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Abstract

As a promising method to enable fast and scalable Bitcoin transactions, Bitcoin

Lightning Network (LN) has experienced rapid development since the end of 2017.

LN utilizes the so-called “payment channels” to provide fast off-chain transactions,

thereby offloading on-chain burden and enabling instant payments. With many new

protocols proposed to improve the performance of LN, little is known about the

current state of the network such as its topology, channel characteristics and appli-

cation performance. This thesis conducts a measurement study on the performance

of LN and provides some guide on improvement.
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Lay Summary

In this thesis, a systematic measurement on LN was conducted based on the data

collected over a period of fifteen months. This measurement studied the payment

success rate and how the network performs under attack. Payment channels were

also analyzed regarding their functions. This work provides an in-depth under-

standing of network mechanisms and helps to explore future implications of LN.
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Chapter 1

Introduction

1.1 Motivation
Bitcoin is the first decentralized cryptocurrency [17] created in 2009 by pseudony-

mous developer Satoshi Nakamoto. Since the release of Bitcoin, the cryptocur-

rency area has entered an era of prosperity. According to statistics1, there are 30

thousand cryptocurrencies and the total market capitalization is 220 billion as of

Oct 15, 2019. We list some of the most famous cryptocurrencies at that time in

Table 1.1.

Table 1.1: List of Some Famous Cryptocurrencies

Name Released Symbol Market Cap (billion)
Bitcoin 2009 BTC $145.00

Ethereum 2015 ETH $19.12
XRP 2012 XRP $12.85

The decentralized control of each cryptocurrency works through distributed

ledger technology, typically a blockchain, that serves as a public financial trans-

action database. The simplified process is shown in Figure 1.1. Alice sends a

payment to Bob and submits the transaction to the blockchain, once it is accepted

1CoinMarketCap

1

https://coinmarketcap.com/all/views/all/


Figure 1.1: Illustration of blockchain

Source: CB Insights

by the network, all nodes will have a copy and this record will become immutable.

Though with such great development, the current blockchain technology still

faces a pressing challenge - achieving high throughput. Why is this a problem?

Let’s first take a look at the basic principles of blockchain (more detailed expla-

nations can be found in Section 2.1). Roughly speaking, the Bitcoin blockchain

is comprised of a chain of blocks which store transactions. To ensure security, the

growth rate of the chain is limited using Proof of Work (POW) consensus algorithm.

Typically it takes 10 minutes on average to generate a new 1MB block. This nature

of blockchain leads to scalability issue. From Table 1.2 we can see that Bitcoin

can only write 7 transactions per second (TPS). In the meantime, Visa can handle

2,000 TPS on average.

Scaling has long been the focus of developers and many methods are proposed

to improve the throughput. Some focused on the blockchain itself (i.e., “Layer 1”),

while others intended to build a “Layer 2” system on top of the original blockchain.

There exist several exciting “Layer 1” technologies like Algorand and Prism [1, 9].

Algorand adopts Proof of Stake (POS) consensus algorithm and achieves through-

put of over 1,000 TPS. Prism uses multiple parallel chains instead of just one and

can push the throughput to physical limits.

2
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Table 1.2: Throughput of some payment technologies

Name Visa Bitcoin Ethereum Layer 2 of blockchain
Throughput

(TPS)
2,000 7 15

optimal
(according to bandwidth)

In spite of the performance, most “Layer 1” technologies are still at the R&D

stage and the community haven’t built enough experience. Shifting attention to

“Layer 2”, we note that one of the most promising solutions is an off-chain system

called the Bitcoin Lightning Network (LN) [25] which can also achieve optimal

throughput. Furthermore, since implemented in late year 2017, there are now about

3,000 active nodes and 840 BTC (6.7 million USD) in the network.

The cornerstone of LN is the payment channel. A payment channel allows

two users to send multiple payments to each other and only touches the blockchain

twice: at channel opening and closing time. Local payments inside the channel

are settled instantly with no fees, and guaranteed that the rightful states can be

broadcasted to the global blokchain at any time. Separate channels form a network

by using Hashed TimeLock Contracts (HTLCs), which ensure that payments can

be routed through intermediaries. In Section 2.2, we describe LN in more details.

LN has attracted a great attention from both academia and industry. Researchers

have proposed protocols to improve routing efficiency [29], network liquidity [16]

and rebalance channels [11]. The Bitcoin community recently launched an exper-

iment called “lightning torch” to show the value and expand the influence of LN.

There are also some individual projects. For example, a private project named

LNBIG2 has set up tens of nodes in LN and injected more than 300 BTC (the unit

of Bitcoin). Moreover, the LNBIG adjusted its channel settings to help rebalance.

In spite of its great success in offloading on-chain burdens, the current LN it-

self still remains to be further investigated. First, little work has been done to study

the topology of LN, therefore many significant questions remain unanswered. For

example, how is Bitcoin distributed in this network? How efficiently can we make

2The website of the project is https://lnbig.com
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a transaction through routing between any two users without a direct channel? Are

there any important nodes in the network and to what extent does the network rely

on them? The answers to the above questions can not only help us better under-

stand the characteristics of LN, but also provide insights for future protocol design.

Second, payment channels in LN are special: unlike connections in the Internet,

establishing channels in LN will be charged. However, it’s impractical to maintain

a channel as long as possible. Because it decreases liquidity by locking deposits

inside the channel. Exploring the opening and closing of channels helps provide

better user experience. Third, most of the existing protocols lack simulations on

a real-world offchain network topology. The need of an easy-access platform for

simulation is urgent.

In this thesis, we answer the above questions by conducting a systematic mea-

surement study on LN. Our contributions are as follows:

• We study the topology of the LN and provide an in-depth understanding. In

particular, we apply graph theory to evaluate the network performance and

then define metrics for demonstrating features of the payment channel.

• Our analysis reveals several issues of LN. Specifically, we show that the

current LN does not perform well in routing and prove that it is vulnerable

to attacks.

• The issues we observe and the metrics we introduce shed light on user guid-

ance and future protocol design.

• We provide an easy-to-use LN topology for protocol simulations3. Our

topology can not only better reflect the real situation, but also help to com-

pare the performance of different algorithms.

1.2 Related Work
Since J. Poon and T. Dryja [25] proposed LN based on duplex micro-payment

channels, there have been many works focusing on designing new protocols and

improving network performance.
3For the purpose of reproducibility, data and codes of our work are available at

https://github.com/measureln/measurement study on ln.

