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Abstract

This work considers optimization methods for large-scale machine learning (ML).

Optimization in ML is a crucial ingredient in the training stage of ML models.

Optimization methods in this setting need to have cheap iteration cost. First-order

methods are known to have reasonably low iteration costs. A notable recent class

of stochastic first-order methods leverage variance reduction techniques to im-

prove their convergence speed. This group includes stochastic average gradient

(SAG), stochastic variance reduced gradient (SVRG), and stochastic average gra-

dient amélioré (SAGA). The SAG and SAGA approach to variance reduction use

additional memory in their algorithm. SVRG, on the other hand, does not need

additional memory but requires occasional full-gradient evaluation. We first intro-

duce variants of SVRG that require fewer gradient evaluations. We then present

the first linearly convergent stochastic gradient method to train conditional ran-

dom fields (CRFs) using SAG. Our method addresses the memory issues required

for SAG and proposes a better non-uniform sampling (NUS) technique. The third

part of this work extends the applicability of SAGA to Riemannian manifolds.

We modify SAGA with operations existing in the manifold to improve the conver-

gence speed of SAGA in these new spaces. Finally, we consider the convergence of

classic stochastic gradient methods, based on mirror descent (MD), in non-convex

setting. We analyse the MD with more general divergence function and show its

application for variational inference models.
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Lay Summary

Machine learning algorithms have been applied to various problems related to data

processing. These algorithms have a set of parameters which can be optimized

using mathematical approaches for the task at hand. That parameter optimization

problem is challenging when the data set is massive. The major challenge is the

computational cost. This work focuses on improving the optimization methods

in terms of their computational cost and their applicability. With our proposed

methods, one can train a model in less time and achieve better results. Furthermore,

we stretch the applicability of some existing methods to a new set of constraints

and models.
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Chapter 1

Introduction

Machine learning (ML) is a multidisciplinary area that comprises ideas from statis-

tics, computer science, control theory, optimization, pattern recognition, informa-

tion theory, and many other fields. In traditional computer science theory, different

algorithms are developed to handle different computational problems independent

of the input data. For example, the quicksort algorithm is oblivious of its input

data. However, in ML, a model from a set of models gets picked via an appropriate

learning algorithm that leverages the input data for model selection. ML mod-

els are practical now thanks to the presence of massive amounts of data and the

development of accelerated hardware. ML has successfully performed in applica-

tions such as computer vision (Krizhevsky et al., 2012), speech recognition (Hinton

et al., 2012), game playing (Silver et al., 2017), and robotics (Kober et al., 2013)

with an acceptable accuracy.

1.1 Optimization in ML
One of the essential tasks in ML is “learning” or “training”. In this task, given a set

of data samples, the learning algorithm picks a model with a high score with respect

to some given criteria. If the models belong to a parametric class of models, then

the model selection task could be reduced to picking the best parameters that have

the best performance concerning the required criteria. The parameter selection can

be made using some optimization technique.
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To be more formal, we can look at the supervised learning problem. In this

problem, a sample data set {(ai,bi)}n
i=1 ∼ DA ,B is given, and DA ,B is the actual

data distribution and unknown. In each sample, ai represents the observed feature

vector, and bi is the corresponding label. The goal of a learning algorithm is to

find a model h : A →B that predicts the label of a new feature vector. In order

to find the target predictor, a learning algorithm uses a loss function f to measure

the success of a given predictor on a random data point. Finding the best predictor

amounts to searching for the parameters that minimize the risk function. Let’s

assume that hx is a predictor function and parametrized by x. Then the risk function

for a given hx is defined by

L(DA ,B , f )(hx) = EDA ,B
[ f (hx(a),b)] =

∫

A×B
f (hx(a),b)dD(a,b).

Optimizing that risk functional with respect to the predictor parameter is the objec-

tive of a learning algorithm:

x∗ = argmin
x∈X

L(DA ,B , f )(hx). (1.1)

Finding the best parameters in (1.1) requires us to find the output of an integral

that is not possible since the true distribution DA ,B is unknown. Hence in prac-

tice, the numerical computation methods are adapted to approximate the exact risk

function. In particular, we use independent and identical distribution (IID) samples

as a Monte Carlo approximation. Therefore instead of minimizing the actual risk,

the empirical risk gets minimized:

L̂(DA ,B , f )(hx) =
1
n

n

∑
i=1

f (hx(ai),bi). (1.2)

To make the notation more convenient, we shorten f (hx(ai),bi) to fi(x). It has been

shown that adding appropriate regularizers can improve the generalizability of the

model (Shalev-Shwartz and Ben-David, 2014). The general objective function thus

comprises of two parts: a finite sum structure and a regularizer:

min
x∈X

f (x) =
1
n

n

∑
i=1

fi(x)+λg(x), (1.3)

2



where f could be convex like the objective in a linear regression model or non-

convex such as the objective of a deep neural network (DNN).

Empirical risk minimization (ERM) is not the only place that optimization tech-

niques appear during the training of an ML model. Generally, minimizing any risk

function over a class of parametrized models requires some optimization method.

In the Bayesian framework, instead of finding one true parameter, a distribution

over the valid parameter “posterior of the parameters” is inferred via employing

the Bayes’ rule. Formally we assume that data are sampled from a distribution

p(a | θ) where a and θ are random variables. Assuming a prior distribution for θ ,

p(θ), the posterior distribution of θ can be formulated via applying Bayes rule:

p(θ |a) ∝ p(a|θ)p(θ).

However, working with p(θ |a) is required to do prediction or inference and

for a big set of models is intractable. Therefore in the technique which is called

variational inference(VI) (Murphy, 2012), the true posterior is approximated with

another parametrized distribution, q(θ |x) that is tractable to use. To choose a suit-

able parameter, an appropriate divergence between these two distributions gets

minimized with regards to the parameter x. For example, KL-divergence is one

of the most popular divergence function which has been used in different applica-

tions (Kingma and Welling, 2013; Rezende and Mohamed, 2015):

x∗ = argmin
x∈X

DKL [q(θ | x)‖p(θ |a)] =
∫

q(θ | x) log
(

q(θ | x)
p(θ | a)

)
dx.

Similar to the risk minimization, this integral can be approximated using numerical

methods.

1.1.1 Examples of Loss functions

In this section, we review two of the most common ML models and their loss

functions, namely logistic regression and support vector machine (SVM).

3



Logistic Regression

This model can be applied for supervised binary classification problems. The

dataset {(ai,bi)}n
i=1 contains IID samples coming from DA ,B where A ⊆ Rd and

B = {−1,1}. The logistic model is a probabilistic model that considers the logis-

tic function, σ(a) = 1
1+exp(〈−x,a〉) , to determine the probability of assigning a class

to a data point. This function assign probability to a Bernoulli random variable.

Formally,

P(b | a,x) = 1
1+ exp(〈−x,ba〉) .

The model minimizes the negative log-likelihood over all n examples to choose

a value for the parameter x:

min
x

f (x) =
1
n

n

∑
i=1

log(1+ exp(〈−x,biai〉)).

Here f (x) is called the logistic loss function and it is a smooth convex function.

Depending on the dataset, {(ai,bi)}n
i=1, f can be strongly convex which makes op-

timization algorithms converge faster than for general convex functions; however,

a more convenient way to make it strongly convex is adding an l2-regularizer:

min
x

f (x) =
1
n

n

∑
i=1

log(1+ exp(〈−x,biai〉))+
λ

2
‖x‖2

2.

Support Vector Machine (SVM)

An SVM is a linear binary classifier. SVMs use a training set {(ai,bi)}n
i=1 to find

an optimal value for its parameter. This training set is called linearly separable

if there is a half-space (x,y) such that bi = sign(〈x,ai〉+ y) for all i or we have

∀i, bi(〈x,ai〉+ y) > 0. To make the notation simpler, we assume that y is given.

There is an infinite number of separating hyperplanes x. The objective of the SVM

model is to select a hyperplane that has the maximum margin (Shalev-Shwartz and

Ben-David, 2014). That objective in the separable case can be formalized in the
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following optimization problem:

min
x
‖x‖2

2

s.t. ∀i bi 〈x,ai〉 ≥ 1.

However, this objective only has a solution when the data points are separable.

When they are not separable, the bi(〈x,ai〉)≥ 1 condition does not hold for all data

points. To adapt for this situation, we change the condition to bi(〈x,ai〉) ≥ 1− ζi

and the new objective would be:

min
x,ζ

λ

2
‖x‖2

2 +
1
n

n

∑
i=1

ζi (1.4)

s.t. ∀i bi 〈x,ai〉 ≥ 1−ζi.

By writing the Lagrangian form of (1.4) and doing some algebraic manipulation,

the following equivalent formulation can be achieved:

min
x

λ

2
‖x‖2

2 +
1
n

n

∑
i=1

max{0,1− bi 〈x,ai〉},

where Lh(z) = max{0,1− z} is called hinge loss. This loss function is convex but

not smooth. A smoothed version of this loss is called the Huberized hinge loss

where:

LHuber(z) =





0 if z≥ 1
1
2 − z if z≤ 0
1
2(1− z)2 otherwise

Figure 1.1 depicts the hinge loss and its smoothed version.

1.2 Big Data and Optimization
One of the main reason behind the current advancement in the development of

ML models and their application in real life problems is the existence of an im-

mense amount of data to train a model. Nowadays, every transaction which can

be recorded in some storage medium provides a data point for an ML model. Due

5
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Figure 1.1: The hinge loss (left) is non-smooth at point z = 1, whereas the
Huber loss (right) is smooth everywhere (Rennie and Srebro, 2005).

to sharing infrastructures provided by the web-giants such as Google, Facebook,

and Amazon, these companies’ customers provide various types of data for ML

algorithms by uploading their information. Developing models that can handle the

complexity of big data is a significant challenge in ML research.

Optimization is one of the most critical parts of most state of the art ML models

such as DNNs. The optimization algorithms must be able to handle a massive

dataset in order to train a practical ML model. The optimization algorithms could

consider two issues: (1) Using parallel hardware and (2) having cost-efficient or

scalable algorithms. The first issue is utilizing hardware parallelism to process the

samples existing in a dataset concurrently so that the speed of processing of the

whole dataset will be roughly equal to a single data point. Although this approach

is an active area in the optimization domain, it is not the focus of this thesis. The

second issue is developing optimization algorithms whose computational cost is

growing linearly with regards to the size of a dataset.

In this thesis, we consider first-order optimization methods. In this class of

algorithms, it is assumed that there exists a first-order oracle which gets a function

f and a point x in its domain as input and returns the function value f (x) and a sub-

gradient ∂ f (x). When f is smooth at x, the sub-gradient is equal to the gradient

∇ f (x). However, when f is non-smooth at x, ∂ f (x) could be any vector in the

subdifferential of f at x. Formally, let O be the oracle, then for a smooth function
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f we have:

O( f ,x) = ( f (x),∇ f (x)) .

Therefore these methods get all their information from a first-order oracle. The

cost of calling a first-order oracle depends on the input function’s formula and its

dependence on the dimensionality. For example for the quadratic function f (x) =

xT Ax where x ∈ Rd and A ∈ Rd×d is a dense matrix, the cost of calling O is of

O(d2). For objectives like SVM and logistic regression this cost is of O(d). The

space cost to call the first-order oracle is of O(d).

1.2.1 Iterative Methods

Almost all the optimization algorithms that are useful for current ML loss functions

are iterative methods. This means that they start from some given point in the

domain, and gradually progress toward a final optimal point. Therefore we can

show their update rule at the iteration t by the following formulation:

xt+1 = δ (xt ,gt ,ηt ,Kt),

where xt is the current value of the iterate and xt+1 is the updated variable. The

update direction is specified by gt , which is usually an estimator of the gradient

of the objective function at xt . The magnitude of the update is determined by

the step size ηt . Any additional parameters of a specific method are denoted via

Kt . For example in the gradient descent (GD) algorithm, gt = ∇ f (xt), Kt = /0, and

δ = xt−ηtgt . A variety of methods have been developed to set this update function

and its parameters for various type of objective functions.

These methods can be compared based on time complexity, space complexity,

and their practicality. To measure the time complexity of an iterative method, we

consider two metrics:

• Iteration cost: the computational cost per iteration is mainly related to the

evaluation of the function δ and its parameters. This cost includes the cost

of calling the first order oracle that involves the evaluation of the gradient of

the objective function at a given point. For example, in GD, this cost is O(d)

for the update rule plus the cost of computing the gradient.
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• Convergence rate: the number of iterations required to reach a solution

with accuracy less than some ε . Two types of convergence rates that we

deal with in this manuscript are sublinear and linear. Let {at > 0} be a

sequence converging toward zero, in other words limt→∞ at → 0. We say

at has sublinear convergence rate if at ≤ O(t−α)C, where α > 0 and C is a

constant. Alternatively we say at has linear (or ”exponential”) convergence

rate if at ≤ O(ρ t)C, where 0 < ρ < 1 and C is a constant. For example, GD

has a linear convergence rate for smooth and strongly-convex function and

the sequences that converge to zero are
{
‖xt − x∗‖2

2
}

, { f (xt)− f (x∗)}, and{
‖∇ f (xt)‖2

2
}

, where x∗ is the minimizer of f .

The space cost is related to the amount of memory space the algorithm requires

to save its parameters and variables. For GD, this cost is only O(d) plus the mem-

ory needed in the gradient evaluation. We typically do not count the space used to

store or load the dataset.

In terms of practicality, we look at how hard it is to tune the parameters of op-

timization algorithms. These algorithms usually have a couple of parameters, such

as the step size, and tuning them to the optimal value can improve the convergence

speed. There is not always a fixed optimal value for a parameter, but we need to

find a schedule for that parameter’s tuning throughout the iterates. For example,

stochastic gradient descent (SGD) (Robbins and Monro, 1951a) cannot converge

with a fixed step size; hence, there is not an optimal constant step size value. In-

stead, it needs a decreasing sequence of step sizes to achieve convergence. Need-

less to say that finding an optimal decreasing sequence of step sizes seems harder

than finding a fixed optimal step size.

In the following sections, we first review some concepts and definitions re-

lated to convex optimization and then briefly describe some of the most common

iterative optimization methods and their issues.

Background

The objective function we consider has the following general form:

min
x∈X

f (x). (1.5)
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Depending on the problem at hand, we assume different structures for the objective

function f . Here are the definitions of some structures we consider in the rest of

this manuscript:

• Convexity. A function f : Rd → R is convex iff for all x,y ∈X , and any

α ∈ [0,1]:

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y).

• Strong-convexity. A convex function f : Rd → R is µ-strongly-convex iff

for all x,y ∈X , there exists a constant µ > 0 such that:

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)− µα(1−α)

2
‖x− y‖2

2.

• Lipschitz smoothness. A differentiable function f : Rd → R is L-Lipschitz

smooth iff for all x,y ∈X , there exists a constant L > 0 such that

‖∇ f (x)−∇ f (y)‖2 ≤ L‖x− y‖2.

• Finite sum. A function f is a sum of a finite number of other functions:

f (x) =
1
n

n

∑
i=1

fi(x),

where n < ∞.

Gradient Descent

Gradient descent (GD) is one of the first and most significant iterative algorithms

to solve (1.5). The update rule of GD is:

xt+1 = xt −ηt∇ f (xt).

At each iteration t, it evaluates the gradient at the current iterate xt and then moves

in the opposite direction of that vector. The step size ηt can be set to a fixed value

or can be optimized per iteration using a line search algorithm. When the objective

function is strongly convex and smooth, this algorithm converges linearly with a
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sufficiently small fixed step size (Nesterov, 2004). However, when the objective

function has a finite-sum structure with a large n, then its iteration cost which is

O(nd) could be large as well. This cost makes GD unsuitable for the training of

ML models with a massive amount of data.

Stochastic Gradient Descent

Compared to GD, stochastic gradient descent (SGD) has a low cost to evaluate an

objective with finite sum structure. Generally, SGD can be utilized to minimize an

objective function with the following structure:

min
x∈X

f (x) = Eζ [ f (x,ζ )] ,

where ζ is a random variable coming from a known distribution p. For an objective

with finite-sum structure, we have ζ ∈ {1, ...n}, P(ζ = i) = 1/n, and f (x,ζ ) =

fζ (x). Note that for this objective we assume that a stochastic first order oracle is

provided which means the oracle accepts an extra parameter ζ in addition to f and

x. Here is the SGD’s iteration at step t:

ζt ∼ P

xt+1 = xt −ηt∇ f (xt ,ζt).

In each iteration, first a sample ζt gets generated from p, then the gradient of

∇ f (xt ,ζt) is evaluated by the stochastic oracle. This gradient is a stochastic ap-

proximation for the full gradient ∇ f (xt). It is usually assumed that this estimation

is unbiased, in other words Eζ [∇ f (xt ,ζt)] = ∇ f (xt). Then similar to GD, a step

is taken along the opposite direction of the stochastic gradient. For the finite-sum

problem, the update rule would be:

it ∼Uni f{1...n}
xt+1 = xt −ηt∇ fit (xt),

where here it = ζt and p is a uniform distribution. Clearly ∇ fit (xt) is an unbiased
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estimator for ∇ f (xt) since:

Eit [∇ fit (xt)] =
1
n

n

∑
i=1

∇ fi(xt) = ∇ f (xt).

SGD has a cheaper iteration cost than GD for the finite-sum problem since it only

needs one gradient computation per iteration. However, it converges slower than

GD and only achives a sublinear convergence rate (Bach and Moulines, 2011).

Furthermore, it does not converge with a fixed step size and requires a diminishing

step size. In theory, its step size is needed to regress toward zero with the rate of

t−α for some α ∈ [1/2,1] (Bach and Moulines, 2011), but in practice, we can pick

bigger step size for α < 1/2. Therefore, setting a good step size schedule is not an

easy task for SGD which limits its practicality.

Variance Reduction based Methods

It has been shown that the main reason for the slow convergence rate in SGD is the

variance of the stochastic gradient estimator. One way to measure this variance for

the finite-sum problem at iteration t is:

1
n

n

∑
i=1
‖∇ fit (xt)−∇ f (xt)‖2

2.

Variance reduction techniques have been introduced to battle this problem and

also improve the convergence rate of SGD while keeping the iteration cost as low as

possible. This stream of optimization methods was started with the introduction of

the stochastic average gradient (SAG) (Le Roux et al., 2012) algorithm. The main

building block of the SAG algorithm is an extra memory. Let M denote the memory

of size n×d. Corresponding to each function fi, there is a cell in the memory, M[i],

which stores the gradient of fi at some point. Incorporating the extra memory helps

SAG to reduce the variance of the stochastic gradient estimator. Here is the update
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rule of this algorithm:

it ∼Uni f{1...n}
M[it ] = ∇ fit (xt)

xt+1 = xt −ηt

(
1
n

n

∑
i=1

M[i]

)
.

In each iteration, a function is selected randomly; then its gradient gets evaluated

and stored in memory; finally a jump in the opposite direction of the average of

stored value in the memory is taken.

Similar to SGD, SAG has a low iteration cost, which makes it feasible when n

is large. It can be shown that for strongly-convex and smooth functions, SAG can

converge linearly similar to GD. For many problems, we can find a range of fixed

step sizes analytically, and by setting the SAG step size to any of those values, get

convergence to the minimizer. However, SAG has some issues as well. First and

foremost, it usually requires extra memory of the same size as the dataset. Also, its

gradient estimator 1
n ∑

n
i=1 M[i] is not unbiased due to stale gradients stored in the

memory, which makes the convergence analysis of the method hard.

Following SAG, alternative variance reduction based methods have been intro-

duced such as stochastic average gradient amélioré (SAGA) (Defazio et al., 2014),

stochastic dual coordinate ascent (SDCA) (Shalev-Shwartz and Zhang, 2013a),

minimization by incremental surrogate optimization (MISO) (Mairal, 2014) and

stochastic variance reduced gradient (SVRG) (Johnson and Zhang, 2013). SVRG

solves the additional memory requirement of the SAG method by computing the

full gradient occasionally at the expense of increasing the iteration cost. SAGA

combines the update rule of SAG and SVRG in a way that makes the gradient

estimator an unbiased one.

Finally, we consider the usability of the variance reduction techniques beyond

the convex minimization problems. For some non-convex problems when the ob-

jective function satisfies the so-called gradient dominance property or PL condi-

tion (Karimi et al., 2016), it has been shown that SVRG can converge linearly to

the global optima (Allen-Zhu and Yuan, 2016; Reddi et al., 2016). However, for a

complex non-convex loss function such as neural network models, these techniques
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don’t give us a faster convergence rate than SGD (Defazio and Bottou, 2019; Reddi

et al., 2017). One possible explanation could be that the variance existing in the

stochastic approximation of the gradient can help the optimization algorithm to

escape from bad local minima.

SVRG

Stochastic variance reduced gradient (SVRG) (Johnson and Zhang, 2013) removes

the extra memory requirement in SAG by adding extra gradient evaluations. Sim-

ilar to other fast variance reduction based methods, it requires that the objective

function have the finite-sum structure. The main idea of SVRG is to compute the

full gradient of an objective function at some pivot point and leverage it for reduc-

ing the variance of gradient estimator. Here is the update rule for SVRG:

it ∼Uni f{1...n}
xt+1 = xt −ηt (∇ fit (xt)−∇ fit (x̃)+∇ f (x̃)) ,

where x̃ is the pivot point and gets updated occupationally. It has an unbiased gra-

dient estimator such that when xt converges toward x∗, that estimator converges

toward full gradient ∇ f (xt). Therefore through the iterations, this estimator’s vari-

ance gradually decreases toward zero. This idea is similar to the concept of con-

trol variates in statistical methods for reducing the variance of a random estima-

tor (Owen, 2014).

SVRG converges linearly for smooth and strongly-convex function with a fixed

step size. But its iteration cost is higher than SAG since it requires two gradient

evaluation per iteration. Further, it occasionally needs to compute the full gradient

at a pivot point.

Mirror Descent

The mirror descent algorithm (MDA) (Beck and Teboulle, 2003) is an optimization

algorithm that considers the geometrical structure of the objective function. We can

view MDA as a generic version of the projected (sub)gradient descent algorithm.
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In the projected subgradient algorithm, the update rule is:

xt+1 ∈ argmin
x∈X

{
〈x,∂ f (xt)〉+

1
2ηt
‖x− xt‖2

2

}
. (1.6)

MDA replaces the squared Euclidean distance in (1.6) with a more general Breg-

man divergence BΦ. A Bregman divergence that is induced by a smooth and

strongly-convex function Φ is defined as follows:

BΦ(x,y) = Φ(x)−Φ(y)−〈x− y,∇Φ(y)〉 .

Therefore, the MDA’s update is:

xt+1 ∈ argmin
x∈X

{
〈x,∂ f (xt)〉+

1
ηt

BΦ(x,xt)

}
. (1.7)

The convergence of MDA for convex and non-convex objectives has been ana-

lyzed in (Beck and Teboulle, 2003; Ghadimi et al., 2014). Those analyses depend

on the properties of the Bregman divergence and the order of its parameters in (1.7).

But in some applications, such as VI for “exponential distribution families”, the di-

vergence function does not comply with the properties required by those analyses.

Hence a new convergence analysis is required for these new situations.

1.3 Summary of Contributions
In this thesis, we focus on improving the existing stochastic methods for convex

and non-convex optimization. We first discuss how we can reduce the iteration cost

in SVRG and also improve the convergence speed in SAGA using non-uniform

sampling. Then we adopt the SAGA algorithm for non-Euclidean spaces. Finally

we generalize the non-convex SGD analysis beyond mirror descent to handle an

important class of non-convex functions. Our list of contributions is as follows:

• Chapter 2: we consider the SVRG algorithm which does not require addi-

tional memory such as SAG. However, it needs more gradient evaluations

than SAG in every iteration. We introduce variants of the SVRG algorithm

that are more efficient in terms of gradient evaluation.
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• Chapter 3: we consider the SAGA algorithm, which is the unbiased version

of the SAG algorithm. We study that algorithm for the conditional random

field problem and also introduce variants of it which have better convergence

speed using a non-uniform sampling scheme.

• Chapter 4: we consider the optimization problem in non-Euclidean spaces.

Specifically we consider Riemannian manifolds in our analysis and models

such as principal component analysis (PCA) could be analysed in this frame-

work. Using the structure of a space can help to improve the convergence

speed and reduce the computational cost of an optimization algorithm. We

adapt the SAGA algorithm for this new setting and show that the modified

version still provides a linear convergence rate.

• Chapter 5: we consider the optimization problem of divergence minimiza-

tion occurring in variational inference (VI). In this problem, the objective

function is non-convex and does not follow the finite-sum structure. Further

VI does not fall in the MD framework. We analyze the gradient descent and

stochastic gradient descent update rules for this setting.
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Chapter 2

Practical SVRG

In this chapter we consider the objective function with finite-sum structure:

min
x∈Rd

f (x) =
1
n

n

∑
i=1

fi(x). (2.1)

As we have seen before, minimizing the empirical risk has the above structure. A

huge proportion of the model-fitting procedures in machine learning can be mapped

to this problem. This includes classic models like least squares and logistic regres-

sion but also includes more advanced methods like conditional random fields and

deep neural network models. In the high dimensional setting (large d), the tra-

ditional approaches for solving (2.1) are: full gradient (FG) methods which have

linear convergence rates for smooth and strongly-convex f , but need to evaluate

the gradient fi for all n examples on every iteration, and stochastic gradient (SG)

methods which make rapid initial progress as they only use a single gradient on

each iteration but ultimately have slower sublinear convergence rates.

Le Roux et al. (2012) proposed the first general method, stochastic average

gradient (SAG), that only considers one training example on each iteration but still

achieves a linear convergence rate. Other methods have subsequently been shown

to have this property (Defazio et al., 2014; Mairal, 2013a; Shalev-Shwartz and

Zhang, 2013b), but these all require storing a previous evaluation of the gradient

∇ fi or the dual variables for each i. For many objectives this only requires O(n)

space, but for general problems this requires O(nd) space making them impractical.
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Recently, several methods have been proposed with similar convergence rates

to SAG but without the memory requirements (Johnson and Zhang, 2013; Konečnỳ

and Richtárik, 2013; Mahdavi and Jin, 2013; Zhang et al., 2013). They are known

as mixed gradient, stochastic variance-reduced gradient (SVRG), and semi-stochastic

gradient methods (we will use SVRG). We give a canonical SVRG algorithm in

the next section, but the salient features of these methods are that they evaluate

two gradients on each iteration and occasionally must compute the gradient on

all examples. SVRG methods often dramatically outperform classic FG and SG

methods, but these extra evaluations mean that SVRG is slower than SG methods

in the important early iterations. They also mean that SVRG methods are typically

slower than memory-based methods like SAG.

In this chapter, we first show that SVRG is robust to inexact calculation of the

full gradients it requires, provided the accuracy increases over time. We use this

to explore growing-batch strategies that require fewer gradient evaluations when

far from the solution, and we propose a mixed SGD/SVRG method that may im-

prove performance in the early iterations. We next explore using support vectors to

reduce the number of gradients required when close to the solution, give a justifica-

tion for the regularized SVRG update that is commonly used in practice, consider

alternative mini-batch strategies, and finally consider the generalization error of the

method.

2.1 Notation and SVRG Algorithm
SVRG assumes f is µ-strongly convex, each fi is convex, and each gradient ∇ fi is

Lipschitz-continuous with constant L. The method begins with an initial estimate

x0, sets x0 = x0 and then generates a sequence of iterates xt using

xt+1 = xt −η(∇ fit (xt)−∇ fit (x
s)+∇ f (xs)), (2.2)

where η is the positive step size, and it is chosen uniformly from {1,2, . . . ,n}.
After every m steps, we set xs+1 = xt for a random t ∈ {1, . . . ,m}, and we reset

t = 0 with x0 = xs+1. The vanilla SVRG algorithm is presented in Algorithm 1.

To analyze the convergence rate of SVRG, we will find it convenient to define
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Algorithm 1 SVRG

Input: initial vector x0, update frequency m, learning rate η .
for s = 0,1,2, . . . do

gs = ∇ f (xs) = 1
n ∑

n
i=1 ∇ fi(xs)

x0=xs

for t = 1,2, . . . ,m do
Randomly pick it ∈ {1, . . . ,n}
xt+1 = xt −η(∇ fit (xt)−∇ fit (x

s)+gs) (∗)
end for
option I: set xs+1 = xm

option II: set xs+1 = xt for random t ∈ {1, . . . ,m}
end for

the function

ρ(a,b) =
1

1−2ηa

(
1

mµη
+2bη

)
,

as it appears repeatedly in our results. We will use ρ(a) to indicate the value of

ρ(a,b) when a = b, and we will simply use ρ for the special case when a = b = L.

Johnson and Zhang (2013) show that if η and m are chosen such that 0 < ρ < 1,

the algorithm achieves a linear convergence rate of the form

E[ f (xs+1)− f (x∗)]≤ ρE[ f (xs)− f (x∗)],

where x∗ is the optimal solution. This convergence rate is very fast for appropriate

η and m. While this result relies on constants we may not know in general, practical

choices with good empirical performance include setting m = n, η = 1/L, and

using xs+1 = xm rather than a random iterate.

Unfortunately, the SVRG algorithm requires 2m+ n gradient evaluations for

every m iterations of (2.2), since updating xt requires two gradient evaluations and

computing gs require n gradient evaluations. We can reduce this to m+n if we store

the gradients ∇ fit (x
s), but this is not practical in most applications. Thus, SVRG

requires many more gradient evaluations than classic SGD iterations or memory-

based methods like SAG.
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2.2 SVRG with Error
We first give a result for the SVRG method where we assume that gs is equal to

∇ f (xs) up to some error es. This is in the spirit of the analysis of Schmidt et al.

(2011), who analyze GD methods under similar assumptions. We assume that

‖xt − x∗‖2 ≤ Z for all t, which has been used in related work (Hu et al., 2009) and

is reasonable because of the coerciveness implied by strong-convexity.

Theorem 2.1. Assume f is µ-strongly convex and each fi is L-Lipschitz smooth.

Furthermore assume ‖xt − x∗‖2 ≤ Z holds for every iteration. If gs = ∇ f (xs)+ es

and we set η and m so that ρ < 1, then the SVRG algorithm (2.2) with xs+1 chosen

randomly from {x1,x2, . . . ,xm} satisfies

E
[

f (xs+1)− f (x∗)
]
≤ ρE [ f (xs)− f (x∗)]+

ZE [‖es‖2]+ηE
[
‖es‖2

2
]

1−2ηL
.

We give the proof in Appendix A.1.1. This result implies that SVRG does not

need a very accurate approximation of ∇ f (xs) in the crucial early iterations since

the first term in the bound will dominate. Further, this result implies that we can

maintain the exact convergence rate of SVRG as long as the errors es decrease at an

appropriate rate. For example, we obtain the same convergence rate provided that

max{E [‖es‖2] ,E
[
‖es‖2

2
]
} ≤ γρ̃s for any γ ≥ 0 and some ρ̃ < ρ . Further, we still

obtain a linear convergence rate as long as ‖es‖2 converges to zero with a linear

rate.

