ecosystem by niche 

partitioning or otherwise avoiding competitive exclusion (Chesson 2000; Huston 1994). Within a 

human-wildlife conflict framework, coexistence is posited as the opposite of conflict, and 

includes the social tolerance of risk to allow for the inclusion of costs to humans that do not 

necessarily cause changes to fitness (Nyhus 2016). One way that proactive mitigation can 

facilitate coexistence is by building boundaries with territorial carnivores, such as through 

guardian animals in a livestock herd. This keeps the same carnivore individuals in an area and 

teaches them to avoid conflict behaviours, rather than continuing conflict with new individuals as 
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territory opens up to compensatory immigration every time a “problem” carnivore is killed 

(Cooley et al. 2009).  

Proactive mitigation may also be a cheaper and more enduring solution to human-carnivore 

conflict. An experiment on caracals, jackals, and leopards in South Africa that contrasted 

reactive lethal control with proactive guardian animals and collars to protect livestock found that 

reactive lethal control was more expensive once the cost of losing livestock was taken into 

account (McManus et al. 2015). However, any mitigation method costs time and money. For 

instance, a common proactive method is electric fencing around attractants that need protection. 

In addition to initial start-up costs, fences need regular maintenance to ensure they have not been 

shorted or by-passed by growing vegetation, or damaged by animals attempting access 

(Breitenmoser et al. 2005). Such expenses may pose a barrier to effective use. Therefore, to 

minimize unnecessary expenditures, mitigations should be targeted to where and when conflicts 

are likely to occur.  

Recommendations and best practices for attractant management and other conflict 

mitigations exist in many areas. In North America, bear management programs are especially 

prolific, as human-black bear conflicts make up the majority of reported conflicts (Spencer, 

Beausoleil, and Martorello 2007), and both grizzly and black bears have omnivorous diets which 

allow for a broader spectrum of food-related conflicts (including over livestock, garbage, fruit, 

animal feed, etc.; Beckmann and Berger 2003a; Gunther et al. 2014). Management 

recommendations come from a combination of research on carnivore biology, previous tests of 

mitigation effectiveness, and local knowledge. For instance, in Yellowstone National Park, 

grizzly and black bears were known to be attracted to local garbage dumps, therefore managers 

closed the five dumps around the park (in addition to previously implemented reactive lethal 



4 
 

control and translocation) which reduced human injuries from an average of 45 incidents per 

year to one (Gunther 1994). This success then served as evidence of the effectiveness of securing 

attractants for other areas.  

Often, conflict mitigation recommendations come in the form of management programs that 

are multi-step, including problem assessment, plan implementation, and monitoring. For 

example, the Bear Smart program used in parts of British Columbia, Canada, requires three 

phases: 1) problem analysis, where a bear stewardship committee gathers information on current 

hazards and potential solutions that must include education and waste management, and 

optionally bylaws; 2) management plan implementation; and 3) monitoring the outcome (Davis, 

Wellwood, and Ciarniello 2002). Communities that follow these guidelines do experience 

reduced conflict (British Columbia Conservation Officer Service, unpublished data); 

nevertheless, even with education, waste management, and enforcement, conflicts continue to 

occur. These continued conflicts may be due to the presence of unsecured attractants even after 

education and enforcement. However, there are also disagreements and gaps in the peer-

reviewed literature as to the efficacy of recommended mitigations. For instance, education is a 

main component of most conflict management programs, but a study in Colorado found it was 

ineffective at changing human behaviour towards securing attractants without bylaws and 

enforcement (Baruch-Mordo et al. 2011). And while electric fences are touted as effective at 

deterring cougar depredation, there is a lack of scientific evidence (Breitenmoser et al. 2005). 

Additionally, mitigations that work in one area may not be as effective in another. Due to the 

prescriptive nature of conflict management plans, there is little room for region-specific 

information. In the Bear Smart program, a preliminary hazard assessment must list 

neighbourhoods that may have greater attractant availability, but detailed maps or further data 
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collection is optional. Government agencies often have existing data that could be used to better 

inform mitigation implementation. For example, reports of conflict can be mapped to show 

spatial patterns, and linked to environmental variables to identify underlying drivers of conflict. 

Given limited funds for wildlife management, it could be argued that communities should adopt 

current best practices without a need for further research; however, management 

recommendations are typically updated with results from research studies, suggesting that 

implementation and investigation of conflict mitigations should be complementary objectives.  

One way to estimate conflict probability is through predictive spatial models. These are 

models which distinguish areas that have the conditions necessary for conflict (e.g. areas with a 

high probability of animal use and human presence) from those with low probability of conflict 

(Treves et al. 2011). They are growing in popularity due to the increasing availability of GIS data 

on environmental and anthropogenic variables needed to parameterize the models. Predictive 

spatial models can be developed with presence-only conflict locations, which is often the 

information already recorded by land managers or conservation officers (Merkle et al. 2011). 

Therefore, these models avoid the time and resource barriers of other methods, such as presence-

absence models which would need fieldwork to acquire absence points (i.e. areas where it is 

known with some certainty that conflict did not occur). Even when using data collected for other 

purposes, models of conflict probability have been found to produce useful predictions for up to 

five years (Treves and Rabenhorst 2017). These models provide land managers with a tool they 

can use to deploy mitigations in locations where they are most likely to reduce conflicts. 

However, it is also important to understand if and how carnivores are changing their behaviours 

or otherwise adapting to human-dominated landscapes in order to understand how the dynamics 

of conflict may change over time. 
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To know if carnivores in the urban-wildland interface are adapting to humans, in ways that 

make conflict either more or less likely, an understanding of when and where they are spending 

their time is required. Animals select habitats from those available and typically spend more time 

in areas that meet their needs for food, mates, shelter, and territory (Manly et al. 2002), but 

avoidance of or attraction to human areas can disrupt patterns of habitat selection. Many 

mammals have been found to reduce movement (Tucker et al. 2018) and increase nocturnal 

activity (Gaynor et al. 2018) when using areas dominated by people. If these behavioural 

changes reduce interactions with people and their property, they may support human-wildlife 

coexistence. But, if the changes in bear behaviour lead to increased conflicts, such as through 

accessing livestock at night when farmers are asleep, further mitigation is required.  

One way to assess animal habitat use is through camera trap surveys (reviewed by Burton et 

al. 2015). Since they operate remotely, camera traps can capture natural animal behaviours and 

activity patterns, even in places and times when human sightings of carnivores are unlikely, 

(Caravaggi et al. 2017). These detections can then be used to compare the relative amount of a 

time a species spends in each type of available habitat, adjusting for different seasons and times 

of day. This information allows land managers to see which habitats are selected, and to deploy 

mitigations in those areas if they have a high probability of conflict.  

One region with high levels of conflict between people and multiple species of carnivore is 

Vancouver Island, BC, Canada. Vancouver Island is home to the highest density of cougars 

(Puma concolor) in the world (Teichman, Cristescu, and Nielsen 2013), as well as large 

populations of black bears (Ursus americanus) and grey wolves (Canis lupus). Vancouver Island 

is also thought to have one of the highest rates of human-bear and human-cougar interactions in 

North America (Campbell and Lancaster 2010). A large proportion of this overlap occurs in the 
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Capital Regional District (CRD) around Victoria, which is a hotspot of conflict due to the rapid 

expansion of human development into carnivore habitat. There is currently a lack of bylaws 

throughout the CRD targeting attractant management or other conflict mitigations, as well as an 

absence of financial support for deploying mitigations such as electric fences or reimbursement 

for lost livelihood due to depredation (Debb Read, personal communication). Therefore, this 

region provides a prime study system for predicting conflict and testing the current state of 

carnivore behaviour in the presence of humans to inform evidence-based changes to conflict 

management in the future.  

1.3 Thesis objectives and hypotheses 

To reduce human-carnivore conflicts and promote coexistence with carnivores, it is critical to 

have reliable evidence documenting where conflict is occurring now and how that relates to 

carnivore habitat use. My research tackled these objectives at two spatial scales. Firstly, I 

modelled anthropogenic and environmental predictors of reported conflict across the entire CRD 

to estimate and map the probability of conflict. Secondly, I determined local carnivore habitat 

use along a gradient of human disturbance, from urban to wild, within a key hotspot of conflict: 

the rapidly growing municipality of Sooke. Finally, I compared habitat use to conflict probability 

to determine if carnivore spatial behaviour indicates adaptation for coexistence or conflict. By 

combining evidence of human-carnivore conflict probability and carnivore habitat use, I began 

the first steps in preparing for the effective mitigation of conflict.  

In Chapter 2, I combined public reports of negative interactions with carnivores and 

hypothesized predictors of conflict to develop predictive spatial models of the timing and 

distribution of conflicts with black bears and cougars in the CRD. Predictors of conflict are key 

anthropogenic and environmental variables that are associated with the occurrence of conflict. 
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Previous research has found that conflict probability increases when human disturbance (in the 

forms of increasing human density, Treves et al. 2011; trail density, Wynn-Grant et al. 2018; 

proximity to roads, Carter et al. 2010; Teichman, Cristescu, and Nielsen 2013; and farms, Treves 

et al. 2011) is adjacent to carnivore habitat (e.g. forest cover, Kertson et al. 2011; Treves et al. 

2011). Additionally, predictors may change seasonally for species that den or follow seasonal 

food sources (Beckmann and Berger 2003b; Davis et al. 2006). Therefore, I hypothesized that 

conflict probability would peak in the areas of highest human-carnivore overlap, at the interface 

of development and forest. I also expected bears to have a seasonal difference in conflict because 

of denning and seasonal foods, with conflict absent during the winter denning period and 

reduced when natural foods are most abundant (e.g. salmon and berries). 

In Chapter 3, I concentrated on the municipality within the CRD that reports the greatest 

amount of conflict to understand how black bears used space across a gradient of human 

disturbance from urban to wild. Other studies have found that bears typically avoid people 

(Carter et al. 2010), selecting for forested habitat (Carter et al. 2010; Lyons, Gaines, and 

Servheen 2003), close to edges and low elevations where they can access vegetation in meadows 

and riparian areas (Lyons, Gaines, and Servheen 2003). However, in the urban-wildland 

interface, some bears have shifted behaviours to access human food attractants (Merkle et al. 

2013), which suggests they are adapting in a way that causes conflicts. This can lead to higher 

mortality when reactive mitigation is implemented to kill the offending animal, causing an 

ecological trap whereby an area that appears suitable (i.e. higher food abundance) actually 

decreases survival (Lamb et al. 2017). I used the relative abundance of black bears measured 

from camera traps as an index of bear habitat use to determine where bears were most active 

along the urban-wildland gradient. I also compared the pattern of human-bear conflicts to habitat 
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use to determine the relationship between bear use and conflict. I then tested if bears in human-

dominated landscapes were more active at night compared to when they were in wild areas. I 

predicted that if bears were unable to perceive the mortality risk posed by humans, they would 

not show avoidance behaviours spatially or temporally, which is consistent with the potential for 

increased conflicts and an ecological trap. Thus, I expected bears to be most active in rural areas, 

which have the broadest spectrum of human attractants. Since I expected conflict to be highest in 

the urban-wildland interface in Chapter 2, here I expected conflict probability to have a positive 

relationship with bear use. Additionally, if humans were not perceived by bears as threats, I 

expected to see no difference in the degree of nocturnal behaviour exhibited by bears across the 

interface.  

In my concluding chapter, I synthesized the results from my research and contextualized it 

within the broader field of literature. I provided suggestions for application of this research, 

while highlighting its strengths and acknowledging its limitations. Lastly, I concluded with ideas 

for future studies in this study system, and the broader field of human-carnivore coexistence, to 

take advantage of this project and the wealth of knowledge available from studying human-

carnivore conflict on Vancouver Island.  
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Chapter 2: Predicting human-carnivore conflict at the urban-wildland interface 

2.1 Introduction 

Carnivores (i.e., species in the order Carnivora) are important for ecosystems and the people 

in them. For instance, carnivores serve as natural controls against herbivore over-population 

which can destroy plant communities (Ripple et al. 2014) or cause car accidents (Gilbert et al. 

2017). However, where people and carnivores co-occur, they interact and may compete for 

resources and space, leading to conflict (Woodroffe, Thirgood, and Rabinowitz 2005; Teichman, 

Cristescu, and Nielsen 2013). Conflicts include many forms of interaction, from food 

conditioning, to property damage, to injury or death of livestock, pets, or people. To minimize 

harmful interactions, people often try to influence carnivore behaviour or to kill those animals 

deemed incompatible with human needs (Woodroffe, Thirgood, and Rabinowitz 2005).  

Conflict-related killing represents a major threat to the viability of many carnivore 

populations (Ripple et al. 2016). For example, killing over real and perceived conflict 

contributed to the range collapse of North American grey wolves and the extinction of the 

thylacine (Thylacinus cynocephalus; Woodroffe, Thirgood, and Rabinowitz 2005). These 

declines in carnivore populations can have negative consequences for ecosystems and humans as 

carnivores can regulate lower trophic levels (Ripple et al. 2016). For example, the decline of 

African lions reportedly caused an increase in olive baboon populations in West Africa, leading 

to greater competition with humans for both animal protein and plant food (Brashares et al. 

2010). Therefore, proactively mitigating conflict can not only protect carnivore populations but 

may also improves outcomes for humans. 

Proactive measures to mitigate human-carnivore conflict include animal deterrents, public 

education, and policy (Swan et al. 2017). Common deterrents include guardian dogs, electric 
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fences, and sound or light deterrents. All three methods can reduce conflict through negative 

reinforcement, where the carnivores are taught to reduce certain behaviours rapidly through an 

unwanted experience (i.e. an interaction with a dog, electric shock, or sudden visual and auditory 

stimuli; Smith et al. 2000). Simulation models have suggested that education programs focused 

on reducing attractants, such as garbage, can be effective at decreasing conflict with bears 

(Marley et al. 2017). However, empirical evidence of their effectiveness is more limited; for 

instance, in Colorado, education programs did not change human behaviour towards attractant 

management (Baruch-Mordo et al. 2011). Local bylaws and policy may then be required to 

incentivize rapid change, such as securing garbage (Morehouse and Boyce 2017).  