4

https://github.com/measureln/measurement_study_on_ln


In the LN, depleted payment channels only have balance on one side and need

to be closed. Khalil et al. [11] introduces REVIVE protocol to maintain network

balance equilibrium without closing and reopening depleted channels. SpeedyMur-

mus protocol [29] allows efficient routing for completely decentralized path-based

transactions. In the LN payment routing process, intermediaries might collude to

recover identities of the payment owners. Green et al. [10] construct anonymous

payment channels to prevent privacy leaks of user identity. Though LN reduces

many on-chain transactions, the channel deposits are locked as collateral and lacks

liquidity. Sprites protocol [16] aims to reduce total collateral costs.

Though many new protocols are brought up, there is almost no paper focus-

ing on the performance measurement of the current LN. Flash [31] utilizes pay-

ment characteristics to improve routing performance. However, it focuses on each

node’s local view and the measurement of the overall network is not covered. An-

other work [30] displays various attacking strategies and quantifies the network

resilience. However, both work only use discrete snapshot graphs. By contrast,

our work is among the first to reveal the evolution of network performance and the

unique characteristics of payment channels.

There exists some analysis about the Ethereum network and Bitcoin network.

The work of Chen, Ting et al. [5] characterizes Ethereum through graph analysis

and provides many insights. Lischke et al. [14] mainly investigates the business

distribution and business model of the Bitcoin Network based on IP addresses of

nodes and business tags of transactions. AddressProbe technique [15] reconstructs

Bitcoin network topologies through broadcasted messages and identify some influ-

ential nodes. Ron et al. [28] examine the structure of Bitcoin network and conclude

that most of the bitcoins are in dormant status. They also find that large transac-

tions are extremely rare in the network and most of the transactions are small-value

transactions. Timing analysis [18] discusses the delay of the network and nodes la-

tency.

Some work focuses on the anonymity of the Bitcoin network specifically. Ober

et al. [23] point out the anonymity of the Bitcoin network increases overtime. Reid

et al. [26] indicate that part of the anonymity of known nodes can be discovered

using proper analysis tools with available information online. Koshy et al. [12]

demonstrate the possibility to link the Bitcoin addresses with IPs only based on

5



transaction relay traffic. Biryukov et al. [2] deanonymize the Bitcoin network by

identifying nodes the target nodes connect to. Dandelion designed by [15] can

avoid privacy disclosure by spreading message through a random line and hop then

spreading using diffusion to the whole network.

1.3 Organization of the Thesis
This thesis contains six chapters and the rest of the chapters are structured as fol-

lows.

In Chapter 2, the background knowledge of blockchain and Lightning Network

is provided.

In Chapter 3, data collecting and processing methods are introduced. The way

of constructing network graphs is also presented.

In Chapter 4, two important properties of the payment network are measured

based on its topology. In Section 4.1, the routing efficiency is studied. In Sec-

tion 4.2, the network resilience when some important nodes are under attack is

evaluated.

In Chapter 5, the behavior of payment channels are investigated.

In Chapter 6, the entire thesis is concluded.

6



Chapter 2

Background

The purpose of this chapter is to provide the reader with a general understanding of

blockchain technology and the Lightning Network (LN). We start by introducing

Bitcoin and principles of blockchain. Then, we talk about some current issues

of blockchain and a few proposed solutions, especially for the scalability issue.

Finally, we focus on one promising solution - LN, which is the study object of this

thesis.

2.1 Bitcoin Blockchain

2.1.1 Bitcoin Blockchain Key Principles

Bitcoin is the first electronic cash system where mutually distrusting peers can

trade, without relying on a trusted third party, such as a bank. The fundamental

infrastructure of Bitcoin is blockchain, a public distributed ledger maintained by

the community to record and verify all the transactions.

Paying with Bitcoin on blockchain has attracted more and more attention as it

has several huge advantages. First, the system is purely peer to peer so no banks or

financial intermediaries can interrupt user transactions or freeze Bitcoin addresses.

Second, it provides privacy as Bitcoin addresses are anonymous and not associated

with personal identities. Third, standard wire transfers and foreign purchase typi-

cally involve fees and exchange costs, since Bitcoin transactions don’t go through

7



intermediary institutions or needs to be exchanged, the fee is relatively small. This

is particularly helpful for international trade.

However, constructing such a distributed ledger is not trivial. First, it has to

be tamper-proof so nobody can modify transaction histories. Second, it needs to

be agreed by the community so peers can reach consensus on the states. Third, it

must tolerate some evil nodes that are not following the system protocol as long as

the majority are honest. Next we explain how these features are ensured from the

structure of blockchain and the way it works.

As shown in Figure 2.1, blockchain is represented by a chain of blocks. blocks

can be composed of the block header and the block body which includes a list of

transactions. The block header contains various fields like a version number used

to track software or protocol upgrades, a merkle root as the hash root of the block’s

transactions which makes it easier to verify the transactions, a timestamp, a nonce

and difficulty target used for consensus algorithm and a reference to the hash of the

previous block, serving as a backward pointer (more details can be found blow).

Thus, if the data in any given block is altered, so does the hash of this given block,

then so does the next block as it stores this hash and so on. Therefore, no data can

be modified without changing all subsequent blocks.

Figure 2.1: Blockchain structure

Source: ResearchGate
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With this chain-like structure, the next issue that needs to be addressed is by

whom and when new blocks are added to the tail of the blockchain. Here we first

explain the hashes. A hash is a string of random numbers generated by putting a

given set of data into a deterministic hash function (in Bitcoin is SHA-256). The

hash function is one-way as we can not recover the original data from the hash

results.

In Bitcoin blockchain, a block is “mined” - added to the blockchain if its hash

is smaller than some target (the level of difficulty). Once a node first makes a block

with a valid hash, it broadcasts to the network and others will start mining on top of

this block. How can nodes alter their block hashes? Well, they include an integer

called “nonce” in their blocks and try different nonce values until the block hash

is below the target. Due to the random nature of hash, the smaller the target, the

more computation nodes need to do. In Bitcoin blockchain, the target is adjusted

so that on average a block is generated every ten minutes, note the block proposer

can be anyone and is non-predictable. Since the mining process is computationally

expensive and requires a lot of work, the consensus algorithm is called Proof of

Work (PoW).

With small chances, two miners can find a block at nearly the same time, which

will cause the blockchain to diverge into two potential paths forward (the so-called

“fork”). The fork is resolved when subsequent blocks are added and one of the

chains becomes longer than the alternatives. The network then abandons the blocks

that are not in the longest chain (i.e., longest chain rule). This also explains why

the block interval is ten minutes instead of seconds. Due to network latency, the

smaller the block interval, the more likely duplicate blocks are generated before

miners receive the latest block.