2.2.1 Non-Uniform Sampling

Xiao and Zhang (2014) show that non-uniform sampling (NUS) improves the per-

formance of SVRG. They assume each ∇ fi is Li-Lipschitz continuous, and sample

it = i with probability Li/nL̄ where L̄ = 1
n ∑

n
i=1 Li. The iteration is then changed to

xt+1 = xt −η

(
L̄
Lit

[∇ fit (xt)−∇ fit (x
s)]+gs

)
,

which maintains that the search direction is unbiased. Here gs can be an exact

or approximate evaluation for ∇ f (xs). In Appendix A.1.2, we show that if gs is

computed with error for this algorithm and if we set η and m so that 0 < ρ(L̄)< 1,
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Algorithm 2 Batching SVRG

Input: initial vector x0, update frequency m, learning rate η .
for s = 0,1,2, . . . do

Choose batch size |Bs|
Bs = |Bs| elements sampled without replacement from {1,2, . . . ,n}.
gs = 1

|Bs| ∑i∈Bs ∇ fi(xs)
x0=xs

for t = 1,2, . . . ,m do
Randomly pick it ∈ {1, . . . ,n}
xt+1 = xt −η(∇ fit (xt)−∇ fit (x

s)+gs) (∗)
end for
option I: set xs+1 = xm

option II: set xs+1 = xt for random t ∈ {1, . . . ,m}
end for

then we have a convergence rate of

E
[

f (xs+1)− f (x∗)
]
≤ ρ(L̄)E [ f (xs)− f (x∗)]+

ZE [‖es‖2]+ηE
[
‖es‖2

2
]

1−2η L̄
,

which can be faster since the average L̄ may be much smaller than the maximum

value L.

2.2.2 SVRG with Batching

There are many ways we could allow an error in the calculation of gs to speed up

the algorithm. For example, if evaluating each ∇ fi involves solving an optimization

problem, then we could solve this optimization problem inexactly. For example, if

we are fitting a graphical model with an iterative approximate inference method,

we can terminate the iterations early to save time.

When the fi are simple but n is large, a natural way to approximate gs is with a

subset (or ‘mini-batch’) of training examples Bs (chosen without replacement),

gs =
1
|Bs| ∑

i∈Bs

∇ fi(xs).

This is justified because when we are far from the solution, most ∇ fi(xs) likely
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point in directions of progress. The batch size |Bs| controls the error in the ap-

proximation, and we can drive the error to zero by increasing it to n. Existing

SVRG methods correspond to the special case where |Bs| = n for all s and we

sample without replacement.

Algorithm 2 gives pseudo-code for an SVRG implementation that uses this

sub-sampling strategy. If we assume that the sample variance of the norms of the

gradients is bounded by S2 for all xs,

1
n

n

∑
i=1

[
‖∇ fi(xs)‖2

2−‖∇ f (xs)‖2
2
]
≤ S2,

then we have that (Lohr, 2009, Chapter 2)

E
[
‖es‖2

2
]
≤ n−|Bs|

n|Bs| S2.

So if we want E
[
‖es‖2

2
]
≤ γρ̃2s, where γ ≥ 0 is a constant for some ρ̃ < 1, we need

|Bs| ≥ nS2

S2 +nγρ̃2s . (2.3)

If the batch size satisfies the above condition then

ZE
[
‖es−1‖2

]
+ηE

[
‖es−1‖2

2
]
≤ Z
√

γρ̃
s +ηγρ̃

2s

≤ 2max{Z√γ,ηγρ̃}ρ̃s,

and the convergence rate of SVRG is unchanged compared to using the full batch

on all iterations.

The condition (2.3) guarantees a linear convergence rate under any exponentially-

increasing sequence of batch sizes, the strategy suggested by Friedlander and Schmidt

(2012) for classic SG methods. However, a tedious calculation shows that (2.3) has

an inflection point at s = log(S2/γn)/2log(1/ρ̃), corresponding to |Bs|= n
2 . This

was previously observed empirically (Aravkin et al., 2012, Figure 3), and occurs

because we are sampling without replacement. This transition means we don’t

need to increase the batch size exponentially.

21



Algorithm 3 Mixed SVRG and SG Method
Replace (*) in Algorithm 1 with the following lines:
if fit ∈Bs then

xt+1 = xt −η(∇ fit (xt)−∇ fit (x
s)+gs)

else
xt+1 = xt −η∇ fit (xt)

end if

2.3 Mixed SG and SVRG Method
An approximate gs can drastically reduce the computational cost of the SVRG

algorithm, but does not affect the 2 in the 2m+ n gradients required for m SVRG

iterations. This factor of 2 is significant in the early iterations, since this is when

stochastic methods make the most progress and when we typically see the largest

reduction in the test error.

To reduce this factor, we can consider a mixed strategy: if it is in the batch Bs

then perform an SVRG iteration, but if it is not in the current batch then use a clas-

sic SG iteration. We illustrate this modification in Algorithm 3. This modification

allows the algorithm to take advantage of the rapid initial progress of SG, since

it predominantly uses SG iterations when far from the solution. Below we give a

convergence rate for this mixed strategy.

Theorem 2.2. Assume f is µ-strongly convex and each fi is L-Lipschitz smooth.

Furthermore assume ‖xt−x∗‖2 ≤ Z holds for every iteration. Let gs = ∇ f (xs)+es

and we set η and m so that 0 < ρ(L,αL) < 1 with α = |Bs|/n. If we assume

E
[
‖∇ fi(x)‖2

2
]
≤ σ2 then Algorithm 3 has

E
[

f (xs+1)− f (x∗)
]
≤ρ(L,αL)E [ f (xs)− f (x∗)]

+
ZE [‖es‖2]+ηE

[
‖es‖2

2
]
+ ησ2

2 (1−α)

1−2ηL
.

We give the proof in Appendix A.2.1. The extra term depending on the vari-

ance σ2 is typically the bottleneck for SG methods. Classic SG methods require

the step-size η to converge to zero because of this term. However, the mixed

SG/SVRG method can keep the fast progress despite using a constant η since the
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term depending on σ2 converges to zero as α converges to one. Since α < 1 implies

that ρ(L,αL) < ρ , this result implies that when [ f (xs)− f (x∗)] is large compared

to es and σ2 that the mixed SG/SVRG method actually converges faster.

Sharing a single step size η between the SG and SVRG iterations in Theo-

rem 2.2 is sub-optimal. For example, if x is close to x∗ and |Bs| ≈ n, then the SG

iteration might actually take us far away from the minimizer. Thus, we may want

to use a decreasing sequence of step sizes for the SG iterations. In Appendix A.2.2,

we show that using η = O∗(
√

(n−|B|)/n|B|) for the SG iterations can improve

the dependence on the error es and variance σ2.

2.4 Regularized SVRG
We are often interested in the special case where problem (2.1) has the decompo-

sition

min
x∈Rd

f (x)≡ h(x)+
1
n

n

∑
i=1

fi(x). (2.4)

A common choice of h is a scaled 1-norm of the parameter vector, h(x) = λ‖x‖1.

This non-smooth regularizer encourages sparsity in the parameter vector, and can

be addressed with the proximal-SVRG method of Xiao and Zhang (2014). Alter-

nately, if we want an explicit Z (diameter of a space containing the x∗) we could

set h to the indicator function for a 2-norm ball containing x∗. In Appendix A.3,

we give a variant of Theorem 2.1 that allows errors in the proximal-SVRG method

for non-smooth/constrained settings like this.

Another common choice is the `2-regularizer, h(x) = λ

2 ‖x‖2
2. With this regular-

izer, the SVRG updates can be equivalently written in the form

xt+1 = xt −η (∇h(xt)+∇ fit (xt)−∇ fit (x
s)+gs) , (2.5)

where gs = 1
n ∑

n
i=1 ∇ fi(xs). That is, they take an exact gradient step with respect

to the regularizer and an SVRG step with respect to the fi functions. When the

∇ fi are sparse, this form of the update allows us to implement the iteration without

needing full-vector operations. A related update is used by Le Roux et al. (2012,

§4)to avoid full-vector operations in the SAG algorithm. In Appendix A.3.2, we

prove the below convergence rate for this update.
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Theorem 2.3. Consider instances of problem (2.1) that can be written in the

form (2.4) where ∇h is Lh-Lipschitz continuous and each ∇ fi is L f -Lipschitz con-

tinuous, f is µ-strongly convex, and assume that we set η and m so that 0 <

ρ(Lm)< 1 with Lm = max{L f ,Lh}. Then the regularized SVRG iteration (2.5) has

E
[

f (xs+1)− f (x∗)
]
≤ ρ(Lm)E [ f (xs)− f (x∗)] .

Since Lm ≤ L, and strictly so in the case of `2-regularization, this result shows

that for `2-regularized problems SVRG actually converges faster than the standard

analysis would indicate (a similar result appears in Konečnỳ et al. (2014)). Further,

this result gives a theoretical justification for using the update (2.5) for other h

functions where it is not equivalent to the original SVRG method.

2.5 Mini-Batching Strategies
Konečnỳ et al. (2014) have also recently considered using batches of data within

SVRG. They consider using ‘mini-batches’ in the inner iteration (the update of xt)

to decrease the variance of the method, but still use full passes through the data to

compute gs. This prior work is thus complimentary to the current work (in practice,

both strategies can be used to improve performance). In Appendix A.4.1 we show

that sampling the inner mini-batch proportional to Li achieves a convergence rate

of

E
[

f (xs+1)− f (x∗)
]
≤ ρME [ f (xs)− f (x∗)] ,

where M is the size of the mini-batch while

ρM =
1

1−2η L̄

(
1

mµη
+2L̄η

)
,

and we assume 0 < ρM < 1. This generalizes the standard rate of SVRG and

improves on the result of Konečnỳ et al. (2014) in the smooth case. This rate can

be faster than the rate of the standard SVRG method at the cost of a more expensive

iteration, and may be clearly advantageous in settings where parallel computation

allows us to compute several gradients simultaneously.

The regularized SVRG form (2.5) suggests an alternate mini-batch strategy for
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problem (2.1): consider a mini-batch that contains a ‘fixed’ set B f and a ‘random’

set Br. Without loss of generality, assume that we sort the fi based on their Li

values so that L1 ≥ L2 ≥ ·· · ≥ Ln. For the fixed B f we will always choose the

M f values with the largest Li, B f = { f1, f2, . . . , fM f }. In contrast, we choose the

members of the random set Br by sampling from Bt = { fM f +1, . . . , fn} proportional

to their Lipschitz constants, pi =
Li

(n−M f )L̄r
with L̄r = (1/(n−M f ))∑

n
i=M f +1 Li. In

Appendix A.4.2 we show the following convergence rate for this strategy:

Theorem 2.4. Assume f is µ-strongly convex and each fi is L-Lipschitz smooth.

Let g(x) = (1/n)∑i/∈[B f ] fi(x) and h(x) = (1/n)∑i∈[B f ] fi(x). If we replace the

SVRG update with

xt+1 = xt −η

(
∇h(xt)+(1/Mr) ∑

i∈Br

L̄r

Li
(∇ fi(xt)−∇ fi(xs))+∇g(xs)

)
,

then the convergence rate is

E
[

f (xs+1)− f (x∗)
]
≤
(

2
mµ(2−ηζ )η

+
4L̄rM f η

n(2−ζ η)

)
E [ f (xs)− f (x∗)] ,

where ζ = max{4LM f
n ,

4L̄r(n−M f )
n }.

If ζ ≤ 4L̄r, then we get a faster convergence rate than SVRG with mini-batch

of size M.

2.6 Using Support Vectors
Using a batch Bs decreases the number of gradient evaluations required when

SVRG is far from the solution, but its benefit diminishes over time. However,

for certain objectives we can further reduce the number of gradient evaluations

by identifying support vectors. For example, consider minimizing the Huberized

hinge loss (HSVM) with threshold ε (Rosset and Zhu, 2007),

min
x∈Rd

1
n

n

∑
i=1

f (biaT
i x), f (τ) =





0 if τ > 1+ ε ,

1− τ if τ < 1− ε ,
(1+ε−τ)2

4ε
if |1− τ| ≤ ε .
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In terms of (2.1), we have fi(x) = f (biaT
i x). The performance of this loss function

is similar to logistic regression and the hinge loss, but it has the appealing proper-

ties of both: it is differentiable like logistic regression meaning we can apply meth-

ods like SVRG, but it has support vectors like the hinge loss meaning that many

examples will have fi(x∗) = 0 and ∇ fi(x∗) = 0. We can also construct Huberized

variants of many non-smooth losses for regression and multi-class classification.

If we knew the support vectors where fi(x∗) > 0, we could solve the problem

faster by ignoring the non-support vectors. For example, if there are 100000 train-

ing examples but only 100 support vectors in the optimal solution, we could solve

the problem 1000 times faster. While we typically don’t know the support vectors,

in this section we outline a heuristic that gives large practical improvements by

trying to identify them as the algorithm runs.

Our heuristic has two components. The first component is maintaining the list

of non-support vectors at xs. Specifically, we maintain a list of examples i where

∇ fi(xs) = 0. When SVRG picks an example it that is part of this list, we know

that ∇ fit (x
s) = 0 and thus the iteration only needs one gradient evaluation. This

modification is not a heuristic, in that it still applies the exact SVRG algorithm.

However, at best it can only cut the runtime in half.

The heuristic part of our strategy is to skip ∇ fi(xs) or ∇ fi(xt) if our evaluation

of ∇ fi has been zero more than two consecutive times (and skipping it an expo-

nentially larger number of times each time it remains zero). Specifically, for each

example i we maintain two variables, ski (for ‘skip’) and psi (for ‘pass’). When-

ever we need to evaluate ∇ fi for some xs or xt , we run Algorithm 4 which may skip

the evaluation. This strategy can lead to huge computational savings in later itera-

tions if there are few support vectors, since many iterations will require no gradient

evaluations.

Identifying support vectors to speed up computation has long been an important

part of SVM solvers, and is related to the classic shrinking heuristic (Joachims,

1999). While it has previously been explored in the context of dual coordinate

ascent methods (Usunier et al., 2010), this is the first work exploring it for linearly-

convergent stochastic gradient methods.
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Algorithm 4 Heuristic for skipping evaluations of fi at x

if ski = 0 then
compute ∇ fi(x).
if f ′i (x) = 0 then

psi = psi +1. {Update the number of consecutive times f ′i (x) was zero.}
ski = 2max{0,psi−2}. {Skip exponential number of future evaluations if it
remains zero.}

else
psi = 0. {This could be a support vector, do not skip it next time.}

end if
return ∇ fi(x).

else
ski = ski−1. {In this case, we skip the evaluation.}
return 0.

end if

2.7 Learning efficiency
In this section we compare the performance of SVRG as a large-scale learning

algorithm compared to FG and SG methods. Following Bottou and Bousquet

(2007),we can formulate the generalization error E of a learning algorithm as the

sum of three terms

E = Eapp +Eest +Eopt

where the approximation error Eapp measures the effect of using a limited class

of models, the estimation error Eest measures the effect of using a finite training

set, and the optimization error Eopt measures the effect of inexactly solving prob-

lem (2.1). Bottou and Bousquet (2007) study asymptotic performance of various

algorithms for a fixed approximation error and under certain conditions on the dis-

tribution of the data depending on parameters α or ν . In Appendix A.5 we discuss

how SVRG can be analyzed in their framework. The table below includes SVRG

among their results.

In this table, the condition number is κ = L/µ . In this setting, linearly-convergent

stochastic gradient methods can obtain better bounds for ill-conditioned problems,

with a better dependence on the dimension and without depending on the noise

variance ν .
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Algorithm Time to reach Eopt ≤ ε Time to reach E = O(Eapp + ε) Previous with κ ∼ n

FG O
(
nκd log

( 1
ε

))
O
(

d2κ

ε1/α
log2 ( 1

ε

))
O
(

d3

ε2/α
log3 ( 1

ε

))

SG O
(

dνκ2

ε

)
O
(

dνκ2

ε

)
O
(

d3ν

ε
log2 ( 1

ε

))

SVRG O
(
(n+κ)d log

( 1
ε

))
O
(

d2

ε1/α
log2 ( 1

ε

)
+κd log

( 1
ε

))
O
(

d2

ε1/α
log2 ( 1

ε

))

Table 2.1: Learning efficiency for different optimization algorithms.

Data set Data Points Variables Reference
quantum 50 000 78 Caruana et al. (2004)
protein 145 751 74 Caruana et al. (2004)
sido 12 678 4 932 Guyon (2008)
rcv1 20 242 47 236 Lewis et al. (2004)
covertype 581 012 54 Frank and Asuncion (2010)
news 19 996 1 355 191 Keerthi and DeCoste (2005)
spam 92 189 823 470 Carbonetto (2009); Cormack and Lynam (2005)
rcv1Full 697 641 47 236 Lewis et al. (2004)
alpha 500 000 500 Synthetic

Table 2.2: Binary data sets used in the experiments.

2.8 Experimental Results
In this section, we present experimental results that evaluate our proposed varia-

tions on the SVRG method. We focus on logistic regression classification: given a

set of training data (a1,b1) . . .(an,bn) where ai ∈ Rd and bi ∈ {−1,+1}, the goal

is to find the x ∈ Rd solving

argmin
x∈X

x ∈ Rd λ

2
‖x‖2 +

1
n

n

∑
i=1

log(1+ exp(−biaT
i x)),

where the objective is strongly convex and smooth. We consider the datasets used

by Le Roux et al. (2012), whose properties are listed in table 2.2. As in their

work we add a bias variable, normalize dense features, and set the regularization

parameter λ to 1/n. We used a step-size of η = 1/L and we used m = |Bs| which

gave good performance across methods and datasets. In our first experiment, we

compared three variants of SVRG: the original strategy that uses all n examples to
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form gs (Full), a growing batch strategy that sets |Bs|= 2s (Grow), and the mixed

SG/SVRG described by Algorithm 3 under this same choice (Mixed). While a

variety of practical batching methods have been proposed in the literature (Byrd

et al., 2012; Friedlander and Schmidt, 2012; van den Doel and Ascher, 2012), we

did not find that any of these strategies consistently outperformed the doubling used

by the simple Grow strategy. Our second experiment focused on the `2-regularized

HSVM on the same datasets, and we compared the original SVRG algorithm with

variants that try to identify the support vectors (SV).
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Figure 2.1: Comparison of training objective (left) and test error (right) on the
spam dataset for the logistic regression (top) and the HSVM (bottom)
losses under different batch strategies for choosing gs (Full, Grow, and
Mixed) and whether we attempt to identify support vectors (SV).

We plot the experimental results for one run of the algorithms on one dataset

in Figure 2.1. In our results, the growing batch strategy (Grow) always had better

test error performance than using the full batch, while for large datasets it also per-

formed substantially better in terms of the training objective. In contrast, the Mixed

strategy sometimes helped performance and sometimes hurt performance. Utiliz-

ing support vectors often improved the training objective, often by large margins,
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but its effect on the test objective was smaller.

In Figures 2.2 to 2.5, we plot the performance on the various datasets in terms

of both the training objective and test error, showing the maximum/mean/minimum

performance across 10 random trials. In these plots, we see a clear advantage for

the Grow strategy on the largest datasets (bottom row), but less of an advantage

or no advantage on the smaller datasets. The advantage of using support vectors

seemed less dependent on the data size, as it helped in some small datasets as well

as some large datasets, while in some small/large datasets it did not make a big

difference. We have made the code available at http://www.cs.ubc.ca/∼schmidtm/

Software/practicalSVRG.zip.

2.9 Discussion
As SVRG is the only memory-free method among the new stochastic linearly-

convergent methods, it represents the natural method to use for a huge variety of

machine learning problems. In this work we show that the convergence rate of the

SVRG algorithm can be preserved even under an inexact approximation to the full

gradient. We also showed that using mini-batches to approximate gs gives a natural

way to do this, explored the use of support vectors to further reduce the number

of gradient evaluations, gave an analysis of the regularized SVRG update, and

considered several new mini-batch strategies. Our theoretical and experimental

results indicate that many of these simple modifications should be considered in

any practical implementation of SVRG.
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Figure 2.2: Comparison of training objective of logistic regression for differ-
ent datasets. The top row gives results on the quantum (left), protein
(center) and sido (right) datasets. The middle row gives results on the
rcv11 (left), covertype (center) and news (right) datasets. The bottom
row gives results on the spam (left), rcv1Full (center), and alpha (right)
datasets.
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Figure 2.3: Comparison of test error of logistic regression for different
datasets. The top row gives results on the quantum (left), protein (cen-
ter) and sido (right) datasets. The middle row gives results on the rcv11
(left), covertype (center) and news (right) datasets. The bottom row
gives results on the spam (left), rcv1Full (center), and alpha (right)
datasets.
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Figure 2.4: Comparison of training objective of SVM for different datasets.
The top row gives results on the quantum (left), protein (center) and sido
(right) datasets. The middle row gives results on the rcv11 (left), cover-
type (center) and news (right) datasets. The bottom row gives results on
the spam (left), rcv1Full (center), and alpha (right) datasets.
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Figure 2.5: Comparison of test error of SVM for different datasets. The top
row gives results on the quantum (left), protein (center) and sido (right)
datasets. The middle row gives results on the rcv11 (left), covertype
(center) and news (right) datasets. The bottom row gives results on the
spam (left), rcv1Full (center), and alpha (right) datasets.
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Chapter 3

Practical Non-uniform SAG for
Conditional Random Fields

Conditional random fields (CRFs) (Lafferty et al., 2001) are a ubiquitous tool in

natural language processing. They are used for part-of-speech tagging (McCal-

lum et al., 2003), semantic role labeling (Cohn and Blunsom, 2005), topic mod-

eling (Zhu and Xing, 2010), information extraction (Peng and McCallum, 2006),

shallow parsing (Sha and Pereira, 2003), named-entity recognition (Settles, 2004),

as well as a host of other applications in natural language processing and in other

fields such as computer vision (Nowozin and Lampert, 2011). Similar to gener-

ative Markov random field (MRF) models, CRFs allow us to model probabilistic

dependencies between output variables. The key advantage of discriminative CRF

models is the ability to use a very high-dimensional feature set, without explic-

itly building a model for these features (as required by MRF models). Despite the

widespread use of CRFs, a major disadvantage of these models is that they can be

very slow to train and the time needed for numerical optimization in CRF models

remains a bottleneck in many applications.

Due to the high cost of evaluating the CRF objective function on even a single

training example, it is now common to train CRFs using stochastic gradient meth-

ods (Vishwanathan et al., 2006). These methods are advantageous over determin-

istic methods because on each iteration they only require computing the gradient

of a single example (and not all example as in deterministic methods). Thus, if
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we have a data set with n training examples, the iterations of stochastic gradient

methods are n times faster than deterministic methods. However, the number of

stochastic gradient iterations required might be very high. This has been studied in

the optimization community, which considers the problem of finding the minimum

number of iterations t so that we can guarantee that we reach an accuracy of ε ,

meaning that

f (xt)− f (x∗)≤ ε , and ‖xt − x∗‖2
2 ≤ ε,

where f is our training objective function which is smooth and strongly-convex, xt

is our parameter estimate on iteration t, and x∗ is the parameter vector minimizing

the training objective function. For strongly-convex objectives like `2-regularized

CRFs, stochastic gradient methods require O(1/ε) iterations (Nemirovski et al.,

2009).

This is in contrast to traditional deterministic methods which only require

O(log(1/ε)) iterations (Nesterov, 2004). However, this much lower number of

iterations comes at the cost of requiring us to process the entire data set on each

iteration. For problems with a finite number of training examples, Le Roux et al.

(2012) proposed the stochastic average gradient (SAG) algorithm which combines

the advantages of deterministic and stochastic methods: it only requires evaluat-

ing a single randomly-chosen training example on each iteration, and only requires

O(log(1/ε)) iterations to reach an accuracy of ε .

Beyond this faster convergence rate, the SAG method also allows us to ad-

dress two issues that have traditionally frustrated users of stochastic gradient meth-

ods: setting the step-size and deciding when to stop. Implementations of the SAG

method use both an adaptive step-size procedure and a cheaply-computable crite-

rion for deciding when to stop. Le Roux et al. (2012) show impressive empirical

performance of the SAG algorithm for binary classification.

This is the first work to apply a SAG algorithm to train CRFs. We show that

tracking marginals in the CRF can drastically reduce the SAG method’s huge mem-

ory requirement. We also give a non-uniform sampling (NUS) strategy that adap-

tively estimates how frequently we should sample each data point, and we show

that the SAG-like algorithm of Defazio et al. (2014) converges under any NUS

strategy while a particular NUS strategy achieves a faster rate. Our experiments
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compare the SAG algorithm with a variety of competing deterministic, stochastic,

and semi-stochastic methods on benchmark data sets for four common tasks: part-

of-speech tagging, named entity recognition, shallow parsing, and optical character

recognition. Our results indicate that the SAG algorithm with NUS often outper-

forms previous methods by an order of magnitude in terms of the training objective

and, despite not requiring us to tune the step-size, performs as well or better than

optimally-tuned stochastic gradient methods in terms of the test error.

3.1 Conditional Random Fields
CRFs model the conditional probability of a structured output b ∈B (such as a

sequence of labels) given an input a ∈A (such as a sequence of words) based on

features F(a,b) and parameters x using

p(b|a,x) = exp(xT F(a,b))
∑b′ exp(xT F(a,b′))

. (3.1)

Given n pairs {ai,bi} comprising our training set, the standard approach to training

the CRF is to minimize the `2-regularized negative log-likelihood,

min
x

f (x) =
1
n

n

∑
i=1
− log p(bi | ai,x)+

λ

2
‖x‖2

2, (3.2)

where λ > 0 is the strength of the regularization parameter. Unfortunately, evalu-

ating log p(bi | ai,x) is expensive due to the summation over all possible configura-

tions y′. For example, in chain-structured models the forward-backward algorithm

is used to compute log p(bi | ai,x) and its gradient. A second problem with solv-

ing (3.2) is that the number of training examples n in applications is constantly-

growing, and thus we would like to use methods that only require a few passes

through the data set.

3.2 Related Work
Lafferty et al. (2001) proposed an iterative scaling algorithm to solve problem (3.2),

but this proved to be inferior to generic deterministic optimization strategies like

the limited-memory quasi-Newton algorithm L-BFGS (Sha and Pereira, 2003; Wal-
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lach, 2002). The bottleneck in these methods is that we must evaluate log p(bi | ai,x)

and its gradient for all n training examples on every iteration. This is very expen-

sive for problems where n is very large, so to deal with this problem stochastic

gradient methods were examined (Finkel et al., 2008; Vishwanathan et al., 2006).

However, traditional stochastic gradient methods require O(1/ε) iterations rather

than the much smaller O(log(1/ε)) required by deterministic methods.

There have been several attempts at improving the cost of deterministic meth-

ods or the convergence rate of stochastic methods. For example, the exponenti-

ated gradient method of Collins et al. (2008) processes the data online and only

requires O(log(1/ε)) iterations to reach an accuracy of ε in terms of the dual ob-

jective. However, this does not guarantee good performance in terms of the primal

objective or the weight vector. Although this method is highly-effective if λ is very

large, our experiments and the experiments of others show that the performance of

online exponentiated gradient can degrade substantially if a small value of λ is used

(which may be required to achieve the best test error), see Collins et al. (2008, Fig-

ures 5-6 and Table 3) and Lacoste-Julien et al. (2013, Figure 1). In contrast, SAG

degrades more gracefully as λ becomes small, even achieving a convergence rate

faster than classic SG methods when λ = 0 (Schmidt et al., 2013). Lavergne et al.

(2010) consider using multiple processors and vectorized computation to reduce

the high iteration cost of quasi-Newton methods, but when n is enormous these

methods still have a high iteration cost. Friedlander and Schmidt (2012) explore

a hybrid deterministic-stochastic method that slowly grows the number of exam-

ples that are considered in order to achieve an O(log(1/ε)) convergence rate with

a decreased cost compared to deterministic methods.

In Table 3.1 we state the convergence rates of different methods for training

CRFs, including the fastest known rates for deterministic algorithms (like L-BFGS

and accelerated gradient) (Nesterov, 2004), stochastic algorithms (like [averaged]

stochastic gradient and AdaGrad) (Ghadimi and Lan, 2012), online exponentiated

gradient, and SAG. Here L is the Lipschitz constant of the gradient of the objective,

µ is the strong-convexity constant (and we have λ ≤ µ ≤ L), and σ2 bounds the

variance of the gradients.
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Method Iterations to ε Primal or Dual

Deterministic O(n
√

L
µ

log(1/ε)) (primal)

Online EG O((n+ L
λ
) log(1/ε)) (dual)

Stochastic O(σ2

µε
+
√

L
µε
) (primal)

SAG O((n+ L
µ
) log(1/ε)) (primal)

Table 3.1: Convergence rates of different optimization methods

3.3 Stochastic Average Gradient
Le Roux et al. (2012) introduce the SAG algorithm, a simple method with the low

iteration cost of stochastic gradient methods but that only requires O(log(1/ε))

iterations. To motivate this new algorithm, we write the classic gradient descent

iteration as

xt+1 = xt −
η

n

n

∑
i=1

st
i, (3.3)

where η is the step-size and at each iteration we set the ‘slope’ variables st
i to the

gradient with respect to training example i at xt , so that st
i =−∇ log p(bi | ai,xt)+

λxt . The SAG algorithm uses this same iteration, but instead of updating st
i for all

n data points on every iterations, it simply sets st
i = −∇ log p(bi | ai,xt)+λxt for

one randomly chosen data point and keeps the remaining st
i at their value from the

previous iteration. Thus the SAG algorithm is a randomized version of the gradient

algorithm where we use the gradient of each example from the last iteration where

it was selected. The surprising aspect of the work of Le Roux et al. (2012) is that

this simple delayed gradient algorithm achieves a similar convergence rate to the

classic full gradient algorithm despite the iterations being n times faster.

3.3.1 Implementation for CRFs

Unfortunately, a major problem with applying (3.3) to CRFs is the requirement to

store the st
i . While the CRF gradients ∇ log p(bi | ai,xt) have a nice structure (see

Section 3.3.2), st
i includes λxt for some previous t, which is dense and unstructured.

To get around this issue, instead of using (3.3) we use the following SAG-like
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update (Le Roux et al., 2012, Section 4)

xt+1 = xt −η(
1
m

n

∑
i=1

gt
i +λxt)

= xt −η(
1
m

d +λxt)

= (1−ηλ )xt −
η

m
d, (3.4)

where gt
i is the value of −∇ log p(bi | ai,xk) for the last iteration k where i was

selected and d is the sum of the gt
i over all i. Thus, this update uses the exact

gradient of the regularizer and only uses an approximation for the (structured) CRF

log-likelihood gradients. Since we don’t yet have any information about these

log-likelihoods at the start, we initialize the algorithm by setting g0
i = 0. But to

compensate for this, we track the number of examples seen m, and normalize d by

m in the update (instead of n). In Algorithm 5, we summarize this variant of the

SAG algorithm for training CRFs.1

In many applications of CRFs the gt
i are very sparse, and we would like to

take advantage of this as in stochastic gradient methods. Fortunately, we can im-

plement (3.4) without using dense vector operations by using the representation

xt = βtvt for a scalar βt and a vector vt , and using ‘lazy updates’ that apply d

repeatedly to an individual variable when it is needed (Le Roux et al., 2012).