By being proactive, humans can avoid reactive carnivore relocation or lethal mitigation (i.e. 

animal destruction). Relocation of “problem” carnivores is often preferred to lethal mitigation by 

people directly impacted by conflict (Don Carlos et al. 2009). However, relocated carnivores 

often return and “re-offend”, or experience higher than expected rates of mortality due to 

competition or a lack of access to resources in their new territory (Linnell et al. 1997). To avoid 

prolonging conflict or animal suffering, people often resort to lethal mitigation after a conflict 

has occurred (Baruch-Mordo et al. 2014).  

Human-carnivore conflict is non-random across space and time as it requires people and 

carnivores to co-occur and compete in the same area (Treves et al. 2011). Since humans tend to 

aggregate in naturally resource-rich areas, and also bring other food sources with them like 

livestock and garbage, optimal foraging theory suggests that wild animals should select these 

areas over others (Holmes and Laundré 2006). Thus, patterns in conflict occurrences may be 

found and mitigation can be specifically targeted towards conflict “hotspots”, which reduces 
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management costs and increases mitigation effectiveness (Treves et al. 2011; Broekhuis, 

Cushman, and Elliot 2017).  

Predictors of conflict are anthropogenic and environmental variables associated with conflict 

that can be used to build predictive spatial models of relative conflict probability. Previous 

studies have found that spatial variation in conflict can be predicted by: increasing human 

density (Treves et al. 2011), trail density (Wynn-Grant et al. 2018), and proximity to roads 

(Teichman, Cristescu, and Nielsen 2013; Wynn-Grant et al. 2018), farms (Treves et al. 2011), 

and forest cover (Broekhuis, Cushman, and Elliot 2017; Kertson et al. 2011; Treves et al. 2011). 

However, in some cases conflicts were found to be higher in medium human density urban 

environments near wild areas (e.g. for black bears (Ursus americanus), Baruch-Mordo et al. 

2008), suggesting that conflict may have a non-linear relationship with human density. Likewise, 

Teichman et al. (2013) found that human-cougar (Puma concolor) conflict was best explained at 

intermediate elevations. Predictors of conflict may also change seasonally for species who den or 

follow seasonal food sources such as black bears and grizzly bears (Beckmann and Berger 

2003b; Davis et al. 2006). 

In British Columbia, predictors of provincial-scale human-cougar conflict included proximity 

to roads, intermediate elevation, and human density (Teichman, Cristescu, and Nielsen 2013). 

However, it is unknown which human and environmental predictors are linked to conflict for 

multiple large carnivore species at the regional and local scales at which management actions are 

implemented.  
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2.1.1 Study objectives 

Here, I used conflicts reported by residents of southern Vancouver Island—a carnivore 

conflict hotspot—to model the timing and distribution of conflicts with black bears and cougars. 

I tested associations between reported conflicts and hypothesized anthropogenic and 

environmental drivers of conflict. I hypothesized that conflict would increase in areas with high 

human-carnivore overlap, decrease away from areas of overlap, and be highest in areas of 

medium human density and at moderate elevations (Teichman, Cristescu, and Nielsen 2013; 

Baruch-Mordo et al. 2008). I also expected bears to have a seasonal difference in conflict 

because of denning and alternate food availability, with conflict being absent during the winter 

denning period (November to April, Davis 1996), and reduced during peak availabilities of 

salmon (October) and berries (June to October, depending on the berry species; Davis et al. 

2006). 

2.2 Materials and methods 

2.2.1 Study area 

The Capital Regional District (CRD) is the government administrative area for the southern 

end of Vancouver Island, Canada (Fig. 2.1). It includes British Columbia’s capital city, Victoria, 

and twelve other municipalities (the scope of this research excludes the Gulf Islands to the east, 

although they are a part of the CRD). Mainland CRD encompasses 2,000 km2 and has a growing 

human population currently of 383,000 individuals. Vancouver Island is part of the Pacific 

Maritime ecozone, which is characterized by a warm and wet climate (Canada 1986).  

In the CRD, most reported human-carnivore conflict is with black bears (89.5%; British 

Columbia Conservation Officer Service, unpublished data), but Vancouver Island has the 
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world’s highest level of human-cougar conflict (Teichman, Cristescu, and Nielsen 2013). The 

British Columbia Conservation Officers Service (COS) rarely relocate animals, so in cases of 

repeated or dangerous conflict, the problem animal is destroyed. Between 2011-2017, 60 black 

bears and 34 cougars were killed due to conflict in the CRD.  

 

Figure 2.1: Locator map for the Capital Regional District on Vancouver Island, BC, Canada. 

Circles represent locations of human-carnivore conflict with black bears and cougars from 2011-

2017. Vegetation includes coniferous and deciduous forest, shrubs, herbs, and grass. Land cover 

adapted from CRD Regional Parks (Caslys Consulting Ltd 2017).  
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2.2.2 Carnivore conflict data 

I used reports of conflict with black bears and cougars from 2011 to 2017 in the CRD that 

were recorded in the COS’s Human Wildlife Conflict Reporting Database (HWCRD). This 

database contains reports about interactions with wildlife that are phoned in by BC residents to 

the COS call centre (British Columbia Conservation Officer Service 2019). Reports include a 

description of the interaction with wildlife, the species involved, and the location, date, and time. 

The HWCRD is unlikely to represent a complete record of all conflicts occurring in the CRD, as 

some residents may not report interactions with black bears or cougars for a variety of reasons 

(e.g. different perceptions of conflict, awareness of the Conservation Office program). However, 

previous research in other jurisdictions has found that demographic factors (such as age, gender, 

socioeconomic status) have little influence on the likelihood of a person reporting a conflict with 

black bears (Wilbur et al. 2018). I therefore assumed that the HWCRD reports represent an 

unbiased sample of conflicts occurring across the CRD.  

I re-categorized the interactions from the HWCRD into instances of human-carnivore 

conflict or non-conflict. I defined conflict as any interaction between one or more carnivores and 

one or more humans (or their property/possessions/livelihoods) that was negative (causing 

financial or physical harm) for one or both parties. Non-conflict interactions were those that were 

positive or neutral, which were predominantly carnivore sightings. I converted street addresses 

for reported interactions to UTM coordinates using the DataBC’s batch geocoder (British 

Columbia 2017, Fig. 2.1).  

The HWCRD included 1261 reported conflicts with black bears between 2011-2017 

(Appendix 1). The number of conflicts reported was similar in each year, with a mean of 180.1 

(sd = 42.2). Most conflicts occurred in the summer (41%) and autumn (37%), followed by winter 
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(16%) and spring (6%; Appendix 1). The HWCRD also included 140 cougar conflicts between 

2011-2017 (Appendix 1), with greater variability between years than with black bears (mean = 

20.0, sd = 10.6).  

2.2.3 Predictor variables  

I selected anthropogenic and environmental variables expected to influence the probability of 

carnivore conflict based on previous research (Appendix 2). I developed raster layers describing 

distances to the following land cover classes: agriculture, urban, intact forest and forest patches, 

using a 2017 3m resolution land cover raster from CRD Regional Parks resampled to 5m to 

reduce mapping error (Caslys Consulting Ltd 2017). I separated intact forest and forest patches 

as black bears have been found to use core habitats differently than disturbed patches (Larkin et 

al. 2004). I distinguished small patches of forest from contiguous forest (hereafter “patch” and 

“intact” forest, respectively) based on a break point in size classes of forest areas at 300 m2. 

I extracted elevation from the ASTER Global Digital Elevation (NASA/METI/AIST/ 2009) 

and human density from the Gridded Population of the World (projected to 2015; CIESIN 2017). 

Road and trail densities (accessed from BC provincial and CRD Parks GIS layers, respectively) 

were generated using the Line Density tool in ArcGIS 10.6.1 (ESRI 2018). All GIS variables 

were extracted in a weighted buffer around the conflict points at two scales: 150 and 500m. 

Given the potential for locational error when converting street addresses to points, I used a buffer 

with a radius equal to the length of an average suburban block length (150m) to represent the 

conflict location (Morehouse and Boyce 2017). The larger buffer of 500m represented the area 

surrounding a conflict point, allowing for potentially different scale selection by carnivores for 

different variables (Fisher, Anholt, and Volpe 2011). Extracted variables were standardized by 

subtracting the mean and dividing by 1 standard deviation, to allow for direct comparison of 
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estimated coefficients. I acknowledge that there is a potential mismatch in time between the 

conflicts and spatial variables; however, the 2015 human density projection matches the 2016 

census results for the CRD well, and the land cover raster was created using new remote sensing 

in conjunction with previous land cover datasets from 2005 and 2011.  

2.2.4 Analysis 

I modelled the relative probability of conflict with black bears and cougars using generalized 

linear models (GLMs) in a Resource Selection Function (RSF) use-availability framework 

(Johnson et al. 2006). Models were implemented in R statistical software using the glm function 

(R Core Team 2018). In order to compare locations where conflict was reported with a sample of 

“available” locations where conflict was possible, I created a polygon around all known locations 

of interactions with carnivores in the HWCRD (both conflict and non-conflict, n = 4543) by 

buffering point locations by the average home range of female black bears on the island (7.83 

km2; Davis et al. 2006) and merging those buffered areas into a single polygon. I chose the 

female black bear home range to be conservative as bears typically have smaller home ranges 

than cougars, and females have smaller ranges than males (Carter et al. 2010). I randomly 

selected 10,000 random points within the polygon with a minimum distance of 1 metre (mean = 

126 metres) between adjacent points to avoid complete overlap (Northrup et al. 2013). I chose to 

use 10,000 points based on recommendations from the literature, which found a larger proportion 

of available points were more reliable for regression models (Barbet-Massin et al. 2012), 

especially with regards to improving the approximation of the likelihood function (Aarts, 

Fieberg, and Matthiopoulos 2012). A larger set of availability points also provides an accurate 

representation of the range of variable values in the study area (Northrup et al. 2013). Finally, 

this is a similar ratio of conflict to availability points used in another model of black bear conflict 
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probability (Merkle et al. 2011; for further discussion of the modelling approach see Chapter 4). 

My response variable was the presence of a reported conflict or an available location with no 

conflict reported, modelled as a binomial random variable.  

I first ran univariate models for each of the spatial variables at the 150 and 500m scales 

against conflict with black bears or cougars and compared them against a null model (intercept 

only) using Akaike’s Information Criterion (AIC; Burnham and Anderson 2002). For each 

variable, the scale within the univariate model with the lowest AIC was used in the full model. I 

ran a correlation matrix across all predictor variables at their selected scales for each species to 

ensure no variables had an r > 0.7 (Hosmer and Lemeshow 2000).  

I established a set of candidate models representing hypotheses about the variables that 

would best predict reported conflict for both species. The candidate models included: a) a model 

with additive effects of all predictor variables, representing the hypothesis that all variables 

identified in the literature were important in explaining conflict in my study area; b) all variables 

with either or both human density and elevation as quadratic functions to test if conflict is more 

probable at medium human disturbance or elevation; c) all variables with an interaction between 

human and trail density to test if human areas accessible by trails experience more conflict; and 

d) a full model with all variables and both quadratic and interaction terms (Appendix 3). I again 

used AIC to identify the best-supported model (Burnham and Anderson 2002). I ran models for 

black bear and cougar conflict separately and also tested whether black bear conflict locations 

differed by season by running separate models for spring (February to April), summer (May to 

July), autumn (August to October), and winter (November to January; Beckmann and Berger 

2003b; Davis et al. 2006). 
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Given that the home range size of individual bears and cougars would encompass an area 

much larger than my 150-500m buffers around conflict points, I tested for non-independence in 

terms of spatial autocorrelation in the residuals from best-supported models using Moran’s I test 

(Plant 2012). I used K-fold cross validation to evaluate how well the best-supported models for 

species and seasons predicted conflict locations (Boyce et al. 2002; Merkle et al. 2011). I divided 

the dataset for each model into 5 folds, training the model on 80% of the data and testing it 

against the last 20% (Boyce et al. 2002). I separated predicted values into 10 equal ranked bins 

and used Spearman rank correlations (rs) to compare the number of known correct conflict 

locations from the withheld 20% within each bin to the bin rank, where rs can range from -1 to 1, 

with zero meaning no association (Boyce et al. 2002). Calculations were done using the R 

package “hab” (Basille 2015; J. Merkle, personal communication).  

Using the coefficients from my best-supported models for species and seasons, I projected 

(mapped) the relative probability of conflict across the study area on standardized raster layers. I 

then converted likelihood of conflict on the logit scale to the relative probability of conflict using 

Raster Calculator (ESRI 2018) and the formula from Johnson et al. (2006): 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  exp (𝑋𝛽)̂ 

Where relative probability is the exponent of the model outputs of observations, X, and estimated 

coefficients, �̂�. And finally, I rescaled relative probability values from 0-100 using Rescale by 

Function in ArcMap (ESRI 2018) 
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2.3 Results 

2.3.1 Human-Black Bear Conflict 

The best-supported model explaining black bear conflict in all seasons included all predictor 

variables, quadratic terms for both human density and elevation, and an interaction between 

human density and trail density (Table 2.1). A Moran I test on the residuals of this model 

rejected the null hypothesis of no spatial autocorrelation (Moran I = 0.008, p-value = 0.018).  

The relative probability of conflict increased with road density and proximity to urban, intact 

forest, and forest patches (Fig 2.2). Conflict decreased with increasing elevation, trail density, 

and the interaction between human and trail density. Conflict peaked at medium-low human 

density. The linear effect of human density, distance to agriculture, and the quadratic form of 

elevation were not statistically significant as their 95% confidence intervals crossed 1 (no effect; 

Fig. 2.2). The K-fold cross validation Spearman rank correlation was close to 1 which suggests 

the model had good predictive power (rs = 0.981, SE = 0.013, Fig. 2.3).  

