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Abstract

Transition-metal oxides (TMOs) are a widely studied class of materials

with fascinating electronic properties and a great potential for applications.

Sr2IrO4 is such a TMO, with a partially filled 5d t2g shell. Given the re-

duced Coulomb interactions in these extended 5d orbitals, the insulating

state in Sr2IrO4 is quite unexpected. To explain this state, it has been pro-

posed that spin-orbit coupling (SOC) entangles the t2g states into a filled

jeff = 3/2 state and a half-filled jeff = 1/2 state, in which a smaller Coulomb

interaction can open a gap. This new scheme extends filling and bandwidth,

the canonical control parameters for metal-insulator transitions, to the rel-

ativistic domain. Naturally the question arises whether in this case, SOC

can in fact drive such a transition. In order to address this question, we

have studied the behaviour of Sr2IrO4 when substituting Ir for Ru or Rh.

Both of these elements change the electronic structure and drive the system

into a metallic state. A careful analysis of filling, bandwidth, and SOC,

demonstrates that only SOC can satisfactorily explain the transition. This

establishes the importance of SOC in the description of metal-insulator tran-

sitions and stabilizing the insulating state in Sr2IrO4.

It has furthermore been proposed that the jeff = 1/2 model in Sr2IrO4

is an analogue to the superconducting cuprates, realizing a two-dimensional

pseudo-spin 1/2 model. We test this directly by measuring the spin-orbital

entanglement using circularly polarized spin-ARPES. Our results indicate

that there is a drastic change in the spin-orbital entanglement throughout

the Brillouin zone, implying that Sr2IrO4 can not simply be described as

a pseudo-spin 1/2 insulator, casting doubt on direct comparisons to the
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cuprate superconductors. We thus find that the insulating ground state in

Sr2IrO4 is mediated by SOC, however, SOC is not strong enough to fully

disentangle the jeff = 1/2 state, requiring that Sr2IrO4 is described as a

multi-orbital relativistic Mott insulator.
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Lay Summary

This thesis studies the behaviour of electrons in the crystalline compound

Sr2IrO4. Generally, crystals can subdivided into two classes; those that do

conduct electricity (metals), and those that do not (insulators); Sr2IrO4 be-

longs to the latter of these two classes. In this work, we observe a transition

into a metallic state, by changing the coupling between spin and momentum.

This proves that the insulating properties in Sr2IrO4 derive from this cou-

pling and is the first demonstration of a transition into a metallic state by

changing this parameter. It has further been proposed that Sr2IrO4 is a sys-

tem that models cuprate superconductors. A superconductor is a material

that conducts electricity without any loss. Sr2IrO4 does not superconduct,

but comparing to it can help identify requirements for superconductivity.

The experiments in this work show that Sr2IrO4 is in fact different on two

crucial aspects, highlighting their importance to superconductivity.
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Preface

The work in this thesis is a representation of my scientific activity during

my time as a graduate student at UBC. For all the work presented in this

thesis I was the primary responsible investigator. However, the nature of

experimental physics dictates that none of the work presented here was

done alone, in particular there has been incidental involvement from all the

members of our research group and technical staff. For the experimental

chapters, I will detail the contributions I and others have made below.

Chapter 3 – Spin-orbit Controlled Metal-Insulator Transition

in Sr2IrO4

This chapter investigates the metal-insulator transition in Sr2IrO4 upon sub-

stitution of Rh and Ru. The work is a combination of experimental work

(ARPES) and theoretical modelling (DFT, TB, matrix element analysis).

The experiment was conceived by A. Damascelli and me. Preliminary stud-

ies (that are not presented in this thesis) were done in the lab at UBC, for

which all of our research group is responsible. The experimental work was

done at multiple synchrotron radiation facilities. Planning and experiment

design was done by me. A first set of data was taken at the Swiss Light

Source in Villegen, Switzerland, together with E. Razzoli, M. Michiardi,

with assistance from M.Shi and N. Xu. A second set of data was taken at

the Advanced Light Source in Berkeley, California together with E. Razzoli

with support from J. D. Denlinger. Sr2IrO4 samples were provided by the

group of H. Takagi. The Rh doped samples were provided by B.J. Kim at

Max Planck Institute in Stuttgart, samples that were grown by K. Ueda and
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J. Bertinshaw. Ru doped samples were provided by S. Calder and G. Cao at

Oakridge National Laboratory. Data analysis was done by me, with input

from E. Razzoli, R. P. Day and A. Damascelli. The numerical modelling was

done by me, where the DFT calculations were supervised by I.S. Elfimov,

the TB calculations and matrix element analysis had extensive inputs from

R. P. Day. The interpretation of the work has involved inputs from many

people, but is mostly done by me, R. P. Day, I. S. Elfimov and A. Dama-

scelli. Andrea Damascelli supervised the project. Andrea Damascelli was

responsible for overall project direction, planning and management. Large

parts of the chapter form the basis for a manuscript which was written by

me, R. P. Day and A. Damascelli. This manuscript has been accepted for

publication in Nature Physics.

Chapter 4 – Spin and kz Resolved ARPES on Sr2IrO4

This chapter discusses the spin-orbital entanglement of the states in Sr2IrO4.

The work presented in this chapter is a combination of experimental (spin-

ARPES) and numerical work. The experiment was conceived by A. Dama-

scelli and me. The experiments were performed at the Elettra Syncrotrone

in Trieste, Italy. These experiments were done over multiple beam times.

While I was the primary responsible for the planning and schedule, the prac-

tical execution involved the help of R. P. Day, M. Michiardi, E. Razzoli, M.

Schneider, S. Zhdanovic, M. X. Na, and G. Levy. Our experiments were

supported by C. Bigi, J. Fuji and I. Vobornik. The samples for these exper-

iments came from the group of H. Takagi. The data analysis and numerical

simulations were done by me, with input from R. P. Day. Andrea Damas-

celli supervised the project. Andrea Damascelli was responsible for overall

project direction, planning and management. These results are currently

being prepared for publication.
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jeff effective coupled angular momentum

λ spin-orbit coupling strength

M the high symmetry point k = (π/2a, π/2a, 0), see X

N the high symmetry point k = (π/a, π/a, 0), see X

t hopping strength (kinetic energy)

t2g subset of the d orbitals (dxy, dxz, dyz)

U Coulomb repulsion

x concentration of impurities

X the high symmetry point k = (π/a, 0, 0), with x̂ along the TM-O

bond, and a the TM-TM spacing

Z the high symmetry point k = (0, 0, π/c), see X

xvii



Acknowledgments

Although this work has only one author, it would not have been possible

to write this thesis without a lot of help from the people around me. First,

all the people in our research group (in approximate order of their time at

UBC): Ilya Elfimov, Giorgio Levy, Sergey Zhdanovic, Art Mills, Ludivine

Chauviere, Michael Schneider, Eduardo da Silva Netto, Elia Rampi, Marta

Zonno, Pascal Nigge, Alex Sheyerman, Fabio Boschini, Amy Qu, Ryan Day,

Elia Razzoli, Matteo Michiardi, Ketty Na, Sean Kung, Christopher Gui-
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Chapter 1

Introduction

1.1 Materials

The compounds studied in this thesis are most commonly referred to as

transition-metal oxides (TMOs). The physics describing these materials

arises from the interplay between the electronic states belonging to the

transition-metal and oxygen ions. Transition-metal oxides are materials that

have been studied intensively in contemporary physics for a multitude of rea-

sons. This includes that their constituents are abundant in the earth’s crust

and therefore inexpensive and accessible. Furthermore, these materials have

great potential for possible applications [1, 2], as they host a plethora of in-

teresting physics such as magnetism [3], superconductivity [4, 5], Mott and

charge transfer insulating behaviour [6, 7], charge and orbital ordering [8–

10], and the colossal magnetoresistance effect [11–13]. Due to a combination

of a partially filled d shell and strong electron-electron interactions, TMOs

host a large variety of physical phases, in a class of compounds that appears

similar based on their constituents and structure. However, the partially

filled d shell and strong electron-electron interactions is also what makes

these compounds incredibly challenging to understand. A key challenge in

the field is the exploration of correlated insulating phases (referred to as

“Mott-insulating” phases), where these electron-electron interactions cause

the localization of charge carriers. More so, the transition from insulating

1



Figure 1.1: Overview of different kinds of insulators. A one-
dimensional material is schematically depicted as a series of lat-
tice sites (black horizontal lines) with a spin occupying each site
indicated as an arrow (a,b) Trivial corner cases of insulators, in
(a) the lattice is empty, so no spins can be transported. In (b)
the lattice is completely filled and the Pauli exclusion principle
prevents movement of the spins. (c) In the case the system is
half filled, charges can move if the transition probability t is
high enough to overcome the Coulomb potential for double oc-
cupation U . If U outweighs the effects of t the system is a Mott
insulator.

to metallic phase is an important topic, as the aforementioned phenomena

often arise in close vicinity to these transitions. The mechanisms and con-

trol parameters describing these phases and transitions are therefore of great

interest to the field.

A description of different insulating phase is depicted in Fig. 1.1. Two

trivial corner cases of a completely empty and filled system are shown in

Fig. 1.1a and b. In the former case no excitations can be made because no

electrons are available, the latter case is insulating because such excitations

are impossible due to the Pauli exclusion principle; both cases are insulat-

ing. In the intermediate case, where the system is exactly half filled, an

interesting scenario arises. Electrons can move from one site to the next, as

indicated by the hopping transition rate t, but whether or not the system
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is insulating depends on the Coulomb repulsion U related to two electrons

occupying the same site. This system is referred to as the Hubbard model,

and if the effect of U is large enough to suppress electron movement (U > t),

the system is a Mott insulator.

The cuprate superconductors are believed to be well described by a half

filled Hubbard model on a square, two-dimensional lattice. A great effort has

therefore been made to discover new materials that can be described with

the same basic Hamiltonian. This search has been primarily focussed on

materials with 3d transition metals, although 4d and 5d compounds have also

been studied. In these latter categories, the discovery of superconductivity

in Sr2RuO4 was made [14], but also Sr2RhO4 [15] and Sr2IrO4 [16, 17] gained

attention. Although these compounds are close to their 3d counterparts in

the periodic table, properties of 4d and 5d materials are markedly different

from those with 3d elements. The 4d and 5d orbitals are much more extended

than 3d’s, which has a few effects. Firstly, since the electrons are more spread

out, the integrals determining the Coulomb and exchange interactions are

significantly reduced. Secondly, the bandwidth is larger due to the increased

orbital size, which increases hopping between orbitals [16, 17].

Because the itinerancy of the electrons increases and the Coulomb in-

teraction decreases in the 4d and 5d orbitals, these systems are expected to

show more metallic behaviour. A metallic state is indeed found for the 4d

materials Sr2RhO4 and Sr2RuO4 [14, 15]. Sr2IrO4 on the other hand, was

found to be insulating [16], which was an unexpected result [16, 17], as the

electronic repulsion should not be sufficient to open a Mott gap.

1.1.1 The jeff = 1/2 state

An explanation for the insulating state was ultimately found by considering

the effects of spin-orbit coupling (SOC). This interaction is a further im-

portant deviation from the 3d properties as SOC is significantly increased

in 4d and 5d compounds [18]. SOC strength (as derived more thoroughly in

Section 1.3) is given by the gradient of the potential and therefore increases

with atomic number Z. If this derivation is done including the effects of
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screening, one finds the magnitude scales as Z2 [19]. This Z2 behaviour

gives a good agreement with experimental values found for materials in

these groups of the periodic table: ∼ 0.4 eV for Ir [20], ∼ 0.19 eV for Rh

and Ru [18, 21, 22], ∼ 0.02− 0.1 eV [23, 24] for Fe.

In their seminal work published in 2008 [25], B.J. Kim and colleagues

pointed out that the insulating state in Sr2IrO4 could be interpreted by

considering spin-orbit coupling. As stated, the insulating state in Sr2IrO4

had been somewhat of a puzzle, since the increased bandwidth and reduced

Coulomb interactions associated with the 5d compounds could not explain

why the partially filled d band could result in insulating behaviour. The

electrons in Sr2IrO4 occupy the t2g bands, a subset of the transition metal

d bands. Their reasoning was that SOC is large enough to couple the t2g

orbitals into spin-orbitally entangled states. They suggest the bands cou-

ple into a so-called jeff = 1/2 and 3/2 manifold (explained further in Sec-

tion 1.4). This splits the bands, reducing the bandwidth, and creates a

singly occupied jeff = 1/2 orbital. This half-filled band gives the smaller U

(∼ 2 eV [26]) an opportunity to open a gap creating a “jeff = 1/2 Mott in-

sulator”. A diagram for this process, schematically indicating the densities

of states as a function of energy upon including the various energy terms, is

presented in Fig. 1.2a.

Convincing evidence for the existence of this state was provided by

resonant elastic x-ray scattering (REXS) measurements performed on the Ir

edge [27]. In particular, the branching ratio of the L2 and L3 at a magnetic

reflection is taken as indication that the ground state is well described by

a jeff = 1/2 state. This result was later questioned, however, when it was

demonstrated that for a system with magnetic moments lying in the ab

plane, as is the case for Sr2IrO4, the branching ratio is identically zero,

regardless of the amount of spin-orbital entanglement [28]. The authors of

[27] later acknowledge this in [29], where they analyze the matrix elements

for REXS in more detail. Moreover, it was demonstrated in [30], that the

jeff = 1/2 is quite close to a collapse. While spin-orbit coupling in Sr2IrO4 is

undoubtedly very strong, it seems that a schematic of the density of states

for Sr2IrO4 may in fact look more like Fig. 1.2b and therefore the precise
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Figure 1.2: Schematic overview of the energy diagram of the jeff

states. (a) The idealized jeff = 1/2 model, where the spin-orbit
splitting is large enough that the jeff = 1/2 and the jeff = 3/2
manifold no longer overlap. (b) A situation in which the band-
width is large enough to cause significant overlap between the
jeff = 1/2 and 3/2 states, which results in a ground state in
which the jeff = 3/2 cannot simply be projected out.

nature of the insulating state is still unknown.

Alternative scenarios could still hold true, for example a Slater insulator,

in which the insulating state is mediated by a band folding causing anti-

ferromagnetism has been suggested by Arita and coworkers [26]. This has

been ruled out for Na2IrO3 [31] but the Néel temperature in Sr2IrO4 is

too high to allow for a similar analysis. Other suggestions that still fit

within current observations are a multi-orbital Mott system in the presence

of strong spin orbit coupling, such as in Ca2RuO4 [32, 33], or a non-jeff = 1/2

relativistic Mott insulator such as CaIrO3 [34].

1.1.2 A pseudo-spin 1/2 model

While the true ground state may still be elusive, many consequences have

been proposed if the jeff = 1/2 state were to hold true. It was quickly realized

that the system would have a large number of properties that are commonly
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found in cuprate superconductors [35]. The structure is identical to that

of La2CuO4. Moreover the compound is an anti-ferromagnetic (pseudo-)

spin 1/2 model, in which the Coulomb interaction causes an insulating state

in the parent compound. Resonant inelastic x-ray scattering (RIXS) data

show a remarkable similarity to inelastic neutron scattering data taken on

La2CuO4 [36]. This data is in good agreement with a Heisenberg model [37],

which describes the ground state of the cuprates [38, 39]. More detailed anal-

yses indeed predict a superconducting ground state [40, 41], with one key

difference from the cuprates; since the model Hamiltonian for the iridates is

equivalent to that of the cuprates with t → −t, the superconductivity ap-

pears in the phase diagram on the electron doped side. Attempts were made

to electron dope the system, using La (Sr2−xLaxIrO4 [42]) and oxygen [43].

Promising signs were observed on La doped compounds, which showed a

pseudogap like state in angle-resolved photoelectron spectroscopy (ARPES)

[44]. The spatial behaviour of the charge gap observed using STM, displays

similarities to related cuprate compounds [45]. Moreover, using potassium

to surface dope electrons, signatures of a d-wave gap were seen in both

scanning tunnelling microscopy (STS) [46] and ARPES [47]. Unfortunately,

so far no reports of bulk superconductivity have been made. It is possible

that La is not able to dope enough electrons for the system to become bulk

superconductive. However, the models presented in [40, 41] assume the spin-

orbit coupling is strong enough to cause full separation of the jeff = 1/2 and

jeff = 3/2 states, an assumption which is explored in more detail in Chap-

ter 4. If it turns out that electron doped Sr2IrO4 is in fact not superconduc-

tive, this may lead to an interesting perspective on necessary ingredients for

superconductivity.

1.1.3 This work

To provide an overview of the field of relativistic correlated oxides, we can

identify two important open questions. The first question is whether spin-

orbit-coupling should be considered as a parameter in the canonical phase

diagram of Mott insulators and if Sr2IrO4 is a material that can be placed
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on and tuned along this axis. Secondly, whether the jeff = 1/2 model is a

valid description of the ground state of Sr2IrO4 and what that means for

parallels identified with the superconducting cuprates. We will address both

these points in detail, in Chapter 3 and Chapter 4 respectively. The body

of this thesis thus considers and attends to key questions in the field of

relativistic correlated materials. In the remainder of this chapter, some of

the fundamental physics of these materials will be considered, in particular

the crystal and electronic structure and the effects of spin-orbit coupling.

1.2 Structure

The basic building block for all TMOs is the TM-O6 octahedron, depicted

in Fig. 1.3a. This is a transition metal ion, surrounded by six oxygen atoms

that can be corner-shared between octahedra. The oxygen atoms provide a

potential background, referred to as the crystal field, that breaks the spher-

ical symmetry of the transition metal ion and thereby lifts the degeneracy

of the d band. Moreover, the oxygen atoms mediate the electron bonding

between octahedra through hybridization.

A large fraction of these materials follow the basic formula of the Per-

ovskite ABO3, in which A is an alkali, earth-alkali, or lanthanoid ion and B

is a transition metal. Another important element of the compounds stud-

ied here is they are layered. These layered materials are members of the

Ruddlesden-Popper series [48] having alternating layers of AO and BO2,

following the series AN+1BNO3N+1 (schematically shown in Fig. 1.3b). The

A2BO4 (N = 1) series of oxides, studied in this thesis, has a repeating unit

of a stack of AO - BO2 - AO, isolating the BO2 layers from each other, to

form a mostly two-dimensional compound (Fig. 1.3c for Sr2IrO4). It should

be clarified that these materials are not truly two-dimensional, but rather

a layered three-dimensional structure. Two-dimensionality in this case is

characterized by the fact that the electrons move mostly within one of the

layers, and the interaction between layers is relatively small. The A-site ion

(Sr in this thesis) can be safely ignored, since it has a full shell and its elec-

trons are all strongly bound to the core. The focus with these compounds is
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thus on the transition metal (TM) ion seated on the B site of the perovskite

structure (Ir, Rh or Ru in this thesis), which is octahedrally coordinated

with oxygen atoms. While oxygen hybridizes with the TM ion, which is

particularly true for the 4d and 5d compounds, the physics related to the

TM ion can effectively be expressed in terms of TM-d O-p hybrids, which

follow the symmetry of the original d orbitals.

The structure of these materials can be seen in Fig. 1.3c. While the crys-

tallographic space group for Sr2RuO4 is I4/mmm, the structure of Sr2RhO4

and Sr2IrO4 is I4/acd. The key difference is that the TMO6 octahedra are

rotated in a checkerboard pattern in Sr2RhO4 and Sr2IrO4 throughout the

crystal. A similar rotation occurs in Sr2RuO4, but only on the surface [49].

1.2.1 Electronic structure

The degeneracy lifting, caused by the ligand oxygen atoms, induces well

defined shifts to particular d orbitals. Representing these orbitals in the

basis of cubic harmonics, it is the orbitals with lobes pointing towards the

oxygen ions that gain energy (dx2−y2 and dz2−r2), also called the eg orbitals.

The orbitals with lobes pointing in-between the oxygens, the t2g orbitals

(dxy, dxz and dyz) are lowered in energy. The energy splitting related to the

oxygen is referred to as 10Dq. A further degeneracy breaking can be induced

by a tetragonal distortion, in which octahedra are stretched or compressed

along one axis, further splitting the eg and t2g bands. In the case of a

layered 3D material like Sr2IrO4, this symmetry is already broken in the

global structure and therefore, a degeneracy would be purely accidental.

A schematic representation of the induced splitting is plotted in Fig. 1.3d.

While a tetragonal splitting indeed exists for all compounds studied in this

thesis, the splitting is much smaller than the bandwidth and therefore the

t2g manifold is, for practical purposes, often assumed to be degenerate.

We can gain some further insight into the electronic structure of Sr2IrO4,

Sr2RhO4 and Sr2RuO4 by counting electrons. We can make the assumption

that O and Sr assume completely filled shells as O2− and Sr2+. This dictates

that the charge on Ir, Ru and Rh should be 4+, which implies that Ir and

8



Figure 1.3: Overview of the structure and electronic basics of the
transition metal oxides studied in this thesis. (a) A single oxy-
gen octahedron, the building block that is the foundation for
the physics of the materials in this thesis. (b) A schematic
overview of the Ruddlesden-Popper series. Alternating units of
AO (SrO for Sr2IrO4) and BO2 (IrO2 for Sr2IrO4) are stacked
with varying layer thicknesses. The compound studied in this
thesis is the compound with N = 1, consisting of only singly
connected layers of IrO2 between two layers of SrO. (c) The unit
cell structure for Sr2IrO4. Alternating layers of SrO and IrO2

can be seen stacked along the c-axis [50]. (d) Energy diagram
explaining the effect of the crystal field on the d orbitals, that
split into different subsets under influence of the octahedral field
(10Dq) and the tetragonal splitting (δtet).
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Rh are d5, while Ru is d4.

For most 3d compounds Hund’s first rule is valid (U − U ′ > 10Dq) and

ions are high spin. However, 4d and 5d TMOs tend to have 10Dq > U −U ′

since the orbitals are further extended and the effect of the crystal field is

large, and it is therefore more favourable for two electrons to occupy the

same site in the t2g manifold, in a low spin configuration [51]. Therefore,

to the most basic extent, the physics of Sr2IrO4 can be considered as five

electrons in the (spin-degenerate) t2g manifold. This means a partially filled

t2g shell for all materials, implying a metallic ground state in the absence of

electron-electron interactions. Spin-orbit coupling then proceeds to modify

the structure of these (nominally) degenerate bands, as will be discussed in

Section 1.3.

1.2.2 Mott insulators

The introduction of band theory has been very successful in the explanation

of metallic and insulating properties. In the case of a partially filled band,

gapless excitations are possible and the system is metallic. In the opposite

case, where a band is empty (or completely filled), a finite amount of en-

ergy (the gap), has to be overcome for an excitation to be made, causing

these systems to instead be insulating. Band theory has been successful for

many materials and has helped shape the world by explaining the behaviour

of silicon and aiding in the creation of the transistor. However, already in

1937, de Boer and Verwey pointed out that many transition-metal oxides

had partially filled d-bands and were insulators [52]. Commenting on the

paper of de Boer and Verwey, Peierls pointed out that this behaviour may

be due to the electrostatic interaction of electrons [53]. It was Mott who

later laid the ground-work for what is now known as a Mott insulator [54];

a system in which electrons are localized and excitations are gapped due

to the strong electron-electron repulsion. Since then, an extensive amount

of attention has been paid to these types of compounds. Not in the least

because a Mott insulating phase is often found in close proximity to many of

the exotic states mentioned in Section 1.1. Because the nature of the insu-
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lating states can be found in electron-electron interactions, Mott insulators

are very challenging to study. As correlations require the exact treatment

of an exponentially growing number of possible interactions in a many-body

system, there remain many questions still unanswered.