Also following Le Roux et al. (2012), we set the step-size to η = 1/L, where

L is an approximation to the maximum Lipschitz constant of the gradients. This is

the smallest number L such that

‖∇ fi(x)−∇ fi(y)‖2 ≤ L‖x− y‖2, (3.5)

for all i, x, and y. This quantity is a bound on how fast the gradient can change as we

change the weight vector. The Lipschitz constant with respect to the gradient of the

regularizer is simply λ . This gives L≤ Lg+λ , where Lg is the Lipschitz constant of

the gradient of the log-likelihood. Unfortunately, Lg depends on the covariance of

the CRF and is typically too expensive to compute. To avoid this computation,

1If we solve the problem for a sequence of regularization parameters, we can obtain better per-
formance by warm-starting g0

i , d, and m.
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Algorithm 5 SAG algorithm for training CRFs
Require: {ai,bi}, λ , x, δ

1: m← 0, gi← 0 for i = 1,2, . . . ,n
2: d← 0, Lg← 1
3: while m < n and ‖1

n d +λx‖∞ ≥ δ do
4: Sample i from {1,2, . . . ,n}
5: f ←− log p(bi | ai,x)
6: g←−∇ log p(bi | ai,x)
7: if this is the first time we sampled i then
8: m← m+1
9: end if

Subtract old gradient gi, add new gradient g:
10: d← d−gi +g

Replace old gradient of example i:
11: gi← g
12: if ‖gi‖2

2 > 10−8 then
13: Lg←lineSearch(ai,bi, f ,gi,x,Lg)
14: end if
15: η ← 1/(Lg +λ )
16: x← (1−ηλ )x− η

m d
17: Lg← Lg ·2−1/n

18: end while

as in Le Roux et al. (2012) we approximate Lg in an online fashion using the

standard backtracking line-search given by Algorithm 6 (Beck and Teboulle, 2009).

The test used in this algorithm is faster than testing (3.5), since it uses function

values (which only require the forward algorithm for CRFs) rather than gradient

values (which require the forward and backward steps). Algorithm 6 monotonically

increases Lg, but we also slowly decrease it in Algorithm 5 in order to allow the

possibility that we can use a more aggressive step-size as we approach the solution.
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Algorithm 6 Lipschitz line-search algorithm
Require: ai,bi, f ,gi,x,Lg.

1: f ′ =− log p(bi | ai,x− 1
Lg

gi)

2: while f ′ ≥ f − 1
2Lg
‖gi‖2

2 do
3: Lg = 2Lg

4: f ′ =− log p(bi | ai,x− 1
Lg

gi)

5: end while
6: return Lg.

Since the solution is the only stationary point, we must have ∇ f (xt) = 0 at the

solution. Further, the value 1
n d +λxt converges to ∇ f (xt) so we can use the size

of this value to decide when to stop the algorithm (although we also require that

m = n to avoid premature stopping before we have seen the full data set). This is in

contrast to classic stochastic gradient methods, where the step-size must go to zero

and it is therefore difficult to decide if the algorithm is close to the optimal value

or if we simply require a small step-size to continue making progress.

3.3.2 Reducing the Memory Requirements

Even if the gradients gt
i are not sparse, we can often reduce the memory require-

ments of Algorithm 5 because it is known that the CRF gradients only depend on

x through marginals of the features. Specifically, the gradient of the log-likelihood

under model (3.1) with respect to feature j is given by

∇ j log p(b | a,x) = Fj(a,b)− ∑b′ exp(F(a,b′))Fj(a,b′)
∑b′ exp(F(a,b′))

= Fj(a,b)−∑
b′

p(b′ | a,x)Fj(a,b′)

= Fj(a,b)−E(b′ | a,x)[Fj(a,b′)].

Typically, each feature j only depends on a small “part” of b. For example, we

typically include features of the form Fj(a,b) = F(a)I[bk = s] for some function

F , where k is an element of b and s is a discrete state that bk can take. In this

case, the gradient can be written in terms of the marginal probability of element bk
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taking state s,

∇ j log p(b | a,x) = F(a)I[bk = s]−E(b′ | a,x)[F(a)I[bk = s]]

= F(a)(I[bk = s]−E(b′ | a,x)[I[bk = s])

= F(a)(I[bk = s]− p(bk = s | a,x)).

Notice that Algorithm 5 only depends on the old gradient through its difference

with the new gradient (line 10), which in this example gives

∇ j log p(b | a,x)−∇ j log p(b | a,xold) =F(a)(p(bk = s | a,xold)

− p(bk = s | a,x)),

where x is the current parameter vector and xold is the old parameter vector. Thus,

to perform this calculation the only thing we need to know about xold is the unary

marginal p(bk = s | a,xold), which will be shared across features that only depend

on the event that bk = s. Similarly, features that depend on pairs of values in b will

need to store pairwise marginals, p(bk = s,b′k = s′ | a,xold). For general pairwise

graphical model structures, the memory requirements to store these marginals will

thus be O(V K +EK2), where V is the number of vertices and E is the number of

edges. This can be an enormous reduction since it does not depend on the number

of features. Further, since computing these marginals is a by-product of comput-

ing the gradient, this potentially-enormous reduction in the memory requirements

comes at no extra computational cost.

3.4 Non-Uniform Sampling
Several works show that we can improve the convergence rates of randomized

optimization algorithms by using non-uniform sampling (NUS) schemes. This in-

cludes randomized Kaczmarz (Strohmer and Vershynin, 2009), randomized coor-

dinate descent (Nesterov, 2012), and stochastic gradient methods (Needell et al.,

2014a). The key idea behind all of these NUS strategies is to bias the sampling to-

wards the Lipschitz constants of the gradients, so that gradients that change quickly

get sampled more often and gradients that change slowly get sampled less often.
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Specifically, we maintain a Lipschitz constant Li for each training example i and,

instead of the usual sampling strategy pi = 1/n, we bias towards the distribution

pi = Li/∑ j L j. In these various contexts, NUS allows us to improve the depen-

dence on the values Li in the convergence rate, since the NUS methods depend on

L̄ = (1/n)∑ j L j, which may be substantially smaller than the usual dependence on

L = max j{L j}. Schmidt et al. (2013) argue that faster convergence rates might be

achieved with NUS for SAG since it allows a larger step size η that depends on L̄

instead of L.2

The scheme for SAG proposed by Schmidt et al. (2013, Section 5.5) uses a

fairly complicated adaptive NUS scheme and step-size, but the key ingredient is

estimating each constant Li using Algorithm 6. Our experiments show this method

often already improves on state of the art methods for training CRFs by a substan-

tial margin, but we found we could obtain improved performance for training CRFs

using the following simple NUS scheme for SAG: as in Needell et al. (2014a), with

probability 0.5 choose i uniformly and with probability 0.5 sample i with probabil-

ity Li/(∑ j L j) (restricted to the examples we have previously seen).3 We also use a

step-size of η = 1
2 (1/L+1/L̄), since the faster convergence rate with NUS is due

to the ability to use a larger step-size than 1/L. This simple step-size and sampling

scheme contrasts with the more complicated choices described by Schmidt et al.

(2013, Section 5.5), that make the degree of non-uniformity grow with the number

of examples seen m. This prior work initializes each Li to 1, and updates Li to 0.5Li

each subsequent time an example is chosen. In the context of CRFs, this leads to

a large number of expensive backtracking iterations. To avoid this, we initialize Li

with 0.5L̄ the first time an example is chosen, and decrease Li to 0.9Li each time it

is subsequently chosen. Allowing the Li to decrase seems crucial to obtaining the

best practical performance of the method, as it allows the algorithm to take bigger

step sizes if the values of Li are small near the solution.

2An interesting difference between the SAG update with NUS and NUS for stochastic gradient
methods is that the SAG update does not seem to need to decrease the step-size for frequently-
sampled examples (since the SAG update does not rely on using an unbiased gradient estimate).

3Needell et al. (2014a) analyze the basic stochastic gradient method and thus require O(1/ε)
iterations.
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3.4.1 Convergence Analysis under NUS

Schmidt et al. (2013) give an intuitive but non-rigorous motivation for using NUS

in SAG. More recently, Xiao and Zhang (2014) analyse SVRG and show that NUS

gives a dependence on L̄. Below, we analyze a NUS extension of the SAGA algo-

rithm of Defazio et al. (2014), which does not require full passes through the data

and has similar performance to SAG in practice but is much easier to analyze.

Theorem 3.1. Assume the objective function f is µ-strongly convex and each fi is

L-Lipschitz smooth. Let the sequences {xt} and {st
j} be defined by

xt+1 = xt −η

[
1

np jt
(∇ f jt (xt)− st

jt )+
1
n

n

∑
i=1

st
i

]
,

st+1
j =





∇ frt (xt) if j = rt ,

st
j otherwise.

where jt is chosen with probability p j.

(a) If rt is set to jt , then with η = npmin
4L+nµ

we have

E[‖xt − x∗‖2
2]≤ (1−µη)t [‖x0− x∗‖2

2 +Ca
]
,

where pmin = mini{pi} and

Ca =
2pmin

(4L+nµ)2

n

∑
i=1

1
pi
‖∇ fi(x0)−∇ fi(x∗)‖2

2.

(b) If p j =
L j

∑
n
i=1 Li

and rt is chosen uniformly at random, then with η = 1
4L̄ we have

E[‖xt − x∗‖2
2]≤

(
1−min

{
1
3n

,
µ

8L̄

})t [
‖x0− x∗‖2

2 +Cb
]
,

where:

Cb =
n

2L̄
[ f (x0)− f (x∗)]

This result (which we prove in Appendix B.1 and B.2) shows that SAGA has

(a) a linear convergence rate for any NUS scheme where pi > 0 for all i, and (b) a
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rate depending on L̄ by sampling proportional to the Lipschitz constants and also

generating a uniform sample. However, (a) achieves the fastest rate when pi = 1/n

while (b) requires two samples on each iteration. We were not able to show a faster

rate using only one sample on each iteration as used in our implementation.

3.4.2 Line-Search Skipping

To reduce the number of function evaluations required by the NUS strategy, we also

explored a line-search skipping strategy. The general idea is to consider skipping

the line-search for example i if the line-search criterion was previously satisfied

for example i without backtracking. Specifically, if the line-search criterion was

satisfied ξ consecutive times for example i (without backtracking), then we do not

do the line-search on the next 2ξ−1 times example i is selected (we also do not

multiply Li by 0.9 on these iterations). This drastically reduces the number of

function evaluations required in the later iterations.

3.5 Experiments
We compared a wide variety of approaches on four CRF training tasks: the opti-

cal character recognition (OCR) dataset of Taskar et al. (2003), the CoNLL-2000

shallow parse chunking dataset,4 the CoNLL-2002 Dutch named-entity recogni-

tion dataset,5 and a part-of-speech (POS) tagging task using the Penn Treebank

Wall Street Journal data (POS-WSJ). The optimal character recognition dataset la-

bels the letters in images of words. Chunking segments a sentence into syntactic

chunks by tagging each sentence token with a chunk tag corresponding to its con-

stituent type (e.g., ‘NP’, ‘VP’, etc.) and location (e.g., beginning, inside, ending,

or outside any constituent). We use standard n-gram and POS tag features (Sha and

Pereira, 2003). For the named-entity recognition task, the goal is to identify named

entities and correctly classify them as persons, organizations, locations, times, or

quantities. We again use standard n-gram and POS tag features, as well as word

shape features over the case of the characters in the token. The POS-tagging task

assigns one of 45 syntactic tags to each token in each of the sentences in the data.

4http://www.cnts.ua.ac.be/conll2000/chunking
5http://www.cnts.ua.ac.be/conll2002/ner
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For this data, we follow the standard division of the WSJ data given by Collins

(2002), using sections 0-18 for training, 19-21 for development, and 22-24 for test-

ing. We use the standard set of features following Ratnaparkhi (1996) and Collins

(2002): n-gram, suffix, and shape features. As is common on these tasks, our

pairwise features do not depend on x.

On these datasets we compared the performance of a set of competitive meth-

ods, including five variants on classic stochastic gradient methods: Pegasos which

is a standard stochastic gradient method with a step-size of η = α/λ t on iteration

t (Shalev-Shwartz et al., 2011),6 a basic stochastic gradient (SG) method where

we use a constant η = α , an averaged stochastic gradient (ASG) method where we

use a constant step-size η = α and average the iterations,7 AdaGrad where we use

the per-variable η j = α/(δ +
√

∑
t
i=1 ∇ j log p(bi | ai,xt)2) and the proximal-step

with respect to the `2-regularizer (Duchi et al., 2011), and stochastic meta-descent

(SMD) where we initialize with η j =α and dynamically update the step-size (Vish-

wanathan et al., 2006). Since setting the step-size is a notoriously hard problem

when applying stochastic gradient methods, we let these classic stochastic gradient

methods cheat by choosing the η which gives the best performance among powers

of 10 on the training data (for SMD we additionally tested the four choices among

the paper and associated code of Vishwanathan et al. (2006), and we found δ = 1

worked well for AdaGrad).8

Our comparisons also included a deterministic L-BFGS algorithm (Schmidt,

2005) and the Hybrid L-BFGS/stochastic algorithm of Friedlander and Schmidt

(2012). We also included the online exponentiated gradient (OEG) method (Collins

et al., 2008), and we followed the heuristics in the author’s code.9 Finally, we

6We also tested Pegasos with averaging but it always performed worse than the non-averaged
version.

7We also tested SG and ASG with decreasing step-sizes of either ηt = α/
√

t or ηt = α/(δ + t),
but these gave worse performance than using a constant step size.

8Because of the extra implementation effort required to implement it efficiently, we did not test
SMD on the POS dataset, but we do not expect it to be among the best performers on this data set.

9Specifcially, for OEG we proceed through a random permutation of the dataset on the first pass
through the data, we perform a maximum of 2 backtracking iterations per example on this first pass
(and 5 on subsequent passes), we initialize the per-sample step-sizes to 0.5 and divide them by 2 if
the dual objective does not increase (and multiply them by 1.05 after processing the example), and
to initialize the dual variables we set parts with the correct label from the training set to 3 and parts
with the incorrect label to 0.
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Figure 3.1: Objective minus optimal objective value against effective number
of passes for different deterministic, stochastic, and semi-stochastic op-
timization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-
left: CoNLL-2002, bottom-right: POS-WSJ.

included the SAG algorithm as described in Section 3.3, the SAG-NUS variant

of Schmidt et al. (2013), and our proposed SAG-NUS* strategy from Section 3.4.10

We also tested SAGA variants of each of the SAG algorithms, and found that they

gave very similar performance. All methods (except OEG) were initialized at zero.

Figure 3.1 shows the result of our experiments on the training objective and

Figure 3.2 shows the result of tracking the test error. Here we measure the num-

ber of “effective passes”, meaning (1/n) times the number of times we performed

the bottleneck operation of computing log p(bi | ai,x) and its gradient. This is an

implementation-independent way to compare the convergence of the different al-

10We also tested SG with the proposed NUS scheme, but the performance was similar to the regular
SG method. This is consistent with the analysis of Needell et al. (2014a, Corollary 3.1) showing that
NUS for regular SG only improves the non-dominant term.
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Figure 3.2: Test error against effective number of passes for different deter-
ministic, stochastic, and semi-stochastic optimization strategies (this
figure is best viewed in colour). Top-left: OCR, Top-right: CoNLL-
2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ. The dotted
lines show the performance of the classic stochastic gradient methods
when the optimal step-size is not used. Note that the performance of
all classic stochastic gradient methods is much worse when the opti-
mal step-size is not used, whereas the SAG methods have an adaptive
step-size so are not sensitive to this choice.

gorithms (most of whose runtimes differ only by a small constant), but we have

included the performance in terms of runtime in Appendix B.5. For the different

SAG methods that use a line-search we count the extra ‘forward’ operations used by

the line-search as full evaluations of log p(bi | ai,x) and its gradient, even though

these operations are cheaper because they do not require the backward pass nor

computing the gradient. In these experiments we used λ = 1/n, which yields a

value close to the optimal test error across all data sets. The objective is strongly-

convex and thus has a unique minimum value. We approximated this value by
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running L-BFGS for up to 1000 iterations, which always gave a value of x satisfy-

ing ‖∇ f (x)‖∞≤ 1.4×10−7, indicating that this is a very accurate approximation of

the true solution. In the test error plots, we have excluded the SAG and SAG-NUS

methods to keep the plots interpretable (while Pegasos does not appear because

it performs very poorly), but Appendix B.3 includes these plots with all methods

added. In the test error plots, we have also plotted as dotted lines the performance

of the classic stochastic gradient methods when the second-best step-size is used.

We make several observations based on these experiments:

• SG outperformed Pegasos. Pegasos is known to move exponentially away

from the solution in the early iterations (Bach and Moulines, 2011), meaning

that ‖xt−x∗‖2≥ ρ t‖x0−x∗‖2 for some ρ > 1, while SG moves exponentially

towards the solution (ρ < 1) in the early iterations (Nedic and Bertsekas,

2000).

• ASG outperformed AdaGrad and SMD (in addition to SG). ASG methods

are known to achieve the same asymptotic efficiency as an optimal stochastic

Newton method (Polyak and Juditsky, 1992), while AdaGrad and SMD can

be viewed as approximations to a stochastic Newton method. Vishwanathan

et al. (2006) did not compare to ASG, because applying ASG to large/sparse

data requires the recursion of Xu (2010).

• Hybrid outperformed L-BFGS. The hybrid algorithm processes fewer data

points in the early iterations, leading to cheaper iterations.

• None of the three algorithms ASG/Hybrid/SAG dominated the others: the

relative ranks of these methods changed based on the data set and whether

we could choose the optimal step-size.

• OEG performed very well on the first two datasets, but was less effective on

the second two. By experimenting with various initializations, we found that

we could obtain much better performance with OEG on these two datasets.

We report these results in Appendix B.4, although Appendix B.5 shows that

OEG was less competitive in terms of runtime.

• Both SAG-NUS methods outperform all other methods (except OEG) by a

substantial margin based on the training objective, and are always among the
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Dataset Sparse Marginals Mixed
OCR 7.8×10−1 1.1×100 2.1×10−1

CoNLL-2000 4.8×10−3 7.0×10−3 6.1×10−4

CoNLL-2002 6.4×10−4 3.8×10−4 7.0×10−5

POS-WJ 1.3×10−3 5.5×10−3 3.6×10−4

Table 3.2: Memory required by the datasets used in the experiments.

best methods in terms of the test error. Further, our proposed SAG-NUS*

always outperforms SAG-NUS.

On three of the four data sets, the best classic stochastic gradient methods (Ada-

Grad and ASG) seem to reach the optimal test error with a similar speed to the

SAG-NUS* method, although they require many passes to reach the optimal test

error on the OCR data. Further, we see that the good test error performance of

the AdaGrad and ASG methods is very sensitive to choosing the optimal step-size,

as the methods perform much worse if we don’t use the optimal step-size (dashed

lines in Figure 3.2). In contrast, SAG uses an adaptive step-size and has virtually

identical performance even if the initial value of Lg is too small by several orders of

magnitude (the line-search quickly increases Lg to a reasonable value on the first

training example, so the dashed black line in Figure 3.2 would be on top of the

solid line).

To quantify the memory savings given by the choices in Section 3.3, in Ta-

ble 3.2 we report the size of the memory required for these datasets under different

memory-saving strategies divided by the memory required by the naive SAG algo-

rithm. Sparse refers to only storing non-zero gradient values, Marginals refers

to storing all unary and pairwise marginals, and Mixed refers to storing node

marginals and the gradient with respect to pairwise features (recall that the pair-

wise features do not depend on a in our models). We have made the code available

at https://www.cs.ubc.ca/∼schmidtm/Software/SAG4CRF.html.
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3.6 Discussion
Due to its memory requirements, it may be difficult to apply the SAG algorithm for

natural language applications involving complex features that depend on a large

number of labels.

However, grouping training examples into mini-batches can also reduce the

memory requirement (since only the gradients with respect to the mini-batches

would be needed). An alternative strategy for reducing the memory is to use the

algorithm of Johnson and Zhang (2013) or Zhang et al. (2013). These require

evaluating the chosen training example twice on each iteration, and occasionally

require full passes through the data, but do not have the memory requirements of

SAG (in our experiments, these performed similar to or slightly worse than running

SAG at half speed).

We believe linearly-convergent stochastic gradient algorithms with non-uniform

sampling could give a substantial performance improvement in a large variety of

CRF training problems, and we emphasize that the method likely has extensions

beyond what we have examined. For example, we have focused on the case of

`2-regularization but for large-scale problems there is substantial interest in using

`1-regularization CRFs (Lavergne et al., 2010; Tsuruoka et al., 2009; Zhou et al.,

2011). Fortunately, such non-smooth regularizers can be handled with a proximal-

gradient variant of the method, see Defazio et al. (2014). While we have consid-

ered chain-structured data the algorithm applies to general graph structures, and

any method for computing/approximating the marginals could be adopted. Finally,

the SAG algorithm could be modified to use multi-threaded computation as in the

algorithm of Lavergne et al. (2010), and indeed might be well-suited to massively

distributed parallel implementations.

52



Chapter 4

MASAGA: A Method for
Optimization on Manifolds

The most common supervised learning methods in machine learning use empirical

risk minimization during the training. The minimization problem can be expressed

as minimizing a finite sum of loss functions that are evaluated at a single data

sample. We consider the problem of minimizing a finite sum over a Riemannian

manifold,

min
x∈X ⊆M

f (x) =
1
n

n

∑
i=1

fi(x),

where X is a geodesically convex set in the Riemannian manifold M . Each

function fi is geodesically Lipschitz-smooth and the sum is geodesically strongly-

convex over the set X . The learning phase of several machine learning models can

be written as an optimization problem of this form. This includes principal com-

ponent analysis (PCA) (Zhang and Yang, 2017), dictionary learning (Sun et al.,

2015), Gaussian mixture models (GMM) (Hosseini and Sra, 2015), covariance es-

timation (Wiesel, 2012), computing the Riemannian centroid (Jeuris et al., 2012),

and the PageRank problem (Sra and Hosseini, 2016).

When M ≡ Rd , the problem reduces to convex optimization over a standard

Euclidean space. An extensive body of literature studies this problem in deter-

ministic and stochastic settings (Cauchy, 1847; Nemirovski et al., 2009; Nesterov,

1983; Polyak and Juditsky, 1992; Robbins and Monro, 1951b). It is possible to
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convert the optimization over a manifold into an optimization in a Euclidean space

by adding x ∈X as an optimization constraint. The problem can then be solved

using projected-gradient methods. However, the problem with this approach is that

we are not explicitly exploiting the geometrical structure of the manifold. Further,

a function could be non-convex in the Euclidean space but geodesically convex

over an appropriate manifold. These factors can lead to poor performance for al-

gorithms that operate with the Euclidean geometry, but algorithms that use the

Riemannian geometry may converge as fast as algorithms for convex optimization

in Euclidean spaces.

Stochastic optimization over manifolds and related convergence properties have

received significant interest in the recent literature (Bonnabel, 2013; Kasai et al.,

2016; Sato et al., 2017; Zhang et al., 2016; Zhang and Sra, 2016). Bonnabel

(2013) and Zhang and Sra (2016) analyze the application of stochastic gradient

descent (SGD) for optimization over manifolds. Similar to optimization over Eu-

clidean spaces with SGD, these methods suffer from the aggregating variance prob-

lem (Zhao and Zhang, 2015) which leads to sublinear convergence rates.

When optimizing finite sums over Euclidean spaces, variance-reduction tech-

niques have been introduced to reduce the variance in SGD in order to achieve

faster convergence rates. The variance-reduction techniques can be categorized

into two groups. The first group is memory-based approaches (Defazio et al., 2014;

Le Roux et al., 2012; Mairal, 2013b; Shalev-Shwartz and Zhang, 2013b) such as

the stochastic average gradient (SAG) method and its variant SAGA. Memory-

based methods use the memory to store a stale gradient of each fi, and in each

iteration they update this “memory” of the gradient of a random fi. The averaged

stored value is used as an approximation of the gradient of f .

The second group of variance-reduction methods explored for Euclidean spaces

require full gradient calculations and include the stochastic variance-reduced gra-

dient (SVRG) method (Johnson and Zhang, 2013) and its variants (Konečnỳ and

Richtárik, 2013; Mahdavi and Jin, 2013; Nguyen et al., 2017). These methods

only store the gradient of f , and not the gradient of the individual fi functions.

But, these methods occasionally require evaluating the full gradient of f as part of

their gradient approximation and require two gradient evaluations per iteration. Al-

though SVRG often dramatically outperforms the classical gradient descent (GD)
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and SGD, the extra gradient evaluation typically lead to a slower convergence than

memory-based methods. Furthermore, the extra gradient calculations of SVRG can

lead to worse performance than the classical SGD during the early iterations where

SGD has the most advantage (Harikandeh et al., 2015). Thus, when the bottle-

neck of the process is the gradient computation itself, using memory-based meth-

ods like SAGA can improve performance (Bietti and Mairal, 2017; Dubey et al.,

2016). Furthermore, for several applications it has been shown that the memory

requirements can be alleviated by exploiting special structures in the gradients of

the fi (Le Roux et al., 2012; Shalev-Shwartz and Zhang, 2013b), as we did in the

previous chapter for CRFs.

Several recent methods have extended SVRG to optimize the finite sum prob-

lem over a Riemannian manifold (Kasai et al., 2016; Sato et al., 2017; Zhang

et al., 2016), which we refer to as RSVRG methods. Similar to the case of Eu-

clidean spaces, RSVRG converges linearly for geodesically Lipschitz-smooth and

strongly-convex functions. However, these methods also require the extra gradient

evaluations associated with the original SVRG method. Thus, they may not per-

form as well as potential generalizations of memory-based methods like SAGA.

In this chapter we present MASAGA, a variant of SAGA to optimize finite sums

over Riemannian manifolds. Similar to RSVRG, we show that it converges linearly

for geodesically strongly-convex functions. We also show that both MASAGA

and RSVRG with a non-uniform sampling strategy can converge faster than the

uniform sampling scheme used in prior work. Finally, we consider the problem

of finding the leading eigenvector, which minimizes a quadratic function over a

sphere. We show that MASAGA converges linearly with uniform and non-uniform

sampling schemes on this problem. For evaluation, we consider one synthetic and

two real datasets. The real datasets are MNIST (LeCun et al., 1998) and the Ocean

data (Mahadevan and Vasconcelos, 2010). We find the leading eigenvector of each

class and visualize the results. On MNIST, the leading eigenvectors resemble the

images of each digit class, while for the Ocean dataset we observe that the leading

eigenvector represents the background image in the dataset.

In Section 4.1 we present an overview of essential concepts in Riemannian

geometry, defining the geodesically convex and smooth function classes follow-

ing Zhang and Sra (2016). We also briefly review the original SAGA algorithm. In
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Section 4.2, we introduce the MASAGA algorithm and analyze its convergence un-

der both uniform and non-uniform sampling. Finally, in Section 4.3 we empirically

verify the theoretical linear convergence results.

4.1 Preliminaries
In this section we first present a review of Riemannian manifold concepts. How-

ever, for a more detailed review we refer the interested reader to the literature (Ab-

sil et al., 2009; Petersen et al., 2006; Udriste, 1994). Then, we introduce the class

of functions that we optimize over such manifolds. Finally, we briefly review the

original SAGA algorithm.

4.1.1 Riemannian Manifold

A Riemannian manifold is denoted by the pair (M ,G), that consists of a smooth

manifold M over Rd and a metric G. At any point x in the manifold M , we define

TM (x) to be the tangent plane of that point, and G defines an inner product in this

plane. Formally, if p and q are two vectors in TM (x), then 〈p,q〉x = G(p,q). Sim-

ilar to Euclidean space, we can define the norm of a vector and the angle between

two vectors using G.

To measure the distance between two points on the manifold, we use the geodesic

distance. Geodesics on the manifold generalize the concept of straight lines in Eu-

clidean space. Let us denote a geodesic with γ(t) which maps [0,1]→M and is a

function with constant gradient,

d2

dt2 γ(t) = 0.

To map a point in TM (x) to M , we use the exponential function Expx : TM (x)→
M . Specifically, Expx(p) = z means that there is a geodesic curve γz

x(t) on the

manifold that starts from x (so γz
x(0) = x) and ends at z (so γz

x(1) = z = Expx(p))

with a velocity of p ( d
dt γz

x(0) = p). When the Exp function is defined for every

point in the manifold, we call the manifold geodesically-complete. For example,

the unit sphere in Rn is geodesically complete. If there is a unique geodesic curve

between any two points in M ′ ∈M , then the Expx function has an inverse defined
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by the Logx function. Formally the Logx ≡ Exp−1
x : M ′→ TM (x) function maps

a point from M ′ back into the tangent plane at x. Moreover, the geodesic distance

between x and z is the length of the unique shortest path between z and x, which is

equal to ‖Logx(z)‖2 = ‖Logz(x)‖2.

Let u and v∈TM (x) be linearly independent so they specify a two dimensional

subspace Sx ∈ TM (x). The exponential map of this subspace, Expx(Sx) = SM ,

is a two dimensional submanifold in M . The sectional curvature of SM denoted by

K(SM ,x) is defined as a Gauss curvature of SM at x (Ziller, 2014). The sectional

curvature measures the curvature of surface of the manifold around a given point.

This sectional curvature helps us in the convergence analysis of the optimization

method. We use the following lemma in our analysis to give a trigonometric dis-

tance bound.

Lemma 4.1. (Lemma 5 in Zhang and Sra (2016)) Let a, b, and c be the side lengths

of a geodesic triangle in a manifold with sectional curvature lower-bounded by

Kmin. Then

a2 ≤ c
√
|Kmin|

tanh(
√
|Kmin|c)

b2 + c2−2bccos(](b,c)).

Another important map used in our algorithm is the parallel transport. It trans-

fers a vector from a tangent plane to another tangent plane along a geodesic. This

map is denoted by Γz
x : TM (x)→TM (z), and maps a vector from the tangent plane

TM (x) to a vector in the tangent plane TM (z) while preserving the norm and inner

product values.
〈p,q〉x = 〈Γz

x(p),Γz
x(q)〉z

Grassmann manifold. Here we review the Grassmann manifold, denoted Grass(p,n),

as a practical Riemannian manifold used in machine learning. Let p and n be pos-

itive integers with p≤ n. Grass(p,n) contains all matrices in Rn×p with orthonor-

mal columns (the class of orthogonal matrices). By the definition of an orthogonal

matrix, if M ∈ Grass(p,n) then we have M>M = I, where I ∈ Rp×p is the identity

matrix. Let q ∈ TGrass(p,n)(x), and q =UΣV> be its p-rank singular value decom-
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position. Then we have:

Expx(tq) = xV cos(tΣ)V>+U sin(tΣ)V>.