In summary, mining is a competitive process. It’s extremely difficult to alter an

existing block in the chain, since such alteration would require huge computation

power to re-mine all subsequent blocks.

2.1.2 Challenges of Bitcoin Blockchain

Though blockchain has achieved great success, it has some issues and limitations.

(a) Energy consumption: In PoW, the mining process costs vast amounts of

9



electricity to compute hash puzzles. It is estimated that the Bitcoin’s an-

nual electricity consumption is 70 TWh, which can power 6.7 million U.S.

households according to Bitcoin Energy Consumption Index1.

(b) Latency issue: Network latency is the amount of time it takes from the cre-

ation of a transaction until the first confirmation of it being included in a

block. Moreover, to avoid the situation where the block is abandoned due

to fork, it is recommended to wait for some longer time. Usually 6 con-

firmation blocks will significantly reduce the probability that the branch is

outcompeted by a conflicting branch. However, this also greatly increased

the network latency as users have to wait around 1 hour to make sure their

transaction is valid.

(c) Transaction costs: In Bitcoin blockchain, miners spend a lot of efforts (e.g.,

computing power and energy) to mine blocks for a financial reward: with

every block added to the blockchain comes a bounty called a block reward,

as well as all fees sent with the transactions that were confirmed and included

in the block. As a result, the current Bitcoin blockchain network does not

favor micropayments because the fee might even exceed the payment itself.

(d) Scalability issue: From the above introduction, we can see that the Bitcoin

blockchain network can only support very limited number of transactions.

While this was enough at the very beginning, the system has been congested

for a few years now. For further development of Bitcoin blockchain network,

the scalability performance must be improved.

Of all the issues described above, throughput matters the most to a payment net-

work. Current scaling proposals can be roughly divided into three categories: (i)

Replacing the underlying consensus algorithms (i.e., PoW) to reduce the block

generation interval. A popular variant is Proof of Stake (PoS), which however,

raises some other issues like censorship. (ii) Changing the single chain-like struc-

ture to parallel chain or directed acyclic graph (DAG) to support more transactions.

But these graph structures need to address conflicting transactions as transactions

1https://digiconomist.net/bitcoin-energy-consumption
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are not ordered linearly. (iii) Developing “Layer 2” solutions which removes most

transaction from the blockchain to off-chain.

In this thesis, we focus on one particular “Layer 2” solution - Lightning Net-

work (LN). The idea behind is quite intuitive: we don’t really need to keep a record

of every single transaction on blockchain. Instead, we only need to publish the final

states after two parties have completed multiple transactions while the intermedi-

ate transactions are recorded locally (in the so-called channel). By doing so, the

advantage is big. First, it’s simple and secure. We only need to handle the off-chain

transactions, the security is still ensured by the underlying PoW. Second, transac-

tions between peers in their channels are settled instantly and the fees are negligible

since they don’t enter blockchain. What’s more important is that network through-

put can be greatly improved with the help of channels.

It is natural to ask, how are channels established and how are they used in LN?

We will answer these questions in Section 2.2.

2.2 Lightning Network

2.2.1 Definitions

Below are a few important definitions in Lightning Network (LN) that will be used

in this thesis.

• Channel: a communication channel that allows two parties to make any

secure payments between each other in exchange for making only a few

transactions on the blockchain.

• Contract: an agreement between two or more entities to use Bitcoin trans-

actions in a certain way, usually a way that allows Bitcoin’s automated con-

sensus to enforce some or all terms in the contract. Often called a smart

contract.

• Pre-image/R: data input into a hash function, which produces a hash of the

pre-image. Inputting the same pre-image into the same hash function will

always produce the same hash; Lightning uses this feature to create hash

locks.
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• Hash Lock: an encumbrance to a transaction output that requires the pre-

image used to generate a particular hash be provided in order to spend the

output. In Lightning, this is used to allow payments to be routable without

needing to trust the intermediaries.

• HTLC: (Hashed TimeLocked Contract) a contract such as that used in a

Lightning Channel where both a hash lock and a time lock are used, the

hash lock being used to allow Alice to route payments to Bob even through

a Carol that neither of them trust, and the time lock being used to prevent

Carol from stealing back any payments he made to Alice within the channel

(provided Alice enforces the contract).

• Intermediary: When Bob has one channel open with Alice and another

channel open with Charlie, Bob can serve as an intermediary for transfer-

ring payments between Alice and Charlie. With Lightning payments being

secured with a hash lock, Bob can’t steal the payment from Alice to Charlie

when it travels through Bob’s node. Lightning payments can securely travel

through a theoretically unlimited number of intermediaries.

• Multisig: a transaction output that requires signatures from at least one of a

set of two or more different private keys. Used in Lightning to give both Al-

ice and Bob control over their individual funds within a channel by requiring

both of them sign commitment transactions.

• Unilateral: any action performed by only one of the participants in a channel

without requesting or needing permission from the other participant. Light-

ning allows channels to be closed unilaterally (so Alice can close the channel

by herself if Bob becomes unresponsive) and attempted fraud can be penal-

ized unilaterally (so Alice can take any bitcoins Carol tried to steal when he

broadcast an old commitment transaction).

2.2.2 Payments in Lightning Network

The process of creating a payment channel in LN is shown in Figure 2.2. Alice

opens a channel with Bob by sending a deposit of 1 BTC to the 2-of-2 multi-

signature address on the blockchain. The fund at the multi-signature address can

12



only be used with both parties’ signature. Besides, the deposit is locked for some

designated time (i.e., channel life) so in the meanwhile the two users can send

multiple payments to each other. For example, in Figure 2.2, Alice first sends 0.3

BTC to Bob, Bob then sends 0.1 BTC back to Alice, and Alice again sends 0.4

BTC to Bob. These balance updates are settled instantly as they do not need to

enter the blockchain. Moreover, each state is signed by both parties and updated in

the offline channel in the form of contracts. The contract also includes a timestamp

to ensure the local transaction order.

Finally, Alice and Bob can close this channel collaboratively by publishing the

latest state (i.e., Alice 0.4 BTC, Bob 0.6 BTC) on the blockchain and claim their

money from the multi-signature address. If one party, say Alice is malicious and

tries to publish a previous state (e.g., Alice 0.8 BTC, Bob 0.2 BTC), Bob can just

send the latest state to the blockchain as a proof and take away all Alice’s money

in the channel as a punishment. The channel can also be closed unilaterally by any

party, just by submitting the latest state at the closing time to the blockchain.