1.2.3 The metal-insulator transition

In the case of Mott insulators, a frequently studied physical phenomenon is

the transition into a metallic state, called a metal-insulator transition (MIT).

An excellent in depth review of both theoretical and experimental aspects

of this field of physics can be found in Ref. 6. A MIT can in general be

driven through the tuning of two individual parameters; the filling, n, and

the bandwidth, often denoted U/t. Tuning through the former of these

parameters is called a filling controlled (FC) MIT, whereas the latter is

referred to as a bandwidth controlled (BC) MIT. It is instructive to consider

the physical mechanism behind these two. In the BC MIT, the kinetic energy

terms t are modified, to an extent to which it can be found more favourable

for electrons to be itinerant, regardless the cost of U that an electron pays

to occupy the same site as another. Meanwhile, an FC MIT can be easily

understood from a system at integer filling. While for a system exactly at

half filling, excitations are energetically costly (U for one electron to hop

to a site where another electron is already present), for a system that is

not exactly half filled, sites that are already doubly occupied can hop at no

additional cost, as that U was already expended.

Experimentally, there are various tuning knobs that control these param-

eters. For bandwidth control, pressure is effective, either applied chemically

or externally. In the case of perovskite structures, changing the radius of

the A site ion is an effective way to change the bandwidth and such MITs

can be found for example in RNiO3 with R is a rare-earth ion [55]. Another

example is the substitution of Ca in Ca2RuO4 for Sr, which has a larger

ionic radius and drives the system from insulating to metallic [56]. The

advantage of substituting an A site ion is that they generally do not par-

take in the low-energy physics (as discussed in Section 1.2) and only provide
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sideline support such as adjusting charge and chemical pressure. For the

case of filling control, modifications can be made chemically or by electronic

gating. A classic example is to substitute an A site for one with a different

valence, for example, substitute part of trivalent La in La2CuO4 for diva-

lent Sr, to create SrxLa2−xCuO4, which changes n to n − x. This strategy

has been successfully applied to Sr2IrO4 to electron dope it, by creating

LaxSr2−xIrO4 [42, 44]. Another possibility is to change the oxygen content,

a strategy that has seen a large success in the field of the superconducting

cuprates and has also been demonstrated in Sr2IrO4 [43]. Lastly, a type

of transition that is mentioned here for completeness, is the control of di-

mensionality. For example, of the Ruddlesden-Popper series of manganites,

the single layer compound La1−xSr1+xMnO4 is insulating, while the bi-layer

compound, La2−xSr1+xMn2O7, is metallic. Since all the compounds studied

in this thesis are single-layer compounds, dimensionality will not be consid-

ered here. In Chapter 3, we will study a new variety of MIT: the one that is

controlled by spin-orbit coupling. While it may not be immediately obvious

why spin-orbit coupling is fundamentally different from a FC MIT, the sim-

ulations in [57, 58] should provide a compelling answer: where U/t changes

the itinerancy, λ/t changes the entanglement of the multi-orbital Mott sys-

tem and the two control-parameters lead to surprisingly different phases. In

this work, we will show for the first time an experimental demonstration of

such a SOC controlled MIT, as is explained in Chapter 3.

1.3 Spin-orbit coupling

A central theme in this thesis is SOC, a term in the Hamiltonian that arises

from relativistic corrections to the Schrödinger equation, which entangles

spin and orbital angular momentum degrees of freedom. This entanglement

causes a wavefunction in which spin and orbital angular momentum degrees

of freedom can no longer be factored out. I will first describe spin-orbit

coupling from the historical point of view, which is a treatment which is

often presented in introductory textbooks. After this, a description derived

from the relativistic Dirac equation will be given.
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1.3.1 A simple description of spin-orbit coupling

The initial description of spin-orbit coupling came after Goudsmit and Uh-

lenbeck suggested that a new quantum number, related to intrinsic angular

momentum of the electron could better explain the spectral lines of Hy-

drogen [59, 60]. They proposed the existence of such a “spin”, ad hoc and

derived the associated energies following from electrostatics. Due to the

effects of relativity, an electron moving in the presence of the potential of

the nucleus will experience a magnetic field in its rest frame. This magnetic

field is:

Bel =
v

c2
×E =

v

ec2
×∇V. (1.1)

The moment of the electron will align with this field, where the energy of

the spin magnetic moment is given by:

Vµs = µs ·Bel. (1.2)

Writing the electron magnetic moment as µs = −gsµB S
~ and substituting

gs = 2 we arrive (up to a constant) at the energy for the spin-orbit coupling:

Vµs = − 1

m2
ec

2
S · p×∇V. (1.3)

In a spherically symmetric potential we can write the gradient of the poten-

tial as ∇V = −1
r
dV
dr r which leads to the more familiar form:

Vµs =
1

m2
ec

2

1

r

dV

dr
L · S. (1.4)

This is the correct result up to a factor 2. The error arises from the fact that

an electron in a spherical potential is not moving with a constant velocity

but is continuously accelerated by the centripetal force. This was resolved by

accounting for the appropriate Lorentz factor by Thomas [61], which leads

to the correct expression. Although this derivation of spin-orbit coupling as

some external perturbation is quite insightful, since it provides an intuitive

origin for the term, it is not at all rigorous from a physics point of view.
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Although this description gives the correct result, it is a complicated mix of

classical, quantum and relativistic physics. Most importantly, electron spin

is added ad hoc, justified by intrinsic angular momentum. It was pointed out

by Slater that the picture of a spinning electron would violate relativity as

the periphery of the electron would spin significantly faster than the speed

of light [62].

1.3.2 The Dirac equation

Shortly after the description by Uhlenbeck and Goudsmit with the correction

from Thomas, the same solution was found more rigorously through the

Dirac equation[63]: (
cα · p + βmec

2
)
ψ = Eψ. (1.5)

Here, α and β are both 4× 4 matrices, given by:

α =

(
0 σ

σ 0

)
, β =

(
I 0

0 −I

)
, (1.6)

with all elements here being 2× 2 matrices, σ are the Pauli spin-matrices

and I is the identity matrix. This derivation of spin-orbit coupling, mainly

follows [64]. We start by writing the four-component wavefunction as two

two-component vectors, ψ = (ψA, ψB). In this representation, we get two

coupled equations for ψA and ψB, from which we can eliminate ψB and we

obtain for ψA (in the presence of an electronic potential V ):

p · σ c2

E − V +mec2
p · σψA = (E − V −mec

2)ψA. (1.7)

We can substitute E = mec
2 + ε and in the non-relativistic limit, where

ε−V << mc2, we can make an expansion in the energy around mc2 to find

for the middle term:

c2

E − V +mec2
=

1

2me

(
1− ε− V

2mec2
+O

((
ε− V
2mec2

)2
))

. (1.8)
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Here, the zeroth order gives a term containing (p · σ)2 = p2,1 which results

in the ordinary, scalar Schrödinger equation, degenerate in the spin degree

of freedom: (
p2

2me
+ V

)
ψ = εψ. (1.9)

Taking the first order expansion, we get an additional set of terms, arising

from the fact that V = V (r) and that generally [V (r),p] 6= 0. The result as

stated in [64] is:(
p2

2me
+ V +

p4

8m3
ec

2
+

~
4m2

ec
2
σ ·∇V × p +

~2

8m2
ec

2
∇2V

)
ψ = εψ. (1.10)

The first two terms describe the non-relativistic Hamiltonian from the zeroth

order. The third term is the relativistic correction to the kinetic energy of

the electron, the fourth term is the spin-orbit coupling, and the fifth term

is the Darwin term. Setting S = ~
2σ, we can finally cast the spin-orbit

coupling in its usual form:

HSOC = − 1

2m2
ec

2
p× (∇V ) · S. (1.11)

Or when the potential V is spherically symmetric:

HSOC =
1

2m2
ec

2

1

r

dV

dr
L · S. (1.12)

This is the correct result including the factor of 2 that needed to be added

to the electrostatic picture.

1.4 SOC and angular momentum in solids

All of the work in this thesis is focussed on coupling of spin and orbital

angular momentum in solids. It therefore seems apt to give a thorough

description of some of the generally used bases and coupling terms. This

section serves to expand the well known textbook treatment of spin-orbit

coupling and states of coupled angular momentum to the realm of solids in

1This holds since all the squares of the Pauli matrices give the identity: (σi)
2 = I.
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which the crystal field breaks certain symmetries.

1.4.1 SOC in atoms

The treatment of spin-orbit coupling here will deal with the inclusion of

the Hamiltonian L · S as derived above. This is technically incorrect, as

the substitution ∇V = −dV
dr r̂ made to obtain this form is only valid for

a spherically symmetric potential. However, the largest influence on every

individual orbital comes mostly from the region very close to the nucleus.

Therefore it is still a reasonable approximation to neglect the influence from

neighbouring nuclei, as their contributions to the gradient are much smaller

than that from the centre atom.

To start, we briefly revisit the states of coupled orbital angular momen-

tum. Our challenge is to find an operator representation that commutes

with the spin-orbit coupling Hamiltonian derived in Section 1.3.2. It turns

out that while Sz and Lz no longer commute individually with the Hamil-

tonian, their sum does. The Hamiltonian can be written as a combination

of the absolute value of the spin, orbital, and coupled angular momentum:

HSOC = λSOCL · S = λSOC
1

2
(J · J− S · S− L · L). (1.13)

The eigenstates for this Hamiltonian are given in Table A.2 and Table A.1 for

` = 1 and ` = 2 respectively, sorted by their angular momentum projection

on the z-axis. The values for L · S and their components are given for each

state. Note that in the absence of a term that breaks the symmetry and lifts

the degeneracy between the different mj states, the different values for LiSi

are artificial and arise from writing the states as separate mj states. Rather,

these expectation values should be taken as an average over the degenerate

states, which gives a more satisfying result that the spin-angular momentum

coupling is independent of direction, as one would expect for a spherically

symmetric system. These considerations are important for later, where we

use circularly polarized spin-ARPES (CPSA) to measure entanglement of

spin and orbital momentum, this technique essentially directly probes LiSi

along a particular axis i.
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1.4.2 SOC in the presence of a crystal field

We now turn to the effect of spin-orbit coupling in the presence of a crystal

field potential. As mentioned, the effect the surrounding lattice has on an

atom, in changing the gradient of the potential, is quite small. However, the

crystal field imbues big changes on orbital energies. If it is comparable to

or larger than the energy of spin-orbit coupling, it influences the ability of

SOC to entangle spin and orbital degrees of freedom. The potential arising

from the crystal field will break certain symmetries and lift degeneracies.

If the energy splittings related to these degeneracy liftings are larger than

spin-orbit coupling, that means the full ` manifold is no longer available and

eigenstates of coupled orbital angular momentum like the ones in Table A.1

may no longer form. The energy scale associated with the crystal field is

generally around∼ 3 eV, making it between one and two orders of magnitude

larger than the relevant values for SOC (Section 1.1.1). This means that

in a first approximation, we can simply project out the crystal field split

states and transform the SOC Hamiltonian into the new reduced basis. We

consider the basis of the cubic harmonics, which are the eigenstates of the

Hamiltonian in an octahedral crystal field. These states all have quenched

orbital angular momentum, making each individual state insensitive to SOC.

Nevertheless, for higher symmetries (e.g. cubic rather than tetragonal),

degeneracies persist and spin-orbit interaction can couple degenerate subsets

of these states.

We consider here the d states, since they are most appropriate for this

work. We first consider an octahedral crystal field, which splits the degen-

erate d band into a manifold of eg and t2g states. Although the eg states are

in general above the Fermi level for the compounds studied in this thesis, for

completeness we discuss their spin-orbit coupling here. Since the eg orbitals

consist of spherical harmonics with ml = {−2, 0, 2}, which the L+ and L−

terms arising from L · S are unable to couple, the Hamiltonian reduces to

zero:

HSOC,eg = B†egHSOCBeg = 0, (1.14)

where HSOC is the Hamiltonian in Eq. 1.13 and Beg is the operator that
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projects the eg states onto the spherical harmonics, the basis of HSOC

1.4.3 The jeff = 1/2 State

The same is not true for the t2g states, where the projected SOC Hamiltonian

does entangle the states. Taking as a basis:

bt2g = {dxy,↑, dxz,↑, dyz,↑, dxy,↓, dxz,↓, dyz,↓} , (1.15)

we get for the HSOC :

HSOC,t2g =
λ

2



0 0 0 0 −i 1

0 0 −i i 0 0

0 i 0 −1 0 0

0 −i −1 0 0 0

i 0 0 0 0 i

1 0 0 0 −i 0


. (1.16)

This gives rise to coupling of these degenerate substates as was the case for

SOC without a crystal field. The t2g states have the special property that

they mimic the behaviour of p states as has been noted in [25]. To show the

derivation of these states, we start by writing down a new basis (the naming

of which will become clear after the derivation), b`eff
:

|1eff〉 =
1√
2

(|dyz〉+ i |dxz〉) = i
∣∣Y −1

2

〉
, (1.17)

|0eff〉 = − |dxy〉 = − i√
2

(∣∣Y −2
2

〉
−
∣∣Y 2

2

〉)
, (1.18)

|−1eff〉 =
1√
2

(− |dyz〉+ i |dxz〉) = −i
∣∣Y 1

2

〉
. (1.19)
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Note that this basis transformation reintroduces orbital angular momentum,

having ml = {−1, 0, 1}. Within this basis, the L+ and Lz operators become:

L+
leff

= B−1
leff
L+Bleff

=
√

2

0 −1 0

0 0 −1

0 0 0

 , (1.20)

Lz,leff
= B−1

leff
L+Bleff

=

−1 0 0

0 0 0

0 0 1

 . (1.21)

These are identical to the respective matrices for the p orbitals, except with

` → −1. We can now construct coupled states of angular momentum in

a similar way as was done for Eq. 1.13, which are given in Table A.3 and

constructed explicitly from t2g orbitals in Table A.4. Spin-orbit coupling

thus entangles the manifold of t2g states into the so-called jeff states, called

“effective” because their expectations are inconsistent with ordinary j val-

ues. Instead, following the observation that the `eff states behave like states

with ` = −1, the expectation values of L · S and their components are pre-

cisely negative that of what the equivalent j state would yield. This is of

importance for our investigation of the jeff states using CPSA later. The

basis of jeff diagonalizes the SOC Hamiltonian:

HSOC,jeff
=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1
2 0 0 0

0 0 0 −1
2 0 0

0 0 0 0 −1
2 0

0 0 0 0 0 −1
2


. (1.22)

1.4.4 Tetragonal splitting

In Sr2IrO4, more than just the spherical symmetry is broken. An expansion

or compression along the z-axis or even the dimensionality of the solid may
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give rise to a tetragonal splitting, in which the eg and t2g orbitals split into

non-degenerate dx2−y2 , dz2−r2 , dxy and degenerate dxz and dyz states. This

splitting is smaller than the spin-orbit coupling for Sr2IrO4 [65], but plays

an important role in 4d materials with strong structural distortions, such as

Ca2RuO4 [66, 67] and 3d systems such as Fe superconductors [23]. More-

over, spin-orbit coupling only couples states at one particular k-point. This

implies that the bandwidth plays an important role in determining how spin-

orbit coupling is able to entangle certain states. For example in materials

like Sr2IrO4, Sr2RuO4 and Sr2RhO4, the dxy orbital has a two-dimensional

character, while the dxz and dyz bands are one-dimensional. This means

that the dxy has approximately double the bandwidth compared to the oth-

ers, creating a k-dependent effective tetragonal splitting on the order of the

bandwidth, which is in turn much larger than SOC. It is therefore of inter-

est, to also study the states that form upon coupling only the dxz and dyz.

The Hamiltonian in the reduced basis ({dxz,↑, dyz,↑, dxz,↓, dyz,↓}) becomes:

Lz,leff
= B−1

leff
L+Bleff

=


0 − i

2 0 0
i
2 0 0 0

0 0 0 i
2

0 0 − i
2 0

 . (1.23)

This gives rise to a basis of two Kramers degenerate states, parallel and

anti parallel, labelled here as |j+〉 and |j−〉, the relevant expectation values

for which are given in Table A.5. The tetragonal splitting thus causes a

different splitting of the states and hence a different expectation value for

each component of L ·S. The remaining states are all singly degenerate and

therefore do not couple under spin-orbit coupling.

Fig. 1.4 shows the splitting of states as a function of the discussed pa-

rameters, with the colour encoding for the expectation value of LiSi. The di-

agram shows that these expectation values can change significantly through

the Brillouin zone, if a k-dependent energy splitting between the dxy and

dxz/dyz is taken into account. Furthermore it shows that although spin-orbit

coupling itself does not change, its effects on the band-structure change sig-
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Figure 1.4: Expectation values of the d bands subject to the introduc-
tion of various of splittings (λSOC , 10Dq, δtet) for L ·S operator
(a) and its components LxSx (b) and LzSz (c). Due to the
fourfold rotational symmetry that is conserved, the expectation
value for LySy is identical to LxSx and therefore not shown.

nificantly depending on other crystal parameters.
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Chapter 2

Methods

The work in this thesis makes use of a combination of ab initio, numerical,

and experimental methods. A combination of these two approaches can be

an extremely useful tool in understanding real-world systems. This chapter

is meant to provide the reader with information about the frameworks and

models used in later chapters.

2.1 Ab initio calculations

The description of many-body electron systems, such as transition-metal

oxides (TMOs), is highly complex and requires the use of appropriate ap-

proximations to avoid exponential scaling of computational resources. This

is particularly true for a system like Sr2IrO4, in which the system is not

easily described simply by a reduced effective model. In general there is

no silver bullet, and this work makes use of a combination of techniques to

describe the systems studied.

2.1.1 Density functional theory

A very successful approach in dealing with the many-particle problem has

come from density functional theory (DFT), a technique that relies on the

fact that a system can be uniquely described by its charge density, which

can itself be described as a function of just three variables n(r), rather than
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3N variables Ψ(ri). To give an introduction to DFT, it is instructive to

start by considering the Hohenberg-Kohn (HK) theorems [68], the first of

which states:

Theorem 1 The ground state particle density of a system with a potential

V , uniquely determines the potential of that system up to a constant.

The consequence of this is that the ground state particle density must con-

tain all the relevant physical properties of the system, as it uniquely describes

the potential of the system. This means any physical quantity should be

able to be expressed in terms of the particle density n(r) alone. The second

theorem states that:

Theorem 2 There exists a functional F [n], that is independent of the exter-

nal potential Vext, that has the property that when E0[n] = F [n]+
∫

drVext(r)n(r)

has a minimum E0 which is the ground state energy of the system, and n0,

the ground state particle density, is the functional that minimizes it.

This implies that the system is completely described by E0[n], since it de-

scribes n0. Meanwhile, F [n] is the functional that contains a description of

all kinetic and interaction energy terms in the system which is, remarkably,

completely independent of the external potential. Unfortunately, there is

no known form for F [n], meaning that we cannot use this result directly.

However, Kohn and Sham later developed a strategy [69] that maps this

problem onto a problem which we can solve using some assumptions. We

start by writing the particle density as a sum over occupied single particle

states:

n(r) =
∑
i

|ψ∗i ψi|
2 . (2.1)

We then write the equation from the second HK theorem, adding a Lagrange

multiplier to conserve particle number:

δ

{
F [n] +

∫
drn(r)Vextr− µ

(∫
drn(r)−N

)}
. (2.2)
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This yields the equation:

δTs[n]

δn
+ VKS = µ, (2.3)

where Ts[n] is the kinetic energy functional, and VKS is a potential, which

not only includes the external potential but also the exchange and correlation

potentials. It is equal to:

VKS(r) = Vext(r) +

∫
dr′

n(r′)

|r− r′|
+ Vxc(r), (2.4)

where Vxc(r) is the exchange correlation term and the integral is the Hartree

term, both arising from F [n]. This equation can now be solved by consid-

ering the set of N coupled equations:

ĤKSψi = εiψi, (2.5)

with ĤKS =
∑

i
~

2m∇
2
i + VKX(r). Although the problem is now much more

tractable, there is unfortunately, no simple description of what Vxc should

be. There have been many approximations to this problem. Among the most

famous of these are the so-called local density approximation (LDA) and the

generalized gradient approximation (GGA). The former only considers the

local density, and treats the exchange potential like that of a homogeneous

electron gas, for which the exchange potential was calculated by Dirac [70].

The correlation potential can be fit to Monte-Carlo simulations [71]. The

GGA also considers gradient terms, as implemented in Ref. 72 for example.

Throughout this work, we rely mostly on the GGA exchange correlation

potential described by Perdew, Burke and Ernzerhof [73].

Since VKS depends on the particle density, this equation has to be solved

self-consistently. The way this is done in practice is by making an assump-

tion about the particle density, from which the potential is calculated and

the Kohn-Sham (KS) equations are solved, which leads to a new particle

density. This is repeated until a convergence criterion is reached. This can

be taken to be the total energy or charge density differing by less than a
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user-set amount from one iteration to the next.

There are various sets of basis functions one can choose for the ψi. An ob-

vious choice is the atomic orbitals (Gaussian or Slater type orbitals), which

is a basis set often used for molecular calculations. For periodic systems,

an appropriate choice is a set of plane waves on a k-point grid. A practical

problem that arises in that case is that the 1/r like potentials of nuclei cause

a very sharply spiked wave function at the centre of the nuclei, for which a

very large number of small wavelength plane waves is needed to accurately

describe the charge density. This means that the basis set becomes large,

causing larger computational times for the matrix diagonalization step in

solving the set of coupled equations in Eq. 2.5. These scale as O(S3), with

S the size of the basis, so it is advantageous to reduce the number of basis

functions as much as possible, without losing accuracy. A solution to this

problem is to change the atomic potentials with so-called pseudopotentials,

which give wavefunctions that are equal to the ones found from real poten-

tials at r > rA. An example of a code that uses this scheme is Quantum

Espresso [74]. Another solution to this problem is the linear augmented

plane wave (LAPW) basis set, in which the basis functions are defined to be

atomic orbitals within a sphere around each atom, augmented with plane

waves in the interstitial region. An example of a code that uses this scheme

is Wien2k [75], which is the program that has been primarily used for this

work.

Although the KS approach allows us to find the ground state density

of the system, and therefore find its energy, there is no guarantee that the

KS eigenenergies εi carry any physical meaning. Hartree Fock theory has

Koopmans’ theorem that states the ionization energy of the system is equal

to the energy of the highest occupied molecular orbital [76]. This descrip-

tion would in principle map onto the Kohn-Sham equations, however this

turns out to be difficult in practice and is very dependent on the form of the

functional [77–79]. Unfortunately, this still does not give any meaning to

other εi, and direct comparison to techniques that measure the one-particle

spectral function, like angle-resolved photoelectron spectroscopy (ARPES),

should only be done with this caveat in mind. Nevertheless, the comparison
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is frequently made and we can find some comfort in symmetry considera-

tions that constrain a large part of the problem. On a more intuitive level,

the Kohn-Sham equations appear to describe exactly the problem of a sin-

gle electron moving through the background of all other electrons and the

external potential of the system. This justifies the interpretation of the εi as

the single particle energies but does not guarantee the same interpretation

for many-body systems.

Although band structure comparisons only hold in the single particle

limit, there are other properties that DFT is able to capture more robustly.

This includes, for example, ion valencies and charge densities, as well as

atomic forces and the derived results using structure optimization. Recog-

nizing the weaknesses and strengths of DFT makes it an incredibly powerful

and useful tool for modelling and understanding experimental data. DFT is

used throughout this thesis as the basis of many models and calculations.

