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Abstract 

 

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative 

colitis (UC), is characterized by intestinal inflammation. Intestinal epithelial cells play a 

critical role in mucosal homeostasis and dysregulation of pro-inflammatory epithelial cell 

function could lead to the intestinal inflammation that characterizes IBD. However, we do 

not know the events that initiate inflammation or the cell types involved. One type of cell 

that may play a role is the tuft cell. Tuft cells are the only epithelial cells in the uninflamed 

intestine that express cyclooxygenase (COX)1 and COX2, the rate-limiting enzymes 

required for production of prostaglandins, like PGE2 and PGD2 which play important roles 

in immunity. In our research investigating the lipid phosphatase SHIP, it was discovered that 

tuft cells express SHIP. SHIP deficiency leads to increased PI3-kinase activity in cells 

resulting in increased cell proliferation, reduced apoptosis, and increased cell activation. 

SHIP expression is currently believed to be restricted to hematopoietic cells. However, using 

bone marrow transplantation, our laboratory found that tuft cells were not radiosensitive, 

suggesting that they are not bone-marrow derived and are not hematopoietic in origin. 

In addition, SHIP-deficient mice develop spontaneous Crohn’s disease-like 

intestinal inflammation. The onset of inflammation coincides with the developmental 

appearance of tuft cells. In wild type mice, tuft cells are found in the lung and ileum, both 

locations where SHIP-deficient mice develop spontaneous inflammation, and I found that 

tuft cell numbers were increased 6-fold in the inflamed ileum of SHIP-deficient mice. Based 

on this, I hypothesized that SHIP-deficient tuft cells may initiate or contribute to 

inflammation in the SHIP-deficient mouse. I found that SHIP-deficient mice had more 
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COX1 positive cells in the ileum, more COX activity, and more PGD2 and PGE2 in full 

thickness ileal tissue homogenates, compared to their wild-type littermates. Finally, 

prophylactic inhibition of COX activity with piroxicam reduced the development of 

intestinal inflammation in SHIP-deficient mice whereas therapeutic treatment had little 

effect. This suggests that tuft cells may be critical in the initiation of spontaneous intestinal 

inflammation in SHIP-deficient mice and help elucidate some of the basic biology involved 

in the inflammation present in patients with CD. 
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Lay Summary 

My research investigates how a cell type in the gut, the tuft cell, may play a role in 

the inflammation related with Crohn’s disease. Scientists know very little about functions of 

tuft cells and recently discovered that they share some features with immune cells. I have 

found that tuft cells express SHIP, a protein found only in hematopoietic cells. SHIP-

deficient mice develop inflammation similar to Crohn’s disease, and I found high numbers 

of tuft cells in inflamed sites. Tuft cells may play a role in the initiation of inflammation in 

these mice. When I tried to prevent inflammation using piroxicam (an anti-inflammatory 

drug), I found that tuft cell numbers remained low, and mice did not develop inflammation. 

Treating inflammation was not very effective, tuft cell numbers remained high, and 

inflammation was still present. Because of this work, we understand more about the basic 

biology and inflammation in this mouse model. 
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Preface 

Animal studies were reviewed and approved by the University of British Columbia 

according to guidelines provided by the Canadian Council on Animal Care, protocol 

numbers A17-0071 and A17-0277. 

Chapter 1. Figure 1.1 was modified and reproduced with permission of Nature 

Publishing Group: Xavier RJ & Podolsky DK. Unraveling the pathogenesis of inflammatory 

bowel disease. Nature 2007: 448(7152). Figure 1.2 was reproduced with permission of 

Frontiers Media SA: Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. Interactions between 

intestinal microbiota and host immune response in inflammatory bowel disease. Frontiers in 

Immunology 2017: Aug 14; 8:942. Figure 1.3 was reproduced with the permission of 

Springer Nature Publisher: Gerbe F, Legraverend C, Jay P. The intestinal epithelium tuft 

cells: specification and function. Cellular and Molecular Life Sciences 2012 Sep; 69(17): 

2907–2917. Figure 1.4 was reproduced with the permission of John Wiley and Sons 

Publisher: Dobranowski P and Sly LM. SHIP negatively regulates type II immune responses 

in mast cells and macrophages. Journal of Leukocyte Biology 2018: Jan 17. Figure 1.5 was 

reproduced with the permission of Hindawi Publishing: Medeiros A, Peres-Buzalaf, Verdan 

FF. Prostaglandin E2 and the suppression of phagocyte innate immune responses in different 

organs. Mediators of Inflammation 2012 Sep 13. Figure 1.6 was reproduced with the 

permission of Hindawi Publishing: Medeiros A, Peres-Buzalaf, Verdan FF. Prostaglandin 

E2 and the suppression of phagocyte innate immune responses in different organs. Mediators 

of Inflammation 2012 Sep 13. 
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Chapter 1: Introduction 

1.1 Inflammatory bowel disease 

Inflammatory bowel disease (IBD) is a chronic, or relapsing and remitting, idiopathic 

inflammatory disorder of the gastrointestinal tract that manifests in two main forms: Crohn’s 

disease (CD) and ulcerative colitis (UC). The highest incidence reported in IBD is for people 

between 20-30 years old, but it can affect individuals of any age, in both sexes.1 It is an incurable 

disease, and its most common symptoms include abdominal pain, diarrhea, weight loss, rectal 

bleeding, and impaired absorption leading to nutrient deficiency.2 IBD incidence rates are similar 

in both men and women, but other factors, such as ethnicity, genetic profile, and diet have been 

shown to play significant roles.1 

UC is a condition that typically affects the colon and the rectum, in which inflammation 

is restricted to the mucosal and epithelial layers.1, 3 Ulcerations and rectal bleeding are usually 

associated with this disease, as well as edema, which is swelling resulting from fluid retention.1 

Common histological features of colonic tissue sections from UC patients are the presence of 

immune cell infiltration, crypt abscesses, reduced goblet cell numbers, and disruption of crypt 

architecture.1 

CD, on the other hand, can affect any part of the gastrointestinal tract, from the mouth, 

tongue, esophagus to the colon and perianal region, which makes it clinically more complex than 

UC.1 The inflammation in CD affects all layers of the intestine (transmural inflammation), and it 

tends to be discontinuous, with patches of inflamed tissue intercalated by areas of healthy tissue.1 

CD is classified according to the location, as being ileal, ileocolonic, exclusive colonic, or in 

other locations.4 The distal ileum is the most common site of intestinal inflammation in CD.1 

Some of the common complications of CD include: fistulas, which are channels connecting the 
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intestine to surrounding organs; fibrosis, which is the excess accumulation of extracellular matrix 

(ECM) that leads to stiffening and/or scarring of the intestine; and transmural inflammation 

accompanied by the presence of immune cells and granulomas, as histological examination of 

ileal tissue sections reveals.1, 5, 6 

The incidence rate of IBD is highest in northern Europe, the United Kingdom, and 

North America.7, 8 Estimates from 2012 show Canada having the highest prevalence of IBD in 

the world, with an estimated 233,000 people with the disease.9-11 Among these people, 104,000 

were diagnosed with UC, and 129,000 were diagnosed with CD.9-11 The incidence rate among 

children is rising, with estimates that 5900 children and teens younger than 18 years old have 

IBD in Canada.12 This high incidence of IBD places a considerable burden on families as well as 

the Canadian healthcare system. In 2012, it was estimated that the direct costs of IBD in Canada, 

including hospitalization, surgery, medication, and laboratory tests amounted to 2.8 billion 

dollars annually.9, 11 

IBD is associated with a social stigma, which can be reduced by increasing awareness 

of the disease in the general population.11, 13 Preventive measures are still not available, and there 

is reason to believe that IBD prevalence and financial burden will continue to increase in the 

foreseeable future, as well as the psychological stress that affects the quality of life of patients 

and their families.11, 13 The need for preventive measures is thus considered high, and prevention 

is an important goal. 

Because of the chronic nature of IBD and its health, psychological, social, and 

economic effects, funding organizations such as the Canadian Institutes of Health Research 

(CIHR) and Crohn’s and Colitis Canada (CCC) are important in order to identify new therapeutic 
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strategies to treat and better understand IBD, thus reducing the burden on the Canadian 

healthcare system and ultimately improving the lives of Canadians living with the disease. 

With regards to these goals, this academic work focuses on characterizing mechanisms 

of inflammation in a murine model of Crohn’s disease. 

 

1.2 Clinical presentation and diagnosis 

 Patients with UC present with abdominal pain, cramping, and diarrhea containing blood 

mixed with mucus.1 Patients with CD, on the other hand, may experience pain in the abdomen, 

diarrhea, perianal fistulas, and disease complications such as swelling, thickening of the 

intestinal wall, and blockage of the intestine.1 UC and CD patients may also suffer from 

anorexia, diarrhea, and weight loss that result from inadequate nutrient absorption.1,14 In 

children, IBD can result in delayed growth and even delayed sexual maturity.14, 15 Diagnosis, 

therefore, includes assessment of symptoms such as diarrhea, the presence of blood and mucus in 

stool, abdominal pain, cramping, fever, weight loss; and if CD is suspected, perianal disease.16 

Diagnosis also includes review of the patient’s medical history, recent use of medications, such 

as antibiotics and nonsteroidal anti-inflammatory drugs (NSAIDs), and a combination of tests 

and procedures to exclude pathology caused by the presence of enteric pathogens, such as 

Clostridioides difficile, E. histolytica, Salmonella, or diarrheagenic Escherichia coli.1,16, 17 In 

addition, family history of IBD is an important consideration during diagnosis for IBD. 

Sigmoidoscopy or colonoscopy are performed to determine the presence of ulcers, bleeding, and 

inflammation.16 Patients may also have X-rays, abdominal ultrasounds, CT scans, MRI or small 

bowel imaging, to determine the extent of disease and possible extraintestinal complications.1,16 

Between 25 and 33 percent of patients with IBD will develop extraintestinal manifestations or 
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complications.1,16 The most common is peripheral arthritis, but may also include ankylosing 

spondylitis, sacroiliitis, osteoporosis, renal lithiasis, dermatological and ophthalmological and 

cutaneous manifestations, as well as thromboembolic, primary sclerosing cholangitis, and 

hepatobiliary manifestations.1,16 

 While IBD can limit quality of life because of pain, vomiting, diarrhea, and other 

harmful symptoms, it is rarely fatal on its own.16 Fatalities due to complications such as toxic 

megacolon, bowel perforation, and surgical complications are also rare.16 While patients with 

IBD, in particular UC, do have an increased risk of developing colorectal cancer, this is usually 

caught early due to routine surveillance of the colon by colonoscopy, and therefore, IBD patients 

diagnosed with colorectal cancer have better survival rates than the non-IBD population.1,16 

 

1.3 Etiology and pathogenesis 

 Currently, the etiology of both UC and CD still remain unknown, despite considerable 

research being carried out, involving genetic, immunological, infectious, and environmental 

aspects that aim to elucidate biological aspects of these diseases.17, 18 Similarly, the variables that 

determine onset and evolution remain unknown. These are characterized by exacerbation and 

remission outbreaks, common to both diseases.5 

 Although the etiology of IBD remains unknown, current thinking is that IBD occurs in 

genetically susceptible individuals due to an inappropriate initiation and/or perpetuation of 

immune responses to intestinal microbiota (Figure 1.1).17, 18 This thesis focuses on an animal 

model of CD-like intestinal inflammation; therefore, the introduction of etiology is expanded to 

focus on CD. 
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Figure 1.1 Etiology of inflammatory bowel disease (IBD).  
IBD lies at the intersection of genetic, environmental, and immunologic factors. It is generally 
believed that IBD results from complex interactions between the intestinal microenvironment, 
the environment external to the host, and the immune response in genetically susceptible 
individuals. GWAS have identified 140 single nucleotide polymorphisms associated with CD, 
including those in ATG16L1 and NOD2. Modified and reproduced with permission of Nature 
Publishing Group: Xavier R.J. & Podolsky D.K, Nature 2007.5 
 

1.3.1 The role of genetics in Crohn’s disease 

 The first studies aimed at understanding the role of genetics in the onset and 

pathogenesis of CD were familial aggregation and twin studies, which revealed a consistently 

high prevalence of CD among relatives.18-21 Studies in Sweden revealed the CD concordance 

rate in monozygotic twins was 50% whereas it was only 3.8% for dizygotic twins.18-21 A 

similar study in Denmark showed that the CD concordance rate was 50% in monozygotic 

twins and 0% in dizygotic twins.18-21 Among CD patients, between 2-14% have a family 

history of the disease.22-25 However, very little is known about the effects of a positive family 

history on the severity and pathogenesis of CD in the individual.26-31 The familial aggregation 
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and twin studies have been followed by genome-wide association studies (GWAS), which 

focus on identifying single nucleotide polymorphisms (SNPs) and candidate genes that may 

underlie disease susceptibility and pathogenesis. 

Recent meta-analysis of GWAS identified 163 SNPs associated with susceptibility 

to IBD, of which 140 were susceptibility loci for CD.30, 32 These included SNPs in PTGER4 

(encoding the prostaglandin E receptor 4)33-35 and MUC19, both of which are associated with 

epithelial barrier function, as well as genes associated with the interleukin 23 (IL-23) 

signaling pathway, such as IL23R and STAT3 (signal transducer and activator of transcription 

3),35, 36 which are critical in innate and adaptive immune responses.37-39 SNPs in genes 

encoding ATG16L1,35, 40, 41 NOD2,42, 43 and IRGM44 that are associated with CD, result in 

defective autophagy. Defects in autophagy result in enhanced bacterial persistence and 

intestinal inflammation, and have been associated with increased IL-1β production in both 

mouse and human cells.45-47 Together, this suggests that CD may arise through distinct 

pathology-inducing mechanisms and thus, may be comprised of distinct pathological subsets 

of disease.43, 48, 49 Continued characterization of these polymorphisms and pathways affected 

by them, may provide additional evidence that crosstalk between genetic, environmental, and 

immunological factors plays a critical role in the development of CD.  

   

1.3.2 Environmental factors in Crohn’s disease 

The prevalence of CD has steadily risen in the past 50-60 years and this could be 

attributed, in part, to the fact that populations have migrated from areas with low incidence, such 

as East Asia, to areas with higher incidence, such as North America and Europe.50 This, coupled 

with dietary changes, have implicated environmental factors as playing an important role in the 
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pathogenesis of CD.32 Also, several environmental factors have been associated with increased 

risk for CD, including smoking, taking antibiotics and non-steroidal anti-inflammatory drugs 

(NSAIDs), low vitamin D levels, and stress.51, 52 Studies have shown that cigarette smoking 

increases the risk of developing CD by two-fold.51, 52 It reduces cell proliferation and alters the 

ratio of regulatory T cells to T helper (Th) cells in the gut.51-53 NSAID use is thought to 

exacerbate inflammation in IBD patients, possibly inducing flare-ups (discussed in detail 

further).54-59 Finally, repeated use of antibiotics has also been associated with increased risk of 

developing CD in pediatric patients, which may act by altering the microbiota.60, 61 

 

1.3.3 The microbiome in Crohn’s disease 

The gut lumen in humans is composed of a large, diverse population of different 

bacteria, with approximately 1012 microorganisms that are in close proximity to the intestinal 

epithelial barrier.62, 63 Changes in the gut microbiota population may be due to changes in the 

external environment of the host.62, 63 Dietary changes, for example the consumption of more 

sugars, as well as changes in behavior, such as reduced exercise, affect gut microbiota, which 

may contribute to the increased incidence of CD associated with these behaviors.64-68 Indeed, 

dysbiosis in luminal bacteria, characterized by reduced diversity of the microbiota as well as 

increased adherent and invasive E. coli (AIEC), have been observed in CD patients (22%) 

compared to healthy controls (6.2%).68-70 Viral infections have also been shown to alter the gut 

microbiota and have been implicated in CD pathogenesis.71 Upon infection with norovirus, mice 

show abnormal Paneth cell structure and granules similar to those observed in CD patients.71 

Interestingly, the CD risk allele in ATG16L1 has also been associated with changes in the 

composition of the intestinal microbiota.72 Despite diverse mechanisms contributing to dysbiosis 
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in people with CD, these studies point to an important role for intestinal microbiota in the 

pathogenesis of CD.  