Figure 2.2: Alice-Bob payment channel

The bi-directional payment channel can only ensure secure payments between

its two peers. If two parties don’t have a direct channel, they can still make transac-

tions via payment routing using HTLC. An HTLC claims that the receiver can only

pull money from the sender if he can produce an unknown data R from a known

hash H within some lock time. Figure 2.3 shows an example. Alice wants to pay

Bob 1 BTC without opening a new channel with him. If Alice just sends money to

13



Carol, there is no enforcement for Carol to forward the money to Bob. With HTLC,

Bob first generates a pair of H and secret R, and shows Alice H. Then Alice can

make an HTLC using the H and send it to Carol, claiming that Carol can pull 1

BTC from Alice if she can show Alice the corresponding R in 3 days. Carol then

makes another HTLC through H, claiming that Bob can pull 1 BTC from Carol if

he can provide R in 1 day. Thus, Bob can get the money from Carol by exposing

secret R in time and Carol can get the money from Alice in the same way. The

HTLC expires if the receiver fails to provide R in the pre-defined time. This de-

creasing lock time from 3 days to 1 day ensures that Bob cannot steal money from

Carol by showing R and pulling money from Carol after Carol’s HTLC with Alice

expires.

Figure 2.3: HTLC in payment routing
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Chapter 3

Data Collection and Abstraction

The first step of analyzing LN is to collect node and channel data. In this chapter,

we construct a snapshot graph G to represent LN for further analysis including net-

work structure and graph metrics. We also study the network performance through

G and the communication performance through pair channel characteristics. Fig-

ure 3.1 is an overview of our method.

Figure 3.1: An overview of our work
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3.1 Data Collection of LN
The network data is composed of information of nodes and channels. Node infor-

mation includes node public key, node alias, join time and node capacity, which

are explained as follows.

• Node public key: a unique 66-byte long string composed of number and

letter which represents the node identity. It is generated from user’s private

key and is needed to open or close the channel on LN.

• Node alias: a user-defined name of the node for ease of use.

• Node join time: the time a user joins LN by opening the first channel.

• Node capacity: the sum of capacities of all channels on that node, regardless

of the channel was established from the node or to it.

Channel information includes channel id, channel nodes, channel open time

and close time, channel open fee and close fee, channel capacity. Detailed infor-

mation are as follows.

• Channel id: a set of numbers of length 16 which represents channel identity.

• Channel nodes: the two owners of the channel.

• Channel open/close time: the time the open/close channel transaction is

published on the blockchain.

• Channel open/close fee: the fee paid for processing the open/close channel

transaction on the blockchain.

• Channel capacity: the deposit of the channel at opening time.

Note that current channel balance is only visible to owners of the channel for pri-

vacy reasons.

The current LN is a P2P network that uses a gossip protocol to discover and

disseminate information of nodes and channels. Messages include node announce-

ment message, channel announcement message and channel update message. We

explain them below.
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• Node announcement message: it broadcasts or updates node information

like public key, port and addresses so that other nodes can connect to it.

• Channel announcement and update message: it contains information about

the channel creation and maintenance so that a node can find routes to its

desired destination.

Unlike Bitcoin network where every node has a copy of the full transaction

record, there is no such record in LN. Hence, it is hardly possible to monitor the

global network. Instead, we can use passive application-level monitoring to retrieve

network information. That is, we can set up multiple nodes in LN and connect them

to other nodes. Our nodes can participate in message exchange and log messages

received from their peers. Typically the more nodes we are connected to, the more

completed views we have.

Except for setting up our own listening nodes, we can crawl the network data

shared by existing nodes. There are several such websites like https://hashxp.org/

lightning/, https://1ml.com and https://graph.lndexplorer.com/. They serve as LN

search engines and publish their gathered view of nodes and channels from multiple

nodes. In this project, we crawled and processed the data until April 1, 2019 from

https://hashxp.org/lightning/ as it has the most comprehensive information. One of

the listening node it uses is “rompert.com”, which is one of the top 5 nodes having

most channels.

3.2 Graph Construction
To investigate the structure and performance of LN, we build an undirected snap-

shot graph G. We ignore channel direction in our graph construction because di-

rection is often unknown and changes all the time. Specifically, a channel is from

A to B if user A has a balance. A channel can be bidirectional if both users have

their balance. However, user balance state is updated via HTLC off the blockchain

and is not broadcasted. We can only obtain the initial balance state when channel

was funded and the latest balance assignment when channel was closed. Therefore,

at any other time between the open time and close time, the balance assignment in

the channel could be arbitrary.
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As another reason, our work mainly focuses on the connectivity of the network

rather than the specific payment direction. In cases where channel direction cannot

be neglected like channel routing, we can assume all channel deposits are assigned

to the user who needs to make payments to the other side, which achieves the max-

imal payment flow in that direction. Under this assumption, we can consider the

network as undirected again. Below is the construction of our weighted undirected

graph G at any specific time.

Definition: G = (V,E,ω), where V is a set of nodes, E is a set of edges, ω is

weight function and E =
{
(vi,v j)|vi,v j ∈V

}
. An edge represents there are one or

more active channels between node vi and v j at a given time. Here ω : E → R+

associates each edge with a weight, which is the biggest payment amount between

node vi and v j at that time.

To construct G, we filter existing nodes and active channels at a given time

in the following manner. For each channel, if there is no edge between the two

nodes, we add one and set the edge’s weight to be the channel capacity. If an edge

already exists, we increase its weight by the channel capacity. Graph G makes it

convenient for us to study network connectivity or node reachability as it abstracts

the “is-connected” relationship between nodes.

3.3 Network Structure
We study some descriptive statistics of the network graph G at three specific time

instances: June 20, 2018 at 12:00, December 5, 2018 at 12:00 and April 1, 2019

at 12:00. More details can be found in Table 3.1. We can see around 30% of the

nodes in G are isolated. Probably those nodes just joined LN out of curiosity and

did not open new channels after their first one expired. We remove those isolated

nodes as they do not communicate in the network and consider the resulting graph

denoted by G′.

Figure 3.2a and Figure 3.2b demonstrate the degree distribution of G′ on April

1, 2019. Figure 3.2a shows that it follows the power law, indicating there are many

small-degree nodes and a few large-degree nodes [20]. The fitting line is y ∝ x−α .