2.1.2 Wannier functions

Wannier functions are the real space counterpart of Bloch functions and can

be useful if an interpretation in real space is appropriate. In a simple de-

scription, Wannier functions are a non-unique set of functions that form the

building blocks for the periodic un,k(r) part of the Bloch waves. Conversely,

the Fourier transform of a Bloch function should yield a Wannier function

centred at all real-space lattice sites. Wannier defined a set of real-space

functions as the building blocks for Bloch functions as[80–82]:

|Rn〉 =
V

2π

∫
BZ

dke−ik·R |ψnk〉 , (2.6)

where |Rn〉 is the Wannier function with label n at lattice position R, |ψnk〉
is the Bloch state with label n at k, and the integral is over the entire

Brillouin zone. In the case of a discrete k grid, as is often the case in

electronic structure calculations, this integral would be replaced by a sum
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Figure 2.1: The relationship between a Bloch wave and a Wannier
function. (a) A Bloch wave consisting of a phase changing with
wavevector k, that multiply the repeating Wannier function de-
picted in (b).

over all k-points. The inverse of the transformation is given by:

|ψnk〉 =
∑
R

eik·R |Rn〉 . (2.7)

From this equation it can easily be seen that Wannier functions form build-

ing blocks of Bloch waves, which are modulated only by a phase factor

throughout a crystal. Fig. 2.1a shows a Bloch wave, consisting of Wannier

functions in Fig. 2.1b. Both form a complete orthonormal basis set, and the

Fourier transform is the relation between the two.

There is, however, one difficulty arising from the calculation of Wannier

functions, which is that Bloch waves have a gauge freedom that propagates

into the shape of the Wannier functions. In other words, the Wannier func-

tions belonging to a set of Bloch waves are not unique. The gauge invariance

is [82]: ∣∣∣ψ̃nk〉 = eiφ(k) |ψnk〉 , (2.8)

with φ (k) being any smooth function that follows the periodicity of the lat-

tice in k-space. Both
∣∣∣ψ̃nk〉 and |ψnk〉 give physically accurate descriptions

of the system in question, but their calculated Wannier functions differ. The

case gets more complex in the multi band case, as any unitary transforma-

tion applied to the set of Bloch waves results in the same physical description
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of the system: ∣∣∣ψ̃mk

〉
=
∑
m

Unm (k) |ψnk〉 , (2.9)

where Unm (k) is now an arbitrary unitary transformation that is periodic

and smooth in k.

To fix the gauge and set the matrix of phases, a widely used criterion

is the one of maximal localization, the gauge that yields Wannier functions

that are the most localized. The method for calculating maximally localized

Wannier functions (MLWFs) was developed by Marzari and Vanderbilt [83],

and relies on minimizing the functional that describes the spread in the

home unit cell:

Ω =
∑
n

(
〈0n|r2|0n〉 − 〈0n|r|0n〉2

)
. (2.10)

The minimization happens with respect to Unm (k), to find the correct gauge

that describes a set of Wannier functions that are maximally localized within

the home cell.

An example of a Wannier calculation performed on Sr2IrO4 is presented

in Fig. 2.2. The calculated DFT band structure is plotted in black with

the corresponding Wannier band structure displayed in red. The real space

shape of the Wannier orbitals is plotted too as an iso-surface for each in-

dividual orbital. The shapes of the Wannier orbitals reflect a previously

mentioned point (Section 1.2.1): the physics that is often only discussed in

terms of Ir d orbitals should rather be seen as Ir-O hybrids, here visible

in the Wannier functions as additional lobes to the t2g orbitals. Note that

these hybrids still follow the symmetry of the original Ir orbitals.

Wannier functions in this work are mainly used to derive a model Hamil-

tonian from first principles calculations, which is more versatile for further

calculations than the results from DFT. In particular, when the right choice

for Unm (k) is found, this defines a transformation from k-space into real

space that can be applied to the KS Hamiltonian Hk. We obtain the real
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Figure 2.2: An example of a Wannier calculation: the black thin lines
represent a DFT calculation of Sr2IrO4, with the red curve a
Wannier band structure generated from the t2g orbitals. The in-
ferred Wannier model projects onto the low energy physics and
is more compact and interpretable than the original DFT cal-
culation. Iso-surface plots of the generated orbitals are shown,
with red and blue colours representing positive and negative
amplitudes. The iso-surface for each orbital is taken at 10% of
the maximum value of the wavefunction.
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space Hamiltonian by applying the transformation:

HR−R′ =

∫
BZ

dke−ik·(R−R
′)U †nm (k)HkUnm (k) , (2.11)

which can be interpreted as a tight-binding Hamiltonian with the obtained

Wannier functions as an orbital basis. This can now be used as a strat-

egy to extract a tight-binding like Hamiltonian from ab initio calculations

for orbitals with particularly chosen symmetries, for example, the Ir-t2g or-

bitals in Fig. 2.2. A projected tight binding Hamiltonian, in which only

orbitals of particular character are kept, is often preferable to an electron

density obtained from an ab initio code for two reasons. Firstly, simplifying

the Hamiltonian makes the physics that is relevant to the problem much

more interpretable. Secondly, because calculations are simpler and there-

fore faster. This makes it easier to define relevant quantities and calculate

expectation values.

2.1.3 The tight binding approach

The tight binding approach has been used extensively throughout this thesis.

The following section briefly highlights important aspects of the technique,

its strengths, and why it is convenient and appropriate to use for this work.

The rudimentary idea is that we treat the electrons as independent particles

which move independently in the crystal potential. If we use a basis set

{|i〉}, the Hamiltonian can be expressed in terms of its matrix elements:

Hij = 〈i|H|j〉 , (2.12)

where {|i〉} are some set of localized atomic like wavefunctions, limited to

a particular set of orbital angular momenta. In the case of this thesis, this

is often the iridium d-orbitals. The Hamiltonian matrix elements can in

principle be calculated from the chosen basis and the Hamiltonian by direct

integration. In practice they can be derived from Wannier calculations or

fitting a model with orbitals of interest to either ab initio calculations or

experimental data. When fitting such models, symmetry restricts many of
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the possible matrix elements to particular values. After collecting all matrix

elements, the wavefunctions can be simply found by diagonalizing Hij :

Hvn = εnvn. (2.13)

These wavefunctions include phases, which means we can easily calcu-

late expectation values of operators, band projections, (partial) densities of

states, as well as more complex quantities like the photoemission matrix ele-

ment. The approach is computationally cheap, the calculation time required

is the diagonalization of an N ×N matrix, where N is the size of the basis.

This allows us to study large clusters of atoms (up to 12× 12 with 10 basis

states per site for this work), without computational time becoming a lim-

itation. Moreover, for a system like Sr2IrO4, in which all d-orbitals on two

separate Ir sites are important, it becomes computationally very costly to

treat electron-electron interactions fully. Furthermore, the generated mod-

els are quite interpretable and therefore aid in explaining the underlying

physics of the problem.

The downside of this is that the only way electronic interactions are

included is as a background potential term arising from the original KS

equations. Hence, this method cannot make accurate predictions about cor-

related physics, like the existence of a Mott gap. Nevertheless, the preva-

lence of orbital symmetry in solid state physics makes this a very predictive

technique, particularly when it comes to calculating dipole matrix elements,

on which both experimental chapters put a significant amount of emphasis.

Therefore, tight binding built on ab intio calculations is one of the preferred

methods for calculating quantities in this thesis.

2.2 Band unfolding

In physical systems, one of the useful control parameters is often chemical

doping or substitution. To describe systems with impurities or dopants, the

most accurate approach would be to work in the position basis, studying

large clusters of atoms. However, this has the disadvantage that the basis

set becomes very large and secondly, because of working in the position ba-
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sis, calculations lose their interpretation with regards to k-dependence. A

workaround to this problem is to take a combined approach and to make su-

percells of atoms. This consists of repeating the unit cell (Nx, Ny, Nz) times

and adding impurities, vacancies, or making substitutions in the original

lattice. A new synthetic periodic system is hereby effectively created, which

no longer has the periodicity of the original crystal but models a regular dis-

tribution of impurities. Although this can, at best, be an approximation to

the real system, the advantage is that it fits within the previously discussed

models and momentum is kept as a good quantum number. A complication

that arises, is that since the unit cell becomes larger, the reciprocal lattice

vectors become Ni times shorter, with Ni times more bands in the first Bril-

louin zone. One can easily plot this band structure in the unfolded zone but

that still leaves NxNyNz folded replica’s that hinder a direct comparison to

the original band structure. To interpret the folded band structure, we make

use of band unfolding, a technique that attempts to recover the character

of bands in the original Brillouin zone. A projection onto the Bloch waves

that follow the periodicity of the original unit cell can be made, a technique

discussed in [84, 85].

2.2.1 A simple example

We first consider a simple example, the case of a 1D chain of atoms with a

single s orbital, with nearest neighbour hopping t. We will then consider a

supercell consisting of two atoms, that makes up a new representation of an

identical chain (see Fig. 2.4(a)). Before considering these band structures,

it is insightful to highlight that the units of this supercell chain can be

considered as diatomic molecules. The energy spectrum and wavefunctions

for each of these molecules can be easily calculated. When two atoms are

allowed to interact via some kinetic term 2t, we can write the Hamiltonian:

H =

(
0 2t

2t 0

)
. (2.14)
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Figure 2.3: The energy levels and wavefunctions of a diatomic
molecule. The separate atoms are depicted on the outside of
the figure, with the symmetric and anti-symmetric wavefunc-
tions and energies in the centre.

This Hamiltonian has eigen-energies E = ±2t, with corresponding wave-

functions 1√
2

(1,±1). The wavefunctions and energies are also plotted in

Fig. 2.3, for the uncoupled (a) and coupled case (b). The coupling of these

states causes a symmetric (low energy) and anti-symmetric state (often re-

ferred to as a bonding and anti-bonding orbital). We now construct a chain

of these atoms and compare it to a chain of molecules. Since these sys-

tems are physically identical (they only differ in their description), they

should present the same observable results. A schematic of the comparison

is sketched in Fig. 2.4a, with the description of the same system in terms of

a size a and 2a unit cell. We start by considering the chain of single atoms,

with unit cell size a. The dispersion for this system is shown in Fig. 2.4b, in

black, from Γ(k = 0) to X(k = π/a) (with a the spacing between two single

atoms). To obtain the wavefunction at the Γ and X points, we use Bloch’s

theorem, which dictates that the wavefunction is only allowed to change up

to a phase from unit cell and that phase should progress as eikr. We fix

the phase of the first atom to one and plot the wavefunction for both the Γ

(|ψΓ(r)〉) and the X (|ψX(r)〉) point, in Fig. 2.4(c) and (d) respectively.
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Figure 2.4: Band unfolding in a chain of diatomic molecules. (a)
Schematic overview of the model. The atoms are spaced a
apart, and a supercell of two atoms (sized 2a) is considered.
(b) Dispersion relation for a 1D chain of atoms (blue) and a 1D
chain of diatomic molecules with the same hopping parameters
(red). (c) The wavefunction for the 1D chain of atoms (black)
and the progression of the phase (blue) at Γ. (d) The same at
X. (e). Wavefunction from the symmetric state for the chain
of molecules (black) with the phase indicated at Γ (blue) and
Γ′ (red). (f) The same as (e) for the anti-symmetric state. In
this case the phase at Γ is indicated in red, while Γ′ is in blue.
The blue coloured phase lines correspond to the correct phase
for the original unfolded cell.

34



Now we turn to the band structure of the two atom unit cell, indicated

with the red dashed lines in Fig. 2.4a, which adds the folded replica of the

original band structure plotted in red in panel (b). Note that these folded

bands are effectively plotted in the first and second Brillouin zone, since the

unit cell size doubled and the Brilluoin zone halved in size. The two folded

bands have a simple interpretation at the Γ (and Γ′ = π/a) point: they are

the band structure of the symmetric (low energy) and anti-symmetric (high

energy) hybrids that form in the previously discussed diatomic molecule.

To identify which of these bands holds physical meaning at which k-points,

we look at the phase progression of the wavefunction and require the same

progression as in the single-atom case. Using the hybrid wavefunctions as

the basis for the Bloch wave, we plot the wavefunctions (|ψsym(r)〉 and

|ψasym(r)〉) of the folded band structure at the Γ point (identical to Γ′),

including their phase progression for both Γ and Γ′ in Fig. 2.4 (e) and (f).

In this supercell model, the states displayed in (c) and (e) are reproduced

as expected. However, the wavefunction that occurs at Γ′ (X) can now be

found at Γ and similarly for the wavefunction at Γ can now also be found

at Γ′ (X). As stated, since these models are identical, they should yield

the same observable results. Comparing the wavefunctions in (e) and (f)

to the plotted Bloch phases of the unreconstructed cell, it is clear which

wavefunction is the correct one for which k-point. The wavefunction in (e)

belongs to Γ while the wavefunction in (f) belongs to Γ′. We therefore find

that both models yield the same results as expected, as long as we enforce

the correct progression of Bloch phases.

For this example, it is easy to see which state belongs to the original

cell. However, for unit cells with more than two atoms, this quickly gets

rather complex. We can extend the requirement of a physically correct

band beyond our simple model; we need to require that the phases of the

wavefunction in the supercell follow the phase progression of the Bloch waves

in the primitive cell. Quantitatively, we project the supercell wavefunction

onto the Bloch phases of the original cell. By doing this, it is easy to see that

|ψsym(r)〉 in Fig. 2.4 has the correct phase for Γ and would project to unity

but for X it would project to zero. This method implicitly assumes that the
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impurities are similar to the original species, as it enforces the symmetries

of the original crystal onto the supercell. Practically, it also requires that

the number and type of orbitals are the same.

2.2.2 Projecting Bloch phases

A more rigorous derivation calculates the weight of the spectral function for

Bloch functions in the original primitive cell from the spectral function in

the supercell. This is demonstrated in Ref. 85, we present that derivation

here, including some intermediate steps. The spectral function for a Wannier

function |kn〉 reads:

Akn(ω) =
∑
K,J

|〈kn|KJ〉|2AKJ(ω), (2.15)

where |kn〉 = 1√
Nr

∑
r e

ik·r |rn〉, with n an index that labels the Wannier

orbital. |KJ〉 are the eigenstates of the supercell, with K the momentum

in the folded Brillouin zone, and J a band index. We can express |KJ〉 in

terms of its Wannier constituents as:

|KJ〉 =
∑
N

〈KN |KJ〉 |KN〉 . (2.16)

Where |KN〉 is a Bloch wave constructed of Wannier functions in the same

way the |kn〉 was defined:

|KN〉 =
∑
R

eiK·R |K,R〉 . (2.17)

We can then write the projection as:

〈kn|KJ〉 =
∑
R,N

〈kn|RN〉 〈R|KN〉 〈KN |KJ〉

=
∑

R,R′,N,r

e−ik·r 〈rn|RN〉 eiK·R′ 〈
RN

∣∣R′N〉 〈KN |KJ〉 . (2.18)
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To evaluate 〈rn|RN〉, we write the normal cell position in terms of the

supercell position and set r = R + ρ(N), a sum of the supercell position,

and a vector within the supercell pointing to the particular atom ρ(N). We

can now eliminate most projections and write the expression as:

〈kn|KJ〉 =
∑
R,N

ei(K−k)·Re−ik·ρNδn,n′(N) 〈KN |KJ〉

=
∑
N

e−ik·ρNδn,n′(N)δK′(k),K 〈KN |KJ〉 . (2.19)

Here, n′ (N) is the function that recovers the band index in the original cell.

This means that the sum should only run over orbitals that are identical in

the primitive cell. Meanwhile, K′ (k) describes the momentum of k in the

folded unit cell. In the case when the supercell model is constructed as a

tight binding model from Wannier orbitals, the terms 〈KN |KJ〉 are simply

the coefficients of the eigenvectors cJ,N (K), we recover the expected result

for our weighted spectral function:

AJk,n (ω) =
∑

N in SC

∣∣∣e−ik·ρ(N)cJ,N (k)
∣∣∣2ANk,J (ω) . (2.20)

This shows the intuition from the two-atom unit cell was correct. We need

to require the phase within the supercell to progress the same way that

the state in the original cell would. This is mathematically enforced by the

product of coefficient and exponential; any solution that does not have the

right phase relation will interfere out.

As an example, we extend the chain diatomic molecules presented in

Fig. 2.4a to a supercell size of 20 atoms. The band structure for this system is

plotted in thin black lines in Fig. 2.5a. To illustrate the unfolded bands, the

band structure is also plotted in blue markers, with their transparency set by

the unfolded weight. We see that this method effectively recovers the original

expected band (red curve) from the many folds of bands. As an example of a

way in which this technique can be used for a non-trivial calculation, we show

the calculated unfolded band structure for the same system, where one atom
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has an added impurity potential of 0.4t in Fig. 2.5b. The unfolded bands

are shown in green and it can be seen that the single impurity introduces

disorder into the band structure, in the form of intensity on the other folded

bands, particularly around the Γ point. The interpretation of results that are

obtained using this technique will be discussed in more detail in Chapter 3,

in particular sections Section 3.3 and Section 3.3.2.

2.2.3 Impurity distributions

To represent a real substituted system and model a material that properly

captures the observations as seen by ARPES, the system size would need

to be on the order of the probe size (150 µm) and the computation would

be intractable (∼ 1011 atoms). Therefore, simulations are limited to smaller

system sizes, in the case of this thesis up to 12 × 12. To reflect the different

possibilities of distributions of impurities, many configurations are averaged

until no further change is seen in the resulting spectrum.

A point to note here is the amount of impurities; the number of impurities

for a given doping follows a binomial distribution. For a system with size n

and doping p, the probability that we find k impurities is:

P (n, p, k) =

(
n

k

)
pk (1− p)n−k . (2.21)

The binomial distribution has the property that its width increases as σk ∝√
n. Since the actual observed doping can be calculated as p̄ = k

n , the

spread in concentrations follows σp̄ ∝ 1√
n

and thus reduces as the modelled

system size increases. This effect can be clearly seen in Fig. 2.6, where the

distribution of impurities, Pn (p̄), is plotted for various system sizes at a

fixed p. To circumvent this issue, we find that more sensible results are

obtained if the number of dopants for a particular configuration is fixed to

a set number, obtained by rounding 〈k〉 = pn to the nearest integer. We

then average over different configurations of impurities to simulate a system

that reflects the impurity distribution of a large system size. This makes the

results independent of the modelled system size. The approach equates to

artificially setting the width of the distribution to zero, which is reflective
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Figure 2.5: 20-site supercell model for a one-dimensional chain of
atoms with a single s-orbital. (a). The band structure for
the 20-site supercell (thin black curves) and the unfolded band
structure (blue markers, transparency set by unfolded weight).
(b) Band structure for the same model where one atom has an
impurity potential of 0.4t added (green markers, transparency
encodes for the unfolded weight).
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Figure 2.6: Probability to find a number of impurities as a function
of the system size. While the number of impurities that are
observed k grows linearly with system size n, the width of the
distribution only grows as

√
n. This implies that the effective

range of concentrations (k/n) reduces as the system size goes
up.

of a very large system size as 1√
n
→ 0.

2.3 Angle-resolved photoelectron spectroscopy

Angle resolved photoelectron spectroscopy (ARPES) is a powerful technique

used for studying the electronic structure of electrons in solids experimen-

tally. It is a direct probe for both electron momentum and energy, and

moreover provides a direct measure of the interactions between electrons

and other particles. The information overlaid in this section mostly follows

Ref. [86].

2.3.1 Theory of photoemission

The technique is based on the photoelectric effect, which is the liberation of

an electron from a material after excitation by a photon. If the energy of

the incident photon is known by using a monochromatized source of light,

the kinetic energy Ek of the emitted photoelectron can be measured and the

binding energy Eb can be calculated. We start by invoking conservation of
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energy:

Eb = hν − Ek − Φ. (2.22)

Here, hν is the photon energy and Φ is the work-function, a sample depen-

dent potential that describes the energy difference between the Fermi energy

and the vacuum energy. If the photoelectron is emitted into vacuum, the

kinetic energy also gives the absolute value of the momentum of the emitted

electron, through the dispersion relation of a free particle:

~k =
√

2meEk. (2.23)

By using conservation of momentum and the take-off angles of the photo-

electron, we can extract the in-plane momentum of the electron before it

was emitted:

k‖ = k sin θ (cos (φ)x̂ + sin (φ)ŷ) . (2.24)

Unfortunately such a simple form does not exist for k⊥. Since transla-

tional symmetry perpendicular to the surface is broken, this momentum is

not conserved. The perpendicular momentum can however often be approx-

imated by:

~k⊥ =
√

2me (Ek cos2 θ + V0), (2.25)

where V0 is the inner potential, describing the bottom of the valence band.

The inner potential, a parameter on the order of 10 eV is often inferred

from experiment. The perpendicular momentum is only of importance for

three-dimensional materials however. In general the preferred materials for

an ARPES experiment are (quasi-) two-dimensional, in part because here

kz is irrelevant, but also because two-dimensional materials often have a

natural cleavage plane, which is important for sample preparation. The

definition of “two-dimensional” in this case means the electron dispersion

is fully (or mostly) in a plane, embedded as a stack of layers in a three-

dimensional material. A useful criterion for determining two-dimensionality

is the requirement that no bands cross, and no electron or hole pockets close

as a function of kz.

We consider the theory behind photoemission, by treating the interaction
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with light perturbatively. We make the canonical substitution p→ p− eA
c

to account for the light. Dropping the quadratic term in A, we obtain for

Hint:

Hint = − e

2mc
(p ·A + A · p) (2.26)

Using the commutator [p,A] = −i~∇ ·A and the fact that the wavelength

of ultraviolet (UV) light is large enough that we can set ∇ ·A = 0, we get

for Hint:

Hint = − e

mc
A · p (2.27)

With the interaction Hamiltonian, we can describe the transition probability

from the many body grounds state ΨN
i into a particular final state ΨN

f using

Fermi’s golden rule:

wf,i =
2π

~
∣∣ 〈ΨN

f

∣∣Hint

∣∣ΨN
i

〉∣∣2 δ(ENf − ENi − hν). (2.28)

Here, ENf and ENi are the energies of the initial and final state many body

electron wavefunctions.

To calculate this, one would need full knowledge of the many body wave-

function, properly taking into account the sample surface and related effects.

This method is therefore quite cumbersome and often the process of photoe-

mission is modelled by the so-called three-step model. In this case, the pho-

toemission process is phenomenologically split up into separate processes:

excitation into the bulk, travel to the surface, and emission from the sur-

face. This allows one to approximate the photoemission intensity by tran-

sition probabilities that ignore the effect of the surface on the Hamiltonian.

Another assumption that is made is the so-called sudden approximation,

which considers the process of photoemission instantaneous and makes it

possible to neglect any interactions between the photoelectron and core hole

that is left by the photoemission process. The many body final state can

then be written as a product of a single particle ψf and an N − 1 particle

many body state ΨN−1
f :

ΨN
f = AφfΨN−1

f , (2.29)
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where A is an operator that anti-symmetrizes the wavefunction. If we as-

sume that the initial state can be written as a single Slater determinant, we

can write a similar factorization:

ΨN
i = AφiΨN−1

i , (2.30)

where the subscript i now denotes the initial state wavefunction. As a

convenient choice for the possible final states, we can take the eigenstates of

the N−1 electron Hamiltonian, labelled by m as ΨN−1
m with energies EN−1

m .