  

1.3.4 The epithelial barrier in Crohn’s disease 

Intestinal immune homeostasis is maintained by the coordinated actions of intestinal 

epithelial cells and innate and adaptive immune cells. The intestinal epithelial barrier is 

composed of seven main types of cells including goblet cells, Paneth cells, enterocytes or 

colonocytes, enteroendocrine (EE) cells, tuft cells, M cells, and cup cells, which separate the 

gut lumen from the lamina propria (LP) (Figure 1.2).73 This is a dynamic, physical barrier, 

which prevents the entry of microbes and foreign antigens into the LP but allows nutrients 

and water to pass into the circulation.73-75 Goblet cells and Paneth cells secrete mucin and 

antimicrobial peptides that form the protective mucus layer between commensal bacteria and 

gut epithelial cells.73-75 It is believed that one factor in developing CD is the result of damage 

to, or defects in, the epithelial barrier, which increases epithelial permeability.76 Furthermore, 

in patients with CD, a dysregulated immune response to normal enteric microbiota has been 

shown to lead to increased mucosal secretion of pro-inflammatory cytokines such as 

interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα), which can further 

exacerbate inflammation by increasing epithelial barrier permeability (Figure 1.2).77, 78  
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Figure 1.2 The epithelial barrier separates the lumen from the lamina propria.  
The intestinal epithelial barrier prevents immune cells in the lamina propria (LP) from 
interacting with microbes present in the gut lumen. (Left) In normal, healthy conditions, there 
exists a state of immune tolerance that allows commensal bacteria to live alongside immune cells 
in the gut. The mucus layer limits the interaction between the microbiome and the underlying 
epithelial and immune cells. Epithelial cells, dendritic cells (DCs), and Paneth cells sample the 
gut lumen for microbes. Pathogens are suppressed by beneficial commensal bacteria through the 
induction of antimicrobial proteins, such as IL-10 and regenerating islet-derived protein 3 
gamma (REG3γ), thus maintaining homeostasis. Epithelial cells release IL-18 that stimulates 
growth and proliferation of epithelial stem cells to repair damaged tissue. Paneth cells secrete 
antimicrobial host defense proteins to maintain homeostasis, mediate tissue repair, and maintain 
tolerance. (Right) In a susceptible individual (due to a combination of factors), the intestinal 
epithelial barrier may be compromised and breached, thus allowing microorganisms and antigens 
to enter the LP, where they interact with DCs and macrophages. These cells sense the presence 
of these microorganisms using pattern recognition receptors (PRRs), and trigger an uncontrolled 
chronic inflammatory response and hyper-activation of Th1 and Th17 cells, with production of 
pro-inflammatory cytokines, such as IL-1β, IL-18, IL-12, IL-6, TNFα, and IFNγ, as well as 
decrease in REG3γ and IL-10. Activated immune cells also produce chemokines, such as IL-8 
and CCL2, which attract more immune cells (such as neutrophils) to the site of inflammation, 
where they encounter microbes and amplify the inflammatory response. IL-12 and IL-18 
produced by macrophages and DCs stimulate type 1 innate lymphoid cells (ILC1) to produce 
TNFα and IFNγ, which further promote chronic inflammation. Reproduced with permission of 
Frontiers Media S.A. Ming, Z. et al., Frontiers in Immunology 2017.79  



 

  10 
    

1.3.5 The immune response in Crohn’s disease 

 Both innate and the adaptive immune responses have been shown to play critical 

roles in the pathogenesis of CD.  

 

1.3.5.1 The innate immune response in Crohn’s disease 

 The innate immune system is the first line of defense against invading microbes. It is 

comprised of cells including epithelial cells, leukocytes, such as monocytes, neutrophils, 

basophils, and natural killer (NK cells). These innate immune cells contain cell surface and 

endosomal PRRs, such as Toll-like receptors (TLRs) and Nod-like receptors (NLRs), that 

monitor the extracellular and intracellular compartments for pathogen-associated molecular 

pattern (PAMP) molecules.80-83 Sub-epithelial DCs sample the gut lumen for the presence of 

non-pathogenic microbes as a regulatory response to provide tolerance.80, 84 Studies in mice 

have shown that alterations in the proteins associated with immune responses can lead to 

intestinal inflammation.85, 86 TLR2 and TLR4 expression in intestinal macrophages and DCs 

are increased in CD patients compared to control subjects.87, 88 In addition, considerable 

evidence has confirmed a relationship between a polymorphism in the NOD2/CARD15 gene 

and CD, either alone or in combination with SNPs in TLRs, especially TLR4, or ATG16L1.89, 

90 As well, increased production of the pro-inflammatory cytokine, IL-1β, which has been 

linked to each of these gene variants,89-91 has been shown to play a critical role in CD 

pathogenesis. IL-1β production is tightly regulated through TLRs via endogenous ligands 

and/or danger-associated molecular pattern (DAMP) recognition.91, 92 Together, these data 

suggest a critical role for the innate immune response in the pathogenesis of CD.  
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1.3.5.2 The adaptive immune response in Crohn’s disease 

 The adaptive immune system is made up of T and B lymphocytes and acts as the second 

line of defense to foreign microbes. It is highly specific in generating appropriate immune 

responses, and confers long-lasting immunological memory. Cluster of differentiation 4 (CD4+) 

T cells are key cells of adaptive immune responses that are important in defense against 

pathogenic microbes. CD4+ T helper cells are grouped into different classes including Th1, Th2, 

Th17, and regulatory T cells (Tregs).93 Th1 cells are induced by IL-12 and IL-18 and produce 

high levels of IFNγ and TNFα. They respond to, and protect against, intracellular bacterial 

infections. Th2 cells are induced by IL-4 and produce high levels of IL-4, IL-5, IL-9, and IL-13, 

and protect against extracellular infections, such as parasitic helminths.93 Th17 cells are induced 

by IL-6 and transforming growth factor beta (TGFβ) in mice, or IL-6 and IL-1β in humans. They 

produce high levels of IL-17A, IL-17F, IL-21, and IL-22, and are important for defense against 

extracellular pathogens and recruitment of neutrophils and macrophages.94, 95 

There is evidence suggesting that an imbalance of CD4+ T cells to Tregs is a major 

cause of intestinal inflammation.96-98 CD is widely believed to be a Th1/Th17 mediated disease 

with increased secretion of IFNγ, TNFα, IL-17A, and IL-2 reported in T cells from CD patients 

compared to those from control subjects.99, 100 It has been shown that IFNγ and TNFα levels are 

increased in the inflamed mucosa of CD patients,101, 102 while there are high levels of IL-12 

produced by the cells in the lamina propria.103 In UC patients, there is increased production of 

IL-4 and IL-13,100 suggesting that Th1 and Th2 cytokines play an important role in the 

pathogenesis of CD and UC, respectively. IL-17 producing Th17 cells are also increased in the 

inflamed mucosa of IBD patients and are regulated by IL-23.104, 105 LP macrophages from CD 

patients produce high levels of IL-23, which drives Th1 and Th17 responses.106, 107 Also, SNPs in 
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the IL-23R gene have been associated with IBD.34 However, the IL-23R SNP, Arg381Gln, has 

been reported to confer a 2 to 3-fold protection against development of pediatric CD, which 

suggests that it may actually reduce IL-23 responses.34, 108 Together, these studies suggest that 

both IL-17 and IL-23 play an important role in the pathogenesis of both UC and CD, and 

targeting the IL-17/IL-23 pathway may serve as potential therapeutic strategy to treat IBD.  

Tregs are critical for the maintenance of mucosal immune homeostasis. They exert their 

action by producing IL-10 and TGFβ, thus suppressing the proliferation of naive T helper cells 

and aberrant immune responses to commensal bacteria and microbial antigens.109, 110 In CD 

patients, Treg numbers are significantly lower in blood compared to control subjects. In addition, 

Treg activity is also reduced in the intestinal mucosa of CD patients.111-114 This suggests that one 

factor in CD development may be defects in Treg activity resulting in reduced anti-inflammatory 

cytokine production, and activation of Th1, Th2, or Th17 cells producing cytokines that 

promotes intestinal inflammation.  

 

1.3.6 Therapeutic options 

 CD is characterized by relapsing and remitting inflammation, and it is estimated that 

approximately 90% of CD patients will experience a relapse. It is also reported that between 

38-71% of CD patients will require surgery within 10 years of diagnosis of their disease, as 

complications from fibrosis and intestinal dysfunction arise.19 The goal of treatment is to 

control inflammation, but every so often, flare-ups of acute symptoms may reappear, and 

depending on the circumstance, they may resolve on their own or require medication.16, 19 The 

time between flare-ups can vary from weeks to years, and differs from patient to patient; in 

some cases, patients never experience a flare.16, 19 
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 Despite the innumerable research that has been carried out, involving genetic, 

immunological, infectious, and environmental aspects that seek to clarify its etiology; IBD 

remains a group of diseases without a cure. In terms of medical management, it generally 

requires long-term treatment based on a combination of drugs designed to relieve patients of 

acute symptoms, provide long-term remission, and reduce the risks of complications. Treatments 

take into account the severity, location, and symptoms of disease, as well as an individual’s 

tolerance.16 Furthermore, patients’ past disease course, medical history, and the duration and 

number of flares are also taken into consideration when considering disease management. 

Management of pediatric IBD also takes into greater account the age and pubertal status of the 

child.15, 16 For treating mild to moderate UC, 5-aminosalicylic acid (5-ASAs), such as 

sulfasalazine, mesalamine, olsalazine, and balsalazide, are used for local immunosuppression.1, 16 

There is, however, limited evidence of 5-ASAs being useful for CD treatment, and most studies 

point to a modest to null effect (compared to placebo) of sulfasalazine, olsalazine, mesalamine in 

CD patients (reviewed in 115). Corticosteroids, such as prednisone, are also used for moderate 

disease, but because of the side-effects of corticosteroids, long-term use is avoided.15, 16 

Budesonide is another important corticosteroid that has a potent local action and a reduced 

systemic activity due to limited resorption and important first-pass liver metabolism, without 

a significant suppression of plasma cortisol.15, 16 It shows a better side effect profile and 

generally used for mild-moderate ileal and/or proximal colon disease.15, 16 Another effective 

treatment option is exclusive enteral nutrition, which involves exclusion of normal diet for a 

period of time, being replaced with liquid nutritional products.1, 116 

 In patients with moderate to severe IBD, immunosuppressive drugs, such as 

azathioprine, 6-mercaptopurine, or methotrexate are used to suppress the immune response. 
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However, a disadvantage of using immunosuppressive drugs is that they are non-selective, so 

they reduce the patient’s ability to fight infections.1, 16 Biological therapies are designed to target 

specific immune mediators of diseases, such as cytokines. Those approved for IBD include 

infliximab, adalimumab, and certolizumab, which are monoclonal antibodies (mAb) directed 

against the pro-inflammatory cytokine, TNFα. These are effective at inducing and maintaining 

remission in patients, and have revolutionized the treatment for CD and UC.1, 116, 117 Despite its 

relative success, many patients may experience primary non-response to biological therapy and a 

significant proportion may experience a loss of treatment efficacy or become intolerant to this 

kind of therapy.118, 119, 120 Secondary non-responders who are switched to another anti-TNF drug 

may be less likely to clinically respond than patients who are anti-TNF naive.121 As such, there is 

a strong need for biological agents targeting other inflammatory pathways and providing 

clinicians and patients with options to switch different classes of drugs.118 Ustekinumab is a 

monoclonal antibody (ab) to the p40 subunit shared by pro-inflammatory cytokines IL-12 and 

IL-23, and is a suitable option with an alternative mechanism of action.118 It was approved for 

adult patients with moderate to severe CD who have failed or were intolerant to treatment with 

immunomodulators, corticosteroids or at least one anti-TNF drug.122 Others, such as 

secukinumab (human anti-IL-17A monoclonal antibody), have produced mixed results but have 

been shown to reduce moderate to severe CD in patients with the TL1A gene variant.123 A new 

drug, vedolizumab, a mAb against the α4β7 integrin, is used with the goal of preventing the 

recruitment of immune cells to the gut. It has been licensed for UC and CD treatment in the 

United-States, and for the treatment of UC in Canada.101 

 Severe cases of IBD may require surgery, such as bowel resection, strictureplasty, or a 

temporary or permanent colostomy or ileostomy.1, 16 In CD, surgery would involve removing the 
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worst inflamed segments of the intestine and connecting the healthy regions, but unfortunately, 

it does not cure or eliminate the disease, as CD often recurs in the healthy part of the resected 

intestine.1, 16 In UC, in most cases, colectomy will lead to full remission, but frequently at a cost 

for patients in terms of lifestyle. Complications arising from colectomy include infectious 

complications, faecal incontinence, and small bowel obstruction (reviewed in 124). 

This 'step-up' approach to treatment has the advantage of reserving drugs with higher 

levels of toxicity for those patients who are in need of more intensive therapy (Figure 1.3).125 

However, conventional therapies do not alter the development of disease complications or the 

need for surgery. Hence, paediatric gastroenterologists are moving toward an early aggressive 

approach, also known as the ‘top-down’aproach, with the aim of changing the natural history of 

the disease.126 However, there are no defined criteria from which a clinician can decide with a 

high degree of confidence which patients will benefit from this approach, and it generally comes 

down to the clinician’s preference or previous experience.127, 128 Identifying the genetic and 

clinical criteria for predicting which patients will have a disabling disease course is a challenge 

in current IBD research. 
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Figure 1.3 Approaches for IBD treatment.  
Step-up approach: from mild to stronger and more toxic therapies. Top-down approach: early 
aggressive treatment with immunomodulators and biologic agents. Abbreviations: 5-ASA, 5-
aminosalicylate; 6-MP, 6-mercaptopurine; AZA, azathioprine; MTX, methotrexate. Reproduced 
with permission of Springer Nature Publisher. Aloi, M. et al. Nat. Rev. Gastroenterol. Hepatol. 
2013.129  
 
 
 
1.4 Intestinal epithelial cells 

 The intestinal epithelial layer is functionally compartmentalized into multipotent 

intestinal stem cells (ISCs) residing predominantly near the bottom of the crypts,130 transit-

amplifying (TA) and lineage-primed progenitor cells, and differentiated cells such as 

enterocytes, goblet cells, Paneth cells, enteroendocrine cells, and tuft cells (Figure 1.4). 131, 132 

 Epithelial cells make crucial contributions to immunity. Of paramount importance, the 

epithelial layer forms a physical barrier between self and non-self and is often the site of first 

encounter between the host and a foreign microorganism or harmful substance. Post-mitotic 
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differentiated cells in the intestine are classified into two cell lineages (absorptive and secretory) 

based on their distinct functions and genetic differentiation programs. One type of absorptive cell 

(enterocyte) and four types of secretory cells (goblet, Paneth, EE, and tuft cells) comprise the 

small intestinal epithelium. In both small and large intestine, all post-mitotic differentiated cells 

are derived from stem cells that reside near the base of the crypts. Two additional cell types, cup 

cells and M cells, have yet to be definitively assigned to the absorptive or secretory classes of 

epithelial cells.133, 134 Intestinal stem cells continuously self-renew throughout life and give rise 

to progenitors (transit amplifying cells) which undergo additional cell divisions prior to terminal 

differentiation and maturation.132 
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Figure 1.4 Representation of intestinal epithelial cell types generated from Lgr5-expressing 
crypt base columnar stem cells.  
A single layer of epithelial cells separates the lumen from underlying lamina propria. Intestinal 
epithelial stem cells, at the bottom of the crypts, are responsible for the rapid renewal of the 
intestinal epithelium, and able to specialize into at least seven post mitotic differentiated cell 
types. Reproduced with permission of Springer Nature Publisher. Gerbe, F. et al. Cell. Mol. Life 
Sci. 2012.135 
 
 
 Intestinal stem cells give rise to all different types of epithelial cells in the gut, though 

the mechanisms by which this happens are still not fully understood. To reach a fully mature 

state, epithelial cells depend on expression of different growth factors (e.g. Sox9 and Spdef for 

Paneth cells, Klf4 and Spdef for goblet cells). Absorptive enterocytes are the most abundant cell 

type in the small intestine. Their primary function is to absorb nutrients apically and export them 

basally, leading ultimately to nutrition of the individual, as well as secrete water and 

electrolytes.136 Goblet cells are the most abundant secretory lineage of the intestinal epithelia, 



 

  19 
    

comprising ~10-15% of the small intestinal epithelium and up to 50% of the colonic epithelium. 