The parallel transport along a geodesic curve γ(t) such that γ(0) = x and γ(1) = z

is defined as:

Γ
z
x(tq) = (−xV sin(tΣ)U>+U cos(tΣ)U>+ I−UU>)q.

4.1.2 Smoothness and Convexity on Manifold

In this section, we define convexity and smoothness of a function over a manifold

following Zhang and Sra (2016). We call X ∈M geodesically convex if for any

two points y and z in X , there is a geodesic γ(t) starting from y and ending in z

with a curve inside of X . For simplicity, we drop the subscript in the inner product

notation.

Formally, a function f : X → R is called geodesically convex if for any y and

z in X and the corresponding geodesic γ , for any t ∈ [0,1] we have:

f (γ(t))≤ (1− t) f (y)+ t f (z).

Similar to the Euclidean space, if the Log function is well defined we have the

following for convex functions:

f (z)+
〈
gz,Logz(y)

〉
≤ f (y),

where gz is a subgradient of f at x. If f is a differentiable function, the Riemannian

gradient of f at z is a vector gz which satisfies d
dt |t=0 f (Expz(tgz)) = 〈gz,∇ f (z)〉z,

with ∇ f being the gradient of f in Rn. Furthermore, we say that f is geodesically

µ-strongly convex if there is a µ > 0 such that:

f (z)+
〈
gz,Logz(y)

〉
+

µ

2
‖Logz(y)‖2

2 ≤ f (y).

Let x∗ ∈X be the optimum of f . This implies that there exists a subgradient at x∗
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Algorithm 7 The Original SAGA Algorithm
1: Input: Learning rate η .
2: Initialize x0 = 0 and memory M(0) with gradient of x0.
3: for t = 1,2,3, . . . do
4: µ̂ = 1

n ∑
n
j=1 Mt [ j]

5: Pick it uniformly at random from {1 . . .n}.
6: νt = ∇ fit (xt)−Mt [it ]+ 1

n ∑
n
j=1 Mt [ j]

7: xt+1 = xt −η(νt)
8: Set Mt+1[it ] = ∇ fit (xt) and Mt+1[ j] = Mt [ j] for all j 6= it .
9: end for

with gx∗ = 0 which implies that the following inequalities hold:

‖Logz(x
∗)‖2

2 ≤
2
µ
( f (z)− f (x∗))

〈
gz,Logz(x

∗)
〉
+

µ

2
‖Logz(x

∗)‖2
2 ≤ 0.

Finally, an f that is differentiable over M is said to be a Lipschitz-smooth

function with the parameter L > 0 if its gradient satisfies the following inequality:

‖gz−Γ
z
y [gy]‖2 ≤ L‖Logz(y)‖2 = L d(z,y),

where d(z,y) is the distance between z and y. For a geodesically smooth f the

following inequality also holds:

f (y)≤ f (z)+
〈
gz,Logz(y)

〉
+

L
2
‖Logz(y)‖2

2.

4.1.3 SAGA Algorithm

In this section we briefly review the SAGA method (Defazio et al., 2014) and

the assumptions associated with it. SAGA assumes f is µ-strongly convex, each

fi is convex, and each gradient ∇ fi is Lipschitz-continuous with constant L. The

method generates a sequence of iterates xt using the SAGA Algorithm 7 (line 7). In

the algorithm, M is the memory used to store stale gradients. During each iteration,

SAGA picks one fit randomly and evaluates its gradient at the current iterate value,
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∇ fit (xt). Next, it computes νt as the difference between the current ∇ fit (xt) and

the corresponding stale gradient of fit stored in the memory plus the average of all

stale gradients (line 6). Then it uses this vector νt as an approximation of the full

gradient and updates the current iterate similar to the gradient descent update rule.

Finally, SAGA updates the stored gradient of fit in the memory with the new value

of ∇ fit (xt).

Let ρsaga =
µ

2(nµ+L) . Defazio et al. (2014) show that the iterate value xt con-

verges to the optimum x∗ linearly with a contraction rate 1−ρsaga,

E
[
‖xt − x∗‖2

2
]
≤ (1−ρsaga)

tC,

where C is a positive scalar.

4.2 Optimization on Manifolds with SAGA
In this section we introduce the MASAGA algorithm (see Alg. 8). We make the

following assumptions:

1. Each fi is geodesically L-Lipschitz continuous.

2. f is geodesically µ-strongly convex.

3. f has an optimum in X , in other words x∗ ∈X .

4. The diameter of X is bounded above, in other words maxu,v∈X d(u,v)≤D.

5. Logx is defined when x ∈X .

6. The sectional curvature of X is bounded, in other words, Kmin ≤ KX ≤
Kmax.

These assumptions also commonly appear in the previous work (Kasai et al.,

2016; Sato et al., 2017; Zhang et al., 2016; Zhang and Sra, 2016). Similar to the

previous work (Kasai et al., 2016; Zhang et al., 2016; Zhang and Sra, 2016), we
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Algorithm 8 MASAGA Algorithm

1: Input: Learning rate η and x0 ∈M .
2: Initialize memory M(0) with gradient of x0.
3: for t = 1,2,3, . . . do
4: µ̂ = 1

n ∑
n
j=1 Mt [ j]

5: Pick it uniformly at random from {1 . . .n}.
6: νt = ∇ fit (xt)−Γxt

x0
[Mt [it ]− µ̂]

7: xt+1 = Expxt
(−η(νt))

8: Set Mt+1[it ] = Γx0
xt
[∇ fit (xt)] and Mt+1[ j] = Mt [ j] for all j 6= it .

9: end for

also define the constant ζ which is essential in our analysis:

ζ =





√
|Kmin|D

tanh(
√
|Kmin|D)

if Kmin < 0

1 if Kmin ≥ 0

In MASAGA we modify two parts of the original SAGA: (i) since gradients

are in different tangent planes, we use parallel transport to map them into the same

tangent plane and then do the variance reduction step (line 6 of Alg. 8), and (ii)

we use the Exp function to map the update step back into the manifold (line 7 of

Alg. 8).

4.2.1 Convergence Analysis

We analyze the convergence of MASAGA considering the above assumptions and

show that it converges linearly. In our analysis, we use the fact that MASAGA’s

estimation of the full gradient νt is unbiased (like SAGA), in other words E [νt ] =

∇ f (xt). For simplicity, we use ∇ f to denote the Riemannian gradient instead of gx.

We assume that there exists an incremental first-order oracle (IFO) (Agarwal and

Bottou, 2014) that gets an i∈ {1, ...,n}, and an x∈X , and returns ( fi(x),∇ fi(x))∈
(R×TM (x)).

Theorem 4.2. If each fi is geodesically L-smooth and f is geodesically µ-strongly

convex over the Riemannian manifold M , the MASAGA algorithm with the con-

stant step size η =
2µ+
√

µ2−8ρ(1+α)ζ L2

4(1+α)ζ L2 converges linearly while satisfying the fol-
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lowing:

E
[
d2(xt ,x∗)

]
≤ (1−ρ)t

ϒ
0,

where ρ = min{ µ2

8(1+α)ζ L2 ,
1
n − 1

αn}, ϒ0 = 2αζ η2
∑

n
i=1 ‖M0[i]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2 +

d2(x0,x∗) is a positive scalar, and α > 1 is a constant.

The proof of this theorem can be found in Appendix C.1.

Corollary 4.3. Let β = nµ2

8ζ L2 , and ᾱ = β +

√
β 2

4 +1 > 1. If we set α = ᾱ then we

will have ρ = µ2

8(1+ᾱ)ζ L2 = 1
n − 1

ᾱn . Furthermore, to reach an ε accuracy, in other

words E
[
d2(xT ,x∗)

]
< ε , we require that the total number of MASAGA (Alg. 8)

iterations T satisfy the following inequality:

T ≥ (
8(1+ ᾱ)ζ L2

µ2 ) log(
1
ε
). (4.1)

Note that this bound is similar to the bound of Zhang et al. (2016). To make it

clear, notice that ᾱ ≤ 2β +1. Therefore, if we plug this upper-bound into Inequal-

ity 4.1 we get

T =O(
(2β +2)ζ L2

µ2 ) log(
1
ε
)=O(

nµ2

8ζ L2
ζ L2

µ2 +
ζ L2

µ2 ) log(
1
ε
)=O(n+

ζ L2

µ2 ) log(
1
ε
).

The L2

µ2 term in the above bound is the squared condition number that could be

prohibitively large in machine learning applications. RSVRG also has this depen-

dency. In contrast, the original SAGA and SVRG algorithms only depend on L
µ

on convex function within linear spaces. In the next section, we improve upon this

bound through non-uniform sampling techniques.

4.2.2 MASAGA with Non-uniform Sampling

Using non-uniform sampling for stochastic optimization in Euclidean spaces can

help stochastic optimization methods achieve a faster convergence rate (Harikan-

deh et al., 2015; Needell et al., 2014b; Schmidt et al., 2015b). In this section, we

assume that each fi has its own geodesically Li-Lipschitz smoothness as opposed to

a single geodesic Lipschitz smoothness L = max{Li}. Now, instead of uniformly

sampling fi, we sample fi with probability Li
nL̄ , where L̄ = 1

n ∑
n
i=1 Li. In machine
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learning applications, we often have L̄ � L. Using this non-uniform sampling

scheme, the iteration update is set to

xt+1 = Expxt

(
−η(

L̄
Lit

νt)

)
,

which keeps the search direction unbiased, in other words E
[

L̄
Lit

νt

]
= ∇ f (xt). The

following theorem shows the convergence of the new method.

Theorem 4.4. If fi is geodesically Li-smooth and f is geodesically µ-strongly

convex over the manifold M , the MASAGA algorithm with the defined non-uniform

sampling scheme and the constant step size η =
2µ+

√
µ2−8ρ(L̄+αL) ζ

γ
L̄

4(L̄+αL) ζ

γ
L̄

converges

linearly as follows:

E
[
d2(xt ,x∗)

]
≤ (1−ρ)t

ϒ
0,

where ρ = min{ γµ2

8(1+α)ζ LL̄ ,
γ

n −
γ

αn}, γ = min{Li}
L̄ , L = max{Li}, L̄ = 1

n ∑
n
i=1 Li, and

α > 1 is a constant, and ϒ0 = 2αζ η2

γ
∑

n
i=1

L̄
Li
‖M0[i]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2 + d2(x0,x∗)

are positive scalars.

Proof of the above theorem can be found in Appendix C.2.

Corollary 4.5. Let β = nµ2

8ζ LL̄ , and ᾱ = β +

√
β 2

4 +1 > 1. If we set α = ᾱ then

we have ρ = γµ2

8(1+ᾱ)ζ LL̄ = γ

n −
γ

ᾱn . Now, to reach an ε accuracy, in other words

E
[
d2(xT ,x∗)

]
< ε , we require:

T = O(n+
ζ LL̄
γµ2 ) log(

1
ε
), (4.2)

where T is the number of the necessary iterations.

Observe that the number of iterations T in Equality 4.2 depends on L̄L instead

of L2. When L̄� L, the difference could be significant. Thus, MASAGA with non-

uniform sampling could achieve an ε accuracy faster than MASAGA with uniform

sampling. Unlike our previous non-uniform SAGA analysis, this analysis doesn’t

require two gradients per iteration. Note that computing the Li for general fi is not

a tractable problem. However we can approximate it locally by using the definition

of g-smoothness.
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Similarly we can use the same sampling scheme for the RSVRG algorithm (Zhang

et al., 2016) and improve its convergence. Specifically, if we change the update rule

of Algorithm 1 of Zhang et al. (2016) to

xs+1
t+1 = Expxs+1

t
−η(

L̄
Lit

ν
s+1
t ),

then Theorem 1 and Corollary 1 of Zhang et al. (2016) will change to the following

ones.

Theorem 4.6. [Theorem 1 of Zhang et al. (2016) with non-uniform sampling] If

we use non-uniform sampling in Algorithm 1 of RSVRG (Zhang et al., 2016) and

run it with the option I as described in the work, and let

α =
3ζ η L̄2

µ−2ζ η L̄2 +
(1+4ζ η2−2ηµ)m(µ−5ζ η L̄2)

µ−2ζ η L̄2 < 1,

where m is the number of the inner loop iterations, then through S iterations of the

outer loop, we have

E
[
d2(x̃S,x∗)

]
≤ (α)Sd2(x̃0,x∗).

The above theorem can be proved through a simple modification to the proof

of Theorem 1 in RSVRG (Zhang et al., 2016).

Corollary 4.7. [Corollary 1 of Zhang et al. (2016) with non-uniform sampling]
With non-uniform sampling in Algorithm 1 of RSVRG, after O(n+ ζ L̄2

γµ2 ) log( 1
ε
) IFO

calls, the output xa satisfies

E [ f (xa)− f (x∗)]≤ ε.

Note that through the non-uniform sampling scheme we improved the RSVRG (Zhang

et al., 2016) convergence by replacing the L2 term with a smaller L̄2 term.

4.3 Experiments: Computing the leading eigenvector
Computing the parallel transport and exponential maps, which are the essential

parts of MASAGA are hard for different manifolds. But for some problems such

64



as finding the largest eigenvalue and the PCA problem, we can find the closed-

form formula for the parallel transport and exponential map. Since these maps

are structurally similar for PCA and the largest eigenvector problems, we consider

one of these problems. Computing the leading eigenvector is important in many

real-world applications. It is widely used in social networks, computer networks,

and metabolic networks for community detection and characterization (Newman,

2006). It can be used to extract a feature that “best” represents the dataset (Guyon

et al., 2012) to aid in tasks such as classification, regression, and background

subtraction. Furthermore, it is used in the PageRank algorithms which requires

computing the principal eigenvector of the matrix describing the hyperlinks in the

web (Page et al., 1999). These datasets can be huge (the web has more than three

billion pages (Kamvar et al., 2004)). Therefore, speeding up the leading eigenvec-

tor computation will have a significant impact on many applications.

We evaluate the convergence of MASAGA on the problem of computing the

leading eigenvalue on several datasets. The problem is written as follows:

min
{x | x>x=1}

f (x) =−1
n

x>
(

n

∑
i=1

ziz>i

)
x, (4.3)

which is a non-convex objective in the Euclidean space Rd , but a (strongly-)convex

objective over the Riemannian manifold. Therefore, MASAGA can achieve a lin-

ear convergence rate on this problem. We apply our algorithm on the following

datasets:

• Synthetic. We generate Z as a 1000×100 matrix where each entry is sam-

pled uniformly from (0,1). To diversify the Lipschitz constants of the indi-

vidual zi’s, we multiply each zi with an integer obtained uniformly between

1 and 100.

• MNIST (LeCun et al., 1998). We randomly pick 10,000 examples corre-

sponding to digits 0-9 resulting in a matrix Z ∈ R10,000×784.

• Ocean. We use the ocean video sequence data found in the UCSD back-

ground subtraction dataset (Mahadevan and Vasconcelos, 2010). It consists

of 176 frames, each resized to a 94×58 image.
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Figure 4.1: Comparison of MASAGA (ours), RSVRG, and RSGD for com-
puting the leading eigenvector. The suffix (U) represents uniform sam-
pling and (NU) the non-uniform sampling variant.

Figure 4.2: The obtained leading eigenvectors of all MNIST digits.

In all experiments, we compare MASAGA against RSGD (Zhang et al., 2016)

and RSVRG (Bonnabel, 2013). For solving geodesically smooth convex functions

on the Riemannian manifold, RSGD and RSVRG achieve sublinear and linear con-

vergence rates respectively. Since the manifold for Eq. (4.3) is that of a sphere, we

have the following functions:

PX(H) = H− trace(X>H)X , ∇r f (X) = PX(∇ f (X)),

ExpX(U) = cos(||U ||)X +
sin(||U ||)
||U || U, Γ

x
y(U) = Py(U),

(4.4)

where P corresponds to the tangent space projection function, ∇r f the Riemannian

gradient function, Exp the exponential map function, and Γ the transport function.

We evaluate the progress of our algorithms at each epoch t by computing the rela-

tive error between the objective value and the optimum as f (xt)− f ∗

| f ∗| . We have made

the code available at https://github.com/IssamLaradji/MASAGA.

For each algorithm, a grid-search over the learning rates {10−1,10−2, . . . ,10−9}
is performed and plot the results of the algorithm with the best performance in

Figure 4.1. This plot shows that MASAGA is consistently faster than RSGD
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Figure 4.3: The obtained leading eigenvectors of the MNIST digits 1-6.

Figure 4.4: The obtained leading eigenvectors of the ocean dataset after 20
iterations.

and RSVRG in the first few epochs. While it is expected that MASAGA beats

RSGD since it has a better convergence rate, the reason MASAGA can outperform

RSVRG is that RSVRG needs to occasionally re-compute the full gradient. Fur-

ther, at each iteration MASAGA requires a single gradient evaluation instead of the

two evaluations required by RSVRG. We see in Figure 4.1 that non-uniform (NU)

sampling often leads to faster progress than uniform (U) sampling, which is con-

sistent with the theoretical analysis. In the NU sampling case, we sample a vector

zi based on its Lipschitz constant Li = ||zi||2. Note that for problems where Li is not

known or costly to compute, we can estimate it by using Algorithm 2 of Schmidt

et al. (2015b).

Figures 4.2 and 4.3 show the leading eigenvectors obtained for the MNIST
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dataset. We run MASAGA on 1.0000×104 images of the MNIST dataset and

plot its solution in Figure 4.2. We see that the exact solution is similar to the

solution obtained by MASAGA, which represent the most common strokes among

the MNIST digits. Furthermore, we ran MASAGA on 500 images for digits 1-6

independently and plot its solution for each class in Figure 4.3. Since most digits

of the same class have similar shapes and are fairly centered, it is expected that the

leading eigenvector would be similar to one of the digits in the dataset.

Figure 4.4 shows qualitative results comparing MASAGA, RSVRG, and RSGD.

We run each algorithm for 20 iterations and plot the results. MASAGA’s and

RSVRG’s results are visually similar to the exact solution. However, the RSGD

result is visually different than the exact solution (the difference is in the center-

left of the two images).

4.4 Conclusion
We introduced MASAGA which is a stochastic variance-reduced optimization al-

gorithm for Riemannian manifolds. We analyzed the algorithm and showed that

it converges linearly when the objective function is geodesically Lipschitz-smooth

and strongly convex. We also showed that using non-uniform sampling improves

the convergence speed of both MASAGA and RSVRG algorithms (RSVRG could

be further speed up using the idea from Chapter 2). Finally, we evaluated our

method on a synthetic dataset and two real datasets where we empirically observed

linear convergence. The empirical results show that MASAGA outperforms RSGD

and is faster than RSVRG in the early iterations. For future research, one can ex-

tend MASAGA by deriving convergence rates for the non-convex case of geodesic

objective functions. One also can explore accelerated variance-reduction methods

and block coordinate descent based methods (Nutini et al., 2017) for Riemannian

optimization. Another potential future work of interest is a study of relationships

between the condition number of a function within the Euclidean space and its

corresponding condition number within a Riemannian manifold, and the effects of

sectional curvature on it.
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Chapter 5

Stochastic Variational Inference
with General Divergence
Functions

Variational inference methods are one of the most widely-used computational tools

to deal with the intractability of Bayesian inference, while stochastic gradient (SG)

methods are one of the most widely-used tools for solving optimization problems

on huge datasets. There is a large number of works exploring SG methods for vari-

ational inference (Hoffman et al., 2013; Kucukelbir et al., 2014; Mnih and Gregor,

2014; Ranganath et al., 2013; Salimans et al., 2013; Titsias and Lázaro-Gredilla,

2014). In many settings, these methods can yield simple updates and scale to huge

datasets.

A challenge that has been addressed in many of those works on this topic is

that the “black-box” SG method ignores the geometry of the variational-parameter

space. This has lead to methods like the stochastic variational inference (SVI)

method of Hoffman et al. (2013), that uses natural gradients to exploit the geom-

etry. This leads to better performance in practice, but this approach only applies

to conditionally-conjugate models. In addition, it is not clear how using natural

gradients for variational inference affects the theoretical convergence rate of SG

methods.

In this chapter we consider a general framework that (i) can be stochastic to al-
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low huge datasets, (ii) can exploit the geometry of the variational-parameter space

to improve performance, and (iii) can yield a closed-form update even for non-

conjugate models. The new framework can be viewed as a stochastic generaliza-

tion of the proximal-gradient method of Khan et al. (2015b), which splits the ob-

jective into conjugate and non-conjugate terms. By linearizing the non-conjugate

terms, this previous method as well as our new method yield simple closed-form

proximal-gradient updates even for non-conjugate models.

While proximal-gradient methods have been well-studied in the optimization

community (Beck and Teboulle, 2009), like SVI there is nothing known about the

convergence rate of the method of Khan et al. (2015b) because it uses “divergence”

functions which do not satisfy standard assumptions. Our second contribution is

to analyze the convergence rate of the proposed method. In particular, we gen-

eralize an existing result on the convergence rate of stochastic mirror descent in

non-convex settings (Ghadimi et al., 2014) to allow a general class of divergence

functions that includes the cases above (in both deterministic and stochastic set-

tings). While it has been observed empirically that including an appropriate diver-

gence function enables larger steps than basic SG methods, this work gives the first

theoretical result justifying the use of these more-general divergence functions. It

in particular reveals how different factors affect the convergence rate such as the

Lipschitz-continuity of the lower bound, the information geometry of the diver-

gence functions, and the variance of the stochastic approximation. Our results also

suggest conditions under which the proximal-gradient steps of Khan et al. (2015b)

can make more progress than (non-split) gradient steps, and sheds light on the

choice of step-size for these methods.

5.1 Variational Inference
Consider a general latent variable model where we have a data vector y of length

N and a latent vector z of length D. In Bayesian inference, we are interested in

computing the marginal likelihood p(y), which can be written as the integral of

the joint distribution p(y,z) over all values of z. This integral is often intractable,

and in variational inference we typically approximate it with the evidence lower-

bound optimization (ELBO) approximation L . This approximation introduces

70



a distribution q(z|λ ) and chooses the variational parameters λ to maximize the

following lower bound on the marginal likelihood:

log p(y) = log
∫

q(z|λ ) p(y,z)
q(z|λ ) dz

≥ max
λ∈S

L (λ ) := Eq(z|λ )

[
log

p(y,z)
q(z|λ )

]
.

(5.1)

The inequality follows from concavity of the logarithm function. The set S is the

set of valid parameters λ .

To optimize λ , one of the seemingly-simplest approaches is gradient descent:

λ k+1 = λ k +βk∇L (λ k), which can be viewed as optimizing a quadratic approxi-

mation of L ,

λ k+1 = argmin
λ∈S

[
−λ

T
∇L (λ k)+

1
2βk
‖λ −λ k‖2

2

]
. (5.2)

While we can often choose the family q so that it has convenient computational

properties, it might be impractical to apply gradient descent in this context when

we have a very large dataset or when some terms in the lower bound are intractable.

Recently, SG methods have been proposed to deal with these issues (Ranganath

et al., 2013; Titsias and Lázaro-Gredilla, 2014): they allow large datasets by us-

ing random subsets (mini-batches) and can approximate intractable integrals using

Monte Carlo methods that draw samples from q(z|λ ).
A second drawback of applying gradient descent to variational inference is that

it uses the Euclidean distance and thus ignores the geometry of the variational-

parameter space, which often results in slow convergence. Intuitively, (5.2) im-

plies that we should move in the direction of the gradient, but not move λ k+1 too

far away from λ k in terms of the Euclidean distance. However, the Euclidean dis-

tance is not appropriate for variational inference because λ is the parameter vector

of a distribution; the Euclidean distance is often a poor measure of dissimilarity

between distributions. The following example from Hoffman et al. (2013) illus-

trates this point: the two normal distributions N (0,10000) and N (10,10000) are

almost indistinguishable, yet the Euclidean distance between their parameter vec-

tors is 10, whereas the distributions N (0,0.01) and N (0.1,0.01) barely overlap,
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but their Euclidean distance between parameters is only 0.1.

Natural-Gradient Methods: The canonical way to address the problem above

is by replacing the Euclidean distance in (5.2) with another divergence function.

For example, the natural gradient method defines the iteration by using the sym-

metric Kullback-Leibler (KL) divergence (Amari, 1998; Hoffman et al., 2013; Pas-

canu and Bengio, 2013),

λ k+1 =

argmin
λ∈S

[
−λ

T
∇L (λ k)+

1
βk

Dsym
KL [q(z|λ )‖q(z|λ k)]

]
.

(5.3)

This leads to the update

λ k+1 = λ k +βk
[
∇

2G(λ k)
]−1

∇L (λ k), (5.4)

where G(λ ) is the Fisher information-matrix,

G(λ ) := Eq(z|λ )

{[
∇

λ
logq(z|λ )

][
∇

λ
logq(z|λ )

]T
}
.

Hoffman et al. (2013) show that the natural-gradient update can be computationally

simpler than gradient descent for conditionally-conjugate exponential family mod-

els. In this family, we assume that the distribution of z factorizes as ∏i p(zi|pai)

where zi are disjoint subsets of z and pai are the parents of the zi in a directed

acyclic graph. This family also assumes that each conditional distribution is in the

exponential family,

p(zi|pai) := hi(zi)exp
[
[η i(pai)]T Ti(zi)−Ai(η i)

]
,

where η i are the natural parameters, Ti(zi) are the sufficient statistics, Ai(η i) is the

partition function, and hi(zi) is the base measure. Hoffman et al. (2013) consider a

mean-field approximation q(z|λ ) = ∏i qi(zi|λ i) where each qi belongs to the same

exponential-family distribution as the joint distribution,

qi(zi) := hi(zi)exp
[
(λ i)T Ti(zi)−Ai(λ i)

]
.
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The parameters of this distribution are denoted by λ
i to differentiate them from the

joint-distribution parameters η i.

As shown by Hoffman et al. (2013), the Fisher matrix for this problem is equal

to ∇2Ai(λ i) and the gradient of the lower bound with respect to λ
i is equal to

∇2Ai(λ i)(λ i − λ
i
∗) where λ

i
∗ are the mean-field parameters (see Paquet, 2014).

Therefore, when computing the natural-gradient, the ∇2Ai(λ i) terms cancel out

and the natural-gradient is simply λ
i−λ

i
∗ which is much easier to compute than the

actual gradient. Unfortunately, for non-conjugate models this cancellation does not

happen and the simplicity of the update is lost. The Riemannian conjugate-gradient

method of Honkela et al. (2011) has similar issues, in that computing ∇2A(λ ) is

typically very costly.

KL-Divergence Based Methods: Rather than using the symmetric-KL, Theis

and Hoffman (2015) consider using the KL divergence DKL[q(z|λ )‖q(z|λ k)] within

a stochastic proximal-point method:

λ k+1 = argmin
λ∈S

[
−L (λ )+

1
βk

DKL[q(z|λ )‖q(z|λ k)]

]
. (5.5)

This method yields better convergence properties, but requires numerical optimiza-

tion to implement the update even for conditionally-conjugate models. Khan et al.

(2015b) considers a deterministic proximal-gradient variant of this method by split-

ting the lower bound into −L := f +h, where f contains all the “difficult” terms

and h contains all the “easy” terms. By linearizing the “difficult” terms, this leads

to a closed-form update even for non-conjugate models. The update is given by:

λ k+1 = argmin
λ∈S

[
λ

T [∇ f (λ k)]+h(λ )

+
1
βk

DKL[q(z|λ )‖q(z|λ k)]

]
.

(5.6)

However, this method requires the exact gradients which is usually not feasible for

large dataset and/or complex models.

Mirror Descent Methods: In the optimization literature, mirror descent (and

stochastic mirror descent) algorithms are a generalization of (5.2) where the squared-

Euclidean distance can be replaced by any Bregman divergence DF(λ‖λ k) gener-
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ated from a strongly-convex function F(λ ) (Beck and Teboulle, 2003),

λ k+1 = argmin
λ∈S

{
−λ

T
∇L (λ k)+

1
βk

DF(λ‖λ k)

}
. (5.7)

The convergence rate of mirror descent algorithm has been analyzed in convex (Duchi

et al., 2010) and more recently in non-convex (Ghadimi et al., 2014) settings. How-

ever, mirror descent does not cover the cases described above in (5.5) and (5.6)

when a KL divergence between two exponential-family distributions is used with

λ as the natural-parameter. For such cases, the Bregman divergence corresponds

to a KL divergence with swapped parameters (see Nielsen and Garcia, 2009, Equa-

tion 29),

DA(λ‖λ k) := A(λ )−A(λ k)− [5A(λ k)]
T (λ −λ k)

= DKL[q(z|λ k)‖q(z|λ )], (5.8)

where A(λ ) is the partition function of q. Because (5.5) and (5.6) both use a KL

divergence where the second argument is fixed to λ k, instead of the first argument,

they are not covered under the mirror-descent framework. In addition, even though

mirror-descent has been used for variational inference (Ravikumar et al., 2010),

Bregman divergences do not yield an efficient update in many scenarios.

5.2 Proximal-gradient SVI
Our proximal-gradient stochastic variational inference (PG-SVI) method extends

(5.6) to allow stochastic gradients ∇̂ f (λ k) and general divergence functions D(λ‖λ k)

by using the iteration

λ k+1 = argmin
λ∈S

{
λ

T
[
5̂ f (λ k)

]
+h(λ )+

1
βk

D(λ ‖λ k)

}
. (5.9)

This unifies a variety of existing approaches since it allows:

1. Splitting of L into a difficult term f and a simple term h, similar to the

method of Khan et al. (2015b).

2. A stochastic approximation ∇̂ f of the gradient of the difficult term, similar
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to SG methods.

3. Divergence functions D that incorporate the geometry of the parameter space,

similar to methods discussed in Section 5.1 (see (5.3), (5.5), (5.6), and (5.7)).

Below, we describe each feature in detail, along with the precise assumptions used

in our analysis.

5.2.1 Splitting

Following Khan et al. (2015b), we split the lower bound into a sum of a “difficult”

term f and an “easy” term h, enabling a closed-form solution for (5.9). Specifically,

we split using p(y,z)/q(z|λ )= c p̃d(z|λ )p̃e(z|λ ), where p̃d contains all factors that

make the optimization difficult, and p̃e contains the rest (while c is a constant). By

substituting in (5.1), we get the following split of the lower bound:

L (λ ) = Eq[log p̃d(z|λ )]︸ ︷︷ ︸
− f (λ )

+Eq[log p̃e(z|λ )]︸ ︷︷ ︸
−h(λ )

+ logc.

Note that p̃d and p̃e need not be probability distributions.

We make the following assumptions about f and h:

(A1) The function f is differentiable and its gradient is L−Lipschitz-continuous,

i.e. ∀λ and λ
′ ∈S we have

‖∇ f (λ )−∇ f (λ ′)‖2 ≤ L‖λ −λ
′‖2.

(A2) The function h can be a general convex function.