The matrix element for the scattering amplitude in to one such eigenstate

then becomes:

〈
ΨN
f,m

∣∣Hint

∣∣ΨN
i

〉
= 〈φf |Hint|φi〉

〈
ΨN−1
m

∣∣∣ΨN−1
i

〉
, (2.31)

in which the first term is the dipole matrix element and the second term

describes the many-body spectrum. To gain insight into the second term, we

note that for systems in which electron correlations are important, ΨN−1
i =

ckΨN
i is not an eigenstate of the N − 1 electron Hamiltonian. Equivalently,

if electron-electron interactions are ignored, the N particle Hamiltonian is

identical to the N − 1 Hamiltonian and ΨN−1
i will be an eigenstate. In the

former case, ΨN−1
i may have many projections onto the N − 1 eigenstates

cm,i =
〈

ΨN−1
i

∣∣∣ΨN−1
m

〉
that are non-zero. To obtain the full transition prob-

ability, we sum over all initial and final single particle states, as well as all

N − 1 eigenstates:

I (k, Ekin) =
∑
i,f,m

∣∣∣Mk
f,i

∣∣∣2 | ci,m|2 δ (Ekin + EN−1
m − ENi − hν

)
. (2.32)

The quantity
〈

ΨN−1
i

∣∣∣ΨN−1
m

〉
can be related to the one-particle removal

Green’s function:

G− (k, ω) =
∑
m

∣∣ 〈ΨN−1
m

∣∣c−k ∣∣ΨN
i

〉∣∣2
ω − EN−1

m + ENi − iη
(2.33)

Taking the limit η → 0+, this corresponds to the one-particle removal spec-
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tral function as:

A− (k, ω) = − 1

π
ImG− (k, ω)

=
∑
m

∣∣ 〈ΨN−1
m

∣∣c−k ∣∣ΨN
i

〉∣∣2δ (ω − EN−1
m + ENi

)
=
∑
m

|ci,m|2δ
(
ω − EN−1

m + ENi
)
, (2.34)

in which we can see the right-hand side of Eq. 2.32 reappear. Note that in

the case where electron-electron interactions are ignored, we can describe

ΨN−1
m using a single eigenstate with m = m0, and all other terms vanish.

This means that the spectrum looks like a single delta function peak at

energy εm. When electron-electron interactions are taken into account, the

spectrum will have many peaks or a continuum of peaks as a broad hump.

A famous example is the case of photoemission from molecular hydrogen,

which produces an excited state of H+
2 under photoemission. One observes a

peak for each possible vibrational mode that overlaps with the ground state,

minus one electron [87].

2.3.2 A photoemission experiment in practice

In this section we will discuss the parameters and considerations of a typical

photoemission experiment. Experiments are normally performed using pho-

ton energies between 20 and 200 eV. In principle, the lower limit is set by the

sample work function Φ, with an additional amount for the photoelectron to

have non-zero velocity, so it can reach the analyzer. Although in practice,

at such low energies, stray magnetic and electric fields tend to influence the

measurements. Additionally, the aforementioned sudden approximation is

likely invalid and the final state can no longer be modelled by a free electron.

Although in theory there is no upper limit, the disadvantage of using higher

photon energies is that the absolute energy and momentum resolution wors-

ens linearly and quadratically, respectively. All data presented in this thesis

are taken between 44 and 120 eV.

A challenge arising with these particular energies is that electron scat-
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tering cross sections are very high and therefore the escape depth is only

on the order of a few atomic spacings. This requires measurements to be

done at ultra-high vacuum pressures (< 5 10−10 mbar) and samples to be

prepared in-situ. This limits the technique to samples than can be prepared

appropriately. This implies either cleaving of bulk crystals, in-situ growth

like molecular beam epitaxy, evaporation or pulsed laser deposition, or some

cleaning of a polished surface by sputtering and annealing. Meanwhile, in

order to measure momentum, single crystals are needed so that the system

is translationally symmetric. Samples studied in this thesis are all single

crystalline, prepared by cleaving in-situ.

Since ARPES attempts to measure energies precisely, experiments are

carried out at low temperatures to combat the broadening arising from kBT .

In practice, a cryostat is integrated into a movable sample stage, with liq-

uid He providing cooling (displayed in gold in Fig. 2.7). Base temperature

depends on the design of the system but is ordinarily between 4.2 and 20 K.

While lower temperatures are better for optimizing energy resolution, the

data presented in this thesis are taken at higher temperatures because of the

insulating nature of Sr2IrO4. Since electrons are removed from the material

by the UV light, these need to be replenished or the sample will gain an elec-

trostatic charge. This changes the energy of the photoemitted electrons and

in some cases completely prevents photoemission. To mitigate this problem

in Sr2IrO4, most of the measurements in this thesis were performed at 150

K, at which temperature the resistivity is lower [17].

The UV light required for ARPES experiments can be generated in a

multitude of ways. One strategy is to use a discharge lamp in conjunction

with an inert gas, often He, which produces spectral lines at 21.1 and 40.8

eV. The disadvantage of using a discharge lamp is that the spot-size is

typically quite large (∼ 1 mm2) and the energies are limited to the spectral

lines of the gas used. Another strategy is to use a synchrotron light source,

in which electrons are stored at highly relativistic energies in an accelerator

ring. Devices with periodic arrays of magnets are inserted into this ring

and the electrons generate light as they fly by. The advantage of using a

synchrotron light source is that a large range of photon energies is available,
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with a spot-size that is on the order of ∼ 100× 100 µm, with controllable,

arbitrary polarization. However, in this case the user relies on allocated

periods of “beamtime”, which are highly competitive and limited. All of the

work presented in this thesis was done at synchrotron light sources, although

additional work using He-lamp ARPES was done for sample characterization

and other initial experiments.

The electron analyzer used for ARPES experiments consists of two con-

centric hemispheres. A constant electric field is applied to an inner and

outer shell, causing electrons with different energies to follow circular tra-

jectories with different radii. Electrons enter the analyzer through an en-

trance slit, which allows a one-dimensional range of angles to be detected

simultaneously. The energy separation in the hemisphere expands this one-

dimensional cut into a two-dimensional detector image. The electrons are

incident on a phosphor screen and are subsequently detected by a camera.

The full process of emission and dispersion in the hemisphere is depicted in

Fig. 2.7, as well as the geometry of sample, analyzer and detector. Current

ARPES chambers have an energy resolution on the order of 1 meV and an

angular resolution better than 0.1◦. Although such resolutions of ∼ 1 meV

are technically attainable at most of the experimental setups used in this the-

sis, the broad nature of the spectrum of Sr2IrO4 means that measurements

presented here have been optimized towards counts, and are performed at

an energy resolution of approximately 20 meV.

In Fig. 2.8 we show an example of a high quality ARPES dataset. This

data was taken as a part of the commissioning of the Quantum Materi-

als Spectroscopy Center (QMSC) endstation at the Canadian Light Source

(CLS). The data shown were collected on Sr2RuO4, using 48 eV photons

with horizontal polarization (indicated with a black arrow marked ~ε), at a

sample temperature of 20 K. Sr2RuO4 has been studied using ARPES nu-

merous times before [49, 88] and it is an excellent demonstration of what the

requirements are to obtain a high quality dataset. This involves a high qual-

ity sample, with a freshly cleaved surface, a low vacuum pressure (6 10−11

mbar), a small spot-size (150 µm), and a high quality analyzer with a good

angular resolution.
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Figure 2.7: Schematic representation of an ARPES experiment. A
(cutaway) hemispherical analyzer is shown with the trajec-
tory of the electrons indicated. The one-dimensional entrance
slit combined with the energy dispersion results in a two-
dimensional image. The electrons are incident on a phosphor
screen and are subsequently detected by a camera. The geome-
try is variable to access all possible take-off angles. Rather than
moving the entire analyzer, the sample is rotated with the aid of
a 6-axis manipulator. The manipulator can be rotated around
its axis, the other two axes of rotation are internal. Light is
incident from an angle next to the detector.
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Figure 2.8: Example measurement of Sr2RuO4, a dataset that was
taken during commissioning time of the QMSC beamline at
CLS. The data was taken at 20K, using 48 eV photons with
linear horizontal polarization (indicated with a black arrow in
panel (a)). The colour encodes the intensity of the photocur-
rent, with a linear scale indicated. (a) “Fermi surface map”, a
representation that plots the intensity recorded at many angles
at the Fermi energy. The data here is integrated over 2 meV
to improve statistics. (b) A single slice as measured. The data
presented in (a) is recorded by measuring many of these indi-
vidual slices at different manipulator angles. The curve traced
out by the slit through k-space to record (b) is indicated in (a)
as a thin dashed line.

The data is collected as a so-called Fermi-Surface mapping, in which

the manipulator angles are changed sequentially and a spectrum I(E, θ)

(Fig. 2.8(b)) is collected at each angle. These spectra can be put together

to form a complete solid angle. After transforming the data into k-space

using the expression in Eq. 2.24, the data can be plotted at constant energy

in Fig. Fig. 2.8(a).

The many sharp bands that are visible correspond to the α, β and γ

pockets of Sr2RuO4 and their folded replicas (α′, β′ and γ′) [49]. Further-

more, the two different surface octahedral rotations give rise to the doubled
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bands, as explained in [88].

2.3.3 The photoemission dipole matrix element

The work in this thesis emphasizes on the simulation and modelling of the

dipole matrix element introduced in Section 2.3.1. The purpose of this

section is to explain the approach that is taken to calculate this quantity

from tight binding and first principles calculations.

The goal is to calculate the photoemission matrix element arising from

the dipole term in Fermi’s golden rule in Eq. 2.28, which is given by [89]:∣∣∣Mk
i,f

∣∣∣2 ∝ ∣∣∣〈ψkf |r · ε|φki 〉∣∣∣2 , (2.35)

where φki is the initial state, ε is the light polarization vector, and ψkf is the

final state wavefunction. For the final state, a plane wave is used, which is

an approximation that is valid if the kinetic energy is sufficiently high. The

initial state is taken to be an eigenstate of a tight-binding Hamiltonian. It

is insightful to first look at the symmetries of particular states and try to

infer some information about the value of the matrix element in Eq. 2.35.

Considering the illustration in Fig. 2.9, we can directly see that the dipole

matrix element carries information about the symmetry of the initial state.

The integrand, consisting of polarization, orbital, and plane wave like final

state, needs to be an even function or it will vanish. Considering the plane

spanned by the incoming light and the outgoing photoelectron, the free

electron state is even, while for σ-polarization (as shown), the term r · ε is

odd, which requires the initial state to be odd.

We can improve this simple picture by including the phases of the tight

binding wavefunction and calculating the actual value of the matrix element.

To do so for an arbitrary initial state φki , we expand it in terms of spherical

harmonics:

φki = Rn,`
∑
m,`

Ck`,mY
m
` , (2.36)

where the phase and amplitude information is contained in Ck`,m. Tight

binding models in this thesis are in terms of cubic harmonics, which are
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Figure 2.9: Illustration of the geometry used to calculate the photoe-
mission matrixelement.

easily converted to spherical harmonics, making this a convenient basis to

work in. Similarly, we write the final state in terms of spherical harmonics

using the plane wave expansion:

ψkf ∝ eik·r = 4π

∞∑
`=0

m=∑̀
m=−`

i`j`(kr)Y
m
` (θk, φk) (Y m

` (θr, φr))
∗ , (2.37)

where j`(kr) is the spherical Bessel function and the spherical harmonics are

functions of the angles describing the r and k vectors. We can also write

the polarization vector in terms of the ` = 1 spherical harmonics, to obtain:

Mε,σ =
∑

`i,`f ,mi
mε,mf

Bni,`i,`f

(∫
dΩrY

mi
`i
Y mε

1 Y
mf

`f

)
Y
mf

`f
(θk, φk) . (2.38)

The product of three spherical harmonics can be found using the Clebsch-

Gordan coefficients. The radial integrals are written as :

Bn` =

∫
drr3Rni,`i(r)j`f (r). (2.39)

These integrals can be calculated using some assumption for the initial state

radial wavefunction. In this work, Slater type orbitals are most often used

as implemented in the chinook package [90]. The argument of j`(kr) in
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Eq. 2.39 depends on the photon energy through k, as it increases with the

free electron kinetic energy Ek, which causes the photoemission final state

ratio to be photon energy dependent. Since selection rules, based on conser-

vation of orbital angular momentum, only allow the final states of `f = `i±1

like character, this implies that a model that only describes a single mani-

fold of `i states, all but two terms in Eq. 2.38 vanish. A single parameter

(i.e. the ratio Bn`i−1/Bn`i+1), in addition to an overall normalization factor

suffices in such cases. The ratio can be kept as a model parameter, which

can be adjusted to best match experimental data.

2.4 Spin-ARPES

The experimental results presented in Chapter 4 make use of an extension of

ARPES: spin-resolved ARPES, in which, aside from energy and momentum,

the spin of the photoelectron is also measured. The spin is measured after

travel through the hemispherical analyzer. The electrons are redirected by

electron lenses, away from the two-dimensional detector, to a separate spin

detector.

2.4.1 A practical spin-ARPES experiment

Various strategies have been used for detecting the spin of electrons. The

one used for this thesis is very low energy electron diffraction (VLEED) off

magnetic targets [91–94]. This technique uses a magnetized film to scatter

electrons, which follow different trajectories for the spin up and spin down

channels. The targets for the spin-detectors used in this thesis are made of

FeO films, which are magnetized prior to the experiment, using electromag-

nets. The magnetic easy axis for the films is in plane [91], therefore, one film

is able to detect a total of four spin-directions (both up and down spin for two

quantization axes). To measure the full three-dimensional spin-structure,

two of such detectors are needed. The geometry of the experiment is such

that a total of 8 spin channels can be measured (x↑, x↓, z↑, z↓, y↑, y↓, z
′
↑, z
′
↓),

of which two are redundant and can be used to check the consistency be-

tween the two detectors. Relevant parameters for these detectors are the
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efficiency in which electrons are detected, and efficiency in which electron

spins are separated. The former is captured in the “figure of merit” (FOM)

[94]:

FOM = S2I/I0, (2.40)

where I/I0 is the fraction of detected photoelectrons and S is the Sherman

function, which describes the efficiency with which the spin is separated.

The Sherman function can be determined from:

I↑ − I↓
I↑ + I↓

= PS, (2.41)

in which Iσ are the measured spin up and down currents, P is the actual

polarization of the photoemitted states, and S is the Sherman function.

Spin-resolved photoemission experiments are often complicated by low val-

ues for these parameters. As an example, a different strategy to observe

spin is the so-called Mott detector, for which a typical value for the FoM is

between 10−3 and 10−4 with a Sherman function of 0.068 [95]. For VLEED,

these parameters are drastically improved to 10−2 and 0.5 respectively [94].

Nevertheless, the challenge of high statistics data persists and often spin-

resolved ARPES is limited to a single k-point and long acquisition times.

2.4.2 Circularly polarized spin ARPES

Naturally, spin-resolved ARPES is limited to those compounds that have

spin-polarized electron states to photoemit from. This means that spin-

ARPES is frequently used to study the spin-polarized surface states of topo-

logical insulators [96, 97] or Rashba states that arise on the surface due to

strong spin-orbit coupling and the absence of inversion symmetry [98, 99].

Contrary to that, in the case where spin-orbit coupling is strong and inver-

sion symmetry is not broken, Kramers degeneracy dictates that although

states might be highly entangled with the spin degree of freedom, those

states are not in fact spin-polarized. When there are no such spin-polarized

states available to probe, it is possible to make use of the spin-orbital entan-

glement and circularly polarized light to preferentially excite one particular
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spin direction. In this section, we will discuss the theoretical and practical

foundations of circularly polarized spin-ARPES (CPSA). The technique was

first described in [100], after which it was successfully applied to Ca2RuO4

([101]), Sr2RuO4 [21] and the iron superconductors ([23]). As this technique

relies on the coupling of spin and orbital angular momentum to measure

spin-polarization, it is particularly suited to use on systems with significant

spin-orbit coupling, as for example the iridates. We will use the technique

to understand spin-orbital entanglement in Sr2IrO4 in Chapter 4.

The Spin-Orbital Entanglement

Measuring spin, while limiting the orbital angular momentum states probed,

captures the correlation between orbital and spin angular momentum. More

quantitatively, performing this experiment corresponds precisely to measur-

ing the z component of the 〈L · S〉 operator: LzSz.

We start by considering the photoemission matrix element as discussed

in Section 2.3.3. Using circularly polarized light with positive helicity gives

ε⊕ · r = ε0 (x+ iy) = ε0Y
1

1 . The matrix element then becomes:

Mk
i,f =

〈
ψkf

∣∣∣r · ε∣∣∣φi〉 =

ε0

∑
`f

mf ,mi

Bni,`i,`f

〈
Y
mf

`f

∣∣∣Y 1
1

∣∣∣cmi
`i
Y mi
`i

〉
Y
mf

lf
(θk, φk) , (2.42)

where Bni,`i,`f specifies the radial integral as defined in Eq. 2.39. At the

Γ point, we can simplify this equation by using the fact that the spherical

harmonic Y
mf

lf
(θk, φk)) has nodes for all mf except mf = 0, where its value

is 1. With the spherical harmonic arising from the polarization vector set

to Y 1
1 , we only emit from a single initial state spherical harmonic. We can

therefore simplify the expression in Eq. 2.42 to:

Mkσ
i,f = ε0

∑
`f

Bni,`i,`f

〈
Y 0
`f

∣∣∣Y 1
1

∣∣∣cmi=−1,σ
`i

Y −1
`i

〉
. (2.43)

The effect of the spherical harmonic, arising from the polarization vec-
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tor, is to raise the angular momentum of the initial state, meaning we can

write the product as: Y 1
1 Y
−1
`i

=
∑

`f
a`i,`f c

−1
`i
L+Y −1

`f
, where a`i,`f is a co-

efficient that describes the possible resulting angular momenta, determined

by the Clebsch-Gordan coefficients arising from the product of two spherical

harmonics. This allows one to write the matrix element as:

Mkσ
i,f = ε0

∑
`f

Bni,`i,`fa`i,`f

〈
Y 0
`f

∣∣∣L+
∣∣∣cmi=−1,σ
`i

Y −1
`f

〉
= ε0

∑
`f

Bni,`i,`fa`i,`f

〈
Y −1
`f

∣∣∣L−L+
∣∣∣cmi=−1,σ
`i

Y −1
`f

〉
= ε0Bni,`i,`fa`i,`f c

mi=−1,σ
`i

. (2.44)

This means that the measured photoemission intensity is:

I⊕σ = ε2
0

∑
`f

Bni,`i,`fa`i,`f

2 ∣∣∣cmi=−1,σ
`i

∣∣∣2 = A
∣∣∣c−1,σ
`i

∣∣∣2. (2.45)

We can thus measure using σ =↑, ↓ and ε = ⊕,	 and construct:

I	↑ − I⊕↑ − I	↓ + I⊕↓ =

A

(∣∣∣c1,↑
∣∣∣2 − ∣∣∣c−1,↑

∣∣∣2 − ∣∣∣c1,↓
∣∣∣2 +

∣∣∣c−1,↓
∣∣∣2) (2.46)

Noting that in the basis of |ml = 1, ↑〉 , |−1, ↑〉 , |1, ↓〉 , |−1, ↓〉, we have:

LzSz =
~2

2


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 , (2.47)

we get for 〈LzSz〉:

〈LzSz〉 =
~2

2

(∣∣∣c1,↑
∣∣∣2 − ∣∣∣c−1,↑

∣∣∣2 − ∣∣∣c1,↓
∣∣∣2 +

∣∣∣c−1,↓
∣∣∣2) , (2.48)

54



which is precisely the expression found in Eq. 2.46, aside from the prefactor.

Note that the expression derived above is independent (up to the prefactor

A) of the values for Bni,`i,`f . Since there is only a single term of mli for

each configuration, there are no interference terms and the sum in Eq. 2.45

can be evaluated separately. The only limiting case is when Bni,`i,`i+1 =

−Bni,`i,`i−1, in which case the photoemission signal is zero.

The Geometric Mean

This formulation of 〈LzSz〉 in terms of Iε,σ is unfortunately only valid if

all factors Bni,`i,`f are the identical for both both polarizations ε⊕ and ε	,

which may not be the case in a system where there is circular dichroism.

Moreover, if the sensitivity of the spin-detectors is not equal for up and down

channels, the description also breaks down. By denoting the sensitivity of

the detector of each spin detector as ησ, and the factor related to the circular

dichroism as αε, we can write the measured photoemission signal as:

Ĩεσ = αεησIε,σ = αεησA
∣∣∣cmi,σ
`i

∣∣∣2, (2.49)

where mi = −1 for ε⊕ and 1 for ε	. Substituting the Ĩ into Eq. 2.46, the

expectation value 〈LzSz〉 is no longer recovered as a result of the prefactors.

We can instead take the geometric mean P which divides out the prefactors:

P =

√
Ĩ	↑Ĩ⊕↓ −

√
Ĩ⊕↑Ĩ	↓√

Ĩ	↑Ĩ⊕↓ +
√
Ĩ⊕↑Ĩ	↓

=√
Aα	η↑|c1,↑|2Aα⊕η↓|c−1,↓|2 −

√
Aα⊕η↑|c−1,↑|2Aα	η↓|c1,↓|2√

Aα	η↑|c1,↑|2Aα⊕η↓|c−1,↓|2 +

√
Aα⊕η↑|c−1,↑|2Aα	η↓|c1,↓|2

=

√
|c1,↑|2|c−1,↓|2 −

√
|c−1,↑|2|c1,↓|2√

|c1,↑|2|c−1,↓|2 +

√
|c−1,↑|2|c1,↓|2

. (2.50)
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In the case of Kramers degeneracy, we should have |cm,σ|2 = |c−m,σ̄|2, and

using the fact that the states are normalized (
∑
|cm,σ|2 = 1,) we obtain:

P =

∣∣c1,↑∣∣2 − ∣∣c1,↓∣∣2
|c1,↑|2 + |c1,↓|2

=
∣∣∣c1,↑

∣∣∣2− ∣∣∣c1,↓
∣∣∣2− ∣∣∣c−1,↑

∣∣∣2 +
∣∣∣c−1,↓

∣∣∣2 =
2

~2
〈LzSz〉 .

(2.51)

Using the geometric mean, we can thus extract the expectation value for

〈LzSz〉 without the need to know the exact detector sensitivities or circular

dichroism effects. This method is therefore the sole method used in this

thesis to present spin-polarized data.

So far, the only expectation value discussed is the one along the z direc-

tion. In principle, other components can be measured, such as 〈LzSx〉, as

the detectors used have three separate spin-axes available to measure. While

this is possible, it is used in this thesis only to demonstrate the robustness

of the technique. As no terms in the spin-orbit coupling hamiltonian appear

to actually couple momentum perpendicularly, the expectation value and

measured spin-polarization should always be zero.

Furthermore, the calculated expectation values are only valid at the

Γ-point. Despite this, the technique has been successfully applied away

from Γ [23]. Later in this thesis, data away from the Γ-point will also be

presented. The equations hold true as long as not too much weight comes

from final states with ml 6= 0. Following the k-dependent spherical harmonic

in Eq. 2.38, these other components have a dependence ∝
(
1− cos2 θk

)
,

where θk is the angle of the photoemitted electron and the surface normal.

In particular, if the photon energy is large, this angle is small, even at larger

momentum values at the edges of the Brillouin zone. However, in such cases

it is recommended to properly model the matrix elements as implemented

for example in chinook [90].

While it is possible to measure in-plane components like 〈LxSx〉, in prac-

tice, this is difficult as it would require measuring ml = 2, 0,−2 coefficients,

which have matrix elements identical zero for photoemission at normal emis-

sion. An experiment would therefore have to be off Γ, as close to the pre-
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ferred spin-orbital axis to measure as possible.