They produce and secrete mucus to provide the epithelial cells a protective layer against noxious 

contents in the lumen.137 Paneth cells are secretory cells located at the bottom of crypts that 

produce and secrete antimicrobial peptides into the lumen. Paneth cells are unique in the sense 

that once cell fate is determined, they migrate toward the base of the crypts where they fully 

mature. In addition, Paneth cells are responsible for the regulation and maintenance of the stem 

cell niche in the crypt, most likely by expression of β-catenin and other factors.136 EE cells 

comprise approximately 1% of the small intestinal epithelium, are scattered throughout the 

mucosa as individual cells, and produce and secrete hormones. There are more than 16 subtypes 

of EE cells identified in the mouse intestine, but the mechanisms for generating diversity and 

specificity are not known.138 M (Membranous or Microfold) cells are microbial trafficking cells 

that are primarily found within follicle-associated epithelium (FAE) overlying Peyer's patches 

and lymphoid follicles. M cells contain unusual membrane structures which facilitate 

presentation of microbes to underlying lymphocytes, macrophages, and DCs.134 Lastly, 

cup cells are, for the most part limited to the ileum, which suggests a specific but still 

undetermined function.139 

 

1.4.1 Epithelial cell types involved in Crohn’s disease 

 The epithelial cell layer prevents excessive contact of harmful antigens with the immune 

cells and thereby also protects the gut from unwanted immune reactions. This is achieved by the 

sophisticated organization of the intestinal epithelium, which establishes a tightly regulated 

barrier.140 The intestinal epithelium forms a monolayer of columnar epithelial cells that are 

tightly connected by tight junctions (TJs).141 Although TJs can be considered as a part of the 
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physical barrier, specialized intestinal epithelial cells, such as goblet cells and Paneth cells, take 

over miscellaneous functions of antimicrobial defense, which make them crucial parts of the 

innate immune system. Specifically, goblet cells secrete a variety of antimicrobial molecules, 

such as trefoil factors and mucins.137 Mucin secretion creates a thick mucus layer to prevent 

direct contact of bacteria to the epithelial cell surface and thereby to protect against invasive 

pathogens. There are mouse models of IBD involving mucin depletion (e.g. Muc2-/- mice), 

demonstrating that defective Muc2 could predispose to IBD, likely by increasing microbe 

interactions with the intestinal epithelium and the mucosal immune system.142  

 Paneth cells are professional producers of antimicrobial peptides, which are secreted 

within the crypts of the small intestine.143 However, controlled antigen delivery to immune cells 

plays an important role in the education of the gut immune system. For instance, specialized M-

cells take up intestinal microbes and their antigens and forward them to resident immune cells in 

the gut-associated lymphoid tissue, supporting the maturation of the immune system.144 This 

means that the intestinal epithelium does not constitute a strict barrier, but consists of a highly 

regulated gate controlling the admission of antigens to protect the host’s health.145 The epithelial 

barrier integrity is challenged by the high rate of cell turnover. The epithelium is completely 

renewed within only 4–5 days with cells shedding into the gut lumen at the surface and 

proliferation of stem cells within the intestinal crypt replacing the constant cell loss.145 A failure 

of coordinated renewal can cause severe defects in barrier function that can lead to excessive 

invasion of foreign antigens and intestinal inflammation, such as seen in patients with UC or CD. 

 



 

  21 
    

1.4.2 Tuft cells 

 While much attention has been drawn to the regulation and function of most epithelial 

cell types, only recently have intestinal tuft cells emerged as an anatomically and functionally 

distinct epithelial cell entity. Tuft cells (also called brush cells, mainly in the airways) are a rare 

and understudied epithelial cell type with a characteristic shape including long and thick 

microvilli that extend actin bundles deep into their apical cytoplasm.146 Tuft cells are likely 

involved in chemical sensation of luminal contents, based on expression of proteins involved in 

taste sensation (α-gustducin, Trpm5), and secretion of opioids in response to luminal 

nutrients.146-148  

 

1.4.2.1 Discovery and distribution of tuft cells 

For almost a century, tuft cells (also known as brush or caveolated cells in the past) 

have been identified in many mammals as an unusual epithelial cell type in numerous hollow 

organs, including the gallbladder,149-153 stomach,149, 154-156 lung alveolus,157-161 and intestine.162-166 

Depending on which morphological criterion was retained, they were named ‘‘peculiar’’, 

‘‘fibrillovesicular’’, ‘‘caveolated’’, ‘‘brush’’, or ‘‘tuft’’ cells, all referring to epithelial cells 

endowed with a unique tubulovesicular system and apical bundle of microfilaments connected to 

a tuft of long and thick microvilli protruding into the lumen.  

The first observations are usually attributed to Rhodin and Dalhamn, in 1956, who 

described cells with a well-developed apical brush border in the rat trachea,167 and Järvi and 

Keyrilainen (also in 1956) who found similar cells in the mouse glandular stomach.168 These 

observations and descriptions were possible due to the advent of electron microscopy and the 

unique morphology of the tuft cells, with a unique tubulovesicular system and an apical bundle 
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of microfilaments connected to a tuft of long and thick microvilli projecting into the lumen.167-169 

Decades of investigation have revealed little regarding the function of this mysterious cell type, 

until recently, when some light was shed on tuft cell function in the airways and gastrointestinal 

tract.135, 169-171 

 

1.4.2.2 Origin and differentiation 

Previously, tuft cells were thought to be a rare type of EE cell, based on their frequency 

in the epithelium and function in chemical sensation.148 However, tuft cells were proposed to be 

a 4th secretory lineage based on the genetic program required for their differentiation, as reported 

by Gerbe and colleagues.146 The authors reported that tuft cells were dependent on Atoh1 for 

their formation, thus classifying them as a secretory cell type.146 However, differentiation of tuft 

cells was not affected by deletion of Neurog3 (required for EE cell differentiation), Sox9 

(required for Paneth cell differentiation), Gfi1 or Spdef (goblet/Paneth differentiation factors).146 

The differentiation factors required for tuft cells remain to be identified. Interestingly, the 

intestinal stem cell marker doublecortin-like kinase 1 (DCLK1 or DCAMKL1) was shown to be 

localized to tuft cells, and the relationship between tuft and stem cells remains to be 

established.146 

	

1.4.2.3 Proposed functions 

Several research groups have proposed different functions for tuft cells since their 

discovery in the 1950’s: secretion, absorption and reception.169 At first, the speculations were 

based solely on microscopic observations of the tubulovesicular systems of these cells.169, 172, 173 

As more techniques (e.g. Cytochemistry with PA-TCH-SP-PD and lectin; EFTEM-TEM 
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tomography) were used in tuft cell investigation, the continuity between the luminal membrane 

and the tubulovesicular system was confirmed. It was proposed that the spheres present along the 

microvilli seemed to originate from the cytoplasm through a form of apocrine secretion, possibly 

containing enzymes, but undetermined.169, 172, 173 It was also believed that numerous granules 

known as glycocalyceal bodies among the microvilli were secreted from tuft cells occasionally, 

and also proposed that they arise in association with the Golgi apparatus.174 

The tubulovesicular system also gave hints that it was possible that endocytosis was 

taking place in the area, despite tuft cells not being able to absorb HRP 166, 174 and cationic 

ferritin.166, 175 It was speculated that, despite tuft cells not being able to absorb macromolecules, 

there was some (though limited) evidence that they might absorb particular molecules.169, 174 

Several groups have shown evidence of the receptive function of tuft cells. Luciano and 

colleagues154 showed that the unique arrangement of the apical cytoskeletal components 

including the lateral microvilli, resembles those of the Merkel cell, a type of mechanoreceptor. If 

this were the case, these cells might be singularly predisposed to tolerate mechanical stress, 

supporting the idea that they are sensory in nature.154 Because of the observations related to 

preferential distribution,152 α-gustducin (involved in taste signaling transduction) expression,176, 

177 and connection with neurons, 152, 174, 176 most investigators now consider these cells to be 

chemoreceptive in nature.169 

 

1.4.2.4 Tuft cells and IL-25 involvement in disease 

Type 2 immune responses are evoked strongly by parasitic helminths at mucosal 

barriers, but these responses also characterize problematic airway responses to inhaled 

aeroallergens. Three recent studies on tuft cells following parasite infections tie this cell type to a 
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new paradigm of type 2 immune responses.178-180 Tuft cells were found to be the source of IL-25 

(also known as IL-17E), an epithelial-derived cytokine, whose effects are mediated by the IL-25 

receptor (IL-17RB), and have been implicated in the pathogenesis of allergic disease, airway 

viral responses and parasitic infections (type 2 responses).178-182 

IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are epithelial-derived 

cytokines (collectively termed alarmins) which regulate type 2 immune responses to parasitic 

infection in the gastrointestinal tract and to aeroallergen exposure in the lungs.181-187 IL-25 is a 

member of the IL-17 family, but unlike other IL-17 cytokines, promotes Th2-mediated 

inflammation.181, 182 Chronic exposure to IL-25 alone is sufficient to induce asthma-like airway 

inflammation, remodeling, and hyper-responsiveness in mice.188 Recent work suggests that IL-25 

may act as a link between adaptive and innate immune responses through its ability to control 

Toll-like receptor 9 (TLR9) expression and TLR9 receptor-induced responses by plasmacytoid 

DCs, in the airways.189 It is possible that such a mechanism involving the TLR9 receptor is also 

happening in the gut, but it has not been elucidated thus far. 

Although tuft cells in the intestine are known sources of IL-25,190 the details 

underpinning how IL-25 orchestrates type 2 immunity have only recently been uncovered.178-

180 In response to intestinal helminthes, IL-25 from tuft cells activate lamina propria group 2 

innate lymphoid cells (ILC2s) to secrete IL-13, which feeds back on epithelial crypt precursors 

to skew differentiation of small bowel epithelia toward mucus-producing goblet cells and 

additional tuft cells.178-180 Thus, as revealed in this model in the small intestine, tuft cells can 

serve as epithelial sensors that use IL-25, and possibly additional signals, to activate ILC2s to 

skew epithelial cell fates toward mucus-secreting goblet cells in response to luminal 

perturbations elicited by parasitic helminths, as well as tuft cell hyperplasia.178-180  
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Despite recent work elucidating tuft cell function, the relationships and mechanisms 

between IL-25 and other epithelial cytokines capable of eliciting type 2 immune responses, such 

as TSLP and IL-33, still need further investigation. Such studies may ultimately guide further 

mechanistic insights regarding how these mechanisms can be applied to ameliorate human 

disease. 

 

1.4.2.5 Tuft cell hyperplasia as a marker of inflammation 

Three independent and complementary studies178-180 (discussed above) have recently 

revealed a critical function of tuft cells in the initiation of type 2 immune responses, which are 

typically involved during intestinal protozoa or helminth parasite infections, and which are 

deleteriously activated in allergies.191 Type 2 responses require activation and recruitment of 

type 2 helper T cells and ILC2s by epithelial cell-derived cytokines, including IL-25, IL-33, and 

TSLP, as previously mentioned.186, 192, 193 Production of IL-13 by Th2 cells and ILC2s causes the 

remodeling of the intestinal epithelium, including goblet cell hyperplasia and hypercontractibility 

of smooth muscle cells that peak at the time of worm expulsion.178-180, 194, 195 For example, 

Howitt et al. found that the tuft cell population expands considerably during infections with 

helminths such as Trichinella spiralis, Nippostrongylus brasiliensis or Heligmosomoides 

polygyrus, in an IL-4/IL-13 signaling-dependent way.178 These studies identified tuft cells as the 

trigger to the induction of the type 2 response following parasite infections. 

Outside of the nervous system, DCLK1 (or DCAMKL1, an important tuft cell marker) 

was initially proposed to stain specifically for quiescent gastrointestinal stem cells.196, 197 It was 

later understood that DCLK1+ cells in the GI tract are mostly tuft cells and predominantly post-

mitotic.198 However, a subset of intestinal and colonic DCLK1+ tuft cells are long-lived, largely 
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quiescent cells, that regulate and contribute to the stem cell niche.198 DCLK1+ tuft cells are post-

mitotic, fully differentiated cells, but a study using DCLK1-CreERT-BAC transgenic mice 

showed that a subset of DCLK1+ colonic and intestinal cells are long-lived and can function as 

powerful cancer initiating cells in the setting of APC mutation and inflammation.199 The authors 

claim that DCLK1 seems to play a role in a variety of different cancers. Further research efforts 

are needed to clarify the underlying mechanisms before DCLK1+ cells can be used as a 

therapeutic target, although it appears to be a promising approach for the future. 

An increase in tuft cell numbers has also been associated with gastric inflammation, 

hyperplasia, and metaplasia in mice.200 In humans, the representation of tuft cells tends to 

increase in the inflamed stomach or the metaplastic intestine.200 Together, the studies mentioned 

above reveal an exceptional level of functional integration and cooperation between the epithelial 

and hematopoietic compartments in mounting an efficient response against parasite infections 

and other malignancies, putting the tuft cell as an epithelial sentinel linking signals from the 

lumen to the immune system. 