These assumptions are very weak. The function f can be non-convex and the

Lipschitz-continuity assumption is typically satisfied in practice (and indeed the

analysis can be generalized to only require this assumption on a smaller set con-

taining the iterations). The assumption that h is convex seems strong, but note that

we can always take h = 0 in the split if the function has no “nice” convex part.

Below, we give several illustrative examples of such splits for variational-Gaussian

inference with q(z|λ ) := N (z|m,V), so that λ = {m,V} with m being the mean

and V being the covariance matrix.
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Gaussian Process (GP) Models: Consider GP models (Kuss and Rasmussen,

2005) for N input-output pairs {yn,xn} indexed by n. Let zn := f (xn) be the latent

function drawn from a GP with mean 0 and covariance K. We use a non-Gaussian

likelihood p(yn|zn) to model the output. We can then use the following split, where

the non-Gaussian terms are in p̃d and the Gaussian terms are in p̃e:

p(y,z)
q(z|λ ) =

N

∏
n=1

p(yn|zn)

︸ ︷︷ ︸
p̃d(z|λ )

N (z|0,K)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ )

. (5.10)

The detailed derivation is in Appendix D.1.1. By substituting in (5.1), we obtain

the lower bound L (λ ) shown below along with its split:

∑
n
Eq[log p(yn|zn)]

︸ ︷︷ ︸
− f (λ )

−DKL[N (z|m,V)‖N (z|0,K)]︸ ︷︷ ︸
h(λ )

. (5.11)

Assumption A1 is satisfied for common likelihoods, while it is easy to establish

that h is convex. We show in Section 5.5 that this split leads to a closed-form

update for iteration (5.9).

Generalized Linear Models (GLMs): A similar split can be obtained for

GLMs (Nelder and Wedderburn, 1972), where the non-conjugate terms are in p̃d

and the rest are in p̃e. Denoting the weights by z and assuming a standard Gaussian

prior over it, we can use the following split:

p(y,z)
q(z|λ ) =

N

∏
n=1

p(yn|xT
n z)

︸ ︷︷ ︸
p̃d(z|λ )

N (z|0,I)
N (z|m,V)︸ ︷︷ ︸

p̃e(z|λ )

.

We give further details about the bound for this case in Appendix D.1.2.

Correlated Topic Model (CTM): Given a text document with a vocabulary of

N words, denote its word-count vector by y. Let K be the number of topics and z
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be the vector of topic-proportions. We can then use the following split:

p(y,z)
q(z|λ ) =

N

∏
n=1

[
K

∑
k=1

βn,k
ezk

∑ j ez j

]yn

︸ ︷︷ ︸
p̃d(z|λ )

N (z|µ,Σ)
N (z|m,V)︸ ︷︷ ︸

p̃e(z|λ )

,

where µ,Σ are parameters of the Gaussian prior and βn,k are parameters of K multi-

nomials. We give further details about the bound in Appendix D.1.3.

5.2.2 Stochastic Approximation

The approach of Khan et al. (2015b) considers (5.9) in the special case of (5.6)

where we use the exact gradient ∇ f (λ k) in the first term. But in practice this

gradient is often difficult to compute. In our framework, we allow a stochastic

approximation of ∇ f (λ ) which we denote by ∇̂ f (λ k).

As shown in the previous section, f might take a finite-sum form f (λ ) :=

ΣN
n=1Eq[ f̃n(z)] for a set of functions f̃n as in the GP model (5.11). In some situ-

ations, Eq[ f̃n(z)] is computationally expensive or intractable. For example, in GP

models the expectation is equal to Eq[log p(yn|zn)], which is intractable for most

non-Gaussian likelihoods. In such cases, we can form a stochastic approximation

by using a few samples z(s) from q(z|λ ), as shown below:

∇Eq[ f̃n(z)]≈ ĝ(λ ,ξ n) :=
1
S

S

∑
s=1

f̃n(z(s))∇[logq(z(s)|λ )],

where ξ n represents the noise in the stochastic approximation ĝ and we use the

identity ∇q(z|λ ) = q(z|λ )∇[logq(z|λ )] to derive the expression (Ranganath et al.,

2013). We can then form a stochastic-gradient by randomly selecting a mini-batch

of M functions f̃ni(z) and employing the estimate

∇̂ f (λ ) =
N
M

M

∑
i=1

ĝ(λ ,ξ ni
). (5.12)

In our analysis we make the following two assumptions regarding the stochastic

approximation of the gradient:
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(A3) The estimate is unbiased: E[ĝ(λ ,ξ n)] =5 f (λ ).

(A4) Its variance is upper bounded: Var[ĝ(λ ,ξ n)]≤ σ2.

In both the assumptions, the expectation is taken with respect to the noise ξ n. The

first assumption is true for the stochastic approximations of (5.12). The second as-

sumption is stronger, but only needs to hold for all λ k so is almost always satisfied

in practice.

5.2.3 Divergence Functions

To incorporate the geometry of q we incorporate a divergence function D between

λ and λ k. The set of divergence functions need to satisfy two assumptions:

(A5) D(λ ‖λ
′)> 0, for all λ 6= λ

′.

(A6) There exist an α > 0 such that for all λ ,λ ′ generated by (5.9) we have:

(λ −λ
′)T

∇λD(λ ‖λ
′)≥ α‖λ −λ

′‖2. (5.13)

The first assumption is reasonable and is satisfied by typical divergence functions

like the squared Euclidean distance and variants of the KL divergence. In the next

section we show that, whenever the iteration (5.9) is defined and all λ k stay within

a compact set, the second assumption is satisfied for all divergence functions con-

sidered in Section 5.1.

5.3 Special Cases
Most methods discussed in Section 5.1 are special cases of the proposed itera-

tion (5.9). We obtain gradient descent if h= 0, f =−L , ∇̂ f =∇ f , and D(λ‖λ k)=

(1/2)‖λ−λ k‖2 (in this case A6 is satisfied with α = 1). From here, there are three

standard generalizations in the optimization literature: SG methods do not require

that ∇̂ f = ∇ f , proximal-gradient methods do not require that h = 0, and mirror

descent allows D to be a different Bregman divergence generated by a strongly-

convex function. Our analysis applies to all these variations on existing optimiza-

tion algorithms because A1 to A5 are standard assumptions (Ghadimi et al., 2014)
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and, as we now show, A6 is satisfied for this class of Bregman divergences. In

particular, consider the generic Bregman divergence shown in the left side of (5.8)

for some strongly-convex function A(λ ). By taking the gradient with respect to λ

and substituting in (5.13), we obtain that A6 is equivalent to

(λ −λ k)
T [5A(λ )−5A(λ k)]≥ α‖λ −λ k‖2,

which is equivalent to strong-convexity of the function A(λ ) (Nesterov, 2004, The-

orem 2.1.9).

The method of Theis and Hoffman (2015) corresponds to choosing h = −L ,

f = 0, and D(λ ||λ k) := DKL[q(z|λ )‖q(z|λ k)] where q is an exponential family

distribution with natural parameters λ . Since we assume h to be convex, only

limited cases of their approach are covered under our framework. The method

of Khan et al. (2015b) also uses the KL divergence and focuses on the deterministic

case where ∇̂ f (λ ) = ∇ f (λ ), but uses the split −L = f + h to allow for non-

conjugate models. In both of these models, A6 is satisfied when the Fisher matrix

52A(λ ) is positive-definite. This can be shown by using the definition of the KL

divergence for exponential families (Nielsen and Garcia, 2009):

DKL[q(z|λ )‖q(z|λ k)]

:= A(λ k)−A(λ )− [5A(λ )]T (λ k−λ ).
(5.14)

Taking the derivative with respect to λ and substituting in (5.13) with λ
′ = λ k, we

get the condition

(λ −λ k)
T [52A(λ )](λ −λ k)≥ α‖λ −λ k‖2,

which is satisfied when52A(λ ) is positive-definite over a compact set for α equal

to its lowest eigenvalue on the set.

Methods based on natural-gradient using iteration (5.3) (like SVI) correspond

to using h = 0, f = −L , and the symmetric KL divergence. Assumption A1

to A5 are usually assumed for these methods and, as we show next, A6 is also

satisfied. In particular, when q is an exponential family distribution the symmetric

KL divergence can be written as the sum of the Bregman divergence shown in (5.8)
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and the KL divergence shown in (5.14),

Dsym
KL [q(z|λ )‖q(z|λ k)]

:= DKL[q(z|λ k)‖q(z|λ )]+DKL[q(z|λ )‖q(z|λ k)]

= DA(λ‖λ k)+DKL[q(z|λ )‖q(z|λ k)],

where the first equality follows from the definition of the symmetric KL divergence

and the second one follows from (5.8). Since the two divergences in the sum satisfy

A6, the symmetric KL divergence also satisfies the assumption.

5.4 Convergence of PG-SVI
We first analyze the convergence rate of deterministic methods where the gradient

is exact, ∇̂ f (λ ) = ∇ f (λ ). This yields a simplified result that applies to a wide va-

riety of existing variational methods. Subsequently, we consider the more general

case where a stochastic approximation of the gradient is used.

5.4.1 Deterministic Methods

We first establish the convergence under a fixed step-size when using the exact

gradient. We use C0 = L ∗−L (λ 0) as the initial (constant) sub-optimality, and

express our result in terms of the quantity

Gk :=
1
β
(λ k−λ k+1),

where λ k+1 is computed using (5.9).

Theorem 5.1. Let A1, A2, A5, and A6 be satisfied. If we run t iterations of (5.9)

with a fixed step-size βk = β = α/L for all k and an exact gradient ∇ f (λ ), then

we have

min
k∈{0,1,...,t−1}

‖Gk‖2
2 ≤

2LC0

α2t
. (5.15)

We give a proof in Appendix D.2. Stating the result in terms of Gk may appear

to be unconventional, but this quantity is a natural measure of first-order optimal-
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ity. For example, consider the special case of gradient descent where h = 0 and

D(λ ,λ k) =
1
2‖λ − λ k‖2

2. In this case, α = 1 and βk = 1/L, therefore we have

‖Gk‖2 = ‖∇ f (λ k)‖2 and Proposition 5.1 implies that mink ‖∇ f (λ k)‖2
2 has a con-

vergence rate of O(1/t). This means that the method converges at a sublinear rate

to an approximate stationary point, which would be a global minimum in the spe-

cial case where f is convex.

In more general settings, the quantity Gk provides a generalized notion of first-

order optimality for problems that may be non-smooth or use a non-Euclidean

geometry. Further, if the objective is bounded below (C0 is finite), this result im-

plies that the algorithm converges to such a stationary point and also gives a rate of

convergence of O(1/t).

If we use a divergence with α > 1 then we can use a step-size larger than 1/L

and the error will decrease faster than gradient-descent. To our knowledge, this is

the first result that formally shows that natural-gradient methods can achieve faster

convergence rates. The splitting of the objective into f and h functions is also

likely to improve the step-size. Since L only depends on f , sometimes it might be

possible to reduce the Lipschitz constant by choosing an appropriate split.

We next give a more general result that allows a per-iteration step size.

Theorem 5.2. If we choose the step-sizes βk to be such that 0 < βk ≤ 2α/L with

βk < 2α/L for at least one k, then,

min
k∈{0,1...t−1}

‖Gk‖2
2 ≤

C0

∑
t−1
k=0

(
αβk−Lβ 2

k /2
) . (5.16)

We give a proof in Appendix D.2. For gradient-descent, the above result im-

plies that we can use any step-size less than 2/L, which agrees with the classical

step-size choices for gradient and proximal-gradient methods.

5.4.2 Stochastic Methods

We now give a bound for the more general case where we use a stochastic approx-

imation of the gradient.

Theorem 5.3. Let A1-A6 be satisfied. If we run t iterations of (5.9) for a fixed

step-size βk = α∗/L (where 0 < γ < 2 is a scalar) and fixed batch-size Mk = M for

81



all k with a stochastic gradient ∇̂ f (λ ), then we have

ER,ξ (‖GR‖2
2)≤

[
2LC0

α2∗ t
+

cσ2

Mα∗

]
,

where c is a constant such that c > 1/(2α) and α∗ := α−1/(2c). The expectation

is taken with respect to the noise ξ := {ξ 0,ξ 1, . . . ,ξ t−1}, and a random variable R

which follows the uniform distribution Prob(R = k) = 1/t,∀k ∈ {0,1,2, . . . , t−1}.

Unlike the bound of Theorem 5.1, this bound depends on the noise variance σ2

as well the mini-batch size M. In particular, as we would expect, the bound gets

tighter as the variance gets smaller and as the size of our mini-batch grows. Notice

that the dependence on the variance σ2 is also improved if we have a favourable

geometry that increases α∗. Thus, we can achieve a higher accuracy by either

increasing the mini-batch size or improving the geometry.

In Appendix D.3 we give a more general result that allows non-constant se-

quences of step sizes, although we found that constant step-sizes work better em-

pirically. Note that while stating the result in terms of a randomized iteration might

seem strange, in practice we typically just take the last iteration as the approximate

minimizer.

5.5 Closed-Form Updates for Non-conjugate Models
We now give an example where iteration (5.9) attains a closed-form solution. We

expect such closed-form solution to exist for a large class of problems, including

models where q is an exponential-family distribution, but here we focus on the GP

model discussed in Section 5.2.1. For the GP model, we rewrite the lower bound

(5.11) as

−L (m,V) :=
N

∑
n=1

fn(mn,vn)

︸ ︷︷ ︸
f (m,V )

+DKL[q‖ p]︸ ︷︷ ︸
h(m,V )

, (5.17)

where we’ve used q :=N (z|m,V), p :=N (z|0,K), and fn(mn,vn) :=−Eq[log p(yn|zn)]

with mn being the entry n of m and vn being the diagonal entry n of V. We can

compute a stochastic approximation of f using (5.12) by randomly selecting an
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example nk (choosing M = 1) and using a Monte Carlo gradient approximation of

fnk . Using this approximation, the linearized term in (5.9) can be simplified to the

following:

λ
T
[
5̂ f (λ k)

]
= mn N[∇mn fnk(mnk,k,vnk,k)]︸ ︷︷ ︸

:=αnk ,k

+ vn N[∇vn fnk(mnk,k,vnk,k)]︸ ︷︷ ︸
:=2γnk ,k

= mnαnk,k +
1
2 vnγnk,k, (5.18)

where mnk,k and vnk,k denote the value of mn and vn in the k’th iteration for n = nk.

By using the KL divergence as our divergence function in iteration (5.9), and by

denoting N (z|mk,Vk) by qk, we can express the two last two terms in (5.9) as a

single KL divergence function as shown below:

λ
T
[
5̂ f (λ k)

]
+h(λ )+

1
βk

D(λ‖λ k)

= (mnαn,k +
1
2 vnγn,k)+DKL[q‖ p]+

1
βk

DKL[q‖qk]

= (mnαn,k +
1
2 vnγn,k)+

1
1− rk

DKL[q‖ p1−rk qrk
k ],

where rk := 1/(1+βk). Comparing this to (5.17), we see that this objective is simi-

lar to that of a GP model with a Gaussian prior1 p1−rk qrk
k and a linear Gaussian-like

log-likelihood. Therefore, we can obtain closed-form updates for its minimization.

The updates are shown below and a detailed derivation is given in Appendix D.4.

γ̃k = rkγ̃k−1 +(1− rk)γnk,k1nk ,

mk+1 = mk− (1− rk)(I−KA−1
k )(mk +αnk,kκnk),

vnk+1,k+1 = κnk+1,nk+1−κ
T
nk+1

A−1
k κnk+1 , (5.19)

where γ̃0 is initialized to a small positive constant to avoid numerical issues, 1nk

is a vector with all zero entries except nk’th entry which is equal to 1, κk is nk’th

1Since p and q are Gaussian, the product is a Gaussian.
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column of K, and Ak := K+[diag(γ̃k)]
−1. For iteration k+1, we use mnk+1,k+1 and

vnk+1,k+1 to compute the gradients αnk+1,k+1 and γnk+1,k+1, and run the above updates

again. We continue until a convergence criteria is reached.

There are numerous advantages of these updates. First, We do not need to

store the full covariance matrix V. The updates avoid forming the matrix and only

update m. This works because we only need one diagonal element in each iteration

to compute the stochastic gradient γnk,k. For large N this is a clear advantage since

the memory cost is O(N) rather than O(N2). Second, computation of the mean

vector m and a diagonal entry of V only require solving two linear equations, as

shown in the second and third line of (5.19). In general, for a mini-batch of size

M, we need a total of 2M linear equations, which is a lot cheaper than an explicit

inversion. Finally, the linear equations at iteration k+1 are very similar to those at

iteration k, since Ak differs only at one entry from Ak+1. Therefore, we can reuse

computations from the previous iteration to improve the computational efficiency

of the updates.

5.6 Discussion
This chapter has made two contributions. First, we proposed a new variational

inference method that combines variable splitting, stochastic gradients, and gen-

eral divergence functions. This method is well-suited for a huge variety of the

variational inference problems that arise in practice, and we anticipate that it may

improve over state of the art methods in a variety of settings. Our second con-

tribution is a theoretical analysis of the convergence rate of this general method.

Our analysis generalizes existing results for the mirror descent algorithm in op-

timization, and establishes convergences rates of a variety of existing variational

inference methods. Due to its generality we expect that this analysis could be use-

ful to establish convergence rates of other algorithms that we have not thought of,

perhaps beyond the variational inference settings we consider in this work. How-

ever, an open problem that is also discussed by Ghadimi et al. (2014) it to establish

convergence to an arbitrary accuracy with a fixed batch size.

One issue that we have not satisfactorily resolved is giving a theoretically-

justified way to set the step-size in practice; our analysis only indicates that it
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must be sufficiently small. However, this problem is common in many methods

in the literature and our analysis at least suggests the factors that should be taken

into account. Another open issue is the applicability our method to many other

latent variable models; in this chapter we have shown applications to variational-

Gaussian inference, but we expect that our method should result in simple updates

for a larger class of latent variable models such as non-conjugate exponential fam-

ily distribution models. Additional work on these issues will improve usability of

our method.
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Chapter 6

Conclusion and Future Work

This thesis presents our works on practical optimization methods for structured

machine learning models. The primary purpose of these methods is making the

training stage of ML models more efficient in terms of computational cost.

6.1 Practical SVRG
The main advantage of SVRG among the variance reduction based methods is its

independence to the extra memory. However, this freedom is acquired via sacrific-

ing in computational cost. The SVRG algorithm requires to evaluate full-gradient

occasionally to reduce the variance of its stochastic gradient estimator. In this

work, we propose and analyse some variants which can reduce the number of gra-

dient evaluation of SVRG while preserving its convergence speed. Further, we also

present variants that utilize the nested structure of the SVRG algorithm in order to

improve the convergence speed of the algorithm. For the SVM loss, we use the gra-

dient evaluation for each data sample in the outer and inner loop of its algorithm

to discern the non-support vectors as soon as possible. By doing so we can ignore

those non-support vector points for gradient evaluation in the next iterations of the

algorithm and improve the convergence speed. Applying SVRG and its variants in

the training of a deep neural network model is an interesting direction for future

research. However, using the SVRG algorithm to optimize the whole parameter set

of a deep neural network may not outperform SGD and its variants due to overpa-
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rameterization (Vaswani et al., 2018). But combining SVRG to train the last layer

of a deep neural network with SGD to optimize the rest of parameters may be an

appealing direction for future research.

6.2 SAG for CRF
This work presents the first work that applies SAG to CRFs. SAG requires memory

in its algorithm to store the stale gradients. This requirement hinders its applicabil-

ity for natural language models where there are a vast number of labels and com-

plex features. In addition to our approach of storing marginals grouping training

examples into fixed mini-batches can further help to reduce the memory require-

ment (since only the average marginals with respect to the mini-batches would be

needed).

Utilizing non-uniform sampling in stochastic gradient estimation has been shown

to improve the convergence speed of stochastic optimization methods. We propose

two variant of SAG with non-uniform sampling and analyse the convergence of

them. We examined those non-uniform sampling methods in the training of CRF

models and observed their superiority over uniform sampling approaches. Fur-

thermore, we considered smooth objective functions with `2-regularizer, but our

analysis could be extended to non-smooth objective with `1-regularizer. We also

just considered chain-structured data in our experiments, but the algorithm can be

applied for general graph structure. Another alternative can be adapting the SAG

algorithm to run in multi-threaded computation.

6.3 MASAGA: SAGA for Manifolds
The loss function of a significant group of problems in ML such PCA, dictionary

learning, Gaussian mixture models, and the Page-rank algorithm are defined on a

Riemannian manifold. Considering that structure in the optimization method can

improve the convergence speed of it. In this work, we modify the SAGA algorithm

for manifold optimization. This modification extends the linear convergence of the

SAGA algorithm for a strongly-convex function in Euclidean spaces to Riemannian

manifolds for a function submitting to a notion of strong-convexity over the man-

ifold. We applied non-uniform sampling for SAGA for manifolds algorithm and
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observed analytically and experimentally its speed-up. For future research, one

can extend MASAGA by deriving convergence rates for the non-convex case of

geodesic objective functions. One also can explore accelerated variance-reduction

methods and block coordinate descent based methods for Riemannian optimiza-

tion.

6.4 Proximal Gradient SVI
In this work, we proposed a new variational inference method that combines vari-

able splitting, stochastic gradients, and general divergence functions. The proposed

method could be applied for a considerable group of variational inference problems

and may improve over the state of the art results. Furthermore, we theoretically

analysed the convergence of this general method. This analysis generalizes exist-

ing results for the mirror descent algorithm in optimization, and give convergence

rates for a variety of existing variational inference methods. However, an open

problem that is also discussed by Ghadimi et al. (2014) it to establish convergence

to an arbitrary accuracy with a fixed batch size.

One problem which is not covered in our analysis is giving a theoretically-

justified way to set the step-size in practice; our analysis only indicates that it must

be sufficiently small. However, this problem is common in many methods in the

literature, and our analysis at least suggests the factors that should be taken into

account.
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sciences de Paris, 25:536–538. → page 53

Cohn, T. and Blunsom, P. (2005). Semantic role labelling with tree conditional
random fields. Conference on Computational Natural Language Learning. →
page 35

Collins, M. (2002). Discriminative training methods for hidden Markov models:
theory and experiments with perceptron algorithms. Conference on Empirical
Methods in Natural Language Processing. → page 47

Collins, M., Globerson, A., Koo, T., Carreras, X., and Bartlett, P. (2008).
Exponentiated gradient algorithms for conditional random fields and
max-margin Markov networks. The Journal of Machine Learning Research,
9:1775–1822. → pages 38, 47

Cormack, G. V. and Lynam, T. R. (2005). Spam corpus creation for TREC. In
Proc. 2nd Conference on Email and Anti-Spam.
http://plg.uwaterloo.ca/∼gvcormac/treccorpus/. → page 28

90

http://plg.uwaterloo.ca/~gvcormac/treccorpus/


Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives.
Advances in Neural Information Processing Systems. → pages
12, 16, 36, 45, 52, 54, 59, 60, 122

Defazio, A. and Bottou, L. (2019). On the ineffectiveness of variance reduced
optimization for deep learning. In Advances in Neural Information Processing
Systems, pages 1753–1763. → page 13

Dubey, K. A., Reddi, S. J., Williamson, S. A., Poczos, B., Smola, A. J., and Xing,
E. P. (2016). Variance reduction in stochastic gradient langevin dynamics. In
Advances in neural information processing systems, pages 1154–1162. → page
55

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159. → page 47

Duchi, J. C., Shalev-Shwartz, S., Singer, Y., and Tewari, A. (2010). Composite
objective mirror descent. In COLT, pages 14–26. → page 74

Finkel, J. R., Kleeman, A., and Manning, C. D. (2008). Efficient, feature-based,
conditional random field parsing. Annual Meeting of the Association for
Comptuational Linguistics: Human Language Technologies. → page 38

Frank, A. and Asuncion, A. (2010). UCI machine learning repository. → page 28

Friedlander, M. P. and Schmidt, M. (2012). Hybrid deterministic-stochastic
methods for data fitting. SIAM Journal of Scientific Computing,
34(3):A1351–A1379. → pages 21, 29, 38, 47

Ghadimi, S. and Lan, G. (2012). Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization i: A generic algorithmic
framework. SIAM Journal on Optimization, 22(4):1469–1492. → page 38

Ghadimi, S., Lan, G., and Zhang, H. (2014). Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Mathematical
Programming, pages 1–39. → pages 14, 70, 74, 78, 84, 88, 150

Guyon, C., Bouwmans, T., and Zahzah, E.-h. (2012). Robust principal component
analysis for background subtraction: Systematic evaluation and comparative
analysis. In Principal component analysis. InTech. → page 65

Guyon, I. (2008). Sido: A phamacology dataset. → page 28

91



Harikandeh, R., Ahmed, M. O., Virani, A., Schmidt, M., Konečnỳ, J., and
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Appendix A

Chapter 2 Supplementary
Material

A.1 Convergence Rate of SVRG with Error
We first give the proof of Theorem 2.1, which gives a convergence rate for SVRG

with an error and uniform sampling. We then turn to the case of non-uniform

sampling.

A.1.1 Proof of Theorem 1

We follow a similar argument to Johnson and Zhang (2013), but propagating the

error es through the analysis. We begin by deriving a simple bound on the variance

of the sub-optimality of the gradients.

Lemma A.1. For any x,

1
n

n

∑
i=1
‖∇ fi(x)−∇ fi(x∗)‖2 ≤ 2L[ f (x)− f (x∗)].

Proof. Because each ∇ fi is L-Lipschitz continuous, we have (Nesterov, 2004, The-

orem 2.1.5)

fi(x)≥ fi(y)+ 〈∇ fi(x),x− y〉+ 1
2L
‖∇ fi(x)−∇ fi(y)‖2.
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Setting y = x∗ and summing this inequality times (1/n) over all i we obtain the

result.

In this section we’ll use x̃ to denote xs, e to denote es, and we’ll use νt to denote

the search direction at iteration t,

νt = ∇ fit (xt−1)−∇ fit (x̃)+ g̃+ e.

Note that E[νt ] = ∇ f (xt−1) + e and the next lemma bounds the variance of this

value.

Lemma A.2. In each iteration t of the inner loop,

E‖νt‖2 ≤ 4L[ f (xt−1)− f (x∗)]+4L[ f (x̃)− f (x∗)]+2‖e‖2.

Proof. By using the inequality ‖x+y‖2≤ 2‖x‖2+2‖y‖2 and the property E[∇ fit (x̃)−
∇ fit (x

∗)] = ∇ f (x̃), we have

E‖νt‖2 = E‖∇ fit (xt−1)−∇ fit (x̃)+ g̃+ e‖2

≤ 2E‖∇ fit (xt−1)−∇ fit (x
∗)‖2

+2E‖[∇ fit (x̃)−∇ fit (x
∗)]−∇ f (x̃)− e‖2

= 2E‖∇ fit (xt−1)−∇ fit (x
∗)‖2 +2E‖[∇ fit (x̃)−∇ fit (x

∗)]

−E[∇ fit (x̃)−∇ fit (x
∗)]− e‖2

= 2E‖∇ fit (xt−1)−∇ fit (x
∗)‖2 +2E‖[∇ fit (x̃)−∇ fit (x

∗)]

−E[∇ fit (x̃)−∇ fit (x
∗)]‖2 +2‖e‖2

−4E〈[∇ fit (x̃)−∇ fit (x
∗)]−E[∇ fit (x̃)−∇ fit (x

∗)],e〉
= 2E‖∇ fit (xt−1)−∇ fit (x

∗)‖2 +2E‖[∇ fit (x̃)−∇ fit (x
∗)]

−E[∇ fit (x̃)−∇ fit (x
∗)]‖2 +2‖e‖2.

If we now use that E[‖X −E[X ]‖2] ≤ E‖X‖2 for any random variable X , we ob-

tain the result by applying Lemma A.1 to bound E‖∇ fit (xt−1)−∇ fit (x
∗)‖2 and

E‖[∇ fit (x̃)−∇ fit (x
∗)]‖2.

The following Lemma gives a bound on the distance to the optimal solution.
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Lemma A.3. In every iteration t of the inner loop,

E‖xt − x∗‖2 ≤ ‖xt−1− x∗‖2−2η(1−2ηL)[ f (xt−1)− f (x∗)]

+4Lη
2[ f (x̃)− f (x∗)]+2η(Z‖e‖+η‖e‖2).

Proof. We expand the expectation and bound E‖νt‖2 using Lemma A.2 to obtain

E‖xt − x∗‖2

= ‖xt−1− x∗‖2−2η 〈xt−1− x∗,E[νt ]〉+η
2E‖νt‖2

= ‖xt−1− x∗‖2−2η 〈xt−1− x∗,∇ f (xt−1)+ e〉+η
2E‖νt‖2

= ‖xt−1− x∗‖2−2η 〈xt−1− x∗,∇ f (xt−1)〉−2η 〈xt−1− x∗,e〉+η
2E‖νt‖2

≤ ‖xt−1− x∗‖2−2η 〈xt−1− x∗,e〉−2η [ f (xt−1)− f (x∗)]+2η
2‖e‖2

+4Lη
2[ f (xt−1)− f (x∗)]+4Lη

2[ f (x̃)− f (x∗)].

The inequality above follows from convexity of f . The result follows from apply-

ing Cauchy-Schwartz to the linear term in e and that ‖xt−1− x∗‖2 ≤ Z.

To prove Theorem 2.1 from Chapter 2, we first sum the inequality in Lemma A.3

for all t = 1, ...,m and take the expectation with respect to the choice of xs to get

E‖xm− x∗‖2 ≤ E‖x0− x∗‖2−2η(1−2Lη)mE[ f (xt−1)− f (x∗)]

+4Lη
2mE[ f (x̃)− f (x∗)]+2mη(ZE‖e‖+ηE‖e‖2).

Re-arranging, and noting that x0 = x̃s−1 and E [ f (xt−1)] = E [ f (xs)], we have that

2η(1−2Lη)mE[ f (xs)− f (x∗)]

≤ E‖x̃s−1− x∗‖2 +4Lη
2mE[ f (x̃s−1)− f (x∗)]

+2mη(ZE‖es−1‖+ηE‖es−1‖2)

≤ 2
µ
E[ f (x̃s−1)− f (x∗)]+4Lη

2mE[ f (x̃s−1)− f (x∗)]

+2mη(ZE‖e‖+ηE‖e‖2),

where the last inequality uses strong-convexity and that ∇ f (x∗) = 0. By dividing
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both sides by 2η(1− 2Lη)m (which is positive due to the constraint η ≤ 1/2L

implied by 0 < ρ < 1 and η > 0), we get

E[ f (xs)− f (x∗)]

≤
(

1
mµ(1−2ηL)η

+
2Lη

1−2ηL

)
E[ f (x̃s−1)− f (x∗)]

+
1

1−2ηL

(
ZE‖es−1‖+ηE‖es−1‖2) .

A.1.2 Non-Uniform Sampling

If we sample it proportional to the individual Lipschitz constants Li, then we have

the following analogue of Lemma A.1.

Lemma A.4. For any x,

E
∥∥∥∥

L̄
Li
[∇ fi(x)−∇ fi(x∗)]

∥∥∥∥
2

≤ 2L̄[ f (x)− f (x∗)].