Light Polarization

Until now, the calculations presented have assumed that the incident light

is perfectly perpendicular to the surface. In the geometry of a realistic

ARPES experiment (Fig. 2.7), the electron analyzer would be in the light

path. Therefore, the incidence angle of the light is usually approximately

45◦. Taking the direction of the sample surface normal to be ẑ, we can write

for the incoming light:

ε⊕ = ε0

(
1√
4

(x̂− ẑ) + iŷ

)
. (2.52)

This can be converted into spherical harmonics that are used for the calcu-

lation as:

ε⊕ =
1√
4
Y 0

1 + (
1√
4

+
1√
8

)Y 1
1 + (

1√
4
− 1√

8
)Y −1

1 . (2.53)

This deviates from the ideal case where we only make excitations with Y 1
1 .

However, at Γ, there are no available final state channels for Y 0
1 to scat-

ter into, so that term can be safely be ignored. The Y −1
1 term meanwhile

creates excitations of the opposite spin-orbital entanglement. Taking the

squares of these coefficients, we get 0.73, and for 0.02 for Y 1
1 and Y −1

1 re-

spectively. This means that this configuration leads to an opposite signal

of just 3%, generating a net 6% of additional, unpolarized signal. This is

far less than the Sherman function of 0.5 of the (high-efficiency) VLEED

detectors discussed in Section 2.4, and can therefore be safely ignored.
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Chapter 3

Spin-orbit Controlled

Metal-Insulator Transition in

Sr2IrO4

The transition of Sr2IrO4 into a metallic state is here reported, by mak-

ing careful substitutions using Rh and Ru. Throughout this chapter we

will argue that the transition is mediated by a reduction of the spin-orbit

interaction. This is not only the first demonstration of a metal insulator

transition driven by spin-orbit coupling, but also showcases the pivotal role

spin-orbit plays in stabilizing the insulating phase of Sr2IrO4. For correlated

insulators, where electron-electron interactions (U) drive the localization of

charge carriers, the metal-insulator transition (MIT) is described as either

bandwidth controlled (BC) or filling controlled (FC) [6]. Where the former

describes the modification of the kinetic energy terms versus the interaction

terms, the latter brings a Mott system away from integer filling to induce a

metallic state. Spin-orbit coupling is in this regard fundamentally different,

as it does not change the respective scales of kinetic and interaction terms

directly, but rather the entanglement of different orbitals in a multi-orbital

system.
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3.1 Introduction

As discussed in Chapter 1, the insulating phase in Sr2IrO4 was quite puz-

zling and it was proposed to be part of a new class of correlated insulators,

in which spin-orbit coupling (SOC) is believed to fully entangle the Ir t2g

orbitals into a jeff = 3/2 and 1/2 state. The bandwidth of the half-filled

jeff = 1/2 doublet is then significantly reduced, allowing a modest U to

induce a charge-localized phase [25, 27]. The insulating state has been be-

lieved to be stabilized by spin-orbit coupling for a while, but the evidence

that was put forward has been debated. The existence of the jeff = 1/2 state

was demonstrated by resonant elastic x-ray scattering (REXS) [27], which

shows a complete quenching of the ratio of the L2 and L3 absorption edge,

indicative of a complete spin-orbital entanglement of the unoccupied state.

It was later however shown that for systems with in-plane magnetic mo-

ments like Sr2IrO4, the branching ratio is identically zero regardless of the

spin-orbital entanglement [28]. This was later acknowledged by the authors

of [27] in [29], where they perform a detailed study of the matrix elements for

x-ray scattering. Meanwhile, different suggestions to explain the insulating

state have emerged, such as a Slater insulator [26], in which the antiferro-

magnetic order breaks the translational symmetry of the lattice and opens

a gap through band folding. Moreover, the results in [30] show that Sr2IrO4

is quite close to a quenching of the spin-orbital entanglement, further ques-

tioning the validity of the jeff = 1/2 description. Here we provide evidence

for the central role of spin-orbit coupling, by directly modifying its strength

and showing that this causes a collapse of the insulating state.

The effect of spin-orbit coupling in the valence band is modified by mak-

ing substitutions that replace Ir with Ru and Rh, both lighter, 4d elements,

with substantially lower SOC. Rh substituted Sr2IrO4 has been studied pre-

viously and is known to drive the MIT. Previous studies have considered

the role of SOC [102, 103], but a clear interpretation has been hindered by

concurrently occurring changes to the filling [104–106]. We overcome this

challenge by employing multiple substituents that introduce well defined

changes to the signatures of SOC and carrier concentration in the electronic
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structure, as well as a new methodology that allows us to monitor SOC di-

rectly. Specifically, we study Sr2Ir1−xTxO4 (T = Ru, Rh) by angle-resolved

photoelectron spectroscopy (ARPES) combined with ab-initio and super-

cell tight-binding calculations. This allows us to distinguish relativistic and

filling effects, thereby establishing conclusively the central role of SOC in

stabilizing the insulating state of Sr2IrO4. Most importantly, we estimate

the critical value for spin-orbit coupling in this system to be λc = 0.42 eV

and provide the first demonstration of a spin-orbit-controlled MIT.

3.2 The MIT in Rh and Ru substituted Sr2IrO4

The familiar tools of chemical doping and pressure have provided straightfor-

ward access to both FC and BC MIT in conventional correlated insulators.

In an effort to unveil the role of SOC in the insulating behaviour of Sr2IrO4

and whether it can indeed drive a MIT, we have attempted to controllably

dilute SOC in the valence electronic structure by substituting Ir (λSOC ∼
0.4 eV [20, 37, 107]) with Ru and Rh (λSOC ∼ 0.19 eV [18, 21, 22]). While

these substituents have similar values of λSOC and are both 4d ions with

comparable values for U [108, 109] and ionic radii [110], they are other-

wise distinct: Ru has one less electron than Rh and is therefore associated

with a markedly larger impurity potential. We will show through supercell

tight-binding model calculations that this leads to a pronounced contrast in

the consequences of Rh and Ru substitution: the larger impurity potential

associated with Ru precludes a significant reduction of the valence SOC.

By comparison, Rh is electronically more compatible with Ir, facilitating a

successful dilution of SOC. We measure this evolution directly, through or-

bital mixing imbued by SOC, manifest experimentally in the photoemission

dipole matrix elements. To comprehend all aspects of the MIT observed

here for both Rh and Ru substitution, we consider individually the effects

of filling (Fig. 3.1), correlations/bandwidth (Fig. 3.2), and spin-orbit cou-

pling (Fig. 3.6 and Fig. 3.7), ultimately concluding that the transition in

Sr2Ir1−xTxO4 is a spin-orbit controlled MIT.

Having highlighted the three relevant aspects of the MIT, we begin our
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Figure 3.1: Dependence of the MIT on Rh and Ru substitu-
tion. a-d ARPES spectra along Γ−X for the pristine sample,
xRh = 0.22, xRu = 0.40 and xRu = 0.20, respectively. e and f
show Fermi surface maps for x = 0.22 Rh and x = 0.40 Ru. The
sizes of the pockets are indicated with white lines. Fermi surface
maps are integrated over 50 meV. All data taken at hν = 64 eV
with temperatures between 120 K and 150 K for x ≤ 0.10, and
below 40 K otherwise.

disquisition by showcasing the changes that each substituent introduces to

the electronic structure of Sr2IrO4 as measured by ARPES. We investigate

samples with various nominal concentrations of Ru and Rh, for which details

of growth and consistency are given in Section 3.A.1. Fig. 3.1a-d summarize

ARPES spectra for x = 0, xRh = 0.22, and xRu = 0.20, 0.40. As reported

previously [25], the pristine sample supports an energy gap, with a band

maximum at X at a binding energy of around Eb = 0.25 eV. When sub-

stituting Rh, spectral weight appears at the Fermi level for concentrations
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x & 0.13, signalling the formation of a metallic state. This observation is

in line with previously reported ARPES [104–106]. This is exemplified by

our xRh = 0.22 data, shown in Fig. 3.1b,e. At comparable values of xRu,

the system remains insulating (cf. xRu = 0.20 in Fig. 3.1d), and only by

going as high as xRu = 0.40 (Fig. 3.1c,f) do we find that the MIT has been

traversed [111–113], consistent with transport measurements [112].

Within the metallic phase, the Fermi surface volume provides a direct

measure of the hole doping introduced by the impurity atoms. We report a

Brillouin zone coverage of (16±2)% and (46±5)% for Rh and Ru respectively,

with the uncertainty arising from the ambiguity caused by the broad nature

of the states. These surface areas correspond to a nominal doping of 0.16±
0.02 holes (at xRh = 0.22) and 0.46±0.05 holes (at xRu = 0.40), per formula

unit. Note that there is no apparent transition from a small to a large Fermi

surface as is observed in the cuprate superconductors [114–116] for the wide

doping range we study, and the Fermi surface size n progresses with the

doping p as n = p (due to there being two iridium atoms per unit cell). A

possible reason for this may be found in the fact that whereas in the cuprates

specific order such as antiferromagnetism is required to fold the bands, this

distortion is already present in Sr2IrO4 through the staggered rotation of

the octahedra. To within our level of certainty, each impurity atom then

contributes approximately one hole carrier, with Ru contributing a slightly

larger number than Rh. This observation runs contrary to the expectations

for a FC transition: despite contributing at least as many holes as Rh,

the MIT critical concentration required for Ru is roughly double that of

Rh. This precludes a transition described in terms of filling, despite earlier

reports to the contrary [104–106].

As the concentration of Ru increases, the octahedral distortions reduce

slowly until a structural transition is observed at x > 0.5. The octahedral

distortions in Sr2IrO4 cause hybridization between the dxy and dx2−y2 or-

bitals, which influences the overal bandwidth of the system. An explanation

in terms of modification to the crystal structure however can be equally

excluded, since changes to the TM-O bond length and octahedral distor-

tions are minimal (a reduction from 12◦ to 10◦) up to the concentrations
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Figure 3.2: ARPES linewidth evolution with substitution. En-
ergy distribution curves (EDC’s) for Ru a and Rh b substituted
samples, taken at the momentum with the leading edge closest
to the Fermi energy. Photon energies and temperatures for the
EDCs are the same as in Fig. 3.1 c Momentum distribution
curve (MDC) curves for xRu = 0.40 and xRh = 0.22. d MDC
fits for xRu = 0.40 and xRh = 0.22. MDC data shown in c,d
were taken using hν = 92 eV at a temperature of 20 K.

used in our study [112]. The changes to bandwidth that are associated with

such distortions are expected to be negligible, as the effect of the full 12◦

is to reduce the bandwidth by at most 4% [117]. Furthermore, a reduction

of distortions would increase the bandwidth, opposite to our observations.

Equally, recent studies regarding disorder in Mott systems point out that

such effects could push the critical concentration to lower values [113, 118].

Both disorder and the progression of octahedral rotations would thus predict

the opposite trend (xc,Ru < xc,Rh) to what we observe.

Looking beyond the disparate critical concentrations associated with Ru

and Rh substitution, analysis of the ARPES spectral features allows for a
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more thorough comparison of these materials to be made. The selected

energy distribution curves (EDCs) cut through the valence band maximum

for each doping in Fig. 3.2a (Ru) and b (Rh), reflecting the evolution of each

material across the MIT. This coincides with a definitive Fermi level cross-

ing in the EDCs of Fig. 3.2a and b. By observing which samples are metallic

and insulating in our experiments, we can infer xc to be within the range set

by highest insulating and lowest metallic concentration. This yields a range

of possible critical concentrations as xRh = 0.13±0.03 and xRu = 0.30±0.10.

These values are limited by the available samples, but match previous pho-

toemission work on the Rh substituted compound [104–106]. Ru-substituted

samples have not previously been studied by photoemission, as such no di-

rect comparison to literature can be made. The values for the Ru doped

samples do however agree with available transport data [112, 119]. As the

interpretation of EDCs lineshape is non-trivial [120], we turn to an analysis

of momentum distribution curves (MDCs) for a more quantitative analysis

of the evolution of correlation effects. The MDC linewidth is directly related

to the state lifetime, and by extension to both electronic interactions and

disorder [86, 121, 122]. Two representative MDCs are shown in Fig. 3.2c

for xRh = 0.22 and xRu = 0.40. Widths from these, and other MDCs along

the dispersion, are summarized in Fig. 3.2d. As can be inferred by the com-

parison of data from 20 K and 150 K, correlations – rather than thermal

broadening – are the limiting factor in determining the MDC linewidth.

Consideration of both xRu = 0.40 and xRh = 0.22 reveal remarkably similar

interaction effects in the two compounds, despite their significant differences

in composition and disorder. In addition, while spectral broadening at high

binding energies precludes a precise evaluation of the bandwidth, we es-

timate the latter to be constant to within 10% over the range of Rh/Ru

concentrations considered.

3.3 Spin-orbit coupling

Through study of the Fermi surface sizes, and MDC widths, we have thus

determined that while doping effects are comparable for Ru and Rh, similar
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correlated metallic phases are observed at very different concentrations. To

rectify this apparent contradiction, one must consider the context of the

present MIT: it has been proposed that the correlated insulating phase in

Sr2IrO4 is stabilized by the strong spin-orbit coupling. This motivates con-

sideration of the role SOC plays in the MIT for both Ru- and Rh- substituted

compounds. The low-energy influence of SOC can be characterized by an

effective value in the valence band, determined by the hybridization between

atomic species as demonstrated in Refs. 123, 124. This effect could cause

a reduction of SOC effects in the valence band as a function of (Ru,Rh)

substitution. We find the reduction of SOC to be strongly dependent on

the presence of an impurity potential, which limits hybridization of host

and impurity states, ultimately curtailing the dilution of SOC effects (see

Section 3.3.1). Various works report some form of electronic phase sepa-

ration in the Ru doped compounds [125–127]. In particular in Ref. 126,

Raman scattering shows the coexistence of multiple electronic states. Such

electronic phase separation cannot be caused by structural phase separation,

as Z-contrast (Z being the atomic number) scanning transmission electron

microscopy (STEM) shows a homogeneous distribution of Ru dopants [119].

This suggests that electronically, the Ru ions form a separate manifold, away

from the Ir bands. A SOC may therefore be more effective for Rh, providing

a natural explanation for their disparate critical concentration in substituted

Sr2IrO4 compounds. In the following sections we will quantify the influence

of an impurity potential on the mixing of spin-orbit coupling in the valence

band.

Firstly we will provide more quantitative evidence for the existence of

the impurity potential. Using density functional theory (DFT), at x = 0.25

substitution, in Fig. 3.3a we observe good overlap between the Rh and Ir

projected density of states (DOS). This can be compared against the same

scenario for Ru in Fig. 3.3b, where the substituent DOS is found to align

poorly with Ir. Such an offset, observed most clearly through consideration

of the centre of mass of the Ru-projected DOS, has been reported previously

for similar substitutions (Co into Fe superconductors) [128, 129]. Calculat-

ing the band’s centre of mass in terms of the projected densities of states for
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Figure 3.3: In a and b, an analysis of the impurity potential of Rh
and Ru in Sr2IrO4 is plotted, as calculated by density-functional
theory. The grey background represents the total DOS, normal-
ized by the number of TM sites. The black curves show the Ir
projected DOS per Ir ion in the 25% substituted calculation,
while the orange and green colored curves reflect the projected
DOS per substituent ion for Rh and Ru respectively. The arrows
indicate the centre of mass for the projected bands.

both, we find an impurity potential for Ru of 0.3 eV, which is close to the

number found in [128, 129] (0.25 eV), and agrees with Wannier calculations

(0.2 eV) performed on the same supercells. This establishes a reasonable

starting point from which we can explore the influence of doping on SOC

effects in more detail.

3.3.1 Spin-orbit mixing and the impurity potential

To illustrate how the impurity potential and spin-orbit coupling on two

separate sites combine, we have distilled the phenomenon of mixing into a

simple and more insightful model. We will demonstrate the sensitivity of

hybridization to the impurity potential strength: strong hybridization pro-

duces mixed states that host an effective spin-orbit coupling derived from

the atomic composition. The model used in this simple case contains only

two atoms, with two orbitals (dxz and dyz) each, and only one-dimensional

hopping along the z-direction. The atoms have different spin-orbit coupling

(λ1 = 0.45, λ2 = 0.19), and atom 2 has an impurity potential ε, represented

schematically in Fig. 3.4f. Since the Hamiltonian for spin-orbit coupling in

the basis of dxz and dyz orbitals is degenerate in the spin degree of free-
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Figure 3.4: Influence of the impurity potential on spin-orbit coupling in the valence band demonstrated
in a 2-atom toy model. a Bandstructure for the system that is schematically depicted in f. The
bands (1,2) and (3,4) are split by spin-orbit coupling, the splitting corresponds to the average value
between the two atoms λ̄. The dashed black line illustrates the bands in the absence of spin-orbit
coupling. An arrow at Γ indicates the position at which the band energies are plotted in c. b The
same bandstructure with an impurity potential of ε = 0.3. The splittings are no longer the same
size, and are k-dependent. c The band energies at Γ as a function of the impurity potential. The
red and purple arrows correspond to the impurity potentials of panels a and b, the splitting for the
upper and lower manifold are indicated. d The progression of the splittings ∆A and ∆B as a function
of the impurity potential. e The orbital weight projected onto atom 1 (solid) and atom 2 (dashed)
for each of the four bands. g The splitting of the lower manifold ∆A (green) plotted together with
λeff , calculated from the orbital weights (see text). h The splitting of the lower manifold ∆A (green)
plotted together with the analytic form discussed in the text.
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dom, we only consider the spin up part of the Hamiltonian. This yields the

Hamiltonian:

H =


0 iλ1

2 −2t cos k 0
−iλ1

2 0 0 −2t cos k

−2t cos k 0 ε iλ2
2

0 −2t cos k −iλ2
2 ε

 . (3.1)

The band structure along from k = 0 to k = π is presented in the

presence (Fig. 3.4a) and absence (Fig. 3.4b) of an impurity potential of

ε = 0.3. The band structure without spin-orbit coupling (black dashed line,

both panels) is plotted for reference in Fig. 3.4a,b. As indicated by the

purple contours, upon including SOC a 4-fold degeneracy is lifted, with a

constant splitting along the dispersion. This splitting consistent with that

expected for a pure crystal with λ̄ = (λ1 + λ2)/2.

Introducing a relative impurity potential of 0.3 eV between the two sites

(Fig. 3.4b), the SOC-splitting persists, but is now momentum-dependent.

Furthermore, the splitting between the lower (1,2) and upper (3,4) bands

becomes inequivalent.

To investigate the evolution of this system as a function of impurity

potential, we plot the eigenvalues at k = 0 for a range of ε in Fig. 3.4c.

As indicated by the black dashed lines, the eigenvalues at k = 0 are de-

fined largely by the onsite energies, with an avoided crossing due to kinetic

terms in the Hamiltonian. Labelling the lower and upper bands as A and

B, respectively, we plot their splittings, ∆A,B vs ε in Fig. 3.4d. These split-

tings derive from spin-orbit coupling, but only in the limit of |ε| >> t do

∆A,B → λ1,2. In the opposite limit (|ε| >> 0), both splittings converge to λ̄

introduced previously. This asymptotic behaviour reflects the essential role

of hybridization in mediating a mixing of spin-orbit coupling strengths in

impurity-substituted systems.

To make this point more definitive, we include a comparison of orbital

compositions on each of the four bands at k = 0 in Fig. 3.4e. In each case,

for ε ∼ 0, the eigenvectors are an equal mix of atom 1 (solid) and atom 2
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(dashed). This even mixing changes rapidly with finite ε, saturating in the

limit of large impurity potential. We attempt to relate the state composition

for the lower two states to an effective spin-orbit coupling by calculating:

λeff (k) = λ1|ψ1,A(k)|2 + λ2|ψ2,A(k)|2. (3.2)

This quantity is the average spin-orbit coupling on the lower band (A)

weighted by the atom projected wavefunctions. It is plotted in Fig. 3.4g

(white dashed line), and exactly traces the splitting (green curve) of the

lower (A) state. This observation provides evidence for the idea that spin-

orbit coupling in the valence band can be regarded as arising from a mixture

between states of different atomic character, the mixture being influenced by

hybridization, controlled by hopping and the impurity potential. A relevant

scale for the process can be found in Fig. 3.4h, where the splitting is plotted

as a function of the normalized ε/4t, as well as the function x√
1+x2

(white

dashed). The latter is the functional form of the orbital weight for a two-

site model with an impurity potential and hopping, which is derived in

Section 3.A.4.

We have thus shown that the effects of spin-orbit coupling as they occur

in the valence band, are sensitive to the presence of different atomic species,

subject to hybridization and impurity potential strength. This shows that it

is possible to mix and tune spin-orbit coupling in the valence band by using

the appropriate atomic species and controlling the hybridization through the

impurity potential. It gives a direct handle on influencing spin-orbit coupling

as a continuous parameter in an experimental scenario. It should be pointed

out that the results of this model apply directly to other systems too, because

the Hamiltonian presented does not assume any material specific properties.

3.3.2 Supercell calculations and band unfolding

The model presented in Section 3.3.1 to illustrate the mechanism of spin-

orbit mixing, can be made quantitative for the Ru/Rh iridates through

consideration of impurity-substituted models. This is carried out through

development of a supercell tight binding (TB) model. We expand the single
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iridium TB Hamiltonian derived in Section 3.A.3 to a 64 site supercell, ran-

domly substituting a fraction x of sites with an impurity atom. A schematic

of the generated model is given in Fig. 3.5a

For the sake of simplicity, the impurities are assumed to differ from Ir

in only their λSOC (0.19 eV for both Ru and Rh, 0.45 for Ir), and onsite

potential (0.0 eV for Rh and Ir, 0.25 ± 0.05 eV for Ru). Similarly, octahe-

dral distortions and electron correlations are neglected to better illustrate

the energy shift of the jeff states. We have used the unfolding method

[84, 85, 130, 131] (described in detail in Section 2.2) to project bands into

the original Brillouin zone. This method makes use of the phase proper-

ties of Bloch waves to define a weight for each band representative of the

band’s projection onto the extended Brillouin zone. We average 200 pos-

sible permutations to reconstruct a stochastic representation of the doped

system. The spectral function is found to have converged after averaging

over 200 configurations, with no further appreciable changes observed for

larger samplings. We observe a smooth evolution of effective SOC in this

system, which depends strongly on the impurity potential.