 

1.5 Src homology 2 domain-containing inositol polyphosphate 5´-phosphatase 

1.5.1 Description and function 

The src homology 2 domain-containing inositolpolyphosphate 5΄-phosphatase (SHIP) is 

considered primarily a hematopoietic-specific lipid phosphatase that negatively regulates class I 

phosphatidylinositol 3-kinase (PI3K) activity. SHIP is also expressed in osteoblasts and 

mesenchymal stem cells.201, 202 The human gene encoding the 145kDa SHIP protein (INPP5D) is 

located at chromosome 2q37.1.203 Two other SHIP isoforms exist, the 150kDa SHIP2 that is 

similar in structure and biochemical function to SHIP,204-206 and the 104kDa sSHIP, which lacks 
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the SH2 domain. SHIP2 is ubiquitously expressed and is seen in high levels in human skeletal 

muscles, placenta, and heart.207 sSHIP is restricted to murine hematopoietic and embryonic stem 

cells.204, 208 

PI3Ks are a family of enzymes that are critical in cellular processes including cell 

growth, differentiation, proliferation, and inflammation.209, 210 PI3Ks can be grouped into three 

main classes, class I, II, and III, based on their substrates, molecular structures, and regulation 

within the cell.209, 211 Class I PI3Ks are heterodimeric enzymes: Class IA is composed of 1 of 5 

regulatory subunits, p50α, p55α or p55γ, p85α, p85β, and 1 of 3 catalytic subunits, p110α, 

p110β, or p110d; and Class IB is composed of 1 of 2 regulatory subunits, p87 or p101, and the 

catalytic subunit, p110γ. p110α and p110β are ubiquitously expressed whereas p110γ and p110d 

are mainly restricted to hematopoietic cells.210 PI3Kp110 catalytic subunits have overlapping as 

well as unique functions downstream of specific receptor tyrosine kinases, growth factor, 

cytokine, and TLRs.212 Class I PI3Ks phosphorylate the 3´ position of the inositol ring of 

phosphatidylinositol-4,5-bisphosphate PI(4,5)P2 to generate PI(3,4,5)P3, a critical second 

messenger.209, 211 Class II PI3K is membrane bound, usually activated by tyrosine kinases and 

integrins,213, 214 and is involved in cell migration.215 Class III PI3K consists of a single catalytic 

subunit Vps34 and a regulatory subunit Vps15, and has been implicated in autophagy.216 Class II 

PI3K catalyzes the phosphorylation of PI and PIP to PI(3)P and PI(3,4)P 2,216 whereas class III 

PI3K only catalyzes the production of PI(3)P from PI.211 Note that SHIP is one of the primary 

points of focus of this work. 
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1.5.2 SHIP enzymatic activity  

To exert its action, SHIP is translocated from the cytoplasm, where it resides, to the 

inner leaflet of the cell membrane where PI(3,4,5)P3 synthesis occurs.203 This happens through 

the association with an adaptor (such as Shc) and scaffold proteins (such as the growth factor 

receptor-bound protein (Grb) family of proteins) and/or direct binding of its SH2 domain.203 

PI(3,4,5)P3 recruits serine-threonine kinases, such as AKT/PKB and phosphoinositide-dependent 

kinase-1 (PDK1), to the plasma membrane, where it begins driving cellular processes,209 such as 

growth, proliferation, differentiation, and immune activation.217 SHIP antagonizes these actions 

by dephosphorylating the 5´ position of the inositol ring to form PI(3,4)P2 (Figure 1.5).218 

Therefore, SHIP regulates the downstream cellular processes in immune cells, such as cytokine 

production and inflammatory responses (Figure 1.5).219 

Furthermore, SHIP enhances neutrophil apoptosis,220 decreases B cell proliferation, 

chemotaxis, and activation,220-222 and promotes T cell survival and maintains innate immune 

balance at mucosal surfaces.221 SHIP can be regulated either at the level of transcription or post-

transcriptionally.220 In macrophages, TGFβ has been shown to up-regulate SHIP mRNA 

expression in both human and mouse cells,222 while Mothers against decapentaplegic homolog 7 

(SMAD7), which blocks TGFβ activity, has the counter effect of reducing SHIP expression.223 

Post-transcriptionally, IL-4 has been shown to induce SHIP protein degradation in 

macrophages.220 Studies have also shown that tyrosine phosphorylation of SHIP targets it for 

ubiquitination and proteasomal degradation.224 
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Figure 1.5 The phosphatase activity of SHIP.  
Ligation of receptor tyrosine kinases (RTKs), cytokine receptors (cytokine Rs), growth factor 
receptors (GFRs), G protein-coupled receptors (GPCRs), and TLRs activate Class I PI3K, which 
is comprised of a p110 catalytic and a p85 regulatory subunit. Class I PI3K phosphorylates 
PI(4,5)P2 to produce the second messenger PI(3,4,5)P3. SHIP dephosphorylates PI(3,4,5)P3 to 
form PI(3,4)P2, and blocks cellular processes, such as growth, proliferation, differentiation, and 
immune activation. PI3K activity can be reversed by the tumor suppressor Phosphatase and 
tensin homolog (PTEN). Modified and reproduced with permission of: John Wiley and Sons 
Publisher - Dobranowski and Sly, J. Leukoc. Biol 2017.225 
 
 

1.5.3 The SHIP-deficient mouse 

The SHIP-deficient mouse (Inpp5d−/−), which will be referred to as SHIP-/-, is smaller in 

size than its wild-type counterparts and has a reduced lifespan, asthmatic lungs, splenomegaly, 

and a myeloproliferative disorder.220 These mice were first developed in 1998 by targeting and 

deleting the first exon of SHIP, thus disrupting SHIP activity.220 

SHIP-/- mouse macrophages are also hyper-responsive to IL-4.221, 226, 227 Note that 

macrophages formerly known as M2 macrophages primed with IL-4 or IL-13 are now defined as 

M(IL-4) or M(IL-13), and have a wound healing and tissue remodeling phenotype, in order to 

repair tissue damage from the inflammatory response (reviewed in 228). In addition, SHIP-/- mice 

have hyperactive, IL-4-secreting basophils, which expose macrophages to this M(IL-4)-skewing 
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cytokine.220 This results in macrophages that constitutively express high levels of the M(IL-4) 

markers, argI and Ym1, and which also secrete high levels of the anti-inflammatory cytokines, 

IL-10 and TGFβ.220, 229 Studies have shown that SHIP-/- mice have granulocytes that are less 

susceptible to apoptotic signals, and granulocyte-monocyte infiltrations can be found in various 

tissues in these mice, such as in the terminal ileum.92, 230 

Recently, our research team, and Kerr’s group,92, 230 reported that the SHIP-/- mice 

spontaneously develop ileitis with several key features resembling CD, including both 

inflammatory and fibrotic components, that were restricted to the distal ileum.  

 

1.5.4 The SHIP-/- mouse model of Crohn’s disease-like intestinal inflammation 

SHIP-/- mice develop spontaneous CD-like inflammation restricted to the distal ileum 

beginning at 4 weeks of age.92, 230 Inflammation is characterized by abundant infiltrating Gr-1-

positive immune cells (neutrophils), granuloma-like immune cell aggregates, multi-nucleated 

giant cells, goblet cell hyperplasia, and a mixed Th2 and Th17 cytokine profile.92, 230 There is a 

paucity of T cells (CD4+ and CD8+) in the inflamed mucosa of SHIP-/- mice, suggesting that T 

cells might not play an important role in the onset of intestinal inflammation in this model.230 

This mouse model is particularly relevant to humans because SHIP protein levels and 

activity have been found to be reduced in people with CD.231-233 In fact, concentrations of SHIP 

mRNA, protein levels, and activity are reduced in immune cells within inflamed ileal tissues 

from newly diagnosed, treatment-naive pediatric patients with CD, as previously published by 

our research team.231, 232 Somasundaram and colleagues have also found that SHIP protein levels 

are profoundly diminished in a subset of patients; however, SHIP activity and expression was not 

correlated to ATG16L1 SNP status in the adult cohort included in the study.233 Evidence 
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suggests that aberrant SHIP activity can contribute to disease, at least in a subset of adult and 

pediatric CD patients. Although CD is typically considered a Th1-mediated disease, fibrosis in 

CD is mediated by IL-1β, TGFβ, IL-13 and other type II cytokines.234 Further investigation is 

needed to determine whether the subset of CD patients with low levels of SHIP, are those that go 

on to develop intestinal fibrosis, one of the major complications that CD patients face. 

 

1.6 COX enzymes and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)  

Nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of drugs with therapeutic 

applications as they have analgesic, antipyretic, and anti-inflammatory properties, which make 

them very attractive for both health professionals and patients.235 The number of NSAIDs 

available on the market has increased over the past decades, and today it is estimated that 1 in 7 

individuals with rheumatologic disorders are using NSAIDs.236 Also, approximately 1 in 5 (50 

million) US citizens report they use an NSAID for other acute complaints.237 There is also an 

increasing trend in the use of NSAIDs, as the world population is aging, and chronic systemic 

diseases with painful symptoms appear to be increasing.236, 238 

The major classes of NSAIDs (salicylate, diclofenac, naproxen, ibuprofen, 

acetaminophen, indomethacin and piroxicam) have a common feature, the inhibition of 

cyclooxygenase (COX) enzymes, which are responsible for the rate-limiting step in the synthesis 

of prostaglandin from arachidonic acid.238, 239 The common anti-inflammatory drugs such as 

aspirin, ibuprofen, and naproxen block the action of both COX enzymes, COX1 and COX2. 

Different classes of NSAIDs preferentially inhibit COX2, such as celocoxib, meloxicam, 

carprofen, and nimesulide; or selectively inhibit COX2, such as rofecoxib, valdecoxib, 

etoricoxib, and lumiracoxib.240, 241 
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In the late 80’s, increasing evidence of serious adverse gastrointestinal events, such as 

perforation, gastrointestinal ulceration and bleeding, led to a progressive decline in the use of 

conventional NSAIDs in the treatment of osteoarthritis and other diseases.242 However, after 

1998, the release of a new NSAID class with low GI toxicity, the selective COX2 inhibitors, 

particularly celecoxib and rofecoxib, modified the standard recommendation for analgesia in 

cases of osteoarthritis and rheumatoid arthritis.242 Despite this gastrointestinal advantage, this 

safety profile of selective COX2 NSAIDs was affected and rofecoxib was withdrawn from the 

market in 2004 due to increased risk of myocardial infarction.242, 243  

To study the action of NSAIDs on epithelial tissue is a way of recognizing the 

advantages and disadvantages of their use and potential application in the clinic. It is important 

to recognize the roles and mechanisms of action of these drugs in order to detect the changes 

caused in the physiological and pathophysiological processes.  

	

1.7 Prostaglandin specification and function 

 Prostaglandins (PGs) are lipid mediators formed by the majority of cells in the body, 

and act in an autocrine and paracrine manner. As shown in Figure 1.6, the PGs originate from 

arachidonic acid (AA) released from membranes by phospholipases (PLA2), mainly group IV 

cytosolic phospholipase (cPLA2).244 Released arachidonic acid is rapidly metabolized by COX1 

and COX2 to form the intermediate prostaglandin, PGH2. While COX1 is a constitutive enzyme, 

responsible for the basal levels of prostaglandin production, the COX2 enzyme is induced at 

times of inflammation and acts to potentiate the production of PGs.245 However, this view that 

constitutive COX1 exerts homeostatic functions and inducible COX2 exerts pathophysiological 

functions is oversimplistic and erroneous in some cases.246 This notion has been challenged by 
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growing evidence indicating that both isoforms are present in normal tissues and can be up-

regulated in various pathological conditions.247 Both the expression and regulation of COX 

isoforms have been intensively investigated, and reviews about transcriptional regulatory 

mechanisms,248 and the regulation of gene expression at the post-transcriptional level have been 

published.249  

 COX enzymes are inserted into the nuclear and endoplasmic reticulum membranes with 

their cytoplasmic-oriented substrate binding moiety.245 The enzymes responsible for the 

metabolism of PGH2 will determine the end product, which can be PGI2, PGF2, PGD2, PGE2 or 

thromboxanes A2 (TxA2). The end product of the metabolism of PGH2 depends on the cell type 

in question. Prostaglandins produced are released by the cell predominantly through a 

prostaglandin transporter and, due to their short half-life, exert their function in an autocrine 

and/or paracrine manner.250 In the specific case of PGE2, for example, PGH2 undergoes 

isomerization by three distinct PGE synthases, cytosolic PGE synthase (cPGES), and two 

membrane-bound PGE synthases, mPGES-1 and mPGES-2. While cPGES and mPGES-2 are 

constitutive enzymes, mPGES-1 is induced in response to various pro-inflammatory and 

mitogenic stimuli concomitantly with COX2. Thus, it is postulated that cPGES uses the PGH2 

catabolized by COX1, while mPGES-1 uses PGH2 derived from COX2.251 
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Figure 1.6. Prostanoid synthesis.  
After cellular stimulation, PLA2 is activated and arachidonic acid (AA) is released from 
membrane phospholipids. Subsequently, AA is metabolized by the COX1 or COX2 enzymes in 
distinct cellular compartments and subsequently metabolized by specific synthases, which lead to 
the generation of synthase-specific prostanoids. Once the prostane is produced, they are 
transported out of the cell to bind to their respective receptors. Reproduced with permission of: 
Hindawi Publishing – Medeiros et al., Mediators of Inflammation, 2012.252 
 

1.7.1 PGE2 effects 

 PGE2 plays a well-established role as an inflammatory mediator in innate immunity. Its 

role in the induction of fever, pain, and vasodilation, and its involvement during the 

inflammatory process are well demonstrated by the use of cyclooxygenase inhibitors as potent 

anti-inflammatory agents.253 Paradoxically, PGE2 also exerts anti-inflammatory actions on cells 

of the immune system, such as monocytes, neutrophils and lymphocytes.254 cAMP can be 
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considered an important second messenger in cells of the innate immune system, acting most 

often as an inhibitor of the activation of these cells. Some functions of cAMP are well described 

in macrophages; PGE2 is the most important ligand in the context of innate immunity associated 

with increased intracellular cAMP.255 Among the actions of PGE2 and cAMP are the inhibition 

of phagocytosis; inhibition of microbicidal activity; inhibition of the production of pro-

inflammatory mediators such as TNFα, MIP-1α, and leukotriene B4, while increasing the 

production of anti-inflammatory IL-10 and suppressor of cytokine signaling 3 (SOCS3).255 

 In alveolar macrophages, the effector molecules protein kinase A (PKA) and guanine 

nucleotide exchange protein activated by cAMP (Epac) are responsible for the suppressive 

functions of cAMP. These effector molecules promote their actions independently or 

redundantly.256 While PKA modulates the generation of pro-inflammatory and anti-inflammatory 

mediators, inhibiting the former and stimulating the latter, Epac promotes the inhibition of 

phagocytosis via FcR receptors, and both modulate the inhibition of microbicidal activity by 

decreasing the generation of reactive oxygen species (ROS).256 However, the specificity of these 

effector molecules may vary from cell to cell, as demonstrated in DCs, in which both PKA and 

Epac act on the modulation of inflammatory mediators.257 

 PGE2 exerts its function through 4 receptor subtypes: EP1, EP2, EP3, and EP4. EP 

receptors are coupled to G protein (GPCRs) and vary in their molecular structure, PGE2 binding 

properties, tissue distribution, expression, and signal transduction (Figure 1.7).258 Among these, 

EP2 and EP4 are expressed at high levels in monocytes and CD4+naive T cells in humans, while 

EP1 and EP3 are poorly or not expressed. Furthermore, the activation of human T cells promotes 

a 2- to 3-fold increase in EP2 and EP4 receptor expression.259 On the other hand, in murine 

assays, in addition to the high expression of EP2 and EP4, the EP1 receptor is also present in 
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CD4+naive T cells.260 While EP1 is coupled receptor protein Gαq/p, both EP2 and EP4 are 

coupled to the α subunit of the stimulatory G protein (Gαs). The binding of PGE2 to these 

receptors promotes, respectively, the increase of intracellular Ca2+ and the increase of 

intracellular concentration of cAMP, an important second messenger that acts regulating diverse 

cellular functions.261, 262 

 
 