Proof. Because each ∇ fi is Li-Lipschitz continuous, we have (Nesterov, 2004,

Theorem 2.1.5)

fi(x)≥ fi(y)+ 〈∇ fi(x),x− y〉+ 1
2Li
‖∇ fi(x)−∇ fi(y)‖2.

Setting y = x∗ and summing this inequality times (1/n) over all i we have

E
∥∥∥∥

L̄
Li
[∇ fi(x)−∇ fi(x∗)]

∥∥∥∥
2

=
n

∑
i=1

Li

nL̄
L̄2

L2
i
‖∇ fi(x)−∇ fi(y)‖2

=
L̄
n

n

∑
i=1

1
Li
‖∇ fi(x)−∇ fi(y)‖2

≤ L̄
n

n

∑
i=1

1
Li

2Li[ fi(x)− fi(x∗)−〈∇ fi(x),x− x∗〉]

= 2L̄[ f (x)− f (x∗)]
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With this modified lemma, we can derive the convergence rate under this non-

uniform sampling scheme by following an identical sequence of steps but where

each instance of L is replaced by L̄.

A.2 Mixed SVRG and SG Method
We first give the proof of Theorem 2.2 in Chapter 2, which analyzes a method that

mixes SG and SVRG updates using a constant step size. We then consider a variant

where the SG and SVRG updates use different step sizes.

A.2.1 Proof of Theorem 2

Recall that the SG update is

xt = xt−1−η∇ fit (xt−1).

Using this in Lemma A.3 and following a similar argument we have

E‖xt − x∗‖2 ≤ α{‖xt−1− x∗‖2−2η(1−2ηL)[ f (xt−1)− f (x∗)]

+4Lη
2[ f (x̃)− f (x∗)]+2η(Z‖e‖+η‖e‖2)}

+β{‖xt−1− x∗‖2 +η
2E‖∇ fit (xt−1)‖2

−2η 〈xt−1− x∗,E[∇ fit (xt−1)]〉}
≤ ‖xt−1− x∗‖2−2η(1−2ηL)[ f (xt−1)− f (x∗)]

+α4Lη
2[ f (x̃)− f (x∗)]+α2η(Z‖e‖+η‖e‖2)+βη

2
σ

2,

where the second inequality uses convexity of f and we have defined β = (1−α).

We now sum up both sides and take the expectation with respect to the history,

E‖xm− x∗‖2 ≤ E‖x0− x∗‖2−2η(1−2Lη)mE[ f (xt−1)− f (x∗)]

+4αLη
2mE[ f (x̃)− f (x∗)]+2mαη(ZE‖e‖+ηE‖e‖2)

+mβη
2
σ

2.
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By re-arranging the terms we get

2η(1−2Lη)mE[ f (xs)− f (x∗)]≤ 2
µ
E[ f (x̃s−1)− f (x∗)]

+4αLη
2mE[ f (x̃s−1)− f (x∗)]

+2mαη(ZE‖e‖+ηE‖e‖2)+mβη
2
σ

2,

and by dividing both sides by 2η(1−2Lη)m we get the result.

A.2.2 Mixed SVRG and SG with Different Step Sizes

Consider a variant where we use a step size of η in the SVRG update and a step-

size ηs in the SG update (which will decrease as the iterations proceed). Analyzing

the mixed algorithm in this setting gives

E‖xt − x∗‖2 ≤ α{‖xt−1− x∗‖2−2η(1−2ηL)[ f (xt−1)− f (x∗)]

+4Lη
2[ f (xs)− f (x∗)]+2η(Z‖es‖+η‖es‖2)}

+β{‖xt−1− x∗‖2 +η
2
s E‖∇ fit (xt−1)‖2

−2ηs 〈xt−1− x∗,E[∇ fit (xt−1)]〉}
= E

[
‖xt−1− x∗‖2

2
]
−2αη(1−2ηL)[ f (xt−1)− f (x∗)]

+4αLη
2[ f (xs)− f (x∗)]+2αη(Z‖es‖+η‖es‖2)

+βη
2
s E‖∇ fit (xt−1)‖2−2βηs 〈xt−1− x∗, f (xt−1)]〉

≤ E
[
‖xt−1− x∗‖2

2
]
−{2αη(1−2ηL)+2βηs}[ f (xt−1)− f (x∗)]

+4αLη
2[ f (xs)− f (x∗)]+2αη(Z‖es‖+η‖es‖2)+βη

2
s σ

2.

As before, we take the expectation for all t and sum up these values, then rearranage

and use strong-convexity of f to get

2m{αη(1−2ηL)+βηs}[ f (xs)− f (x∗)]

≤
{

2
µ
+4mαLη

2
}
[ f (xs)− f (x∗)]+2mαη(Z‖es‖+η‖es‖2)+mβη

2
s σ

2.
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If we now divide both side by 2m(αη(1−2ηL)+βηs), we get

E [ f (xs)− f (x∗)]

≤
{ 1

µm(αη(1−2ηL)+βηs)
+

2αLη2

αη(1−2ηL)+βηs

}
[ f (xs)− f (x∗)]

+
αη

αη(1−2ηL)+βηs
(ZE [‖es‖]+ηE

[
‖es‖2])

+
1

2(αη(1−2ηL)+βηs)
βη

2
s σ

2.

To improve the dependence on the error es and variance σ2 compared to the basic

SVRG algorithm with error es (Theorem 2.1), we require that the terms depending

on these values are smaller,

αη

αη(1−2ηL)+βηs

(
ZE [‖es‖]+ηE

[
‖es‖2])

+
1

2(αη(1−2ηL)+βηs)
βη

2
s σ

2 ≤ 1
1−2ηL

(
ZE [‖es‖]+ηE

[
‖es‖2]) .

Let κ = (1−2ηL) and ζ = ZE [‖es‖]+ηE
[
‖es‖2

]
, this requires

αη

αηκ +βηs
ζ +

βη2
s

2(αηκ +βηs)
σ

2 ≤ ζ

κ
.

Thus, it is sufficient that ηs satisfies

ηs ≤
2ζ

κσ2 .

Using the relationship between expected error and S2, while noting that S2 ≤ σ2

and (n−|B|)
n|B| ≤ 1, a step size of the form ηs = O∗(

√
(n−|B|)/n|B|) will improve

the dependence on es and σ2 compared to the dependence on es in the pure SVRG

method.
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A.3 Proximal and Regularized SVRG
In this section we consider objectives of the form

f (x) = h(x)+g(x),

where g(x) = 1
n ∑

n
i=1 gi(x). We first consider the case where h is non-smooth and

consider a proximal-gradient variant of SVRG where there is an error in the calcu-

lation of the gradient (Algorithm 9). We then consider smooth functions h where

we use a modified SVRG iteration,

xt+1 = xt −η (∇h(xt)+∇git (xt)−∇git (x
s)+µ

s) ,

where µs = ∇g(xs).

A.3.1 Composite Case

Similar to the work of Xiao and Zhang (2014), in this section we assume that f ,g

and h are µ-, µg-, µh-strongly convex (respectively). As before, we assume each gi

is convex and has an L-Lipschitz continuous gradient, but h can potentially be non-

smooth. The algorithm we propose here extends the algorithm of Xiao and Zhang

(2014), but adding an error term. In the algorithm we use the proximal operator

which is defined by

proxh(y) = argmin
x∈Rd

{1
2
‖x− y‖2 +h(x)}.

Below, we give a convergence rate for this algorithm with an error es.

Theorem A.5. If we have µ̃s = ∇g(xs)+ es and set the step-size η and number of

inner iterations m so that

ρ ≡ 1
mµ(1−4ηL)η

+
4Lη(m+1)
(1−4ηL)m

< 1,

then Algorithm 9 has

E[ f (xs+1)− f (x∗)]≤ ρE[ f (x̃s)− f (x∗)]+
1

1−4ηL
(ZE‖es‖+ηE‖es‖2),
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Algorithm 9 Batching Prox SVRG
Input: update frequency m and learning rate η and sample size increasing rate
α

Initialize x̃
for s = 1,2,3, . . . do

Choose batch size |B|
B = randomly choose |B| elements of {1,2, . . . ,n}.
µ̃=

1
|B| ∑i∈B ∇gi(x̃)

x0=x̃
for t = 1,2, . . . ,m do

Randomly pick it ∈ 1, . . . ,n
νt = ∇git (xt−1)−∇git (x̃)+ µ̃

xt = proxηh(xt−1−ηνt) (∗)
end for
set x̃ = 1

m ∑
m
t=1 xt

end for

where ‖xt − x∗‖< Z.

To prove Theorem A.5, we use Lemma 1,2 and 3 from Xiao and Zhang (2014),

which are unchanged when we allow an error. Below we modify their Corollary 3

and then the proof of their main theorem.

Lemma A.6. Consider νt = ∇git (xt−1)−∇git (x̃)+∇g(x̃)+ e. Then,

E‖νt −∇g(xt−1)‖2 ≤ ‖e‖2 +4L[ f (xt−1)− f (x∗)+ f (x̃)− f (x∗)].

Proof.

E‖νt −∇g(xt−1)‖2

= E‖∇git (xt−1)−∇git (x̃)+∇g(x̃)+ e−∇g(xt−1)‖2

= ‖e‖2 +E‖∇git (xt−1)−∇git (x̃)+∇g(x̃)−∇g(xt−1)‖2

≤ ‖e‖2 +E‖∇git (xt−1)−∇git (x̃)‖2

≤ ‖e‖2 +2E‖∇git (xt−1)−∇git (x
∗)‖2 +2E‖∇git (x̃)−∇git (x

∗)‖2.
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Using Lemma 1 from Xiao and Zhang (2014) and bounding the two expectations

gives the result.

Now we turn to proving Theorem A.5.

Proof. Following the proof of Theroem 1 in Xiao and Zhang (2014), we have

‖xt − x∗‖2 ≤ ‖xt−1− x∗‖2−2η [ f (xt)− f (x∗)]−2η 〈∆t ,xt − x∗〉 ,

where ∆t = νt −∇g(xt−1) and E[∆t ] = e. Now to bound 〈∆t ,xt − x∗〉, we define

x̄t = proxh(xt−1−η∇g(xt−1)),

and subsequently that

−2η 〈∆t ,xt − x∗〉 ≤ 2η
2‖∆t‖2−2η 〈∆t , x̄t − x∗〉 .

Combining with the two previous inequalities we get

‖xt − x∗‖2 ≤ ‖xt−1− x∗‖2−2η [ f (xt)− f (x∗)]+2η
2‖∆t‖2−2η 〈∆t , x̄t − x∗〉 .

If we take the expectation with respect to it we have

E‖xt − x∗‖2 ≤ ‖xt−1− x∗‖2−2ηE[ f (xt)− f (x∗)]+2η
2E‖∆t‖2−2η 〈E∆t , x̄t − x∗〉 .

Now by using the Lemma A.6 and ‖x̄t − x∗‖< Z we have

E‖xt − x∗‖2

≤ ‖xt−1− x∗‖2−2ηE[ f (xt)− f (x∗)]+8η
2L[ f (xt−1)− f (x∗)+ f (x̃)− f (x∗)]

+2η
2‖e‖2 +2η‖e‖Z.

The rest of the proof follows the argument of Xiao and Zhang (2014), and is simlar

to the previous proofs in this appendix. We take the expectation and sum up values,
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using convexity to give

2η(1−4Lη)m[E f (xs)− f (x∗)]≤( 2
µ
+8Lη

2(m+1))[ f (x̃s−1− f (x∗)]

+2η
2‖e‖2 +2η‖e‖Z.

By dividing both sides to 2η(1−4Lη)m, we get the result.

A.3.2 Proof of Theorem 3

We now turn to the case where h is differentiable, and we use an iteration that

incorporates the gradient ∇h(xt). Let G(x) = 1
n ∑

n
i=1 fi(x). Recall that for this result

we assume that ∇G is LG-Lipschitz continuous, ∇h is Lh-Lipschitz continuous, and

we defined Lm =max{LG,Lh}. If we let νt =∇h(xt)+∇ fit (xt)−∇ fit (x
s)+gs, then

note that we have E [νt ] = ∇ f (xt). Now as before we want to bound the expected

second moment of νt ,

E
[
‖νt‖2

2
]
= E

[
‖∇h(xt)+∇ fit (xt)−∇ fit (x

s)+gs‖2
2
]

= E[‖∇h(xt)+∇ fit (xt)−∇ fit (x
s)+gs +∇h(x∗)

+∇ fit (x
∗)−∇h(x∗)−∇ fit (x

∗)+∇h(xs)−∇h(xs)‖2]

≤ 2‖∇h(xt)−∇h(x∗)‖2
2 +2E

[
‖∇ fit (xt)−∇ fit (x

∗)‖2
2
]

+2E[‖−∇ fit (x
s)+gs +∇h(x∗)+∇ fit (x

∗)

+∇h(xs)−∇h(xs)‖2]

= 2‖∇h(xt)−∇h(x∗)‖2
2 +2E

[
‖∇ fit (xt)−∇ fit (x

∗)‖2
2
]

+2E[‖∇ fit (x
s)−gs−∇h(x∗)−∇ fit (x

∗)−∇h(xs)

+∇h(xs)+∇h(x∗)+∇G(x∗)‖2]

= 2‖∇h(xt)−∇h(x∗)‖2
2 +2E

[
‖∇ fit (xt)−∇ fit (x

∗)‖2
2
]

+2E
[
‖∇ fit (x

s)−gs−∇ fit (x
∗)+∇G(x∗)‖2

2
]

≤ 2‖∇h(xt)−∇h(x∗)‖2
2 +2E

[
‖∇ fit (xt)−∇ fit (x

∗)‖2
2
]

+2E
[
‖∇ fit (x

s)−∇ fit (x
∗)‖2

2
]
.
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Now using that ‖∇h(xs)−∇h(x∗)‖2
2 ≥ 0 and ‖ f (x)− f (y)‖2

2 ≤ 2L[ f (x)− f (y)−
〈∇ f (y),x− y〉],

E
[
‖νt‖2

2
]
≤ 2‖∇h(xt)−∇h(x∗)‖2

2 +2E
[
‖∇ fit (xt)−∇ fit (x

∗)‖2
2
]

+2E
[
‖∇ fit (x

s)−∇ fit (x
∗)‖2

2
]
+2‖∇h(xs)−∇h(x∗)‖2

2

≤ 4Lh[h(xt)−h(x∗)−〈∇h(x∗),xt − x∗〉]
+4LG[G(xt)−G(x∗)−〈∇G(x∗),xt − x∗〉]
+4Lh[h(xs)−h(x∗)−〈∇h(x∗),xs− x∗〉]
+4LG[G(xs)−G(x∗)−〈∇G(x∗),xs− x∗〉]

≤ 4Lm[ f (xt)− f (x∗)]+4Lm[ f (xs)− f (x∗)].

From this point, we follow the standard SVRG argument to obtain

E [ f (xs+1)− f (x∗)]≤
(

1
mµ(1−2ηLm)

+
2Lmη

1−2ηLm

)
[ f (xs− f (x∗)].

A.4 Mini-Batch
We first give an analysis of SVRG where mini-batches are selected by sampling

propotional to the Lipschitz constants of the gradients. We then consider the mixed

deterministic/random sampling scheme described in Chapter 2.

A.4.1 SVRG with Mini-batch

Here we consider using a ‘mini-batch’ of examples in the inner SVRG loop. We

use M to denote the batch size, and we assume that the elements of the mini-batch

are sampled with a probability of pi = Li/nL̄. This gives a search direction and

inner iteration of:

νt = gs +
1
M

[
∑
i∈M

1
npi

(∇ fi(xt)−∇ fi(xs))

]
,

xt+1 = xt −ηνt .
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Observe that E [νt ] = ∇ f (xt), and since each fi is Li-smooth we still have that

‖∇ fi(x)−∇ fi(y)‖2
2 ≤ Li ( fi(x)− fi(y)−〈∇ fi(y),x− y〉) .

It follows from the definition of pi that

E

[∥∥∥∥
1

npi
(∇ fi(x)−∇ fi(y))

∥∥∥∥
2
]
=

1
n ∑

i

1
npi
‖∇ fi(x)−∇ fi(y)‖2

2

≤ 2L̄( f (x)− f (y)−〈∇ f (y),x− y〉) ,

which we use to bound E
[
‖νt‖2

2
]

as before,

E
[
‖νt‖2

2
]
= E



∥∥∥∥∥

1
M ∑

i

(
1

npi
(∇ fi(xt)−∇ fi(xs)+gs

)∥∥∥∥∥

2



= E[‖ 1
M ∑

i
(

1
npi

(∇ fi(xt)−∇ fi(x∗)+

∇ fi(x∗)−∇ fi(xs)+gs)‖2]

≤ 2
M ∑

i
E

[∥∥∥∥
(

1
npi

(∇ fi(xt)−∇ fi(x∗))
)∥∥∥∥

2
]

+
2
M ∑

i
E

[∥∥∥∥
(

1
npi

(∇ fi(xs)−∇ fi(x∗))−gs
)∥∥∥∥

2
]

≤ 2
M ∑

i
E

[∥∥∥∥
(

1
npi

(∇ fi(xt)−∇ fi(x∗))
)∥∥∥∥

2
]

+
2
M ∑

i
E

[∥∥∥∥
(

1
npi

(∇ fi(xs)−∇ fi(x∗))
)∥∥∥∥

2
]

≤ 4L̄ [ f (xt)− f (x∗)]+4L̄ [ f (xs)− f (x∗)] .

It subsequently follows that

E
[

f (xs+1)− f (x∗)
]
≤
(

1
mµ(1−2η L̄)η

+
2L̄η

1−2η L̄

)
E [ f (xs)− f (x∗)] .
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A.4.2 Proof of Theorem 4

We now consider the case where we have g(x) = (1/n)∑i/∈[B f ] fi(x) and h(x) =

(1/n)∑i∈[B f ] fi(x) for some batch B f with |B f |= M f . We assume that we sample

Mr elements of g with probability of pi =
Li

(n−M f )L̄r
and that we use:

νt = ∇g(xs)+∇h(xt)+
1

Mr

[
∑

i∈Mr

1
npi

(∇ fi(xt)−∇ fi(xs))

]

= gs +∇h(xt)+
1

Mr

[
∑

i∈Mr

1
npi

(∇ fi(xt)−∇ fi(xs))

]
−∇h(xs)

xt+1 = xt −ηνt ,

where as usual µs = 1
n ∑

n
i=1 f ′i (x

s) = ∇g(xs)+∇h(xs). Note that E [νt ] = ∇ f (xt).

We first bound E
[
‖νt‖2

2
]
,

E
[
‖νt‖2]= E[‖gs +∇h(xt)+1/Mr

[
∑

i∈Mr

1
npi

(∇ fi(xt)−∇ fi(xs))

]

−∇h(xs)‖2]

= E[‖gs +∇h(xt)−∇h(x∗)+1/Mr

[
∑

i∈Mr

1
npi

(∇ fi(xt)−∇ fi(x∗))

]

−1/Mr

[
∑

i∈Mr

1
npi

(∇ fi(xs)−∇ fi(x∗))

]
−∇h(xs)+∇h(x∗)‖2

2]

≤ 2M f

n2 ∑
i∈B f

‖∇ fi(xt)−∇ fi(x∗)‖2
2

︸ ︷︷ ︸
Fixed part

+

2/Mr ∑
i∈Br

E

[∥∥∥∥
1

npi
(∇ fi(xt)−∇ fi(x∗))

∥∥∥∥
2
]

︸ ︷︷ ︸
Random part

+2E



∥∥∥∥∥1/Mr

[
∑

i∈Mr

1
npi

(∇ fi(xs)−∇ fi(x∗))

]
+∇h(xs)−∇h(x∗)−gs

∥∥∥∥∥

2

 ,
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where the inequality uses ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Now we bound each of the

above terms separately,

2M f /n2
∑

i∈B f

‖∇ fi(xt)−∇ fi(x∗)‖2
2

≤ 2M f /n2
∑

i∈B f

2Li( fi(xt)− fi(x∗)−〈∇ fi(x∗),xt − x∗〉)

≤ 4LM f

n
(h(xt)−h(x∗)−〈∇h(x∗),xt − x∗〉) ,

2/Mr ∑
i∈Br

E
[
‖ 1

npi
(∇ fi(xt)−∇ fi(x∗))‖2

2

]
= 2E

[
‖ 1

npi
(∇ fi(xt)−∇ fi(x∗))‖2

2

]

≤ 1/n2
∑

j/∈B f

1/pi‖∇ fi(xt)−∇ fi(x∗)‖2
2

≤ 2/n2
∑

j/∈B f

(n−M f )L̄r ( fi(xt)− fi(x∗)−〈∇ fi(x∗),xt − x∗〉)

=
4(n−M f )L̄r

n
(g(xt)−g(x∗)−〈∇g(x∗),xt − x∗〉).

Finally for the last term we have,

2E




∥∥∥∥∥∥∥
1

Mr

[
∑

i∈Mr

1
npi

(∇ fi(xs)−∇ fi(x∗))

]
+∇h(xs)−∇h(x∗)−gs
︸ ︷︷ ︸

=∇g(x∗)−∇g(xs)

∥∥∥∥∥∥∥

2


≤ 2E



∥∥∥∥∥

1
Mr

∑
i∈Mr

1
npi

(∇ fi(xs)−∇ fi(x∗))

∥∥∥∥∥

2



≤ 4(n−M f )L̄r

n
(g(xs)−g(x∗)−〈∇g(x∗),xs− x∗〉)

where the first inequality uses variance inequality (E‖X−EX‖2 ≤ E‖X‖2) and the

second one comes from Lemma A.1. Since h is convex we can add 4(n−M f )L̄r
n (h(xs)−
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h(x∗)−〈∇h(x∗),xs− x∗〉) to the right side of the above term, giving

2E



∥∥∥∥∥

1
Mr

[
∑
i∈M

1
npi

(∇ fi(xs)−∇ fi(x∗))

]
+∇h(xs)−∇h(x∗)−gs

∥∥∥∥∥

2



≤ 4(n−M f )L̄r

n
( f (xs)− f (x∗)) .

Now following the proof technique we used several times, we can show that:

E
[

f (xs+1)− f (x∗)
]
≤
(

2
mµ(2−ηζ )η

+
4L̄rM f η

n(2−ζ η)

)
E [ f (xs)− f (x∗)] ,

where ζ = max{ 4LM f
n ,

4L̄r(n−M f )
n }.

A.5 Learning efficiency
In this section we closely follow Bottou and Bousquet (2007) to discuss the per-

formance of SVRG, and other linearly-convergent stochastic methods, as learning

algorithms. In the typical supervised learning setting, we are giving n indepen-

dently drawn input-output pairs (xi,yi) from some distribution P(x,y) and we seek

to minimize the empirical risk,

En( f ) =
1
n

n

∑
i=1

`( f (xi),yi) = En[`( f (x),y)],

where ` is our loss function. However, in machine learning this is typically just a

surrogate for the objective we are ultimately interested in. In particular, we typi-

cally want to minimize the expected risk,

E( f ) =
∫

`( f (x),y)dP(x,y) = E[`( f (x),y)],

which tells us how well we do on test data from the same distribution. We use f ∗

to denote the minimizer of the expected risk,

f ∗(x) = argmin
x∈X

ŷE[`(ŷ,y) |x],
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which is the best that a learner can hope to achieve.

Consider a family F of possible functions that we use to predict yi from xi. We

write the minimizer of the expected risk over this restricted set as f ∗F ,

f ∗F = argmin
x∈X

f ∈FE( f ),

while we denote the empirical risk minimizer within this family as fn,

fn = argmin
x∈X

f ∈FEn( f ).

But, since we are applying a numerical optimizer we only assume that we find a

ρ-optimal minimizer of the empirical risk f̃n,

En( f̃n)< En( fn)+ρ,

In this setting, Bottou & Bousquet consider writing the sub-optimality of the ap-

proximate empirical risk minimizer f̃n compared to the minimizer of the expected

risk f ∗ as

E = E[E( f̃n)−E( f ∗)]

= E[E( f ∗F )−E( f ∗)]︸ ︷︷ ︸
Eapp

+E[E( fn)−E( f ∗F )]︸ ︷︷ ︸
Eest

+E[E( f̃n)−E( fn)]︸ ︷︷ ︸
Eopt

, (A.1)

where the expectation is taken with respect to the output of the algorithm and with

respect to the training examples that we sample. This decomposition shows how

three intuitive terms affect the sub-optimality:

1. Eapp is the approximation error: it measures the effect of restricting attention

to the function class F .

2. Eest is the estimation error: it measures the effect of only using a finite num-

ber of samples.

3. Eopt is the optimization error: it measures the effect of inexactly solving the

optimization problem.

117



While choosing the family of possible approximating functions F is an interesting

and important issue, for the remainder of this section we will assume that we are

given a fixed family. In particular, Bottou & Bousquet’s assumption is that F is

linearly-parameterized by a vector w ∈ Rd , and that all quantities are bounded (xi,

yi, and w). This means that the approximation error Eapp is fixed so we can only

focus on the trade-off between the estimation error Eest and the optimization error

Eopt.

All other sections of this work focus on the case of finite datasets where we can

afford to do several passes through the data (small-scale learning problems in the

language of Bottou & Bousquet). In this setting, Eest is fixed so all we can do to

minimize E is drive the optimization error ρ as small as possible. In this section

we consider the case where we do not have enough time to process all available ex-

amples, or we have an infinite number of possible examples (large-scale learning

problems in the language of Bottou & Bousquet). In this setting, the time restric-

tion means we need to make a trade-off between the optimization error and the

estimation error: should we increase n in order to decrease the estimation error

Eest or should we revisit examples to try to more quickly decrease the optimization

error Eopt while keeping the estimation error fixed?

Bottou & Bousquet discuss how under various assumptions we have the vari-

ance condition

∀ f ∈F E
[
(`( f (X),Y )− `( f ∗F (X),Y ))2

]
≤ c(E( f )−E( f ∗F ))2− 1

α ,

and how this implies the bound

E = O
(

Eapp +

(
d
n

log
n
d

)α

+ρ

)
.

To make the second and third terms comparable, we can take ρ =
(d

n log n
d

)α
. Then

to achieve an accuracy of O(Eapp + ε) it is sufficient to take n = O
(

d
ε1/α

log(1/ε)
)
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samples:

E = O
(

Eapp +

(
d
n

log
n
d

)α

+ρ

)

= O
(

Eapp +

(
d
n

log
n
d

)α

+

(
d
n

log
n
d

)α)

= O
(

Eapp +

(
d
n

log
n
d

)α)

= O

(
Eapp +

(
ε

1
α

log( 1
ε
)

log

(
log( 1

ε
)

ε
1
α

))α)

= O

(
Eapp + ε

(
log(log(1/ε))− 1

α
log(ε)

log(1/ε)

)α)

= O(Eapp + ε).

The results presented in Chapter 2 follow from noting that (i) the iteration cost

of SVRG is O(d) and (ii) that the number of iterations for SVRG to reach an

accuracy of ρ is O((n+κ) log(1/ρ)).
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Appendix B

Chapter 3 Supplementary
Material

B.1 Proof of Part (a) of Theorem 3.1
In this section we consider the minimization problem

min
x

f (x) =
1
n

n

∑
i=1

fi(x),

where each f ′i is L-Lipschitz continuous and each fi is µ-strongly-convex. We will

define Algorithm B.1, a variant of SAGA, by the sequences {xk}, {νk}, and {φ k
j }

given by

νk =
1

np j
[ f ′jk(x

k)− f ′jk(φ
k
j )]+

1
n

n

∑
i=1

f ′i (φ
k
i ),

xk+1 = xk− 1
η

νk, (B.1)

φ
k+1
j =





f ′jk(x
k) if j = jk,

φ k
j otherwise,

where jk = j with probability p j. In this section we’ll use the convention that

x = xk, that φ j = φ k
j , and that x∗ is the minimizer of f . We first show that νk is an
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unbiased gradient estimator and derive a bound on its variance.

Lemma B.1. We have E[νk] = f ′(xk) and subsequently

E‖νk‖2 ≤ 2E‖ 1
np j

[ f ′j(x)− f ′j(x
∗)]‖2 +2E‖ 1

np j
[ f ′j(φ j)− f ′j(x

∗)]‖2.

Proof. We have

E[νk] =
n

∑
j=1

p j=1

[
1

np j
[ f ′j(x)− f ′jk(φ j)]+

1
n

n

∑
i=1

f ′i (φi)

]

=
n

∑
j=1

[
1
n

f ′j(x)−
1
n

f ′j(φ j)+
p j

n

n

∑
i=1

f ′i (φi)

]

=
1
n

n

∑
i=1

f ′j(x)−
1
n

n

∑
i=1

f ′j(φ j)+
n

∑
i=1

[pi]
1
n

n

∑
i=1

f ′j(φ j)

=
1
n

n

∑
i=1

f ′i (x) = f ′(x).

To show the second part, we use that E‖X−E[X ]+Y‖2 = E‖X−E[X ]‖2 +E‖Y‖2
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if X and Y are independent, E‖X−E[X ]‖2≤E‖X‖2, and ‖x+y‖2≤ 2‖x‖2+2‖y‖2,

E‖νk‖2 = E‖ 1
np j

[ f ′j(x)− f ′j(φ j)]+
1
n

n

∑
i=1

f ′i (φi)‖2

= E‖ 1
np j

[ f ′j(x)− f ′j(x
∗)]− f ′(x)+ f ′(x)

− 1
np j

[ f ′j(φ j)− f ′j(x
∗)]− 1

n

n

∑
i=1

f ′i (φi))‖2

= E‖ 1
np j

[ f ′j(x)− f ′j(x
∗)]− f ′(x)

− 1
np j

[ f ′j(φ j)− f ′j(x
∗)]− 1

n

n

∑
i=1

f ′i (φi))‖2 +‖ f ′(x)‖2

≤ E‖ 1
np j

[ f ′j(x)− f ′j(x
∗)]− f ′(x)‖2

+2E‖ 1
np j

[ f ′j(φ j)− f ′j(x
∗)]− 1

n

n

∑
i=1

f ′i (φi))‖2 +‖ f ′(x)‖2

≤ 2E‖ 1
np j

[ f ′j(x)− f ′j(x
∗)]‖2−2‖ f ′(x)‖2

+2E‖ 1
np j

[ f ′j(φ j)− f ′j(x
∗)]‖2 +‖ f ′(x)‖2

≤ 2E‖ 1
np j

[ f ′j(x)− f ′j(x
∗)]‖2 +2E‖ 1

np j
[ f ′j(φ j)− f ′j(x

∗)]‖2.