The larger the α , the less variable of a node’s degree. In G′ node degree represents

the number of direct neighbors. Note that at this time the node with the most
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neighbors is “powernode.io”, which has 1,249 direct neighbors. More specifically,

Figure 3.2b displays the empirical cumulative distribution of node degrees. The

result shows that 23% nodes have only one edge and 73% nodes have less than 10

edges. This means that most nodes in LN can only send direct payments to very

few neighbors, which is consistent with Figure 3.2a.

In order to obtain more insights, we consider G′’s largest connected compo-

nent (LCC) denoted by G′LCC. Recall that connected component (CC) is a subgraph

where any two nodes u, v are connected to each other by certain paths [27]. Note

that nodes in different CC’s cannot reach each other. From Table 3.1 we can see

that G′LCC contains about 99% non-isolated nodes, 99.9% edges and network ca-

pacity of G′. This indicates that G′LCC is a giant component that fills most of the

network, while the rest of the network is divided into a large number of small CC’s.

A possible reason is that a majority of nodes in LN want to be able to communicate

to each other, therefore they need to be part of LCC. There are very few nodes out-

side G′LCC in G′, possibly these nodes just use LN for making direct point-to-point

payments to a few specific neighbors. Hence, we focus on G′LCC in terms of graph

metrics and also in Chapter 4 when analyzing network connectivity performance.

Table 3.1 provides some metrics of G′LCC. The clustering coefficient of G′LCC is

large (i.e, 0.20, 0.23, 0.28), revealing that if two users A and B both have channels

with C, A and B are likely to have a channel with each other. The three clustering

coefficients on different days are very close, indicating that the tendency barely

changes with time. The assortativity coefficient [19] reveals preference for nodes

to connect to similar nodes. Here it is negative, indicating a large degree user tends

to open channel with a small degree user rather than a large degree one. A possible

reason is that famous users (large degree nodes) tend to serve small users (small

degree nodes) as intermediaries.

20

powernode.io


(a) Power law fitting

(b) Cumulative distribution of degrees

Figure 3.2: Degree distribution

21



Chapter 4

Network Performance Analysis

In this chapter we evaluate the performance of LN based on graph G. We first

study network efficiency in terms of routing success rate, then network resilience

under attack, both on April 1, 2019 at 12:00. In addition, we study the performance

evolution over time.

4.1 Network Routing Performance
Routing is the process of selecting a path between two nodes in the network. Since

99.9% of the edges and deposits are contained in G′LCC as shown in Section 3.3,

nodes and edges outside G′LCC barely participate in routing. So we focus on G′LCC

in this section.

Routing is very important in LN. Given the analysis of degree distribution in

Section 3.3, most nodes have limited neighbors so they can make direct payments

with very few nodes. However, two nodes might not want to open a channel when

they need to make transactions. The reason is that adding edges (i.e., opening

channels) in LN costs money so it’s wasteful to open a new channel that will not be

frequently used. Thus it’s necessary to use existing channels, especially for small

nodes (i.e., nodes with very small edges or capacities). Fortunately, payments can

be routed by using HTLC to ensure state consistency along the path as explained

before.

We evaluate the network routing performance from three perspectives: network
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connectivity, channel capacity and routing efficiency, which evaluate the routing

path lengths, routing transaction amount and routing success rate, respectively.

4.1.1 Effective Eccentricity

Network routing performance is affected by the connectivity of the network. To

analyze the length of shortest paths between a node and others, we define effective

eccentricity as the least number of hops for a node to reach certain fraction of

the network. Figure 4.1 gives the effective eccentrity of G′LCC with fraction α =

0.7,0.9,1 on April 1, 2019 at 12:00. We can learn that effective eccentricity grows

with α as it typically takes more steps to reach more nodes. The diameter of G′LCC

is 11, which is the maximum shortest path lengths of the graph. Around 87% of the

nodes can reach all other nodes within 8 steps, around 90% nodes can reach 90%

of the network in 4 steps and around 72% nodes can reach 70% of the network

in 3 steps. This result suggests the network has the potential to perform efficient

routing.

4.1.2 Channel Capacity Distribution

The capacity of a sequence of edges is restricted to the minimal edge capacity along

the path. To perform routing, every edge on the path should have enough deposits.

So we will investigate the channel capacity distribution. Before further analysis,

we address the problem of channel direction and clarify a subtle difference between

channel capacities and edge capacities.

As explained in Section 3.2, we neglect the channel direction by assuming

all the channel balance belongs to the payment sender. Hence, we consider the

best routing performance. Recall the construction of G in Section 3.2, the edge

weight is the sum of capacities of all the channels between the same two nodes. To

achieve best routing performance, the maximal routing amount should depend on

the edge capacity instead of the channel capacity. That’s to say, two nodes can use

all their channels for routing at the same time. The reason is that multiple channels

between two nodes can use several HTLC’s that share the same secret key R to
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Figure 4.1: Cumulative distribution of effective eccentricity

ensure money in these channels is pulled correctly by the receiver.

Figure 4.2 demonstrates the empirical cumulative distribution (CDF) of chan-

nel capacity and edge capacity. The two CDFs are extremely close, indicating that

the number of node pairs having multiple channels is really small. Interestingly, we

observe that the capacity does not follow uniform distribution. Instead, there are

some obvious jumps at certain capacities including 0.005,0.05,0.1, . . . ,0.2, reveal-

ing that nodes like to choose these amounts when opening channels, probably for

ease and simplicity. We can see 90% of the channel capacity is below 0.10 BTC,

indicating that for a payment amount bigger than 0.10 BTC, routing is unlikely to

be successful as only 10% channels are available.

4.1.3 Network Routing Efficiency

Before explaining network routing efficiency, we define the qualified component

(QC) as a CC of the original network after removing all edges whose capacity is less
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Figure 4.2: Cumulative distribution of channel capacity

than the targeted routing amount. Of all the QC’s, the largest one and second largest

one (in terms of node numbers) is denoted by largest qualified component (LQC)

and SQC. Here the LQC and SQC of G′LCC is represented by G′LQC and G′SQC. As

a simple example, in Figure 4.3, we want to perform a routing of 0.005 BTC and

remove edges whose weights are less than 0.005. Then the LQC is formed by the

nodes in the dashed circle, and the SQC is formed by the green nodes. Note that

the QC’s depend on the routing amount.