 

Figure 1.7. PGE2 receptors and their actions on macrophages. 
PGE2 has four specific receptors: EP1, EP2, EP3 and EP4. All receptors are coupled to G 
protein, and EP2 and EP4 signaling are associated with release of the Gαs subunit of the Gβγ 
complex. EP3 signaling releases the Gαi subunit, while EP1 signaling releases the αq/p subunit. 
Release of the Gαq/p subunit promotes the increase of intracellular Ca2+. The Gα subunit is able 
to bind to the adenylate cyclase and promotes the activation (Gαs) or inhibition (Gαi) of the 
generation of the cAMP enzyme product. In turn, cAMP signals through effector molecules PKA 
or Epac, which modulate the function of macrophages. Shown above are anti-microbial functions 
that are differentially regulated by effector molecules PKA and Epac in macrophages. 
Reproduced with permission of: Hindawi Publishing – Medeiros et al., Mediators of 
Inflammation, 2012.252 
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 The role of PGE2 in adaptive immunity, on the other hand, has been elucidated in recent 

years and, unlike the immunosuppressive functions previously described,263, 264 recent studies 

demonstrate an important immune-activating function of this lipid mediator.265, 266, 264 The 

suppressive role of PGE2 via EP2 was previously demonstrated by inhibition of T cell 

proliferative capacity in a mixed lymphocyte reaction.267 This suppressor effect of PGE2 and 8-

CPT-cAMP (cAMP-specific analogue that specifically activates PKA) in peripheral T cells is 

mediated by PKA-Csk, which acts by antagonizing TCR signaling, competing for Src family 

kinase activation (Lck).268, 269 That is, while TCR stimulates the activation of this kinase, PGE2 

stimulates inactivation.268, 269 Recent studies also highlight an anti-inflammatory role of PGE2 

because it plays a role in the differentiation of Treg cells.264 Baratelli and colleagues264 

demonstrated that PGE2 enhances the expression of the forkhead box P3 (FOXP3) transcription 

factor in natural Treg cells (nTreg) and in CD4+ naive T cells, promoting their differentiation 

into induced Treg cells (iTreg).264  

 Contrasting these direct or indirect suppressive effects of PGE2 on T cells, it has been 

reported that high concentrations of anti-CD3 (indirect TCR activation) outweigh the suppressive 

effect of PGE2.265 In this context, in the presence of polarizing conditions, which promote 

differentiation of Th1 cells, PGE2 increases the percentage of IFNγ producing Th1 profile cells 

in a concentration-dependent manner.265 Interestingly, this facilitating signaling of PGE2, 

although occurring via EP2 and EP4, was promoted by PI3K activation and not cAMP, and the 

Th17-expanding action of EP2 and EP4 is mediated by cAMP and not PI3K activation.265, 266 

This suggests that these two PGE2 actions are promoted through different signaling modules of 

EP2 and EP4.265 It was demonstrated that EP2/EP4 signaling promotes immune inflammation 

through Th1 differentiation by inducing expression of the IL-12R subunit Il12rb2 and the IFN-γ 
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receptor Ifngr1, thus facilitating IL-12 signaling.265, 266 Notably, the EP2/EP4 signaling was also 

reported to synergize with IL-23 to facilitate Th17 cell expansion in murine and human T 

cells,259, 265, 270 and it was suggested that EP4 antagonism may be therapeutically useful for 

various immune diseases.265, 266 

 Differentiated Th1 cells predominantly express the Ep1 receptor, which facilitates Th1 

differentiation.260 In Th17 cells, PGE2 acts via EP2 and EP4 receptors via the cAMP-PKA 

signaling pathway to aid in the differentiation of human CD4+naive T cells into Th17 cells.259 

PGE2 enhances the expression of the receptors for IL-1 (IL-1R) and IL-23 (IL-23R) on 

differentiating T cells and, in combination with cytokines that promote differentiation of the 

Th17 subpopulation, increased the phosphorylation of STAT3 and induced a qualitative and 

quantitative change in Th17 function and phenotype to a more inflammatory/pathogenic 

pattern.259 In mice, PGE2 acts via EP2 and EP4 receptors, and signals via cAMP/PKA 

facilitating the expansion of Th17 cells in conjunction with IL-23. In addition, PGE2 can 

increase IL-23 production by DCs and indirectly contribute to Th17 expansion.265, 271 PGE2 also 

plays an important role in the recruitment of neutrophils to the joint cavity in a murine model of 

arthritis by increasing IL-17 synthesis and IL-12/IFNγ axis inhibition.272 Therefore, PGE2 

performs roles in both innate and adaptive immunity, acting as an immunosuppressive mediator 

and as an immunoactivator. Given its importance in gut immunity, PGE2 was measured as a 

downstream target of COX inhibition in this study. 

 
1.7.2 PGD2 and its dual role 

Prostaglandin D2 (PGD2) and its metabolite 15dPGJ2 are prostanoids that have a role in 

pro- and anti-inflammatory responses, vasodilation, allergic responses, platelet aggregation, 

contraction of the airway smooth muscles, among other processes.273-276 The enzymes that 
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synthesize PGD2 are hematopoietic PGD synthase (H-PGDS) and lipocalin-type PGD synthase 

(L-PGDS).273 Beyond the nervous system, where it is better studied, L-PGDS also has an 

inhibitory effect on the progression of lung, ovarian, colorectal cancer, as well as some types of 

leukemia.275, 277 H-PGDS is present in various cells of the immune system, which produce PGD2 

as an allergic and inflammatory mediator. It is also characterized as a member of the glutathione 

S-transferase (GST) gene family, whose members are known to catalyze the binding of 

glutathione (GSH) to an electrophilic substrate.278 

PGD2 exerts its functions through two receptors, named D Prostanoid (DP or DP1) and 

chemoattractant T-helper 2 receptor (CRTH2), also commonly known as DP2.279 The activation 

of these receptors triggers several events. DP activation may increase cAMP concentration, thus 

inhibiting IL-12 production by DCs, inhibiting production of IFNγ by T cells, inducing IL-4 and 

IL-5 release by activated CD4+ Th2 cells, inhibiting basophil migration and degranulation, and 

suppressing NK cell functions.279-283 DP may have an overall anti-inflammatory role in the 

immune system, by antagonizing, and in fact limiting the effect of pro-inflammatory CRTH2 

activation upon exposure to PGD2.284 

Activation of the CRTH2 receptor can induce various biological responses, such as 

induction of migration in Th2 cells, basophils, and eosinophils, up-modulation of adhesion 

molecules such as CD11b in eosinophils, and induction of various features of cell activation in 

eosinophils including degranulation, actin polymerization, CD62L shedding, cell shape change, 

and mediator release.279, 285, 286 CRTH2 is also present in DCs and participates in the migration of 

these cells.287, 288 These observations indicate that CRTH2 signals are inherently pro-

inflammatory and pro-stimulatory, and suggest the involvement of CRTH2 in various steps of 
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leukocyte pro-inflammatory activities such as endothelium adhesion, extravasation, chemotactic 

migration, and effector function.251, 289 

The involvement of PGD2 in the pathophysiology of IBD is currently being 

debated. There are several strong arguments for a beneficial impact of PGD2 when interacting 

with its DP receptor. An experimental model of colitis in rats demonstrates that PGD2 induces a 

decrease in granulocytic infiltrate in the colonic mucosa.290 This effect is also observed during 

the administration of a DP agonist, suggesting the involvement of this receptor.290 A study based 

on the analysis of colonic biopsies of patients with ulcerative colitis shows the involvement of 

PGD2 and the DP receptor in the resolution of the inflammatory process and the persistence of 

remissions in this disease.291 In fact, overexpression of DP associated with an increase in PGD2 

production is observed in patients in remission compared to patients in the active phase of the 

disease.291 Conversely, a deleterious effect of PGD2 has been observed in a model of 

trinitrobenzene sulphonic acid-induced colitis.292 Other studies suggest the involvement of the 

COX/L-PGDS pathway in the pathophysiology of IBD.293, 294 The study by Hokari et al., also 

performed on biopsies of patients with ulcerative colitis, shows an increase in the expression of 

L-PGDS, correlated with the severity of the disease.294 Also, it was demonstrated that L-PGDS 

has a possible involvement in dextran sulfate sodium (DSS)-induced colitis. L-PGDS-/- mice 

treated with DSS showed an attenuation of the inflammatory involvement when compared to 

DSS-treated wild type mice, adding to the complexity of the role played by PGD2 and L-PGDS 

in attenuating inflammatory symptoms of colitis and suggesting the potential usefulness of 

selective L-PGDS inhibitors for treatment of IBD.293, 294 

With regard to DP, a specific signaling pathway involved in the induction of MUC5B 

mucin expression has been described.295 An increase in expression of mucins MUC2 and 
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MUC5AC, via DP, has also been demonstrated on the epithelial intestinal cell line 

LS174T.296 Since the main function of mucins is to form a mucous barrier that protects the 

mucosa, the beneficial role of PGD2 in IBD may be related to increased mucin secretion after 

activation of DP.297 The mucins MUC5AC and MUC2 are indeed involved in epithelial repair 

during IBD, through their action on differentiation and cell growth.298, 299 

The anti-inflammatory action of PGD2 is partly attributed to its product, 15d-PGJ2, 

which is a natural ligand of peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ 

is a key player in the maintenance of innate antimicrobial immunity in the colon.300 Activation of 

PPARγ can cause an increase in eosinophil migration and actin polymerization, inhibit TNFα, 

IL-6 and IL-1β production, inhibit cellular proliferation, and induce apoptosis.273 It also leads to 

inhibition of the transcription of pro-inflammatory cytokines by immunocompetent cells, and the 

arrest of proliferation and induction of differentiation of intestinal epithelial cells.301, 302 In 

addition, it is already established that 15d-PGJ2 suppresses the activation of NF-κB by inhibiting 

IκB phosphorylation by the IκB kinase.297, 303 Finally, a decrease in the expression of PPARγ is 

observed in the active phase of ulcerative colitis.304 Genetic ablation of PPARγ was found to 

result in increased susceptibility to experimental colitis in rodents.305 A lack of expression of the 

PPARγ anti-inflammatory signaling pathway could therefore be one of the elements that 

contributes to the pathophysiology of IBD. 

In light of this growing knowledge base on the various functions of PGD2 in the 

immune response, and H-PGDS acting as a marker of tuft cells, PGD2 was measured as one of 

the targets downstream of COX inhibition in the present study.       
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1.8 Thesis hypothesis and objectives 

1.8.1 Summary of rationale 

• Previously, our laboratory reported that SHIP-deficient mice develop spontaneous CD-

like ileal inflammation.  

• In our research investigating the lipid phosphatase SHIP, it was discovered that tuft cells 

express SHIP, previously thought to be hematopoietic-restricted.  

• SHIP deficiency leads to increased PI3-kinase activity in cells resulting in increased cell 

proliferation, reduced apoptosis, and increased immune cell activation.  

• The onset of inflammation coincides with the developmental appearance of tuft cells, at 

4 weeks of age in SHIP-deficient mice, a model of CD.  

• Tuft cells are the only epithelial cells in the uninflamed intestine that express COX1 and 

COX2, required for prostaglandin production.  

• In wild type mice, tuft cells are found in the lung and ileum, both locations where SHIP-

deficient mice develop spontaneous inflammation.  

• Tuft cell numbers were increased 6-fold in the inflamed ileum of SHIP-deficient mice, 

prompting the investigation presented herein. 

 

1.8.2 Hypothesis and objectives 

Based on this, I hypothesized that SHIP deficiency in intestinal tuft cells contributes to 

intestinal inflammation in the SHIP-/- mouse by increasing COX activity. To investigate this 

hypothesis, I had two specific aims: 
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Aim 1: To determine whether tuft cell hyperplasia was present before and/or after the onset of 

ileal inflammation in SHIP-/- mice. 

Aim 2: To determine whether prophylactic or therapeutic treatments with piroxicam (a non-

selective COX inhibitor) would be able to prevent or treat ileal inflammation in SHIP-/- mice. 

I quantitated tuft cells numbers along the intestinal tract in SHIP+/+ and SHIP-/- mice by 

immunohistochemistry (IHC). SHIP-/- mice were treated prophylactically or therapeutically with 

COX inhibitors. COX activity, PGE2, and PGD2 were measured. Measurements of inflammation 

included concentrations of pro-inflammatory cytokines IL-4, IL-13 and IL-1β and histological 

features of inflammation in the SHIP-/- mice that have been described previously: muscle 

thickening, immune cell infiltration, villus length, and goblet cell hyperplasia. 

 

1.8.3 Significance 

These studies will contribute to the understanding of the role of tuft cell-derived SHIP 

and COX in the spontaneous ileitis in SHIP-/- mice. Importantly, this work may help elucidate 

some of the basic biology involved in the inflammation present in CD patients, pointing to the 

connection between tuft cells, COX enzymes, and the underlying tissue, with tuft cells linking 

signals from the lumen to the immune system. 

 



 

  44 
    

Chapter 2: Materials and methods 

 

2.1 Mice  

SHIP heterozygotes, an F2 generation of C57BL/6 x 129Sv mice, were bred to generate 

SHIP+/+ and SHIP-/- littermates, which were co-housed after weaning. Mice were maintained in 

sterilized filter-top cages and fed autoclaved food and water under specific pathogen-free 

conditions at the Animal Care Facility at the BC Children’s Hospital Research Institute 

(Vancouver, BC). Sentinel mice were routinely screened for pathogens using a comprehensive 

serological profile service (Radil, Columbia, MO). All mice used were between the ages of 4 and 

10 weeks. Experimentation was performed in accordance with Canadian Council on Animal 

Care Guidelines and with approval from the institutional Animal Care Committee (Protocols 

A17-0071 and A17-0277). 

 

2.2 Radiation and bone marrow transplantation  

Mice were irradiated with a single dose of 550 Gy using a Rad Source S-2000 and 

administered 1.0 × 107 bone marrow cells prepared from SHIP+/+ and SHIP-/- donor mice via tail 

vein injection. Chimeric mice were analyzed 16 weeks post-BMT. 

 

2.3 Immunofluorescence 

Paraffin-embedded sections were deparaffinized by heating to 60°C for 20 min, washed 

with xylene, followed by 3 ethanol washes (100% twice, 95%, 80%), and one final wash with 

water. Finally, sections were steamed for 20 min in 1mM EDTA buffer, pH 8.0, for antigen 

retrieval. Tissues were then treated with blocking buffer (goat or donkey serum in PBS 
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containing 1% bovine serum albumin [BSA], 0.1% Triton X-100, 0.05% Tween 20, and 0.05% 

sodium azide). The primary antibodies used were anti-SHIP (P1C1- Santa Cruz sc-8425), anti-

DCLK1 (ab37994 – ABCAM), anti-HPGDS (160013 - Cayman Chemical), and anti-COX1 

(M20 - Santa Cruz sc-1754). The secondary antibodies used were Alexa Fluor 568-conjugated 

goat anti-mouse IgG (Invitrogen #A11004), Alexa Fluor 488-conjugated goat anti-rabbit 

(Invitrogen #A11008), Alexa Fluor 488-conjugated donkey anti-goat (Invitrogen #A11055), and 

Alexa Fluor 568-conjugated donkey anti-rabbit (Invitrogen #A10042). 4′,6-diamidino-2-

phenylindole (DAPI; Invitrogen D3571) was used to stain DNA. ProLong gold anti-fade reagent 

was used to mount tissues. Negative controls, containing no primary antibody, were performed 

for all stainings. Tissues were viewed and images captured on a Zeiss Axiovert 200 microscope, 

AxiocamHR camera, and Axiovision 4.0 software. DCLK1+ tuft cells were counted manually 

and quantitated relative to total epithelial cells, in 6 sections per mouse separated by 50µm by 

two individuals blinded to experimental conditions. 