We will also make use of the inequality

〈 f ′(x),x∗− x〉 ≤ −µ

2
‖x− x∗‖2− 1

2Ln

n

∑
i=1
‖ f ′i (x

∗)− f ′i (x)‖2, (B.2)

which follows from Defazio et al. (2014, Lemma 1) using that f ′(x∗) = 0 and

the non-positivity of L−µ

L [ f (x∗)− f (x)]. We now give the proof of part (a) of

Theorem 3.1, which we state below.
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Theorem B.2 (a). If η = 4L+nµ

npm
and pm = min j{p j}, then Algorithm B.1 has

E[‖xk−x∗‖2
2]≤

(
1− npmµ

nµ +4L

)t
[
‖x0− x∗‖2

2 +
2pm

(4L+nµ)2 ∑
i

1
pi
‖∇ fi(x0)−∇ fi(x∗)‖2

2

]
.

Proof. We denote the Lyapunov function T k at iteration k by

T k =
1
n

n

∑
i=1

1
np j
‖ f ′i (φ

k
i )− f ′i (x

∗)‖2 + c‖xk− x∗‖2.

We will will show that E[T k+1] ≤ (1− 1
κ
)T k for some κ < 1. First, we write the

expectation of the first term as

E

[
∑

i

1
n2 pi
‖ f ′i (φi)− f ′i (x

∗)‖2

]

= E
[

1
n2 p j
‖ f ′j(x)− f ′j(x

∗)‖2
]
+∑

i

1
n2 pi
‖ f ′i (φi)− f ′i (x

∗)‖2−E
[

1
n2 p j
‖ f ′j(φ j)− f ′j(x

∗)‖2
]

=
1
n2 ∑

i
‖ f ′i (x)− f ′i (x

∗)‖2 +
1
n2 ∑

i

(
1
p i
−1
)
‖ f ′i (φi)− f ′i (x

∗)‖2. (B.3)

Next, we simplify the other term of E[T k+1],

cE‖xk+1− x∗‖2 = cE‖x− x∗− 1
η

νk‖2

= c‖x− x∗‖2 +
c

η2E‖νk‖2 +
2c
η
〈 f ′(x),x− x∗〉
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We now use Lemma B.1 followed by Inequality (B.2),

cE‖xk+1− x∗‖2 ≤ c‖x− x∗‖2 +
c

η2 2E‖ 1
np j

[ f ′j(x)− f ′j(x
∗)]‖2

+
c

η2 2E‖ 1
np j

[ f ′j(φ j)− f ′j(x
∗)]‖2 +

2c
η
〈 f ′(x),x− x∗〉

≤ c(1− µ

η
)‖x− x∗‖2 +

2c
η2E‖

1
np j

( f ′j(x)− f ′j(x
∗))‖2

+
2c
η2E‖

1
np j

( f ′j(φ j)− f ′j(x
∗))‖2− c

nηL ∑
i
‖ f ′i (x

∗)− f ′i (x)‖2

= c(1− µ

η
)‖x− x∗‖2 +∑

i
(

2c
n2η2 pi

− c
nηL

)‖ f ′i (x)− f ′i (x
∗)‖2

+∑
i
(

2c
n2η2 pi

)‖ f ′i (φi)− f ′i (x
∗)‖2.

124



We use this to bound the expected improvement in the Lyapunov function,

E[T k+1]−T k = E[T k+1]− 1
n

n

∑
i=1

1
np j
‖ f ′i (φi)− f ′i (x

∗)‖2− c‖x− x∗‖2

≤ 1
n2 ∑

i
‖ f ′i (x)− f ′i (x

∗)‖2 +
1
n2 ∑

i

(
1
p i
−1
)
‖ f ′i (φi)− f ′i (x

∗)‖2 From (B.3)

+ c(1− µ

η
)‖x− x∗‖2 +∑

i
(

2c
n2η2 pi

− c
nηL

)‖ f ′i (x)− f ′i (x
∗)‖2

+∑
i
(

2c
n2η2 pi

)‖ f ′i (φi)− f ′i (x
∗)‖2 From above

− 1
n

n

∑
i=1

1
np j
‖ f ′i (φi)− f ′i (x

∗)‖2− c‖x− x∗‖2 Def’n of T k

=
1
n2 ∑

i
‖ f ′i (x)− f ′i (x

∗)‖2− 1
n2 ∑

i
‖ f ′i (φi)− f ′i (x

∗)‖2

− cµ

η
‖x− x∗‖2 +∑

i
(

2c
n2η2 pi

− c
nηL

)‖ f ′i (x)− f ′i (x
∗)‖2

+∑
i
(

2c
n2η2 pi

)‖ f ′i (φi)− f ′i (x
∗)‖2

=− 1
κ

T k +

(
1
κ
− µ

η

)
c‖x− x∗‖2 (∗)

+∑
i

(
2c

n2η2 pi
+

1
n2 −

c
nηL

)
‖ f ′i (x)− f ′i (x

∗)‖2

+∑
i

(
2c

n2η2 pi
− 1

n2 +
1

n2κ pi

)
‖ f ′i (φi)− f ′i (x

∗)‖2

≤− 1
κ

T k +

(
1
κ
− µ

η

)[
c‖x− x∗‖2]

+

(
2c

n2η2 pm
+

1
n2 −

c
nηL

)[
∑

i
‖ f ′i (x)− f ′i (x

∗)‖2

]

+

(
2c

n2η2 pm
− 1

n2 +
1

n2κ pm

)[
∑

i
‖ f ′i (φi)− f ′i (x

∗)‖2

]
,

where in (∗) we add and subtract 1
κ

T k and in the last line we assumed c ≥ 0 and

used pi ≥ pm. The terms in square brackets are positive, and if we can choose the
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constants {c,κ,η} to make the round brackets non-positive, we have

E[T k+1]≤
(

1− 1
κ

)
T k.

For the first expression, choosing κ = η

µ
makes it zero. We can make the third

expression zero under this choice of κ by choosing c = η2 pm
2 −

µη

2 . This follows

because
2c

n2η2 pm
− 1

n2 +
1

n2κ pm
=

2c
n2η2 pm

− 1
n2 +

µ

n2η pm
= 0,

is equivalent to

2c
n2η2 pm

=
1
n2 −

µ

n2η pm
⇔ c =

η2 pm

2
− µη

2
.

For the second expression, note that with our choice of c we have

2c
n2η2 pm

+
1
n2 −

c
nηL

=
1
n2 −

µ

n2η pm
+

1
n2 −

η2 pm
2 −

µη

2
nηL

,

which (multiplying by n) is negative if we have

2
n
+

µ

2L
≤ µ

nη pm
+

η pm

2L
.

Ignoring the last term, we can choose

η =
4L+nµ

npm
.

We will also require that c ≥ 0 to complete the proof, but this follows because

η ≥ µ

pm
. By using that

cE[‖xk+1− x∗‖2
2]≤ E[T k+1]≤

(
1− 1

κ

)
T k =

(
1− µ

η

)
T k

126



and chaining the expectations while using the definition of η we obtain

E[‖xk− x∗‖2
2]≤

(
1− µ

η

)k T 0

c

=

(
1− npmµ

nµ +4L

)k
[
‖x0− x∗‖2 +

1
cn

n

∑
i=1

1
np j
‖ f ′i (φ

0
i )− f ′i (x

∗)‖2

]
.

To get the final expression, use that

1
cn2 =

2
n2(η2 pm−µη)

≤ 2
n2η2 pm

=
2n2 p2

m

n2 pm(4L+nµ)2 =
2pm

(4L+nµ)2 .

B.2 Proof of Part (b) of Theorem 3.1
In this section we consider the minimization problem

min
x

f (x) =
1
n

n

∑
i=1

fi(x),

where each f ′i is Li-Lipschitz continuous and f is µ-strongly-convex. We will

define Algorithm B.4 by the sequences {xk}, {νk}, and {φ k
j } given by

νk =
L̄
Li
[ f ′jk(x

k)− f ′jk(φ
k
j )]+

1
n

n

∑
i=1

f ′i (φ
k
i ),

xk+1 = xk− γνk, (B.4)

φ
k+1
j =





f ′rk
(xk) if j = rk,

φ k
j otherwise,

where jk = j with probability Li
∑

n
j=1 L j

and rk is picked uniformly at random. This is

identical to Algorithm B.1, except it uses a specific choice of the p j and the mem-

ory φ j is updated based on a different random sample that is sampled uniformly.

This algorithm maintains the key property that the expected step is a gradient step,

E[νk] = f ′(xk).
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From our assumptions about f and the fi, we have (Nesterov, 2004, see Chapter

2).

fi(x)≥ fi(y)+
〈

f ′i (y),x− y
〉
+

1
2L

∥∥ f ′i (x)− f ′i (y)
∥∥2

, (B.5)

and

f (x)≥ f (y)+
〈

f ′(y),x− y
〉
+

µ

2
‖x− y‖2 . (B.6)

We use these to derive several useful inequalities that we will use in the analy-

sis. Adding the former times 1
2n for all i to the latter times 1

2 for y = x∗ gives the

inequality

〈
f ′(x),x∗− x

〉
≤ f (x∗)− f (x)− µ

4
‖x∗− x‖2− 1

4n ∑
i

1
Li

∥∥ f ′i (x
∗)− f ′i (x)

∥∥2
. (B.7)

Also by applying (B.5) with y = x∗ and x = φi, for each fi and summing, we have

that for all φi and x∗:

1
n ∑

i

1
Li

∥∥ f ′i (φi)− f ′i (x
∗)
∥∥2 ≤ 2

n ∑
i

[
fi(φi)− f (x∗)−

〈
f ′i (x

∗),φi− x∗
〉]
. (B.8)

Further, by both minimizing sides of (B.6) we obtain

−
∥∥ f ′(x)

∥∥2 ≤−2µ [ f (x)− f (x∗)] . (B.9)

We next derive a bound on the variance of the gradient estimate.

Lemma B.3. It holds that for any φi that with xk+1 and xk as given by Algorithm B.1

we have

E
∥∥xk+1−xk

∥∥2 ≤ 2γ
2 L̄

n ∑
i

1
Li

∥∥ f ′j(φ
k
j )− f ′j(x

∗)
∥∥2

+2γ
2 L̄

n ∑
i

1
Li

∥∥ f ′j(x
k)− f ′j(x

∗)
∥∥2−η

2∥∥ f ′(xk)
∥∥2

.

Proof. We again follow the SAGA argument closely here
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E
∥∥xk+1− xk

∥∥2

= γ
2E

∥∥∥∥∥
L̄
L j

[
f ′j(φ

k
j )− f ′j(x

k)
]
− 1

n

n

∑
i=1

f ′i (φ
k
i )

∥∥∥∥∥

2

= γ
2E

∥∥∥∥∥
L̄
L j

[
f ′j(φ

k
j )− f ′j(x

∗)
]
− 1

n

n

∑
i=1

f ′i (φ
k
i )−

L̄
L j

[
f ′j(x

k)− f ′j(x
∗)
]
− f ′(xk)

∥∥∥∥∥

2

+η
2∥∥ f ′(xk)

∥∥2

≤ 2γ
2E

∥∥∥∥∥
L̄
L j

[
f ′j(φ

k
j )− f ′j(x

∗)
]
− 1

n

n

∑
i=1

f ′i (φ
k
i )

∥∥∥∥∥

2

+2γ
2E
∥∥∥∥

L̄
L j

[
f ′j(x

k)− f ′j(x
∗)
]
− f ′(xk)

∥∥∥∥
2

+η
2∥∥ f ′(xk)

∥∥2

≤ 2γ
2E
∥∥∥∥

L̄
L j

[
f ′j(φ

k
j )− f ′j(x

∗)
]∥∥∥∥

2

+2γ
2E
∥∥∥∥

L̄
L j

[
f ′j(x

k)− f ′j(x
∗)
]∥∥∥∥

2

−η
2∥∥ f ′(xk)

∥∥2
.

We can expand those expectations as follows:

E
∥∥∥∥

L̄
Li

[
f ′j(φ

k
j )− f ′j(x

∗)
]∥∥∥∥

2

=
1

nL̄ ∑
i

Li

∥∥∥∥
L̄
Li

[
f ′j(φ

k
j )− f ′j(x

∗)
]∥∥∥∥

2

=
L̄
n ∑

i

1
Li

∥∥∥
[

f ′j(φ
k
j )− f ′j(x

∗)
]∥∥∥

2
,

and similarly for E
∥∥∥ L̄

Li

[
f ′j(x

k)− f ′j(x
∗)
]∥∥∥

2
.

We now give the proof of part (b) of Theorem 1, which we state below.

Theorem B.4 (b). If γ = 1
4L , then Algorithm B.4 has

E
[∥∥xk− x∗

∥∥2
]
≤
(

1−min
{

1
3n

,
µ

8L̄

})k [∥∥xk− x∗
∥∥2

+
n

2L̄

(
f (x0)− f (x∗)

)]
.
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Proof. We define the Lyapunov function as

T k =
1
n ∑

i
fi(φ

k
i )− f (x∗)− 1

n ∑
i

〈
f ′i (x

∗),φ k
i − x∗

〉
+ c
∥∥xk− x∗

∥∥2
.

The expectations of the first terms in T k+1 are straightforward to simplify:

E

[
1
n ∑

i
fi(φ

k+1
i )

]
=

1
n

f (xk)+

(
1− 1

n

)
1
n ∑

i
fi(φ

k
i ),

E

[
−1

n ∑
i

〈
f ′i (x

∗),φ k+1
i − x∗

〉]
= −

(
1− 1

n

)
1
n ∑

i

〈
f ′i (x

∗),φ k
i − x∗

〉
.

Note that these terms make use of the uniformly sampled φ k+1
r = xk value. For

the change in the last term of T k we expand the quadratic and apply E[xk+1] =

xk−η f ′(xk) to simplify the inner product term:

cE
∥∥xk+1− x∗

∥∥2

=cE
∥∥xk− x∗+ xk+1− xk

∥∥2

=c
∥∥xk− x∗

∥∥2
+2cE

[〈
xk+1− xk,xk− x∗

〉]
+ cE

∥∥xk+1− xk
∥∥2

=c
∥∥xk− x∗

∥∥2−2cη

〈
f ′(xk),xk− x∗

〉
+ cE

∥∥xk+1− xk
∥∥2

.

We now apply Lemma B.3 to bound the error term cE
∥∥xk+1− xk

∥∥2, giving:

cE
∥∥xk+1− x∗

∥∥2

≤ c
∥∥xk− x∗

∥∥2− cη
2∥∥ f ′(xk)

∥∥2

−2cη

〈
f ′(xk),xk− x∗

〉

+2cγ
2 L̄

n ∑
i

1
Li

∥∥ f ′i (φ
k
i )− f ′i (x

∗)
∥∥2

+2cγ
2 L̄

n ∑
i

1
Li

∥∥ f ′i (x
k)− f ′i (x

∗)
∥∥2

.

Now we bound −2cγ 〈 f ′(x),x− x∗〉 with (B.7) and then apply (B.8) to bound
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E
∥∥∥ f ′j(φ j)− f ′j(x

∗)
∥∥∥

2
:

cE
∥∥xk+1− x∗

∥∥2 ≤
(

c− 1
2

cηµ

)∥∥xk− x∗
∥∥2

+

(
2cη

2L̄− 1
2

cγ

)
1
n ∑

i

1
Li

∥∥ f ′i (x
k)− f ′i (x

∗)
∥∥2−cη

2∥∥ f ′(xk)
∥∥2

−2cη

[
f (xk)− f (x∗)

]

+
(
4cη

2L̄
) 1

n ∑
i

[
fi(φi)− fi(x∗)−

〈
f ′i (x

∗),φi− x∗
〉]
.

We can now combine the bounds we have derived for each term in T , and pull out
a fraction 1

κ
of T k (for any κ at this point). Together with (B.9) this yields:

E[T k+1]−T k ≤− 1
κ

T k +

(
1
n
−2cη−2cη

2
µ

)[
f (xk)− f (x∗)

]

+

(
1
κ
+4cη

2L̄− 1
n

)[
1
n ∑

i
fi(φ

k
i )− f (x∗)− 1

n ∑
i

〈
f ′i (x

∗),φ k
i − x∗

〉]

+

(
1
κ
− 1

2
ηµ

)
c
∥∥∥xk− x∗

∥∥∥
2
+

(
2η L̄− 1

2

)
cη

1
n ∑

i

1
Li

∥∥∥ f ′i (x
k)− f ′i (x

∗)
∥∥∥

2
.

(B.10)

Note that the term in square brackets in the second row is positive in light

of (B.8). We now attempt to find constants that satisfy the required relations. We

start with naming the constants that we need to be non-positive:

c1 =
1
n
−2cη−2cη

2
µ,

c2 =
1
κ
+4cη

2L̄− 1
n
,

c3 =
1
κ
− 1

2
ηµ,

c4 = 2η L̄− 1
2
.

Recall that we are using the step size γ = 1/4L̄, and thus c4 = 0. Setting c1 to zero
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gives

c =
1

2γ(1− γµ)n
,

which is positive since γµ < 1. Now we look at the restriction that c2 ≤ 0 places

on κ:

1
κ
+4cη

2L̄− 1
n

=
1
κ
+

4γL̄
2(1− γµ)n

− 1
n

=
1
κ
+

1
2(1− γµ)n

− 1
n

=
1
κ
+

1
2(1−µ/4L̄)n

− 1
n

≤ 1
κ
+

1
2(1− L̄/4L̄)n

− 1
n

=
1
κ
+

2
3n
− 1

n

=
1
κ
− 1

3n
,

∴
1
κ
≤ 1

3n
.

We also have the restriction from c3 =
1
κ
− 1

2 ηµ of

1
κ
≤ µ

8L̄
,

therefore we can take
1
κ
= min

{
1
3n

,
µ

8L̄

}
.

Note that c
∥∥xk− x∗

∥∥2 ≤ T k, and therefore by chaining expectations and plugging

in constants we get:

E
[∥∥xk− x∗

∥∥2
]
≤
(

1−min
{

1
3n

,
µ

8L̄

})k [∥∥xk− x∗
∥∥2

+
n

2L̄

(
f (x0)− f (x∗)

)]
.
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Figure B.1: Test error against effective number of passes for different de-
terministic, stochastic, and semi-stochastic optimization strategies (this
figure is best viewed in colour). Top-left: OCR, Top-right: CoNLL-
2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

B.3 Test Error Plots for All Methods
In the main body we only plotted test error for a subset of the methods. In Fig-

ure B.1 we plot the test error of all methods considered in Figure 1. Note that

Pegasos does not appear on the plot (despite being in the legend) because its val-

ues exceed the maximum plotted values. In these plots we see that the SAG-NUS

methods perform similarly to the best among the optimally-tuned stochastic gradi-

ent methods in terms of test error, despite the lack of tuning required to apply these

methods.
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Figure B.2: Objective minus optimal objective value against effective num-
ber of passes for different variants of OEG. Top-left: OCR, Top-right:
CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

B.4 Improved Results for OEG
Owing to the high variance of the performance of the OEG method, we explored

whether better performance could be obtained with the OEG method. The two most

salient observations from these experiments where that (i) utilizing a random per-

mutation on the first pass through the data seems to be crucial to performance, and

(ii) that better performance could be obtained on the two datasets where OEG per-

formed poorly by using a different initialization. In particular, better performance

could be obtained by initializing the parts with the correct labels to a larger value,

such as 10. In Figure B.2, we plot the performance of the OEG method without

using the random permutation (OEG-noRP) as well as OEG with this initialization

(OEG-10). Removing the random permutation makes OEG perform much worse

on one of the datasets, while using the different initialization makes OEG perform

nearly as well as SAG-NUS* on the datasets where previously it performed poorly
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Figure B.3: Objective minus optimal objective value against time for differ-
ent deterministic, stochastic, and semi-stochastic optimization strate-
gies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-
2002, bottom-right: POS-WSJ.

(although it does not make up the performance gap on the remaining data set). Per-

formance did not further improve by using even larger values in the initialization,

and using a value that was too large lead to numerical problems.

B.5 Runtime Plots
In the main body we plot the performance against the effective number of passes as

an implementation-independent way of comparing the different algorithms. In all

cases except SMD, we implemented a C version of the method and also compared

the running times of our different implementations. This ties the results to the hard-

ware used to perform the experiments and to our specific implementation, and thus

says little about the runtime in different hardware settings or different implemen-
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Figure B.4: Test error against time for different deterministic, stochastic,
and semi-stochastic optimization strategies. Top-left: OCR, Top-right:
CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

tations, but does show the practical performance of the methods in this particular

setting. We plot the training objective against runtime in Figure B.3 and the test

error in Figure B.4. In general, the runtime plots show the exact same trends as

the plots against the effective number of passes. However, we note several small

differences:

• AdaGrad performs slightly worse in terms of runtime. This seems to be due

to the extra square root operators needed to implement the method.

• Hybrid performs worse in terms of runtime, although it was still faster than

the L-BFGS method. This seems to be due to the higher relative cost of

applying the L-BFGS update when the batch size is small.

• OEG performed much worse in terms of runtime, even with the better ini-

tialization from the previous section.
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Finally, we note that these implementations are available on the first author’s web-

page:

http://www.cs.ubc.ca/∼schmidtm/Software/SAG4CRF.html
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Appendix C

Chapter 4 Supplementary
Material

C.1 Proof of Theorem 4.2
First we restate Theorem 4.2 from Chapter 4.

Theorem C.1. If each fi is geodesically L-smooth and f is geodesically µ-strongly

convex over the Riemannian manifold M , the MASAGA algorithm with the con-

stant step size η =
2µ+
√

µ2−8ρ(1+α)ζ L2

4(1+α)ζ L2 converges linearly while satisfying the fol-

lowing:

E
[
d2(xt ,x∗)

]
≤ (1−ρ)t

ϒ
0,

where ρ = min{ µ2

8(1+α)ζ L2 ,
1
n − 1

αn}, ϒ0 = 2αζ η2
∑

n
i=1 ‖M0[i]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2 +

d2(x0,x∗) is a positive scalar, and α > 1 is a constant.
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Proof. Let δt = d2(xt ,x∗). First we find an upper-bound for E
[
‖νt‖2

2
]
.

E
[
‖νt‖2

2
]
= E

[
‖∇ fit (xt)−Γ

xt
x0

[
Mt [it ]− µ̂

]
‖2

2
]

= E
[
‖∇ fit (xt)−Γ

xt
x∗ [∇ fit (x

∗)]−Γ
xt
x0

[
Mt [it ]−Γ

x0
x∗ [∇ fit (x

∗)]− µ̂
]
‖2

2
]

≤ 2E
[
‖∇ fit (xt)−Γ

xt
x∗ [∇ fit (x

∗)]‖2
2
]

+2E
[
‖Γxt

x0

[
Mt [it ]−Γ

x0
x∗ [∇ fit (x

∗)]− µ̂
]
‖2

2
]

≤ 2E
[
‖∇ fit (xt)−Γ

xt
x∗ [∇ fit (x

∗)]‖2
2
]

+2E
[
‖Mt [it ]−Γ

x0
x∗ [∇ fit (x

∗)]‖2
2
]

≤ 2L2
δt +2E

[
‖Mt [it ]−Γ

x0
x∗ [∇ fit (x

∗)]‖2
2
]
.

The first inequality is due to (a+ b)2 ≤ 2a2 + 2b2 and the second one is from the

variance upper-bound inequality, in other words E
[
x2−E [x]2

]
≤ E

[
x2
]
. The last

inequality comes from the geodesic Lipschitz smoothness of each fi. Note that the

expectation is taken with respect to it .

E [δt+1]≤ E
[
δt −2

〈
νt ,Exp−1

xt
(−x∗)

〉
+ζ η

2‖νt‖2
2
]

= δt −2η
〈
∇ f (xt),Exp−1

xt
(−x∗)

〉
+ζ η

2E
[
‖νt‖2

2
]

≤ δt −ηµδt +ζ η
2E
[
‖νt‖2

2
]

≤ (1−µη)δt +ζ η
2 [2L2

δt +2E
[
‖Mt [it ]−Γ

x0
x∗ [∇ fit (x

∗)]‖2
2
]]

= (1−µη +2ζ L2
η

2)δt +2ζ η
2
Ψt .

The first inequality is due to the trigonometric distance bound, the second one is

due to the strong convexity of f , and the last one is due to the upper-bound of νt .

Ψt is defined as follows:

Ψt =
1
n

n

∑
i=1
‖Mt [i]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2.

We define the Lyaponov function

ϒ
t = δt + cΨt ,

for some c > 0. Note that ϒt ≥ 0, since both δt and Ψt are positive or zero. Next
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we find an upper-bound for E [Ψt+1].

E [Ψt+1] =
1
n
(
1
n

n

∑
i=1
‖∇ fi(xt)−Γ

xt
x∗ [∇ fi(x∗)]‖2

2)

+(1− 1
n
)(

1
n

n

∑
i=1
‖Mt [i]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2)

=
1
n
(
1
n

n

∑
i=1
‖∇ fi(xt)−Γ

xt
x∗ [∇ fi(x∗)]‖2

2)+(1− 1
n
)Ψt

≤ L2

n
δt +(1− 1

n
)Ψt .

The inequality is due to the geodesic Lipschitz smoothness of fi. Then, for some

positive ρ ≤ 1 we have the following inequality:

E
[
ϒ

t+1]− (1−ρ)ϒt ≤ (1−µη +2ζ L2
η

2− (1−ρ)+
cL2

n
)δt

+(2ζ η
2− c(1−ρ)+ c(1− 1

n
))Ψt . (C.1)

In the right hand side of Inequality C.1, δt and Ψt are positive by construction. If

the coefficients of δt and Ψt in the right hand side of the Inequality C.1 are negative,

we would have E
[
ϒt+1

]
≤ (1−ρ)ϒt . More precisely, we require

2ζ η
2− c(1−ρ)+ c(1− 1

n
)≤ 0, (C.2)

1−µη +2ζ L2
η

2− (1−ρ)+
cL2

n
≤ 0. (C.3)

To satisfy Inequality C.2 we require ρ ≤ 1
n −

2ζ η2

c . If we set c = 2αnζ η2 for some

α > 1, then ρ ≤ 1
n − 1

αn , which satisfies our requirement. If we replace the value

of c in Inequality C.3, we will get:

ρ−µη +2ζ L2
η

2 +2αζ L2
η

2 ≤ 0,

η ∈ (η− =
2µ−

√
µ2−8ρ(1+α)ζ L2

4(1+α)ζ L2 ,η+ =
2µ +

√
µ2−8ρ(1+α)ζ L2

4(1+α)ζ L2 ).

To ensure the term under the square root is positive, we also need ρ < µ2

8(1+α)ζ L2 .
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Finally, if we set ρ = min{ µ2

8(1+α)ζ L2 ,
1
n − 1

αn} and η = η+, then we have:

E
[
ϒ

t+1]≤ (1−ρ)t+1
ϒ

0,

where ϒ0 is a scalar. Since Ψt > 0 and E [δt+1] ≤ E
[
ϒt+1

]
, we get the required

bound:

E [δt+1]≤ (1−ρ)t+1
ϒ

0.

C.2 Proof of Theorem 4.4
First we restate Theorem 4.4 from Chapter 4.

Theorem C.2. When each fi is geodesically Li-smooth and f is geodesically µ-

strongly convex on the manifold M , the MASAGA algorithm with the defined non-

uniform sampling scheme and the constant step size η =
2µ+

√
µ2−8ρ(L̄+αL) ζ

γ
L̄

4(L̄+αL) ζ

γ
L̄

con-

verges linearly as follows:

E
[
d2(xt ,x∗)

]
≤ (1−ρ)t

ϒ
0,

where ρ = min{ γµ2

8(1+α)ζ LL̄ ,
γ

n −
γ

αn}, γ = min{Li}
L̄ , L = max{Li}, L̄ = 1

n ∑
n
i=1 Li, and

α > 1 is a constant, and ϒ0 = 2αζ η2

γ
∑

n
i=1

L̄
Li
‖M0[i]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2 + d2(x0,x∗)

are positive scalars.
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Proof. Let δt = d2(xt ,x∗). First let us find an upper bound for E
[
‖ L̄

Lit
νt‖2

2

]
:

E
[
‖ L̄

Lit
νt‖2

2

]
= E

[
(

L̄
Lit

)2‖∇ fit (xt)−Γ
xt
x0

[
Mt [it ]− µ̂

]
‖2

2

]

= E[(
L̄
Lit

)2‖∇ fit (xt)−Γ
xt
x∗ [∇ fit (x

∗)]

−Γ
xt
x0

[
Mt [it ]−Γ

x0
x∗ [∇ fit (x

∗)]− µ̂
]
‖2

2]

≤ 2E
[
(

L̄
Lit

)2‖∇ fit (xt)−Γ
xt
x∗ [∇ fit (x

∗)]‖2
2

]

+2E
[
‖( L̄

Lit
)(Γxt

x0

[
Mt [it ]−Γ

x0
x∗ [∇ fit (x

∗)]− µ̂
]
)‖2

2

]

≤ 2E
[
(

L̄
Lit

)2‖∇ fit (xt)−Γ
xt
x∗ [∇ fit (x

∗)]‖2
2

]

+2E
[
(

L̄
Lit

)2‖Mt [it ]−Γ
x0
x∗ [∇ fit (x

∗)]‖2
2

]

≤ 2E
[
(

L̄
Lit

)2L2
it δt

]
+2E

[
(

L̄
Lit

)2‖Mt [it ]−Γ
x0
x∗ [∇ fit (x

∗)]‖2
2

]

= 2L̄2
δt +2E

[
(

L̄
Lit

)2‖Mt [it ]−Γ
x0
x∗ [∇ fit (x

∗)]‖2
2

]

= 2L̄2
δt +2

1
n

n

∑
i=1

(
L̄
Li
)‖Mt [it ]−Γ

x0
x∗ [∇ fit (x

∗)]‖2
2.

The first inequality is due to (a+ b)2 ≤ 2a2 + 2b2 and the second one is from the

variance upper-bound inequality, i.e., E
[
x2−E [x]2

]
≤ E

[
x2
]
. The last inequality

comes from the Lipschitz smoothness of each fi. The last equality is due to fact

that we sample each fi with probability Li
nL̄ .
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E [δt+1]≤ E
[

δt −2
〈

L̄
Lit

νt ,Exp−1
xt

(−x∗)
〉
+ζ η

2‖ L̄
Lit

νt‖2
2

]

= δt −2η
〈
∇ f (xt),Exp−1

xt
(−x∗)

〉
+ζ η

2E
[
‖ L̄

Lit
νt‖2

2

]

≤ δt −ηµδt +ζ η
2E
[
‖ L̄

Lit
νt‖2

2

]

≤ (1−µη)δt +ζ η
2

[
2L̄2

δt +2
1
n

n

∑
i=1

(
L̄
Li
)‖Mt [it ]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2

]

= (1−µη +2ζ L̄2
η

2)δt +2ζ η
2
Ψt ,

where the first inequality is due to the trigonometric distance bound, the second

one is due to strong convexity of f , and the last one is due to upper-bound of νt .

Let

Ψt =
1
n

n

∑
i=1

(
L̄
Li
)‖Mt [i]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2.

Now let us define the Lyaponov function:

ϒ
t = δt + cΨt ,

for some c > 0. Next we have to find an upper bound for E [Ψt+1].