For any two nodes in the same QC, a path can be found with all edge weights

greater than or equal to the routing amount. That’s to say, a routing of a target

amount is always successful in the QC. To consider the best routing performance

of LN, we focus on G′LQC. Thus network routing efficiency is defined as the fraction

of G′LQC size over the network size. The routing efficiency reflects the success rate

of a routing. In Figure 4.3, the network routing efficiency of 0.005 BTC is 5/11.

Figure 4.4 gives the routing efficiency under different amounts. The horizon-

tal axis is the routing amount percentile β of all edge weights. The black line
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Figure 4.3: An example of routing efficiency

with circle markers represents the efficiency. We also plot the G′SQC size fraction

using the red line with triangle markers. The G′SQC is close to 0, indicating that

although nodes in other smaller QC’s can also perform routing inside themselves,

it’s reasonable to consider only G′LQC for network routing efficiency. For a routing

with amount β of 50th percentile, the successful rate is 0.59. The efficiency is

approximately inversely proportional to amount except for some drastic change at

some points. This matches our observation in Section 4.1.2, that users prefer some

specific amounts as channel deposits.

4.1.4 Routing Evolution

Our analysis above only studies the routing performance on April 1, 2019 at 12:00.

To evaluate the evolution of routing performance over time, we plot the routing

efficiency from April, 2018 to April, 2019 in Figure 4.5a. The blue, orange and

green bars denote routing efficiency with routing amount β of 20th, 50th and 80th
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Figure 4.4: Network routing efficiency

percentile, respectively. We can see the routing efficiency declines over time in

year 2018 and rises in 2019. A possible reason is that exchange markets or hubs

emerge or play a more important role in LN.

Figure 4.5b demonstrates the diameter of G′LQC with three different routing

amount β ’s, which represents the longest routing path length. The result shows that

G′LQC diameter fluctuates from 6 to 11, and the smaller the β , the larger the G′LQC

diameter. This shows that the G′LQC under a large β is more densely connected

compared to the G′LQC with a small β (i.e., nodes with higher channel capacities

are more closely connected).

4.2 Network Resilience Under Attack

Network resilience is an important factor which reflects network’s anti-attack abil-

ity. There exists some “big nodes” (e.g., nodes that have many channels) in LN.

These nodes can serve as exchange markets and make it easier for small nodes to
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(a) Routing efficiency

(b) G′LQC diameter for routing

Figure 4.5: Network routing efficiency evolution
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use LN. (This is because small users cannot afford to open channels with every

other user as explained in Section 4.1.) Meanwhile, such important nodes may in-

fluence network resilience. The problem is, how does the network perform when

under attack (i.e., taking down important nodes)?

To answer this question, we first rank nodes using three common algorithms

in graph theory, then evaluate which algorithm describes node importance the best

through network efficiency [13]. Furthermore, we analyze the anti-attack perfor-

mance in terms of network capacity and G′LCC size.

4.2.1 Identifying Important Nodes

We select three common metrics or algorithms in graph theory that evaluate node

importance: closeness centrality, betweeness centrality and PageRank algorithm

(PR) [3, 24, 32]. We then compare these three metrics using network efficiency.

Network efficiency is the sum of the reciprocal of all shortest path lengths and it

measures the efficiency of a network when exchanging information.

Closeness centrality describes how close a node is to all other nodes. It is

calculated as the reciprocal of the sum of the length of the shortest paths between

the node and all other nodes in the graph. Thus, the more central a node is, the

closer it is to all other nodes. Betweeness centrality represents the degree to which

nodes stand between each other. A node with higher betweenness centrality would

have more control over the network, because information would pass through that

node. PageRank algorithm evaluates the number and quality of the edges of a node.

It was originally designed as an algorithm to rank web pages and calculated based

on the structure of the incoming links.

We can attack a network by randomly or intentionally removing nodes or edges

[6, 8]. Note that in LN, channels are kept locally between two users so the attack

to a node will not spread out to its neighbors. Hence, we simulate attacks to LN

by removing nodes from the most important to the least important one by one.

Figure 4.6 shows the network performance under attack with nodes evaluated using

the above three metrics. The horizontal axis denotes the fraction of removed nodes

γ and the vertical axis denotes the resulting network efficiency. We can see that
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efficiency decreases the fastest when nodes are ranked by PageRank algorithm,

revealing that PageRank algorithm describes nodes importance the best. Therefore,

we use PageRank algorithm to rank nodes in the rest of this section.

Table 4.1 lists the 10 most important nodes evaluated by PageRank algorithm.

For the ease of presentation, we use the first three bytes of a node’s public key to

denote it. The aliases of these 10 nodes are listed below:

• powernode.io

• LightningPowerUsers.com

• rompert.com

• ACINQ

• 1ML.comnodeALPHA

• ln1.satoshilabs.com

• BitMEXResearch

• SLEEPYARK-v0.7.0

• tippin.me

• BOLTENING.club

We can see the channel number is not necessarily consistent with the PageRank

value. A possible reason is that a node connected to many unimportant nodes

might be less influential than a node connected to a few but important nodes. The

third and fourth rows list the node capacity and node channel numbers. The last

row shows the category of nodes. Some play the role of exchange markets and

encourage others to connect to them. Some collect LN information and serve as

search and analysis engines. The tippin.me 1 is a project node that helps users to

receive tips by allowing others to use their channels in routing.

1https://tippin.me/
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Figure 4.6: Node importance evaluation

4.2.2 Network Anti-Attack Performance

We evaluate LN resilience from network capacity and G′LCC size. Network capacity

represents the total amount of money the network holds and G′LCC size reflects the

best routing efficiency (i.e., the routing amount is below the minimum channel ca-

pacity so all edges are qualified). Before further analysis, we elaborate the detailed

situation of attacks to LN.

When node A is taken down, it becomes uncooperative (i.e., unresponsive or

fraudulent). Here taken down means that A does not respond because its under

DDoS attack or offline, or it is a malicious node that doesn’t follow the protocol.

If A refuses to response, all of its neighbors will have to wait until their channels

expire and then can get their money back. If A claims a fake balance state, the

other party can submit a proof (i.e., the last valid HTLC state) to the blockchain

and claim the correct state. That’s to say, though there will be no actual loss in the

end, all of A’s channels become unavailable and the deposits are locked for some
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time. Thus, it’s reasonable for us to simulate an attack to a node by removing all

its edges.