The top models for black bear conflict in summer, autumn, and winter had the same variables 

as the top non-seasonal model, while the top model for conflict in spring did not include the 

quadratic term for elevation and the interaction between human and trail density (Table 2.1). The 

seasonal models followed a similar pattern of associations to anthropogenic and environmental 

variables as the non-seasonal model; however, in spring, conflict was associated with medium 

human density, high road density, proximity to intact forest, and lower trail density, with all 

other variables being non-significant (Appendix 4). This difference in significant variables is 

illustrated in the map of spatially projected conflict probability, showing conflict predominant in 

urban centres (Fig. 2.4a). For conflicts in summer, lower elevation and proximity to urban areas 

were also important (Appendix 4). The concentrations of conflict in summer in urban areas were 
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similar to the patterns found for conflict in spring, with increased conflict probabilities in 

suburban and rural areas (Fig. 2.4b). Associations with predictor variables in winter matched the 

results for summer, except the elevation estimates for both the linear and quadratic terms were 

non-significant (Appendix 4). This resulted in lower conflict probabilities outside of urban 

centres (Fig. 2.4d). In contrast, for conflict in autumn, the effect of the linear variable for human 

density was not significant and the effect size for the quadratic term of human density decreased 

compared to spring. Autumn was also the only season where distance to forest patch was 

significant (Appendix 4). In the projected maps, this appears as a decrease in conflict probability 

in urban centres with a corresponding increase in rural areas (Fig. 2.4c). The Spearman rank 

correlations showed weaker predictive power for seasonal models than for the model with all 

seasons combined, but rs remained close to 1 and was higher for seasons with greater sample 

sizes of conflicts (spring, rs = 0.767, SE = 0.196; summer, rs = 0.974, SE = 0.021; autumn, rs = 

0.926, SE = 0.076; and winter, rs = 0.895, SE = 0.042). There was no evidence of spatial 

autocorrelation in the residuals of the seasonal models (spring, Moran I = -2.98 x 10-4, p-value = 

0.519; summer, Moran I = -4.74 x 10-6, p-value = 0.491; autumn, Moran I = -1.41 x 10-4, p-value 

= 0.504; and winter. Moran I = 0.003, p-value = 0.249).  

2.3.1 Human-Cougar Conflict 

The best supported model for cougars included all variables, with human density as linear, 

elevation as quadratic, and no interactions (Table 2.1). The Moran I test was non-significant 

suggesting there was no spatial autocorrelation (0.001, p-value = 0.365). 

Similar to black bears, cougar conflict increased with proximity to urban areas and forest 

(intact and patch), decreased with increasing trail density, and peaked at medium elevation (Fig. 

2.5). However, cougar conflict decreased with increasing human density. Road density, linear 
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elevation, and distance to agriculture did not have significant effects on cougar conflict (Fig. 

2.5). The predictive power of the model was also close to 1 suggesting good predictability (rs = 

0.875, SE = 0.126, Fig. 2.6).
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Table 2.1: Candidate models within 2 AIC for probability of human-black bear conflict (seasonally and non-seasonally) and cougars. 

Top models indicate which predictor variables best explain location of conflicts for each species/season. HD = human density, RD = 

road density, DAg = distance to agriculture, DUrb = distance to urban, DFP = distance to forest patch, DFI = distance to intact forest, 

Ele = elevation, TD = trail density. Values following variable names represent the buffer radius (in m) used to measure the variables 

around conflict points. Df is the degrees of freedom of the model, ΔAIC is the difference in AIC scores from the top model.  

Species/Season Predictor Variables df  ΔAIC 

Black Bear – 

All seasons 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

12 0.0 

Black Bear - 

Spring 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150  

10 

11 

0.0 

1.7 

Black Bear - 

Summer 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

12 0.0 

Black Bear - 

Autumn 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

12 0.0 

Black Bear - 

Winter 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

12 0.0 

Cougar HD500 + RD150 + DAg150 + DUrb150 + DFP500 + DFI150 + Ele150 + Ele1502 + TD150 

HD500 + HD5002 + RD150 + DAg150 + DUrb150 + DFP500 + DFI150 + Ele150 + Ele1502 + TD150  

10 

11 

0.0 

2.0 
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Figure 2.2: Estimated effects of human and environmental variables on human-black bear 

conflict in the Capital Regional District (CRD), BC, Canada. Coefficient estimates (mean and 

95% confidence intervals) from best-supported resource selection function of conflict locations 

between 2011-2017, back transformed from the logit scale to odds ratios (OR). Predictor 

variables have been standardized to a mean of zero and standard deviation of one to allow for 

direct comparison. Distance-to coefficients <1 OR represent selection for that feature.  
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Figure 2.3: Probability of human-black bear conflict in the Capital Regional District (CRD), BC, 

Canada. Probabilities estimated from resource selection function using human density, elevation, 

distance to agriculture, distance to urban, distance to forest patch, distance to intact forest, road 

density, and trail density as variables. Model developed from conflict locations collected 

between 2011-2017 in the CRD (Fig 2.1).  
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Figure 2.4: Probability of human-black bear conflict in the Capital Regional District (CRD), BC, 

Canada in four seasons: a) spring: February-April, b) summer: May-July, c) autumn: August-

October, and d) winter: November-January. Probabilities estimated from resource selection 

functions using human density, elevation, distance to agriculture, distance to urban, distance to 

forest patch, distance to intact forest, road density, and trail density as variables. Model 

developed from conflict locations collected between 2011-2017 in the CRD.  
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Figure 2.5: Estimated effects of human and environmental variables on human-cougar conflict in 

the Capital Regional District (CRD), BC, Canada. Coefficient estimates (mean and 95% 

confidence intervals) from best-supported resource selection function of conflict locations 

between 2011-2017 back transformed from the logit scale odds ratios (OR). Predictor variables 

have been standardized to a mean of zero and standard deviation of one to allow for direct 

comparison. Distance-to coefficients <1 OR represent selection for that feature.  
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Figure 2.6: Probability of human-cougar conflict in the Capital Regional District (CRD), BC, 

Canada. Probabilities estimated from resource selection function using elevation, distance to 

agriculture, distance to urban, distance to forest patch, distance to intact forest, road density, and 

trail density as variables. Model developed from conflict locations collected between 2011-2017 

in the CRD.  
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2.4 Discussion 

Black bear and cougar conflicts made up 99% of the reported conflicts with large carnivores 

in the CRD, with black bear conflicts being nine times more common than cougar conflicts. I 

combined known conflict locations with previously available spatial variables describing 

anthropogenic and environmental features to model and map variation in the probability of 

conflict across the region. This variation was associated with several key features. 

I found that conflict with black bears was positively associated with increasing road density. 

This is consistent with my hypothesis based on previous studies where black bears avoided main 

roads because mortality risk increased with road density due to car accident conflicts (Wynn-

Grant et al. 2018). While the parameter estimate for road density in the model of cougar conflict 

was not significant, a provincial study found that cougars experienced more conflict in BC close 

to roads (Teichman, Cristescu, and Nielsen 2013). Although higher mortality may decrease use 

of an area by a carnivore species, the attraction of roads as travel routes (Carter et al. 2010), or 

the necessity of crossing them to find better habitat, may explain the continued use of roads by 

carnivores.  

The relative probability of conflict increased with proximity to intact and patch forests for 

both black bears and cougars. This shows that conflict is more likely close to forest edges as they 

represent areas of human-carnivore overlap and anthropogenic food attractants (Treves et al. 

2011). The importance of both intact forest and patches suggests that carnivores in the CRD are 

using forested areas regardless of size, which differs from Merkle et al. (2011) who found that 

forest patches were not a significant predictor of black bear conflict. They concluded land 

planners may not need to consider the impact of forested urban parks on conflict, while my 
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results suggest forest patches are used by carnivores and should be considered in conflict 

management planning. 

I hypothesized that black bear and cougar conflict would increase with trail density, but 

found the opposite. This could be because trails interrupt natural habitat for these carnivores and 

make it less likely for them to use an area. However, grizzlies and wolves in northern Canada use 

seismic lines as movement highways (Finnegan et al. 2018). My result could also suggest that 

humans living near heavily-trailed systems are more used to carnivores and thus more likely to 

reduce or remove attractants. Alternately, people who frequently see carnivores may become 

desensitized and less likely to report conflicts they perceive as minor, though Wilbur et al. 

(2018) found that repeated sightings motivated reporting. 

Conflict with black bears and cougars increased with proximity to urban land cover. Urban 

areas may have more unsecured attractants, and thus more conflicts, than rural areas where 

residents may expect carnivore occurrences. Communities unprepared for carnivores may have a 

lower tolerance for carnivores or may experience more severe interactions (i.e. those relating to 

safety or property damage), which have the greatest impact on reporting (Wilbur et al. 2018).  

Conflict had a negative relationship with elevation for black bears and a non-linear 

relationship for cougars, with conflict peaking at medium-low elevation. This matches previous 

results for human-cougar conflict in BC (Teichman, Cristescu, and Nielsen 2013). In the CRD, 

lower elevations typically have more human disturbance and density, so black bears may be 

attracted to urban anthropogenic food sources such as garbage. Locations at medium elevation 

would be an intermediate distance from high human development, that is, areas on the wildland 

interface that are more likely to contain multiple types of attractants including livestock 

attractive to cougars.  



31 
 

Human density was included in the top black bear models and followed my hypothesized 

non-linear relationship with conflict, with higher probabilities of conflict at medium human 

densities (Merkle et al. 2011; Baruch-Mordo et al. 2008). By contrast, the top cougar model had 

a linear decrease between conflict and human density. Humans in suburban and rural areas often 

have more land for growing food and livestock, while also having de-centralized garbage 

removal systems that may lead to available food for bears. These areas may also represent 

intermediate risk to bears as they can access attractants while remaining close to secure cover. 

For cougars, conflict probability declined with human density as they are a more elusive species 

that avoids people (Dellinger et al. 2019). Cougars are also obligate carnivores (Morrison et al. 

2014), thus urban areas without livestock may be less attractive. This is not consistent with 

results found by Teichman et al. (2013) at the provincial scale which found that male cougars 

experienced more conflict at high human densities, but was similar to the finding that females 

had less conflict in more heavily populated areas.  

The best model for black bear conflict also included a negative interaction between human 

and trail densities. Again, this may suggest that humans living closer to parks with trails are 

better informed or more motivated to reduce conflict through attractant removal or other 

mitigations and may also be less likely to report conflicts.  

In terms of seasonality in conflict, I hypothesized that black bear conflict would be highest in 

summer, after the winter denning period and before natural foods such as salmon and berries hit 

their peaks (Davis et al. 2006; Davis 1996). This may be when human food sources are most 

attractive as an efficient way to meet energetic requirements. Conflict with bears did peak in 

summer; however, conflict was present in all seasons as some bears on Vancouver Island are not 

denning due to available food year round and warmer winter temperatures (Johnson et al. 2017). 
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Conflict probability was highest in urban areas during winter, spring, and summer, which I 

suggest is due to the higher availability of garbage in these areas. Garbage is attractive to bears 

because it is available year-round, predictable, renewable, and has a clumped dispersion, making 

it a high energy reward at low effort (Beckmann and Berger 2003). In autumn, conflict 

probability increased in rural areas, which may relate to the greater presence of natural foods or 

agricultural harvest in these areas at these times. The ratio of conflicts associated with non-

garbage human foods (compost, animal feed, or fruit; as reported in the HWCRD) also increased 

as these are more available in rural landscapes in autumn. Merkle et al. (2013) found that bears 

foraged on human foods even when natural options were available, which may suggest they are 

changing their seasonal behaviour to adapt to anthropogenic environments. In the autumn, bears 

that are preparing to den through hyperphagia may instinctually choose the highest density of 

calories which is often aggregated human attractants (Baruch-Mordo et al. 2014). 

On the whole, my results provide targets for efficient deployment of conflict mitigations. 

While the maps are spatial depictions of the modelled associations, some care is required in their 

interpretation. For example, areas predicted to have high conflict probability in Figs 2.3 and 2,4 

have values of the anthropogenic and environmental variables associated with observed 

conflicts; however, some may experience lower conflicts if they are not frequently used by 

carnivores. Understanding carnivore movement and habitat use is required to have a fuller 

understanding of conflict probability (see Chapter 3). Therefore, the maps (and underlying 

models) can be used as general guides for considering mitigation measures, but should be 

combined with local knowledge of managers and residents. Conservation officers, educators, and 

land managers can target communities along the borders of forests to contain their garbage in 

bear-resistant bins and deploy electric fences set to deter multiple species (i.e. multi-strand 
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fences for bears with high walls to deter jumping cougars). Other deterrents that protect livestock 

against multiple carnivore species, like guardian dogs, may also be appropriate (Breitenmoser et 

al. 2005). Temporally, rural attractants increase in importance for bears in the autumn, so focus 

should shift from urban garbage to rural compost containment and fruit removal. These results 

support the current recommendations of BC governmental programs such as Bear Smart and 

WildSafe BC, which advise securing or removing food attractants (Davis, Wellwood, and 

Ciarniello 2002). However, the explicit need to consider deterring multiple carnivore species 

from common attractants such as livestock is an important outcome of this project.  

This project was designed to use readily available information to allow land managers to 

continue updating these models with new conflicts and use the results to target proactive 

mitigation. However, to improve model performance, especially for cougars, further information 

would be beneficial. Cougar habitat selection is often driven by prey (particularly deer; Gladders 

2003; Kertson et al. 2011), so knowledge of prey distribution may help in predicting the 

likelihood of cougar conflicts. For bears, data on berry crops, salmon timing and abundance, and 

the location of all salmon bearing rivers/streams could help tease apart the degree to which 

patterns of conflict in are influenced by those natural food sources relative to agriculture harvest. 

Additionally, rivers and stream locations were important predictors of conflict in other black bear 

models because of the large role of riparian vegetation in black bear diets (Merkle et al. 2011). It 

would also be interesting to further explore the relationship between trail density and conflict to 

see if reporting bias explains the relationship or if carnivores are avoiding heavily trailed areas.  

The conflict probability maps for black bears showed conflict hotspots in downtown core 

areas with low actual conflicts reported in spring, summer, and winter. This may be due to the 

presence of variables conducive to conflict (e.g. high human density), but a lack of connectivity 
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for carnivores to access the urban cores, combined with swift conservation officer attention to 

any animals getting close to urban centres. Physical barriers to entering cities include major 

highways, lack of connected forest, and high human activity both day and night which can scare 

off carnivores. Further research could map connectivity to remove isolated areas from the 

conflict probability map, improving the targeting of mitigation location priorities. The maps also 

extrapolate beyond the range sampled by the availability points for elevation and the distance-to 

metrics. Therefore, the illustrated probabilities far from conflict locations in the upper left of the 

CRD should be interpreted with caution. However, due to their remoteness, the predicted low 

conflict probabilities are expected.  