 

2.4 COX activity assay 

COX activity was measured using the COX Fluorescent Activity Assay Kit (Cat. No. 

700200) from Cayman Chemical (Michigan, MI, USA). Briefly, fresh ileal samples were 

collected, rinsed with PBS and homogenized in 1.5mL lysis buffer (0.1% Triton X-100, 25 mM 

Tris pH 8, aprotinin (40g/mL), leupeptin (8g/mL), PMSF (100µM)) using a Polytron MR2100 

bench top homogenizer. Homogenates were cleared by centrifugation at 16,000 ×g for 15 min at 

4°C, and the supernatant was collected. Sample wells received 150µl of assay buffer, 10µl of 

Hemin, and 10µl of sample. Sample background wells received 160µl of assay buffer, 10µl of 

Hemin, and 10µl of sample. No COX inhibitors were used. Reactions were initiated by adding 



 

  46 
    

10µl of arachidonic acid to the sample and positive control wells, but not the background wells. 

COX activity was determined by resorufin fluorescence (compared to a resorufin standard 

concentration between 0 and 10µM), analyzed with an excitation wavelength of 530-540 nm, and 

an emission wavelength of 585-595 nm on a Molecular Devices FilterMax F5 Multi-Mode 

Microplate Reader, using the proprietary Molecular Devices Multi-Mode Analysis software 

version 3.4.0.25. 

 

2.5 PG and cytokine ELISAs  

PG and cytokine ELISAs were performed on approximately 150 mg of clarified full-

thickness ileal homogenates, normalized to gram of tissue, from mice using enzyme-linked 

immunosorbent assays (ELISAs) according to the manufacturers’ instructions. ELISA kits for 

mouse PGD2 (Cat. No. 512031) and PGE2 Cat. No. 500141) were from Cayman Chemical 

(Michigan, MI, USA); ELISA kits for IL-1β (Cat. No. DY401-05) and IL-13 (Cat. No. DY413-

05) were from R&D Systems (Minneapolis, MN, USA); and the ELISA kit for IL-4 (Cat. No. 

555232) was from BD Biosciences (Mississauga, ON, Canada).  

 

2.6 Piroxicam treatment  

Piroxicam (10 mg/kg, Sigma, Cat. No. P5654) or PBS (vehicle) (DPBS, Gibco by Life 

BioSciences) was administered daily by IP injection to 4-week-old (prophylactic treatment) or 6-

week-old (therapeutic treatment) SHIP-/- mice for 14 days. Mice were euthanized and tissues 

harvested for subsequent analyses.  
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2.7 Haemotoxylin and eosin (H&E) staining 

Ileal tissue sections from SHIP+/+ and SHIP-/- mice were fixed in PBS-buffered 10% 

formalin at 4°C for 24 hours. Tissue sections were embedded in paraffin, and 5 µm cross-

sections were cut and stained with H&E by the histology core at the BC Children’s Hospital 

Research Institute. 

 

2.8 Histological analyses  

Images of H&E stained tissue cross-sections were acquired using a Zeiss Axiovert 200 

microscope, AxiocamHR camera, and Axiovision 4.0 software. Crypt/villus length was 

determined by counting epithelial cell nuclei from the crypt base to the villus tip on uniform 

horizontal ileal cross-sections. Goblet cells per crypt/villus were counted from the base of the 

crypt to the tip of the villus on uniform horizontal cross-sections. Immune cell infiltrates were 

counted in the circular muscularis externa and submucosa. In all cases, parameters were counted 

at 20× magnification in 6 H&E-stained sections separated by 50µm for each mouse, by two 

individuals blinded to experimental conditions. 

 

2.9 Statistical analyses  

Unpaired two-tailed Student’s t-tests were performed as indicated, using GraphPad 

Prism version 6 (GraphPad Software Inc.). For multiple comparisons, the Bonferroni correction 

was applied. The Grubbs' test, or ESD method (extreme studentized deviate), was used to 

determine and exclude significant outliers. Outliers were identified only in PGD2 ELISAs 

(Figure 3.4B and Figure 3.7A). Differences were considered significant at p < 0.05. 
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Chapter 3: Results 

 

3.1 The lipid phosphatase, SHIP, is expressed in intestinal epithelial cells  

While staining murine ileal cross-sections for the lipid phosphatase, SHIP, our research 

team noted a strong expression of SHIP in a small population of cells within the epithelial cell 

layer. SHIP is considered to be restricted to hematopoietic cells.201, 202 Thus, bone marrow 

transplants were performed to determine whether SHIP-expressing cells were intraepithelial 

lymphocytes (IELs) or epithelial cells. SHIP+/+ or SHIP-/- bone marrow was transplanted into 

SHIP+/+ or SHIP-/- mice and cross-sections from ilea were stained with SHIP, various epithelial 

cell markers (HPGDS is shown), and counterstained with DAPI 16 weeks post-transplant (Fig. 

3.1). Upper panels show control transplants, i.e. SHIP+/+ bone marrow into SHIP+/+ mice and 

SHIP-/- bone marrow into SHIP-/- mice. SHIP expression in epithelial cells was retained when 

SHIP-/- bone marrow was transplanted into SHIP+/+ mice (Fig. 3.1C), and there was no SHIP 

expression in epithelial cells when SHIP+/+ bone marrow was transplanted into SHIP-/- mice (Fig. 

3.1D). SHIP expression in cells within the epithelial cell layer maintained the recipient mouse 

genotype, demonstrating that SHIP expression is radioresistant and suggesting that SHIP is 

expressed in a subset of epithelial cells. 
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Figure 3.1. SHIP expression in intestinal epithelial cells is radioresistant.  
Bone marrow transplants between SHIP+/+ and SHIP-/- mice were performed to ensure that SHIP-
expressing cells within the epithelium were not intraepithelial lymphocytes. Intestinal epithelium 
was assessed 16 weeks post-radiation treatment. Ileal cross-sections were stained for HPGDS 
(green), SHIP (red), and co-staining is shown (yellow). (A) Bone marrow from a SHIP+/+ mouse 
transplanted into a SHIP+/+ mouse. (B) Bone marrow from a SHIP-/- mouse transplanted into a 
SHIP-/- mouse. (C) Bone marrow from a SHIP-/- mouse transplanted into a SHIP+/+ mouse. (D) 
Bone marrow from a SHIP+/+ mouse transplanted into a SHIP-/- mouse. Photographs were taken 
at a magnification of 20× (top) and 40× (bottom). Scale bars = 100µm. Data shown are 
representative of 3 individual recipient mice per group, which yielded similar results.  
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3.2 Tuft cells express SHIP 

Next, I asked which type(s) of intestinal epithelial cells express SHIP. Ileal cross-

sections from wild type mice were co-stained with SHIP and various epithelial cell markers (data 

not shown). There was a nearly complete co-expression between SHIP and the tuft cell marker, 

HPGDS (Fig. 3.2A). There was also a nearly complete co-expression between SHIP and a 

second tuft cell marker, DCLK1 (Fig. 3.2B). Taken together, these data suggest that SHIP is 

expressed exclusively in tuft cells within the intestinal epithelium. Other epithelial cell markers 

used were mucin 2 (MUC-2) for goblet cells, alkaline phosphatase (ALP) for enterocytes, 

chromogranin-A (CgA) for EE cells, and lysozyme for Paneth cells. 

 
Figure 3.2. Tuft cells express SHIP, which was thought to be hematopoietic-specific. 
Ileal cross-sections from a SHIP+/+ mouse were co-stained for SHIP and tuft cells markers. (A) 
Sections stained with SHIP (red), HPGDS (green), and co-staining (yellow). (B) Sections stained 
with SHIP (red), DCLK1 (green), and co-staining (yellow). Photographs were taken at a 
magnification of 20× (top and bottom). Scale bars = 100µm. Data shown are representative of 6 
individual mice with similar results. 
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3.3 Inflammation, and not SHIP deficiency, drives tuft cell hyperplasia in 

SHIP-/- mice 

It was noted that there were increased numbers of tuft cells in the ilea of SHIP-/- mice 

compared to SHIP+/+ at 8 weeks of age. In order to determine whether SHIP deficiency or the 

inflammatory environment were driving tuft cell hyperplasia, tissue cross-sections from along 

the gastrointestinal tract of 4- and 8-week-old SHIP+/+ and SHIP-/- mice were co-stained for SHIP 

and DCLK1 (Fig. 3.3A). Tuft cell hyperplasia was only evident in the inflamed distal ileum of 8-

week-old SHIP-/- mice. Tuft cells were quantitated in tissue sections and no significant 

differences in tuft cell numbers were found between SHIP+/+ and SHIP-/- mice at 4 weeks of age 

(Fig. 3.3B, left). Also, no significant differences were found in non-inflamed tissues of mice at 8 

weeks of age (Fig. 3.3B, right). These results suggest that inflammation, rather than SHIP 

deficiency, drives tuft cell hyperplasia in the SHIP-/- mouse ileum. 
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Figure 3.3. Tuft cell distribution along the intestinal tract.  
(A) Duodenum/jejunum, mid ileum, distal ileum, cecum, and colon cross-sections of 4- and 8-
week-old SHIP+/+ and SHIP-/- mice co-stained with DCLK1 (green) and SHIP (red). Photographs 
were taken at a magnification of 20×. Scale bars = 100µm. Data shown are representative of 6 
individual mice with similar results. B) Tuft cell quantification in 4- and 8-week-old SHIP+/+ and 
SHIP-/- mice. *p ≤ 0.01 comparing SHIP+/+ with SHIP–/– mice tissues using a Student’s t-test with 
Bonferroni correction for multiple comparisons. 
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3.4 COX1 expressing cells and COX activity are elevated in the SHIP-/- mouse 

ileum 

Previous studies report that tuft cells are the only epithelial cells that express the 

cyclooxygenase enzymes, COX1 and COX2, in the absence of inflammation.146, 190 Because 

COXs can contribute to inflammation, it was next asked whether COX1 expression and/or COX 

activity were elevated in the SHIP-/- mouse ileum. To do so, ileal and colonic cross-sections from 

4- and 8-week-old SHIP+/+ and SHIP-/- mice were stained for DCLK1 and COX1. There was a 

notable increase in COX1-expressing, DCLK1+ cells in the inflamed distal ileum of SHIP-/- 

mice, as well as other COX1-expressing cells in the lamina propria, which were most likely sub-

epithelial immune cells (Fig. 3.4A, top right). Consistent with previous reports, tuft cells 

represent the vast majority of COX1-expressing epithelial cells in the absence of inflammation, 

in both 4-week-old SHIP+/+ and SHIP-/- ilea, in 8-week-old SHIP+/+ mice, and in colon cross-

sections from both ages and genotypes (Fig. 3.4A).  

Total COX activity and COX products, PGD2 and PGE2, were measured by ELISA in 

full-thickness tissue homogenates from the ilea of 4- and 8-week-old SHIP+/+ and SHIP-/- mice 

and the colon of 8-week-old SHIP-/- mice, as an age-matched, non-inflamed control (Fig. 3.4B). 

COX activity, PGD2, and PGE2 were all significantly higher in the inflamed ileal tissues from 8-

week-old SHIP-/- mice compared to their wild type littermates. Intriguingly, COX activity was 

also increased in ileal sections from 4-week-old SHIP-/- mice. This suggests that SHIP deficiency 

in tuft cells is sufficient to increase COX activity even in the absence of inflammation, and 

increased COX activity may contribute to the spontaneous development of ileal inflammation in 

the SHIP-/- mouse.  
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Figure 3.4. The inflamed SHIP-/- distal ileum presents more COX1-positive cells.  
A) Immunofluorescent co-staining of DCLK1 (red), COX1 (green), and co-staining (yellow) of 
ileal and colonic cross-sections from 4- and 8-week-old SHIP+/+ and SHIP-/- mice. Photographs 
were taken at a magnification of 20×. Scale bars = 100µm. Data shown are representative of 6 
individual mice with similar results. (B) COX activity, PGD2, and PGE2 in ilea from 4- and 8-
week-old mice and colons from 8-week-old SHIP+/+ mice. n = 9 mice per group. *p ≤ 0.05, **p ≤ 
0.01, ns = not significantly different comparing SHIP+/+ and SHIP–/– mice using a Student’s t-test 
with Bonferroni correction for multiple comparisons. 
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3.5 Piroxicam can be used prophylactically to prevent ileal inflammation in 

SHIP–/– mice 

To determine whether increased COX activity in the 4-week-old SHIP-/- mouse ileum 

contributes to the development of ileal inflammation in the SHIP-/- mouse, SHIP-/- mice were 

treated with the COX inhibitor piroxicam. Piroxicam is one of the few NSAIDs that can be 

administered by parenteral routes.306, 307 Thus, SHIP-/- mice received daily intraperitoneal (IP) 

injections of 10mg/kg piroxicam, or an equal volume of PBS as a vehicle and injection control, 

for 14 days, starting at either 4 weeks of age, before the onset of inflammation, for prophylactic 

treatment or 6 weeks of age for therapeutic treatment (after inflammation is evident). 