Results of the calculations for the Rh substituted case are summarized

in Fig. 3.5b-e. The splitting at k =
(

3π
4a , 0

)
(indicated with a red arrow)

allows for direct estimation of the effective SOC. This k-point is chosen

because later experimental results will be presented at this Brillouin zone

location. Also indicated are the nominal values for 100% Ir (purple) and

100% Rh/Ru (yellow). Experimentally, such a straightforward extraction of

SOC is not possible due to the dominant effects of linewidth which preclude

detailed characterization of the level spacing. Furthermore, direct inference

would require a more detailed analysis of the effect of correlations, as corre-

lations enhance the splittings created by spin-orbit coupling, dependent on

the crystal momentum [132, 133]. The calculated spectral functions indicate

a monotonic reduction of this splitting as the substituent concentration is

increased. Aside from the reduction of spin-orbit coupling, spectral broad-

ening is observed at several points in the Brillouin zone. This broadening is

caused by the disorder introduced by the Rh atoms, and is predominantly

found in the places where the spin-orbit coupling alters the dispersion most.
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Figure 3.5: Overview of the supercell calculations describing spin-
orbit coupling dilution. a Schematic overview of the supercell
generation, indicating the extension of the orbital basis set over
the larger unit cell. As indicated by the image colouring, a
fraction of atoms is assigned reduced spin-orbit coupling and
an impurity potential of εi = 0.3 (Ru) or εi = 0 (Rh). b-e
Calculated averaged unfolded spectral function for Rh concen-
trations of x = 0.0, 0.1, 0.2 and 0.3. The high symmetry points
are indicated in Fig. 3.9d. The arrows indicate the SOC in-
duced splitting (red), with the associated splittings of the end
limit compounds x = 0 (purple) and x = 1 (yellow) added for
reference.
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Figure 3.6: a Cuts (EDCs) for different concentrations of dopants at
the position of the red arrow in Fig. 3.5 [k =

(
3π
4a , 0

)
]. The sub-

stituted atoms have different SOC and on-site energy. We use
λSOC = 0.19 eV and εi = 0.0 eV for Rh (black), while we use
λSOC = 0.19 eV and εi = 0.25 ± 0.05 eV for Ru (red). b Pro-
gression of the splitting between the outermost peaks for simu-
lations in a for Rh (black markers) and Ru (red markers). For
Rh, a linear interpolation is plotted between the end members
of the phase diagram. For Ru, the resulting range of splitting
for εi = 0.25± 0.05 is indicated by red shaded rectangles. The
critical concentrations obtained from our measurements are in-
dicated by the black (Rh) and red (Ru) vertical lines. The blue
shaded area indicates the inferred λc = 0.42± 0.01.

Such disorder is much stronger in the calculated spectra for Ru doping.

We extract the effective value of SOC by fitting EDCs for each impu-

rity concentration. The results are summarized in Fig. 3.6. The change

in splitting is seen clearly in Fig. 3.6a, where we present a series of EDCs

at k =
(

3π
4a , 0

)
, for models with a non-zero on-site impurity potential (Ru,

red), and those without (Rh, black). This doping dependence is summa-

rized in Fig. 3.6b. The right vertical axis reflects the splitting observed at

k =
(

3π
4a , 0

)
, and the left the value of λSOC that would produce the cor-

responding splitting in a model without substitutions (i.e. for an overall

uniform value of λSOC). This second axis serves to illustrate the effective

spin-orbit coupling caused by substitution of Ir with Rh and Ru. From

the progression in Fig. 3.6b it is evident that Rh should dilute SOC more
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efficiently than Ru: the black markers trace the interpolation between the

values of Ir and Rh, indicated by the grey line. Meanwhile the modelled im-

purity potential for Ru (0.25±0.05 eV) prevents successful dilution of SOC.

The results in Fig. 3.6b suggest that the different critical concentrations for

the two substituents can be attributed to a common parameter: a value for

spin-orbit coupling of λc ∼ 0.42 ± 0.01 (indicated as a blue shaded area in

Fig. 3.6b) yields critical concentrations (xRh ∼ 0.15 and xRu ∼ 0.3) that

fit well with our experimental observations. Theoretical results presented in

Ref. 134 suggest that SOC in Sr2IrO4 is only marginally above the thresh-

old for the insulating state, and that such a small change could drive the

transition. The dilution of spin-orbit coupling is therefore found to provide

a compelling theoretical picture of the transition.

3.4 Experimental observation of SOC

Having demonstrated this evolution of SOC via substitution and its ability

to provide a natural explanation for the transition in Sr2Ir1−xTxO4, we aim

to substantiate these predictions experimentally. To establish a convenient

metric for SOC, we leverage the symmetry constraints of the photoemission

matrix element. Dipole selection rules allow transitions from only certain

orbitals: since dxz (dyz, dxy) is even (odd) in the experimental scattering

plane, states composed of this cubic harmonic are only observable with π-

(σ)-polarization. As SOC mixes these orbitals into linear combinations pre-

scribed by the jeff construction [25], we quantify SOC by comparing the

ratio of even/odd states at strategically chosen points in the Brillouin zone

where these symmetry-based selection rules are most well defined. In the

absence of SOC, the state along Γ − Xx (defined in Fig. 3.7) in Sr2IrO4

would be of pure dxz character: any photoemission from this state using

σ-polarization must be due to the admixture of dyz and dxy introduced by

SOC. More quantitatively, of interest here is the value of Mσ
x , the matrix

element at the Xx point, which we normalize in our results through division

by Mσ
y . A simulation of this quantity based on an ab-initio tight binding

model for Sr2IrO4 with variable spin-orbit coupling is shown as a black solid
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Figure 3.7: Observation of the reduction of SOC via the
ARPES dipole matrix element. a-d Constant energy maps
for different concentrations of xRh, using σ-polarized light. The
constant energy maps are integrated over 150 meV to improve
numerical accuracy, and taken at an energy such that the size
of the pocket around X is the same for all concentrations. The
relevant states used for the analysis are indicated using the red
boxes, and their integrated values are shown within. All data
are taken at 64 eV, with temperatures at 120 K for x = 0 and
xRu = 0.1, 70 K for xRh = 0.1, and 20 K xRh = 0.16, all chosen
to mitigate the effects of charging.
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Figure 3.8: Inference of the value of spin-orbit coupling
through modelling of the matrix element. Calculated ra-
tio of matrix elements for a model of Sr2IrO4 (details in Sec-
tion 3.A.3), plotted as a function of spin-orbit coupling (black
curve). The coloured markers indicate the ratio of the experi-
mental values shown in panels a-d of Fig. 3.7. The error bars
are calculated from the standard deviation over the integrated
range in energy. The top axis indicates the substitution re-
quired to produce the spin-orbit coupling value on the bottom
axis, predicted by the supercell calculations in Fig. 3.6e.

line in Fig. 3.8. The model takes into account effects of experimental geom-

etry as well as photon energy and polarization; for further details refer to

Section 3.A.3. The curve shows a clear decrease of Mσ
x /M

σ
y as a function

of spin-orbit coupling, demonstrating the possibility for a direct measure of

λSOC via ARPES. The model omits electron-electron interactions, which

could in principle change the mixing of orbitals, and hence the observed

SOC. However, since we measure the relative change to the pristine sample,

our conclusions are robust against such an overall change.

Motivated by the supercell calculations, we investigate the progression

of Mσ
x /M

σ
y experimentally in a series of Rh and Ru substituted samples.
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In Fig. 3.7a-d we plot constant-energy contours for each of the concentra-

tions, as recorded with σ-polarized light. To compare the different samples,

we consider constant energy maps at the energy which places the state of

interest at kx =
(

3π
4a , 0

)
. We subtract a uniform background based on the av-

erage of the intensity in areas where no states are present. Then, integrating

and dividing the ARPES intensity within the indicated regions of Fig. 3.7a-d

yields the ratio Mσ
x /M

σ
y . We can proceed to make a quantitative connection

with an effective spin-orbit coupling strength by plotting the experimental

data points alongside the simulated curve in Fig. 3.8. The latter has been

normalized to the experimental data for pristine Sr2IrO4, allowing for an

effective λSOC strength to be extracted for the Rh/Ru substituted samples.

This analysis yields λSOC values of 0.443, 0.424, and 0.408 respectively. A

connection to the supercell calculations can be made through these λSOC

values: the associated impurity concentrations in Fig. 3.6e agree remarkably

well with the actual experimental values, made explicit in the case of Rh

with the top horizontal axis of Fig. 3.8. This confirms the premise of our

supercell model and the sensitivity to the impurity potential for successful

dilution of λSOC . In connection to the MIT, the λc = 0.42 ± 0.01 eV at

xRh = 0.15 obtained from Fig. 3.6e is overlain in Fig. 3.8.

3.5 Conclusion

Generally speaking, λc is a function of filling, U , bandwidth, disorder, among

others, and SOC represents but a single axis within a higher dimensional

phase space. As filling, distortions, and disorder may be anticipated to ex-

pedite the metal-insulator transition in Ru-substituted samples, SOC seems

alone capable of explaining the dichotomy in xc observed for Ru and Rh.

This indicates the critical role of SOC in the MIT of Sr2Ir1−xTxO4 for both

Rh and Ru substitution.

The combination of SOC-sensitive techniques and the comparison of Ru

and Rh substituted samples has put us in a unique position to comment on

the role of SOC in the metal-insulator transition of Sr2IrO4, demonstrating

for the first time an SOC controlled-collapse of a correlated insulating phase.
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Through doing so, as an important corollary to these results, our work

conclusively establishes Sr2IrO4 as a relativistic Mott insulator.

Additionally, we note that the investigation into mixing spin-orbit cou-

pling discussed in Section 3.3.1 was calculated for a generic two-site Hamil-

tonian. As such this mechanism pertains to other systems in which this

type of physics appears, and has broad ranging implications for attempts to

tune and tailor spin-orbit coupling. Controlling spin-orbit coupling is a ma-

terial properties design challenge at which many attempts have been made,

with varying success. This result not only sets the boundary conditions for

successful dilution of spin-orbit coupling, it also explains what the control-

ling parameters are that influence the resultant spin-orbit coupling in mixed

systems. It gives a direct explanation of the effects seen in systems such

as Ga1−xBixAs, where Bi readily enhances the effects of SOC [135]. It also

sheds light on attempts to drive a topological to trivial transition in topo-

logical insulators by reducing spin-orbit coupling through substitution [136–

140]. Moreover, the sensitivity of this phenomenon to an impurity potential

has implications for ongoing efforts to enhance SOC effects in graphene

and related systems through adatom deposition and other proximity-related

techniques [123, 124, 141–143]. In particular, experimental results have been

unable to observe the predicted enhancement of spin-orbit coupling so far.

It is possible that an impurity potential, or small hopping parameter limits

the hybridization between the adatom species and the graphene lattice, thus

not effectively facilitating enhanced effects of spin-orbit coupling. In sum-

mary, this work has important implications for experiments that attempt to

modify spin-orbit coupling, and should serve as a practical guide for future

endeavours.
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3.A Appendices

3.A.1 Methods

Single crystals of Sr2Ir1−xRhxO4 were grown with nominal concentrations of

xRh = 0.0, 0.10, 0.16, 0.22 and measured with electron probe microanalysis

to be within 0.01 of their nominal concentration. Crystals of Sr2Ir1−xRuxO4

were grown with nominal concentrations of xRu = 0.10, 0.20, 0.40. Quality

of the Ru doped samples was assured by comparing magnetization measure-

ments to available literature [112, 119]. Chemical homogeneity of the Ru

doped samples was ensured using Z-contrast STEM. Measurements were

carried out at the SIS beamline at the Swiss Lightsource (Rh substituted

samples) and at the Merlin beamline at the Advanced Lightsource (Rh and

Ru substituted samples). All measurements were done on freshly cleaved

surfaces, where the pressure during measurement and cleaving was always

lower than 3.3 · 10−10 mbar. Measurements used for inference of spin-orbit

coupling values were performed with 64 eV photons, using light polarized

perpendicular to the analyzer slit direction (σ-polarization). The rotation

axis of the manipulator for the acquisition of the Fermi surface was parallel

to the slit direction. The sample was mounted such that the Ir-O bonds

(Γ − X) were aligned to this axis of rotation. Temperatures were chosen

as low as possible while mitigating the effects of charging and are reported

in the figure captions. A tight-binding model was constructed from a Wan-

nier orbital calculation using the Wannier90 package [144]. The Wannier90

calculations were performed on results from density functional theory cal-

culations done with the Wien2k package [75, 145]. The DOS calculations

presented in Fig. 3.6 were performed with the Wien2k package. The super-

cell configuration assumed a single layer with 8 TM ions per unit cell. The

presented results at x = 0.25 are similar to those found for x = 0.125 and

x = 0.5.
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3.A.2 Observation of SOC through the dipole transition
matrix element

In the Section 3.4, we have demonstrated the ability to quantify spin-orbit

coupling by taking advantage of the dipole selection rules associated with

the photoemission process. To illustrate how the effects of SOC are manifest

in polarization-dependent ARPES on Sr2IrO4, it is instructive to consider a

minimal tight-binding model consisting of a t2g basis set with nearest neigh-

bour hopping and spin-orbit coupling. Although too simple to capture the

full detail of Sr2IrO4, this model serves to highlight the general concept of

this technique and its broad applicability beyond this particular set of ma-

terials. The calculations presented in the Fig. 3.8 use the more elaborate

model described in Section 3.A.3. Suitable points in k-space are fixed by the

symmetry of the lattice, as can be illustrated by the orbital-projected band

structure plotted in Fig. 3.9 as a function of spin-orbit coupling. The disper-

sion of the model system is plotted for several values of λSOC in Fig. 3.9a-c.

The colour scale encodes the expectation value of 〈L · S〉. SOC can be seen

to cause both an increase in the entanglement of spin and orbital angular

momentum, as well as a splitting between the bands originating from dxz

and dyz orbitals that eventually form the jeff = 3/2 and 1/2 states. The

fully entangled jeff = 3/2 and 1/2 have 〈L · S〉 = −1/2 (red) and 1 (blue),

respectively. Note that these values are the negative of the expectation value

for ` = 1, where j = 3/2 (1/2) yields 〈L · S〉 = 1/2 (−1), since the jeff states

are derived from ` = 2 states. Any deviations from these numbers reflect

the competition between SOC and kinetic terms.

The orbital mixing resulting from the entanglement of spin and orbital

angular momentum can be seen in Fig. 3.9e-g, where the colour scale now

reflects the orbital projection along the same k-space path as before. Neg-

ligible mixing is observed for λSOC = 0.01, becoming quite prominent by

λSOC = 0.4 eV. As with the spin-orbital entanglement, except for extremely

large values of SOC, the mixing is k-dependent as orbital angular momen-

tum remains partially quenched. Directing our attention towards the (π, 0)

point on the edge of the Brillouin zone, we can further explore the evolution

of the orbital character of the valence band. Although in the absence of
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Figure 3.9: Orbital mixing between t2g orbitals. a-c Bandstructures for λSOC 0.01, 0.1 and 0.4 eV along the
k-path indicated in d; colour encodes the expectation value of 〈L · S〉 for each band. In all calculations
the Fermi level was set by a total occupation of 5 electrons per site. d Fermi surface plots for λSOC
0.01 (left) and 0.4 eV (right), with band character colour encoded. e-g The same band structure as in
a-c, where the colour now indicates the weight of dxy, dxz and dyz for each state (the colour mapping
is defined in the triangle in the top left). h The orbital composition of the state and matrix element
ratio as a function of SOC, at the k-point indicated by a grey box in d and g. i The SOC induced
splitting at Γ denoted by the grey double arrow in g.
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SOC this state is of pure dxz character, substantial admixture of dyz and

dxy weight is observed in Fig. 3.9h for large SOC. Providing a connection

to the experiment, the ratio of photoemission intensity between the (π, 0)

and (0, π) points (Mσ
x /M

σ
y ) is also plotted on the same axes. To within

a global renormalization factor, this quantity is found to follow the ratio

of dxz/dyz weight precisely, demonstrating the correspondence between this

experimental signature and the orbital structure of the underlying electronic

states. Consequently, Mσ
x /M

σ
y provides an experimental measure of SOC in

these states. This is particularly useful for the study of Sr2Ir1−xTxO4 (T =

Ru,Rh) where we might expect the effective SOC to reduce with increasing

substituent content.

We stress that this technique is not limited to this particular material,

and could be used in other systems that are subject to spin-orbit coupling

that causes mixing between even and odd orbitals, for example in other

iridates [146, 147], ruthenates [14, 21] or the iron-based superconductors

[23, 24]. Although the general principle of the idea is fully captured by this

simple model, a better effort in predicting the intricacies of this ratio can be

made by considering the full nature of the system, including its octahedral

distortions and higher order hopping elements, as is done in the next section.

3.A.3 Tight binding and matrix element modelling

Qualitatively, the extent to which the matrix elements can be relied upon

to convey information regarding orbital mixing is found to be independent

of the details of a given model. For example, the Hamiltonians described

in [148] as well as [44] have been tested, and found to be consistent with

the intensity variations observed experimentally. To provide a quantitative

connection to the experimental Mσ
x /M

σ
y values, a more sophisticated model

than that presented in Section 3.A.2 is required. We describe here the model

used for matrix element calculations in Fig. 3.8, which relies on DFT and

maximally localized Wannier functions to generate a tight-binding Hamilto-
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Figure 3.10: Overview of the model used in this work. The high sym-
metry points are indicated in Fig. 3.9d. a Initial DFT calcula-
tion in the I4/mmm space group (black), overlaid on the calcu-
lated tight binding band structure as extracted from Wannier
orbitals (grey). b Calculated band structure for the former
Hamiltonian after it has been doubled, rotated, and stripped
of out-of-plane hopping matrix elements (grey) c Calculated
band structure for the rotated model to which atomic spin-
orbit coupling has been added (coloured). The experimental
configuration is represented schematically in panel d.

nian [75, 144, 145]. DFT calculations were performed with the Wien2K

package [75], under the generalized gradient approximation (GGA). To

minimize the size of the basis set for Wannier down folding, octahedral

distortions of Sr2IrO4 were suppressed at this stage, allowing for use of the

I4/mmm space group. We used the lattice parameters reported in Ref. 16,

and kept the Ir−O distance fixed to conserve overall bandwidth. Max-

imally localized Wannier functions for five Ir 5d orbitals were calculated

using the Wien2Wannier [145] and Wannier90 packages [144]. The resulting

tight-binding model was truncated beyond fifth nearest neighbour hopping

integrals, with matrix elements smaller than 0.5 meV suppressed. The as-

sociated bandstructure is plotted in grey in Fig. 3.10a, and agrees well with

the full DFT band structure (black curve). The quasi-two-dimensionality

of the electronic structure has been strictly imposed through suppression

of out-of-plane hopping terms. Staggered octahedral rotations of T=11.5

degrees can then be introduced as outlined in Ref. 148, recovering the true

82



I41/acd of both the pristine and substituted Sr2IrO4 lattice [16, 112]. The

band structure in Fig. 3.10b reflects the effects of these distortions. Finally,

spin-orbit coupling for the Ir d-orbitals has been added as:

ĤSOC = λ L̂ · Ŝ, (3.3)

resulting in the band structure plotted in Fig. 3.10c with the projection of

〈L̂ · Ŝ〉 indicated by the colourscale. While a jeff = 1/2 (〈L̂ · Ŝ〉 = 1) and

jeff = 3/2 (〈L̂ ·Ŝ〉 = −1/2) manifold can be defined, significant hybridization

between the two persists due to the comparable energy scales of bandwidth

and λSOC . To best match our experimental data we have set λSOC = 0.45,

consistent with other reports [37, 107].

The tight-binding model defined here was used for the simulation of

the ARPES matrix elements over a range of λSOC values, producing the

black curve plotted in Fig. 3.8. The method uses the transition probability

described by Fermi’s golden rule [86, 121]:∣∣∣Mk
i,f

∣∣∣2 ∝ ∣∣∣〈φkf |r · ε|ψkf〉∣∣∣2 , (3.4)

where φki is the initial state, derived from our tight binding model, ε is the

light polarization vector, and φkf is the final state wavefunction. The final

state is assumed to be free-electron like, well justified by the high photon

energies hν ≈ 50 eV [86]. Fig. 3.10d illustrates the various components of

the process. The matrix element can then be further calculated similar to

the procedure outlined in 149. Matrix element calculations were performed

using the chinook package [90].

3.A.4 Orbital weight for a two-site model with impurity
potential

In Section 3.3.1 we discuss control of spin-orbit coupling dilution through the

impurity potential. Here we derive the orbital weight for an eigenstate of a
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two-site model, as controlled by hopping parameter t and impurity potential

ε. We take for the Hamiltonian:

H =

(
ε t

t −ε

)
, (3.5)

which we normalize by the hopping strength t and write:

H =

(
x 1

1 −x

)
, (3.6)

with x = ε/t. The eigenvalues of this matrix are given by:

λ± = ±
√

1 + x2, (3.7)

and eigenvectors:

v± =
1√
A

(
1

λ± − x

)
, (3.8)

with A the norm of the vector. We can now find the orbital weight as a

function of the normalized impurity potential by taking the absolute value

squared of one of the elements in the vector:

|v+,0|2 =
1

A
=

1

2 + 2x2 − 2x
√

1 + x2
. (3.9)

We can rewrite this expression as:

|v+,0|2 =
x+
√

1 + x2

2
√

1 + x2
=

1

2

(
x√

1 + x2
+ 1

)
, (3.10)

which corresponds to the functional form in the four-orbital model discussed

in Section 3.3.1.
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Chapter 4

Spin and kz Resolved

ARPES on Sr2IrO4

This chapter describes experiments studying the dispersion perpendicular

(kz) to the atomic layers and its effects on the spin-orbital entanglement.

With these experiments we test validity of the jeff = 1/2 model, and attempt

to compare Sr2IrO4 to the superconducting cuprates, in particular La2CuO4.

The two-dimensionality of the system will be investigated using photon en-

ergy dependent angle-resolved photoelectron spectroscopy (ARPES). Spin-

ARPES will be used to investigate the spin-orbital entanglement in Sr2IrO4,

which should give a clear signature in light of the jeff = 1/2 model. We ulti-

mately find that the complex electronic structure in Sr2IrO4 cannot simply

be explained as a two-dimensional pseudo-spin 1/2 insulator.

4.1 Introduction

Since the discovery of the cuprate superconductors [150], the physics com-

munity has put a lot of effort into finding other superconducting transition-

metal oxides (TMOs). The first successful attempt was the discovery of

Sr2RuO4 [14], but many other compounds with similar properties had been

suggested. Among them Sr2IrO4 [17], with the same structure as La2CuO4

and an antiferromagnetic ground state in the pristine “parent” compound.
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A difference is that this system has a single hole in the t2g manifold, rather

than the eg hole in the cuprates. Spin-orbit coupling has been suggested

to play an important role in the insulating ground state of these materi-

als, with t2g orbitals possibly entangling into a filled jeff = 3/2, and a half

filled jeff = 1/2 manifold [25]. It was quickly realized that this scenario

brings Sr2IrO4 even closer to the quintessential cuprate superconductor: a

(pseudo-)spin 1/2 Mott insulator on a square 2D lattice. Theoretical calcu-

lations predicted a superconducting state may exist in such a pseudo-spin

1/2 system when the system is electron doped [35], with more sophisticated

analysis including all t2g orbitals and strong spin-orbit coupling painting a

similar picture [40, 41]. It was moreover found that the excitations of the

pseudospins probed by resonant inelastic x-ray scattering (RIXS) are remi-

niscent of a Heisenberg model [37, 151], the expected low energy behaviour

for a spin 1/2 Mott insulator [38, 39]. Promising observations were made

in experiments: features reminiscent of doped Mott insulators, such as a

particular gap shape and spatial distribution were found in scanning tun-

nelling microscopy (STM) [45], and a pseudogap was found in ARPES [44].

Stronger evidence was found using surface doped samples: using STM, a gap

very reminiscent of those found in superconductors was observed [46], while

in ARPES a d-wave gap was observed, a classic signature of the cuprate su-

perconductors [47]. However, so far no signatures of bulk superconducting

behaviour have been reported in the literature.