The overall black bear conflict model had a significant Moran I value suggesting there was 

spatial autocorrelation in the model residuals. By contrast, residuals from the seasonal models 

were not spatially autocorrelated, which may suggest seasonal differences in black bear conflict 

meant that explanatory variables in the non-seasonal model were unable to account for all the 

spatial autocorrelation in conflict locations. Future models could include another variable that 

changes seasonally, or a spatial autocovariate that explicitly includes spatial autocorrelation in 

the model (Augustin, Mugglestone, and Buckland 1996). However, given the similarity in 

variable associations and conflict maps for the overall black bear model versus the seasonal 

models, it is unlikely spatial autocorrelation had a large effect on the results.  

Understanding these spatial and temporal patterns of conflict is critical to facilitating 

coexistence between carnivores and human communities. On Vancouver Island, black bears are 

perceived as less dangerous but more troublesome than cougars (Campbell and Lancaster 2010), 

meaning residents do not want bears to be killed (Don Carlos et al. 2009). This can lead to 

antagonistic relationships between local residents and conservation officers, making residents 
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less likely to report minor conflicts that escalate into situations where an animal is killed for 

public safety. Therefore, if carnivore deaths are reduced by proactive mitigation of conflict, it 

also increases the public trust that conservation officers are protecting both people and wildlife 

(Can et al., 2014).  

As humans expand further into carnivore ranges, conflict with carnivores will increase and 

spread over a greater area, and even more so if anthropogenic attractants are available 

(Beckmann and Berger 2003b; Baruch-Mordo et al. 2008). Given the wide interface of human-

carnivore overlap, proactive measures such as education, bylaw enforcement, or electric fencing 

need to be deployed efficiently. By using available data on conflict and its spatial predictors, the 

underlying drivers of conflict can be understood at local scales where it is critical that conflict 

management actions achieve more effective outcomes. 
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Chapter 3: Factors influencing black bear habitat use and conflict along an urban-wild 

gradient 

3.1 Introduction 

The urban-wildland interface, where human development transitions to wild lands, is 

increasing as human development expands (Woodroffe, Thirgood, and Rabinowitz 2005). Some 

animals are displaced by this change while others are able to adapt their behaviours to use the 

interface (Wolf and Ripple 2017). For instance, many mammals have been found to reduce 

movement (Tucker et al. 2018) and increase nocturnal activity (Gaynor et al. 2018) when using 

areas dominated by people. These behavioural adaptations may function to reduce contact with 

humans, such as limiting activity to times when people are not present, or reflect the constraints 

imposed by anthropogenic habitat fragmentation. Behavioural changes that decrease negative 

interactions may lead to coexistence, where humans and wildlife share landscapes without 

unsustainable risk of death, injury, or significant cost to either party (Carter and Linnell 2016). 

However, these adaptations could also represent attempts by animals to access calorie-rich 

human foods at night when risk of human confrontation is lower, thereby meeting caloric needs 

faster and reducing incentives to move. This could increase conflict, which I define as 

interactions between carnivores and people (including their property/possessions/livelihoods) 

that are negative for one or both parties. This suggests that the same behavioural adaptation, such 

as increased nocturnality, could lead to either coexistence or conflict. 

As the expanding interface is causing increased human-wildlife conflict (Nyhus 2016), it is 

important to understand whether animals are adapting to human influences in a manner that 

promotes coexistence or conflict. A study on tigers in Nepal found that tigers using the same 

trails as humans outside a national park switched to more nighttime activity, avoiding the direct 
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contact which was often linked to attacks on humans and tiger poaching (Carter et al. 2012). This 

change in temporal activity by tigers suggests behaviour that promotes coexistence. In contrast, 

cougars in California, USA, also increased nocturnal behaviour in human-dominated landscapes, 

but at the cost of increasing their movement and thus their caloric expenditure. In this case, the 

behavioural change increased their need for food and potentially the likelihood that they would 

pursue human attractants such as livestock (Wang, Smith, and Wilmers 2017). If an animal is 

changing behaviours in a way that is detrimental to their fitness, either through direct health 

consequences or increased risk of reactive killing in response to conflict, the adaptation is less 

likely to result in coexistence over the long term. 

Anthropogenic food attractants are a common source of human-wildlife conflict (Woodroffe, 

Thirgood, and Rabinowitz 2005). Other conflicts, such as attacks on humans, are often defensive 

rather than beneficial for the animal, so they are more likely to avoid expending that energy and 

risking harm to themselves (as in the tiger example above; Carter et al. 2012). But, human food 

resources like garbage are attractive and appear beneficial as they are consistent at least weekly 

and year round, can be high in calories, and are spatially aggregated, thus requiring less foraging 

effort (Beckmann and Berger 2003b). This can draw animals in from surrounding wild areas and 

create conflict if they are able to access the food. For potentially dangerous animals like 

carnivores, management responses to these conflicts typically involve relocating or destroying 

the animal (Spencer, Beausoleil, and Martorello 2007; Merkle et al. 2013). If mortality is higher 

in areas of greater conflict compared to wild areas with low or no conflict, this represents an 

ecological trap whereby an animal selects the area based on its resources but experiences 

unexpectedly high mortality and lowered fitness (Lamb et al. 2017). These ecological traps 
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function as population sinks which have negative impacts on long-term population persistence 

(Beckmann and Lackey 2008). 

The impact of an ecological trap can be greater for carnivores than species at lower trophic 

levels. Carnivores tend to have larger home ranges, which may increase the distance a carnivore 

could be attracted to an urban area from (Lamb et al. 2017). They often lack natural predators 

and thus may be less likely to perceive risk (Lamb et al. 2017). And carnivores typically have 

slower recruitment rates which may decrease their ability to adapt to increased mortality 

(Beckmann and Lackey 2008). For example, when ungulates were depleted by European 

colonizers in North America, grey wolves turned to livestock, moving out of wild lands into 

agricultural areas (Breck and Meier 2004). The real and perceived risk of wolf depredation of 

livetock, in addition to fears for human safety, catalyzed extermination campaigns that swiftly 

led to wolf population declines across most of the United States (Woodroffe, Thirgood, and 

Rabinowitz 2005).  

Carnivores may be able to coexist with humans if anthropogenic food attractants are secured 

or the mortality risks associated with human-dominated areas are clear. Often this requires 

proactive mitigation from people to create an environment that is either free of attractants or 

hostile to carnivores. For instance, if securing all livestock indoors is not an option, setting up an 

electric fence to deter carnivores can reduce conflict (Breitenmoser et al. 2005). To know 

whether new mitigations are required or if current mitigations are working, we need to 

understand how carnivores are using habitat within the urban-wildland interface and how that 

relates to conflict. 

Black bears (Ursus americanus) are a useful species for this research question as they often 

occupy the urban-wildland interface and have been found to change their natural behaviours 
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spatially and temporally as a result of human disturbance. They are a forest-adapted species but 

have generalist diets and the ability to alter their foraging patterns quickly to access new food 

sources (Beckmann and Berger 2003b; Don Carlos et al. 2009; Merkle et al. 2013). As a 

hibernating species, black bears exhibit hyperphagy, where they excessively eat to store energy 

over the summer and fall in order to survive the winter (Spencer, Beausoleil, and Martorello 

2007). Unlike many other members of Order Carnivora, bears are omnivores, which opens up 

more avenues for human-bear conflict over food in human landscapes, as bears may eat not only 

livestock, but also garbage, compost, bird feed, and fruit. Anthropogenic food sources are often 

selected over wild ones by bears (Merkle et al. 2013), suggesting food-conditioning may be 

responsible for changes in bear behaviour in the urban-wildland interface. In Nevada, black bears 

in urban spaces differed from their wild counterparts by being less active each day (as they met 

their caloric intake faster), switching from diurnal to nocturnal activity to avoid direct human 

encounters, and spending shorter periods in dens (i.e. entering dens significantly later and 

leaving earlier; Beckmann and Berger 2003b). Evidence suggests that some bears do not 

hibernate at all if they live in moderate climates and have continuous food sources like garbage 

in the winter (H. E. Johnson et al. 2017). 

Human-bear conflicts peak in the late summer and early fall, when bears go into hyperphagia 

(Spencer, Beausoleil, and Martorello 2007). Conflicts may also be higher in urban environments 

with intermediate human density that are near wild areas (Baruch-Mordo et al. 2008, Chapter 2.). 

A study surveying black bear managers across North America found that 69% ranked 

garbage/food attractants as the most common reason for conflict (Spencer, Beausoleil, and 

Martorello 2007), and another study found that the number of conflicts per year is increasing 

(Baruch-Mordo et al. 2008). Management responses to these conflicts typically involve 
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relocating or destroying the bear (Spencer, Beausoleil, and Martorello 2007; Merkle et al. 2013). 

Understanding where bears are using space and how that relates to their probability of conflict, 

would allow land managers to direct mitigation to areas in need and evaluate if current 

mitigations are effective. This could lower the mortality cost of bears that use the urban-wildland 

interface, and ultimately remove a potential ecological trap. 

Previous research on black bear habitat use has found that bears typically avoid people by 

spending less time in developed areas or near roads (Carter et al. 2010), and instead select for 

forested habitat (Carter et al. 2010; Lyons, Gaines, and Servheen 2003), close to edges and low 

elevations where they can access vegetation in meadows and riparian areas (Lyons, Gaines, and 

Servheen 2003). By preferring edges they are already primed to thrive in the urban-wildland 

interface as rural and suburban development creates more edge habitat which may increase 

natural foods like berries (Davis et al. 2006) and bring in new anthropogenic food attractants. 

The interface is also where conflict was most probable in my Chapter 2 analysis of human-black 

bear conflict. I found that conflict probability increased when human disturbance (urban land 

cover) adjoined natural habitat (intact forest and forest patches), and in areas with medium 

human density. However, in autumn, high-conflict probability expanded into rural/agricultural 

areas, and reports of human-bear conflict shifted from primarily garbage to fruit, compost, and 

other rural attractants. Carter et al. (2010) found that male bears selected for agricultural lands, 

but these patterns may shift during years of high natural food productivity (Baruch-Mordo et al. 

2014). It is also likely that seasonal conditions affect the attractiveness of human areas, as is seen 

with the increase of rural conflicts during summer and autumn when crops ripen. Thus it is 

important to study bear habitat use both spatially and temporally to understand the implications 

for conflict.  
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3.1.1 Study objectives 

In this study, I aimed to understand the spatial and temporal dynamics of black bear habitat 

use along a gradient of human disturbance from urban to wild. I used camera traps to estimate 

the relative abundance of black bears as an index of bear habitat use to determine if bears were 

more active in urban, rural, or wild areas over a full year. I also compared the predicted relative 

probability of human-black bear conflict (from Chapter 2) to habitat use to determine the 

relationship between bear use and conflict. And finally, I tested if bears in human-dominated 

landscapes were more active at night compared to when they were in wild areas.  

I predicted that if bears were unable to perceive the mortality risk posed by humans, they 

would not show spatial or temporal avoidance behaviours, and would be more likely to 

experience conflicts. Thus, I expected bears to be most active in rural areas (i.e., the interface 

between urban and wild) where they had access to a broader spectrum of human attractants, such 

as garbage and bird feeders, but also unique attractants like livestock and food crops in addition 

to wild resources. Following this logic, I expected bear habitat use to be best modelled by the 

same variables used in Chapter 2 to model variation in conflict (with the same variable 

associations suggesting the bears were selecting areas that have a higher conflict probability), by 

anthropogenic variables such as being strongly associated with higher human density, or by 

environmental variables such as negative associations to forest or high elevation. I hypothesized 

that if bear habitat use was greater in high-conflict or human-dominated areas, this would 

suggest the bears were not coexisting (by avoiding people) and Sooke could be an ecological 

trap. Since conflict was also highest in the urban-wildland interface (Chapter 2), I expected 

conflict to have a positive relationship with bear use. Additionally, if human landscapes were not 
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perceived by bears to be risky, I expected no difference in the amount of nocturnal behaviour in 

urban versus wild areas.  

As an alternative hypothesis, if bears were adapting for coexistence or if effective mitigation 

was in place allowing the bears to learn there was no longer a benefit of using human areas, I 

predicted bears to be spatially and temporally avoiding people (Gaynor et al. 2018; Beckmann 

and Berger 2003b). Accordingly, I expected habitat use to be best modelled by either 

environmental variables only with positive associations, anthropogenic variables only with 

negative associations, or by the same variables as used to model conflict but with opposite 

associations than in Chapter 2, such that bears were avoiding conflict areas. If habitat use was 

greater in low-conflict areas, away from humans, or best modelled by environmental variables, 

this would be consistent with the idea that bears were learning from or adapting to humans (and 

potentially their mitigation measures), and thus coexisting. Therefore I expected the areas of 

greatest space use to be those with a low-conflict probability. I also predicted bears would be 

more active at nighttime in urban and rural areas than in wild areas.  

3.2 Methods 

3.2.1 Study area 

The municipality of Sooke, west of Victoria on Vancouver Island, British Columbia, has a 

current human population of approximately 13,000 and is the second fastest growing 

municipality in the Capital Regional District (CRD 2016), resulting in forested land being 

converted into new housing developments. Sooke has 60% of the reported human-bear conflicts 

in the CRD, with over double the number of calls to the conservation officers than any other 

municipality (Conservation Officer Service, unpublished data). Sooke also has the highest 

conflict-related mortality for black bears, accounting for 38 of the 60 bear deaths reported 
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between 2011-2017. These deaths were all management actions in response to conflict, primarily 

through trapping and euthanizing the bears.  

3.2.2 Camera traps 

I used a camera trap survey to assess spatial and temporal variation in bear occurrence. I set 

54 camera traps in and adjacent to Sooke along a gradient of human disturbance from urban to 

wild, covering an area of 80 km2 (Fig. 3.1). Camera traps are an established tool for monitoring 

large terrestrial animals with minimal human influence on behaviour, and can be as effective as 

other methods such as collaring depending on research objectives (Caravaggi et al. 2017). 

Camera trapping is non-invasive and thus safer for both the animals and researchers (Burton et 

al. 2015). 