Prophylactic treatment with piroxicam reduced gross pathology associated with SHIP-/- ileal 

inflammation, including redness and size (Fig. 3.5A). Prophylactic treatment also reduced 

histopathology evident in H&E-stained ileal tissue cross-sections (Fig. 3.5B). Quantitation of 

histopathology demonstrated that SHIP-/- mice treated with piroxicam had significantly reduced 

crypt-villus hyperplasia, goblet cell hyperplasia, and reduced immune cell infiltration into the 

tissue, relative to sham treated controls (Fig. 3.5C). 
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Figure 3.5: Piroxicam can be used prophylactically to prevent ileal inflammation in SHIP-/- 
mice.  
A) Gross pathology of piroxicam-treated SHIP-/- mice compared to vehicle (PBS)-treated SHIP-/- 
mice. (B) H&E-stained ileal cross-sections of vehicle-treated and piroxicam-treated SHIP-/- mice. 
Photographs were taken at a magnification of 10× (top) and 20× (bottom). Scale bars = 100µm. 
(C) Crypt/villus length (left), quantification of goblet cells (middle), and quantification of 
immune cell infiltration (right) from SHIP-/- mice treated with vehicle or piroxicam. Points 
represent individual mice and lines show mean +/- SEM for each group. n = 14 mice treated with 
vehicle and 20 mice treated with piroxicam. *p ≤ 0.001 comparing each histological feature of 
piroxicam- and vehicle-treated SHIP-/– mice using a Student’s t-test with Bonferroni correction 
for multiple comparisons. 
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3.6 Piroxicam treatment is less effective at reducing ileal inflammation in 

SHIP–/– mice when used therapeutically 

SHIP-/- mice were also treated with piroxicam therapeutically. Piroxicam was given to 

mice by IP injections beginning at 6 weeks of age, after inflammation was established. Mice 

were treated with piroxicam daily by IP injection for 14 days. After 14 days, mice were 

euthanized and tissues were harvested. In contrast to prophylactic treatment, therapeutic 

treatment with piroxicam was less effective at reducing inflammation in the SHIP-/- mice. Gross 

pathology and histopathology were only modestly reduced, with redness and swelling still 

present (Fig 3.6A and B). Though, crypt-villus and goblet cell hyperplasia were significantly 

reduced, immune cell infiltration was not reduced in the ilea of SHIP-/- mice treated 

therapeutically with piroxicam compared to vehicle-treated control mice (Fig 3.6C). This 

suggests that inflammation is still present, despite a modest decrease in crypt/villus length and 

goblet cell counts. 
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Figure 3.6: Piroxicam cannot be used therapeutically to reduce ileal inflammation in SHIP-

/- mice.  
(A) Gross pathology of piroxicam-treated SHIP-/- mice compared to vehicle-treated SHIP-/- mice. 
(B) H&E-stained ileal cross-sections of vehicle-treated and piroxicam-treated SHIP-/- mice. 
Photographs were taken at a magnification of 10× (top) and 20× (bottom). Scale bars = 100µm. 
(C) Crypt/villus length (left), quantification of goblet cells (middle), and quantification of 
immune cell infiltration (right) from SHIP-/- mice treated with vehicle or piroxicam. Points 
represent individual mice and lines show mean +/- SEM for each group. n = 7 mice treated with 
vehicle and 8 mice treated with piroxicam. *p ≤ 0.05, **p ≤ 0.01, ns = not significantly different 
comparing histological features of piroxicam- and vehicle-treated SHIP-/– mice using a Student’s 
t-test with Bonferroni correction for multiple comparisons.  
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3.7 Increased COX activity in SHIP-deficient tuft cells may initiate IL-1β-

driven autoinflammation in SHIP–/– mice 

The COX enzymes are critical players in PG biosynthesis and the inflammatory 

response. Total COX activity as well as PGD2 and PGE2 levels, were assessed in distal ileal 

homogenates of vehicle- and piroxicam-treated SHIP-/-mice. Prophylactic piroxicam treatment 

reduced COX activity by 72.2%, and PGD2 and PGE2 levels were reduced by 69.1% and 63.2%, 

respectively, compared to the vehicle-treated controls (Fig. 3.7A). Thus, piroxicam effectively 

lowered total COX activity and PG levels. Tuft cells present in the distal ilea of both piroxicam- 

and vehicle-treated mice were stained by immunofluorescence for DCLK1 and quantitated. 

Piroxicam treatment caused a 54.2% reduction in tuft cell numbers in the SHIP-/- ilea compared 

to vehicle-treated mice (Fig. 3.7B). Our research team had previously demonstrated that 

macrophage-derived IL-1β drives autoinflammatory ileitis in SHIP-/- mice.232 Given that 

prophylactic piroxicam treatment effectively reduced inflammation in SHIP-/- ilea, IL-1β levels 

were examined in full thickness ileal tissue homogenates. Ileal IL-1β levels were reduced by 

85.3% in SHIP-/- mice treated prophylactically with piroxicam compared to vehicle treated 

controls. Our research team had also reported that the Th2 cytokines, IL-4 and IL-13, are 

elevated in the inflamed SHIP-/- mouse ilea.92 Thus, IL-4 and IL-13 were measured in clarified 

full-thickness ileal tissue homogenates. No significant differences in IL-4 or IL-13 levels were 

found in piroxicam-treated compared to vehicle-treated SHIP-/- mice (Fig. 3.7C). 
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Figure 3.7: Piroxicam treatment reduces initiation of autoinflammatory response in SHIP-/- 
mice.  
Increased COX activity in SHIP deficient tuft cells may initiate IL-1β-driven autoinflammation 
in SHIP-/- mice. (A) COX activity, PGD2, and PGE2 in distal ileum of vehicle- and piroxicam-
treated SHIP-/- mice. (B) Immunofluorescent staining of DCLK1 in ileal sections (top), tuft cell 
quantification (lower left) and IL-1β concentration in full-thickness ileal tissue homogenates. (C) 
IL-4 (left) and IL-13 (right) concentrations in full-thickness ileal tissue homogenates. *p value ≤ 
0.01, **p value ≤ 0.001, ns = not significantly different comparing piroxicam- and vehicle-
treated SHIP-/– mice using a Student’s t-test with Bonferroni correction. 
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3.8 Piroxicam treatment is less effective at reducing IL-1β levels in SHIP–/– 

mice when used therapeutically 

Analysis of COX activity, PGD2, and PGE2 levels in the ilea of SHIP-/- mice that 

received therapeutic piroxicam treatment demonstrated that piroxicam reduced COX activity in 

SHIP-/- mice, as expected (Fig. 3.8A). However, therapeutic treatment did not cause a reduction 

in tuft cell hyperplasia in the SHIP-/- ilea compared to vehicle-treated mice (Fig. 3.8B). Though 

IL-1β levels were reduced by 35.6% by therapeutic treatment with piroxicam, this is much lower 

than the 85.3% reduction achieved when using piroxicam prophylactically (Fig. 3.8C). The 

relative levels of the Th-2 associated cytokines IL-4 and IL-13 were also not significantly 

different when comparing the two groups, suggesting that the overall Th2 response was not 

affected by COX inhibition (Fig. 3.8C). Taken together, these data demonstrate that prophylactic 

piroxicam treatment is more effective at reducing ileal inflammation in SHIP-/- mice than 

therapeutic treatment. This suggests that elevated COX activity may play an important role in the 

initiation of ileal inflammation in SHIP-/- mice. 
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Figure 3.8: Therapeutic treatment with piroxicam is not sufficient to treat 
autoinflammatory response in SHIP-/- mice.  
(A) COX activity, PGD2, and PGE2 in distal ileum of SHIP-/- mice treated prophylactically with 
vehicle or piroxicam. (B) Immunofluorescent staining of DCLK1 in ileal sections (top), tuft cell 
quantification (lower left) and IL-1β concentration in full-thickness ileal tissue homogenates 
(lower right). Photographs were taken at a magnification of 20×. Scale bars = 100µm. (C) IL-4 
(left) and IL-13 (right) concentrations in full-thickness ileal tissue homogenates. For (A), (B), 
and (C); n = 7 mice treated with vehicle and 8 mice treated with piroxicam. *p ≤ 0.01, **p ≤ 
0.001, ns = not significantly different comparing piroxicam- and vehicle-treated SHIP-/– mice 
using a Student’s t-test with Bonferroni correction for multiple comparisons. 
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Chapter 4: Discussion 

Herein, I show that DCLK1+ murine tuft cells express the lipid phosphatase SHIP, 

which was previously considered to be hematopoietic restricted. SHIP deficiency leads to 

increased COX activity in tuft cells. I also demonstrate that SHIP deficient mice have more 

COX1 positive cells in the inflamed ileum, as well as more COX activity, and higher PGD2 and 

PGE2 levels in full-thickness ileal tissue homogenates, compared to their wild type littermates. 

Finally, prophylactic treatment with piroxicam, a pan COX inhibitor, is effective at reducing the 

development of intestinal inflammation in SHIP-deficient mice, whereas therapeutic treatment 

had only minor effects. 

The central paradigm for IBD is that CD is considered a Th1-mediated disease, whereas 

UC is Th2-mediated. However, both Th1 and Th2 cells are able to induce inflammation and 

aspects of IBD in animal models.308 More recently, it has been reported that Th17 cells also 

contribute to pathogenesis in several animal models of IBD, previously considered to be driven 

by Th1 or Th2 cells.308, 309 In humans, Th17 cytokines are highly expressed in the intestinal 

mucosa of people with both CD and UC,104, 310-312 and results of GWAS demonstrate significant 

associations between genomic regions of the Th17/IL-23 pathway and IBD.34 The SHIP-

deficient mouse is an established model of CD-like intestinal inflammation that consistently 

recapitulates ileal localization, discontinuous inflammation, and the fibrosis that occurs in some 

patients with CD.92 SHIP-/- mice ilea express a mixed Th2 and Th17 cytokine profile, with 

significantly increased production of IL-4, IL-13, and IL-23 compared to their SHIP+/+ 

littermates.92 The spontaneous inflammation is characterized by goblet cell hyperplasia, muscle 

thickening, increased collagen deposition, and immune cell infiltrates and aggregates.92 Herein, I 

demonstrate tuft cell hyperplasia as another distinct feature of the inflammation present in these 
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mice. I have also demonstrated that piroxicam treatment was able to reduce IL-1β levels, which 

drives ileal inflammation in SHIP-/- mice.232 

Tuft cells are the chemosensory cells of the GI tract and show a unique genetic 

signature, expressing genes previously associated with hematopoietic cell lineage.171, 190, 313 A 

number of markers have been identified for intestinal tuft cells (reviewed in 135) including 

structural (DCLK1, acetylated tubulin), taste-related (α-gustducin), and progenitor/stem (Sox9, 

Lgr5) markers.314 Recently, McKinley et al. demonstrated the use of Multiplex 

immunofluorescence (MxIF) analytical tools for the characterization of intestinal tuft cells.315 

The team quantified tuft cell number and distribution throughout the mouse small intestine and 

colon, and identified two new intestinal tuft cell markers, Hopx and EGFR phosphotyrosine 1068 

(p-EGFR).315 Reports on tuft cell gene signatures using single-cell RNA sequencing have 

revealed different subsets of tuft cells that express genes related to immune regulation or 

neuronal development.190, 313 Both subtypes of tuft cells express IL-25 but not IL-33, and also 

express receptors for the cytokines IL-4 (Il4ra), IL-13 (Il13ra1), and IL-25 (Il17rb), which could 

support autocrine signaling during Th2 cell responses.313 One of the subtypes of tuft cells (tuft-2) 

distinguished by Haber et al. expresses the epithelial cytokine TSLP and CD45 (a pan-leukocyte 

marker), which was not previously associated with non-hematopoietic cells. The authors do not 

comment on tuft cell distribution.313 These results point to a broad heterogeneity of tuft cells, 

within the intestinal compartment and colon, which probably indicates differential functions in a 

cell type previously considered a single homogenous population.171, 190, 313-315 The gene signature 

of tuft cells also includes markers of the eicosanoid biosynthesis pathway, such as hematopoietic 

prostaglandin D synthase (H-PGDS), COX1 and COX2.146, 190 Herein, I demonstrate that tuft 

cells are also the only epithelial cell type in the GI tract to express SHIP, which was previously 
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considered to be hematopoietic-restricted. The tuft cells in this study are most similar to the tuft-

2 subset, since I have shown nearly complete co-expression of DCLK1 and SHIP, which is 

expressed exclusively in this subset.313 These data are consistent with tuft cells being a unique 

epithelial cell in the gut, which express several markers previously associated with hematopoietic 

cell lineages, acting as a master regulator to integrate responses to mucosal stimuli.  

Inflammation drives tuft cell expansion, which has been reported in the context of 

helminth infections.171, 178, 179, 200 Howitt et al. demonstrated that infection of conventional and 

germ-free C57BL/6J mice with a diverse set of protozoa and parasitic helminths significantly 

increased the abundance of tuft cells from ~1% to 5-8% of total epithelial cells in the distal small 

intestine. This indicates that tuft cell expansion is a conserved response to parasite infection.178 

The data shown here are consistent with these studies and support tuft cell hyperplasia as a 

marker of inflammation. It has been shown that IL-4 or IL-13 are required to skew macrophages 

into an alternatively activated M2a phenotype.227, 316 M2 macrophages are important during Th2 

immune responses that mediate humoral immunity to defend against extracellular pathogens, 

such as parasitic worms.317 It was demonstrated that SHIP-/- mice are Th2 skewed due to high 

levels of IL-4 produced by hyper-responsive SHIP-/- basophils.318, 319 In the SHIP-/- mouse, SHIP 

deficiency in tuft cells is associated with an increase in COX activity, contributing to the 

exacerbated inflammation, which is expected from this mouse model. The elevated tuft cell 

numbers observed in this model are likely a conserved response to injury and/or type II 

inflammation, similar to that which occurs during parasitic helminth infections.  

Tuft cells and tuft cell-derived IL-25 are protective in several mouse models of IBD.320-

323 In DSS-induced colitis, intestinal epithelial specific Dclk1-deficient mice (VillinCre;Dclk1f/f) 

mice display exacerbated injury including higher damage scores, increased epithelial 
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permeability, higher levels of pro-inflammatory cytokines and chemokines, and dysregulated 

Wnt/b-Catenin pathway gene expression.321 In addition, these mice exhibit increased gut 

permeability and higher IL-1β and IL-17 levels in the colon relative to wild type mice during 

DSS treatment.321 This suggests that the tuft cell marker DCLK1 plays an important role in 

regulating colonic inflammatory responses and colonic epithelial integrity during DSS-induced 

colitis.321 In addition, in an oxazolone-induced colitis model, administration of IL-25 improves 

the clinical symptoms, histopathological changes, and inflammation.322 IL-25-mediated 

protection is associated with the induction of anti-inflammatory alternatively activated 

macrophages.323 Th2 cytokines have been known to promote localized wound healing by 

enhancing alternatively activated macrophage activity that facilitates the production of proteins 

associated with accelerated tissue repair.324 Consistent with these observations, tuft cell-

generated IL-25 is reported to be significantly lower in the intestinal mucosa of people with IBD 

during active disease.322, 325, 326 IL-25 levels were reported to be substantially lower during active 

disease than during remission, which may indicate that individuals with IBD have reduced tuft 

cell numbers or activity compared to healthy people.326 This suggests that tuft cells and IL-25 

may reduce the severity of intestinal injury and inflammation, and may be protective in IBD. In 

contrast, in this model, though tuft cells may be acting to dampen inflammation, SHIP deficient 

mice are hyper-responsive to innate and immune stimuli, and tuft cell hyperplasia alone is not 

sufficient to resolve the inflammation. Tuft cells are playing a role in Th2 inflammatory 

responses, and may be in fact leading to over-activation of Th2 cytokines and exacerbating 

inflammation in SHIP-/- mice.  

The COX enzymes and their products play key physiological roles in various biological 

functions, and are associated with both promoting and dampening inflammation. COX1 is 
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considered a physiological ‘housekeeping’ enzyme whereas COX2 is induced in response to 

inflammation and specific signal transduction.327 However, both enzymes contribute to the 

generation of autoregulatory and homeostatic prostanoids, and both can contribute to prostanoid 

release during inflammation.245, 328 Prostaglandin production is generally low in uninflamed 

tissues, but increases rapidly during acute inflammation, prior to the recruitment of leukocytes 

and the infiltration of immune cells, in both mice and humans.328 Here, I found that tuft cells 

were the only COX1 expressing epithelial cell type in the absence and presence of inflammation 

in SHIP-/- mice. Interestingly, COX activity was significantly increased in the uninflamed SHIP-/- 

ileum at 4 weeks of age. This suggests an early onset or build-up prior to the onset of overt 

intestinal inflammation, possibly leading to the inflammation present in SHIP-/- mice by 6 weeks 

of age. 