A possible explanation for the lack of superconductivity may be found in

the multi-band nature of Sr2IrO4: the theoretical models predicting super-

conductivity are either done on a pseudo-spin 1/2 model [35], or a system in

the strong spin-orbit coupling limit in which the jeff = 3/2 states can be ef-

fectively projected out [40, 41]. Although spin-orbit coupling is large in this

system (∼ 0.45 eV [20, 37, 107]), it is still modest compared to the overall

bandwidth of the t2g bands [104–106]. Furthermore, it can be anticipated

that the Ir t2g bands have a more significant out-of-plane dispersion: not

only are the 5d orbitals more extended than their 3 and 4d counterparts, the

dxz and dyz bands have stronger π-like bonds between layers (as opposed to

δ for the dx2−y2 orbitals in cuprates). In this chapter, we will address these
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two arguments: the out-of-plane dispersion will be measured using photon

energy dependent ARPES, and the spin-orbital entanglement will be mea-

sured using spin-ARPES. The observations indicate that the kz dispersion in

this compound is indeed significant. Moreover the highest unoccupied state

can be found to be either of jeff = 1/2 or jeff = 3/2 character depending

on kz. We therefore conclude that the occupied states of Sr2IrO4 should be

described by a three-dimensional multi-orbital Mott system, rather than a

2D, pseudo-spin 1/2 Mott insulator.

4.2 kz dispersion in Sr2IrO4

In this section we will discuss the out-of-plane (kz-axis) dispersion of Sr2IrO4,

considering results from photon energy dependent ARPES experiments. We

find that Sr2IrO4 has a significant inter-layer coupling, which will help to ex-

plain the results using spin-ARPES in Section 4.3, and has consequences for

the description of Sr2IrO4 as a two-dimensional Mott insulator. It helps here

to define exactly what is meant in this work by two-dimensionality. For such

a multi-orbital system we require that no bands significantly change their

character, or cross in energy as a function of the perpendicular momentum

kz. We will furthermore demonstrate that the electron removal spectrum

of Sr2IrO4 is not the single-band spectrum that should be expected from a

pure jeff = 1/2 model.

4.2.1 Body centered tetragonal structure

In order to guide the reader through the various effects arising from the

structure of Sr2IrO4, this section presents a simple tight binding model in

the same structure, to facilitate easy interpretation of the different effects.

The structure of Sr2IrO4 is body centred tetragonal, which leads to the

appearance of a few characteristic effects that will be discussed here.

In Sr2IrO4, the IrO4 octahedra are rotated around their z-axis by 11.5 deg

in a checkerboard pattern. This implies that two separate iridium ions are

needed to describe the unit cell of Sr2IrO4. The symmetry reduces from

the I4/mmm to the I41/acd space group, with a c-axis stacking order ex-
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Figure 4.1: Constant energy maps for a two-atom model in the body
centred tetragonal structure. (a) Dispersion of the states along
selected high symmetry points. (b,c) Constant energy contours
at indicated energies. The locations of the cuts are indicated
using coloured lines in (a).

panding the unit cell to four iridium atoms. To demonstrate the effects of

folding, we calculate the dispersion for a structure with two iridium atoms.

Although we describe two atoms per unit cell, no changes to the hopping

integrals are made. The result is a dispersion that is mirrored along the

zone anti-diagonal ((π, 0), (0, π)), folding the bands at the N (π, π) point to

Γ and vice-versa.

The resulting dispersion is reminiscent of the band structure that is
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frequently presented for Sr2IrO4. Although this model neglects any changes

to the band structure from the symmetry breaking, there is an important

effect that can be clearly seen in Fig. 4.1(a). The bands originating from

the N point (π, π, 0), disperse with a different period due to the staggered

nature of the reciprocal space BZ cells. This causes folded bands at Γ that

disperse with this doubled periodicity, whereas in the unfolded band model

no such bands were present. The dispersion from the X point (π, 0, 0) to

the X + Z point (π, 0, π) is completely flat in this model only considering

π hopping. Fig. 4.1(b-c) display cuts at constant energy (CE), effectively

plotting contours at constant ky = 0 and varying values of kx and kz, in the

same way that data will be presented in the next section. The CE maps are

shown for an identical k-range, with locations of relevant high-symmetry

points indicated. The bands folded from the N point (b) show different

periodicity from the original band at Γ (c). The reason is that whereas the

original bands cut through the centres of the Brillouin zone (BZ) cells, the

folded bands cut in between the staggered BZ cells, causing an apparent

double periodicity. This is relevant since the interpretation of the electronic

structure of Sr2IrO4 is such that the state at Γ arises from a folded band,

which shows such double periodicity. Another feature arising due to the

body centred tetragonal structure are the bands that “wave” in between the

BZ cells visible in (c). Both these features are observed and will be discussed

in Section 4.2.2.

4.2.2 Constant energy maps

As discussed in Section 2.3, assuming a free-electron-like final state, we can

obtain the out-of-plane momentum using:

~k2
⊥

2m
= Ek + V0 −

~k2
‖

2m
. (4.1)

The dependence of k⊥ on Ek implies we can measure the dispersion along

kz by changing the photon energy. This section will show the results from

photon energy dependent measurements to highlight the kz dispersion in
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Figure 4.2: Overview of photon energy dependent results in Sr2IrO4.
(a-d) Constant energy maps at E = −0.35 (a,b) and E = −0.55
(c,d), using σ-polarized light (a,c) and π-polarized light. In (d)
the faint elliptical pockets around Γ are highlighted by thin red
lines on the right side of the centre. (e) Spectrum at hν = 100
eV (5.29 Å−1). The red lines indicate the locations of the other
data in this figure. (f) A series of MDCs from hν = 60 eV
(4.18 Å−1) to hν = 100 eV (5.29 Å−1), with σ-polarization at
E = −0.55 eV. The area encompassed is indicated by a red box
in (c). 90



this system, in particular at the Γ point. Measurements presented in here

were taken at the Advanced Lightsource at the Lawrence Berkeley National

Laboratory at the Merlin endstation. Data are all collected at 150 K, to

mitigate the effects of charging of the insulating Sr2IrO4 sample. Photon

energy dependent measurements were done as the beamline specifications

would allow, in this case from 50 eV to 120 eV, enabling the observation of

almost two full reciprocal lattice cells. The Fermi level was corrected by tak-

ing measurements on electrically connected amorphous gold. For the inner

potential, a value of V0 = 11 eV was found by comparing the experimental

data to the expected periodicity, in good agreement with the result in [152].

To provide a guide for the presentation of the acquired photon energy

dependent data, we plot the band-structure of Sr2IrO4 in Fig. 4.2(e). The

spectrum displays the valence band states at Γ and X. The red lines indicate

the positions of cuts presented in other panels. We continue our overview

of kz-dependent effects by considering the constant energy cuts in Fig. 4.2.

Figure 4.2(a) and (b) plot constant energy maps at Eb = 0.35, while (c)

and (d) present maps at Eb = 0.55. Data for both σ- and π-polarization

are shown ((a,c) and (b,d) respectively), with a clear difference in qualita-

tive features between the two. Although it is challenging to find a clear

periodic structure, the modulated intensity changes, especially those that

repeat along kz, are a clear sign of interlayer coupling. The intensity fluctu-

ations arise due to the dipole matrix element (see Section 2.3.3), that varies

as the composition of the initial state changes along the kz direction. The

photoemission matrix element is however also dependent on the final state

(Section 2.3.3), and there can be a global change to these effects that may

obfuscate the true periodic intensity fluctuations.

We now consider the dispersion of the X-states. To this end we show con-

stant energy maps at higher energy, E = −0.35 ((a) and (b) in Fig. 4.2. An

intensity pattern appears in these maps too, and furthermore, the perime-

ter of these states moves inward and outward going between the Γ and Z

points. As discussed in the previous section, this is an effect that can be

expected from the body centred crystal structure that Sr2IrO4 assumes. It

causes a waving pattern between the different unit cells, which is discernible
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in Fig. 4.2.

A careful look at the state around Γ in Fig. 4.2(d) shows elliptical pock-

ets that open and close with a periodicity twice that of the BZ. As discussed

in Section 4.2.1, this is exactly the periodicity that a folded band in the

body centred tetragonal (BCT) structure would yield. Continuing our dis-

cussion with the maps shown for σ-polarized light (Iσ), a careful inspection

of Fig. 4.2(a) and (c) yields that there is also a pattern of nodes, but it

is shifted with respect to the π-polarization (Iπ) maps. The closing of the

elliptical pockets is highlighted more clearly in Fig. 4.2(f), where a series

of momentum distribution curves (MDCs) is plotted, in which the merg-

ing of two peaks can be clearly seen. The observation that this band is

probed differently by different light polarizations indicates a kz dependent

symmetry change of the bands (Iσ probes dxz, while Iπ probes dyz and dxy).

Moreover, as the dispersion is different for each polarization, this may be in-

dicative that this state actually encompasses multiple, closely spaced bands,

with different symmetries, a statement that will be explored in more detail

in the next section.

4.2.3 Γ and X state dispersions.

We now turn to discussing cuts in kz through the X and Γ points. These

cuts allow better visualization of the amplitude of the oscillation in kz. The

results are presented in Fig. 4.3, where (a) and (c) show cuts through the

Γ point, while (b) and (d) show cuts through the X point, both shown for

Iπ ((a) and (b)) and Iπ ((c) and (d)) polarized light. Coloured markers are

plotted at the peak maximum, extracted from fits these bands. We first

turn our attention to X, which shows no significant periodic dispersion.

This is in line with predictions from the model presented in Section 4.2.1,

that shows negligible dispersion is expected to occur at the X point in the

BCT structure when π-like hopping is dominant. Earlier photon energy

dependent work on Sr2IrO4 shows a small dispersion of this state [152].

The amplitude of this oscillation is however small, and may be below our

detectable limit. Meanwhile, (a) and (c) seem to show fluctuations that
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Figure 4.3: Fits to kz dispersion along the Γ and X point. (a-d) Spec-
tra along the Γ − Z (a,c) direction and the X (b,d) direction
(indicated in Fig. 4.2 in panel (e)). Data are presented for π
(a,b) and σ polarization. Peak maxima extracted from fits are
plotted in green and purple for π and σ polarized light respec-
tively. (e,f) EDC traces corresponding to the data presented in
(c) and (d) respectively, including the fits to the peaks.
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Figure 4.4: EDCs for σ and π polarizations at Γ (a) and X (b) at
hν = 60 eV (kz = 4.2 Å−1).

are significantly larger, with a structure that appears to resemble the same

periodicity also found in the constant energy maps in Fig. 4.2. The fits show

that the peak positions change on the order of ∼ 100 meV. No kz dependent

data at Γ was presented in [152] (this work concludes that kz dispersion in

these layered materials is negligible). The models in Section 4.2.1 however

indicate that such kz-dispersion would mostly arise at the Γ point, and

not the X point, which is consistent with the data presented here. The

dichotomy between the Γ and X point is highlighted in Fig. 4.3(e) and (f),

which shows kz dependent energy distribution curve (EDC)s. It is clear that

whereas the state at the X point does not disperse in kz significantly, the

state at Γ does.

Interestingly, when comparing the two polarizations we find different

peak maxima. This difference was alluded to in Section 4.2.2, and can be

observed on careful inspection of Fig. 4.3(a) and (c). The difference becomes

more evident when comparing the EDCs directly, as is done in Fig. 4.4. The

data in Fig. 4.4 are taken at hν = 60 eV for both polarizations, at Γ (a) and

X (b). While the peak positions of the EDCs at X line up well, those at Γ

are approximately 100 meV apart. The peak maxima occurring at different

energies for the polarizations, implies that this peak is comprised of more

than one state with a small separation, with the individual states having

different orbital symmetries. As the kz dispersion moves these states relative
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to one another, different photon energies and polarizations give different

results.

The observation of multiple of states the Γ point is seemingly at odds

with a simple jeff = 1/2 model, which predicts a single state throughout

the Brillouin zone. Moreover, these data imply that the inter-layer coupling

is strong enough to observe kz-dispersion effects in photoemission, with an

amplitude on the order of ∼ 100 meV. In particular when states are close

together like the states observed at Γ, this can have quite profound effects on

these states (as for example demonstrated for Sr2Ru4 in Ref. 21). It turns

out that this has strong consequences for their spin-orbital entanglement as

will be discussed in the next section.

4.3 Circularly polarized spin-ARPES

We have used circularly polarized spin-ARPES (CPSA) to directly probe the

entangled spin-orbital nature of the bands. This technique has been formerly

used in [21, 23, 100, 101] and allows direct measurement of the various com-

ponents of 〈L · S〉 by simultaneously selecting an orbital angular momentum

using circular light and a spin using a spin detector. A full overview of the

technique is given in Section 2.4.2, where we discuss the various matrix ele-

ments that give rise to the effect. In this section, we present data at various

points in the Brillouin zone to investigate the spin-orbital entangled nature

of the ground state, and test the validity jeff = 1/2 scenario. Although data

is presented all throughout the Brillouin zone, most attention is placed on

results at normal emission (Γ− Z, depending on kz), which are most easily

interpreted, because the allowed final states are limited. The data presented

are intended to demonstrate by direct experiment the entangled nature of

the bands, and will lead to the conclusion that Sr2IrO4 cannot be simply

described by an effective spin = 1/2 model.

Measurements in Section 4.3 were performed at the VESPA endstation

[94] at the Elettra Sincrotrone Trieste. The endstation is equipped with

a Scienta DA30 electron spectrometer with electrostatic deflectors. Using

these deflectors it is possible to measure a ∼ 30◦ solid angle without moving
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Figure 4.5: kz dependent tight binding model of Sr2IrO4. In (a) the
colour encodes 〈L · S〉, while in (b) the colour encodes LzSz.
The bands that are referred to in the text are labelled in (b).

the sample. This way the date presented here was acquired without the need

to rotate the sample. The spin was detected using a very low energy electron

diffraction (VLEED) type detector (explained in detail in Section 2.4.1).

All data were collected at 150 K to mitigate the effects of charging of the

insulating Sr2IrO4. The Fermi energy of the spin-detectors was measured

using evaporated gold films, and the experimental energy resolution was

measured to be 60 meV.

4.3.1 Interpretation of CPSA results for Sr2IrO4

To give a perspective to the resulting measurements, we briefly highlight

the results that are expected from an ab initio tight binding model that

includes interlayer hopping. The model contains the full rotated I41/acd

structure of Sr2IrO4 for the Ir t2g orbitals. We use the Wannier Hamiltonian

extracted from density functional theory (DFT) calculations as described in

Section 3.A.3. Since we are interested in the kz dispersion, we keep out-

of-plane hopping elements. We introduce distortions by rotating each atom

from its local basis into the global basis by ±12 degrees, in a checkerboard

pattern within the layers, using the method described in [148]. The structure
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Figure 4.6: High binding energy CPSA (green) measurements at Γ
(a) and X (b). The sum of the photoemission signals is plotted
in grey. The features in (a) are labelled in the way they are best
represented by the bands in Fig. 4.5.

of the rotations is defined over 2 layers, giving a unit-cell size of 4 atoms,

as defined in [16]. At this point, we project out the eg orbitals to produce

the final model. The calculated band structure is presented in Fig. 4.5

along various points in the BZ, with the expectation value for 〈L · S〉 (a)

and LzSz (b) for each state illustrated by the colour of the lines. A few

things are important to note: firstly, the expectation value of 〈L · S〉 is

highly k-dependent, in the case of LzSz even changing sign for some of the

bands. In particular, toward the X point the expectation of LzSz reduces

significantly, indicative of the itinerant nature of the Ir 5d orbitals, which

was also pointed out in [153]. Secondly, the amplitude of the kz dispersion

for the bands labelled j1/2 and j3/2 is significant. Thirdly, the bands that are

most likely observed in ARPES at Γ are the bands closest to EF labelled

j′3/2. At odds with our findings in Section 4.2, these bands do not have

significant kz dispersion in this tight binding (TB) model.

Turning now to the experimental results obtained using CPSA, in Fig. 4.6

a dataset that was collected over a large binding energy range is presented.

The CPSA is measured up to the oxygen states for the Γ (a) and X (b)

97



point. The data presented here help to identify features from the simula-

tions, and serve as an introduction for later results. In both panels, the

CPSA signal (see Section 2.4.2) is plotted in green, and the sum of the four

spin-polarization signals is plotted as the grey shaded area. The CPSA spec-

trum at the X point is flat and featureless within the indicated errors (the

integrated signal can instead be observed to contain a significant amount of

structure). This matches our initial expectation that spin-orbital entangle-

ment is greatly reduced at X, and hopping terms dominate at that k-point

in the Hamiltonian. Meanwhile at the Γ point there is a clear CPSA signal

with a large number of peaks. Using the tight binding model presented in

Fig. 4.6 it is possible to interpret the origin of these peaks. At this point

it is good to reiterate the result from Section 2.4.2: at normal emission the

sign of the CPSA is well defined, corresponding directly to LzSz. There-

fore, any positive CPSA signal can be associated with a parallel spin-orbital

entanglement, and vice-versa. Recalling the analysis in Section 1.4, a pure

jeff = 1/2 state (dark blue in Fig. 4.5), should give rise to a positive peak,

while pure jeff = 3/2 states (dark red in Fig. 4.5) should show up negative.

Even though in Fig. 4.5 full entanglement is not always reached, in the fol-

lowing we will refer to these states as j3/2-like and j1/2-like, as their CPSA

signal still produces the sign of the expectation value for a fully entangled

state.

Comparing the CPSA spectrum in Fig. 4.6(a) with the spin-orbital en-

tanglement in Fig. 4.5(b) at the Γ point, we match up the positive and

negative features in the CPSA with the blue and red bands respectively.

Going from the high binding energy (large negative values) to lower bind-

ing energies, we identify a negative peak around E = −2 eV, followed by

a strong positive at E = −1 eV, belonging to the unfolded bands labelled

j3/2 and j1/2 in Fig. 4.5) respectively. The sharpest feature in the CPSA

spectrum closest to EF is observed to be positive. It seems most likely that

this feature arises from folded band labelled j′3/2 in Fig. 4.5(b), however, the

red (negative) and white (zero) bands would give rise to a negative signal in-

stead of a positive, hence the sharp upturn of the signal around E = −0.5 eV

seems unexplained by ab initio band structure. The positive signal around
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E = −2.5 eV is also unexplained by the model presented in Fig. 4.5, but

may arise from hybridization of the Ir states with the O band. Since this

state is at higher binding energy we will not emphasize investigating its

origin. From these CPSA measurements it is evident that the spin-orbital

entanglement is strong, because a non-zero signal is measured all the way

up to energies of ∼ 3.5 eV. However, the variation of the CPSA signal at

energies close to the Fermi energy indicates that a description in terms of

a pseudo-spin 1/2 state may be challenged, as states vary drastically in a

narrow region of energy.

4.3.2 k dependent CPSA

We continue our discussion of the data with spectra collected at various

(kx, ky) points presented in Fig. 4.7, where CPSA traces are plotted for

different kx and ky values. A schematic representation of the BZ with the

various measurement points indicated is plotted in Fig. 4.7(e). The data

display a reduction of the CPSA signal when moving away from normal

emission, a property that is predicted by the TB simulation in Fig. 4.5.

The yellow trace in Fig. 4.7(c,d) plots the CPSA signal measured in the

y-axis channel, which effectively measures the LzSy term, which is zero as

expected. Although CPSA has been successfully measured away from the Γ

point [90], it should be pointed out that effects reducing the CPSA signal

away from normal emission discussed in Section 2.4.2 may affect the signal.

Nevertheless, such a drastic decrease of the CPSA signal throughout the

Brillouin zone, highlights the change of the spin-orbital entanglement in

reciprocal space.

4.3.3 kz dependent CPSA

We now turn to a discussion of kz dependent CPSA, which has as an advan-

tage that all measurements can be done at normal emission, and the CPSA

relates directly to the spin-orbital entanglement. The results are presented

in Fig. 4.8, with an overview of the kz position of the points studied by spin-

ARPES displayed in panel (a), plotted over the photon energy dependent
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Figure 4.7: k-dependent CPSA measurements using hν = 64 eV. (a-d)
CPSA measurements along kx, measured at the points indicated
in (e). The green curves represent the CPSA, with the grey
shaded area the sum of the spin-signals. The yellow markers in
(c) and (d) indicate the CPSA in the y channel. (f-h) CPSA
measurements along the ky direction (locations also indicated
in (e)).
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ARPES data previously presented in Fig. 4.2.

Photon energies were chosen such that they span most of the BZ, or as

the beamline would allow. The data presented in Fig. 4.8(b) indicate the

parallel signal (
√
I	↑ I

⊕
↓ ) in blue and the antiparallel signal (

√
I⊕↑ I

	
↓ ) in red.

The CPSA signal can be found in panel (c) for the studied photon energies,

with a grey line indicating the sum of the spin-polarization data. While

the absolute changes to the parallel and anti-parallel signal are small, the

progression of the CPSA signal is significant. The signal from the previously

discussed j3/2 (negative) and j1/2 (positive) bands is present in all curves.

The part of the spectrum at E − EF & −0.5 eV that appears as a positive

peak in Fig. 4.6 at 64 eV can be seen to change sign as the photon energy

decreases to 52 eV. The feature at E = −0.5 eV that causes this behaviour

is precisely the feature that was observed to be dispersing in Section 4.2. It

should be stressed that this is a significant result: the character of the spin-

orbital entanglement changes from parallel to anti-parallel through changing

kz, drastically changing the character of the states closest to EF .

Sample Consistency

To show the consistency of the measurements in Fig. 4.8, we present in

Fig. 4.9 a collection of different samples measured at different times all

showing the same behaviour of both positive and negative 〈L · S〉. These

data provide convincing evidence that the results shown in this chapter are

intrinsic sample properties, since the measurements can be repeated well

within the signal uncertainty.

Considering the model presented in Fig. 4.5, such drastic dispersion and

complete reversal of the spin-orbital entanglement is unexpected for these

states: as such it seems that an ab initio derived model cannot explain

these effects. It is possible that a a multiplet of states should be considered

as in [154]. At this point it is also useful to point out that through the

construction of the system in terms of jeff states, hybridization between

these spin-orbit states is possible through the original hopping elements, in

both the in- and out-of-plane channels. As the jeff orbitals are constructed
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Figure 4.8: Photon energy dependent CPSA measurements. (a)
Overview of of of the reciprocal space with green markers indi-
cating the locations of the photon energy dependent measure-
ments. The constant energy map is identical to the one in panel
(c) of Fig. 4.2. (b) Plots of the parallel (blue) and anti-parallel
(red) signal. (c) CPSA signal (green) plotted with the sum of
the spin signals (grey).
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Figure 4.9: CPSA repeatability. The two panels highlight the re-
peatability on different samples and beamtimes for two photon
energies (64 eV in (a) and 51.7 eV in (b)). The different samples
are S1 and S2, with S2 measured on a second occasion as S2-2.

from individual t2g states that overlap on neighbouring sites, hybridization

between the different jeff states persists. This hybridization may play a role

in the drastic changes that are observed upon changing kz. Regardless of the

precise origin of the change in sign of this state at −0.5 eV, the implication

seems clear: the small but significant kz dispersion in this system is strong

enough to change the character of the highest electron removal state from

aligned parallel to anti-parallel. This makes a description in terms of a

pseudo-spin 1/2 model impossible, and signals that even a low energy model

should consider excitations of the jeff = 3/2 states too.

4.3.4 Slab Simulation of Sr2IrO4

In order to better understand the results from our CPSA measurements, we

perform matrix element simulations using the chinook package [90].

To capture the effects arising from the kz dependence, including possible

photoelectron interference, we construct a slab model, in a similar way as

described in Section 4.3.1. We use the same base Hamiltonian, but for the

simulations in the following section, we keep the full 5-orbital 5d manifold
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for all the iridium atoms. We proceed to construct a slab along the c−axis

of the crystal, consisting of 6 unit cells (12 atomic layers), resulting in a

basis size of 12× 2× 10 = 240 orbitals.