Cameras were deployed following a stratified design to allow for representative allocation of 

cameras based on the proportion of the 80 km2 survey area falling within one of three strata: 

urban (11 cameras), rural (19), or wild (24; Morrison et al. 2008). Urban and rural camera sites 

were located on private properties selected from a candidate list of residents to maintain 200-500 

m between cameras, which I deemed sufficient for spatial independence (following EMammal 

2017). Wild sites were those in Sea to Sea Regional Park and T’Sou-ke Nation lands. To 

randomize sampling locations within the regional park while maintaining accessibility, a 500 x 

500m grid was overlaid on trail maps and 10 random cells that contained a trail were selected. 

For areas with only one main trail, cameras were set off the main trail, 200-500m apart. 

Deployment occurred between early July 2018 and August 2018. In order to sample seasonal 

variation in black bear habitat use (Davis et al. 2006), all cameras remained deployed for a full 

year, and were retrieved in July 2019. I used a combination of three models of camera trap: 

Reconyx PC900, Reconyx HC600, and Browning Strike Force HD Pro. To reduce potential 
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effects of different detectability between camera models, they were randomly allocated across 

strata.  

 

Figure 3.1: Location of camera traps used to sample black bear relative abundance in and around 

the municipality of Sooke on Vancouver Island, BC, Canada. Vegetation includes coniferous and 

deciduous forest, shrubs, herbs, and grass. Land cover adapted from CRD Regional Parks 

(Caslys Consulting Ltd 2017).  

 

Within a selected property or sampling cell, I set cameras at locations chosen to maximize 

the probability of detecting bears that occurred there, using local knowledge of where bears 

moved across properties, or the presence of animal trails and sign. One camera per site was set 

on a tree approximately one metre above the ground, at high sensitivity, with a one second delay 
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between triggers (one image per trigger), and facing open spaces such as meadows, lawns, or 

animal trails. Cameras were also set on unofficial low-use human trails as black bears have 

shown a preference for using low-use human paths because of the ease of movement and 

increased shrub vegetation containing berries (Davis et al. 2006; Latham, Latham, and Boyce 

2011). If possible, cameras faced an intersection of multiple animal and/or low-use human trails. 

I visited the camera traps every 2-3 months to download images, check functionality and 

replace batteries as needed. I used Timelapse Image Analyzer 2.0 (Greenberg and Godin 2015) 

to classify all camera trap images of black bears. I defined independent detection events as those 

separated by at least 30 minutes to avoid pseudoreplication as individual bears were not uniquely 

identifiable (Burton et al. 2015). I summed the number of events at each camera site for each 

month (702 observations: 13 months x 54 cameras) to calculate the index of relative abundance 

as a proxy for habitat use. 

3.2.3 Modelling framework 

I used a zero-inflated generalized linear mixed modelling (GLMM) framework in R (R Core 

Team 2018) to model bear habitat use. My dependent variable was the calculated relative 

abundance of black bears at each camera monthly (a count of independent detections). Some 

cameras did not detect bears every month and others never detected a bear, leading to 80% zeros 

in the dependent variable, therefore I used zero-inflated modelling (Zuur and Ieno 2016). To 

address overdispersion in the Poisson distribution, I used a negative binomial regression model. I 

used Akaike’s Information Criterion (AIC) to compare models and selected the lowest AIC as 

my top model (Burnham and Anderson 2002). To control for the fact that bear detections at a site 

were not independent across months (i.e. repeated measures), I included a random intercept for 
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camera site in all of my models. Some cameras experienced failures which I accounted for in my 

models by including a variable of active days per month for each camera. 

 

3.2.4 Predictor variables 

To relate bear detections to environmental and anthropogenic features, I extracted a suite of 

independent variables at each camera trap location. I included the same variables as in my 

Chapter 2 analysis on predictors of conflict to allow for direct comparison of the importance of 

these variables in explaining reported conflicts at the regional scale versus bear habitat use at the 

local scale. Specifically, the variables were human density, trail density, road density, elevation, 

and distance to agriculture, urban, intact forest, or forest patches (details in Appendix 5). All 

variables were extracted within a weighted 150m buffer around each camera site. However, I 

thought that the distance-to variables from Chapter 2 might be missing some fine-scale 

variability in Sooke. Since all cameras were set within forest patches, I evaluated the explanatory 

benefit of replacing the distance-to-forest variables with the Enhanced Vegetation Index (EVI) 

from MODIS’s 250m 16-day layers (MOD13Q1), which characterizes variation in vegetation 

greenness, leaf area and canopy architecture. Unlike other common vegetation indices, EVI does 

not saturate in high biomass areas like forests, remaining sensitive to variation (Huete et al. 

2002), so it can be used to compare sites that are all forested but might have differences in 

productivity. EVI can also be used as a proxy for fruit in rural areas as ripeness peaks at the same 

time (Fraga et al. 2017). I used a weighted average based on number of days the 16-day MODIS 

window had within my focal calendar month of analysis and the amount each raster cell fell into 

a 150m buffer around each camera site. I also calculated a new land cover variable describing the 

proportion of area developed around each camera site, by summing the proportion of urban, 
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agriculture and grass land cover classes (Caslys Consulting Ltd 2017). This variable could 

replace distance-to-agriculture and -to-urban since they did not account for developed areas in 

Sooke with manicured lawns or pastures. However, it was highly correlated with human density 

(r = 0.85) while the distance-to variables were not, so they were not replaced. To assess if the 

alternative EVI improved upon the “distance-to-forest” variables, I ran competing regression 

models with the original variables and the alternative variables and compared them using AIC 

(Appendix 6). The model using the alternative variables had a lower AIC so all further model 

selection used those.  

I also generated additional Sooke-specific variables to account for some natural food 

occurrence and recent conflict reports. I included distance to freshwater, as riparian vegetation 

has been shown to be important for black bears (Merkle et al. 2011), presence/absence of salmon 

at sites near salmon-bearing water (Charters Creek Hatchery, unpublished data), and number of 

reported conflicts within a 500 m buffer of a camera site within the study year (British Columbia 

Conservation Officer Service 2019).  

All predictor variables were standardized by subtracting the mean and dividing by 1 standard 

deviation, to allow for direct comparison of estimated effect sizes on bear habitat use. I ran a 

correlation matrix across all predictor variables for the selected scales to ensure no variables 

were collinear at r > 0.7 (Hosmer and Lemeshow 2000, correlation matrix in Appendix 7). I also 

tested for non-independence in terms of spatial autocorrelation in the residuals from best-

supported models using Moran’s I test (Plant 2012).   

3.2 5 Candidate models 

I specified a set of candidate models to explain spatial and temporal variation in black bear 

habitat use (Appendix 6). The first model used the same variables as in Chapter 2 (where I 
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modelled conflict probability using both anthropogenic and environmental variables), but with 

EVI instead of the distance-to-forest variables as discussed above, to test if bears were selecting 

areas with conditions that increase conflict probability (the “conflict” model). The second model 

used only anthropogenic variables to test if bears selected areas based on human attractants and 

disturbance (“human disturbance”). The third model included only environmental variables to 

test if bears were using areas based on natural food occurrence and security cover 

(“environmental”). The final model was a full model with all covariates. I also included a 

quadratic term for human density in all candidate models with anthropogenic variables, to allow 

for bear selection of intermediate values targeting rural areas, as well as an interaction between 

human and trail density to test if human areas near trails had increased bear activity due to 

accessibility.  

I used the package glmmTMB which includes two types of negative binomial distributions 

(Nbinom1 and Nbinom2) that differ in the way they treat the variance: linearly or quadratically, 

respectively (Brooks et al. 2017). All candidate models were fit using both negative binomial 

distributions and compared using AIC, with Nbinom2 fitting best and thus being used for 

inferences.  

3.2.6 Habitat use vs. conflict probability 

I compared black bear habitat use (relative abundance) to the probability of human-black 

bear conflict (predicted from my Chapter 2 analysis, map in Appendix 8), as an indicator of 

spatial variation in the probability of conflict, to see if habitat use was higher in areas of greater 

conflict probability. Given that black bear habitat use is expected to vary seasonally following 

food availability, I used seasonal conflict probability outputs and grouped monthly relative 

abundance into four seasons to match these outputs (spring: February-April, summer: May-July, 
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autumn: August-October, and winter: November-January). I then converted relative abundance 

to the log scale to reduce the clumping around zero, adding 1 to each relative abundance value to 

allow zeros to stay at zero. I categorized conflict probability at each camera site from Chapter 2 

model outputs predicted to raster cells in Sooke using the same 150m buffer explained above. I 

divided the probability of conflict into three equal bins (high-, medium-, and low-conflict) 

determined by dividing the maximum conflict probability value into three equal groups. In Sooke 

the maximum value was 55 out of 100, resulting in binned conflict probabilities of 0-18.3, 18.4-

36.6, and 36.7-55. I used violin plots to visually compare seasonal habitat use by bears across 

each level of conflict probaility.  

3.2.7 Nocturnality 

To test if human disturbance is influencing nocturnality in black bears, I compared the 

percent of bear activity that occurred at night between areas of high vs. low disturbance areas 

(Gaynor et al. 2018). I calculated a “risk ratio” as RR = ln(Xh/Xl), where Xh is percent nighttime 

activity (i.e., the proportion of nighttime detections out of all detections) at high disturbance and 

X1 is percent nighttime activity at low disturbance. A positive RR would suggest a greater degree 

of nocturnality in response to humans, whereas a negative RR would indicate reduced 

nocturnality. I classified all independent bear detections as occurring either during the “day” 

(between sunrise and sunset) or “night” (between sunset and sunrise), with daily sunrise/sunset 

values for the study area obtained from the R package suncalc (Thieurmel and Elmarhraouli 

2019).  
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3.3 Results 

Camera traps detected black bears in all months of the survey (N = 548 independent 

detections over 16,546 camera trap days; example camera trap images in Appendix 9), averaging 

42 monthly detections, with the most detections in September 2018 (n = 148) and the least in 

February and March of 2019 (n = 1 each; Fig. 3.2).  

Patterns of habitat use by black bears in Sooke were best explained by the “conflict” model, 

i.e., the same anthropogenic and environmental variables that explained broader patterns of 

conflict in the CRD (with the substitution of EVI for the distance-to-forest variables; Table 3.1). 

A Moran I test on the residuals of the conflict model failed to reject the null hypothesis of no 

spatial autocorrelation (Moran I = -0.050, p-value = 0.999).   

Bears were more active in areas with high vegetation productivity (EVI, Fig. 3.3), which is 

parks and crown land forest in winter and spring, but rural areas in summer and autumn (Fig. 

3.4). Bears avoided areas with high human density and preferred low elevations. Road density, 

distance-to-urban and -agriculture, and trail density were not significant as they had 95% 

confidence intervals that included zero, although the negative mean for trail density may suggest 

a negative effect on habitat use. As expected, monthly detections of bears increased with 

sampling effort at a camera station (active days).   

Relative abundance and seasonal probability of conflict were unrelated in spring, summer, 

and winter (Fig. 3.5, mean, range and SD in Appendix 10), as there were few detections in spring 

and the majority of detections for summer and winter occurred in areas classified as medium-

conflict probability. However, in autumn, habitat use seemed to increase with conflict probability 

in Sooke. This matches the above finding that bears followed high EVI into rural areas which 

have high-conflict probability in the autumn.  
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The risk ratio for nighttime activity in urban versus wild areas was positive (0.823, Appendix 

11; I also attempted calculating RR for different seasons but sample size was low, see Appendix 

12), suggesting more nocturnal behaviour in urban areas. The same trend was seen in rural 

versus wild areas (0.712). This supports the hypothesis that bears are coexisting by avoiding 

direct encounters with humans.  
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Table 3.1: Candidate models for relative abundance of black bears measured from 54 camera traps sampled in and around Sooke, BC, 

Canada from July 2018 – July 2019 using zero-inflated GLMMs. Evaluated covariates include HD = human density, RD = road 

density, TD = trail density, EVI = enhanced vegetation index, DUrb, = distance to urban, DAg = distance to agriculture, Con = 

conflict, DW = distance to water, Sal = salmon, Ele = elevation, and AD = active days. Values following variable names represent the 

buffer radius used to measure the variables. Df is the degrees of freedom of the model, ΔAIC is the difference in AIC scores from the 

top model. All models also have a random intercept for camera trap site.  

 

 

Predictor Variables df  ΔAIC 

Conflict  HD150 + HD1502 + RD150 + EVI150 + DUrb150 + Dag150 + Ele150 + TD150 + TD150*HD150 + 

AD 

14 0.0 

Full Model HD150 + HD1502 + RD150 + EVI150 + DUrb150 + Dag150 + Con500 + DW150 + Sal + Ele150 + 

TD150 + TD150*HD150 + AD 

17 2.1 

Human 

Disturbance 

HD150 + HD1502 + RD150 + DUrb150 + Dag150 + Con500 + TD150 + TD150*HD150 + AD 13 5.2 

Environmental EVI150 + DW150 + Sal + Ele150 + AD 

 

9 11.3 



53 
 

 

Figure 3.2: Bar chart of the number of independent black bear detections from 54 camera traps in 

Sooke, BC, per month from July 2018 - July 2019.  
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Figure 3.3: Average Enhanced Vegetation Index (EVI) extracted to 54 sites in Sooke, BC, 

Canada sampled from July 2018-2019 averaged by strata type (urban, rural, or wild) to account 

for sampling effort differing between strata. EVI value based on number of days the 16-day 

MODIS satellite window had within a calendar month and the amount each raster cell fell into a 

150m buffer around each site. 
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Figure 3.4: Estimated effects of human and environmental variables on black bear relative 

abundance in Sooke, BC, Canada. Coefficients from best-supported zero-inflated negative-

binomial GLMM of monthly detections from 54 camera traps sampled July 2018-2019 illustrated 

as mean and 95% confidence intervals. Predictor variables have been standardized to a mean of 

zero and standard deviation of one to allow for direct comparison.  
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Figure 3.5: Relationship between conflict probability and black bear habitat use (relative 

abundance) in Sooke, BC, Canada from 54 camera traps sampled from July 2018-2019. Violin 

plots represent the relationship between log-transformed relative abundance (data shown by dots 

coloured by strata: urban, rural, or wild) and model-estimated seasonal conflict probability 

binned into three levels of conflict probability in spring: February-April, summer: May-July, 

autumn: August-October, and winter: November-January.  
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3.4 Discussion 

My results suggest that black bears in Sooke are changing their behaviours in response to 

human presence. The municipality of Sooke has the highest reported rates of human-bear conflict 

and conflict-related bear mortality on Vancouver Island, which is already known for having one 

of the highest rates of human-bear interactions in North America (Campbell and Lancaster 

2010). Therefore, Sooke represents an opportunity to investigate whether bears are changing 

their behaviours to coexist or conflict with people. I used camera traps and previously modelled 

probability of conflict to show that bears are shifting their habitat use spatially by season and 

increasing their nocturnal activity in human spaces. 