Figure 4.7 demonstrates the network capacity and G′LCC size under attack, both

normalized using original values. The results show that the network loses around

94% capacity and 46% G′LQC nodes after removing just top 5% nodes and the net-

work almost paralyzes if removing top 20% important nodes. This indicates that

LN relies heavily on a few important nodes, which is similar to the “robust yet

fragile” structure of the Internet topology [7]. Moreover, we learn that there exists

a trade-off between network resilience and the ease of use. That’s to say, on the

one hand, hubs can make it more efficient for users to send transactions in LN, on

the other hand, they reduce the degree of decentralization of the network.

Figure 4.7: Network resilience

4.2.3 Resilience Evolution

Previously, we focused on the network resilience on April 1, 2019 at 12:00. To
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evaluate the evolution of resilience over time, we plot the G′LCC size and network

capacity under attack from April, 2018 to April, 2019 in Figure 4.8a and Figure

4.8b. In Figure 4.8a, the blue, orange and green bars denote G′LCC size (normal-

ized using the original network size) after removing top 1%, 5% and 10% nodes,

respectively. We can see G′LCC size decreases over time, especially in 2019. Recall

in Section 4.1.4, we deduced the arise of of hubs in the same period. This sug-

gests that hubs weaken LN’s ability to resist attacks, which is in consistent with

our analysis in Section 4.2.2.

Figure 4.8b shows that the network capacity under attack also decreases over

time. However, it experienced a clear “up and down” period in mid-July as well

as a sudden jump in mid-November. This indicates changes of network struc-

ture, especially among important nodes. Actually this reflects appearance of new

influential nodes. The LNBIG nodes as mentioned in Chapter 1 started to join

LN from November 13, 2018 and injected hundreds of bitcoins into the network

rapidly. At first these LNBIG nodes are not connected to existing hubs, which

makes them less important when evaluated by PageRank algorithm. Thus they pre-

serve some network capacity when other hubs are removed. The drop in August

and mid-November is possibly caused by the strengthen of the connections among

important nodes.
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(a) G′LCC size under attack

(b) Network capacity under attack

Figure 4.8: Network resilience evolution
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Chapter 5

Channel Characteristic Analysis

In this chapter, we move from graph topology to channel characteristics between

node pairs. We first analyze some channel descriptive statistics and then study pair

communication performance in terms of channel temporal distribution.

5.1 Channel Statistics
Table 5.1 lists the statistics of all collected channels, including channel life, channel

capacity and channel costs (i.e., channel open fee and channel close fee). In LN, as

long as the two parties of a channel agree to cooperate, the channel can stay open

without a mandatory timeout period. The channel can be closed unilaterally or

bilaterally. If both parties decide to close the channel (because of channel depletion

for example), the channel will be closed immediately. If fraud happens or one party

becomes unresponsive, the other party can close the channel unilaterally.

Channel life is the duration from channel open time to channel close time. We

can see the average channel life is 29.89 days and the average channel capacity

is 0.0196 BTC. Both have a large variance. This is intuitive as channel life and

capacity are decided by the two owners of the channel.

Channel open or close fee is the fee of the broadcasted on-chain transaction

that opens or closes the channel. The higher the transaction fee a user offers, the

more likely miners will add the transaction into their blocks and so the faster the

transaction will be confirmed. We can see the channel close fee is a little higher
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Table 5.1: Channel Statistics

index
channel
life /day

channel
capacity /BTC

channel open
fee /e-5 BTC

channel close
fee /e-5 BTC

average 29.89 0.0196 2.34 2.63
median 12.44 0.0040 1.11 1.67
COV 1,943.65 0.0015 0.00027 0.00037

than the channel open fee, revealing that users tend to pay higher fees to close the

channel. Since higher fees can accelerate the process of blockchain transactions,

a possible reason is that the channel close process is more urgent than the open

process. This is intuitive as users want to close their channels under 3 conditions:

the channel is depleted and unavailable; both users have agreed on the final balance

and want to claim their Bitcoin on the blockchain; there is a fraud and the honest

party needs to declare the true balance states in time. Thus it’s better to publish the

closing transaction on the blockchain faster.

5.2 Pair Communication Performance
This section studies communication performance among pairs. We first analyze

channel number distribution of node pairs (i.e., how many channels a pair of nodes

own) and then define communication ability and communication stability. Fur-

thermore, we investigate these two metrics among multi-channel pairs. The three

observation time we use are S1: June 20, 2018 at 12:00, S2: December 5, 2018 at

12:00 and S3: April 1, 2019 at 12:00, respectively.

Some node pairs in LN have more than one channels until the observation

time and are denoted by multi-channel pairs. Figure 5.1 shows the CDF of all

pair channel numbers until S3. We can see that 85% pairs only have one channel

and 11% pairs (i.e., 0.96-0.85) have two channels in total. The top three pairs

that have most channels are also listed here. Node BOLTENING.club and 038247

opened 473 channels from February 16, 2019 to March 16, 2019, all with a deposit

of 0.0002 BTC. Most of their channels remain open until S3. Meanwhile, most

of the channels among the second and the third pairs are already closed. These
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pairs are possibly maintaining multiple channels for testing the network function

or for future use, which we can tell from the aliases of the last pair (cln-test-01,

cln-test-02).

Figure 5.1: Cumulative Distribution of Pair Channel Numbers

5.2.1 Pair Communication Ability

The communication of a pair of nodes depends on all the channels they own. The

time interval of these channels can be overlapping or non-overlapping. We define

communication ability as the fraction of total time two nodes can communicate (via

at least one active channel) over the duration from the moment the two nodes first

open a channel to the observation time. Nodes communication availability evalu-

ates the probability that two nodes can make transactions since first connected.

Definition: Pair communication ability, ρa(i, j) = ∑
m′i j
k=1|s′k|
ts−to1

, where ts is the ob-

servation time, mi j is the total number of channels opened before ts between node

i and j, tok and tck is the open and close time of the kth channel between i and j,

channel is sorted in ascending order of tok , so to1 is the open time of the first channel
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between i and j, sk = (tok ,min{tck , ts}),k = 1,2 · · ·mi j, sk is the time interval of kth

channel, |sk| = min(tck , ts)− tok , (s
′
1,s
′
2 · · ·s′m′i j

) = (s1∪ s2 · · · ∪ smi j) is the union of

all multi-channel intervals.

As a simple example, in Figure 5.2, the communication ability until ts is ρa(1,2)=
tc2(1,2)−to1(1,2)

ts−to1(1,2)
for node pair (1, 2), ρa(1,4)= 1, ρa(2,3)=

(tc1(2,3)−to1(2,3))+(tc2(2,3)−to2(2,3))
ts−to1(2,3)

.