In order to simulate the gap, we have added an antiferromagnetic order-

ing through an Sz term, using the Hamiltonian:

H =
∑
i,ν,σ

dmiS
z
i,ν . (4.2)

Here, i and ν are the atom and orbital index, Szi,ν the spin, mi the mag-

netization, and d a parameter (related to the Coulomb interaction) that

we set to d = 0.2 eV for an appropriate gap size. We set mi according to

m1 = m2 = −m3 = −m4 = 1, where atom 1 and atom 3 are in the same

layer, and atom 2 and atom 4 are in the same layer, forming an antiferro-

magnet, with a checkerboard pattern.

The band structure for this system is presented in Fig. 4.10(b). Although

all bands are flat along the Γ − Z axis, the effective kz dispersion for this

slab model is captured by the series of bands at different binding energies

formed by the inter-layer coupling. In the limit of an infinite sized crystal

along the c-axis, the original dispersion would be recovered.

We proceed to calculate a simulated spectrum for various polarizations.

As an example, the spectrum obtained using σ-polarization is shown in

Fig. 4.10(a), which is in reasonable agreement with the experimental data

presented in Fig. 4.2(e). Clearly visible are the hole like pockets centred at

X, and the broad band around E = −1 eV.

What is not captured well in this simulation is the intensity of the folded

band at Γ, around E = −0.5 eV, which appears more intense in experiments.

Considering the discussion around unfolding in Section 2.2, for such a band

to appear with high intensity in an experiment, there needs to be a signifi-

cant potential to break the symmetry, in this model arising from rotations

and antiferromagnetism. It is possible that the antiferromagnetism as it is

treated in these simulations does not capture the full extent of symmetry

breaking potential.

We continue to calculate the CPSA signal, by simulating Iσ,ε and taking
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Figure 4.10: Slab model for Sr2IrO4 including AFM order. (a) Cal-
culated ARPES spectrum using σ-polarization from the slab
model band structure plotted in (b). (c) Calculated CPSA
spectrum at Γ. The negative and positive peaks arise from the
j3/2 and j1/2 like bands. (d) The CPSA spectrum calculated
for the as a function of the out-of-plane momentum kz.
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the geometric mean as:

√
I⊕,↓I	,↑ −

√
I	,↓I⊕,↑√

I⊕,↓I	,↑ +
√
I	,↓I⊕,↑ + ε

, (4.3)

with ε a small constant to avoid zero-division, that we set as 0.01·max (Iσ,ε),

chosen to give the best agreement with experiments. The resulting CPSA

curve at the Γ point is shown in Fig. 4.10(c), which can be see to match some

of the aspects of the data presented in Fig. 4.8: the negative and positive

signals belonging to the jeff = 3/2 and jeff = 1/2 states. A small peak close

to EF is also visible, a combination of the downturn arising from the folded

jeff = 3/2 band, with a positive signal from the jeff = 1/2 above the Fermi

energy, which is not seen in experiment. The image presented in Fig. 4.10(d)

explores the kz dependence of the CPSA signal for this slab model. While a

change in kz is clearly visible, Fig. 4.10 fails to reproduce the dramatic sign

change seen in experiment.

In the rest of this section, we will investigate various properties that can

influence the CPSA signal at Γ as a function of photon energy (and thereby

kz), to get in idea of the physical mechanism that could cause the switching

of signal observed in Section 4.3.

Strength of Spin-Orbit Coupling

The first parameter we consider is spin-orbit coupling (SOC). Although

SOC coupling is an atomic property with a nominal value (λIr ∼ 0.4 eV

[20]), actual observations seem to differ [44, 106, 148], which is possibly

explained by the presence of the Coulomb interaction [132, 133], magnifying

the Hamiltonian terms associated with SOC. We present simulations for

λ ∈ {0.35, 0.45, 0.65} eV in Fig. 4.11(a-c). Similar to the results presented

in Fig. 4.10, the unfolded jeff states are visible most clearly, with a small

signal coming from the folded band close to Eb. This state is expected to

give a negative (red) CPSA signal, but in panels b and c, the intensity from

the unfolded jeff = 1/2 state overpowers this small signal. This negative

(red) signal can be seen in panel a, where the spin-orbit coupling is smaller,
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Figure 4.11: CPSA simulations for different values of λSOC , each as
a function of kz, as simulated for the antiferromagnetic slab
model. The values for λSOC are indicated in each panel in the
top right corner.

which results in the jeff = 1/2 being further away from the folded jeff = 3/2

band. These simulations demonstrate that a reasonable change of spin-orbit

coupling is unable to reproduce a switch in sign as we find in our data.

The Mean Free Path

In order to investigate the possibility of photoelectron interference causing

a rapid change in photoemission intensity dependent on kz as seen for topo-

logical insulators in Ref. 96, we calculate the CPSA signal for various sizes

of the mean free path. By modulating the intensity coming from layers us-

ing an exponential decay as is implemented in chinook we can investigate

whether a particular value for the mean free path could explain the observed

results. The results are presented in Fig. 4.12, where kz dependent CPSA

curves are plotted for various values of the mean free path. An interesting

effect appears in these simulations: the amplitude of the kz dispersion is

dependent on the value of the mean free path in this slab model: when the

value is so low that only a single layer is probed (e.g. 1 Å in (a)), the lack of

probed coupling between layers, results in only a flat band being observed.

The larger the mean free path, the more layers are probed and the stronger

the apparent kz dispersion (b,c). It is clear that aside from the observed
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Figure 4.12: CPSA simulations for different values of the photoelec-
tron mean free path. CPSA signal plotted as a function of
kz is presented for 1.0 (a), 4.8 (b) and 20.0 Å(c). (d) The
dependence at Γ as a function of mean free path.

variation of the kz dispersion, no big changes to the sign and magnitude of

the CPSA signal occur, so we conclude that the mean free path can be ruled

out as a source of observations presented in Fig. 4.8.

4.3.5 Magnitude of the kz hopping terms.

Finally, we have modified the out-of-plane hopping elements to see if that

could yield the desired result. To test that hypothesis, we rescaled all out-

of-plane hopping elements by a fixed factor and simulated the CPSA signal

as a function of kz. The results are presented in Fig. 4.13, where the effect

is clearly visible: the dispersion of the states, seen as a shift of the peaks, is

clearly enhanced at higher factors. While no changes in sign are observed for

an enhancement of 2, for an enhancement of 4, the sign of the CPSA signal
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Figure 4.13: CPSA simulations with enlarged kz hopping elements.
The hopping elements are multiplied by a factor 1 (a), 2 (b)
or 4 (c).

changes at kz = π
c . While this has so far been the only parameter that can

be seen to change the sign as a function of kz, there are two issues with this:

an enhancement of 4 seems too large to be physically justifiable, as it would

put the out-of-plane hopping at ∼ 0.1 eV similar to the in-plane hopping

(∼ 0.3 eV). Furthermore, although a change in sign is observed, the peak

itself does not change direction. It seems that this increased kz hopping is

in fact moving the jeff = 1/2 state closer, thereby adding a background to

the state closest to EF .

4.4 Conclusion

The results presented both for photon energy dependent ARPES and CPSA

measurements have a clear consequence. Firstly, from these data it is ev-

ident that Sr2IrO4 is certainly not two-dimensional, as interlayer coupling

is strong enough to cause significant kz dispersion likely caused by the ex-

tended character of the Ir 5d orbitals. Secondly, while spin-orbit coupling in

Sr2IrO4 is undoubtedly very strong, the suggestion that a pseudo-spin 1/2

model is able to describe the ground state for this system is challenged by the

reversal of spin-orbital entanglement that we observe. The photon energy

dependent results suggest that there are multiple states in close proximity

around the Γ-point, that move with respect to each other, dependent on kz.
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The CPSA data confirm this result, and adds that the spin-orbital entangle-

ment changes from parallel to anti-parallel. To appropriately describe the

occupied states of Sr2IrO4, it is therefore necessary to take into account the

full, multi-orbital Mott physics as the bands are not separated well enough

to fully project out the jeff = 3/2 states.
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Chapter 5

Conclusion

This thesis has covered various topics relating to Sr2IrO4 and spin-orbit

coupling. While most efforts were focussed specifically on Sr2IrO4, these

conclusions have further reaching effects. We readdress here the main ques-

tions of this thesis: firstly, the role of spin-orbit coupling in a correlated

relativistic insulator such as Sr2IrO4 and secondly, whether Sr2IrO4 can be

described by a pseudo-spin 1/2 model.

5.1 Spin-orbit controlled metal insulator
transition in Sr2IrO4

With the suggestion of Sr2IrO4 as a relativistic Mott insulator [25], spin-orbit

coupling was tentatively added to the canonical phase diagram describing

correlated insulators [6]. However, while the insulating state in Sr2IrO4 has

been believed to be stabilized by spin-orbit coupling, direct evidence has so

far been lacking. In Chapter 3, a transition into a metallic state induced

by a dilution of spin-orbit coupling was presented, establishing SOC as a

fundamental parameter in the field of multi-orbital correlated insulators.

Driving the metal-insulator transition in this material by SOC is not only

the first demonstration of such a SOC controlled metal-insulator transition

(MIT), but moreover provides direct evidence for the essential role of SOC

in stabilizing the insulating state in Sr2IrO4.
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In particular, we have substituted Ir in Sr2IrO4 with Ru and Rh to

make well-defined changes to the effective value of spin-orbit coupling which

drives the metal-insulator transition. Ru and Rh, having significantly lower

spin-orbit coupling than Ir, both drive a MIT but at surprisingly differ-

ent critical concentrations. It is found that the dilution of spin-orbit cou-

pling, controlled by the impurity potential associated with the two different

species, is what explains the dichotomy in critical concentrations. For Rh,

no such impurity potential is present and spin-orbit coupling is reduced ef-

fectively. For Ru however, a potential of ∼ 0.25 eV hinders such dilution of

SOC and the rate of the transition is significantly retarded. ARPES mea-

surements, interpreted using matrix element analysis confirm the predicted

results: spin-orbit coupling is effectively reduced when Rh is substituted,

but not for Ru.

A corollary to our results is the method with which spin-orbit coupling

was observed. The entanglement of t2g states by spin-orbit coupling mixes

orbitals of different symmetries, causing a well-defined intensity change

through the photoemission dipole matrix element. This method is not

unique to Sr2IrO4 and may find applications in other t2g systems where

spin-orbit coupling is of importance.

Furthermore, our observation of impurity potential controlled SOC mix-

ing is well explained by a simple two-site tight binding model without any

specific considerations of electronic structure. The generic result is that the

impurity potential controls hybridization between the sites, and the degree

of hybridization controls the amount of spin-orbit coupling dilution. Since

these results are obtained and explained on such a minimal model, with no

specifically tuned crystal parameters, we expect these results to be valid

generally for spin-orbitally coupled multi-species systems in which orbitals

hybridize. These results are particularly helpful in elucidating pursuits to

modify spin-orbit coupling by valence ion substitution. This strategy has

been successful in GaAs using Bi substitution [135] for example. It may also

clarify interpretation of attempts to enhance spin-orbit coupling in graphene

through adatom deposition [123, 124, 141–143]. Although theory predicts

large gap appearing at the Dirac cone of graphene when heavy elements

112



are deposited [123, 124], experimentally such a gap is not observed [142].

It is possible that an impurity potential, or low hopping integrals prevent

hybridization with the graphene lattice, and thereby preclude substantial

enhancement of spin-orbit coupling. Furthermore it could help to enlighten

the physics of attempts to drive a transition to a trivial state in topological

insulators [136–140]. The results presented here about spin-orbit coupling

set clear constraints on how to to think about these experiments, and make

explicit suggestions on how to continue them. It not only shows how spin-

orbit coupling can be successfully diluted, it also explains directly how to

make use of the impurity potential and hybridization to fine-tune the ob-

tained results.

5.2 Spin- and kz-resolved photoemission on
Sr2IrO4

Since the discovery of the cuprate superconductors [89, 150], an intense effort

in the field has been made to observe superconductivity in other transition

metal oxides. Sr2IrO4 appears to be a prime candidate: not only is the struc-

ture identical to that of La2CuO4, it hosts an unexpected (Mott) insulating

phase, with an antiferromagnetic ordering. Moreover, it was suggested that

the ground state in Sr2IrO4 is pseudo-spin 1/2, because strong spin-orbit

coupling could entangle the t2g states into a filled jeff = 3/2 and half-filled

jeff = 1/2 state. The combination of these properties (two-dimensional,

square transition-metal oxide lattice, half filled pseudo-spin 1/2 Mott insu-

lator) are the quintessential ingredients attributed to high-temperature su-

perconductivity. Yet, although some promising observations have been made

[44–47], no signs of bulk-superconducting behaviour have been detected. In

Chapter 4 the use of photon energy dependent ARPES has demonstrated

that the kz dispersion in this compound is significant (∼ 100 meV) since

in this energy window multiple states are observed, having distinct orbital

symmetry for horizontally and vertically polarized light.

We furthermore study the spin-orbital entanglement directly by perform-

ing CPSA measurements. The results show that the spin-orbital entangle-
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ment is strong at energies throughout the Ir d manifold at normal emission.

However, results also show that the spin-orbital entanglement reduces sig-

nificantly away from normal emission toward the X-points, a feature that

is explained by considering the increased itinerancy for those states. At

normal emission, the state closest to EF shows a complete reversal of the

spin-orbital entanglement when changing kz. This result agrees with the ob-

servations from photon energy dependent ARPES, and implies that Sr2IrO4

cannot simply be described by a jeff = 1/2 model. Not only does the spin-

orbital entanglement change significantly with (kx,ky), but the complete

reversal of spin-orbital entanglement can only be explained if the jeff = 3/2

are explicitly taken into account. These observations challenge the validity

of the treatment of Sr2IrO4 as a pseudo-spin 1/2 model. The results pre-

sented here instead require that models constructed for Sr2IrO4, take into

account all three t2g orbitals, and suggest that Sr2IrO4 should be considered

a “relativistic multi-orbital Mott insulator”, rather than a “jeff = 1/2 Mott

insulator”.

Our results may furthermore shed light on the necessary ingredients for

superconductivity in transition metal oxides: the studies suggesting super-

conductivity in Sr2IrO4 all take as a starting point either a pseudo-spin

1/2 model or strong (λ > t) spin-orbit coupling [35, 40, 41] limited to two

dimensions. Our finding that Sr2IrO4 is not in fact spin 1/2, nor fully two-

dimensional suggests that those two properties are key pieces in the puzzle

of high-temperature superconductivity.

5.3 Conclusion

This thesis has focussed on variations of a single compound with an ex-

tensive amount of work spent towards understanding the ground state of

Sr2IrO4 and has therefore made significant strides in the understanding of

relativistic correlated insulators. It has been shown that the ground state

of Sr2IrO4 is strongly influenced by spin-orbit coupling, and that spin-orbit

coupling should be considered as a fundamental parameter of multi-orbital

Mott physics. However, it has also been clearly shown that SOC is not
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strong enough to describe Sr2IrO4 as a pseudo-spin 1/2 model, and it is

important to consider the full manifold of t2g orbitals. This has important

consequences for the characterization of Sr2IrO4 as a model system for the

superconducting cuprates and suggests that a system in which relative ef-

fects of spin-orbit coupling are stronger, may in fact be a more suitable

candidate for observing superconductivity.
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[76] T. Koopmans. Über die zuordnung von wellenfunktionen und
eigenwerten zu den einzelnen elektronen eines atoms. Physica 1(1),
104 – 113, 1934. → page 25

[77] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz.
Density-functional theory for fractional particle number: Derivative
discontinuities of the energy. Phys. Rev. Lett. 49, 1691–1694, 1982.
→ page 25

[78] U. Salzner and R. Baer. Koopmans’ springs to life. The Journal of
Chemical Physics 131(23), 231101, 2009.

[79] T. Tsuneda, J.-W. Song, S. Suzuki, and K. Hirao. On Koopmans’
theorem in density functional theory. The Journal of Chemical
Physics 133(17), 174101, 2010. → page 25

[80] G. H. Wannier. The structure of electronic excitation levels in
insulating crystals. Phys. Rev. 52, 191–197, 1937. → page 26

[81] W. Kohn. Analytic properties of bloch waves and wannier functions.
Phys. Rev. 115, 809–821, 1959.

[82] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt.
Maximally localized wannier functions: Theory and applications.
Rev. Mod. Phys. 84, 1419–1475, 2012. → pages 26, 27

124

http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1016/S0031-8914(34)90011-2
http://dx.doi.org/10.1016/S0031-8914(34)90011-2
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1063/1.3269030
http://dx.doi.org/10.1063/1.3269030
http://dx.doi.org/10.1063/1.3491272
http://dx.doi.org/10.1063/1.3491272
http://dx.doi.org/10.1103/PhysRev.52.191
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419


[83] N. Marzari and D. Vanderbilt. Maximally localized generalized
wannier functions for composite energy bands. Phys. Rev. B 56,
12847, 1997. → page 28

[84] T. B. Boykin and G. Klimeck. Practical application of zone-folding
concepts in tight-binding calculations. Phys. Rev. B 71, 115215,
2005. → pages 32, 70

[85] W. Ku, T. Berlijn, and C. C. Lee. Unfolding first-principles band
structures. Phys. Rev. Lett. 104, 216401, 2010. → pages 32, 36, 70

[86] A. Damascelli. Probing the Electronic Structure of Complex Systems
by ARPES. Phys. Scr. T109, 61, 2004. → pages 40, 64, 83

[87] G. A. Sawatzky. Testing Fermi-liquid models. Nature 342(6249),
480–481, 1989. → page 44

[88] C. N. Veenstra, Z.-H. Zhu, B. Ludbrook, M. Capsoni, G. Levy,
A. Nicolaou, J. A. Rosen, R. Comin, S. Kittaka, Y. Maeno, I. S.
Elfimov, and A. Damascelli. Determining the surface-to-bulk
progression in the normal-state electronic structure of Sr2RuO4 by
angle-resolved photoemission and density functional theory. Phys.
Rev. Lett. 110, 097004, 2013. → pages 46, 49

[89] A. Damascelli, Z. Hussain, and Z.-X. Shen. Angle-resolved
photoemission studies of the cuprate superconductors. Rev. Mod.
Phys. 75, 473–541, 2003. → pages 49, 113

[90] R. P. Day, B. Zwartsenberg, I. S. Elfimov, and A. Damascelli.
Computational framework chinook for angle-resolved photoemission
spectroscopy. npj Quantum Materials 4(1), 54, 2019. → pages
50, 56, 83, 99, 103

[91] M. S. Hammond, G. Fahsold, and J. Kirschner. Absorption and
elastic and inelastic reflection of spin-polarized low-energy electrons
from Fe(110). Phys. Rev. B 45, 6131–6141, 1992. → page 51

[92] R. Bertacco, D. Onofrio, and F. Ciccacci. A novel electron
spin-polarization detector with very large analyzing power. Rev. Sci.
Instrum. 70(9), 3572–3576, 1999.

[93] R. Bertacco, M. Marcon, G. Trezzi, L. Duò, and F. Ciccacci. Spin
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Appendix A

Overview of expectation

values spin-orbit entangled

states

Here, tables are provided for frequently used states, including their repre-

sentations in other relevant bases, as well as expectation values that are

often referenced and used.
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state Y m
` Lz Sz Jz LxSx LzSz L · S

|5/2, 5/2〉 |2, ↑〉 2 1
2

5
2 0 1 1

j = 5/2 |5/2, 3/2〉
√

4
5 |1, ↑〉+

√
1
5 |2, ↓〉

12
10

3
10

3
2

4
10

2
10 1

|5/2, 1/2〉
√

6
10 |0, ↑〉+

√
4
10 |1, ↓〉

4
10

1
10

1
2

6
10 − 2

10 1

j = 3/2 |3/2, 3/2〉
√

1
5 |1, ↑〉 −

√
4
5 |2, ↓〉

18
10 − 3

10
3
2 − 4

10 − 7
10 −3

2

|3/2, 1/2〉
√

4
10 |0, ↑〉 −

√
6
10 |1, ↓〉

6
10 − 1

10
1
2 − 6

10 − 3
10 −3

2

Table A.1: Table of expectation values for the spin-orbit coupled ` = 2 states.
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state Y m
` Lz Sz Jz LxSx LzSz L · S

j = 3/2 |3/2, 3/2〉 |1, ↑〉 1 1
2

3
2 0 3

6
1
2

|3/2, 1/2〉
√

2
3 |0, ↑〉+

√
1
3 |1, ↓〉

2
6

1
6

1
2

2
6 −1

6
1
2

j = 1/2 |1/2, 1/2〉
√

1
3 |0, ↑〉 −

√
2
3 |1, ↓〉

4
6 −1

6
1
2 −2

6 −2
6 -1

Table A.2: Table of expectation values for the spin-orbit coupled ` = 1 states.
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state Y m
` Lz Sz Jz LxSx LzSz L · S

jeff = 3/2 |3/2, 3/2〉 i |2,−1, ↑〉 -1 1
2 −1

2 0 −1
2 −1

2

|3/2, 1/2〉
√

2
3 |0eff , ↑〉+ i

√
1
3 |2,−1, ↓〉 −2

6
1
6 −1

6 −2
6

1
6 −1

2

|3/2,−1/2〉
√

2
3 |0eff , ↓〉 − i

√
1
3 |2, 1, ↓〉

2
6 −1

6
1
6 −2

6
1
6 −1

2

|3/2,−3/2〉 −i |2, 1, ↓〉 1 −1
2

1
2 0 −1

2 −1
2

jeff = 1/2 |1/2, 1/2〉
√

1
3 |0eff , ↑〉 − i

√
2
3 |2,−1, ↓〉 −4

6 −1
6 −5

6
2
6

2
6 1

|1/2,−1/2〉
√

1
3 |0eff , ↓〉+ i

√
2
3 |2, 1, ↑〉

4
6

1
6

5
6

2
6

2
6 1

Table A.3: Table of expectation values for the spin-orbit coupled t2g (`eff = 1) states.
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t2g construction

jeff = 3/2 1√
2

(|dyz, ↑〉+ i |dxz, ↑〉)
1√
6

(|dyz, ↓〉+ i |dxz, ↓〉 − 2 |dxy, ↑〉)
1√
6

(− |dyz, ↑〉+ i |dxz, ↑〉 − 2 |dxy, ↓〉)
1√
2

(− |dyz, ↓〉+ i |dxz, ↓〉)

jeff = 1/2 1√
3

(|dyz, ↓〉+ i |dxz, ↓〉+ |dxy, ↑〉)
1√
3

(− |dyz, ↑〉+ i |dxz, ↑〉+ |dxy, ↓〉)

Table A.4: Construction of the jeff states in terms of the t2g orbitals.

138



state Y m
` Lz Sz Jz LxSx LzSz L · S t2g

j+ |j+, ↑〉 |2, 1, ↑〉 1 1
2

3
2 0 1

2
1
2

1√
2

(|dxz, ↑〉+ i |dyz, ↑〉)
|j+, ↓〉 |2,−1, ↓〉 -1 -1

2 −3
2 0 1

2
1
2

1√
2

(|dxz, ↓〉 − i |dyz, ↓〉)

j− |j−, ↑〉 |2, 1, ↓〉 1 -1
2

1
2 0 -1

2 -1
2

1√
2

(|dxz, ↓〉+ i |dyz, ↓〉)
|j−, ↓〉 |2,−1, ↑〉 -1 1

2 −1
2 0 -1

2 -1
2

1√
2

(|dxz, ↑〉 − i |dyz, ↑〉)

Table A.5: Table of expectation values for the spin-orbit coupled dxz and dyz states.
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