Taken together, my results suggest that bears are spending most of the year in forests on the 

edge of the urban-wildland interface rather than in rural areas. This allows bears to access natural 

foods most abundant in edge habitat, such as berries (Davis et al. 2006), while also providing the 

opportunity to supplement their diet with human food resources in rural and forest-adjacent 

urban landscapes. When venturing into human spaces, bears adjust their temporal activity to 

become more nocturnal, and thereby reduce the chance of interactions with people, but not to 

avoid other types of conflict such as accessing garbage or fruit. In spring, summer, and winter 

bears spend most of their time in areas of low- or medium-probability of conflict, but in autumn 

they use areas of high conflict probability. This suggests that the natural drive to prepare for 

denning, coupled with the peak of anthropogenic crop ripeness, provides a greater risk of human-

bear conflict. If these conflicts are leading to increased risk of bear mortality, autumnal 

attractants may be creating an ecological trap. 

I hypothesized that if bears were able to perceive the mortality risk associated with human 

areas, they would avoid people spatially and temporally. Indeed, my results suggest that habitat 
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use increased away from human density and potentially trail density across the urban-wildland 

interface. This matches a study in Michigan which found that black bears avoided people (based 

on metrics of developed lands and roads; Carter et al. 2010). Interestingly, my variables for 

distance-to-urban and to-agriculture and road density were non-significant, which may suggest 

bears in Sooke are avoiding direct human encounters rather than landscape disturbance.  

Bear activity was more nocturnal in urban and rural areas than at wild sites, further 

suggesting they are avoiding direct interactions with humans and possibly facilitating human-

wildlife coexistence (Gaynor et al. 2018). However, nocturnal activity could increase a bear’s 

ability to access food attractants like garbage, compost, or livestock, which may be less guarded 

at night when most people are asleep. This is supported by research from Colorado which found 

that in years of poor natural food availability, bears became more nocturnal as they used higher 

human density areas to access anthropogenic food sources (Baruch-Mordo et al. 2014). And 

nighttime activity in bears has been found to peak in spring, when food is scarce, and in autumn, 

when energetic requirements are high, further suggesting it is an adaptation to access human 

resources (Zeller et al. 2019). Therefore, despite the change in behaviour, conflicts could still be 

detrimental to bear fitness if they damage property and result in reactive management in the form 

of killing the conflict bear, which would lead to mortality regardless of nocturnal activity. 

Consequently, while nocturnality may be an adaptation for coexistence in that it reduces face-to-

face encounters between bears and people, bears may not be truly coexisting unless people 

secure attractants at night to reduce food-related conflicts. Additional research on individual 

fitness in wild versus human areas would be required to determine if coexistence is occurring. 

I found results consistent with a lack of human-bear coexistence in autumn, when rural areas 

have the broadest spectrum of anthropogenic food attractants. Bear habitat use increased in areas 
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with greater EVI, which corresponds to wild, intact forest in winter and spring. The selection for 

forest is unsurprising as it supports other studies that have found bears select forested habitat 

(Carter et al. 2010; Lyons, Gaines, and Servheen 2003). As a forest-adapted species, black bears 

use forest for shelter as well as natural foods. However, EVI also captures seasonal changes in 

the spatial variation in productivity, and the peaks in EVI switched to rural areas in summer and 

autumn. My sites were all within forests, but the 150m buffer around sites, in addition to the 

250m raster cell size of the EVI layers, sampled the rural lands around the cameras as well, 

which included crops, orchards, and naturally occurring berries along the forest margins. While 

EVI does not directly account for fruit, a study comparing EVI to grape ripeness found they 

peaked at the same time (Fraga et al. 2017). Bears may then be drawn into human areas as they 

are attracted to crops coming into season. Fruit especially has been found to be selected over 

natural and other anthropogenic attractants by black bears in Nevada (Merkle et al. 2013) and 

grizzly bears in Canada (Lamb et al. 2017).  

Habitat use by bears decreased with increasing elevation. This may suggest bears are 

selecting for natural food sources such as fish and riparian vegetation along rivers and shoreline, 

however distance to water was not highly correlated with elevation and rivers were present 

across the study area. In Sooke, human-dominated areas are concentrated along the coast at low 

elevations and intact forest is present at higher elevations. This suggests the bears are still 

selecting for areas near people. By spending most of their time in shelter cover and avoiding 

human interactions, bears could still function undisturbed. However, by remaining close to 

people they have the option to move briefly into human areas and access food attractants. Indeed, 

black bears have been found to base their home ranges on food abundance, but within that range 

they select security habitat close to edges as they often naturally feed in meadows and riparian 
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areas (Lyons, Gaines, and Servheen 2003). This behaviour could also extend to human food 

resources, suggesting bears choose habitat near people to exploit anthropogenic attractants.  

Given results from the bear habitat use models that maintain plausibility for both my 

coexistence and conflict hypotheses, the observed relationship between use and conflict 

probability provides some clarity. Black bears spent more time in areas of medium- and low-

conflict probability in spring, summer, and winter. However, in the autumn, activity increased in 

high-conflict spaces. The overall probability of conflict increased in the autumn, but this was 

modelled using a history of seven years of conflicts in Chapter 2, thus it may reflect bears 

following the EVI peak into rural lands. As discussed above, the addition of orchard fruits as an 

attractant when they ripen in the late summer and autumn may be more attractive to bears than 

garbage or natural foods. As this is the time of year that bears go into hyperphagia to prepare for 

hibernation (Baruch-Mordo et al. 2014), they are more food-motivated and thus even if they 

perceived the mortality risk of human areas they may be willing to access the anthropogenic food 

regardless.  

Overall, I suggest that the inferred bear behavioural changes to avoid humans spatially and 

temporally within the human-wildland interface represent a step towards coexistence. 

Specifically, the fact that bears are preferring forest away from human-use trails and avoiding 

daytime encounters with people matches their natural behaviours. However, they are not 

avoiding the risk associated with food-related conflicts. Therefore, to have true coexistence, 

humans must also adjust to living with bears. Coexistence with carnivores necessitates some 

tolerance of conflict risk as it will always exist if carnivores are present, but to reduce that risk to 

an acceptable level, mitigation is required (Carter and Linnell 2016). For instance, securing 
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potential bear attractants in all seasons, with an emphasis on fall resources, such as by picking 

fruit in a timely manner. 

Given the relatively small size of the Sooke study area, it is likely that the bears detected 

across the human disturbance gradient are the same individuals moving around, as black bears 

are not territorial (Horner and Powell 1990) and female home ranges on Vancouver Island have 

been estimated at 7.83 km2 (Davis et al. 2006) with male ranges typically being larger (Carter et 

al. 2010). Thus, bears in Sooke have already shown behavioural plasticity by shifting their 

temporal activity as they venture into human-dominated spaces. Previous research has shown 

other bear behaviours can switch as well. In Colorado, a study found that black bears used 

human food more when there was a natural shortage, but that these trends reversed in subsequent 

years as natural food came back (Baruch-Mordo et al. 2014). These food shortages may increase 

with climate change. Along the west coast of North America, climate models suggest 

huckleberry (Vaccinium membranaceum) ranges are going to contract and shift, with ripening 

occurring earlier, throwing off the historical patterns to which bears have adapted (Prevéy et al. 

2020). And, carrying capacities for Pacific salmon have been projected to decline with climate 

change (Kaeriyama, Seo, and Kudo 2009). If such declines occur with a range of natural bear 

food resources, the drive to access rich human foods and thus the probability of conflict and 

mortality will likely increase as bears try to meet their energetic requirements. In Colorado, a 

natural food shortage caused a 57% decline in female bears as reactive management removed 

those that were involved in conflicts as they were adjusting to an unexpected change (Laufenberg 

et al. 2018). This represents an ecological trap, where the human areas were selected due to food 

resources, but they come with a higher mortality rate. If urban areas are attractive to wild bears 
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and have the potential to decrease home range size and increase density (Beckmann and Berger 

2003a), these areas could be a population sink that could affect a wider region (Doak 1995).  

My study represents important foundational work for future research on human-bear 

interactions in this regional hotspot of conflict. Useful next steps would be to estimate bear 

densities in the urban-wildland interface compared to wild regions, and to track individual 

movements to determine if bears are being drawn to urban spaces from wilder areas, and whether 

a few “problem” individuals are responsible for the majority of conflicts. These results would 

benefit our understanding of whether the mortality risk of conflict for bears in the urban-wildland 

interface affects baseline survival. Extending the sampling period of the current design while 

adding finer scale data on natural bear foods – particularly salmon and berries – could also 

provide information on how dependent bear conflict behaviours are on natural food availability.  

It is important for land managers to know if animal behavioural adaptations to human 

presence are creating coexistence or increasing mortality through conflict. If the latter, 

behavioural plasticity may mean that securing animal attractants would allow wildlife to switch 

back to accessing natural food resources (Baruch-Mordo et al. 2014). As the urban-wildland 

interface expands, coexistence will require both humans and wildlife to adapt to avoid conflict 

(Carter and Linnell 2016). For humans, this entails proactive mitigation such as containing rural 

attractants in peak season. But the specific mitigations required will vary by species and socio-

ecological context, so research should begin by determining the patterns of space use by wildlife 

in human-dominated areas and relating them to conflict outcomes. 
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Chapter 4: Conclusion  

4.1 Synthesis and conclusions 

Globally, carnivore ranges are declining and wild areas are shrinking as human development 

expands into new areas (Wolf and Ripple 2017). However, some species are adapting to living in 

human-dominated landscapes, either by avoiding negative interactions with people (Gaynor et al. 

2018; Tucker et al. 2018) or by accessing anthropogenic food resources to survive in a novel 

system (Baruch-Mordo et al. 2014). The latter can be a type of human-carnivore conflict which 

is often met with lethal reactions to the animal in response to perceived or real risk to livelihoods 

and safety (Treves, Krofel, and McManus 2016). But since carnivores have important functional 

roles within healthy ecosystems, exerting top-down controls on other trophic levels, mortality 

from conflict management can have negative repercussions for not only the carnivore species, 

but the whole ecosystem, including people (Ripple et al. 2014). Therefore, conflict mitigation is 

required to sustain carnivore populations while protecting human investments. Some mitigation 

methods have been successfully tested, and new ones come out frequently, but all require time 

and money (Treves, Krofel, and McManus 2016). Even in a developed country, these costs may 

fall on underfunded local governments or residents themselves. Therefore, research is needed to 

investigate where conflict is probable and if carnivores are learning from or adapting to human-

dominated landscapes. This research can in turn inform outlooks for future conflicts and their 

prevention through efficient mitigations.  

My thesis used conflict reports, GIS data, and camera trap detections to investigate human-

carnivore conflict and carnivore habitat use across local and regional spatial scales and seasonal 

temporal scales. By understanding where carnivores are, and what potential risk they bring if 

present, mitigation can be thoughtfully placed on the landscape to best reduce conflict. I 
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demonstrated how available data can be used to understand the distribution of conflict 

probability, how camera traps can be used to assess patterns of habitat use, and ultimately how 

both can support efficient deployment of proactive mitigations. I found that human-carnivore 

conflict and carnivore habitat use both occur primarily in the urban-wildland interface, however 

they vary spatially and temporally, and thus studies should consider the dynamics of both scales. 

In Chapter 2, I tested a suite of anthropogenic and environmental predictors to model the 

probability of human-black bear and human-cougar conflict. Black bear conflict reports 

increased in the urban-wildland interface where high human disturbance and intermediate human 

density bordered natural habitat. This pattern may result from a trade-off for bears between the 

energetic benefits of suburban food attractants and access to safety in the forest (Lyons, Gaines, 

and Servheen 2003). However, in autumn, the effect of human density declined and conflict 

increased in rural/agricultural areas. This occurred during hyperphagia, as the bears store fat for 

winter, which incentivizes high-calorie, clumped human foods (Beckmann and Berger 2003a). In 

contrast, cougar conflict declined with increasing human density, likely due to this elusive 

species’ tendency to avoid people (Dellinger et al. 2019). But conflict was still most probable in 

the interface, close to both forests and urban areas, as the main food attractant for cougars is 

livestock living on the margins of human-occupied land (Teichman, Cristescu, and Nielsen 2013) 

or deer selecting human habitats (Muhly et al. 2011). These results provide targets for efficient 

mitigation deployment. Spatially, communities along the border of forests need funding or other 

support to contain their garbage in bear-resistant bins (as has been successful in Whistler and 

Port Coquitlam, BC), and, since black bears and cougars were found to eat the same livestock 

species (Peter Pauwels, BC Conservation Officer Service, personal communication), depredation 

mitigations that are sufficient to defend against both species (e.g. tall electric fences; 
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Breitenmoser et al. 2005). Temporally, rural attractants increase in importance for black bears in 

the autumn, so the focus should shift from urban garbage to rural compost containment and fruit 

removal. Whether mitigation is paid for and maintained by government, NGOs, or residents, 

these predictors will aid in implementing mitigations only where needed.  

In Chapter 3, I investigated black bear habitat use to determine where they spent their time 

along a gradient of human disturbance from urban to wild, and how that related to the probability 

of conflict on that gradient. For most of the year, bears avoided humans spatially and temporally, 

preferring wild forests at low- or medium-conflict probabilities, and shifted to more nighttime 

activity in urban and rural areas. However, as with conflict in Chapter 2, this pattern switched in 

autumn when bears increased activity in high-conflict regions, likely due to hyperphagia leading 

to reduced fear of people in response to the draw of ripe fruit and crops. Thus, bear behaviour 

may be changing in the urban-wildland interface in a way that predominantly leads to 

coexistence, but food-related conflicts, especially in autumn before denning, need to be mitigated 

by humans. Together, this research suggests that for black bears, conflict probability is greater 

than zero in all seasons, but the mirroring of habitat use and conflict probability in rural areas in 

autumn means that this is the season and stratum most in need of mitigation. So far, educational 

outreach about human-bear coexistence has mainly focused on garbage management (Spencer, 

Beausoleil, and Martorello 2007). My results could suggest that efforts to reduce garbage 

availability have been effective and led to bears staying in their natural environment, or 

conversely they could indicate that seasonally varying attractants are a more important target. 