NSAIDs inhibit COX1 and COX2 329, 330 and exacerbate IBD, although there are 

conflicting reports about their association with IBD flares.54-59 NSAIDs are generally the 

appropriate treatment for the arthropathies that are a common extra-intestinal complication of 

IBD.331 COX-mediated disruption of the intestinal epithelial barrier associated with NSAID use 

can affect the interaction between the gut microbiome and immune cells in the intestinal 

epithelial layer, thus affecting risk for CD or UC. In addition, NSAIDs can alter platelet 

aggregation, release of inflammatory mediators, and microvascular response to stress, which may 

mediate CD and UC pathogenesis.332-334 However, some studies report that there are no clear 

associations in flare-up events in IBD patients and NSAID use, and point to confounding factors 

and methodological shortcomings that may be in place when investigating such associations.54-59 

Overall, observational studies and clinical trials indicate that the majority of patients with 

quiescent IBD tolerate traditional NSAIDs, whereas about 20% of patients will experience a 
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clinical relapse;335-337 however, NSAIDs are more frequently involved in aggravating pre-

existing pro-inflammatory conditions.336  

Though piroxicam is commonly used in NSAID-induced experimental colitis,338-341 

treatment during remission of IBD in humans is well tolerated and prevents the production of 

active prostanoids.54, 55, 335 Indeed, 200 ppm piroxicam added to mouse chow causes toxicity in 

the gut and exacerbates colitis in IL-10-/- mice.338, 339 Studies using other strains of mice are 

limited, but also point to piroxicam exacerbating a previous condition, when ingested with 

food.340, 341 Such studies with NSAID-induced experimental colitis show that piroxicam, when 

taken orally, can damage the GI tract and increase inflammation. The irritancy caused by the 

“topical” effect is caused by the direct mucosal contact of the NSAID that occurs following oral 

ingestion and⁄or biliary excretion of the drug.342 Considering these reports, I decided to 

administer intraperitoneal (i.p.) injections of piroxicam, in order to avoid the irritation caused by 

the “topical” effect on the intestinal mucosa. Indeed, I found that prophylactic i.p. injections of 

piroxicam are safe to use and did not exacerbate intestinal damage in this mouse model. 

Piroxicam reduced COX activity, PGD2, and PGE2 levels. Therapeutic administration showed 

that COX inhibition caused significant reduction in COX activity and PG levels, but these effects 

were not sufficient to dampen inflammation in the SHIP-deficient mouse model. Furthermore, 

prophylactic, but not therapeutic, treatment efficacy implicates COX enzymes in the onset of 

inflammation in the SHIP-/- mice. 

PGE2–EP receptor coupling may have a critical role in the onset of GI inflammation 

and/or tissue repair, but the available data is still limited. Even though PGE2 levels are 

significantly increased during IBD,343 the functional role that PGE2 and EP receptors play in the 

pathogenesis of IBD remains undefined. PGE2 has been associated with intestinal protection, 
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attributed to the activation of EP3 and EP4 receptors, as well as protection of the gastric and 

intestinal mucosa.344-346 The direct involvement of PGE2 in wound healing was demonstrated 

using mPGES-1 deficient mice, which exhibit delayed healing following acetic acid-induced 

gastric ulceration.347 PGE2-EP4 is also protective during DSS-induced colitis348-351 and may be 

beneficial in the treatment of gastric ulcers, duodenal ulcers, and certain forms of IBD.346, 351, 352 

In EP4 receptor knockout mice, a 7-day regime of DSS-induced colitis was reported to be more 

severe than that in wild type controls. This suggests that signaling via EP4 receptors may play a 

critical role in maintaining normal mucosal integrity and/or promoting healing.351 It is possible 

that, in this model, PGE2 is acting to promote recovery and protection against injury, but the 

inflammation present in SHIP-/- mice does not resolve spontaneously, despite the high PGE2 

levels reported herein. On the other hand, PGE2 may have an opposite effect, acting to promote 

and exacerbate the production of pro-inflammatory effectors. For example, studies in vitro, to 

address early responses of PGE2 in a variety of colonic epithelial cell lines clearly demonstrate 

that PGE2 couples via EP4 receptors to upregulate IL-8 mRNA expression and protein secretion 

confirming a pro-inflammatory role for PGE2.353 As a pro-inflammatory PG, PGE2 has been 

implicated in regulation of the cytokine expression by DCs,354 and plays a fundamental role in 

DC migration, permitting their homing to draining lymph nodes.355, 356 Moreover, 

PGE2 potentiates Th1 and Th17 differentiation through PI3K and PKA , respectively, mediated 

by EP2 and EP4 receptors, and is associated with worsening TNBS-induced colitis.265, 357, 358 

PGE2 promotes the development and maturation of Th17 cells through activation of the EP2 

receptor, while inhibiting IL-10 and IFN-γ synthesis through the EP4 receptor in human and 

mouse T cells, substantiating a role for PGE2 in regulation of Th17 responses.259 Boniface et al. 

have shown that PGE2, in combination with IL-1β and IL-23, promoted differentiation of Th17 
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cells by upregulating the IL-1βR and IL-23R expression through the EP2/EP4-cAMP 

pathway.259 The EP4 receptor is also capable of activating the PI3K signaling pathway by 

phosphorylation induced by G-protein-coupled receptor kinases (GRKs).251, 359 In SHIP 

deficiency, this may ultimately result in the excess triggering of NF-κB-mediated transcriptional 

programs, as expected in this mouse model. Based on these observations, the exacerbated 

inflammation in SHIP-/- mice could be potentiated, in part, by the EP2-EP4 pro-inflammatory 

effects in T cells. However, there is a paucity of T cells (CD4+ and CD8+) in the inflamed 

mucosa of SHIP-/- mice,92, 230 suggesting that T cells might not play an important role in the onset 

of intestinal inflammation in this model.  

The anti-inflammatory effect of PGD2 in IBD patients and experimental models is 

thought to be mediated by activation of the DP receptor,284, 290 while CRTH2 is considered to 

have pro-inflammatory effects.360 PGD2 and the DP receptor have important anti-inflammatory 

effects in inhibiting the migration and activation of neutrophils, basophils, DCs, and T cells;284 

and are associated with ameliorating experimental colitis.290 TNBS-induced colitis in rats results 

in a rapid increase in PGD2 synthesis via COX2 and a consequent reduction of granulocyte 

infiltration through activation of the DP receptor.290 Levels of PGD2 in colon biopsies of patients 

during remission of UC are increased.291 As reported in models of self-resolving inflammation361 

and experimental colitis,290 the use of selective inhibitors of DP has been shown to abrogate the 

protective effects of PGD2, resulting in an increase in inflammatory cell infiltration and an 

imbalance in pro- and anti-inflammatory cytokines. Also, the increased susceptibility to 

chemically-induced colon cancer in rats that had recovered from TNBS-induced colitis was 

reversed by treatment with a DP receptor antagonist.292 Interestingly, while PGD2 is regarded as 

anti-inflammatory in colitis, it promotes carcinogenesis after resolution of colitis.293 The pro-
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inflammatory effects of PGD2 and the CRTH2 receptor include T cell migration,279 eosinophil 

chemotaxis,360 and aggravation of asthma362 and experimental models of IBD.360 Other studies 

reported increased expression of L-PGDS294 and infiltration of CRTH2-positive cells correlated 

with disease activity in UC patients.363 The results herein are consistent with a model of IBD 

where PGD2 plays a pro-inflammatory role when it binds to its CRTH2 receptor.360 The elevated 

levels of PGD2 found in the inflamed ilea of SHIP-deficient mice may indicate that PGD2 

exacerbates the production of pro-inflammatory cytokines, and may contribute to the chemotaxis 

of eosinophils, basophils and monocytes to the site of inflammation. 

It was also demonstrated that piroxicam was able to reduce IL-1β levels, which drives 

ileal inflammation in SHIP-/- mice.232 IL-1β levels have also been correlated with disease severity 

in CD patients.364-367 Low SHIP activity inversely correlates with elevated IL-1β production ex 

vivo in isolated macrophages in mice, in ileal tissues from mice, and in PBMCs from human 

subjects.232 These data is consistent with the concept that high IL-1β levels play an important 

role in inflammation in SHIP-deficient mice and are associated with an inflammatory 

environment. Furthermore, no significant differences were found in the relative cytokine levels 

of IL-4 and IL-13 in SHIP-/- ilea with piroxicam treatment compared to vehicle-treated controls. 

The response observed is independent of the Th2 cytokines IL-4 and IL-13, suggesting that the 

mice treated prophylactically are still Th2-skewed, despite showing a healthier ileum. 

In summary, the results identify DCLK1+ murine tuft cells as a unique cell in the gut, 

being the only epithelial cell type expressing the lipid phosphatase SHIP, and are consistent with 

tuft cell hyperplasia as a marker of inflammation. I have also focused on the role of tuft cells and 

COX inhibition in dampening inflammation in a prophylactic and therapeutic approach in this 

mouse model. Future studies investigating tuft cell properties and signaling pathways associated 
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with these sensory cells may possibly provide insight into ways of preventing inflammation and 

identify novel immunotherapeutic strategies to treat people with IBD. 
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Chapter 5: Concluding remarks and future directions 

 

5.1 Concluding remarks 

Intestinal epithelial cells play a critical role in mucosal homeostasis and dysregulation 

of pro-inflammatory epithelial cell function could lead to the intestinal inflammation that 

characterizes IBD. Tuft cells are a unique type of epithelial cell in the intestine that express 

COX1 and COX2, the rate-limiting enzymes required for production of prostaglandins, which 

play important roles in immune responses.146, 190 In our research investigating the SHIP-/- mouse 

model of ileal inflammation, the research team discovered that tuft cells are the only epithelial 

cell type in the gut that expresses SHIP, currently believed to be restricted to hematopoietic cells. 

Additionally, these cells were found in high numbers in the inflamed distal ileum of these mice. 

Based on this, I hypothesized that SHIP deficiency in intestinal tuft cells contributes to intestinal 

inflammation in the SHIP-/- mouse by increasing COX activity. To investigate this hypothesis, I 

had two specific aims: 1. To determine whether tuft cell hyperplasia was present before and/or 

after the onset of ileal inflammation in SHIP-/- mice. 2. To determine whether prophylactic or 

therapeutic treatments with piroxicam (a non-selective COX inhibitor) would be able to prevent 

or treat ileal inflammation in SHIP-/- mice. To the best of my knowledge, this is the first set of 

experiments that focuses on the role of tuft cells in the context of COX inhibition in an IBD 

mouse model. In doing so, this work leads to a deeper understanding of the basic biology and 

some of the key players in inflammation in this mouse model of Crohn’s disease.  

The direct effects of tuft cells in human inflammatory bowel disease are presently 

unknown. These cells have been found to be protective in mouse DSS-induced colitis.320-323 

Also, tuft cell-generated IL-25 is reported to be significantly lower in the intestinal mucosa of 
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people with IBD during active disease.322, 325, 326 These findings indicate that patients with active 

IBD may have fewer tuft cells than healthy controls. If the DSS model does translate to human 

disease, then, increasing tuft cell numbers might hypothetically dampen the pro-inflammatory 

response to IBD and possibly reduce the severity of intestinal injury. 320-323, 368 Taken together, 

these studies point to the protective role of tuft cells, triggering inflammatory processes leading 

to wound healing and increasing epithelial reconstitution in response to intestinal injury.320-323, 

325, 326 This may help explain the reasoning behind the exacerbated Th2 response, increased 

wound healing, most likely also leading to the fibrosis found in the SHIP-/- mice, as published by 

our lab recently.369  

IL-1β is a pro-inflammatory cytokine critical in IBD pathogenesis. Our laboratory has 

previously demonstrated that the chronic ileitis in SHIP-/- mice is associated with elevated levels 

of macrophage-derived IL-1β, as well as the Th2 cytokines IL-4 and IL-13.92, 232 In the present 

study, even when treating inflammation with piroxicam, Th2 cytokine levels remained high, and 

inflammation was still present, suggesting that other immune factors are at play. IL-1β is reduced 

following piroxicam treatment, both prophylactically and therapeutically. However, once 

inflammation has started, lowering COX activity and dampening IL-1β using piroxicam is not 

enough for inflammation to resolve completely. The inflammatory process is complex and, 

similar to other autoinflammatory diseases, COX inhibitors are not enough to treat inflammation 

therapeutically, often needing to be combined with an adjuvant therapy or replaced altogether.370 

Together, these findings contribute to the understanding of the role of tuft cells, tuft cell-derived 

SHIP and COX in the spontaneous ileitis in SHIP-/- mice. 
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5.2 Future directions 

During intestinal infection with parasites, ILC2-derived IL-4 and IL-13 activate tuft 

cells to produce IL-25, which further amplifies type 2 cytokine secretion by ILC2s, creating a 

positive feedback loop, as described previously.178, 371, 372 PI3Kp110δ is activated downstream of 

IL-4 receptor engagement and may play a role in regulating IL-4 production by hematopoietic 

cells, like basophils. I hypothesize that PI3Kp110δ deficiency in intestinal tuft cells leads to 

decreased IL-25 production and reduced IL-4 secretion and activation by ILC2s. To investigate 

this, our laboratory will use SHIP+/+PI3Kp110δ+/+, SHIP+/+PI3Kp110δ DA/DA, SHIP-/-

PI3Kp110δ+/+, SHIP-/-PI3Kp110δDA/DA mice, already available in our animal facility. In 

collaboration with Dr. Lisa Osborne, an Assistant Professor at the University of British 

Columbia; Yvonne Pang, a Master’s student in our laboratory, will infect mice (and assess 

uninfected controls) with T. spiralis, a helminth known to induce tuft cell hyperplasia.178 Tuft 

cell and ILC2 numbers will be quantified by IHC/IF and IL-25 and IL-4 production will be 

measured by ELISA in full thickness tissue homogenates from healthy controls and infected 

mice. These studies will provide insight into the role of basophils, ILC2s, and tuft cells, in 

triggering intestinal inflammation in SHIP-/- mice, and whether cross-talk between these cell 

types is essential in the intestinal inflammation present in SHIP-/- mouse. Due to the tuft cell 

hyperplasia and the hyper-responsiveness of myeloid cells in SHIP-deficient mice, I hypothesize 

that these mice might be primed to clear such a helminth infection more efficiently than their 

SHIP+/+ counterparts. However, it is also possible that they will fail to mount an appropriate 

response towards a worm infection since inflammation is already present in this mouse model, 

and adding another insult could worsen their condition. If this is the case, it is possible that SHIP 



 

  76 
    

may be crucial in the overall signaling necessary for proper clearance of the helminth pathogens, 

leading to an inability of these mice to mount a proper immune response.  

Recent studies suggest that tuft cells and tuft-cell-derived IL-25 are an important anti-

inflammatory factor in the pathogenesis of IBD and a possible target to inhibit the Th1/Th17 

inflammatory pathways, which are mediated by IL-12/IL-23.320-323 It has been demonstrated that 

miR-31 can bind to the untranslated 3’ region of IL-25 mRNA and directly regulate the 

expression of IL-25, in TNBS-induced colitis and IL-10-/- spontaneous colitis in mice. In the 

future, investigating whether administration of exogenous IL-25 and/or miR-31 inhibitors is also 

able to ameliorate inflammation in experimental models of ileitis may provide valuable clues for 

its effects in CD patients. IL-25 and miR-31 inhibitors may become new therapies for the 

treatment of IBD with potential benefits for patients and quality of life. 

Despite recent work elucidating tuft cell function, the relationships and mechanisms 

between IL-25 and other epithelial cytokines capable of triggering Th2 immune responses, such 

as TSLP and IL-33, and the effects of tuft cell hyperplasia still need further investigation. Such 

studies may ultimately guide further mechanistic insights regarding how these mechanisms can 

be applied to ameliorate human disease, including IBD. 
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