Figure 5.2: Pair Communication Performance

In Figure 5.3a, the solid lines show the CDF of communication ability ρa

among all pairs. The red, black and blue lines correspond to S1, S2 and S3. We

can see the overall ρa decreases from S1 to S2, indicating that many pairs lose

the ability to send payments. It then increases from S2 to S3, possibly because

some pairs maintained a long-lasting channel. Until S3, only 60% of the pairs can

communicate for more than 30% of the time and about 41% of the pairs can keep

communicating all the time (i.e., ρa = 1) since opening their first channel. This

demonstrates that the communication status among pairs is not quite reliable.

5.2.2 Pair Communication Stability

Communication between two nodes is interrupted if their multi-channel intervals

are not overlapping (i.e., a new channel is opened after the old channel is closed).

To describe the continuous communication ability, we define pair communication

stability as the fraction of the longest continuous communication time over the

duration from the pair are firstly connected to the observation time. It evaluates

the probability that two nodes can continuously make transactions since their first
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connection.

Definition: Pair communication stability ρs(i, j) =
maxk|s′k|

ts−to1
. This is similar to

ρa(i, j) except that the denominator is the longest unioned channel interval. Hence

ρs(i, j)<= ρa(i, j).

For example, in Figure 5.2, the communication stability until ts is ρs(1,2) =
tc2(1,2)−to1(1,2)

ts−to1(1,2)
for node pair (1, 2), ρs(1,4)= 1, ρs(2,3)=

max{tc1(2,3)−to1(2,3), tc2(2,3)−to2(2,3)}
ts−to1(2,3)

.

The dotted lines in Figure 5.3a demonstrate the CDF of communication stabil-

ity ρs among all pairs until S1, S2 and S3. We can see ρs is quite close to ρa for the

same observation time. This is because most pairs own only one channel as shown

in Figure Figure 5.1.

5.2.3 Multi-channel Pair Communication Performance

The characteristics of multi-channel pairs are important. This is because with the

development of LN, more and more existing channels will be closed or depleted,

thus new channels are needed among node pairs. To obtain further insights about

current multi-channel pairs and their channel temporal distribution, we study their

ρa and ρs in Figure 5.3b.

Figure 5.3b shows that ρa of multi-channel pairs is significantly higher than

ρs for the same observation time, indicating their channel intervals are not over-

lapping. The reason is that ρa = ρs if multi-channel intervals are overlapping. For

example in Figure 5.2, ρa(2,3)> ρs(2,3) and ρa(1,2) = ρs(1,2) as the two chan-

nels for pair (2, 3) are non-overlapping while the two channels of pair (1, 2) are

overlapping. This is intuitive as it’s unnecessary to maintain several channels with

the same peer at the same time.
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(a)

(b)

Figure 5.3: Channel temporal distribution: 5.3a shows communication per-
formance for all node pairs, solid lines for ρa, dotted lines for ρs, red,
black and blue lines correspond to S1, S2 and S3; 5.3b shows communi-
cation performance for multi-channel pairs.
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Chapter 6

Conclusions and Future Work

LN is a “Layer 2” system that aims to increase throughput of current Bitcoin net-

work. We conduct a measurement study on LN in this thesis. Our graph construc-

tion of LN provides some insights behind the user behavior. Through routing anal-

ysis, we demonstrate the routing success rate relies heavily on the routing amount.

Through resilience analysis, We identify a “robust yet fragile” structure in LN. Be-

sides, our investigation of channel characteristics shows more efficient ways to use

LN. The above observations indicate several issues of the current LN and suggest

ways of future protocol design. Below we conclude our findings in this thesis and

enumerate some directions for future work.

6.1 Improving Routing Efficiency
Our routing analysis in Section 4.1.3 and Section 4.1.4 revealed that for a large

amount transaction (e.g., above the median of all channel capacities), the success

rate of payment routing is low and is decreasing over time. Therefore, users who

want to send large amount payments through LN should open a channel directly

with their receivers. Besides, our analysis of pair payment channels in Section 5.2

indicated that the communication among most pairs are not stable. Hence, we sug-

gest that some important nodes can serve as exchange markets maintaining stable

communication and other users only need to connect to these hubs. In this way, the

routing success rate can be greatly improved and the length of routing path can be
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reduced.

As directions for future work, we propose studying all paths between a peer.

For a large transaction, we can split it to multiple small-amount transactions and

send them through different paths separately. In this way, we can make full use

of those channels with small deposits and increase the success rate of routing.

Another factor we can take account of is the channel fee. Nodes usually need to

pay some fees to use others’ channels as intermediaries for routing. A more general

routing algorithm should not only find a path between users, but minimize the fees

along the path.

6.2 Enhancing Network Resilience
Though the underlying Bitcoin Network is ideally decentralized, we found that the

current LN relies heavily on some important nodes in Section 4.2.2. Users should

be aware of such potential risks even if they can recover their balances after the

attack. Furthermore, our work demonstrated that the topology among those im-

portant hubs can affect network resilience. Hence, it would be an interesting topic

to adjust connections of exchange markets in order to get the best performance in

terms of both routing efficiency and resilience.

In this thesis we simulated attacks to the LN just by removing top important

nodes. Another interesting question that can be studied is to design more powerful

attacking vectors. For example, attackers may collude to isolate some important

nodes and partition the network.

6.3 Node Evaluation System
Nodes have many properties such as node capacity, channel numbers, node uptime

and channel stability (metrics we defined in Section 5.2). As future work, we can

apply the trust computation mechanisms [4, 21, 22] in Internet of Thing area to the

scenario of LN and build a more reliable and efficient system based on the attributes

of nodes. For example, we can build a node evaluation system in both subjective

and objective ways. In the subjective model, each node computes the score of its

neighbors locally on the basis of its own experience. In the objective model, the

information about each node is distributed and stored making use of a distributed
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hash table structure so that any node can make use of the same information.

Such node evaluation system can be maintained through a weighted combina-

tion of node properties. By giving higher weights to attributes of interest, users

can select their neighbors more efficiently. In addition, such rating system can be

extended to evaluate different channels. Nodes can score channels they have used

for routing or rebalancing and send that score to others. This will helps others to

choose paths when multiple ones are available.

6.4 Protocol Simulation
Several existing protocols in LN are closely related to the network topology [11,

29]. Thus, the use of real-world offchain network topology can better examine the

performance of those protocols. In addition, the network topology we provide can

be taken as a unified test platform for comparing similar protocols.
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