The latter would support another black bear study which found that they selected fruit over 

garbage and natural foods (Merkle et al. 2013). Therefore, further studies of animal space use are 
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needed to understand if adaptations to mitigations are occurring or if education needs to be 

adjusted.  

4.2 Research applications, strengths, and limitations 

This thesis is the first study to map and compare conflict with both black bears and cougars, 

which co-occur along the length of western North America. The predictive spatial models from 

Chapter 2 were designed to use previously available reports of conflict and GIS data to allow for 

land managers to continue updating the models in the future. As new reports of human-carnivore 

conflict are obtained and new GIS data becomes available, these models can be further tested, 

updated, and used even as the landscape changes, continuously validating the models and 

improving their accuracy over time (Burton et al. 2014). This study only modelled conflict with 

black bears and cougars, but grey wolves are recolonizing in the study area and a couple reports 

of conflict have already been noted. If that continues, these models could be extended to wolves 

given enough conflict reports are available to model the associations with hypothesized predictor 

variables. Beyond the study area, this research shows that using available data is a cost- and 

time-effective way of providing important applied answers for human-carnivore conflict.  

Nevertheless, complementing data on reported conflicts with new data on carnivore 

occurrence is valuable, since the predictive models show the probability of conflict given a 

carnivore is present, which is not constant. In Chapter 3, I found black bears spent most of the 

year in low- and medium-conflict probability areas, despite the presence of modelled high 

conflict probability in urban areas. Therefore, despite the spring hotspot of conflict in urban areas 

illustrated on mapped conflict probability (Fig. 2.4), actual likelihood of a conflict occurring may 

be low. The only season for which bear habitat use and conflict probability were positively 
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associated was autumn, when bears were more active in rural areas which also had high levels of 

predicted conflict.  

Additionally, my models of conflict probability are based on data generated by public 

reporting of conflicts, which could be influenced by many factors including different tolerance 

levels in regards to conflict, or the perceived trustworthiness of conservation officers. However, 

previous research has found that conflict reporting by residents was not strongly associated with 

demographic factors such as gender, age, or homeowner status (Wilbur et al. 2018). This 

suggests that the reporting database may represent an unbiased sample of conflicts in the region; 

however, I recommend that this be investigated further in future studies, such as through 

interviews or questionnaires of a random sample of residents in the area, including a comparison 

between the probability of reporting conflicts for urban versus rural residents.  

 I was also limited in the types of environmental and anthropogenic predictor variables 

available for use in my study as I chose those available to land managers, either through their 

own organizations (i.e. local government land cover layers) or global datasets (e.g. Gridded 

Population of the World for human density). This led to a lack of certain variables of importance, 

such as direct measures of natural and anthropogenic food availability (e.g. berry availability, 

household garbage containment, or livestock husbandry).  

By using conflict data collected over seven years, and camera trap detections for a full year, I 

was able to analyze the effect of season on conflict and habitat use for black bears. This is a new 

way to model conflict probability for bears, and was an important consideration for habitat use as 

bears changed their spatial activity patterns over time. However, as previous studies have found 

bear habitat use also varies with differences in annual natural food availability (Baruch-Mordo et 

al. 2014), the camera trap study would improve with multiple years of data collection as cyclical 
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foods such as salmon runs can change year-to-year or environmental change like droughts can 

affect berry availability. Additionally, given that I could not identify individual bears from 

camera trap images, I do not know the extent to which my results reflect common behaviours in 

the local bear population versus a bias towards a small number of more urban-adapted bears. 

4.2.1 Caveats and interpretations of predictive spatial models for management practice  

The mapped outputs from the predictive spatial models in Chapter 2 represent a visualization 

of the combined effects of modelled predictor variables effects on relative conflict probability. It 

is therefore important to interpret them with care. The “hotspots” on the maps show which areas 

on the landscape have a convergence of variables conducive to conflict. When considering 

management action, these models and maps should be used in conjunction with other available 

information. For example, there is a hotspot of conflict within urban Victoria that has a low 

number of actual reported conflicts for both black bears and cougars, potentially due to low 

carnivore occurrence from blocked accessibility into patches of forest surrounded by roads and 

urban development. In that case, the basic map with conflict reports shown as circles (Fig. 2.1) is 

a better representation of conflict locations and abundance. But, the importance of the model is 

showing which variables are responsible for that pattern. For land managers and conservation 

officers, true hotspots of conflict may already be known, but as development changes land usage, 

it is important to understand if conditions associated with conflict are being created to plan 

mitigation before conflicts can occur.  

Outputs from the conflict models are also subject to uncertainty due to methodological 

decisions made during modelling. I chose to apply a use-availability modelling framework 

because true conflict absences are hard to obtain. This framework can be sensitive to how 

availability is defined, i.e. how the available points are chosen. To characterize the area of 
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potential human-carnivore overlap, I used 10,000 random points selected from a polygon that 

encompassed all observed conflicts plus a buffer corresponding to an estimate of the smallest 

home range for both species and sexes (i.e. female black bears). Using such a large number of 

availability samples was recommended by Northrup et al (2013) to adequately represent the 

range of variables range within the study area. And using a small home range buffer was 

conservative, but some other studies have used even smaller buffers, e.g. 100 m around edges of 

urban areas (Merkle et al. 2011). Future work could explore the sensitivity of results by testing 

different ways of selecting availability points. To avoid the issue of including sites with low 

occurrence of conflict or animals in the availability sample, it could be possible to first develop 

habitat models for black bears and cougars, and then select availability only from areas where 

relatively high habitat suitability occurs within some proximity of human settlement . This makes 

sense as conflict likely occurs more often in habitats used more frequently by carnivores. For 

example, human-cougar conflict at the provincial scale was associated with proximity to roads 

and intermediate elevation (Teichman, Cristescu, and Nielsen 2013), which is also where 

cougars predominantly kill natural prey such as deer (Gladders 2003).  

There are also other methods to model and map conflict probability. A similar study in 

Alberta, Canada, used a presence-absence modelling framework, where absence points were 

locations of reported sightings of carnivores where no conflict occurred (Emily Sunter, 

unpublished data). Given that the conflict database I had access to was specifically for conflict 

reports rather than any type of human-carnivore interaction, I did not have confidence that the 

sightings reported were unbiased in space, unlike the conflict reports which have been previously 

found to not be affected by human demographics (Wilbur et al. 2018). It would be useful for 

future research to use social science methods (e.g. interviews, questionnaires) to assess the 
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degree of bias (or lack thereof) in public reporting of carnivore sightings. Additionally, since 

land managers and conservation officers work directly in their communities over long time-

spans, expert elicitation methods could be used to understand what variables they think are 

associated with conflict probability (e.g. Martin et al. 2012). It would be especially beneficial to 

test a variety of different methods and compare results to what was found using my models. If 

the results are similar, other communities could choose the method that suits their budget, data, 

and timeframe. If the results significantly diverge, further research would be needed to ground-

truth and determine which approach is the most accurate. This comparison of methods would 

also serve as a further test of the sensitivity of my modelling decisions on the output predictions. 

Finally, it is important to continue validating models with new information. The k-fold cross 

validation technique I employed allowed me to see if the known conflict locations were being 

accurately predicted as conflict (Boyce et al. 2002). A similar approach could be used with new 

conflict reports to see if they occur within high-conflict probability areas. It would be especially 

interesting to see if the current model is able to predict conflict in new places where I did not 

have conflicts reported initially.  

4.3 Future research 

This thesis represents an important first step in examining human-carnivore conflict from the 

perspectives of both humans and wildlife – from reports of conflicts with bears and cougars, to 

detections of bear habitat use across the urban-wildland gradient. It may be desirable to follow 

this study with integrated modelling that explicitly combines these two data sources, i.e. the 

calculation of an initial probability of carnivore occurrence in an area followed by the subsequent 

probability of conflict given the carnivore is present. This hierarchical modelling framework 

could further hone the conflict maps to allow for specifically targeting areas for mitigation. 
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Going further, if the methods used to calculate the probability of carnivore occurrence included 

tracking individual carnivores using techniques such as GPS collars, that would allow for an 

understanding of their home range and habitat preferences, whether they are being drawn into 

human areas and consequently at risk of higher mortality, and if there are areas of overlap with 

people that do not result in conflict due to mitigation or other adaptation.  

Using GPS collars or other methods such as DNA mark-recapture (e.g. Lamb et al. 2017) that 

can estimate carnivore population parameters (e.g. survival, population growth rate) should be a 

future step in explicitly testing for human-carnivore coexistence. Another piece that would be 

required is an understanding of risk tolerance on the part of humans in areas with a high conflict 

probability, as coexistence in the human-wildlife conflict framework includes costs to humans 

that do not cause changes to fitness (Nyhus 2016). This research could add to a previous study on 

Vancouver Island that found that public attitudes towards black bears are more positive than for 

cougars (Campbell and Lancaster 2010), potentially testing if those positive attitudes lead to a 

reduction in reactive lethal control.  

It is also important to understand how human disturbance is influencing inter- and intra-

specific interactions. Some camera trap sites in urban areas had many black-tailed deer 

detections but no carnivores, which may suggest that deer using human-dominated areas as a 

refuge from predators (Muhly et al. 2011). Scaling up the camera network from Sooke to the 

CRD would allow for a better test of this idea by expanding the area sampled. Large-scale 

monitoring would also allow for broader management questions for carnivores, such as assessing 

and protecting corridors as they are of interest to local conservation organizations. There may 

also be competition over human food resources between carnivores. Therefore, I suggest 

performing diet analysis on carnivores across the gradient of human disturbance to see if black 
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bears and cougars are accessing the same resources, and if there are intra-specific diet specialists 

for human foods.  

This research has provided more evidence suggestive of the major role food attractants play 

in conflict occurrence and habitat use, but further studies need to devote attention to measuring 

the availability of natural and anthropogenic foods over multiple seasons and years. This should 

include ungulate prey availability for cougars, berries and salmon for black bears, and the full 

spectrum of human food resources from livestock to garbage. Studying these variables could 

provide information on how plastic conflict behaviours are to natural food abundance, and the 

degree to which anthropogenic foods distract from natural foraging behaviours. 

Finally, given the importance of mitigation methods to reduce conflict and create 

coexistence, continued tests of mitigation efficiency are needed. There is a bias within peer-

reviewed literature about the effectiveness of mitigation techniques, including a lack of 

replication with different species and across ranges, a focus on Canid species, and a skew 

towards positive effects (Miller et al. 2016). This has led some researchers to be concerned that 

recommended mitigations may waste money or even cause ecological degradation (Treves, 

Krofel, and McManus 2016). Given that that the CRD (and Vancouver Island in general) is a 

conflict hotspot but does not currently have a widespread conflict management plan, it represents 

a great opportunity to test mitigations across multiple carnivore species and families.  

Overall, future research is needed to further our understanding of the effects of human 

development on carnivores, as well as of the best mitigation methods for different species in 

different areas. However, given limited funding, it must be remembered that current best 

practices exist and have been shown in many areas to reduce human-carnivore conflict (Davis, 

Wellwood, and Ciarniello 2002). There is potentially an opportunity cost if implementation of 
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mitigations is delayed while waiting for new data to be collected and new analyses completed. 

Therefore, if conflict is at an intolerable level for local residents, impacting their attitudes and 

safety, or leading to reactive lethal control for carnivores, using a prescriptive program followed 

by monitoring to assess effectiveness may be advisable. If conflict is low but potentially 

increasing, or tolerance levels of residents have led to the attitude that lethal control is not 

socially acceptable, then spending time and money on research to target mitigation with greater 

local context and potentially wide-ranging applicability may be appropriate.   
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Appendices 

Appendix 1: Chapter 2 summaries of human-carnivore conflict 

Table A1.1: Number of human-black bear conflicts reported in the Capital Regional District 

(CRD), BC, Canada between 2011-2017 in four seasons. Spring: February-April, summer: May-

July, autumn: August-October, winter: November-January. Data from British Columbia 

Conservation Officer Service Human-wildlife Conflict Reporting Database.  

 Spring Summer Autumn Winter Total 

2011 5 111 24 34 174 

2012 10 84 58 33 185 

2013 10 70 128 15 223 

2014 21 43 38 26 128 

2015 1 40 150 39 230 

2016 9 13 56 45 123 

2017 19 156 12 11 198 

Total 75 517 466 203 1261 
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Table A1.2: Number of human-cougar conflicts reported in the Capital Regional District (CRD), 

BC, Canada between 2011-2017. Data from British Columbia Conservation Officer Service 

Human-wildlife Conflict Reporting Database.  

 Number of Conflicts 

2011 26 

2012 34 

2013 32 

2014 14 

2015 16 

2016 10 

2017 8 

Total 140 
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Appendix 2: Chapter 2 predictor variables for predictive spatial models 

Table A2.1: Predictor variables used to model human-carnivore conflict probability for black 

bears and cougars in the Capital Regional District (CRD) between 2011-2017. Variables all 

extracted with buffers at 150 and 500 m radius around conflict points. Weighted buffers reduce 

the contribution of buffer cells not fully within the circular buffer by the percent excluded. 

Predictor Variable Source Description 

Human Density Gridded Population of the 

World 

Average number of people per 

square kilometre within weighted 

buffer  

Road Density Digital Road Atlas Total length of roads in buffer 

around point in km / area in km2 of 

buffer 

Trail Density CRD Regional Parks Total length of trails in buffer 

around point in km / area in km2 of 

buffer 

Elevation ASTER Global Digital 

Elevation 

Average height above sea level 

within weighted buffer  

Distance to Agriculture CRD Regional Parks Average distance to agriculture 

land cover cell within weighted 

buffer  

Distance to Urban CRD Regional Parks Average distance to urban land 

cover cell within weighted buffer 

Distance to Forest Patch CRD Regional Parks Average distance to <300m2 

contiguous forest land cover cell 

within weighted buffer  

Distance to Intact 

Forest 

CRD Regional Parks Average distance to >300m2 

contiguous forest land cover cell 

within weighted buffer  
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Appendix 3: Chapter 2 extended candidate models 

Table A3.1: Candidate models for probability of human-carnivore conflict with black bears (seasonally and non-seasonally) and 

cougars. Top models indicate which predictor variables best explain location of conflicts for each species/season. HD = human 

density, RD = road density, DAg = distance to agriculture, DUrb = distance to urban, DFP = distance to forest patch, DFI = distance to 

intact forest, Ele = elevation, TD = trail density. Values following variable names represent the buffer radius used to measure the 

variables. Df is the degrees of freedom of the model, ΔAIC is the difference in AIC scores from the top model.  