E [Ψt+1] =
1
n

(
n

∑
i=1

Li

nL̄
(

L̄
Li
)‖∇ fi(xt)−Γ

xt
x∗ [∇ fi(x∗)]‖2

2

)

+

(
1
n

n

∑
i=1

(1− Li

nL̄
)‖Mt [it ]−Γ

x0
x∗ [∇ fi(x∗)]‖2

2

)

=
1
n

(
1
n

n

∑
i=1
‖∇ fi(xt)−Γ

xt
x∗ [∇ fi(x∗)]‖2

2

)
+(1− γ

n
)Ψt

≤ 1
n

(
1
n

n

∑
i=1

L2
i δt

)
+(1− γ

n
)Ψt

≤ LL̄
n

δt +(1− γ

n
)Ψt ,
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where γ = min{Li}
L̄ . The first inequality is due to geodesic Lipschitz smoothness of

fi. Then for some positive ρ ≤ 1 we have the following inequality

E
[
ϒ

t+1]− (1−ρ)ϒt ≤ (1−µη +2ζ L̄2
η

2− (1−ρ)+
cLL̄

n
)δt

+(2ζ η
2− c(1−ρ)+ c(1− γ

n
))Ψt . (C.4)

So if the coefficients of δt and Ψt in the right hand side of Inequality C.4 are nega-

tive, we have E
[
ϒt+1

]
≤ (1−ρ)ϒt . More precisely, we need

2ζ η
2− c(1−ρ)+ c(1− γ

n
)≤ 0, (C.5)

1−µη +2ζ L̄2
η

2− (1−ρ)+
cLL̄

n
≤ 0. (C.6)

To satisfy C.5, we need

2ζ η
2 + cρ− cγ

n
≤ 0,

ρ ≤ γ

n
− 2ζ η2

c
.

Let c = 2αnζ η2

γ
for some α > 1, then ρ ≤ γ

n −
γ

αn . Now we replace c with its value

in C.6 and we get

ρ−µη +2ζ L̄2
η

2 +2α
ζ

γ
LL̄η

2 ≤ 0,

η ∈


η

− =
2µ−

√
µ2−8ρ(L̄+αL) ζ

γ
L̄

4(L̄+αL) ζ

γ
L2

,η+ =
2µ +

√
µ2−8ρ(L̄+αL) ζ

γ
L̄

4(L̄+αL) ζ

γ
L̄


 .

To get the term under square root be positive, we need that ρ < µ2

8(L̄+αL) ζ

γ
L̄
<

µ2

8(1+α) ζ

γ
LL̄

holds. Finally if we set ρ = min{ γµ2

8(1+α)ζ LL̄ ,
γ

n −
γ

αn} and η = η+, then

we have:

E
[
ϒ

t+1]≤ (1−ρ)t+1
ϒ

0,
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where ϒ0 is a scalar. Since Ψt > 0, then E [δt+1]≤ E
[
ϒt+1

]
and we get:

E [δt+1]≤ (1−ρ)t+1
ϒ

0.
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Appendix D

Chapter 5 Supplementary
Material

D.1 Examples of Splitting for Variational-Gaussian
Inference

We give detailed derivations for the splitting-examples shown in Section 5.2.1 in

Chapter 5. As in Chapter 5, we denote the Gaussian posterior distribution by

q(z|λ ) := N (z|m,V), so that λ = {m,V} with m being the mean and V being

the covariance matrix.

D.1.1 Gaussian Process (GP) Models

Consider GP models for N input-output pairs {yn,xn} indexed by n. Let zn := f (xn)

be the latent function drawn from a GP with a zero-mean function and a covariance

function κ(x,x′). We denote the Kernel matrix obtained on the data xn for all n by

K.

We use a non-Gaussian likelihood p(yn|zn) to model the output, and assume

that each yn is independently sampled from this likelihood given z. The joint-
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distribution over y and z is shown below:

p(y,z) =
N

∏
n=1

p(yn|zn)N (z|0,K). (D.1)

The ratio required for the lower bound is shown below, along with the split, where

non-Gaussian terms are in p̃d and Gaussian terms are in p̃e:

p(y,z)
q(z|m,V)

=
N

∏
n=1

p(yn|zn)

︸ ︷︷ ︸
p̃d(z|λ )

N (z|0,K)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ )

. (D.2)

By substituting in Eq. (5.1) of Chapter 5, we can obtain the lower bound L after a

few simplifications, as shown below:

L (m,V) := Eq(z)

[
log

p(y,z)
q(z|m,V)

]
, (D.3)

= Eq(z)

[
N

∑
n=1

log p(yn|zn)

]
+Eq(z)

[
log

N (z|0,K)

N (z|m,V)

]
, (D.4)

=
N

∑
n=1

Eq[log p(yn|zn)]

︸ ︷︷ ︸
− f (λ )

−DKL[N (z|m,V)‖N (z|0,K)]︸ ︷︷ ︸
h(λ )

. (D.5)

The assumption A2 is satisfied since the KL divergence is convex in both m and

V. This is clear from the expression of the KL divergence:

DKL [N (z|m,V)||N (z|0,K)] = 1
2 [− log |VK−1|+Tr(VK−1)+mT K−1m−D]

(D.6)

where D is the dimensionality of z. Convexity with respect to m follows from the

fact that the above is quadratic in m and K is positive semi-definite. Convexity

with respect to V follows due to concavity of log |V| (trace is linear, so does not

matter).

Assumption A1 depends on the choice of the likelihood p(yn|zn), but is usually

satisfied. The simplest example is a Gaussian likelihood for which the function f
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takes the following form:

f (m,V) =
N

∑
n=1

Eq[− log p(yn|zn)] =
N

∑
n=1

Eq[− logN (yn|zn,σ
2)] (D.7)

=
N

∑
n=1

1
2 log(2πσ

2)+
1

2σ2

[
(yn−mn)

2 + vn
]
, (D.8)

where mn is the n’th element of m and vn is the n’th diagonal entry of V. This

clearly satisfies A1, since the objective is quadratic in m and linear in V.

Here is an example where A1 is not satisfied: for Poisson likelihood log p(yn|zn)=

exp[ynzn−ezn ]/yn! with rate parameter equal to ezn , the function f takes the follow-

ing form:

f (m,V) =
N

∑
n=1

Eq[− log p(yn|zn)] =
N

∑
n=1

[−ynmn + emn+vn/2 + log(yn!)] (D.9)

whose derivative is not Lipschitz continuous since exponential functions are not

Lipschitz.

D.1.2 Generalized Linear Models (GLMs)

We now describe a split for generalized linear models. We model the output yn

by using an exponential family distribution whose natural-parameter is equal to

ηn := xT
n z. Assuming a standard Gaussian prior over z, the joint distribution can

be written as follows:

p(y,z) :=
N

∏
n=1

p(yn|xT
n z)N (z|0,I). (D.10)

A similar split can be obtained by putting non-conjugate terms p(yn|xT
n z) in p̃d and

the rest in p̃e:

p(y,z)
q(z|λ ) =

N

∏
n=1

p(yn|xT
n z)

︸ ︷︷ ︸
p̃d(z|λ )

N (z|0,I)
N (z|m,V)︸ ︷︷ ︸

p̃e(z|λ )

.
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The lower bound can be shown to be the following:

L (m,V) :=
N

∑
n=1

Eq[log p(yn|xT
n z)]

︸ ︷︷ ︸
− f (λ )

−DKL[N (z|m,V)‖N (z|0,I)]︸ ︷︷ ︸
h(λ )

, (D.11)

which is very similar to the GP case. Therefore, Assumptions A1 and A2 will

follow with similar arguments.

D.1.3 Correlated Topic Model (CTM)

We consider text documents with a vocabulary size N. Let z be a length K real-

valued vector which follows a Gaussian distribution shown in (D.12). Given z,

a topic tn is sampled for the n’th word using a multinomial distribution shown in

(D.13). Probability of observing a word in the vocabulary is then given by (D.14).

p(z|θ) = N (z|µ,Σ), (D.12)

p(tn = k|z) = exp(zk)

∑
K
j=1 exp(z j)

, (D.13)

p(Observing a word v|tn,θ) = βv,tn . (D.14)

Here β is a N×K real-valued matrix with non-negative entries and columns that

sum to 1. The parameter set for this model is given by θ = {µ,Σ,β}. We can

marginalize out tn and obtain the data-likelihood given z,

p(Observing a word v|z,θ) =
K

∑
k=1

p(Observing a word v|tn = k,θ)p(tn = k|z)

(D.15)

=
K

∑
k=1

βvk
ezk

∑
K
j=1 ez j

. (D.16)
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Given that we observe n’th word yn times, we can write the following joint distri-

bution:

p(y,z) :=
N

∏
n=1

[
K

∑
k=1

βn,k
ezk

∑ j ez j

]yn

N (z|µ,Σ). (D.17)

We can then use the following split:

p(y,z)
q(z|λ ) =

N

∏
n=1

[
K

∑
k=1

βn,k
ezk

∑ j ez j

]yn

︸ ︷︷ ︸
p̃d(z|λ )

N (z|µ,Σ)
N (z|m,V)︸ ︷︷ ︸

p̃e(z|λ )

,

where µ,Σ are parameters of the Gaussian prior and βn,k are parameters of K multi-

nomials.

The lower bound is shown below:

L (m,V) :=
N

∑
n=1

yn

{
Eq

[
log

(
K

∑
k=1

βn,kezk

)]}
−WEq

{
log

[
K

∑
j=1

ez j

]}

−DKL[N (z|m,V)‖N (z|0,I)], (D.18)

where W = ∑n yn is the total number of words. The top line is the function [− f (λ )]

while the bottom line is [−h(λ )].

There are two intractable expectations in f , each involving expectation of a

log-sum-exp function. Wang and Blei (2013) use the Delta method and Laplace

method to approximate these expectations. In contrast, in PG-SVI algorithm, we

use Monte Carlo to approximate the gradient of these functions.

D.2 Proof of Theorems 5.1 and 5.2
We first prove Theorem 5.2. Theorem 5.1 is obtained as a special case of it. Our

proof technique is borrowed from Ghadimi et al. (2014). We extend their results to

general divergence functions.
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We denote the proximal projection at λ k with gradient g and step-size β by,

P(λ k,g,β ) :=
1
β
(λ k−λ k+1), (D.19)

where λ k+1 = argmin
λ∈S

λ
T g+h(λ )+

1
β
D(λ ‖λ k). (D.20)

The following lemma gives a bound on the norm of P(λ k,g,β ).

Lemma D.1. The following holds for any λ k ∈S , any real-valued vector g and

β > 0.

gT P(λ k,g,β )≥ α||P(λ k,g,β )||2 +
1
β
[h(λ k+1)−h(λ k)]. (D.21)

Proof. By taking the gradient of λ
T g+ 1

β
D(λ ‖λ k) and picking any sub-gradient

∇h of h at λ k+1, the corresponding sub-gradient of the right hand side of ((D.20))

is given as follows:

g+∇h(λ k+1)+
1
β

∇λD(λ k+1 ‖λ k). (D.22)

We use this to derive the optimality condition of ((D.20)). For any λ , the following

holds from the optimality condition:

(λ −λ k+1)
T

[
g+∇h(λ k+1)+

1
β

∇λD(λ k+1 ‖λ k)

]
≥ 0. (D.23)

Letting λ = λ k,

(λ k−λ k+1)
T

[
g+∇h(λ k+1)+

1
β

∇λD(λ k+1 ‖λ k)

]
≥ 0, (D.24)

which implies

gT (λ k−λ k+1)≥
1
β
(λ k+1−λ k)

T
∇λD(λ k+1 ‖λ k)+h(λ k+1)−h(λ k) (D.25)

≥ α

β
||λ k+1−λ k||2 +h(λ k+1)−h(λ k). (D.26)
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The first line follows from Assumption A2 (convexity of h), and the second line

follows from Assumption A6.

Now, we are ready to prove Theorem 5.2:

Proof. Let g̃λ ,k := P(λ k,∇ f (λ k),βk). Since ∇ f is L-smooth (Assumption A1),

for any k = 0,1, . . . , t−1 we have,

f (λ k+1)≤ f (λ k)+ 〈∇ f (λ k),λ k+1−λ k〉+
L
2
‖λ k+1−λ k‖2

2

= f (λ k)−βk
〈
∇ f (λ k), g̃λ ,k

〉
+

L
2

β
2
k ‖g̃λ ,k‖2

2

≤ f (λ k)−βkα‖g̃λ ,k‖2
2− [h(λ k+1)−h(λ k)]+

L
2

β
2
k ‖g̃λ ,k‖2

2.

The second line follows from the definition of P and the last line is due to Lemma D.1.

Rearranging the terms and using −L = f +h we get:

−L (λ k+1)+L (λ k)≤−[βkα− L
2

β
2
k ]‖g̃λ ,k‖2

2,

⇒ L (λ k+1)−L (λ k)≥ [βkα− L
2

β
2
k ]‖g̃λ ,k‖2

2.

Summing these term for all k = 0,1, . . . t−1, we get the following:

L (λ t−1)−L (λ 0)≥
t−1

∑
k=0

[βkα− L
2

β
2
k ]‖g̃λ ,k‖2

2.

By noting that the global maximum of the lower bound always upper bounds any

other value, we get L (λ ∗)−L (λ 0)≥L (λ t−1)−L (λ 0). Using this,

L (λ ∗)−L (λ 0)≥
t−1

∑
k=0

[βkα− L
2

β
2
k ]‖g̃λ ,k‖2

2,

⇒ min
k=0,1,...,t−1

‖g̃λ ,k‖2
2[

t−1

∑
k=0

[βkα− L
2

β
2
k ]]≤L (λ ∗)−L (λ 0).

Since we assume at least one of βk < 2α/L, we can divide by the summation term,
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to get the following:

min
k=0,1,...,t−1

‖g̃λ ,k‖2
2 ≤

L (λ ∗)−L (λ 1)

∑
t−1
k=0[βkα− L

2 β 2
k ]
,

which proves Theorem 5.2.

Theorem 5.1 can be obtained by simply plugging in βk = α/L,

min
k=0,1,...,t−1

‖g̃λ ,k‖2
2 ≤

C0

∑
t−1
k=0[

α2

L − α2

2L ]
=

2C0L
α2t

.

D.3 Proof of Theorem 5.3
We will first prove the following theorem, which gives a similar result to Theo-

rem 5.2 but for a stochastic gradient ∇̂ f .

Theorem D.2. If we choose the step-size βk such that 0 < βk ≤ 2α∗/L with βk <

2α∗/L for at least one k, then,

ER,ξ [‖GR‖2
2]≤

C0 +
cσ2

2 ∑
t−1
k=0

βk
Mk

∑
t−1
k=0

(
α∗βk−Lβ 2

k /2
) , (D.27)

where the expectation is taken over R ∈ {0,1,2, . . . , t−1} which is a discrete ran-

dom variable drawn from the probability mass function

Prob(R = k) =
α∗βk−Lβ 2

k /2

∑
t−1
k=0

(
α∗βk−Lβ 2

k /2
) ,

and over ξ := {ξ 1,ξ 2, . . . ,ξ t−1} with ξ k is the noise in the stochastic approxima-

tion ∇̂ f .

Proof. Let g̃λ ,k := P(λ k, ∇̂ f (λk),βk), δk := ∇̂ f (λk)−∇ f (λ k). Since ∇ f is L-
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smooth, for any k = 0,1, . . . , t we have,

f (λ k+1)≤ f (λ k)+ 〈∇ f (λ k),λ k+1−λ k〉+
L
2
‖λk+1−λ k‖2

2 (D.28)

= f (λ k)−βk
〈
∇ f (λ k), g̃λ ,k

〉
+

L
2

β
2
k ‖g̃λ ,k‖2

2 (D.29)

= f (λ k)−βk

〈
∇̂ f (λk), g̃λ ,k

〉
+

L
2

β
2
k ‖g̃λ ,k‖2

2 +βk
〈
δk, g̃λ ,k

〉
(D.30)

where we have used the definition of g̃λ ,k and δk. Now using Lemma D.1 on the

second term and Cauchy-Schwarz for the last term, we get the following:

f (λ k+1)≤ f (λ k)−
[
αβk‖g̃λ ,k‖2

2 +h(λ k+1)−h(λ k)
]

+
L
2

β
2
k ‖g̃λ ,k‖2

2 +βk‖δk‖2‖g̃λ ,k‖2. (D.31)

After rearranging and using Young’s inequality ‖δk‖2‖g̃λ ,k‖2≤ (c/2)‖δk‖2
2+1/(2c)‖g̃λ ,k‖2

2

given a constant c > 0, we get

−L (λ k+1)≤−L (λ k)−αβk‖g̃λ ,k‖2
2 +

L
2

β
2
k ‖g̃λ ,k‖2

2 +
βk

2c
‖g̃λ ,k‖2

2 +
βkc
2
‖δk‖2

2

(D.32)

=−L (λ k)−
(
(α−1/(2c))βk−

L
2

β
2
k

)
‖g̃λ ,k‖2

2 +
cβk

2
‖δk‖2

2.

(D.33)

Now considering c > 1/(2α), α∗ = α−1/(2c) and βk ≤ 2α∗
L , and summing up

both sides for iteration k = 0,1 . . . , t−1, we obtain

t−1

∑
k=0

(
α∗βk−

L
2

β
2
k

)
‖g̃λ ,k‖2

2 ≤L ∗−L (λ 0)+
t−1

∑
k=0

cβk

2
‖δk‖2

2. (D.34)

Now by taking expectation with respect to ξ on both sides and using the fact that

Eξ‖δk‖2
2 ≤ σ2

Mk
by assumption A3 and A4, we get

t−1

∑
k=0

(
α∗βk−

L
2

β
2
k

)
Eξ‖g̃λ ,k‖2

2 ≤C0 +
cσ2

2

t−1

∑
k=0

βk

Mk
. (D.35)
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Writing the expectation with respect to R and x we get

ER,ξ [‖g̃λk,R‖2
2] =

∑
t−1
k=0

(
α∗βk− L

2 β 2
k

)
Eξ‖g̃λ ,k‖2

2

∑
t−1
k=0

(
α∗βk− L

2 β 2
k

) , (D.36)

whose numerator is the left side of (D.35). Dividing (D.35) by ∑
t
k=0
(
α∗βk− L

2 β 2
k

)

and using this in (D.36) we get the result.

By substituting βk = α∗/L and Mk = M in (D.27),

ER,ξ [‖GR‖2
2]≤

C0 +
cσ2

2 ∑
t−1
k=0

βk
Mk

∑
t−1
k=0

(
α∗βk−Lβ 2

k /2
) (D.37)

=
C0 +

cσ2α∗t
2LM

α2∗ t
2L

=

(
2LC0

α2∗ t
+

cσ2

Mα∗

)
(D.38)

The probability distribution for R reduces to a uniform distribution in this case,

with the probability of each iteration being 1/t. This proves Theorem D.2.

D.4 Derivation of Closed-form Updates for the GP Model

The PG-SVI iterations λ k+1 = minλ∈S λ
T
[
∇̂ f (λ k)

]
+ h(λ )+ 1

βk
D(λ‖λ k) takes

the following form for the GP model, as discussed in Section 5.5 of Chapter 5:

(mk+1,Vk+1) = argmin
m,V�0

(mnαnk,k +
1
2 vnγnk,k)

+DKL [N (z|m,V)||N (z|0,K)]

+
1
βk

DKL [N (z|m,V)||N (z|mk,Vk)] , (D.39)

where nk is the example selected in k’th iteration. We will now show that its solu-

tion can be obtained in closed-form.
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D.4.1 Full Update of Vk+1

We first derive the full update of Vk+1. The KL divergence between two Gaussian

distributions is given as follows:

DKL [N (z|m,V)||N (z|0,K)] =−1
2 [log |VK−1|−Tr(VK−1)−mT K−1m+D].

(D.40)

Using this, we expand the last two terms of (D.39) to get the following,

− 1
2

[
log |VK−1|−Tr(VK−1)−mT K−1m+D

]

− 1
2

1
βk

[
log |VK−1|−Tr{VV−1

k }− (m−mk)
T V−1

k (m−mk)+D
]

=−1
2

[(
1+

1
βk

)
log |V|−Tr{V(K−1 +

1
βk

V−1
k )}−mT K−1m

− 1
βk

(m−mk)
T V−1

k (m−mk)+

(
1+

1
βk

)
(D− log |K|)

]
. (D.41)

Taking derivative of (D.39) with respect to V at V = Vk+1 and setting it to zero,

we get the following (here In is a matrix with all zeros, except the n’th diagonal

element which is set to 1):

⇒ −
(

1+
1
βk

)
V−1

k+1 +

(
K−1 +

1
βk

V−1
k

)
+ γnk,kInk = 0, (D.42)

⇒ V−1
k+1 =

1
1+βk

V−1
k +

βk

1+βk

(
K−1 + γnk,kInk

)
, (D.43)

⇒ V−1
k+1 = rkV−1

k +(1− rk)
(
K−1 + γnk,kInk

)
, (D.44)

which gives us the update of Vk+1 for rk := 1/(1+βk).

D.4.2 Avoiding a full update of Vk+1

A full update will require storing the matrix Vk+1. Fortunately, we can avoid stor-

ing the full matrix and still do an exact update. The key point here is to notice

that to compute the stochastic gradient in the next iteration we only need one di-

agonal element of Vk+1 rather than the whole matrix. Specifically, if we sample

nk+1’th example at the iteration k+1, then we need to compute vnk+1,k+1 which is
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the nk+1’th diagonal element of Vk+1. This can be done by solving one linear equa-

tion, as we show in this section. Specifically, we show that the following updates

can be used to compute vnk+1,k+1:

vnk+1,k+1 = κnk+1,nk+1−κ
T
nk+1

(
K+[diag(γ̃k)]

−1)−1
κnk+1 , (D.45)

where γ̃k = rkγ̃k−1 +(1− rk)γnk,k1nk (1n is a vector of all zeros except its n’th entry

which is equal to 1). We start the recursion with γ̃0 = ε where ε is a small positive

number.

We will now show that Vk can be reparameterized in terms of a vector γ̃k which

contains accumulated weighted sum of the gradient γn j, j, for all j≤ k. To show this,

we recursively substitute the update of V j for j < k+ 1, as shown below (recall

that nk is the example selected at the k’th iteration). The second line is obtained by

substituting the full update of Vk by using (D.44). The third line is obtained after a

few simplifications. The fourth line is obtained by substituting the update of Vk−1

and a few simplifications.

V−1
k+1 = rkV−1

k +(1− rk)
[
K−1 + γnk,kInk

]

= rk
[
rk−1V−1

k−1 +(1− rk−1)
(
K−1 + γnk−1,k−1Ink−1

)]

+(1− rk)
[
K−1 + γnk,kInk

]

= rkrk−1V−1
k−1 +(1− rkrk−1)K−1

+
[
rk(1− rk−1)γnk−1,k−1Ink−1 +(1− rk)γnk,kInk

]

= rkrk−1rk−2V−1
k−2 +(1− rkrk−1rk−2)K−1

+[rkrk−1(1− rk−2)γnk−2,k−2Ink−2

+ rk(1− rk−1)γnk−1,k−1Ink−1 +(1− rk)γnk,kInk ].

This update expresses Vk+1 in terms of Vk−2, K, and gradients of the data example

selected at k,k−1, and k−2. Continuing in this fashion until k = 0, we can write
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the update as follows:

V−1
k+1 = tkV−1

0 +(1− tk)K−1 +[rkrk−1 . . .r3r2(1− r1)γn1,1In1

+ rkrk−1 . . .r4r3(1− r2)γn2,2In2

+ rkrk−1 . . .r5r4(1− r3)γn3,3In2 + . . .

+ rkrk−1(1− rk−2)γnk−2,k−2Ink−2

+ rk(1− rk−1)γnk−1,k−1Ink−1 +(1− rk)γnk,kInk ], (D.46)

where tk is the product of rk,rk−1, . . . ,r0. We can write the updates more compactly

by defining the accumulation of the gradients γn j, j for all j ≤ k by a vector γ̃k,

V−1
k+1 = tkV−1

0 +(1− tk)K−1 +diag(γ̃k)

The vector γ̃k can be obtained by using a recursion. We illustrate this below, where

we have grouped the terms in (D.46) to show the recursion for γ̃k (here 1n is a

vector with all zero entries except n’th entry which is set to 1):entries except n’th entry which is set to 1):

rkrk−1 . . . r6r5r4r3r2(1− r1)γn1,11n1

+rkrk−1 . . . r6r5r4r3(1− r2)γn2,21n2

+rkrk−1 . . . r6r5r4(1− r3)γn3,31n3

+rkrk−1 . . . r6r5(1− r4)γn4,41n4

+rkrk−1 . . . r6(1− r5)γn5,51n5

...

In other words, at iteration k, we compute γ̃k given γ̃k−1 by modifying its nk’th as follows:

γ̃nk,k ← rkγ̃nk,k−1 + (1− rk)γnk,k (53)

γ̃nk,j ← rkγ̃nk,k−1 + (1− rk)γnk,k (54)

with an initialization γ̃ = ε where ε is a small constant. If we set V0 = K, then the formula
simplifies to the following:

V−1k+1 = K−1 + diag(γ̃) (55)

which is completely specified by γ̃, eliminating the need to compute and store Vk+1.
Now, the nk+1’th diagonal element can be obtained by using Materix Inversion Lemma, which

gives us the update (45).

4.3 Update of m

Taking derivative of (38) with respect to m at m = mk+1 and setting it to zero, we get the
following (here 1n is a vector with all zero entries except n’th entry which is set to 1):

⇒ −K−1mk+1 −
1

βk
V−1k (mk+1 −mk)− αnk,k1nk

= 0 (56)

⇒ −
[
K−1 +

1

βk
V−1k

]
mk+1 +

1

βk
V−1k mk − αnk,k1nk

= 0 (57)

⇒ mk+1 =

[
K−1 +

1

βk
V−1k

]−1 [ 1

βk
V−1k mk − αnk,k1nk

]
(58)

⇒ mk+1 =
[
(1− rk)K−1 + rkV

−1
k

]−1 [−(1− rk)αnk,k1nk
+ rkV

−1
k mk

]
(59)

where the last step is obtained using the fact that 1/βk = rk/(1− rk).
We simplify as shown below. The first step is obtained by adding and subtracting (1 −

rk)K
−1mk in the square bracket at the right. In the second step, we take mk out. The third

step is obtained by plugging in the updates of V−1k = K−1 + diag(γ̃). The fourth step is obtained

10

Therefore, γ̃k can be recursively updated as follows:

γ̃k = rkγ̃k−1 +(1− rk)γnk,k1nk , (D.47)

with an initialization γ̃0 = ε where ε is a small constant to avoid numerical issues.

If we set V0 = K, then the formula simplifies to the following:

V−1
k+1 = K−1 +diag(γ̃k), (D.48)

which is completely specified by γ̃k, eliminating the need to compute and store
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Vk+1. The nk+1’th diagonal element can be obtained by using Matrix Inversion

Lemma, which gives us the update (D.45).

D.4.3 Update of m

Taking derivative of (D.39) with respect to m at m=mk+1 and setting it to zero, we

get the following (here 1n is a vector with all zero entries except n’th entry which

is set to 1):

⇒ −K−1mk+1−
1
βk

V−1
k (mk+1−mk)−αnk,k1nk = 0,

⇒ −
[

K−1 +
1
βk

V−1
k

]
mk+1 +

1
βk

V−1
k mk−αnk,k1nk = 0,

⇒ mk+1 =

[
K−1 +

1
βk

V−1
k

]−1[ 1
βk

V−1
k mk−αnk,k1nk

]
,

⇒ mk+1 =
[
(1− rk)K−1 + rkV−1

k

]−1 [−(1− rk)αnk,k1nk + rkV−1
k mk

]
,

where the last step is obtained using the fact that 1/βk = rk/(1− rk).

We simplify as shown below. The second line is obtained by adding and

subtracting (1− rk)K−1mk in the square bracket at the right. In the the third

line, we take mk out. The fourth line is obtained by plugging in the updates of

V−1
k =K−1+diag(γ̃k). The fifth line is obtained by using Matrix-Inversion lemma,

and the sixth line is obtained by taking K−1 out of the right-most term.

mk+1 =
[
(1− rk)K−1 + rkV−1

k

]−1 [−(1− rk)αnk,k1nk + rkV−1
k mk

]

=
[
(1− rk)K−1 + rkV−1

k

]−1
[(1− rk){−K−1mk−αnk,k1nk}

+{(1− rk)K−1 + rkV−1
k }mk]

= mk +(1− rk)
[
(1− rk)K−1 + rkV−1

k

]−1 (−K−1mk−αnk,k1nk

)

= mk− (1− rk)
[
K−1 + rkdiag(γ̃k−1)

]−1 (K−1mk +αnk,k1nk

)

= mk− (1− rk)
[
K−K

(
K+diag(rkγ̃k−1)

−1)−1 K
](

K−1mk +αnk,k1nk

)

= mk− (1− rk)
[
I−K

(
K+diag(rkγ̃k−1)

−1)−1
]
(mk +αnk,kκnk)

= mk− (1− rk)(I−KB−1
k )(mk +αnk,kκnk),
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where Bk := K+[diag(rkγ̃k−1)]
−1.

Since rkγ̃k−1 and γ̃k differ only slightly (by the new example gradient γnk , we

can instead use the following approximate update:

mk+1 = mk− (1− rk)(I−KA−1
k )(mk +αnk,kκnk), (D.49)

where Ak := K+[diag(γ̃k)]
−1.

D.5 Closed-form Updates for GLMs
We rewrite the lower bound as

−L (m,V) :=
N

∑
n=1

fn(m̃n, ṽn)

︸ ︷︷ ︸
f (m,V )

+DKL[N (z|m,V)‖N (z|0,I)]︸ ︷︷ ︸
h(m,V)

, (D.50)

where fn(m̃n, ṽn) := −Eq[log p(yn|xT
n z)] with m̃n := xT

n and ṽn := xT
n Vxn. We can

compute a stochastic approximation to the gradient of f by randomly selecting an

example nk (choosing M = 1) and using a Monte Carlo gradient approximation

to the gradient of fnk . Similar to GP, we define the following as our gradients of

function fn:

αnk,k := N∇m̃nk
fnk(m̃nk , ṽnk), γnk,k := 2N∇ṽnk

fnk(m̃nk , ṽnk) (D.51)

The PG-SVI iteration can be written as follows:

(mk+1,Vk+1) = argmin
m,V�0

(m̃nαnk,k +
1
2 ṽnγnk,k)+DKL [N (z|m,V)||N (z|0,I)]

+
1
βk

DKL [N (z|m,V)||N (z|mk,Vk)] . (D.52)
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Using a similar derivation to the GP model, we can show that the following updates

will give us the solution:

γ̃k = rkγ̃k−1 +(1− rk)γnk,k1nk ,

m̃k+1 = m̃k− (1− rk)(I−KA−1
k )(mk +αnk,kκnk),

ṽnk+1,k+1 = κnk+1,nk+1−κ
T
nk+1

A−1
k κnk+1 , (D.53)

where K = XXT and m̃k := XT m.
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