Species/Season Predictor Variables df  ΔAIC 

 

 

Black Bear 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele1500 + TD150 + TD150*HD150 

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150  

12 

10 

11 

10 

9 

10 

0.0 

13.6 

14.7 

108.2 

126.5 

127.6 

 

 

Black Bear - Spring 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150  

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele1500 + TD150 + TD150*HD150 

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 

10 

11 

12 

9 

10 

10 

0.0 

1.7 

2.9 

21.4 

22.3 

23.0 
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Species/Season Predictor Variables df  ΔAIC 

 

 

Black Bear - 

Summer 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele1500 + TD150 + TD150*HD150 

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 

12 

10 

11 

10 

9 

10 

0.0 

0.3 

2.3 

91.3 

94.7 

96.6 

 

 

Black Bear - 

Autumn 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele1500 + TD150 + TD150*HD150 

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150  

12 

11 

10 

10 

10 

9 

0.0 

11.2 

17.2 

18.7 

19.9 

27.5 

 

 

Black Bear - 

Winter 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele1500 + TD150 + TD150*HD150 

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + Ele1502 + TD150 

12 

10 

11 

10 

9 

10 

0.0 

4.5 

5.9 

52.1 

58.0 

58.9 
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Species/Season Predictor Variables df  ΔAIC 

 

 

 

Cougar 

HD500 + RD150 + DAg150 + DUrb150 + DFP500 + DFI150 + Ele150 + Ele1502 + TD150 

HD500 + HD5002 + RD150 + DAg150 + DUrb150 + DFP500 + DFI150 + Ele150 + Ele1502 + TD150  

HD500 + HD5002 + RD150 + DAg150 + DUrb150 + DFP500 + DFI150 + Ele150 + Ele1502 + TD150 + 

TD150*HD500 

HD500 + RD150 + DAg150 + DUrb150 + DFP500 + DFI150 + Ele150 + TD150  

HD500 + RD150 + DAg150 + DUrb150 + DFP500 + DFI150 + Ele1500 + TD150 + TD150*HD500 

HD500 + HD5002 + RD150 + DAg150 + DUrb150 + DFP500 + DFI150 + Ele150 + TD150 

10 

11 

12 

9 

10 

10 

 

0.0 

2.0 

3.9 

5.6 

7.5 

7.5 

 

 

 

 

 

 

 

 

 



 
 

Appendix 4: Chapter 2 seasonal black bear model coefficient estimates 

  

         

 

 

 

 

 

 

 

Figure A4.1: Estimated effects of human and environmental variables on human-black bear 

conflict in the Capital Regional District (CRD), BC, Canada in four seasons. Coefficient 

estimates from best-supported logistic regression models of conflict locations between 2011-

2017 back transformed from the logit scale to odds ratios. Confidence intervals are mean and 

95% confidence intervals. Predictor variables have been standardized to a mean of zero and 

standard deviation of one to allow for direct comparison. a) spring: February-April, b) summer: 

May-July, c) autumn: August-October, d) winter: November-January. 
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Appendix 5: Chapter 3 predictor variables for black bear habitat use models 

Table A5.1: Explanatory variables used to model variation in independent black bear detections, 

monthly, measured from 54 camera traps sampled in and around Sooke, BC, Canada from July 

2018 – July 2019. Weighted buffers reduce the contribution of buffer cells not fully within the 

circular buffer by the percent excluded. All buffers were a radius of 150m around each camera 

trap unless otherwise noted. 

Predictor Variable Source  Description 

Human Density Gridded Population of 

the World 

 Average number of people per square 

kilometre within weighted buffer  

Road Density Digital Road Atlas  Total length of roads in buffer around 

point in km / area in km2 of buffer 

Trail Density CRD Regional Parks  Total length of trails in buffer around 

point in km / area in km2 of buffer 

Elevation ASTER Global Digital 

Elevation 

 Average height above sea level within 

weighted buffer  

Distance to 

Agriculture 

CRD Regional Parks  Average distance to agriculture land 

cover cell within weighted buffer  

Distance to Urban CRD Regional Parks  Average distance to urban land cover 

cell within weighted buffer 

Distance to Forest 

Patch 

CRD Regional Parks  Average distance to <300 m2 

contiguous forest land cover cell 

within weighted buffer  
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Predictor Variable Source  Description 

Distance to Intact 

Forest 

CRD Regional Parks  Average distance to >300 m2 

contiguous forest land cover cell 

within weighted buffer  

Conflict HWCRD  Number of conflicts in 500m buffer 

around camera site/month 

Distance to Water Sooke Municipality  Euclidean distance to lotic or lentic 

water  

Salmon Charters Creek  Presence/absence for cameras near 

lotic water/month   

Proportion 

Developed 

CRD Regional Parks  Number of land cover cells within 

weighted buffer that are urban, 

agriculture, or grass compared to total 

Enhanced 

Vegetation Index 

(EVI) 

USGS/NASA, 

MOD13Q1 

 Weighted average based on number of 

days the 16-day MODIS satellite 

window had within a month and the 

amount each raster cell fell into a 

150m buffer around each site 

Active Days 

(Sampling effort) 

Camera traps  Number of days camera was active / 

total days per month 

 

 

 

 

 

 



 
 

Appendix 6: Chapter 3 extended candidate models 

Table A6.1: All candidate models for relative abundance of black bears measured from 54 camera traps sampled in and around Sooke, 

BC, Canada from July 2018 – July 2019 using zero-inflated GLMMs. Evaluated covariates include HD = human density, RD = road 

density, TD = trail density, EVI = enhanced vegetation index, DUrb, = distance to urban, DAg = distance to agriculture, Con = 

conflict, DW = distance to water, Sal = salmon, Ele = elevation, and AD = active days. Values following variable names represent the 

buffer radius used to measure the variables. Df is the degrees of freedom of the model, within ΔAIC is the difference in AIC scores 

from the top model within a hypothesis, between AIC is the difference in top models between two hypotheses. All models also have a 

random intercept for camera trap site.  

 

 

 

Predictor Variables 

 

df  

Within 

ΔAIC 

Between 

ΔAIC 

Conflict  

(EVI) 

HD150 + HD1502 + RD150 + EVI150 + DAg150 + DUrb150 + Ele150 + TD150 + TD150*HD150 + 

AD 

HD150 + HD1502 + RD150 + EVI150 + DAg150 + DUrb150 + Ele150 + TD150 + AD 

HD150 + RD150 + EVI150 + DAg150 + DUrb150 + Ele150 + TD150 + TD150*HD150 + AD 

HD150 + RD150 + EVI150 + DAg150 + DUrb150 + Ele150 + TD150 + AD 

14 

 

13 

13 

12 

0.0 

 

0.7 

2.6 

2.8 

0.0 

Conflict 

(distance-to-

forest) 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 + 

TD150*HD150 + AD 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 + AD  

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 + TD150*HD150  

+ AD 

HD150 + RD150 + DAg150 + DUrb150 + DFP150 + DFI150 + Ele150 + TD150 + AD 

15 

 

14 

14 

 

13 

0.0 

 

1.6 

4.2 

 

4.9 

6.5 
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Predictor Variables 

 

df  

Within 

ΔAIC 

Between 

ΔAIC 

 

Full Model HD150 + HD1502 + RD150 + EVI150 + DAg150 + DUrb150 + Con500 + DW150 + Sal + Ele150 + 

TD150 + TD150*HD150 + AD 

HD150 + HD1502 + RD150 + EVI150 + DAg150 + DUrb150 + Con500 + DW150 + Sal + Ele150 + 

TD150 + AD 

HD150 + RD150 + EVI150 + DAg150 + DUrb150 + Con500 + DW150 + Sal + Ele150 + TD150 + 

TD150*HD150 + AD 

HD150 + RD150 + EVI150 + DAg150 + DUrb150 + Con500 + DW150 + Sal + Ele150 + TD150 + 

AD 

17 

 

16 

 

16 

 

15 

0.0 

 

0.9 

 

3.0 

 

3.4 

 

Human 

Disturbance 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + Con500 + TD150 + TD150*HD150 + AD 

HD150 + HD1502 + RD150 + DAg150 + DUrb150 + Con500 + TD150 + AD 

HD150 + RD150 + DAg150 + DUrb150 + Con500 + TD150 + TD150*HD150 + AD 

HD150 + RD150 + DAg150 + DUrb150 + Con500 + TD150 + AD 

13 

12 

12 

11 

0.0 

0.9 

3.9 

4.1 

 

Environmental EVI150 + DW150 + Sal + Ele150 + AD 

 

9   
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Appendix 7: Chapter 3 correlation matrix 

Table A7.1: Correlation matrix for predictor variables used to model variation in independent black bear detections, monthly, 

measured from 54 camera traps sampled in and around Sooke, BC, Canada from July 2018 – July 2019.  

 Human 

Density 

Road 

Density 

Trail 

Density 

Elevation Distance 

to 

Urban 

Distance to 

Agriculture 

Conflict Distance 

to 

Water 

Salmon Enhanced 

Vegetation 

Index (EVI) 

Human 

Density 

1.000 0.480 -0.409 -0.304 -0.337 -0.435 0.262 -0.126 -0.090 -0.204 

Road 

Density 

 1.000 0.091 -0.120 -0.404 -0.196 0.176 -0.124 -0.016 -0.123 

Trail 

Density 

  1.000 0.495 0.183 0.557 -0.146 -0.113 0.077 0.034 

Elevation 

 

   1.000 0.365 0.664 -0.137 0.183 -0.057 0.088 

Distance to 

Urban 

    1.000 0.468 -0.143 0.286 -0.018 0.158 

Distance to 

Agriculture 

     1.000 -0.167 0.015 0.065 -0.056 

Conflict 

 

      1.000 -0.040 -0.036 -0.038 

Distance to 

Water 

       1.000 -0.093 0.179 

Salmon 

 

        1.000 -0.071 

Enhanced 

Vegetation 

Index 

(EVI) 

         1.000 
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Appendix 8: Chapter 3 map of black bear detections and conflict probability 

 

Figure A8.1: Independent detections of black bears in Sooke, BC, Canada from 54 camera traps 

sampled from July 2018-2019 shown as size of circles on raster layer of model-predicted 

seasonal conflict probability. 
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Appendix 9: Camera trap photos of human-black bear conflict 

 

Figure A9.1: Example camera trap detections of human-black bear conflicts from 54 camera 

traps in Sooke, BC, Canada deployed from July 2018 – July 2019. Clockwise from top: bear with 

garbage bag accessed after damaging a shed; bear looking into pig pen (potential conflict 

avoided by electric fence); bear eating plastic outside den in January during typical hibernation 

period. 
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Appendix 10: Chapter 3 properties of black bear relative abundance by season and conflict 

probability 

Table A10.1: Mean, range, and standard deviation (SD) for the relative abundance of black bears 

in areas of low, medium, or high conflict probability in four seasons (spring: February-April, 

summer: May-July, autumn: August-October, and winter: November-January). Relative 

abundance from independent detections on 54 camera traps sampled from July 2018-2019 in 

Sooke, BC, Canada.  

Conflict 

Probability 

Season Mean Range SD 

Low Spring 0.189 0-7 0.805 

 Summer 0.524 0-10 1.430 

 Autumn  2.250 0-46 6.330 

 Winter 0.367 0-12 1.430 

Medium Spring 0 0 0 

 Summer 0.944 0-13 2.350 

 Autumn  0.867 0-8 1.800 

 Winter 1.330 1-2 0.577 

High Spring 0 0 0 

 Summer 0 0 0 

 Autumn  3.070 0-27 5.640 

 Winter 0 0 0 

 

 

 

 

 

 

 

 

 



101 
 

Appendix 11: Chapter 3 black bear nocturnality risk ratio table  

Table A11.1: Number of independent black bear detections in the day versus night at urban, 

rural, and wild camera trap sites. Nighttime activity is the proportion of detections between 

sunset and sunrise, and the risk ratio compares nighttime activity for areas of high human 

disturbance (Xh, urban and rural) with wild, low disturbance (Xl) areas using the equation Risk 

Ratio = ln(Xh/Xl).  

 Day Night Nighttime 

Activity (X) 

Risk Ratio  

Urban 36 40 0.526 0.823 

Rural 195 173 0.470 0.712 

Wild 80 24 0.231 NA 
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Appendix 12: Chapter 3 black bear seasonal nocturnality risk ratio table 

Table A12.1: Number of independent black bear detections in the day versus night at urban, 

rural, and wild camera trap sites in four seasons (spring: February-April, summer: May-July, 

autumn: August-October, winter: November-January). Nighttime activity is the proportion of 

detections between sunset and sunrise, and the risk ratio compares nighttime activity for areas of 

high human disturbance (Xh, urban and rural) with wild, low disturbance (Xl) areas using the 

equation Risk Ratio (RR) = ln(Xh/Xl).  

Season Strata Day Night Nighttime Activity 

(X) 

Rural RR Urban 

RR 

Spring Rural 9 4 0.308 -0.668 
 

Spring Urban 2 0 0 
 

NA 

Spring Wild 6 9 0.600 
  

Summer Rural 62 13 0.173 0.786 
 

Summer Urban 9 1 0.100 
 

0.236 

Summer Wild 35 3 0.079 
  

Autumn Rural 113 122 0.519 1.018 
 

Autumn Urban 24 30 0.556 
 

1.086 

Autumn Wild 39 9 0.188 
  

Winter Rural 11 34 0.756 -0.280 
 

Winter Urban 2 9 0.818 
 

-0.201 

Winter Wild 0 3 1.000 
  

 

 

 

 

 

 

 

 

 


